
Working with objects
The OOram Software Engineering Method

Trygve Reenskaug
with P. Wold and O.A. Lehne

Document date: 29 March 1995
Last update on: 29 March 1995 at: 23:05

Printed on: 29 March 1995 at: 23:06

We dedicate this book to Douglas Engelbart because he made us
understand that computers should be used to augment the human intellect

rather than to replace it, and because his deep understanding of the
symbiosis between humans and information is still far ahead of the rest of

us.

This is a preprint. Do not copy. All rights reserved.

TASKON
Work Environments

Taskon, Gaustadalléen 21, N-0371 Oslo 3 Norway. Tel. + (47) 22 95 86 31 Telefax: + (47) 22 60 44 27

There are two ways of constructing a software design:

- One way is to make it so simple that there are
obviously no deficiencies

- and the other way is to make it so complicated
that there are no obvious deficiencies.

-- C. A. R. Hoare

 29 March 1995 23:05

©Taskon 1992. Page 0

Chapter 0
Preface

Goals

Real software for
real users

The main theme of this book is to describe complex phenomena as
structures of interacting objects. Object technology is applicable to a
wide range of phenomena on many different levels. Examples are
work procedures on the enterprise level; large-scale applications on
the systems level; and small, technical details on the program design
level.

The goals of the book are

1. To provide a comprehensive description of the object paradigm
and its applications

2. To show how it supports a number of different views on the same
model; permitting the analyst to work with a data-centered
approach, a process-centered approach, or a combination of the
two.

3. To show how very large and complex systems can be described
by a number of distinct models.

To show how composite models can be derived from simpler base
models.

4.

To describe a number of powerful reuse techniques.5.

6. To describe how a systematic policy of reuse impacts work
processes and organization.

To show how very large systems can be described and managed
in a decentralized manner without central control.

7.

Motivation

A number of important books on object-oriented analysis and design
have been published in recent years. The most influential are probably
[Cox 87], [Wirfs-Brock 90], [Booch 94], [Rumbaugh 91], and

 Motivation29 March 1995 23:05

Preface ©Taskon 1992. Page 1

[Jacobson 92]. All these methodologies are based on the object as the
common building block and on the class as a common abstraction on
the objects.

There is a widespread feeling that the methodologies could profitably
be merged into a single one, and that the concepts and notation of the
composite methodology could be standardized. We feel that such
standardization will be premature. Objects and classes represent two
different levels of abstraction; each is suited to the expression of
certain properties. Static properties and relations are best expressed in
terms of classes. Examples are attributes and relations; most notably
for expressing the inheritance relation. Dynamic properties are best
expressed in terms of objects. Examples are message interactions
(scenarios), use cases, and data flows.

The class/object duality is as essential to object oriented programming
as it is disruptive to object oriented modeling. A future modeling
standard should be built on a unified conceptual framework with
sufficient expressive power to describe all interesting aspects of an
object system within a single, integrated model.

One candidate is the OOram role model. This conceptual framework
combines the expressiveness of the object and the class. All
information that can be expressed in a class-based model can be
expressed in a role model. All information that can be expressed in an
object-based model can be be expressed in the same role model.
Furthermore, there is a synergy effect from merging the class and
object properties into one and the same model. The result is increased
leverage for the decomposition of large systems and for the systematic
reuse of proven components.

The essence of the object-oriented paradigm is the modeling of
interesting phenomena as a structure of interacting objects. The
architecture of a home can be represented as a structure of room
objects interconnected with doors and hallways. A model which says
that a room may be adjacent to another room is insufficient. We need
to be able to say that the dining room shall be adjacent to the kitchen;
and that the childrens' playroom shall be far away from the master
bedroom.

In an OOram role model, patterns of interacting objects are abstracted
into a corresponding pattern of interacting roles. In our simple
example, one object will play the role of dining room, another the role
of kitchen, etc. The roles are interconnected to represent the layout of

 Motivation 29 March 1995 23:05

©Taskon 1992. Page 2 Preface

the home. The corresponding objects will belong to the same class if
they have the same properties; they will belong to different classes if
they have different properties. The role model abstraction belongs to
the realm of modeling. The class abstraction belongs to the realm of
implementation.

An object can play several roles. This permits a systematic separation
of concern by describing different phenomena in different role
models. And conversely, it permits the synthesis of a derived model
by letting its objects play several roles from different role models.

This book is about the added leverage provided by role modeling as
opposed to the conventional class modeling. The nature of this
leverage is listed under the heading of Goals above. The added
leverage motivates our introduction of a new and precisely defined set
of concepts and a new notation -- it motivates this book.

Audience

Familiarity with
computers assumed

We assume that you are familiar with how computers and computer
programming influence modern information processing, but do not
assume familiarity with a particular programming language or
operating system. Most of the book is written for the manager and
person of business who is searching for new and better ways to
produce software, for the consultant who wants to use objects to
design new business organizations, and for the system creator who
wants to understand how to exploit the full power of object
orientation. A few chapters are clearly marked as being directed to the
expert computer programmer.

The structure of this book

This book is written to be read in sequence, but we suggest you skip
chapters which look uninteresting on your first reading. It is organized
in twelve chapters as follows:

A reader's guide to
this book

29 March 1995 23:05 The structure of this book

©Taskon 1992. Page 3Preface

1. The main ideas. An introduction to industrial software
production, object orientation and the OOram method providing
an intuitive understanding of the main ideas. We recommend that
you study this chapter before embarking on the more detailed
expositions in the remainder of the book. It should help you to
recognize what objects can do for you and help you to set your
goals.

Role Modeling. How to create object-oriented models of
interesting phenomena. This chapter should help you create your
first models and establish your work processes for analysis and
design.

2.

Role model synthesis. How to create derived models from simpler
ones. Read this chapter to understand how you can divide your
problem space and still conquer the whole. If your systems are on
a large scale, this chapter should help you tackle them. But be
warned; you will need to collect a solid body of experience before
you can reasonably expect to establish a successful reuse
operation.

3.

Bridge to implementation. How to specify objects for
implementation in different languages, how to implement the
specifications, how to check the implementation against the
specification, and how to analyze an existing implementation to
create one or more role models describing it. This chapter ties the
concepts of the OOram technology to the concepts of two popular
programming languages, Smalltalk and C++. This may be the
chapter which makes the OOram technology real to you if you are
a programmer. If you are not, you may safely ignore the whole
chapter.

4.

5. Creating reusable components. How to create reusable
components by exploiting the object inheritance properties. You
cannot reuse something before you have used it. There is no snake
oil that will magically give you the benefits of reuse; but we
present guidelines that will help the serious practitioner gradually
build a library of reusable components. Once you master the
technology of synthesis, you search for reusable components
which transform your large and complex projects into small and
manageable ones.

Additional role modeling concepts and notation. Presents
additional role model views that have proven to be useful in
certain circumstances.

6.

 The structure of this book 29 March 1995 23:05

©Taskon 1992. Page 4 Preface

7. Case study: Development of a business information system.
Stresses the work processes and the relationships between three
important models: a model of the system environment, an
information model, and a task/tool/service model.

Case study: The analysis and design of a real time system. The
case stresses embedded systems with their behavioral aspects
described with Finite State Machines. It also exemplifies a
number of different approaches to the implementation.

8.

Case study: The creation of a framework. Describes the creation
of a fairly large framework supporting reuse. The study describes
all stages in the creation of the framework, including reverse
engineering of existing systems and forward engineering of the
new framework.

9.

Organizing for software productivity. Describes how to design a
work organization in the form of a value chain; and how to select
appropriate technology for the different layers. This chapter
indicates the structure of a future software industry, and is written
for readers who are serious about the large-scale provision of
customized software. It offers the greatest challenges and
promises the biggest rewards. It advises you to reconsider your
whole software business, to look for repeating questions which
can exploit reusable answers, and to move from a job shop
organization to an industrial one.

10.

11. Advanced reuse based on object instances. This chapter is written
for the specially interested reader. We describe how you can
compose a system from a pool of predefined objects. This
technology is an extension of the OOram role modeling
technology that is the technology basis of the first part of the
book. It is not as mature, but it can become an important
supplement to the OOram role modeling technologies.

12. Case study: Intelligent Network Services Organized in a Value
Chain. Exemplifies a complete software industry. Specifies a
complete value chain with the actors and appropriate technology
for each layer. The study shows how all the different reuse
technologies have a place in a complete value chain.

 The structure of this book29 March 1995 23:05

©Taskon 1992. Page 5Preface

Using this book

This book helps you
get started on

industrializing your
software production.

The book describes the principles behind an industrial approach to
software production. We claim that the technological basis of
industrial software production should be object orientation. A large
part of the book is devoted to explaining all the different things you
can do with objects; we will also match the different operations on
objects to the needs of typical value chains for software production.

No viable industry was ever established on an ad hoc basis. Object
orientation and industrial production of software are not some kind of
magic that will produce immediate results in your next software
project. You must identify your potential customers and fully
understand their current and future needs. You must identify the
complete value chain, and carefully consider your place in that chain.
You must devise optimal technologies and production facilities for
every step in the chain. You must establish the required infrastructure
for supporting the process, and staff the production facilities with
people trained for their tasks. This book can help you getting started,
but it is only your own long term dedication and investment in time
and resources that can lead you to the goal.

The software industry is still in its infancy, and it will take many years
to establish an effective industrial infrastructure. We therefore
recommend a gradual transition from the miserable present to the
glorious future. The winners will be the companies with a clear vision,
an effective strategy, and the stamina needed to transform their
operations from the general job shop to the industrial enterprise.

Gradual transition to
full industrialization

required

Figure 0.1 illustrates our recommended progression through objects
and the OOram method. We have indicated that the first step should
be to implement systems with objects. If you are a programmer, this
means that you should start by writing small, object-oriented
programs. If you are a developer of enterprise processes, you should
create some simple processes in object-oriented terms. This first step
is shown dashed, because object-oriented programming is not the
focus of this book. The remaining steps indicate our recommended
progression into the rich world of objects.

29 March 1995 23:05 Using this book

Preface©Taskon 1992. Page 6

Creating reusable components
(Chapter 5)

Role model analysis and design
(Chapter 2)

Combining role models through synthesis
(Chapter 3)

Organizing for software productivity
(Chapter 10)

Object-oriented implementation

Establishing a software factory
(Chapters 10, 11, and 12)

Figure 0.1 Stages in
the application of the

OOram method

Taskon invites
cooperation

It is our hope that this book will cause the wide spread adoption of the
OOram method. Taskon markets OOram processes, tools and
consultancy services for a number of application areas. We invite
consultants to build special methodologies based on our products; we
invite other vendors to create competing products; we invite potential
competitors to cooperate with us to ensure interoperability between
the products to the benefit of all.

Background

The book is based on continuous experience with objects since 1975
and practical experience in the borderland between software
engineering research and the production of software for computer
aided design, production control, management information systems,
and telecommunications since 1960. In all our work, the goal has been
to create industrial strength software for real users. The software
engineering methodologies and tools have been created in response to
our own needs and to the needs of our partners, and the success
criterion has been that they enabled us to support our clients more
effectively.

Our experience has clearly shown that object orientation is a powerful
paradigm which is applicable to a wide range of problem areas. We
have used it to design improved organizations in oil companies; to
describe basic, reusable services in a distributed environment; to
design client-server systems; and to specify and implement business
information systems.

Object orientation is
a powerful paradigm

29 March 1995 23:05 Background

Preface ©Taskon 1992. Page 7

Our most exciting experiences are with systematic reuse and an
industrial approach to software production. This enables us to produce
large systems in small projects, which we believe is the key to the
effective production of quality software.

Large systems, small
projects

Different
methodologies for
different problems

Our accumulated experience also leads to a negative conclusion:
There is no silver bullet that will miraculously solve all problems. The
work process, the organization and the technology has to be adapted
to the problem at hand and the people who are to solve it. We do
therefore not have the audacity to present a complete methodology
which will solve all problems. We rather present a foundation which
can support many different methodologies for different purposes, we
call it the OOram method.

Acknowledgments

The senior author has written most of the words you find in this book,
and when the pronoun "I" is used, it refers to the senior author. Per
Wold has been an essential partner, posing important questions and by
suggesting appropriate answers throughout the creation process. Odd
Arild Lehne has brought his extensive teaching and consulting
experience to bear on the book's structure, examples, and case studies.

Jørn Andersen, Lasse Bjerde, Jon Ola Hove, Eirik Næss-Ulset, and
Carl Petter Swensson have been members of the Taskon book
committee. The patience and perseverance they have shown by
reading and rereading a steady stream of drafts and their help in
shaping the form and contents of the various chapters of the book
cannot be overestimated.

The development of the OOram method has taken place at the Center
for industrial research (SI) in Oslo, at Taskon AS and at the
University of Oslo. We regard a good development team as a team
where ideas and results flow freely, and where the success of the
whole team is the only measure of the success of the individual team
member. We have always had a very good team, and the results
presented in this book have been contributed by a great number of
dedicated people over the past 20 years. It is impossible, in retrospect,
to identify the individual contributions or even contributors, and we
thank them all.

29 March 1995 23:05 Acknowledgments

Preface©Taskon 1992. Page 8

Our research in the field of applied object-orientation would have
died at certain critical times in the late seventies without the
wholehearted support by Bjørn Ørjansen, then director of research at
SI. Important work on an object-oriented planning and control system
was supported by the Aker Group in the early seventies as part of our
long cooperation about the Autokon system for the computer-aided
design of ships.

The Royal Norwegian Council for Industrial and Scientific Research
has given support through several grants: Grants for the porting of
Smalltalk-78 to local equipment and for creating the first Norwegian
Ethernet in 1980; for the research that lead to first prototypes of our
present range of products in the research and development program
Efficiency and Quality in Engineering; and for our work with an
object-oriented architecture for very large, heterogeneous systems in
the Eureka Software Factory Project.

I had the good fortune to spend a year as visiting scientist with Alan
Kay, Adele Goldberg and the Smalltalk group at the Xerox Palo Alto
Research Center (PARC) in 1978/79. This was a wonderful
experience which completely changed my life, and it is impossible to
fully express my gratitude for the help and inspiration I received. I
particularly want to thank Adele for the support and interesting
discussions that lead to the creation of the first version of the Model-
View-Controller; this was probably the world's first reusable, object-
oriented framework. After this visit, we got a license to port
Smalltalk-78 to local equipment in Norway. This port was excellently
performed by Bruce Horn, who was then a student at PARC. My
colleagues and I are eternally grateful to Bruce and Xerox for giving
us early experience with the world's most exciting programming
environment. We are also very grateful to Bruce for permitting us to
publish his work on user interface design which you will find in
chapter 7.3.2.

We are strong believers in the axiom that programmers should take
their own medicine. The authors and all members of Taskon team are
heavy users of our methodologies and tools, and this book is written
with our OOram documentation tools. Our own use supplies a steady
stream of ideas for improvements, but feedback from other users is
also crucial: They solve different problems and have different ideas
about what the methodologies should do for them. We therefore thank
our customers and other users of the OOram method for constructive
criticisms and ideas for improvements.

 Acknowledgments29 March 1995 23:05

©Taskon 1992. Page 9Preface

Our application of the OOram method to the field of
telecommunications would have been impossible without the
initiative of Raymond Nilsen of Norwegian Telecom Research. We
thank him, Tom Handegård, Klaus Gaarder, Bengt Jensen and their
colleagues for having taught us what we know about
telecommunications and for a number of stimulating discussions in a
creative atmosphere. We also thank Dag Brenna and Martha
Haraldsen of Garex A/S, who have given valuable feedback on the
application of the OOram technology to the large-scale production of
customized communication systems.

We express our sincere thanks to Arne-Jørgen Berre for comparing
the OOram method to the currently popular methodologies for object-
oriented analysis and design, and for providing important insights into
the world of distributed computing. We are also grateful to Espen
Frimann Koren, Magnus Rygh, and John Lakos for their preparation
and discussion of the programming examples in C++. Stein Krogdahl
has helped create the the OOram language presented in Appendix A,
but does not want to be responsible for this first version of the
language.

A number of people have contributed their time and expertise to
reviewing parts or all of this book. We would like to express our
sincere thanks to Ralph Johnson, Doug Berrett, Mats Gustafsson, Geir
Høydalsvik, Else Nordhagen, Witold Sitek, Anne-Lise Skaar, Gerhard
Skagestein, Pål Stenslet, Michael Thurell, and the anonymous
reviewers who have all contributed valuable and insightful comments.

Finally, I would like to express my sincere thanks to a programmer
and systems analyst who has been providing inspiration, unfaltering
support and valuable advice all through the past 40 years: my wife
Oddbjørg Råd Reenskaug.

OOram is a registered trade mark of Taskon A/S.
ObjectsWorks\Smalltalk is a registered trademark of ParcPlace
Systems, Inc. LEGO is a registered trademark of the LEGO Group.
DecWindows is a registered trademark of Digital Equipment
Corporation. Ole is a registered trademark of Microsoft Inc.

 Acknowledgments 29 March 1995 23:05

Preface©Taskon 1992. Page 10

Chapter 1
The main ideas

This chapter gives an overview of object orientation as it is exploited by the OOram
method and of our general ideas about organizing software production in value
chains.

We recommend that you read this chapter before embarking on the details in the
remainder of the book.

The OOram method (p. 12??)
The problem and the three dimensions of the OOram solution

The Technology Dimension (p. 17??)
Representing the real world as objects
The powerful role model abstraction
Separation of concern and Role model Synthesis
OOram implementation links role models to computer programs
OOram reuse technology
Comparison with other methods

Process and deliverables (p.41??)
Introduction to the model-building processes
Introduction to the system development processes
Introduction to the reusable assets building processes

Organization (p. 48??)
Industrial software production
The value chain
The OOram fountain model
The urgent need for effective metrics

29 March 1995 23:05

©Taskon 1992. Page 11The main ideas

The OOram method1.1

In a nutshell
In the software engineering community, a methodology usually denotes an approach
to accomplish a task. We find it convenient to study methodologies in three
dimensions: a technology dimension describing the concepts, notation, and tools; a
process dimension describing the steps to be performed (mainly in parallel) together
with the deliverables from each step; and an organization dimension describing the
organization for effective software development.

The OOram idea is that there is no single, ideal methodology. We need different
methodologies for different purposes; each tailored to a specific combination of
product, people, and information environment.

The OOram method is generic: it forms a framework for creating a variety of
methodologies. They will all build on selected parts of the OOram technology; and
will have their own, unique processes and organization. We stress the common
technology in this book, but we will also discuss aspects of the other two
dimensions in order to help you create your own methodology that is optimized for
your requirements.

The "software crisis" was first officially recognized at the NATO
Conference on Software Engineering in Garmisch, Germany in 1968.
The conference identified the problem and started a discussion about
its solution. Much has been achieved in the intervening period, but
requirements have grown at least as fast as our ability to satisfy them.
Today, more than twenty-five years and many "solutions" after the
Garmisch conference, we still have a software crisis and we are still
searching for better solutions.

The software crisis

The latest solution to catch the fancy of system developers is the
technology based on the object paradigm. The first object-oriented
programming language, Simula, was developed in Norway in the
sixities. The field got a tremendous boost when the Smalltalk
language and development system became available in the early
eighties. The introduction of the C++ programming language made
object orientation generally acceptable to the systems programming
community. (FOOTNOTE: See [Birth 73], [Gold 83]), and [Strou 86])

Object-oriented
methods are the
latest "solution"

Books on methodologies for object-oriented analysis and design
appeared in the late eighties. The different authors started out with
different approaches to the common theme of describing interesting
things with objects. Cox, Booch, and Wirfs-Brock based their work on
the concepts of object-oriented programming languages. Rumbaugh

1.1 The OOram method 29 March 1995 23:05

The main ideas©Taskon 1992. Page 12

and Jacobson started from earlier modeling paradigms; Rumbaugh
from a data-centered approach and Jacobson from a function-centered
approach.
(FOOTNOTE: See [Cox 87], [Booch 91], [Wirfs-Brock 90],
[Rumbaugh 91], and [Jacobson 92].)

Object technology has moved from the exotic to the feasible. It is now
rapidly moving from the feasible into the mainstream of systems
development.

The reason for the popularity of objects is easy to see. We have earlier
been using a number of different modeling paradigms to describe
different aspects of our systems. The data-centered approaches, e.g.,
Entity-Relation modeling, were excellent for modeling the static
properties of information; but they were weak for modeling
functionality. The behavior-centered approaches, e.g., functional
decomposition or finite state machines, were great for modeling the
dynamics of the system; but they were weak on the modeling of data.

A powerful paradigm
merging many

earlier concepts

The advantage of the object-oriented paradigm is that it neatly
combines the strengths of the data-centered and the behavior-centered
approaches. It is great for modeling information and it is great for
modeling behavior.

Like all previous solutions, object orientation is no panacea. It is still
easy to create lousy systems and hard to create good ones. Objects
offer no more and no less than an opportunity for mastering even
harder problems than we have been able to master in the past.

BOX: Methodology and method.
In normal usage, a method is an approach to accomplishing a task, and a
methodology is the study of a family of methods. Within the software community,
the term methodology usually denotes an approach to accomplishing a task. We
have therefore taken the liberty to let the OOram method denote our strategy and
technology for the creation of a family of methodologies for different purposes.

Within the software community, a methodology is taken to mean an
approach to accomplishing a task. (See box.) We do not believe that
we will ever find an ideal methodology that will serve all purposes
equally well. On the contrary, we believe that a methodology not only
has to be optimized for its goals; it should also be tailored to suit the
culture, competence and preferences of its people. It is therefore not
possible to create an overall methodology which covers all needs. But
we do give guidelines, examples, and case studies that may be helpful
when you create your own solutions to your problems in software
creation; in model and software reuse; or in setting up an organization
for the large-scale provision of customized software.

The OOram method
is a frame of

reference

1.1 The OOram method29 March 1995 23:05

The main ideas ©Taskon 1992. Page 13

The OOram method is a frame of reference for a family of object-
oriented methodologies. It captures the essence of object orientation,
which is to model interesting phenomena as a structure of interacting
objects. It offers the role model as a powerful abstraction that
supports a very general separation of concern. The notion of role
model synthesis supports the construction of complex models from
simpler ones in a safe and controlled manner, and offers many
opportunities for the systematic application of reusable components.

Process
with Deliverables

Technology
(Concepts-Notation-Tools)

 Organization
(Value Chain)

Impl.

Des.

Req.

User

Real World

Reuse Technology

Objects Roles Implement-
ation

Figure 1.1 Three
dimensions of system

development
methodologies

A methodology has
technology, process,

and organization

A methodology is usually considered to consist of the three main
dimensions illustrated in figure 1.1. The OOram method opens for
important improvements along all three dimensions:

Technology consists of the concepts, notation, techniques and
tools used to describe phenomena of all kinds and sizes in terms
of objects. Reuse Technology offers a range of opportunities for
materially reducing the size and complexity of application
development projects through the systematic reuse of proven
components.

1.

Process with Deliverables. The steps to be performed and the
results to be delivered from each step. Our capability for working
with several models permit us to gradually zoom in on the system
from its environment to its inner details in a controlled manner.

2.

29 March 1995 23:051.1 The OOram method

©Taskon 1992. Page 14 The main ideas

Organization. How the enterprise is organized to accommodate
the operation. The OOram reuse technology permits the creation
of industrial strength organizations for the systematic investment
in reusable components and their routine application in
development projects.

3.

A wide range of methodologies for a wide range of problems can be
based on the OOram method. In the later chapters of this book, we
will describe how OOram supports different methodologies covering
the technical, organizational, and process dimensions. Our main
concern will be the technical dimension because it is common to all
methodologies and a prerequisite to our proposed solutions for
different processes and organizations.

The OOram method
widely applicable

The OOram method traces its history to the early seventies. One of its
first applications was an object-oriented shipyard production control
system [Ree 77]. The Smalltalk Model-View-Controller paradigm is
another application of the OOram ideas; the senior author developed
the first version in association with Adele Goldberg at Xerox Palo
Alto Research Center (PARC) in 1979/80.

The OOram method
based on 20 years of

experience.

Driving force is the
need for professional

software
engineering.

The driving force behind the development of the OOram method has
been our own need for professional software engineering
methodologies. Concepts, notations, and tools have been developed
concurrently, because modeling concepts and notation are maximally
effective when they can be supported by current workstation
technology. The success criteria are:

1. The combination of concepts, notations, and tools shall help a
team of developers cooperate in the development and
maintenance of large object-oriented systems in a way that
ensures high reliability, efficiency, and stability.

The reuse of ideas, designs, and code shall be maximized for the
efficient development of a large family of related systems.

2.

OOram is practical,
sound and useful

with or without tools

These success criteria are strongly utilitarian, leverage provided by
tools is as important as the theoretical soundness of the technology. In
particular:

29 March 1995 23:05 1.1 The OOram method

The main ideas ©Taskon 1992. Page 15

Diagrams and tables must be informative and fit on a computer
screen. We have developed the OOram method and the OOram
tools concurrently, and rarely use the one without the other. Other
people have successfully used the OOram method without the
tools. We therefore claim that the concepts and notation are
suitable for manual as well as computer assisted modes of
working.

1.

2. Software is created by people, and quality software is created by
people of quality. Methods and tools cannot be a substitute for
quality people; the best we can hope for is that they will be of
assistance to quality people who will adapt them to their needs
and use them with discretion.

3. Methods and tools must scale. Practical programs are often
several orders of magnitude larger and more complex than typical
textbook examples. Scaleability and practicability are critical to
the success of software engineering methods and tools. The
OOram method and tools have been created to help real people
solve real problems. The goal of this book is to share our
experiences with you in the hope that they will help you solve
your problems in your environment.

29 March 1995 23:051.1 The OOram method

The main ideas©Taskon 1992. Page 16

1.2 The Technology Dimension

In a nutshell
This dimension covers the concepts that form the basis of the work; the notation
used for documentation; and the tools. Figure 1.1 illustrates the main ideas: We
select a bounded part of the real world as a phenomenon to be the subject of our
study. We choose to model the phenomenon as a structure of objects in an object
model; where we distinguish between system objects and environment objects.
Patterns of objects in the object model are abstracted into role models. A role model
describes how a structure of objects achieves a given area of concern by playing
appropriate roles. Finally, classes are defined in the implementation so that their
instances play a specified set of roles.

The phenomena to be described can be of any kind and any size. The technology
must be selected to suit the problem; we cannot expect that the same concepts shall
be equally relevant to all problems.

Object technology offers several opportunities for reuse, we will discuss five of
them in this book. These technologies do not in any way guarantee reuse, but they
give the production engineer the freedom to select the appropriate technology for
each layer in the value chain mentioned above.

Our first object
application: An

enterprise model for
ship design

Object technology is pervasive, it can be used for almost anything.
We first applied it to modeling ship design processes on the enterprise
level, (FOOTNOTE: [Ree 73].) when we introduced coordinated
computer support for the different stages in the design process.
Controlling computer-based information transfer between project
stages and company divisions proved to be a serious problem, and we
used objects to model the flow of information and the dependencies
between divisions.

We next applied objects to shipyard scheduling and control.
(FOOTNOTE: [Ree 77]) The yard was a heavy user of an activity
planning system, but it also needed a number of specialized systems
for scheduling dockside jobs, for scheduling the use of the big crane,
and for scheduling a panel assembly line. Our idea was to replace all
of their disparate systems with a single, object-oriented scheduling
and control system. We represented the ship as an object, its parts as
objects, the construction jobs were represented as objects. We also
represented the yard, its production facilities such as dockside
facilities, the big crane and the panel assembly line as objects. The
objects are illustrated in figure 1.2.

Our second object
application:

Shipyard scheduling

29 March 1995 23:05 1.2 The Technology Dimension

The main ideas ©Taskon 1992. Page 17

The concepts and notation of the OOram technology is common to all
OOram methodologies. A specific methodology will use a selected
subset, and any selection will be consistent and workable. We will
here give a brief taste of its main features. You will find the complete
description of the OOram technology in the main body of the book.
The description is like a large salad bar; it is up to you to select the
dishes you want and to ignore those that you do not like or need.

OOram technology
common to all

OOram
methodologies

Representing the real world as objects1.2.1

We think of the shipyard in terms of objects as illustrated informally
in figure 1.2. The planning and control functionality is represented by
the system dynamics: the objects interact according to a master
strategy in order to produce the desired results.

All objects have certain general behavior that enable them to
participate in the interaction. Each job object tries to get scheduled at
the best possible time; each resource object strives for optimal
utilization of its resource. But the objects also behave according to
their specific nature: the big crane can handle only one ship's part at a
time; the dockside facilities allocate available area to as many parts as
possible; the panel assembly line object maintains the constraint that
two large panels can not be adjacent on the line.

Object representing
the shipyard facilities

Object representing
the shipyard

Object representing
a ship's part

Object representing
a ship

Object representing
a resource

Object representing
a construction job

Object representing
a construction schedule

Figure 1.2 Some
objects relevant to

the shipyard
scheduling and

control operation

29 March 1995 23:051.2 The Technology Dimension

The main ideas©Taskon 1992. Page 18

1.2.2 The powerful role model abstraction

The total system consists of a very large number of objects, and the
object interaction processes needed to create and maintain a schedule
will be very complex. We clearly need some form of abstraction so
that we can focus on one portion of the total problem at the time.

The OOram method tells us to isolate an area of concern and to
create a role model for it. One possible area of concern is the job
scheduling activity. A simple algorithm, activity network
frontloading, schedules all jobs as early as possible. An example
network of participating objects is shown in figure 1.3. Given that job
A can start in week 5, the algorithm determines that job F, the final
job, can be completed in week 24.
(FOOTNOTE: The common terminology is to say that an activity
network is a structure of activities. We use the the term job instead of
activity, because we use activity for another purpose.)

Job-F
20 (4) 24

Job-E
13 (7) 20

Job-D
13 (3) 16

Job-C
8 (5) 13

Job-B
8 (4) 12

Job-A
5 (3) 8

Duration

Completion time

Start time

Figure 1.3 An
activity network

The frontloading algorithm states that all jobs are characterized by
their duration, their predecessor jobs and their successor jobs. A job
can start as soon as all its predecessors are completed; and no
successor can start before this job is completed.

A job can start when
all predecessors are

completed

The start job, Job-A, can start in week 5; it takes 3 weeks and is
completed in week 8. Job-B can start when Job-A is completed; it
takes 4 weeks and completes in week 12. Job-D can start when both
Job-B and Job-C are completed; its starts in week 13, takes 3 weeks,
and completes in week 16. The project is completed when the end job,
Job-F, completes in week 24.

29 March 1995 23:05 1.2 The Technology Dimension

The main ideas ©Taskon 1992. Page 19

Successor

Job

Job-D
13 (3) 16

Predecessor

Job-B
8 (4) 12

Job-A
5 (3) 8

CompletionTime messages

early_completion
early_start

duration
early_completion

Figure 1.4
Identifying an object

pattern

The class abstraction does not help us understand the essence of the
network in figure 1.3 All Jobs could in fact be instances of the same
class. It is better to identify a pattern of objects which together capture
an interesting phenomenon. In figure 1.4, we have focused on Job-E
and isolated the object pattern consisting of Job-E, its predecessors
(just one, Job-C in this case), and its successors (Job-F).

Object patterns
abstracted into role

models

The object pattern is abstracted into a corresponding role model,
where each pattern object is mapped on to a corresponding role. In
our example, we see that this is a recurring pattern, and that any
network can be constructed as a repeated overlay of these roles.
(FOOTNOTE: Overlaying role models will be discussed in the next
section on synthesis.)

The role model captures an archetypical pattern of objects and permits
us to study its essential static and dynamic properties. A Predecessor
role has one interesting attribute: its early_completion time. The Job
role has three interesting attributes: Its early_start time, its duration,
and its early_completion time.

The OOram method supports a number of different views on the role
model; each view highlighting some aspects of the model and hiding
others. For example, figure 1.5 is a role model collaboration view.
This view shows the roles, their attributes, and their collaboration
structure.

The role model provides a more fine-grained control of message
passing than the more common class or type. The role model specifies
not only the messages that must be understood by an object (role), but
also who are allowed to send the different messages. The
collaboration view may optionally show some or all the messages that
one role may send to another, or the message interfaces can be
presented in an interface view.

29 March 1995 23:051.2 The Technology Dimension

©Taskon 1992. Page 20 The main ideas

Figure 1.5 The
essential roles for
understanding the

frontloading
scheduling algorithm

job pre suc job

Predecessor

early_completion

Job

early_start
duration

early_completion

Successor

port for transmitting
messages to collaborator

The frontloading activity is specified as a sequence of messages
flowing through the role model as shown in the scenario view of
figure 1.6. The Predecessor objects send a message, CompletionTime,
to the Job role. The Job computes its own early_completion, and
reports it to all its Successor roles.

Predecessor Job Successor

CompletionTime

CompletionTime

Figure 1.6 Message
scenario illustrating
frontloading activity

If we open the Job role, we can study what takes place when it
receives CompletionTime messages. This is illustrated in the method
view of figure 1.7 We see that the method is triggered when the Job
role receives the CompletionTime message. The method computes its
own early_completion when all predecessors are ready, and the
method finally reports the Job's completion time to its Successors.

Figure 1.7
Frontloading method

in Job role
Job Successor

CompletionTime

<Wait for all predecessor early_completion times>

<Record own early_start as latest predecessor completion>

<Determine early_completion>

<Report to all successors> CompletionTime

The notion of role modeling is a very powerful concept. We have
created a single role model, the three diagrams are different views on
one and the same model. The message received in figure 1.7 is the
same as the first message in the scenario of figure 1.6. The message is
sent through the left port of figure 1.5, and we could have annotated
the ports with the messages that can legally be sent through them.

29 March 1995 23:05 1.2 The Technology Dimension

©Taskon 1992. Page 21The main ideas

1.2.3 Separation of concern and Role model Synthesis

Divide and conquer is an important concept in all modeling practices.
In the previous section, we created a role model for an interesting
phenomenon, namely network frontloading.

The frontloading algorithm is just one of the many concerns that are
relevant to shipyard scheduling and control. Another area of concern
is the allocation of resources to the different jobs. A possible role
model is shown in figure 1.8. The corresponding scenario is shown in
figure 1.9; where the Job asks the Resource to allocate it, and the
Resource answers the reserved time period.

Divide and conquer

Figure 1.8
Collaborators for

basic resource
allocation

res

job

Job

planned_start
default_duration

planned_completion

Resource

reservations

Job Resource

allocate The resource returns
the reserved time slot

Figure 1.9 Scenario
for basic resource

allocation

29 March 1995 23:051.2 The Technology Dimension

©Taskon 1992. Page 22 The main ideas

The advantage of this separation of concern is that we get
manageable models. The disadvantage is that it can lead to a
fragmented description of large problems, since each model describes
only a limited aspect of the total problem. We meet this fragmentation
problem with role model synthesis, where we construct derived role
models whose objects play multiple roles from several base role
models.

Role model synthesis is one of the most powerful features of the
OOram role model. All object oriented methods support class
inheritance, where a derived class can be defined to inherit attributes
and behavior from one or more base classes. In the OOram method,
inheritance is lifted to the model level so that a derived model inherits
the static and dynamic properties of one or more base models.

Synthesis: Objects
play multiple roles

BOX: Synthesis
The antonym of analysis is synthesis, and we use the term role model synthesis to
denote the construction of a derived model from one or more base models in a
controlled manner:

synthesis: 1a: the composition or combination of parts or elements so as to form a
whole... 1c: the combination of often diverse conceptions into a coherent whole.
[Webster 77].

The use of role model synthesis permits us to build complex models
out of simple ones in a safe and controlled manner. Dr. Philip
Dellaferra of the Deutsche Telekom Research Center first introduced
the "hat stand synthesis model" of figure 1.10. This figure, which
illustrates scheduling with resources, highlights two important aspects
of synthesis. First, role models are combined vertically by letting their
objects play multiple roles. Second, the integration between role
models is through the methods that objects use to process incoming
messages.

Resource allocation
Role Model

Network frontloading
Role Model

Job-FJob-EJob-C

Resource
Role

Job
Role

Job
Role

Predecessor
Role

Successor
Role

a Resource

Figure 1.10
Synthesis specifies

that objects play
several roles in a

coordinated manner

Role model synthesis gets its leverage from always seeing inheritance
in the context of a "complete" pattern of collaborating objects. We

29 March 1995 23:05 1.2 The Technology Dimension

The main ideas ©Taskon 1992. Page 23

therefore inherit not only the characteristics of individual objects, but
also the structure and behavior of the model as a whole. Figure 1.11
illustrates the two synthesis operations needed to derive a composite
scheduling model from the frontloading and the resource allocation
models.

Figure 1.11 Derived
scheduling model

synthesized from two
base models

suc job

res

job

suc job

res

job

job pre

job pre

Job

Resource

Predecessor Job Successor

Predecessor Job Successor

Resource

Frontloading
model

Resource
allocation
model

Derived (composite) model

The dependencies between synthesized role models are expressed in
the methods of the objects. The behavior of an object when receiving
a message in the context of a role in one role model may be modified
because it is also playing some other role. In figure 1.12, the method
for computing early completion time has been modified from just
adding the duration to asking the resource for allocation.

Methods synthesize
behavior

29 March 1995 23:051.2 The Technology Dimension

The main ideas©Taskon 1992. Page 24

Figure 1.12
Integration through

scheduling method

Job Successor Resource

CompletionTime

<Wait for all predecessor early_completion times>

<Record own early_start as latest predecessor completion>

<Determine early_completion> allocate

^reservation

<Report to all successors> CompletionTime

The Job determines its
completion time through
Resource allocation.

The role models are integrated through the Allocate message to the Resource role.

In the ideal case, the correct functioning of a base model will
automatically be retained in a derived model after synthesis. Such
safe synthesis is very valuable, since it permits the reuse of a correct
role model with a minimum of hassle. Indeed, if we think of a role
model that is solely created by the safe synthesis from a number of
correct base models, we would create it only if we needed it for
explanation purposes.

Safe synthesis is essential for designing a truly global data processing
system. Ideally, we should not need to construct the overall system
model with all its details. An overall model should be expressed in
terms of high-level base models; a high-level base model in terms of
low-level base models. Every base model should be independent in
the sense that its correctness will be preserved if it is applied with safe
synthesis.

Safe synthesis

In unsafe synthesis, the derived model has to be analyzed in total
before we can assume it to be correct. You might believe that unsafe
synthesis is something to be avoided like the plague, but we find it
useful when we analyze some limited phenomenon in order to
understand it and communicate our findings. (Even if synthesizing the
resource model into a wider context were unsafe, doing so could still
help us create a derived model to understand the phenomenon. But we
would have to recheck the complete derived model). In general, we
permit unsafe synthesis when we analyze a relatively limited area of
concern. Safe synthesis is required when we want to create models
that can be reused in a general context.

Unsafe synthesis

29 March 1995 23:05 1.2 The Technology Dimension

©Taskon 1992. Page 25The main ideas

Hierarchical decomposition is a commonly used device for dividing a
complex problem into a number of simpler ones. Hierarchical
decomposition is easily achieved in object systems by means of the
encapsulation property. An object can contain any amount of
complexity within itself, including a complex object structure,
without exposing this complexity. But there is also a weakness with
hierarchical decomposition: true hierarchies are rarely found in the
real world.

Synthesis, a very
powerful notion

Role model synthesis is a powerful notion because it facilitates the
decomposition of large problems in arbitrary structures. The resource
model of figure 1.8 can in one sense be regarded as subordinate to the
frontloading model of figure 1.5. But the resources are primary
phenomena if we study the shipyard as such, and in this context the
jobs may be seen as subordinate to the resources. Other superimposed
structures abound in a typical enterprise. Examples are project
organizations, professional structures and various ad hoc structures. If
these structures are independent, all is well. If they are dependent, role
model synthesis enables us to model the dependencies between them.

OOram implementation links role models to computer
programs

1.2.4

In a nutshell
This section has been written for computer programmers who are familiar with an
object-oriented programming language. Nonprogrammers may safely skip it.

Any role model can be promoted to an object specification. Real world models may
be implemented as office procedures or as computerbased simulation models.
Object-oriented models are implemented as programs to create executable
specifications or to create application programs.

In all our work with objects over the past 20 years, we have found that
a programming language is ideally suited to express a detailed
definition of the system under consideration. We have likewise found
that a programming language is useless for expressing an overview of
the system; for describing the structure of objects and their
interaction. So there is nothing resembling code in the production
control system of [Ree 77], only attempts at expressing the static and
dynamic interdependencies between objects.

The essence of an
object system is not
easily seen from the

code

29 March 1995 23:051.2 The Technology Dimension

The main ideas©Taskon 1992. Page 26

The objects of figure 1.3 play one or two roles: job A plays the
Predecessor role; role F plays the Successor role; and all the other
objects play all three roles.

The simplest way to implement a role model is to define a single
class, e.g., Job1, that implements all three roles. We choose a
programming language, e.g., C++ or Smalltalk, and implement a
single class which covers all three roles. The class will have instance
variables for the attributes and for the collaborators: early_start,
duration, early_completion, predecessors and successors. It will have
methods to enable its instances to handle the CompletionTime
message and other messages not mentioned here.

A single class
implements all three

roles

Object specification
models

Since objects are meaningless when seen in isolation, we prefer to
describe object types in the context of their collaborators. An object
specification model is the role model of a structure of objects that we
have implemented or intend to implement. A role in an object
specification model is called an object type, which is a specification
of a set of objects with identical externally observable properties. An
implementation of an object type is called a class in conformance
with common object-oriented programming terminology.

Different classes can implement the same type. The inheritance
relationships between these classes are implementation issues and
immaterial in the context of types. It may be appropriate to implement
two classes in different branches of the class inheritance hierarchy for
the same type. In many cases, we find it convenient to create derived
classes for code sharing purposes even if the corresponding objects
have dissimilar types. Objects of the same type can, and often do, play
several roles. For example, an object can be member of a list and also
the currently selected object. Therefore, many-to-many relationships
exist between objects, roles, types and classes; this is illustrated in
figure 1.13:

Basic OOram
concepts

The object is the "is" abstraction and represents a part of a
system. An object has identity and attributes, and it is
encapsulated so that the messages it sends and receives constitute
all its externally observable properties.

1.

The role is the "why" abstraction. All objects that serve the same
purpose in a structure of collaborating objects as viewed in the
context of some area of concern are said to play the same role.

2.

1.2 The Technology Dimension29 March 1995 23:05

©Taskon 1992. Page 27The main ideas

The type is the "what" abstraction. All objects that exhibit the
same externally observable properties are considered to belong to
the same type.

3.

The class is the "how" abstraction. All objects that share a
common implementation are considered to belong to the same
class.

4.

Figure 1.13 Many-
to-many

relationships
between object, role,

type and class
specifies

implementsClass Type

RoleObject in pattern

instantiates

OOram technology
independent of
programming

language

The OOram technology is independent of programming language, and
most popular object-oriented programming languages may be used to
implement OOram object types.

The OOram concepts are based on the ideas of collaborating objects
and model inheritance. The concepts of the major object oriented
programming languages are based on the ideas of classes and class
inheritance.

It is easy to go from an OOram model to an implementation, since the
object specifications are given explicitly in the role models. A
possible mapping from OOram concepts to some programming
language constructs used for their implementation is shown in table
1.1.

It is harder to derive role models from the implementation because the
code reflects the complete, complex object model and some of the
collaboration structure may be implicit in the details of the code.

29 March 1995 23:051.2 The Technology Dimension

The main ideas©Taskon 1992. Page 28

Table 1.1 Mapping
OOram models to

programs

OOram Smalltalk C++

Role Model - -

Role Object Object

Object Specification, Type Class Class

Port Variable Pointer data member

Interface Protocol Abstract class or protocol class

Message Message Function call

Method Method Member function

Derived model Subclass Derived class

Base model Superclass Base class

Single and multiple
inheritance

All object-oriented programming languages support some form of
inheritance. (Languages missing this feature are usually called object
based languages.) Some commonly used languages such as Smalltalk
only permit single inheritance; i.e., a class may only have a single
superclass. Other popular languages such as C++ support multiple
inheritance; i.e., a class may be derived from several base classes.

The class inheritance structure of an object-oriented program may be
designed for two entirely different and often conflicting purposes. We
usually design it to reflect the structure of our concepts, and it will
then map nicely on to the role model synthesis structure. But some
class structures are designed just to share common code irrespective
of conceptual relationships. Both purposes are legitimate and useful;
both purposes may be exploited in a well-designed program. Since
our focus is on the modeling of concepts, OOram synthesis always
reflects the conceptual structure.

Class inheritance
used for concept

specialization and
code reuse

Figure 1.14 illustrates how some of the models in the role model
synthesis structure are promoted to object specifications and
implemented as a corresponding set of coordinated classes. Object
Specification 2 inherits from Object Specification 1, this indicates that
Class Set 2 may profitably be derived from Class Set 1.

Class inheritance
structure may be

mapped on the role
model synthesis

structure

29 March 1995 23:05 1.2 The Technology Dimension

©Taskon 1992. Page 29The main ideas

Figure 1.14 The
class inheritance
structure can be

fashioned after the
model synthesis

structure
Class Set 1Object Specification 1

Role Model 3

Role Model 2

Role Model 1

Object Specification 2 Class Set 2

Implemented by

Class
inheritance

Role model synthesis

Implemented by

Role model synthesis

OOram reuse technology1.2.5

OOram reuse The OOram method exploits object technology to support the
controlled reuse of proven components. This facilitates the creation of
information environments tailored to the needs of the particular actors,
reduces production costs and lead time, increases system reliability,
and protects critical resources with mandatory access through proven
components.

The single most highly promoted advantage of the object paradigm is
its support for reuse, but this is also the area of the deepest
disappointments.

Reusable
components imply

repeat business

Ralph Johnson has been quoted as saying that nothing can be reused
before it has been used. Reuse requires repeat business so that
reusable components can be identified, created, installed in a software
development environment, and finally reused. Investment is needed to
create the reusable components, the only payoff is through their actual
use.

A reusable component has a supplier and one or more consumers. The
supplier and consumers may be the same people; they must still create
the reusable component before they can use it. More commonly, the
suppliers and consumers will be different people or even different
organizations.

Reusable
components have

suppliers and
consumers

Both the creation and the application of reusable components depend
upon appropriate solutions along all three dimensions of figure 1.1 for
their success.

Successful reuse
involves all three

dimensions

1.2 The Technology Dimension 29 March 1995 23:05

The main ideas©Taskon 1992. Page 30

1. Technology. The creator of a reusable component must choose
technology that is not only appropriate for the problem, but also
appropriate for the people who are going to apply it. We will here
distinguish between patterns and frameworks, they are best
applied by professional developers. In the advanced section, we
will discuss composition and duplication; technologies that are
well adapted to support non-professionals such as sales
consultants and end users.

2. Organization. The benefits of reuse can only be achieved through
an appropriate organization. We suggest the idea of a value chain,
where the people on one level build on the results from the layer
below and deliver results to the layer above. The results delivered
to the layer above are their production facilities including
reusable components. This is in contrast to the deliverables from
the various stages of the project work process; these deliverables
are parts of the total project deliverables. For this reason, we
regard the value chain as orthogonal to the work process on each
layer.

3. Process with deliverables. The proper application of reusable
components should be an integral part of the development work
process. The success criterion for the developers must include
reuse; measuring programmer productivity by lines of code
produced is finally shown to be counter-productive. The
development of a reusable component is a product development
that must be guided by an appropriate work process.

A pattern tells the
reader how to solve

a problem

In the early seventies, the architect Alexander (FOOTNOTE:
[Alexander 79]) proposed patterns as an interesting way for
communicating important ideas among professionals. An enthusiastic
group of computer professionals have adapted these ideas to our field,
and a book on Design Patterns has been published (FOOTNOTE:
[GaHeJoVli 95]).

In the Alexander sense of the word, a pattern is a specification of a
problem and and a guide to its solution. For problems in object
oriented design, the solution frequently involves an archetypical
structure of objects. In these cases, the solution can often be described
in terms of a role model. But this is to be construed as a
communication device only, and not as a canned solution.

1.2 The Technology Dimension29 March 1995 23:05

©Taskon 1992. Page 31The main ideas

Some professionals are using the term pattern in a different meaning;
they take it to mean an archetypical structure of collaborating objects,
very similar to what Booch has called a mechanism and what we have
formalized into the role model abstraction. We use the term pattern in
the original sense to denote a guide to the solution of a problem; and
we use the term object pattern to denote an archetypical structure of
objects. We give object pattern a precise meaning by defining it as
an instance of a role model.

A framework is a
canned solution

A framework is usually defined as a collection of classes that together
solve a general problem, and that are intended for specialization
through subclassing. The main difference between a framework and a
pattern is that while the pattern tells the reader how to solve a
problem, the framework provides a canned solution.

Role models are admirably suited for describing frameworks. The role
model defining the framework functionality can easily be synthesized
into an application model. This model inherits all static and dynamic
properties and possible constraints from the framework role model.

Example: The
activity network as a

specialization of a
graph

As an example, let us return to the network planning example of
figure 1.3. The model we presented was just a small fragment of a real
model. It did not include the insertion and removal of jobs; it did not
include protection against cycles in the network; and it did not provide
facilities for setting and modifying job attributes. All these details
could probably be omitted at the analysis stage, but would at least
have to be taken seriously at the design stage.

Most of the details are not specific to the activity network; they are
common to a broad group of structures called Directed, Acyclic
Graphs (DAGs). An appropriate pattern would give us access to
accumulated experience with these structures: it would identify the
objects, give all important algorithms, and provide practical hints as to
the best solutions under different circumstances.

A graph pattern tells
us how to design a

network

A graph framework
provides a solution

An alternative reusable component would be a framework for
directed, acyclic graphs. This framework would include classes for
the objects, these classes would have programs for the insertion and
removal of nodes and for protection against cycles in the network.
They would probably not include facilities for setting and modifying
object attributes, since this will typically be done in the derived
models.

29 March 1995 23:051.2 The Technology Dimension

The main ideas©Taskon 1992. Page 32

The component user
is fortunate

Consider that we should meet the activity planning problem for the
first time. We study the problem and try to identify key processes and
key actors. We study examples such as figure 1.3 to better understand
the phenomenon. We tentatively create a role model such as the model
shown in the views of figure 1.5 through 1.7. But how do we know
that we have chosen appropriate roles? How do we know that we
haven't overlooked some essential part of the problem? The answer is
that we can hope for the best and suspect the worst, but we just cannot
know. We must expect to revise our ideas several times as we study
the problem and analyze its possible solutions.

The developer who finds an applicable reusable component is a truly
fortunate person. He can build on the mature wisdom and experience
of people who have not only solved similar problems in the past, but
who have actually studied a number of different solutions and who
have carefully recorded their competence.

nod

own

suc nodnod pre

Owner

Pred Node Succ

Figure 1.15
Collaboration view

of a reusable
Directed Acyclic

Graph

Let us assume that we identified our problem as being a specialization
of a Directed, Acyclic Graph (DAG), and that our library included a
DAG reusable component. (At this stage, it is immaterial if it is a
pattern or a framework.) Let us further assume that the component
suggests the roles shown in the collaboration view of figure 1.15. We
find the expected network roles of a Node with its Pred(ecessors) and
Succ(essors). But we also find an Owner. The experience of the
component developers told them that there should be an object
responsible for managing the whole network. Further, they tell us that
these are all the roles needed for an adequate model of a DAG.

Given this DAG reusable component, the modeling of our activity
network is much simplified and the risks are greatly reduced. All we
need to do is to map the roles of the DAG model on to corresponding
roles in our world of activity networks. We had overlooked the Owner
role in our initial solution, we now easily map it onto a Schedule role
(Object representing a construction schedule in figure 1.2). The full
mapping between the DAG model and the Frontloading model is
shown in figure 1.16.

29 March 1995 23:05 1.2 The Technology Dimension

The main ideas ©Taskon 1992. Page 33

nod pre

suc nod

suc nod

nod

own

nod

own

nod pre

Owner

Pred Node Succ

Schedule

Predecessor Job Successor

Frontloading model

DAG
(Directed Acyclic Graph)
model

Figure 1.16 Deriving
Activity Network

from reusable
Directed Acyclic

Graph

A good pattern explains all essentials, clearly and completely. It is
also concise; the reader of a pattern is assumed to be an expert.

A good framework hides as much complexity as possible, making
functionality visible to the application programmer on a "need to
know" basis. Its visible functionality is published as a base role model
to be synthesized into the application. In our example, the DAG
model is synthesized into the Frontloading model in figure 1.16,
automatically giving it all the required network maintenance
functionality.

The dynamic behavior exemplified by the scenario of figure 1.6 could
either be a feature of the derived model, or it could be a specialization
of a general graph traversal algorithm defined in the base model.

The creation of reusable components share many of the general
properties of product development, and the life cycle may
conveniently be divided into five phases:

A reusable
component is a

product

1. Market analysis. The developer must understand the needs of the
potential users and balance these needs against the costs of
alternative solutions. The developer must also understand the
potential users' working conditions to make the reusable
component practically applicable.

29 March 1995 23:051.2 The Technology Dimension

The main ideas©Taskon 1992. Page 34

Product development. The reusable component must be designed,
implemented, and tested in one or more prototype applications.

2.

Product packaging. Documentation is an important part of a
packaged reusable component. The documentation includes work
processes for the application of the component; installation
procedures; and technical information.

3.

Marketing. The users of the reusable component must be
informed and persuaded to apply it.

4.

5. Application. The reusable component is applied and must help its
users to increase the quality of their products and reduce their
expenditure of time and money.

Costs accumulate in the first four phases. The cost of the resulting
assets is written off against the value created in the fifth and final
phase.

1.2.6 Comparison with other methods

The Object Modeling Technique, OMT, was developed by James
Rumbaugh and others at General Electric Research and Development
Center (FOOTNOTE: [Rumbaugh 91]). OMT supports three basic
models: The object model, the dynamic model, and the functional
model.

The OMT object model describes the object types and their
relationships. It is an extended Entity-Relationship model with classes
that can contain both attributes and operations. It is possible to
describe object instances with instantiation relationship to classes.
Associations between classes can be of different cardinalities and can
have attributes.

The OMT dynamic model describes when things happen. The
dynamic model is based on the powerful statecharts proposed by
Harel (FOOTNOTE: [Harel 87]). The transitions between states take
place on events and can be associated with an action. There can also
be actions associated with states.

The OMT functional model describes what is happening. It is based
on traditional data flow diagrams. They are supposed to be used to

The OMT models can
be expressed as

OOram views

29 March 1995 23:05 1.2 The Technology Dimension

The main ideas ©Taskon 1992. Page 35

show transformations on values, and not to describe object
interactions.

The information described in the three OMT models is almost fully
described within the OOram role model. The OMT object model is
best seen in the collaboration view; the OMT dynamic model is best
described in the OOram state diagram view; and the OMT functional
model corresponds to the process view. There are some differences;
most of them due to the coherent concepts of the OOram model. The
OOram state diagram is a simpler form than the Harel state chart; all
events are message interactions, and all actions are method
activations. The OOram process view shows data transfer aspects of
object interaction, all data are stored within objects and transferred as
message parameters.

The Booch method has its basis in object-oriented design from the
Ada world. However, the second edition of the book (FOOTNOTE:
[Booch 94]) is adapted to C++. The Booch method is the most
comprehensive method with respect to the modeling of language-
oriented design features such as parameterisized classes and public,
protected, and private access.

The basic concepts are founded on the traditional object-oriented
programming concepts: object, class, and inheritance. The logical
model consists of class diagram, object diagram, interaction diagram,
and state diagram. The physical model consists of module and
process diagrams.

The Booch models
can be expressed as

OOram views

The information in the Booch class diagram can be expressed in the
OOram semantic and collaboration views. There is more detail in the
Booch diagrams than normally described in the OOram view; e.g.,
visibility between classes, metaclasses, and parameterized classes.
Instantiation of objects from classes is not described in the OOram
role model, only instantiation as one of the functions of a method as
seen in a scenario view.

The Booch object diagram describes a sequence of messages sent
between objects. Equivalent information can be found in the OOram
scenario, message interfaces can also be found in the collaboration
view and special interface views.

As was the case for OMT, the Booch state diagram is based on the
Harel statecharts. The OOram finite state diagrams cover roughly the
same information, with the caveat that the OOram state diagram is
strictly object oriented with all events being mapped as message
interactions and all actions as (partial) method invocations.

1.2 The Technology Dimension 29 March 1995 23:05

©Taskon 1992. Page 36 The main ideas

Information that in the Booch notation is separated between class and
object diagrams is merged within a single, comprehensive OOram role
model. The role model is independent of programming language and
the views do not match the rich expression of implementation details
exhibited by the Booch notation. An OOram modeler would put this
kind of information into comments associated with the different
model entities.

For the Booch physical model there is no direct equivalent in OOram.
The OOram module is strictly defined in terms of modeling-in-the-
large; it is independent of any programming language constructs. The
OOram perspective is that interfaces are associated with an object.
This can be mapped directly into classes in an object-oriented
programming language, or supported by a distributed object
infrastructure. Such an infrastructure would support dynamic
configuration at runtime, and it is not necessary with a particular
physical mapping.

The OOSE models
can be expressed as

OOram views

The OOSE methodology has its origin in work with
telecommunication applications and SDL. The initial ideas for object-
oriented adaption of the methodology was presented by Ivar Jacobson
in 1986 and -87. The OOSE methodology (FOOTNOTE: [Jacobson
92]) is a scaled down version of the full methodology which is called
ObjectOry.

The most famous aspect of this methodology is its use of use-cases as
a glue for tying together all models. A use-case is a set of interactions
between the environment and the system, followed from beginning to
end. A use case can be seen as a set, where the members are actual
sequences of interactions. A use-case is thus more than a scenario, it
is all the possible scenarios that can be the result of a user stimulus on
the system.

The OOram method supports use-cases under the name of OOram
activities. Activities are an integral part of the OOram role model
concepts, and are supported through aggregation and other synthesis
operations. Use cases are therefore fully supported in the OOram
method.

29 March 1995 23:05 1.2 The Technology Dimension

©Taskon 1992. Page 37The main ideas

The RDD models can
be expressed as

OOram views

Responsibility Driven Design, RDD, is one of the few published
methodologies with a pure object-oriented origin (FOOTNOTE
[Wirfs-Brock 90]). It is based on experiences from object-oriented
programming in Smalltalk done at Tektronix Labs, Software
Productivity Technologies, in the period from 1983 to 1989 -- while
Tektronix was the only vendor of specialized Smalltalk-based
workstations.

The central idea of the RDD method is to divide the responsibility of
the total system into the responsibilities of the different classes in a
systematic manner.

Like RDD, the OOram method has a pure object-oriented origin. All
concepts described in the RDD method are fully supported in the
OOram method. The difference is that the roles take the place of the
classes, and that roles are always considered in the context of their
collaborators in the role model.

OOram models can
replace E-R models,

but we need good
reasons to do so

The powerful relational model is well known in the database
community. In this model, data are represented as records in tables.
(Or more precisely: data are represented as tuples in relations.)
Relational data models are often designed in terms of entity-
relationship (E-R) diagrams (FOOTNOTE: [Chen 76], [Elmasri 94]).
Most of the information shown in an E-R diagram can be shown in an
OOram collaboration view.

We once did a small study to identify the benefits of the OOram role
model over the traditional E-R model. We had access to the data
model of the accounting system of the University of Oslo, and began
translating it into role modeling terms. We found two very clear
conclusions from this exercise: (a) we could create a role model
collaboration view which was very similar to the E-R diagrams; and
(b) we would never dream of creating such an object model!

There were two reasons why an analyst trained in the object paradigm
would not come up with an object model resembling the existing E-R
model. First, the E-R model contains a great number of details that
will be the responsibility of various objects and, therefore, invisible
outside these objects. Second, the scope of the E-R model is limited to
static data descriptions. With an object oriented approach, we
naturally extend the scope by asking new questions: who are
interested in the data, what are the operations they want to perform on
the data, and what kind of behavior should be supported by the
model?

29 March 1995 23:051.2 The Technology Dimension

©Taskon 1992. Page 38 The main ideas

Our conclusion from this small and informal study was that an OOram
role model can indeed take the place of an Entity-Relationship model,
but that we should only do so if we need the added behavioral power
of objects.

One of the important characteristics of objects is that an object has
identity. An object retains its identity throughout its lifetime and
regardless of changes to its data contents. Furthermore, there has
never been and will never be another object with the same identity.

Object identity
essential for

describing dynamic
behavior

The notion of object identity makes it possible to reason about the
dynamic aspects of system behavior; giving the object model
additional leverage not available in the relational model. We study not
only the object characteristics needed to fulfill a certain purpose, but
also exactly how the objects interact to achieve this purpose.

The main models of the currently popular methodologies are based on
the class abstraction. The fundamental weakness of this abstraction is
the same as the weakness of the relational model: it describes classes
as sets of objects, and relations between objects in terms of
anonymous instances.

The OOram role modeling concepts bring all the different modeling
concepts together into a coherent whole. The role model is a precise
description of an object pattern where its objects are abstracted into
the roles they play in the context of the pattern. Roles are archetypical
objects, so the role model can combine data-centered and function-
centered descriptions.

The OOram role
modeling concepts
bring it all together

Roles have class-like
properties

Like a class, a role is a description of a set of objects. But there is a
crucial difference: The class describes the set of objects that exhibit
common characteristics. The role describes the set of objects which
occupy the same position in a pattern of objects. We can describe the
semantics of the roles and their relation in the context of the role
model; we can describe the attributes that must be exhibited by all
objects playing the roles; we can describe how the total responsibility
is allocated to objects playing the different roles; and we can describe
the sets of messages a role may send to another role.

Like objects, roles have identity so that we can reason about their
cooperative behavior. We use scenarios to describe typical sequences
of message flows. Process diagrams show how data flows between
roles. Finite state diagrams show how each role changes its state in
response to messages received from other roles.

Roles have object
properties

1.2 The Technology Dimension29 March 1995 23:05

The main ideas ©Taskon 1992. Page 39

OOram inheritance
tells the complete

story because it
applies to complete

models

There is no point in using inheritance to derive a class with added
functionality if we do not at the same time derive another class which
uses this added functionality. Role model inheritance not only exhibits
the inheritance relationships between individual classes; they explain
how the whole story told by a role model is retold by the roles of the
derived model. So the OOram inheritance is done in the context of
role models: a role model can inherit another role model and thus
build on its functionality.

OOram technology
facilitates systematic

reuse

There are important practical consequences of the role model
coherence. A complex reality can be represented as a complex object
structure and described as a number of much simpler role models.
General phenomena can be described as general role models, these
role models can be reused as building blocks for the creation of
application system models. If the general role models are
implemented as sets of coordinated classes, these frameworks can be
reused in a safe and controlled manner in the design and
implementation of application programs.

OOram technology
facilitates more

effective
organization

The technology for systematic reuse provided by OOram role
modeling makes it possible to organize application system
development in novel ways. Extensive and systematic reuse lets us
create large applications in small projects. A prerequisite is that
suitable reusable components are available: systematic reuse requires
investment in reusable assets.

29 March 1995 23:051.2 The Technology Dimension

©Taskon 1992. Page 40 The main ideas

Process with Deliverables1.3

In a nutshell
A work process describes the steps that need to be performed in order to reach a
given goal. The steps are usually described as if they were performed sequentially,
while in reality they are performed in an opportunistic sequence and often in
parallel. Documentation and other deliverables are the concrete results of the work
process. It is often useful to pretend that the deliverables are the results of a rational
work process because this makes them easier to read and understand.

There are work processes on many different time scales. We have found it
convenient to distinguish between three: creating a model, creating an application,
and creating a reusable component.

A work process is a sequence of steps that need to be performed to
reach a specified goal. The process itself is almost invisible to all but
the people who actually perform it. The process steps should therefore
be intimately associated with the deliverables that constitute their
concrete results. The deliverables can be computer programs, formal
models, or informal descriptions.

A work process
describes the steps
needed to reach a

goal

Processes on
different time scales

Processes can be on different time scales, ranging from short
processes for the solution of specific details to very long term
processes covering the evolution of reusable assets. We find it
convenient to distinguish between the following processes:

The model creation process focuses on how to create a model or
some other manifestation of thoughts for a certain phenomenon.
Examples are processes for creating a role model, for performing
role model synthesis, and for creating object specifications.

1.

The system development process covers the typical software life
cycle. It consists of the steps from specifying users needs to the
installation and maintenance of the system that meets these needs.

2.

3. The reusable assets building process is the least mature software
engineering process, but we expect it will be an essential
contributor to future productivity and quality. Our focus is on the
continuous production of several, closely related systems; where
we build on a continuously evolving set of reusable components.
Creating a system will mainly be a case of configuring and
reusing robust and proven components; possibly adding a few
new components to complete the system.

29 March 1995 23:05 1.3 Process with Deliverables

The main ideas ©Taskon 1992. Page 41

The processes are
opportunistic and

iterative

The work processes on all three levels are iterative and the
deliverables evolutionary. The goal is to minimize the risk by
focusing the most critical parts in the early iterations.

Many managers dream of the ultimate work process that will ensure
satisfactory solutions from every project. We believe that this dream
is not only futile; it can even be harmful.

Documentation is by its nature linear and must be strictly structured.
Software development processes are by their nature creative and
exploratory, and cannot be forced into the straightjacket of a fixed
sequence of steps. In an insightful article, [Parnas 86] states that many
have sought a software process that allows a program to be derived
systematically from a precise statement of requirements. Their paper
proposes that although we will not succeed in designing a real product
that way, we can produce documentation that makes it appear as if the
software was designed by such a process.

The documentation is
sequential

The sequences of steps we suggest in the following and in the rest of
the book are therefore to be construed as default work processes and
suggested documentation structures. We also believe that you will
have to develop your own preferred sequence of steps, but you may
want to take the steps proposed here as a starting point.

1.3.1 Introduction to the model-creation process

How should you go about describing a phenomenon in a role model?
In the general case, we suggest the following eight steps for creating a
role model. Each step results in a deliverable, which is a view on the
role model. The relative importance of these views depend on the
purpose of the model.

Eight steps for
developing a role

model

The steps are performed iteratively until the role model is adequately
defined. Steps (4) and (5) are performed in parallel. It is often easier
to see what needs to be done than to identify the actors, but both need
to be specified in an object-oriented model.

Determine the Area of Concern(1)

Understand the problem and identify the nature of the objects(2)

Determine Environment roles and Stimulus/Response(3)

(4) Identify and understand the roles

29 March 1995 23:051.3 Process with Deliverables

©Taskon 1992. Page 42 The main ideas

(5) Determine the message sequences

Determine the collaboration structure(6)

Determine Interfaces(7)

(8) Determine the role behavior

With the OOram method, you can describe your analysis and design
in a single role model or in a number of related models. There are
general process guidelines for creating the individual models, and for
breaking complex situations into smaller models that "are so simple
that there are obviously no deficiencies".

Introduction to the system development process1.3.2

We will here focus on medium-term processes that cover the
development of individual systems. Some important models are
indicated in figure 1.17. We zoom back to study the system
environment at the top level; we zoom in to study implementation
details at the bottom level. The relationships between the models can
be made formal or informal. Formal model relationships lead to a
seamless system description, but it may be hard to change. Informal
model relationships are easier to handle, but can hide dangerous
system inconsistencies.

1.3 Process with Deliverables29 March 1995 23:05

The main ideas ©Taskon 1992. Page 43

System
implementation

System
design
model

System
requirements
model

System
user

model

System
of objects

Figure 1.17 Typical
descriptions on

different levels of
abstraction

A System User model describes the system environment. Most
interesting systems are open systems. They will be installed in an
environment that will influence the system and be influenced by
it. The environment can be a human organization as is the case for
business information systems, or it can be some equipment as is
the case for embedded systems. Whatever its nature, we need to
understand the system environment, and describe it in the System
User model.

1.

2. A System Requirements model describes the system as seen from
its environment. There are two important models: a model of the
interface between the system and its environment; and a model of
the system logic as perceived by its users. The relationships
between these two models and the the System User model are
interesting. The interface model describes the tools employed by
the users to perform their tasks; and the system logic model
describes the subject or universe of discourse of the activities
describes in the user model.

A System Design model describes the system as seen by its
developers. They elaborate the System Requirements models and
add technical details of interest to the implementors. Their main
features are the system components and their interaction.

3.

29 March 1995 23:051.3 Process with Deliverables

The main ideas©Taskon 1992. Page 44

4. A System Implementation model is a precise description of the
system including all the details needed to make it operational. In
the case of computer-based systems, we express it in a
programming language. In the case of human organizations, we
express it as a set of business procedures.

The process is
opportunistic and

iterative

It is not our intention that figure 1.17 shall suggest a classical
waterfall process. The figure shows the main models and the
relationships between them. The process will be opportunistic,
incremental, and iterative.The four system descriptions represent four
different levels of abstraction. The documentation deliverable will
often be organized top-down. The actual process will proceed from
top to bottom; from bottom to top; and from the middle outwards. We
call it the yo-yo approach to system development.

Other methodologies recommend system models resembling the four
presented here. The OOram method does not enforce a particular set
of models or a particular work process. On the contrary, we believe
that the work process and deliverables have to be tailored to the
nature of the problems; the preferred programming language; the
traditions and regulations of the enterprise; the available tools and
other development facilities; and the experience and preferences of
the team members. If you have your own, proven process, we urge
you to stick to it and apply the OOram concepts and notation as a
framework for your own object-oriented methodology.

Introduction to the reusable assets building processes1.3.3

Everything changes! It is popular to claim that in our modern society, change is the only
constant factor. Enterprises have to be able to adapt to an ever
changing environment.

We believe this to be both true and misleading. It is true in the sense
that an enterprise has to keep changing to adapt to its changing
environment. It is also true in the sense that it has to change the core
of its operations to accommodate the transition from manual to
computer-based information processing; that it has to move its rule-
based operations from people to computer; and that it has to cultivate
the creativity, responsibility, and problem-solving capabilities of its
human staff.

29 March 1995 23:05 1.3 Process with Deliverables

The main ideas ©Taskon 1992. Page 45

It is misleading in the sense that everything just cannot change all the
time. So the challenge to the evolving enterprise is to identify what
can be kept stable and what has to be kept fluid. The stable parts form
an infrastructure on which it can build a light and rapidly changing
superstructure.

Changing software,
fixed components

Software development is a case in point. Effective software
development can only be based on extensive reuse. But reuse implies
repeat business, and we never need develop exactly the same piece of
software twice. So we have to identify a family of software products
that we want to become our specialty, to identify common elements in
this family, and to develop resuable components for these elements.
This will enable us to fulfill a dream shared by many software
developers: we will be able to develop large and reliable systems in
small and effective projects.

Collection
of
Experience

Fountain
of
production

END USER

Pool of reusable assets

Forward engineering
Producing revenue

Reverse engineering
Investing in
reusable assets

Figure 1.18 The
Fountain Model for

Reuse

Figure 1.18 illustrates that we have two kinds of activities working on
two different time scales. Forward engineering, where we produce
new results for the end users. The success criterion of these activities
is that they satisfy user needs and thus produce value (and possibly
revenue). Reverse engineering is an asset-building activity. It works
on a longer time scale than forward engineering when it analyzes the
products produced and finds more effective ways of producing such
products in the future.

29 March 1995 23:051.3 Process with Deliverables

©Taskon 1992. Page 46 The main ideas

The challenges to effective reuse are mainly organizational. The next
section is devoted to these problems and their solution.

29 March 1995 23:05 1.3 Process with Deliverables

©Taskon 1992. Page 47The main ideas

Organization1.4

In a nutshell
Reuse is currently applied almost exclusively to software. This section is of general
interest, however, because several of the OOram reuse opportunities are applicable
to all kinds of object-oriented models. Reuse is currently almost exclusively applied
to software, but we have also applied reuse technology to the design of
organizations with great success.

Some people have believed that the inheritance and encapsulation properties of
object orientation automatically make all objects into reusable components. This is
wrong and has caused many disappointments. Resources have to be invested in their
creation, and value is only created when they are successfully applied for a valuable
purpose.

Few, if any, interesting developments are done by single persons
working in isolation. The organization dimension is concerned with
how to organize a team of people who work together towards a
common goal. Organizations come in many sizes and have widely
different life spans. We organize a few people to create a certain
model, and we organize several people to perform a complete project.

The premise of this book is that we will never be able to produce high
quality software efficiently in the general software job shop, just as a
blacksmith will never be able to produce a high quality car in his
smithy. We expect an effective car factory to turn out cars and cars
only. We should also expect an effective software production facility
to turn out a particular family of software only.

We must change
from a job shop to an
industrial approach

to software
production

We deliberately organize a number of people, called actors, with
different resources, skills, responsibilities and authority for the
satisfaction of customer requirements. The actors reuse concepts,
designs and software modules to enable the combination of high
investment in quality and efficiency with low cost to the individual
user.

Industrial software
production

Our approach is an essentially industrial approach to software
production, even if the software industry will be materially different
in culture, organization, and methods from the traditional industries. If
you do not like the term industrial in this context, you probably think
of all the negative aspects of industrialization. We here prefer to focus
on the positive aspects, the ability of industrial organization to
consistently deliver products of high quality and low cost.

29 March 1995 23:051.4 Organization

The main ideas©Taskon 1992. Page 48

In a mature software industry, many different human actors will work
together to provide end users with sophisticated functionality. We
introduce the idea of a multilayered value chain, where the people in
each layer build on the results from the layers below it and deliver
results to the layer above them. The actors on each level have their
own unique responsibilities, spheres of competence and success
criteria.

The value chain

It is important to cast the value chain so that the actors on each level
can focus on their main business and not be burdened with details that
have been solved on the layer below them.

Industrial activity is a many-faceted endeavor. We will need facilities
management; finance and accounting; marketing and sales;
production planning and control; product specification, design and
production. Our context is the industrialized provision of software to
individual users or groups of users. We focus on the technical aspects
of specification, design and production; and put special emphasis on
basic concepts and their practical applications.

The success of industrialized software production will be due to the
following four key characteristics:

An effective software production facility must be specialized. An
industrial facility is carefully tuned to the effective creation of its
products. You would expect a group which produces compilers
only to be more effective than a group which produces all kinds
of software, so you have to choose your specialty and stick to it.

1.

Reuse is the only known way to achieve satisfactory quality and
efficiency. Reuse permits the repeated application of proven
solutions and their continuous refinement. It is an axiom that a
programmer doesen't often get it right the first time; so you
should observe the use of your software and give it a chance to
mature through successive improvements. For mass products, it
means that you produce a steady stream of new releases; for
customized software, it means that you build an inventory of
reusable components and improve them over time. In both cases,
stability and your long-term commitment are essential.

2.

29 March 1995 23:05 1.4 Organization

©Taskon 1992. Page 49The main ideas

Work and responsibilities must be divided along a vertical value
chain. A car manufacturer designing a new car model does not
start by trying to define "What is a car?" The design team has
been designing cars for years and can concentrate on the finer
details of the new model's specifications. Further, they would not
worry unduly about the details of the new car's components. The
engine, transmission train, electrical equipment, instrumentation
and a myriad of other details will be selected from a wide
selection of available and proven solutions. The design of a new
car is a question of market considerations, styling and reuse of
proven solutions. The result is a piece of equipment which is
produced very cheaply and with a quality level unattainable by
the best craftsmen working from scratch.

Similar vertical integration exists to a certain extent in the
software industry today. An example of a value chain from the
database world is: Hardware manufacturer - Operating system
provider - Database management system provider - Schema
designer - Fourth generation language programmer - Script
creator - End user. We believe such value chains could profitably
be designed for all kinds of software systems such as intelligent
network services in the world of telecommunications and
information environments for professionals in the area of office
automation.

3.

Matching tasks to personnel capabilities. One of the most
important characteristics of an industrial organization is that it is
composed of teams with specialized goals, tasks and competence.
Different teams apply different methodologies and are supported
by different tools tailored to their specific needs.The organization
has to be carefully tuned so that each team can be made up of real
people. The goals and methodologies of each team have to be
adapted to the personalities and the training of its people. The
successful organization of an industrial software production
facility will harness a wide variety of talents to the common goals
of the enterprise as a whole. If you are considering the creation of
an industrial software production facility, you must choose your
specialty on the basis of your people. And when you design its
value chain, you must define the characteristics of the people
occupying each layer as carefully as you define their
responsibilities.

4.

1.4 Organization 29 March 1995 23:05

©Taskon 1992. Page 50 The main ideas

Industrial production is often associated with the application of
unskilled labor for mindless, repetitive tasks. This is not our intention.
We do not believe that good software can be produced by automata
working under strictly controlled conditions according to detailed
rules. On the contrary, we believe that the nature of software is such
that value can be added to the product by skilled and dedicated people
only. Every team in the production chain should be working in a
stimulating environment which encourages creativeness and learning
within the team's specialty, while permitting the team to build safely
on the results of other teams without needing to understand the inner
details of those results. The main part of the investment will therefore
be in people, their competence, experience and commitment to the
common goal.

Industrial
organization does

NOT imply mindless
work

A corollary to this is that procedures and tools must be supportive and
never be confining; they should reduce the burden of routine work
that creative people have a tendency to dislike and do badly. There is
no room for the tightly controlled assembly line in the software
industry.

The tasks needed to produce software depend on the nature of that
software, and we expect that different classes of products will need
different organizations for their effective production. We will explore
different product categories in order to understand their similarities
and differences such as a facility for the production of Intelligent
Network services for the communications industry and a facility for
the production of customized information environments for
professionals in commerce and industry. In each case, we will see that
we need a reference model which describes the product in general
terms and which shows how we have chosen to divide the total work
into manageable pieces so that each piece can be created by a team
with clearly identified skills and interests.

An industrial
software production

facility must be
designed to suit the

nature of its products

29 March 1995 23:05 1.4 Organization

The main ideas ©Taskon 1992. Page 51

29 March 1995 23:051.4 Organization

The main ideas©Taskon 1992. Page 52

Chapter 2
Role Modeling

This chapter discusses the creation of object-oriented models of a wide range of
phenomena. The process is called role model analysis, the breaking down of a
whole into a system of interacting components.

The phenomena may exist in the real world such as in a work organization or in
some technical equipment, or it may be an abstraction such as a concept or a
computer program.

The components are archetypical objects that we call roles because they represent
the role an object plays within an overall pattern of interacting objects in the
context of an area of concern.

Modeling the real world: Human understanding and human communication
Modeling with objects
Modeling with roles

A travel expense example
An Internet example
An example model with four roles

The model creation process and its deliverables
Process deliverables
Finding the objects

Basic OOram role modeling concepts and notation
The Object

External properties
Internal properties

The Role Model
Area of Concern view
Stimulus-response view
Collaboration View
Scenario View
Interface view
Method Specification View

 29 March 1995 23:05

Role Modeling ©Taskon 1992. Page 53

Role modeling is applicable to the three higher abstraction levels as
indicated in figure 2.1 The focus of this chapter is on the creation of
isolated models, we have therefore not shown arrows between the
levels. (The integration of multiple models into a seamless whole will
be discussed in the next chapter on role model synthesis.)

Figure 2.1 Typical
descriptions on

different levels of
abstraction

System
implementation

System
design
model

System
requirements

model

System
user

model

The focus
of this chapter

29 March 1995 23:05

©Taskon 1992. Page 54 Role Modeling

Modeling the real world: Human understanding and
human communication

2.1

In a nutshell:
We create a myriad of mental models to help us understand phenomena of interest
and master them. A model is an artifact created for a purpose; it cannot be right or
wrong, only more or less useful for its purpose. The choice of phenomena and the
questions we ask about them depend on our interests, the modeling paradigms we
are comfortable with, and the tools we use for expressing our thoughts. If we want
to precisely communicate our ideas to a colleague, our modeling paradigm and
notation must be similar to our colleague's paradigm and notation. If we want to
communicate with a computer, our modeling paradigm must be consistent with the
applicable computer language. The more expert we are in a particular modeling
paradigm, the harder it may be to ask questions and appreciate answers that fall
outside that paradigm.

Our mind's
interpreter makes

sense of our
environment

It seems to be a deep rooted characteristic of the human mind that we
continuously try to organize and explain our impressions of the world
around us. The brain scientist Michael S. Gazzaniga (FOOTNOTE:
[Gazz 88]) says that there seems to be an interpreter in the brain
which tries to make sense out of all our varied experiences. Dreams
may, for example, be explained by the mental interpreter trying to
attach meaning to random events. We say that our mind creates a
mental model of the world around us which we use to explain how it
works and to predict the future; a model we use to master our
surroundings.

Real-World
Phenomenon

Mental modelFigure 2.2 We
always try to
interpret our

observations of the
real world

Figure 2.2 illustrates that our understanding of the real world is based
upon mental models which we create and manipulate within our
minds, and which we try to make similar to the real world in some
sense.

29 March 1995 23:05 2.1 Modeling the real world: Huma...ding and human communication

Role Modeling ©Taskon 1992. Page 55

Our mental models
reflect our
viewpoints

As an example, consider an industrial enterprise. An accountant may
model the enterprise in terms of budgets and accounts, credits and
debits, expenses and revenues. A production engineer may model the
enterprise in terms of the flow of materials, the machining of parts,
and the assembly of products. Another production engineer may
model the enterprise in terms of production processes, activities and
resources, events and deadlines. An organization consultant may think
in terms of actors and chains of command, of responsibility and
authority. A computer professional may model the enterprise in terms
of information (its structure, its sources and sinks), and the computer-
based systems used to store and process the information.

This leads to some general observations about models:

A model is created for a purpose. My car has four wheels if I am
interested in the effect of the brakes under normal circumstances.
My car has two wheels if I am interested in normal acceleration,
because there are only two driving wheels on my car. My car has
only one driving wheel if the other one is spinning on an icy road.
My car has five wheels if I am interested in maintaining correct
tire pressure since I may get into deep trouble some day if I forget
to check the spare. And finally, a particular model of Citroën cars
can lift a punctured wheel and continue running on the three
remaining ones; a three-wheel model would be appropriate to
study its behavior. So we cannot say that a model is correct per se,
only that it is more or less suited for the study of specific
phenomena.

1.

A model is never complete. We create models to simplify and
generalize. For this purpose we ignore more than we include. The
rims of my wheels are made by welding together a number of
steel parts; they are painted with several coats of different paints;
they are manufactured in a complex production process -- but I do
not care about any of these details.

2.

We tend to think in hierarchical models, even though the world is
rarely hierarchical. A house consists of a roof and four walls. The
walls are made of bricks. But the hierarchy breaks down at the
corners, where a brick belongs to two walls. Hierarchies are
useful artifacts to help our thoughts. They are not inherent
properties of nature, but artifacts of the models that must be
applied with due caution and respect.

3.

29 March 1995 23:052.1 Modeling the real world: Huma...ding and human communication

Role Modeling©Taskon 1992. Page 56

We think in multiple models, always trying to choose the best
model for our purpose. I drive peacefully along the road, seeing
my car as part of a traffic pattern. My mind drifts, and I see the
trip in the context of a sales effort I am currently engaged in.
Suddenly, I hear ugly noises from the engine compartment. I
immediately mobilize all my technical knowledge about cars and
search for a model that can explain the trouble.

4.

While most of our mental models are intuitive and largely
subconscious, the essence of both science and business is the creation
of explicit models, called manifest models, which we can share and
discuss, see figure 2.3.

Our shared business
models needs be

explicit and based on
shared concepts and

representations

Real-World
Phenomenon

Mental model

Manifest
Model

Figure 2.3 Manifest
models are concrete

representations

Human
communication is

distorted

Manifest models are really just data: patterns of ink on paper or bits
inside computers. The interpretation is in the mind of the beholder,
different people may (and will) interpret the same manifest model in
different ways as illustrated in figure 2.4.

Data
Meaning-B

Language-BLanguage-A

Meaning-A

A B

Figure 2.4 The
human

communication
process

29 March 1995 23:05 2.1 Modeling the real world: Huma...ding and human communication

Role Modeling ©Taskon 1992. Page 57

Figure 2.4 shows the process when person A wants to communicate
Meaning-A and codifies it according to Language-A, his personal
vocabulary, to create the data. Person B senses these data and decodes
them according to her personal vocabulary, Language-B, to get the
underlying information, Meaning-B. Since Language-A is more or
less different from Language-B, Meaning-B will be more or less
different from Meaning-A.

The figure illustrates the distortion that is inherent in all human
communication. The process is not improved where the data are
transformed and communicated through time and space via a
computer system, since many of the interpersonal adjustments
developed over the millennia are lost with the removal of any personal
contact between A and B as illustrated in figure 2.5.

Computer system
filters,

transforms,
stores,

and moves
data

Meaning-B

Language-BLanguage-A

Meaning-A

A B

Figure 2.5 Human
communication

through a computer
system

The paradigms, concepts and notation for a manifest model must be
shared by the participants to make communication and discussion
possible. The paradigms are usually implicit in a community of
experts, which make communication fast and efficient. The paradigms
are often subconscious. Conflicting models are rarely detected and can
lead to endless discussions -- such as, is analysis everything preceding
design, or is it the study of the current situation? Every competent
systems analyst knows an answer, but different analysts give different
answers depending on their orientation.

Shared models
essential for

communication

BOX
In our context of system modeling, precise communication of model information
presupposes that all the communicants have a common description language. The
OOram method has precisely defined concepts and notation. We suggest that you
endeavor to learn and use them as consistently as possible, and that you complain
bitterly to the authors if you find any inconsistencies or other imperfections.

29 March 1995 23:052.1 Modeling the real world: Huma...ding and human communication

Role Modeling©Taskon 1992. Page 58

Effective communication demands that the languages of the
communicants are similar, and that all organizations invest in training
and documentation. But as training is also a communication process,
we can never achieve perfect match between individual interpretations
of the same data.

Any effective
modeling paradigm
is a good paradigm

Experts love to discuss whether a certain modeling paradigm is better
than another one. Since being an expert means that one has
internalized certain ways of thinking, these discussions frequently
take the form of religious wars. My view is that it is impossible to
evaluate an answer without considering the question, so that a
modeling paradigm has to be evaluated on the basis of its
effectiveness in a certain context. The best paradigm is the paradigm
which can best helps me reach my goals. If my goals change, I must
be willing to reconsider my choice of paradigms.

2.1 Modeling the real world: Huma...ding and human communication29 March 1995 23:05

Role Modeling ©Taskon 1992. Page 59

2.2 Modeling with objects

In a nutshell:
The object has three properties which makes it a simple, yet powerful model
building block. It has state, so that it can model memory. It has behavior, so that it
can model dynamic processes. And it is encapsulated, so that and object can hide
complexity.

Object orientation as a programming paradigm originated in the
Simula language which was developed by the group lead by Kristen
Nygaard and Ole Johan Dahl at the Norwegian Computing Center in
the sixties [Birth 73]. The widespread use of object orientation in
mainstream computing is due to the success of the Smalltalk language
and programming environment developed by Alan Kay and the
Learning Research Group at the Xerox Palo Alto Research Center in
the seventies [Gold 83].

Object oriented
programming

invented in Norway
in the sixties

Object Orientation is
a powerful paradigm

Object orientation is but one of the many possible paradigms that can
be used as a basis for thinking about systems. It is currently receiving
a great deal of attention, because it seems to be useful in many
different situations and for many different purposes. It has been used
successfully to model human systems, such as business organizations;
technical systems, such as aircraft control systems; and many different
kinds of computer-based systems.

One of the reasons for the popularity of object orientation may be that
it merges many earlier paradigms such as the information models used
by database designers, the behavior models dear to the hearts of
communications engineers, the functional decomposition models used
by many computer programmers, and the process models used in the
analysis of organizations and integrated computer systems. We will
later see that with object orientation, it is possible to express the
information contained in all these different models within a single,
seamless description. (But object orientation does not replace
continuous models such as differential equations).

The following definitions of object orientation are derived from [Hol
77] and [HallFagan]:

29 March 1995 23:052.2 Modeling with objects

Role Modeling©Taskon 1992. Page 60

A system is a part of the real world which we choose to regard as a
whole, separated from the rest of the world during some period of
consideration; a whole that we choose to consider as containing a
collection of objects, each object characterized by a selected set of
associated attributes and by actions which may involve itself and
other objects.

System and object

The operative word here is choose. We choose to regard a
phenomenon as a structure of distinct objects; we choose the objects;
we choose their characteristics. This choice may be "natural" if the
phenomenon is discrete in nature: An organization is composed of
people, and road traffic is made up of moving cars. In other cases the
choice of objects may be artificial: We think of a plant as being made
up of root, stem, leaves and flowers, even though there is no such
distinction in nature, and it is hard to define exactly where one object
ends and another begins. A corner brick could belong to either of the
adjacent walls. Such difficulties should not worry us unduly, but only
remind us to create precise definitions. A good model helps us
understand a phenomenon of interest; a bad one does not help us and
could mislead us.

Open systems are systems that interact with their environment: For a
given system, the environment is the set of all objects outside the
system whose actions affect the system and also those objects outside
the system whose attributes are changed by the actions of the system.

Open systems have
environment

Manifest
ModelReal World

Mental model
Environment Model environment

System

System model

Figure 2.6 Object-
oriented models

In figure 2.6, the system is bounded by a heavy line; real world parts
are shown as squares, objects are shown as rectangles; and an
environment object is shown with gray outline.

The definition of open systems naturally leads to the question of when
an object belongs to the system and when it belongs to the
environment -- for if an object interacts with the system as described,

2.2 Modeling with objects29 March 1995 23:05

Role Modeling ©Taskon 1992. Page 61

why not regard it as a part of the system? Following this train of
thought would be inconvenient, because we would have to regard the
entire universe when studying any single phenomenon. In practice, we
create a boundary around the phenomenon under study. The system
objects proper are inside the boundary, while the environment objects
are outside it. The system objects are fully described in the context of
the phenomenon of interest, while the environment objects are only
partially described.

