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Preface to the Third Edition 

The original book was a textbook for the fi rst course in mechanics, written for the 

students of Mechanical Engineering at Massachusetts Institute of Technology. The 

reader is advised to read the preface of the original edition of the book.

This book will be useful for an undergraduate course in mechanics of solids, 

which is a next-level course to rigid body mechanics. It also provides suffi cient 

insight for seniors and graduate-level students of mechanical, civil and aerospace 

engineering. The concise theory will be a helpful tool to strengthen and refresh the 

understanding of fundamental concepts for the industry-level practitioners too.

The book lucidly presents the application of basic principles of mechanics of 

solids to engineering problems. There is considerable emphasis on the conceptual 

understanding of the core principles of mechanics, translation of an engineering 

problem into a form on which those principles can be applied directly and getting 

an insight into the physical nature of engineering problems.

It is assumed that the reader is familiar with a basic course in physics dealing 

with mechanics, basic vector algebra and differential and integral calculus.

In this edition, almost all of the original material has been retained. The entire 

content has now been completely changed to SI units. Apart from this, revisions 

in chapters include more explanations and reorganization for more clarity. Every 

solved example, now carries a note at the beginning of the solution that lists the 

key concepts used in the example and what to pay attention to while solving that 

particular problem. A large number of new solved examples and end-of-chapter 

unsolved examples have been added, that include a variety of situations in which 

the principles learnt have to be applied. A summary has now been added at the end 

of each chapter to give the reader an overview of the concepts learnt in the chapter. 

In addition, Section 2.5 that deals with computer analysis of trusses has been 

modifi ed to give students access to the analysis software. This software can be used 

to test out analysis of various kinds of trusses on an interactive mode. This should 

give the students an idea of the role of computers in the analysis of structures.

To summarize, some of the salient features of this text are given below:

∑ The book begins with all crude approximations and goes on to remove them 

one by one leading to a more realistic picture of the concepts

∑ Every topic linked to the fundamental principles of strength of materials

∑ Introduction of tensor concept at the initial level is unique to the book

∑ Topical Inclusions like Theories of Failure; Columns and Struts: Euler’s 

theorem and its Limitations; Rankine-Gordon Formula; Empirical Formula; 

Principle of Virtual Work; Stresses in T, Angle and Channel Sections

∑ Completely SI metricated

∑ Solved Examples and Numerical Problems contain a variety of situations 

ranging from biology to the design of nuclear-reactor containment vessels in 

order to depict the application of theoretical concepts to real-world problems

∑ Strong pedagogy including



   626 Figures

   75 Solved Examples

   456 Problems

Please visit the book website at http://www.mhhe.com/crandall/mos 3e

The website contains the following:

∑ For Instructors

   Solution Manual (for the newly added problems)

   Software for computer analysis of trusses

∑ For Students

   Sample chapter on “Stress and Strain”

   150 Multiple Choice Questions

   Software for computer analysis of trusses

I wish to thank all those who helped with the revised edition, particularly 

Mr C K Muthukumaran and Mr Arjun Ravichandran. A note of thanks is also due 

to the reviewers of this book who took out time to send in useful comments and 

suggestions. Their names are given below.

Raman Bedi
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Preface to the Second Edition

The reader is advised to read the preface to the fi rst edition. The aim and emphasis 

of the book have not changed: the principles underlying the mechanics of rigid and 

deformable solids in equilibrium have not changed.

We have resisted the temptation to increase by a great amount the material 

covered, or to emphasize formalism and rigor in place of the emphasis on 

constructing idealized models to represent actual physical situations. We believe 

that the reader must appreciate that engineering is the fi nding of solutions, i.e., the 

determination of answers to physical problems. The second edition has maintained 

the spirit and tradition of the fi rst in this regard. We hope, too, that the book has 

maintaiend the tradition of engineering thinking, a tradition which M.A. Biot1 refers 

to as the “… tradition of clarity, simplicity, intuitive understanding, unpretentious 

depth, and a shunning of the irrelevant.”

Changes have been made; these changes, however, are more in the spirit 

of reform than of revolution. New material dealing with energy, hydrostatics, 

postbuckling behaviour, and indical notation has been introduced. There is also a 

discussion of the role of computers in structural analysis. In this regard we have 

tried to emphasize that the computer can be used as a tool in the solution of 

problems. The physical understanding and formulation of a problem, however, are 

the most important parts of the solution, and the basic principles still reside in the 

three steps of Eq. (2.1). Many sections have been revised and a number of chapters 

reorganized to improve previous expositions.

A  number of new problems have been added, and an effort has been made to 

show the variety of situations to which the principles contained in this book may be 

applied, from biology to the design of nuclear-reactor containment vessels.

We wish to thank the many readers who have submitted lists of misprints and 

comments and our many colleagues who have found the book useful during the last 

twelve years. Professor W.M. Murray is owed thanks for his contribution to Sec. 4.14.

THOMAS J. LARDNER

1 M. A. Biot, Science and the Engineer, Appl. Mech. Rev., vol. 16, no. 2, pp. 89–90, February 1963.

Preface to the Second Edition with SI Units

We have changed over sixty percent of the numerial examples and problems to the 

SI units. The SI system of units will take a few years to be adopted fully in the 

United States. For this reason, we have retained some examples and problems in 

the conventional English System.

 THOMAS J. LARDNER

 Department of Theoretical

 and Applied Mechanics

 University of Illinois



Preface to the First Edition

This book is concerned with the mechanics of rigid and deformable solids in 

equilibrium. It has been prepared by members of the Mechanical Engineering 

Department at the Massachusetts Institute of Technology for use as a text in the fi rst 

course in applied mechanics.

The central aim has been to treat this subject as an engineering science. To this 

end we have clearly identifi ed three fundamental physical considerations which 

govern the mechanics of solids in equilibrium, and we have explicitly related all 

discussion and theoretical development to these three basic considerations. We 

have focused on these fundamentals in an effort to bring unity to an elementary 

presentation of our subject.

A further aspect upon which we have put considerable emphasis is the process of 

constructing idealized models to represent actual physical situations. This is one of 

the central problems of engineering, and throughout the book we have attempted to 

give it attention commensurate with its importance.

We have assumed that the reader has already studied mechanics as part of a 

program in physics and that he is familiar with the differential and integral calculus. 

We further assume that the reader is acquainted with vector notation and with the 

algebraic operations of addition and multiplication of vectors.

The fi rst chapter is devoted to a discussion of the fundamental principles of 

mechanics and to an exposition of the requirements of equilibrium. In the second 

chapter the basic principles are stated explicitly in Eq. (2.1) in the form of three 

steps and are illustrated by application to lumped parameter models and one-

dimensional continua. The next three chapters are devoted to extending the depth of 

meaning contained in the basic principles. An important facet of this development is 

the extension of the fundamental concepts to three-dimensional continuous media. 

In the fi nal four chapters, simple but important problems involving these concepts 

are solved. There are problems for the reader at the end of each chapter. Some of 

these include extensions of the text material. Answers to approximately one-third of 

the problems are given at the rear of the book.

In endeavoring to emphasize the basic principles, we have, of necessity, 

had to omit many interesting applications. We have not attempted to provide 

a compendium of useful results, but rather we have selected a limited number of 

particular applications and have examined these with more than usual care. It is our 

opinion that a course based on this text will provide an appropriate introduction 

to the more advanced disciplines of elasticity and plasticity. With equal conviction 

we believe that a course based on this text will provide a fi rm foundation for 

subsequent design courses in this fi eld.

Many people have participated directly and indirectly in the preparation of 

this book. In addition to the authors, many present and former members of our 

staff have contributed ideas concerning methods of presentation and problems 

from examinations. We wish to acknowledge, in particular, the cooperation of 



xiv Preface to the First Edition

R.J. Fitzgerald in working out problem solutions and the help of Miss Pauline 

Harris in typing the manuscript.

There was a preliminary edition in 1957 (with a supplement in 1958); it enabled 

us to experiment with presenting this material in semipermanent book form. We 

wish to thank those members of the M.I.T. classes of 1960 and 1961 who used the 

preliminary editions and who by their comments and criticisms helped to make this 

book better than it otherwise would have been.

 STEPHEN H. CRANDALL

 NORMAN C. DAHL



U.S. Customary Units and Their SI Equivalents*

Quantity U.S. Customary Unit SI Equivalent

Acceleration ft/s2 0.3048 m/s2

 in./s2 0.0254 m/s2

Area ft2 0.0929 m2

 in2 645.2 mm2

Energy ft ◊ lb 1.356 J

Force ki p 4.448 kN

 lb 4.448 N

 oz 0.2780 N

Impulse lb ◊ s 4.448 N ◊ s

Length ft 0.3048 m

 in. 25.40 mm

 mi 1.609 km

Mass oz  mass 28.35 g

 lb  mass 0.4536 kg

 slug 14.59 kg

 ton 907.2 kg

Moment of a force lb ◊ ft 1.356 N ◊ m

 lb ◊ in. 0.1130 N ◊ m

Moment of inertia:

of an area in4 0.4162 ¥ 106 mm4

of a mass lb ◊ ft ◊ s2 1.356 kg ◊ m2

Momentum lb ◊ s 4.448 kg ◊ m/s

Power ft ◊ lb/s 1.356 W

 hp 745.7 W

Pressure or stress lb/ft2 47.88 Pa

 lb/in2 (psi) 6.895 k Pa

Velocity ft/s 0.3048 m/s

 in./s 0.0254 m/s

 mi/h (mph) 0.4470 m/s

 mi/h (mph) 1.609 km/h

Volume, solids ft3 0.02832 m3

 in3 16.39 cm3

Liquids gal 3.785 l

 qt 0.9464 l

Work ft ◊ lb 1.356 J

* From F.P. Beer and E.R. Johnson, VECTOR MECHANICS FOR ENGINEERS: DYNAMICS, 

3rd ed., McGraw-Hill Book Company, New York 1976.



SI Prefi xes *

Multiplication Factor    Prefi x †  Symbol

 1 000 000 000 000 = 1012 tera T

 1 000 000 000 = 109 giga G

 1 000 000 = 106 mega M

 1 000 = 103 kilo k

 100 = 102 hecto ‡ h

 10 = 101 deka ‡ da

 0.1 = 10–1 deci ‡ d

 0.01 = 10–2 centi ‡ c

 0.001 = 10–3 milli m

 0.000 001 = 10–6 micro m

 0. 000 000 001 = 10–9 nano n

 0. 000 000 000 001 = 10–12 pico p

 0. 000 000 000 000 001 = 10–15 femto f

 0. 000 000 000 000 000 001 = 10–18 atto a

 † The fi rst syllable of every prefi x is accented so that the prefi x will retain its identity. Thus, the 

preferred pronunciation of kilometer places the accent on the fi rst syllable, not the second.

 ‡ The use of these prefi xes should be avoided, except for the measurement of areas and volumes and 

for the nontechnical use of centimeter, as for body and clothing measurements.