Many different
definitions of object

orientation in use

Although the general properties of object orientation are shared by all
practitioners, there are differences in the details. The differences
usually boil down to differences in the semantics of the language used
to express the model. Our view of object orientation is influenced by
the semantics of the Smalltalk language in which everything of
interest is expressed in the terms of objects. Our view is also
consistent with the definitions given by the Object Management
Group [CORBA 91], an organization dedicated to the widespread
application of object orientation in government and industry.

An object is
encapsulated

An object itself is initially thought of as a black box with an inside
and an outside as shown in figure 2.7. Looking inside, we would see
that the object is capable of doing things and of storing information; it
contains methods (procedures) and data. But the object cannot do
anything by itself, and there is no way that we from its outside can
deduce its internal construction. This is called encapsulation. (Some
authors distinguish between encapsulation and information hiding,
we do not need this distinction and regard the two terms as being
synonymous).

Figure 2.7 A simple
object by itself

cannot do anything

An object has an identity that it keeps throughout its life time; and
there will never be another object with just that identity anywhere in
the world.

An object has
identity

An object can have object attributes that represent information
associated with it. We choose the object attributes which we consider
relevant in our context.

An object can have
attributes

29 March 1995 23:052.2 Modeling with objects

©Taskon 1992. Page 62 Role Modeling

Objects interact
through messages

An object interacts with other objects by sending and receiving
messages as illustrated in figure 2.8. Messages do not arise by magic;
every message has both a sender and a receiver.

messages

Figure 2.8 Objects
interact by sending
messages along the
paths between them

The external characteristics of an object are described completely by its identity, the
messages it understands, the messages it sends to each of its collaborators, and its
apparent attributes.

A message is intention-revealing. It tells the receiving object to
achieve something without telling it how to do so. The message
functionality is composed of three parts:

A message is a trigger that causes the receiving object to select
one of its methods and execute it. The resulting action may
include changes in object attributes; sending messages to one or
more of the object's collaborators; and the creation of new
objects.

1.

A message may be a forward data carrier that provides the
receiver with some new information. The data are described in the
message parameters that may be references to other objects.

2.

3. After having processed a message, the receiver of a message may
return resulting data to the sender.

Messages sent
spontaneously from
environment objects

A message received by an object triggers a method, and parts of this
method may be to send further messages. The avalanche of messages
flowing through the objects must start somewhere. Some objects will
spontaneously send a message without first having received one. We
call the initial message a stimulus message and the resulting sequence
of actions is called an activity. The object that sends a stimulus
message must clearly be in the system environment.

The message-passing process may be recorded by an observer in the
inter-object space. This observer may also deduce some apparent
properties of the objects:

Object models can be
observed from inter-

object space

29 March 1995 23:05 2.2 Modeling with objects

Role Modeling ©Taskon 1992. Page 63

collaborators and message sequences. The actions performed by
the object when receiving a message are defined in its method for
that message. The method itself is invisible from outside the
object, but it is possible to observe any messages the object sends
to other objects, so the observer can deduce the object
collaboration structure. The observer can also deduce the
characteristics of the message-passing process and the identity of
the stimulus messages.

1.

2. object attributes. An object has state, which means that it has
memory. The effect noticed by the outer observer is that the
object may react differently when sent the same message at
different times.

A structure of objects
is similar to a work

organization

We find it profitable to think of a pattern of collaborating objects as
an organization of clerks collaborating in performing some common
task. This way of thinking about systems is very similar to how Max
Weber, 100 years ago, described 'rational' work organizations.
Weber's ideal was to populate an organization with specialists who
divided the total work load among them, who had clearly defined
rights and responsibilities, and who performed their work strictly
according to precisely defined rules.

No human organizations have been perfectly rational in the Weber
sense. But if Weber had been alive today, he could have observed the
perfect, rational bureaucracy as a set of collaborating objects inside a
computer! An object may be considered as a clerk having an in-basket
and an out-basket. A book of rules specify precisely the methods, or
procedures to be followed by the clerk, for every message that the
clerk understands. When each clerk has his own book of rules,
different clerks may handle the same messages according to different
rules. This is called polymorphism. Finally, the clerk will have a file
of folders representing the current values of the attributes for which
the clerk is responsible.

BOX: Is the postindustrial society an object-oriented society?
As an aside, we may suggest that this indicates why some large, bureaucratic
organizations seem to be getting into trouble in our postindustrial society. The
bureaucratic organization is tuned to let people behave in a precisely prescribed and
predictable manner, but computers perform this kind of behavior much better than
people. The object paradigm is pervasive. We not only find it in programming and
conceptual modeling, but even in the organization of the postindustrial society.

The successful postindustrial enterprise seems to be organized as a structure of
autonomous units collaborating towards a common goal. In contrast to the
bureaucratic model, this market model for organizations is harder to manage and

2.2 Modeling with objects 29 March 1995 23:05

©Taskon 1992. Page 64 Role Modeling

harder to populate. Individual creativity, responsibility, understanding and
independence of thought are harnessed to the common good. All behavior that can
be formally described is pushed down into a computerbased support system.

You can observe the contrast by comparing the large department store with the
shopping mall, the large integrated factory with the network of cooperating smaller
companies. The depth and importance of this transition was brought home to me
when I was giving a seminar in object-oriented programming. During a recess, a
man came up to me showing all signs of being deeply moved. He told me that he
had been an ardent communist for more than fifty years. Gorbachov's revelations
and the demise of the Soviet empire had been hard to swallow, and he was now
learning that even computer programs were moving from the centralized model with
all power and wisdom emanating from a main program to a decentralized model of
cooperating objects.

Analysis and design Most life cycle models distinguish between analysis of an existing
organization along with its problems; the specification and design of a
system that shall solve these problems; and the implementation of the
new system. Different modeling paradigms have often been used for
the different stages; and there has been no guarantee that information
gathered in one stage has been faithfully carried over to the next
stage.

We shall see that the object-oriented approach is equally applicable to
all stages of the life cycle and to all levels of abstraction. We create
object models of an existing organization or system, object models of
a proposed future organization or system, object models of an
application program, and object models of reusable program libraries.
In all cases, we use the term analysis to denote the modeling of a
phenomenon as a structure of interdependent object parts. This is in
conformance with the common definition of the term: analysis 1:
separation of a whole into its component parts 2a: an examination of
a complex, its elements and their relations 2b: a statement of such an
analysis ... [Webster 77]. (We also support the opposite operation, and
use the term synthesis to denote the composition of derived models
from simpler ones).

There is still a distinction between the study of an existing
phenomenon and the creation of a new artifact. This distinction is not
in the concepts and notation we use to describe the models, but rather
in the work processes we follow to create them. The study of an
existing phenomenon is a reverse engineering operation, while the
creation of a new system is a forward engineering operation.

We frequently find it convenient to combine the two modes of
operation, because we frequently want to create new systems that
have to fit into an existing environment.

We create new
systems that fit

existing
environments

29 March 1995 23:05 2.2 Modeling with objects

©Taskon 1992. Page 65Role Modeling

As an example, suppose we wish to create a model of an enterprise
from the perspective of its formal organization. We have chosen this
example domain to illustrate that objects have a wide application area;
and to avoid all the technical details of computing which could easily
obscure the inherent simplicity and common sense of object-oriented
modeling.

A company
organization

example

We defined a system as a part of the real world that we choose to
consider as containing a collection of objects... We want to study how
people interact to handle a travel expense account, so we choose our
system to be the enterprise and choose the objects to be its people
because the actors involved in this procedure are people. We elect to
ignore such concepts ad departments and groups, since departments
and groups are mere abstractions which do not actually do anything. It
seems natural to represent each person as an object as shown in figure
2.9.

Peter
(Technical author)

Bill
(Dispatcher)

Joyce
(Sales clerk)

Douglas
(Marketing manager)

Kim
(Methodologist)

Elsie
(Programmer)

Eve
(Software Manager)

Bill
(Bookkeeper)

Joe
(Paymaster)

Adam
(Chief Accountant)

Ruth
(President)

John
(Cashier)

Ann
(Consultant)

Figure 2.9 We
choose think of the

company
organization as an

object model

Figure 2.9 could of course be interpreted as the conventional
organization chart, decomposing the business along lines of authority
and responsibility. But we choose to interpret it differently: The
rectangles in this figure denote objects; the lines denote a particular
set of relations between the objects. In this model, every rectangle
represents a person object and every line represents a works for -
reports to relation. In a more general model, objects could represent
different kinds of entities and there could be different kinds of
relations between them.

2.2 Modeling with objects 29 March 1995 23:05

©Taskon 1992. Page 66 Role Modeling

The object identity property is evident in our example. A person can
be one of a pair of identical twins, he may change his name, amputate
arms and legs, install a new heart, have a face lift, even change his sex
-- the identity of the person remains the same. All the atoms of a
person's body are replaced several times during his lifetime, thoughts
and feelings change; and yet -- the person is the same; there has never
been and will never be another person with the same identity. In our
example, there are two persons named Bill. They are modeled as
different objects, so we know there are two employees with the same
name.

Object identity

Object attributes We could choose to consider the following person object attributes:
name, job position, address, telephone number, salary, age, and
competence. The attributes can be simple, such as name; or complex,
such as competence.

Due to the object encapsulation property, we cannot know which form
an attribute takes within the object. The age attribute could be
explicitly stored in an instance variable within the object, or it could
be computed whenever it was needed from an instance variable
containing the birth date and a generally available current date.

As an example of message interaction, let us describe what happens
when Peter wants to travel somewhere at the expense of his company.
A possible process is illustrated in figure 2.10 as follows:

Message interaction

Peter sends a travelPermissionRequest-message to Eve, his
manager.

1.

Eve checks her budget and her plans, and sends a
travelPermission-message to Peter.

2.

3. Peter purchases the necessary tickets, travels, prepares an expense
report and sends an expenseReport-message to Eve.

Eve checks the expense report, adds her authorization, and sends
an authorizedExpenseReport-message to Bill, the bookkeeper.

4.

Bill updates his accounts and sends a paymentRequest-message to
Joe, the Paymaster.

5.

Joe notes the request and initiates payment to Peter.6.

2.2 Modeling with objects29 March 1995 23:05

Role Modeling ©Taskon 1992. Page 67

Figure 2.10
Messages arising
from the expense

report process

Peter
(Technical author)

Bill
(Dispatcher)

Joyce
(Sales clerk)

Douglas
(Marketing manager)

Kim
(Methodologist)

Eve
(Software Manager)

Bill
(Bookkeeper)

Joe
(Paymaster)

Adam
(Chief Accountant)

Ruth
(President)

John
(Cashier)

Ann
(Consultant)

1: travelPermissionRequest
2: travelPermission

3: expenseReport

5: paymentRequest
4: authorizedExpenseReport

2.2 Modeling with objects 29 March 1995 23:05

Role Modeling©Taskon 1992. Page 68

Modeling with roles2.3

In a nutshell:
The role model is an abstraction on the object model where we recognize a pattern
of objects and describe it as a corresponding pattern of roles.

The role model supports separation of concern and describes the static and dynamic
properties of a phenomenon in a single, coherent model.

Object models, as described in the previous sections, provide
powerful constructs for describing a wide range of interesting
phenomena. Even though we have given only outline descriptions of
very simple examples, we hope you appreciate that we could have
chosen more complex phenomena and augmented the models with
additional information.

We need abstractions

Real cases are rarely simple. A real organization could consist of a
hundred employees, and we would probably want to study dozens of
different procedures. The object model would then be too complex to
be studied as a whole; and we would need additional abstractions to
highlight interesting aspects to enable us to think about them in a
meaningful way.

One popular abstraction of object orientation is the concept of class;
defining the attributes and behavior of a set of similar objects. The
inheritance relation permits a derived class to be defined as an
extension and modification of a base class.

The classification
abstraction is not

very helpful for
understanding object

structures

Figure 2.11 indicates a possible structure of capabilities of the people
that populate our example organization. Ruth, Adam, Eve and Pete are
managers -- these roles could be played by any person having the
required capabilities. Observe that the capabilities of the people
populating an organization do not help us understand how the
organization operates. We similarly find that understanding the object
class structure does not help us understand how the structure of
objects operates.

It is as if we want to build a new home; and the architect showed us
the specifications of doors, windows, walls and sanitary fittings. It
may be useful to the builder to know that he can use the same window
design in many places, and that all windows may share some of the
same production processes, but we want to know how the house will
function as a home.

2.3 Modeling with roles29 March 1995 23:05

Role Modeling ©Taskon 1992. Page 69

Technical Writer

System Analyst

Programmer

Lawyer

Computer Scientist

Economist

Person

Figure 2.11 A
specialization -
generalization

hierarchy of the
ExpenseAccount

objects

Object-oriented programming languages focus on the class, which
describes isolated objects. We feel that while this may be reasonable
for the programming phase of system development, it does not reflect
the way we want to think about objects. We want to model structures
of objects that interact in order to achieve some purpose. A class will
describe the method its instances will use to service an incoming
message. It does not tell us if the sender of the message uses the
service correctly, nor does it tell us what happens to the messages that
are sent from its instances. We want to understand the activity as a
whole, but all we see is a short time slice taken out of its context.

We need to see
objects in context

A role focuses on
position and

responsibility of
object

The notion of a class focuses on the capabilities of the objects; while
the notion of a role focuses on the position and responsibility of an
object within the overall structure of objects. Training people is costly
and time consuming, and we strive to give people general training
which makes them capable of filling a variety of positions.
Programming is also costly and time consuming, and we strive to
program objects that can serve in different positions in a variety of
object structures.

In role modeling we
always consider

objects in context

We want an architect's plan and leave it to the builder to exploit
component commonality. Later on, we shall see that the powerful
notion of specialization is retained in the form of specializing patterns
of interacting roles through a process called synthesis. Right now we
will study individual role models and see how they represent
phenomena of interest.

29 March 1995 23:052.3 Modeling with roles

Role Modeling©Taskon 1992. Page 70

The OOram
technology focuses
on how interacting
roles achieve their

goal

In the OOram Role Model, we isolate interesting functions and study
how they are realized in general patterns of interacting roles. Beck and
Cunningham are quoted as saying: "... no object is an island" [Helm
90]. A highbrow version of this is to refer to the classical Greek
philosopher Plato, who described the philosopher as "a man who
insists on seeing things together, who refuses to consider the parts out
of their relation to the whole whose parts they are; and who is
therefore the inexorable foe of crude and premature generalizations
from whichever department of investigation happens at the time to be
most in evidence."

The role model is the basic abstraction used in the OOram
technology. A role model is a description of a structure of cooperating
objects with their static and dynamic properties: what is the subject of
the object interaction, the relationships between the objects, the
messages that each object may send to its collaborators, and the
information processes?

The role model is an object-oriented model of an object structure and
represents a bounded part of the real world or of an interesting
concept. It models patterns of collaborating objects as a similar
structure of collaborating roles. This is illustrated in figure 2.12.

The OOram Role
Model

A role model is a part of a structure of objects which we choose to
regard as a whole, separated from the rest of the structure during
some period of consideration. A whole that we choose to consider as
a collection of roles, each role being characterized by attributes and
by actions which may involve itself and other roles.

Role Model

ObjectsReal World

Role model
Environment

Roles

System

Figure 2.12 Manifest
Role Models

Figure 2.12 illustrates how the role model describes a pattern in the
system of objects. The system and the role model are bounded by
heavy lines; objects are shown as rectangles; and environment objects
are shown with gray outline. Notice how role modeling is an
additional abstraction step from the modeling illustrated in figure 2.6.

29 March 1995 23:05 2.3 Modeling with roles

Role Modeling ©Taskon 1992. Page 71

Role model is an
object-oriented

model of an object
structure

OOram Analysis is the breaking down of the whole problem area into
separate areas of concern, and the description of each area in a role
model showing interesting views of the phenomenon of interest. A
phenomenon is described by a number of cooperating objects. Sub-
phenomena are specified by their area of concern; objects describing
a sub-phenomenon is organized in a pattern of objects, all objects
having the same position in the pattern are represented by a role, we
say they play the same role in the object structure. A role has identity
and is encapsulated; and it is an archetypical representative of the
objects occupying the corresponding positions in the object system.
We can therefore say that a role model is an object-oriented model of
an object structure.

The role model is therefore an abstraction:

* We suppress irrelevant objects, representing the objects that
participate in the activities only.

We suppress irrelevant aspects, representing the aspects that are
relevant in the context of the activities only.

*

We suppress irrelevant details, using the object encapsulation
property to hide details considered uninteresting in the context of
the activities.

*

We generalize object identity, representing patterns of interacting
objects performing the activities by a similar, archetypical pattern
of roles performing these activities.

*

The role model is the abstraction. Any pattern of objects which enacts
the roles are role model instances; the objects themselves are role
instances.

2.3 Modeling with roles 29 March 1995 23:05

©Taskon 1992. Page 72 Role Modeling

Figure 2.13 An
object pattern is an

instance of a role
model

Traveler

Bill
(Dispatcher)

Joyce
(Sales clerk)

Douglas
(Marketing manager)

Kim
(Methodologist)

Authorizer

Bookkeeper

Paymaster

Adam
(Chief Accountant)

Ruth
(President)

John
(Cashier)

Ann
(Consultant)

Elsie
(Programmer)

Important roles in our travel expense example could be Traveler,
Authorizer, Bookkeeper and Paymaster as illustrated in figure 2.13. A
role model describes these roles, their responsibilities and rights, their
static relationships and their dynamic behavior.

Roles in Travel
Expense example

pm

au tr

bo

A dashed super-ellipse
denotes an environment role.

A super-ellipse denotes a role,
i.e., an object in the context of
an area of concern.

A single small circle represents
that the adjacent role knows about
and may send messages to
a single collaborator role.

A cross represents that the adjacent
role does not know about or
send messages to the collaborator
role.

A line represents a collaboration
relationship between two roles.

A double small circle represents
that the adjacent role knows about
and may send messages to
any number of collaborator roles.

ENT
Traveler

ENT
Authorizer

ENT
Bookkeeper

ENT
Paymaster

Figure 2.14 Example
OOram role model

Some analysts may prefer to replace the super-ellipses by common ellipses or
circles because they are easier to draw without special tools.

Figure 2.14 is a role model collaboration view that shows the roles
and the message communication paths. The figure says that the
participants in the handling of a travel expense report are playing the
roles of Traveler, Authorizer, Bookkeeper and Paymaster. The

29 March 1995 23:05 2.3 Modeling with roles

Role Modeling ©Taskon 1992. Page 73

Traveler and the Authorizer know about each other and exchange
messages. The Paymaster does not know about the Bookkeeper and
cannot send messages to him, similarly the Bookkeeper does not
know about the Authorizer. This is true in the context of the current
area of concern. Other role models might show close interaction
between them.

Two roles are marked as belonging to the environment: the Traveler
because it initiates a model activity by sending the first, unsolicited
message, and the Paymaster because it is the final recipient of the
completed expense report.

Associated with the line from the Traveler role is a port, a small circle
that represents the messages that the Traveler role may send to the
Authorizer role in the context of this model. Other small circles are
similarly interpreted.

Role models may be
viewed in different

ways

A role model can be viewed from many different viewpoints and in
many different ways, each view highlighting certain aspects and
hiding others. We can study the inside of individual roles; we can
study the messages passing between the roles; and we can study the
system as seen from its environment. We can take a data-centered
approach and study the roles, their semantic interpretation, their
responsibilities, and their attributes. We can take a process-centered
approach and study the message paths between the roles; the messages
permitted sent along each path; typical message sequences; and the
role methods that are triggered by these messages.

It is important to note that the views are artifacts of our modeling
process; we choose to view the phenomena under study in certain
ways because they help clarify our ideas and communicate them to
others. Our choices can be neither right nor wrong, but they may be
more or less suitable for our purpose. The views are supplementary;
and we select the combination that best suits our needs.

One view is the area of concern, which is a free text description of the
subject described by the model. Another view is the collaboration
view of figure 2.14, it shows the roles and the message paths between
them. A third view is the scenario, it shows a typical sequence of
messages that flows through the model. The message flow starts with
a stimulus message, that is an external event that triggers an activity in
the model. There are many other views, they will be discussed as we
need them.

29 March 1995 23:052.3 Modeling with roles

©Taskon 1992. Page 74 Role Modeling

In this example, we would like to augment the static collaboration
view of figure 2.14 with a dynamic view. Our example has one
activity. This activity starts with the stimulus message when the
Traveler asks the Authorizer for permission to travel. The activity
includes all actions resulting from this stimulus; one typical example
is shown in the scenario of figure 2.15 This scenario is a formal
description of the message interaction given earlier:

1. Traveler sends a travelPermissionRequest-message to Authorizer.

2. Authorizer sends a travelPermission-message to Traveler.

Traveler sends an expenseReport-message to Authorizer.3.

Authorizer sends an authorizedExpenseReport-message to
Bookkeeper.

4.

Bookkeeper sends a paymentRequest-message to Paymaster.5.

Figure 2.15 Travel
Expense procedure --

typical message
scenario

ENT
Traveler

ENT
Authorizer

ENT
Bookkeeper

ENT
Paymaster

travelPermissionRequest:

travelPermission:

expenseReport:

authorizedExpenseReport:

paymentRequest:

The scenario shows a sequence of messages as observed in the inter-
object space. It does not describe the methods, i.e., how the objects
handle their incoming messages. We can shift our point of
observation to the inside of a role and describe the method that is
triggered by an incoming message. Figure 2.16 is a method view. It
shows the Traveler method that is triggered by the travelPermission-
message:

1. Traveler purchases necessary tickets

Traveler travels2.

Traveler prepares an expense report and dispatches it to the
Authorizer.

3.

2.3 Modeling with roles29 March 1995 23:05

©Taskon 1992. Page 75Role Modeling

Figure 2.16 The
travelPermission-

method
ENT

Traveler
ENT

Authorizer

travelPermission:()

<Traveler purchases the necessary tickets>

<Traveler travels>

<Traveler prepares an expense report> expenseReport:()

Role model analysis is a powerful extension of the object orientation
paradigm because it permits us to identify different kinds of
phenomena and to study them in isolation without losing the benefits
of objects.

This capability to divide complex systems into any number of simpler
ones enables us to describe any particular phenomenon within a huge
system of objects. Role model synthesis (FOOTNOTE: See chapter 3)
enables us to study the subsystem interdependencies by creating
derived models.

Divide and conquer

We will give two additional role model examples. The first example
models the transfer of files between two computers on the Internet. It
is simple in the sense that it only involves two objects, but it illustrates
how separation of concern can materially simplify the models and
highlight important aspects. The second example shows how we can
use role modeling to describe how several objects play their roles in
order to achieve some purpose.

An Internet example2.3.1

Divide and conquer Systems consisting of relatively few objects may often be described in
a single role model, but many practical object structures will be too
large and complex to be comprehended as a single model. We then
identify different concerns, which are covered by the system, and
analyze each of them separately. We divide the whole into
manageable parts and conquer each part with an appropriate model. If
the whole is simply the sum of its parts, we have also conquered the
whole. If not, we may use OOram synthesis to create derived models
which describe the dependencies. OOram synthesis will be the theme
of chapter 3. For now, we will continue our studies of the use of
isolated role models.

29 March 1995 23:052.3 Modeling with roles

©Taskon 1992. Page 76 Role Modeling

The Internet as a
huge structure of

objects

We will use the Internet as an example of a large object structure. The
Internet connects several million computers. Its is typical of the
distributed nature of Internet that nobody knows the exact number. As
seen from the Internet, the connected computers appear as objects:
they have identity, they are encapsulated, and only interact by sending
messages to each other.

The Internet is used for a wide variety of purposes. Some are well
known and some are only known within their user community. We
believe it is an early example of the information systems of the future;
it is not a designed system, but has evolved as many different people
have made their contributions. The whole is not known to anybody,
and would exceed our mental capacity even if we had access to all
relevant information. We can, however, select any activities we may
be interested in; identify the objects that take part in the activities;
idealize them into roles; and describe the activities to any desired
detail.

Concern: The FTP As an example, let us select the wellknown network File Transfer
Program, FTP. The interaction between the FTP participants is based
on the Arpanet standard File Transfer Protocol, which allows the
transfer of files between two remote computers. Two objects are
involved as indicated in the top model of figure 2.17. The first takes
the initiative and controls the activities; this object plays the Client
role. The other is a provider of services; this object plays the Server
role. Some objects (computers) are only able to play the Client role;
other objects are only able to play the Server role; and some objects
are able to play both roles. The abstraction from object to role permits
us to ignore these complications and create a "pure" model where
each role has a single purpose. The role model is illustrated in figure
2.17 (a).

2.3 Modeling with roles29 March 1995 23:05

Role Modeling ©Taskon 1992. Page 77

Given the Client and Server roles, we can now study how they
perform various activities. In one activity, the Client identifies itself
by name and password to the Server so that the Server can establish
the appropriate privileges. Another activity permits the Client to
navigate in the Server's file directory hierarchy. A third activity
permits the Client to specify operations on the "current file directory".

The FTP standards for these activities do not interest us here. The
point is that we can describe each activity as an interaction process
involving the Client and Server roles. Each activity will start with a
stimulus message from the Client, and will result in a response in the
form of appropriate changes in object attributes or some final
termination message. A change directory stimulus message results in
a change in the Server's currentDirectory attribute. A list directory
stimulus message results in a termination message to the Client that
contains the list.

Client-Server
activities

Figure 2.17 Two
independent role

models describe the
FTP file transfer

service

dst src

rsp int

Source Destination

Client Server (a) FTP Client-Server model

(b) Data transfer model

The main purpose of FTP is to transfer files between the connected
parties. Files may be transferred from the Client to the Server or from
the Server to the Client. We combine these two cases by defining file
transfer as being the transfer of a file from an object playing the
Source role to an object playing the Destination role. This is
illustrated in figure 2.17 (b).

We normally want to be able to transfer files in both directions; the
Client and Server objects then need to be able to play both the Source
and the Destination roles. We could alternatively define a system of
objects that only permitted file transfer in one direction; a Client
which could only play the role of Destination would be more secure
than the general Client, since it would be unable to export files to
other destinations.

The initiative for a file transfer is taken by the object playing the
Client role, and the choice of roles actually played at any given time
by that object depends on the direction of the desired transfer.

Concern:
Transferring a file

29 March 1995 23:052.3 Modeling with roles

©Taskon 1992. Page 78 Role Modeling

The transfer of a file causes a fairly complex interaction between
Source and Destination. The Source has to split the file into
transferable chunks that have to be reassembled in correct sequence in
the Destination. The Source has to add redundant data to the chunks
so that the Destination can check that the chunk has been transferred
correctly. Protocols have to be established between Source and
Destination to control the flow of data and to ensure retransmission of
incorrect chunks. All this can be studied in the role model
independently of which objects play the roles of Client and Server;
and which objects play the roles of Source and Destination.

File transfer activity
fairly complex

The above example illustrates two points about role modeling. The
first is that we need to see the involved objects if we want to describe
how a structure of objects performs its duties. The second is that
separation of concern is a powerful way of separating a complex
situation into simple components. We could have created an object
model with two objects: one playing the roles of Client, Source and
Destination, the other playing the roles of Server, Source and
Destination. This derived model would be more complex and harder
to understand than the two simple models of figure 2.17, and the
combination of the two essentially separate functionalities would not
in any way add to the value of the model.

Separation of
concern a powerful

simplifying device

An example model with four roles2.3.2

The second example we have chosen is that a company wants to buy
something from a supplier. The company pays for the goods by
instructing its bank to transfer the amount to the supplier's bank and
to debit the supplier's account. The example is designed to illustrate
that it may be convenient and even essential to study several objects
together in order to give an adequate description of an activity.

Concern: The
purchase of goods

Four roles The problem is simply modeled by four roles as shown in figure 2.18.
The company is represented by the Company role, the supplier by the
Supplier role, and the two banks by the PayerBank and the
PayeeBank.

2.3 Modeling with roles29 March 1995 23:05

Role Modeling ©Taskon 1992. Page 79

The simple model of figure 2.18 suggests that four objects could be
involved, each playing one of the roles. But this is only one of the
possible mappings between roles and objects. The company and the
supplier might use the same bank; the PayerBank and PayeeBank
roles would then be played by the same object. Or the company could
actually be a bank; the Company and PayerBank would then be
played by the same object. Many other mappings are conceivable.
The role model permits us to concentrate on the essence of the
phenomenon, disregarding the mapping to actual objects.

Alternative mapping
between roles and

objects

pay

pay

ban cli

cust

sup

cliSupplier

An object which
desires to supply
goods.

Company

An object which
desires to
purchase goods.

Payer
Bank

The bank of the
Company.

Payee
Bank

The bank of the
Supplier.

Figure 2.18 The
collaborating roles

The Scenario of figure 2.19 shows a typical message sequence for a
purchasing activity.

OOram technology
supports many views

Figure 2.19 A
Scenario shows a

typical message
sequence

Company Supplier Payer
Bank

Payee
Bank

requestBid

bid

order

goodsAndInvoice

paymentOrder

transferOrder

debitAdvice

29 March 1995 23:052.3 Modeling with roles

©Taskon 1992. Page 80 Role Modeling

Interfaces show
messages sent

A third view is shown in figure 2.20; it is a collaboration view
annotated with the messages interfaces for each of the ports. The
Company role can receive two messages from the Supplier role: bid
and goodsAndInvoice. There are no messages sent from the Supplier
role to the PayeeBank in this model. The Supplier role is therefore
marked as not knowing the PayeeBank. (This is in the context of this
role model only, since the Supplier object is very likely to know its
bank!)

The Company role can send the messages requestBid and order to the
Supplier. It can also send the message paymentOrder to the
PayerBank. The PayerBank can send transactionReceipt-messages to
the Company and the transferOrder-messages to the PayeeBank.
Finally, the PayeeBank can send transferReceipt-messages to the
PayerBank and debitAdvice-messages to the Supplier.

Notice the fine-grained control of message interaction provided by the
role model. The PayerBank understands the paymentOrder message,
but it can only be legally sent from an object that plays the Company
role.

Figure 2.20
Interfaces specify

messages that may
be sent from a role to

a collaborator
cli

ban cli

pay

paycust

sup

Company<Supplier
bid
goodsAndInvoice

Company<PayerBank
transactionReceipt

Supplier<Company
order
requestBid

Supplier

PayeeBank<PayerBank
transferOrder

PayerBank<PayeeBank
transferReceipt

PayerBank<Company
paymentOrder

Supplier<PayeeBank
debitAdvice

Company Payer
Bank

Payee
Bank

2.3 Modeling with roles29 March 1995 23:05

©Taskon 1992. Page 81Role Modeling

Many views give
expressive power to
the analyst/designer

Combined with the separation of concern exemplified in the previous
section, the appropriate selection of views gives the analyst powerful
means for reducing complex problems to a number of simple
descriptions.

The example also illustrates the advantages of roles having identity.
We can not only check that some supplier will be paid; we can
actually check that the supplier who delivered the goods is also the
supplier that ultimately gets paid.

29 March 1995 23:052.3 Modeling with roles

©Taskon 1992. Page 82 Role Modeling

The model creation process and its deliverables2.4

In a nutshell
Work processes have to be tailored to the task at hand and the people who are going
to do the work. Further, there is no work process that magically ensures a successful
modeling operation; quality results can only be produced by quality people. The
deliverables from a work process are more concrete, and we suggest a list of
deliverables that can be taken as a starting point.

Finding the objects is considered a hard problem for the novices, and fairly straight
forward for the experienced analysts. We suggest a few hints to help finding the
objects, but suggest that the most important source is to be found in reusable
components. Such components package accumulated expert experience and provide
excellent starting points for both novices and experts.

Work processes
tailored to tasks

Whenever we want to achieve something, we perform a number of
operations that lead from where we are to where we want to be. The
sequence of operations is a work process where the operations are
seen as process steps. There is no single work process that covers all
needs. We have to tailor our own process based on where we are,
where we want to go, and the available technology.

OOram role model analysis is appropriate for a great variety of
different work processes. Each process will apply the views that are
most informative. It is unlikely that any process will ever need all of
them.

It is important to note that these views are artifacts of the modeling
process. We choose to view the phenomena under study in certain
ways. Our choices can be neither right nor wrong, but they may be
more or less suitable for our purpose.

The sequence of steps we suggest in the following are therefore to be
construed more as a suggested documentation structure than as a
default work process. You may want to develop your own preferred
sequence of steps, taking the steps proposed here as a starting point.

The model creation process introduced in chapter 1.3 consisted of the
following six steps:

1. Determine the Area of Concern. Write a free form (prose)
description of the issue under consideration.

Understand the problem and identify the nature of the objects.
For the given area of concern, identify the nature of the objects
that will be involved.

2.

29 March 1995 23:05 2.4 The model creation process and its deliverables

Role Modeling ©Taskon 1992. Page 83

3. Determine Environment roles and Stimulus/Response. Describe
the messages that are sent from environment roles and cause an
activity in the described system. Also describe the response,
which is the overall effect of the activity.

Identify and understand the roles. Separate and idealize the tasks
and responsibilities of the objects and describe them as the roles
they play in the system.

4.

Determine the message sequences. Create scenarios showing the
activities performed by the roles in response to the stimulus
messages.

5.

Determine the collaboration structure. Show the roles in a
structure of collaborating objects.

6.

Determine Interfaces. Determine the messages that each role may
send to each of its collaborators.

7.

Determine the role behavior. Describe interesting methods
triggered by messages for the key roles.

8.

These steps provide you with an object-oriented model of the
phenomenon under study. It provides a static description defining the
roles, their characteristics and collaboration structure, and it provides
a dynamic description defining the message processes.

The novice analysts frequently struggles with finding the objects or
roles. This is a symptom of a deeper problem, namely that the analyst
has not yet internalized the object paradigm.

There is, unfortunately, no known procedure which will always yield
suitable objects or roles up front. But it may be a comfort to know that
once you have mastered the object paradigm, your intuition will
usually provide a good initial choice. In a contribution to the Internet,
Ward Cunningham suggests that most objects in any big system are
obvious and easily found by examining the vocabulary of anyone
familiar with the domain. Most remaining objects can be found by
pooling the wisdom and experience of interested parties. A possible
technique is to use the CRC cards as described below. Finally
according to Cunningham, there are a few objects that can only be
found by living and working with the system over an extended period
of time. These few objects are often crucial and make accumulated
complexity melt away.

Finding the objects

2.4 The model creation process and its deliverables 29 March 1995 23:05

Role Modeling©Taskon 1992. Page 84

It is thus easy to find most of the objects up front, but there is really
only one way to find all of them: study a similar system that has had
the benefit of a long history of evolution and improvements. This is
one of the most compelling reasons for applying reusable patterns and
frameworks; they provide mature solutions to known problems.

Below, we endeavor to give a few general hints to help the novice
find the initial objects.

Objects found by
combination of

personal creativity
and study of existing

systems

What is a good object?

A good object has a clearly defined role in the overall structure of
objects. (An object cannot be good per se, only in the context of
the purpose and structure of the role model!)

1.

2. A good structure of objects represents the area of concern
described by the model in an intuitively pleasing manner

Where to look for objects:

1. Study the problem domain

¤ Consider general domain aspects
Consider users' expressed needs¤

¤ Consider any other available source

2. Study available text

Nouns are candidates¤

Study available drawings and overview diagrams3.

¤ Entities are candidates

What is often a good object?

1. A model of a part of the real world.

A thing to which thought or action is directed.2.

3. Something which would be described as an entity in an entity-
relation model.

4. Something which has identity and exists over time.

What is often not an object?

A value. A value is something without interesting internal
structure or behavior in the context of the role model. A value
may then be represented as a role attribute

1.

29 March 1995 23:05 2.4 The model creation process and its deliverables

Role Modeling ©Taskon 1992. Page 85

2. A process. If the process can be adequately represented as a
sequence of messages flowing in the model, it is modeled as role
model activity and described by an appropriate dynamic view
such as a Scenario or a state diagram.

3. Time. Time is usually implicit in the model. (But a Timer is
concrete and may be a good object.)

A good technique for finding objects and roles is to use Class-
Responsibility-Collaborator cards (CRC-cards) as the focus points of
group discussions. The CRC cards are adapted from Cunningham and
Beck. See for example [Wirfs-Brock 90].

CRC cards support
working in groups

The CRC cards are index cards, each card is divided into three areas
as shown in figure 2.21. One card is created for each role, and the
group discusses how the roles interact to achieve the response
specified for each stimulus. Individual group members should claim
ownership of one or more roles (cards). This makes it much simpler to
check that each role has the necessary information to take
responsibility for its own part of the activities:

1. CRC cards support the decomposition part of the design and help
assign responsibility to the constituent roles.

2. Objects collaborate through intention-revealing message sends.

An attractive characteristic of index cards is that they are
concrete: they can be owned, pointed at and moved about.

3.

The technique gives the group the impression (illusion) of
"completeness" when they are done.

4.

Name:

Responsibility:

Collaborators:

Authorizer

Responsible for
relevance of trip
and for available
budget

Traveler
Bookkeeper

Figure 2.21 CRC
example card for the

Authorizer role.

Notice that when a group works with CRC cards, they study the roles
and the messages simultaneously. The technique therefore tends to be
effective both for finding "good roles", and for finding simple, but

29 March 1995 23:052.4 The model creation process and its deliverables

©Taskon 1992. Page 86 Role Modeling

adequate, model behavior by enacting the Scenarios (even if the
dynamics of messages passing is not recorded on the cards). The CRC
technique supports role modeling directly, since both focus on object
responsibility and object interaction.

A structure of roles
is similar to a work

organization.

The creation of a structure of collaborating roles is, in many ways,
similar to creating an organization of people collaborating in
performing some common task.

We have earlier mentioned Max Weber's dream of a rational work
organization. The following literal excerpts from [Etzioni 64] form a
beautiful description of this "perfect bureaucracy": logical, rational,
extremely efficient, and extremely rigid. Applied to the computer
system, it is perfect. Applied to the human organization, it can
become a nightmare (my comments in parenthesis):

Max Weber's
'rational' work

organization was
object-oriented

Emphasis of structure. "A continuous organization of official
functions bound by rules." Rational organization is the antithesis
of ad hoc, temporary, unstable relations; hence the stress on
continuity. Rules save effort by obviating the need for deriving a
new solution for every problem and case; they facilitate
standardization and equality in the treatment of many cases. (In
the travel expense case, we focus on the actors and their formal
responsibilities. We ignore all informal contacts and interactions.)

1.

2. A specific sphere of competence. "This involves (a) a sphere of
obligations to perform functions which have been marked off as
part of a systematic division of labor; (b) the provision of the
incumbent with the necessary authority to carry out these
functions; and (c) that the necessary means of compulsion are
clearly defined and their use is subject to definite conditions."
Thus a systematic division of labor, rights and power is essential
for rational organization. Not only must each participant know
his job and have the means to carry it out, which includes first of
all the ability to command others, but he also must know the
limits of his job, rights, and power so as not to overstep the
boundaries between his role and those of others and thus
undermine the whole structure. (In the travel expense case, we
focus on the formal object attributes and actions. We ignore all
"soft" aspects such as the personal characteristics, motivations,
benefits and social aspects.)

29 March 1995 23:05 2.4 The model creation process and its deliverables

Role Modeling ©Taskon 1992. Page 87

Hierarchy. "The organization of offices follows the principle of
hierarchy; that is, each lower office is under the control and
supervision of a higher one." In this way, no office is left
uncontrolled. Compliance cannot be left to chance; it has to be
systematically checked and reinforced. (Well, we are not quite so
rigid, but we carefully control the collaborators of an object and
the messages it may send to them.)

3.

Norms of conduct. "The rules which regulate the conduct of an
office may be technical rules or norms. In both cases, if their
application is to be fully rational, specialized training is
necessary. It is thus normally true that only a person who has
demonstrated an adequate technical training is qualified to be a
member of the administrative staff...." (This is strictly true, the
system is completely defined by the program.)

4.

Independence. In order to enhance the organizational freedom,
the resources of the organization have to be free of any outside
control and the positions cannot be monopolized by any
incumbent. They have to be free to be allocated and re-allocated
according to the needs of the organization. "A complete absence
of appropriation of his official positions by the incumbent" is
required. (This is the principle of object encapsulation. An object
should only influence other objects through their official
interfaces.)

5.

Documentation. "Administrative acts, decisions, and rules are
formulated and recorded in writing...." Most observers might
view this requirement as less essential or basic to rational
organization than the preceding ones, and many will point to the
irrationality of keeping excessive records, files, and the like, often
referred to as `red tape'. Weber, however, stressed the need to
maintain a systematic interpretation of norms and enforcement of
rules, which cannot be maintained through oral communication.
(A trivial fulfillment of this rule is through the program source
code. We read the rule to mean that we also want higher level
documentation describing goals, specifications, architecture and
design.)

6.

Weber's rules for a 'rational' organization and Etzioni's comments
are almost uncannily appropriate for the design of object-oriented
systems. Admittedly, we cannot construct a complete system as a rigid
hierarchy of objects. But if we consider individual activities, each of
these activities can be designed as a distinct role model according to
rules which are very similar to the rules formulated by Weber.

29 March 1995 23:052.4 The model creation process and its deliverables

Role Modeling©Taskon 1992. Page 88

We propose the following OOram rules for rational object-oriented
design:

Emphasis on structure. The relations between participating roles
in a rational design of a role model are bound by a specification
that is part of the design, not just the implementation.

1.

A specific sphere of competence. For each role, this involves (a)
the duty to react appropriately to messages received, which have
been marked off as part of the systematic division of
responsibility; (b) the right to delegate work to collaborators by
sending certain messages to them at certain times as clearly
described in the design, and the duty not to send any other
messages.

2.

3. Hierarchy. In every role model, a role is under the control and
supervision of a higher one. In this way, no role is left
uncontrolled. Specifically, this means creating the role,
initializing it, connecting it with its collaborators in the overall
structure, and removing it at the appropriate time. (This is the
weakest rule and not always relevant.)

Norms of conduct. For a given role model, the behavior of a role
is regulated by rules or norms. By rules, we mean precise
statements about the behavior. By norms, we mean general
guidelines. The distinction relates to the responsibilities of the
designer versus the implementor. Rules put more constraints on
the implementor than do norms.

4.

5. Independence. An object may play a role in several role models.
The collaborators of an object in the context of one role model do
not know about its other roles, and thus cannot infringe on its
behavior in the other contexts.

Documentation. Each role model must be fully documented on
the design level. It is particularly tempting to let the norms of
conduct for a role model be an informal part of the programming
team's culture -- "the way we do it here". This is guaranteed to
eventually cause you trouble. Most real systems are so complex
that we can only trust their correctness if they are constructed
from well-documented models, each of which "is so simple that it
is obviously correct."

6.

7. Reusability. While this rule has no counterpart in Weber's rules, it
certainly has its counterpart in real organizations. We
continuously search for generally useful role models, and we
reuse an existing role model whenever appropriate. In some cases,
we can also reuse the code; in other cases, just the pattern. Either
way, reuse improves system reliability and reduces the work
involved in understanding programs developed by other people.

2.4 The model creation process and its deliverables29 March 1995 23:05

©Taskon 1992. Page 89Role Modeling

2.5 Basic OOram role modeling concepts and notation

In a nutshell
OOram role model analysis helps the developer master object structures of any size.
The object structure may exist. The purpose is then to understand it. Alternatively,
the purpose may be to design a new object structure. The objects are then imaginary.
In both cases, the OOram approach is to identify different concerns which are
represented in the object structure and to create idealized object models, called role
models, which focus on the selected area of concern and ignores everything else.

The essence of role modeling is that we always consider objects in context. An
isolated object cannot do anything because a message must have both a sender and a
receiver. It is only when we consider structures of collaborating objects that we can
study cause and effect; and that we can reason about the suitability and correctness
of the objects and their structure.

2.5.1 The Object

We have defined objects as being encapsulated. This is illustrated in
figure 2.22. It means that we can observe some of its properties when
we observe it from outside the object; while other properties can only
be seen from inside.

External and internal
observation

Messages
Attributes

Encapsulation hides
inside properties

Methods
Instance variables
State

Object

Figure 2.22 External
and internal object

properties

2.5 Basic OOram role modeling concepts and notation 29 March 1995 23:05

©Taskon 1992. Page 90 Role Modeling

External object properties

Observed from the outside, objects appear as indivisible atoms. Each
object has its own unique identity, and is characterized by its behavior
and attributes.

The behavior of the object is characterized by the messages it can
receive, and also by the messages it can send to other objects. Many
different message semantics have been proposed. Our selection is
adopted from the Object Management Group in [CORBA 91]:

Messages

Synchronous. Only one object can be active at any time, and the
sender's actions continue only after the receiver's actions are
completed. The receiver may return a result to the sender.

1.

2. Synchronous deferred. The sender object must be ready to send a
message and the receiver object must be ready to receive it before
it can be transferred. The sender and receiver objects are
synchronized at the time of message transfer. The sender's
actions continue after the receiver has accepted the message. A
return value could confirm the receipt of the message.

3. Asynchronous. The sender can transmit a message at any time,
and the sender's actions continue immediately. The receiver
manages a queue of incoming messages, and may need to wait for
an acceptable message to arrive in the input queue. A return value
to the sender could confirm that the message has been put into the
receiver's input queue.

An Interface is a set
of messages

The number of different messages understood by an object may be
very large, and we find it convenient to group them: an OOram
interface is a named set of messages, or more precisely: message
types. This use of the term conforms with [CORBA 91], but some
professionals use the term interface to denote signals going in both
directions, i.e., both messages sent and received. The OOram
technology uses two interfaces to describe this: one for messages sent
and another for messages received.

A role model consisting of at least two roles is needed to describe the
object interaction in space and time.

2.5 Basic OOram role modeling concepts and notation29 March 1995 23:05

Role Modeling ©Taskon 1992. Page 91

An object may store information. To the outside observer, this
information is described by the object's named attributes. Attributes
are virtual in the sense that they do not say anything about how the
object represents the information internally in the instance variables
described below.

Attributes

Attributes are only visible to the outside observer through messages
whose behavior depend on the current value of one or more attributes.
(Usually, but not always, through a value returned from the receiving
object.)

Internal object properties

As seen from the inside, the object realization is described by its
methods, its instance variables and its state.

A method defines the action taken by an object when receiving a
message. The method may cause the object to send messages to one or
more of its collaborator objects, it can create new objects, and it may
have the side effect of causing a change to one or more of the object's
instance variables.

Methods

The distinction between message and method is essential because it
permits different objects to handle the same message with different
methods; each object can "do the right thing" when they receive a
message. This feature of object orientation is variously called
polymorphism and late binding in the literature.

The fancy names are unimportant, the ability to hide the details of an
operation inside an object is essential. For example, different
graphical objects can respond to a display-command according to
their individual characteristics; different bank account objects can
compute accumulated interest according to the nature of the account;
different TravelAuthorizer persons can follow different rules when
they determine their response to a travel permission request.

Instance variables The instance variables represent attribute information. An instance
variable may hold the value of an attribute directly, or the object may
have a method that enables it to compute the value of an attribute
from the values of one or more instance variables.

2.5 Basic OOram role modeling concepts and notation 29 March 1995 23:05

Role Modeling©Taskon 1992. Page 92

The distinction between attribute and instance variable is essential
because it permits the analyst to think in terms of information without
considering its representation. The attribute could for example be a
person's age, the instance variable could hold the person's birth date
so that the object could compute the age whenever needed. The object
could even delegate the responsibility for maintaining the information
to some other object; an instance variable could hold a reference to the
other object and a method could know how to retrieve the required
information from it. This possibility will be discussed in depth in
section 3.2.1: Aggregation: Linking models on different levels of
abstraction.

The internal conditions of an object which affect the object's behavior
are abstracted into the object's possible states, where a state
determines which messages the object is ready to receive and how it
will process them. When the object receives a message, it performs an
action depending on the current state, and enters a next state which
may be different from the current state.

State

If the actions taken when the object receives a message are different
in different states, the corresponding method will be a composite with
different action branches for the different states.

Some practitioners use the terms instance variable and state
interchangeably. We find it useful to distinguish between these two
terms in order to cater to the relatively few situations where it is
necessary to study objects with state dependent behavior. More details
in section 6.3: State Diagram view.

The Role Model2.5.2

OOram analysis is defined as the description of some interesting
phenomenon as a system of interacting objects. In data processing,
analysis is commonly used to denote the study of what is visible to
the user community, while design is used to denote the description of
the internal construction of a new system. OOram analysis covers
both these interpretations; we analyze the world as perceived by the
user community, and we analyze the system as perceived by its
creators. The antonym is synthesis, the composition of a whole from
its constituent of parts.

OOram analysis

2.5 Basic OOram role modeling concepts and notation29 March 1995 23:05

©Taskon 1992. Page 93Role Modeling

The OOram role model supports separation of concern. A large and
complex phenomenon, which we think of as a large and complex
structure of interacting objects, may be split into a number of
subphenomena. Each subphenomenon is described by its own role
model.

Separation of
concern

A role is an idealized object in the sense that it is an archetypical
example of the object within the pattern, and that the role's
characteristics is the subset of the object's characteristics that are of
interest within the limited scope of the subphenomenon.

An object model is a structure of objects representing an aspect of a
phenomenon. A role model is a structure of roles representing an
aspect of an object model; it is an object-oriented model of an object
structure. In simple cases, the role model is identical to the object
model and there is exactly one role for each object.

Definitions

A role model is a part of a structure of objects that we choose to
regard as a whole, separated from the rest of the structure during
some period of consideration. It is a whole that we choose to consider
as a collection of roles; each role being characterized by its
attributes and by the messages it may receive from and send to other
roles.

For a given system of roles, the environment is the set of all roles
outside the system that send messages to the objects of the system, and
also those roles outside the system that receive messages from the
roles of the system.

Roles have all the properties of objects: They have identity and
attributes; they are encapsulated; they interact by message-passing;
and their actions are defined by their methods. Inheritance is
supported by a process called synthesis that will described in chapter
3: Role model synthesis.

There is a many-to-many relationship between objects and roles: an
object may play several different roles from the same or different role
models; and a role may be played by several different objects.

We may observe the system of interacting roles from different
observation points. OOram supports three points of observation,
called perspectives:

A role model may be
observed in different

perspectives

29 March 1995 23:052.5 Basic OOram role modeling concepts and notation

Role Modeling©Taskon 1992. Page 94

Environment perspective, where the observer is placed in the
system environment so that she can observe the system's
interaction with its environment roles.

1.

External perspective, where the observer is placed between the
roles so that she can observe the messages flowing between them
and indirectly deduce the role attributes.

2.

Internal perspective, where the observer is placed inside a role so
that she can observe its implementation.

3.

When thinking about some interesting phenomenon, the OOram
analyst creates an object model of the phenomenon in her head. This
model can only be captured on paper or a computer screen as one or
more views -- these views are different presentations of an underlying
OOram model. In the case of a paper report, the underlying model is
abstract in the sense that it has no explicit representation. In the case
of a computer-based system, the underlying model can be represented
in an object database. See figure 2.23.

The analyst can only
observe views of the

underlying model

Figure 2.23 The
analyst can only see

and manipulate
views of an

underlying model

OOram
Model

Mental object model

view

view

Systems of interacting objects may be studied in different views, with
each view expressing certain aspects of the system of roles while
suppressing others. OOram analysis supports ten different views on a
role model:

Ten different views
on the same model

Area of Concern view, which is a textual description of the
phenomenon modeled by the role model.

1.

2. Stimulus-response view, showing how environment roles may
cause some activity in the system of roles by sending a stimulus
message, and the overall effect of the activity, called the response
.

3. Role List view, showing a list of all roles with their explanations
and attributes.

4. Semantic view, showing how we attach meaning to the roles and
the relationships between them.

29 March 1995 23:05 2.5 Basic OOram role modeling concepts and notation

©Taskon 1992. Page 95Role Modeling

Collaboration view, showing the pattern of roles and the message
paths between them.

5.

Interface view, defining all messages that may be sent along each
of the message paths.

6.

7. Scenario view, showing example time sequences of messages
flowing between the roles.

8. Process view, showing how data flows between the roles and the
actions taken by the roles to process the data.

9. State Diagram view. There may be one state diagram for each
role. It describes the possible states of the role, the signals that are
acceptable in each state, the action taken as a result of each signal,
and the next state attained after the action is completed. The only
kind of signal possible in our model is the receipt of a message.

Method Specification view. When an object receives a message,
the message triggers the execution of a method within the object.
The method specification view describes the messages to be sent
from the method with the corresponding receiving roles. It may
also include a more or less formal description of the procedure.

10.

The views are only meaningful in certain perspectives as shown in
table 2.1. The basic views are described in the following; the views
marked (*) are described in chapter 6.

Table 2.1
Applicability of the

views in the different
perspectives

 Environment perspective External perspective Internal perspective

Area of concern view Applicable

Stimulus-response view Applicable

Role List view (*) Applicable Applicable

Semantic view (*) Applicable

Collaboration view Applicable

Scenario view Applicable Applicable

Interface view Applicable Applicable

Process view (*) Applicable Applicable Applicable

State Diagram view (*) Applicable

Method Specification view Applicable

Important notes:

The views are different presentations of one and the same model
for the purposes of documentation and user interaction.

1.

A subset of the views should be selected to suit a particular
modeling process. It is unlikely that anybody will ever need them
all.

2.

2.5 Basic OOram role modeling concepts and notation 29 March 1995 23:05

©Taskon 1992. Page 96 Role Modeling

The views are not orthogonal. Their mutual consistency should
preferably be enforced automatically, but it is also possible to do
so by manual means.

3.

Six of the views are described in the following subsections with a
notation appropriate for documentation; the rest are described in
chapter 6. The OOram language notation given in Appendix A is
more formal. It is harder to read for a human, but more appropriate for
automatic information interchange between OOram systems.

Area of Concern view

The area of concern view (figure 2.24)is a free text describing the
phenomenon modeled by the role model. The text should indicate the
purpose of the model and be sufficiently precise to enable a reader to
determine which phenomena are covered by the model, and which
phenomena are not covered. The description must be precise because
it will be used to determine which objects belong to the system and
which objects are outside it.

Area of Concern
view describes the

model as a whole

Figure 2.24 Area of
Concern example

This role model describes how an enterprise purchases goods and pays for them.

Stimulus-response view

A stimulus is a
message that triggers

an activity

Stimuli are defined as messages being sent spontaneously from an
environment role to one of the system roles. The sequence of actions
taken by the system is called an activity. The response is one or more
messages sent from the system to one or more environment roles, or
some other changes that are described as a free text such as changes to
object structure or attributes. The stimulus-response relationships are
shown in a table as shown in figure 2.25; an example is shown in
figure 2.26.

Figure 2.25
Graphical notation is
in the form of a table

Stimulus message Response messages Comments

environment role
 >> message name

{environment role
 << message name}...

Free text description
of other results

29 March 1995 23:05 2.5 Basic OOram role modeling concepts and notation

©Taskon 1992. Page 97Role Modeling

Figure 2.26
Stimulus-Response

example

Stimulus message Response message Comments

Enterprise
 >>requestBid

Vendor
 << creditAdvice

The enterprise has received
and paid for the desired goods

Alternative is to
show system as

virtual role

An alternative presentation of Stimulus-Response is to use a
collaboration view where all the system roles are shown as a single
virtual role. The view is annotated with the stimulus and response
messages.

Collaboration View

The Collaboration view shows the roles and the message paths
between them. Our notation is shown in figure 2.27 and illustrated in
figure 2.28.

A dashed super-ellipse denotes an
environment role.
Dashed circles and ellipses are alternatives.

A line denotes a message path
between collaborating roles.

A small double circle denotes a multiple port,
indicating that the adjacent role knows about
any number of collaborator roles, one of
which is shown in the view.

A small circle denotes a simple port,
indicating that the adjacent role knows about
exactly one collaborator.

A cross denotes that the adjacent role
does not know the collaborator.

<role name>

Comment or explanation.<comment>

A super-ellipse denotes a system role.
Circles and ellipses are alternatives.<role name>

Attribute names may be listed within
the role symbol.

<role name>

<attributes>

Figure 2.27
Collaboration view

notation

[Martin 87] recommends that data should be represented with square-
cornered rectangles, while activities should be drawn with round
corners. Roles (and objects) combine data and activities. We have,
therefore, searched for a shape that is neither round nor square to
represent them. A super-ellipse seems to satisfy our needs. Its shape is

29 March 1995 23:052.5 Basic OOram role modeling concepts and notation

Role Modeling©Taskon 1992. Page 98

shown in the figures. (FOOTNOTE: The formula of the super-ellipse
is (x/a)**4 + (y/b)**4 = 1. We recommend that you use circles or
ellipses if your tools do not support super-ellipses).

Figure 2.28
Collaboration view

illustration

Enterprise
knows exactly
one PayerBank.

PayeeBank is a system role.

ban cl

cus

ven

ban cl

bnk

bnk

This port points to any
number of collaborators,
of which Enterprise
is a typical example.

Enterprise is an environment
role because it sends a
stimulus message.

Vendor

SD

An object which
desires to supply
goods.

Enterprise Payer
Bank

Payee
Bank

Vendor is an environment role
because it receives a final message.

Role explanation

Role symbols may be decorated to indicate the nature of the object.
Figure 2.29 illustrates some possibilities, but the analyst is free to
define her own symbols.

Role symbols may be
decorated

Figure 2.29
Examples of

decorated role
symbols

A role representing a person

A role representing a service

A role representing a tool

A role representing a timer

29 March 1995 23:05 2.5 Basic OOram role modeling concepts and notation

©Taskon 1992. Page 99Role Modeling

Roles may arbitrarily be lumped into virtual roles for convenience. A
virtual role is a role that represents a cluster of objects rather than a
single object. Virtual roles are denoted by a super-ellipse with shadow
as shown in figure 2.30. Note that virtual roles are artifacts of the
presentation and do not exist in the underlying role model.

This is one of the OOram constructs for representing aggregation. In
the other constructs, there is an object which acts as an interface to a
cluster of other objects. (FOOTNOTE: Aggregation will be discussed
in more detail in chapter 3.2.1.)

Virtual roles are
arbitrary clusters of

concrete roles

Figure 2.30 Virtual
role notation Virtual

Role
A role symbol drawn with a shadow
denotes an virtual role

The external collaboration view shows the system as a single virtual
role together with its environment roles, as illustrated in figure 2.31.

External
Collaboration view

The virtual role represents
the system as seen in the
environment perspective.

cus

ven

ban

cl

ban

cl

These virtual ports represent
all message paths between the
environment role and the system
roles.

Vendor

SD

Enterprise

Payer
Bank

Figure 2.31 The
external

collaboration view
shows the system as
a single, virtual role

Virtual roles with their associated virtual ports must be resolved into
concrete roles. Figure 2.31 can, for example, be resolved into figure
2.28.

Scenario View

A Scenario is a description of a specific, time ordered sequence of
interactions between objects.

A Scenario
exemplifies a

message sequence

29 March 1995 23:052.5 Basic OOram role modeling concepts and notation

Role Modeling©Taskon 1992. Page 100

An interaction represents the event of transmitting a message from a
sender object to a receiver object. Both the sending and the receiving
objects must be represented as roles in the role model. Interactions
are assumed to be atomic and strictly ordered in time.

The Scenario thus shows an example sequence of messages as they
flow through the structure of objects. The first message must be one
of the role model's stimulus messages. Scenarios may be created in
the environment perspective and in the external perspective.

The OOram Scenario is adapted from the Message Sequence Chart
defined in the standard [CCITT Z120] with the modifications needed
to make it fit our object model. Our notation is shown in figure 2.32
and exemplified in 2.33.

In his book on object-oriented software engineering, Jacobson uses
the term actors to denote a system's environment objects [Jacobson
92]. An OOram stimulus message is an operation initiated by an actor,
and a use case is an OOram activity, i.e. a typical sequence of actions
in the system that results from the stimulus. We propose that
Scenarios are admirably suited to describe use cases. A single
Scenario, as described here, will be sufficient for simple use cases,
and the aggregation and synthesis operations discussed in chapter 3
enable us to dissect a use case down to any desired detail.

Figure 2.32 Scenario
Notation

Role

Synchronous deferred interaction

Asynchronous interaction

Time line, with
increasing time downwards

Interactions:

Synchronous interaction

Unspecified interaction

S

D

Actors:

Creation of receiver prior to interaction

Method return

A

C

The three different semantics of messages were defined on page 90??.

29 March 1995 23:05 2.5 Basic OOram role modeling concepts and notation

Role Modeling ©Taskon 1992. Page 101

Figure 2.33 Scenario
Illustration

Enterprise Vendor

Fsm

Payer
Bank

Payee
Bank

requestBid

bid

order

goodsAndInvoice

paymentOrder

transferOrder

creditAdvice

The first interaction
is by definition a
stimulus

Interaction

Time line

Message name with or without actual parameters

System roleEnvironment role

Interface view

An interface view defines a set of messages that may be sent from one
role to another. Interfaces are usually specified textually, but may also
be shown in an annotation in the collaboration view shown in figure
2.34.

Interfaces define
messages that may

be sent

A rounded rectangle denotes an interface.
A dashed line associates the symbol with a port.
<Interface name> is the name of an interface or a port.
<Message list> is either a list of messages or a list of interface names.

<Interface name>

<Message list>

Figure 2.34
Graphical interface

notation

ban cl

ban cl

cus

ven bnk

bnk

Enterprise<Vendor
bid
goodsAndInvoice

Vendor<Enterprise
bidRejected
order
requestBid

An interface named 'Vendor<Enterprise'
("Vendor-from-Enterprise")
defines the messages that may be
sent to Vendor from Enterprise.

Vendor

SD

Enterprise Payer
Bank

Payee
Bank

Figure 2.35
Graphical interface

illustration

29 March 1995 23:052.5 Basic OOram role modeling concepts and notation

Role Modeling©Taskon 1992. Page 102

We find that we can only use the graphical form of figure 2.35 in
simple cases such as in very high-level overviews, trade show
demonstrations and tutorials. Real world models are simply too
complex for the graphical presentation to fit on a computer screen or a
sheet of paper, and we prefer a textual form. As with the role list
view, the textual form of the interface view may be written informally
or in the formal OOram language. The full language syntax is
discussed in appendix A, we give a simple example of the formal
textual notation in figure 2.36 and an informal form in figure 2.37.

Textual form more
useful

A comment is associated with every message definition. Use it to
describe the functionality of each message as clearly as possible.
Focus on the intent of the message without saying how the receiver is
to perform the operation. Try to keep the interfaces lean and powerful.
Look out for nearly identical messages and try to merge them.

Figure 2.36 Textual
specification of

interfaces in the
OOram language

interface 'Vendor<Enterprise'
message synch 'requestBid'

explanation "Request bid for delivery of specified goods."
message synch 'order'

explanation "Order goods"
message synch 'bidRejected'

explanation "Reject bid"
interface 'Enterprise<Vendor'

message synch 'bid'
explanation "Submitting bid"

message synch 'goodsAndInvoice'
explanation "Sending goods together with invoice"

interface 'PayerBank<Enterprise'
message synch 'paymentOrder'

explanation "Order to transfer money"
interface 'Enterprise<PayerBank'

message synch 'transactionReceipt'
explanation "Acknowledging order to transfer money"

interface 'PayeeBank<PayerBank'
message synch 'transferOrder'

explanation "Order to transfer money"
interface 'PayerBank<PayeeBank'

message synch 'transferReceipt'
explanation "Acknowledging order to transfer money"

interface 'Vendor<PayeeBank'
message synch 'creditAdvice'

explanation "Advising that money has been received on behalf of vendor"

29 March 1995 23:05 2.5 Basic OOram role modeling concepts and notation

Role Modeling ©Taskon 1992. Page 103

Figure 2.37 Informal
textual specification

of interfaces

interface 'Vendor<Enterprise'
'requestBid' "Request bid for delivery of specified goods."
'order' "Order goods"
'bidRejected' "Reject bid"

interface 'Enterprise<Vendor'
'bid' "Submitting bid"
'goodsAndInvoice' "Sending goods together with invoice"

interface 'PayerBank<Enterprise'
'paymentOrder' "Order to transfer money"

interface 'Enterprise<PayerBank'
'transactionReceipt' "Acknowledging order to transfer money"

interface 'PayeeBank<PayerBank'
'transferOrder' "Order to transfer money"

interface 'PayerBank<PayeeBank'
'transferReceipt' "Acknowledging order to transfer money"

interface 'Vendor<PayeeBank'
'creditAdvice' "Advising that money has been received on behalf of vendor"

The example is clearly from an early stage of the analysis process,
since the message parameters have not yet been specified.

Method Specification View

The Method Specification view is similar to a Scenario view. The
main difference is in the perspective; the scenarios observes the
message flow from inter-object space, and shows a specific sequence
of message transmissions. The method Specification view observes
the processing of a message from within a specific role. It shows the
message reception, the method which it triggers, and the messages
sent from that method.

The semantics and notation should be clear from figure 2.38.

Enterprise Payer
Bank

goodsAndInvoice

<Store goods>
<Prepare payment>

paymentOrder

Message
receiver role

Message
sent from
methodMethod return

Method pseudocode
or

executable code

Message that
triggers method

Focus role
Figure 2.38 Example
Method Specification

view

29 March 1995 23:052.5 Basic OOram role modeling concepts and notation

Role Modeling©Taskon 1992. Page 104

Chapter 3
Role model synthesis

This chapter tells you how to achieve separation of concern while retaining control
with the overall system.

Divide and conquer is an important concept in all computing practices. If the
problem is too large and complex to be handled as a whole, divide it into a number
of manageable subproblems and model each of them as a role model. A role model
is complete in the sense that it represents its whole area of concern. We may use it
to analyze the described phenomenon to any desired detail.

Several base models may be combined into a composite, or derived, model by the
synthesis operation. The phenomenon covered by the derived model is some
combination of the phenomena described by the base models, and the derived model
is complete in the sense that it represents a whole phenomenon. Synthesis is called
safe when the static and dynamic correctness of the base models is retained in the
derived model, and unsafe if we only retain the static correctness and have to study
the derived model to determine its dynamic correctness.

Introduction to synthesis: DerivedTravelExpense (p.104)
The AirlineBooking (AB) model
Creating the DerivedTravelExpense (DTE) model

The synthesis operation (p. 112)
Aggregation: Linking models on different levels of abstraction
Safe and unsafe synthesis of the travel example models

Basic OOram concepts and notation for role model synthesis (p. 128)
The Inheritance and Role List views
Synthesis in Area of Concern view
Synthesis seen in the Environment and Stimulus-Response views
Synthesis seen in the Collaboration view
Synthesis seen in the Scenario view
Synthesis seen in the Interface view
Synthesis of method Specification view

29 March 1995 23:05

Role model synthesis ©Taskon 1992. Page 105

Some useful base models are illustrated in figure 3.1. Some useful base
models

Figure 3.1 Models on
all levels may be
synthesized from

simpler base models

User
base models

Derived
classes

System
design
model

System
requirements

models

System
user

model

Base
classes

Design
base models

System
requirements
base models

1. The System user model may be composed from more general
base models, which we may create as part of our current project
or which we may find in a library of reusable components.

2. The System requirements model may be composed from more
general base models, which we create as part of our current
project or which we find in a library of reusable components.

The System design model describes the system components and
their interaction. We would expect that a number of critical design
details may be found in a library of reusable design base models
(frameworks).

3.

4. The System implementation is a specialization of reusable base
classes expressed in library frameworks.

 29 March 1995 23:05

©Taskon 1992. Page 106 Role model synthesis

3.1 Introduction to synthesis: DerivedTravelExpense

In a nutshell
We illustrate the concept of synthesis through a concrete case. You will see that you
can master a complex phenomenon by dividing it into manageable subproblems,
and that you can retain control of the whole with synthesis. We would like to
challenge you to imagine how you could employ this technology to model your own
complex of computer-based systems.

The example we have chosen to illustrate the idea of synthesis is to
extend the TravelExpense enterprise (ENT) model with a model of
airline ticket booking. We laid a good foundation in section 2.3 when
we created a TravelExpense model. In this model, the purchasing of
airline tickets appeared as a small comment in the Method definition
of figure 2.16 on page 76??. We have several options when we now
want to expand the operation: <Traveler purchases the necessary
tickets>.

TravelExpense case
extension

Extend the TravelExpense model. We can extend the
TravelExpense model as shown in figure 3.2 (a) by adding
messages and methods that describe the airline booking
operations.

(a)

Synthesize a new AirlineBooking model into the TravelExpense
model. We can create a separate AirlineBooking model and
synthesize it into the TravelExpense model as shown in figure 3.2
(b). The TravelExpense model is then extended as in alternative
(a), but the AirlineBooking issues are also described in a separate
base model.

(b)

Create a new Derived TravelExpense model synthesized from a
new AirlineBooking and the old TravelExpense models. We can
create a new AirlineBooking model and then successively
synthesize it and the TravelExpense models into the derived
model as shown in figure 3.2 (c). We then retain both base
models, which can be studied and modified independently; but
also get the derived model, where we can study the
interdependencies between the base models.

(c)

29 March 1995 23:05 3.1 Introduction to synthesis: DerivedTravelExpense

Role model synthesis ©Taskon 1992. Page 107

Figure 3.2
Alternative synthesis

strategies
(a) Extend TravelExpense model.

(b) Synthesize AirlineBooking
into TravelExpense.

(c) Create a derived model
from AirlineBooking
and TravelExpense.

Derived
TravelExpense

Derived
TravelExpense

Extended
TravelExpense

TravelExpense

AirlineBooking

AirlineBooking

The first alternative is perfectly viable in this case since even the
extended model will be quite simple and manageable. We reject this
alternative here because it does not illustrate the issues we want to
discuss.

We choose
alternative 3

The second alternative is often selected when we want to base our
model on a general mechanism. This is not the case here, and we will
postpone the discussion of alternative 2 to chapter 5: Creating
reusable components.

The third alternative seems best suited to our purpose. We create two
base models, TravelExpense and AirlineBooking, and then combine
them into a DerivedTravelExpense model that gives an overview of
the total solution. We will develop an AirlineBooking model in
section 3.1.1, and then combine it with the existing TravelExpense
model in section 3.1.2.

This is often the best alternative. Consider that you have created a
model that gives a nice and clean solution to a certain problem. If you
then clutter your solution with all the details of error handling, you
have lost your nice and clean solution. It is much better to create a
separate model of your error handling mechanism, and use synthesis
to create a third model that combines the two while retaining the
original, clean models if needed.

29 March 1995 23:053.1 Introduction to synthesis: DerivedTravelExpense

©Taskon 1992. Page 108 Role model synthesis

3.1.1 The AirlineBooking (AB) model

Figure 3.3 AB Area
of concern

Airline tickets are ordered by a booking clerk and paid directly to the travel agent.
The traveler is to show the cost of the tickets on the expense report as an expense,
and as an advance since the tickets were not paid by the traveler.

There is one activity and thus one stimulus message: the ABTraveler
begins the activity by sending an orderTicket message. The normal
response, i.e., the final result of the activity, is that the traveler
receives the tickets and records the ticket costs for later use.

Stimulus Response Comments

ABTraveler >> orderTicket ticketWithCost >> ABTraveler Ticket cost retained in
attribute of ABTraveler role

Figure 3.4 AB
Stimulus-response

view

The essence of this model is the office procedure for handling tickets.
We describe it in the scenario of figure 3.5.

Figure 3.5 AB
AirlineBooking

Scenario

AB
Traveler

AB
Booking

Clerk

AB
Travel
Agent

AB
Book

Keeper

AB
Paymaster

orderTicket:

orderTicket:

ticket:

invoice

ticketWithCost:

authorizedInvoice:

paymentRequest:

payment:

The collaboration view may be deduced from the above scenario view
and is shown in figure 3.6.

Figure 3.6 AB
Collaboration view

ta

cust

sec tr

pm

bk

ven

AB
Traveler

AB
Booking

Clerk

AB
Travel
Agent

AB
Book

Keeper

AB
Paymaster

29 March 1995 23:05 3.1 Introduction to synthesis: DerivedTravelExpense

Role model synthesis ©Taskon 1992. Page 109

The precise definitions of interfaces and roles are important, but
boring. We hide them within our computer-based OOram tools where
the analyst can browse them as needed. The interfaces are shown
textually in figure 3.7.

Figure 3.7 AB
message interfaces

interface 'ABBookingClerk<ABTraveler'
message 'orderTicket:' explanation "Purchase ticket(s)."

param 'ticketSpecification' type 'String'
interface 'ABTraveler<ABBookingClerk'

message 'ticketWithCost:' explanation "Transmitting the ticket(s) together with
cost information."

param 'package' type 'String'
interface 'ABTravelAgent<ABBookingClerk'

message 'orderTicket:' explanation "Reserve specified passages and issue
ticket(s)."

param 'ticketSpecification' type 'String'
interface 'ABBookingClerk<ABTravelAgent'

message 'ticket:' explanation "Transmittal of ticket(s)."
param 'aTicket' type 'String'

message 'invoice:' explanation "Transmittal of invoice."
param 'anInvoice' type 'String'

interface 'ABBookKeeper<ABBookingClerk'
message 'authorizedInvoice:' explanation "Pay this authorized ticket invoice."

param 'anInvoice' type 'String'
interface 'ABPaymaster<ABBookKeeper'

message 'paymentRequest:' explanation "Pay this invoice."
param 'anInvoice' type 'String'

interface 'ABTravelAgent<ABPaymaster'
message 'payment:' explanation "Transmittal of payment."

param 'aCheque' type 'String'

Creating the DerivedTravelExpense (DTE) model3.1.2

We now compose a derived model from the AirlineBooking (AB) and
TravelExpense (TE) models by synthesis. We call the new model
DerivedTravelExpense (DTE).

Let objects play
multiple roles

The essence of synthesis is that we let objects play multiple roles. So
we first create an empty DerivedTravelExpense model, and then
successively synthesize the TravelExpense and the AirlineBooking
models into it. The area of concern for the derived model is given in
figure 3.8.

Figure 3.8 DTE Area
of concern

The area of concern is the procedure for travel management including the purchase
of tickets.

3.1 Introduction to synthesis: DerivedTravelExpense 29 March 1995 23:05

Role model synthesis©Taskon 1992. Page 110

Figure 3.9 DTE
Environment

collaboration view
pm venau trDTE

Traveler
DTE

Travel
Expense

DTE
Paymaster

The environment roles are still the Traveler who wants to travel, and
the Paymaster who must arrange for the remuneration of the Traveler.
The system itself is represented by a single, virtual role as shown in
figure 3.9.

As in the TravelExpense model, a travel activity starts with the
stimulus message travelPermissionRequest: from the Traveler (figure
3.10).

The ordering of a ticket is part of the TE-Traveler action. The
AirlineBooking stimulus orderTicket is thus part of his travel
preparations and has become an internal message in the derived
model.

Figure 3.10 DTE
Stimulus-response

Stimulus Response Comments

DTE-Traveler >> travelPermissionRequest: Reimbursement will be added to the next
salary payment.

The synthesis operation is illustrated as a synthesis collaboration
view in figure 3.11. The first step is to synthesize the TravelExpense
model into the derived DTE model. The bordered arrows denote the
synthesis relation; they go from the base roles of a base model to the
corresponding derived roles of the derived model.

The basic principle of OOram role modeling is that we consider an
object in the context of its collaborators; we describe both sender and
receiver of every message. The derived model must, therefore, at least
have a role corresponding to each of the roles of its base models.

The synthesis relation specifies that the derived role shall play the
base role: The derived role shall fulfill the base role responsibilities
and is granted its privileges: the DTE-Traveler plays the role of TE-
Traveler; the DTE-Authorizer plays the role of TE-Authorizer, etc.

We similarly bind each role of the AB model onto a role in the DTE
model. We had to add the DTE-BookingClerk and the DTE-
TravelAgent to match the corresponding roles in the AB model, but
could reuse existing DTE roles to match the remaining
AirlineBooking roles. The DTE-Traveler, DTE-Bookkeeper, and the
DTE-Paymaster now play two other roles and must conform to both
specifications.

29 March 1995 23:05 3.1 Introduction to synthesis: DerivedTravelExpense

©Taskon 1992. Page 111Role model synthesis

pm

bo

venta

cust

bk

bo

au tr

au tr

sec

tr

bk

ven

ta

cust

sec tr

pm

pm

AB
Traveler

TE
Traveler

TE
Authorizer

TE
Bookkeeper

TE
Paymaster

DTE
Traveler

DTE
Booking

Clerk

DTE
Book

Keeper

DTE
Travel
Agent

DTE
Paymaster

DTE
Authorizer

TE
TravelExpense

DTE
DerivedTravelExpense

AB
AirlineBooking

AB
Travel
Agent

AB
Booking

Clerk

AB
Book

Keeper

AB
Paymaster

Figure 3.11 DTE
synthesis

collaboration
diagram

Even in this very simple example, the graphical synthesis
collaboration view is cluttered and hard to read. The compact tabular
presentation view of figure 3.12 is usually better for professional
system documentation.

Tabular synthesis
notation more useful

Figure 3.12 DTE
Synthesis Table

Derived model
DTE

Base model
TE

Base model
AB

DTE-Traveler TE-Traveler AB-Traveler

DTE-Authorizer TE-Authorizer

DTE-Bookkeeper TE-Bookkeeper AB-Bookkeeper

DTE-BookingClerk AB-BookingClerk

DTE-TravelAgent AB-TravelAgent

DTE-Paymaster TE-Paymaster AB-Paymaster

There is one row in the table for each role in the derived model. The

29 March 1995 23:053.1 Introduction to synthesis: DerivedTravelExpense

©Taskon 1992. Page 112 Role model synthesis

first column contains the names of the derived roles. There is one
additional column for each base model showing the corresponding
base role. Model consistency is preserved by mapping each role of the
base models onto a role in the derived model. The derived model may
contain roles which are not mapped from any base model role; this is
not shown in the current example.

AirlineBooking
activity spliced into

ExpenseAccount
action

A scenario view of the derived model activity is shown in figure 3.13.
It shows how the AirlineBooking activity from figure 3.5 is merged
into the TravelExpense activity of figure 2.15 on page 75??.

The key to this merger is in the method of figure 2.16 that is triggered
by the travelPermission-message. This method is split into two parts
in the derived model: the first part, shown in figure 3.14, is triggered
by the old travelPermission-message and ends by sending the
AirlineBooking stimulus message. The second part, shown in figure
3.15, is triggered by the termination of the AirlineBooking activity
and completes the actions performed by the Traveler.

DTE
Traveler

DTE
Authorizer

DTE
Booking

Clerk

DTE
Travel
Agent

DTE
Book

Keeper

DTE
Paymaster

travelPermissionRequest:

travelPermission:

orderTicket:

orderTicket:

ticket:

invoice:

ticketWithCost:

authorizedInvoice:

paymentRequest:

payment:

expenseReport:

authorizedExpenseReport:

paymentRequest:

Inserted AirlineBooking
activity

Figure 3.13 DTE
scenario

29 March 1995 23:05 3.1 Introduction to synthesis: DerivedTravelExpense

Role model synthesis ©Taskon 1992. Page 113

DTE
Traveler

DTE
Booking

Clerk

travelPermission:()

<Traveler purchases the necessary tickets> orderTicket:()

Figure 3.14 First
part of Traveler

method

Figure 3.15 Second
part of Traveler

method
DTE

Traveler
DTE

Authorizer

ticketWithCost:()

<Traveler travels>

<Traveler prepares an expense report> expenseReport:()

29 March 1995 23:053.1 Introduction to synthesis: DerivedTravelExpense

Role model synthesis©Taskon 1992. Page 114

3.2 The synthesis operation

In a nutshell
We always seem to extend the scope of our systems, and even the object models are
frequently too complex to be comprehended by our limited brain capacity. The
OOram technology provides abstractions that help us to divide and conquer,
enabling us to handle complex phenomena in a controlled manner. We analyze
different parts of a phenomenon to create simple role models, and understand each
of these models separately.

Complex models are constructed from simple ones in a controlled and consistent
manner. This construction, called synthesis, permits us to reuse proven models in a
variety of contexts. The advantages of reuse are threefold. First, reuse reduces
development cost and lead time. Second, the reuse of tested models in a controlled
environment increases total quality. Third, critical phenomena can be protected by
the mandatory access through validated models; thus ensuring system integrity. The
main disadvantage is probably the danger of blindly building on old models, thereby
loosing the fresh outlook and creativity needed to discover new insights.

As we have stressed earlier, our first approach to a new problem is to
focus on its essential aspects and postpone all the trivial parts to later
stages in the development. The principle of minimizing risk
(FOOTNOTE: See section 4.3) suggests that we start with the parts
we expect will be the hardest to get right, and continue with other
parts as the harder ones get resolved. We might begin by sketching
out the work flow in the organization, or creating a high-level model
of the information requirements, or making a small user interface
prototype, or studying high-level state machine models showing
essential states and transitions in critical processes.

We may create
solution islands

Many authorities recommend an orderly progression from the abstract
to the concrete; create the first models on a high level of abstraction
and then fill in details as work progresses. We find this excellent
advice not always easy to follow, because we often have to start with
some low level problem due to its high risk.

29 March 1995 23:05 3.2 The synthesis operation

Role model synthesis ©Taskon 1992. Page 115

Whatever our work process, we will end up with many different
models describing different aspects of the problem and its solution.
There will be overview models on a high level of abstraction, and low
level models showing the details of a bounded part of the problem.
We do not want to extend an overview model with more and more
details until we get a huge model containing everything; we want to
retain the overview model and to supplant it with auxiliary
descriptions of the various details.

We think in a number of distinct models, each having its own unique
area of concern and representing a part of the whole.

We need many
models

All our different models show different aspects of the same overall
phenomenon; they are strongly linked to this common phenomenon.
The models are not orthogonal, but are highly dependent because the
same objects often appears in several models. We support the ideas of
traceability and seamless descriptions, so that whenever we observe
some information in one model, we will be able to link it to any other
description of the same thing -- whether in a different model on the
same level of abstraction; or in another model on a different
abstraction level.

We need seamless
model

interdependencies

Subclassing used for
concept building and

for code sharing

Inheritance is used in object-oriented programming for two different
purposes: concept building and code sharing.

When concept building, we subclass a given superclass because the
concept represented by the subclass is a specialization of the concept
represented by the superclass. Instances of the subclass will have all
the attributes of the superclass and understand all the messages
understood by the superclass in addition to possible attributes and
messages defined in the subclass.

In Objectworks\Smalltalk for example, class VisualComponent
defines objects which can be made visible on the computer screen.
The VisualComponent subclass TextLines represent lines of stylized
text; instances of TextLines understand all the VisualComponent
messages, in addition to messages which manage their text attributes.

When code sharing, we subclass a given superclass quite simply
because it contains useful code. All the messages defined in the
superclass need not be meaningful in the context of the subclass. For
example, the Objectworks\Smalltalk class Collection defines a
message (at: index) which gives indexed access to its contents. Class

3.2 The synthesis operation 29 March 1995 23:05

©Taskon 1992. Page 116 Role model synthesis

Set is a subclass of Collection. An instance of class Set contains an
unordered collection of elements that are not duplicated. Indexed
access to sets is meaningless and therefore prohibited. Most of the
Collection code is useful in Set, and the decision to make class Set
subclass of Collection was one of expedience rather than a
consideration of abstract concepts. We regard code sharing as a useful
and legitimate use of class inheritance in programming, as long as we
make it quite clear what we are doing.

We could similarly synthesize an OOram base model into a derived
model because the base model contained useful constructs. But the
purpose of OOram models is to enhance our understanding of a
phenomenon, and we insist that synthesis is used for the synthesis of
concepts.

Synthesis only used
for concept building

Role modeling and
synthesis apply

common sense to
objects

An object model is a simulation of the phenomenon it represents; its
objects enact the phenomenon. It is common sense that if we want to
isolate certain aspects of the phenomenon, we correspondingly isolate
the relevant aspects of the objects which enact them, and we describe
their role in the context of the studied aspects.

It is also common sense that if we want a structure of objects to
simulate several phenomena simultaneously, we let its objects play
the roles which describe these phenomena.

Analysis and synthesis are the two operations which enable us to
zoom in and out in our study of the complex world around us.

The separation of concern and object playing multiple roles by
synthesis makes it possible to describe systems of any size with
OOram role models.

Consider an extremely complex system with an enormous number of
objects, such as the total system of an enterprise integrated with the
systems of all its suppliers and customers. We can still isolate any
phenomenon and study it as a role model, and we can still describe
any composite phenomenon by creating a role model synthesized
from the models of its parts.

OOram models
describe systems of

any size

We might be tempted to consider all our interdependent models as
being parts of a single, global model. We could create this global
model by starting with any model and recursively adding all models
that are related to it. The global model would in many ways resemble
the global conceptual schema used in database technology, and the
individual models would be similar to the external schemas.

No global model
needed

3.2 The synthesis operation29 March 1995 23:05

©Taskon 1992. Page 117Role model synthesis

We do not believe the idea of a global model is a fruitful one. We
believe that everything in the real world somehow depends on
everything else, so that a truly global model would be very large
indeed and impossible to create or manage. Our definition of a system
on page 61?? reflected this: a system is something we choose to
consider as a whole during some period of observation, and a system
has an environment which links it with the rest of the world without
including the rest of the world in the system. Remember that we could
not include the environment objects in our system, because we then
ended up modeling the whole universe.

Finding the models We end this introduction to synthesis with the $64,000 question: How
do we find the models, i.e., how do we determine that we should
factor out a base model or merge several models into a larger one?

There are no hard and fast rules, but we will endeavor to give a few
loosely formulated guidelines. Behind these guidelines is the fortunate
fact that this is an area where the good systems analyst can
demonstrate his or her excellence.

It is commonly believed that our short term memory can manage 7 ± 2
notions at the same time. So we suggest the guideline that a role
model should consist of 7 ± 2 roles. We should search for
subphenomena to be factored out from models that are substantially
larger than this. We should also search for common base models that
can be synthesized into several derived models, or several times into
the same model.

Conversely, we should consider merging models which contain less
than five roles. Models that are used several times are exceptions to
this rule -- such as the client-server models which contain just two
roles in their basic form but which may be synthesized into many
different derived models.

A model may depend on other models in many different ways.
Generalization-specialization is an important model relationship: one
model describes a general phenomenon, while other models describe
its specializations. A general model could, for example, describe how
we make important decisions in our organization. Two different
specializations of this model could describe how we create a budget or
how we establish a major project. (FOOTNOTE: The creation of
different kinds of reusable components will be discussed in chapter 5:
Creating reusable components.)

Many different model
relationships

29 March 1995 23:053.2 The synthesis operation

Role model synthesis©Taskon 1992. Page 118

Another important model relationship is aggregation: what is
described as a single role on one level of abstraction is expanded into
a model with several roles on the next level of detailing.

A third, very interesting model relationship is the object-subject
relationship: the universe of discourse (object attributes and message
parameters) in a role model may be specified as the roles of another
role model.

OOram synthesis The Webster dictionary defines synthesis: "synthesis 1a: the
composition or combination of parts or elements so as to form a
whole c: the combination of often diverse conceptions into a coherent
whole" [Webster 77].

We represent model relationships with the very general notion of role
model synthesis, where we specify that individual objects shall play
several roles, possibly from different role models.

We say that the base model is synthesized into the derived model.
This is achieved by synthesizing every base role in the base model
into a corresponding derived role in the derived model.

The concept of synthesis is as important to OOram role modeling as
the concept of inheritance is to object oriented programming. In both
cases, we specify that some objects shall, in some sense, be similar
other objects. The main difference is that while object-oriented
programming focuses on the relationship between individual classes
of objects; OOram synthesis focuses on the relationships between
complete patterns of objects.

The idea of objects playing multiple roles has a clear parallel in the
theory of organizations: a person typically plays multiple roles such
as a subordinate in a department, a member of a project, a traveler in
the context of travel expenses.

Consider the file transfer protocol example of figure 2.17 on page
78??. The figure describes two models: a Client-Server model and a
Source-Destination model.

We are now in the position to design three different systems by using
these two models as base models and synthesizing them into three
different derived models. Figure 3.16 shows a system where the
Client can send files to the Server; figure 3.17 shows a system where
the Client can retrieve files from the Server; and figure 3.18 shows a
system where the Client can send and retrieve files to and from the
Server.

Objects play multiple
roles

29 March 1995 23:05 3.2 The synthesis operation

©Taskon 1992. Page 119Role model synthesis

dst src

dst src

rsp int

Source
Client

Destination
Server

Client Server

Source Destination

Client-Server base model

File transmit derived model

Source-Destination source model

Figure 3.16 A system
where the Client can

send files to the
Server

dst src

rsp int

rsp int

Destination
Client

Source
Server

Client Server

Source Destination

Client-Server base model

File retrieve derived model

Source-Destination source model

Figure 3.17 A system
where the Client can
retrieve files from the

Server

29 March 1995 23:053.2 The synthesis operation

Role model synthesis©Taskon 1992. Page 120

Figure 3.18 A system
where the Client can

send and retrieve
files

dst src

dst dst

rsp int

Send/receive
Client

Send/receive
Server

Client Server

Source Destination

Client-Server base model

Source-Destination base model

File send/receive derived model

A base model may be repeatedly synthesized into a derived model.
Figure 3.19 shows a role model for a tree structure. The base model
marked (a) describes a basic tree consisting of a Mother role and a
Child role. A Child has one and only one Mother, while a Mother can
have any number of Child objects, even none.

The Mother may ask her Child to execute a block of code recursively,
either executing the code before traversing the subtree (
preorderTraverse) or after (postorderTraverse). The Mother may also
ask her Child for all tree leaves (getLeaves). The Daughter may ask
her Mother for the root of the tree, in this case it is the Mother herself.