Principal SI Units Used in Mechanics*

Quantity Unit Symbol Formula

Acceleration Meter per second squared … m/s2

Angle  Radiation rad †

Angular acceleration Radiation per second squared … rad/s2

Angular velocity Radian per second … rad/s

Area Square meter … m2

Density Kilogram per cubic meter … kg/m3

Energy Joule J N ◊ m

Force Newton N kg ◊ m/s2

Frequency Hertz Hz s–1

Impulse Newton-second … kg ◊ m/s

Length Meter m ‡

Mass Kilogram kg ‡

Moment of a force Newton-meter … N ◊ m

Power Watt W J/s

Pressure Pascal Pa N/m2

Stress Pascal Pa N/m2

Time Second s ‡

Velocity Meter per second … m/s

Volume, solids Cubic meter … m3

Liquids Liter l 10–3 m3

Work Joule J N ◊ m

‡ Supplementary unit (1 revolution = 2p rad = 360°)

‡ Base unit.



Fundamental 
Principles of 

Mechanics

1.1 INTRODUCTION

1

Mechanics is the science of 
forces and motions. It involves a 
relatively small number of basic 
concepts such as force, mass, 
length, and time. From a few 
experimentally based postulates 
and assumptions regarding the 
connections between these con-
cepts, logical deduction leads 
to quite detailed predictions of 
the consequences. Mechanics 
is one of the oldest physical 
sciences, dating back to the time 
of  Archimedes (287–212 B.C.). 
A delightful account of the use 
of mechanics by Archimedes 
in the defense of Syracuse 
against the Romans may be 
found in  Plutarch’s Lives.1 As a 
science, mechanics has intrigued 
almost all of the great scientists, 
e.g., Stevin, Galileo, Newton, 
d’Alembert, Lagrange, Laplace, 
Euler, Einstein, to name only a 
few whose names are familiar. 

It continues to be a fascinating 
subject by continually expanding 
its areas of application. The 
reader interested in the history 
of mechanics will fi nd easily a 
number of interesting books on 
this topic.
  Applied mechanics is the science 
of applying the principles of mec-
hanics to systems of practical 
interest in order (1) to understand 
their behavior and (2) to develop 
rational rules for their design. 
This book is an introduction to 
applied mechanics of solids. The 
logical structure of the principles 
of mechanics will be briefl y 
developed as needed, but the 
main emphasis here is on the 
rational appli cations of these 
principles. It is assumed that the 
reader is familiar with the broad 
outline of newtonian mechanics 
from his studies in physics.

1   Plutarch, “The Lives of the Noble Grecians and Romans,” Marcellus, pp. 376–380, 

Modern Library, Inc., New York.
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1.2 GENERALIZED PROCEDURE

The general method of attack in solving problems in applied mechanics is similar to 

that in any scientifi c investigation. The steps may be outlined as follows:

1. Select system of interest.

2. Postulate characteristics of system. This usually involves idealization and 

simplifi cation of the real situation.

3. Apply principles of mechanics to the idealized model. Deduce the 

consequences.

4. Compare these predictions with the behavior of the actual system. This 

usually involves recourse to tests and experiments.

5. If satisfactory agreement is not achieved, the foregoing steps must be 

reconsidered. Very often progress is made by altering the assumptions 

regarding characteristics of the system, i.e., by constructing a different 

idealized model of the system.

This generalized approach applies to the problems treated in this book and 

equally well to problems on the frontiers of research. The design engineer who 

must deal with mechanics follows a similar sequence but with a somewhat different 

motive in that it is his job to accomplish a certain desired function. He must fi rst 

create a possible design, either by invention or by adaptation of prior designs, 

before he can analyze its behavior as in steps 1, 2, and 3. If this behavior is not 

compatible with the desired function, he must modify or redesign the system and 

repeat the analysis until an acceptable result is obtained. The criteria of accept-

ability include not only satisfactory technical operation but such factors as 

economy, minimum weight, or ease of fabrication. Acceptability may also require 

con sideration of pollution and/or ecological factors.

Since this is an introductory text, we have devoted most of our space to the fi rst 

three of the above steps. We have, however, made occasional reference to the other 

steps. Examples of cases where there is not at present satisfactory agreement between 

theory and experiment have been given to illustrate the tentative nature of scientifi c 

reasoning and also to acquaint the reader with the fact that, despite its fundamental 

importance in the scientifi c development of the last 300 years, mechanics is still a 

vigorous, growing fi eld with many frontiers being actively extended.

Let us consider further the fi rst two steps in the above outline: the selection of 

a system and the idealization of its characteristics. In research investigations these 

are usually the most diffi cult steps. The trick is to set up a model which is simple 

enough to analyze and yet still exhibits the phenomena under consideration. The 

more we learn, the more detailed become our models of reality.

For example, the reader will observe in the following pages the increasing 

sophistication with which we select and isolate systems for intensive analysis. In 

the simplest situations an entire structure can be treated as a whole. We later fi nd 

it necessary to consider subassemblies (e.g., a single member or joint, or half of an 

original structure) as isolated systems. Later we obtain more detailed information by 

selecting infi nitesimal elements inside structural members as systems for analysis.

The reader will also observe the increasing sophistication we employ in 

idealizing the characteristics of a system. For example, a large part of our work 
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deals with ordinary engineering structural members: rods, beams, shafts, etc. These 

members are ordinarily relatively rigid, so we begin by using the idealized concept 

of a perfectly rigid body. A certain plateau of understanding is reached on this basis. 

Then to answer further questions it is necessary to consider the deformation of a 

member under load. By assuming the deformations to be elastic we reach another 

plateau of understanding. Then further enlightenment comes when we include 

assumptions regarding plastic behavior.

1.3 THE FUNDAMENTAL PRINCIPLES OF MECHANICS

Having selected a system and set up a conceptual model of its behavior, we next 

ask, what are the principles of mechanics and how are they applied? In broad 

outline they are very simple. Mechanics deals with forces and motions. We must 

therefore study the forces, and we must study the motions. Finally, we connect the 

forces with the motions by using hypotheses concerning the dependence of motion 

on force.

One of the most important of our basic concepts is force. In the next section we 

begin a review of the properties of force.

The study of  motion involves geometry and, in general, time. It is possible to 

distinguish two different types of movement which are important in the mechanics 

of solids. The fi rst type involves gross overall changes in position with time, while 

the second type involves local distortions of shape. For example, an automotive-

engine connecting rod has a complicated overall motion in which one end moves 

up and down while the other end travels in a circle. Simultaneous with this overall 

motion is a very small change in the shape of the rod; the rod alternately elongates 

and shortens as it fi rst pulls the piston and then is pushed by the piston. This second 

type of movement, involving change in shape, we call  deformation. In this book we 

shall consider situations in which there is deformation, but we shall not usually be 

concerned with gross overall motions. Detailed examination of overall motion may 

be found in texts on dynamics, kinetics, and kinematics.

Both types of movement are infl uenced by forces. The hypotheses con necting 

force and motion that we employ are those of newtonian mechanics. While 

this theory must be extended to cope with very large velocities, there is ample 

experimental evidence for the validity of the newtonian postulates in the realm 

of ordinary engineering where all velocities are small compared with the speed 

of light. A basic tenet of newtonian mechanics is the proportionality of force and 

acceleration for a particle. Actually, in this book we deal only with a degenerate 

case of this: the case of no acceleration which occurs when there is no unbalanced 

force.

The hypotheses relating force and deformation within solids are consider ably 

more varied. Several aspects of this question will be surveyed in Chapter 5 and 

exploited in the following chapters.

Application of these hypotheses to a particular system permits us to predict the 

motion and deformation if the forces are known or, conversely, to determine the 

forces if the motions and deformations are known. At the design stage of a structure 
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or machine this gives us information on which to base a judgment as to whether the 

system will perform in a safe and effi cient manner.

Every analysis of a mechanical system involves the three steps described above, 

which we list again for emphasis:

1. Study of forces

2. Study of motion and deformation

3. Application of laws relating the forces to the motion and deformation

In most situations all three of the above steps require careful analysis. In special 

cases one or more of the steps become trivial. For example, when we assume a 

member to be perfectly rigid, we automatically rule out considerations concerning 

the deformation of the member. If in addition the member is con strained to remain 

at rest, no considerations regarding the motion are necessary.

The problems treated in this book generally will not involve overall motion. As a 

consequence, the basic steps in the analysis may be simplifi ed as follows:

1. Study of forces

2. Study of deformations

3. Application of laws relating the forces to the deformations

In considering the forces we will have to take into account the requirement that 

there should be a state of balance. In considering the deformations we will have 

to take into account the requirement that the deformations of the individual parts 

of a structure should be consistent with the overall deformation. In relating the 

forces to the deformation we will have to take into account the special properties 

of the particular materials involved. These three fundamental steps underlie the 

development of the remainder of this book. They form the central core.

1.4 THE CONCEPT OF  FORCE

It is assumed that the reader already has an intuitive notion of force, and what a 

force can do. The development of the idea of force in mechanics has provided us 

with an effective means for describing a very complex physical interaction between 

“bodies” in terms of a simple, convenient concept.

Force is a directed interaction; i.e., it is a vector interaction. (The reader may 

fi nd it convenient to recall some of the properties of a vector by considering Probs. 

1.1 to 1.5 at the end of the chapter.) 

For example, in Fig. 1.l(a) there is an 

attraction between the airplane and 

the center of the earth indicated by 

the pair of vectors F1, and F2. In Fig. 

1.1(b) there is a force between the 

spring and the weight indicated by 

the pair of vectors F1 and F2. Newton, 

in his third law, postulated equal and 

opposite effectiveness of force on the 

two interacting systems; that is, F1 and 

F2 are equal and opposite vectors along 

the same line of action in Fig. 1.1. Fig. 1.1  Force interactions (a) at a distance 

and  (b) by direct connection



Fundamental Principles of Mechanics 5

It has become customary to apply the term force indiscriminately to either the 

pair F1, F2 or to the single vectors separately. When we analyze an isolated system 

such as the airplane in Fig. 1.1(a), we represent the interaction with the earth by 

the vector F1, calling it the force exerted by the earth upon the airplane. Simi-

larly, in isolating the spring in Fig. 1.1(b) the interaction with the weight would be 

represented by F1, the force which the weight exerts on the spring.

Force interactions may occur when there is direct contact between systems, as 

illustrated by Fig. 1.1(b). Force interactions may also occur between systems which 

are physically separated, as in Fig. 1.1(a). Electric, magnetic, and gravita tional 

forces are of this type. The force of the earth on an object at or near the surface is 

called the  weight of the object.

Force interactions have two principal effects: they tend to alter the motion of 

the systems involved, and they tend to deform or distort the shape of the systems 

involved. In Fig. 1.2(a) the attraction of the earth has a tendency to alter the motion 

of the airplane from a level fl ight to a vertical dive. The application of a force to 

the deformable spring in Fig. 1.2(b) tends to stretch it. Either of these effects can 

be used as the basis for a  quantitative measure of the magnitude of force. The 

defi nitions of most units of force are based on the alteration of motions of standard 

systems. In the International System of Units, offi cially abbreviated SI system, 

the unit of force is the   newton. A newton is defi ned as that force which gives an 

acceleration of 1 m/s2 to a mass of 1 kg. In the English system which is being 

replaced by the SI system the unit of force is the  pound force. The pound force is 

defi ned as that force which gives an acceleration of 32.1740 ft/s2 to a mass which 

is 1/2.2046 part of a certain piece of platinum (in possession of the International 

Committee for Weights and Measures) known as the  standard kilogram.

Fig. 1.2  Forces tend to alter motion or distort shape

The  International System of Units which is slowly being adopted is a modern-

ized version of the metric system. It was established by international agreement to 

provide a logical and interconnected framework for all measurements in science, 

industry, and commerce. In this system the basic quantities are  length, mass, and 

time—meter, kilogram, and second.

The SI system is replacing the English system of units which has been used 

by engineers in the United States. The English system is based on a gravitational 

system in which length, force, and time—foot, pound, and second—are considered 
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the fundamental quantities. The unit of  mass in this system has the dimensions of 

lb-s2/ft, which is occasionally called a  slug.

In the SI system the acceleration due to gravity near the earth’s surface is 

approximately 9.81 m/s2. A mass of one kilogram on the earth’s surface will 

ex perience a gravitational force of 9.81 N. Therefore we say that a mass of 

1 kilo gram has because of the gravitational force of the earth, a weight of 9.81 N. It 

is likely that both these systems of units will continue to be used over the next few 

years and one will need to be able to switch from one system to the other. We will 

use both systems of units in this book.

Table 1.1 contains a listing of the common systems of units and some con version 

factors between systems. It should be mentioned that one’s so-called intuitive grasp 

of the order of magnitude of physical quantities depends on one’s system of units. 

Let us now leave the discussion of units and return to our discussion of force.

A very important property of force is that the superposition of forces satisfi es 

the laws of  vector addition. This is a fundamental postulate based on experimental 

observation. Thus, if force is defi ned in terms of the rate of change of momentum of 

a standard body, it is found that when two bodies interact with the standard body, the 

rate of change of momentum is the vector sum of the individual rates of change of 

momentum resulting when each body separately interacts with the standard body.

  Systems of units and some conversion factors

Units

SI United States

Length: meter (m) foot

Force: newton (N) pound force

Time: second (s) second

Mass: kilogram (kg) pound mass, slug

Prefi xes for SI system

Factor by which 

unit is multiplied

Prefi x 

Name Symbol

109 giga G

106 mega M

103 kilo k

10–3

10–6

milli

micro

m

m

10–9 nano n

Conversion factors

Length: 1 in. = 25.40 mm

1 ft = 0.3048 m

1 m = 39.37 in.

1 m = 3.281 ft

Force: 1 lbf = 4.448 N 1 N = 0.2248 lb

Pressure: 1 psi = 6.895 kN/m2

1 psf = 47.88 N/m2

1 MN/m2 = 145.0 psi

1 kN/m2 = 20.88 psf

Distributed load: 1 lb/ft = 14.59 N/m 1 kN/m = 68.53 lb/ft

Moment of force: 1 ft-lb = 1.356 N.m 1 N.m = 0.7376 ft-lb

Table 1.1
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This implies that if two forces F1 and F2 have the same point of application P in 

Fig. 1.3(a), then we may replace them by their vector sum F1 + F2 with no observ-

able effect on the system. It also means that any force F in Fig. 1.3(b) can be replaced 

by its components along any three mutually perpendicular axes through the point of 

application P. It is assumed that the reader is familiar with the algebra of vectors and 

their representation in terms of unit vectors i, j, and k along coordinate axes.

Summarizing the above discussion on forces, we can say that:

1. Force is a vector interaction which can be characterized by a pair of equal 

and opposite vectors having the same line of action.

2. The magnitude of a force can be established in terms of a standardized 

experiment.

3. When two or more forces act simultaneously, at one point, the effect is the 

same as if a single force equal to the vector sum of the individual forces were 

acting.

Fig. 1.3  Vector properties of force

If we isolate a system S, as shown in Fig. 1.4, the interactions with external 

systems can be indicated by vectors F1, F2,..., which show the forces exerted by the 

external agencies that interact with S. This set of forces is often referred to simply 

as the external forces acting on the system S. Each individual force is characterized 

by a magnitude and a vector direction. 

Furthermore, in dealing with an extended 

system it is necessary to specify the  point 

of application of each force. Throughout 

this book we shall be continually focusing 

our attention on systems of forces like that 

shown in Fig. 1.4 in which we isolate the 

system from its environment, and replace 

the effect of the environment with a system 

of  external forces. In the mechanics of solids, the system which we isolate is a 

specifi c physical part or a group of parts. In the mechanics of  fl uids, it is often more 

useful to isolate a particular  control volume in space rather than isolating particular 

particles which are fl owing through a volume.

At this point it is appropriate to consider the “scale” or absolute size of the 

system under study, and how scale affects the nature of force interactions.

Fig. 1.4  Isolated system with 

external forces
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In Fig. 1.1(b) we showed force interaction by direct connection between a 

spring and a weight. On a fi ner (atomic) scale, we would see that there is no “direct 

connection,” but rather, interaction between the electron fi elds of neigh boring 

atoms, more like the “at a distance” interaction of Fig. 1.1(a). On this fi ne scale, 

we would see that the contact force is the vector sum of all the atomic interaction 

forces, each of which varies continually due to atomic thermal motion.

In Fig. 1.3, we considered forces acting “at a point.” While mathematically 

acceptable, this concept is physically only approximate in that all interactions 

involve a fi nite area. The point approximation grows poorer as the size of the 

interaction area approaches the size of the system under study.

In later sections we shall consider the matter within a solid to be continuously 

distributed. This is an approximation which is valid only when the solid is large 

compared to atomic dimensions. By the same reasoning, although we see our 

universe as composed of discrete stars, etc., studies on a cosmic scale may well 

consider the matter of the universe to be uniformly distributed.

Whenever we model a physical system for study, we must select a “scale” which 

is fi ne enough to provide critical results, yet as coarse as possible to minimize 

analytical effort.

1.5 THE  MOMENT OF A FORCE

In Fig. 1.5 let F be a force vector applied at P and let O be a fi xed point in space. 

The moment or  torque of F about the point O is defi ned as the vector cross product 

r ¥ F, where r is the displacement vector from O to P.

Fig. 1.5  The moment of a force F about a point O is r ¥ F

The moment itself is a vector quantity. Its direction is perpendicular to the 

plane determined by OP and F. The sense is fi xed by the  right-hand rule: When 

the fi ngers of the right hand curl in the direction that F tends to turn about O, the 

right thumb points in the direction of the moment vector. An alternate method of 

fi xing the sense is to imagine a right-handed screw at O pointing perpendicular to 

the plane AOB. The direction in which this screw advances when turned by F is the 

direction of the moment r ¥ F.
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Recall from calculus that the  magnitude of the cross product r ¥ F is given by

Fr sin f
where F and r are the magnitudes of the vectors F and r and f is the angle 

between r and F shown in Fig. 1.6. The magnitude of the moment is therefore 

the area of the parallelogram having r and F as sides. Note that the magnitude is 

independent of the position of P along AB; that is, the moment of a force about 

a given point is invariant under the operation of sliding the force along its line 

of action. In simplest form the magnitude of the moment is h|F|, where h is the 

length of the perpendicular dropped from O to AB and |F| is the magnitude of the 

force vector F. Commonly used units for moments are the  meter-newton and  foot-

pound.

 Fig. 1.6  Magnitude of cross product r ¥ F is the area of parallelogram

If we consider an idealized two-dimensional structure shown in Fig. 1.7, the 

moment of the force F about the point O is

M = r ¥ F = kh|F|

where k is the unit vector in the z direction perpendicular to the plane of x and y. 

Alternatively, if we write out the vectors r and F in component form, we have

 M = (xi + yj) ¥ (Fxi + Fy j) 

  = k(xFy – yFx)

Fig. 1.7  Moment about O
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We see that the magnitude of the moment is given by the algebraic sum of the 

magnitudes of the moments of the components about O. Very often it is con venient, 

especially in two-dimensional problems, to work with the moments of components.

It should be emphasized that what we have just defi ned is the moment of a force 

about a point. The direction of the axis of the moment is perpendicular to the plane 

containing the force and the point. If another line OQ in Fig. 1.5 passes through O, 

the component of r ¥ F along OQ is called the moment of F about the line or axis 

OQ. The magnitude of this component along the line OQ is the projection of the 

vector M along OQ. This is given by the  dot product of M and a unit vector in the 

direction of OQ. The magnitude of this component is |r ¥ F| cos a or h|F| cos a.

Example 1.1
 As an example of the determination of the moment about a line,

  let us consider Fig. 1.8 and determine the moment M about the 

shaft axis OO¢ due to the force P applied to the crank handle as shown.

∑ Remember that moment is usually about a point. Here that point could be A.  

Find the moment of P about A using: rAB ¥ P where B is the point on which 

the force is applied.  

∑ Then, in order to get the moment about an axis, fi nd the component of the 

moment vector parallel to the axis. Thus, (rAB ¥ P) . I gives the required 

component.

Fig. 1.8  Example 1.1

To fi nd the moment about OO¢ we need fi rst the moment about the point A and 

then its component in the direction of OO¢. For the set of coordinate axes shown 

this component is in the x direction. The component of the moment about the line 

OO¢ is therefore

 M =  i • [r ¥ F]

  = i • [(50i – 200k) ¥ P (cos 50° cos 45° i + cos 50° sin 45° j +  sin 50° k)]

  = 200P cos 50° sin 45° (a)
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The result (a) is equal to the “lever arm” between OO¢ and the point of 

application of P multiplied by the component of P normal to the plane passing 

through OO¢ and the point of application of P.

When several forces F1, F2,..., Fn, act, their total moment or torque about a fi xed 

point O is defi ned as the sum

  r1 ¥ F1 + r2 ¥ F2 + ... + rn ¥ Fn = Â
j

 rj ¥ Fj (1.1)

where the rj are displacement vectors from O to points on the lines of action of 

the Fj. A particularly interesting case occurs when there are two equal and 

parallel forces F1 and F2 which have opposite sense, as shown in Fig. 1.9. Such 

a confi guration of forces is called a  couple. Let us determine the sum of the 

moments of F1 and F2 about O. The operation is indicated schematically in Fig. 1.9.   

Denoting the total moment by M, we have

M = r1 ¥ F1 + r2 ¥ F2 

 = (r2 + a) ¥ F1 + r2 ¥ F2

 = r2 ¥ (F1 + F2) + a ¥ F1 (1.2)

where r1 and r2 are vectors to arbitrary points on the lines of action of F1 and F2.