Figure 3.19 (b) shows a three level tree with roles Root, Node and
Leaf. This is a derived role model; it was created by synthesizing the
basic tree model twice. First, the Root and Node roles are specified to
play the Mother and Child roles respectively. Second, the Node and
Leaf roles are specified to play the Mother and Child roles. A Root
object will now play the Mother role; a Node object will play both the
Child and the Mother role; and a Leaf object will play the Daughter
role.

We see that the interfaces of the derived model are simply inherited
from the base model, and it is not necessary to repeat the specification
in the derived model. Further, if the base model had been
implemented as the classes Mother1 and Child1, the implementation
of the derived model could exploit this by deriving its classes from
the base classes.

Base models may be
applied repeatedly

29 March 1995 23:05 3.2 The synthesis operation

©Taskon 1992. Page 121Role model synthesis

Figure 3.19 The
creation of a

composite tree
dw

up

dw

up

dw

up

Child<Mother
getLeaves
postorderTraverse:
preorderTraverse:

Child<Mother
getLeaves
postorderTraverse:
preorderTraverse:

Child<Mother
getLeaves
postorderTraverse:
preorderTraverse:

Root

Mother<Child
getRoot

Mother<Child
getRoot

Mother<Child
getRoot

Node

Leaf

Mother

Child

(a)
Base model

(b)
Derived model

Synthesis applies to
whole role models

Synthesis is an operation on role models, not single roles. The
argument is that if we extend the services offered of one object, we
must also extend some other object to make it utilize the new
functionality. We do not know the exact nature of these objects; but
we do know that they will play the appropriate roles. So when we
specify that Root plays the role of Mother, we immediately ask: Who
plays the corresponding role of Child? Figure 3.19 shows two
synthesis operations, not four.

The notation for synthesis is a set of bordered arrows connecting base
roles to corresponding derived roles. The first synthesis operation is
marked with white arrows in figure 3.19, the second with colored
arrows.

The ideas of role model analysis and role model synthesis give us two
independent dimensions in the description of systems of interacting
objects. This is illustrated abstractly in figure 3.20.

Two-dimensional
modeling

Integration within a role model is achieved through collaborator
interaction.

1.

Integration between role models is achieved by letting an object
play several roles. An interdependency between two roles played
by the same object is described in a method. The method is
triggered when the object receives a message in the context of one
role; it may send messages and thus trigger activities in the
context of another role. The method could also change an attribute
which is defined in the context of another role.

2.

29 March 1995 23:053.2 The synthesis operation

Role model synthesis©Taskon 1992. Page 122

Horizontal integration
(Analysis):

Collaborator interaction
within Role Model.

Vertical Integration
(Synthesis):
Message

triggers Method
which sends (stimulus) Message
or changes Attribute

Figure 3.20 Two-
dimensional

modeling

The purpose of role model analysis is to understand a phenomenon
and specify its possible implementation. We spend considerable effort
to persuade ourselves and others that the model is a faithful and
correct representation of the phenomenon, and that the
implementation will fill our needs and be without serious flaws.

We want to retain
base model

correctness in the
derived model

Assuming that a base model is correct in all the aspects we care to
consider, we would like this correctness to be retained in a model that
is derived from it by synthesis so that we do not need to repeat the
correctness considerations. We will distinguish between three kinds of
correctness:

That the derived model conserves the static correctness of the
base model.

1.

That the derived model conserves the dynamic correctness of the
base model.

2.

That the derived model correctly reflects the semantics of the
base model.

3.

Static correctness
can be retained

automatically

It is fairly easy to create an OOram tool that conserves static
correctness through a synthesis operation. Specifically:

All roles in a base model are mapped onto corresponding roles in
the derived model.

1.

The attributes of the base roles are retained as attributes of the
corresponding derived roles.

2.

3.2 The synthesis operation29 March 1995 23:05

Role model synthesis ©Taskon 1992. Page 123

All ports in a base model are mapped onto corresponding ports in
the derived model. The cardinalities of the ports in the derived
model must be consistent with the cardinalities of the
corresponding ports in the base model: the minimum cardinality
of a derived port may be equal to or greater than the minimum
cardinality of the corresponding base port, and the maximum
cardinality of a derived port may be equal to or less than the
maximum cardinality of the corresponding base port.

3.

4. All interfaces defining the messages that are permitted to be sent
from a base port are retained as identical interfaces defining
messages that are permitted to be sent from the corresponding
derived port (except for possible renaming of messages).

Due diligence
required to retain

dynamic correctness

Dynamic correctness means that the base model message sequencing
specifications are retained in the derived model. We have defined the
notions of a method as the action taken by a role in response to a
received message, and an activity as the sequence of actions taken by
a structure of roles in response to a stimulus message. The dynamic
correctness of a role model is closely linked to the dynamic
correctness of its activities, and the preservation of dynamic
correctness through a synthesis operation means the preservation of
the integrity of the activities.

Base model
semantics shall be

retained in all
derived models

Figure 2.3 on page 57?? illustrated how a manifest model in some
way is a representation of a mental model. We cannot automatically
check that this representation is correct; correspondence can only be
checked through mental processes. For example, consider that we
have a general Tree model with a Root role collaborating with any
number of Leaf roles. Further, assume that we want to model a mother
- child relationship, and decide to derive the Mother-Child model
from the Tree base model. We can formally check that the Mother-
Child model has the properties of the Tree model, but we cannot
formally check that either model corresponds to our mental ideas of
mothers and children.

For all proper applications of the OOram synthesis operation, the
analyst must make sure that the meaning of the derived model is
consistent with the meanings of all its base models.

3.2 The synthesis operation 29 March 1995 23:05

©Taskon 1992. Page 124 Role model synthesis

Static correctness guarantees that we only send messages through a
port that are defined in one of its interfaces. But it does not prevent us
from specifying a method in the context of one of the object's roles
that sends an arbitrary message associated with another of its roles.
We may, therefore, break into the middle of a base activity and play
havoc with any argument about its dynamic correctness, and the time
sequences of messages observed in a derived model may violate the
base model activity specifications. This may be acceptable. It could be
that we want to specify a new activity in the derived model that
merely uses some of the base model functionality. We call it unsafe
synthesis, since we have to recheck the dynamic correctness of the
derived model. The antonym is safe synthesis. This is synthesis where
we can trust that the dynamic correctness of the base model is retained
in the derived model.

Safe and unsafe
synthesis

Safe synthesis Else Nordhagen and Egil Andersen of the Department of Informatics
at the University of Oslo are both exploring different formal
foundations for role modeling. Parts of their work are concerned with
describing the synthesis of dynamic behavior, which is a deep
research topic. It will be premature to report their results here, so we
refer to their preliminary publications(FOOTNOTE: [E. Andersen
92], [Nordhagen 89], [Nordhagen 95]).

The essence of safe synthesis is that the integrity of the base model
activities must be retained in the derived models. The activity must be
started by its stimulus message and then permitted to run its course
without interference to its completion. The key to the success of safe
synthesis is that it does not matter what other activities the objects
perform before, during, or after a base model activity, as long as they
do not interfere with it in any way.

Safe synthesis
preserves integrity of

base activity

29 March 1995 23:05 3.2 The synthesis operation

©Taskon 1992. Page 125Role model synthesis

Summing up, all base model roles are mapped onto derived model
roles in the synthesis operation.

In safe synthesis, the integrities of the base model activities are
retained in the derived model. This means that a base model activity
can only be triggered by its stimulus message. This stimulus message
can either become a stimulus message in the derived model; or it can
be sent from one of the methods in the derived model.

In the first kind of safe synthesis, an environment role of a base model
is synthesized into an environment role of the derived model, and the
stimulus messages of the base model becomes stimulus messages of
the derived model.

In the second kind of safe synthesis, an environment role in the base
model is synthesized into a system role in the derived model. A base
model stimulus message is sent from a method in the derived model
and becomes part of its normal message flow.

Environment roles
may become system

roles in derived
model

We claim that these two synthesis constructs retain activity integrity,
but stress that further research may reveal anomalous cases which
render the constructs unsafe. The constructs have been formulated for
synchronous message semantics, further work is needed to identify
safe constructs for parallel processes. We also believe that there are a
number of other safe constructs, so do not take this list as being the
final one.

1. activity superposition is a kind of safe synthesis where a base
model stimulus messages is retained as a stimulus message in the
derived model. The base model activity is retained unchanged as a
derived model activity; independent of all other activities in the
derived model.

activity aggregation a kind of safe synthesis where a base model
activity details a method in the derived model. It is very similar to
a closed subroutine: the method sends the base model stimulus
message and the corresponding base model activity is permitted to
run to completion without interference. The method continues
after the base activity has terminated.

2.

3.2 The synthesis operation 29 March 1995 23:05

Role model synthesis©Taskon 1992. Page 126

Aggregation: Linking models on different levels of
abstraction

3.2.1

The principle of hierarchical decomposition is an important idea for
the study of complex systems. Indeed, some authors hold it to be a
fundamental principle of nature itself (FOOTNOTE: A good example
is [Booch 94]): A plant consists of three major structures (root, stems,
and leaves), and each of these can be decomposed into its own
substructure.

Aggregation is an
important modeling

idea

While we agree that hierarchical decomposition is important and
useful, we cannot agree that it is a part of nature. The plant does not
know about roots, stems, and leaves; these ideas are useful to the
botanist and the schoolteacher and are so widely published so as to
become an established truth.

The idea of hierarchical decomposition belongs to the world of
models rather than to the real world. More specifically, we regard
hierarchical decomposition to be one of the principles for organizing
role models. Looking at it this way, we can get the benefits of
hierarchical decomposition within the scope of some role models. We
do not insist that the hierarchy shall be pervasive, the hierarchy may
not be visible if we study the object structure from some other
perspective.

Let us return for a moment to figure 2.3 on page 57??. Like any other
model, a hierarchical model can neither be right nor wrong, just more
or less useful for a given purpose. The distinction between root and
stem is useful if I want to cook carrots for dinner. It could be useless
if I want to study the flow of nutrients through the plant, and I had
better select a more appropriate model highlighting the vascular
system.

Hierarchical decomposition and aggregation, often called the consists
of - part of relationship, is an artifact of our thoughts: we choose to
consider certain objects as being the parts of another object in the
context of certain role models. This is illustrated conceptually in
figure 3.21 (a).

There are two criteria that should alert you to the possibility of
factoring out sub-phenomena from a model on any level. One is that
the model gets overly complex. We prefer models to have somewhere

3.2 The synthesis operation29 March 1995 23:05

Role model synthesis ©Taskon 1992. Page 127

between 5 and 9 roles; it will then fit nicely in our short term memory
and on a computer screen. Another criterion is that if the model
displays repeated patterns of similar structures, these patterns should
be described in separate models and removed from the main model.

Good choices of areas of concern, and thus of models, are usually
found in an iterative process. If a model gets too complex, we split it
up into smaller models. If we get too many very simple models, we
combine them into larger ones.

Figure 3.21
Considering certain
roles to be parts of

another role

(a) Encapsulated aggregation
(Invisible parts)

(b) Embedded aggregation.
(Visible parts)

Outer system

Part system
X

Outer system

Part system

Aggregate roles are shown as gray, while other roles of the outer system are shown
as white, and other part roles are shown as black.

We represent the idea of aggregation as a pair of role models: When
considering the outer system, the aggregate is represented as a single
role. When considering the part system, the aggregate is represented
as a role model showing its parts. The single role in the outer system
is found as the environment role of the part system.

The OOram technology supports three different kinds of aggregation:
encapsulation, where the parts are invisible from outside the
aggregate role; embedding, where some parts are visible; and virtual,
where the aggregate role is an artifact of thought not represented as an
object in the object structure. All kinds imply that different models
have common objects, as we shall see in the following.

Encapsulation hides
the parts within a

single role

A role in the outer system may completely encapsulate the roles of the
part system. The part roles are then invisible in the external
perspective of the outer system. This is called encapsulated
aggregation; there is one shared object as can be seen from the object
model of figure 3.21 (a) and the corresponding role models of figure
3.22 (a).

We see that the object marked 'X' plays two roles: it is a system role

3.2 The synthesis operation 29 March 1995 23:05

©Taskon 1992. Page 128 Role model synthesis

of the outer system and an environment role of the part system. We
could use synthesis to create a derived model covering both, but this
composite would be quite complex. We only create it in the rare cases
where it gives us important new insights. We usually prefer keeping
the two models separate, using the safe synthesis construct activity
aggregation to combine them in the implementation.

Embedding makes
parts visible to

several roles in the
outer system

Some of the part roles may be visible to some of the roles of the outer
system. The objects corresponding to these outer roles then play
environment roles in the part system. Embedded aggregation is the
name we give to this open kind of aggregation; the outer system can
see several of the objects in the embedded system as illustrated in the
object model of figure 3.21 (b) and the corresponding role models of
figure 3.22 (b).

Figure 3.22
Representing

aggregates as
structures of

collaborating objects

(a) Encapsulated aggregation (b) Embedded aggregation

Outer role model

X
Part role model

Outer role model

Part role model

The characteristic feature of the embedded aggregation is that it is
open. The outer system has references to the objects of the embedded
system so that they can interact. This is a potentially unsafe situation,
and the derived model may have to be created and analyzed for
correctness.

Embedded
aggregation

In our illustration, we have assumed that each role maps on to a
separate object. The separation of concern between role models
permits any mapping, however. The roles of the outer role model and
the roles of the part role model may be mapped on to common objects
in any way we please. The overall system will still behave as
specified as long as we follow the rules of safe synthesis and preserve
activity independence.

Any role to object
mapping permissible

Virtual roles hide
details

A number of roles may be grouped and presented as if they were a
single role -- without this single role representing an object in the
object structure. This is called virtual aggregation and is illustrated in
figure 3.23.

29 March 1995 23:05 3.2 The synthesis operation

Role model synthesis ©Taskon 1992. Page 129

virtual role

Figure 3.23 Virtual
roles a cluster of
roles as a single

aggregate

Many words have been written and many pictures flashed on overhead
projectors to describe the notion of a client-server system architecture.
Clients are typically personal computers or workstations running the
user's software, while the servers are background computers linked to
the clients through communication channels and managing shared
data with their associated programs. We recognize the client-server
architecture as an essentially object-oriented architecture; role
modeling is ideally suited for describing both the client and the server
parts, and encapsulated aggregation is the composition construct
which will safely combine the two and permit us to change focus
between the client and the server as needed.

Client-server
architecture

There is still no consensus as to the best division of responsibility
between the client and the server. We see that any case of
encapsulated aggregation can be implemented in a client-server
architecture. The positioning of the communication path within the
overall system is an engineering decision. We will describe our
proposal in chapter 7.3: Task/Tool/Service model.

Attributes and message parameters3.2.2

A role model describes how objects interact to achieve some purpose.
The subject of their interaction is represented as message parameters
and object attributes.

Attributes and
parameters represent
the subject of object

interaction

Message parameters may be grouped as follows:

Nonobject values. A parameter may represent something we
consider to be outside our world of objects. It could be concrete,
such as a paper form. Or it could be abstract, such as a value in a
relational database. We also consider basic data types such as
Integer and String to belong to this group.

1.

29 March 1995 23:053.2 The synthesis operation

Role model synthesis©Taskon 1992. Page 130

References within current role model. A parameter may reference
a role in the current role model. An example could be Eve in this
message to Peter: "Your travel authorizer will be Eve". The
receiver will normally use the parameter to update the value of
one of its ports. The interaction with these roles is described by
the role model views discussed at length in chapter 2: Role
modeling.

2.

References within another role model. A parameter may reference
a role in another role model. This other role model then defines
part of the universe of discourse for our current role model. The
receiver will normally use the parameter to update the value of
one of its attributes.

3.

Role attributes could be defined in the same way. References to roles
in the current role model are represented as ports, and other attributes
are either nonobject values or role references to another role model.

The third group of parameters provides an interesting relation
between role models: the objects of the parameter role model
constitute (part of) the subject of interaction of the current role model.

Messages carry the parameter values from one role to another, and it
is only possible to send messages to a parameter role from one of the
current roles. This current role must either have a port referencing the
parameter; or the parameter role must be encapsulated within the
current role as illustrated in figure 3.24 (a).

An interesting
relationship between

role models

Figure 3.24
Representing an

attribute or a
parameter as an

encapsulated role
model

Current role model

Subject role model

X
Current role

The current role model may sooner or later want to send a message to
trigger an activity in the parameter model. This message must be a
stimulus message to keep the synthesis safe. Its sending role must,
therefore, be an environment role in the parameter model.

It is important to realize that the objects of the current role model and
the objects of the parameter role model all exist in the same world of

3.2 The synthesis operation29 March 1995 23:05

Role model synthesis ©Taskon 1992. Page 131

interacting objects. The distinction between the role models is an
artifact of our choice of role model abstractions and is a result of our
separation of concern. The object marked 'X' in figure 3.24 plays two
roles: one in the Current role model and one in the Subject role model
. The two role models are integrated through the methods of object
'X' sending stimulus messages to the subject role model, and the role
models are otherwise independent.

The parameter and attribute relationships link a model with its
universe of discourse. We will use it in the case study in chapter 7:
Development of a business information system to link a model of a
human organization to a model of its information base, but the
concept is recursive and can be applied on as many levels as you can
keep track of.

Object-subject
relationship very

general

3.2.3 Safe and unsafe synthesis of the travel example models

Let us illustrate safe and unsafe synthesis by an example. We slightly
modify the DerivedTravelExpense model so that the Authorizer and
the BookingClerk are played by the same derived role called the
Manager. The role model with a few critical interfaces is illustrated in
figure 3.25.

ta

cust

sec tr bo

pm

ven

Traveler

ABTravelAgent<ABBookingClerk
orderTicket:

Messages sent
expenseReport:
orderTicket:
travelPermissionRequest:

Manager Book
Keeper

Travel
Agent Paymaster

Figure 3.25 Simple
synthesis example

3.2 The synthesis operation 29 March 1995 23:05

©Taskon 1992. Page 132 Role model synthesis

There are two activities in this example: the TravelExpense activity
describes the overall management of a business trip, and the
AirlineBooking activity describes the booking and payment of airline
tickets. These activities may be combined in different ways:

activity superposition (figure 3.26). The Traveler could order
tickets independently of the authorization process, for example,
because it would be too late to leave it until the travel was
authorized, or because there are many other situations where
tickets need to be ordered. (The base models would have to be
extended with travel cancellation capabilities to cater to the case
when travel permission was refused).

1.

activity aggregation (figure 3.27). The synthesis described in the
previous section was an example of activity aggregation: the
AirlineBooking activity was started from an action in the
TravelExpense activity.

2.

unsafe synthesis (figure 3.28). The Manager in the role of
Authorizer receives a travelPermissionRequest message. She
could decide to grant the permission and also to be extra helpful:
she dons the hat of BookingClerk and orders the required tickets.
The AirlineBooking model assumed that the initiative was with
the Traveler, therefore we have to reconsider the dynamic
behavior of the derived model to protect ourselves against
surprises.

3.

29 March 1995 23:05 3.2 The synthesis operation

Role model synthesis ©Taskon 1992. Page 133

Figure 3.26 Activity
superposition

illustration

AirlineBooking

TravelExpense

Traveler Manager Bookkeeper Paymaster TravelAgent

Traveler Bookkeeper Paymaster TravelAgentBookingClerk

Traveler Authorizer Bookkeeper Paymaster

DerivedTravelExpense

stimulus

stimulus

The Traveler could order tickets independently of the authorization process, for
example, because it would be too late to leave it until the travel was authorized, or
because there are many other situations where tickets need to be ordered. (The base
models would have to be extended with travel cancellation capabilities to cater to
the case when travel permission was refused).

Note: The messages are sent between the objects, but we think of them as being sent
in the appropriate base model roles.

TravelExpense

Traveler Manager Bookkeeper Paymaster TravelAgent

Traveler Bookkeeper Paymaster TravelAgentBookingClerk

Traveler Authorizer Bookkeeper Paymaster

DerivedTravelExpense

AirlineBooking

stimulus

Figure 3.27 Activity
aggregation

illustration

The synthesis described in the previous section was an example of activity
aggregation: the AirlineBooking activity was started from an action in the
TravelExpense activity, and the two activities were permitted to run independently.

29 March 1995 23:053.2 The synthesis operation

Role model synthesis©Taskon 1992. Page 134

AirlineBooking

TravelExpense

Traveler Manager Bookkeeper Paymaster TravelAgent

Traveler Bookkeeper Paymaster TravelAgentBookingClerk

Traveler Authorizer Bookkeeper Paymaster

DerivedTravelExpense

unsafe message!

??????

stimulus

Figure 3.28 Unsafe
synthesis illustration

The Manager in the role of Authorizer receives a travelPermissionRequest message.
She decides to grant the permission and also to be extra helpful: she dons the hat of
BookingClerk and orders the required tickets. The AirlineBooking model assumed
that the initiative was with the Traveler, therefore we have to reconsider the
dynamic behavior of the derived model to protect ourselves against surprises.

Note the unsafe message entering in the middle of the booking activity. The first
message is bypassed, so the Traveler is not prepared for the last message.

29 March 1995 23:05 3.2 The synthesis operation

Role model synthesis ©Taskon 1992. Page 135

3.3 Basic OOram concepts and notation for role model
synthesis

In a nutshell
We here give a technical description of the synthesis operation as seen in each of the
OOram views.

The OOram technology offers a large number of different views on
the role models as described in chapter 2.5 on page 90??. All the
views are somehow affected by the synthesis operation, and we will
discuss each of them in the following sections.

Synthesis affects all
views and

perspectives

As discussed in chapter 3.2, the static and semantic correctness of the
base models can be carried over to the derived model automatically.
We suggested two constructs that preserve the dynamic correctness of
the base models. These two constructs, called activity superposition
and activity aggregation, will be the focus of this chapter.

We focus on Safe
Synthesis

3.3.1 The Inheritance and Role List views

The purpose of the inheritance views is to show the base model --
derived model relationships between role models.

There are three different views showing the inheritance (export --
import) relationships between role models:

Three inheritance
views

The Synthesis view shows any number of role models and the
inheritance relationships between them without giving any
internal details.

1.

2. An Inheritance Collaboration view shows two or more role
models and the inheritance relationships between their roles.

An Inheritance Table gives the same information in tabular form.3.

An OOram language inheritance specification gives the same
information in textual form.

4.

29 March 1995 23:053.3 Basic OOram concepts and notation for role model synthesis

©Taskon 1992. Page 136 Role model synthesis

In a synthesis view, role models are shown as rectangles. Base model -
- derived model relationships are shown as bordered arrows. Derived
models are shown to the right of the corresponding base models as
illustrated in figure 3.29. Figure 3.30 shows some of the the role
models used in this chapter together with their synthesis relationships.

Synthesis view

Base models Derived modelSynthesis relations

Derived
Model

BaseModel1

BaseModel2

Figure 3.29
Synthesis view

notation

DerivedTravelExpense

Ag: Aggregation

Su: Superposition

SimplifiedTravelExpense

TravelExpense

AirlineBooking

ABC

DEF

RST

XY

UVW

Figure 3.30
Synthesis view of

example models used
in this Part

The notation for individual role models follows the notation given in
section 2.5 on page 90??. The inheritance collaboration view shows
several, related role models. All base model roles are mapped to the
corresponding derived model role by a bordered arrow as illustrated
in figure 3.31.

Inheritance
Collaboration view

3.3 Basic OOram concepts and notation for role model synthesis29 March 1995 23:05

©Taskon 1992. Page 137Role model synthesis

y

x

y

x

s

t r

t r

s

r

s

r

R T

S

X

Y

U W

V

Base model
RST

Derived model
UVW

Base model
XY

Figure 3.31 Example
Inheritance

Collaboration view

An inheritance table is shown in table 3.1. It has one row for each
role in the derived model. The first column shows the roles of the
derived model, while the other columns show the corresponding roles
in the base models. Note that all the roles of the base models must be
accounted for in the derived model, but the reverse need not be true.

Table 3.1 Example
Inheritance Table

Derived model
UVW

Base model
RST

Base model
XY

Role U R

Role V S Y

Role W T X

The inheritance mapping can be specified as an OOram language
inheritance specification as part of the definition of the derived role
model. The full language is defined in Appendix A; and an example
inheritance specification is shown in figure 3.32.

29 March 1995 23:053.3 Basic OOram concepts and notation for role model synthesis

©Taskon 1992. Page 138 Role model synthesis

Figure 3.32 Example
OOram language

inheritance
specification

role_model 'RST' explanation "Example three-role base model."
role_model 'XY' explanation "Example two-role base model."
role_model 'UVW' explanation "Example 3-role derived model."

base_model 'RST'
'R' -> 'U'
'S' -> 'V'
'T' -> 'W'

base_model 'XY'
'X' -> 'W'
'Y' -> 'V'

3.3.2 Synthesis in Area of Concern view

No automatic
composition of Area

of Concern

An Area of Concern is a free text description of the modeled
phenomenon. Automatic synthesis of the derived Area of Concern is
not possible. (Except for a simple concatenation of the constituent
texts.) It is the responsibility of the analyst to specify the Area of
Concern for the derived model and to ensure that it is semantically
consistent with the Areas of concern of the base models.

Manual composition
of Area of Concern

The synthesis operation is a very general operation and may support
many different relationships between the derived and its base models,
but the phenomena described by the base models will always, in some
sense, be parts of the phenomenon described by the derived model.
The Area of Concern of the derived model will, therefore, explicitly
or implicitly encompass the Areas of Concern for the base models.

The synthesis of the areas of concern for our two safe synthesis
constructs are as follows:

1. Activity Superposition. The derived model's area of concern
includes the area of concern of its base models. For example, we
could have two different TravelExpense models for national and
international travel. We could use synthesis to derive a model that
covered both cases.

2. Activity Aggregation. A base model elaborates an action (method)
in the derived model. As an example, consider that our
AirlineBooking model elaborates one of the Traveler role's
actions in the TravelExpense model. The area of concern of the
detail base model may be invisible in the area of concern of the
derived model.

29 March 1995 23:05 3.3 Basic OOram concepts and notation for role model synthesis

Role model synthesis ©Taskon 1992. Page 139

3.3.3 Synthesis seen in the Environment and Stimulus-
Response views

Retain or explain
base model stimuli

A stimulus message from an environment role in the base model may
be handled in one or both of the following ways in the derived model:

Superposition. A stimulus message in a base model may become a
stimulus message in the derived model. The corresponding base
environment role must then be mapped onto a derived
environment role.

1.

Aggregation. A stimulus message in a base model may be sent
from one of the methods of the corresponding role in the derived
model. The derived role can in this case be either a system role or
an environment role; the base model environment role sending the
stimulus message must have been mapped onto it.

2.

Activity superposition is illustrated in in figure 3.33. The stimulus and
response messages of the base models are retained as stimulus and
response messages of the derived model. The base model environment
roles have here been mapped onto common derived environment
roles, but they could alternatively be mapped onto different derived
environment roles.

Figure 3.33
Superposition

environment view

f ee d

c bb a

f eb dSuAD SuCF

A B C

D E F

Superimposed
system

Activity aggregation is illustrated in figure 3.34. The DEF model is
hidden within the AggregationSystem where its activity is part of a
method in a derived role.

3.3 Basic OOram concepts and notation for role model synthesis 29 March 1995 23:05

Role model synthesis©Taskon 1992. Page 140

Figure 3.34
Aggregation

environment view
c b

e d

b a c b

b a

f e

AgA Aggregation
system

AgC

A B C

D E F

3.3.4 Synthesis seen in the Collaboration view

There are no formal relationships between the responsibilities of the
roles of the derived model and the roles of the base models, but the
analyst should ensure that they are consistent. The general restrictions
on roles, ports and cardinalities mentioned previously also hold for
the collaboration views:

Formal
collaboration view

dependencies
between synthesized

models

All roles in the base models are mapped onto roles in the derived
model.

1.

The attributes of the base model roles are included in the
attributes of the corresponding derived model roles.

2.

3. The collaborators of the derived model roles will include the
collaborators of the corresponding base model roles.

4. All ports in the base models are mapped onto corresponding ports
in the derived model. The cardinalities of the ports in the derived
model must be consistent with the cardinalities of the
corresponding ports in the base model. Specifically, the minimum
cardinality of a port in the derived model must be equal to or
greater than the minimum cardinality of the corresponding ports
in the base models, and the maximum cardinality of a port in the
derived model must be equal to or less than the maximum
cardinality of the corresponding ports in the base models.

29 March 1995 23:05 3.3 Basic OOram concepts and notation for role model synthesis

Role model synthesis ©Taskon 1992. Page 141

The graphical notation for the Inheritance Collaboration view was
described in figure 3.31. The Inheritance table in table 3.1 is used to
describe the inheritance relationships in most practical work; the
collaboration view of the derived model then looks just like any other
collaboration view.

Notation

Figure 3.35 illustrates activity superposition in the collaboration view.
The base model environment roles have here been mapped onto
common derived environment roles, but they could have been mapped
onto different roles in the derived model.

The base model system roles have been mapped onto a common role
in the derived model, but they could have been mapped onto different
roles.

Figure 3.35
Superposition

collaboration view

f e

b a

b a c b

e d

c e

A B C

D E F

SuAD SuBE SuCF

Figure 3.36 illustrates activity aggregation in the collaboration view.
The derived model constitutes the base model environment: the
derived system role AgBDF plays the environment roles D and F. It
sends the stimulus message of the DEF model from one of its
methods, and receives the response message from the DEF activity.

29 March 1995 23:053.3 Basic OOram concepts and notation for role model synthesis

©Taskon 1992. Page 142 Role model synthesis

c b

e d

e

d

b a

c bb a

f e

A B C

AgA AgBDF AgC

AgE

D E F

Figure 3.36
Aggregation

collaboration view

3.3.5 Synthesis seen in the Scenario view

We illustrate the safe synthesis of Scenarios by assuming the pair of
extremely simple activities for the base models shown in figures 3.37
and 3.38.

Figure 3.37 ABC
Scenario A B C

ab1:

bc2:

D E F

de1:

ef1:

Figure 3.38 DEF
Scenario

In activity superposition, the base model activities become derived
model activities. The corresponding scenarios are simply carried
unchanged into the derived model as illustrated in figure 3.39.

Scenario
superposition

29 March 1995 23:05 3.3 Basic OOram concepts and notation for role model synthesis

Role model synthesis ©Taskon 1992. Page 143

SuAD SuBE SuCF

ab1:

bc2:

Su-Scenario-a

Su-Scenario-bSuAD SuBE SuCF

de1:

ef1:

Figure 3.39 Scenario
superposition

Scenario
aggregation

In activity aggregation, a base model stimulus message is sent from
within a derived model method. We have illustrated this by sending
the DEF stimulus message from the derived method for message ab1.
The corresponding scenario is shown in figure 3.40.

The DEF stimulus message is sent from within the derived model
method for message ab1: in role AgH. The DEF activity is thus
completely embedded in this method.

AgA AgBDF AgE AgC

ab1:

de1:

ef1:

bc2:

Aggregated DEF activity.

Figure 3.40 Scenario
aggregation

Synthesis seen in the Interface view3.3.6

The interfaces associated with a port in the derived model include all
interfaces associated with the corresponding ports in the base models.

All base model
interfaces included

29 March 1995 23:053.3 Basic OOram concepts and notation for role model synthesis

Role model synthesis©Taskon 1992. Page 144

Base model
interfaces immutable

Base model interfaces are immutable in the derived model: messages
may neither be added nor removed. It is possible to rename the
derived interfaces and messages; but this adds to the confusion and is
avoided if possible. (The exception is when there are name conflicts
between base models which are synthesized into a common, derived
model).

Messages can only
be added in new

interfaces

New messages can only be added to interfaces which are defined in
the derived model.

It is usually not necessary to repeat the specification of the imported
interfaces in the documentation of the derived model, but they may be
included if this improves readability.

Imported interface
documentation

optional

3.3.7 Synthesis of method Specification view

When a base role is synthesized into a derived role, all its
collaborators and the corresponding message interfaces are
synthesized correspondingly. The derived role has to provide a
method for every message understood by the base role. The default is
to retain the base role methods; the behavior of the derived model will
then correspond to the behavior of the base model.

Default: Base
method becomes

derived method

The derived role may redefine one or more methods, causing the
derived model to behave differently from the base model. In principle,
the derived method can do anything. It can for example send any
message on any port regardless of where that message was originally
defined. This leads to unsafe synthesis, where our understanding of
the base model behavior does not help us understand the behavior of
the derived model.

Unsafe method
override possible

The Activity superposition safe synthesis construct is illustrated in
figure 3.26. The stimulus messages of the base models become
stimulus messages of the derived model, and the activities of the base
models become activities of the derived model. No method override is
required in the derived model, but certain kinds of overrides are
permissible and may be desirable.

Activity
superposition

The detailed method logic may be influenced by the combination of

3.3 Basic OOram concepts and notation for role model synthesis29 March 1995 23:05

©Taskon 1992. Page 145Role model synthesis

roles played by the object. The procedure followed by a travel
Authorizer who is a department head could, for example, be different
from the procedure followed by a travel Authorizer who is a project
manager.

The detailed behavior often depends on the value of an attribute
belonging to another role played by the same object. The Traveler
stores the cost of the airline ticket as part of the AirlineBooking role
model. When filling in the expense account, the Traveler adds this
amount as an expense and deducts it as an advance.

The activity aggregation safe synthesis construct is illustrated in
figure 3.27. The activity of the second base model shall be part of a
method in the first model. This method must be modified in the
derived role to send the required stimulus message and wait for its
completion. In addition, the overrides permissible in the superposition
construct are also permissible here.

Activity aggregation

29 March 1995 23:053.3 Basic OOram concepts and notation for role model synthesis

©Taskon 1992. Page 146 Role model synthesis

Chapter 4
Bridge to implementation

This chapter has been written for computer programmers. It tells you how to create
an implementation with the functionality specified in one or more role models.

Implementations may be created by different technologies: Business processes may,
for example, be manual or computer assisted, and computer programs may be
specified in a variety of different programming languages. The OOram method is
basically independent of the implementation technology, but the shrewd analyst will
let the intended implementation technology color the details of the analysis.

We will not attempt to cover all possible implementation technologies here, but will
focus on computer implementation in an object-oriented programming language.
The presentation covers implementation in Smalltalk and C++. The OOram method
has also been used successfully to specify programs written in other languages such
as C and Eiffel; and also to specify manual business processes in large
organizations.

Introduction to implementation
Object modeling from a programmer's point of view
A simple class inheritance example
Why we need high level descriptions

The relationship between a role model and its implementation
Implementing the roles
Implementing the ports and interfaces
Implementing the methods and actions

The implementation process
Choice of programming language

29 March 1995 23:05

©Taskon 1992. Page 147Bridge to implementation

Introduction to implementation4.1

In a nutshell
We have earlier stressed the value of divide and conquer. Objects play many roles
and our descriptions are materially simplified when we focus on one function at the
time. We now get to the stage where we have created the role models and want to
combine them in an implementation. This is also the time for filling in the details. In
the role models, we reason about overall functionality. We are now allowed to focus
on one class at the time and get its details right.

The implementation stage is the acid test for our separation of concern: successful
role models only interact in a few, easily controlled points. There is something
suspicious with our role models if we need to reconsider the whole when we
implement the details.

Figure 4.1 Typical
models on different
levels of abstraction

System
implementation

(programs)

System
design
model

System
requirements

model

System
user

model

The focus of this chapter

Transition between
design and

implementation

The art of computer programming is outside the scope of this book.
Our interest focuses on the transition between the abstract design
descriptions and the implementation, with special emphasis on how
we can maintain the consistency between the different levels of
description as illustrated in figure 4.1.

A simple problem can be solved with simple means. If we want to
build a birdhouse, we take a few pieces of wood and nail them
together. If we need to count how many times differen characters
occur in a text file, we write a simple program to do the counting.

Simple solution to
simple problem

29 March 1995 23:054.1 Introduction to implementation

©Taskon 1992. Page 148 Bridge to implementation

Complex problems may have equally simple solutions. A builder can
create temporary living quarters for his crew by simply stacking a
number of prefabricated huts. A Unix expert can specify very
powerful functionality by linking a number of existing programs
through a shellscript. Programmers routinely invoke proven library
functions to reduce the apparent complexity and improve the quality
of their programs.

The top-down approach for hierarchical decomposition was
introduced by [Wirth 71] and has later been advocated by many
methodologists. (FOOTNOTE: Aggregation and hierarchical
decomposition was discussed in section 3.2.1). Hierarchical
decomposition has a long history of success stories, because
hierarchical models are easy to understand, and help partition large
problems into smaller ones.

Hierarchical
decomposition for
simple solution to
complex problem

The main difficulty with hierarchical decomposition is that there are
so many problems that are not amenable to it. On the human level, we
have studied an object pattern that describes the handling of travel
expense accounts. Other models would be needed to describe the
myriad of other functions in an enterprise. A few examples are design,
production, budgeting, accounting, and materials management.

Horizontal
decomposition splits

complex problem
into several simpler

ones

These models all belong on the same level, so they cannot be
organized in a hierarchy. Each model can be described as a role
model, they are implemented as a structure of objects where each
object plays a number of roles. In principle, we can create a derived
model combining all the functions. In practice, we rarely do so at the
level of the above examples. The reason is that we define the
functions to be reasonably independent so that the derived model does
not provide new insights.

The OOram program design philosophy follows similar lines. We
create different role models for important aspects of the problem. The
program objects play multiple roles from these models, and we fill in
role model dependencies and other details in the program
implementation.

All real development work is iterative, so we also need a smooth
reverse transition from the implementation to the role models because
we want to maintain consistency between models and
implementation.

One program --
many models

29 March 1995 23:05 4.1 Introduction to implementation

©Taskon 1992. Page 149Bridge to implementation

We will illustrate horizontal decomposition with a simple example.
Consider that we want to write a simple text editor which permits
several simultaneous windows on the same text. We need to solve a
number of (nearly) independent problems:

The TextEditor model describes how we represent text and how
we edit it.

1.

2. The Model-View-Controller describes how we manage
representation of information ("Model"), presentation of
information ("View") and user input ("Controller"). (
FOOTNOTE: Details in chapter 11.)

A Transaction manager lumps a number of operations into a
single, indivisible transaction.

3.

A Persistent object store ensures that the textual information is
maintained between program executions.

4.

The objects of the TextEditor program are partially described by the
TextEditor role model which describes the text aspects of the
program; the Model-View-Controller (MVC) role model which
describes the synchronization between text objects and one or more
editors; the TransactionManagement role model which describes how
complex functions are encapsulated into atomic operations; and the
PersistentObjects role model which describes how objects are made
permanent so that they survive individual program executions.

An interesting observation is that while the TextEditor role model is
specific for the current problem, the other three models are general in
scope and could be found in a library of reusable components.

Figure 4.2 illustrates that we merge the role model functionalities in
the implementation. It is neither necessary nor useful to create the
derived model if the four base models are almost independent; this
could easily be achieved in this particular example.

Persistent
Objects

Role Model

TextEditor
Application program

Transaction
Mngmnt

Role Model

MVC
Role Model

 Text Editor
Role Model

Figure 4.2 Different
OOram models

describing different
aspects of the same

program

4.1 Introduction to implementation 29 March 1995 23:05

©Taskon 1992. Page 150 Bridge to implementation

In the remainder of this chapter, we will discuss how to create a
program that satisfies the specifications in one or more role models.
But first a few words about object oriented programming and the
reasons for creating higher level models.

Bridge from role
model to

implementation

4.1.1 Object modeling from a programmer's point of view

Brad Cox [Cox 87] has suggested an explanation of object orientation
in terms of the implementation. According to Cox, there is a small,
but significant, difference between the way data is stored in a
procedure oriented program and the way it is stored in an object-
oriented program.

In figure 4.3, the Client must carefully match operations and data. The
programmer can do this by importing the type definitions into her
program.

Procedure
orientation means

that the client must
know the types of its

data

Figure 4.3
Procedure
orientation

according to Brad
Cox

data

data

data

data

Type A

Type B

import

import

operations

Client

In figure 4.4, each data storage area is augmented with a pointer to the
data type. Different data can therefore react differently to the same
operation according to the information stored in the data type.

Object orientation
means that the data

know their type

4.1 Introduction to implementation29 March 1995 23:05

©Taskon 1992. Page 151Bridge to implementation

Client

data

data

data

data

Type A

Type B

operations

Figure 4.4 Object
orientation

according to Brad
Cox

As an example, we will show how we can write a program to draw the
simple house facade shown in figure 4.5. We will outline programs in
the procedure oriented language FORTRAN and in the object-oriented
languages C++ and Smalltalk. If your expertise is in some other
language, you may benefit from the advice that we were given at a
seminar by Gerald Weinberg. we found it hard to read programs in an
unfamiliar language because we unconsciously focused on the parts
we did not understand. Weinberg's advice was that we consciously
should ignore the unfamiliar parts and focus on the parts we
understood. This made the going much easier.

Procedure oriented
program for drawing

a house facade

Figure 4.5 A simple
house facade

FORTRAN program outline:

C NOTICE THAT THE CLIENT, I.E. THE CALLING
C PROGRAM,HAS TO KNOW THE TYPES OF THE DATA
C ITEMS AND SELECT THE APPROPRIATE SUBROUTINE.

 SUBROUTINE DRAWWALL(IXMIN,IXMAX,IYMIN,IYMAX)
C STATEMENTS FOR DRAWING A BLANK WALL

4.1 Introduction to implementation 29 March 1995 23:05

Bridge to implementation©Taskon 1992. Page 152

C CODE OMITTED
 END

C
 SUBROUTINE DRAWWINDOW (IXMIN,IXMAX,IYMIN,IYMAX)

C STATEMENTS FOR DRAWING A WINDOW
C CODE OMITTED

 END
C

 SUBROUTINE DRAWDOOR (IXMIN,IXMAX,IYMIN,IYMAX)
C STATEMENTS FOR DRAWING A DOOR
 ...

 END
C DECLARE ARRAYS KIND, X0, XM, Y0, YM,
C AND FILL THEM WITH DATA. CODE OMITTED

 DO 1000, I=1 TO MAX
 IF KIND(I).EQ.1 CALL DRAWWALL(X0(I),XM(I),Y0(I),YM(I))
 IF KIND(I).EQ.2 CALL DRAWWINDOW(X0(I),XM(I),Y0(I),YM(I))
 IF KIND(I).EQ.3 CALL DRAWDOOR(X0(I),XM(I),Y0(I),YM(I))

1000 CONTINUE

A C++ program for drawing a facade is given below. The knowledge
about how to draw a particular element has been delegated to the
element itself. This polymorphism simplifies program extension and
facilitates reuse.

class Figure {
public:
 virtual ~Figure() {};
 virtual void draw() const = 0;
protected:
 Figure(const Point& topLeft, const Point& bottomRight);
private:
 Figure(const Figure&); // Avoid copy
 Figure& operator=(const Figure&); // Avoid assignment
 Point topLeftPoint;
 Point bottomRightPoint;
};
Figure::Figure(const Point& topLeft, const Point& bottomRight) :
 topLeftPoint(topLeft),
 bottomRightPoint(bottomRight)
{}
class Wall : public Figure {
public:
 Wall(const Point& topLeft, const Point& bottomRight);
 virtual void draw() const;
};
Wall::Wall(const Point& topLeft, const Point& bottomRight) :
 Figure(topLeft, bottomRight)
{}
void Wall::draw() const
{
 ...
}
class Window : public Figure {
public:
 Window(const Point& topLeft, const Point& bottomRight);
 virtual void draw() const;
};
Window::Window(const Point& topLeft, const Point& bottomRight) :
 Figure(topLeft, bottomRight)
{}
void Window::draw() const
{

4.1 Introduction to implementation29 March 1995 23:05

©Taskon 1992. Page 153Bridge to implementation

 ...
}
class Door : public Figure {
public:
 Door(const Point& topLeft, const Point& bottomRight);
 virtual void draw() const;
};
Door::Door(const Point& topLeft, const Point& bottomRight) :
 Figure(topLeft, bottomRight)
{}
void Door::draw() const
{
 ...
}
class Facade {
public:
 Facade() {}
 void draw();
 void add(Figure* f);
private:
 List<Figure*> list;
};
void Facade::add(Figure* f)
{ list.append(f); }
void Facade::draw()
{

 for(ListIter<Figure*> it(list); it.isMore(); it.next())
 it.item()->draw();

}

A Smalltalk program for drawing facade is shown below. The syntax
is different, but the logic is roughly the same as in the C++ example.

Object subclass: #Figure
 instanceVariableNames: 'topLeftPoint lowerRightPoint '.

Figure methodsFor: displaying
draw

 self subclassResponsibility.
Figure subclass: #Window

 instanceVariableNames: ''.
Window methodsFor: displaying
draw

 " Define method for drawing a window. "
 ...

Figure subclass: #Door
 instanceVariableNames: ''.

Door methodsFor: displaying
draw

 " Define method for drawing a door. "
 ...

Figure subclass: #Wall
 instanceVariableNames: ''

Wall methodsFor: displaying
draw

 " Define method for drawing a wall. "
 ...

Figure class methodsFor: testing
drawFacade

 | elements |
 elements := OrderedCollection new.
 " Add elements and set their attributes. "
 ...
 elements do: [:elem | elem draw].

" Evaluate the statement Figure drawFacade to test the program. "

29 March 1995 23:054.1 Introduction to implementation

©Taskon 1992. Page 154 Bridge to implementation

A simple class inheritance example4.1.2

In most object-oriented programming languages, all objects sharing
the same implementation are said to belong to a common class, and
the class defines the program controlling these objects. A class can
create new objects, this is called instantiating the class. All objects
created by a given class are called the instances of that class.

The object specification defines the attributes, the class defines the
instance variables as the designer's choice of internal representation.
Some instance variables contain pointers to the object's collaborators;
other instance variables represent its attributes. The class also defines
a method for each message that the object must understand. The
method is the code describing the actions to be taken by the object
when it receives the corresponding message.

Classes, base classes
and derived classes

A class may be defined as being similar to another class with given
modifications and extensions. This is called programming by
difference, and the class is said to be derived from its base class or to
be a subclass of its superclass. The derived class will inherit all
instance variables and methods from the base class. In addition, it
may:

1. add instance variables to the object,

2. add new methods making the object understand additional
messages,

override methods in the base class so that the object's behavior is
modified for the corresponding messages.

3.

Example: Modeling
a point

As an example, we will define a class for objects representing points
in a two-dimensional coordinate system. The point object should
know its coordinates in both the Cartesian and the polar coordinate
systems, so we give it four attributes: x, y, radius (R), and angle (T for
theta). We define messages to set and read these attributes:

SetXY. Set the point's coordinates to the given x and y values.1.

SetRT. Set the point's radius and angle to the given values.2.

3. GetX, GetY, GetR, GetT. Four messages that return the current
values of the point's attributes.

We can also define operations on points. For example, the function

4.1 Introduction to implementation29 March 1995 23:05

©Taskon 1992. Page 155Bridge to implementation

vectorAdd returns a new Point, which is the vector sum of the
receiving object and the point given as a parameter.

We now have to decide which instance variables to define to hold the
attribute information. Should we store the Cartesian coordinates, the
polar coordinates or both? All three solutions are possible, the best
choice will depend on how we expect the point objects to be used. We
could store the full, redundant information if we frequently need all
the attributes and rarely set their values, otherwise we could store the
information in its most frequently used form. The most interesting
solution would be to define two classes, CartesianPoint and PolarPoint
. Instances of these classes could be used interchangeably, and they
could even be mixed. Objects referring to the point objects would only
see a difference in performance.

The Point class We first define Point as an abstract class, which is a class that should
not be instantiated:

class Point {
public:
 virtual ~Point() {};

 virtual void setXY(double, double) = 0;
 virtual double getX() const = 0;
 virtual double getY() const = 0;

 virtual void setRadiusAndAngle(double, double) = 0;
 virtual double getRadius() const = 0;
 virtual double getAngle() const = 0;

 virtual Point& vectorAdd(const Point& delta) = 0;

protected:
 Point() {}; // Abstract class

private:
 Point(const Point&); // Avoid copy
 Point& operator=(const Point&); // Avoid assignment
};

Define abstract class Point in Smalltalk:

Object subclass: #Point
instanceVariableNames: ''

Point methodsFor: accessing
setX: x setY: y

self subclassResponsibility
getX

self subclassResponsibility
getY

self subclassResponsibility
setR: rVal setAngle: angVal

self subclassResponsibility
getR

self subclassResponsibility

29 March 1995 23:054.1 Introduction to implementation

Bridge to implementation©Taskon 1992. Page 156

getT
self subclassResponsibility

vectorAdd: aPoint
^self class new

setX: self x + aPoint x
setY: self y + aPoint y

The ^-symbol in the Smalltalk vectorAdd:-method causes it to return
the expression as its function value. The expression is read as follows:
Create a new instance of the same class as the receiver. Send the
message setX:setY: with parameters (the receiver's x attribute + the
parameter point's x attribute) and (the receiver's y attribute + the
parameter point's y attribute). Finally, return the value of the
expression to the sender.

The CartesianPoint
class

We next define a subclass, CartesianPoint, holding Cartesian
coordinates. The methods involving x and y are simple, while the
methods involving polar coordinates involve computations:

class CartesianPoint : public Point {
public:
 CartesianPoint(double x, double y);
 ~CartesianPoint() {}
 void setXY(double nx, double ny);
 double getX() const { return x; }
 double getY() const { return y; }
 void setRadiusAndAngle(double r, double a);
 double getRadius() const;
 double getAngle() const;
Point& vectorAdd(const Point& delta);
private:
 double x;
 double y;
};
CartesianPoint::CartesianPoint(double nx, double ny) :
 x(nx),
 y(ny)
{}
void CartesianPoint::setXY(double nx, double ny)
{
 x = nx;
 y = ny;
}
void CartesianPoint::setRadiusAndAngle(double r, double a)
{ setXY(r * cos(a), r * sin(a)); }
double CartesianPoint::getRadius() const
{ return hypot(x, y); }
double CartesianPoint::getAngle() const
{
 double t = atan2(y, x);
 if(t < 0.0) t = 2 * PI + t;
 return t;
}
Point& CartesianPoint::vectorAdd(const Point& delta)
{
 x += delta.getX();
 y += delta.getY();
 return *this;
}

Define CartesianPoint in Smalltalk:

4.1 Introduction to implementation29 March 1995 23:05

©Taskon 1992. Page 157Bridge to implementation

Point subclass: #CartesianPoint
 instanceVariableNames: 'x y '

Point methodsFor: accessing
setX: xFloat setY: yFloat

 x := xFloat.
 y := yFloat.

getX
 ^x

getY
 ^y

setR: rVal setAngle: angVal
 x := rVal * angVal cos.
 y := rVal * angVal sin.

getR
 ^((x * x) + (y * y)) sqrt.

getT
 ^(y / x) arcTan

The PolarPoint class We define the class PolarPoint in a similar way. All methods
involving polar coordinates are now simple, while the methods
involving Cartesian coordinates are more complex:

class PolarPoint : public Point {
public:
 PolarPoint(double r, double a) ;
 void setXY(double x, double y);
 double getX() const;
 double getY() const;
 void setRadiusAndAngle(double r, double a) { radius = r; angle = a; }
 double getRadius() const { return radius; }
 double getAngle() const { return angle; }
 Point& vectorAdd(const Point& delta);
private:
 double radius;
 double angle;
};
PolarPoint::PolarPoint(double nr, double na) :
 radius(nr),
 angle(na)
{}
void PolarPoint::setXY(double x, double y)
{
 double a = atan2(y, x);
 if(a < 0.0) a += 2 * PI;
 radius = hypot(x, y)
 angle = a;
}
double PolarPoint::getX() const
{ return (radius * cos(angle)); }
double PolarPoint::getY() const
{ return (radius * sin(angle)); }
Point& PolarPoint::vectorAdd(const Point& delta)
{
 setXY(getX() + delta.getX(), getY() + delta.getY());
 return *this;
}

Define PolarPoint in Smalltalk:

Point subclass: #PolarPoint
instanceVariableNames: 'r t '.

Point methodsFor: 'accessing'
setX: xFloat setY: yFloat

r := (xFloat squared + yFloat squared) sqrt.
t := arcTanY: yFloat andX: xFloat.

29 March 1995 23:054.1 Introduction to implementation

Bridge to implementation©Taskon 1992. Page 158

getX
^t cos * r.

getY
^t sin * r.

setR: rVal setAngle: angVal
r := rVal.
t := angVal.

getR
^r.

getAng
^t.

These simple examples illustrate some of the illustrious points about
object-oriented programming:

The power of object-
oriented

programming

encapsulation. Objects hide their implementation. It is not
possible to observe from outside the object how its attributes are
represented or how the messages it receives are handled in their
methods.

1.

2. configurability. All objects that behave properly towards a given
collaborator with respect to messages sent and received, may
replace each other with respect to that collaborator irrespective of
their class. This property follows from the encapsulation property.

3. polymorphism. Different objects may treat the same message in
different ways depending on the methods they use to process it.

4. inheritance. A class can be derived from another class, the
derived class only need specify what is different from the base
class.

Why we need high level descriptions4.1.3

Why should we ever want to create higher level models of an object-
oriented program? The binary executable code is the only
representation that gives a precise definition of what the program will
actually do under all possible circumstances. The source code
contains the equivalent information -- assuming that the compilers,
and loaders do what we expect them to do. But we have also added
embellishments that have no effect on program execution: Comments
are added and program entities are given names that convey meaning
to a human reader, but that have no effect on program execution.
Most of us still prefer to study the program in its source code form,
even if we are occasionally mislead by improper comments and entity
names.

A program is defined
by its executable

code

4.1 Introduction to implementation29 March 1995 23:05

©Taskon 1992. Page 159Bridge to implementation

Office procedures are very similar: the office procedures are defined
by the procedure texts and there are no high level descriptions. We
will later show that higher level, object-oriented descriptions of office
procedures give important benefits, but we will now restrict our
arguments to computer programs.

The binary
executable code
mixes all system

functions

While we try to create a program structure which clearly separates
different concerns into distinct classes and methods, we still end up
with having to satisfy several requirements in the same unit. Consider
a method that changes the state of a persistent object. The primary
function of this method is to change the state. In addition, it must raise
an exception if the specified change is inappropriate. It must update
all dependent objects such as visual presentations on the screen. It
must ensure that the new state of the object is reflected in its persistent
form (e.g., on disk). If the state change is part of a transaction that is
canceled, it may have to undo it.

Why should we ever want to create high level models of an object-
oriented program? If the code is simple and readable, we need nothing
else. In practice, the program code is not as simple and readable as we
could wish, and we have four excellent reasons for wanting to create
higher level models:

Why high level
models?

Simplification. We want a simplified description which can be
grasped by the limited capacity of our skull. We use such abstract
descriptions to reason about the system before diving into the
details, and to provide a clear documentation of its overall
features.

1.

Evolution. The more details we put into our descriptions, the
harder it will be to change them. The original rationale for
introducing a design stage in the program life cycle was that it is
so much cheaper to change a design description than it is to
change a complete program. But this is only true to the extent that
the design description really is smaller and simpler than the
program code.

A viable alternative is to describe the essential aspects as a
simplified program. This incremental programming approach is
often more productive than a prolonged period of high level (and
abstract) analysis and design.

2.

4.1 Introduction to implementation 29 March 1995 23:05

©Taskon 1992. Page 160 Bridge to implementation

Emphasis. The program code is an explicit representation of the
program logic, the source code may also exhibit the data
structures. Important static and dynamic program properties are
specified implicitly, and not always easy to fathom. Many OOram
views explicitly express aspects of the program which are not
immediately apparent from the program code.

3.

4. Documentation. (Human-to-human communication.) A successful
program will have a long life. Many people will try to understand
it in order to fix bugs and modify its functionality, usually under
high time pressure. Good documentation help them understand
the underlying architecture and constraints, and thus maintain
system integrity.

Simple models are
easy to change

All four considerations have proven to be important in our practical
work. Making changes to an isolated role model is trivial, as is
making changes to the details of an isolated method. But due to the
ripple effect, changing a role model which depends on other role
models is harder. In general we can say that the work involved in
making a change depends on the number and nature of its dependent
parts, be they state diagrams, method definitions or dependent
models. Large systems need another abstraction layer to keep things
simple. We advocate a clear, modular architecture for this purpose,
and keep low level modules stable while the high level modules are
being developed. (FOOTNOTE: We will describe OOram modules in
chapter 6.5)

Our experience has also provided counter-examples to these
observations. Simple role models are excellent for providing the
answers to critical questions, but we may fail to find the most critical
questions. Our understanding of the issues may be incomplete,
problems we deem to be important evaporate under close scrutiny,
and problems we believed to be trivial turn out to be real mind
boggles. We therefore need to go the whole way and describe the
solution as a program before we can be sure that our original
questions were the right ones. In the normal life cycle with a design
stage separated from an implementation stage, deficiencies in the
design which are discovered during implementation cause costly
rework.

Simple models may
hide ugly details

Some description methodologies, notably in the field of database
systems, follow the '100% rule': The high level description shall
include sufficient detail for the automatic generation of the
application program. We then regard this description as a program

29 March 1995 23:05 4.1 Introduction to implementation

©Taskon 1992. Page 161Bridge to implementation

and the description language (which may be graphical) as a very high
level programming language. The whole argument repeats itself: Can
we manage with this program as the sole description of the
application, or do we need simplified and more abstract models?

Executable
specifications are

simplified programs
which combine the

best from both
worlds

We often find it convenient to introduce an intermediate stage
between design and implementation which we call executable
specifications. These specifications are implementations in the sense
that they can be executed as programs, but they neither have the
efficiency nor the robustness required of a finished program product.
Their aim is to highlight deficiencies and details in the system logic,
they are abstractions in the sense that they suppress many aspects of
the target program and hide trivial details.

Some computer professionals may tend to associate system
description paradigms with the internal workings of the computer. But
the computer hardware does not "know" about Fortran and C, entities,
relations, objects, or messages. A computer is just a piece of
electronic hardware, performing its operations according to the
programs represented as bit patterns in its memory. So the audience of
a high-level description is a human being, not a computer.

The ultimate
consumer of a

manifest model is
human

Many years ago, we attended a seminar given by M. A. Jackson which
profoundly changed our attitude to programming techniques. The
following is a description of the result of this experience. (Apologies
to Jackson if he should be misrepresented.)

In figure 4.6, the top line symbolizes all programs that a given
computer may perform. These programs are generated by
systematically loading the computer's memory with each possible bit
pattern, and then, in turn, ask the computer to start executing from
each possible starting point. The number of different programs that
can be executed by our own personal computer is on the order of 10
raised to the power of many million, a truly staggering figure. Most of
these programs will come to an abrupt halt; some of them will never
terminate. To the computer, they are all legal programs. What most of
them have in common is that they do nothing that we, as humans,
regard as useful or even meaningful.

We only permit
systems we
understand

The middle line in the figure illustrates the almost infinitesimal subset
of these programs that do something that we find meaningful.
Jackson's insight was that even these programs are not acceptable,
because the functioning of most of them will be outside the grasp of
the human mind. Jackson's thesis was that of all the meaningful

29 March 1995 23:054.1 Introduction to implementation

©Taskon 1992. Page 162 Bridge to implementation

programs, we should limit ourselves to the small portion of them that
we can understand. This is illustrated as the bottom line of the figure.

Jackson: "For any given problem, there is one and only one correct
solution. The tragedy of computing is that there are so many other
solutions which also work."

Figure 4.6 Our
methodologies are

designed for people -
- computers will
accept anything

The set of all possible programs is extremely large

The set of all meaningful programs

The set of all understandable programs

Simplicity is a goal Our first line of defense is to create programs that are within the grasp
of the human mind; programs that are "so simple that there are
obviously no deficiencies". We believe that such programs should be
our ideal. No other representation can beat the simple program text
for precision, clarity and completeness.

The need for high level representations arise when the problem is too
complex to yield simple code in its solution -- when the structure of
objects gets too large to be readily grasped by the human mind.
OOram role modeling was created to answer this need and to provide
a model of the program that is simple and easy to understand.

4.1 Introduction to implementation29 March 1995 23:05

Bridge to implementation ©Taskon 1992. Page 163

The relationship between a role model and its
implementation

4.2

In a nutshell
The OOram role model describes the static and dynamic properties of a pattern of
collaborating objects. The program classes specify the exact static and dynamic
properties of their instances. Both descriptions define the objects, and there is a clear
relationship between them. We will see that it is easy to transform the information in
the role model into corresponding information in the classes.

An OOram role model can be promoted to an object specification
model, where the roles are promoted to object specifications. The
object specification roles are shown in heavy outline as illustrated in
figure 4.7. A virtual role has to be resolved into concrete roles before
being promoted, since a virtual role represents a cluster of objects
rather than a single object.

Any role model can
be implemented

Figure 4.7 Roles
specifying

implementation are
shown with heavy

outline

System role Environment role

System object
specification
to be implemented
as a class

Environment object
specification is sometimes
implemented as
an incomplete class

OOram concepts
mapped on to the

programming
language

Role models specify the static and dynamic properties of object
patterns, and thus object-oriented programs. The concepts of the role
models map on to the concepts of the programming language. We
indicated possible mappings in the Main Ideas, and repeat it in table
4.1 for your convenience. The map is meant to help a programmer
understand the OOram terms; but the terms are not equivalent since
the OOram method focuses on roles and a programming language
focuses on classes.

29 March 1995 23:054.2 The relationship between a role model and its implementation

©Taskon 1992. Page 164 Bridge to implementation

Table 4.1 Mapping
OOram models to

programs

OOram Smalltalk C++

Role Model -- --

Role Object Object

Object Specification, Type Class Class

Port Variable Pointer data member

Interface Protocol Abstract class or protocol class

Message Message Function call

Method, Action Method Member function

Derived model Subclass Derived class

Base model Superclass Base class

Implementing the roles4.2.1

A role is an idealized description of an object in the context of a
pattern of collaborating objects. Through our policy of divide and
conquer, we focus on the object aspects that are relevant for the role
model's area of concern.

An object
specification is a

partial description of
an implemented

object

The object specification describes an object which will actually be
implemented. The role is made more concrete when we promote it to
an object specification. The programming language concept
corresponding to an object specification is a class.

The default is that there is a one-to-one relationship between object
specification and class, but in general there is a many-to-many
relationship between them.

The simplest situation is if we create a complete object specification
model for the set of classes we want to implement. In figure 2.17 on
page 78??, we defined a Client-Server model and a Data transfer
model. In figure 3.18 on page 121??, we used these models as base
models and derived a File send/receive model. In figure 4.8, this
model has been promoted to an object specification model ready for
implementation in two classes, one for each role.

src intSend/receive
Client

Send/receive
Server

Figure 4.8 File
send/receive object
specification model

29 March 1995 23:05 4.2 The relationship between a role model and its implementation

©Taskon 1992. Page 165Bridge to implementation

Many classes may
implement the same

role

We may choose to program different classes that implement the same
object specification. The classes may have different space/speed
tradeoffs, or different functionality, even if their instances play the
same role in the current role model. An example is that we could
implement a dummy class for the Client role which can later be
replaced by a selection of different product implementations for
simple and sophisticated end user file manipulation systems.

The different subclasses of Point for Cartesian and polar coordinates
given in the Modeling a Point example in section 4.1.2 also illustrate
several implementations of the same object specification.

We want to stress that the OOram method does not insist that we
create a complete set of derived models and object specifications. On
the contrary, the OOram method specifies that we only create the
models needed for our understanding of the system, and that models
and source code together constitute the system documentation. Most
well-defined models should be sufficiently independent to render a
formal synthesis operation superfluous. The implementor implements
the classes directly from the several base models so that the class
instances will play all the required roles.

One example is the activity network model of section 1.2.2 on page
19??. The role model is quite sufficient to specify the single class that
plays the roles of Predecessor, Job, and Successor.

A class may
implement many

roles

Another example is the two base models for the FTP file transfer.
These models can be promoted to object specifications as shown in
figure 4.9, leaving it to the implementor to make his two classes play
the roles of (Client, Source, Destination) and (Server, Source,
Destination) respectively.

dst src

rsp intClient Server

Source Destination

Figure 4.9 Two
object specification

models specifying the
FTP file transfer

service

29 March 1995 23:054.2 The relationship between a role model and its implementation

Bridge to implementation©Taskon 1992. Page 166

Our naming convention is that role names are alphabetic, and classes
are given the names of the primary role followed by a numeric suffix.
The class for the Client role could be named Client1, and the class for
the Server role could be Server1. We thus follow the naming
conventions for classes in our programming language when we name
our roles.

We name classes
with numeric suffix

The object specifications of figure 4.8 and 4.9 both lead to the
following class definitions:

// Class: SendReceiveClient1
class SendReceiveServer1;
class SendReceiveClient1 {
public:
 SendReceiveClient1();
 ~SendReceiveClient1();
private:
 SendReceiveClient1(const SendReceiveClient1&); // Avoid copy
 SendReceiveClient1& operator = (const SendReceiveClient1&); // Avoid assignment
 SendReceiveServer1* server;
}; // end of SendReceiveClient1
// Class: SendReceiveServer1
class SendReceiveServer1 {
public:
 SendReceiveServer1();
 ~SendReceiveServer1();
private:
 SendReceiveServer1(const SendReceiveServer1&); // Avoid copy
 SendReceiveServer1& operator=(const SendReceiveServer1&); // Avoid assignment
 SendReceiveClient1* client;
}; // end of SendReceiveServer1

Similarly in Smalltalk:

Object subclass: #SendReceiveClient1
instanceVariableNames: 'server '.

Object subclass: #SendReceiveServer1
instanceVariableNames: 'client '.

A class may be derived from a base class, and a group of classes may
be derived from a group of base classes.

An object specification model can be derived from a base object
specification model. This is an open invitation to let the derived
classes be derived from the corresponding base classes. We could, for
example, define base classes for the Client and Server roles and
augment them with send/receive functionality in the subclasses. In
Smalltalk:

Synthesis can be
mapped on to class

inheritance

Object subclass: #Client2
instanceVariableNames: 'server '.

Object subclass: #Server2
instanceVariableNames: 'client '.

Client2 subclass: #SendReceiveClient2
instanceVariableNames: ''.

Server2 subclass: #SendReceiveServer2
instanceVariableNames: ''.

29 March 1995 23:05 4.2 The relationship between a role model and its implementation

Bridge to implementation ©Taskon 1992. Page 167

If our programming language includes facilities for multiple
inheritance, we could implement classes for the Client, the Server, the
Source and the Destination roles. We could then implement the
different combinations described in figures 3.16 through 3.18 by
suitable derivations. An example for the file send/receive case is
shown in figure 4.10.

Figure 4.10 Possible
multiple inheritance

hierarchy

Destination2

SendReceiveServer2SendReceiveClient2

Source2Server2Client2

The following C++ code uses multiple inheritance to implement the
class structure of figure 4.10. You may find that it is more interesting
than it is practicable:

// Class: Client2
class Client2 {
public:
 Client2();
 ~Client2();
private:
 Client2(const Client2&); // Avoid copy
 Client2& operator=(const Client2&); // Avoid assignment
}; // end of Client2
// Class: Source2
class Source2 {
public:
 Source2();
 ~Source2();
private:
 Source2(const Source2&); // Avoid copy
 Source2& operator=(const Source2&); // Avoid assignment
}; // end of Source2
// Class: Destination
class Destination {
public:
 Destination();
 ~Destination();
private:
 Destination(const Destination&); // Avoid copy
 Destination& operator=(const Destination&); // Avoid assignment
}; // end of Destination
// Class: Server
class Server {
public:
 Server();
 ~Server();
private:
 Server(const Server&); // Avoid copy
 Server& operator=(const Server&); // Avoid assignment
}; // end of Server
// Class: SendReceiveClient2
class SendReceiveServer2;
class SendReceiveClient2 : public Client2, public Source2, public Destination {

4.2 The relationship between a role model and its implementation 29 March 1995 23:05

Bridge to implementation©Taskon 1992. Page 168

public:
 SendReceiveClient2();
 ~SendReceiveClient2();
private:
 SendReceiveServer2* client;
}; // end of SendReceiveClient2
// Class: SendReceiveServer2
class SendReceiveServer2 : public Server, public Destination, public Source2 {
public:
 SendReceiveServer2();
 ~SendReceiveServer2();
private:
 SendReceiveClient2* client;
}; // end of SendReceiveServer2

When we use automatic program generators, we find it convenient to
distinguish between the automatically generated code and the manual
extensions. We let the tools create (abstract) classes with a zero
suffix, e.g., Client0, and the programmer extends and modifies this
code in a subclass, e.g., Client1. The advantage is that we can
regenerate the superclass when the models are modified without
interfering with the manually prepared code. The disadvantage is the
added complexity caused by doubling the number of layers in the
class structure, see figure 4.11.

Automatic code
generators useful,

but less flexible than
human programmers

Client0
automatically generated

abstract (base) class

Client1
manually coded
concrete class

Inheritance

This class may be
updated automatically
at any time ...

... without destroying the
manually created code
in this class.

Figure 4.11
Automatically

generated
superclasses,

manually prepared
subclasses

We have been using automatic code generators for Smalltalk and
Eiffel, and find them very useful for creating executable
specifications and prototypes. We usually remove the abstract layer
from the final production code to avoid the unnecessarily deep class
hierarchy, and use checking programs to maintain the correspondence
between object specification and code in the maintenance phase.

29 March 1995 23:05 4.2 The relationship between a role model and its implementation

Bridge to implementation ©Taskon 1992. Page 169

Implementing the ports and interfaces4.2.2

A port describes a
variable

A Port is an abstraction of a variable. The default is to map the port to
an instance variable, but it may be mapped into any kind of variable.
In Smalltalk, it could be a global, instance, class, or temporary
variable; in C++ it could be private or public.

A multi-port is
implemented with a

collection

The implementation of a port will depend on its cardinality. A ONE-
port will be represented as a pointer variable. A MANY port will be
represented as some kind of collection such as Set, Array or
LinkedList. The role model does not formally specify the kind of
collection to be used. The choice is left to the implementor, but the
analyst can indicate his preference in a comment associated with the
port.

The default name of the variable is the name of the port. We usually
follow the naming conventions for variables in our programming
language when we name our ports.

The port is not necessarily implemented as an instance variable;
because a local method could compute the pointer whenever needed.
The message interaction between collaborators could also be taken
care of by a special program. In the case of the FTP file transfer
implementation, the messages will be transmitted through a
communication path according to the Internet Transmission Control
Protocol (TCP). The operating system is likely to support some kind
of socket that facilitates this communication, and our methods will use
these facilities to transmit messages.

Such program details are immaterial for the role models at the
analysis level. They can be described in design level role models or
they can be left to the discretion of the implementor.

The important principle is that while a role model may give a
simplified view of the program, it should be given a true
representation of the collaboration structure in the context of its area
of concern. There must be a port for every message sent, you cannot
say that a particular port is unimportant because it only lasts for a few
microseconds. We either need it, and then it should be shown. Or we
do not need it, and then we should not send messages along it.

If we find that the collaboration view gets too complicated when we
show all the relevant interaction paths; we must simplify the program
logic rather than cheat ourself and others by falsifying the view.

The role model
should never lie

29 March 1995 23:054.2 The relationship between a role model and its implementation

Bridge to implementation©Taskon 1992. Page 170

An OOram interface is a named collection of messages that may be
sent from one role to another. The popular programming languages
such as Smalltalk and C++ define all messages that are to be
understood by the instances of a class; they do not check that the
messages originate from an authorized sender. The reason for the
mismatch is that we in OOram focus on patterns of collaborating
objects, while the popular languages focus on the capabilities of
individual classes.

OOram controls the
messages sent

This apparent mismatch is easily bridged: The messages to be
understood by a class is the union of all the messages sent to it from
its collaborators. If we implement role B in figure 4.12 as class B1,
we give it two variables ba and bc and create methods for all the
messages sent from its collaborators as indicated in the figure. We
similarly create classes A1 and C1 which implement roles A and C
respectively. Class A1 will define a variable ab and methods which
send messages messAB1 and messAB2 to this variable. Class C1 will
define a variable cb and methods which send messages messCB1 and
messCB2 to this variable.

ab ba

bc

cb

ac

ca

A

B<C
messCB1
messCB2

B<A
messAB1
messAB2

B

C

A class implementing role B
must implement methods for
all received messages:
 Interface B<A
 messAB1
 messAB2
 Interface B<C
 messCB1
 messCB2

Figure 4.12 A
rudimentary object

specification
example

4.2 The relationship between a role model and its implementation29 March 1995 23:05

Bridge to implementation ©Taskon 1992. Page 171

It would be nice if the compiler could check that our implementation
actually conforms to the object specification.

In Smalltalk, we can implement the named interfaces as Smalltalk
protocols. A Smalltalk compiler does not enforce the OOram
specifications since it does not support static type checking. The type
system of statically typed languages does not readily support our
notion of giving different message privileges to different
collaborators, see box. Neither Smalltalk nor C++ guarantee that a
value has been assigned to a variable before it is used. (Some
Smalltalk compilers do a partial check.)

Once we know the classes that implement given roles, it is easy to
check that they understand all the messages they are supposed to
receive. It is harder to check that objects will only send the messages
they are supposed to send. We can rely on manual checking, which is
error prone and tedious; static code checking programs, which are
hard to make; or monitored execution programs for dynamic testing,
which can only test specific cases. Monitored execution will be
described in chapter 6.5 on page 238??.

Checking
implementation

conformance

BOX: An unsuccessful attempt at supporting OOram specifications with
language type system
A fine point for the specially interested: When developing a bridge between OOram
object specifications and the Eiffel programming language, we tried to define
deferred Eiffel classes for the ports. Classes ab and cb define the respective
interfaces, and class B1 was made a subclass of these classes so that it supported
both interfaces. The advantage was that the compiler checked the interfaces against
the OOram object specification. The disadvantage was that we got a very large
number of classes and spent much time in compilation.

The scheme was torpedoed by its handling of object references in message
parameters, however. Consider the role model in figure 4.12. Assume that the
computation process starts with anA1 (an instance of A1) creating aB1, storing a
pointer to this object in its variable ab. It then creates aC1, and sends a message
setB with aB1 as parameter to aC1. The variable ab in aB1 is typed with the ab
interface. The object aC1 receives the setB message and tries to store the parameter
in its cb variable. But cb is typed differently from ab, and we get a type error.
Changing the type of variable cb does not help, because the object aC1 then cannot
send the required messages to aB1.

This experiment confirmed Bjarne Stroustrup's assertion mentioned earlier: If you
don't like the basic type system of a language, use another with a type system that
suits your taste better.

4.2 The relationship between a role model and its implementation 29 March 1995 23:05

©Taskon 1992. Page 172 Bridge to implementation

Implementing the methods and actions4.2.3

A method specifies the work to be done by an object when it receives
a message. Methods (or member functions) are defined explicitly by
their code in the class; message sends appear embedded in the code.
OOram role models can include method specifications that can be
defined on four different levels of detail:

OOram supports
different levels of

method detail

By the name of the message and a comment describing its
intention. The programmer has to create the code from his general
understanding of the designer's intentions.

1.

By a free text (comment) describing the method's operation
together with a specification of the messages sent from the
method and their receivers.

2.

3. By pseudocode describing the method's operation together with a
specification of the messages sent from the method and their
receivers.

4. As code in a programming language such as C++ or Smalltalk.

The first level is an integral part of the message interface view, and
the remaining levels are seen in the Method specification view
described in section 2.5.2 on page 102?? Figure 2.38 on page 104?? is
an example of a method specified as pseudocode.

Depending on the details included in the method specifications,
automatically generated methods can be more or less complete. In the
simplest case, the method (procedure) header may be generated
automatically together with the message explanation in the form of a
comment. Formal parameters and their type will be included, if this
information is in the role model. The method bodies will be generated
as completely as possible from the specifications.

Automatic code
generation

4.2 The relationship between a role model and its implementation29 March 1995 23:05

©Taskon 1992. Page 173Bridge to implementation

The implementation process4.3

In a nutshell
The yo-yo approach to computer programming is an opportunistic, risk-reducing
strategy. As usual, we do not believe in snake oil, and recommend that you develop
your own implementation process that is uniquely adapted to you own requirements.

Your implementation
processes must be

tailored to your
needs

Like all other work processes, you will have to tailor your
implementation processes to your specific applications and your own
work situation. Your previous experience with systems development
in general and object-oriented development in particular, is of crucial
importance, as are the facilities available to you and the kinds of
systems you want to develop. This section may give you a useful
starting point if you are relatively new to object orientation.

The OOram perspectives and views are designed to support a wide
variety of work processes and implementation styles. The large
variety of perspectives and views support many different abstractions,
and the freedom to choose the detailed syntax and message semantics
support different programming styles.

OOram supports
many different work

processes

The idea of top-down development was introduced in the sixties.
[Oxford 86] gives the following description: "An approach to
program development in which progress is made by defining required
elements in terms of more basic elements,..." The trouble with the top-
down approach is that the devil is often found in the details: the early
assumptions prove to be inadequate and the top-level design has to be
modified.

Top-down approach
powerful, but the

devil may be in the
details

The pure top-down approach seemed very rational, and we advocated
it in several seminars and university courses in the seventies. We also
asked a number of graduate students to use the approach in their work
and to report on their experiences. Much to our chagrin, we found that
none of the students were able to follow our sound advice. We then
monitored our own work, and found that we regularly broke the rules
ourselves. Further observation told us that a prerequisite to following
the top-down approach was that we knew at least one and preferably
several ways of implementing the lower level details. This was rarely
true for the students with their limited experience, and often not true
for us when we were exploring new application technologies.

We find the same problems when we teach object orientation and the

4.3 The implementation process 29 March 1995 23:05

©Taskon 1992. Page 174 Bridge to implementation

OOram method to programmers. It is hard to relate to abstract
concepts, and the only way to make them real is to actually write
concrete, object-oriented programs. We advise a concrete-to-abstract
approach to learning object orientation: begin by writing simple
programs, and only introduce the OOram method when the basic
concepts are well understood through real programming experience.

Bottom-up approach:
The parts may not fit

together

An alternative is the bottom-up approach, which [Oxford 86]
describes as follows: "An approach to program development in which
progress is made by composition of available elements ..." The
trouble with the bottom-up approach often appears in the final system
integration stage. The system components may be excellent in
themselves, but this does not guarantee that they can be composed
into the required system.

Our current approach is what we call the yo-yo approach, which is a
combination of the top-down and bottom-up approaches according to
the principle of minimizing risk. We identify the part of the problem
that we consider will be the hardest to get right, and experiment with
possible solutions. When we feel that we have mastered this part, we
identify the next part which we consider will be the hardest, and so
on. This principle of minimizing risk corresponds in many ways to the
principles advocated in [Boehm 88], where you will find many more
details.

An alternative to the principle of minimizing risk is to solve the
simple problems first so as to get early tangible results. This is often
good for morale and may even help clarify the hard problems by
removing extraneous details.

The principle of
minimizing risk

The nature of the critical part will vary from case to case. We may not
know which functionality the users will actually need. It is then a
good idea to start with the user interfaces, and support them with
dummy data representations. The users get hands-on experience with
the proposed system at a very early stage and can provide valuable
feedback.

Identify critical
uncertainty

In other cases, we may suspect that we do not understand the users'
mental models. It can then be appropriate to start with a collaboration
view, possibly making it appear concrete to the users by providing
appropriate user interfaces.

The critical problems could also be on a low level. Will we really be
able to create the algorithm for a required function, or do we need

4.3 The implementation process29 March 1995 23:05

Bridge to implementation ©Taskon 1992. Page 175

magic to solve the problem? Can we create a program that satisfies
the speed requirements? Practical experiments can give the answer.

The yo-yo approach implies that we want to be able to cross a bridge
between OOram models and implementation in both directions: we
may have created a design and want to implement it, or we may have
created a prototype implementation and want to extract the design
information from it. Good processes with their associated tools should
support both directions.

Cross the
implementation

bridge in both
directions

We are programmers at heart, and we rarely find that we fail to notice
woolly details. The danger is rather that we keep too narrow a scope
for our work. We guard against system integration problems by
creating the top level program as early as possible -- inserting dummy
methods for the details. We then fill in programs for the critical parts
as they are created. In this way, we have an operational program from
a very early stage which we keep improving until it is ready for
delivery. Whenever possible, end users are involved in the prototype
testing, so that they can get maximal influence on the final product.

Keep an eye on the
total problem!

We are constantly trying to be conscious of our own mental blocks.
We may, for example, work on the high level aspects of a distributed
system, and find that our thoughts keep wandering off to the problem
of program-to-program communication. We then digress and work
with a small distributed program until we have removed the block.
Once the problem is cleared, we can continue the high level
considerations and base them on a solid foundation.

Beware of mental
blocks!

There is one caveat to the principle of minimizing risk: Most
development projects have a deadline on time and resources. It is
indeed a sad situation if essential functionality is still missing when
the ax falls and the project has to be terminated.

Identify essential
functionality!

There are great benefits to be gained if we manage to stimulate the
creativity of the users and everybody else around us: it improves the
final product and its acceptance; it is stimulating; and it is great fun.
But beware of escalating specifications! Some functionality may have
to be postponed to a later project, or the scope of the current project
may have to be expanded to take the users' increased appetite into
account.

Beware of escalating
specifications!

4.3 The implementation process 29 March 1995 23:05

Bridge to implementation©Taskon 1992. Page 176

As a general rule, we do not cross bridges until we get to them. We try
to make the system architecture expandable, and we regard the users'
expressed requirements as examples rather than the whole story. But
we keep the code consistent with the architecture and as simple as
possible. We do not complicate it to provide hooks for extensions.
The following guidelines are inspired by the excellent book by
Kernighan and Plauger [KerPla 74] on programming style, which
should be required reading for all programmers. The guidelines not
only apply to programming, but to all levels of analysis and design:

Postpone program
optimization!

Make it right. Our first concern is to create a program that reflects
the user requirements.

1.

Make it clear. Our second concern is to make the program simple
-- "so simple that there are obviously no deficiencies". The first
program versions are often dirty: The division of responsibility
between the objects is not optimal; the same logic is repeated in
several locations and can be replaced by a single occurrence in
the right location. We use reverse engineering to extract the
design from a running program. We then clean up the design
before re-implementing a cleaner version of the program.

2.

Make it fail-safe. The encapsulation property makes it fairly easy
to protect objects from all kinds of abuse from their collaborators.
If we take this principle too far, we end up with schizophrenic
objects that spend most of their time checking each other. It is a
good idea to draw boundaries around groups of objects; we call
them fire walls. We carefully check all messages passing a
boundary and trust all messages flowing within it. The role model
is a convenient unit for fire wall protection. All stimulus
messages are treated with suspicion, while all internal interactions
are assumed to be in order.

3.

Instrument the programs. Measure before making "efficiency"
changes. There is no point in optimizing code that has but a small
contribution to the overall running time of the program. We find
that our intuition about where the program spends its time is
unreliable. We postpone making efficiency changes until the
program execution time proves to be a problem, and then only
after careful and detailed performance measurements. (This
applies to code details. It is usually more important to design an
efficient architecture than to optimize the code.)

4.

4.3 The implementation process29 March 1995 23:05

©Taskon 1992. Page 177Bridge to implementation

To sum up, the development process can start with a prototype
implementation or with an abstract analysis. In either case, the
process is iterative, moving between the abstract and the concrete
until the system is complete (or until the available time and budget
have been exhausted.)

The iterative
development process

Figure 4.13 Simple
implementation

process
OOram role modeling

OOram Object Specification

Implementation

(1) Make it right
(2) Make it clear
(3) Make it fast

Reverse engineering

Forward engineering

Start here
for formal analysis and design

Start here
for quick early results

Testing

Prototyping,
Exploratory programming

Forward engineering

Notice the bottom loop in the above process. Modern programming
environments with source code browsers and incremental compilation
makes exploratory programming really attractive, because we can
express our ideas directly in programming language and test them
immediately. Exploratory programming is particularly powerful for
the Make it right-phase. In one session where we monitored our work,
we created a first prototype in just under three hours. The measured
average cycle time (think-edit-compile-test) was 2.5 minutes.

Exploratory
programming is

powerful

Create your own
process!

We do not expect that this process is quite right for you, but it may
give you ideas that could be useful when you create your own process.
You will also want to add further steps for product implementation,
testing, installation and maintenance. Do not expect your first process
to be the ideal one, but observe how you actually work and improve
the process description as you gain experience.

4.3 The implementation process 29 March 1995 23:05

Bridge to implementation©Taskon 1992. Page 178

Exploratory
programming may

play havoc with
software reliability

Back in 1980, our group at the SINTEF-SI research institute had
logged twenty years of FORTRAN software product development and
considered itself pretty professional. We followed a waterfall life
cycle model and used techniques such as careful design and peer
reviews to produce reliable code. We believed, as we still believe, in
Dijkstra's dictum that the only way to produce software without errors
is to avoid introducing them in the first place; the number of errors
remaining in the programs is likely to be proportional to the number
of errors found and removed during testing. In one monitored case we
did in 1976, we found no errors in two out of three subroutines during
unit testing, and no errors at all during system testing. (It was a 2,000
line preprocessor for object based FORTRAN programming.)

Exploratory programming seems to be the antithesis to this careful
approach to software development. While the group immediately
recognized its clear benefits, there was strong opposition to
introducing such a haphazard technique into our tidy development
process. The solution we have ended up with is the double loop
approach shown in figure 4.13 where exploratory programming is
considered a specification activity. The final program is created top
down according to the established principles.

Our message to users and management is that a nice looking
prototype or demonstration program can be created in no time, but it
takes real time to create a real program. An early prototype looks
good to users and management, and it is sometimes hard to persuade
them that the main part of the work remains to be done. We are still
searching for software metrics which can make this main part visible,
so that it will be properly appreciated by managers and clients. (This
section is written for programmers, but you may want to show this
paragraph to your manager!)

Development of real
software takes real

time

System development
is teamwork

Significant systems are developed by groups of people working
together in teams. In the middle ages they had polymaths, geniuses
who knew everything that was worth knowing. Geniuses have always
been in short supply, and the current body of knowledge is too large
to be mastered by a single person. But a balanced team can possess a
polymathic knowledge within the team's area of responsibility, and
the symbiotic intelligence of a closely cooperating team can exhibit
many of the characteristics commonly associated with a genius.

29 March 1995 23:05 4.3 The implementation process

©Taskon 1992. Page 179Bridge to implementation

Our view on the ideal system development team has been strongly
influenced by Gerald Weinberg's epoch-making book on The
Psychology of Computer Programming [Weinb 71]. The success or
failure of a team member is closely linked to the success or failure of
the team: we all succeed or we all fail. Ruth cannot claim that the
project's failure was caused by Stupid Sam; she should have
discovered the difficulties and taken corrective action in time. Open
communication channels, mutual respect and acceptance of individual
strengths and weaknesses are essential properties of a good team.

Egoless teamwork

A common language is essential for effective communication
channels. Object orientation and the OOram method constitute our
common language on the abstract level. Our programming rules and
conventions provide the language on the concrete level. The intention
of our conventions is what Weinberg calls egoless programming: any
programmer in the team shall be able to read any piece of code and
work with it in an effective manner. There is no such thing as
component ownership -- only component responsibility which may be
reassigned to other team members. We recommend that you establish
your own conventions adapted to your team's requirements.

Common language
essential

Process depends on
problem

We tend to get suspicious when we meet someone who has the
ultimate work process that will work with all kinds of people for all
kinds of problems. We find that our optimal work process depends on
the kind of problem we are going to solve, its position on a
sophistication scale from routine to research, the availability of
reusable components which are applicable to the problem, the time
available, the number and qualifications of people we are going to
work with, and a host of other factors. To us, industrial production of
software implies that all these factors are kept reasonably fixed to
permit the evolution of an optimal work process.

29 March 1995 23:054.3 The implementation process

©Taskon 1992. Page 180 Bridge to implementation

Choice of programming language4.4

In a nutshell
There is no perfect programming language that is ideal for all purposes. Yet many
programmers feel very strongly about their language and are personally affronted if
somebody dare propose that another language could be superior for some purpose.

It is therefore with some hesitation we suggest that Smalltalk is a higher level
language than C++. We believe that C++ is the better language for many purposes
because it gives the programmer complete control of low-level computational
details such as memory allocation. We also believe that Smalltalk is better for other
purposes because it invites the programmer to ignore low-level computational
details such as memory allocation.

Role models are used to model a wide range of phenomena both
within computers and in the world around them. The appropriate
implementation technologies will depend on the nature of the
phenomenon and the purpose of the implementation. The processes
used to create the human objects of a travel expense model are very
different from the processes used to create the computer-based objects
of an file transfer program. Even if we confine ourselves to the
creation of computer-based systems, the ideal implementation process
will depend on the problem and the selected programming language.

Different
implementation
technologies for

different phenomena

In an ideal world, the implementation would be written in an OOram
programming language, which would reflect the concepts of the
OOram method. For example, a variable should be typed to ensure
that it could point to any object that was capable of playing the
specified role or roles regardless of the object's implementation.

We focus on
Smalltalk and C++

In the real world, we have to use one of the standard programming
languages that have been developed without regard to any specific
modeling technology. The final choice of programming language may
be based on technical considerations; on total life-cycle costs; on
strategic considerations such as training requirements; or even on
apparent popularity.

The main vendors of object-oriented program development systems
do not publish their sales statistics, but C++ and Smalltalk seem to be
the most popular languages, followed by Eiffel and Objective C. C++
is currently by far the most widely accepted language. Smalltalk
seems to be increasingly accepted, particularly in the business
information system community.

4.4 Choice of programming language29 March 1995 23:05

Bridge to implementation ©Taskon 1992. Page 181

The hard part of
learning object

orientation is to
internalize the

mental model, not to
learn the language

syntax

There are many C programmers in the world, and many people
believe that it is easier for a C programmer to make the transition to
object-oriented thinking through C++ than through Smalltalk. We
believe this to be a fallacy. The very similarities between C and C++
can make the essential paradigm shift harder because the programmer
is permitted to continue thinking along the old track. We believe that
it is much better to make a clean break and create the first object-
oriented implementations in a pure object-oriented language such as
Smalltalk, even if the final products are to be written in a hybrid
language such as C++.