Fig. 1.9  The moment of a couple about the point O

Now F1 and F2 are of equal magnitude and opposite sense and therefore cancel 

when added at the same point.  The result of (1.2) is then simply

 M = a ¥ F1 (1.3)

where a is a displacement vector going from an arbitrary point on F2 to an arbitrary 

point on F1. The important thing about this result is that it is independent of the 

location of O: The moment of a couple is the same about all points in space. A  

couple may be characterized by a moment vector without specifi cation of the 

moment center O as indicated in Fig. 1.10. The magnitude of the moment is most 

simply computed as h|F|, where h is the perpendicular distance between the vectors 

F and –F. It is often convenient to distinguish between vectors representing the 

moments of couples and vectors representing forces by using some notational 

device. We shall use the encircling arrow shown in Fig. 1.10 to indicate the moment 

of a couple. When sketching a plane fi gure acted on by a couple whose axis is 

perpendicular to that plane, the notation of Fig. 1.11 is commonly used.
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Fig. 1.10  A couple is represented by a moment vector

Fig. 1.11  Representation of a couple in a plane sketch

1.6  CONDITIONS FOR EQUILIBRIUM

According to Newton’s law of motion, a particle has no acceleration if the resultant 

force acting on it is zero. We say that such a particle is in equilibrium. Although 

zero acceleration implies only constant velocity, the case that we deal with most 

frequently is that of zero velocity. The study of forces in systems at rest is called 

 statics. If several forces F1, F2,..., Fn act on a particle, the necessary and suffi cient 

condition for the particle to be in equilibrium is

   F1 + F2 + ... + Fn = Â
j

 Fj = 0 (1.4)

Under these circumstances we say that the forces are balanced or are in equilibrium.

One of the striking features of newtonian mechanics is that the postulates are 

made in terms of the simplest bodies, namely,  particles,  and then logical deduction 

is used to extend the theory to collections of particles and to solids and fl uids. As an 

example of this extension process we next outline how the concept of equilibrium 

is extended from a single particle to a general collection of particles.

Consider an isolated system of particles as indicated in Fig. 1.12. We say 

that such a system is in equilibrium if every one of its constituent particles is in 

equilibrium. Now the forces acting on each particle are of two kinds, external 

and internal. The  internal forces represent interactions with other particles in the 

system. Because of our fundamental postulate about the nature of force inter actions, 

we can represent these internal interactions by equal and opposite vectors having 

the same line of action.
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If each particle in Fig. 1.12 is in 

equilibrium, the resultant force on it 

is zero. Now let us consider all the 

forces in Fig. 1.12 as a single set of 

vectors. The vector sum of all the 

forces is clearly zero since the vector 

sum of each cluster around a particle 

must separately be zero. In the process 

of adding all vectors, however, we fi nd 

that the internal forces occur in self-

canceling pairs, and thus we are left 

with the result that if a set of particles 

is in equilibrium the vector sum of the 

external forces must be zero  i.e.,

   F1 + F2 + ... + Fn = Â
j

Fj = 0  (1.5)

Let us further consider the total moment of all the forces in Fig. 1.12 about an 

arbitrary point O. The total moment must be zero since the vector sum of forces 

acting on each particle is separately zero. In the process of forming the total moment 

of all the vectors, however, we fi nd that the internal forces occur in self-canceling 

pairs having the same line of action and hence give no contribution to the total 

moment. We are left with the result that if a set of particles is in equilibrium the total 

moment of all the external forces about an arbitrary point O must be zero, i.e.,

 r1 ¥ F1 + r2 ¥ F2 + ... + rn ¥ Fn = Â
j

 rj ¥ Fj = 0 (1.6)

where rj stands for a position vector extending from O to an arbitrary point on the 

line of action of the external force Fj.

The conditions (1.5) and (1.6) are necessary conditions for equilibrium; i.e., if 

the system is in equilibrium, then (1.5) and (1.6) must be satisfi ed. This is the way 

in which we shall employ these conditions in this book. We shall know that our 

system is in equilibrium (usually from the fact that the system is at rest), and we 

shall use (1.5) and (1.6) to obtain information about the forces.

It is interesting, however, to consider 

the converse problem. Suppose we know 

that the external forces acting on a system 

of particles satisfy both (1.5) and (1.6). 

Can we then conclude that every one of 

the constituent particles is in equilibrium?  

The answer is, in general, no.

For example, in Fig. 1.13 a system of 

two particles is shown acted upon by an 

equilibrium set of external forces F and 

–F. The internal forces Fi and –Fi  are 

also an equilibrium set, but the particles 

will be in equilibrium only when F = Fi. 

If, instead of two particles, we consider 

Fig. 1.12  An isolated system of particles 

showing external and internal forces

Fig. 1.13  Illustration of a system which 

is not in equilibrium even 

though the external forces 

balance
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a rubber band as our system in Fig. 1.13, we can easily perform the indicated 

experiment. If equal and opposite forces are applied to the ends of an unstretched 

rubber band, it does not remain in equilibrium. The ends of the band begin to 

accelerate away from one another, and the band begins to stretch.

This example suggests that if the system of particles was perfectly rigid so that 

no pair of particles could separate, the internal forces might automatically adjust 

themselves so as to provide internal equilibrium whenever the external forces make 

up an equilibrium set. This can in fact be proved.2 A rigorous proof requires a careful 

analysis of the possible motions of a rigid body. We shall not go into the details here 

but shall simply state the fi nal result: The necessary and suffi cient conditions for a 

perfectly rigid body to be in equilibrium are that the vector sum of all the external 

forces should be zero and that the sum of the moments of all the external forces 

about an arbitrary point together with any external applied moments should be zero.

A necessary and suffi cient condition for the equilibrium of a  deformable system 

is that the sets of external forces which act on the system and on every possible 

subsystem isolated out of the original system should all be sets of forces which 

satisfy both (1.5) and (1.6).

It is important to emphasize that our two previous statements of equilibrium 

for perfectly rigid bodies and deformable systems are the essence of the theory 

of equilibrium. We will be using the concepts embodied in these statements con-

tinually throughout this book. As we mentioned in the introduction, our emphasis 

will be on the rational applications of the concepts. We will fi rst treat systems of 

particles or engineering structural members which are relatively rigid so that if our 

system is in equilibrium, Eqs (1.5) and (1.6) are valid. Later, in discussing deform-

able systems we will fi nd that the equations of equilibrium for infi nitesimal sub-

systems will be differential equations. Of course, on a suffi ciently fi ne scale, the 

microscopic particles which constitute a system are generally not in equilibrium, 

even though the assembly of particles is in a state of macroscopic equilibrium. 

This is the case in any “static” piece of metal, liquid, gas, etc. The study of effects 

produced by the nonequilibrium particles is found in texts on statistical mechanics.

The two vector equations (1.5) and (1.6) are equivalent to six scalar equations so 

that in general we can solve for six scalar unknowns in each set of external forces.   

There are several simple special cases which deserve explicit mention.

 Two-force Member In Fig. 1.14 a system is in equilibrium under the action of only two 

external forces applied at A and B. The two forces cannot have random orientation, 

as shown in Fig. 1.14(a), but must be directed along AB. This is proved by using 

(1.6) and taking moments about A and B. In order for the moment about A to vanish, 

the line of action of FB must pass through A. Similarly, the line of action of FA must 

pass through B. We must also have FA = –FB in order for (1.5) to be satisfi ed.

 Three-force Member In Fig. 1.15 a system is in equilibrium under the action of only 

three external forces applied at A, B, and C. The three forces cannot have random 

orientation, as shown in Fig. 1.15(a). They must all lie in the plane ABC if the total 

2 See, for example,  J.L. Synge and  B.A. Griffi th, “Principles of Mechanics,” 3rd ed., p. 60, 

McGraw-Hill Book Company, New York, 1959.
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moment about each of the points A, B, and C is to vanish. Further more, they must 

all intersect at a common point O, otherwise the total moment about the intersection 

of any two of the lines of action could not vanish. This result that the three forces 

must intersect at a common point is a useful one to keep in mind. An interesting 

exercise in vector analysis is to prove the above statements. A limiting case occurs 

when point O moves off at great distance from A, B, and C, in which case the forces 

FA, FB, and FC become  parallel coplanar forces.

 Fig. 1.14  The forces FA and FB must be equal and opposite and directed along AB if the 

system is in equilibrium

 Fig. 1.15  The forces FA, FB and FC  must be coplanar and intersect at a common point O if 

the system is in equilibrium

 General Coplanar Force System In Fig. 1.16 the external forces acting on a system in 

equilibrium all lie in the plane of the sketch. In this case three of the six general 

scalar equations of equilibrium are immediately satisfi ed: there are no force 

components perpendicular to the plane, and if moments are taken about a point 

O lying in the plane, the only moment components will be perpendicular to the 

plane.  This leaves only three independent scalar conditions of equilibrium for two-

dimensional problems. Taking an arbitrary point O in the plane and an arbitrary 

orientation of the xy axes in the plane, the condition for the vector sum of the 

external forces to vanish is simply

Â
j

Fj = Â
j

 (Fjxi + Fjyj) = 0

or each component of the resultant force vector must vanish:  
 Â

j
Fjx = 0 

(1.7)

 Â
j

Fjy = 0
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 Fig. 1.16  Equilibrium conditions for a coplanar force system

The condition that the total moment about O should vanish may be written 

 Â
j

rj ¥ Fj = Â
j

 (xji + yjj) ×(Fjxi + Fjy j)

 = k Â
j

(xjFjy – yjFjx) = 0 
(1.8)

where xj and yj are the coordinates of a point on the line of action of Fj, and Fjx and 

Fjy are the x and y components of Fj.  See Prob. 1.7 for alternate formulations of the 

conditions for equilibrium for coplanar forces.

1.7  ENGINEERING APPLICATIONS

Many practical engineering problems involve structures or machines in equilibrium. 

Certain forces, usually loads, are specifi ed, and it is necessary to determine the 

reactions which come into play to balance the loads.

The general method of analysis that is followed throughout this book involves 

the preliminary steps:

1. Selection of system

2. Idealization of system characteristics

These are followed by an analysis based on the principles of mechanics, which 

includes the following steps:

1. Study of forces and equilibrium requirements

2. Study of deformation and conditions of geometric fi t

3. Applications of force-deformation relations

In some systems it is possible to determine all the forces involved by using only 

the equilibrium requirements without regard to the deformations. Such systems 

are called  statically determinate. In this chapter we restrict ourselves to statically 

determinate systems. Our method of analysis then involves selection of appropriate 

systems, idealization of their characteristics, study of the forces, and the use of 

the equilibrium conditions to solve for the unknown forces in terms of the known 

forces.
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The conditions of equilibrium (1.5) and (1.6) provide us with relations that must 

be satisfi ed by the external forces acting on an isolated system in equilibrium. The 

diffi culty in applying these to practical cases usually centers around the process 

of isolation itself. This is the key step upon which everything else depends. There 

is the diffi culty of deciding what system or subsystem to isolate, and there is the 

diffi culty of ensuring that a true isolation has been accomplished and that all 

external forces have been accounted for.

In simple cases it is obvious what system should be isolated; usually a single 

isolation suffi ces to solve the problem. In complex analyses many different isola-

tions may be required, and an intricate pattern of partial results may have to be 

assembled before the problem can be completely solved.

The best way to perform an isolation is to draw a reasonably careful sketch of 

the periphery of the isolated subsystem and then to show all external forces acting. 

A systematic way of doing this is to recall that forces either (1) act from a distance 

or (2) act through direct contact and to account fi rst for any possible forces, such 

as gravity, which can act from afar. Then go carefully around the entire periphery, 

indicating all forces which make direct contact with the system. The sketch of the 

isolated system and all the external forces acting on it is often called a  free-body 

diagram. The reader is strongly urged to adopt the habit of attempting to draw clear 

and complete free-body diagrams for every mechanics problem which he undertakes 

to solve. We use the word “attempt” because we recognize that this is indeed the 

most diffi cult and most important step!