Smalltalk may
appear more

productive

It is hard to compare the productivity of a Smalltalk programmer
relative to a C programmer. A few studies that have been mentioned
on the electronic bulletin boards seem to indicate that Smalltalk is six
times more productive than C. But the samples used in the studies
have been small, and the effects of different people, development
processes, and program libraries have not been considered. Smalltalk
is a higher level language and should be more productive, but we
cannot claim that this is borne out by conclusive observation.

C++ is a statically typed language. Variables are typed on the class of
the permissible objects, and the compiler ensures that the object
receiving a message will also have a method which can handle it. The
programmer can override this discipline with type casting, and can
then specify messages which cause catastrophic termination of the
program.

The Smalltalk language is untyped in the sense that a variable may
point to any object. It is dynamically typed in the sense that all objects
will handle any message in a defined way: if an object does not have a
method for the received message, a Message not understood exception
is raised and the programmer can decide on the proper action to take
in these cases.

Static and dynamic
typing

29 March 1995 23:054.4 Choice of programming language

Bridge to implementation©Taskon 1992. Page 182

Typing system
beneficial

We have no doubt about the benefits of a typing system. It prevents a
certain class of runtime errors and enforces a precise documentation
of the variables. We are more doubtful about the wisdom of typing a
variable on the implementation (class) of the objects to which it refers,
because the implementation descriptions include all details about the
internal construction of the object. Typing on implementation thus
breaks the object encapsulation, and we lose the valuable flexibility
and generality that enable us to create objects with identical external
characteristics, but with different implementations.

For example, we have a Smalltalk implementation of a rudimentary
relational database; we use it for prototyping and demonstration
purposes. A separate set of classes implement clients for remote
access to popular database servers. All these database classes
implement interchangeable objects, but need not have a common base
class.

Our systems evolve over the years, and we sometimes want to replace
an old class hierarchy with a new and better one. We want to
introduce the new hierarchy gradually as our confidence in the new
solution grows and as time permits. Both the old and the new class
hierarchies, therefore, have to coexist in the system for a considerable
period of time.

While it is possible to use the notions of abstract or virtual classes to
fake a type system in the statically typed languages, we would prefer
a language with an explicit type system that supported the OOram
notion of roles, collaborations, and interface definitions.

Abstract classes are
artificial

Garbage collection Some languages such as Smalltalk, Eiffel and Objective C have
automatic garbage collection. This means that objects are retained in
memory as long as they are reachable from the root of the object
structure. When the object is no longer reachable, its memory space
is automatically released and can be reused by other objects.

Other languages such as C++ have manual garbage collection. It is the
responsibility of the programmer to know when an object is no longer
needed and to explicitly free its memory space. It is both hard and
important to get this memory management right. If object space is not
freed, the memory will gradually be filled with garbage. If an object is
freed prematurely, the system will crash catastrophically. We
recommend that if the target language does not support automatic
garbage collection, the creation and destruction of objects should be
clearly described in appropriate role models.

4.4 Choice of programming language29 March 1995 23:05

©Taskon 1992. Page 183Bridge to implementation

All complete programming languages are in some sense equivalent,
and any computation may somehow be realized in any language.
Languages differ in how directly the programmer's ideas may be
expressed. It has been said that a real programmer can write
FORTRAN in any language. Bjarne Stroustrup, the inventor of the
C++ language once said "C++ is not a very good Smalltalk; it was not
meant to be. Similarly, Smalltalk is not a very good C++; it was not
meant to be."

This means that if we use C++, we should adapt to the C++ way of
thinking. Similarly, if we use Smalltalk, we should adapt to the
Smalltalk way of thinking. One of the goals of the OOram method has
been to make its notions adaptable to the different programming styles
supported by the different programming languages, but its actual use
should be colored by the philosophy of the target programming
language.

Do not violate the
intentions of your

programming
language

Smalltalk is a higher level language than C++. A number of data
representation and memory management issues have been automated
and made invisible to the programmer. This, combined with its
English-like syntax and uniform use of objects, has empowered us to
create user interfaces, system architectures, and reusable programs
which would otherwise have been outside our intellectual grasp.

Smalltalk higher
level than C++

There is no such thing as a free lunch. Smalltalk has acquired a
reputation for being inefficient. There are several reasons for this
reputation. One is that Smalltalk pioneered sophisticated user
interfaces which consume vast amounts of computer power. Such
programs were bound to lose when they were compared to C
programs implementing traditional command-line interfaces.

C more efficient than
Smalltalk

Another reason could be that the typical Smalltalk programmer may
be more inclined to reuse existing code, even if specialized code could
be made more efficient.

A third reason is that the high-level, dynamic nature of the Smalltalk
language makes it harder to create efficient compilers and runtime
systems. When we began using Smalltalk at the end of the seventies,
we estimated that a Smalltalk program could be up to 40 times slower
than a comparable C program. There has been impressive
improvements in compilers and run-time technology since those early
days. [Chambers 89] reports a factor 10 between an early Smalltalk
and plain C; the current releases of Smalltalk are significantly faster.
It is also possible to call low-level, optimized C procedures from a
Smalltalk program.

29 March 1995 23:054.4 Choice of programming language

©Taskon 1992. Page 184 Bridge to implementation

Rational choice
should be made on
total life cycle costs

We believe that a rational (as opposed to strategic) choice of
programming language should be made on the basis of total life cycle
costs. Smalltalk is fast enough on current hardware for most
applications, but in some cases we may have to use more expensive
hardware to attain satisfactory performance. This has to be offset
against faster response to changing requirements; reduced
development and maintenance costs; and more direct modeling of the
users' mental models.

Our arguments give C++ an edge for heavily used, stable systems.
Smalltalk is the preferred language for customized and adaptive
software installed in relatively small numbers. Smalltalk is also the
preferred language for custom-made software; as well as the language
of choice for the rapid creation of executable specifications and for
prototyping.

The technological optimum could well be a combination of the two.
In a client-server solution, Smalltalk could be the best choice for the
client part, while C, C++ or Eiffel could be the best choice for the
server part.

4.4 Choice of programming language29 March 1995 23:05

©Taskon 1992. Page 185Bridge to implementation

4.4 Choice of programming language 29 March 1995 23:05

©Taskon 1992. Page 186 Bridge to implementation

Chapter 5
Creating reusable components

This chapter is primarily written for suppliers of reusable components, but will also
help discerning consumers become better buyers. You will find that object-oriented
technology offers many opportunities for reuse, and that some of them are more
demanding as to maturity and product stability than others. You will also find that
reuse is no silver bullet. There is a great potential, but your benefits are closely
related to your investment in care, competence, time, money, and dedication.

We distinguish between incidental and planned reuse. Incidental reuse means that
you happen on some recurring pattern of objects during analysis or design, isolate
this pattern and describe it as a separate role model. Planned reuse is much more.
With planned reuse, there is a supplier and a number of consumers. The reusable
component is a planned product created by the supplier for the benefit of the
consumers. Its development is based on a deep understanding of the problems it
addresses and the way it will help the consumers. A reusable component is an asset,
and the cost of its development is written off against future benefits.

A profound statement about reuse is attributed to Brad Cox: "Before you can reuse
something, you must use it." Similar sentiments have been expressed by other
authorities. We believe Ralph Johnson or Brian Foote is the originator of this one:
"Reusable frameworks are not designed, they are discovered." So the paramount
condition for planned reuse is that you have something that has been used a number
of times and that can be generalized into something reusable by you or by somebody
else.

Introduction to reuse (p. 179)
Patterns (p. 190)

Alexander's pattern language
How to create a pattern
Example: A decision model and project portfolio management

OOram Frameworks (p. 203)
An extensive case study is presented in chapter 12

 29 March 1995 23:05

Creating reusable components ©Taskon 1992. Page 187

Introduction to reuse5.1

In a nutshell
Reuse is hard, but well worth while because it enables us to create big systems in
small projects. Reusable components are products created by a producer and applied
by a number of consumers. The success criterion for a reusable component is that it
is actually being used. The key to success is the effective communication between
producer and consumer.

Evolution easier than
revolution

Large projects are notoriously hard to get right. They are difficult to
plan and control; they are expensive in time and resources; and we all
know numerous disaster stories. In contrast, small projects are simple
to plan and control; are usually successful; and the possible failures
are cheap and easy to rectify.

But how can small projects produce big results? An important answer
is reuse. If 99% of the solution can be created from proven
components, a 100-month programming activity can be reduced to
just 1 month.

Some of the greatest successes of object-oriented technology are
based on reuse, and we will discuss no less than five interesting reuse
technologies in this books. But some of the saddest failures are also
from the field of reuse, and the main thrust of this chapter is to put
reuse in the proper perspective: it is wonderful, but it is not trivial to
harvest its benefits.

Many kinds of
reusable things

All successful business operations rely heavily on reuse. Our first
reaction when asked to solve a problem or produce a result is to
search our accumulated experience for applicable solutions. If we
need to produce a project proposal, we start from an old proposal for a
similar project. If we need to produce a new piece of code, we search
for proven solutions to similar problems. We all rely heavily on such
incidental reuse as a matter of course. Its benefits are undisputable
and its arch enemy is the Not Invented Here (NIH) syndrome.

5.1 Introduction to reuse 29 March 1995 23:05

Creating reusable components©Taskon 1992. Page 188

Business people do not like the arbitrariness of incidental reuse. They
want to formalize their experience and package it in such a way that it
can be reused reliably and consistently. They create business
procedures which describe proven ways of performing critical
operations; they standardize tools and techniques which will help
them reach their goals; they establish libraries of proven ideas, models
and program components. Experience may even be embodied in a
computer program: a project proposal can be generated automatically
from parameters provided by the user.

Planned reuse

Our theme is the planned reuse of object components. By this we
mean reusable components that are created with the same care and
dedication as end user applications. A reusable component is a
product that solves a specified class of problems for an identified
consumer community. Like any other product, the creation of a
reusable component takes significant investment in time and money
which must be written off against future benefits.

There are several advantages to planned reuse. We have already
mentioned reduced cost and lead time. The reusable components are
carefully checked and thoroughly tested, so their use will improve
software quality and consistency. We often need to protect critical
resources such as important business data and access to shared
systems. The mandatory reuse of proven components can help
maintain system integrity, if they include mechanisms ensuring their
correct application.

5.1 Introduction to reuse29 March 1995 23:05

©Taskon 1992. Page 189Creating reusable components

Figure 5.1 There
may be reusable

components on all
levels of modeling

System
implementation

System
design
model

System
requirements

model

System
user

model

System
of objects

Library
of

reusable components

Figure 5.1 illustrates that we can employ reusable components on all
levels of abstraction; ranging from the System user model to the
System of objects running in a computer. Reusable components can
materially reduce the required effort on all levels, and it may even be
possible to avoid the design and implementation stages altogether.

Reuse technologies
applicable on all

levels

The figure illustrates a number of opportunities for planned reuse:

A System User model can be composed from more general
patterns, which we may create as part of our current project or
which we may find in a library of reusable components.

1.

2. A System Requirements model can be composed from more
general patterns, which we create as part of our current project or
which we find in a library of reusable components.

3. A System Design model can be based on a number of patterns or
frameworks found in a library of reusable components.

A System Implementation can be derived from one or more
framework classes found in a library of reusable components.

4.

5. A System of objects can be composed from predefined library
objects as described in chapter 11: Advanced reuse based on
object instances.

5.1 Introduction to reuse 29 March 1995 23:05

Creating reusable components©Taskon 1992. Page 190

BOX: Focus on consumer
I am currently using a Unix system. The system's manual presents its 359
commands in alphabetical sequence. Its help system gives me the manual entry for
any of its 359 commands -- if I know the command. There is an apropos command
which will search the manual entries for given character strings. I recently tried
using apropos to find the best command for comparing two ascii files. I found the
old cmp command, but not the new dxdiff which I wanted. The reason was that
dxdiff does not compare two files; it finds the difference between them.

I wish somebody would take the trouble to understand my needs and to help me
separate the important from the obscure -- to help me find my way in the jungle of
possibilities.

The specification of a reusable component must be based on careful
analysis of existing solutions created by the consumer community.
We try to identify recurring problems and to be reasonably sure that
similar problems will arise in the future. (FOOTNOTE: We do not
necessarily retrofit a reusable component into existing solutions,
because "if it works, don't fix it".) The existing instances of the
problem solutions are taken as examples. We try to understand the
tradeoffs involved and create a general solution. Last but not least, we
try to understand the consumers' work situation and make sure the
new component will be acceptable and truly useful to them in their
work.

Understand the
consumers' business

The creation of a reusable component is not a one-time effort. We
create an initial solution, use it, and continue honing it as we gain
more experience. The first release may be clumsy, inefficient and
unreliable. But the beauty of reusable components is that we can
afford to improve them over time, so that we end up with components
which are elegant, efficient and highly reliable. This alternation
between use and asset building is illustrated in figure 5.2.

Reusable
components must

evolve over time

29 March 1995 23:05 5.1 Introduction to reuse

Creating reusable components ©Taskon 1992. Page 191

Application
family

generation 0

Reusable
components
generation 1

Application
family

generation 2

Application
family

generation 1

Reusable
components
generation 2

Applying assets

Building assets

Applying assets

Building assets

Figure 5.2 Alternate
use of applications

and improvement of
reusables

BOX: Evolving components
Back in 1984, we decided that we needed an improved ListView, a component for
presenting and editing ordered lists of items on the computer screen. Our team had
accumulated some 20 person-years experience with object-oriented programming,
and we felt pretty confident when we specified, designed and implemented the
UltimateListView. It was truly wonderful, having hooks for satisfying every
possible need.

Four years later, we did a reverse engineering analysis of all our programs. We
found that we had never used many of the advanced (and expensive) features of the
UltimateListView. Even worse, we had been forced to create 11 subclasses of our
UltimateListView to satisfy new requirements!

We have now created a third generation of the ListView which covers all our known
needs without the unnecessary frills, and the 11 subclasses have again been merged
into a single ListView class. But we do not call it "ultimate" since we realize that we
live and learn. Reusable components must be revised from time to time. Not too
often, this would be upsetting for the user community. And not too rarely, reusable
components depreciate as any other assets. This is partly due to the changing
technology, and partly due to changing requirements.

The success criterion
for a reusable

component is that it
is actually being

used!

I have lost count of all the wonderful reusable components I have
created over the years that either have been lost or reside quietly in
some out of the way library. Measured as entertainment, their
development was great fun. Measured as business propositions, their
development was a dead loss because we have not recovered their cost
through their use.

5.1 Introduction to reuse 29 March 1995 23:05

Creating reusable components©Taskon 1992. Page 192

My colleagues and I have also written many successful reusable
components. They constitute the very foundation on which we build
all our software; they enable us to build customized software in days
that otherwise would have taken weeks or months.

The success criterion for a reusable component is that it is actually
being used. Why is it that some reusable components are highly
successful while others fail? It does not seem to have anything to do
with their technical excellence; I have seen sophisticated solutions fail
where mediocre components are embraced by everybody. It does not
seem to be a question of documentation. I have tried writing short
instructions; they failed because they did not enable the reader to use
the components effectively. I have tried writing long and detailed
instructions; they failed because nobody could be bothered to study
them. Could it be that the problem is essentially human rather than
technical? See the boxes for two experiences from different fields of
endeavor; they may hold clues to the answer.

BOX: Let humans do what humans do best!
The North Sea oil production platforms are very large, very complex and very
costly. Time is at a premium, and concurrent engineering is used extensively to
minimize the design period. This means that each of the thousand engineers builds
his work on preliminary results that somebody else may be in the process of
modifying. My son is employed in this work, and I tried to sell him a project to
develop computer-assisted coordination. Wouldn't it be nice if a designer could
point at a drawing detail on his computer screen and immediately get access to all
other drawings covering the same area? My son was not impressed. All he needed
was to be able to point at a detail on a drawing and find the names of the two or
three other designers working in the same area. He could then contact them on the
phone and coordinate the work quite easily.

My mistake was to think in terms of an automatic system, while my son knew that
real designs are created by real people. The computers can support them but never
replace them. My advanced data processing problem had evaporated, and the
researcher in me lost interest. You may draw your own conclusions as to the
relevance of this example to my wonderful reusable components which nobody
uses.

BOX: Complex products created by competent people
An example which I believe is relevant to our discussion is taken from the
shipbuilding industry. In the early seventies, I was working in close cooperation
with a Norwegian shipyard to develop a novel system for the planning and control
of shipbuilding operations based on object-oriented concepts. Then came the oil
crisis and the bottom fell out of the market for their large tankers. The yard survived
because this was also the time they found oil in the North Sea, and they switched
their operation almost overnight from constructing ships to building oil production
platforms. The planners worked overtime to remold their plans for the new
products, but the production problems proved more formidable than they had
imagined in their worst case scenarios.

5.1 Introduction to reuse29 March 1995 23:05

Creating reusable components ©Taskon 1992. Page 193

A harassed chief of planning later gave me this valuable insight: "I thought we
controlled our production through our formalisms and beautifully detailed plans,
but I was wrong. What we did have was a crew of highly skilled people who knew
how to build ships. Our plans were a kind of varnish on top of this, only giving
marginally improved effectiveness. We got into trouble because our collective
competence had not prepared us for the challenges of the new products."

This experience is bad news for the manager who is tired of being dependent on his
professional staff and who wants to formalize its knowledge and competence so as
to make software production into a mechanical operation which can be performed
by obedient slaves. It is good news for the professional who likes to view himself as
being indispensable -- he is.

Formal methods cannot replace humans, but this does not mean that
they cannot be helpful. The reuse technologies we present in the
following chapters are all useful for creating concrete representations
of ways to do things so that they can be reused by others. But I would
like to state loudly and clearly that we cannot replace human
cooperation, creativity and competence; only augment and help the
competent become more effective.

Formal methods can
support people, not

replace them

I believe the little stories in the boxes hold the key to why some
reusable components are successful where other components fail. I am
a programmer at heart, and tend to act as if the creation of a good
reusable component is the hard part. It isn't. The hard part is to create
a component that people not only need, but that they will actually
want to use. The successful component is in harmony with its
consumers, their goals, working habits and competence.

People build
successful software

Key is
communication with
component consumer

The critical part of a successful reusable component is the successful
communication between its supplier and its consumers. Consider the
simple communication model in figure 2.4 on page 57??. A Unix
manual (FOOTNOTE: See box on page 191??) and most other
technical documentation is a kind of binary dump of the supplier's
mind. It is a description of the solutions; the consumer must map these
solutions onto his or her problems.

Writing for the consumer is much harder. It requires the writer to
understand the consumer's tasks, mental models and vocabulary. It
requires communication.

5.1 Introduction to reuse 29 March 1995 23:05

©Taskon 1992. Page 194 Creating reusable components

Personal contact is the supreme medium for communicating technical
know-how. Professionals who possess complementary competence
and who work closely together experience a continuous learning
process. If management want to encourage learning, they will form
and reform teams for the purpose of knowledge transfer, and they will
reward team performance rather than individual achievements. (Read
[Weinb 71] and learn!)

Personal interaction
best communication

medium

Layered
documentation

Even if word of mouth is the best communication channel, it is by no
means sufficient. Carefully conceived documentation help the
consumer correctly and effectively apply the reusable components.

Linguists distinguish between a person's active and passive
vocabulary. My active vocabulary consists of the words I use. My
passive vocabulary consists of the words I understand when other
people use them, even if I do not use them myself. I believe it is
fruitful to similarly distinguish between a person's active and passive
competence. My active competence consists of all the things I know
how to do. My passive competence consists of all the things I
understand when I see other people' do them; even if I could not
easily do them myself.

Active and passive
competence

It is clear that a consumer must possess the necessary active
competence to apply a reusable component successfully. It is equally
important that the consumer possesses a passive competence that
gives the necessary context to the component's application. We
recommend that the component documentation be layered, so that a
reader will find information for her active competence on the top
layer and information for the passive competence on the layers below
it.

Three layer
documentation

We suggest that the following three layers may be useful: List of
Instructions, Logical map, and Implementation description. We will
discuss them briefly below.

5.1 Introduction to reuse29 March 1995 23:05

©Taskon 1992. Page 195Creating reusable components

A List of Instructions tells the consumer the essence for applying the
component. It is like the road directions "Go South on 280 until you
hit the Page Mill Road exit. Turn left. Turn right at the first traffic
light, then first left. It is the first building on your left after the first
crossroads." These directions are great if they are right, if the
consumer has the expected background knowledge, if she wants to go
from somewhere up north, if she wants to go to the designated
destination, and if she doesn't try to be smart. But the consequences
could be catastrophic if she tries a slight variation, since she could
easily get hopelessly lost.

The List of Instructions should be sufficient for the consumer who has
the active competence to apply it. It is intended to jolt her memory,
not to teach new skills. Her passive competence should include a
logical map that gives context to the work and protect against
component misuse.

List of Instructions

When the supplier gives the consumer freedom to reuse the
component in many different ways, there is a danger that the
consumer will use it incorrectly. The reusable component should
include a description of constraints, which may be either compulsory
or just warnings about possible dangers. It is preferable if the
constraints can be enforced by automatic tools, otherwise check lists
should be provided to help the consumer use the component correctly.
(FOOTNOTE: Quality assurance procedures based on the ISO9000
standard [ISO9000] are heavy users of check lists. The lists are filled
in and signed by the developers and archived for future reference.)

Specify constraints

A Logical map is a high level description of the component and its
structure. It is like a road map which gives sufficient information to
enable an automobile driver to get her bearings, but where a great deal
of information is suppressed because it is considered irrelevant or not
timely.

The consumer will study the logical map if it isn't already part of her
passive competence. She will have to study it more carefully if she
needs to specialize the component. Her active competence will
include the logical map, and her passive competence will include the
implementation description so that she can specialize the component
in ways that were intended by its creators.

Logical map

29 March 1995 23:055.1 Introduction to reuse

Creating reusable components©Taskon 1992. Page 196

Implementation
description

An Implementation description is a description of the component's
implementation written for the consumer. It includes description of
the specification, design, code (for programs), and tests.

Providers of reusable components need to include the implementation
description in their active competence for component maintenance
and evolution. Sophisticated consumers need to include the
implementation in their passive competence.

The OOram reuse
technologies

Object-oriented technology has two properties which makes it
especially suitable for creating reusable components: inheritance and
encapsulation. We exploit these properties in five distinct and
independent OOram technologies for component reuse:

1 Reuse based on inheritance. Inheritance and polymorphism permit
objects to be defined as being similar to other objects with
specified points for modifications and addition. Reuse based on
inheritance will be discussed in detail in the following sub-
sections.

A Pattern describes a general problem and gives directions
for its solution. Patterns can be used in many disciplines and
for many purposes. We use them to describe and reuse base
structures and activities in the areas of System User, System
Requirements, and System design modeling. Patterns are
excellent for transferring reusable competence.

1.a

1.b An OOram Framework represents a generally useful
structure of objects. It is packaged as a reusable object
specification model together with the corresponding class
implementations. Frameworks are mainly used to describe
and reuse low level design constructs, but may also be used to
capture and reuse the basic constructs of an application
domain. Frameworks are excellent for transferring solutions
to hard problems in the form of classes designed for
specialization. The main difference between a pattern and a
framework is that the pattern explains the solution to a hard
problem, while the framework hides it.

29 March 1995 23:05 5.1 Introduction to reuse

Creating reusable components ©Taskon 1992. Page 197

Reuse based on encapsulation. Object encapsulation separates the
object's externally visible properties from their internal
realization. It enables us to replace one object with another as long
as it behaves properly, and to bind different objects into a variety
of structures. Reuse based on encapsulation will be discussed in
detail in chapter 11.

2

An OOram Composition System (OOCS) is an extensible
system for composing object structures from predefined
building blocks. The composition is controlled by a
conceptual schema called an OOCS Schema. The Building
blocks are reusable components specified by OOCS Types.
The OOCS is excellent for enabling analysts compose
complex systems without the need for a programming stage.

2.a

Runtime configuration and object trading is a technique for
matching and linking objects at runtime. It is primarily used
to select and attach suitable editors to objects representing
user information. Runtime configuration and object trading is
excellent for the automatic or semi-automatic selection of
applicable classes in a dynamic environment.

2.b

Object structure duplication is a technique for copying an
existing master structure. This is trivial in simple cases, but
we shall see that the duplication of arbitrary parts of an object
structure is far from trivial. Object structure duplication is
excellent for distributing objects combined with a gradual
binding of their attributes.

2.c

Reuse based on encapsulation is particularly interesting. As computer
programmers, we tend to focus on the creation of new programs. But
we should not forget that the cheapest and safest way to produce new
object structures is to create new configurations of objects from
existing classes or to copy a validated master structure.

5.1 Introduction to reuse 29 March 1995 23:05

©Taskon 1992. Page 198 Creating reusable components

Patterns5.2

In a nutshell
How we describe object modeling know-how in terms of a pattern language, and
how this idea helps us build our concrete solutions on the best available practices. A
pattern is a fixed-format description of how to solve a certain class of problems. A
pattern language is a collection of patterns. A concrete problem is solved by
decomposing it into subproblems and applying an appropriate pattern to solving
each of them. Pattern languages can be made for many different disciplines, they
originated for the purpose of capturing "the quality without a name" in architecture.
We apply patterns to capture and document the essence of good object modeling
practices.

Patterns are equally applicable on the detailed programming level as on organization
level. The goal is always to communicate the solution to a problem; appropriate
notation and conceptual foundation must be chosen to support this goal. Role
models are often appropriate if the solution involves patterns of interacting objects.
General role models can be promoted to become library patterns. They must then be
packaged for reuse; their existence must be published. If they express enterprise
standards, their application must be enforced.

When we create object models of phenomena of interest to us, we
frequently find it useful to factor out general features and create more
abstract base models. This gives us the opportunity to partition the
solution into general and special models, and helps us understand the
phenomena on different levels of abstraction. (FOOTNOTE: We
discussed the technology of model separation and composition in
chapter 3: Role model synthesis.)

Divide and conquer

Some role models capture the essence of a solution to a general class
of problems. Such models may be applicable to a broad range of
specializations, and can profitably be packaged and added to the
reusable assets of the enterprise. An OOram pattern is a fixed-format
package consisting of a role model together with documentation
describing when and how it should be used. The documentation can
also specify constraints that ensure the correct functioning of a
concrete application.

Each pattern solves a clearly specified problem. A pattern can solve a
complex problem; it can then reference other patterns for the solution
of subproblems. A concrete problem is solved by applying a string of
patterns. The collection of patterns can therefore be called a pattern
language; and the series of patterns used to solve a specific problem
is a sentence in this language.

Package valuable
solutions

29 March 1995 23:05 5.2 Patterns

©Taskon 1992. Page 199Creating reusable components

Figure 5.3 Patterns
can be applied at all

levels of modeling

System
implementation

System
design
model

System
requirements

model

System
user

model

Pattern

Patterns can be created for a wide variety of purposes ranging from
abstract business procedures and information structures through
system architecture guidelines and general ways of solving basic
program design problems. This range is illustrated in figure 5.3. The
library of patterns constitute part of the information assets of the
enterprise.

The object community uses the term pattern in two senses. Some
people use it to denote a specific object pattern: "When several classes
cooperate closely on a given task, we say the classes form a
mechanism or pattern, with each pattern representing a dependency
cluster." [Soukup 94]. We use it in a more abstract sense, as a
description of how the reader can solve a problem. This use of the
term pattern originated with the architect Christopher Alexander, who
said that "Each pattern describes a problem which occurs over and
over again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this solution
a million times over, without doing it the same way twice." [Alexander
77]

Patterns tell you how
to solve problems

Alexander's quest for communicating good architectural practices
parallels in many ways our quest for communication between the
supplier of a reusable component and its consumers. The applicability
of Alexander's patterns to objects was first recognized by Ward

5.2 Patterns 29 March 1995 23:05

Creating reusable components©Taskon 1992. Page 200

Cunningham while he was at Tektronix, and patterns are now having a
profound influence on the thinking of leading software engineers. For
further details and an example, we refer you to [Johnson 92].

We expect to see many publications of patterns describing "best
practices" in object-oriented software engineering. A high standard for
quality and lucidity has been set in [GaHeJoVli 95]. This book
describes simple and elegant solutions to 23 problems in object-
oriented software design. It should be required reading for all object-
oriented programmers.

5.2.1 Alexander's pattern language

There are many similarities between the work done by an architect
and the work done by a system designer, and we may have something
to learn from the ways architects have attempted to solve the
communication problem.

Alexander's Pattern
Language to capture

"quality without a
name"

The architect Christopher Alexander has been searching for a way to
capture the essence of good architecture and to describe the solutions
in such a way that it will help other architects produce consistently
good results. [Alexander 77] [Alexander 79]. His idea was to build a
collection of "patterns", each pattern stating some problem and
describing its solution. Some patterns describe high level problems
such as "the distribution of towns" or "the countryside", which need
more detailed patterns such as "country towns" and "cities" for their
solution, which again build on patterns for "the family" and "house
for a small family", down to details such as "alcoves", "dressing
room", and "child caves".

Alexander's vision was that he should be able to formalize the
"quality without a name" which separates good from bad architecture
and communicate it to other architects. He called his scheme a pattern
language, because any specific solution should be created by
selecting the appropriate patterns and composing them into an organic
whole.

5.2 Patterns29 March 1995 23:05

Creating reusable components ©Taskon 1992. Page 201

Alexander
presupposes strong

common culture

What strikes us most forcibly when reading A Pattern Language is
what it leaves unsaid. The problems are described under the
assumption that the reader is as familiar with them as the writer, and
the solutions are more in the nature of hints than of detailed
instructions. Alexander assumes that the architect knows how to
design and that the builder knows how to build. There is nothing
about architectural notation, structural engineering, sound building
practices, production control, or economy.

Let us refer back to the shipyard planning anecdote. The common
competence of the group is the main factor; the plans, patterns or
reusable components comprise a varnish on top of this common
culture. These constructs may be highly valuable, but cannot replace
the human qualities of the practitioners.

Our suggestion for a three-level documentation of reusable
components has been strongly influenced by Alexander's patterns.
The List of Instructions could profitably be in the form of a pattern, it
should be brief -- bordering on the cryptic. It should give the reader a
sudden insight, an "aha", which starts her on the right track for a good
solution. The pattern should not bind the details of the solution; they
are well within the competence of the reader and have to be adapted to
the concrete problem. The pattern helps the knowledgeable reader see
the important points to consider, but does not provide all the details of
the solution.

The pattern can be augmented with a logical map, giving background
information to the reader with incomplete competence to fully
appreciate the practical implications of the pattern. If all readers are
expected to be fully competent, the logical map can be omitted.

Alexander's
disappointment

Alexander's books that form the inspiration for the patterns movement
date back to 1977 and 1978, and Alexander has later tried his theories
in practice. He has been sadly disappointed. The "quality without a
name" has proven to be more elusive than expected, and he now finds
that the creative process is as important as the patterns. We refer you
to Gabriel's excellent columns in the Journal of Object-Oriented
Programming for more details. [Gabriel 94a] is a summary of the
good news, and [Gabriel 94b] summarizes the bad news.

29 March 1995 23:055.2 Patterns

©Taskon 1992. Page 202 Creating reusable components

I must admit I am quite pleased that Alexander's original vision did
not materialize. It makes me uneasy when scientists try to isolate the
soul and dissect it. I trust they will never succeed, and I base this trust
on the systems theorem that the whole is more than the sum of its
parts. I believe the "quality without a name" is intimately associated
with the whole: analyze it to find its constituent parts, and it's gone.
The pleasing practical consequence is that it still takes people of
quality to create products of quality. But the parts are also valueable,
and emerging libraries of patterns will help quality people create
better systems.

Pattern languages
very useful, but no

panacea

How to create a pattern5.2.2

Our interest focuses on problems which are concerned with choosing
appropriate objects, deciding on their attributes and determining their
essential behavior. We achieve the pattern generality by describing
the solutions in terms of role models. These models can either be used
directly by synthesis, but they can also be used to communicate a
general idea where concrete solutions will be variants of the general
pattern role model. (See figure 5.4.)

Figure 5.4 A pattern
role model can be a

source of inspiration
or synthesis

Application
derived Model

Adapt or synthesizePattern
base model

It is appropriate to create a pattern if the following conditions are
satisfied:

When to package a
pattern

1. The phenomenon and the possible models describing it are well
understood

2. The investment will be amortized because the problem will be
recurring in the future and the pattern will actually be used by the
consumers. The motivation may sometimes be a desire to ensure
a uniform solution to a common problem; economic
considerations will then be secondary.

You can create a new pattern by the following operations (not
necessarily performed in this sequence):

How to do it

5.2 Patterns29 March 1995 23:05

©Taskon 1992. Page 203Creating reusable components

Identify consumers and consumer goals, needs, competence,
working habits and preferences.

1.

Perform a cost-benefit analysis to estimate return on a possible
investment in a new pattern.

2.

Perform reverse engineering on existing instances of the
phenomenon to understand all the issues and possible solutions.

3.

4. Specify the new pattern in general terms, highlighting the core of
the problems to be solved and the goals to be reached.

5. Create a pattern describing how to solve the problem.

Describe the background of the new pattern and the rationale for
the choices made in its creation.

6.

7. Inform the consumer community about the new pattern, motivate
them for using it, train them, and make the pattern available to
them.

Our patterns are implemented as a role model together with the
appropriate documentation. The role model will be described in the
documentation, but should preferably also be stored in the reuse
library in electronic form to simplify its synthesis into derived models.

Implementation

A simple adaption of Alexander's pattern language gives us the
following suggested contents of a pattern:

Pattern title.1.

Conditions for using the pattern.2.

3. Problem description (2 - 3 lines).

Stepwise description of work process when applying the pattern.4.

5. Description of the base model, using the appropriate views and
explanatory texts to show its main features.

Required and recommended constraints. The consumer is not
permitted to violate the required constraints. Recommended
constraints may be violated, but it is usually wrong, meaningless,
or dangerous to do so. The consumer must understand the issues
and take full responsibility.

6.

7. Check list for quality assurance of the consumer's use of the
pattern.

Related patterns.8.

[GaHeJoVli 95] is a book on program design patterns; it gives more
details about the solution including programming hints and examples.

5.2 Patterns 29 March 1995 23:05

Creating reusable components©Taskon 1992. Page 204

5.2.3 Example: A decision model and project portfolio
management

One of our clients is a large enterprise that organizes its major
investments as projects. Our client was a branch of this enterprise
responsible for defining and managing such projects.

Project portfolio
management

The client's projects vary in size from a couple of million to a couple
of billion dollars, and are performed by other parts of the enterprise or
by outside contractors. Large projects are typically subdivided into
smaller ones. Project coordination is typically performed by our
client.

Traditional project management methods address the needs of the
project contractor: how to split the total project into manageable
activities, and how to plan and control the activities in time and
resources.

The problems of our client was one level above this: how to decide on
a project and define its scope; how to select a contractor; how to
negotiate and enter a contract; and how to maintain control so that the
contractor really does the job allocated to him. To complicate matters,
our client was supervising a large number of projects simultaneously.

Our task was to help our client improve and formalize the work
procedures, and to create and install effective computer support for
these procedures.

Requirements
analysis

One of our senior consultants worked with a representative user group
to establish a formal model of their work with project portfolio
management. It turned out that this formal model could profitably be
made object-oriented because the clients needed to determine the
who, the what, the when, and the how of project portfolio
management.

Further, the client did not want to model the who part onto named
individuals or positions in the organization, but to roles that people
play. Role modeling was, therefore, a natural choice.

29 March 1995 23:05 5.2 Patterns

©Taskon 1992. Page 205Creating reusable components

The discussions in the group were not all smooth and to the point. The
initial discussions were particularly confused; the members of the
group had clearly different perceptions about what was the essence of
the problem. (Which is the main advantage of working with a group
rather than with an individual.)

Divide and conquer

The main breakthrough came when our consultant discovered that
they were discussing two issues simultaneously: How do we, in
general, make and implement decisions in our enterprise? And how do
we, specifically, make and implement decisions regarding projects?

The decision-making process was recognized as being a very general
one. It was decided to create a separate model for decision-making;
and to derive the portfolio control model from it.

The decision-making process is applicable in many contexts outside
the area of project portfolio control, and is a clear pattern candidate.
We will here sketch out such a pattern. It is intended as an illustration
only, and many details essential to decision-making have been
omitted.

A model for making
important decisions

This pattern is applicable in all situation where the enterprise is to
make a major decision. A major decision is defined as a decision
where premises and consequences have to be studied in the
organization prior to the decision is made by the proper authority.

Pattern applicable to
major decisions

In a rational organization, there is a systematic division of authority
and responsibility between its members. A major decision will be
made by somebody (or some body). Prior to this, proposals have to be
written and studied by the relevant personnel to ensure that the best
efforts are applied to making a good decision in a timely manner.

Problem

The basic collaboration diagram is shown in figure 5.5. This diagram
shows one level in a hierarchical organization, it can be used to
compose a model with any number of levels. The core of the solution
is to harness the efforts of as many organizational levels as required:

Solution

1. Write a careful description of the question to be decided.

2. Identify the people to be involved; either as individuals or as roles
in the organizational structure. Apply the role collaboration
diagram of figure 5.5 in as many levels as required. It defines the
roles you will need to map onto real people of organizational
units.

5.2 Patterns 29 March 1995 23:05

Creating reusable components©Taskon 1992. Page 206

3. Identify the work procedure and document it. The skeleton
scenario of figure 5.6 will help you get started.

If the pattern model is adequate for your purposes, you can derive
your application model from it. Otherwise, you can edit a copy as
required.

4.

sub

chief

sub

chief

sta chief

Superior

Decision
Maker

Subordinate

Staff

Figure 5.5 Decision
Maker:

Collaboration
diagram

This is a recursive model: My chief may be somebody else's subordinate, and my
subordinate may be somebody else's chief.

The basic message interaction scenario is shown in figure 5.6. The
diagram shows the interaction across a single level. Multi-level
interaction can be derived by synthesis.

Superior Decision
Maker Subordinate Staff

studyProposal

decomposeProposal

proposalSet

studyProposal

studyResult

composeCommentary

composedProposal

studyResult

issueOrder

issueOrder

Figure 5.6 Decision
Maker: Typical

Scenario

I, the DecisionMaker, receive a proposal from my superior; my staff studies it and
splits it into more detailed proposals for my subordinates. When I get their response,
my staff merges their results so that I can send a consolidated proposal to my
superior. The decision is made and is communicated down the command chain. (We
have omitted the details of the required staff work from this pattern.).

29 March 1995 23:05 5.2 Patterns

Creating reusable components ©Taskon 1992. Page 207

The processes for important decisions must be carefully documented.
The documentation shall include reference to the generic decision-
maker pattern and carefully explain any deviation from it.

Application example:
An organization for

oil production

This DecisionMaker pattern can be specialized to cater for making
many different kinds of decisions. As an example, we will sketch out
four solutions to different kinds of decision problems in an oil
production operation. We applied the Decision Maker model twice
and renamed the roles to get the head office decision model shown in
figure 5.7. We applied it once and renamed the roles to get the general
model for local operational decisions in figure 5.8. Certain decisions
need the advice of experts; the model in figure 5.9 takes care of that.
Finally, important decisions can only be made by the home office,
figure 5.10 shows the decision structure.

Figure 5.7 The head
office organization

sta chief

sub

chief

sub

chief

sub

chief

sta chief

President

Area
Manager

Area
Staff

Section
Manager

Section
Staff

Department
Manager

29 March 1995 23:055.2 Patterns

Creating reusable components©Taskon 1992. Page 208

Figure 5.8
Organization for

decisions that can be
made locally on an

oil production
platform

sub

chief

sub

chief

sta chief

Platform
Manager

Operations
Manager

Operations
Staff

InstrumentMan

Figure 5.9
Organization for

local decisions that
need technical

expertise

tec ins

sub

chief

sta chief

sub

chief

Platform
Manager

Operations
Manager

Operations
Staff

InstrumentMan Technical
Expert

29 March 1995 23:05 5.2 Patterns

Creating reusable components ©Taskon 1992. Page 209

Figure 5.10
Organization for

major decisions that
need technical
expertise and

involvement of head
office

pla

are

tec ins

sub

chief

sub

chief

stachief

sub

chief

stachief

sub

chief
sta chief

sub

chief

President

Area
Manager

Area
Staff

Section
Manager

Section
Staff

Department
Manager

Platform
Manager

Operations
Manager

Operations
Staff

InstrumentMan Technical
Expert

The synthesis view of figure 5.11 shows the synthesis relationships
between these models. Their details do not concern us here. The point
is that patterns permit us to factor out common features and create a
structure of reusable base models. The large body of possibly
unrelated procedures becomes unified and consistent. We try to push
the stable parts of our procedures up towards the base models, while
the variable aspects are pushed down towards the derived models. If
we do it right, we get an organization where it is easy to create new
procedures and modify old ones, because the complex parts of the
procedures are in the stable models, while the variable parts are in
small and simple derivations.

A powerful tool for
simplifying and

unifying procedures

5.2 Patterns 29 March 1995 23:05

©Taskon 1992. Page 210 Creating reusable components

Figure 5.11
Synthesis view

showing
relationships

between example
models

Decision Maker

Head OfficePlatform Organization

Specialist Organization

Major Decision Model

29 March 1995 23:05 5.2 Patterns

Creating reusable components ©Taskon 1992. Page 211

OOram Frameworks5.3

In a nutshell
This chapter is written for programmers, and you may safely skip it if you are not
interested in programming.

An OOram framework is a reusable component containing a role model describing
a general solution; a correlated set of base classes implementing its roles; and
possibly descriptions of applicable constraints. We discuss the nature of an OOram
framework and then give hints as to an appropriate development process.

The creation of an OOram framework is illustrated through an extensive case study
in chapter 9.

A framework is a
problem solution

Safe role model synthesis provides a nice and powerful way of
specifying and using reusable class structures. A framework is an
Object Specification model, which is created for the express purpose
of being generally reusable through synthesis; together with a
corresponding cluster of classes, which has been designed for
subclassing. The framework is a packaged product that solves a
specific problem; it includes instructions for when to use it and how to
use it safely.

Figure 5.12 OOram
frameworks support

design and
implementation

System
implementation

System
design
model

System
requirements

model

System
user

model

OOram
Framework

System
of objects

29 March 1995 23:055.3 OOram Frameworks

Creating reusable components©Taskon 1992. Page 212

Frameworks support
design and

implementation

Figure 5.12 illustrates that OOram frameworks provide the
application programmer with solutions for the design and
implementation stages. System design is simplified because the
programmer can build on proven solutions by synthesizing the
appropriate role models into her design. System implementation is
simplified because the programmer can build her programs by
inheriting from the corresponding base classes.

When we study the solutions to a number of different, but related,
problems; we often find common subproblems which are costly to
implement and hard to get right. We solve such subproblems once and
for all, so that application programmers in the future can build on the
common solution and inherit its functionality and correctness.

In general, a
framework is a

reusable module

In the software engineering community, a framework is commonly
defined as a software module which facilitates the development of
applications. A framework can provide functionality such as operating
system utilities, network communications, or interface development
facilities.

The object-oriented
framework is a set of

coordinated classes

An object-oriented framework is usually defined as a set of base
classes that together describe a generally useful object structure.
Application programmers use this object structure by deriving
specialized classes from the framework's base classes.

OOram framework is
a product

An OOram framework is a product designed for planned reuse.
Insights into the best ways of solving given programming problems
are captured in a collection of interdependent classes that are prepared
for subclassing. These classes are described by a role model which
specifies the framework's essential functionality and hides all
unnecessary details.

Patterns and frameworks are both reusable components that describe
solutions to general problems. The difference is in the abstraction
level: The pattern describes how the reader can solve a problem,
while the framework provides a concrete solution. The pattern is
tutorial in nature, it explains the essential components of the solution
so that the reader can apply them. A framework takes care of many
solution details so that the application programmer need not see them
nor worry about them.

The application programmer inherits the solution by deriving her
design model from the framework base model. At the implementation
stage, she derives her application classes from the corresponding
framework classes.

5.3 OOram Frameworks29 March 1995 23:05

©Taskon 1992. Page 213Creating reusable components

The core concepts of an OOram framework are illustrated in figure
5.13 (FOOTNOTE: This is a semantic view, its concepts and notation
will be fully described in chapter 6.1). It shows how the framework
role model consists of roles which are implemented as base classes.
The application program is specified by a consistent mapping of the
framework elements into corresponding elements in the application.

isImplementedBy

implements

has

isIn

playedBy

plays

playedBy

plays

isImplementedBy

implements

derivedClass

baseClass

has

isIn

Framework
role

model

Derived
Model

Framework
Role

Derived
Role

Framework
Class

Derived
Class

Supplier's
responsibility

Consumer's
responsibility

Figure 5.13 Semantic
relationships

between Framework
concepts.

The synthesis can be implied when the derived model gets
uncomfortably complex without giving new insights. It is often
sufficient to create a role model for the application that follows the
object structure of the framework without actually performing the
synthesis operation.

The OOram framework should be developed under stringent quality
requirements, so that the application programmer can rely on its
correctness. It may also be beneficial to provide automated tools that
help the application programmer conform to the framework's inherent
constraints.

We have learned the hard way that deriving our own software from
somebody else's framework is a two-edged sword. We have achieved
the expected gain in productivity and quality in our initial
development, but we have also experienced chaotic situations when
the framework provider improved the framework classes in new
releases. The surface area between the frameworks and our derived
classes was large and undefined, and it was very hard to determine the
consequences of framework changes.

Improving
frameworks is a two-

edged sword

5.3 OOram Frameworks 29 March 1995 23:05

©Taskon 1992. Page 214 Creating reusable components

Even the vendor's bug fixes could cause catastrophies, because we
were likely to have fixed the bug in our subclass. Just consider that a
framework method returns a count which is one too large. Our
subclass will have subtracted one from the returned count, which is
OK until the framework is fixed. We will then use a count which is
one too small. Or consider that the new version of the framework has
made a subtle shift in the responsibility between some methods. We
may have created an override for one of the methods in our subclass,
and this method will now have the outdated responsibility.

We have without success tried to persuade various framework
providers that they under no circumstances can modify a framework
once it is published, but we must admit that their desire to improve
their products is understandable. There is clearly a dilemma here. One
of the great selling points for a framework is that it can be steadily
improved over the years to the benefit of all consumers. But our
experience indicates that such improvements can cause much rework
and introduce subtle bugs in the derived applications.

The framework
provider cannot

modify the
frameworks at will

Specify and reduce
surface area

Brad Cox [Cox 87] defines the surface area of a component as all the
things that must be understood and properly dealt with for one
component to function correctly in combination with another
component. Examples are class names; data names; message names
and parameter types; time sequence constraints; garbage collection
requirements; protection domains; and concurrency considerations.

We believe that the solution to the maintenance dilemma is to reduce
and carefully define the surface area between the framework and its
derivatives. The surface area of a good framework should be kept as
small as possible. The framework provider is obliged to keep the
surface unchanged, but is free to improve any of the hidden parts.
Similarly, the framework consumer can only modify designated,
visible parts of the framework. These are two of the main motivations
for our insistence that an OOram framework must be much more than
a collection of classes; it must include firm rules for its proper use.
The optimum solution depends on the circumstances and the tools
available: if the supplier can make it impossible to violate the rules; or
if there is an automatic rule checker; or if rule conformance is a
manual operation. The main thing is that the rules are clearly
expressed and that the consumer abides by them.

It is appropriate to create an OOram Framework when the following
conditions are satisfied:

When to create a
framework

29 March 1995 23:05 5.3 OOram Frameworks

©Taskon 1992. Page 215Creating reusable components

The investment will be amortized because the problem will be
recurring in the future and the framework will actually be used by
the consumers. The motivation may sometimes be a desire to
ensure a uniform solution to a common problem; economic
considerations will then be secondary.

1.

The phenomenon and the possible models describing it are well
understood.

2.

Several implementations that include the phenomenon exist and
are available for analysis.

3.

4. The requirements for a generally applicable framework are well
understood.

It may also be appropriate to create frameworks under less than ideal
conditions. The motivation could be that it is often better to dive into a
problem and then improve the solution as we learn and gain
experience than it is to wait for the ideal conditions to materialize.

We suggest a possible list of operations for creating a framework. You
will not necessarily perform them in the given sequence, and you may
want to add or remove some operations:

How to create a
framework

Identify consumers and consumer needs. Consumer goals, needs,
competence, working habits and preferences.

1.

2. Perform a cost-benefit analysis to estimate the pay-back of the
investment in a new framework.

3. Perform reverse engineering of existing programs to understand
all the issues and possible solutions. The devil is often in the
details. Reverse engineering is a powerful method for identifying
details that can play havoc with an otherwise pleasing
architecture.

Specify the new framework in general terms, highlighting the
problems to be solved and the goals to be reached

4.

Document the framework as a pattern describing how to use it to
solve problems. This pattern enlarges the consumers' active
vocabulary. We strongly recommend that this part shall be created
before the framework is designed and implemented. This is
because a successful framework must be easy to understand and
safe to use, and we rely on our in-born laziness to ensure that the
interface to the consumer will be as simple as possible.
(FOOTNOTE: You may enjoy reading the user manual for your
favorite program and highlight all sentences that couldn't possibly
have been written before the program.)

5.

5.3 OOram Frameworks 29 March 1995 23:05

©Taskon 1992. Page 216 Creating reusable components

Describe the framework's design and implementation for the
consumers' understanding and passive vocabulary

6.

Inform the consumer community about the new framework,
motivate them to use it, train them, and make the framework
available to them.

7.

Further details in the
case study

Chapter 9 presents a case study that illustrates the creation of a major
framework.

5.3 OOram Frameworks29 March 1995 23:05

©Taskon 1992. Page 217Creating reusable components

29 March 1995 23:055.3 OOram Frameworks

©Taskon 1992. Page 218 Creating reusable components

Chapter 6
Additional role modeling concepts and

notation

This chapter is intended as a reference chapter to be read on a "need
to know" basis. Its sections can be read in any sequence.

The role model may be observed from a number of perspectives and
manipulated in many different views. The large number of views
offered by the OOram method does not complicate it, because any
given work process only applies the small selection that carry the
most useful information.

Some central role model views were presented in chapter 2.5, we will
here describe some additional ones:

1. The Semantic view describes the meaning we associate with the
roles and their relationships.

The Process view describes the flow of data between the roles
and the processing of the data in these roles.

2.

The State Diagram view describes the legal states of a role and
the messages that trigger transition from one state to another.

3.

The Role List view gives an overview of the roles, their names,
purpose, and attributes.

4.

The OOram Module encapsulates a number of models and
controls high-level export and import of models.

5.

29 March 1995 23:05

Additional role modeling concepts and notation ©Taskon 1992. Page 219

6.1 Semantic view

In a nutshell
The semantic view describes the meaning we associate with the roles and their
relationships. We rarely need the semantic view, since the collaboration view
usually contains sufficient information.

The purpose of traditional semantic modeling is to create a
representation of concepts and ideas along with the relationships
between them. A common expression of semantic models is the
entity-relationship (E-R) model [Chen 76], [Elmasri 94]. The two
basic notions of E-R modeling of interest to us are as follows:

Three basic concepts
in traditional

semantic modeling

1. Entity. An entity represents the set of all instances of the same
thing, idea or concept that we want to think about. An important
attribute of an entity is a description of the meaning we attach to
the entity instances. Entities are commonly denoted with a
rectangle in E-R diagrams.

Relation. The entities of a problem domain are somehow related
to each other. A relation is a representation of the meaning we
attach to the relationship between entities. A relation is bi-
directional. It describes what a first entity is in relation to a
second, as well as what the second is in relation to the first. A
relation is commonly denoted with a line connecting the entities.
The line may be decorated with texts describing the relationships.
Four different kinds of relations are commonly recognized:

2.

Aggregation. The two directions of the aggregation relation
are commonly called consists-of and part-of.

¤

Use relation. The two directions of the use relation are
commonly called uses and used-by.

¤

Subtype relation. The two directions of the subtype relation
are commonly called is-a and kind-of.

¤

¤ Association. The two directions of the association are given
names to describe the nature of the relationship.

The different kinds of relations are handled as follows:

1. Aggregation can be modeled by structures of interacting objects
in several ways. We gave a detailed discussion of this topic in
section 3.2.1: Aggregation: Linking models on different levels of
abstraction.

6.1 Semantic view 29 March 1995 23:05

Additional role modeling concepts and notation©Taskon 1992. Page 220

Use relation. In an object model, this relation implies that an
object sends messages to (uses) another object. This relation is
shown explicitly in the Collaboration view that was described in
section 2.5.2.

2.

Subtype relation. This is the base model - derived model relation
that was described in chapter 3: Role model synthesis.

3.

4. Association. This is the relation shown in the OOram semantic
view. It describes the meaning we attach to the relation.

System role<role name>

Environment role<role name>

Relation

Exactly one

One or more

Zero or one

The symbols are drawn close to the source role.
They are annotated with a text describing the
meaning of the relation in the direction of
the arrowhead.

Symbol size and proportions are not standardized.
Circles or ellipses may be used as alternatives.

Zero or more

<meaning associated with role>

Figure 6.1 Semantic
view notation

The Semantic view is designed to capture the Entity-Relation kind of
information for a system of interacting roles. We describe the
concepts that the analyst associates with the roles and the relations
between them. The notation is shown in figure 6.1. Figure 6.2 is a
semantic view of the Purchasing model of chapter 2.3.2 on page 79??.

The semantic view
describes the

meaning of the roles
and their relations

cooperates with

cooperates with

banks with

is client of

is vendor to

is customer of

banks with

is client of

Vendor

SD

Enterprise Payer
Bank

Payee
Bank

Figure 6.2 Semantic
view of Purchase

model

6.1 Semantic view29 March 1995 23:05

Additional role modeling concepts and notation ©Taskon 1992. Page 221

Figure 6.3 shows an Entity-Relation diagram which corresponds to
this example. The important difference is that the Entities are types;
the diagram says that the Enterprise is client of some Bank, and the
Vendor is client of a possibly different Bank.

Important difference
between E-R and
OOram semantics

is customer of

is vendor to

cooperates with

banks with

is client of
Enterprise

Vendor
is client of

banks with

Bank

Figure 6.3
Corresponding
Entity-Relation

diagram

Roles are like objects in that they have identity. If we should interpret
figure 6.3 as a semantic view, it would mean that the Enterprise and
the Vendor are both clients of the same Bank. Notice that figure 6.2
does not say they must be different; the same Bank object could play
both roles.

The E-R model is on a higher abstraction level than the role model,
and the E-R diagrams can be more compact than the corresponding
semantic views. We need the concrete aspects of the role model
because we want to reason about its behavior. In our example, we
want to be able to analyze the model to convince ourselves that the
Vendor who delivers the goods will also be the Vendor who receives
payment. We can make this kind of arguments on the role level, but
not on the type (or Entity) level. (FOOTNOTE: This problem is often
called the equivalence of path problem in the E-R community)

29 March 1995 23:056.1 Semantic view

©Taskon 1992. Page 222 Additional role modeling concepts and notation

Collaboration view
and semantic view --

different meaning!

There is a strong correspondence between the semantic view and the
collaboration view. The semantic view describes how we think about
the concepts and their relationships. The collaboration view shows
how the objects collaborate in order to provide a faithful
representation of our thoughts. A Relation represents a conceptual
relationship, and a port represents the object's knowledge about one
or more collaborators. The diagrams will have similar topologies,
except that all relations need not be represented as message paths if
there are no messages flowing between the associated objects.
Further, the cardinalities of the ports may be more restricted than the
cardinalities of the relations, since an object may not need to know all
the associated objects at any given time.

We rarely need the semantic view, since the collaboration view in
most cases contains much the same information.

The synthesis operation does not lead to semantic relations between
the base model and the derived model. The reason is that there is no
formal relationship between the meaning a human observer associates
with the roles and relations in a derived model and the meaning he or
she associates with the roles and relations of the base models. It is the
responsibility of the analyst to ensure that they are semantically
consistent.

Structural
relationship between

base and derived
semantic views

There are formal relationships between the structures (syntax) of the
derived and base models, and the general restrictions on roles, ports
and cardinalities hold for the systems seen in the semantic views:

All roles in the base model must be mapped onto roles in the
derived model.

1.

Every relation in all base models must be mapped onto a
corresponding relation in the derived model.

2.

The cardinalities of the relations in the derived model must be
consistent with the cardinalities of the corresponding relations in
the base models. Specifically, the minimum cardinality of a
derived model relation must be equal to or greater than the
minimum cardinality of the corresponding base model relations;
and the maximum cardinality of a derived model relation must be
equal to or less than the maximum cardinality of the
corresponding base model relations.

3.

29 March 1995 23:05 6.1 Semantic view

©Taskon 1992. Page 223Additional role modeling concepts and notation

No new notation The notation for the semantic view of the derived model is the same
as the general notation described above. Inheritance relations may be
added as shown in figure 3.31 on page 138??, but this is rarely of
interest.

6.1 Semantic view 29 March 1995 23:05

Additional role modeling concepts and notation©Taskon 1992. Page 224

Process view6.2

In a nutshell
A Process view describes the flow of data between roles and the processing of these
data in the roles. We find the process view particularly useful for describing the
flow of data and work procedures in human organizations.

Process analysis is a well established and powerful technique for
describing how a system processes data. The OOram process view is
based on the ideas of the IDEF0 (FOOTNOTE: Ref. [IDEF0 93])
standard and adapted to our general object model. The basic IDEF0
concepts, illustrated in figure 6.4, are as follows:

IDEF0 is a
wellknown standard
for Process analysis

Mechanism - the actor (person, role, machine, resource,
competence, software system, ...) that deal with HOW, or the
means by which the process is done. E.g., what people, machines,
programs, etc. are required.

1.

2. Input - data or "raw materials" undergo a process or a series of
activities and are transformed into output.

3. A process is defined as a series of operations contributing to a
specific purpose. In the IDEF0 technique, a process is described
by a verb or verb phrase and is represented graphically by a
rectangle.

Control - data controlling or influencing the way in which the
process converts its input into output. The control affects the
mode of activities, and may be parameters and rules to be used by
the mechanisms, such as determining which output is produced,
how much, and when it is produced (e.g.,directions, standards,
purposes, timing, quantities, etc. which control or direct the way
in which the activity is performed.)

4.

Output - data or "products" are produced by, or result from, the
process.

5.

29 March 1995 23:05 6.2 Process view

Additional role modeling concepts and notation ©Taskon 1992. Page 225

Controls

In-
puts

Mechanisms

Out-
puts"Raw materials"

Constraints/Directions

"How" it is done

"Products"

Figure 6.4 The
IDEF0 ICOM

Concept (Input,
Control, Output,

Mechanism)

The IDEF0 concepts can be mapped nicely onto the concepts of
OOram:

Mapping IDEF0 and
OOram concepts

1. IDEF0 Mechanisms are the actors that perform actions. In our
object model, all actions are performed by an object. The actor
must, therefore, be an object. This is represented by a role in our
model.

The IDEF0 Input constitutes the input data to the object. The only
way to carry data to an object is through a message, and the input
data must be carried as message parameters or return values.
Several inputs could be grouped as parameters to the same
message, if they have the same sender, the same receiver, and are
sent at the same time. There are no unsolicited messages in our
object model. Initial data are represented as the parameters of a
stimulus message from an environment role.

2.

An IDEF0 process is defined as a series of operations
contributing to a specific purpose. The corresponding OOram
concept is the execution of a method.

3.

IDEF0 Control is a trigger releasing an action. In our object
model, the actions are only released when the object receives a
message. The action is defined by a method, and a trigger is a
message. This message can only be received after all necessary
data has been received, and it could be the last data-carrying
message. The data carried by the other data carrying messages
must be stored in the object's attributes to be ready when the
trigger message arrives. (Asynchronous data carrying messages
could be stored in the object's input queue until the trigger
message arrives.) The choice of solution is not part of the process
view; it could be described in a state diagram view or it could be
postponed to the implementation stage.

4.

6.2 Process view 29 March 1995 23:05

Additional role modeling concepts and notation©Taskon 1992. Page 226

Output - data or "products" are produced by, or result from, an
action. The output from one object must be input to another, and
must be transmitted from the data source as a message. This
message will be received by some other object as described under
Input above.

5.

The notation for a Process view is shown in figure 6.5. Roles are
shown as super-ellipses, actions as rectangles, data as parallelograms,
and data flow as arrows.

The OOram process
view

Figure 6.5 Process
view notation

A role,
responsible for performing all actions in same column

An action performed on received data

A data set which is transferred as message parameter(s)

Data transferred in direction of arrow

The use of the process view is illustrated in figure 6.6. Since objects
are the only possible actors in an object-oriented system, every action
has to be associated with a role. The role responsible for an action is
indicated by its column. The responsibility for the data being
transferred is undefined.

29 March 1995 23:05 6.2 Process view

Additional role modeling concepts and notation ©Taskon 1992. Page 227

Figure 6.6 Process
view of Purchase

model
Enterprise Vendor Payer

Bank
Payee
Bank

<Establish need>
<Prepare
request>

<Prepare bid>

<Select bid>
<Prepare order>

<Process order>
<Prepare goods>

<Prepare invoice>

<Store goods>
<Prepare
payment>

<Process order>
<Prepare
transfer>

<Credit account>
<Prepare advice>

<Update books>

request
for
bid

bid

order

goods
and

invoice

payment
order

transfer
order

credit
advice

Composite actions
supported

Most process analysis methods support composite actions, which are
actions that are later decomposed into a number of smaller actions
with data flowing between them. This is easily supported by the
process view with one caveat: if the composite action is performed by
several roles, a corresponding virtual role must be defined to maintain
the one-to-one relationship between process actors and roles. The
decomposed process view will begin with a single action and end with
another action, both being parts of the composite actions.

29 March 1995 23:056.2 Process view

Additional role modeling concepts and notation©Taskon 1992. Page 228

Conventional data flow analysis represents data stores as special
elements. The only way to store data in our object model is as object
attributes. We must, therefore, represent a data store as a role in a
column in the diagram. The data store object receives and transmits
data through messages, the data stored at any time may be derived
from the data store's input data. Data store objects will normally be
persistent, their contents will survive individual program executions.

Data Stores are
special objects

Processes lost in
unsafe synthesis

A process that is described in a role model cannot, in general, be
assumed valid in a derived model. The reason is that in the general,
unsafe synthesis, the base model activities are not preserved in the
derived model.

Processes inherited
in safe synthesis

The essence of safe synthesis is that the base model activities are
preserved in the derived model. In these cases, the processes of the
base model are preserved in the derived model. We have suggested
two safe synthesis constructs where the destiny of a process after a
synthesis operation corresponds to the destiny of the stimulus
message that starts it:

1. Activity superposition. The base model stimulus messages
become derived model stimulus messages. The base model
activities become independent derived model activities. The base
model processes becomes independent derived model processes.
This is a trivial case that will not be discussed further.

Activity aggregation. The base model stimulus message is sent
from one of the derived model methods. The base model activity
becomes a subactivity and the base model process becomes a
subprocess under this method in the derived model.

2.

We illustrate activity aggregation by an example from the
DerivedTravelExpense model.

Activity aggregation
means to splice base

model process into
derived model

process

6.2 Process view29 March 1995 23:05

Additional role modeling concepts and notation ©Taskon 1992. Page 229

Figure 6.7
ExpenseAccount

process view
ENT

Traveler
ENT

Authorizer
ENT

Bookkeeper
ENT

Paymaster

Desire
to

travel

<Determine OK>

travel
Permission

Request:

<Order tickets>
<Travel>

<Write exp.rep.>

travel
Permission:

<Check OK>

expense
Report:

<Check>
<Bookkeeping>

authorized
Expense
Report:

<Arrange for
payment>

payment
Request:

Figure 6.7 shows a process view corresponding to the scenario for the
TravelExpense model in figure 2.15 on page 75??. Similarly, figure
6.8 shows the process view corresponding to the scenario for the
AirlineBooking model in figure 3.5 on page 109??.

Figure 6.8 AB
AirlineBooking

Process
AB

Traveler

AB
Booking

Clerk

AB
Travel
Agent

AB
Book

Keeper

AB
Paymaster

Order
tickets

Order
tickets

Travel
specification

Issue tickets.
Prepare invoice

Travel
specification

Process
tickets

and invoice

Tickets
and invoice

Note cost
for later use

Tickets
and cost

information

Process
invoice

Authorized
invoice

Send
payment

Payment
request

Process
payment

Payment

29 March 1995 23:056.2 Process view

Additional role modeling concepts and notation©Taskon 1992. Page 230

When we synthesize the two models into the DerivedTravelExpense
model, the AirlineBooking activity is spliced into the method for the
travelPermission-message. Compare the scenario of figure 3.13 and
the method views of figure 3.14 and 3.15 on page 114?? with the
combined process view of figure 6.9. You will appreciate that
different views highlight different aspects of a common model, and
that you select the views that are most convenient and informative for
your purpose.

Figure 6.9
DerivedTravelExpens

e process view
DTE

Traveler
DTE

Authorizer

DTE
Book

Keeper

DTE
Booking

Clerk

DTE
Travel
Agent

DTE
Paymaster

Prepare
travel.

Issue
permission.

Travel
permission

request

Order tickets.

Travel
permission

Order tickets.

Travel
specification

Issue tickets.
Prepare invoice.

Travel
specification

Process
tickets

and invoice.

Tickets
and invoice

Process
invoice.

Authorized
invoice

Note ticket cost.
Travel.

Prepare expense
account.

Tickets
and cost

information

Send
payment.

Remuner-
ation

request

Process
payment.

Payment

Check
expense
account.

Expense
account

Process
expense
account.

Authorized
expense
account

Arrange for
addition to
next salary
payment.

Remuner-
ation

request

Inserted AirlineBooking activity
spliced into ExpenseAccount
method

6.2 Process view29 March 1995 23:05

Additional role modeling concepts and notation ©Taskon 1992. Page 231

6.3 State Diagram view

In a nutshell
The State Diagram view describes the legal states of a role and the messages that
trigger transition from one state to another.

State Diagrams
belong to internal

perspective

We zoom in to focus on an individual role or object, and study its
behavior in the form of a state diagram. The overall pattern of
collaborating roles in the role model has disappeared; all we see are
the messages received from the object's environment. The sending of
these messages is out of sight.

State diagrams are suitable for the detailed specification of role
behavior without actually writing the code. We do not generally
specify state diagrams for our roles, but they are useful in certain
cases -- notably cases involving multiple message threads such as is
often found in telecommunications and real time systems.

The volume of the description increases dramatically with the
introduction of state diagrams, and you should only use them if you
really need them and then only at a late stage in the design process.

Use state diagrams
sparingly and late in

the process.

The state diagrams are omitted if the design can be made so simple
that the problem can be postponed to the implementation stage. The
main advantage is that the volume of the models is drastically reduced
so that they are easier to create, easier to check, and easier to modify.

We cannot reason about the dynamic correctness by studying a single
state diagram. We must extend our scope to the complete role model
to determine the dynamic correctness of the base models, and we must
consider the state diagrams of all synthesized roles to determine if the
base model correctness is preserved in the derived model.

The theory and usage of state diagrams is a specialized subject which
we will not attempt to cover adequately in this book. We will content
ourselves with indicating how state diagrams may be defined in the
context of a role in a role model, and refer you to the literature for
further details. (See for example [Bræk 93]).

6.3 State Diagram view 29 March 1995 23:05

©Taskon 1992. Page 232 Additional role modeling concepts and notation

A large circle denotes a state.<state
name>

A line denotes a transition.
The line may be annotated with
the message names.

A small circle denotes one
or more messages.

Figure 6.10 State
diagram graphical

notation

In conventional state diagrams, actions are triggered by signals. The
only possible signals in our object model are the receipt of messages,
and actions are defined as methods. There can be at most one state
diagram for each role. It describes the possible states of the role, the
messages that are acceptable in each state, the action taken as a result
of each message, and the next state attained after the action is
completed. The OOram notation is shown in figure 6.10.

State diagram view

ban cl

cus

ven

ban cl

bnk

bnk

The Vendor role is marked
'SD' to indicate that a
State Diagram is defined
for this role.

Collaboration View
Vendor

SD

Enterprise Payer
Bank

Payee
Bank

Figure 6.11
Purchase model

collaboration view

Figure 6.11 shows the collaboration view of the Purchasing model
from figure 6.2. Figure 6.12 shows the state diagram for the Vendor
role in this model.

Figure 6.12 Vendor
state diagram

Idle

Avait
Bid

Result

Avait
Payment

requestBid

creditAdvice bidRejected

order

State Diagram view for Vendor role
(There should be one for each role)

State

Transition
(set of current state, message,
action, nextState)

Name of message

6.3 State Diagram view29 March 1995 23:05

Additional role modeling concepts and notation ©Taskon 1992. Page 233

We shall now discuss how we can preserve a successful state diagram
through a safe synthesis operation. Note that we restrict our
arguments to sequential message semantics. The safe synthesis of
state diagrams for parallel processes is a research topic; but we expect
that the preservation of the activity integrity will hold the key to
success.

Compose the derived
state diagram in safe

synthesis

The state diagram of a derived role will in some sense be a product of
the state diagrams of its base roles. If a base role, M, has states m1,
m2 and m3; and another base role, N, has states n1 and n2; the derived
role may have the states m1n1, m1n2, m2n1, m2n2, m3n1 and m3n2.
This is illustrated in figure 6.13.

General synthesis
leads to state space

explosion

Figure 6.13 General
state diagram

synthesis

m3n2m2n2

m1n2

m2 m3

m1

m3n1

m1n1

m2n1

n1 n2

Initial state
Initial state

Initial state

State Diagram for role M

State Diagram for role N

Composite State Diagram for derived role MN

Activity
superposition

Our two safe synthesis constructs are much simpler. We start with
activity superposition. We notice that the base model activities are to
be retained as independent activities in the derived model; and that at
most one activity can be performed at the time. The effect is that the
initial state of all derived roles will be the combination of the base
model initial states, and rest of the base model state diagrams will
appear as separate structures with no transitions between them. This is
illustrated in figure 6.14 for role MN, which is derived from roles M
and N.

6.3 State Diagram view 29 March 1995 23:05

Additional role modeling concepts and notation©Taskon 1992. Page 234

m1n2

m2 m3

m1

m3n1

m1n1

m2n1

n1 n2

Initial state
Initial state

Initial state

State Diagram for role M

State Diagram for role N

Composite State Diagram for derived role MN

Superposition

Figure 6.14 Activity
superposition

The state diagrams for all derived roles are formed by joining the base model state
diagrams at their initial state and nowhere else.

In activity aggregation, the activity of one base model is triggered as a
sub-activity in one of the methods of another model. Figure 6.15
illustrates an example when the state diagram of role N is
encapsulated within a single state in the state diagram for role M.

Activity aggregation

m2n2

m2 m3

m1

m3n1

m1n1

m2n1

n1 n2

Initial state
Initial state

Initial state

State Diagram for role M

State Diagram for role N

Composite State Diagram for derived role MN

Aggregation

Figure 6.15 Activity
aggregation

6.3 State Diagram view29 March 1995 23:05

Additional role modeling concepts and notation ©Taskon 1992. Page 235

Notice that the state diagrams of all other derived roles are copies of
their respective base model state diagrams. The interdependence
between base model state diagrams is only allowed in the triggering
role.

Also notice that attributes may not be modified by an action method if
this causes a state change in a different base model, because such
change modifies base model behavior.

29 March 1995 23:056.3 State Diagram view

Additional role modeling concepts and notation©Taskon 1992. Page 236

6.4 Role List view

In a nutshell
The Role List view gives an overview of the roles, their names, purpose, and
attributes.

The role list view is used to give an overview of the roles and to show
some of their properties, you should select the ones that are useful in
your context:

Many data items
associated with roles

1. role name, the role's unique identifier within the role model

explanation, giving the meaning that the analyst associates with
the role and its responsibility in the community of roles in the role
model.

2.

3. attributes. For each attribute you may specify:

attribute name, the attribute's unique identifier within the role¤
¤ explanation, giving a free text description of the attribute

type, specifying the type of the attribute. This is often omitted,
but is particularly interesting if the attribute is a reference to a
role in another role model.

¤

Figure 6.16
Specification

example written in
the OOram language

role 'Vendor'
explanation "An object which desires to supply goods."
attribute 'accounts'

explanation "To keep track of outstanding accounts with customers."
role 'Enterprise'

explanation "An object which desires to purchase goods."
role 'PayerBank'

explanation "The bank of the Enterprise."
role 'PayeeBank'

explanation "The bank of the Vendor."

Formal language
defined, but informal
report often easier to

read

The form of the role list should be adapted to its purpose. If precision
is of paramount importance, write the specification in the OOram
language as exemplified in figure 6.16 and discussed in depth in
appendix A. If the purpose is to communicate your ideas to colleagues
and clients, an informal variant as exemplified in figure 6.17 may be
better.

Figure 6.17
Specification

example written
informally

role 'Vendor' "An object which desires to supply goods."
attribute 'accounts' "To keep track of outstanding accounts with customers."

role 'Enterprise' "An object which desires to purchase goods."
role 'PayerBank' explanation "The bank of the Enterprise."
role 'PayeeBank' "The bank of the Vendor."

29 March 1995 23:05 6.4 Role List view

©Taskon 1992. Page 237Additional role modeling concepts and notation

Modeling in the large: The OOram Module6.5

In a nutshell
Working with a large number of interdependent models can be confusing. Arbitrary
synthesis relationships may lead to complex structures that are hard to manage.
OOram Modules provide a way to group role models, hide details and declare
certain models to be visible and available for import into other modules.

The development of a large system will often be distributed among
several teams who are separated in space or time. It is an
administrative goal to keep the dependencies between the teams as
small and simple as possible in order to reduce the need for
coordination and the danger of undetected inconsistencies.

As mentioned earlier, Brad Cox [Cox 87] defines the surface area as
everything that is visible at the interface between a supplier and a
consumer. This interface includes everything the consumer needs two
know and understand such as data element names and types, function
names, number of parameters and their types, restrictions on time
sequence of operations, concurrency and protection domains.
Techniques for reducing the surface area between packages in the
realm of programming is called programming-in-the-large. We
similarly define modeling-in-the-large as techniques for packaging
models and minimizing the surface area between model packages.

Modeling in the
large

The synthesis operation establishes a dependency between the base
model and the derived model. Ad hoc synthesis between a large
number of models can easily lead to a chaotic structure that is hard to
create and even harder to modify. We want to group role models, and
encapsulate each group so that we can control the features that shall
be visible to other groups.

A OOram Module is
a package

The OOram Module is an encapsulation of OOram models. The
OOram Module supports modeling-in-the-large by exporting one or
more carefully contrived models and hiding other models and model
details which are deemed internal to the module.

An important application of modules is to package reusable
components. The work process will then be somewhat different, this
was discussed in chapter 5: Creating reusable components.

6.5 Modeling in the large: The OOram Module 29 March 1995 23:05

©Taskon 1992. Page 238 Additional role modeling concepts and notation

It is appropriate to create an OOram module if the following
conditions are satisfied:

The total set of role models gets too large to be easily
manageable.

1.

The models can be arranged into distinct groups.2.

3. There are details in the models of the group that need not be
visible to the derived models outside the group. Encapsulation
and information hiding is then appropriate.

4. The exported models are reasonably stable.

A Module may import role models from other Modules and
synthesize them into the Module's own models. Imported object
specifications specify classes that have been implemented and that
may be subclassed in the importing module. A selected subset of the
information defined in the Module may be declared as export features
and thus made available to other modules as illustrated in figure 6.18.

Figure 6.18 The
OOram Module

Role Models Object Specifications Export ModelsImport Models

Module

An Export Model is a model which is designed to be reused through
synthesis into another model.

An Export Model consists of the following parts:

1. A role model or object specification.

2. A coordinated set of classes that implement the model. The
classes are designed to be subclassed in a controlled manner.
(optional)

Rules for the import of the model, blocking the subclassing of
some classes and restricting the modifications permitted in the
subclasses of others. The rules shall be designed to ensure the
static and dynamic integrity of the export model. Many different
rules can be contemplated; they should preferably be
automatically enforceable or checkable (optional).

3.

29 March 1995 23:05 6.5 Modeling in the large: The OOram Module

Additional role modeling concepts and notation ©Taskon 1992. Page 239

Modules support concurrent engineering of large systems. A team can
encapsulate a system within a module, declare the role models it
imports from other modules; declare details as private and thus hide
them within the module; and declare certain models as export models
and thus make them available to other teams.

Modules support division of authority and responsibility between
development teams, and are used to express the high level system
architecture. The following operations may be used to determine the
modules and create the top level architecture (not necessarily
performed in this sequence):

Module structure
expresses system

architecture

1. System characterization. Write a short, free form (prose)
description of the system, its purpose and main features.

Identify and understand the modules. Factor the information
requirements of the total system and assign to modules. Similarly
factor the processing requirements of the total system and assign
to modules. Iterate to make modules represent "natural" entities of
a reasonable size and complexity.

2.

Determine interdependencies. Determine the information transfer
requirements between modules. Initially, this is done by
specifying the nature of information transferred (role model,
object specification, etc.) and its area of concern. The models are
later augmented with more detailed information as needed.

Iterate step 2 and 3 to minimize intermodule dependencies.

3.

Assign the detailing of each module to a developer or
development team.

Iterate steps 2, 3 and 4 to revise export/import information and to
maintain simple intermodule dependencies.

4.

Programming-in-the-
small relatively

simple

Programming a small system in an incremental programming
environment such as Smalltalk is relatively simple. Using exploratory
programming techniques, a satisfactory set of classes and methods
will usually evolve naturally, and the system source code will usually
provide adequate documentation.

When the programs grow so that their logic is not immediately
apparent from the code, a logical layer is added where the systems are
described by one or more role models.

Medium-sized
programs described

by role models

6.5 Modeling in the large: The OOram Module 29 March 1995 23:05

Additional role modeling concepts and notation©Taskon 1992. Page 240

Programming-in-the-
large is another

matter

For very large systems, the number of role models makes it hard to
manage them and keep track of their interdependencies. We then need
a methodology that helps us separate the total system into
understandable parts and to manage their integration. We add the
rigor of a systematic design methodology to control the development
process and to document its results. We get a structure of related
modules, each containing a number of related models. Each model is
presented through a number of different and overlapping views. All
these modules, models and views must be made consistent in all their
details.

The role models prescribe permissible message sends; these must be
consistent with the messages actually sent by the programs. Role
models build on other role models through synthesis. If a base model
is changed, the derived models must all be updated accordingly. Tools
can be provided to check and help the programmer in the updating
tasks, but hard work is still involved and it is easy to get lost in all the
petty details.

The good news is that the discipline, modularity and precision
provided by a good analysis and design methodology makes it easier
to scale to real-sized projects. The structure that modularization
imposes on the design gives other people a chance to understand what
has been done and why it was done. Quality checks can be applied at
different levels of abstraction by independent auditors. The logical
descriptions makes it possible to apply automated tools to check that
the programs actually conform to the designer's intentions.

The good news

We offer the following advice for good working habits:

1. It is crucial to design the architecture right, which means that the
choice of modules and their exported functionality should be
stable and their surface area should be minimized. The hassle
involved in system updates is immensely reduced if one can get
this right.

Keep modules and role models brief and sketchy until the
architecture and all naming conventions are stable.

2.

3. Exploratory design and implementation of modules is a powerful
idea that yields good results in a short period of time. But keep
the architecture stable! Exported models should be changed
infrequently and only after careful consideration.

4. Keep it lean and mean. The models exported from the modules
should be simple -- easy to understand and easy to apply.

29 March 1995 23:05 6.5 Modeling in the large: The OOram Module

Additional role modeling concepts and notation ©Taskon 1992. Page 241

Two modules may be related in three different ways as follows:Different module
relations

1. Peer-to-peer module relation. The two modules represent
phenomena on the same abstraction level, and each is responsible
for a part of the total system. A typical application is when the
functionality of a domain is to be made available to another
domain in a controlled manner. This is illustrated in the example
below.

Aggregation relation. The two modules belong on different
abstraction levels. What appears as a single object on one level
appears as structure of objects on the next level down, and what
appears as single operations on one level are expanded into
complete activities on the next level down.

The server in a client-server combination will typically be
packaged in a module. It will export one or more descriptions of
the service as seen from the clients, and will hide all details about
its realization.

2.

3. Generalization-specialization. A module may define the solution
to a general problem; another module may import this solution
and specialize it.

We could, for example, create a general module for making minor
expenditure decisions in our company. The TravelExpense model
could then import and specialize its export model. Other examples
are given in chapter 5: Creating reusable components.

The TravelExpense and AirlineBooking models described in chapters
2.3 and 3.1 both included facilities for reimbursing someone -- they
were slightly different for the reimbursement of the traveler and the
travel agent. It might be better if we had standardized the
reimbursement procedure and applied it consistently in all cases. A
possible solution would be to create an Accounting module; a module
that includes a great deal of financial and accounting details. This
module exports a Reimbursement model that is imported by the
TravelManagement module. The TravelExpense and AirlineBooking
models are now derived from the common Reimbursement model.
This solution is shown in full graphical notation in figure 6.19 and in
an abbreviated form in figure 6.20.

Module example

29 March 1995 23:056.5 Modeling in the large: The OOram Module

Additional role modeling concepts and notation©Taskon 1992. Page 242

Figure 6.19 Full
graphical module

notation
Derived

TravelExpense
model

AirlineBooking
model

TravelExpense
model

Reimbursement
model

TravelManagement ModuleAccounting Module

Exported base model Derived models
Models internal
to Accounting

In the full graphical notation, a module is shown as a rectangle enclosing its model
symbols. The module name is written on its top boundary. Export-Import is shown
as synthesis arrows crossing the module boundaries.

TravelManagement ModuleAccounting ModuleFigure 6.20
Abbreviated

graphical module
notation

In the abbreviated module notation, individual models are suppressed and we show
the module relationships as synthesis arrows between the modules themselves.

In chapter 12: A Value Chain for Intelligent Network Services, we will
present an extensive case study describing a possible commercial
organization for creating, deploying and using advanced
telecommunication services. The notion of modules is an important
part of its technological foundation, facilitating the transfer of
technology between different operators and protecting critical
resources which need to be controlled by the technology supplier.

Module architecture
case study

Modules make
OOram technology
scale to very large

systems

Modules provide system organization and information hiding
facilities that make it feasible to manage very large systems. A bank
may create a Customer Module that exports certain models which its
customers can import into their own systems and thus integrate
banking with other operations. The Customer Module will also be part
of the bank's system architecture and be integrated with other
modules through a different set of export models.

This is an enormously important result. A customer designs,
implements and understands its information systems, just as the bank
designs, implements and understands its system. The two system
worlds are integrated through shared models so that they technically
constitute a coherent whole, yet no single person or group of persons
need have an overview of the total system.

29 March 1995 23:05 6.5 Modeling in the large: The OOram Module

©Taskon 1992. Page 243Additional role modeling concepts and notation

29 March 1995 23:056.5 Modeling in the large: The OOram Module

©Taskon 1992. Page 244 Additional role modeling concepts and notation

Chapter 7
Case study: Development of a business

information system
In a nutshell
Objects everywhere! We use objects to model the organization of the enterprise and
the computer system architecture. We use objects to model the human work
procedures and the symbiosis between humans and their personal computers. We
use objects to describe the user interface.

We suggest that business information processing can conveniently be represented
by three interrelated role models: the first is a model of the human work processes;
the second is a model of the human tasks with the corresponding computer tools; the
third is a model of the shared information. This model triad is illustrated by a case
study of the travel expense system mentioned earlier.

Enterprise is the term commonly applied to all kinds of work
organizations. We find enterprises in the public sector ranging from
the offices of central government to the local fire brigade. We find
enterprises in trade and industry, and we find them in the voluntary
organizations. Their common characteristic is that they provide a
stable framework to support people working together in an organized
manner towards a common goal.

An enterprise is a
work organization

Value is created when a person performs some useful task. This task
will be part of a work process that involves the person and possibly
other persons as indicated in figure 7.1.

Work process results
in value creation

Figure 7.1 A work
process consists of a

sequence of tasks task

task

task

task

task

task

 29 March 1995 23:05

Case study: Development of a business information system ©Taskon 1992. Page 245

The professional
needs a consistent

and integrated
information
environment

The professionals performing the tasks will be supported by a
combination of methods, procedures and tools which we call their
information environments. A personal information environment is an
integrated and unified interface to the world of computer-based
information, customized to their owner's tasks and designed to be an
effective aid in all his or her information processing activities: the
retrieval of information, the creation of new information based on the
person's skill, experience and competence, and the person's
cooperation with teammates as well as other people both within and
outside the organization. This symbiosis of person and information
environment is illustrated in figure 7.2.

Enterprise level

Computer level

Personal
information
environment

Integrated
information
services

Figure 7.2 Personal
information

environments
support the members
of the organization in
their individual work

and their
cooperation

A person does not work in isolation, and our symbiosis of person and
information system could be repeated on all levels of the organization
such as the team, the department, and the division as illustrated in
figure 7.3. In this model, every organizational unit is modeled as an
object, which is implemented as a combination of humans and
computers. Interaction between the objects can take place on the
human level or the computer level as appropriate. This system
architecture could implement new and powerful ways of organizing
our business.

Architecture should
support cooperation

on all levels

 29 March 1995 23:05

Case study: Development of a business information system©Taskon 1992. Page 246

Figure 7.3 Multi-
level man-machine

symbiosis

A two dimensional
client-server
architecture

We believe that the person oriented approach is valuable, and may
indeed be the driving force behind the personal computer revolution.
It is distinct from the traditional function oriented approach, but does
not replace it. One dimension is that a person needs to integrate all his
or her information processing facilities. The other dimension is that a
company needs integrated functions. For example, a company needs
integrated systems for computer-aided design, for materials
management, for project control, and for economic management. A
project manager performing the task of assigning people to the
project's activities needs a tool that provides simultaneous access to
the personnel function, the manpower loading function and the project
control function.

We clearly need an overall systems architecture which combines both
approaches. We advocate the specialized client-server architecture
that is illustrated in figure 7.4. The client parts provide task-oriented
information environments tailored to the needs of the individuals, and
the server parts provide the functional integration. The name we have
chosen for this architecture is the Task/Tool/Service architecture,
because it describes how an individual's tasks are supported by
customized tools that access common information services on behalf
of the individual.

We have chosen the term tool to denote an artifact that a person
employs to perform a task, and the term User Information
Environment to denote the integrated set of tools employed by a
person. We have chosen the term Information Service to denote a
service object which is responsible for managing certain information
such as accounting information or materials management information.
An Information Service object will typically encapsulate a database or
an old application system (frequently called a legacy system).

 29 March 1995 23:05

©Taskon 1992. Page 247Case study: Development of a business information system

User
Information
Environment

User
Information
Environment

User
Information
Environment

User
Information
Environment

Information
Service

Information
Service

Information
Service

Enterprise Outside world

Communication

Tasks

Tools

Services

Figure 7.4
Task/Tool/Service

System Architecture

The architecture of figure 7.4 supports many levels of integration as
illustrated in figure 7.5.

The architecture
supports many levels

of integration

Within
Service

Between
Services

Enterprise Outside world

Communication

Tools Between tools

Between people

Through Tool

Figure 7.5 Levels of
Integration

Integration within a service. A service may encapsulate a
database, which is used to integrate all functions pertaining to the
domain served by the service.

1.

Direct integration between services. A service may call upon
another service, it then becomes a client of that service. This level
of integration should be used with discretion, because it could
make the total system very difficult to change. One viable
discipline is suggested in figure 7.3, where team services may be
clients of the department services, which in their turn may be
clients of the division services.

2.

Integration of services via tools. A tool may be the client of
several services, and may be used to move information between
them. This kind of integration is very flexible since tool programs
should be much smaller and simpler than service programs. It is
easier to maintain system flexibility through evolution.

3.

29 March 1995 23:05

©Taskon 1992. Page 248 Case study: Development of a business information system

4. Integration between tools. In principle, a tool may be the client of
another tool so that information may be transferred between them.
Tools should be created and phased out fairly rapidly to reflect
changes in work procedures and personal preferences. Tool-tool
integration makes the total system more rigid and harder to
change. We recommend that you avoid this kind of integration.

5. Integration between people. Even in a computer intensive
environment, people must still be encouraged to communicate
both formally and informally. This communication can be person-
to-person, through telephone, fax or through an electronic
message system.

Three levels of
information system

modeling

The Task/Tool/Service architecture tells us that we have to perform
analysis and design on three levels. The levels will be represented by
three distinct, but interdependent, models, with each of them offering
its own insights into the problem and its solution. The levels are
illustrated in figure 7.6 and described in detail in the following
subsections.

Enterprise model, modeling how people work and interact in
order to achieve the given purpose. This corresponds to the
System User Model of figure 1.17 on page 44??.

1.

Information model, modeling the subject of the work described in
the Enterprise model. The information will ultimately be handled
by an appropriate Information Service. This is one of the System
Requirements Models of figure 1.17.

2.

3. Task/Tool/Service model, modeling the tasks and the interfaces
between the people and the Information model. This is another
System Requirements Model.

The Task/Tool/Service and the Information models can be elaborated
on several levels of abstraction.

29 March 1995 23:05

©Taskon 1992. Page 249Case study: Development of a business information system

Figure 7.6 Personal
information

environments
support the members
of the organization in
their individual work

and their
cooperation

Enterprise
model

Task/ToolService
model

Information
model

The three models are interrelated as illustrated in figure 7.7. The
enterprise model defines the tasks for the Task/Tool/Service models
and the information that needs to be represented in the information
model. Each Task/Tool/Service model defines a number of operations
that have to be supported by the information model.