In constructing a free-body diagram for part of an engineering system, it is often 

useful to make simplifying assumptions or  idealizations concerning the nature 

of the forces which act. For example, if a relatively light column carries a large 

load, we can obtain a useful engineering estimate of the forces in the column by 

neglecting the weight of the column. In this case the idealization is convenient but 

not absolutely necessary, because we can, if required, include the weight in our 

analysis. In other cases, our ignorance of the actual forces is such that we cannot 

obtain quantitative estimates without making idealizing assumptions.

Common idealizations include the perfectly rigid body and the inextensible but 

perfectly fl exible string or cable. In Table 1.2 the force-transmitting properties of 

several mechanical elements are shown.

We will discuss the case of friction which is shown in case (b) of Table 1.2 in the 

next section.

In case (f) of Table 1.2 we have shown an ideal clamped support which might, 

for example, occur at the end of a cantilever beam shown in Fig. 1.17.

If we draw a free-body diagram of the beam as shown in Fig. 1.17(b), the effect 

of the wall support on the beam is idealized as a net force acting at the beam end 

passing through a point O. From the force equilibrium requirement this force is 

equal to F; further, for moment equilibrium there must be a moment acting at the 

support. Figure 1.17(b) is equivalent to case (f) in Table 1.2. As can be seen, we 

have considerably idealized the actual support conditions at the wall as far as the 

details of the interaction between the wall and the beam are con cerned. However, 

for many purposes this simplifi cation is suffi ciently correct.
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 Force-transmitting properties of some idealized mechanical elements

(a) A  frictionless surface can exert only a 

normal contact force N.

(b) When there is friction the surface can 

exert a tangential force F as well as a 

normal force N. The force F assumes any 

value necessary to prevent motion up to a 

maximum value Fs = fs N, where fs, is the 

 coeffi cient of friction.

(c) A  frictionless pinned joint transmits a force 

F which passes through the pin. No torque 

about the pin is transmitted.

(d) A  frictionless bearing exerts a force F on 

the shaft, which passes through the center 

of the shaft. No torque about the shaft is 

transmitted.

(e) A weightless  fl exible string or cable 

transmits force along its length. Each 

element is subjected to equal and 

opposite tensile forces F along the string. 

Compressive forces cannot be sustained. 

If the string passes over a frictionless peg 

or pulley, the direction of the force in the 

string is altered but its magnitude remains 

constant.

(f) An  ideal clamped support provides 

complete restraint against longitudinal or 

transverse motion and against rotation. It 

can supply force reactions H and V  and a 

moment reaction M.

Table 1.2
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Fig. 1.17  The forces at an ideal clamped support are equivalent to a force and moment

1.8  FRICTION

One of the important forces in mechanics is that due to friction. Friction forces are 

set up whenever a tangential force is applied to a body pressed normally against the 

surface of another. Thus, in Fig. 1.18(a), if a normal force P presses body A against 

the surface of B, and a tangential force T is also applied to body A, then a friction 

force F will be generated at the interface tending to prevent move ment under the 

action of T. This is indicated in the free-body diagrams in Fig. 1.18(b) and (c).

 Fig. 1.18  (a) Body A pressed against B; (b) free-body  diagram of body A; (c) free-body diagram 

of body B

The friction force arises from the interaction of the surface layers of bodies A and 

B. This interaction will, in general, be made up of a number of processes, including, 

in particular, the adhesion of surface atoms. A detailed description of friction 

phenomena is very complicated, and attempts to obtain a complete under standing 

of friction is a very active area of research in physics and applied me chanics.3 The 

3 See, for example, “Friction, Selected Reprints,” American Institute of Physics, New 

York, 1964, and  J. J. O’Connor and  J. Boyd (eds.), “Standard Handbook of Lubrication 

Engineering,” Chaps. 1, 2, McGraw-Hill Book Company, New York, 1968. 
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outline given below is only an approximate description of the behavior of the total 

friction force between two surfaces.

The main properties of the friction force F acting on A in Fig. 1.18(b) are:

1. If there is no relative motion between A and B, then the friction force F is 

exactly equal and opposite to the applied tangential force T. This condition 

can be maintained for any magnitude of T between zero and a certain limiting 

value Fs, called the  static friction force. If T is greater than Fs, sliding will 

occur.

2. If body A slides on body B, then the friction force F acting on body A will 

have a direction opposite to the velocity of A relative to B, and its magnitude 

will be Fk, called the  kinetic friction force.

It has been found that for a given pair of surfaces the forces Fs and Fk are 

proportional to the normal force N. We can thus introduce two constants of  

proportionality fs and fk, which are called the static and kinetic coeffi cients of 

friction, according to the equations

 Fs = fs N (1.9)
 Fk = fk N

These coeffi cients are intrinsic properties of the interface between the materials A 

and B, being determined by the materials A and B and by the state of lubrication or 

contamination at the interface. Further, it has been found that:

1. Both coeffi cients of friction are nearly independent of the area of the 

interface. In particular, if body A in Fig. 1.18 were tipped up so that 

only an edge or a corner was in contact with B, we should still fi nd 

approximately the same coeffi cients of friction. Note that under these 

circumstances the tangential and normal directions are determined only 

by the surface of B.

2. Both coeffi cients are nearly independent of the roughnesses of the two 

surfaces, although this is a conclusion which many people fi nd hard to 

accept.

3. The static coeffi cient fs is nearly independent of the time of contact of the 

surfaces at rest. Similarly, the kinetic coeffi cient fk is nearly independent 

of the relative velocity of the two surfaces. Figure 1.19 shows a schematic 

representation of typical static-friction—time and kinetic-friction—velocity 

plots.

 Fig. 1.19  Schematic representation of the variation of friction coeffi cients
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The effect of lubrication and sliding velocity on the friction coeffi cient for steel 

on steel surfaces is shown in Fig. 1.20. The top curve is for unlubricated surfaces 

and the bottom curve is for surfaces well lubricated by a fatty soap. The curves 

in between represent steel surfaces which are imperfectly lubricated. In all cases, 

changing the sliding velocity by a factor of 10 changes the friction by no more than 

about 10 percent.

 Fig. 1.20  Variation of kinetic friction coeffi cient with sliding velocity

Figure 1.20 also shows that in the case of unlubricated or poorly lubricated 

surfaces, the friction goes down as the sliding speed goes up (a negative charac-

teristic). This can lead to frictional oscillations, often called stick-slip, and this 

phenomenon is responsible for many of the noises of our environment, including 

the creaking of doors, the squeaking of brakes, and the music of violins.

Since the difference between static and kinetic friction values is not great, and 

the effects of the time of stick and sliding velocity are relatively small, it has 

proved possible to give friction-coeffi cient values which are applicable to almost 

all sliding conditions. A schematic representation of typical friction coeffi cients 

is given in Fig. 1.21 for nonmetal on nonmetal or nonmetal on metal, such as 

leather on wood, or nylon on steel. The extent of the shading shows the probable 

range of values.

It can be seen that for any state of lubrication, there is a range of about a factor 

of 2 between the maximum and minimum friction values that might be encountered.   

In most mechanics calculations, this uncertainty in friction is the factor which limits 

the overall accuracy of the calculation, since other parameters are generally known 

within a few percent.  

Similar curves can be drawn for similar and dissimilar metals in contact.4 

Some further typical values of friction coeffi cients are shown in Table 1.3 in 

practical applications care must be taken in determining or estimating the friction 

coeffi cient.

4 E. Rabinowicz, Surface Energy Approach to Friction and Wear, Prod. Eng., March 15, 

1965, p. 95.
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Fig. 1.21  General-purpose fric  on chart

 Coeffi cients of friction

Materials Surface conditions fs fk

Metals on metals (e.g., 

steel on steel, copper 

on aluminum)

Carefully cleaned 

Unlubricated, but not 

cleaned

 0.4–1.0

 0.2–0.4

 0.3–1.0

 0.15–0.3

Well lubricated  0.05–0.12  0.05–0.12

Nonmetals on 

nonmetals (e.g., 

leather on wood, 

rubber on concrete)

Unlubricated

Well lubricated

 0.4–0.9

 0.1–0.2

 0.3–0.8

 0.1–0.15

Metals on nonmetals Unlubricated

Well lubricated

 0.4–0.6

 0.05–0.12

 0.3–0.5

 0.05–0.12

Table 1.3
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1.9 EXAMPLES

To illustrate the concepts of analysis discussed above, we now consider several 

examples. In these examples we shall focus attention on the problem of selecting a 

system and idealizing its characteristics, as well as on the method of analyzing the 

idealized system.

Example 1.2
 Let us fi rst consider a highly idealized problem shown 

  in Fig. 1.22(a) to illustrate the construction of free-

body diagrams and the concept of impending motion for frictional forces. 

We are asked to fi nd the range of values of W which will hold the block of 

weight Wo = 500 N in equilibrium on the inclined plane if the coeffi cient of 

static friction is fs = 0.5. We will assume that the cable is weightless, that 

the pulley is frictionless, and that the blocks can be considered as particles.

∑ There are three parts to the system that we need to analyze for force relationships, 

namely, the weight on the incline, the cable and the hanging weight.

∑ Draw the free-body diagram of each of these parts.  There are two ways by 

which motion could be impending—down the incline and up the incline. The 

direction of the frictional force that corresponds to the impending motion 

should be properly represented.

∑ Each of these cases will give a value for W. These are the two limiting cases 

and, therefore, the value of W must lie between these two values.

In Fig. 1.22(b) we show a free-body diagram of the block with motion impending 

down the plane so that the frictional force F is shown opposite to the direction of 

motion (see Fig. 1.18(b)). In Fig. 1.22(c) and (d) are shown the free-body diagrams 

of the weight W and the fl exible weightless cable.

Fig. 1.22  Example 1.2
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If we use the force-equilibrium equations (1.7) and the orientation of the 

coordinate axes as shown in Fig. 1.22(b), we have

 SFx = 0 W + F – W0 sin a = 0 (a)

 SFy = 0 N – W0 cos a = 0 (b)

For motion about to start down the plane we have

  F = fsN (c)

If we now solve for the unknown value of W from (a), (b), and (c), we fi nd

 
W

W0

= sin a – fs cos a (d)

From (d), therefore, we fi nd, upon substituting for the numerical values,

 W = 500 
3

5

1

2

4

5
- Ê

ËÁ
ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙   = 100 N (e)

For values of W less than 100 N, the weight Wo will no longer be in equi librium 

and will slide down the inclined plane.

For values of W greater than 100 N, the weight Wo will be in equilibrium until 

the value of W is reached such that the weight is about to move up the plane. For 

this situation, the free-body diagram of Fig. 1.22(b) again holds except that now the 

frictional force F is pointed in the opposite direction. The weight W for motion of 

the block up the plane is then given by (d) with the sign of fs reversed

 
W

W0

 = sin a + fs cos a (f)

Evaluation of W from (  f  ) gives

W = 500 N

For values of W greater than 500 N, the block will no longer be in equilibrium 

and will move up the inclined plane.

Therefore the range of values of W for equilibrium of the block is 100 N   W   

500 N.

Example 1.3
 The simple triangular frame shown in Fig. 1.23(a) is used to 

  support a small chain hoist. We are asked to predict the forces 

acting on the wall at B and C when the chain hoist is supporting its rated capacity 

of 20 kN. The rod BD is pinned at its ends. The member CD is pinned at D and 

secured with four bolts at C.

∑ Please note that a free body need not be rigid!!! First isolate the frame from 

the wall support and represent appropriate wall reactions.

∑ If a member is a pinned straight member with forces acting only at the ends, 

then the member is an axial member and the forces at the pin are along the 

axis of the member and opposite in direction. Use this fact to reduce the 

number of reactions at the support B.

∑ Even with this reduction, the number of unknowns are 4, with two support 

forces at C and a moment C apart from the support force at B. So, cannot be 

determined from equilibrium of the system alone.

In Fig. 1.23(b) a fi rst attack is made by drawing an isolated free-body diagram 

of the frame. Note carefully that the system we have isolated is not, by itself, rigid; 
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i.e., by itself it will collapse. This isolation is perfectly proper because, in fact, the 

external forces (FB, FC, and MC) are just suf fi cient to prevent collapse. We have 

at this stage neglected the weight of the frame and of the chain hoist. With this 

idealization the only force and moment interactions occur at B, C, and D. At D we 

show the vertical load of 20 kN. At B there is a pinned joint. The force interaction 

there could be a force vector in all three dimensions plus an equally general moment 

vector. In this case, however, since the frame lies in a single plane and the load also 

is in this plane, it is reasonable to expect that all forces of any consequence will also 

lie in this plane. We have accordingly shown FB as lying in the plane of the frame.

Fig. 1.23  Example 1.3

The orientation within the plane is unknown. A couple with moment vector 

perpendicular to this plane could be trans mitted if there were friction forces around 

the pin. We have, however, made the idealization that this moment can be neglected 

on the basis of the following consideration: if there are frictional forces acting at the 

periphery of the pin, they will produce a frictional moment equal to the frictional 

force (fN) times the pin radius. When a force and a moment act at the same point 

in this manner, their effect is equal to that due to a single force, displaced sideways 

(Prob. 1.10). For this system the necessary sideways displacement is simply the 

friction coeffi cient times the pin radius. Therefore, for a typical friction coeffi cient 
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of  
1
3 , the greatest effect of friction at pin B would be to displace FB sideways 1

3
of 

the pin radius. In this example, such a small displacement appears insignifi cant to 

the general geometry, and is neglected.

Coming next to point C, where bar CD is joined to the wall by four bolts, 

a similar argument leads us to the conclusion that a force FC and a moment 

component MC in the plane of the frame could be acting on the frame. Here we 

are not willing to neglect the moment since a bolted joint could possibly transmit 

moments of considerable size in comparison with a pinned joint.

Our free-body diagram in Fig. 1.23(b) then contains two unknown force vectors 

(each with two components) and one unknown moment component, due to forces 

all lying in one plane. According to (1.7) and (1.8), three independent equilibrium 

conditions are available for a coplanar system. Since we have fi ve unknown 

components, we cannot obtain a complete solution from Fig. 1.23(b) alone.

In an attempt to get additional relations we must isolate subsystems. We show in 

Fig. 1.23(c) a free-body diagram of bar BD. Since both ends are pinned and we are 

neglecting the weight of the bar itself, we can say that BD is a two-force member, 

and hence, as shown in Fig. 1.14, the forces FB and FD must be equal and opposite 

vectors along BD.

Next, in Fig. 1.23(d) we show a free-body diagram of bar CD. At D we now can 

show the orientation of the interaction with BD since it must be equal and opposite 

to the force FD in Fig. 1.23(c). The direction of FC still remains unknown. Counting 

unknowns in Fig. 1.23(d), we have the two components of FC and the magnitudes of 

MC and FD, or a total of four scalar unknowns. Again we cannot obtain a complete 

solution from the three independent conditions of equilibrium. This time we are up 

against a stone wall. Having isolated each bar separately as well as the combination 

of both bars together, we have exhausted all possibilities. We must conclude that 

the conditions of equilibrium alone are insuffi cient to analyze our model. This is, in 

fact, the case. The frame model of Fig. 1.23(b) is  statically inde terminate.

We then have two courses open to us (besides giving up in despair). We can 

consider a more highly idealized model which is statically deter minate, or we can 

develop a theory for handling statically indeterminate structures. In this book we 

shall actually do both. In the following para graphs we shall discuss a simplifi ed 

model. In subsequent chapters we shall develop a theory which will permit us to 

return to this problem again in Chapter 8 and to estimate the errors committed in 

employing the simpler model.

The most ambiguous part of the model of Fig. 1.23 was the moment MC at the 

bolted joint. This moment may be quite small if the bolts are loosely fi tted and are 

not tightened up. This consideration leads us to adopt the simplifi ed model of Fig. 

1.24(a) where we have idealized the bolted joint into a pinned joint. In the free-body 

diagram of Fig. 1.24(b) there will be forces FB and FC at the wall-support points, 

but no moments. The directions of FB and FC are unknown in Fig. 1.24(b). Taking 

advantage of our pre vious experience with Fig. 1.23, we show a free-body diagram 

of bar BD in Fig. 1.24(c). Since this is a two-force member, FB must be along the 

line BD. Returning to the entire frame in Fig. 1.24(d) with this information, we con-

clude that since there are only three forces acting on the isolated free body and since 
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FB and the load intersect at D, then FC must also be collinear with D as shown. We 

could draw the same conclusion by noting that bar CD is a three-force member. It 

Fig. 1.24  Idealized model of system of Fig. 1.23

now remains only to fi nd the magnitudes of FB and FC. These can be determined 

in several ways by applying the equilibrium requirements of (1.7) and (1.8). For 

example, if we require that the total moment about B should be zero, we have

 SMB = –3j ¥ FC + 3i ¥ (–20j) = 0 (a)

where i and j are unit vectors in the x and y directions. Expressing FC as FCi, where 

FC is the scalar magnitude of FC, we easily fi nd from (a)

 FC = 20 kN (b)

Summing vertical force components yields

 SFy = 0 = FB sin 45º – 20 (c)

or

 FB = 28.28 kN (d)

Thus we have determined the forces acting on the isolated frame in Fig. 1.24(b). 

The forces acting on the wall supports from the frame are equal and oppo sitely 

directed.
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Our analysis has been based on several assumptions and idealizations. We 

have neglected the weight of the frame and the hoist. We have neglected frictional 

moments at pinned joints, and we have made the additional ideali zation, in going 

from Fig. 1.23(a) to Fig. 1.24(a), that the bolted joint could be treated as a pinned 

joint. It will take us until Chapter 8 before we can fully assess the signifi cance of 

these simplifying assumptions. There we shall see that the results obtained above 

do actually constitute a very useful engineering approximation.

Example 1.4
 A pinned truss is shown in equilibrium in Fig. 1.25. It is 

  a plane structure consisting of relatively rigid links connected by 

pinned joints. It carries loads at E and F as shown; it is pinned to a rigid foundation 

at A and is supported on a roller support at B. The primary problem is to determine 

the forces at A and B due to the loads at E and F. A secondary problem is to 

determine the forces in the individual links of the truss.

∑ The orientation of the hinged support at A does not matter in the number of 

support forces at A to be considered while drawing the free body of the truss 

system as a whole.

∑ Three external support reactions, three equilibrium equations for the planar 

truss system and the support reactions are determinable.

∑ For each link, if cut as shown in Fig. 1.27, internal forces along the axis of 

the member. There are 6 pins A, B, ..., F for which we can draw the free-body 

diagram and write the equilibrium equations to solve for the link forces.  

∑ It is better to start the above with a pin in which least number of unknowns 

have to be found out. For example, A and B.

Fig. 1.25  Example 1.4

To obtain the reactions at A and B we isolate the entire truss in the free-body 

diagram of Fig. 1.26. We have made the idealization that the weight of the truss can 

be neglected. Tracing the periphery of the isolated system, we have included the loads 

at E and F. At B we have idealized the roller support by showing a vertical reaction 

FB. Our rationalization is that if the support has been designed to permit horizontal 

motion it should not provide much horizontal resisting force. At the pinned joint of A 

we have shown a reaction FA which passes through the pin. Again we have made an 

idealization by neglecting the possibility of a frictional moment around the pin. Our 

rationalization is that even if there is some friction the smallness of the pin implies 

that the effect of the friction moment about the center of the pin will remain small.
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Fig. 1.26  Free-body diagram of truss of Fig. 1.25

Since the truss is a planar system in equilibrium, the external forces shown in 

Fig. 1.26 must satisfy (1.7) and (1.8). We note that FA (magnitude and direction 

unknown) and FB (magnitude unknown) represent three unknown scalar quantities, 

and thus the three independent conditions for equilibrium of coplanar forces 

are suffi cient to determine FA and FB. Taking A as our moment center, we have, 

according to (1.8),

 SMA = 4FB  – 3(50) – 2(75) = 0 (a)

fi FB = 75 kN

Letting FA = iAx + jAy , where i and j are unit vectors in the x and y directions, 

we next apply (1.7) to get

 SFx = Ax = 0

 SFy = Ay+ 75 – 75 – 50 = 0 (b)

 Ay = 50 kN

Thus the reactions at A and B are both vertically upward, with magnitude of 50 

and 75 kN, respectively.

This solution for the reactions makes no use of the particular design of the truss 

within the isolated system of Fig. 1.26. All that is required is that the truss be in 

equilibrium. The designer of the truss, however, is interested in how the loads 

are transmitted by the various members so that he can be sure that each member 

is strong enough. To obtain this kind of information we must consider free-body 

diagrams of subassemblies within the truss. As an illustration we show in Fig. 1.27 

how the forces in members AC and AD can be determined. In Fig. 1.27(a) and (b) 

free-body diagrams of the bars AC and AD show that (if the weights of the bars 

and the frictional moments around the pin joints are neglected) they are two-force 

members, and hence that FAC and FAD must be directed along the links. In Fig. 1.27(c) 

a free-body diagram of the joint at A shows these same forces acting on the pin. 

Note that the force on the pin by the bar is equal and opposite to the force on the 

bar by the pin according to Newton’s third law. Since the pin is in equi librium, we 

have, according to (1.7),

FAD – 
1

2
FAC = 0 
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Fig. 1.27  Isolations of (a) bar AC, (b) bar AD, and (c) pin A

   50 – 
1

2
 FAC = 0 (c)

from which we fi nd FAC = 70.71 kN and FAD = 50 kN. The force FAC tends to shorten 

the bar AC and is called a  compressive force; the force FAD tends to extend the bar 

AD and is called a  tensile force.

Example 1.5
 Figure 1.28 shows a 10 kN load held in equilibrium by a 

  2 m derrick boom ABC supported by the guy wires BD and BE and 

a ball-and-socket joint at C. The points C, D, and E all lie in the xy plane as shown. 

It is desired to determine the reactions at C, D, and E due to the 10 kN load at A.

∑ First exercise is to draw the free-body diagram detaching the assembly from 

the supports at C, D and E.