Enterprise model

Task/Tool/Service
models Information models

tasks required information

operations

Figure 7.7
Relationships

between the three
models

Analysis and design
are opportunistic

We begin by modeling the current situation, and usually create the
Enterprise model and the Information model in parallel. We next
develop a corresponding pair of models for the desired, future
situation as illustrated in figure 7.8. Purists may want to keep the
current and the future models distinct; in practice, we often permit the
one to gradually evolve into the other. We continually iterate between
the future Enterprise and Information models because new ideas for
organizing the enterprise lead to new demands on the information, and
insights into possible information structures suggest opportunities for
improved organizations.

The scope of the project should be under continuous scrutiny. The
scope may be expanded to incorporate new ideas for increased
functionality, or it may have to be reduced because some of the
original ideas may prove impractical or infeasible.

29 March 1995 23:05

Case study: Development of a business information system©Taskon 1992. Page 250

Once the future Enterprise and Information models begin to stabilize,
we introduce the Task/Tool/Service level modeling. We continue to
iterate between Enterprise, Information and Task/Tool/Service models
until analysts and users agree they have reached a satisfactory
solution.

We will later stress the importance of user participation in these early
stages of the development process. We recommend that you consider
using early prototyping to ensure that the users fully appreciate the
consequences of the proposed specifications.

Scope

Future
Task/Tool/Service

model

Current
Enterprise model

Current
Information model

Future
Enterprise model

Future
Information model

Figure 7.8 A
development process

The Task/Tool/Service architecture described in this section may be
studied on two levels. It may be taken as a proposed solution to an
important set of problems. Or it may be taken as an example of three
very interesting relationships between models: The actions of the
Enterprise model define the activities of the Task/Tool/Service model;
the data of the Enterprise model define the objects of the Information
model; and the actions of the Task/Tool/Service model define the
operations of the Information model.

Summing up

We will now create the three models for the travel expense example
introduced earlier. We will create an enterprise model, an information
model, and a task/tool/service model that focus on the needs of the
Authorizer role.

29 March 1995 23:05

©Taskon 1992. Page 251Case study: Development of a business information system

Enterprise model7.1

In a nutshell
We create an object model of an organization in the context of a certain work
procedure. The case we have chosen is a possible work procedure for the
management of travel expense accounts. This problem was introduced in chapter 2.
We now give it a more detailed treatment.

Business process
reengineering

The essence of business process reengineering is to re-evaluate the
goals of an enterprise and the means it employs to reach them. Of
prime importance is looking at the enterprise in a new light, getting
new insights and finding new ways to reach old and new goals.

It has been said that invention consists of 5% inspiration and 95%
perspiration. The perspiration part of business process reengineering
is to design the new organization, its procedures and its information
systems. It is usually appropriate to create two sets of models: `as is'
models describe the current way of doing things, and `reengineered'
models describe the future organization and its systems.

Based on the idea of business reengineering presented in [Hammer
93], we consider a procedure in the light of the overall goals of the
enterprise. Is the procedure really necessary? If the answer is yes,
could we achieve the required results in a more effective manner? Is it
really necessary to assume that everybody wants to cheat the system,
or could we trust people to do the right thing? In this case study, we
will assume that the inspiration part is completed, and that we now
want to create a detailed description of the new organization and the
appropriate computer support.

Some of the literature on object-oriented modeling of enterprise
information systems express strong views on the optimal sequence of
steps in the analysis and design process. Some authors such as
[Rumbaugh 91] or [Wirfs-Brock 90] advocate that we should identify
the objects before identifying the behavior, while other authors such
as [Rubin 92] advocate the opposite sequence. We believe that
optimal process is opportunistic: We should at all times work on the
model and the view that offers the best opportunities to improve our
insights. The path will be twisted, but the job is completed when all
the chosen models and views are consistent and faithfully resolve the
requirements.

Modeling process
must be adapted to

our needs

7.1 Enterprise model 29 March 1995 23:05

Case study: Development of a business information system©Taskon 1992. Page 252

The enterprise modeling process we follow in this presentation
consists of six steps as follows:

Determine the Area of Concern. Write a free form (prose)
description of the issue under consideration.

1.

2. Understand the problem and identify the nature of the objects.
Identify the user community and understand their requirements.
Identify the nature of the active participants; they could be
concrete such as people or equipment, or they could be abstract
such as departments. In this case, they are the people involved in
the issue under consideration; understand their duties and how
they perform them.

Determine Environment roles and Stimulus/Response. Describe
the messages that are sent from environment roles and cause an
activity in the described system. Also describe the response,
which is the overall effect of the activity.

3.

Identify and understand the roles. Separate and idealize the tasks
and responsibilities of the actors as the roles they play in the
process.

4.

Determine the work process. Create a model showing the tasks
performed by the actors and the corresponding Process.

5.

Determine the Collaboration Structure. Show the roles in a
structure of collaborating objects.

6.

Determine Interfaces. Determine the messages that each role may
send to each of its collaborators.

7.

These steps provide you with an object-oriented model of the process
under study. It provides a static description defining the objects, their
characteristics and collaboration structure, and it provides a dynamic
description defining the processes under study. We will now describe
these steps in detail for our example process, and also give some hints
to help you create descriptions for your own application areas.

Determine the Area of Concern7.1.1

Our first step is to identify the bounds of our study. The area of
concern is a textual (prose) description. It may describe a broad
problem, such as the administrative procedures of an organization. Or
it may describe a narrow problem, such as the handling of travel
expense reports.

29 March 1995 23:05 7.1 Enterprise model

©Taskon 1992. Page 253Case study: Development of a business information system

The area of concern is probably the most important step of all. Which
part of the complex world surrounding us do we want to consider, and
which aspects of this part do we consider sufficiently important to
merit inclusion in the model? If we choose too wide an area, the
model gets intractable (".. so complicated that there are no obvious
deficiencies"). If we make the area too small, we may get lost in the
large number of models needed to describe everything we are
interested in. (Programmers often like to compare an overly complex
program to a bowl of spaghetti, the object-oriented equivalent is
noodle soup.)

The requirements specification is a good starting point for defining
areas of concern. In simple cases, you will need just one model and
the area of concern will be the area covered by the requirements. In
more complex cases, you may still find it useful to start constructing a
model of the overall system; but it is also often possible to identify
important sub-phenomena up front and model them before embarking
on an overall model. In extreme cases, it may be possible to partition
the requirements into independent parts that can be modeled
separately; the overall model then becomes superfluous and can be
omitted.

In my own practical modeling work, I almost invariably believe that
the area of concern is so obvious that I do not need to write it down.
In every case, this has proven to be an illusion. It has always been
surprisingly hard to write down a precise area of concern. My advice
is that you start by defining the area of concern in writing, and that
you make it as complete and succinct as you possibly can. Return
frequently to this description and improve it to reflect your increased
understanding of the area under consideration. We will try the
description shown in figure 7.9 for our expense account example.

Figure 7.9 Area of
Concern

The area of concern is the handling of travel expense accounts. We focus on the
expense account itself, and do not model details about why the trip was made, nor
how the traveler is reimbursed for his expenses.

7.1.2 Understand the problem and identify the nature of the
objects

The next step is to identify the people we want to help. We call them
the actors. The actors may be the members of one or more
departments, or the people involved in certain operations. Our initial

29 March 1995 23:057.1 Enterprise model

©Taskon 1992. Page 254 Case study: Development of a business information system

selection of actors will be an intelligent guess. We may later find that
other actors have to be included and that some of the initial actors
may be ignored.

Who are the actors and what are their roles in our example? As a
starting point, we consider the company organization, which was
shown in figure 2.9 on page 66?? and is repeated in figure 7.10 for
your convenience. (We show the organization relationships as a
guide, even if they have little bearing on the current problem).

Peter
(Technical author)

Bill
(Dispatcher)

Joyce
(Sales clerk)

Douglas
(Marketing manager)

Kim
(Methodologist)

Elsie
(Programmer)

Eve
(Software Manager)

Bill
(Bookkeeper)

Joe
(Paymaster)

Adam
(Chief Accountant)

Ruth
(President)

John
(Cashier)

Ann
(Consultant)

Figure 7.10 An
object-oriented

model of a company
organization

We seem to have two possibilities when selecting the actors of our
model: either to model the organizational units, such as company and
departments as objects, or to model the people populating the
company. The choice seems simple in this case, since companies and
departments are abstractions, which cannot do anything by
themselves. We decide to create a model where the objects represent
the people involved in creating and processing travel expense
accounts.

We often find that the community of actors is too large for us to relate
to every one of them personally. We have to select a smaller number
of typical actors as representatives of the whole community. It is
important to include all kinds of actors in this smaller set. It is a grave
mistake to focus on the managers, or on those who are most forward
and outspoken, or on those who are enthusiastic for new ideas. If we
are to be of any help, we must understand our future users, their goals
and concerns, their competence and interests.

29 March 1995 23:05 7.1 Enterprise model

©Taskon 1992. Page 255Case study: Development of a business information system

In her insightful doctoral dissertation, Elanor Wynn [Wynn 79] found
that there are basically three ways of finding out what happens in an
office: we may ask the managers; we may ask the workers; or we may
observe the work as it actually happens in the office. Each of these
approaches gives important insights, but they will all be different. The
manager and the workers will tell you how they perceive the work;
these perceptions will differ from person to person. But some of the
most important aspects of the work will be so obvious to the
participants that they will never think of mentioning them. You must
consciously search for such "obvious" aspects through observation
and through asking numerous questions.

Be aware of people's
different perceptions

It is also important to be alert to all aspects of the work processes.
Wynn found that almost all communication between office workers
had several distinct, but interwoven aspects such as -- a work aspect
('order 5 boxes of copy paper'), a social aspect ('how is your cold?',
'why can't you learn to look up the reference number before you call
me?') , and a training aspect ('always remember to send a copy of
these invoices to Pete') . Introducing a new system for the work aspect
may play havoc with essential processes in the organization. The head
of a university computer center got fed up after observing that there
was always a large group of happy people around the coffee machine,
which was next to the printer. He removed the coffee machine and
had to hire three more advisors to help students solve their problems
[Weinb 71].

Be aware of the
"soft" aspects

Be aware of the tendency many of us have to consider people stupid
because they do not have our deep understanding of the concepts and
terminology of our specialty. At the bottom of such impressions we
frequently find our own complete ignorance of their competence,
concepts and terminology! Our goal is to be at one with the user
community so that we understand the details of their work and the
nature of their goals, ambitions, and cooperative culture. Empathy is
more important than precision; communication is more important than
following some fixed methodology. Looking back on figure 2.4 on
page 57??, we realize that the professional analyst is a person who is
able to learn the language of the users in order to communicate with
them and avoid misunderstandings. Communication is perfect when
the participants interpret the data in the same way. No harm is done if
we do not understand each other and know it -- we can then continue
the discussions until everything is clear. The real danger arises when
the participants interpret the data differently without realizing it. We
claim that misunderstanding is the mother of the most gigantic failures
in information systems development.

Be aware of your
own perceptions

7.1 Enterprise model 29 March 1995 23:05

©Taskon 1992. Page 256 Case study: Development of a business information system

We strongly recommend that systems analysts should approach the
user community with due respect and humility. Use any fair means
known to you to establish communication: if the users are trained in
some formal notation, use it even if you consider it inferior to your
notation. For most users, free text and informal diagrams are better
than any formal notation. Use your notation to translate your
understanding into precise and unambiguous descriptions. Use those
descriptions as your background information, and check your
understanding against the users in the users' language. We do not
mean that you cannot show your beautiful diagrams to the users. But
your responsibility is to communicate with them -- not to trap them as
hostages for your pet project.

The success criterion of any project should be that the users get
exactly what they expected. It is easy to see that they have reason to
be upset if the project has been oversold and they get less than they
expected. But should we applaud the pleasant surprises of results
exceeding expectations? My answer is no. If you were developing a
system commercially, you could have asked a higher price if the users
understood its full value. Such surprises are a result of poor
specification and/or communication, and that the results probably
would have been even better if the users had been aware of the
system's full potential.

Communicate!

In our example, we identify all the people who are in any way
involved with the travel expense account process. We cannot do so
without considering the process, so the analysis must by its nature be
iterative. We identify some people and learn about their involvement
in the process. This points us to other people and other parts of the
process, and so on. A useful way of thinking about the individuals is
to consider them as information processing entities. Through
conversation and observation, we build our understanding of the
actors, their responsibilities, their collaborators and their information
processes as illustrated in figure 7.11. (But do not forget the other
aspects which we discussed above!)

Figure 7.11 is also an illustration of the relationship between the
enterprise and information models discussed earlier; the information
is here the subject of the object interaction.

7.1 Enterprise model29 March 1995 23:05

Case study: Development of a business information system ©Taskon 1992. Page 257

Figure 7.11 What we
need to understand

about each actor

Collaborators

Information results

Information needs

Actor
with tasks, goals

and responsibilities

BOX
I did my first study of this kind in an engineering company. I spent a couple of
weeks interviewing various people, and collected a great deal of data. Back in the
office, I tried to create a Process diagram, linking people through their information
interchange. To my chagrin, I discovered that almost none of the information people
created was ever used, and almost none of the information people used was ever
created. The thing was a complete mess, and my first thought was that the company
was a mess as well. On second thoughts I realized that the company in fact produced
complex and working designs, so there had to be some other reason for the
discrepancies. I found the following (this was many years ago, and I am sure most
companies have cleaned up their act by now):

1. Synonyms. People from different disciplines used different names for the same
information.

Information Packages. Somebody produced a named package of information
containing many information items. Nobody used the full package, but all the
items were used by somebody.

2.

Homonyms. The trouble caused by homonyms showed its ugly head later in the
study. Different people using the same term for different concepts cause no
trouble until these people try to communicate. In the engineering company, this
happened when we first tried to create information processing systems
spanning several disciplines.

3.

BOX
My wife recently worked at creating a multidiscipline database for the management
of hydroelectric resources. To some, a dam was the thing you put across a river to
trap the water; to others it was a body of water together with all the installations
around it. The difficulty in such cases is that we generally do not distinguish
between term and concept. People get very upset when their well established
terminology is "misused" by somebody else, and religious wars may ensue if
different interpretations of the terms are well-entrenched in the terminology of both
parties.

Ask one computer expert: "What is a system?" and you will get an answer. Ask a
group of experts, and you will get a discussion.

29 March 1995 23:057.1 Enterprise model

©Taskon 1992. Page 258 Case study: Development of a business information system

7.1.3 Determine environment roles and Stimulus/Response

An environment role is a role that triggers some activity in the system,
or a role that receives a trigger for some unspecified activity in the
environment. In our case, the Traveler takes an initiative; the cause of
this initiative is outside the scope of this model. The Traveler is,
therefore, an environment role. When the travel is completed and the
travel expense report has been processed, the Paymaster is asked to
arrange for reimbursement. This model does not describe how this is
done; the Paymaster is therefore an environment role.

pment tr

ENTSystem<ENTTraveler
travelPermissionRequest:

ENT
Traveler

ENTPaymaster<ENTBookkeeper
paymentRequest:

ENT
System

ENT
Paymaster

Figure 7.12
Stimulus/Response

The stimulus messages and the corresponding system responses are
conveniently presented as shown in figure 7.12. The system is shown
as an unspecified cluster of roles called a virtual role. The system
input and output ports are annotated with the stimulus and response
messages.

7.1.4 Identify and understand the roles

It is customary in organization development to consider people's roles
in the enterprise processes. A person may play many roles, and a role
may be played by several people. We want to create a role model of
the travel expense report process. A role model is a stylized object
model:

Identify object patterns. Identify a pattern of interacting objects
and represent it as a corresponding pattern of interacting roles.

1.

29 March 1995 23:05 7.1 Enterprise model

©Taskon 1992. Page 259Case study: Development of a business information system

2. Suppress aspects irrelevant to the current topic, and only
represent information about the objects that you choose to
consider as relevant. In our example, we only consider travel
accounts and suppress related phenomena such as budgeting and
reimbursement.

3. Generalize object identity, and represent all objects serving the
same purpose within the structure of objects as a single role.
Think of this role as a typical object in the context of the area of
concern. In our example, we let a Traveler role represent any
person who travels, and an Authorizer role represent any person
who authorizes a travel.

4. Suppress irrelevant detail, using the object encapsulation property
to hide details that do not help you understand the phenomenon of
interest. In our example, we focused on the overall aspects of the
phenomenon and suppressed all the internal details such as the
itinerary of the travel; or the procedure followed by the
Authorizer to decide to OK an expense account.

In our example, we find that the role of Traveler may be played by
any member of the staff. The role of Authorizer may be played by any
manager, and the roles of Bookkeeper and Paymaster are played by
Bill and Joe. We will have to consider if objects may play multiple
roles, and decide if it is OK for a manager to authorize his or her own
travel. The result is formally recorded textually in a role/responsibility
list as shown in figure 7.13.

Figure 7.13 The
roles

role 'ENTTraveler' explanation "The person who travels"
role 'ENTAuthorizer' explanation "The person who authorizes the travel."
role 'ENTBookkeeper' explanation "The person responsible for bookkeeping."
role 'ENTPaymaster' explanation "The person responsible for reimbursement."

We have here given the role definitions in textual form using extracts
of the OOram language defined in Appendix A. We do not
recommend a tabular form, because you should write as complete role
descriptions as possible.

Determine the Work Process7.1.5

Process Diagram
shows sample data

flow with associated
actions

Through conversation and observation, we build our understanding of
the actors, their responsibilities, their collaborators and their
information processes. We describe the work flow in a Process
Diagram as illustrated in figure 7.14.

29 March 1995 23:057.1 Enterprise model

Case study: Development of a business information system©Taskon 1992. Page 260

ENT
Traveler

ENT
Authorizer

ENT
Bookkeeper

ENT
Paymaster

Desire
to

travel

<Determine OK>

travel
Permission

Request:

<Order tickets>
<Travel>

<Write exp.rep.>

travel
Permission:

<Check OK>

expense
Report:

<Check>
<Bookkeeping>

authorized
Expense
Report:

<Arrange for
payment>

payment
Request:

Figure 7.14
ExpenseAccount

process view

In figure 7.14, the roles are represented as super-ellipses drawn at the
top of the diagram. Rectangles are shown below the appropriate role
symbol, they represent tasks performed by the roles. A text in <angle
bracket> represents a pseudo-operation. Parallelograms represent data
that flow between the tasks. Data usually change ownership during
the transfer and the column is irrelevant. The data flow follows the
arrows connecting the symbols.

Postpone
classification

The roles are archetypical objects idealized in the context of the
current area of concern. High complexity or repeated patterns are
warnings that sub-models should be factored out.

Data carried by
messages between

objects

Objects can only interact through messages in our object model. Data
must therefore be carried from one role to another as parameters to
appropriate messages. If a role needs several data items before it can
perform a task, the role must store the received data as attributes until
all data have arrived and the task can be performed. (The message
which finally releases the task is frequently called a trigger in the
literature).

We have stipulated that a list of roles is documented before the
description of the work processes. The list is usually best created as a
by-product of describing the work processes, the two sections are thus
created concurrently.

Iterate!

7.1 Enterprise model29 March 1995 23:05

Case study: Development of a business information system ©Taskon 1992. Page 261

Determine the Collaboration Structure7.1.6

Based on the information in the Process Diagrams and our general
understanding of the work processes, we draw a Role Collaboration
View as shown in figure 7.15.

Figure 7.15 Role
Collaboration View

for the travel expense
process

au tr

pm

bo

ENT
Traveler

ENT
Authorizer

ENT
Bookkeeper

ENT
Paymaster

The Collaboration View may be annotated with role descriptions as
illustrated in figure 7.16.

Figure 7.16 Role
Collaboration View
annotated with role

descriptions

pm

bo

au trENT
Traveler

ENT
Authorizer

The person who
travels.

ENT
Bookkeeper

The person who
authorizes the travel.

The person responsible
for bookkeeping.

ENT
Paymaster

The person
responsible for
reimbursement.

7.1.7 Determine Interfaces

Associate a list of all the messages that a role may send to a
collaborator with the corresponding port. A Process View shows an
example process, the interfaces must include all messages shown in
these views. Study the resulting interfaces, and add messages that
seem to be missing to make them nicely rounded representations of
the role functionality.

Determine the
messages that may
be sent from each

port

7.1 Enterprise model 29 March 1995 23:05

©Taskon 1992. Page 262 Case study: Development of a business information system

Figure 7.17 Role
Collaboration View

annotated with
message interfaces

bo

pm

au trENT
Traveler

ENTTraveler<ENTAuthorizer
travelPermission: aTravelPermission

ENTAuthorizer<ENTTraveler
expenseReport: anExpenseReport
travelPermissionRequest: aTravelPermission

ENTBookkeeper<ENTAuthorizer
authorizedExpenseReport: anExpenseReport

ENTPaymaster<ENTBookkeeper
paymentRequest: aPaymentRequest

ENT
Authorizer

ENT
Bookkeeper

ENT
Paymaster

The Role Collaboration view can be annotated with the permitted
messages as illustrated in figure 7.17. The interfaces are often too
large to conveniently fit onto the diagram, or you may want to
describe more details about message parameters and their types. You
then describe the interfaces textually as shown in figure 7.18. The
language is an extract of the OOram language described in appendix
A.

Two interface
notations

Figure 7.18
Interfaces for the

Enterprise model in
informal textual form

interface 'ENTAuthorizer<ENTTraveler'
/* Read as "ENTAuthorizer from ENTTraveler" */

message synch 'travelPermissionRequest:'
explanation "Request authorization of submitted travel plan."
param 'aTravelPermission' type 'INFTravelPermission' :: 'Travel Expense

Information Model'
message synch 'expenseReport:'

explanation "Request reimbursement of submitted expense report."
param 'anExpenseReport' type 'INFExpenseAccount' :: 'Travel Expense

Information Model'
interface 'ENTTraveler<ENTAuthorizer'

message 'travelPermission:'
explanation "Travel authorization granted."
param 'aTravelPermission' type 'INFTravelPermission' :: 'Travel Expense

Information Model'
interface 'ENTBookkeeper<ENTAuthorizer'

message synch 'authorizedExpenseReport:'
explanation "Request reimbursement of submitted expense report."
param 'anExpenseReport' type 'INFExpenseAccount' :: 'Travel Expense

Information Model'
interface 'ENTPaymaster<ENTBookkeeper'

message 'paymentRequest:'
explanation "Reimburse the specified account."
param 'aPaymentRequest' type 'INFPayRequest' :: 'Travel Expense

Information Model'

29 March 1995 23:05 7.1 Enterprise model

Case study: Development of a business information system ©Taskon 1992. Page 263

The OOram language interface specification can optionally include
the parameter types. The specification in figure 7.18 is particularly
interesting because the parameters define relations between this
model and the information model. The parameter of the first message
must for example reference an object which plays the
INFTravelPermission role in the Travel Expense Information Model.

29 March 1995 23:057.1 Enterprise model

Case study: Development of a business information system©Taskon 1992. Page 264

7.2 Information model

In a nutshell
The enterprise model described what people do to achieve a certain purpose. It also
described the information that was the subject of the messages, but it did not define
the information semantics or representation. We will now create a detailed model of
this information.

First iteration
Information model

derived from
Enterprise model

The Information model describes the universe of discourse of the
Enterprise model; i.e. its message parameters and role attributes.

You begin by listing all relevant parameters and attributes in the
enterprise model. Then define an Information model role for each of
them and determine the relationships between them. Extend it into a
complete model of the world of information as it is perceived by the
user community.

You will need to choose an appropriate modeling paradigm; choose a
relational database if a passive data repository is satisfactory, choose
an object-oriented database if data behavior is an essential part of the
information model.

Some information may be handled informally, either orally or through
informal media such as memos or electronic mail. Travel permissions
are frequently handled this way. The travel expense report itself is
frequently required to be on a formal business form or data record. It
contains fields for the different kinds of information:

Some information
may be handled

manually

1. Traveler's name and ID

2. Purpose of travel

Authorizer name and ID3.

4. Permission date

Itemized specification of expenses5.

6. Gross amount

Advance payment7.

8. Net amount

Authorization date9.

29 March 1995 23:05 7.2 Information model

Case study: Development of a business information system ©Taskon 1992. Page 265

An early decision is to choose the information that will be represented
in an information system and concentrate further work on this subset.
Our choice is to focus on the ExpenseAccount itself.

Focus on computer-
based information

We will now develop a model of the ExpenseAccount information.
Our suggested information modeling process consists of creating the
views listed below. This is just one of the many possibilities, and you
will have to develop your own process to suit your own
circumstances. And as usual, your work process will be iterative even
if your documentation has to be sequential.

Creating the
information model

1. Area of concern -- the scope of the information model

2. Semantic view -- also the foundation of a possible relational
model

3. Role list view -- the information entities and their attributes

Collaboration view -- showing the data structure4.

Interface view -- definition of desired behavior5.

The Semantic view is most relevant when we consider the Information
model in conjunction with the Enterprise model. Behavior will be
added later to enable the Information model to respond to requests
from the tools that are described in section 7.3. The main iterations are
thus between Enterprise model and the Semantic view of the
Information model, and between the Task/Tool/Service model and the
collaboration view of the Information model.

7.2.1 Area of concern

The area of concern shown in figure 7.19 reflects our change of focus
from enterprise to information.

Figure 7.19 Area of
Concern

The area of concern is modeling the information contained in travel expense
accounts. We focus on the expense account itself and do not model details about the
input and output in the user interfaces.

7.2 Information model 29 March 1995 23:05

Case study: Development of a business information system©Taskon 1992. Page 266

Semantic view7.2.2

We will encounter a number of information concepts when we
interview users and build the enterprise model. It is a good idea to
create and maintain a Semantic view on this information to help us
understand the phenomena under study and to establish the precision
and consistency needed for automatic data processing purposes.
Figure 7.20 shows a semantic view of the information model.

consists_of

part_of

consists_of

part_of

consists_of

part_of

ExpenseAccount

traveller
purpose

start_date
end_date
advance

Permission

date
authorizer

Authorization

date
authorizer

ExpenseItem

date
text

amount

Figure 7.20 Semantic
view of Information

model

7.2.3 Role list view

The roles are derived from the Semantic view and optionally
elaborated with attribute information. The diagram in figure 7.20 may
also be annotated with the role semantics, but it is usually better to
describe the list textually as shown in figure 7.21. We have elected to
omit the attribute type specification, this is optional according to the
OOram language defined in appendix A.

29 March 1995 23:05 7.2 Information model

©Taskon 1992. Page 267Case study: Development of a business information system

Figure 7.21 The
roles of the

Information model

role 'ExpenseAccount'
explanation "The master object representing an expense account."
attribute 'traveler'
attribute 'purpose'
attribute 'start_date'
attribute 'end_date'
attribute 'advance'

role 'ExpenseItem'
explanation "A specified cost."
attribute 'date'
attribute 'text'
attribute 'amount'

role 'Permission'
explanation "A permission to travel."
attribute 'date'
attribute 'authorizer'

role 'Authorization'
explanation "A disbursement order."
attribute 'date'
attribute 'authorizer'

We usually postpone the formal typing of the attributes to a later stage
in the process, but we may include type information here when it is
known.

A hybrid solution with a relational database7.2.4

The relational database technology is a mature technology, and ideally
suited for the storage and retrieval of simple data records. We
recommend that you use it wherever it is applicable.

For example, most of the expense account information will ultimately
end up in the accounting department's data processing system. The
enterprise may simplify its archiving function and save some paper
shuffling, if the traveler could enter the account data directly into the
system, and the authorizer could read the account on a screen and
authorize it by a keystroke.

A database may
improve the

management of
travel accounts

The design of a relational database for storing expense accounts can
be done by any of the popular database design methodologies. One
possible structure is indicated in figure 7.22.

29 March 1995 23:057.2 Information model

©Taskon 1992. Page 268 Case study: Development of a business information system

Figure 7.22 Possible
structure of

relational
information model

Expense_Account table
expense_account_id
traveler_employee_id
travel_purpose
date_travel_start
date_travel_end
authorizer_employee_id
permission_date
authorization_date
advance

Employee table
employee_id
employee_name
department_id

Expense_Item table
expense_account_id
item_number
date
item_text
item_amount

To those of us who never get the sums right, the expense account may
be drafted in a spreadsheet. An even better solution would be a special
expense account program which could help us fill in the different
items, convert foreign expenses into our local currency, do the sums,
and provide on line information about the latest rules, regulations and
rates.

A personal assistant
may improve the

creation of travel
accounts

If the authorities insist that the accounts shall be submitted on the
approved form, we could transcribe the spreadsheet results manually
(as I had to do at my former employer). But we will discuss a better
solution, where we use objects to combine the behavior of the
personal assistant with the data storage capabilities of the relational
database. Object-oriented, direct manipulation user interfaces will be
discussed in section 7.3. They may be designed to print the official
paper forms, to interact with relational databases, or to provide the
interface between a user and an object-oriented domain service.

A relational database may be accessed from a program through what
is known as an 'Application Programming Interface' (API). We can
define objects with the message interface of our choice, and define the
necessary methods to convert these messages to the appropriate API
calls on the database.

The simplest and most general is to define a message interface which
essentially offers an SQL service. This is illustrated in figure 7.23 (a).
A more sophisticated solution is to add an intermediate layer which
offers a message interface relating to ExpenseAccount concepts as
illustrated in figure 7.23 (b). The latter solution is more robust,
because it isolates the database, its schema and constraints from the
tool objects.

Hybrid solution: An
object can

encapsulate a
relational database

7.2 Information model29 March 1995 23:05

©Taskon 1992. Page 269Case study: Development of a business information system

(a) (b)

User interface tool

Object encapsulating
SQL calls on a

relational database

SQL
messages

User interface tool

Object encapsulating
SQL calls on a

relational database

ExpenseAccount

ExpenseAccount
messages

SQL
messages

Figure 7.23 Objects
may encapsulate a
relational database

Collaboration view7.2.5

Figure 7.24 shows a first iteration of the collaboration view of the
Information model. It is structurally similar to figure 7.20, but the
lines of the semantic view denote conceptual relationships while the
lines of the collaboration view denote role accessibility and
collaboration.

tp

ea

ei

ea

pa

ea

ExpenseAccount

Permission AuthorizationDate ExpenseItem

Figure 7.24
Information model
Collaboration view

Interface view7.2.6

Interface definitions The main behavior requirements for the Information model will be
derived from the Task/Tool/Service models to be discussed in the next
section. We may also want to add behavior associated with our travel
expense regulations so that the system can provide default values and
check against maximum values for different kinds of expenditure.

7.2 Information model 29 March 1995 23:05

Case study: Development of a business information system©Taskon 1992. Page 270

We do not discuss the detailed analysis of the Information model
behavior here; the work follows the same process as the analysis of
the Enterprise model and you would actually be well advised to
analyze both models simultaneously.

29 March 1995 23:05 7.2 Information model

Case study: Development of a business information system ©Taskon 1992. Page 271

Task/Tool/Service model7.3

In a nutshell
An adequate solution for the information model is often available in the form of a
relational database, the lack of good information tools adapted to their users' tasks is
still a problem. In this chapter, we discuss the position of the tools in the
architecture and the characteristics of good tools. It should not be surprising that
good user interfaces are object-oriented, making the information appear as concrete
objects that the users can manipulate directly on the screen.

A tool is an artifact We finally focus on the interface between the individual users and the
computer-based information system. An information tool is a
computer-based artifact employed by a user to perform one or more
tasks. We study each of the user's tasks, in turn, with special emphasis
on the appropriate information tools. Our job is the job of a
toolbuilder. Our goal is to create a pleasant and effective information
environment.

We have earlier recommended that you iterate between the different
models and even be prepared to reconsider the scope of the project.
You should also include the tasks and tools in this iteration so as to
find a good set of reusable tools. There is a many-to-many
relationship between task and tool: a tool may be used in a number of
tasks, and a task may employ several tools. There are two advantages
in keeping a small number of tools: user familiarity with the tools
increases proficiency and confidence and reduces learning effort,
investment in programming, documentation and maintenance goes
down while the quality goes up. The next best thing to using identical
tools for different tasks is to use related tools which share user
interface properties and code. The object inheritance property is an
open invitation to your ingenuity for identifying related tasks and for
devising families of similar tools.

Iterate!

We gave a simple model of human communication in figure 2.4 on
page 57??. Figure 7.25 shows a similar model describing the
communication between a human user and a computer-based
information system through an information tool. The tool presents and
interprets data according to an implicit Tool Information Model, while
the user communicates according to her own mental model.
Discrepancies will lead to communication errors in much the same
way as between two humans.

Information tools are
communication

devices

7.3 Task/Tool/Service model 29 March 1995 23:05

Case study: Development of a business information system©Taskon 1992. Page 272

Task

Domain Service
Tool

Mental tool model

Service
Information model

Tool
Information model

Figure 7.25 A person
communicates with

one or more
computer-based

Domain Services
through a Tool

The user has a mental model of the information handled in the task.
The information system is based on an (object-oriented) information
model that frequently is different from the user's model in scope,
complexity and precision. An important success criterion for a tool is
that it provides the required filtering and translation so that the user
gets the illusion of working with a system that supports the user's
mental model of the information.

The three schema architecture of database systems serves this
purpose: An external schema is tailored to the needs of particular
users and provides a filtered view of the conceptual schema defining
the information contents of the database. The third schema is the
implementation schema, which defines how the information is
actually stored in the computer. Object orientation gives us added
freedom when defining the external schemas: algorithms in the tools
can translate the concepts of the service information model into
concepts more familiar to the user.

BOX
We have earlier described a situation concerning hydroelectric resource
management, where two disciplines used the term dam to mean different things.
Two solutions to this dilemma are open to the systems designer: we can force the
disciplines to harmonize their terminology, or we can create tools that do the
necessary translations so that the disciplines can retain their favorite terminology.
Our technology permits both solutions. It is a management decision to select the one
that best serves the needs of the enterprise.

7.3.1 Creating Task/Tool/Service descriptions

Create task and tool
descriptions

The tasks are extracted from the process diagrams such as the
example in figure 7.14. We now create a detailed task description as a
precursor to designing a tool. The task description could consist of the
following:

7.3 Task/Tool/Service model29 March 1995 23:05

©Taskon 1992. Page 273Case study: Development of a business information system

1. Scope and Goal of the task.

User work situation, describing the task in the context of the
user's overall work situation. Task frequency and perceived
importance are particularly relevant since they determine the
amount of specialized tool training that can be assumed.

2.

Input information needed to perform the task.3.

Trigger that releases the task.4.

Output information that results from the task.5.

Tool description that specifies the tool to be used.6.

7. Task Scenario narrative that describes how the task will be
performed.

The tasks of our ExpenseAccount example are shown in the Process
view of the enterprise model in figure 7.14. The tasks are as follows:

The tasks of our
ExpenseAccount

example

1. The Traveler role:

Prepare travel authorization request.¤
Prepare travel expense account.¤

The Authorizer role:2.

¤ Process travel request and post answer.
Check and forward expense account.¤

The Bookkeeper role:3.

Check expense account, record accounts, authorize payment.¤

The Paymaster role:4.

Record amount to be added to next payment of salary.¤

We will now study possible tools to be used by the Authorizer for
performing her task. This tool will be part of a personal information
environment for persons playing the Authorizer role in the
organization. We will describe two alternative tools. The common
parts of the task descriptions are as follows:

Example task
description:

Authorizer process
travel request

29 March 1995 23:057.3 Task/Tool/Service model

Case study: Development of a business information system©Taskon 1992. Page 274

1. Scope and Goal. The goal of this task is to determine if the
proposed travel shall be permitted. The Authorizer should
estimate the value of this travel to the enterprise and check if the
trip conforms to current plans. The Authorizer should also
consider if funds are available in the budget for the proposed
travel, and possibly arrange for additional funds if the situation
warrants it.

User work situation. This task is but one of the numerous
administrative tasks performed by persons playing the Authorizer
role. In this case, it should be possible to perform it as a simple
routine in a few minutes, and the training needed to master the
tools should be minimal.

2.

Input information needed to perform the task is the travel request
itself. Possible information items that could be useful to the
Authorizer are: the purpose of the journey, when it will take
place, and the planned total cost. The Authorizer could also need
access to the work plans for the indicated time period, to the
budget and to accounts showing current commitments.

3.

Trigger. We assume that the Authorizer's information
environment includes a task management facility. This task will
then be added to the Authorizer's list of outstanding tasks so that
she can select it for execution at her convenience. Since this task
is but one of a large number of similar tasks, it is important that
she shall not be required to spend any mental energy relating to
this task outside the few minutes it takes to process it.

4.

Output information. The authorization or rejection shall be passed
to the Traveler. This information shall also be stored and be
retrieved automatically if and when the Authorizer receives an
expense account for processing.

5.

6. Tool description. We will discuss two alternatives below.

Task Scenario. A first description is given under Scope and Goal
above. More detailed scenarios will be given below.

7.

7.3 Task/Tool/Service model29 March 1995 23:05

©Taskon 1992. Page 275Case study: Development of a business information system

User interface design7.3.2

Interactive user interfaces come in different styles. The simplest, and
oldest, is what I call the guessing game interface. The user types a
command followed by the appropriate parameters and then hits
ENTER. The computer checks its built-in list of permissible
commands and either starts the appropriate application program or
types a question mark, indicating that the user must make another
guess.

It is hard to create
good user interfaces

Two commands could support our example task:

display_travel_request request_id
authorize_travel_request request_id authorizer_id

Most users would prefer the form based interface: The computer
presents a form on the screen, and the user fills in the blanks before
hitting the ENTER button. The user has to guess the syntax and
semantics of the blanks, but the leader texts and possibly also default
values make this interface much easier to use. A possible form for our
sample task is shown in figure 7.26.

Figure 7.26 Form
based interface for

the authorization
task

Travel authorization.

USD 2,000Planned cost

Authorizer

Attend OOPSLA'93
conference

Purpose

Sept.26-Oct.1Period

PeterTraveler

ENTER

Eve

7.3 Task/Tool/Service model 29 March 1995 23:05

©Taskon 1992. Page 276 Case study: Development of a business information system

The goal of the object-oriented, direct manipulation interface is to
provide a visual presentation of the information in intuitive and
"obvious" manner and reflect a part of the user's mental model. The
interface should permit the user to manipulate this information in the
simplest way possible in accordance with the user's goals and tasks.
Information is essentially an abstract notion. To my mind, the
essential property of object-oriented, direct manipulation user
interfaces is that they make the information appear concrete:
something the user can see, manipulate and interact with. The
following suggestions for good user interface design are adapted from
a series of lectures presented by Bruce Horn to graduate students at
the University of Oslo, Norway. These rules constitute the best advice
I have ever seen on the subject. They appear here in print for the first
time with the permission of Bruce Horn and our gratitude:

Making information
appear concrete

Design and Implementation Must Feed Back. The creation of user
interfaces is a highly subjective endeavor, and I almost never get
it right the first time. I therefore suggest that you create a
prototype. Try it out yourself and let the users try it, improve it,
and try it out again. Your empathy with the user is crucial. If you
create a tool for a rote operation, the user may prefer a simple tool
that leads him or her through a series of fixed steps. If you create
a tool for a task requiring intelligence and creativity, the user may
prefer a tool which makes the computer augment his intelligence.
Use your own software in your own work if it is at all feasible.
Your knowledge about its structure is likely to give ideas for
improvement which would never occur to others.

1.

The Principle of Least Astonishment. The behavior of the system
must follow the expectations of the users. Any exclamation of
astonishment from a user must be considered a warning of poor
design.

2.

See and Point vs. Remember and Type. It is much easier to
reference something you can see, via pointing, than to remember
the name of something and type. This is the essence of direct
manipulation: making the computer invisible -- an extension of
yourself -- you point at an object and ask it to do something. Of
course, not everything will (or should) have a name, so being able
to see something and point at it may be the only way to specify it.
 In addition, one can select a group of objects to choose from by
describing them by analogy or by using a search specification,
and then choosing the desired object by pointing.

3.

7.3 Task/Tool/Service model29 March 1995 23:05

©Taskon 1992. Page 277Case study: Development of a business information system

No Modes. Of course, computers do have modes. Modes are just
contexts in which the previous actions of the user change the
meaning of current actions. However, these modes, in order to be
acceptable, must be either spring-loaded such as a key or a
button, or must be metaphorical such as a paint tool. Modes are
also acceptable when they are made apparent to the user, such as
a cursor changing to a tool, or a window or pane that provides a
particular modal function (drawing or text editing panes, for
example).

4.

Maintain User Illusion of Direct Manipulation. Maintaining this
illusion is extremely important, and it affects decisions regarding
implementation. It is critical that the attention of the user is
focused on the computer's results. The user-computer circuit is
the information flow from the user to the computer, and back
again to the user. This circuit is what is maintained when the user
is engaged and attending to the objects presented by the user
interface.

5.

Performance is critical. If operations are too slow, the person
is likely to wander off and break the circuit. Then we have the
problem of the user rebuilding the contents of her short-term
memory ("where was I?").

*

Maintain Closure. With good performance in critical areas,
we can maintain closure. Each operation is a closeable,
atomic operation, such that the user need not remember
partial state. With small, atomic operations it is not necessary
to provide a facility for interrupting the operation because the
operation is self-contained, and the operation's length is short
enough to maintain the user's attention.

*

* Immediate feedback. The illusion of information as concrete
objects is enhanced by immediate feedback and suitable
animation. You may, for example, highlight legal menu and
palette operations in each context; animate spatial
relationships such as windows opening and closing; and show
progress in long operations such as printing.

29 March 1995 23:057.3 Task/Tool/Service model

©Taskon 1992. Page 278 Case study: Development of a business information system

6. Handle Errors Gracefully. The best approach is to design the
interface so as to avoid possible error situations. Typing errors are
avoided entirely if the user selects a visible object rather than
typing its name, and if she selects a menu command rather than
types text to a command line interpreter. Illegal menu commands
should be disabled before the menu is opened. Unnecessary
program restrictions such as limited data buffer sizes should be
avoided. (A wise man once said that there are only three good
numbers in data processing: none, one, and all.)

If an error situation does occur, make sure you describe the error
in user terms and explain what the user can do to take care of the
problem.

7. Support Undo. Undo is perhaps the most useful function in a
direct manipulation user interface because it allows
experimentation, helps the user get out of dangerous situations,
and helps support a positive mental attitude in the user since it
permits the user to change her mind.

Provide a Help System. When all else fails, it is important to
allow the user to find the information needed on-line, integrated
with the system, rather than forcing her to read the manual. A
help system can answer questions such as What is..., How do I...,
What just happened... and Why was that an error?

8.

9. Be Creative. Designing a user interface is a creative activity. It
requires being able to look at several points of view
simultaneously, and to try out conceptual ideas quickly.
Creativity springs from rigor and imagination applied alternately:
imaginative thought to create possible ideas, applied rigorously to
the problem at hand to determine their suitability. "Rigor alone is
paralytic death, while imagination alone is insanity." (Bateson)

...and above all, have fun.

7.3.3 A simple direct manipulation interface for our task
example

When we created the Enterprise Model in the previous section, we
permitted ourselves to isolate travel expense account processing from
all other processes taking place in the enterprise. The above task

7.3 Task/Tool/Service model29 March 1995 23:05

Case study: Development of a business information system ©Taskon 1992. Page 279

description tells us that this is a luxury we cannot afford when we
consider the performance of its tasks. When the Authorizer processes
a travel request, she has to consider three separate functions: expense
account processing, budget and accounts, and the planning function.

The simplest solution from the programmer's point of view is to
require the Authorizer to open three distinct and independent tools: a
tool on budget and accounts, a tool on current plans, and a tool on the
travel expense account. She can then perform the task as described
under Scope and Goals, transcribing information such as planned total
cost from one tool to another as required. A possible set of tools are
sketched out in figure 7.27.

Eve
Elsie
Peter
Kim

Week 35 36 37 38 39 40 41

Project 1
OOPSLA
Project 3
Project 4

Current plans for Software Department

Budget and commitments
Software Department

Item
Equipment
Software
Travel
Consultants
Personnel

Committed
12,148
32,765

4,000
63,987

190,000

Peter to OOPSLA
Value
Text

Add Commitment

2,000

Budget
50,000
65,000
10,000
85,000

200,000

Travel permission.

USD 2,000Planned cost

Authorize

Attend OOPSLA'93
conference

Purpose

Sept.26-Oct.1Period

PeterTraveler

Reject

Figure 7.27 Three
distinct tools to serve

the authorization
task

A possible scenario using these tools is as follows:

1. Open Travel Permission Request tool on a current permission
request data set according to the rules of your information
environment. (e.g., point to a visual representation of the data set
and give an open-command).

2. Check the travel request purpose and determine that it is a
reasonable request.

29 March 1995 23:057.3 Task/Tool/Service model

Case study: Development of a business information system©Taskon 1992. Page 280

Open the Budget and commitments tool and the Current Plans
tool. This may be done according to the relevant user manuals.
Alternatively, the Personal Task manager could be part of a
sophisticated process control system and provide direct access to
these tools as described in a definition of the process.

3.

4. Check the Current Plans, and modify them if necessary to
accommodate the proposed travel.

Check the budget and secure additional appropriations if
necessary. Select the appropriate budget item and record the
commitment.

5.

Press the Authorize button in the Travel Authorization Request
tool to transmit and record the travelPermission.

6.

7.3.4 A composite user interface for the manager to determine
travel permission

The tools described above were not integrated for the current task.
The Authorizer had to select corresponding items in the different
tools, create a new budget commitment and copy the amount from the
TravelRequest into it.

We could consider creating a specialized tool for the travel
authorization task. The decision to do so would depend on the
potential savings and the cost of its creation. Automated aids such as
VisualWorks from ParcPlace Systems makes it easy to create
specialized tools, and future aids may well make it feasible for the
users to create their own personal tools.

We will sketch out a possible tool in figure 7.28 to illustrate the idea.
A real life tool would have to be based on a detailed study of the
tasks, and should probably be more sophisticated.

29 March 1995 23:05 7.3 Task/Tool/Service model

©Taskon 1992. Page 281Case study: Development of a business information system

Travel permission request.

Permit

Attend OOPSLA'93 conferencePurpose

USD 2,000Planned costPeterTraveler Sept.26-Oct.1Period

Current plans for Peter

Week 35 36 37 38 39 40 41

Project 1
OOPSLA
Project 3
Project 4

Budget and commitments

Item
Travel

Committed
4,000

Budget
10,000

Reject

Figure 7.28 A simple
tool integrated for

the Travel
Permission task

A possible scenario using this tool is as follows:

Open the specialized Travel permission request tool on a current
permission request data set according to the rules of your
information environment. (e.g., point to a visual representation of
the data set and give an open-command).

1.

Check the travel request purpose and determine that it is a
reasonable request.

2.

3. The appropriate budget and commitments items are automatically
selected and displayed. Check them. A menu command opens a
separate tool if corrective action is necessary.

4. The appropriate portion of the plans for the Traveler is
automatically displayed. Check it. A menu command opens a
separate tool if corrective action is necessary.

Check the budget and secure additional funds if necessary. Select
the appropriate budget item and record the commitment.

5.

Press the Permit button in the Travel Permission tool to transmit
and record the travelPermission and to record the budget
commitment.

6.

This single tool will be sufficient for most practical cases, and is
clearly superior to the hodgepodge of windows needed in the previous
solution. Note that this is an example of integration on level 3 in
figure 7.5. The separation between different Information services,
which is so useful for the information processing department, is
uninteresting from the users point of view and is hidden.

We will now create a role model of the tool shown in figure 7.28. We
begin with the area of concern in figure 7.29.

29 March 1995 23:057.3 Task/Tool/Service model

Case study: Development of a business information system©Taskon 1992. Page 282

Figure 7.29 Area of
concern

The area of concern is an integrated tool for the authorization of a travel proposal in
our enterprise

The roles are specified in figure 7.30 using the OOram language
syntax defined in appendix A. The Authorizer is the role representing
any person who authorizes a travel. We let a single role,
Trav.Auth.Tool, represent the clusters of objects that implement the
tool. This tool is a nice illustration of the two-dimensional nature of
our architecture. It is an integrated tool that accesses three services.
We represent each of them as a single role: an
ExpenseAccountService, a PlanningService and a BudgetService. The
ExpenseAccountService is the service described by the Information
model in section 7.2. The description of the other services are left
open to your imagination.

Figure 7.30 The
roles

role 'TSAuthorizer' explanation "The person who authorizes the travel."
role 'TSAuthorizerTool' explanation "The user interface system"
role 'TSAccountService' explanation "An object structure representing a
particular expense account."
role 'TSPlanningService' explanation "A system representing the current plans for
the enterprise"
role 'TSBudgetService' explanation "A system managing the enterprise budget"

We recognize that the tool and the service roles may be virtual, they
will then be expanded into clusters of roles in a later stage of the
development.

We create two Process diagrams: One for the opening of the tool
shown in figure 7.31, and another describing a typical sequence of
events when the Authorizer hits the Permit-button shown in figure
7.32.

29 March 1995 23:05 7.3 Task/Tool/Service model

©Taskon 1992. Page 283Case study: Development of a business information system

TS
Authorizer

TS
Authorizer

Tool

TS
Account
Service

TS
Budget
Service

TS
Planning
Service

Start
authorization

activity
Create and open

travel
authorization

tool

getExpense
Account

IS
Expense
Account

getBudgetFor:

Budget
amount

getPlanFor:

Plan

Figure 7.31 Process
diagram: Open

travel permission
tool

TS
Authorizer

TS
Authorizer

Tool

TS
Account
Service

TS
Budget
Service

Press
Permit-
button

Grant
Permission

putAuthorized:
= true

true

Record new
commitment

Number

Figure 7.32 Process
diagram: Grant

travel permission

The top level collaboration view of figure 7.33 follows directly from
the basic tool model in figure 7.25.

7.3 Task/Tool/Service model 29 March 1995 23:05

Case study: Development of a business information system©Taskon 1992. Page 284

pla

acc

bud

tool authTS
Authorizer

TS
Authorizer

Tool

The person who
authorizes the
travel.

The user
interface
system.

TS
Account
Service

TS
Planning
Service

An object structure
representing a
particular expense
account.

A system
representing the
current plans for the
enterprise.

TS
Budget
Service

A system managing
the enterprise
budget.

Figure 7.33 Interface
Collaboration View
annotated with role

responsibilities

The stimulus messages are the available user commands; and each
stimulus triggers an activity. We do not go into the detailed design of
these activities here, but indicate a likely set of typical message
interfaces. They are shown graphically in figure 7.34. We see that the
diagram gets overloaded even in this simple example. The textual
interface definition shown in figure 7.35 is better, and it also invites
the analyst to explain the message semantics. (Note that parameter
typing is optional, and that we have included parameter types in this
informal specification.)

acc

bud

tool auth

pla

TS
Authorizer

TSBudgetService<TSAuthorizerTool
commit: amount for: kind
getBudgetFor: kind

TSAuthorizerTool<TSAuthorizer
openOn: expAcc
Permit
Reject

TSAuthorizer<TSAuthorizerTool
display

TSPlanningService<TSAuthorizerTool
getPlanFor: person

TSAccountService<TSAuthorizerTool
getExpenseAccount
getPeriod
getPlannedCost
getPurpose
putAuthorized: aBoolean

TS
Authorizer

Tool

TS
Account
Service

TS
Planning
Service

TS
Budget
Service

Figure 7.34 Interface
Collaboration View

annotated with
Interfaces

29 March 1995 23:05 7.3 Task/Tool/Service model

©Taskon 1992. Page 285Case study: Development of a business information system

Figure 7.35
Interfaces

interface 'TSAuthorizerTool<TSAuthorizer'
message 'Permit' "Permit the proposed travel."
message 'Reject' "Refuse the proposed travel."
message 'openOn:' "Create a new instance of the tool and open it on the

specified ExpenseAccount."
param 'expAcc'

interface 'TSAccountService<TSAuthorizerTool'
message 'getExpenseAccount' "Return expense account information."

return 'INFExpenseAccount' :: 'Travel Expense Information Model'
message 'getPeriod' "Return travel time period."
message 'getPlannedCost' "Returned planned cost."
message 'getPurpose' "Return purpose of travel."
message 'putAuthorized:' "Set authorization if aBoolean = true, otherwise the

travel is rejected."
param 'aBoolean' type boolean

interface 'TSBudgetService<TSAuthorizerTool'
message 'getBudgetFor:' "Return budget information."

param 'kind'
return number

message 'commit:for:' "Allocate amount from budget."
param 'amount' number
param 'kind'

interface 'TSAuthorizer<TSAuthorizerTool'
message 'display' "Read the currently displayed text."

interface 'TSPlanningService<TSAuthorizerTool'
message 'getPlanFor:' "Return planning information."

param 'person'
return 'Plan' :: 'BasicTypes'

We first met the user's tasks in the Enterprise process view in figure
7.14. We now find corresponding operations in the interface called
TSAuthorizerTool<TSAuthorizer (AuthorizerTool from Authorizer).
It is, therefore, possible to maintain formal threads from the human
level in the Enterprise model via the Task/Tool/Service model to the
Information model.

In many cases, the Information model will be a first conceptual
schema for a relational database. The service operations defined here
will in simple cases be database queries and update specifications and
may conveniently be stored in suitable query objects. Non-trivial
service functionality can be achieved by special Travel service objects
as illustrated in figure 7.23 (b), or the service can be implemented in
an object-oriented database.

Task/Tool/Service
model closely linked

to Enterprise and
Information models

29 March 1995 23:057.3 Task/Tool/Service model

©Taskon 1992. Page 286 Case study: Development of a business information system

Chapter 8
Case study: The analysis and design of a

real time system

This chapter is written for the specially interested programmer. It
exemplifies the use of state diagrams. It also illustrates that role
models are independent of implementation by showing the transition
from the models to traditional and distributed implementation
environments.

Determine area of concern
Determine area of concern
Identify environment roles and stimulus-response
Determine typical message sequences

Detailed model
Specify and understand objects and roles
Determine typical message sequences
Describe roles as state diagrams
Determine interfaces

Implementation examples
Bridge to C++
Bridge to Smalltalk
Bridge to SDL
Bridge to Distributed object systems
OOram executable specifications

 29 March 1995 23:05

©Taskon 1992. Page 287Case study: The analysis and design of a real time system

We will now study a case where the information is simple, but where
we have to ensure that the system behaves properly in all
circumstances. The case we have chosen is a real time access control
system where a person identifies himself through a card and code
reader, and the system unlocks the door if the person is granted
access. The example has been inspired from a similar case in [Bræk
93].

Work process
includes precise

modeling of behavior

Our suggested design process for solving the access control problem
includes the specification of state diagrams to reflect our focus on
behavior. There is a state diagram for each role; they are mutually
dependent and must be consistent. The descriptions tend to be large
and hard to modify, so we postpone the specification of the state
diagrams to a late stage in the design process. A scenario is simpler
than a set of state diagrams because it only shows the message
sequences of a typical or critical case. We use scenarios in the early
iterations to keep the volume of the model small, and add state
diagrams when the design is reasonably mature.

Processes should be tailored to the problem. It is therefore not
surprising that our work process is different from the default process.
(FOOTNOTE: See section 2.4 on page 83)

Determine area of concern. We need to understand the question
before we can create a meaningful answer.

1.

2. Identify environment roles and stimulus-response. The stimuli are
the events in the environment that cause things to happen. The
responses are the corresponding results.

Specify and understand the roles. An important step of the design
is to choose the roles and determine their responsibility. We also
determine the message paths in this step.

3.

Determine typical message sequences. For each stimulus, describe
how the desired response is achieved by a flow of messages
between the roles.

4.

Describe roles as state diagrams. Give a complete definition of
role behavior by specifying a state diagram for each role.

5.

Determine interfaces. Determine the messages that each role may
send to each of its collaborators.

6.

29 March 1995 23:05

©Taskon 1992. Page 288 Case study: The analysis and design of a real time system

It is important to keep the early descriptions small so that they can be
easily changed in accordance with our emerging understanding of the
problem and its solution. As our models become firm, we elaborate
them with state diagrams and other details until we arrive at the final
description.

Iterate!

Aggregation is a powerful technique for simplification. What we
regard as a single role in one iteration will later be divided into a
number of roles.We will here use aggregation in the form of a virtual
role: What appears as a single role in one description is really a
shorthand for a cluster of roles in a more detailed description. Also,
there is no object in the final system that corresponds to the virtual
role.

We use virtual roles
initially

We will show two iterations in this case study:

1. An Environment model, showing the access control system as a
single, virtual role

A Detailed model, showing a complete set of roles for the system
objects

2.

29 March 1995 23:05

©Taskon 1992. Page 289Case study: The analysis and design of a real time system

Environment model8.1

In a nutshell
We initially create a simple model showing the whole system as a single, virtual
role.

The goal of our first iteration is to understand the system as seen from
its environment. It covers steps 1, 2 and 4 in our suggested work
process. We neither bother with state diagram definitions nor detailed
interface definitions at this early stage of the analysis.

Determine area of concern8.1.1

Figure 8.1 displays the area of concern for our study.

Figure 8.1 Area of
Concern

We want to design an access control system where a person identifies himself with a
card and a personal code to gain access through a door that is controlled by an
automatic lock. The system supports any number of doors.

Identify environment roles and stimulus-response8.1.2

We show the complete Control System as a single role in this first
modeling iteration, see figure 8.2. The system is shown as a virtual
role. This means that there will be no single object representing the
whole system, but a cluster of interacting objects which we will later
model as a cluster of roles.

8.1 Environment model 29 March 1995 23:05

Case study: The analysis and design of a real time system©Taskon 1992. Page 290

con

doo

con

per

Person

Door

A person wanting
access through door.

Control
System

The controlled door. It can be
locked and unlocked
automatically, and it will report
when opened and closed.

System controlling
access through door.

Figure 8.2 The
system and its

environment

Everything starts when a person approaches the door and inserts his
card to gain access. We represent the Person as a role. It is an
environment role because it will send a stimulus message when the
Person wants to open the door. This follows from the definition on
page 61??: For a given system, the environment is the set of all roles
outside the system whose actions affect the system...

The Door is also an environment role, since the effect of locking and
unlocking it is outside the scope of our area of concern. (For a given
system, the environment is ... also those roles outside the system
whose attributes are changed by the actions of the system).

Determine typical message sequences8.1.3

We show two typical message sequences: one for successful access in
figure 8.3 and one where the PIN-code has been rejected in figure 8.4:

29 March 1995 23:05 8.1 Environment model

Case study: The analysis and design of a real time system ©Taskon 1992. Page 291

Person Door Control
System

readCard

show: 'Please key your code'

pinCode: anInteger

unlock

isOpen

isClosed

lock

Figure 8.3 Message
sequence for

successful access

Figure 8.4 Message
sequence for rejected

PIN code

Person Door Control
System

readCard

show: 'Please key your code'

pinCode: anInteger

show: 'No access'

8.1 Environment model 29 March 1995 23:05

©Taskon 1992. Page 292 Case study: The analysis and design of a real time system

Detailed model8.2

In a nutshell
We elaborate the virtual role of the environment model and show details of the local
part of the system.

In this, the second iteration, we expand the Control System role,
running iteratively through steps 3 through 6.

The Area of concern and the Environment views are unchanged from
the first iteration and are not repeated here.

8.2.1 Specify and understand objects and roles

Using the hints of chapter 2, we identify the objects, distribute
responsibilities and specify the necessary roles of the detailed model.

There must clearly be some equipment at each access point, so that
the Person can enter his card and PIN code. This equipment could
also be used to store information about the privileged persons who are
permitted access at that point, but this seems impractical if there are a
number of controlled access points. We define a CentralUnit that is
responsible for managing all access rights.

We arrive at the collaboration view of the system shown in figure 8.5
in a stepwise manner moving back and forth between a collaboration
view and a scenario view.

In the scenario view, we expand on the message sequences of section
8.1; distributing the message handling onto roles in the detailed
model. This is documented in the next sub-section. In doing this
work, we benefited from using a CRC technique (FOOTNOTE: See
section 2.4 on page 83??).

8.2 Detailed model29 March 1995 23:05

©Taskon 1992. Page 293Case study: The analysis and design of a real time system

Figure 8.5
Collaboration view

The controlled door. It can be
locked and unlocked automatically,
and it will report when opened and
closed.

The main logic responsible for
controlling a door access
point.

A timer for checking that the
door is locked within
reasonable period.

The centralized logic containing
the main access control logic
and the person data base.

An object responsible for
retrieving personal identification
information and displaying
instructions.

A person wanting
access through door.

pan

dis

loc

doo

per

pancar

key

loc pan loccen

tim

loc

Person

Door

Display

Panel
SD

Central
Unit

Card
Reader

Keyboard

Local
Station

SD

Timer

8.2.2 Determine typical message sequences

One or more scenarios may be specified; each describes a typical
message sequence that implements an activity. When using a CRC
card process, it is advantageous to record the scenarios at the
termination of the CRC process, since the messages sequences are not
recorded on the cards. Figure 8.6 shows a scenario for a successful
access activity.

8.2 Detailed model 29 March 1995 23:05

Case study: The analysis and design of a real time system©Taskon 1992. Page 294

Figure 8.6 Successful
Access Sequence

Person Door Display Card
Reader Keyboard Panel

Fsm

Local
Station

Fsm

Central
Unit Timer

readCard

cardString: aString

display: 'Please key your code'

show: 'Please key your code'

keyPress: keyNumber

keyPress: aCharacter

keyPress: keyNumber

keyPress: aCharacter

keyPress: keyNumber

keyPress: aCharacter

keyPress: keyNumber

keyPress: aCharacter

accessCode: aString

validate: aString from: aLocalStation

accept

unlock

set: timeout from: client

nowUnlocked

nowLocked

lock

reset

8.2.3 Describe roles as state diagrams

State diagrams are suitable for the detailed specification of role
behavior without actually writing the code. We do not generally
specify state diagrams for our roles, but they are useful in certain
cases -- notably cases involving multiple message threads such as is
often found in telecommunications and real time systems.

The volume of the description increases dramatically with the
introduction of state diagrams, and you should only use them if you
really need them and then only at a late stage in the design process.

Use state diagrams
sparingly and late in

the process.

The theory and usage of state diagrams is a specialized subject which
we will not attempt to cover adequately in this book. We will content
ourselves with indicating how state diagrams may be defined in the
context of a role in a role model, and refer you to the literature for
further details. (FOOTNOTE: See for example [Bræk 93]).

8.2 Detailed model29 March 1995 23:05

Case study: The analysis and design of a real time system ©Taskon 1992. Page 295

Figure 8.7 A state
diagram for the

LocalStation role Idle Vali-
dating

UnlockingUnlockedLocking

Alarm

accept
nowLocked

accessCode:

nowUnlockedtimeoutFrom:

timeoutFrom:

reject

The state diagram for the LocalStation role is shown in figure 8.7. The
action to be performed on a transition from one state to another might
be specified in pseudo-code, in a programming language or in a
diagrammatic form. The state diagram is to be read as follows:

1. Idle-state. The role is initially in the Idle state. It may receive one
message (signal):

accessCode: (received from Panel). Request a confirmation of
the specified code from the CentralUnit, and wait for answer
in the Validating-state.

¤

Validating-state. It may receive an accept or a reject-answer from
the CentralUnit:

2.

reject (received from the CentralUnit.) The request for access
has been rejected. Display a suitable message on the Display
and return to the Idle-state.

¤

accept (received from the CentralUnit.) Send unlock-message
to the Door and start a timer for the time permitted to the Door
to actually unlock it.

¤

3. Unlocking-state. Waiting for the Door to actually unlock. One
message may be received. (We ignore the case when the Door
does not respond in this simple example.)

nowUnlocked (received from the Door.) Start a timer for the
time period that Door may remain unlocked. Go to the
Unlocked-state.

¤

Unlocked-state. Wait for the duration timeout to expire:4.

¤ timeoutFrom: (received from the Timer.) Send message to
lock Door. Start the Timer for the duration permitted for the
Door to respond. Go to the Locking-state.

29 March 1995 23:058.2 Detailed model

©Taskon 1992. Page 296 Case study: The analysis and design of a real time system

Locking-state. Waiting for Door to respond to the lock command.
There are two possible messages that may be received:

5.

¤ nowLocked (from Door.) Everything is OK, go to the Idle-
state.
timeoutFrom: (from the Timer.) The locking has been
unsuccessful, possibly because the Person has prevented the
door from closing and latching. Go to the Alarm-state.

¤

6. Alarm-state. Raise an alarm. The actions to be taken in the case of
an alarm are not specified in this simplified example.

The state diagrams for the other roles follow the same principles.

State diagrams and method specifications are usually alternative
specifications of role behavior. The best choice depends on the
particular application, and also on the implementation and run-time
environments. Roles with state diagrams translate most easily to an
implementation environment that also uses object state as a basic
concept. In chapter 8.3.3, we will show an example of such a state-
oriented language.

When implementing directly in an object-oriented language such as
C++ or Smalltalk, we are concerned about implementing the methods
for the different messages that the objects are to receive.

State Diagrams define an action to be triggered for each message
(event) permissible in each state. A method may have to branch on
object state to select the appropriate action for execution as shown in
the method specification view of figure 8.8.. The figure shows a
method specification view for the accessCode message sent from
Panel to LocalStation. We used the states given by the state diagram
in figure 8.7 to specify the method.

Method must branch
on object state in

State Diagrams

if state = #Idle then
 [request validate
 state := #Validating
 set timeoutTimer]
else

[illegalState error]

accessCode: aString

accessCode: aString

LocalStation TimerCentralUnit

set: aTimeout from: aLocalStation

Panel

Figure 8.8 Method
Specification view

for
LocalStation>>acces

sCode:

29 March 1995 23:05 8.2 Detailed model

©Taskon 1992. Page 297Case study: The analysis and design of a real time system

The message-passing is basically asynchronous. The different objects
may therefore execute in parallel. The final decision on parallelism
must be catered for in the implementation in accordance with the run-
time environment.

8.2.4 Determine interfaces

The interfaces in figure 8.9 are elaborations of the messages specified
in the other views given in the previous sections. This textual view is
written in the OOram language which is defined in Appendix A. The
language permits the specification of parameters and their types. We
here show a reduced form which is particularly useful in the early
stages of the modeling process and for overviews.

29 March 1995 23:058.2 Detailed model

©Taskon 1992. Page 298 Case study: The analysis and design of a real time system

Figure 8.9 Interfaces
of the DetailedModel

interface 'CardReader<Person'
message 'readCard' explanation "Read my identity card."

interface 'Panel<CardReader'
message 'cardString:' explanation "Accept the given String from the person's

identity card."
interface 'Display<Panel'

message 'display:' explanation "Display the given String."
interface 'Person<Display'

message 'show:' explanation "Read my displayed text."
interface 'Keyboard<Person'

message 'keyPress:' explanation "The user has pressed the indicated key."
interface 'Panel<Keyboard'

message 'keyPress:' explanation "Accept given character from person."
interface 'LocalStation<Panel'

message 'accessCode:'
explanation "A person requests access and has offered the identification

specified by aString, which is a coded combination of information from the identity
card and the received secret code."
interface 'CentralUnit<LocalStation'

message 'validate:from:'
explanation "Validate the given access code (aString) and return an accept-

message iff access granted, otherwise a reject-message."
interface 'LocalStation<CentralUnit'

message 'accept'
message 'reject'

interface 'Door<LocalStation'
message 'lock' explanation "Lock the door."
message 'unlock' explanation "Unlock the door."

interface 'Panel<LocalStation'
message 'display:' explanation "Display the given String to the user."

interface 'Timer<LocalStation'
message 'set:from:'

explanation "Set the timer to the given timeout time, send timeout message at
end of time period."

message 'reset' explanation "Reset timer so that no timeout message will be
sent."
interface 'LocalStation<Door'

message 'nowLocked' explanation "The door has just been locked."
message 'nowUnlocked' explanation "The door has just been unlocked."

interface 'LocalStation<Timer'
message 'timeoutFrom:' explanation "The sending timer has reached timeout."

29 March 1995 23:05 8.2 Detailed model

©Taskon 1992. Page 299Case study: The analysis and design of a real time system

Implementation examples8.3

In a nutshell
A role model is basically independent of its implementation language. We will here
indicate five alternatives: implementation in C++ and Smalltalk; implementation in
a distributed environment according to the standards laid down by the Object
Management Group and Microsoft; and an implementation in the form of an
executable specification.

We first create an object specification for the AccessControl system.
It is very similar to the collaboration view of figure 8.5, but the roles
are now shown with heavy outlines to indicate that they have been
promoted to object specifications.

Access control
example

Figure 8.10 Access
Control System,

Object Specification
view

car

key

dis

per

tim

loc

pan

cen

loc

doo

loc

pan

loc pan

Display

Person Card
Reader Panel Local

Station

Central
Unit

Keyboard

Timer
Door

This object specification focuses on the local parts of the system. The
CentralUnit is shown as an environment object, which means that we
do not specify all the characteristics of this unit. (It will for example,
have additional functionality for setting and removing people's access
rights and for handling alarms.) The other environment roles are the
Person and Door roles, since they are outside the computer system.

The following sections illustrate the transition from the object
specification to implementation in different environments:

1. Object-oriented programming languages such as C++ and
Smalltalk.

2. A state-oriented language such as the System Description
Language (SDL)(FOOTNOTE: SDL is standardized, see [CCITT
Z100]) that is commonly used in the telecommunications
industry.

29 March 1995 23:058.3 Implementation examples

©Taskon 1992. Page 300 Case study: The analysis and design of a real time system

3. Distributed object systems based on standards created by the
Object Management Group and Microsoft.

OOram executable specifications.4.

We will use LocalStation in the object specification shown in figure
8.10 to illustrate these alternatives.

8.3.1 Bridge to C++

Deriving a C++
class definition from

an OOram Object
specification

It is straightforward to derive a C++ class definition from an OOram
object specification and it can be done automatically. Corresponding
concepts are shown in table 4.1 on page 165??.

The default class definition defines a class for LocalStation and an
instance variable for each of its ports. The types of these variables are
the names of the classes implementing the collaborators, e.g., Panel1,
Door1, Timer1 and CentralUnit1.

A C++ class definition corresponding to LocalStation given in figure
8.10 could be as follows:

C++ example

enum State {
 Unlocked,
 Locking,
 Alarm,
 LockTime,
 Idle,
 Validating,
 MaxValidationTime};
class LocalStation1;
class String;
class CentralUnit {
public:
 void validatefrom(const String&, LocalStation1*);
 void openDoorAlarm(LocalStation1*);
};
class Door {
public:
 void Lock();
};
class Timer {
public:
 void setfrom(State, LocalStation1*);
};
class Panel;
class Dictionary;
class LocalStation1 {
public:
 LocalStation1();
 ~LocalStation();

8.3 Implementation examples29 March 1995 23:05

©Taskon 1992. Page 301Case study: The analysis and design of a real time system

 State timeoutDictAt(State);
 void accept();
 void accessCode(const String&);
 void nowLocked();
 void nowUnlocked();
 void reject();
 void timeoutFrom(Timer*);
 void dpsCaution(State, const String&);
 void reset();
private:

 CentralUnit* cen;
 Door* doo;
 Panel* pan;
 Timer* tim;

 static Dictionary* timeoutDict;
 State state;

};

The member functions can be produced automatically. The body can
either be taken from a Method Specification view such as figure 8.8,
or it can be programmed manually. Two of the member functions for
the LocalStation1 class could be as follows:

void LocalStation1::accessCode(const String& code)
{
 if(state == Idle)
 {
 state = Validating;
 cen->validatefrom(code, this);
 tim->setfrom(MaxValidationTime, this);

 }
 else
 {
 state = Validating;
 dpsCaution(state, " is illegal state");
 reset();

 }
}

void LocalStation1::timeoutFrom(Timer* timer)
{
 switch(state)
 {
 case UnLocked:
 tim->setfrom(timeoutDictAt(LockTime), this);
 doo->Lock();
 state = Locking;
 break;

 case Locking:
 cen->openDoorAlarm(this);
 state = Alarm;
 break;

 default:
 dpsCaution(state, " is illegal state.");
 reset();
 break;

 }
}

How the C++ implementation and run-time environment will deal
with asynchronous behavior is not covered in this brief presentation.

8.3 Implementation examples 29 March 1995 23:05

Case study: The analysis and design of a real time system©Taskon 1992. Page 302

Bridge to Smalltalk8.3.2

Deriving a Smalltalk
class definition from

an OOram Object
specification

It is straightforward to derive a Smalltalk class definition from an
OOram object specification and it can be done automatically.
Corresponding concepts are shown in table 4.1 on page 165??.

Smalltalk example A Smalltalk class definition corresponding to LocalStation is as
follows:

Object subclass: #LocalStation1
instanceVariableNames: 'cen doo pan tim '
classVariableNames: ''
poolDictionaries: ''
category: 'AccessControl'

The methods of the class can be produced automatically just as for
C++. The body can also here either be taken from a Method
Specification view such as figure 8.8, or it can be programmed
manually. Two of the methods for the LocalStation1 class could be as
follows:

LocalStation1 (LocalStation<Panel)
accessCode: aString

" A person requests access and has offered the identification specified "
" by aString, which is a coded combination of information from the identity "
" card and the received secret code. "
state == #Idle
ifTrue:

[state := #Validating.
cen validate: aString from: self.
tim set: MaxValidationTime from: self]

ifFalse:
[self dpsCaution: 'Illegal state: ' , state. self reset].

LocalStation1 (LocalStation<Timer)
timeoutFrom: timer

" The sending timer has reached timeout. "
state

case: #Unlocked do:
[tim set: (LocalStation1 timeoutDictAt: #LockTime) * 2 from: self.
doo lock.
state := #Locking]

case: #Locking do:
[cen openDoorAlarmFrom: self.
state := #Alarm]

otherCaseDo:
[self warning: state , ' is illegal state'.
self reset]

How the Smalltalk environment will deal with asynchronous behavior
is not covered in this brief presentation.

8.3 Implementation examples29 March 1995 23:05

Case study: The analysis and design of a real time system ©Taskon 1992. Page 303

8.3.3 Bridge to SDL

OOram may be
extended to cater for
special requirements

The OOram method is adaptable to different design and programming
styles. Some clients in the telecommunications industry use the
OOram method for early system analysis and top level design, and
create their detailed designs and implementations in the standardized
System Description Language (SDL) (FOOTNOTE: See [CCITT
Z100] and [Bræk 93]). The clients use a version of the OOram method
and tools that have been specialized with an SDL-like view on actions
to simplify the transition from OOram role models to detailed design
and implementation in SDL. An example of such an action
specification is shown in figure 8.11. The action is to be performed on
the transition from the Idle state to the Validating state in figure 8.7

Figure 8.11
OOram/SDL
diagram for

LocalStation >>
accessCode

Idle

accessCode:

validate:from:
TO CentralUnit

Validating

Trigger message
(or signal)

Prestate

Poststate

Output message

Same message may
trigger different

actions

The actions associated with the message timeoutFrom: received from
the timer is particularly interesting, because the action to be
performed depends on the current state of the object as shown in
figure 8.7. This is illustrated in figure 8.12.

29 March 1995 23:058.3 Implementation examples

©Taskon 1992. Page 304 Case study: The analysis and design of a real time system

Validating

timeoutFrom:

Idle

Unlocking

timeoutFrom:

unlockAlarmFro
m: TO

CentralUnit

Idle

Unlocked

timeoutFrom:

lock TO Door

set:from: TO
Timer

Locking

Locking

timeoutFrom:

openAlarmFrom:
TO CentralUnit

Alarm

Figure 8.12
OOram/SDL
diagrams for

different actions in
LocalStation

>>timeoutFrom

The SDL-language has both a graphical and textual representation.
The textual representation is called SDL/PR (SDL/Phrase
Representation). The SDL/PR can be produced automatically from the
OOram model. Objects in the object specification maps naturally to
SDL-processes. An SDL/PR definition of the LocalStation process is
as follows. The System and Block description levels in SDL have
been omitted here for simplification. We have likewise omitted the
variable declarations.

process LocalStation;
start;

nextstate Idle;

state Idle;
input accessCode(aCode);

output validatefrom(aCode,thisLocalStation)/* to CentralUnit*/;
nextstate Validating;

state Validating;
input reject;
nextstate Idle;

input timeoutFrom(aTimer);
nextstate Idle;

input accept;
output unlock/* to Door*/;
output setfrom(unLockTime,thisLocalStation)/* to Timer*/;

nextstate Unlocking;

state Unlocking;
input nowUnlocked;
nextstate Unlocked;

input timeoutFrom(aTimer);
output unlockAlarmFrom(thisLocalStation)/* to CentralUnit*/;

nextstate Idle;

state Unlocked;
input timeoutFrom(aTimer);

29 March 1995 23:05 8.3 Implementation examples

Case study: The analysis and design of a real time system ©Taskon 1992. Page 305

output lock/* to Door*/;
output setfrom(lockTime,thisLocalStation)/* to Timer*/;

nextstate Locking;

state Locking;
input nowLocked;
nextstate Idle;

input timeoutFrom(aTimer);
output openAlarmFrom(thisLocalStation)/* to CentralUnit*/;

nextstate Alarm;

state Alarm;
input nowLocked;

output doorLockedFrom(thisLocalStation)/* to CentralUnit*/;
nextstate Idle;

endprocess LocalStation;

Bridge to Distributed object systems8.3.4

The separation in the why, what and how abstractions (FOOTNOTE:
Figure 1.13 on page 28??) of objects makes the OOram method
ideally suited for the analysis and design of distributed object systems.
The method separates the object interfaces from the internal behavior.
The implementation of an object can be done in different ways, and
objects with the same interfaces can have different implementations.

The OMG/CORBA rom the Object Management Group and the
COM/OLE from Microsoft are two approaches to realize distributed
object systems. Both are based on a strict separation between the
interface and implementation of objects.

We will in the following use the previously described AccessControl
example in order to describe how the OOram model maps on to the
Interface Description Languages of OMG/CORBA and COM/OLE.
We will show how the separation of role, interface and
implementation in the models matches the similar separation of
interface and implementation for distributed objects.

The OOram concepts are easily mapped to the concepts of the
Interface Definition Language (IDL) of OMG/CORBA and COM/
OLE as shown in table 8.1.

29 March 1995 23:058.3 Implementation examples

©Taskon 1992. Page 306 Case study: The analysis and design of a real time system

OOram CORBA IDL MS IDL
Role model - -

Role, Object Specification Interface Interface

Port - Interface-reference

Interface Interface Interface

Message Request Message

Implementation Class Implementation Class Implementation Class/Factory

Method Operation, Method Method

Attribute Attribute (Property)

Derived Model Derived Interface Derived Interface

Base Model Base Interface Base Interface

Table 8.1 Mapping
from OOram

concepts to the
concepts of CORBA
IDL and Microsoft

IDL.

OMG/CORBA

The Object Management Group (OMG) was established in 1989 with
the goal of creating industry guidelines and object management
specifications to provide a common framework for application
development. The basis for the work is the Object Management
Architecture. The Common Object Request Broker Architecture --
CORBA, is the basic infrastructure that supports interaction between
distributed objects in the architecture.

The interfaces of objects are described through an interface definition
language (IDL). The object model underlying CORBA is based on a
strict separation between the interface and implementation of objects.
The CORBA standards are only concerned with the interfaces of
objects, the implementations are totally hidden and allows for
implementations in different languages, both with and without
implementation inheritance.

The interface descriptions in CORBA IDL are easily derived from the
OOram object specification. An interface description of LocalStation
in CORBA IDL can be as follows:

Deriving a CORBA
IDL description from

an OOram Object
specification

module AccessControl {

 interface LocalStationFromPanel {
 void accessCode(in string aCode);

 };

 interface LocalStationFromDoor {

29 March 1995 23:05 8.3 Implementation examples

Case study: The analysis and design of a real time system ©Taskon 1992. Page 307

 void nowLocked();
 void nowUnLocked();

 };

 interface LocalStationFromCentralUnit {
 void accept();
 void reject();

 };

 interface LocalStationFromTimer {
 void timeOutFrom(in Timer aTimer);

 };

interface LocalStation: LocalStationFromPanel, LocalStationFromDoor,
 LocalStationFromCentralUnit,

 LocalStationFromTimer {

 readonly attribute CentralUnit cen;
 readonly attribute Door doo;
 readonly attribute Panel pan;
 readonly attribute Timer tim;

 };
};

As there is a standard mapping from CORBA IDL to C++ and
Smalltalk, it is possible to automatically derive a language-specific
equivalent to an interface described in IDL.

The OOram method and CORBA both support inheritance of
interfaces. OOram synthesis specifications can easily be mapped to
CORBA interface descriptions.

COM/OLE

The Microsoft Component Object Model (COM) is Microsoft's
foundation for distributed objects. Microsoft Object Linking and
Embedding (OLE) Integration technology is built on top of COM. In
COM, all applications interact with each other through collections of
functions, called "interfaces". COM defines a standard way to lay out
(for each of several platforms) virtual function tables in memory, and
a standard way to call a function in a table. All OLE services are
realized as COM interfaces.

Compared to OMG/CORBA, this is a top-down approach to
distributed objects that initially provides services in a local
environment with a plan to provide a distributed infrastructure in the
future.

The idea behind a component-oriented architecture is that is is
possible to implement the components in different programming

29 March 1995 23:058.3 Implementation examples

Case study: The analysis and design of a real time system©Taskon 1992. Page 308

languages. The binary interface standard that strictly separates
interfaces from implementation makes it easy to support
implementations in different programming languages.

The interface descriptions in Microsoft IIDL are easily derived from
the OOram object specification. The concepts map as shown in table
8.1.

Deriving a Microsoft
IDL description from

an OOram Object
specification

COM/OLE example An interface description of LocalStation in Microsoft IDL can be as
follows:

interface IUnknown
{ HRESULT QueryInterface();

 ULONG AdRef;
 ULONG Release;

};

[uuid(AF3B752C-89D0-101B-A6E4-00DD0111A658),
 version(1.0)]
 interface ILocalSPanel: IUnknown {
 void accessCode([in] string aCode);

 };

[uuid(AF3B7521-89D0-101B-A6E4-00DD0111A658),
 version(1.0)]
 interface ILocalSDoor: IUnknown {
 void nowLocked();
 void nowUnLocked();

 };

[uuid(AF3B7522-89D0-101B-A6E4-00DD0111A658),
 version(1.0)]
 interface ILocalSCentralU: IUnknown{
 void accept();
 void reject();

 };

[uuid(AF3B7523-89D0-101B-A6E4-00DD0111A658),
 version(1.0)]
 interface ILocalSTimer:IUnknown {
 void timeOutFrom([in] Timer *aTimer);

 };

[uuid(AF3B7524-89D0-101B-A6E4-00DD0111A658),
 version(1.0)]

interface LocalStation:
{ CentralUnit *get_cen();

 Door *get_door();
 Panel *get_pan();
 Timer *get_ tim();
 };

A common feature between OOram models and Microsoft COM
specifications is the support of several interfaces for one object, i.e., a
communication port can have several interfaces.

8.3 Implementation examples29 March 1995 23:05

©Taskon 1992. Page 309Case study: The analysis and design of a real time system

OOram executable specifications8.3.5

We have earlier stressed the importance of early prototypes and
exploratory programming. Like the Norwegian farmer Peter Amb said
in an entirely different context: We may have our heads in the clouds,
but keep our feet firmly planted on the ground.

Executable specifications make the abstract OOram descriptions real.
They have the attractive properties of puncturing fancy abstract
constructs and exposing the real problems.

Executable
specifications make

the models real

Executable specifications are useful for checking program designs and
any other kind of model at an early stage. In forward engineering, we
start from a model and create an executable specification in order to
study it in more detail. In reverse engineering, we start from an
exploratory or real program that specifies some desired functionality,
and create a model in order to find and define appropriate high level
architecture and concepts.

OOram executable specifications are written in an object-oriented
programming language, and the detailed techniques to be used for
forward and reverse engineering depend on the chosen language. In
principle, we have three ways of satisfying ourselves that program
logic expressed in a programming language conforms to a given
design expressed in a role model:

Checking
correspondence

between program
and model

The program code could be analyzed by a suitable algorithm and
compared with the role model information. This is a hard research
problem and probably not feasible in the general case.

1.

We could implement the specifications in a new, high level
language which was designed so that the code could be mapped
on to the OOram concepts. This is an interesting alternative which
we are currently exploring.

2.

We could monitor the execution of typical and dangerous cases,
and record all message interaction with current object state and
message details. The recording can be compared to the relevant
role models automatically, and illegal messages can be flagged.

3.

29 March 1995 23:058.3 Implementation examples

©Taskon 1992. Page 310 Case study: The analysis and design of a real time system

We have chosen the last solution because it provides the designer with
important insights into the operation of his design and because it is
applicable in all cases.

This variant of executable specifications is called monitored
execution. A monitored execution collects a trace of all messages
being passed between the observed objects.

Facilities for monitored execution can take many forms. The Taskon
experimental facility automatically produces three reports: An Object
Collaboration report, an Execution Scenario report, and a Textual
Trace report.

Monitored execution
gives important

insights

We have created an executable specification for part of the
AccessControl example, and have run a number of monitored
executions under different conditions. The object specification view
for the example is shown in figure 8.13, and the results of an
execution are described in the following pages. We show all the
collected information in our example, but would want to show a
filtered subset in more complex situations.

Figure 8.13 Object
specification view for

simplified
AccessControl

system with dummy
Panel, Door and

CentralUnit

tim

loc

loc pan

doo

loc

cen locPanel Local
Station

Central
Unit

Timer

Door

The environment roles CentralUnit, Panel and Door are marked as
object specifications, because we implement them as dummy classes
for testing purposes.

The Object
Collaboration report

shows all observed
objects and their
interaction paths

The Object Collaboration report shown in figure 8.14 is similar to a
collaboration view, but we use rectangles rather than super-ellipses to
emphasize that we show an object structure rather than a role
structure. There is one rectangle for each observed object; one port
symbol for the start of each observed interaction path; and associated
with each port are the messages actually observed as sent through that
port. We only show the messages observed from port 15; there are
similar message lists associated with all the other ports.

8.3 Implementation examples29 March 1995 23:05

©Taskon 1992. Page 311Case study: The analysis and design of a real time system

Figure 8.14 Object
collaboration report
for successful access

example

3 4

17

13

1

11

12

15

16

Panel
#11

Observed msgs
lock
unlock

LocalStation
#12

Timer
#16

CentralUnit
#15

Door
#13

Timer
#14

We notice that there is a Timer associated with the Door object. This
Timer is not part of the design. It had to be added to the dummy Door
implementation to simulate the time taken by the various door
operations, such as the time that the door is kept open.

Figure 8.15 The
Execution Scenario

report shows all
observed message

interactions in time
sequence

Panel
#11

LocalStation
#12

Timer
#16

CentralUnit
#15

Door
#13

Timer
#14

accessCode:

set:from:

validate:from:

accept

reset

unlock

set:from:

nowUnlocked

set:from:

timeoutFrom:

set:from:

timeoutFrom:

timeoutFrom:

set:from:

lock

nowLocked

reset

The Execution Scenario report shown in figure 8.15 is drawn with a
notation similar to a scenario view. The actors are the observed
objects, and the interactions are the observed message interactions.

29 March 1995 23:058.3 Implementation examples

Case study: The analysis and design of a real time system©Taskon 1992. Page 312

Light arrows in the Execution Scenario report indicate messages that
conform to the role models; heavy arrows indicate non-conformance.
As expected, all interaction with the simulation Timer added to the
Door for simulation purposes is marked as non-conforming.

Figure 8.16 The
Textual Trace report

gives complete
description of all

interactions

 01 OK test
 02 TASKON/OOram Monitored Execution, 12 April 1994 at 3:45:24 pm
 03 program version e15-t10
 04
 05 Panel#11 >> accessCode: ('personIdentAndCode') >> LocalStation#12
 06 LocalStation#12 >> set:from: (1 {LocalStation#12}) >> Timer#16
 07 LocalStation#12 >> validate:from: ('personIdentAndCode' {LocalStation#12})

>> CentralUnit#15
 08 CentralUnit#15 >> accept () >> LocalStation#12
 09 LocalStation#12 >> reset () >> Timer#16
 10 LocalStation#12 >> unlock () >> Door#13
 11 TRACE-Door#13: Lock released at 3:45:31 pm
 12)-- Door#13 >> set:from: (2 {Door#13}) >> Timer#14
 13 Door#13 >> nowUnlocked () >> LocalStation#12
 14 LocalStation#12 >> set:from: (5 {LocalStation#12}) >> Timer#16
 15)-- Timer#14 >> timeoutFrom: ({Timer#14}) >> Door#13
 16 TRACE-Door#13: Door opened at 3:45:33 pm
 17)-- Door#13 >> set:from: (2 {Door#13}) >> Timer#14
 18)-- Timer#14 >> timeoutFrom: ({Timer#14}) >> Door#13
 19 TRACE-Door#13: Door closed at 3:45:35 pm
 20 Timer#16 >> timeoutFrom: ({Timer#16}) >> LocalStation#12
 21 LocalStation#12 >> set:from: (2 {LocalStation#12}) >> Timer#16
 22 LocalStation#12 >> lock () >> Door#13
 23 TRACE-Door#13: Lock activated at 3:45:37 pm
 24 Door#13 >> nowLocked () >> LocalStation#12
 25 LocalStation#12 >> reset () >> Timer#16

The Textual Trace report shown in figure 8.16 displays all
information that has been collected, but it makes hard and boring
reading. It is, however, useful for studying details in the execution
such as parameter and return values.