∑ The directions of the guy wire forces are along the guy wire and, therefore, 

the direction is known. Write those forces as appropriate vectors.

∑ It is easy to eliminate the reactions at C by taking moments about C of all the 

forces. The two guy forces and the load at A will be involved in this. This will 

help solve the guy wire forces.

∑ Then the force equilibrium equations involving the three directions will fetch 

the three reactions at C.

 Fig. 1.28  Example 1.5.  Derrick boom ABC is supported by ball-and-socket joint at C and guy 

wires at D and E
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The sketch of Fig. 1.28 can be used to represent a free-body diagram of the 

boom and guy wires if we indicate the external forces acting at A, C, D, and E. We 

idealize the situation by neglecting the weight of the boom and guy wires. At C we 

show a force FC acting on the ball joint with unknown orientation; we neglect the 

possibility of a frictional moment. At D and E we make use of the property of an 

ideally fl exible cable given in Table 1.2 to show FD and FE acting on the wires along 

the directions BD and BE. Thus, if FD and FE are the magnitudes of these forces 

and i, j, and k represent unit vectors in the x, y, and z directions, we may write

   FD = FD 
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Since the derrick is in equilibrium, the forces in Fig. 1.28 must satisfy (1.5) and 

(1.6). A convenient method of application is to take C as a moment center for (1.6). 

This has the advantage of eliminating the three components of FC.

 SMC = CA ¥ (10 j) + CB ¥ FD + CB ¥ FE = 0 (b)

Using the determinant representation illustrated in Prob. 1.4 at the end of this 

chapter, the vector cross products in (b) can be expanded as follows:
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Setting the components of i, j, and k separately equal to zero yields simple 

simultaneous equations5 for FD and FE with the solution

   FD = 8 kN 
(d)

   FE = 8.485 kN

In (b) we have taken the guy-wire tensions as acting at point B. We would obtain 

the same fi nal result (d) if we let the forces act on the total system at D and E as 

shown in Fig. 1.28.  Equation (b) would then become

SMC = CA ¥ (– 10j) + CD ¥ FD + CE ¥ FE

5 This example is unusual in that we have three simultaneous equations with only two 

unknowns. The solution (d) satisfi es all three equations. The physical reason for this 

apparent paradox lies in the fact that the particular loading we have considered in Fig. 

1.28 involves a set of forces, all of which pass through ABC, and therefore whose moment 

vectors about C can only be per pendicular to ABC. This leaves only two independent 

scalar conditions of moment balance. The three conditions of (c) are actually equivalent to 

two since balance of moment components along ABC is automatically ensured. In fact, the 

structure of Fig. 1.28 is incapable of supporting a moment around ABC; the boom would 

spin in its socket and the guy wires would wind around at B. Twist could be prevented by 

replacing one of the guy wires with a rigid bar welded to the boom at B.
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 The force FC may now be obtained by applying (1.5)

SF = FC + FD + FE – 10j = 0

 FC = – 8 
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 = 7.17j + 11.31k k

The complete solution for the reactions thus consists of the guy-wire tensions (d) 

and the ball-and-socket force (e).

While the above solutions employing vector-analysis methods of solu tion are 

applicable to all problems, and essential to some, it is frequently easier, and much 

more instructive to solve the equations of equilibrium in the component form; i.e., 

the sum of force components in each of three orthogonal directions must be zero, 

and the sum of moment components about the axes must be zero. Often, careful 

selection of axes for writing force and moment equations can simplify the solution. 

In Fig. 1.28, we see that we can solve for FD and FE by writing moment equations 

about the x and y axes.
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\ FE = 8.485 kN     FD = 8 kN

The x, y, and z force components of FC can now be found by equating the sum of 

forces in those directions to zero.
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Example 1.6
 A screw jack, which is frequently used to raise or lower 

  weights, is shown schematically in Fig. 1.29(a). The screw 

is characterized by a thread pitch p and diameter d (Fig. 1.29(b). We wish 

to determine the operating characteristics in the presence of a coeffi cient of 

friction f between the screw threads and the jack body. In particular we wish to 

determine the relationship between the moment necessary to raise and lower 

the weight W and the frictional and geometrical characteristics of the jack. In 

Fig. 1.29(c) the screw has been isolated, and highly idealized, showing the 

distributed thread loads as acting at one point for convenience of analysis. We see 

that each portion of the screw must slide up an incline at a helix angle a, where

tan a
p

=
p

d

∑ First look at geometric characteristics. If the screw is opened up by cutting 

circumferentially, it is easy to understand the relationship between rotating 
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angle and the vertical movement. It is akin to that of moving over an incline 

whose height is p if the base is the circumference of the screw!  If the slope, 

a,  is small, then tan a ≈ a.

∑ Note that friction opposes motion and therefore, the frictional force will 

fl ip depending on the direction of the moment applied in trying to rotate the 

screw.

∑ Applying equilibrium equation for the two cases gives the appropriate 

moments necessary to start the movement up or down of the screw.

In Fig. 1.29(d) we have introduced the concept of a  friction angle b, where 

tan b = f. The resultant R of the normal component N and the frictional component 

fN acts at an angle b to the normal to the screw thread. Thus, R acts at a a + b to the 

vertical, depending on whether the jack is being raised, as shown in Fig. 1.29(d), or 

is being lowered. If we now sum forces along the y axis and moments about the y 

axis, we have

 SFy = R cos (a ± b) – W = 0 

 SMy = M
d

R
-  sin ( a ± b ) = 0 (a)

Thus

 M = 
Wd

2
 tan (a ± b) (b)

Fig. 1.29  Example 1.6
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Equation (b) with the plus sign gives the moment necessary to move the screw 

upward. The moment necessary to lower or unwind the screw is given by (b) when 

the minus sign is taken

 M = 
Wd

2
 tan (a – b) (c)

When b = a in (c), the moment M vanishes for equilibrium, and the screw will 

support the weight W without unwinding. If b > a in (c), a negative M is required 

to lower the weight. A jack that has b ≥ a is said to be  self-locking, a desirable 

property for a jack to have.

For a system of this type we can defi ne an effi ciency h as the ratio of work input 

to useful work output (the difference being due to wasted frictional heating). Here, 

the work input per revolution is 2pM, while the useful work of raising the weight is 

pW; thus

 
h

p

a

a b
= =

+
pW

M2

tan

tan( )  (d)

We see that the effi ciency for small a and b is approximately

 h
a

a b
ª

+
And thus for a self-locking device, b   a, the effi ciency cannot surpass 50 percent.

Example 1.7
 In Fig. 1.30(a) a light stepladder is shown resting on the fl oor. 

  We wish to estimate the force in link AB when a man of weight 

equal to 800 N stands on top of the ladder.

∑ The main purpose of this exercise is idealization.  By idealization, it makes it 

possible to get reasonably good estimates to effect design of structures such 

as these. For example, the bars can be assumed weighless; the pins can be 

assumed frictionless and the surface can be assumed smooth.

∑ Because of the smooth surface assumption, there are only vertical reactions at 

D and E. Moment equilibrium about D and E will fetch reactions at D and E.

∑ Since we need force in the link AB, we need a free body such that AB is 

sectioned and its internal forces exposed. See 1.31B.

We begin this example by selecting the ladder and idealizing its charac teristics 

in Fig. 1.30(b). Many idealizations have been made. In view of the lightness of the 

ladder compared with the man, the ladder has been repre sented by weightless bars 

in the plane of the sketch. The joints at A, B, and C, which in most ladders are 

relatively free, have been idealized as frictionless pinned joints. The interactions 

between the legs and the fl oor, which in practice can have a large variation in 

friction, have been taken as frictionless, and therefore the reactions N1 and N2 have 

been shown normal to the fl oor. The effect of the man’s weight is indicated by 

the 800-N vertical force at C. These idealizations permit us to obtain a good fi rst 

approxi mation of the actual case where the ladder is light but not weightless, where 

the fl oor is not completely frictionless, where the pinned joints are reasonably free 

but not completely frictionless, etc. To illustrate the effect of neglecting friction 

between the fl oor and the ladder, we shall later repeat the analysis for the case 

where there is a coeffi cient of friction of 0.20.
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First, considering the frictionless case of Fig. 1.30, we study the forces and 

equilibrium requirements. Since the desired result is the force in AB, we begin by 

isolating the link AB in the free-body diagram of Fig. 1.30(c). Because AB is a two-

force member, the forces at A and B must be equal and opposite and directed along 

AB. We cannot, however, fi nd the numerical value of Ax by considering only the 

free body of Fig. 1.30(c).

We next try isolating other parts of the system. In Fig. l.30(d) each leg of the 

ladder is isolated. The pin force at C is represented by the unknown components 

Cx and Cy. Note that the unknown forces Ax, Cx, and Cy are shown consistently 

according to Newton’s third law; e.g., the action of the leg CE on the link AB is Ax 

to the left in Fig. 1.30(c), while the action of the link AB on the leg CE is Ax to the 

right in Fig. 1.30(d). We do not know the true sense of Ax (it may be negative), but 

we are consistent.

Fig. 1.30  Example 1.7

The isolated free bodies in Fig. 1.30(d) are planar systems, and thus there are 

three independent equilibrium conditions which may be applied to each. There are, 

however, four unknown magnitudes in each free body, so that we cannot obtain Ax 

by considering only one of the legs as a free body. We can get enough equations by 
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writing the equilibrium equations for both legs. An alternate procedure is to make 

use of Fig. 1.30(d) in which the entire structure is isolated. The external forces, N1, 

N2, and the 800-N load must satisfy the equilibrium conditions (1.7) and (1.8). For 

the moment about D to vanish we must have

 SMD = 1.8N1 – 0.6(800) = 0 (a)
 N1 = 267 N

Returning to leg CE in Fig. 1.30(d) with N1 = 267 N, we determine Ax most simply 

by asking for the moment about C to vanish.

 SMC = 1.2N1 – 1.2Ax = 0 (b)
 Ax = N1 = 267 N

Thus the tension in the link is 267 N.

Let us reexamine this example for the case where there is friction between the 

ladder and the fl oor. In Fig. 1.31 we show isolated free bodies of the entire ladder 

and of the left leg with friction forces F1 and F2 acting. By applying (1.7) and (1.8) 

to Fig. 1.31(a), we learn that F1 = F2, that Eq. (a) still holds, and that N2 = 533 N. 

The equilibrium requirements do not, however, fi x the magnitude or sense of the 

friction force. The law of static friction tells us the upper limit of the magnitude. If 

the coeffi cient of friction is fs = 0.20, we must have

 |F1|   0.20(267) = 53.4 N

 |F2|   0.20(533) = 106.6 N 
(c)

and since F1 = F2, this becomes

 | F1 | = | F2|   53.4 N 
(d)

The law of static friction does not tell us in which sense the friction acts. 

 Actually, the force F1 in Fig. 1.31 can have any value satisfying

 53.4 N   F1   53.4 N (e)

Fig. 1.31  Introduction of friction between the ladder and fl oor

depending upon the previous history of the ladder. For example, suppose that with 

the man on the ladder the link AB had been disconnected and the legs allowed to 

spread a little, and then external agents had slowly forced the legs back together 
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until AB could just be reconnected. Under these circumstances F1 = 53.4 N. On the 

other hand, if AB had been disconnected and the legs forced inward and then slowly 

pulled out again until AB could just be reconnected, we would have F1 = –53.4 N.