The trace is interpreted as follows:

shows the name of the test.Line 01

Line 02 identifies time and date of the execution.

identifies the version of the program being executed.Line 03

Line 05 shows a message send.
The syntax of a message report is as follows:

'sender object' >> 'message name' ('message parameters') >>
'receiver object'
For example, line 5 is to be read

The object Panel#11 sends
the message named accessCode:
with a String parameter: 'personIdentAndCode'
to the object LocalStation#12

Line 11 shows a program trace. The programmer may insert informative
messages in his code. These messages are preceded by 'TRACE' in
the report.

29 March 1995 23:05 8.3 Implementation examples

Case study: The analysis and design of a real time system ©Taskon 1992. Page 313

shows illegal message send. Message sends are checked against the
port interfaces specified in the role models. If a message is not in
accordance with the role model, the report line begins with the symbol
')--'. The messages in lines 12, 15, 17 and 18 are examples of
nonconformance. They are all caused by a Timer used in the dummy
Door implementation to make it appear to open and close at
determined times.

Line 12

Run-time errors are reported with a line beginning with 'CAUTION';
the execution continues if at all possible.

Not shown

Not shown Message return values (Smalltalk messages always return a value) are
given on the following line if different from the receiver object. The
return value is preceded by the keyword RETURN:

 RETURN return value

8.3 Implementation examples 29 March 1995 23:05

Case study: The analysis and design of a real time system©Taskon 1992. Page 314

Chapter 9
Case study: The creation of a framework

This case is about low-level programming. We create a reusable
framework written in Smalltalk, but the principles presented should
be equally applicable to other programming languages.

First step: Identify consumers and consumer needs (p. 314)
Second step: Perform a cost-benefit analysis (p. 317)
Third step: Perform reverse engineering of existing programs (p. 319)

Container-Component Hierarchy
Model-View-Controller
Mouse and Keyboard Input
The Scroller role model

Fourth step: Specify the new framework (p. 343)
Fifth step: Document the framework as patterns describing how to
solve problems (p. 345)

Pattern 1: The Tool
Pattern 2: Fixed Proportion Tool Layout
Pattern 3: Flexible Tool Layout
Pattern 4: The Controller
Pattern 5: The Model Object
Pattern 6: The View

Sixth step: Describe the framework's design and implementation (p.
354)
Seventh step: Inform the consumer community (p. 362)

29 March 1995 23:05

Case study: The creation of a framework ©Taskon 1992. Page 315

This case study illustrates the creation of frameworks. We illustrate
how a complex construct can be hidden in a framework so that the
application programmer can apply it safely and simply while retaining
the power to create arbitrarily sophisticated solutions.

The case we have chosen is the work we have done to adapt the visual
parts hierarchy of Objectworks release 4.0 to our requirements. This
seems to be work which never ends: We keep finding better concepts
and solutions that reduce the burden on the application programmer
and increase product quality. We have flattened several years of
iterative development into a single step in the case study, and have
even included an improved scheme for the changed-update construct
that we were exploring while this chapter was written.

Guide to the case
study

We presented a general process for creating frameworks in chapter 5.3
on page 212??. The process is reflected in this case study report, you
will find the following subsections:

1. Identify consumers and consumer needs.

2. Perform a cost-benefit analysis.

Perform reverse engineering of existing programs.3.

4. Specify the new framework.

Document the framework as patterns describing how to solve
problems.

5.

Describe the framework's design and implementation.6.

Inform the consumer community.7.

We have attempted to keep the presentation within reasonable bounds,
and have omitted many design and implementation details. We hope
that what remains is still sufficiently substantial to convince you of
the need for information hiding and the ability of our technology to
satisfy this need.

29 March 1995 23:05

©Taskon 1992. Page 316 Case study: The creation of a framework

9.1 First step: Identify consumers and consumer needs

In a nutshell
In this case, the consumers were ourselves and our needs were dictated by market
pull for full color and integration with the platform's windowing system

The consumers are
ourselves

The consumers of this framework case study are the system
developers at Taskon. At the time when we first heard of
Objectworks\Smalltalk release 4.0, we had developed a large system
product consisting of some 1,500 classes, 37,000 methods, and some
300,000 lines of Smalltalk code running under Objectworks\Smalltalk
release 2.5. The code was very compact with extensive reuse, and a
typical runtime image might consist of more than a quarter million
objects.

An important part of the product was its sophisticated editors. Our
editors were based on the Model-View-Controller (MVC) framework
found in earlier releases of the Objectworks\Smalltalk library, but
with substantial extensions to satisfy the needs of our editors.

Objectworks\Smalltalk release 4.0 provided a number of
improvements that were sorely needed by our customers, and we
decided to adapt it as quickly as possible.

Release 4.0
represented major

improvements

From our standpoint, the most dramatic changes were the entirely new
class hierarchy for managing windows and their parts. The big
question was how the modified class library would influence our
system. To answer this question, we established a project to create an
OOram framework which modified and extended the visual parts of
release 4.0 to make it satisfactory for our purposes.

Our main requirement was that we wanted to create sophisticated user
interfaces quickly, simply and safely. This implies that we wanted to
push as much of the problem complexity as possible into the
framework, that we wanted a small surface area between the
framework and the application, and that we wanted the programmer to
retain full control over the model functionality and the layout of the
editors in the window.

Simple, yet powerful
user interface

development

Specifically:

We wanted all the new capabilities of the new release.1.

We wanted to retain the functionality of our existing editors,
because we liked them and so did our customers.

2.

9.1 First step: Identify consumers and consumer needs29 March 1995 23:05

©Taskon 1992. Page 317Case study: The creation of a framework

3. We wanted to reduce the burden on the application programmer
by significantly reducing the surface area between the framework
and its derivatives.

4. We wanted to define the surface area between the framework and
its derivatives so that the framework could be improved without
threatening the derivatives.

We wanted to consider the automatic enforcement or checking of
framework constraints to improve the quality of the derivatives.

5.

29 March 1995 23:059.1 First step: Identify consumers and consumer needs

Case study: The creation of a framework©Taskon 1992. Page 318

9.2 Second step: Perform a cost-benefit analysis

In a nutshell
We wanted to combine the added functionality with a reduced number of editor
glitches.

Benefit: Our
customers wanted it

When we first got access to Objectworks release 4.0, the decision to
adopt it was trivial: our customers wanted its color capabilities and its
closer integration with the platform windowing system, and they
wanted it NOW. So we had no choice but to convert our programs to
the new release as quickly as possible and cost was really not an
issue.

Benefit: Our
programmers wanted

it

In addition, our application programmers appreciated that the new
architecture made their task easier, and wanted us to adapt to the new
release because they believed it would make them more effective
(removing some of the hassle, but none of the fun.)

The phenomenon covered by the visual part hierarchy is of central
importance to our business because it permeates all our task-oriented
tool products. Certain aspects of the changed-update construct had
continued to cause difficulties even after several stages of
improvements. (The solution presented here includes an even later
revision, which our application programmers hope will finally prove
to be the ultimate solution.)

Benefit: We needed
to improve our MVC

framework

We estimated that reverse engineering of release 4.0, forward
engineering, design and implementation of a new framework would
take 8 person-months. Retrofitting the new framework in existing
program products to make them compatible with release 4.0 would
take another 12 person-months.

Cost: Designing a
new framework

BOX: Resource estimation is very hard with extensive reuse
I frankly find it extremely hard to estimate such programming projects. It is much
like estimating the time needed to solve a crossword puzzle. I have an idea about
where I am, where I want to be and the things that need to be done to get there.
Most problems are benign and are solved with the estimated effort. Some problems
just disappear on closer scrutiny, but this is more than offset by the few problems
which prove to be really hard.

It seems to me that there are only three ways of making firm project commitments:
either keep the goal fixed with time and resources flexible, or keep time and
resources fixed with the detailed specifications of the goal flexible, or make the
bureaucracy surrounding the project so large that it completely dominates the
unknown, creative part.

9.2 Second step: Perform a cost-benefit analysis29 March 1995 23:05

©Taskon 1992. Page 319Case study: The creation of a framework

In our case, the work was harder than expected and the available time
and resources were fixed due to commitments to customers. We have,
therefore, been forced to go through several iterations, even if we in
this presentation pretend there has been only one.

29 March 1995 23:059.2 Second step: Perform a cost-benefit analysis

©Taskon 1992. Page 320 Case study: The creation of a framework

Third step: Perform reverse engineering of existing
programs

9.3

In a nutshell
Reverse engineering of existing programs was very enlightening and helped us
identify a number of powerful object patterns.

Third step: Reverse
engineering

The third step was to do a reverse engineering analysis of the new
visual parts hierarchy of Objectworks\Smalltalk release 4.0. The
results are summarized below.

We also did reverse engineering on all our editors and determined
how they could be reimplemented under the new framework. We
found that while the new solution was a great step forward, there were
still some glitches which made it necessary for us to create our own
solution.

The goal of the reverse engineering step was to understand how
release 4.0 managed windows with all their different subareas. We
first browsed through the class library, and found that classes and
methods were consistently and well commented. We studied the class
hierarchy: figure 9.1 shows the inheritance relationships between the
classes we have found to be most relevant to our study. We must
admit that the hierarchy did not help us understand the design of a
window and its parts. We clearly needed to study how the objects
collaborate in an actual window, and not how their classes are related
in the class hierarchy.

The class hierarchy
was not helpful

9.3 Third step: Perform reverse engineering of existing programs29 March 1995 23:05

Case study: The creation of a framework ©Taskon 1992. Page 321

Object
- Controller
- - ControllerWithMenu
- - - ParagraphEditor
- - ScrollbarController
- - StandardSystemController
- - WidgetController
- DisplaySurface
- - Window
- - - ScheduledWindow
- InputSensor
- - TranslatingSensor
- - WindowSensor
- InputState
- Model
- - PopUpMenu
- - ScrollValueHolder
- - ValueModel
- - - PluggableAdaptor
- - - ValueHolder
- - - - TextCollector
- Screen
- SharedQueue
- VisualComponent
- - VisualPart
- - - CompositePart
- - - - BorderDecorator
- - - DependentPart
- - - - View
- - - - - AutoScrollingView
- - - - - - ComposedTextView
- - - - - - - TextCollectorView
- - - - - BooleanWidgetView
- - - - - - ActionButton
- - - - - - LabeledBooleanView
- - - - - Scrollbar
- - - Wrapper
- - - - TranslatingWrapper
- - - - - LayoutWrapper
- - - - - - BoundedWrapper
- - - - - - - BorderedWrapper
- - - - - ScrollWrapper

Figure 9.1 A part of
the Smalltalk class

hierarchy

Classes of interest to our study are shown in bold typeface.

Dissecting a
Transcript window

In the best Smalltalk tradition, we next tried to understand the new
design by analyzing a concrete example. We first tried to investigate a
program Browser, but found it far too complex for our purpose. So we
selected the System Transcript, which is the simplest window of all.
The System Transcript is a text editor where programs can write
messages to the user, and where the user can type simple commands.
Its appearance on the screen is shown in figure 9.2.

Menu bar
Scroll UP button

Scrollbar

Scroll DOWN button

Text editor

DecWindows buttonsFigure 9.2 A System
Transcript

29 March 1995 23:059.3 Third step: Perform reverse engineering of existing programs

Case study: The creation of a framework©Taskon 1992. Page 322

The title bar at the top with its resizing and other buttons is managed
by the platform windowing system (DecWindows in this case) and is
not represented as Smalltalk objects. Our interest focuses on the
contents of the window: the menu bar, the scrollers and the text editor
itself.

We activated the System Transcript window, typed a program
interrupt command, and inspected its object structure. We found a
large number of interconnected objects, and extracted the ones that
our experience indicated were of interest to our study. The result is
shown in figure 9.3.

9.3 Third step: Perform reverse engineering of existing programs29 March 1995 23:05

Case study: The creation of a framework ©Taskon 1992. Page 323

Figure 9.3 The main
objects controlling
the behavior of the
Transcript window

ws

cps

ct

ds

m

ss

wsws ws

ds

m

s

cps

ct

cps

ct

cp

s

wsw

sw m

s v c

m

ds

ww

s

cp ct

ww

m

m

ds

m

cps

ct

cps

ctct

cps

ct

cp

m

cp

ct

c

v

cp

ct

m

c

v

cp

ct

cp

ct

m m

mm

cp

ct

c

v

m

v

cc

v

m

ds

581
Standard
System

Controller

3822
Scheduled

Window

2259
Window
Sensor

2294
Translating

Sensor

13540
Translating

Sensor

1404
Translating

Sensor

13379
Translating

Sensor

610
Translating

Sensor

5116
Border

Decorator

11804
TextCollector

9943
Bordered
Wrapper

12188
Scroll

Wrapper

9795
Text

Collector
View

3003
Paragraph

Editor

7050
Bordered
Wrapper

791
Labeled
Boolean

View

6708
Widget

Controller

6909
Widget

Controller

2873
Pluggable
Adaptor

10916
Bounded
Wrapper

9302
Pluggable
Adaptor

464
Action
Button

12982
Bordered
Wrapper

14782
Composite

Part

10589
Bordered
Wrapper

14455
Action
Button

9302
Pluggable
Adaptor

112
Widget

Controller

8196
Bordered
Wrapper

444
Scrollbar

15219
Scrollbar
Controller

cp

ct

Objects are shown as rectangles annotated with the object identifier and the class
name. Circles denote instance variables; collections are doubled. They are annotated
as follows:

c controller cp component cps components
ct container ds dependents m model
s sensor v view w window
ws windowSensor

29 March 1995 23:059.3 Third step: Perform reverse engineering of existing programs

Case study: The creation of a framework©Taskon 1992. Page 324

Separation of
concern

Even if it was greatly simplified, the object structure of figure 9.3 was
still quite formidable. This did not surprise us, since even the simple
Transcript window is quite sophisticated. We decomposed the
Transcript functionality, and created a role model for each of its
functions: A role model is a part of a structure of objects which we
choose to regard as a whole, separated from the rest of the structure
during some period of consideration. A whole that we choose to
consider as a collection of roles, each role being characterized by
attributes and by actions which may involve itself and other roles.

Some of the functions performed by the objects of figure 9.3 will be
described in the following sub-sections:

Container-Component Hierarchy describes how the window is
subdivided into smaller areas called Visual Parts.

1.

2. Model-View-Controller describes the coordination between the
objects that represent information, the objects that display the
information, and the objects that take commands from the user.

Mouse and Keyboard Input describes how the stream of user
input events is directed to the appropriate object which shall
handle them.

3.

4. The Scroller role model describes how a large presentation can be
scrolled so that different portions of it is made visible on the
screen.

9.3.1 Container-Component Hierarchy

The organizing principle for windows is that a VisualPart object is
responsible for a rectangular area within the window. A Container is
a VisualPart which delegates this responsibility to other VisualParts,
called Components. The principle is recursive: a Component object
may also play the role of Container and further delegate responsibility
for subareas to other Components.

Container-
Component is a

prevalent construct

We find ten instances of the Container-Component relationship in
figure 9.3; they are shown as arrows in figure 9.4.

9.3 Third step: Perform reverse engineering of existing programs29 March 1995 23:05

Case study: The creation of a framework ©Taskon 1992. Page 325

Figure 9.4 Ten
instances of the

Container-
Component relation

The third object from the left in the top row is the 3822-
ScheduledWindow object. It is the root of the visual component
hierarchy and forms the container for the BorderDecorator object.

The 5116-BorderDecorator object is the Component of the
ScheduledWindow, and also the Container of three Components: the
7050-BorderedWrapper object, which is responsible for the menu bar
area; the 10916-BoundedWrapper object, which is responsible for the
area for the scrollbar and scroll buttons; and the 12188-ScrollWrapper
, which is responsible for the text editor area. Each of these
Components act as Containers and delegate their responsibilities to
other Components recursively down to the leaf Components such as
9795-TextCollectorView.

Figure 9.5 Area of
concern

The Container-Component construct explains the visual parts tree structure by
focusing on a typical parent-child pair.

dw

up

Container

Component

A Container has the characteristics of a father
object in a visual parts tree structure. A
Container manages some area within a window,
presents information to the user and possibly
takes input pertaining to this presentation from
the user. It delegates at least some of this work
to one or more Components, which it positions
within its own area.

A Component has the characteristics of a son
object in the visual parts tree structure. A
Component manages some area within a window,
presents information to the user and possibly
takes input pertaining to this presentation from
the user.

Figure 9.6 The roles
and their

responsibilities

Figure 9.7 Stimulus -
Response

All messages can be a stimulus message.

9.3 Third step: Perform reverse engineering of existing programs 29 March 1995 23:05

©Taskon 1992. Page 326 Case study: The creation of a framework

The message
interfaces

The most interesting parts of this role model are the message
interfaces. Most relevant objects play both roles. The role model help
us segregate the messages that are sent down the component hierarchy
from the ones that are sent up. The most important messages are
illustrated in figure 9.8.

Figure 9.8 Simplified
interfaces for the

Container-
Component construct dw

up

Container Component<Container
bounds:
container:
displayOn:

Container<Component
graphicsContextFor:
invalidateRectangle:forComponent:
localPointToGlobal:forComponent:

Component

29 March 1995 23:05 9.3 Third step: Perform reverse engineering of existing programs

Case study: The creation of a framework ©Taskon 1992. Page 327

Figure 9.9 Textual
interface view

interface 'Container<Component'
explanation "We require that the Container shall accept these messages in any

sequence. This means that it is the responsibility of the Container to be prepared for
any and all of these messages after it has sent the container:-message to the Part."

message 'graphicsContextFor:'
explanation "Return aGraphicsContext for set up for aComponent."
param 'aComponent'

message 'invalidateRectangle:forComponent:'
explanation "Invalidate the Rectangle aRectangle. Propagate a damage

rectangle up the containment hierarchy. This will result in a displayOn:
aGraphicsContext being sent to the receiver."

param 'aRectangle'
param 'aComponent'

message 'localPointToGlobal:forComponent:'
explanation "Convert aPoint in coordinate system of aPart to a point in the

window's coordinate system."
param 'aPoint'
param 'aPart'

interface 'Component<Container'
message 'bounds:'

explanation "An actual bounding rectangle is being asserted, aRectangle is
in the coordinate system of the Part. The bounds: message originates at the top of a
hierarchy (usually a ScheduledWindow) and passes down to each
VisualComponent. ScheduledWindows send bounds: to their single component when
opened or resized. CompositeParts uses this message to do layout of tiled
components. BoundedWrapper uses the newBounds rectangle as the actual
bounding rectangle. Many VisualComponents do nothing. Do not send a
changedBounds: message back up the hierarchy in response to this message."

param 'aRectangle'
message 'container:'

explanation "The Part is being placed in containment hierarchy inside of
aContainer."

param 'aContainer'
message 'displayOn:'

explanation "Display the receiver on the given GraphicsContext, which is set
up for the receiver's coordinate system."

param 'aGraphicsContext'

Figure 9.10 illustrates how the design of the Transcript window can be
considered as composed of repeated applications of this base model.

Using synthesis to
recreate part of
object structure

29 March 1995 23:059.3 Third step: Perform reverse engineering of existing programs

©Taskon 1992. Page 328 Case study: The creation of a framework

dw

up

dw

up

dw up

dw

up

dw

up

Scheduled
Window

Border
Decorator

Bordered
Wrapper

Scroll
Wrapper

Text
Collector

View

Container

Component

Figure 9.10
Repeated

applications of the
Container-

Component model in
the Transcript

structure

Implementation
comments

Whenever there is a change in the data, the window (or parts of it) has
to be redisplayed. There are basically two mechanisms for doing this
in a component: invalidation and direct display. Invalidation is
illustrated in the scenario of figure 9.11, and direct display is
illustrated in the scenario of figure 9.12. Sketches of the
corresponding programs are given below.

Figure 9.11 Scenario
of display through

invalidation

Scheduled
Window

Border
Decorator

Bordered
Wrapper

Scroll
Wrapper

Text
Collector

View

invalidateRectangle:forCo

invalidateRectangle:forComponent:

invalidateRectangle:forComponent:

invalidateRectangle:forComponent:

displayOn:

displayOn:

displayOn:

displayOn:

Invalidate The message VisualPart>>invalidateRectangle: aRectangle causes an
event in the window which is equivalent to a display event from the
platform windowing system.

9.3 Third step: Perform reverse engineering of existing programs29 March 1995 23:05

©Taskon 1992. Page 329Case study: The creation of a framework

01 aTextCollectorView invalidateRectangle: aRectangle repairNow: aBoolean
02 . aScrollWrapper

 invalidateRectangle: rect1
repairNow: aBoolean
forComponent: aTextCollectorView

03 . . aBorderedWrapper
 invalidateRectangle: rect2

repairNow: aBoolean
forComponent: aScrollWrapper

04 . . . aBorderDecorator
 invalidateRectangle: rect3

repairNow: aBoolean
forComponent: aBorderedWrapper

05 aScheduledWindow
invalidateRectangle: rect4
repairNow: aBoolean
forComponent: aBorderedWrapper

If aBoolean is false, the following will take place some time in the future, if it is true, it will take
place immediately.
06 . . . anEdgeWidgetWrapper displayOn: aGraphicsContext
07 aTextCollectorView displayOn: aGraphicsContext

The above is the general algorithm. It gives all parts in a composite
window the opportunity to display themselves within the specified
Rectangle (which is transformed appropriately on its way up and
down the hierarchy.) The alternative algorithm is usually simpler and
faster, and is suitable when it is known which parts need to be
displayed:

Scheduled
Window

Border
Decorator

Bordered
Wrapper

Scroll
Wrapper

Text
Collector

View

graphicsContextFor:

graphicsContextFor:

graphicsContextFor:

graphicsContextFor:

Figure 9.12 Scenario
get

aGraphicsContext
for local display

01 gc := aTextCollectorView graphicsContext
02 . aScrollWrapper graphicsContextFor: aTextCollectorView
03 . . aBorderedWrapper graphicsContextFor: aScrollWrapper
04 . . . aBorderDecorator graphicsContextFor: aBorderedWrapper
05 aScheduledWindow graphicsContextFor: anEdgeWidgetWrapper
06 gc
07 paint: aTextCollectorView backgroundColor;
08 displayRectangle: damageArea;
09 paint: aTextCollectorView foregroundColor.
10 aTextCollectorView displayOn: gc

Note that in the previous case, the ScheduledWindow cleared the area
before asking for the display; in this case it is the responsibility of the
TextCollectorView to clear any garbage from the affected area (lines
06 through 09) before displaying (line 10).

In lines 01 through 05, a GraphicsContext is created and provided

29 March 1995 23:059.3 Third step: Perform reverse engineering of existing programs

©Taskon 1992. Page 330 Case study: The creation of a framework

with the proper value for coordinate translation. The GraphicsContext
forms the link to the underlying platform window system, which does
the actual rendering on the screen. It can only work if it is created on a
DisplaySurface or one of its subclasses such as ScheduledWindow.

Containers and Components share an interface containing the
messages that they may receive from any object. We define
VisualPart as a common role, and VisualPartClient as its general
client as shown in figures 9.13 and 9.14.

Additional interface
to VisualParts

Figure 9.13 A
VisualPart-Client
collaboration view

vp VisualPartVisualPart
Client

A VisualPart manages some area within a
window, presents information to the user
and possibly takes input pertaining to this
presentation from the user.

A VisualPart Client represents
any object which knows about
a Container or a Component.

Figure 9.14
VisualPart<VisualPa

rtClient graphical
interface view

vp

VisualPart<VisualPartClient
bounds
components
container
invalidateRectangle: aRectangle
localPointToGlobal: aPoint
preferredBounds
topComponent

VisualPartVisualPart
Client

29 March 1995 23:05 9.3 Third step: Perform reverse engineering of existing programs

©Taskon 1992. Page 331Case study: The creation of a framework

Figure 9.15
VisualPart<VisualPa

rtClient textual
interface view

interface 'VisualPart<VisualPartClient'
message 'bounds'

explanation "Answer a Rectangle that represents the Component's actual
bounding rectangle on the screen in the Component's coordinate system."

message 'invalidateRectangle:'
explanation "Invalidate the Rectangle aRectangle. Propagate a damage

rectangle up the containment hierarchy. This will result in a displayOn:
aGraphicsContext being sent to the receiver."

param 'aRectangle'
message 'localPointToGlobal:'

explanation "Convert a point in local coordinates to a point in the top
windows coordinate system. Forwarded to the receiver's container."

param 'aPoint'
message 'preferredBounds'

explanation "Answer a Rectangle, which is the preferred bounds of the
receiver in the receiver's coordinate system."

message 'topComponent'
explanation "Answer the top component in the receiver's hierarchy. If the

receiver is not in a hierarchy answer the receiver. (Taskon comment: This are very
questionable semantics. The protocol of the usual topComponent
(ScheduledWindow) is different from the protocol of an arbitrary Component. We
have modified the specification to return aScheduledWindow or nil)."

message 'components'
explanation "Answer a Collection containing the receiver's components.

Answer an empty Collection if this is a leaf node."
message 'container'

explanation "Answer the receiver's container, or nil."

Notice the pair of almost identical messages in the
VisualPart<VisualPartClient interface and the Container<Component
interface: graphicsContext and graphicsContextFor: aComponent. We
need the second form because the responsibility for providing the
proper coordinate translation rests with the container. A composite
container such as the BorderDecorator will provide different
translation parameters for its different parts, and must know the
identity of the part. Our convention is that graphicsContext returns a
GraphicsContext set up for the receiver, while graphicsContextFor: is
used to request a GraphicsContext for one of the receiver's
components.

The composite does
not tell anything new

We could easily create a composite of the Container-Component
model and the Client-VisualPart model; the result of this synthesis is
the derived model shown with white roles in figure 9.16. This model
is substantially more complex than the two base models and does not
give any new information. We will normally not create the derived
model, but leave the synthesis of individual roles to the
implementation stage.

29 March 1995 23:059.3 Third step: Perform reverse engineering of existing programs

©Taskon 1992. Page 332 Case study: The creation of a framework

cp

ct

vp

dw

up

dw

up

VisualPartVisualPart
Client

Container

Component

Container
Client

Component
Client

Container

Component

Derived model

Basic tree
structure

General interface
to all VisualParts

Figure 9.16 A
derived Container-
Component model

created by synthesis

9.3.2 Model-View-Controller

The earliest example of an object-oriented framework is the Model-
View-Controller (MVC) which I created when I was working with
Adele Goldberg as a visiting scientist at the Xerox Palo Alto Research
Center in 1978-79. It has later been improved by Goldberg and her
staff, and is now a powerful part of Objectworks\Smalltalk [Gold 83].

The Model-View-
Controller
framework

In Smalltalk-76, the forerunner to Smalltalk-80, the idea was to let
objects represent some information of interest to the user and also to
know how to present this information on the screen and let the user
edit it. This very powerful paradigm is the basis of the intuitively
pleasing object-oriented user interfaces so popular today.

This concept proved inadequate when I wanted to use Smalltalk-76 to
create a system for production control in shipbuilding. The
information represented in the system was the production schedule
with its activities and resources, and the user would want to see and
manipulate it in many different forms: as a network of activities, as a
chart showing each activity as a bar along the time axis, and as a
business form presenting activity attributes as texts that could be
edited.

I needed multiple
presentations

A natural consequence of this was to tear the original object apart, so
that one object represents the information, one is responsible for the
presentation and one for capturing input from the user. The first was

29 March 1995 23:05 9.3 Third step: Perform reverse engineering of existing programs

Case study: The creation of a framework ©Taskon 1992. Page 333

called the model object, the second was called the view object and the
third was called the controller object. This gave the freedom to have
many different presentations and input facilities for the same object,
and even to have several views of a given model on the screen
simultaneously.

The object-oriented, direct manipulation user interface gives the user
an illusion of working directly with the apparently concrete
information objects. The Model-View-Controller breaks this illusion
when the user has several views on the same information object
simultaneously. This is fortunately of no concern to the professional
planner who is manipulating different views of the same plan even in
the manual systems.

BOX: Flexible mapping of Model-View-Controller roles to objects
There has been many discussions in professional forums about the wisdom of this
scheme. Would it be sufficient with two objects (editor and model), or should the
original idea of a single object doing all three jobs be retained. With role modeling,
this is not an issue. We can map roles onto objects in any way we please, and the
three roles of Model, View, and Controller can be mapped onto three, two or one
object according to the merits of the problem.

If required, we can retain the valuable user illusion of concrete
information objects by the simple expedient of constraining the user
interface so that it only shows one view of each information object at
the time.

Figure 9.17 shows the five instances of the Model-View-Controller
triad in the Transcript of figure 9.3. Four of them manage the menu
bar, the up scroll button, the scrollbar, and the down scroll button. The
fifth one is farthest to the right where 11804-TextCollector plays the
role of a Model, 3003-ParagraphEditor plays the role of Controller,
and 9795-TextCollectorView plays the role of View.

Model-View-
Controller (MVC)

Figure 9.17 Five
instances of the

Model-View-
Controller (MVC)

construct

29 March 1995 23:059.3 Third step: Perform reverse engineering of existing programs

Case study: The creation of a framework©Taskon 1992. Page 334

We will now present a role model of the Model-View-Controller as it
is implemented in Objectworks\Smalltalk release 4.0. We concentrate
on the general mechanism, ignoring the specializations for the
Transcript text manipulation.

Figure 9.18 Area of
concern

The Model-View-Controller (MVC) paradigm is fundamental to all
Objectworks\Smalltalk thinking about dividing responsibility between objects. The
basic idea is that we want a clear separation between the representation of
knowledge, called the Model, and the means provided for a user to inspect and
manipulate this information in the View and Controller respectively.

outin Computer
SystemUser

Figure 9.19
Environment model

Figure 9.20
Stimulus-Response

Stimulus Response Comments

User>>anyInputCommand System>>anyPresentation The nature of the input and output
is determined in the derived models

Note: The computer system may change the presentation at any time in response to
changes in the underlying information.

out m

d

in v

c

m

Controller

View

Controllers are used to
capture input from the
user. They translate user
actions into messages
which are sent to the
model or the view.

Views are used to present
model information to the
user in a way that is
appropriate for the user's
task.

Model

A model is an object which
represents user
information.

User

The human user of a
computer based system.

Figure 9.21
Collaboration model

The Model knows about any number of Views; they are called
dependents and are the only relations that shall exist from Model to
View. Views and Controllers come in pairs. The View knows about
exactly one Controller, and a Controller knows about exactly one
View. The View and the Controller know the same Model, but the
Model does not know the Controller.

9.3 Third step: Perform reverse engineering of existing programs29 March 1995 23:05

©Taskon 1992. Page 335Case study: The creation of a framework

View Controller Model

view: self

model: Model

addDependent: self

Figure 9.22
Scenario: View and

Controller setup

When a View is associated with a Model, it reports this fact to the
Model by sending it the message addDependent: self. The Model
remembers this until the View is released.

Figure 9.23
Scenario: User

modifies information

User View Controller Model

anyInputCommand

anyAttributeChangingMes

update: anAspectSymbol

anyPresentation

User input is handled as follows:

The user gives a command with the keyboard, the mouse or a
menu. This is captured by the Controller.

1.

The controller transforms the input into messages it sends to
either the view or the model. The actual messages will be
specified in various specializations of this model such as the text
editor in the Transcript.

2.

Any method in the model object that changes its attributes sends
the message self changed: anAspectSymbol. The Symbol
represents the aspect of the model which is changed.

3.

The model method for changed: anAspectSymbol sends the
message update: anAspectSymbol to all dependents (the views).
This is implemented in class Object, so any Object can be a
model. It is implemented somewhat more efficiently in class
Model, so it is often sensible to let model classes be subclass of
Model.

4.

29 March 1995 23:059.3 Third step: Perform reverse engineering of existing programs

©Taskon 1992. Page 336 Case study: The creation of a framework

The view has several options when it receives an update-message.
The simplest is to ignore the AspectSymbol parameter and simply
redisplay everything. This may take a long time and lead to an
annoying flashing of the screen.

A better scheme is to restrict redisplaying to the cases when
needed as indicated by anAspectSymbol. More information is
sometimes needed to limit redisplaying further, and there are
different variants of the update message which facilitate this.

5.

MVC roles designed
to be specialized

This sequence of events is controlled by the MVC framework, even if
the command in step 1, the message to the Model in step 2, the nature
of the model modification in step 3, and the nature of the information
requested by the View in the last step are determined in the derived
model specializing the framework.

in

m

m

d

out

v

c

Controller<User
anyInputCommand

View<Controller
containsPoint:
localPointToGlobal:
showSelection
subViewWantingControl

Model<Controller
anyAttributeChangingMessage

Controller

View<Model
update:
update:with:
update:with:from:Model<View

addDependent: aView
removeDependent: aView

Controller<View
model:
setSensorFromView
view:

User<View
anyPresentation

View

Model

User

Figure 9.24 Some
important messages

Note: The Model object may send an update-message at any time in response to an
attribute change which is invisible in this role model.

BOX: MVC useful
There are strong programming arguments for separating model and view. We find
that many views are reusable against widely different models. This is mainly true
for general views such as Text, List and Tree views, but to a lesser extent it also
applies to more application oriented views.

29 March 1995 23:05 9.3 Third step: Perform reverse engineering of existing programs

Case study: The creation of a framework ©Taskon 1992. Page 337

The value of separating view and controller is not as evident. There are examples of
views being associated with different controllers, but much of the same
functionality could have been achieved by suitable configuration facilities.
Smalltalk is a single inheritance language, and Controllers and Views benefit from
having different class hierarchies.

We have not seriously considered merging the view and controller roles because we
see no reason to reprogram our editors. We would reconsider the question if we
were to design a new system library from scratch.

The strongest argument for separating model and view is based on user
convenience. We use the Model-View-Controller extensively in all our task-
oriented tools including our OOram tools and our document preparation tools. I find
that I frequently use multiple presentations of the same information, and I believe
the same applies to other users. The separation between model and view/controller
is very valuable from a user's point of view, and I miss it sorely when I at times
have to use systems without it.

Mouse and Keyboard Input9.3.3

Input management All input from keyboard and mouse are received into the
Objectworks\Smalltalk image through an interrupt driven process,
which is an instance of class InputState (not shown in figure 9.3).
Each window has one instance of WindowSensor (2259-
WindowSensor in our Transcript) that holds a SharedQueue of input
events. The InputState puts received input events into the
WindowSensor queue of the currently active window. Every
Controller holds an instance of TranslatingSensor, and asks this sensor
for an input event whenever it needs one. The five instances of this
construct in the Transcript are illustrated in figure 9.25.

Figure 9.25 Five
instance of Keyboard

and mouse input
construct

29 March 1995 23:059.3 Third step: Perform reverse engineering of existing programs

Case study: The creation of a framework©Taskon 1992. Page 338

We will now discuss two role models that explain these input
facilities. We will see that the models give a nice overview of the
phenomena which would be hard to get by studying the classes.

There are two different chains of objects in figure 9.3 which are of
interest to our current discussion: the visual component objects going
from top to bottom, such as 3822-ScheduledWindow, 5116-
BorderDecorator, 9943-BorderedWrapper, 12188-ScrollWrapper,
9795-TextCollectorView. Another chain of objects go from bottom to
top, such as 3003-ParagraphEditor (aController), 610-
TranslatingSensor, 2259-WindowSensor. There are similar chains for
the menu bar and the scroller buttons.

One of the responsibilities of the objects of the down chain is to keep
track of the coordinate transformations between the window's
coordinate system and the coordinate system of the
TextCollectorView, as described in 9.3.1: The Container-Component
Hierarchy. We will build on this functionality in the
TranslatingSensor Initialization Model.

Main Input Role
Model

The first model is the Main Input Model, which describes how the
keyboard and mouse input is made available to the Controller. The
second model is the TranslatingSensor Initialization Model, which
describes how the TranslatingSensor is set to provide the required
coordinate transformations.

Main Input Role Model

Figure 9.26 Area of
concern

This model describes the objects employed to let Controllers read mouse and
keyboard input.

All the five instances of the input construct highlighted in figure 9.25
are represented by the three input roles of figure 9.27.

9.3 Third step: Perform reverse engineering of existing programs29 March 1995 23:05

©Taskon 1992. Page 339Case study: The creation of a framework

Figure 9.27
Collaboration view

of Main Input Model

s

inp

ws

ws

Window
Sensor

Controller

The WindowSensor role has queues for
metaInput, keyboardInput, and damage.
Instances are also responsible for handling
events for their window. Mouse coordinates
are translated into the window's coordinate
system.

Translating
Sensor

Object responsible for
capturing and processing
input from the user.

The TranslatingSensor role is an InputSensor
that translates mouse coordinates into a
client's local coordinate system.

InputState

The InputState role runs a separate process
and accepts input events from the platform. It
queues keyboard events and flattens the
mouse motion and mouse button state into
booleans for polling InputSensors. Keyboard
shift, control and meta are also flattened.

S

S

A

TranslatingSensor Initialization Model

Figure 9.28 Area of
Concern

The Area Of Concern is to initialize the TranslatingSensor coordinate
transformation of cursor positions. It uses parts of the Container-Part role model, to
do so as illustrated in the collaboration view and the scenario.

s

sw

cv

swws ws

TranslatingSensor<Controller
globalOrigin:

Scheduled
Window

Controller<View
flushCoordinateCaches
setSensorFromView

WindowSensor<Controller
translatingSensor

View<Controller
localPointToGlobal:
topComponent

ScheduledWindow<Controller
sensor

Window
Sensor

ViewControllerTranslating
Sensor

Figure 9.29
TranslatingSensor

Initialization
Collaboration view

with important
messages

9.3 Third step: Perform reverse engineering of existing programs 29 March 1995 23:05

Case study: The creation of a framework©Taskon 1992. Page 340

Controller View Scheduled
Window

Window
Sensor

Translating
Sensor

flushCoordinateCaches

topComponent

sensor

translatingSensor

localPointToGlobal: 0@0

globalOrigin: aPoint

Figure 9.30
Scenario:

TranslatingSensor
Initialization

An interesting feature of this interaction is the central position of the
Controller. The Controller asks the view for its topComponent, and
gets a temporary port to the ScheduledWindow. It then asks the
ScheduledWindow for its sensor, and gets another temporary port to
the WindowSensor. It can then finally ask the WindowSensor for a
new translatingSensor, which it can give the required coordinate
transformation and install.

We see that the Controller knows a great deal about the complete
structure of objects. This is generally not a good idea, because it
makes it hard to change the structure. I think I would have preferred
to let the Controller ask the View for a new TranslatingSensor and let
this request pass up the Container-Component chain.

Ports are by default implemented as instance variables, but the
Controller's sw and ws ports are in this case implemented as
temporary variables. They still have to be shown as Controller ports
in the role model, because the Controller sends messages through
them.

9.3 Third step: Perform reverse engineering of existing programs29 March 1995 23:05

Case study: The creation of a framework ©Taskon 1992. Page 341

The Scroller role model9.3.4

Scrolling Scrolling is needed when the rectangle allocated to a View may be
insufficient to show all of its contents. There is one instance of the
scrolling construct in the Transcript as indicated in figure 9.31.
Scrolling takes place when the user pushes the up or down scroll
button, or slides the scrollbar slider. All three are implemented as
specializations of the Model-View-Controller. We will show the
design of the scrollbar as an illustration. The 12188-ScrollWrapper in
figure 9.3 is the model object; 444-Scrollbar is the view object; and
15219-ScrollbarController is the controller object. The corresponding
role model is shown in figure 9.32, which also shows the synthesis
relationship between this model and the basic MVC model.

Figure 9.31 One
instance of the

Scrolling construct

29 March 1995 23:059.3 Third step: Perform reverse engineering of existing programs

©Taskon 1992. Page 342 Case study: The creation of a framework

Figure 9.32 The
Scrollbar role model
is derived from MVC m

m
d

v

c

in

v

c

out m
ds

m
in

out

Scrollbar
Controller

Scrollbar

ScrollbarController implements the
control mechanism for Smalltalk's
standard look and feel. If the
cursor is within the marker portion
of the scrollbar when the button
goes down, the marker will follow
the cursor. If the cursor is outside
the marker portion, the marker will
page toward the cursor.

Scroll
Wrapper

Scrollbar is a slider that permits
a variable-sized bubble, and is
used to put scrollbars on a view.

User

A ScrollWrapper is a
Container (See
Container-Component role
model) that translates the
coordinate system for their
Component.

Controller

View

ModelUser

The message flow which takes place when the user moves the
scrollbar is illustrated in the scenario in figure 9.33:

The activity starts when the User moves the scollbar (
scrollAbsolute).

1.

The ScrollbarController senses this movement. It computes
relative displacement in model coordinates (mapToDataSpace:,
dataExtent). The ScrollbarController notes the displacement of
the scrollbar. It then sends the scrollVertically: message to the
ScrollWrapper.

2.

The ScrollWrapper scrolls itself by changing its coordinate
transformation. (The ScrollWrapper also redisplays itself and its
component. This display is done with the new transformation, and
the contents appears scrolled. This is not shown in the scenario.)

3.

4. The Scrollbar (view) redisplays itself. The scrollbar position must
be updated regardless of the cause of the stimulus causing the
scrolling action. This is taken care of by the changed-update
mechanism: Whenever the ScrollWidget changes its scroll offset,
it sends a changed-message to itself which causes an
update:with:from: message to be sent all dependents, including
the Scrollbar. The Scrollbar then computes new values for the
size and position of its slider from the visibleExtent, dataExtent
and scrollOffset of the ScrollWidget so that it can redisplay itself.

9.3 Third step: Perform reverse engineering of existing programs29 March 1995 23:05

©Taskon 1992. Page 343Case study: The creation of a framework

Figure 9.33
Scenario: Scroll
vertically, using

scrollbar

User Scrollbar
Controller Scrollbar Scroll

Wrapper

scrollAbsolute

mapToDataSpace:

dataExtent

scrollOffset

scrollVertically:

update:with:from:

visibleExtent

dataExtent

scrollOffset

User Controller View Model

29 March 1995 23:059.3 Third step: Perform reverse engineering of existing programs

©Taskon 1992. Page 344 Case study: The creation of a framework

Fourth step: Specify the new framework9.4

In a nutshell
The new framework was specified to combine functionality that had been supported
by different frameworks in the past.

Our consumers are Taskon programmers who are experts within their
application domain and who want to create new editors with a
minimum of hassle.

In the past, we have provided separate frameworks for the visual
component functions much as we have described them in the above
reverse engineering reports. Each framework is reasonably simple,
but the sum is quite formidable so that the creation of new editors has
been a job for experts.

We now want to explore if the frameworks can be combined into a
single one which is so simple to use that even a novice Smalltalk
programmer can program a new editor with ease and confidence.

We want a single
framework

The general requirements of section 9.1 can be augmented by some
specific technical issues:

Model-View-Controller. We need to improve the standard MVC
solution to ensure safe synthesis in all situations.

1.

2. Change management. We have recurring problems with
managing the redisplay caused by changes in the underlying
information. We sometimes lose a required redisplay, and the
screen sometimes flashes unnecessarily because of multiple
redisplays. The new framework shall offer a simple mechanism
so that the application programmer does not need the intricacies
of changed-update as part of his active competence.

3. Configurability. We have a large number of different editors
(view-controller pairs) and want to be able to reuse them as leaf
components in any component hierarchy. It shall, for example, be
possible to use a drawing as a table cell and a table as a drawing
element.

Coordinate transformations. It is hard to think in several
coordinate systems simultaneously. The application programmers
shall only be required to think in terms of the application's
coordinate system.

4.

9.4 Fourth step: Specify the new framework29 March 1995 23:05

Case study: The creation of a framework ©Taskon 1992. Page 345

Scrolling. Scrolling is a fairly complex operation involving many
objects and should be highly optimized. We want scrolling to be
part of the internal details of the framework so that application
programmers can always get it and never need to construct it. All
visual components shall be scrollable at the discretion of the
application programmer, and it shall be possible to configure
scrolled components within other scrolled components.

5.

29 March 1995 23:059.4 Fourth step: Specify the new framework

Case study: The creation of a framework©Taskon 1992. Page 346

9.5 Fifth step: Document the framework as patterns
describing how to solve problems

In a nutshell
In this step, we give a number of patterns that describe how a consumer apply the
Tool framework.

We assume the reader of the patterns to be thoroughly familiar with
the solution technicalities. This is in accordance with Alexander's
patterns, which are short and to the point. The patterns give sufficient
information for the expert reader; the non-expert can study the
solution logic of the sixth step to become one.

We assume pattern
user to be expert

An example is our use of the terms actualBounds, virtualBounds and
changeParameter in the patterns given below. They will be explained
in section 9.6: Describe the framework's design and implementation ;
where generalists will find a first level of explanation.

We here give six example patterns which relate to the Tool
framework. The Tool pattern builds on smaller patterns; the Tool
framework builds on smaller frameworks. We describe the following
patterns:

1. The Tool

Fixed Proportion Tool Layout2.

3. Flexible Tool Layout

The Controller4.

The Model Object5.

The View6.

Pattern 1: The Tool9.5.1

When to use A tool is a constituent of the user information environment and
appears as a coordinated set of editors within a rectangle on the
screen.

You use this Tool framework when the following conditions are
satisfied:

9.5 Fifth step: Document the fram...ribing how to solve problems29 March 1995 23:05

Case study: The creation of a framework ©Taskon 1992. Page 347

You want to create a new tool.1.

2. None of the tools available in the library are satisfactory.

The new tool cannot be generated automatically by available
scripting facilities.

3.

Problem Application programmers shall be able to create new and
sophisticated tools quickly, simply and safely. The application
programmer shall be in full control over the functionality of the
models, views and controllers, but inherit the framework's
handling of input, coordinate transformation, scrolling,
transactions, change management, and selection.

To create a new tool, you create a new class as subclass of Tool1
and override certain methods.

Solution

tool

vs

tool

m

m

c v

Your
Tool

View

Controller

Model

1. Define your tool class to inherit from Tool1.

Define all your views, but do not worry about their size or
positions yet. By convention, this is done by overriding
Tool1>>createSubviews. Each view is added to the tool by the
following construct.

2.

self addView: yourViewInstance as: tileKind withName:
viewName

¤

yourViewInstance is an instance of your view class initialized
with the appropriate controller and model.

*

* viewName is a Symbol identifying the view to this tool.
* tileKind is one of

#bounded : The view size on screen determined by the tool.-
#unbounded : The tool will endeavor to make space available
for the view's virtual bounds.

-

- #scrolling : The contents of the view will be scrollable.

Specify the layout of the views within the tool. Patterns 2 and 3
provide two ways for doing this.

3.

29 March 1995 23:059.5 Fifth step: Document the fram...ribing how to solve problems

Case study: The creation of a framework©Taskon 1992. Page 348

Specify tool-defined menus, if any.4.

¤ Controllers can ask the tool for the yellowMenu with the
following message, which either returns a menu or nil:

self menuFromTool*

¤ Construct the selector for the Tool method from the
corresponding view name as shown below. Write the
corresponding method so that it returns a menu or nil.
* #<viewName>Menu. E.g., #editorMenu

Specify coordinated selection, if any.5.

¤ Controllers report selection changes to the tool by the
expression:
* self hasSelected: (Collection of aModelObject)

Construct the selector for the Tool method from the
corresponding view name as shown below. Write the
corresponding method to handle the selection.

¤

#<viewName>HasSelected:
e.g., editorHasSelected: (aCollection of aModelObject)

*

The tool may force selection in an editor by sending¤
self viewNamed: viewName select: (Collection of
aModelObject)

*

References Use Pattern 2: Fixed Proportion Tool Layout (p. 349??) to specify
simple, proportional layouts, or Pattern 3: Flexible Tool Layout (p.
350??) for full freedom in layout specification. See also Patterns 4:
The Controller (p. 352??), 5: The Model Object (p. 353??) and 6: The
View (p. 354??).

Pattern 2: Fixed Proportion Tool Layout9.5.2

You use this pattern when your tool layout is defined by simple
proportions.

This pattern is one of the alternative specifications of the layout of 1:
Tool (p. 347??)

When to use

The application programmer shall be able to simply specify the
layout of a tool in terms of the available screen area.

Problem

9.5 Fifth step: Document the fram...ribing how to solve problems29 March 1995 23:05

Case study: The creation of a framework ©Taskon 1992. Page 349

Solution You consider the tool's actual bounds as the unit rectangle (0@0
corner: 1@1), and specify the outer boundary of each view with
its borders and possible scrollbars as rectangles relative to this.
The actualBounds of the views will automatically be recomputed
whenever the tool's actualBounds is changed.

Specify the position origin and corner of each view as follows:

self
viewNamed: viewName
relativeLayout: aRelativeRectangle
scrollHorizontal: hBoolean
scrollVertical: vBoolean.

1.

The views are described in Pattern 6: The View (p. 354??).References

9.5.3 Pattern 3: Flexible Tool Layout

You use this pattern when you want a complex layout of the views
within a tool.

This pattern is one of the alternative specifications of the layout for
Pattern 1: Tool (p. 347??).

When to use

Problem The application programmer shall have powerful and flexible
facilities for specifying the layout of a tool in terms of the
available screen area and other criteria.

This framework enables you to create user interfaces with complex
layouts.

9.5 Fifth step: Document the fram...ribing how to solve problems 29 March 1995 23:05

Case study: The creation of a framework©Taskon 1992. Page 350

Solution You override the Tool1 method suggestedWidth:height: which is
called every time the tool is to be allocated a new actualBounds
and when other conditions have changed.

The suggested width and height specify the space that will be
made available to the tool, nil values indicate that the container
will adapt to whatever value you choose (e.g., by scrolling).

This pattern gives you full control at the cost of writing a
somewhat complex method.

Specify the layout of the views within the tool by overriding

Tool1>>suggestedWidth: wIntegerOrNil height: hIntegerOrNil1.

¤ Default virtualBounds for the tool is the Rectangle enclosing
its components, but you may set a different value after you
have completed the layout by:

self virtualBounds: aRectangle.*

Resize and position each view. The views may be handled in
any sequence, and the position and size of a view may be
made dependent on the virtualBounds of other views after they
have been positioned (all geometry in the following messages
are in the tool's coordinate system):

¤

* You must offer the view an opportunity to resize itself:
self

viewNamed: viewName
suggestedWidth: wIntegerOrNil height: hIntegerOrNil.

-

You must position the view:*
- self

viewNamed: viewName
origin: originPoint

References The views are described in Pattern 6: The View (p. 354??).

9.5 Fifth step: Document the fram...ribing how to solve problems29 March 1995 23:05

©Taskon 1992. Page 351Case study: The creation of a framework

Pattern 4: The Controller9.5.4

You use this pattern when you want user command activities to be
performed within a transaction. Views redisplay themselves once at
the end of a transaction when the model is in a consistent state.

This is the default pattern for controller objects which you use in
Pattern 1: The Tool.

When to use

Problem The Controller is responsible for handling all user input. This
pattern gives it the added responsibility to ensure that all
activities that lead to model attribute changes shall be performed
within a transaction.

All commands that change one or more model attributes must be
executed within a transaction. The transaction shall be activated
as close to the user interaction code as possible:

Solution

1. TransactionManager
inTransactionDo: [<code modifying model attributes>]

TransactionManager is a global variable, the sole instance of
class TransactionManager1.

¤

v

c

m
tm

s

Transaction
Manager

Controller Model

Translating
Sensor

View

Other patterns may be made which specialize this one, but they are
not discussed here.

References

29 March 1995 23:059.5 Fifth step: Document the fram...ribing how to solve problems

©Taskon 1992. Page 352 Case study: The creation of a framework

Pattern 5: The Model Object9.5.5

When to use You use this pattern when you want to program model objects and
none of its specializations are appropriate.

This is the default pattern for model objects which you use for Pattern
1: The Tool (p. 347??), and the corresponding programs are parts of
the Tool framework.

Problem Views send messages to the model to obtain the current values of
its attributes, and may cache the results on the screen or in a
variable. It is the responsibility of the model to inform its views
whenever messages will return a new value.

Solution You capture model attribute changes and map these changes to
the externally available interrogation messages.

m

m

Model
Object

View

Controller

Define your new model class as a subclass of Model1. Then do the
following:

Program the model functionality.1.

All methods which modify one or more object attributes shall
send this message

2.

¤ self
changedAttributes: (Array of attribute names)
areas: aCollectionOfRectanglesOrNil
The default attribute names are the instance variable names, but
you may select any names which reflect the model semantics as
long as you map them to the corresponding message selectors in
changeParameterAssociations.

*

29 March 1995 23:05 9.5 Fifth step: Document the fram...ribing how to solve problems

©Taskon 1992. Page 353Case study: The creation of a framework

3. Define the following private class method which associates the
name of each attribute in your class with the selectors of
messages whose return value depend on the attribute:

changeParameterAssociations
" Associations between change attributes and method

selectors. "
^(super changeParameterAssociations)

add: <attributeNameSymbol>
-> #(<list of message selectors>);

<repeat for all attributes of this class>;
yourself.

¤

* The Taskon Browser text command generateChParAssociations
creates a default method which you must check carefully.

The Taskon Quality Checker will flag implementations of
changeParameterAssociations which are missing or which do not
mention all attributes specified in the changedAttributes:areas:
methods.

4. TransactionManager allChangeInitializations must be executed to
make the changeParameterAssociations take effect.

References Other patterns may be made which specialize this one, but they are
not discussed here.

Pattern 6: The View9.5.6

When to use You use this pattern when you want to program view objects and
when none of its specializations are appropriate.

This is the default pattern for view objects which you use for Pattern
1: The Tool (p. 347??).

The view caches information it has obtained from the model,
usually in the form of a picture on the screen. The view receives
the message update1: towards the end of the transaction if the
model has changed. Make sure that the view is updated exactly as
needed and no more.

Problem

9.5 Fifth step: Document the fram...ribing how to solve problems 29 March 1995 23:05

Case study: The creation of a framework©Taskon 1992. Page 354

Solution The ChangeHolder parameter has accumulated information
about all the model changes that have occurred in this
transaction. The ChangeHolder also accumulates information
about required redisplays. These accumulated changes are
merged and performed at the end of the transaction.

Make your View class inherit from View1. Override update1, and
determine required redisplays and possible changes to the
virtualBounds from the current viewChangeHolder:

Send the following message if you want to order a redisplay:1.

self changeHolder invalidate: damageRectangle¤

2. Send the following message if you want to change the
virtualBounds of the view:

¤ self virtualBounds: aRectangle

Send the following message if you want the accumulated change
information to take effect without waiting for the end of the
transaction:

3.

self commitChanges¤

vch

v

cv

ct

cn

mViewController Model

View
Change
Holder

Container

References Other patterns may be made which specialize this one, but they are
not discussed here.

9.5 Fifth step: Document the fram...ribing how to solve problems29 March 1995 23:05

©Taskon 1992. Page 355Case study: The creation of a framework

Sixth step: Describe the framework's design and
implementation

9.6

In a nutshell
This step gives background technical information aimed at the application
programmer who wants to use the Tool framework. We describe the overall design
of the framework and briefly discuss the rationale behind some of the design
choices.

insideMenuBar
outsideMenuBar

outsideTextView

outsideUpScrollerButton

insideTextView

outsideVerticalScroller

visibleTextArea

totalTextArea

insideUpScrollerButton

insideVerticalScroller

outsideDown ScrollerButton

insideDownScrollerButton

insideWindow

Figure 9.34 Some
Rectangles in the

Transcript window

A most striking feature of any window is the number of rectangles
that must be considered. Figure 9.34 shows the most important ones in
the Transcript. We clearly need precise definitions and consistent
notation if we want to avoid getting confused.

Synonyms and
homonyms

We studied the code of release 4.0 to determine the vocabulary used
to describe all these rectangles. We found bounds, clippingBounds,
clippingBox, compositionBounds, and insetDisplayBox. We
suspected that all denote the area actually allocated to a component by
its container. They are, therefore, synonyms or at least closely related
concepts.

We also suspected that the preferredBounds denotes the area required
by a component, but some methods seemed to merge the bounds,
compositionBounds and preferredBounds, making bounds a
homonym:

29 March 1995 23:059.6 Sixth step: Describe the fram...'s design and implementation

Case study: The creation of a framework©Taskon 1992. Page 356

VisualPart>>bounds
^container == nil

ifTrue: [self preferredBounds]
ifFalse: [container compositionBoundsFor: self]

CompositePart>>compositionBoundsFor: aVisualComponent
^aVisualComponent preferredBounds

Our main rectangles It is quite likely that we did not fully understand the ideas behind the
visual component hierarchy, but we felt a strong need for some
precisely defined words which we could use consistently throughout
the framework. We defined the following three notions:

virtualBounds. The rectangular area required by a visual part. All
visual parts must at all times be able to answer their
virtualBounds. A container may ask its components for their
virtualBounds, but we explicitly prohibit a component from
asking its container to avoid infinite recursion. (virtualBounds is
roughly equivalent to preferredBounds.)

1.

2. actualBounds. The rectangular area allocated to a component by a
container. A component without a container has actualBounds =
(0@0 corner: 0@0). A component may at any time ask its
container for its actualBounds, so the component need not
remember it. It is, therefore, dangerous and meaningless for a
container to ask its components for its actualBounds.

dataBounds. The rectangular area occupied by the data in a model
object. This attribute is only defined where appropriate.

3.

VisualPart2 is the superclass of all our visual part classes. An extract
of the class hierarchy is as follows:

Our main classes of
visual parts

29 March 1995 23:05 9.6 Sixth step: Describe the fram...'s design and implementation

Case study: The creation of a framework ©Taskon 1992. Page 357

VisualPart2

1. SimpleContainer2 defines a subroot in the visual part hierarchy
that holds at most one component.

¤ View2 is the Taskon View superclass; all Taskon views shall
be subclass of this or equivalent.

MarginTool1. A multi-media tree editor, an example is given in
figure 12.5 on page 440??.

*

¤ Tile2 defines the only visual parts which are responsible for
coordinate transformations. A Tile positions its component
within its container and transforms the relevant parameters
and return values of messages being passed up and down the
visual hierarchy chain.

BoundedTile2 defines a Tile whose virtualBounds is identical to
the virtualBounds of its part.

*

UnboundedTile2 defines a Tile whose virtualBounds is the area
allocated by its Container (A larger Part will be clipped.)

*

ScrollingTile2 defines a Tile which is able to vary its coordinate
transformation to effect scrolling of its component.

*

¤ EdgeWidget1 is the common superclass for all edge widgets
such as scrollers and menu bars. The EdgeWidget plays the
roles of both Controller and View, while a scrollable
component such as a ScrollingTile plays the role of model.

Scroller1 defines horizontal and vertical scrollbars.*
ScrollerButton1 defines the up, down, left and right scroll
buttons.

*

2. CompositeContainer2 defines a subroot in the visual part
hierarchy that holds any number of named components.

Tool2 defines CompositeContainers that manage one or more
views which may be decorated with possible Widgets for
menu and scrolling, and are laid out in a reasonably stable
pattern within the Tool's actualBounds. Subclasses define
specific tools.

¤

Standard MVC
unsafe

The standard changed-update mechanism in the Model-View-
Controller works nicely in simple cases when the model consists of a
single object and the user command leads to the modification of a
single attribute. But the mechanism may cause difficulties in more
complex situations:

29 March 1995 23:059.6 Sixth step: Describe the fram...'s design and implementation

Case study: The creation of a framework©Taskon 1992. Page 358

Multiple display for multiple attribute changes. Our general rule
is that any method which modifies an object should also send the
self changed- message, which leads directly to an update-message
being sent to all views, which again leads to the views
redisplaying themselves. If the user command leads to several
attribute changes, the views will redisplay themselves several
times, once for each attribute. This takes time and is disturbing to
the user.

1.

2. Model may be inconsistent in the middle of a modification
activity. The model may be a structure of objects such as a doubly
linked list. A structure change will involve several objects and
several methods, and the model is likely to be inconsistent until
the modification activity is completed. If each method that
performs part of the structure modification sends a self changed:
message, the views will try to display an inconsistent model with
possible catastrophic results.

3. The model programmer loses control when sending an update-
message. We have, in certain very special cases, found it
convenient to program a chain reaction: A user command leads to
a model change, which leads to a view update. The view update
method sends a new attribute modification message to the model.
This is a new stimulus in the MVC model which is sent while the
system is busy performing the previous activity. (FOOTNOTE:
This is exactly what we defined as unsafe synthesis in chapter
3??.)

In the basic changed-update construct, the nature of the change is
communicated from the model to the view through a Symbol
parameter. We have tried various conventions about the choice of
Symbols, but we often ended up with special choices based on our
knowledge about the exact needs of the views. We did not like this,
because we wanted to maintain maximum independence between
model and view.

Improved parameters
to the changed-

update messages

This led us to reconsider the exact nature and purpose of the changed-
update construct. We made the following observations:

1. Universe of discourse is message set. The universe of discourse
between view and model is the set of messages that the view
employs to retrieve information from the model.

2. The view caches model information. The view caches model
information and needs to be told about model changes so that it
can update the caches. (The most common form of cache is in the
display memory which controls the display.)

9.6 Sixth step: Describe the fram...'s design and implementation29 March 1995 23:05

Case study: The creation of a framework ©Taskon 1992. Page 359

3. The view needs to know the messages that return a new value.
The real meaning of an update message is that the model tells the
view that "one or more of my messages will now return a
different value"; the view programmer needs to know which
messages have been affected so that he can take appropriate
action.

4. The model knows which attributes have been changed. We tried to
let the model programmer specify the list of affected selectors as a
parameter to the self changed: message, but this was almost
impossible to maintain correctly when new messages were added
to the model's interface. We therefore decided to let the parameter
to changed: be a list of affected attributes, where an attribute may
be anything the model programmer decides to consider as such.
(The choice of attribute names is invisible outside the class).

changeParameterAssociation maps attributes to messages. The
view wants to see message selectors; the model wants to report
the names of changed attributes. We clearly need to create a map
between the two. Attempts at creating this map automatically
have all failed, and we require the application programmer to
enumerate all attributes and to associate the affected selectors
with each attribute. This is done in the private class method
changeParameterAssociations.

The form of the changeParameterAssociations method has been
chosen so as to make it easy to write and check the mappings. A
special initialization method, Object allChangeInitializations,
transforms this information into a Dictionary which is optimized
for fast look-up. (This Dictionary is stored in an Object class
instance variable called changeAttributes.)

5.

Damage areas. We also considered adding a general parameter,
the nature of which could be decided by the programmer. But this
brought us right back to the original difficulties. Reverse
engineering of our current solutions has shown that we only need
one special parameter, namely the areas affected by the change in
the attribute.

This damageAreas parameter is meaningful if the model
semantics includes a sense of geometry. The effects of an attribute
change may then be limited to certain areas within the area
covered by the model. We cannot quite decide if this is a
profound truth about changed-update or if it is just a hack, but we
include it in our design anyhow.

6.

29 March 1995 23:059.6 Sixth step: Describe the fram...'s design and implementation

©Taskon 1992. Page 360 Case study: The creation of a framework

The ChangeHolder. We finally created a new class for the
parameter to the update message. The central feature is that the
view can ask this parameter if specified selectors are affected by
the current change, but it also holds information about the
originating model object and the associated damage areas, if any.

7.

8. Models and views have ChangeHolders. Every model object has a
ChangeHolder where information about model changes is
accumulated. Every view object has a ChangeHolder which holds
information about interesting model changes and outstanding
view operations.

The Tool object is the object which controls the layout of the Tool's
editors (view-controller pairs) and coordinates their behavior. This
object has been a rover in our architecture. We have tried letting a
controller play the Tool role, and we have tried letting the Tool object
be a separate object outside the VisualPart hierarchy. Our current
solution is to let the Tool be a Container object because it is
responsible for an area of the screen and manages a number of
Components. A general role model showing the Tool's position in the
VisualPart structure is shown in figure 9.35.

The tool object is
part of the visual

component hierarchy

9.6 Sixth step: Describe the fram...'s design and implementation29 March 1995 23:05

Case study: The creation of a framework ©Taskon 1992. Page 361

Figure 9.35 The
VisualPart

architecture showing
the position of the

Tool role

cv

cp

ct

part

ct

m

ch

v

tlsct

s dpstl

cp

bou

cp

ct

vie

too

s

m

tls

ct

cps

con

tra

tra

mod

tra

vie

mch

m

ds

Container

Tool

Tile

Widget
Composite

Bounded
Tile

Scrolling
Tile

Scroll
Actuator

ViewController Model

Translating
Sensor

Translating
Sensor

View
Change
Holder

Model
Change
Holder

Transaction
Manager

ModelViewCon-
troller

Tool

Activity phases
controlled by

transactions

We have introduced transactions to solve the problems with views
trying to display inconsistent models, and with multiple, redundant
display operations. The transaction also controls the persistent storage
of model objects, but this does not belong to our current discussion.

29 March 1995 23:059.6 Sixth step: Describe the fram...'s design and implementation

Case study: The creation of a framework©Taskon 1992. Page 362

Transactions are controlled by the TransactionManager, the sole
instance of the class TransactionManager1. Only one transaction can
be active at any time; there is no nesting. The activity is performed as
a block in the TransactionManager; it is called by the Controller as
described in Pattern 4: The Controller. A transaction rearranges the
actions of a user command activity into four phases:

1. Model change. One or more messages from a controller cause the
model objects to modify their attributes. The methods that do the
actual modifications report this by sending the message self
changedAttributes: attributeList damage: areaList. The
information is temporarily accumulated in the model object's
ChangeHolder.

2. View update. The components in the visual component hierarchy
receive an update1 message in prefix order, starting with the
ScheduledWindow in the root. All relevant information is
available in the view's ChangeHolder when it receives the
update1 message. The application programmer must override this
method and do whatever is needed:

Changes to the view's virtualBounds must be reported to its
container by self changedBoundsFrom: oldBounds.

¤

¤ Required display operations are stored in the ChangeHolder
where they are retained until the next phase: self
changeHolder invalidate: aRectangle.

View display. The visual component hierarchy is traversed to
ensure the display of required areas once and once only.

3.

29 March 1995 23:05 9.6 Sixth step: Describe the fram...'s design and implementation

©Taskon 1992. Page 363Case study: The creation of a framework

Seventh step: Inform the consumer community9.7

In a nutshell
In this case, the consumers are ourselves. But we still need a systematic information
and training program.

In our case, the main part of this step consisted of a number of short
seminar and discussion groups. In addition, the Tool framework
documentation was given to every programmer and also made
available electronically.

The Taskon programmer's procedures were modified to check
conformance with the rules of the framework. While non-
conformance is permissible in special cases, programmers are
encouraged to follow the framework as closely as possible.

9.7 Seventh step: Inform the consumer community 29 March 1995 23:05

Case study: The creation of a framework©Taskon 1992. Page 364

Chapter 10
Organizing for software productivity

This chapter is mainly written for the software manager and
businessperson who is willing to consider new ways to create and
deploy software. We present the idea of a value chain: somebody
creates something that is of value to somebody else, who creates
something that is of value to somebody else, and so on up to the end
user who applies software to perform a valuable task.

An industrial approach to software production
Large-Scale Production of Intelligent Network Services
Large-Scale Production of Customized Business Information Systems

29 March 1995 23:05

Organizing for software productivity ©Taskon 1992. Page 365

An industrial approach to software production10.1

In a nutshell
Software life cycle models tell us what happens to a piece of software and when it
happens. We expand our interest with a third dimension: who makes it happen.

We believe that the people who contribute their skills to the creation and
deployment of software should be organized in a value chain. The guiding principle
should be that while the qualifications of the people on the different layers will be
different, the individual qualification requirements shall be realistic in terms of a
large and distributed organization plan. The professionals performing the tasks on
each layer shall be supported by a combination of technologies, procedures and
tools.

One of the great promises of object orientation is reuse, but we must
organize ourselves properly to realize its potential. We present the
idea of a value chain: somebody creates something that is of value to
somebody else, who creates something that is of value to somebody
else, and so on up to the end user who applies software to perform a
valuable task.

We must organize
properly to realize

reuse potential

On each layer, there are people who employ the results created by the
people on the layer below and provide results for the people on the
layer above. The technology and techniques applied at each layer
must be tailored to the personnel who populate it, their goals, tasks,
working conditions, preferences and competence.

Different value chains for different kinds of software are likely to
emerge as the industry matures. We expect to find a marketplace with
a network of suppliers, each specialized to cater to a particular
clientele.

The challenge to the software manager and businessperson is to find
good answers to two questions: What will be our role in the future
software industry? And how do we get from here to there?

We will not pretend that we have the final answers to either of these
questions, but we have worked on them for more than ten years. In
this chapter, we give a report on a structure for the
telecommunications intelligent network services industry, and also a
report on how to organize the creation and deployment of business
information systems.

10.1 An industrial approach to software production 29 March 1995 23:05

©Taskon 1992. Page 366 Organizing for software productivity

Software life cycle models are commonly used to describe the
important events in the life of a piece of software. A model may, for
example, distinguish between system specification, design,
implementation, testing, installation, and maintenance. There are
many variants of this model, but most of them have one thing in
common: they describe the software life cycle from the point of view
of the program developer. Just consider the apparently innocent word
maintenance. It covers both bug fixing and minor software
improvements. Bug fixing could involve a user who discovers a
software irregularity, a systems operator in the user organization who
passes a bug report to the vendor's customer support person, who
reports the bug to the head of the software development team, who
allocates it to a responsible programmer, who fixes the bug and
returns a program patch along the same path.

Extend the life cycle
model with an actor

dimension

We want to extend the traditional life cycle model to describe all the
different people and all the activities that contribute to the final value
to the end user.

We could say that traditional life cycle models have two dimensions:
What and when. We extend the models with who as a third dimension.
This permits us to describe the software life cycle not only from the
programmer's point of view, but also from the point of view of other
people such as the provider of reusable components, the distributor,
and the end user.

What, when, who

The relationships between the people on the different layers are
producer-consumer relationships, because the raison d'ètre of the
people on one layer is to produce value for the people on the layer
above them. We call the layers along this dimension a value chain as
illustrated in figure 10.1. Each layer is populated by a team with
defined responsibility and skills. The team builds on the results from
the team below it and provides value to the team above.

10.1 An industrial approach to software production29 March 1995 23:05

Organizing for software productivity ©Taskon 1992. Page 367

Figure 10.1 The
value chain End user

Layer N

Layer N-1

Layer N-2

Hardware
Layer 0

We will first describe the characteristics of a single layer, and then
discuss the nature of the whole value chain.

Production facilities for layer n+1
= Deliverables from layer N

Production facilities for layer N
= Deliverables from layer N-1

Work process in layer N

Figure 10.2 A layer
in the value chain get

value from below
and provide value to

layer above

Figure 10.2 shows a generic specification of an abstract layer. The
layer has its own tasks, work processes and production facilities. The
work processes can be formal or informal according to the culture and
preferences prevalent on that particular layer. The layer specification
must be augmented by the special requirements associated with a
concrete layer.

Need effective work
process

A set of production facilities will be available; these facilities will
include work process guidelines that separate the total work into
manageable tasks, techniques to perform these tasks, and computer-
based tools that help perform the tasks. The facilities of a given layer
must be adapted to the interests and qualifications of the actors of that
layer.

Supported by
production facilities

29 March 1995 23:0510.1 An industrial approach to software production

©Taskon 1992. Page 368 Organizing for software productivity

The actors populating a given layer have unique responsibilities and
corresponding competence and interests. The production facilities for
the actors on every layer in the value chain should be designed at least
as carefully as we design the end user systems. The current tendency
to try and provide a common environment that satisfies all needs will
result in solutions that are too complex to satisfy anybody. The
guiding principle should be that the qualifications of the actors on the
different layers must be realistic in terms of real people. Their goals,
qualifications, tasks, and production facilities must all be in harmony.

People form the most
essential part of a

layer

A layer creates a certain kind of value. The products delivered from
one layer constitute the libraries and other production facilities
employed on the layer above it. The success criterion of the people
populating the layer (the supplier) is the satisfaction of the consumers
on the next layer up. The actors who populate a layer must, therefore,
understand the qualifications and requirements of their clients.

The deliverables
constitute the

product

There should be
"firewalls" between

layers

An important principle in our architecture is that we assume actors to
be hostile, some times by intent, but usually by ignorance of details
which are of no interest to them. The production facilities for any
layer must, therefore, be secure: it must be hard or even impossible
for an actor on a given layer to threaten the integrity of the layers
below it. A corollary to this is that the production facilities for a
certain layer must be complete, in the sense that they must enable the
actors to do everything they are authorized to do. Procedures and
techniques are used at the discretion of the actors, and they should be
given maximum freedom to exercise their ingenuity and creativity. If
at all possible, security should be automatically enforced in the tool
portion of their production facilities.

We now change our perspective from the individual layer to the value
chain as a whole. Our first observation is that the value chain must be
adapted to its purpose. We do not know the number of different value
chains that will be needed, but we will at least need one for each of
the main software categories such as business information systems,
telecommunications systems, real time control systems, and computer
aided design systems. We also expect that there will be variants of
these value chains dependent on their commercial organization: the
interaction between different companies are of a different nature than
the interaction between teams within the same company.

We will need
different value

chains

There are several issues which need to be clarified:

1. What is the essential structure of the value chain? A linear list as
shown in figure 10.1? A tree structure? A directed graph?

29 March 1995 23:05 10.1 An industrial approach to software production

Organizing for software productivity ©Taskon 1992. Page 369

2. How is a value chain created? By design? By evolution and
natural selection?

3. Who creates the value chain? Do the actors on the various levels
create the production facilities for the actors on the layer above
them? Or will the basic structure and tools be created by
"production engineers" who are outside the value chain?

The term "value chain" implies a linear structure, which is the
simplest structure imaginable. Our main reason for wanting this
structure is that we want people to work in a homogeneous, integrated
environment that is tailored to their needs and preferences
(FOOTNOTE: We stress that this does not imply that the work should
be mindless or even routine; even the most creative person in the
world will be more effective if she works in an environment that
stimulates her creativity and simplifies her mundane tasks.).

The linear value
chain

In a linear value chain, the supplier on the layer below can be
responsible for the complete production facility. Alternatively, a
"production engineer" could create the production facility and
integrate it with the supplier's layer. The former alternative is closer
to an artisan model of operation, while the latter alternative is closer
to an industrial model.

As an example of a linear value chain, consider the situation when I
first started programming in 1958. The value chain was then as
illustrated in figure 10.3. I was the programmer, and since I
programmed in binary, I based my work entirely on the computer's
hardware capabilities which were made available through a well-
defined instruction repertoire. The user, my customer, loaded and
started the program, and was then in the environment I had defined.
Even though the computer had been built by my colleagues, there was
no practical way for me to change its specifications. Similarly, the use
of the program did not give the user access to its internal construction.

A simple, linear
value chain

Figure 10.3 Early
value chain User layer

Programmer layer

Hardware layer

10.1 An industrial approach to software production 29 March 1995 23:05

Organizing for software productivity©Taskon 1992. Page 370

This scheme had obvious advantages. If the user interface and
program functionality were well chosen, the learning burden of the
end user was reduced to the bare essentials. Similarly, the interface
between the programmer and the hardware was very simple; the
instruction repertoire of the early computers was small and easy to
learn.

The disadvantage to the user was that he was limited to running one
program at a time. If the user needed the functionality of more than
one program, he would have to quit one before running another, and it
was hard to obtain a synergy effect by intermixing the functionality of
several programs. The disadvantage to me as a programmer was the
limited power of the hardware instruction set, and also that I had to do
everything myself. This severely limited the functionality of the
programs that were feasible to create.

We get a tree structured value chain when the work on a given layer is
to be based on the results from several sublayers. This is the situation
for most programmers today, who have to relate to a myriad of
different facilities from different suppliers. Figure 10.4 illustrates that
the situation is radically different from the good old days, but it must
be admitted that it empowers me to create programs that were
unthinkable in the fifties.

The tree structured
value chain

Figure 10.4 Example
of current value

chain
User layer

Application programmer layer

Operating
system

Data
communication

system

Database
system

Programming
language
support

Programming
language
support

Programming
language
support

Windowing system
and GUI library

Programming
language
support

Programming
language
support

Hardware layer Hardware layerHardware layerHardware layerHardware layer

"Programming language support" denotes the combination of programming
language, compiler, loader, program libraries, editor and debugger. The term is
repeated in several places to indicate that the creators of the different libraries do
not necessarily use the same language or even the same hardware.

10.1 An industrial approach to software production29 March 1995 23:05

©Taskon 1992. Page 371Organizing for software productivity

Real value chains in the real world will usually take the form of an
acyclic, directed graph. We made figure 10.4 into a tree by cheating:
some of the partitions in the hardware layer would almost certainly be
shared among several partitions on the programming support layer.
Our nice and simple model of figure 10.1 has now changed into the
complex picture of figure 10.5, where the actors on one layer build on
the results from several suppliers on the layer below.

The directed graph
value chain

Figure 10.5 A
directed graph value

chain based on
extensive reuse from

several sources

Level 4b

Level 3a Level 3cLevel 3b

Level 2bLevel 2a

Level 1a

As an engineer, I tend to think that a value chain should be the result
of careful analysis and design rather than the result of an arbitrary
happening. This is indeed the case for the initial value chain we
created for Intelligent Network Services in cooperation with the
Norwegian Telecom that we describe below.

Value chains created
by design?

For each class of systems, we could consider the complete value chain
from the hardware through the end user facilities. The purpose is to
process end user data, and we try to understand the kind of people
who will be most effective on each layer. We then exploit all available
technologies to select the most effective for each layer.

Real life business is not as simple as this. Networks of organizations
evolve under the influence of many pressures. Market pressures is the
current fashion, but financial, political, technical and even moral
pressures influence business evolution. The software business is no
exception, and fragments of value chains are appearing spontaneously
all around us: operating system vendors try to entice application
programmers to build on their results; repository builders encourage
providers of CASE (Computer Aided Software Engineering) tools to
standardize on their products. Consultants and authors of newsletters
try to make order out of chaos and influence vendors and users to use
a common vocabulary and adapt to some common, high level
architecture.

Value chains created
by natural selection?

29 March 1995 23:0510.1 An industrial approach to software production

©Taskon 1992. Page 372 Organizing for software productivity

Production engineers
create the value

chain

When we first worked on the initial system for Intelligent Networks,
we assumed that the people on one level would be totally responsible
for the production facilities of the people on the layer above them. But
then a member of the project asked the very pertinent question: But
what is our role in this? We are not part of the chain, yet we design
and implement it. This led to the idea of production engineering,
which covers the design and implementation of value chains. This
includes the chain architecture as well as choosing the appropriate
technology for the different layers, specifying the work processes,
choosing the production facilities, and installing them. This is
illustrated in figure 10.6. We have now reverted to the simple, linear
value chain model, because we believe it to be the duty of the
production engineers to create the illusion of a linear chain even if
they integrate systems and products from several vendors to
implement a production facility.

No single enterprise controls all layers in the value chain. Most of us
build on products delivered by our vendors, and many deliver
products to customers in another enterprise. We can still think in
terms of value chains, and organize our little part of it to the best of
our ability. We can also influence our environment through user
groups, industry associations, development consortia, etc.

End user
Layer N

Layer N-1

Layer N-2

Hardware
Layer 0

Production
engineering

Work processes
and

production facilities

Figure 10.6 The role
of the production

engineers

The focus on people and responsibility which is embedded in the idea
of value chains has proven useful in a number of situations. We have
found that very complex problems are greatly simplified when we add
the third, people dimension to the life cycle model. The examples
described in the following sub-sections are but two examples.

Create your own
value chain

10.1 An industrial approach to software production29 March 1995 23:05

Organizing for software productivity ©Taskon 1992. Page 373

There are two opposing forces. One which makes the producer tend
towards specialization, another which makes the consumer want
general suppliers:

1. People must specialize to be best in what they do, so they will
tend to focus on a small part of the value chain.

2. Customers do not like to deal with lots of vendors, so they will
prefer to buy everything from one company.

The solution could be that some vendors create specialized products,
while other vendors specialize in production engineering and integrate
these products to deliver complete production environments. Large
programming shops can have their own production engineers and deal
directly with the specialized product vendors.

If you believe that value chains can help you better organize your
work, you may consider the following activities as part of your initial
studies:

Identify all the people or organizational units involved, and
describe the layers of the value chain. The top layer will be the
ultimate end user of your software; that is the layer where value is
created outside the realm of software. The bottom layer will likely
be some purveyor of hardware or basic software such as operating
systems, communication systems and database services. Also
include suppliers of computer aided software engineering tools.
Make sure to include all layers, such as layers for distribution,
installation, training and service.

1.

2. Describe the nature of the work performed in each layer and the
success criteria of their actors.

Describe the kind of people who will be most effective on the
different layers. You would expect to find extrovert people near
the top of the chain because of their close relationship to the end
users. The people near the bottom of the chain are likely to be
introvert, more concerned about computational details than the
happiness of users.

3.

Select suitable technology to support the work on each layer,
specify the work processes and the production facilities. Be sure
to be open minded when you select the technology, a simple
duplication of master objects may be more appropriate than
sophisticated technology such as automatic program generators.

4.

29 March 1995 23:0510.1 An industrial approach to software production

©Taskon 1992. Page 374 Organizing for software productivity

10.2 Large-Scale Production of Intelligent Network Services

In a nutshell
This section has been written for the interested layman, so we do not apologize to
the telecommunications expert for glossing over the hard problems or for explaining
principles that are well known to him.

The aim is to illustrate how different reuse technologies are appropriate on different
layers of a practical value chains.

The telecommunications industry are expanding their product
offerings with a number of new "Intelligent Network" (IN) services
such as Universal Personal Telephone, which makes it possible to find
a person wherever he is; Call Forward, which makes it possible to
redirect incoming calls to alternative receivers; and many others. Our
study was based on an elaborate life cycle model. We identified six
different actors and mapped the activities of the life cycle model onto
these actors to create a six-layer value chain. We found that the actors
were very different in competence and outlook, selected appropriate
technologies for each layer, and sketched out possible production
facilities. We were pleased to discover that every one of the reuse
technologies described in chapters 5 and 11 was applicable on at least
one layer.

The result was a blueprint for a major industry. We believe its general
pattern shows the future of the software industry, and that a viable
Intelligent Networks Industry could be based on our model. But study
the following pages and judge for yourself.

We report the results of the first iteration briefly in this chapter and
more thoroughly in chapter 12. This iteration was performed in 1993
and reported with a paper and demonstration at the TINA conference
of that year [Ree 93]. The next iteration takes place in 1994-95; its
results were not ready in time to be included here.

A blueprint for an
industry

A large number of different Intelligent Network services have been
proposed, and some of them have already been made operational by
some operators. We list a few to give you an idea of their nature:

Intelligent Networks
(IN) provide

sophisticated
telecommunications

services

1. Advice of Charge. The paying User is informed of usage-based
charging information.

10.2 Large-Scale Production of Intelligent Network Services29 March 1995 23:05

Organizing for software productivity ©Taskon 1992. Page 375

Alternative Billing. A User can bill a call to a number other than
the calling number.

2.

Automatic Call Distribution. Incoming calls are distributed to
several operators according to a selectable algorithm.

3.

Call Forwarding. Incoming calls are redirected, either
unconditionally or depending on load, time of day, etc.

4.

Conference Calling allows multiple users to participate in a single
conversation.

5.

6. Freephone (800 numbers). The call is free for the caller and paid
by the called part.

7. Televoting. Call a number to cast your vote for your favorite hit
tune or whatever.

Universal Personal Telecommunication. One telephone number
will reach you wherever you are in the world.

8.

Video on Demand (VOD). Order your favorite movie to be
screened, where you are and when you want it.

9.

Virtual Private Network. A private communication network with
its own, independent numbering scheme. It is technically
implemented in the public network, but logically separated from
it.

10.

The construction and deployment of IN services is going to be a very
large operation. There will be a large and expanding number of
available services; the total system complexity will be staggering; and
many organizations employing people in different capacities will be
involved in its creation and operation.

IN will be one of the
world's major

industries

A first separation of IN into two distinct domains has been suggested
in [Vestli, Nilsen 92]; this is illustrated in figure 10.7. The Switching
Domain encapsulates the network functions offered by the traditional
telecommunications systems, and the Service Domain encapsulates all
the Intelligent Network service functionality. This is a client-server
architecture, where the Service Domain is a client of the Switching
Domain. The interfaces between client and server are defined in terms
of high level operations, independently of the concrete switch design.
Service Domain software is, therefore, portable in the sense that it can
operate against a range of different switches.

10.2 Large-Scale Production of Intelligent Network Services 29 March 1995 23:05

Organizing for software productivity©Taskon 1992. Page 376

Service Domain

Switching Domain

Figure 10.7 The
intelligent network

Norwegian Telecom has proposed an Intelligent Network service life
cycle model to the EURESCOM, further details can be found in
[Vestli, Nilsen 92]. The model has more phases than most other life
cycle models, but a short reflection convinces us that all are needed if
we want to support a very large number of users and encourage
extensive software reuse:

An elaborate life
cycle model

Analysis. Analysis of the subscriber's requirements, producing a
specification of the service as seen from the user.

1.

Specification. Refinement of the specification. It should
preferably be written in a formal language for later (automatic)
verification of programs.

2.

Design. Design of the service software, extensive reuse of
existing solutions is envisaged.

3.

Implementation. Production of a complete program that satisfies
the specification, including new and reused software.

4.

5. Installation. The new service software is installed in the
distributed communication system to achieve acceptable speed
and capacity.

Activation. The service is made available to selected users.6.

Invocation. A user sends a request for the execution of the service
to the network.

7.

Execution. The service has been invoked and initialized and is
now executing

8.

Deactivation. The service is made unavailable to selected users,
i.e., it can no longer be invoked by those users.

9.

Deinstallation. The service is removed from the network and can
no longer be used.

10.

10.2 Large-Scale Production of Intelligent Network Services29 March 1995 23:05

©Taskon 1992. Page 377Organizing for software productivity

Many different individuals and enterprises will be involved in the
creation and invocation of Intelligent Network Services. Typical
examples are subscribers and end users, Public Telecommunications
Administrations, "Teleshops", and independent software houses.
These individuals and enterprises will, as a body, be responsible for
supporting the complete Intelligent Network Service Life Cycle.

Many different
actors

We analyzed the life cycle model and identified six actors who can be
organized in a six-layer value chain as shown in figure 10.8.

Identify the value
chain

User layer. The User is the party who wants to use available
services, and who is responsible for selecting and invocating a
service.

1.

Subscriber layer. The Subscriber is the party who purchases a set
of services on behalf of one or more Users, who pays for them,
and who is responsible for making the services available to his or
her users.

2.

Service Provider layer. The Service Provider is a party who has a
license for activating Intelligent Network service software for
specified Subscribers. We think of the Service Provider as the
corner Teleshop where consumers can buy regular services, but it
could also be a professional customer consultant who sells
specialized services to advanced corporations.

3.

Service Creator layer. The Service Creator is a party who has a
license for defining Intelligent Network service software and
install it in the telecommunications network. The Service Creator
will currently be a Public Telephone Authority (PTA), but our
model is open for several commercial Service Creator companies.

4.

5. Service Constituent Creator layer. The Service Constituent
Creator is a party who has a license for producing software
building blocks which may be configured into IN services. These
software building blocks, called Service Constituents, are the
reusable components used by the Service Creator to create service
software.

Network Provider layer. The Network Provider is the party who
provides the basic communications facilities used by the IN
services.

6.

10.2 Large-Scale Production of Intelligent Network Services 29 March 1995 23:05

Organizing for software productivity©Taskon 1992. Page 378

Service Provider Layer

Service Creator Layer

Subscriber Layer

Network Provider Layer

Service Constituent Creator Layer

User Layer
Figure 10.8

Intelligent Network
value chain

Table 10.1 suggests an analogy to a similar value chain in the
consumer industry.

Table 10.1 Intelligent
Network versus

consumer goods
value chains

Intelligent Network Domain Consumer goods Domain

Actor Activities Actor Activities

User Conducts a meeting
by videoconference

Daughter Listens to
a stereo system

Subscriber Buys a videoconference
service

Father Buys a stereo
with CD player

Service Provider Sells videoconferences
and other services

Audio equipment retailer Sells CD player
and other audio
equipment

Service Creator Makes a videoconference
service

CD player manufacturer Makes CD players

Service Constituent Creator Makes a video mixing
service constituent

Laser unit manufacturer Makes laser components
for CD players and
other uses

Network Provider Makes hardware video
mixers available in the
network

Electronic components
manufacturer

Makes electronic
components for lasers
and other uses

We discuss the layers of the value chain in more detail in the case
study of chapter 12.

29 March 1995 23:05 10.2 Large-Scale Production of Intelligent Network Services

Organizing for software productivity ©Taskon 1992. Page 379

Large-Scale Production of Customized Business
Information Systems

10.3

In a nutshell
One of the themes of this book is that object orientation enables us to create
customized software which is adapted to the tasks and preferences of individuals.
The tasks and preferences of professionals vary widely. Therefore, we need a great
number of different tools and even greater number of configurations of tools into
coherent information environments.

We cannot possibly hope to produce all the different information environments
through traditional software development projects, and the use of shrink-wrapped
software packages has its clear limitations. Therefore, we exploit object-oriented
reuse technology to build a value chain for customized information environments
for professionals. The main actors are the Tool-Makers, who configure the different
information tools; the Module-Makers, who program configurable program
components; and Kernel-Makers, who create the system architecture and common
environment for the whole value chain.

We discussed the need for information environments for professionals
in chapter 7 in conjunction with the task/tool/service models. We will
also see the need for such environments on all the layers in the value
chain for Intelligent Network services. It was Douglas Engelbart who
first saw the potential in using computers to augment the human
intellect and support human cooperation. He pioneered the mouse and
the multiwindow screen and a host of other ideas -- some of them are
commonplace today and others will be commonplace tomorrow
[Engelbart 62], [Engelbart 67], [Engelbart 92]

Information
environments for

professionals

In the following, we will give a few examples to illustrate the personal
augmentation part of Engelbart's ideas: Business Information Systems
for decision makers, experience based information environments,
information environments for system designers. But it is important to
realize that the essence of information environments are their
uniqueness, since they should be tailored to the goals, needs and
preferences of the professional user.

Business Information
Systems support

decisionmakers

Decisionmakers and other professionals need to harness both halves
of their brains. They need logic and creativity; they need rational
analysis of aspects that can be formalized and intuitive understanding
of complex relationships beyond the reach of logic.

A Business Information System is a system designed to provide a
decision maker with customized access to information sources for

29 March 1995 23:0510.3 Large-Scale Production of Cus...Business Information Systems

©Taskon 1992. Page 380 Organizing for software productivity

exploration and analysis. The creation of such a system starts with
analyzing the user's tasks to see how improved access to information
can help the decision maker be more effective.

We next search for information sources. We surprisingly often find
that information which is essential to the decision makers cannot be
derived from the information available in the enterprise computer
systems. The essential information will then have to be provided by
skilled personnel. We have in many cases had success with
introducing the Information Editor as a new role in the organization,
see figure 10.9. This is a highly competent and responsible person
who collates information from many sources, evaluates and interprets
it, and presents the digested results to senior decision makers through
the common information system. The work done by the information
editor is not new; it is done informally in most organizations. The
official introduction of the information editor makes the work visible,
respectable and repeatable.

Figure 10.9
Subdivision of the

User layer in a
Business Information

System value chain

User layer

Basic information
provider

Information
editor

Senior
decision maker

I have met many managers of high technology enterprises who would
like to capture and formalize the collective experience of the
enterprise to make it less vulnerable to the vagrancies of its experts,
and to ensure that the enterprise as a whole learns from experience
and does not repeat past mistakes.

Experience based
information

environments

Pipe maintenance
intelligence

An example: A petroleum processing facility is composed of a very
large number of pipes carrying a variety of fluids and gases ranging
from the benign to the highly corrosive. The pipes have to be
inspected at times to determine if they need to be replaced. Pipe
inspection must be done during a planned process shut down, which is
costly and must be kept as short as possible. But a pipe failure can be
dangerous to people and property and leads to a very costly
catastrophic process shut down. There are clear benefits to be
obtained if a systematic collection of pipe, inspection and failure data
could be made directly available to the pipe manager for exploration.

10.3 Large-Scale Production of Cus...Business Information Systems29 March 1995 23:05

©Taskon 1992. Page 381Organizing for software productivity

A information environment for a pipe maintenance manager helps the
manager plan the pipe inspection operations. To do this, he needs to
collate a great deal of information, and he would also benefit from
automated means to identify the most vulnerable pipe stretches among
the many thousands he is responsible for. The tools have to be very
flexible. The manager could, for example, suspect that pipes made
from a certain batch of steel are causing trouble. Is this true, and if so,
what are the afflicted pipes which may need immediate attention?

Is this experience formalization system a special Business Information
System? We tend to define a Business Information System as a
system which primarily collects data from many sources, which
presents accumulated views, which permits exception monitoring and
automatic triggers, and which permits navigation in the information
space. We regard the experience based information system as all of
this, but, in addition, there is usually a significant element of
specialized algorithms and possibly also decision support logic.

Distinction between
information

environment
categories blurred

An environment for
systems developers

A system developer's information environment could consist of the
following components. They should all be fully integrated in a
seamless fashion:

Tools giving access to a model structure which is shared with
other developers.

1.

Tools and repository for programming and debugging.2.

Facilities for reuse of patterns and frameworks.3.

An advanced documentation tool which supports a free mixture of
general elements such as texts, drawings and tables together with
special OOram report elements, and program source code.

4.

5. Facilities for software quality assurance.

An electronic mail system which supports general e-mail as well
as transfer of specialized system data.

6.

A work process support system which help people cooperate
without restraining their creativity, responsibility and initiative.

7.

29 March 1995 23:0510.3 Large-Scale Production of Cus...Business Information Systems

Organizing for software productivity©Taskon 1992. Page 382

All kinds of
information

environments can be
created

You would probably make a different list, and my list will probably
be different a year from now. But this is immaterial for our argument:
we start with goals, determine the kind of people who can best
achieve them, and create a information environment which best
supports these people in their preferred mode of working.

There is no value judgment in this; it is hard-nosed rationalism.
Computers can be used to support the creative exploration of an
information space as well as the repetitive (and mindless) entry of
routine data. They can support free agents working voluntarily
together towards a common goal, or command and strictly control
people who work in a rule based environment. Or they can be used to
support "distributed decisions with central control", where a
responsible person may delegate the performance of a job to other
people while retaining control of selected boundary conditions.

Figure 10.10 The
value chain

System support layer

Kernel-Maker layer

Module-Maker layer

Tool-Maker layer

End User layer

Production
engineering

We have organized the creation of information environments for
professionals into a five-layer value chain as illustrated in figure
10.10. The five layers of actors are as follows:

1. The End Users apply customized information environments to
help perform their tasks. End users may also modify their
information environment in various ways to adapt them to
changing needs to the extent that this is part of its functionality.

We frequently find it profitable to apply the principle of value
chains to the end users' organization. The End User layer is then
subdivided; e.g., as illustrated in figure 10.9.

10.3 Large-Scale Production of Cus...Business Information Systems29 March 1995 23:05

©Taskon 1992. Page 383Organizing for software productivity

2. The Tool-Maker is a customer consultant whose task it is to
empathize with end users, to provide their information
environments, and to help them get maximum benefits from their
tools.

A Tool-Maker reuses the Taskon library of information models
and work processes, configures and specializes functionality
created by a Module-Maker, generates user documentation, and
makes the resulting systems available to the end users.

The Module-Maker is an application programmer who specifies,
designs and implements new end user functionality.

The Module-Maker reuses the available library of patterns and
frameworks to achieve maximum results with a minimum of
effort. The Module-Maker also uses the company quality
assurance standards and procedures to ensure that a new module
conforms to its standards and guidelines.

3.

The Kernel-Maker is a systems programmer who creates the
library of reusable patterns and frameworks, the standards, and
the guidelines. The Kernel-Makers are also responsible for
defining and maintaining the value chain with its associated
procedures and tools; they are our production engineers.

4.

5. The Systems Software Suppliers are the vendors of operating
systems, communication software, database management systems,
compilers and runtime systems for the different hardware
platforms employed by. They appear at the bottom of our value
chain, but the vendors' value chains continue downwards.

Some of the systems software is less robust than we could desire
and requires very specialized and detailed knowledge to make it
run together with the rest of our software. This is one of the
challenges that our production engineers have to face.

6. The Production Engineers are responsible for the methodologies
for the upper four layers of the value chain.

Taskon's control of the bottom, System Support layer is limited.
We may sometimes select product and vendor, but often have to
accept selections made by the client. The Production Engineers
package the selected basic software within our development
environment and, if possible, protect the Module-Makers from its
glitches and other peculiarities.

10.3 Large-Scale Production of Cus...Business Information Systems 29 March 1995 23:05

Organizing for software productivity©Taskon 1992. Page 384

The organization can be patterned after the value chain as indicated in
figure 10.11. The Tool-Makers are grouped in accordance with the
End User business. This enables the company to reuse its
understanding of the customers' requirements as well as the
appropriate technology. The Module-Makers create application
oriented functionality, this functionality is often reusable for several
categories of End Users and, therefore, several Tool-Makers. The
Kernel-Maker is responsible for generally reusable patterns and
frameworks as well as procedures and production facilities. The
Kernel-Maker, therefore, can fill the function of Production
Engineering as well as the Kernel-Maker layer in the value chain.

The business
organization can be

patterned after the
value chain

Kernel-Maker

Tool-Maker

End UserEnd UserEnd User

Tool-Maker

Module-Maker

Tool-Maker

Module-Maker

Figure 10.11
Company

organization

Our philosophy of system development is focused on reuse; we strive
to increase our reusable assets so that we can meet new requirements
with a minimum of new work.

The Taskon Fountain
Model

Our life cycle model is shown in figure 10.12 is called the Taskon
Fountain Model: Software production consists of spouting a column
of specialized software from the pool of reusables; the end user drinks
from this fountain to satisfy his thirst for solutions. The pool level
rises when systematically collected experience is packaged as
reusable facilities and components. The work needed to satisfy a
given user requirement is given by the height of the production
column; sophisticated requirements increase its height by lifting the
top, while better reusable assets decrease its height by lifting the
general level of the pool.

10.3 Large-Scale Production of Cus...Business Information Systems29 March 1995 23:05

©Taskon 1992. Page 385Organizing for software productivity

The life cycle model of figure 10.12 is orthogonal to the organization
model of figure 10.11: the Tool-Makers, Module-Makers and Kernel-
Makers all have their parts to play in both forward engineering and
reverse engineering parts of the fountain model.

Figure 10.12 The
Fountain Model for

Reuse

Fountain
of
production

END USER

Pool of reusable assets:
* Production facilities (methodologies)
* Reusable components:
 models, patterns, frameworks, objects

Collection
of
Experience

Produce revenue
Increase complexity

Forward engineering
Add functionality

Increase assets
Decrease complexity

Work analysis
for improved
processes

Reverse engineering
improved
* concepts
* patterns
* frameworks
* configurable
 objects

10.3 Large-Scale Production of Cus...Business Information Systems 29 March 1995 23:05

©Taskon 1992. Page 386 Organizing for software productivity

System production activities aim at satisfying customer needs and
generate revenue. The Tool-Makers are in the front line: they
determine user needs, instantiate and structure library objects, and
preset initial parameters and other configuration data.

If available functionality cannot satisfy the requirements, Module-
Makers program new functionality by building on functionality
available in the library. Since we aim at multiple sales to related
markets, the special programs constitute a very small part of the
delivered system, typically ranging from zero to one percent. The
Module-Maker can focus on program functionality and robustness at
the expense of generality and elegance, and he can frequently ignore
questions of efficiency. Exploratory programming is ideal for this
work, and is even used in the marketing phase to demonstrate the
effectiveness of our technology.

The nature of the programming done in production activities leads to
increased total system complexity; it is an entropy-increasing activity.
If production is permitted to dominate for a period of time, there is a
risk that the system will collapse under its own weight. The collapse
will be clearly visible to everybody, because it manifests itself by a
sharp and increasing rate of system bugs. Attempts at bug fixing can
make the system worse, because the complexity makes it humanly
impossible to fix one bug without introducing two new ones. The
Module-Maker will, therefore, alternate between forward and reverse
engineering: forward engineering when creating products, and reverse
engineering when simplifying the programs and creating reusable
components.

Production done by
Tool-Makers and

Module-Makers

The collection of experience aims at increasing the value of our
reusable assets and is an investment. The Module-Makers do reverse
engineering on their ad hoc solutions, look for generalizations and
powerful abstractions, and study feedback from users, and create
improved application modules designed for reuse and specialization.

Kernel-Makers study all bug reports and gripes to identify trouble
spots in our technology, do reverse engineering on the application
modules in search for simplifications and common solutions, and
create improved basic patterns and frameworks. They are also alert to
stumbling stones in the production process and search for improved
processes and tools.

The ultimate goal of the experience collection activities is to simplify

Experience
collection done by

Module-Makers and
Kernel-Makers

29 March 1995 23:05 10.3 Large-Scale Production of Cus...Business Information Systems

Organizing for software productivity ©Taskon 1992. Page 387

production and make it more efficient. The experience collecting
activities lead to reduced system complexity, they are entropy-
reducing activities. If the experience collecting activities are allowed
to dominate, system functionality may become inadequate to satisfy
market needs and the revenue stream may dry out. This is a sad
situation even if the system is nice and clean and the programmers are
having great fun.

Job rotation essential All our organization models in this chapter are considered as role
models. The production engineers and the actors of the value chain
layers are roles which must be mapped on to real persons. We believe
there should be many-to-many relationships between roles and people.
Specifically, we believe that people should alternate between
production work and experience collection, between revenue creation
and investment.

There is no limit to the dirty programs a keen production programmer
may be willing to create to satisfy an urgent user requirement, but it
helps if the same person from time to time cleans up other people's
code and learns the hard way the kind of trouble caused by dirty code.

There is no limit to the time a keen experience collector can spend on
finding an elegant solutions to a fictive problem, but it helps if the
same person from time to time must produce end user functionality to
strict time limits and learns what kinds of assets improve effectiveness
and the total irrelevance of fancy solutions to non-existent problems.

We simply believe that all programmers benefit from taking their own
medicine: be the end users of their own software, use their own
reusables, clean up their own production.

You may well ask if this is applicable to large organizations with
hundreds of programmers. We believe it is for two reasons. One is
that it seems hard for a methodology section of a large programming
organization to make front line programmers adopt their wonderful
components, processes, and tools -- a certain interchange of people
might help the transfer. The second is that the development of
reusable assets by nature is a slow and painstaking process. A person
who is working exclusively in that area will not understand the
humble-tumble of front line programming, and will be hard put to
create the optimum production facilities.

So if you consider the layers of the IN value chain in figure 10.8 or

Does it scale?

29 March 1995 23:0510.3 Large-Scale Production of Cus...Business Information Systems

©Taskon 1992. Page 388 Organizing for software productivity

the information environment value chain of figure 10.9, the best way
to ensure that each value chain constitutes an organic whole is to let
people play multiple roles. Not simultaneously, because the activities
with the nearest deadline will then be given priority; but alternately so
that people get varied experience over time.

When I first entered the programming field in the late fifties, we tried
to persuade a shipyard that it should invest in computer aided design.
On one memorable occasion, the yard management had to decide if
they were to spend their scarce investment resources on a new
welding machine or on a computer for the new systems. Simple
arithmetic showed that the welding machine would pay for itself in
one year, while nobody knew if and when the computer would pay its
way. Fortunately for us, management made a good decision and
bought the computer.

The management of today has the same kind of problems when they
allocate scarce resources. Should they enter into a contract with
customer X which will generate a known cash flow and satisfactory
profit, or should they invest the same resources in an improved, low
level framework which is invisible to management and customers
alike? It would be nice if we could apply a formula to compute return
on a proposed investment in reusables. I am sorry to admit that we do
not have a good solution, and that resource allocation to investment
and production activities are based more on intuition than rational
computations. But we do have some experience of schemes which do
not work, at least not for us. We do have examples of reusable
components which have never been used, and we have on one
occasion been precariously near the brink of total system collapse. We
make sure our collective experience, bad and good, is made known
within the company so that we all can learn from it.

We believe that the creation of reusable components cannot be part of
production, because of the insurmountable clash between the goals
and time schedules of the two kinds of activities. We believe that the
creation of reusables cannot be an isolated operation, because it can
then take off on a tangent. We believe that the creation of reusable
components cannot be controlled by production (e.g., by production
paying for them), because we lose the long term considerations that
should dominate the investments.

Investment decisions are currently dominated by people who alternate
between both types of activities, who understand the needs of
production and the potential for improvement in the reusables. We are

Management
challenge to hit right

balance between
production and

investment

29 March 1995 23:05 10.3 Large-Scale Production of Cus...Business Information Systems

Organizing for software productivity ©Taskon 1992. Page 389

searching for work processes that will make the benefits of
appropriate reusables more visible, and that will quantizise the cost of
difficulties caused by inadequate methodologies and libraries.

We finish this chapter with the Taskon vision for software
development: Study user requirements on a basis of experience from
studying similar users; model user information by reusing models for
similar users; specify tools which are adapted to the users' tasks;
create systems without programming by duplication and conceptual
modeling; if new functionality is required, create new software by
marginally extending existing software. Reusable assets augment
competent people to produce software which is cheaper, better
adapted to user needs and more reliable than was achievable by using
people alone.

Success depends on an ability to meet new challenges with existing
components, producing high quality customized solutions in a short
time and at a marginal cost.

Dedicated and creative people will still be of paramount importance to
the successful producer of software, but reusable assets will make
them more effective.

The Taskon vision

10.3 Large-Scale Production of Cus...Business Information Systems 29 March 1995 23:05

©Taskon 1992. Page 390 Organizing for software productivity

Chapter 11
Advanced reuse based on object instances

This chapter is written for the specially interested reader. The
technology presented is independent of role modeling and constitutes
an additional road to software reuse.

Introduction to object reuse
Runtime configuration and object trading
OOram Composition System (OOCS).

The OOCS Schema Creator Layer
The OOCS Type Implementor Layer

Object duplication
shallowCopy -- too simple in most cases
postCopy -- a default duplication algorithm
structureCopy for the general case
deepCopy - a dangerous operation

 29 March 1995 23:05

©Taskon 1992. Page 391Advanced reuse based on object instances

11.1 Introduction to object reuse

In a nutshell
We have discussed how to reuse models and classes through inheritance and
specialization. We shall now see how we can compose a system from a pool of
predefined objects. This technology is entirely different from the OOram role
modeling technology. It is not as mature, but it can become the most important reuse
technology of the future.

Encapsulation separates the external properties of an object from its
internal implementation. Polymorphism permits different objects to
use different methods for processing the same messages. The two
properties taken together open an opportunity for constructing object
structures by composition. A large variety of systems can be
constructed from a limited set of objects by connecting them in
different ways. This is an object-oriented variant of the system
creation without programming that has proven so successful in the
world of databases.

System creation by
configuration

Many alternatives for
selecting the class of

new objects

An object is created and inserted in the collaboration structure by
some other object. The selection of the appropriate class for a new
object may be accomplished in many different ways, ranging from the
simple and rigid to the complex and flexible. All of them have the
common characteristic that they can be designed and implemented as
general mechanisms that can be used by the application programmer
according to simple rules.

As usual, there is no free lunch. Somebody has to decide on the kinds
of structures to be supported, and somebody has to design the general
interfaces that ensure that the different objects will fit together. It is
hard to find the right balance between simplicity and power. The
success of the Lego bricks demonstrates that the benefits can be
substantial.

In the following sections, we present three different technologies for
object reuse:

Runtime configuration and object trading. An object that needs a
new collaborator asks a Trader service to instantiate a suitable
candidate. The Trader holds a list of candidate objects. It manages
a negotiation between requestor and candidates to select
acceptable candidates. It chooses the appropriate one, instantiates
it, and installs it as a collaborator to the requestor.

1.

29 March 1995 23:0511.1 Introduction to object reuse

Advanced reuse based on object instances©Taskon 1992. Page 392

OOram Composition System (OOCS). A conceptual schema is a
description of the world as seen by the end user community.
Conceptual schemas have been applied to database design with
great success. The database conceptual schema controls the
composition of data in the database, and so forms a bridge from
the users' mental models to the concrete data representation. It
also forms a bridge from data types to the users' mental models
by specifying how the data are to be interpreted. We shall see that
we can achieve similar results with objects.

2.

3. Object duplication. New objects can be created by instantiating a
class, or they can be created by duplication of an existing object
or object sub-structure. Both techniques are useful. Instantiation
produces objects that are exactly as specified by the programmer.
Duplication produces objects that reflect the history of the master
object and is useful when we want to accumulate specific
information in a master before duplicating it. Object duplication
may appear to be a trivial operation, and in many cases this is
true. The duplication of a general object structure is an operation
full of pitfalls, however, and we will discuss the problem in depth
below.

These object reuse technologies are described in the following
subsections and illustrated in the case study of chapter 12: A Value
Chain for Intelligent Network Services.

29 March 1995 23:05 11.1 Introduction to object reuse

Advanced reuse based on object instances ©Taskon 1992. Page 393

11.2 Runtime configuration and object trading

In a nutshell
We often want to create user interfaces where the user can navigate through an
object structure and edit any chosen object. The challenge to the application
programmer is to identify the type of the selected object, to select a suitable editor
class, and to instantiate and install the selected class. This section gives you a
general mechanism for creating a "dynamic matchmaker" which will achieve this
goal and which you can use as the foundation when you want to create very
powerful and user friendly user interfaces.

The position of the trading mechanism in our general model structure
is indicated in figure 11.1.

System
implementation

System
design
model

System
requirements

model

System
user

model

System
of objects

Trader library
of editor classes

Legend:

Role Model Synthesis

Instantiation and linking

Editor class registration for trading

Figure 11.1 The
Trader identifies

suitable editor class
and instantiates it

Two objects may be linked as collaborators if each behaves properly
towards the other. We could, for example, know an information object
and want to identify a suitable editor that can be linked to it. We
frequently find we can use existing editors to edit new information
objects. Similarly, a new editor class can often edit many existing
information objects. The separation is particularly useful in the
context of system configuration: a customer can buy and install a
specific editor; it is then immediately available wherever it is
applicable.

11.2 Runtime configuration and object trading 29 March 1995 23:05

©Taskon 1992. Page 394 Advanced reuse based on object instances

A simple text editor can, for example, edit any object which
understands the two messages getText and putText. A simple list
editor can edit any object which understands size, getElement (index),
and putElement (index, anObject). A simple graph editor can edit any
structure of objects where every object understands getNeighbors,
putNeighbor (anObject), removeNeighbor (anObject).

Several different editors may be applicable to the same information
object. The information object could have a textual attribute; a text
editor could be used to edit it. The information object could also have
an Array attribute; a list view could be used to present it. The
information object could be the root of a tree structure; a graphical
editor could be used to present and edit the structure.

An Object Trading mechanism separates the representation of
information from presentation and editing: the information object
classes do not know the editor classes; and the editor classes do not
know the information object classes. There is a many to many
relationship between editor types and information object types. An
editor is capable of editing many different information objects, and an
information object can be edited by many different editors.

The purpose of the Trading mechanism is to select an editor that will
cooperate properly with the information object; instantiate the editor;
and link it to the information object.

The master of ceremonies is an object we call a Trader. Any client
object may ask it to provide an instance of an editor that is appropriate
for a specified information object.

A powerful
mechanism

eds tratra

inst

class

edi inf

inf

Trader

Information
Object

Trader
Client

Editor
Factory

Editor

Figure 11.2
Collaboration view

of Trader mechanism

The objects participating in this mechanism play the five roles shown
in figure 11.2.

1. InformationObject. This role is played by any object which
represents information that the user wants to see and possibly
edit.

29 March 1995 23:05 11.2 Runtime configuration and object trading

©Taskon 1992. Page 395Advanced reuse based on object instances

2. Editor. This object is responsible for the interface between a user
and the designated information object.

3. TraderClient. This role is played by any object which knows an
InformationObject and wants an editor for it.

4. Trader. This role is played by an object that is responsible for
finding an editor for a given InformationObject. It is immutable,
this means that it may not be specialized for different
applications.

EditorFactory. This object is responsible for an editor class. It
must be able to determine if an instance will be capable of editing
a given InformationObject.

5.

There are two activities in the trading mechanism: Initialization and
Trading. The Initialization activity must somehow instantiate the
Trader object and load it with a list of EditorFactories. This list can be
sorted in priority sequence so that the first acceptable editor will also
be the default one. We have hard coded a list of EditorFactories in our
current implementation; it could alternatively be specified by the user
or supplied through a configuration file.

Two activities

Trader
Client Trader Editor

Factory
Information

Object Editor

getEditorFor (anInformationObject)

supportedInterface

supportsInterface (interfaceName)

createInstance (anInformationObject)

setInformation (anInformationObject)
C

Figure 11.3 Activity
for selecting and
instantiating and

editor

The Trading activity finds and instantiates an editor given an
InformationObject. One possible sequence of events is illustrated in
the scenario of figure 11.3:

getEditorFor. The TraderClient supplies the Trader with
InformationObject and asks for a suitable editor

1.

supportedInterface/supportsInterface. The Trader traverses its
EditorFactory-list in priority sequence. It first asks an
EditorFactory for the name of its required interface. It then asks
the given InformationObject if it supports this interface. If the
answer is false, the Trader continues the search.

2.

11.2 Runtime configuration and object trading 29 March 1995 23:05

©Taskon 1992. Page 396 Advanced reuse based on object instances

createInstance. The first EditorFactory which answers true is
asked to create an editor instance and to initialize it with the given
InformationObject as model.

3.

4. setInformation. The EditorFactory creates a new editor instance
and initializes it with the specified InformationObject.

A variant of this activity lets the Trader collect the names of all
technically acceptable editors and invite the user to indicate her
preference before the editor is instantiated.

BOX: Selecting the editor
In our first Trader implementation, we presented a list of applicable editors to the
user and invited her to select one of them. This proved exceedingly tedious, and we
quickly created a second version of the Trader which automatically selected a
default editor and instantiated it. This proved too inflexible, and our third and
current version normally selects a default editor automatically, but there is an escape
command which lets the user select any applicable editor.

This description of the Trading mechanism illustrates the separation
of concern inherent in role modeling. The object that plays the Trader
role in our system is a globally available object that plays a number of
other roles such as Transaction Manager, Persistent Store Manager,
and Clipboard Manager. It would clearly be confusing if we were to
describe all these roles simultaneously. We can also see that it is easy
to discuss the Trading mechanism in the context of all the
participating roles, and it is nice to know that we can map these roles
on to actual objects in any way we please.

Objects typically
play several roles

29 March 1995 23:05 11.2 Runtime configuration and object trading

©Taskon 1992. Page 397Advanced reuse based on object instances

11.3 OOram Composition System (OOCS).

In a nutshell
An OOram Composition System (OOCS) is a system that controls the creation of
object structures by composition. The idea is that given a seed object, an OOCS
Schema specifies the types of the objects that can be attached to it. One type is
selected and instantiated, and the new object is attached to the seed. The
composition proceeds by choosing new seed objects; selecting the type of a new
addition; instantiating it; and attaching it to the growing structure.

Figure 11.4 illustrates that we use a special work process when we
create a system by composition. The System User model describes the
system environment as in the normal programming case. The System
Requirements model has been modified into an OOCS schema. An
OOCS schema is not only a description of the world as seen by the
end user community, but it is also a precise and complete definition of
the system. (It abides by the so called "100% rule".) In this sense the
schema language is like a programming language. The difference is
that the schema language builds on a few, simple notions which yield
powerful leverage within its designated application area.

System creation by
composition

Figure 11.4 Models
on all levels may be

composed from
simpler base models

OOCS
Schema

System
user

model

OOCS Types

System
of objects

Box
My wife has been working as a database manager for a number of years. One of her
reactions when helping me with this book has been that of frustration. Database
technology has slowly been maturing so that she now can draw the conceptual

11.3 OOram Composition System (OOCS). 29 March 1995 23:05

©Taskon 1992. Page 398 Advanced reuse based on object instances

schema of a new application on a computer screen and push a button; the finished
program is generated correctly and automatically. And it works immediately, every
time! No detailed coding, no intricate bugs to track down. She felt that with object
orientation, she would be back to the old days when she spent most of her time
coding and debugging, working through the night to find the last bug before system
installation, and more nights fighting fires to keep the system operational.

The first lesson to learn from this is that nobody should replace a mature technology
with a new one without good reason. The new technology may be more fashionable,
but pressing requirements that cannot be satisfied by the current technology should
be the only acceptable reason. Psychologists claim that we only ask for things that
we believe to be feasible [Aronson 72], and we must be careful to read pressing
requirements as real requirements, not perceived requirements.

The second lesson is that to any informatician, it is traumatic to move outside the
boundaries of an established conceptual framework with its mature tool support. But
we must admit that any conceptual framework has its limitations and that the
pressures of real requirements sometimes force us to exceed them. There are
basically two ways to achieve this. One is to add special programs outside the
conceptual framework: we could, for example, write special user interface programs
which access the database without being part of it. Another is to extend the
conceptual framework so that the desired functionality was within its new
boundaries.

Database technology
gives leverage

through restricted
structure

A database system provides a framework for representing information
in the form of structured data. Its strengths and weaknesses are
closely related to the way this is done. The first databases stored data
in the form of trees; the relationships between data elements were all
consist of -- part of relations. Later databases supported a general
graph structure. They could be traversed along the relations, which
could be of any kind. The current vogue is the relational database,
where all data are organized in various tables.

A database system consists of the following parts:

A conceptual framework which defines the principles for
database structuring. Examples: tree structure, graph structure, or
tables. The conceptual framework also defines the types of the
elements that can be stored in the structure. They are often
collected in records that consist of a sequence of data items such
as strings, numbers, dates, etc.

1.

Means for specifying and recording the database schema. The
schema defines the structure of the database and its elements in
user-related terms.

2.

Means for storing and managing data according to the rules and
constraints specified in the schema.

3.

4. Means for retrieving data from the database. This includes finding
the required data and presenting them in a suitable form.

29 March 1995 23:05 11.3 OOram Composition System (OOCS).

Advanced reuse based on object instances ©Taskon 1992. Page 399

5. A program which manages the database at runtime.

Conceptual schemas are well known in the database community. They
describe the semantic relationships between data items arising from
relationships in the "real world" of the problem domain. A conceptual
schema can be used to specify a customized information system, and
programming in the traditional sense can often be avoided altogether.

Relational databases
offer a small, fixed

set of reusable data
types

A conceptual schema specifies the system in terms of pre-defined data
types; types such as String, Date, and Number are typically available.
A Person could, for example, be defined as {Name (String), Address
(String), BirthDate (Date), GrossIncome (Number)}. A Person is thus
defined as a tuple of attributes; each attribute is specified by a name
taken from the problem domain and a type selected from the
predefined types. It is possible to specify more complex structures and
impose constraints on these structures. A Department can be specified
as having Members and a Manager. Members and Managers shall
both be Persons, and the structure may be constrained so that there is
at most one Manager per Department, and so that the Manager must
be a Member of the same Department.

The set of available data types is fixed and therefore considered as an
integral part of the database system. We prefer to think of them as
reusable programs; because we can then establish an analogy to an
object system with an extensible set of available types. The database
system builder created programs for these reusable types; and the
application analyst uses them.

Extensible
conceptual
frameworks

Object technology seems very promising as a vehicle for extensible
conceptual frameworks. We can add behavior to the static data of the
conventional database. And we can replace the fixed domains of the
database tables with object types, and thus get an extensible database
system.

We should not get carried away by these possibilities. It is a sobering
thought that the successful conceptual frameworks created over the
past fifty years can be counted on one hand: the activity network, the
database, and the spreadsheet come to mind. The successful
introduction of a simple, powerful and widely applicable conceptual
framework is clearly not a routine matter.

29 March 1995 23:0511.3 OOram Composition System (OOCS).

©Taskon 1992. Page 400 Advanced reuse based on object instances

Notice that we do not regard the object oriented database as a viable
competitor to the relational database. The object-oriented database is
too general; it can be used to represent anything and cannot be used
without low-level programming. True competitors to the relational
database will have to restrict their scope to enable effective, high-level
system specification and generation tools. The object-oriented
database has to add a conceptual schema layer to compete with the
relational database.

Object-oriented
database not a

candidate

Conceptual
foundation for the

object schema

The choice of conceptual framework is critical to the success or
otherwise of a new composition system. Just as has been the case for
database schemas, many different kinds of objects schemas are
conceivable.

We have practical experience with one possible choice that we call
the OOram Composition System (OOCS). The basic building blocks
are objects that have the common characteristic that they can be
linked together into different structures. These object structures are
described generically in an OOCS Schema in terms of an extensible
set of object types called OOCS Types. The "atom" of an OOCS
Schema is the OOCS Entity, which associates a name taken from the
problem domain with an existing OOCS Type.

The OOCS Schema controls the composition of the System of objects
in figure 11.4. The Schema is a kind of decision tree: Given an object,
what are the types of the objects we may attach to it and what do the
users call these parts? One of the possible types is selected,
instantiated, and attached to the object structure.

This structure can, in principle, be any object structure. The general
structure is realized as a tree with cross references. The tree is
controlled by the OOCS Schema, the cross references are created
algorithmically. For example, the Schema creator can specify that the
cells of a table shall contain Texts or Pictures. The final binding of
each cell to an appropriate column and row is done programatically.

OOCS Schema is
decision tree

Let us consider a Document as an example of a problem domain, and
let us model the Document as a structure of constituent parts as
illustrated in figure 11.5.

11.3 OOram Composition System (OOCS).29 March 1995 23:05

©Taskon 1992. Page 401Advanced reuse based on object instances

Figure 11.5
Simplified OOCS

Schema for a
Document

document , TreeNode

picture , PictureLeaf

caption , TextLeaf

figure , TreeNode

paragraph , TextNode

section , TreeNode

author , TextLeaf

title , TextLeaf

title page , TreeNode

table , TableNode

textCell , TextLeaf

pictureCell , PictureLeaf

OOCS Entities in bold, OOCS Types in italics. A document consists
of a title page and sections; a title page consists of title and author,
etc. This structure consists of 11 different entities. It is constructed
from just four different object types: TreeNode, TextLeaf, PictureLeaf,
and TableLeaf.

BOX: A dream
All living tissues are built from a family of chemical compounds called proteins. A
protein is a complex molecule which is composed of amino acids. There are just 32
different amino acids, and all forms of life are composed from these 32 building
blocks. (This is the chemistry aspect, we ignore a host of other aspects.) Now
consider that we were able to create 32 different objects which we could use to
compose data systems as varied as life itself!

Figure 11.6 The
OOCS value chain

Infrastructure creator layer

OOCS Type implementor layer

OOCS Schema creator layer

End user layer

The OOram Composition System gives rise to a value chain with four
layers as shown in figure 11.6. (FOOTNOTE: Value chains were
discussed in detail in chapter 10.)

The OOCS value
chain

29 March 1995 23:0511.3 OOram Composition System (OOCS).

©Taskon 1992. Page 402 Advanced reuse based on object instances

End user layer. The end users create value when they add,
retrieve, and remove objects in their OOCS system.

1.

2. OOCS Schema creator layer. The domain analyst who defines an
OOCS Schema may work according to the suggestions given in
chapter 7. The results will be expressed as OOCS Schemas rather
than role models, and the implementation will be automatic, as
suggested in figure 11.4. The technical aspects of creating OOCS
Schemas will be discussed in section 11.3.1.

3. OOCS Type implementor layer. An important feature of the
OOram Composition System is that it is truly extensible.
Extensions come in the form of new OOCS Types; they are
created by object-oriented programmers who base their work on
the frameworks provided by the bottom layer. Section 11.3.2
describes the creation of OOCS Types in general terms.

Infrastructure creator layer. The infrastructure needed to support
the OOram Composition System is quite sophisticated. It includes
a module which exports a reusable framework to the OOCS Type
implementor; safe editors for the OOCS Schema creator; a
runtime system; and appropriate composition tools for the end
users. The technical details of this module is a specialized topic
which is outside the scope of this book.

4.

We will discuss the two middle layers in the following sub-sections.

The OOCS Schema Creator Layer11.3.1

Figure 11.5 shows an example structure that can be modeled with the
OOram Composition System. We saw that the 11 different entities of
a document could be realized by only four OOCS Types, and that
alternative structures could be specified. But the notation used in the
figure is inadequate for a complete OOCS Schema specification,
because there is no way to specify constraints as to sequencing and
cardinalities. We will now describe a solution that actually works in
practice.

We start with an application pattern ("List of Instructions"), before
describing the nature of the OOCS Schema in more detail ("Logical
map").

11.3 OOram Composition System (OOCS).29 March 1995 23:05

Advanced reuse based on object instances ©Taskon 1992. Page 403

List of instructions: OOCS Schema Creation

It is appropriate to create an OOCS Schema if the world as perceived
by the users can be modeled as a structure of available OOCS Type
instances.

When to use

The Schema Creator is to specify rules for how the end user can
compose object structures from predefined types. The rules shall
be in the form of a decision tree: given an object in a partially
completed structure, the rules shall specify all extensions
permitted from it.

Problem

Solution An OOCS Schema is a generic specification of object structures. It
associates the users' concepts with existing OOCS Types, and forms a
foundation on which the end users can build and manipulate object
structure instances.

You create an OOCS Schema by the following operations (not
necessarily performed in this sequence):

1. Identify the users of the OOCS Schema: their goals, competence,
working habits and preferences.

2. Identify the area of concern.

Analyze user environment and information requirements.3.

Model the information as a tree of OOCS Entities, giving them
names that are meaningful to the users. Map each entity onto an
OOCS Type.

4.

Inform the consumer community about the new system, motivate
them to use it, train them, and make it available.

5.

References Necessary prerequisites are OOCS Types for all Entities; a schema
editor that only permits the specification of legal structures; and the
necessary runtime infrastructure including OOram trading for editor
selection and instantiation.

29 March 1995 23:0511.3 OOram Composition System (OOCS).

Advanced reuse based on object instances©Taskon 1992. Page 404

The nature of OOCS Schemas

Objects are named, instantiated and interconnected according to a
generic object structure or grammar specified in an OOCS Schema.
The Schema is in many ways an object-oriented parallel to the
conceptual schemas used to describe relational databases. Both are
used to model interesting information, and both obey the "100% rule"
which means that the schema contains sufficient information for the
automatic generation of the application program. But there are three
important differences:

The OOCS Schema

The relational model organizes information in a set of tables; the
OOCS Schema organizes information in an object structure.

1.

The selection of available domains in the relational model is
fixed; the set of available OOCS Types is extensible.

2.

The relational schema defines all legal data structures, and the
database has to be restructured if the schema is changed. The
OOCS Schema controls object structure editing by defining legal
object insertions and deletions. The object structure survives
Schema changes without restructuring.

3.

OOCS
Entity

OOCS
Type

OOCS
Group

OOCS
Schema

Figure 11.7 Semantic
view of the OOCS

Schema notions

11.3 OOram Composition System (OOCS).29 March 1995 23:05

©Taskon 1992. Page 405Advanced reuse based on object instances

Figure 11.7 is a Semantic view of the OOCS Schema elements, and
figure 11.8 shows an example OOCS Schema. The Schema elements
are as follows:

1. The OOCS Entity represents all objects that occupy a
corresponding position in an object structure. An OOCS Entity
corresponds to a user concept and is given a user-defined name. A
document object is at the root of figure 11.8. A document
contains titlePage, paragraph, figure table and section. A figure
contains caption and drawing.

2. The OOCS Type represents the type of the objects that may
occupy the position of the associated Schema Entity. It is an
abstract way of specifying the class of these objects. The
TreeNode OOCS Type is mapped to a class and instantiated to
represent document, titlePage, figure, table, or section. (A
TreeNode is an object which can play the role of node in a tree
structure and which does not have any special attributes.) The
TextNode OOCS Type is mapped to a class and instantiated to
represent title, author, paragraph, or caption. (The TextNode class
can be a subclass of the TreeNode class with a text attribute.)

The OOCS Group provides the sequencing mechanism for the
Schema. The OOCS Entities defined under each Group can only
be inserted behind the entities of the Groups in front of it, and in
front of the Groups following it. In figure 11.8, all titlePage
objects will be in front of all contents objects, which will be in
front of all section objects. OOCS Entities defined under the same
OOCS Group can be inserted in any sequence. In our example,
paragraphs, figures and tables may be inserted in any order.
sections can only be inserted after all the contents.

3.

29 March 1995 23:0511.3 OOram Composition System (OOCS).

Advanced reuse based on object instances©Taskon 1992. Page 406

OOCS Entity is document

Recursive
reference to
contents
Group.

Recursive
reference to
subSections
Group.

titlePage
1:1

title
1:1

author
0:N

paragraph
0:N

figure
0:N

caption
1:1

drawing
1:1

caption
1:1

tableBody
1:1

table
0:N

section
0:N

document
1:1

TreeNode

titlePage

subNodes ->contents ->subSectionssubNodes

contents subSections

TreeNode

TreeNode TreeNode

TableNodeTextNodeTextNode

subNodes

TreeNodeTextNode

TextNodeTextNode

OOCS Group is titlePage.
All the titlePage entities
must come in front of the
contents and subSection
entities.

OOCS Type is TreeNode

DrawNode

cells

drawing
0:N

text
0:N

DrawNodeTextNode

drawElements

circle
0:N

DrawCircle

line
0:N

DrawLine

Figure 11.8 View of of OOCS Schema
This example uses vertical presentation; horizontal presentation is also permissible.
Recursive relations are shown as dashed lines.

Entity attributes OOCS Entities have a number of attributes which specialize the
OOCS Type. An important attribute is the cardinality; it constrains the
number of permitted instances and is displayed in the diagram as
minimum count : maximum count. We must have exactly one titlePage
with exactly one title. We may have any number of author objects.
author and title belong to the same Group, author objects can
therefore precede and follow the single title object. Notice that the
Schema controls editing operations and does not prescribe all
permissible object structures. Modification of an Entity cardinality
will therefore only influence permissible editing operations and not
affect existing object structures.

29 March 1995 23:05 11.3 OOram Composition System (OOCS).

©Taskon 1992. Page 407Advanced reuse based on object instances

We have not shown other attributes here, but real systems will include
attributes for setting default object values, for giving hints about the
printing of the objects, etc.

Entity, Type and Group specifications may be specified as a
references to similar nodes somewhere else in the diagram; this
permits the definition of recursive structures. In our example, the
contents of a document may be any mixture of paragraph, figure, and
table. The section group follows the contents group, and a section has
a contents group followed by a new level of subSection group.

Recursive definitions
permitted

The OOCS Type Implementor Layer11.3.2

An OOCS Type is a building block that the end user at his discretion
may instantiate, attach to an object structure and edit. An OOCS Type
instance is illustrated in figure 11.9. It is an object, or a cluster of
objects, with one plug to attach to a socket in the existing object
structure. It may also have one or more sockets for attaching
additional OOCS Type instances. Most of the common OOCS Type
functionality is captured in a framework so that the application
programmer can focus on the application specific problems.

In a nutshell

OOCS Type

None, one or more sockets
for attaching additional

OOCS Types

One plug
for plugging into

existing object structure

Figure 11.9 The
OOCS Type

The following problems have to be solved:The problems

1. Semantic correctness. The user shall be able to construct a
semantically meaningful object structure by successively
selecting and instantiating user-defined concepts and attach the
instances to the object structure.

29 March 1995 23:0511.3 OOram Composition System (OOCS).

Advanced reuse based on object instances©Taskon 1992. Page 408

2. Syntactic correctness. The user shall only be allowed to attach
objects that will cooperate properly; program failures caused by
improper object structures cannot be tolerated.

Programming an OOCS Type. Each of the user-defined concepts
must be associated with an existing class.

3.

Editor selection. The user shall be able to edit the attributes of the
instantiated OOCS Types.

4.

Semantic correctness

Two levels of
semantic correctness

There are two levels of semantic correctness in the OOram
Composition System architecture:

Human level semantic correctness is the responsibility of
modeler. On the human level, the OOCS Schema should
faithfully describe the notions of the user community. It is clearly
the responsibility and raison d'etre of the OOCS Schema Creator
to ensure that the model is correct in this sense.

1.

2. Technical level semantic correctness automatically enforced. On
the technical level, semantic correctness means that the users'
object structure should conform to the OOCS Schema. The
OOram Composition System infrastructure implements a
somewhat weaker constraint: it checks all insertions and removals
of OOCS Type instances against the OOCS Schema. This means
that changing the OOCS Schema does not cause changes in
existing information. For example, if we were to modify the
OOCS Schema of figure 11.8 so that the cardinality of the author
Entity was 1:1, old documents with none or multiple authors
would still be valid. But the user would not be allowed to create a
new document without an author, and he would not be permitted
to remove the last author from an old document.

There are two reasons why we did it this way. One is that we do not
know an algorithm that will intelligently transform an existing object
structure to make it conform to the notions of a new OOCS Schema.
Another is that we do not want to rewrite history. Users may change
their mind about their object structures, but the old structures were
created under the old assumptions and should be retained unchanged
in the archives.

11.3 OOram Composition System (OOCS).29 March 1995 23:05

©Taskon 1992. Page 409Advanced reuse based on object instances

Our reasons may not be your reasons, and you may want a different
solution. We believe that whatever the solution, the main
responsibility for technical correctness should rest with the
Infrastructure Creator because the implementation of model
conformance is a hard problem which should be solved once and for
all.

You may want a
different solution

Syntactic correctness

There is a large subset of all object structures that will operate without
error. Their objects will receive messages as needed, and messages
sent to collaborators will be handled correctly. We say that these
systems are syntactically correct; the word syntax here alludes to the
composition of OOCS Type instances.

Syntactically correct
programs do not

crash

The plugs and sockets of figure 11.9 are typed to ensure syntactic
correctness. In our implementation, the OOCS Types are given unique
names, and the OOCS Type implementor is fully responsible for
ensuring that plugs and sockets with compatible names can be safely
connected. Other schemes could be based on message signatures or
mathematical descriptions of the interactions, but we elected to keep
our scheme as simple as possible.

Our OOCS Types are organized in a type hierarchy so that a plug of a
given type can be plugged into a socket with the same type or one of
its subtypes. The OOCS Types of the document example in figure
11.8 are given in figure 11.10 (the hierarchy is indicated by
indentation):

A name denotes an
OOCS Type

Figure 11.10
Example OOCS Type

hierarchy

TreeObject
| TreeNode
| | DrawNode
| TextLeaf
| DrawElement
| | DrawCircle
| | DrawLine
| TableNode

It is the responsibility of the OOCS Type implementor to specify the
types of the component's plug and sockets as part of the programming
activity described in the nest section.

11.3 OOram Composition System (OOCS). 29 March 1995 23:05

©Taskon 1992. Page 410 Advanced reuse based on object instances

Programming an OOCS Type

The OOCS Type Creator is responsible for the application-specific
aspects of the component and must write the appropriate programs.
The Infrastructure Creator provides a framework which the OOCS
Type Creator must specialize to create a specific component.
Common functionality is defined in the base classes of the
framework, and the framework also describes a typical work process
and relevant constraints.

The OOCS Schema assumes that all objects are organized within a
tree structure. The role model is shown in figure 11.11. We see that
the root object of a permissible structure must be able to play the
Parent role, the leaf objects must be able to play the Child role, and all
intermediate objects must be able to play both roles.

OOCS Schema
defines tree structure

Figure 11.11 The
Schema base model

dw

up

Parent

Child

The interfaces on the dw (down) and up ports define messages for
traversing the structure; for maintaining the two-way links when
inserting and removing nodes; for duplicating a subtree; etc.

OOCS Types derived All OOCS Types are derived from the Schema base model. The role
model for a drawing application may, for example, be derived from
the base model as illustrated in figure 11.12. The base model is first
used to synthesize the up plug of the DrawNode, and then applied
again to synthesize the the relation between the DrawNode and its
DrawElements.

29 March 1995 23:05 11.3 OOram Composition System (OOCS).

©Taskon 1992. Page 411Advanced reuse based on object instances

Figure 11.12 The
Schema base model

dw

up

up

dw

dw

up

DrawNode

DrawElement

Parent

Child

TreeNode

OOCS Type
implementor must

declare socket types

The OOCS Type Creator writes a class for each OOCS Type, and
makes the type known in a class initialization message. He also
declares the names and types of the sockets as exemplified in figure
11.13. (SN denotes Schema Group name, CT denotes OOCS Type
name):

Figure 11.13
Example OOCS Type

structure

TreeObject
| TreeNode

SN subNodes CT TreeObject
| TextLeaf
| DrawNode

SN drawElements CT DrawElement
| DrawElement
| | DrawLine
| | DrawCircle
| TableNode

SN cells CT TreeNode

Editor selection

The infrastructure uses the object trading described in chapter 11.2 to
select and instantiate editors for the objects of different OOCS Types.

The OOCS Type implementor must make sure that a suitable editor is
available for a new OOCS Type. He may have to program a new one.
This is a separate activity which is basically an application of the Tool
framework described in chapter 9 with a few extensions to ensure
compatibility with the OOCS Schema infrastructure.

29 March 1995 23:0511.3 OOram Composition System (OOCS).

Advanced reuse based on object instances©Taskon 1992. Page 412

Object duplication11.4

BOX: In a nutshell
You may essentially create new objects in one of two ways: you can create a new
instance of a class, or you can create a copy of an existing master object. While all
instances of a class are created equal, the copy of an object will reflect the state of
the master at the time of duplication. So if you want an object which is exactly as
specified by the programmer, use instantiation. If you want an object which reflects
information accumulated at runtime, use duplication.

System
implementation

System
design
model

System
requirements

model

System
user

model

System
of objects

Master object
structure

Legend:

Role model synthesis

Instantiation

Copying and linking

Figure 11.14
Structures of objects

may be created by
duplicating a master

structure

As computer programmers, we tend to focus on writing code for new
programs. But we should not forget that the cheapest and safest way
to produce a particular object structure is to copy a validated master.
Figure 11.14 illustrates this. The master objects are first instantiated
from the relevant classes and processed to give them the required
attributes. The masters are later duplicated and the copied objects are
linked into the system of objects.

An alternative way of
creating new objects

BOX: Duplication is a commonly used operation
A simple example from the realm of word processing will illustrate the difference
between instantiation and duplication. You can always create a document by
starting your word processor on a new file. The document will be empty, and all
parameters such as margins, fonts and tabulator will be set to their default values.

29 March 1995 23:05 11.4 Object duplication

©Taskon 1992. Page 413Advanced reuse based on object instances

Advanced authors often find it more effective to keep a library of master documents
containing a letter, a telefax, a report, etc. Each master contains fixed contents parts
such as headers and copyright notices, and may also contain keywords for the
variable parts as reminders to the author. The author creates a new document by
duplicating the appropriate master.

Less bureaucratically minded users, and I am one of them, just duplicate a recent
document of the required kind and then delete all parts which are not needed.

A facility for the duplication of selected material is an important part
of almost all user interfaces. Duplication is also a powerful technique
for the production of software; the PC revolution would be
unthinkable without program duplication, packaging and distribution.
In the case study of chapter 12, we argue that the instantiation,
processing, storing and duplication of master object structures will be
an effective technique in the industrial production of customized
software.

The problem

At a first glance, duplication seems as a simple and intuitively obvious
operation. In any given situation, it will be quite clear what should be
copied and what should be left as it is. But this first glance is very
misleading, because copy means different things under different
circumstances -- the difference being in how we handle referenced
objects.

Just consider the copying of an Array object containing pointers to a
number of element objects. Do we want the copy to be another Array
object pointing to the same elements, or do we also want to copy the
elements? And how do we want to copy the elements?

The general problem is illustrated in the object structure of figure
11.15. Which objects should be copied together with the one in heavy
outline? The answer clearly depends on the semantics of the object
structure and the intentions of the user.

11.4 Object duplication 29 March 1995 23:05

©Taskon 1992. Page 414 Advanced reuse based on object instances

Figure 11.15 What
should be the result

of asking the heavily
outlined object for its

copy?

The duplication of object structures can pose serious problems to the
programmer, and she may be hard put to create duplication programs
that provide the "obvious" results in in all cases. It is a problem which
nicely illustrates both the power and the weakness of the distributed
nature of object-oriented systems.

The power results from our ability to create programs that are valid
for a wide variety of object structures, and that work correctly with
any object as the selected master. The weakness is that the algorithm
will be distributed among the objects. There is no "main program"
which sees everything and knows everything. Every object must be
able to play the role of a master; every object must be able to play the
role of a subobject that is to be copied together with the master; every
object must be able to play the role of a copy; every object must be
able to play the role of an environment object which is to remain
uncopied. Even seasoned programmers must be prepared for a nasty
surprise when a user attempts to copy an unexpected substructure.

We do not believe that a return to procedural programming will solve
the problem, because the difficulties stem from the specification
rather than the technology. We have traded the increased power of
new technology for increased functionality, flexibility and generality,
and strained the programmer's capabilities to their limits.

The solution

29 March 1995 23:05 11.4 Object duplication

©Taskon 1992. Page 415Advanced reuse based on object instances

A framework
candidate

No sane manager will ask a procedural programmer to create an
algorithm that will copy an unspecified part of an unspecified
structure. Even with object orientation, there is no magic. The only
reason we can get away with such an open specification is that we can
leave parts of the solution unspecified, to be filled in by the
application classes where the nature of the objects is known.

We rephrase the problem as follows: Can we create a framework that
protects the application programmer (and the users) against nasty
surprises? The nasty surprises we have experienced all stem from
unforeseen side effects. Our solution is that we let framework
programs take care of the structural and interobject aspects of
duplication, and leave the simple problem of duplicating individual
objects to the application programmer.

Rephrasing the problem again, we want to create a framework for the
duplication of objects and object structures that limits the task of the
application programmer to override specific methods where she only
need consider one class at the time. We have been through several
cycles of solutions and nasty surprises; the surprises being caused by
steadily more exotic problems. We will describe our current solution
in subsection StructureCopy below, but we also discuss some simpler
algorithms which are useful in many common cases:

shallowCopy, which just copies a single object.1.

postCopy, which is a way to let each duplicated object recursively
determine which of its instance variables should be copied.

2.

structureCopy, which is our general algorithm for duplicating part
of a structure of interconnected objects.

3.

4. deepCopy, which recursively copies an object and all the objects
referenced by its instance variables. This is a dangerous operation
which we strongly advise you to avoid.

11.4.1 shallowCopy -- too simple in most cases

The simplest case is the shallowCopy. It creates a new object of the
same class as the original which references exactly the same objects.
This is illustrated in the figure 11.16.

11.4 Object duplication 29 March 1995 23:05

©Taskon 1992. Page 416 Advanced reuse based on object instances

cornerPoint

originPoint

aRectangleCopy

aRectangle

Figure 11.16
shallowCopy copies

the object and
retains all references

unchanged

Heavy lines indicate the original structure; gray lines indicate the shallow copy.

shallowCopy of a
Rectangle

shallowCopy may cause bugs which are hard to track down. In the
past, we have experienced trouble with Rectangles which used to have
shallowCopy as its default copy operation. Rectangle objects have two
instance variables as depicted in figure 11.16: origin, which is a Point
object defining the upper left corner, and corner, which is a Point
object defining the lower right corner. shallowCopy of a Rectangle
master object yields a new Rectangle object which shares the origin
and corner objects with the master. Do you see the possible problem?

Consider that you have a window with a number of views. The bounds of each view
within the window is stored as a Rectangle object. Open a new window as a copy of
the first one. Rearrange the views of the copied window by modifying the x and y
values of the origin and corner Points of their bounds, e.g., by the code bounds
origin putXY (50, 25). The original window is also rearranged! Rearrange the views
of the window copy by replacing the origin and corner Points with new Points, e.g.,
bounds putOrigin ((Point new) putXY (50, 25)). The original window is unchanged!

BOX: A mysterious
side effect

11.4.2 postCopy -- a default duplication algorithm

A simple recursive
algorithm

A new duplication algorithm was introduced in
Objectworks\Smalltalk version 4.0. It is similar to the default
algorithm we have been using internally at Taskon for many years,
and works satisfactory in most cases. The idea is to create a
shallowCopy of the original object, and then ask the copy to "do the
right thing" with its own references.

The default copy method in class Object, the mother of all classes, is
now as follows:

Object (copying)
copy

^self shallowCopy postCopy

The method postCopy in class Object does nothing:

29 March 1995 23:05 11.4 Object duplication

©Taskon 1992. Page 417Advanced reuse based on object instances

Object (copying)
postCopy

" Finish doing whatever is required, beyond a shallowCopy, to implement 'copy'.
Answer the receiver. This message is only intended to be sent to the newly created

instance.
Subclasses may add functionality, but they should always do super postCopy first. "
^self

The application programmer overrides the postCopy method in her
derived class. The responsibility of this method is to replace
references to other objects with references to their copies wherever
appropriate. Our Rectangle problem is now easily fixed as shown in
the following method. The result is illustrated in figure 11.17.

Rectangle (copying)
postCopy

super postCopy.
origin := origin copy.
corner := corner copy

Figure 11.17
postCopy does "the

right thing"
cornerPoint

originPoint

aRectangleCopy

aRectangle

cornerPointCopy

originPointCopy

Heavy lines indicate the original structure; gray lines indicate the copy.

We will extend our example slightly to illustrate that an object may
leave certain references unchanged. We color the Rectangle by
extending the object with two variables: a variable holding a color
index and a variable pointing to a Palette which holds an Array of
colors. The Rectangle gets its color by asking the Palette for the color
corresponding to its color index. We assume that the Palette shall be
shared by the master Rectangle and its copy. The result is illustrated
in figure 11.18 and the code is given below.

We may not want to
make a copy of all
instance variables

Rectangle (copying)
postCopy

super postCopy.
origin := origin copy.
corner := corner copy.
palette := palette.

(FOOTNOTE: Notice the dummy statement which does nothing with
the reference to the Palette. This is a Taskon convention: every
instance variable shall be assigned values in the postCopy method to

11.4 Object duplication 29 March 1995 23:05

©Taskon 1992. Page 418 Advanced reuse based on object instances

show that the programmer has considered it. If a new instance variable
is added to a class, our automatic quality checker will flag that its
postCopy method is incomplete. (The same applies to some other
methods such as initialize and release.))

Figure 11.18
postCopy does does

not copy a shared
object cornerPoint

originPoint

aRectangleCopy

aRectangle

cornerPointCopy

originPointCopy

aPalette

Heavy lines indicate the original structure; gray lines indicate the shallow copy.

The postCopy algorithm works fine if each involved object knows
what to do with all its instance variables, but it is insufficient if a
wider context is required to determine the "right thing to do". We then
have to use the structureCopy operation described in the next section.

11.4.3 structureCopy for the general case

This algorithm treats a directed graph roughly as a tree structure with
cross-references. It assumes that we know how to start from a given
root object and traverse the structure to find all objects that shall
always be copied. It further assumes that with this knowledge
available, we can identify the pointer variables that need to be
modified. The algorithm is similar to postCopy, except that we now
collect all copied objects before finalizing the operation.

Figure 11.19 shows an example. The subset of objects to copy
depends on the selected root. We have selected object B, and want to
copy D and E as well. We would have copied the whole structure if
we had selected object A as the root, and only a single object if we
had selected object D or E.

Copying a part of a
directed graph

29 March 1995 23:05 11.4 Object duplication

©Taskon 1992. Page 419Advanced reuse based on object instances

F GED

CB

A

E*D*

B*

Figure 11.19
Structure duplication

example

The primary object to be copied is shown in heavy outline; the secondary objects
which shall also be copied are shown in light outline; environment objects which
shall not be copied are shown dashed. The duplicate objects and references are
shown gray.

The algorithm has two phases:

Identify objects to be duplicated and create shallow copies.
Traverse the master structure of objects. For each object, create a
shallowCopy and save it in a dictionary that associates each
master object with its copy. In figure 11.19, the dictionary
associates objects B, D and E with the corresponding copies B*,
D* and E*.

The framework takes care of structure traversal, object
duplication and accumulation. The application programmer
overrides the method objectsToBeCopied, which returns a
Collection of instance variables that should always be copied if
the receiver object is copied. For the example in figure 11.19, the
method will return (D, E) in object B and empty collections in
objects D and E. The cross-references are ignored in this phase.

1.

11.4 Object duplication 29 March 1995 23:05

Advanced reuse based on object instances©Taskon 1992. Page 420

Complete the copy operation in each object in the context of the
set of duplicated objects. Each copied object is asked to fix its
references given the dictionary of duplicated objects.

The application programmer must override the method
completeDuplication which has one parameter: the dictionary of
copied objects. This algorithm assumes that this will be sufficient
information to determine what to do with the different references.
There are three cases:

2.

Copied-to-copied. The reference is replaced with a reference
to the corresponding copy. Example: after the shallowCopy,
object D* will have a reference to object E. This reference is
replaced with a reference to the corresponding copy found in
the object dictionary, in this case E*. If this is a two-way
pointer, we also inform the other object so that it can establish
the reverse pointer. This is consistent with case 2, but implies
that the method must tolerate that the reference has already
been modified -- e.g., object D* will establish both reference
D*-E* and E*-D*. When we get to D*, it has to recognize this
and do nothing.

¤

Copied-to-uncopied. The reference is left unchanged.
Example: after shallowCopy, object E* will have a reference
to object F, which is left unchanged. If this is a two-way
pointer, it is the responsibility of object E* to inform object F
so that it can establish the reverse pointer.

¤

Uncopied-to-copied. This is the case where an environment
object shall have a pointer to the copy, but the copy does not
know about it. In our example, object C shall establish a
pointer to E*, but neither E nor E* knows C. This case is not
covered by the general framework. The application
programmer has to take special action, presumably in the
completeDuplication method of object B.

¤

We could use this algorithm to duplicate the colored rectangle
discussed in the previous subsection. The application programmer has
to write the two duplication methods in the ColoredRectangle class:

Revisiting the
colored rectangle

ColoredRectangle (copying)
addObjectsToBeCopiedTo: objectSet

super addObjectsToBeCopiedTo: objectSet.
objectSet add: origin.
objectSet add: corner.

ColoredRectangle (copying)
completeDuplication: objectDictionary

super completeDuplication: objectDictionary.
origin := objectDictionary at: origin ifAbsent: [origin].
corner := objectDictionary at: corner ifAbsent: [corner].
palette := objectDictionary at: palette ifAbsent: [palette].
colorIndex := colorIndex.

29 March 1995 23:05 11.4 Object duplication

©Taskon 1992. Page 421Advanced reuse based on object instances

Two comments: Both methods call the corresponding method in the
superclass (by super ...) to give it a chance to do its part of the
algorithm. The completeDuplication method has a very general
format: The reference is replaced with a reference to the copy if it is
defined; it is otherwise left unchanged. More specialized code may be
needed if the semantics of the problem warrants it.

The application
programmer need

not override the
framework methods

The main methods for structure duplication can be defined in class
Object and need not be modified by the application programmers. We
include a sketch of these methods for your perusal.

Object (copying)
structureCopy

" A client sends this message to obtain a structured copy of the receiver. "
| objectDictionary |
objectDictionary := IdentityDictionary new.
self collectDuplicatesIn: objectDictionary.
objectDictionary values do:

[:copiedObject | copiedObject completeDuplication: objectDictionary].

Object (copying)
collectDuplicatesIn: objectDictionary

objectDictionary at: self put: self shallowCopy.
objectSet := IdentitySet new.
self addObjectsToBeCopiedTo: objectSet.
objectSet do: [:subObject | subObject collectDuplicatesIn: objectDictionary].

Object (copying)
addObjectsToBeCopiedTo: objectSet

^self

Object (copying)
completeDuplication: objectDictionary

^self

11.4.4 deepCopy - a dangerous operation

An alternative is to use the deepCopy mechanism, which copies the
object itself and all its collaborators recursively as illustrated in figure
11.20.

29 March 1995 23:0511.4 Object duplication

©Taskon 1992. Page 422 Advanced reuse based on object instances

C

copyE

E

D

B

A
original

copyD

copyC

copyB

copyA

deepCopy

Figure 11.20
deepCopy copies the

object and all its
references
recursively

The recursive nature of deepCopy makes it unsuitable in many
situations, and it can be quite devastating. Any circular object
structure will lead to infinite recursion:

| arr |
arr := Array new: 1.
arr at: 1 put: arr.
arr deepCopy.

Our recommendation is that you should never use deepCopy; use one
of the other algorithms instead.

11.4 Object duplication29 March 1995 23:05

Advanced reuse based on object instances ©Taskon 1992. Page 423

29 March 1995 23:0511.4 Object duplication

Advanced reuse based on object instances©Taskon 1992. Page 424

Chapter 12
Case study: A Value Chain for Intelligent

Network Services

This chapter is written for the specially interested person with a
programming background. It illustrates the technical and
organizational aspects of a specific value chain in some detail. We
start by presenting an example target system, and describe its objects
and execution processes. We then discuss each layer in turn.

A simple case with an extensible solution
User layer
Subscriber layer
Service Provider layer
Service Creator layer
Service Constituent Creator layer
Network Provider layer

 29 March 1995 23:05

Case study: A Value Chain for Intelligent Network Services ©Taskon 1992. Page 425

A simple case with an extensible solution12.1

In a nutshell
Providing telecommunication services is a very large operation with many actors.
This case study describes a possible value chain and fills in details for a plain
telephone service. We populate each of the six layers in the value chain and choose
appropriate technology for each layer.

Service Provider Layer

Service Creator Layer

Subscriber Layer

Network Provider Layer

Service Constituent Creator Layer

User Layer
Figure 12.1

Intelligent Network
value chain

Intelligent Network (IN) Services were introduced in chapter 10.2.
We will now go into more detail. The value chain was shown in figure
10.8, we repeat it in figure 12.1 for your convenience. The layers are
as follows:

1. User layer. The User is the party who wants to use available
services, and who is responsible for selecting and invocating a
service. The typical User wants to concentrate on his or her tasks
and should need to know a minimum of IN Service technology.
Service interfaces should be as intuitive as possible, and only
provide the functionality actually desired by each particular user.

The work processes on the User layer are determined by the
user's tasks and are outside the scope of this discussion.

29 March 1995 23:0512.1 A simple case with an extensible solution

Case study: A Value Chain for Intelligent Network Services©Taskon 1992. Page 426

Subscriber layer. The Subscriber is the party who purchases a set
of services on behalf of one or more Users, who pays for them,
and who is responsible for making the services available to his or
her users. In private households, the Subscriber is the User who
enters into contract with the telecommunications provider and
who pays the bills. In businesses, the Subscriber will often be a
facilities manager. The personal profile of the Subscriber is
similar to the User profile, but the professional Subscriber may
require somewhat more sophisticated facilities. The success
criterion of the Subscribers is that the Users get to create their
value, effectively and effortlessly.

The work processes on the Subscriber layer are outside the scope
of this discussion.

2.

Service Provider layer. The Service Provider is a party who has a
license for activating Intelligent Network service software for
specified Subscribers. We think of the Service Provider as the
corner Teleshop where consumers can buy regular services, but it
could also be a professional customer consultant who sells
specialized services to advanced corporations. The typical Service
Provider person is a sales clerk or customer consultant with fairly
short IN Service training, and should primarily be concerned with
understanding customer needs and how they can be satisfied with
available IN Service products. The success criterion is likely to be
that as many Users as possible use (and pay for) as many services
as possible.

The main work processes on the Service Provider layer will be
designed to support consulting and retail sales.

3.

4. Service Creator layer. The Service Creator is a party who has a
license for defining Intelligent Network service software and
install it in the telecommunications network. The Service Creator
will currently be a Public Telephone Authority (PTA), but our
model is open for several commercial Service Creator companies.
The typical Service Creator person should understand the realities
of the marketplace and the needs of the Service Provider, and
cannot be expected to be expert in computer programming or the
inner details of the IN technology. The success criterion is that
the Service Provider constructs services that not only can be sold,
but that actually will be used and create a revenue stream.

The main work processes on the Service Creator layer will
involve collecting and analyzing market intelligence; specifying
and defining products; and creating relevant documentation.

12.1 A simple case with an extensible solution29 March 1995 23:05

©Taskon 1992. Page 427Case study: A Value Chain for Intelligent Network Services

5. Service Constituent Creator layer. The Service Constituent
Creator is a party who has a license for producing software
building blocks that may be configured into IN services. These
software building blocks, called Service Constituents, are the
reusable components used by the Service Creator to create service
software. The typical Service Constituent Creator person is a
computer programmer specialized in some technical aspect of IN
Services. The Service Constituent Creator will build on the results
of the Network Providers and other Service Constituent Creators,
and will understand how these results can be applied to the
problems at hand. The success criterion will be that the Service
Creators can create all the services that are needed in the market,
and that the service constituents are simply presented to the
Service Creators so that they can focus on the market and the
products rather than the technology.

The main work processes on the Service Constituent Creator layer
will be crafted after some software life cycle model such as the
waterfall model or the spiral model [Boehm 88].

Network Provider layer. The Network Provider is the party who
provides the basic communication facilities used by the IN
services. The Network provider must also have facilities to
control the integrity of the network and its services. The typical
Network Provider person will be expert in some aspect of
communication switching technology. This is typically the
responsibility of Public Telecommunications Authorities (PTAs).
The Network Provider is, therefore, a large corporation
possessing deep technical and commercial skills.

The main work processes on the Network Provider layer will be
crafted to support the creation of very large, ultrareliable,
distributed communication systems.

6.

The actors' knowledge of Intelligent Networking technology varies
from nothing in the top layer to expert on the lower layers. Their
interest in the subject varies correspondingly from the User, whose
interests definitely lie somewhere else, to the Network Provider,
whose professional life is centered on telecommunications
technology. This must be reflected in the kind of facilities to be
installed on the different layers, and hence also the underlying
technology.

Matching
requirements to

technology

29 March 1995 23:0512.1 A simple case with an extensible solution

Case study: A Value Chain for Intelligent Network Services©Taskon 1992. Page 428

No programming in
four upper layers

Seen from a User, a service appears as something concrete which may
be bought and used. Seen from the IN system, a service is rather
intangible; it is realized as a number of interacting objects. Some of
these objects are specific to the service, while others are shared with
other services.

The specification of a computation such as the execution of an IN
service is traditionally considered as an exercise in computer
programming. But computer programming is notoriously expensive,
time consuming and error prone. This makes us take a much broader
view, and we are actively searching for ways of specifying IN
services that avoid programming. Possible means to achieve this
without loss of flexibility is through parameterization of general
objects, duplication of library objects and object structures, and
instantiation controlled by conceptual schemas. When we do have to
create new programs, the effort can be materially reduced by the
proper application of frameworks and other reusable components.

BOX: What is programming?
Programming could be defined as the specification of a computation. System
generation through parameterization; table driven system generation; simple,
application-specific visual generating tools, etc., would then all be classified as
programming. We use "programming" in a more restricted sense, and limit it to
mean the specification of a program in a programming language such as Eiffel,
C++, or Smalltalk.

It was interesting and instructive to discover that all our reuse
technologies found their proper place in the IN Service value chain.
The highlights can be summarized as follows:

All reuse
technologies needed

for IN Services

User layer and Subscriber layer. If the service is appropriately
designed, the two top layers may customize it by duplication and
supplying suitable parameters.

1.

Service Provider layer. The Service Provider specifies specific
services for a customer in the form of a contract document. The
document is edited on a syntax-directed editor controlled by an
OOCS Schema.

2.

Service Creator layer. The Service Creator specifies the Universe
of all possible services and combinations of services that may be
sold by the Service Provider. The specification is in the form of
an OOCS Schema. The Service Provider defines the service
entities and binds them to appropriate OOCS Types. (Called
Service Constituents in the IN community).

3.

29 March 1995 23:05 12.1 A simple case with an extensible solution

Case study: A Value Chain for Intelligent Network Services ©Taskon 1992. Page 429

Service Constituent Creator layer and Network Provider layer.
The Service Constituent Creation and the Network Provider
layers are the only layers involving programming in the
traditional sense. This programming is minimized through the
application of frameworks. The deliverables are OOCS Types.

4.

We illustrate the nature of the IN value chain through a system that
was demonstrated at TINA-93 [Ree 93]. The system was designed so
that its operation could be demonstrated on a computer screen. The
running system consisted of 18 objects -- ridiculously simple in terms
of telecommunications technology, but sufficient to illustrate how we
match actors and technology in the IN value chain.

An initial system

We describe the operation of the running system in this section, and
use it as a background for our subsequent discussion of the different
layers in the succeeding sections.

The service in our initial system is what is affectionately known as
POTS -- Plain Old Telephone Service. Person-A wants to establish a
telephone conversation connection to Person-B. It is the responsibility
of the service to establish the connection between the parties. The
service is dormant while A and B converse. The service is again
activated to take down the connection and arrange for charging when
the conversation is complete. Our system focus on the first phase:
establishing the connection.

The Plain Old
Telephone service

Our implementation separates POTS into two parts: an A service
which is responsible for the calling end, and a B service which is
responsible for the called end. This makes it possible to let the called
party decide what to do with an incoming call: reject it, accept it, or
direct it to specified equipment or to another User. We have
implemented the following two service objects:

1. a Calling Telephone Service (Tel-A), which tries to establish a
connection to User-B. The Users are identified by their userIDs in
the Service Domain, and the Telephones are identified by their
accessPointIDs in the Switching Domain.

a Called Telephone Service (Tel-B) with the capability to accept
or refuse the incoming request, to forward the call to a third User,
or to route the call to one of a number of Telephones associated
with User-B. In the latter case, User-B may be thought of as a
manager of several operators, for example, in a booking office.
Each operator is characterized by a Telephone with its own
accessPointID, and Tel-B selects one of them to handle each
incoming call.

2.

12.1 A simple case with an extensible solution 29 March 1995 23:05

©Taskon 1992. Page 430 Case study: A Value Chain for Intelligent Network Services

A single object called InvocationManager, #102 InvMngr, is the main
point of contact with the Service Domain for all Users. This object
delegates the management of each User's affairs to an Invocation
Analyzer object associated with each User (#104 Anlz-A and #106
Anlz-B). Specifically, an Invocation Analyzer object holds a set of
master service objects that represent all services available to its User.

Invocation Manager
and Invocation

Analyzer are the
main objects in the

Service Domain

The public switched telecommunication network is an enormous
distributed computer system; by direct dialing I can choose to connect
to any one of some 200 million different B-Users. Many different
operators operate equipment of many different kinds, but it is all
interconnected into the one, coherent global communication system.

A virtual model of
the switch for IN

The IN architecture (FOOTNOTE: See figure 10.7 on page 378??)
encapsulates this distributed and nonhomogeneous system and present
it to the Service Domain as a coherent service, accessible through
common, high level interfaces.

The Network
Connection Point

One example of such an interface is a Network Connection, which
enables an IN service object to order the interconnection of two or
more access points in the Switching Domain. A Network Connection
has one Connection Point and any number of Legs, see figure 12.2.
Several telephones can be interconnected through Legs which share a
common Connection Point. A Leg is an abstract wire with two
termination points: the Connection Point and the socket in the wall
which is identified by the accessPointID and where you plug in your
telephone.

Network
access point

with
accessPointID

Network
access point

with
accessPointID

Leg

Leg

Connection
Point

Figure 12.2 A
Network Connection

interconnects any
number of network

access points by Legs
which meet in a

common Connection
Point

The initial object structure is shown in figure 12.3. The Users are
represented by two User objects, #103 User-A and #105 User-B. #103
User-A is responsible for requesting a service (Tel-A) and initiating
the invocation process, presumably through some user interface
program inside the object. The #105 User-B object is responsible for
accepting or refusing the requested call, as specified in the Calling
Telephone service.

18 objects in the
initial system

12.1 A simple case with an extensible solution29 March 1995 23:05

©Taskon 1992. Page 431Case study: A Value Chain for Intelligent Network Services

#107
Tel-A

#108
Tel-B

#104
Anlz-A

#103
User-A

#107-1
Tel-A

#102
InvMngr

#111
Tel-B

#106
Anlz-B

#117
AP-Sel

#118
CallForw

#111-1
Tel-B

#105
User-B

#117-1
AP-Sel

#118-1
CallForw

#113
SwMngr

#114
ConPt

#115
Leg-A

#116
Leg-B

Data for User A (Carl Petter)
with Service library A

Data for User B (Trygve)
with Service library B

Switching Domain

Figure 12.3 Service
Domain objects

involved in
establishing a

Telephone Service

A typical invocation process is as follows:

1. The User object represents the User, think of it as an object which
resides within the User's telephone. #103 User-A desires to
establish a telephone service to User-B. It starts by asking the
invocation manager #102 InvMngr for access to A's invocation
analyzer. InvMngr returns a pointer to #104 Anlz-A.

#103 User-A then asks #104 Anlz-A for a Calling Telephone
Service. #104 Anlz-A checks its store of service objects, selects
#107 Tel-A, installs a duplicate #107-1 Tel-A as the current active
service object, and returns a pointer to this copy.

2.

#103 User-A asks #107-1 Tel-A for a call to a user identified by
its userID.

3.

#107-1 Tel-A asks #102 InvMngr for access to the invocation
analyzer of the user with the given userID, and gets a pointer to
#106 Anlz-B.

4.

12.1 A simple case with an extensible solution 29 March 1995 23:05

©Taskon 1992. Page 432 Case study: A Value Chain for Intelligent Network Services

#107-1 Tel-A asks #106 Anlz-B for its Called Telephone Service.
#106 Anlz-B checks its store of service objects, selects #111 Tel-
B, installs a duplicate #111-1 Tel-B as the service object currently
active for B, and returns a pointer to this copy.

Notice that the choice of calling service was done in an object
belonging to A, while the choice of called service was done in an
object owned by B. This permits detailed customization to the
preferences of different Users.

5.

#107-1 Tel-A asks #111-1 Tel-B if it will accept a call. We
assume the answer is YES.

6.

7. #107-1 Tel-A asks the globally available manager of the
Switching Domain, #113 SwMngr, for a Connection Point. The
manager creates one and returns a pointer to #114 ConnPoint.

#107-1 Tel-A asks #114 ConPt for a Leg. #114 ConPt creates one
and returns a pointer to #115 Leg-A.

8.

#107-1 Tel-A sets the accessPointID of User A in #115-Leg-A.9.

#107-1 Tel-A requests #111-1 Tel-B to establish a leg from #114
ConnPoint to the accessPointID of whichever Telephone it wants
to take the call.

10.

11. #111-1 Tel-B is now free to select the called Telephone in any
way it chooses. In our initial implementation, #111-1 Tel-B may
be initialized with any number of selectors, each selector
containing a condition and an action. The condition can be on
time of day, day of week, holiday/workday etc. Two kinds of
selectors provide two different kinds of actions: either selecting
an Access point belonging to User-B, or forwarding the
connection request to some other User. In figure 12.3, only one
selector of each kind is shown (#117 AP-Sel and #118 CallForw).
The selectors are tested sequentially; the first with a satisfied
condition will be activated. If none of the selectors are satisfied, a
default Telephone will be used.

If the call is to be completed by #111-1 Tel-B, #111-1 Tel-B uses
its selected accessPointID and the Connection Point reference to
establish a Leg to the Connection Point.

12.

13. The network connection in the Switching Domain is established,
and the conversation can commence.

12.1 A simple case with an extensible solution29 March 1995 23:05

©Taskon 1992. Page 433Case study: A Value Chain for Intelligent Network Services

12.2 User layer

In a nutshell
The User is the party who wants to use available services, and who is responsible for
the selection and invocation of a service. The invocation leads to the creation and
installation of a copy of the relevant objects and the execution of the service. All
remaining parameters must be bound by the User as part of the service invocation.

The cryptic codes to be used to activate current telephone services are
printed on one of the first pages in the telephone directory. A few
examples translated from our local telephone directory:

Current interfaces
cumbersome

Call Forward Unconditionally (CFU): wait for dialing tone, touch
21, touch new number which is to receive call, terminate with
#, wait for acknowledge tone, hang up. To cancel CFU: wait for
dialing tone, dial #21#, wait for acknowledge tone, hang up.

1.

Call Forward on Busy (CFB): wait for dialing tone, touch *67*,
touch new number which is to receive call, terminate with #, wait
for acknowledge tone, hang up. To cancel CFB: wait for dialing
tone, dial #67#, wait for acknowledge tone, hang up.

2.

Call Forward on no Reply (CFR): wait for dialing tone, touch
61, touch new number which is to receive call, terminate with
#, wait for acknowledge tone, hang up. To cancel CFR: wait for
dialing tone, dial #61#, wait for acknowledge tone, hang up.

3.

We would like to assume a simpler user interface: some of the users'
telephones could have a switch with an associated warning light. A
user leaving the office will throw the switch; this causes the warning
light to come on and a CFU to a predefined number. When entering
the office again, the user will return the switch to the off position,
canceling the service and extinguishing the light. More advanced
telephones could have a touch sensitive screen that supported simple,
yet powerful interaction with the user.

Invocation by trading
and object
duplication

In our initial system, an Invocation Analyzer object was allocated to
each user. All services available to the User were stored in a library of
master objects in the User's Invocation Analyzer object (encapsulated
aggregation). The Invocation Analyzer was partially responsible for
the following steps in the life cycle model:

29 March 1995 23:0512.2 User layer

Case study: A Value Chain for Intelligent Network Services©Taskon 1992. Page 434

1. Activation. The service is made available to the User by adding a
service object to the set of services which is managed by the
Invocation Analyzer object.

Invocation. The User's Invocation Analyzer object selects a
suitable master service object in response to a request from the
user (via some terminal equipment) or from a service object,
duplicates it and installs the copy for execution. Remaining open
parameters, such as the new number which is to receive a
forwarded call, must be bound before execution.

Object trading technology described in chapter 11.2 was used to
assure that the selected service object was appropriate for the
requesting client; object duplication was done according to the
algorithms described in chapter 11.4.

2.

3. Execution. The selected service objects were responsible for
service execution, but they were monitored by the Invocation
Analyzer which handled exceptions and service termination.

Deactivation. The Invocation Analyzer removes the service from
its library of master service objects.

4.

User production
facilities

The User's production facility is defined by the Subscriber. It consists
of an (advanced) telephone which is permanently associated with the
Invocation Analyzer object. The Invocation Analyzer object is loaded
with objects for all services available to the user.

29 March 1995 23:05 12.2 User layer

©Taskon 1992. Page 435Case study: A Value Chain for Intelligent Network Services

Subscriber layer12.3

In a nutshell
The Subscriber is the party who purchases a set of services on behalf of one or more
users, and is responsible for making the services available to them. The work of the
Subscriber involves selecting a desired service and making a copy of the relevant
objects available to the User. Some of the service parameters may be bound as part
of this process.

We assume that the Subscriber has a special terminal with bitmapped
display, keyboard and a pointing device. The Subscriber could, for
example, manage service availability to the individual users through a
direct manipulation interface as shown in figure 12.4.

Possible user
interface

Subscriber Service

CFB

CFU

Switched CFU

CFR

Customize

Figure 12.4 A
possible Subscriber

tool

This interface has one column for each User and one row for each available Service.
A cross in a cell indicates that the given Service is not available for the given user,
presumably because the User's equipment does not support it. Other cells are touch
sensitive, clicking in the cell causes the corresponding Service to be activated
(checked) or passivated (blank) for the given User. There is a Customize button for
each service which may be customized through this interface. If the Subscriber
wants to customize a service, he clicks the Customize button which causes a new
interface to pop up. In this case, this interface will probably allow the Subscriber to
set the target for the Switched CFU.

The Subscriber is partly responsible for the Activation and
Deactivation steps in the life cycle model. The subscriber is
represented by an object in the IN system which holds an object for
each of the services purchased by the Subscriber. Applying the
interface shown in figure 12.4, the Subscriber makes these services
available to individual Users.

Subscriber
responsible for

Service Activation
and Deactivation

29 March 1995 23:0512.3 Subscriber layer

©Taskon 1992. Page 436 Case study: A Value Chain for Intelligent Network Services

1. Activation. The service is made available to the Subscriber by
adding a master service object to the set of service objects which
is managed by the Subscriber's management object. Some service
parameters may be bound at this stage.

The service are later made available to the Users by duplicating
the service masters, binding parameters, and installing the copies
as new masters in the Users' Service Analyzer objects.

2. Deactivation. A service is made unavailable by removing the
corresponding service objects from the Subscriber manager object
and the Invocation Analyzer objects of all the Subscriber's Users.

Subscribers were omitted from our initial system to keep it as simple
as possible. You will, therefore, not find any Subscriber objects in
figure 12.3.

The Subscriber's
production facilities

The Subscriber production facility consists of some suitable
equipment which supports the Subscriber's tool, e.g., the one shown
in figure 12.4.

29 March 1995 23:05 12.3 Subscriber layer

Case study: A Value Chain for Intelligent Network Services ©Taskon 1992. Page 437

12.4 Service Provider layer

In a nutshell
The Service Provider is an actor who is licensed to customize services and make
them available to Subscribers. The Service Provider selects services and service
variants, and commands the instantiation of the necessary objects and their
installation in the Subscriber's management object. (Directly into the User's
invocation analyzer object in our initial system, which does not have a Subscriber
layer.)

The main responsibility of the Service Provider layer is to define
Subscribers and their services. An appropriate medium for this
information is a Service Contract Document, which may be printed
(and signed), and which may be executed to cause the installation of
the Subscribers and their services in the Service Domain.

Possible user
interface

The initial tool for creating this document is the intelligent editor
shown in figure 12.5. It permits the Service Provider to create any and
all permissible service variants, but which automatically prevents the
creation of illegal combinations.

Figure 12.5 Editor
for specifying the
Service Contract

Document

29 March 1995 23:0512.4 Service Provider layer

Case study: A Value Chain for Intelligent Network Services©Taskon 1992. Page 438

The tool in figure 12.5 is in two parts: The left margin gives a
graphical representation of the structure. The rectangular symbols are
OOCS Entities, they represent the kind of object shown to the right.
The small, black triangles represent insertion points, they indicate
where the user can insert additional objects. An insertion point only
permits the insertion of new objects which are appropriate at that
point in the structure as specified in the OOCS schema.
(FOOTNOTE: See the following section.)

The tool edits a tree
structured model

The tool supports lowlevel concepts such as texts, graphics and tables,
as well as highlevel concepts such as IN Services and Access Point
Selectors. A trading mechanism activates an appropriate editor when
the user points inside one of the information objects in the right part
of the tool. The tool permits selective zooming, the ellipsis after an
object symbol indicates that the object presentation has been
collapsed into a one-liner.

Figure 12.5 shows the editor when the Service Provider is defining
the Tel-B service. The specification says that the network access
points with IDs 222, 333, 444 are to be selected in a round robin
fashion Monday through Friday between 08:00 and 16:00. The hidden
call forward selector specifies that all day Saturday and Sunday,
incoming calls are to be forwarded to the User with userID 5601. In
all other cases, the call is to be received in the default Access Point
with accessPointID 222.

The Service Creator will need a powerful personal computer with
suitable software for supporting the intelligent editor, printing and
administrative management of contracts, and automatic
communication for operations such as service installation. The user
interface, as described here, is based on the object trading technology
described in chapter 11.2. The Service Creator specifies a OOCS
Schema that defines all permissible services. OOCS Schemas were
discussed in chapter 11.3.

The Service
Creator's production

facilities

A sample contract
document

Figure 12.6 shows a sample contract document from the initial
system. More work is needed to make it into something that could be
used in a real IN service marketing operation.

12.4 Service Provider layer29 March 1995 23:05

©Taskon 1992. Page 439Case study: A Value Chain for Intelligent Network Services

The Teleshop
Date of issue: 22 September 1993
Subscriber Service Contract
Teleshop, Gaustadalléen 21, N-0371 Oslo 3 Norway. Tel. + (47) 22 95 86 31

Subscriber name: Manufacturer Inc
Billing address: Drammensveien 1; Oslo
Subscriber service ID: 56
Subscriber Access Point IDs #(111 222 333 444 555 666)

User: Carl Petter
Carl Petter is an example of a User who has a plain telephone connection,
he uses the Switch identifier 111.

Plain Old Telephone calling party specification
Telephone A from Access Point ID: 111

Plain Old Telephone called party specification
Telephone B from Access Point ID: 111

User: Trygve
Trygve has no Telephone A service, so he cannot place outgoing calls.

Plain Old Telephone called party specification
Telephone B from Access Point ID: 222
Access Point Allocation

Weekday selection: #(#Monday #Tuesday #Wednesday #Thursday #Friday)
Start time: 08:00
End time: 16:00
Choose: roundRobin
Access point IDs: #(222 333 444 555 666)

Call Forward Specification
Weekday selection: #(#Saturday #Sunday)
Start time: 00:00
End time: 24:00
Choose: roundRobin
Forward Service IDs: #(5603)

Figure 12.6 A sample
contract document

12.4 Service Provider layer 29 March 1995 23:05

©Taskon 1992. Page 440 Case study: A Value Chain for Intelligent Network Services

12.5 Service Creator layer

In a nutshell
The Service Creator is a party who has a license for producing telecommunications
service software to be made available for installation in the telecommunications
network. The Service Creator creates an OOCS Schema that defines a family of
services, and possibly specializes their names and some service parameters to suit
the Service Provider.

The OOram Composition System (OOCS) was described in chapter
11.3. Figure 12.7 shows the condensed OOCS Schema for our system,
and figure 12.8 shows the extended schema.

The Service Creator
specifies all

permissible services

Figure 12.7
Condensed OOCS
Schema

Text
0:N

SubscrData
1:1

CF-Selector
0:N

AP-Selector
0:N

Conn-B-Data
1:1

Text
0:N

Conn-B
0:1

Text
0:N

Conn-A-Data
1:1

Conn-A
0:1

User-Data
1:1

User
0:N

Text
0:N

document
0:1

Name of Entity in first line. Cardinality constraints in second line: minimum count :
maximum count.

Condensed OOCS
Schema shows

service semantics

Figure 12.7 says that a document (i.e., a contract) consists of any
number of Text objects, exactly one SubscrData object, and any
number of User objects. The specification of a User consists of any
number of Text objects, exactly one User-Data object, and and any
number of different services. The services offered here are Tel-A and
Tel-B; each is specified with describing Text objects and certain
attributes (Tel-A-Data and Tel-B-Data). Tel-B-Data may optionally
be modified with one or more Access Point Selectors (AP-Selector)
and/or Call Forward Selectors (CF-Selector).

29 March 1995 23:05 12.5 Service Creator layer

Case study: A Value Chain for Intelligent Network Services ©Taskon 1992. Page 441

The expanded OOCS Schema includes groups and types as shown in
figure 12.8. Groups, which are shown with thin outline in the figure,
control the legal sequence of objects, and also the total number of
objects within a group.

There are three groups under ServiceContract: SubscrText, Subscriber
and User. This means that all subscriber texts must come in front of
the subscriber data, which must come in front of all user definitions.

There are two entities under the group UserDef: Text and User-Data.
The cardinality of Text is here 0:N, so there can be any number of
Text objects. The cardinality of User-Data is 1:1, so there must be
exactly one User-Data object. Since these two entities are in the same
group, there may be any number of Text objects before and after the
User-Data object. The cardinality of a group constrains the total
number of objects in that group. So if cardinality of the User-Def
group had been 1:2, there could have been at most one Text object
which could come before or after the User-Data object.

Groups in expanded
OOCS Schema

constrain cardinality
and object sequence

Types form bridge
from OOCS Schema

to implementation

We need eight OOCS Types to implement the schema of figure 12.8:
Text, SubscrInstall, Section, UserInstall, Tel-A, Tel-B, AP-Sel, and
CallForw.

Section and Text are very general types which can be reused in a great
many circumstances. The conditional types AP-Sel and CallForw are
quite specific, but could conceivably be reused wherever we needed to
select an accessPointID or a userServiceID.

The OOCS Types are created in the next layer down by the Service
Constituent Creator. The Service Creator need only be concerned
about their functionality and can ignore design and implementation
details. The tools will ensure that he can create any legal service
specification and none other.

29 March 1995 23:0512.5 Service Creator layer

Case study: A Value Chain for Intelligent Network Services©Taskon 1992. Page 442

Conn-A
Entity 0:1

Text
Entity 0:N

Text
Type

Contract
Entity 0:1

SubscrInstall
Type

Services
Group 0:N

AP-Sel
Type

Text
Type

SubscrData
Entity 1:1

UserInstall
Type

Subscriber
Group 1:1

User-Data
Entity 1:1

CallForw
Type

Text
Entity 0:N

Tel-A
Type

AP-Selector
Entity 0:N

Conn-B-Data
Entity 1:1

Text
Entity 0:N

Text
Group 0:NText

Group 0:N

Text
Entity 0:N

Section
Type

Section
Type

Conn-B
Group 1:1Conn-A

Group 1:1

Conn-A-Data
Entity 1:1

Tel-B
Type

UserDef
Group 0:N

Condition
Group 0:N

Text
Type

Section
Type

Text
Type

ServiceContract
Type

User
Entity 0:N

CF-Selector
Entity 0:N

Conn-B
Entity 0:N

SubscrText
Group 0:N

User
Group 0:N

Figure 12.8 Detailed OOCS Schema

12.5 Service Creator layer29 March 1995 23:05

Case study: A Value Chain for Intelligent Network Services ©Taskon 1992. Page 443

The Service Creator may define different OOCS Schemas for
different categories of Service providers. One end of the spectrum
could be the clerks in the corner Teleshop who get to use a small
schema, which just permits them to specify the simple services they
learned in their training course. Another end of the spectrum could be
a highly competent customer consultant who gets to use a very
elaborate schema that he knows how to exploit to tailor advanced
services to the needs of his sophisticated customers.

Several Schemas can
be defined

Objects seem to be eminently suitable as information carriers on the
upper four layers because they remember specific values set to the
service parameters:

The Service Creator specifies OOCS Schemas, which define the
services and all their permissible variants.

1.

The Service Provider instantiates the service objects, sets certain
parameters, and installs them in the Subscriber's management
object.

2.

The Subscriber duplicates the service objects, binds further
parameters, and installs them with the User.

3.

4. The User duplicates the service objects, binds remaining
parameters, and installs them in the network for execution.

29 March 1995 23:0512.5 Service Creator layer

©Taskon 1992. Page 444 Case study: A Value Chain for Intelligent Network Services

Service Constituent Creator layer12.6

In a nutshell
The deliverables from the Service Constituent Creator layer are OOCS Types --
building blocks, which may be composed by the Service provider under the control
of OOCS Schemas as specified by the Service Creator.

The OOCS Type is implemented as a computer program that is created in the
Service Constituent Creator layer. We envisage extensive reuse. The most important
reusable components are the Framework Service Constituents.

Two kinds of Service
Constituents

In the terminology of the IN industry, a Service may be constructed
from a number of Service Constituents. In our initial value chain,
services are constructed both by composition and by inheritance, and
have, therefore, two different kinds of Service Constituents: OOCS
Types and OOram Frameworks. The relationships between them is
shown schematically in figure 12.9.

Deliverables from
this layer are OOCS

Types

The deliverables from this layer to the Service Creator layer are
OOCS Types. They appear in the OOCS Schema of figure 12.8 as
OOCS Types, and their nature is discussed in chapter 11.3.2.

OOCS Type
Service Constituent

Service Creator layer

Switching Domain layer delivers Frameworks

Framework
Service Constituent

OOCS Type
Service Constituent

Framework
Service Constituent

Framework and
OOCS Type

Service Constituent

Figure 12.9 The
internal structure of

the Service
Constituent Creator

layer

Each box signifies a Service Constituent. Black arrows signify delivery of OOCS
Types to the Service Creator layer for schema composition; the open arrows signify
synthesis relationships.

29 March 1995 23:05 12.6 Service Constituent Creator layer

©Taskon 1992. Page 445Case study: A Value Chain for Intelligent Network Services

Consider object #107-1 Tel-A in the sample object structure of figure
12.3. This object appears as different roles in a number of different
descriptions:

A typical object plays
many roles

1. It is a copy of the master object #107 Tel-A in figure 12.3.

It is an entity Conn-A-Data in the OOCS Schema of figure 12.8.2.

It is a type Tel-A in the OOCS Schema of figure 12.8.3.

It is configurable according to the mechanisms used for Schema
composition.

4.

The design of its service functionality is specified in a role model,
POTS-A, which will be described briefly below.

5.

It has a class which implements the calling end of a POTS
communication channel.

6.

It exploits the functionality of the switching Domain by playing
the role of Client to the Switch Connection framework, which is a
deliverable from the Network Provider Layer.

7.

Framework Service
Constituents
organized in

Modules

A Framework Service Constituent is usually described by several role
models and object specifications, and the Framework Service
Constituent is a natural candidate for being packaged in a module.

A Framework Service Constituent module may import one or more
frameworks from other Framework Service Constituent modules and
may export frameworks to other Framework Service Constituent
modules. On the top level, we find OOCS Types that are used as
building blocks in the schemas of the Service Creator layer.

The implementation of our tiny initial system consists of 38
application-specific classes with 314 methods as shown in the
program statistics in table 12.1. There are only six modules, module
Network is the deliverable from the Network Provider layer and the
others are organized in Service Constituent Creator sublayers as
shown in figure 12.10 and described below:

1. User. This module defines the experimental user interfaces. The
module does not export to the Service Creator layer because this
part of the system is not configurable in our initial system.

2. Tel-A. This module defines the called part of POTS including the
access point selection and call forward functionality. In a full size
system, these latter functions would be factored out into two
separate modules to make them available for reuse.

29 March 1995 23:0512.6 Service Constituent Creator layer

©Taskon 1992. Page 446 Case study: A Value Chain for Intelligent Network Services

3. Tel-B. This module defines the calling part of POTS, and is
responsible for actually establishing the connection in the
Switching Domain in our initial system. It imports the Switch
Connection framework from the Network Provider layer.

Abstr-Tel. This module exports a mechanism which describes
how the calling and called parts of the service interact in general
terms. The mechanism is imported by the TelA and TelB
modules.

4.

Invocation. This module exports a framework, which defines the
environment of the service objects.

5.

Network. This module belongs in the Network Provider layer and
exports frameworks for switch connections and other switch
services.

6.

Table 12.1 Program
statistics for the

application specific
classes

 Class
count

Average
inheritance

depth

Methods
count

Lines
count

Change
count

Demonstration system 38 4.66 314 988 101

OOCS Schema

Service Specification
Contract

Service Objects

IN Service
Layers

Service
Information Entities

Tel-A

Network

Invocation

Tel-B

Network Provider
Layer

Service Constituent
Creation Layer

Service Creator
Layer

Service Provider
Layer

User and Subscriber
Layers

User

Abst-Tel

Figure 12.10 Module
structure in the

initial value chain

A box signifies a Service Constituent. Black arrows signify delivery to the layer
above; open arrows signify synthesis relationships within the Service Constituent
Creator layer.

12.6 Service Constituent Creator layer29 March 1995 23:05

Case study: A Value Chain for Intelligent Network Services ©Taskon 1992. Page 447

The real module
structure must be

carefully constructed

As the system is scaled up towards real size and the service
specifications are expanded into real services, it will be necessary to
organize the Service Constituents in a large number of modules and to
assign these modules to well defined sublayers within the Service
Constituent Creator layer.

An effective architecture for the Service Constituent Creator sub-
layers with appropriate standards will create business opportunities for
a rich variety of reusable patterns and frameworks.

29 March 1995 23:0512.6 Service Constituent Creator layer

©Taskon 1992. Page 448 Case study: A Value Chain for Intelligent Network Services

Network Provider layer12.7

In a nutshell
The Network Provider layer presents the functionality of the actual switches in a
unified, implementation-independent manner to the Service Domain software, and
makes its functionality available to the Service Constituent Creator in the form of
one or more frameworks.

The Switching Domain is implemented as a very large, very high
capacity, very fast, and very reliable heterogeneous distributed real
time system. Communication channels are established by establishing
paths between the Users through the switches. Figure 12.11 illustrates
how six Users are interconnected through four switches in a
conference connection.

The purpose of the interface between the Switching Domain and the
Service Domain is to hide the distributed nature of the communication
network and to present a simple, abstract model of the network
capabilities.

The deliverables from the Network Provider layer are a number of
frameworks describing the offered functionality together with the
corresponding implementation. We will give one example, the
Connection Control framework.

The deliverables
from the Network

layer

Figure 12.11
Simplified picture of

how six Users are
interconnected

through a conference
connection B

A

D3D2D1

C3C2C1

B3B2B1

A3A2A1

D

C

29 March 1995 23:05 12.7 Network Provider layer

©Taskon 1992. Page 449Case study: A Value Chain for Intelligent Network Services

One such framework is based on the Connection Control model,
which was briefly described in section 12.1. The distributed switches
are abstracted into a single Connection Point, each communication
channel from a user to this Connection Point is abstracted into a Leg.
The Area of Concern is shown in figure 12.12. The Collaboration
view in figure 12.13.

The Connection
Control model

Figure 12.12
Connection Control -

- Area of concern

An abstract interface to the Switching Domain which offers connection functionality
in an implementation independent form.

Figure 12.13
Connection Control -
- Collaboration view

il le

leg

ler

cp

cpr

ConnUser

Leg

Requests provision of
connections between end-users,
and between end-users and
points in the network.

Leg provides a communication
path towards an addressable
network entity, as viewed from
the Connection User (eg., an
end-user, an information sink or
source).

ConnPoint

Connection Point provides an
interconnection of legs that
allows information to flow
between legs, as viewed from
the Connection User.

ConnUser may be specialized, i.e. synthesized with other roles.
Leg and ConnPoint are immutable roles, i.e., roles that cannot be modified in the
derived model. The symbol for immutable roles is a role symbol with a double
boundary as shown in the figure.

As seen from the Service Constituent layer, this model must permit
the specialization of the ConnUser role through synthesis. The Leg
and ConnPoint roles must be immutable because they can not be
modified in the derived models. The model will have been
implemented in the Network Provider layer, and the class
corresponding to ConnUser must be available for subclassing while
the other classes must be immutable. These constraints could, for
example, be imposed by the compiler, or they may be checked by
automatically analyzing the source code.

12.7 Network Provider layer 29 March 1995 23:05

Case study: A Value Chain for Intelligent Network Services©Taskon 1992. Page 450

We see that the complex realities of the Switching Domain are
effectively hidden in the frameworks offered to the Service
Constituent Creators. This means that they can focus on their main
goal, which is to create powerful service components, and do not need
to worry about the complex technical details of the switches. We also
see that the frameworks can help enforce various constraints that are
needed to protect the integrity of the switching network. This is done
by insisting that all access to the network is through validated classes,
which may not be modified (subclassed) by the Service Constituent
Creator.

Frameworks hides
Switching Domain

details and protects
integrity

12.7 Network Provider layer29 March 1995 23:05

©Taskon 1992. Page 451Case study: A Value Chain for Intelligent Network Services

29 March 1995 23:0512.7 Network Provider layer

Case study: A Value Chain for Intelligent Network Services©Taskon 1992. Page 452

Appendix A
The OOram Language

The OOram technology has been developed around an object oriented data base, and the
preferred user tools have task oriented, direct manipulation graphical user interfaces. It is
nevertheless useful to define a textual form for all OOram model information, and it is the
preferred form for some purposes such as documenting interfaces and role attributes.

This appendix defines a first version of the OOram language. The language serves three
purposes:

As a summary of the OOram concepts and the relationships between them.1.

As a language for the precise documentation OOram models on paper.2.

3. As an interchange language for communicating OOram models, e.g. through electronic
mail and between different implementations of OOram
CASE tools.

We present the lexical conventions of the OOram language in Appendix A1, its grammar in
Appendix A2 and its scoping rules in Appendix A3. The OOram semantics is defined in the
main body of this book, particularly in chapters 2.5: Basic OOram role modeling concepts
and notation, 3.3: Basic OOram concepts and notation for role model synthesis, and 6:
Additional role modeling concepts and notation. We shall assume that the correspondence
between the concepts defined there and the constructs of the language defined in the
following will be clear from the chosen keywords etc.

The examples and case studies presented in this book have been specified in the
TASKON/OOram tools, the book itself has been written with the TASKON/OOram
documentation tool, and the diagrams and other OOram views have been automatically
created by the tools. Appendix A4 contains an OOram language specification of the module
which forms the basis of chapter 7: Case study: Development of a business information
system, and A5 is similarly the specification of a module which includes some of the models
of chapter 3: Role model synthesis.

A text describing an OOram model in the OOram language will be called an OOram
specification.

 29 March 1995 23:05

The OOram Language ©Taskon 1992. Page 453

A1 Lexical conventions

This section presents the lexical conventions of the OOram language, defining the structure of
the tokens used, and the correspondence between a sequence of tokens and how it can be
described by a string of characters.

The OOram language uses the ISO Latin-1 character set [ISO8859.1]. This character set is
divided into alphabetic characters (letters), digits, graphic characters, the Space (blank)
character and formatting characters (CR, LF, FF, and TAB).

If the input character string has been parsed into a token up to a given character, then any
following spaces, formatting characters and comments (see below) will be skipped.
Thereafter the next token is taken to be the longest string of characters that could possibly
constitute a token.

Comments can occur anywhere between tokens. The characters /* start a comment, and it is
terminated with the characters */. Comments do not nest. Comments may contain alphabetic,
digit, graphic, space, and formatting characters. We recommend the convention that
comments are printed in an italic font, but this has no formal significance.

The language uses the following kinds of tokens: separators, keywords, identifiers, string
literals, and integer literals.

SeparatorsA1.1

OOram specifications use the separator tokens shown in table A1.

| () , :: <- >> \n

Table A1 OOram punctuation tokens

KeywordsA1.2

The words listed in table A2 are the keywords of the language. Upper and lower case letters
are considered equivalent in keywords. For example, module, Module, and MODULE are all
considered equivalent. We recommend the convention that keywords are printed in a bold
font, but this has no formal significance.

A1 Lexical conventions 29 March 1995 23:05

©Taskon 1992. Page 454 The OOram Language

asynch attribute attributes_changed base_model

boolean data deferred_synch entity

explanation export float flow

import in integer interface

interfaces long_name many message

module none number object_specification

one param port process

response_msgs return role role_model

scenario semantics state_diagram states

stimulus string synch task

transition type type_model

Table A2 Keywords

IdentifiersA1.3

An identifier token is a sequence of characters surrounded by single quotes, as in '...'. Within
an identifier, the quote character must be doubled. All characters are significant, except that
any sequence of Space and formatting characters count as a single Space. In identifiers, upper
and lower case letters are considered different.

String literalsA1.4

A string literal is a sequence of characters surrounded by double quotes, as in "...". Within a
string literal, the double quote character must be doubled.

A1.5 Integer literals

An integer literal is any sequence of digits, with a normal decimal value.

29 March 1995 23:05 A1 Lexical conventions

©Taskon 1992. Page 455The OOram Language

OOram language grammarA2

he syntax notation used in this grammar is a variation of the Extended Backus-Naur format.
Table A3 lists the symbols used and their meaning. Two types of non-terminals are used:
Those given with upper case letters indicate that a token of this category should occur here.
The others are normal non-terminals that are defined elsewhere in the grammar.

Symbol Meaning

::= is defined to be

| alternatively

<text> a normal non-terminal

<TEXT> a non-terminal indicating a token of the given category

"text" the text directly identifies a keyword or separator

* the preceding syntactic unit can be repeated zero or more times

+ the preceding syntactic unit can be repeated one or more times

{ } The enclosed syntactic units are grouped as a single syntactic unit

[] The enclosed syntactic unit is optional -- may occur zero or one time

Table A3 The symbols of the OOram Extended Backus-Naur format and their meaning.

In an OOram specification, some occurrences of identifiers will serve to associate this
identifier with the entity described by the corresponding syntactical construct; while others
serve as references to entities described elsewhere. The occurrences of the former type are
highlighted in the syntax below by giving the corresponding (normal) non-terminal in italics,
e.g. <rm_name>. The association obtained in this way will have effect throughout the closest
surrounding "scoping construct" in which the definition occurs. Exactly what constructs that
qualify as scoping constructs is described in section A.3.

::= <module>+<specification>

::= "module" <module_name> <import_model>* <export_model>* <rm_definition>*<module>

::= <IDENTIFIER><module_name>

<import_model> ::= "import" <rm_name> "<-" <rm_name> "::" <module_name>

::= <IDENTIFIER><rm_name>

<export_model> ::= "export" <rm_name>

::= <rm_kind> <rm_name> <node_descr> <rm_spec>*<rm_definition>

::= "role_model"
| "object_specification"
| "type_model"

<rm_kind>

::= [<long_name>] [<explanation>]<node_descr>

::= "base_model" <rm_name> <inherit_map>*
| "interface" <interface_name> <node_descr> <interface_spec>*
| "role" <role_name> <node_descr> <role_spec>*
| "scenario" <scenario_name> <node_descr> <interaction>*
| "process" <process_name> <node_descr> {<task> | <entity> }* <flow>*

<rm_spec>

::= "long_name" <STRING_LITERAL><long_name>

A2 OOram language grammar 29 March 1995 23:05

©Taskon 1992. Page 456 The OOram Language

::= "explanation" <STRING_LITERAL><explanation>

::= <base_role_name> "->" <derived_role_name> <inherit_map>

::= <IDENTIFIER><interface_name>

<interface_spec> ::= <type_dcl>
| <message_spec>

<role_name> ::= <IDENTIFIER>

<attribute_spec>
| <stimulus>*
| <port_spec>
| <state_diagram_spec>

<role_spec> ::=

::= "stimulus" <scoped_message_name> [<explanation>] ["response_msgs" "("
<scoped_message_names> ")"] ["attributes_changed" "(" <scoped_attribute_names> ")"]

<stimulus>

<scoped_message_names
>

::= <scoped_message_name> {"," <scoped_message_name> }*

<scoped_message_name> ::= <message_name> ["::" <interface_name>]

::= <scoped_attribute_name> {"," =
<scoped_attribute_name> }*

<scoped_attribute_names>

<scoped_attribute_name> ::= <attribute_name> ["::" <role_name>]

::= <IDENTIFIER><scenario_name>

<interaction> ::= <role_name> ">>" <message_name> ">>" <role_name>

::= <IDENTIFIER><process_name>

::= "task" <task_name> <node_descr> "in" <role_name>
| "task" "stimulus" <task_name> <node_descr> "in" <role_name>

<task>

<task_name> ::= <IDENTIFIER>

::= "entity" <entity_name> <node_descr> "data" <data_list><entity>

::= <IDENTIFIER><entity_name>

<data_list> ::= "(" <data_name> {"," <data_name> }* ")"

::= <IDENTIFIER><data_name>

::= "flow" <from_task> ">>" ">>" <to_task>
| "flow" <from_task> ">>" <entity_name> ">>" <to_task>

<flow>

::= <task_name><from_task>

<to_task> ::= <task_name>

::= <role_name><base_role_name>

::= <role_name><derived_role_name>

<message_spec> ::= "message" [<message_semantics>] <message_name> <node_descr> <parameter>*

::= "attribute" <attribute_name> <node_descr> ["type" <type_dcl>]<attribute_spec>

::= <base_type>
| <scoped_role_name>

<type_dcl>

::= "port" <cardinality> <port_name> <node_descr> ["semantics" <min_count> ":" <max_count>
[<explanation>]] ["interfaces" "(" <interface_names> ")"]

<port_spec>

::= <INTEGER_LITERAL><min_count>

<max_count> ::= <INTEGER_LITERAL>

::= "state_diagram" <state_specs> <transition>*<state_diagram_spec>

<message_name> ::= <IDENTIFIER>

::= "float"
| "integer"
| "boolean"
| "string"

<base_type>

A2 OOram language grammar29 March 1995 23:05

The OOram Language ©Taskon 1992. Page 457

::= <role_name> ["::" <rm_name>]<scoped_role_name>

::= "synch"
| "deferred_synch"
| "asynch"

<message_semantics>

::= "param" <param_name> [<explanation>] ["type" <type_dcl>]
| "return" [<explanation>] ["type" <type_dcl>]

<parameter>

::= <IDENTIFIER><attribute_name>

<cardinality> ::= "none"
| "one"
| "many"

<port_name> ::= <IDENTIFIER>

::= [<interface_name> {"," <interface_name> }*] <interface_names>

<param_name> ::= <IDENTIFIER>

::= "states" "(" [<state_name> {"," <state_name>}*] ")"<state_specs>

::= <IDENTIFIER><state_name>

<transition> ::= "transition" <initial_state_name> <message_name> <action list> <next_state_name>

::= <state_name><initial_state_name>

<action_list> ::= "(" [<action_name> { "," <action_name> }*] ")"

::= <IDENTIFIER><action_name>

::= <state_name><next_state_name>

A2 OOram language grammar 29 March 1995 23:05

The OOram Language©Taskon 1992. Page 458

A3 Scope of identifiers

As explained earlier, some occurrences of identifiers in an OOram specification serve to
associate that identifier with the entity described by the corresponding language construct.
This association will have effect throughout the closest surrounding "scoping construct" in
which the definition occurs (also textually in front of the definition). Thus, from within its
scoping construct an entity may be referenced directly by its identifier. By using "scoped
names" entities may also be referenced from outside their scoping construct. The scoped
name x::y should be understood as the entity named x defined local to the scoping construct
named y.

The syntactical units that qualify as scoping constructs are the following: Modules,
role_models, interfaces, messages, and roles. In the grammar above these constructs are
identified by their initial keyword, and they are always nested as indicated in figure A1. In
this figure we have also indicated what name-types are local to the different scoping
constructs. Note that the name of a scoping construct is itself local to the nearest enclosing
scoping construct.

Local to one scoping construct, no two entities can be identified by the same name. However,
local to two different scoping constructs the same names may be used, even if they are
nested. A referencing occurrence of a name will always identify the entity with that name
local to the nearest possible enclosing scoping construct.

"module"

<scenario_name>
<role_name>
<interface_name>

<rm_name>

<module_name>

"role_model"

"interface"

<param_name>

<message_name>

"message"

<port_name>
<attribute_name>

"role" "process_name"

<task_name>
<entity_name>
<data_name><state_name>

<action_name>

Figure A1 The scope of the different OOram identifiers.

When an OOram model is represented as a structure of objects, the different entities are
identified by their object identifiers. The names that users assign to the entities help the users
understand the models, but have no formal significance.

A3 Scope of identifiers29 March 1995 23:05

©Taskon 1992. Page 459The OOram Language

If the model is used to generate code in a programming language, the names are used to
generate identifiers in the selected programming language. The wise analyst will then use
entity names that may be used unchanged as program identifiers to make the relationship
between model and program as evident as possible. Our modeling tools support this by
warning the analyst if a chosen name does not conform to the syntax and pragmatics of the
chosen language. The tools will also warn the analyst about duplicate names which would
cause compilation errors if used unchanged.

When an OOram model is represented as a string of characters, we could have retained the
object identifiers as the real identifiers of the different entities. These identifiers are typically
quite unreadable to a human, and the OOram language is designed so that the entities are
identified by their names. The kind of entity determines the scope of these names as
illustrated in figure A1.

29 March 1995 23:05A3 Scope of identifiers

©Taskon 1992. Page 460 The OOram Language

A4 OOram module 'Development of a business information system
Chapter'

module 'Travel Expense case study'

export 'Travel Expense Enterprise Model'

role_model 'Travel Expense Enterprise Model'
explanation "The area of concern is the handling of travel expense accounts. We focus on the expense account itself,

and do not model details about why the journey was made, nor how the traveler is reimbursed for his expenses.'
interface 'ENTPaymaster<ENTBookkeeper'

message synch 'paymentRequest:'
explanation "Reimburse the specified account."
param 'aPaymentRequest' type 'INFPayRequest' :: 'Travel Expense Information Model'

interface 'ENTTraveler<ENTAuthorizer'
message synch 'travelPermission:'

explanation "Travel authorization granted."
param 'aTravelPermission' type 'INFTravelPermission' :: 'Travel Expense Information Model'

interface 'ENTBookkeeper<ENTAuthorizer'
message synch 'authorizedExpenseReport:'

explanation "Request reimbursement of submitted expense report."
param 'anExpenseReport' type 'INFExpenseAccount' :: 'Travel Expense Information Model'

interface 'ENTAuthorizer<ENTTraveler'
message synch 'travelPermissionRequest:'

explanation "Request authorization of submitted travel plan."
param 'aTravelPermission' type 'INFTravelPermission' :: 'Travel Expense Information Model'

message synch 'expenseReport:'
explanation "Request reimbursement of submitted expense report."
param 'anExpenseReport' type 'INFExpenseAccount' :: 'Travel Expense Information Model'

role 'ENTTraveler'
explanation "The person who travels"
stimulus 'travelPermissionRequest:' :: 'ENTAuthorizer<ENTTraveler'

response_msgs ('paymentRequest:' :: 'ENTPaymaster<ENTBookkeeper')
attributes_changed ()

port one 'au' interfaces ('ENTAuthorizer<ENTTraveler')
role 'ENTAuthorizer'

explanation "The person who authorizes the travel."
port many 'tr' interfaces ('ENTTraveler<ENTAuthorizer')
port one 'bo' interfaces ('ENTBookkeeper<ENTAuthorizer')

role 'ENTBookkeeper'
explanation "The person responsible for bookkeeping."
port one 'pm' interfaces ('ENTPaymaster<ENTBookkeeper')

role 'ENTPaymaster'
explanation "The person responsible for reimbursement."

process 'ExpenseAccount Process diagram'
task stimulus 'stimulus'

explanation "Desire to travel"
in 'ENTTraveler'

entity 'travelPermissionRequest:'
data (aTravelPermission)

task 'travelPermissionRequest:'
explanation "<Determine OK>"
in 'ENTAuthorizer'

entity 'travelPermission:'
data (aTravelPermission)

task 'travelPermission:'
explanation "<Order tickets> <Travel> <Write exp.rep.>"
in 'ENTTraveler'

entity 'expenseReport:'
data (anExpenseReport)

task 'expenseReport:'
explanation "<Check OK>"
in 'ENTAuthorizer'

entity 'authorizedExpenseReport:'
data (anExpenseReport)

A4 OOram module 'Development of ... information system Chapter'29 March 1995 23:05

The OOram Language ©Taskon 1992. Page 461

task 'authorizedExpenseReport:'
explanation "<Check> <Bookkeeping>"
in 'ENTBookkeeper'

entity 'paymentRequest:'
data (aPaymentRequest)

task 'paymentRequest:'
explanation "<Arrange for payment>"
in 'ENTPaymaster'

flow 'stimulus' >>'travelPermissionRequest:' >> ('travelPermissionRequest:')
flow 'travelPermissionRequest:' >>'travelPermission:' >> ('travelPermission:')
flow 'travelPermission:' >>'expenseReport:' >> ('expenseReport:')
flow 'expenseReport:' >>'authorizedExpenseReport:' >> ('authorizedExpenseReport:')
flow 'authorizedExpenseReport:' >>'paymentRequest:' >> ('paymentRequest:')

role_model 'Travel Expense Information Model'
explanation "The area of concern is modeling the information contained in travel expense accounts. We focus on the

expense account itself, and do not model details about the user interfaces."
interface 'INFTravelPermission<INFExpenseAccount'

message synch 'isPermitted'
role 'INFExpenseAccount'

explanation "The master object representing an expense account."
attribute 'travelerName'
attribute 'travelerID'
attribute 'travelPurpose'
port one 'tp' semantics 1:1 "Consists of" interfaces ('INFTravelPermission<INFExpenseAccount')
port many 'ei' semantics 0 : N "Consists of"
port one 'pa' semantics 1:1 "Consists of"
port one 'pr' semantics 1:1 "Consists of"

role 'INFPayAuthorization'
explanation "A disbursement order."
attribute 'date'
attribute 'name'
attribute 'ID'
attribute 'signature'
port one 'ea' semantics 1:1 "Part of"

role 'INFExpenseItem'
explanation "A specified cost."
attribute 'text'
attribute 'currency'
attribute 'rate'
attribute 'value'
port one 'ea' semantics 1:1 "Part of"

role 'INFTravelPermission'
explanation "A permission to travel."
attribute 'proposedCost'
attribute 'authorizerName'
attribute 'authorizerID'
attribute 'authorizerSignature'
attribute 'date'
port none 'ea' semantics 1:1 "Part of"

role 'INFPayRequest'
explanation "Authorization of payment."
attribute 'date'
attribute 'name'
attribute 'ID'
attribute 'signature'
port one 'ea' semantics 1:1 "Part of"

role_model 'Task/Tool/Service model'
interface 'TSAuthorizerTool<TSAuthorizer'

message synch 'Permit'
explanation "Permit the proposed travel"

message synch 'Reject'
explanation "Refuse the proposed travel"

message synch 'openOn:'
explanation "Create a new instance of the tool and open it on the specified ExpenseAccount."
param 'expAcc'

interface 'TSAccountService<TSAuthorizerTool'

A4 OOram module 'Development of ... information system Chapter' 29 March 1995 23:05

©Taskon 1992. Page 462 The OOram Language

message synch 'getExpenseAccount'
explanation "Return expense account information"
return type 'INFExpenseAccount' :: 'Travel Expense Information Model'

message synch 'getPeriod'
explanation "Return travel time period"

message synch 'getPlannedCost'
explanation "Returned planned cost"

message synch 'getPurpose'
explanation "Return purpose of travel"

message synch 'putAuthorized:'
explanation "Set authorization if aBoolean = true, otherwise the travel is rejected."
param 'aBoolean' type boolean

interface 'TSBudgetService<TSAuthorizerTool'
message synch 'getBudgetFor:'

explanation "Return budget information"
param 'kind'
return type number

message synch 'commit:for:'
explanation "Allocate amount from budget"
param 'amount' type number
param 'kind'

interface 'TSAuthorizer<TSAuthorizerTool'
message synch 'display'

explanation "Read the currently displayed text."
interface 'TSPlanningService<TSAuthorizerTool'

message synch 'getPlanFor:'
explanation "Return planning information"
param 'person'
return type 'Plan' :: 'BasicTypes'

role 'TSAuthorizer'
explanation "The person who authorizes the travel."
stimulus 'openOn:' :: 'TSAuthorizerTool<TSAuthorizer'
port one 'tool' interfaces ('TSAuthorizerTool<TSAuthorizer')

role 'TSAuthorizerTool'
explanation "The user interface system"
port one 'auth' interfaces ('TSAuthorizer<TSAuthorizerTool')
port one 'bud' interfaces ('TSBudgetService<TSAuthorizerTool')
port one 'pla' interfaces ('TSPlanningService<TSAuthorizerTool')
port one 'acc' interfaces ('TSAccountService<TSAuthorizerTool')

role 'TSAccountService'
explanation "An object structure representing a particular expense account."

role 'TSPlanningService'
explanation "A system representing the current plans for the enterprise"

role 'TSBudgetService'
explanation "A system managing the enterprise budget"

process 'OpenPermissionTool'
task stimulus 'stimulus'

explanation "Start authorization activity"
in 'TSAuthorizer'

task 'openOn:'
explanation "Create and open travel authorization tool"
in 'TSAuthorizerTool'

task 'getExpenseAccount'
explanation "getExpenseAccount"
in 'TSAccountService'

entity 'ISExpenseAccount'
data (expAcc)

task 'getBudgetFor:'
explanation "getBudgetFor:"
in 'TSBudgetService'

entity 'Budgetamount'
data (expAcc)

task 'getPlanFor:'
explanation "getPlanFor:"
in 'TSPlanningService'

entity 'Plan'
data (expAcc)

flow 'stimulus' >> >> ('openOn:')
flow 'openOn:' >> >> ('getExpenseAccount')
flow 'openOn:' >> >> ('getBudgetFor:')

29 March 1995 23:05 A4 OOram module 'Development of ... information system Chapter'

The OOram Language ©Taskon 1992. Page 463

flow 'openOn:' >> >> ('getPlanFor:')
flow 'getExpenseAccount' >>'ISExpenseAccount' >> ('openOn:')
flow 'getBudgetFor:' >>'Budgetamount' >> ('openOn:')
flow 'getPlanFor:' >>'Plan' >> ('openOn:')
process 'GrantPermission'

task stimulus 'stimulus'
explanation "Press Permit- button"
in 'TSAuthorizer'

task 'Permit'
explanation "Grant Permission"
in 'TSAuthorizerTool'

task 'putAuthorized:'
explanation "putAuthorized: = true"
in 'TSAccountService'

entity 'true'
data (aBoolean)

task 'commit:for:'
explanation "Record new commitment"
in 'TSBudgetService'

entity 'Number'
data (amount)

flow 'stimulus' >> >> ('Permit')
flow 'Permit' >>'true' >> ('putAuthorized:')
flow 'Permit' >>'Number' >> ('commit:for:')

A4 OOram module 'Development of ... information system Chapter' 29 March 1995 23:05

The OOram Language©Taskon 1992. Page 464

OOram module 'Synthesis'A5

module 'Some Synthesis Models'

import 'Travel Expense Enterprise Model' <- 'Travel Expense Enterprise Model' :: 'Work Environments'

role_model 'BasicTree'
explanation "A role model describing a basic tree structure."
interface 'Child<Mother'

message synch 'preorderTraverse:' param 'aBlock'
message synch 'postorderTraverse:' param 'aBlock'
message synch 'getLeaves'

interface 'Mother<Child'
message synch 'getRoot'

role 'Mother'
port many 'dw' interfaces ('Child<Mother')

role 'Child'
port one 'up' interfaces ('Mother<Child')

role_model 'ThreeLevelTree'
explanation "A role model describing a tree structure with three levels."
base_model 'BasicTree'

'Mother' -> 'Node'
'Child' -> 'Leaf'

base_model 'BasicTree'
'Mother' -> 'Root'
'Child' -> 'Node'

role 'Root'
port many 'dw'

role 'Node'
port one 'up'
port many 'dw'

role 'Leaf'
port one 'up'

role_model 'AirlineBooking'
explanation "Airline tickets are ordered by a booking clerk and paid directly to the travel agent. The traveler is to show

the cost of the tickets on the expense report as an expense, and as an advance since the tickets were not paid by the traveler."
interface 'ABTravelAgent<ABPaymaster'

message synch 'payment:'
explanation "Transmittal of payment."
param 'aCheque' type string

interface 'ABBookKeeper<ABBookingClerk'
message synch 'authorizedInvoice:'

explanation "Pay this authorized ticket invoice."
param 'anInvoice' type string

interface 'ABTraveler<ABBookingClerk'
message synch 'ticketWithCost:'

explanation "Transmitting the ticket(s) together with cost information."
param 'package' type string

interface 'ABTravelAgent<ABBookingClerk'
message synch 'orderTicket:'

explanation "Reserve specified passages and issue ticket(s)."
param 'ticketSpecification' type string

interface 'ABPaymaster<ABBookKeeper'
message synch 'paymentRequest:'

explanation "Pay this invoice."
param 'anInvoice' type string

interface 'ABBookingClerk<ABTraveler'
message synch 'orderTicket:'

explanation "Purchase ticket(s)."
param 'ticketSpecification' type string

interface 'ABBookingClerk<ABTravelAgent'
message synch 'ticket:'

explanation "Transmittal of ticket(s)."

29 March 1995 23:05 A5 OOram module 'Synthesis'

The OOram Language ©Taskon 1992. Page 465

param 'aTicket' type string
message synch 'invoice:'

explanation "Transmittal of invoice."
param 'anInvoice' type string

role 'ABTraveler'
explanation "The person who travels."
attribute 'costOfTicket'
stimulus 'orderTicket:' :: 'ABBookingClerk<ABTraveler'

response_msgs ('ticketWithCost:' :: 'ABTraveler<ABBookingClerk')
attributes_changed ('costOfTicket')

port one 'sec' interfaces ('ABBookingClerk<ABTraveler')
role 'ABBookingClerk'

explanation "Clerk responsible for managing the purchase of tickets."
port one 'tr' interfaces ('ABTraveler<ABBookingClerk')
port one 'ta' interfaces ('ABTravelAgent<ABBookingClerk')
port one 'bk' interfaces ('ABBookKeeper<ABBookingClerk')

role 'ABTravelAgent'
explanation "A travel agent."
port one 'cust' interfaces ('ABBookingClerk<ABTravelAgent')

role 'ABBookKeeper'
explanation "Responsible for accounting."
port one 'pm' interfaces ('ABPaymaster<ABBookKeeper')

role 'ABPaymaster'
explanation "Cashier."
port one 'ven' interfaces ('ABTravelAgent<ABPaymaster')

process 'AirlineBooking process'
task stimulus 'stimulus' explanation "Order tickets" in 'ABTraveler'
entity 'Travelspecification1' data ('ticketSpecification')
task 'orderTicket' explanation "Order tickets" in 'ABBookingClerk'
entity 'Travelspecification2' data ('ticketSpecification')
task 'issueTickets' explanation "Issue tickets. Prepare invoice." in 'ABTravelAgent'
entity 'TicketsAndInvoice' data ('aTicket')
task 'processTickets' explanation "Process tickets and invoice" in 'ABBookingClerk'
entity 'TicketsAndCost' data ('tickets and cost information')
task 'noteCost' explanation "Note cost for later use" in 'ABTraveler'
entity 'Authorizedinvoice' data ('anInvoice')
task "processInvoice' explanation "Process invoice" in 'ABBookKeeper'
entity 'RemunerationRequest' data ('anInvoice')
task 'pay' explanation "Send payment" in 'ABPaymaster'
entity 'Payment' data ('aCheque')
task 'receivePayment' explanation "Receive payment" in 'ABTravelAgent'

flow 'stimulus' >>'Travelspecification1' >> ('orderTicket')
flow 'orderTicket' >>'Travelspecification2' >> ('issueTickets')
flow 'issueTickets' >>'TicketsAndInvoice' >> ('processTickets')
flow 'processTickets' >>'TicketsAndCost' >> ('noteCost')
flow 'processTickets' >>'Authorizedinvoice' >> ('processInvoice')
flow 'processInvoice' >>'RemunerationRequest' >> ('pay')
flow 'pay' >>'Payment' >> ('receivePayment')

role_model 'DerivedTravelExpense'
explanation "The area of concern is the procedure for travel management including the purchase of tickets."
base_model 'AirlineBooking'

'ABBookKeeper' -> 'DTEBookKeeper'
'ABTravelAgent' -> 'DTETravelAgent'
'ABBookingClerk' -> 'DTEBookingClerk'
'ABPaymaster' -> 'DTEPaymaster'
'ABTraveler' -> 'DTETraveler'

base_model 'Travel Expense Enterprise Model'
'ENTPaymaster' -> 'DTEPaymaster'
'ENTAuthorizer' -> 'DTEAuthorizer'
'ENTTraveler' -> 'DTETraveler'
'ENTBookkeeper' -> 'DTEBookkeeper'

role 'DTETraveler'
explanation "The person who travels."
stimulus 'travelPermissionRequest:' :: 'ENTAuthorizer<ENTTraveler'

response_msgs ('paymentRequest:' :: 'ENTPaymaster<ENTBookkeeper')
attributes_changed ()

port one 'sec' interfaces ('ABBookingClerk<ABTraveler')
port one 'au'

29 March 1995 23:05A5 OOram module 'Synthesis'

The OOram Language©Taskon 1992. Page 466

role 'DTEBookingClerk'
explanation "Clerk responsible for managing the purchase of tickets."
port one 'bk' interfaces ('ABBookKeeper<ABBookingClerk')
port one 'tr' interfaces ('ABTraveler<ABBookingClerk')
port one 'ta' interfaces ('ABTravelAgent<ABBookingClerk')

role 'DTEBookKeeper'
explanation "The person responsible for bookkeeping. Responsible for accounting."
port one 'pm' interfaces ('ABPaymaster<ABBookKeeper')

role 'DTETravelAgent'
explanation "A travel agent."
port one 'cust' interfaces ('ABBookingClerk<ABTravelAgent')

role 'DTEPaymaster'
explanation "The person responsible for reimbursement. Cashier."
port one 'ven' interfaces ('ABTravelAgent<ABPaymaster')

role 'DTEAuthorizer'
explanation "The person who authorizes the travel."
port many 'tr'
port one 'bo'

process 'ExpenseAccount Process diagram'
task stimulus 'stimulus' explanation "Desire to travel" in 'DTETraveler'
entity 'travelPermissionRequest:' data (aTravelPermission)
task 'travelPermissionRequest:' explanation "<Determine OK>" in 'DTEAuthorizer'
entity 'travelPermission:' data (aTravelPermission)
task 'travelPermission:' explanation "<Order tickets>" in 'DTETraveler'
task stimulus 'planTravel' explanation "Order tickets" in 'DTETraveler'
entity 'Travelspecification1' data (ticketSpecification)
task 'orderTicket' explanation "Order tickets" in 'DTEBookingClerk'
entity 'Travelspecification2' data (ticketSpecification)
task 'issueTickets' explanation "Issue tickets. Prepare invoice." in 'DTETravelAgent'
entity 'TicketsAndInvoice' data (aTicket)
task 'processTickets' explanation "Process tickets and invoice" in 'DTEBookingClerk'
entity 'TicketsAndCost' data (tickets and cost information)
task 'noteCost' explanation "<Note cost> <Travel> <Prepare expense account>" in 'DTETraveler'
entity 'Authorizedinvoice' data (anInvoice)
task 'processInvoice' explanation "Process invoice" in 'DTEBookKeeper'
entity 'RemunerationRequest' data (anInvoice)
task 'pay' explanation "Send payment" in 'DTEPaymaster'
entity 'Payment' data (aCheque)
task 'receivePayment' explanation "Receive payment" in 'DTETravelAgent'
entity 'expenseReport:' data (anExpenseReport)
task 'expenseReport:' explanation "<Check OK>" in 'DTEAuthorizer'
entity 'authorizedExpenseReport:' data (anExpenseReport)
task 'authorizedExpenseReport:' explanation "<Check> <Bookkeeping>" in 'DTEBookkeeper'
entity 'paymentRequest:' data (aPaymentRequest)
task 'paymentRequest:' explanation "<Arrange for payment>" in 'DTEPaymaster'

flow 'stimulus' >>'travelPermissionRequest:' >> ('travelPermissionRequest:')
flow 'travelPermissionRequest:' >>'travelPermission:' >> ('planTravel')
flow 'planTravel' >>'Travelspecification1' >> ('orderTicket')
flow 'orderTicket' >>'Travelspecification2' >> ('issueTickets')
flow 'issueTickets' >>'TicketsAndInvoice' >> ('processTickets')
flow 'processTickets' >>'TicketsAndCost' >> ('noteCost')
flow 'processTickets' >>'Authorizedinvoice' >> ('processInvoice')
flow 'processInvoice' >>'RemunerationRequest' >> ('pay')
flow 'pay' >>'Payment' >> ('receivePayment')
flow 'noteCost' >>'expenseReport:' >> ('expenseReport:')
flow 'expenseReport:' >>'authorizedExpenseReport:' >> ('authorizedExpenseReport:')
flow 'authorizedExpenseReport:' >>'paymentRequest:' >> ('paymentRequest:')

A5 OOram module 'Synthesis'29 March 1995 23:05

©Taskon 1992. Page 467The OOram Language

A5 OOram module 'Synthesis' 29 March 1995 23:05

©Taskon 1992. Page 468 The OOram Language

Appendix B
References

[Alexander 77] Christopher Alexander: A Pattern Language. Oxford University Press, New
York, 1977.

[Alexander 79] Christopher Alexander: The Timeless Way of Building. Oxford University
Press, New York, 1979.

[E. Andersen 92] Egil P. Andersen, Trygve Reenskaug: System Design by Composing
Structures of Interacting Objects. ECOOP '92, Utrecht, Holland.

[And 91] Jørn Andersen, Trygve Reenskaug: Operations on sets in an OODB. OOPS
Messenger, 2, 4 (October 1991) pp. 26-39.

[Aronson 72] Elliot Aronson: The Social Animal. W. H. Freeman and Company, San
Francisco 1972. ISBN 0-7167-0829-9

[Beck 86] O'Shea, T., Beck, K., Halbert, D., Schmucker, K. J. Panel on "The learnability of
Object-Oriented Programming Systems". SIGPLAN Notices, 21, 11 (November 1986) p. 503.

[Beck 94] Kent Beck, Ralph Johnson: Patterns Generate Architectures. In: Tokoro, Pareschi
(Eds): 8th European Conference on Object-Oriented Programming (ECOOP 94). Springer
Verlag, 1994.

[Bent 86] See for example John Bentley: "Programming Pearls". Comm. ACM 29,5 (May
1986) p364-369 and Comm. ACM 30,4 (April 1987) p384-290.

[Berr93] Arne-Jørgen Berre: An Object-Oriented Framework for Systems Integration and
Interoperability. PhD-thesis, University of Trondheim, Norwegian Institute of Technology,
1993, 370 pages.

[Birth 73] G. M. Birtwistle, O.-J. Dahl, B. Myrhaug, K. Nygaard: "Simula Begin".
Auerbach/Studentlitteratur Lund 1973. ISBN 91-44-06211-7.

[Boehm 88] Barry W. Boehm: A Spiral Model of Software Development and Enhancement.
Computer, May 1988, pp 61-72.

[Booch 91] Grady Booch: Object-Oriented Design with Applications. The
Benjamin/Cummings Publishing Company.

29 March 1995 23:05

©Taskon 1992. Page 469References

[Booch 94] Grady Booch: Object-Oriented Analysis and Design with Applications. Second
edition. The Benjamin/Cummings Publishing Company. ISBN 0-8053-5340-2

[Broc94] Kraig Brockschmidt: Inside OLE2. Microsoft Press, 1994, 977 pages

[Bræk 93] Rolv Bræk, Øystein Haugen: Engineering Real Time Systems. An object oriented
methodology using SDL. Hemel Hempstead: Prentice Hall, 1993. ISBN 0-13-034448-6

[Car 85] L. Cardelli, P. Wegner: On Understanding Types, Data Abstracting and
Polymorphism. Computing Surveys 17 (4) 471-522 (1985)

[CCITT Z100] Specification and Description Language SDL. Recommendation Z100.
Geneva, ITU 1993.

[CCITT Z120] Message Sequence Charts. Recommendation Z120. Geneva, ITU 1993.

[Chambers 89] Craig Chambers, David Ungar, Elgin Lee: An Efficient Implementation of Self,
a Dynamically-Typed Object-Oriented Language Based onPrototypes. OOPSLA '89. Sigplan
Notices 24, 10 (October 1989)

[Chen 76] P. Chen: The Entity Relationship Model -- Toward a Unified View of Data. TODS,
1,1 (March 1976)

[CORBA 91] The Common Object Request Broker: Architecture and Specification. Object
Management Group Document Number 91.12.1, Revision 1.1 (Draft 10 December 1991)

[Coul88] George F. Couloris, Jean Dollimore: Distributed Systems - Concepts and Design.
Addison-Wesley, 1988, 366 pages

[Cox 87] Brad J. Cox: Object-Oriented Programming. An Evolutionary Approach. Addison-
Wesley 1987. ISBN 0-201-10393-1

[Elmasri 94] Ramez Elmasri, Shamkant B. Navathe: Fundamentals of Database Systems.
Benjamin/Cummings 1994 (ISBN 0-8053-1748-1)

[Engelbart 62] Douglas C. Engelbart: Augmenting Human Intellect: A Conceptual
Framework. Summary Report, Stanford Research Institute, on Contract AF 49(638)-1024,
October 1962, 134 pp.

[Engelbart 67] William K. English, Douglas C. Engelbart, and Melvyn L. Berman: Display-
Selection Techniques for Text Manipulation. IEEE Transactions on Human Factors in
Electronics, Vol. HFE-8, No. 1, March 1967, pp. 5-15.

[Engelbart 92] Douglas C. Engelbart: Toward High-Performance Organizations: A Strategic
Role for Groupware. Proceedings of the GroupWare '92 Conference, San Jose, CA, August
3-5, 1992, Morgan Kaufmann Publishers.

29 March 1995 23:05

©Taskon 1992. Page 470 References

[Etzioni 64] Amitai Etzioni: Modern Organizations. Prentice-Hall 1964. pp 53-54

[Ewing 92] Juanita Ewing: How to use class variable and class instance variables. The
Smalltalk Report, 1, 5 (January 1992) p 13

[Gabriel 94a] Richard P. Gabriel: Pattern languages. JOOP, January 1994, pp 72-75.

[Gabriel 94b] Richard P. Gabriel: The failure of pattern languages. JOOP, February 1994, pp
84-88.

[GaHeJoVli 95] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design
Patterns. Elements of Reusable Object-Oriented Software. Addison-Wesley 1995. ISBN 0-
201-63361-2

[Gazz 88] M. S. Gazzaniga: Mind Matters. Houghton Miffin Co., Boston 1988. ISBN 0-395-
42159-4

[Gold 83] A. Goldberg, D. Robson: "Smalltalk-80, The Language and its Implementation".
Addison-Wesley 1983. ISBN 0-201-11371-6.

[Gold 84] A. Goldberg: "Smalltalk-80, The Interactive Programming Environment". Addison-
Wesley 1984. ISBN 0-201-11372-4.

[HallFagan] Hall, Fagan: General Systems, Yearbook of the Society for General Systems
Research, Ann Arbor, Michigan, Vol. I-X, 1956-65

[Hammer 93] Michael Hammer, James Champy: Reengineering the Corporation. A
Manifesto for Business Revolution. Nicholas Brealey Publishing, London, 1993. ISBN 1
85788 029 3

[Harel 87] David Harel: Satecharts: a visual formalism for complex systems. Science of
Computer Programming 8 (1987) pp 231-274. Elsevier Science Publishers (North Holland)

[Helm 90] Richard Helm, Ian M. Holland, Dipayan Gangopadhyay: Contracts: Specifying
Behavioral Compositions in Object-Oriented Systems. Sigplan Notices 25 10
(ECOOP/OOPSLA '90, Oct 1990)

[Hol 77] Erik Holbæk-Hanssen, Petter Håndlykken, Kristen Nygaard: System Description and
the Delta Language. Norwegian Computing Center publication no. 523. Second printing,
Oslo 1977.

[IDEF0 93] Software standard Integration Definition for Function Modeling (IDEF0).
Federal Information Processing Standards Publication 183, 1993. Obtainable from National
Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

 29 March 1995 23:05

References ©Taskon 1992. Page 471

[ISO8859.1] International Standard: Information Processing. 8-bit single-byte coded graphic
character sets. Part 1: Latin alphabet no. 1. International Standardization Organization (ISO)
1987.

[ISO9000] ISO 9000, Quality management and quality assurance standards -- Guidelines for
selection and use. ISO 9001, Quality systems -- Model for quality assurance in
design/development, production, installation and servicing. International Standardization
Organization

[Jacobson 92] Ivar Jacobson, Magnus Christerson, Patrick Jonsson, Gunnar Øvergaard:
Object-Oriented Software Engineering. A Use Case Driven Approach. Addison-Wesley 1992.
ISBN 0-201-54435-0

[John 88] Johnson, R.E., Foote, B. "Designing Reusable Classes". Journal of Object-Oriented
Programming, 1, 2 (June/July 1988), 22-25.

[Johnson 92] Ralph E. Johnson: Documenting Frameworks using Patterns. OOPSLA '92.
ACM Sigplan notices, 27, 10 (Oct 92) pp 63-68

[KerPla 74] Kernighan and Plauger: The Elements of Programming Style. McGraw-Hill 1974.
ISBN 0.07-034199-0

[Kleyn 88] M. F. Kleyn, P. C. Gingrich: "GraphTrace - Understanding Object-Oriented
Systems Using Concurrently Animated Views". OOPSLA-88. Sigplan Notices 23, 11
(November 1988). pp 191-205.

[Lieb 89] Karl J. Lieberherr, Ian M. Holland: Assuring Good Style for Object-Oriented
Programs. IEEE Software, Sept 89, pp 38-48.

[Liskov 88] Liskov, Barbara: Data Abstraction and Hierarchy. SIGPLAN Notices 23,5 (May
1988)

[Love 93] Tom Love: Object Lessons. SIGS Books, New York 1993. ISBN 0-9627477-3-4.

[Martin 87] James Martin: Recommended Diagramming Standards for Analysts and
Programmers: A Basis for Automation. Prentice-Hall, Englewood Cliffs, NJ 1987 (ISBN 0-
13-767377-9 025).

[Nilsen 93] R. Nilsen, J.Simons, P. Dellaferra: Object-oriented IN service provision. TINA
'93 - The Fourth Telecommunications Information Networking Architecture Workshop,
L'Aquila, Italy, September 1993. Proceedings from Scuola Superiore G. Reiss Romoli S.p.A.;
Str. Prov. per Coppito km 0,300; 67010 Coppito (AQ); Italy.

[Nordhagen 82] Else Nordhagen: Blaise, syntaksorientert programredigering av Pascal tekst
i et Smalltalk system. (Blaise, syntax oriented programming in Pascal). MSc thesis,
Department of Informatics, University of Oslo, 1982.

29 March 1995 23:05

©Taskon 1992. Page 472 References

[Nordhagen 89] Else Nordhagen: Generic Object Oriented Systems. Proceedings of Tools 89,
Paris November 1989 (pp. 131-140)

[Nordhagen 95] Else K. Nordhagen: The COIR architecture for Flexible Software
Components and Systems. Research report no. 197 (1995), Department of Informatics,
University of Oslo. ISBN 82-7368-108-4

[Oftedal 87] Gro Oftedal: The use of remote applications from a Smalltalk work station.
M.Sc. thesis, Dept. of Informatics, University of Oslo, January 1987.

[Olle 88] T. William Olle, Jaques Hagelstein, Ian G. Macdonald, Colette Rolland, Henk G.
Sol, Frans J. M. Van Assche, Alexander A. Verrijn-Stuart: Information Systems
Methodologies. A Framework for Understanding. Addison-Wesley 1988. ISBN 0-201-
41610-7.

[Olsen 92] Grete Christina Olsen: Objektorienterte databaser og rollemodeller. (Object-
oriented databases and role models). MSc thesis, Department of Informatics, University of
Oslo, 1992.

[Oxford 86] Oxford Dictionary of Computing. Oxford University Press 1986. (ISBN 0 19
853913 4)

[Parnas 86] David Lorge Parnas, Paul C. Clements: A Rational Design Process: How and
Why to Fake It. IEEE Trans. on Software Engineering. SE-12, 2 (February 1986).

[Pfiff 64] John M. Pfiffner, Frank P. Sherwood: Administrative Organization. Prentice-Hall
1964.

[Ree 73] Trygve Reenskaug: Administrative Control in the Shipyard. ICCAS Conference,
Tokyo 1973.

[Ree 77] Trygve M. H. Reenskaug: Prokon/Plan - A Modelling Tool for Project Planning and
Control. IFIP Conference, North-Holland 1977.

[Ree 86] T. Reenskaug, E. Næss-Ulseth: "Tender/One - An Environment for Tender
Preparation". Ninth International Cost Engineering Congress, Oslo 1986.

[Ree 87] T. M. H. Reenskaug: "User-Oriented Descriptions of Smalltalk Systems". Byte, 6, 8
(August 1981) pp148-166 and G. E. Peterson: Tutorial: Object-Oriented Computing, Volume
1: Concepts. The Computer Society of IEEE 1987, pp75-81.

[Ree 89] Trygve Reenskaug, Anne Lise Skaar: An Environment for Literate Smalltalk
Programming. Sigplan Notices 24 10 (Oct 89) OOPSLA 89 pp 337-345

29 March 1995 23:05

©Taskon 1992. Page 473References

[Ree 92] Trygve Reenskaug, Egil P. Andersen, Arne Jørgen Berre, Anne Hurlen, Anton
Landmark, Odd Arild Lehne, Else Nordhagen, Eirik Næss-Ulseth, Gro Oftedal, Anne Lise
Skaar, Pål Stenslet: OORASS: Seamless Support for the Creation and Maintenance of
Object-Oriented Systems. Journal of Object-Oriented Programming, October 1992, pp 27-41.

[Ree 93] T. Reenskaug: The Industrial Creation of Intelligent Network Services. TINA '93 -
The Fourth Telecommunications Information Networking Architecture Workshop, L'Aquila,
Italy, September 1993. Proceedings from Scuola Superiore G. Reiss Romoli S.p.A.; Str. Prov.
per Coppito km 0,300; 67010 Coppito (AQ); Italy.

[Rubin 92] Kenneth S. Rubin, Adele Goldberg: Object Behavior Analysis. Comm. ACM, 35,9
(Sept. 92) pp 48-62

[Rumbaugh 91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy,
William Lorensen: Object-Oriented Modeling and Design. Prentice-Hall 1991. ISBN 0-13-
630054-5

[Skaar 82] Anne Lise Skaar: Objektorienterte produktmodeller i DAK-system (Object-
oriented product models in an CAD system). MSc thesis, Department of Informatics,
University of Oslo, 1982

[Soukup 94] Jiri Soukup: Taming C++. Pattern classes and Persistence for Large Projects.
Addison-Wesley 1994. ISBN 0-201-52826-6

[Stenslet 82] Pål Stenslet: Spørresystem basert på Smalltalk (Query system based on
Smalltalk). MSc thesis, Department of Informatics, University of Oslo, 1982

[Strou 86] Bjarne Stroustrup: The C++ Programming Language. Addison-Wesley 1986.
ISBN 0-201-12078-X.

[Verr 91] M. Verrall: The Software Bus - its objective: the mutual integration of distributed
software engineering tools. Proc. 5th Conf. on Software Engineering Environments,
Aberystwyth, March 1991, Ellis Horwood 1991.

[Vestli, Nilsen 92] Vestli, Nilsen: The Intelligent Network Service Life Cycle. Telektronikk
2.92 (Norwegian Telecom Research, P.b. 83, 2007-Kjeller, Norway)

[Webster 77] Webster's New Collegiate Dictionary . Merriam-Webster 1977

[WegZdon 88] P. Wegner, S. B. Z. Zdonik: Inheritance as an Incremental Modification
Mechanism or What Like is Like or Isn't Like. Proc. ECOOP '88, pp 55-77, Oslo 1988.

[Weinb 71] Gerald M. Weinberg: The Psychology of Computer Programming. Van Nostrand
Reinhold 1971

 29 March 1995 23:05

©Taskon 1992. Page 474 References

[Weinb 75] Gerald M. Weinberg: An Introduction to General Systems Thinking. John Wiley,
1975 (ISBN O-471-92563-2)

[Wheeler 92] John A. Wheeler quoted by John Horgan in: Quantum Philosophy. Scientific
American, July 1992 p 79.

[WiJo 90] Rebecca J. Wirfs-Brock, Ralph E. Johnson: Surveying current research in object-
oriented design.
Communications of the ACM, 33, 9 (September 1990) pp 113 ff.

[Wirfs-Brock 90] Rebecca Wirfs-Brock, Brian Wilkerson, Laureen Wiener: Designing
Object-Oriented Software. Prentice-Hall 1990

[Wirth 71] Niklaus Wirth: Program Development by Stepwise Refinement. Comm. ACM 14,
4 (1971) pp. 221-227

[Wynn 79] Elanor Herasimchuk Wynn: Office Conversation as an Information Medium.
Thesis. Department of Anthropology, University of California, Berkeley. May 1979.

29 March 1995 23:05

©Taskon 1992. Page 475References

7Figure 0.1 Stages in the application of the OOram method

14Figure 1.1 Three dimensions of system development methodologies

Figure 1.2 Some objects relevant to the shipyard scheduling and control operation 18

Figure 1.3 An activity network 19

20Figure 1.4 Identifying an object pattern

21Figure 1.5 The essential roles for understanding the frontloading scheduling algorithm

Figure 1.6 Message scenario illustrating frontloading activity 21

21Figure 1.7 Frontloading method in Job role

22Figure 1.8 Collaborators for basic resource allocation

Figure 1.9 Scenario for basic resource allocation 22

Figure 1.10 Synthesis specifies that objects play several roles in a coordinated manner 23

24Figure 1.11 Derived scheduling model synthesized from two base models

25Figure 1.12 Integration through scheduling method

28Figure 1.13 Many-to-many relationships between object, role, type and class

Figure 1.14 The class inheritance structure can be fashioned after the model synthesis structure 30

Figure 1.15 Collaboration view of a reusable Directed Acyclic Graph 33

Figure 1.16 Deriving Activity Network from reusable Directed Acyclic Graph 34

Figure 1.17 Typical descriptions on different levels of abstraction 44

46Figure 1.18 The Fountain Model for Reuse

Figure 2.1 Typical descriptions on different levels of abstraction 54

Figure 2.2 We always try to interpret our observations of the real world 55

Figure 2.3 Manifest models are concrete representations 57

Figure 2.4 The human communication process 57

Figure 2.5 Human communication through a computer system 58

61Figure 2.6 Object-oriented models

62Figure 2.7 A simple object by itself cannot do anything

63Figure 2.8 Objects interact by sending messages along the paths between them

66Figure 2.9 We choose think of the company organization as an object model

Figure 2.10 Messages arising from the expense report process 68

Figure 2.11 A specialization - generalization hierarchy of the ExpenseAccount objects 70

Figure 2.12 Manifest Role Models 71

Figure 2.13 An object pattern is an instance of a role model 73

Figure 2.14 Example OOram role model 73

Figure 2.15 Travel Expense procedure -- typical message scenario 75

76Figure 2.16 The travelPermission-method

Figure 2.17 Two independent role models describe the FTP file transfer service 78

Figure 2.18 The collaborating roles 80

Figure 2.19 A Scenario shows a typical message sequence 80

29 March 1995 23:05

List of Figures

Working with objectsThe OOram Software Engineering Method <i>

Figure 2.20 Interfaces specify messages that may be sent from a role to a collaborator 81

Figure 2.21 CRC example card for the Authorizer role. 86

90Figure 2.22 External and internal object properties

95Figure 2.23 The analyst can only see and manipulate views of an underlying model

Figure 2.24 Area of Concern example 97

97Figure 2.25 Graphical notation is in the form of a table

98Figure 2.26 Stimulus-Response example

98Figure 2.27 Collaboration view notation

Figure 2.28 Collaboration view illustration 99

Figure 2.29 Examples of decorated role symbols 99

100Figure 2.30 Virtual role notation

Figure 2.31 The external collaboration view shows the system as a single, virtual role 100

Figure 2.32 Scenario Notation 101

102Figure 2.33 Scenario Illustration

Figure 2.34 Graphical interface notation 102

102Figure 2.35 Graphical interface illustration

Figure 2.36 Textual specification of interfaces in the OOram language 103

Figure 2.37 Informal textual specification of interfaces 104

104Figure 2.38 Example Method Specification view

Figure 3.1 Models on all levels may be synthesized from simpler base models 106

Figure 3.2 Alternative synthesis strategies 108

Figure 3.3 AB Area of concern 109

Figure 3.4 AB Stimulus-response view 109

Figure 3.5 AB AirlineBooking Scenario 109

Figure 3.6 AB Collaboration view 109

Figure 3.7 AB message interfaces 110

Figure 3.8 DTE Area of concern 110

111Figure 3.9 DTE Environment collaboration view

111Figure 3.10 DTE Stimulus-response

Figure 3.11 DTE synthesis collaboration diagram 112

Figure 3.12 DTE Synthesis Table 112

113Figure 3.13 DTE scenario

Figure 3.14 First part of Traveler method 114

Figure 3.15 Second part of Traveler method 114

Figure 3.16 A system where the Client can send files to the Server 120

120Figure 3.17 A system where the Client can retrieve files from the Server

121Figure 3.18 A system where the Client can send and retrieve files

Figure 3.19 The creation of a composite tree 122

123Figure 3.20 Two-dimensional modeling

Figure 3.21 Considering certain roles to be parts of another role 128

29 March 1995 23:05

Working with objectsThe OOram Software Engineering Method <ii>

129Figure 3.22 Representing aggregates as structures of collaborating objects

Figure 3.23 Virtual roles a cluster of roles as a single aggregate 130

Figure 3.24 Representing an attribute or a parameter as an encapsulated role model 131

Figure 3.25 Simple synthesis example 132

Figure 3.26 Activity superposition illustration 134

Figure 3.27 Activity aggregation illustration 134

Figure 3.28 Unsafe synthesis illustration 135

137Figure 3.29 Synthesis view notation

Figure 3.30 Synthesis view of example models used in this Part 137

Figure 3.31 Example Inheritance Collaboration view 138

Figure 3.32 Example OOram language inheritance specification 139

140Figure 3.33 Superposition environment view

141Figure 3.34 Aggregation environment view

Figure 3.35 Superposition collaboration view 142

Figure 3.36 Aggregation collaboration view 143

143Figure 3.37 ABC Scenario

143Figure 3.38 DEF Scenario

Figure 3.39 Scenario superposition 144

Figure 3.40 Scenario aggregation 144

Figure 4.1 Typical models on different levels of abstraction 148

Figure 4.2 Different OOram models describing different aspects of the same program 150

151Figure 4.3 Procedure orientation according to Brad Cox

Figure 4.4 Object orientation according to Brad Cox 152

152Figure 4.5 A simple house facade

163Figure 4.6 Our methodologies are designed for people -- computers will accept anything

164Figure 4.7 Roles specifying implementation are shown with heavy outline

Figure 4.8 File send/receive object specification model 165

Figure 4.9 Two object specification models specifying the FTP file transfer service 166

Figure 4.10 Possible multiple inheritance hierarchy 168

169Figure 4.11 Automatically generated superclasses, manually prepared subclasses

171Figure 4.12 A rudimentary object specification example

Figure 4.13 Simple implementation process 178

Figure 5.1 There may be reusable components on all levels of modeling 190

Figure 5.2 Alternate use of applications and improvement of reusables 192

Figure 5.3 Patterns can be applied at all levels of modeling 200

Figure 5.4 A pattern role model can be a source of inspiration or synthesis 203

Figure 5.5 Decision Maker: Collaboration diagram 207

Figure 5.6 Decision Maker: Typical Scenario 207

Figure 5.7 The head office organization 208

209Figure 5.8 Organization for decisions that can be made locally on an oil production platform

29 March 1995 23:05

Working with objectsThe OOram Software Engineering Method <iii>

Figure 5.9 Organization for local decisions that need technical expertise 209

Figure 5.10 Organization for major decisions that need technical expertise and involvement of head
office

210

Figure 5.11 Synthesis view showing relationships between example models 211

Figure 5.12 OOram frameworks support design and implementation 212

Figure 5.13 Semantic relationships between Framework concepts. 214

Figure 6.1 Semantic view notation 221

Figure 6.2 Semantic view of Purchase model 221

Figure 6.3 Corresponding Entity-Relation diagram 222

Figure 6.4 The IDEF0 ICOM Concept (Input, Control, Output, Mechanism) 226

Figure 6.5 Process view notation 227

Figure 6.6 Process view of Purchase model 228

Figure 6.7 ExpenseAccount process view 230

230Figure 6.8 AB AirlineBooking Process

Figure 6.9 DerivedTravelExpense process view 231

Figure 6.10 State diagram graphical notation 233

Figure 6.11 Purchase model collaboration view 233

233Figure 6.12 Vendor state diagram

Figure 6.13 General state diagram synthesis 234

Figure 6.14 Activity superposition 235

Figure 6.15 Activity aggregation 235

237Figure 6.16 Specification example written in the OOram language

Figure 6.17 Specification example written informally 237

239Figure 6.18 The OOram Module

243Figure 6.19 Full graphical module notation

243Figure 6.20 Abbreviated graphical module notation

Figure 7.1 A work process consists of a sequence of tasks 245

Figure 7.2 Personal information environments support the members of the organization in their
individual work and their cooperation

246

Figure 7.3 Multi-level man-machine symbiosis 247

248Figure 7.4 Task/Tool/Service System Architecture

Figure 7.5 Levels of Integration 248

Figure 7.6 Personal information environments support the members of the organization in their
individual work and their cooperation

250

Figure 7.7 Relationships between the three models 250

Figure 7.8 A development process 251

Figure 7.9 Area of Concern 254

Figure 7.10 An object-oriented model of a company organization 255

Figure 7.11 What we need to understand about each actor 258

259Figure 7.12 Stimulus/Response

Figure 7.13 The roles 260

29 March 1995 23:05

Working with objectsThe OOram Software Engineering Method <iv>

Figure 7.14 ExpenseAccount process view 261

Figure 7.15 Role Collaboration View for the travel expense process 262

Figure 7.16 Role Collaboration View annotated with role descriptions 262

263Figure 7.17 Role Collaboration View annotated with message interfaces

Figure 7.18 Interfaces for the Enterprise model in informal textual form 263

266Figure 7.19 Area of Concern

Figure 7.20 Semantic view of Information model 267

Figure 7.21 The roles of the Information model 268

Figure 7.22 Possible structure of relational information model 269

Figure 7.23 Objects may encapsulate a relational database 270

270Figure 7.24 Information model Collaboration view

Figure 7.25 A person communicates with one or more computer-based Domain Services through a Tool 273

276Figure 7.26 Form based interface for the authorization task

Figure 7.27 Three distinct tools to serve the authorization task 280

Figure 7.28 A simple tool integrated for the Travel Permission task 282

Figure 7.29 Area of concern 283

Figure 7.30 The roles 283

Figure 7.31 Process diagram: Open travel permission tool 284

Figure 7.32 Process diagram: Grant travel permission 284

Figure 7.33 Interface Collaboration View annotated with role responsibilities 285

Figure 7.34 Interface Collaboration View annotated with Interfaces 285

286Figure 7.35 Interfaces

290Figure 8.1 Area of Concern

Figure 8.2 The system and its environment 291

Figure 8.3 Message sequence for successful access 292

292Figure 8.4 Message sequence for rejected PIN code

Figure 8.5 Collaboration view 294

Figure 8.6 Successful Access Sequence 295

296Figure 8.7 A state diagram for the LocalStation role

Figure 8.8 Method Specification view for LocalStation>>accessCode: 297

299Figure 8.9 Interfaces of the DetailedModel

Figure 8.10 Access Control System, Object Specification view 300

304Figure 8.11 OOram/SDL diagram for LocalStation >> accessCode

Figure 8.12 OOram/SDL diagrams for different actions in LocalStation >>timeoutFrom 305

Figure 8.13 Object specification view for simplified AccessControl system with dummy Panel, Door and
CentralUnit

311

Figure 8.14 Object collaboration report for successful access example 312

312Figure 8.15 The Execution Scenario report shows all observed message interactions in time sequence

Figure 8.16 The Textual Trace report gives complete description of all interactions 313

Figure 9.1 A part of the Smalltalk class hierarchy 322

29 March 1995 23:05

Working with objectsThe OOram Software Engineering Method <v>

Figure 9.2 A System Transcript 322

Figure 9.3 The main objects controlling the behavior of the Transcript window 324

326Figure 9.4 Ten instances of the Container-Component relation

Figure 9.5 Area of concern 326

326Figure 9.6 The roles and their responsibilities

Figure 9.7 Stimulus - Response 326

Figure 9.8 Simplified interfaces for the Container-Component construct 327

Figure 9.9 Textual interface view 328

329Figure 9.10 Repeated applications of the Container-Component model in the Transcript structure

329Figure 9.11 Scenario of display through invalidation

Figure 9.12 Scenario get aGraphicsContext for local display 330

Figure 9.13 A VisualPart-Client collaboration view 331

Figure 9.14 VisualPart<VisualPartClient graphical interface view 331

332Figure 9.15 VisualPart<VisualPartClient textual interface view

333Figure 9.16 A derived Container-Component model created by synthesis

Figure 9.17 Five instances of the Model-View-Controller (MVC) construct 334

Figure 9.18 Area of concern 335

Figure 9.19 Environment model 335

Figure 9.20 Stimulus-Response 335

335Figure 9.21 Collaboration model

Figure 9.22 Scenario: View and Controller setup 336

336Figure 9.23 Scenario: User modifies information

337Figure 9.24 Some important messages

338Figure 9.25 Five instance of Keyboard and mouse input construct

Figure 9.26 Area of concern 339

Figure 9.27 Collaboration view of Main Input Model 340

340Figure 9.28 Area of Concern

Figure 9.29 TranslatingSensor Initialization Collaboration view with important messages 340

Figure 9.30 Scenario: TranslatingSensor Initialization 341

Figure 9.31 One instance of the Scrolling construct 342

Figure 9.32 The Scrollbar role model is derived from MVC 343

344Figure 9.33 Scenario: Scroll vertically, using scrollbar

Figure 9.34 Some Rectangles in the Transcript window 356

362Figure 9.35 The VisualPart architecture showing the position of the Tool role

368Figure 10.1 The value chain

Figure 10.2 A layer in the value chain get value from below and provide value to layer above 368

Figure 10.3 Early value chain 370

371Figure 10.4 Example of current value chain

Figure 10.5 A directed graph value chain based on extensive reuse from several sources 372

373Figure 10.6 The role of the production engineers

29 March 1995 23:05

<vi>Working with objectsThe OOram Software Engineering Method

377Figure 10.7 The intelligent network

379Figure 10.8 Intelligent Network value chain

Figure 10.9 Subdivision of the User layer in a Business Information System value chain 381

Figure 10.10 The value chain 383

385Figure 10.11 Company organization

Figure 10.12 The Fountain Model for Reuse 386

Figure 11.1 The Trader identifies suitable editor class and instantiates it 394

395Figure 11.2 Collaboration view of Trader mechanism

Figure 11.3 Activity for selecting and instantiating and editor 396

Figure 11.4 Models on all levels may be composed from simpler base models 398

402Figure 11.5 Simplified OOCS Schema for a Document

Figure 11.6 The OOCS value chain 402

Figure 11.7 Semantic view of the OOCS Schema notions 405

Figure 11.8 View of of OOCS Schema 407

Figure 11.9 The OOCS Type 408

Figure 11.10 Example OOCS Type hierarchy 410

Figure 11.11 The Schema base model 411

412Figure 11.12 The Schema base model

412Figure 11.13 Example OOCS Type structure

Figure 11.14 Structures of objects may be created by duplicating a master structure 413

Figure 11.15 What should be the result of asking the heavily outlined object for its copy? 415

Figure 11.16 shallowCopy copies the object and retains all references unchanged 417

Figure 11.17 postCopy does "the right thing" 418

419Figure 11.18 postCopy does does not copy a shared object

Figure 11.19 Structure duplication example 420

423Figure 11.20 deepCopy copies the object and all its references recursively

Figure 12.1 Intelligent Network value chain 426

Figure 12.2 A Network Connection interconnects any number of network access points by Legs which
meet in a common Connection Point

431

Figure 12.3 Service Domain objects involved in establishing a Telephone Service 432

Figure 12.4 A possible Subscriber tool 436

Figure 12.5 Editor for specifying the Service Contract Document 438

440Figure 12.6 A sample contract document

441Figure 12.7 Condensed OOCS Schema

Figure 12.8 Detailed OOCS Schema 443

Figure 12.9 The internal structure of the Service Constituent Creator layer 445

447Figure 12.10 Module structure in the initial value chain

Figure 12.11 Simplified picture of how six Users are interconnected through a conference connection 449

Figure 12.12 Connection Control -- Area of concern 450

450Figure 12.13 Connection Control -- Collaboration view

29 March 1995 23:05

Working with objectsThe OOram Software Engineering Method <vii>

459Figure A1 The scope of the different OOram identifiers.

29 March 1995 23:05

Working with objectsThe OOram Software Engineering Method<viii>

1Chapter 0 Preface
Goals 1

Motivation 1

3Audience
3The structure of this book
6Using this book

Background 7

Acknowledgments 8

The main ideasChapter 1 11

The OOram method1.1 12

The Technology Dimension1.2 17

18Representing the real world as objects1.2.1
The powerful role model abstraction1.2.2 19

Separation of concern and Role model Synthesis1.2.3 22

OOram implementation links role models to computer programs 261.2.4
OOram reuse technology 301.2.5
Comparison with other methods 351.2.6

Process with Deliverables 411.3
42Introduction to the model-creation process1.3.1

Introduction to the system development process1.3.2 43

45Introduction to the reusable assets building processes1.3.3

48Organization1.4

53Role ModelingChapter 2
2.1 Modeling the real world: Human understanding and human

communication
55

60Modeling with objects2.2
69Modeling with roles2.3
76An Internet example2.3.1
79An example model with four roles2.3.2

83The model creation process and its deliverables2.4
90Basic OOram role modeling concepts and notation2.5
90The Object2.5.1

29 March 1995 23:05

Table of contents

<i>Working with objectsThe OOram Software Engineering Method

External object properties 91
Internal object properties 92

2.5.2 93The Role Model
Area of Concern view 97
Stimulus-response view 97
Collaboration View 98
Scenario View 100
Interface view 102
Method Specification View 104

Role model synthesisChapter 3 105

Introduction to synthesis: DerivedTravelExpense3.1 107

The AirlineBooking (AB) model 1093.1.1
3.1.2 Creating the DerivedTravelExpense (DTE) model 110

3.2 The synthesis operation 115

3.2.1 Aggregation: Linking models on different levels of abstraction 127

3.2.2 Attributes and message parameters 130

3.2.3 Safe and unsafe synthesis of the travel example models 132

3.3 Basic OOram concepts and notation for role model synthesis 136

3.3.1 The Inheritance and Role List views 136

3.3.2 Synthesis in Area of Concern view 139

3.3.3 Synthesis seen in the Environment and Stimulus-Response views 140

Synthesis seen in the Collaboration view3.3.4 141

Synthesis seen in the Scenario view3.3.5 143

Synthesis seen in the Interface view3.3.6 144

Synthesis of method Specification view3.3.7 145

147Bridge to implementationChapter 4
Introduction to implementation 1484.1
Object modeling from a programmer's point of view4.1.1 151

A simple class inheritance example4.1.2 155

1594.1.3 Why we need high level descriptions

1644.2 The relationship between a role model and its implementation
1654.2.1 Implementing the roles
1704.2.2 Implementing the ports and interfaces
1734.2.3 Implementing the methods and actions

1744.3 The implementation process
1814.4 Choice of programming language

187Chapter 5 Creating reusable components

29 March 1995 23:05

Working with objectsThe OOram Software Engineering Method <ii>

Introduction to reuse 1885.1

Patterns5.2 199

Alexander's pattern language5.2.1 201

How to create a pattern5.2.2 203

5.2.3 205Example: A decision model and project portfolio management

212OOram Frameworks5.3

219Additional role modeling concepts and notationChapter 6
Semantic view 2206.1

Process view6.2 225

State Diagram view6.3 232

2376.4 Role List view

Modeling in the large: The OOram Module6.5 238

Chapter 7 245Case study: Development of a business information
system
Enterprise model7.1 252

Determine the Area of Concern7.1.1 253

Understand the problem and identify the nature of the objects7.1.2 254

Determine environment roles and Stimulus/Response7.1.3 259

2597.1.4 Identify and understand the roles
2607.1.5 Determine the Work Process
2627.1.6 Determine the Collaboration Structure
2627.1.7 Determine Interfaces

Information model7.2 265

Area of concern7.2.1 266

Semantic view7.2.2 267

Role list view7.2.3 267

A hybrid solution with a relational database7.2.4 268

Collaboration view7.2.5 270

270Interface view7.2.6

272Task/Tool/Service model7.3
273Creating Task/Tool/Service descriptions7.3.1
276User interface design7.3.2

7.3.3 279A simple direct manipulation interface for our task example
7.3.4 281A composite user interface for the manager to determine travel

permission

29 March 1995 23:05

<iii>Working with objectsThe OOram Software Engineering Method

287Case study: The analysis and design of a real time systemChapter 8
290Environment model8.1
290Determine area of concern8.1.1
290Identify environment roles and stimulus-response8.1.2

Determine typical message sequences8.1.3 291

2938.2 Detailed model
2938.2.1 Specify and understand objects and roles
2948.2.2 Determine typical message sequences

8.2.3 295Describe roles as state diagrams
8.2.4 298Determine interfaces

8.3 300Implementation examples
8.3.1 301Bridge to C++

Bridge to Smalltalk8.3.2 303

Bridge to SDL8.3.3 304

8.3.4 306Bridge to Distributed object systems
OMG/CORBA 307
COM/OLE 308

OOram executable specifications 3108.3.5

Case study: The creation of a framework 315Chapter 9
First step: Identify consumers and consumer needs 3179.1

Second step: Perform a cost-benefit analysis 3199.2

Third step: Perform reverse engineering of existing programs 3219.3
Container-Component Hierarchy 3259.3.1

333Model-View-Controller9.3.2
Mouse and Keyboard Input 3389.3.3
Main Input Role Model 339
TranslatingSensor Initialization Model 340

The Scroller role model9.3.4 342

Fourth step: Specify the new framework9.4 345

Fifth step: Document the framework as patterns describing how to
solve problems

9.5 347

3479.5.1 Pattern 1: The Tool
3499.5.2 Pattern 2: Fixed Proportion Tool Layout
3509.5.3 Pattern 3: Flexible Tool Layout
3529.5.4 Pattern 4: The Controller
3539.5.5 Pattern 5: The Model Object
3549.5.6 Pattern 6: The View

3569.6 Sixth step: Describe the framework's design and implementation

29 March 1995 23:05

<iv>Working with objectsThe OOram Software Engineering Method

364Seventh step: Inform the consumer community9.7

Organizing for software productivity 365Chapter 10
10.1 366An industrial approach to software production

10.2 375Large-Scale Production of Intelligent Network Services

Large-Scale Production of Customized Business Information
Systems

10.3 380

Chapter 11 Advanced reuse based on object instances 391

11.1 Introduction to object reuse 392

11.2 Runtime configuration and object trading 394

11.3 OOram Composition System (OOCS). 398

11.3.1 The OOCS Schema Creator Layer 403
List of instructions: OOCS Schema Creation 404
The nature of OOCS Schemas 405

The OOCS Type Implementor Layer11.3.2 408
409Semantic correctness
410Syntactic correctness
411Programming an OOCS Type
412Editor selection

41311.4 Object duplication
41611.4.1 shallowCopy -- too simple in most cases

postCopy -- a default duplication algorithm11.4.2 417

structureCopy for the general case 41911.4.3
422deepCopy - a dangerous operation11.4.4

Case study: A Value Chain for Intelligent Network
Services

Chapter 12 425

12.1 A simple case with an extensible solution 426

12.2 User layer 434

12.3 Subscriber layer 436

438Service Provider layer12.4
441Service Creator layer12.5
445Service Constituent Creator layer12.6
449Network Provider layer12.7

453The OOram LanguageAppendix A
454Lexical conventionsA1

29 March 1995 23:05

<v>Working with objectsThe OOram Software Engineering Method

454A1.1 Separators
454KeywordsA1.2
455IdentifiersA1.3
455String literalsA1.4
455Integer literalsA1.5

456OOram language grammarA2

Scope of identifiers 459A3

OOram module 'Development of a business information system
Chapter'

A4 461

OOram module 'Synthesis'A5 465

ReferencesAppendix B 469

29 March 1995 23:05

Working with objectsThe OOram Software Engineering Method <vi>

Table 1.1 Mapping OOram models to programs 29

96Table 2.1 Applicability of the views in the different perspectives

138Table 3.1 Example Inheritance Table

165Table 4.1 Mapping OOram models to programs

Table 8.1 Mapping from OOram concepts to the concepts of CORBA IDL and Microsoft IDL. 307

Table 10.1 Intelligent Network versus consumer goods value chains 379

Table 12.1 Program statistics for the application specific classes 447

Table A1 OOram punctuation tokens 454

Table A2 Keywords 455

456Table A3 The symbols of the OOram Extended Backus-Naur format and their meaning.

29 March 1995 23:05

List of Tables

<i>Working with objectsThe OOram Software Engineering Method

abstract class 156
61, 93, 291action

actions 61
195active competence

activity 63, 75, 97, 124
126activity aggregation

activity superposition 126, 145
119aggregation
220aggregation relation

analysis 65
area of concern 19, 72

95, 97, iiArea of Concern view
220association

Asynchronous 91
attribute 61, 64

61, 92, 94attributes
69, 155base class
23base classes.

base model 111, 119
base models 23

119base role
base role models 23
base roles 111

91behavior
class 27, 28, 69, 155

130client-server
96, 98, iiCollaboration view

collaborator 64
306, 308COM
307Common Object Request Broker Architecture
325Component
308Component Object Model

composition 31, 392
393conceptual schema
159configurability

Connection Point 431
325Container
334controller

CORBA 306, 307
CORBA IDL 307

93current state
derived class 23, 69, 155
derived model 23, 111, 119

119derived role
derived role models 23
derived roles 111

31, 393duplication
220E-R
180egoless programming
129Embedded aggregation

embedding 128
encapsulated aggregation 128

62, 128, 159encapsulation
383End User

Engineer 384
Entity 220

220entity-relationship
environment 61, 94

29 March 1995 23:05

Index

<i>Working with objectsThe OOram Software Engineering Method

Executable specifications 310
312Execution Scenario report

export 239
external collaboration view 100

177fire walls
46, 65, 310Forward engineering

framework 32, 212, 213
31, 40frameworks
118Generalization-specialization
39, 62identity

IDL 306
396, 450immutable
197Implementation description

import 239
187, 188Incidental reuse
246information environments
62information hiding
265Information model

Information Service 247
information tool 272

69, 159inheritance
136, 137Inheritance Collaboration view

Inheritance Table 136, 138
instance variable 67, 92, 155

155instances
instantiating 155
interaction 101

91interface
306Interface Definition Language

interface view 20, 96, 102, ii
Invocation Analyzer 434

384Kernel-Maker
92late binding
431Leg
247legacy system

List of Instructions 196
196Logical map
57manifest model
55mental model
94messages

method 64, 75, 92, 124, 155, 173
Method Specification view 96, 104, ii
method view 21

13methodology
308Microsoft
334model

model creation process 41
Model-View-Controller 333

238, iiiModeling in the large: The OOram Module
modeling-in-the-large 238
module 37

384Module-Maker
311monitored execution

multiple inheritance 29
333MVC
431Network Connection
378, 428Network Provider
93next state

object 27
object attribute 62, 64

29 March 1995 23:05

<ii>Working with objectsThe OOram Software Engineering Method

29object based languages
Object Collaboration report 311

308Object Linking and Embedding
307Object Management Group
35Object Modeling Technique

object pattern 32
object specification 27, 164, 165

395Object Trading
27object type
265object-oriented database
213object-oriented framework

object-oriented, direct manipulation interface 277
119object-subject relationship
37ObjectOry
14, 61objects

OLE 306, 308
OMG 306, 307

35OMT
OOCS 198, 398, 401
OOCS Entity 401, 406

406OOCS Group
OOCS Schema 198, 398, 401, 405
OOCS Type 403, 406

198, 401OOCS Types
72OOram Analysis
198, 398, 401OOram Composition System

OOram Framework 197, 212, 213
OOram interface 171

136, 138OOram language inheritance specification
8, 13, 14OOram method

OOram Module 219, 238
238OOram Modules
2OOram role model
453OOram specification

OOram technology 18
OOSE methodology 37

195passive competence
31, 32, 197, 199pattern
199, 201pattern language

patterns 31
perspective 94

187, 189Planned reuse
polymorphism 64, 92, 153, 159
port 74

175principle of minimizing risk
Process Diagram 260
Process view 96, 219, 225, 227, iii

384Production
373production engineering
238programming-in-the-large
38records

Relation 220
265relational database
38relations
95, 97response
41reusable assets building process

reusable components 14
Reverse engineering 46, 65, 310
role 20, 27, 71, 72, 94

72role instances

29 March 1995 23:05

<iii>Working with objectsThe OOram Software Engineering Method

Role List view 95, 219, 237, iii
role model 14, 19, 71, 94
role model collaboration view 20

72role model instances
14, 23, 119role model synthesis

role model synthesis, 23
role model, 20

105safe
25, 125, 229, 234safe synthesis
75, 100scenario
21, 96, 100, iiscenario view

semantic correctness 409
Semantic view 95, 219, 220, 221, iii

14, 23separation of concern
Service 445
Service Constituent 445

378, 428Service Constituent Creator
Service Constituents 429
Service Creator 378, 427

376Service Domain
378, 427Service Provider
416shallowCopy

single inheritance 29
state 93

233state diagram
96, 219, 232, iiiState Diagram view
97Stimuli

stimulus message 63, 95, 124
Stimulus-response view 95, 97, ii

155subclass
Subscriber 378, 427
subtype relation 220

155superclass
214, 215, 238, 317surface area
376Switching Domain
91Synchronous
91Synchronous deferred
410syntactically correct

synthesis 65, 107, 115, 119
synthesis collaboration view 111

111synthesis relation
Synthesis view 136, 137
system 61

44, 106System Design model
41system development process
106System implementation

System Implementation model 45
401System of objects
44, 106System Requirements model
44, 106System User model
384Systems Software Supplier

tables 38
Task/Tool/Service 247

385Taskon Fountain Model
tool 247
Tool-Maker 384

272toolbuilder
Trader 392, 395
trigger 63

38tuples

29 March 1995 23:05

Working with objectsThe OOram Software Engineering Method<iv>

28type
105unsafe

unsafe synthesis 25, 125, 229
use case 101

220use relation
use-case 37

378, 426User
User Information Environment 247
value chain 365, 366, 367

334view
virtual 128
virtual role 100, 289

325VisualPart
work process 41
yo-yo approach 45, 175

29 March 1995 23:05

Working with objectsThe OOram Software Engineering Method <v>