Without more specifi c information all we can do is solve for Ax in terms of F1 

and obtain the range of values for Ax which corresponds with the range (e). Taking 

moments about C in Fig. 1.31(b) yields

SMC = l.2Ax – 1.2(267) – 3F1 = 0 (f)

Ax = 267 + 2.5F1

When F1 lies in the range (e), the force Ax in the link AB lies in the range

133.5 N   Ax   400.5 (g)

Thus the presence of friction can in this example, at worst, give rise to a 50 

percent increase in Ax as compared with the frictionless case.

1.10 HOOKE’S JOINT

In this section we are going to discuss the problem of a universal joint. Figure 

1.32 shows a  Hooke’s joint (universal joint) which is sometimes used to transmit 

torque between two shafts that meet at an angle. The shafts A and B lie in the xz 

plane and make the angle q as shown. It is required to estimate the torque MB to 

balance a given torque MA for the confi guration shown under the assumption 

that friction between the moving parts can be neglected. We shall fi rst show how 

an over-idealized model coupled with an incomplete analysis can lead to—not 

surprisingly—an incorrect conclusion. That is, we will fi rst solve the problem 

incorrectly.

Fig. 1.32  Hooke’s joint mechanism

Incorrect Solution In Fig. 1.33(a) a free-body diagram of both shafts and the connecting 

cross is shown. If we neglect the weights of the parts, the external interactions are 

the torques MA and MB and the bearing reactions at A and B. Let us fi rst make the 

idealization that these bearing reactions may be taken, as in Table 1.2(d), as single 

forces perpendicular to the surface of the shaft. These forces would then have to lie 

in the shaded planes shown in Fig. 1.33(a). We have shown these reactions split into 

horizontal and vertical components: HA and VA at A, and HB and VB at B.
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There are fi ve unknown scalar components in Fig. 1.33(a): the four forces and the 

magnitude MB of the moment MB. We can solve for these by applying the conditions 

of equilibrium (1.5) and (1.6). It is not diffi cult to show that the conditions of force 

balance (1.5) lead to HA = HB = 0 and VB = –VA. Using Fig. 1.33(b), we see that 

the pair of bearing forces separated by the distance d is equivalent to a couple of 

magnitude VBd. In Fig. 1.33(c) this couple is combined vectorially with the known 

MA and the given direction of MB to form a closed triangle representing the condition 

(1.6) for balance of moments. From this triangle it is clear that

 MB = MA (a)

Fig. 1.33  Isolation of entire mechanism

Alternatively, if we proceed directly with moment equilibrium about the point O, 

we have

MAi – MB(i cos q + k sin q) – Li ¥ VA j – L(i cos q + k sin q) ¥ VAj = 0

Upon working out the cross products, we fi nd

VAL(1 + cos q) = –MB sin q

MA + VAL sin q = MB cos q

from which we may fi nd MB and VA in terms of MA. After a little algebra we fi nd the 

result (a) as above and

V L
M

A
A=

-
+

sin

cos

q

q1

Remember, this is an incorrect solution! But where did the analysis go wrong?
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In the foregoing analysis we used only the free body of both shafts and the cross 

taken together. Suppose we were to continue our analysis further by con sidering 

the shaft B separately as in Fig. 1.34. We show the torque MB and the force VB 

already discussed. In addition we show the forces at C and D. Here again, relying 

on the idealization of Table 1.2(d), the interactions must be single-contact forces 

perpendicular to the vertical arm of the cross, i.e., they must lie in the horizontal 

shaded planes at C and D in Fig. 1.34. Now, suddenly, we are struck by a 

contradiction. The system of Fig. 1.34 cannot possibly be in equi librium because

Fig. 1.34  Isolated free-body diagram of the shaft B

there is nothing to balance VB in the vertical direction. Thus, although Fig. 1.33 is 

in equilibrium, the individual elements are not. Our idealizations of the nature of 

the bearing interactions have led us to a contradiction; that is, we made a mistake. 

An agonizing reappraisal is necessary.

Correct Solution Possibly our fi rst suggestion would be to permit vertical force 

components at C and D (these could occur if there were shoulders on the vertical 

crossarm). By including vertical forces at C and D it would be possible to have 

equilibrium in Fig. 1.34. However, if we 

continued on to the cross, we would fi nd 

that the cross could not possibly be in 

equilibrium under these circumstances.

We then return to the bearing at B. 

After some consideration we postulate 

the behavior sketched in Fig. 1.35. The 

shaft tends to tip or cock in the bearing, 

resulting in a pair of contact forces F1 

and F2. The cocking can take place in any 

plane through the axis of the shaft.

Introducing this new model of the 

bearing behavior at B (and A) requires a 

fresh start on the analysis. This time we 

Fig. 1.35  When a shaft cocks slightly in 

a long bearing, there is double 

contact with two reactions F1 

and F2
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consider isolated free bodies of the connecting cross and of each shaft separately 

in Fig. 1.36. To provide for the double-contact type of reaction shown in Fig. 1.35, 

we have shown the four components A1, A2, A3, and A4 at bearing A and the four 

components B1, B2, B3, and B4 at bearing B. Since at this stage we do not know in 

which direction the shafts will cock, we have assigned arbitrary directions to these 

components.

The interactions at the cross have, however, been taken, as before, to be 

single-contact forces perpendicular to the crossarms. This is based on the assump-

tion that there are no shoulders on the crossarms. Furthermore, if the arm CD 

tends to cock in its bearing at C, we assume that the bearing at D provides 

suffi cient restraint so that the double contact of Fig. 1.35 cannot occur. Note that 

the interactions at C, D, E, and F are shown consistently in the three free-body 

dia grams of Fig. 1.36. For example, the force component Cx acting on the cross 

in Fig. 1.36(b) is equal and opposite to the force component Cx acting on the 

shaft B in Fig. 1.36(c).

Fig. 1.36  Free-body diagrams of the three parts of the Hooke’s joint
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There are a total of 16 unknown force components and one unknown moment 

component in the three free-body diagrams of Fig. 1.36. The conditions for 

equilibrium (1.5) and (1.6) are equivalent to six scalar equations for each free 

body, or a total of 18 equations. Systematic application of the conditions for 

equilibrium will provide a complete solution for all the unknown force and moment 

components.

For example, the statements of force and moment balance for the cross (Fig. 

1.36(b) are

SF = (Cx + Dx + Ex + Fx)i + (Ey + Fy)j + (Cz + Dz )k = 0 
(b)

SM0 = {aCz – aDz – aEy + aFy)i + (aEx – aFx)j + (–aCx + aDx)k = 0

Setting each component separately equal to zero yields six equations for eight 

unknowns. The best we can do is to express all eight unknowns in terms of two. It 

is simple to obtain the relations

Cx = Dx = –Ex = –Fx (c)
Cz = –Dz = Ey = –Fy

from (b). These may be considered as giving all the cross interactions in terms of Fx 

and Fy .

We can evaluate Fx and Fy by considering the free-body diagram of the shaft A 

in Fig. 1.36(a) and making use of results (c). For example, equilibrium of forces 

parallel to x yields Fx = 0, and equilibrium of moments about the x axis yields 2aFy 

= MA.   Inserting in (c) gives

Cx = Dx = –Ex = –Fx = 0 

Cz = –Dz = Ey = –Fy = -
M

a

A

2
 

(d)

We are now ready to go to Fig. 1.36(c) and evaluate MB. If, however, for com-

pleteness we were to consider the other equilibrium conditions in Fig. 1.36(a), we 

would fi nd that A1 = A2 = A3 = A4 = 0.

Using the values (d) in Fig. 1.35(c), we evaluate MB from the condition of 

moment equilibrium around the shaft axis.

MB – aDz cos q + aCz cos q = 0 
(e)

MB = MA cos q

For completeness the other equilibrium conditions can be used to obtain B1 = 

B3 = 0 and B4 = –B2 = (MA/b) sin q. To aid visualization the complete solution is 

shown in Fig. 1.37. Compare this fi gure with Fig. 1.33 and note how the difference 

in type of bearing reaction has led to the different solutions of (a) and (e) above. 

In both solutions there is equilibrium of the entire assembly. In the fi rst solution 

our assumption about the nature of the interactions in the cross and at the bearings 

made it impossible for the individual elements to be in equi librium. In the second 

solution equilibrium of all parts was achieved by altering the assumptions regarding 

the bearing interaction. This second solution does give an accurate representation of 

the behavior of the Hooke’s joint.

It is important to emphasize that our solution (e) is for the confi guration shown 

in Fig. 1.32. If we twist the shaft A through some angle such that the crosspiece CD 

is no longer vertical, then a new analysis is necessary to obtain the relation between 
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MA and MB for equilibrium. An exact solution for arbitrary angle of orientation f of 

shaft A measured from EF in the direction of twist of MA (Fig. 1.32) can be found.6   

The result is

M MB A=
+sin cos cos

cos

2 2 2f q f

q
 (f)

When f = 0, the result (f ) reduces to (e).

Fig. 1.37  Equilibrium solution of the free-body diagrams of Fig. 1.36

It is of interest to sketch the variation of (MB/MA) with f in order to see the relation 

between input and output moments. However, we will leave this to the interested 

reader. It may also be of interest to build a model of a Hooke’s joint to show the 

confi guration and to run some simple quantitative experiments to verify (f).

6  J.L. Synge and  B.A. Griffi th, “Principles of Mechanics,” 3rd ed., p. 267, McGraw-Hill 

Book Company, New York, 1959.
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1.11 FINAL REMARKS

Now that we have worked a number of examples, it is of value to review the pro-

cedures we discussed in Sec. 1.2 for the solution of problems. The general method 

of attack in solving problems of applied mechanics is similar to that in any branch 

of applied science. Most problems are complicated enough so that they can be 

approached in a variety of ways. No universal method of attack can be given, but 

it is possible to give a general outline of the steps. Such an outline should be used 

consciously whenever there is diffi culty in obtaining a solution. Revising the outline 

in view of problems you have tried or solved will not only be of aid to further work 

but will be of philosophical and psychological interest. A tentative outline follows:

1. Defi ne your objective either in terms of variables or relations; i.e., what is 

the problem?

2. Select, defi ne, and sketch the system of interest and the actions on it by its 

surroundings which for our purpose are the forces exerted by the surround-

ings. Try to involve as many of the desired variables and given data as 

possible, and as few others as possible. Draw diagrams to scale so that geo-

metric relations become more evident. Clearly show the effect of the forces 

acting on the system of interest.

3. Postulate the characteristics of the system.   This usually involves idealization 

and simplifi cation of the real situation and specifi cation and/or elimination of 

some variables.

4. Apply the principles of mechanics to the idealized model. Compare the 

number of unknowns with the number of independent equations to determine 

whether a solution can be obtained. If not, and you are sure that a complete 

set of physical principles and equations has been applied, return to step 2 and 

select additional or alternative systems to consider.

5. Reduce the desired result preferably to symbolic form. Check the equation 

for its behavior as the values of the variables are changed. Do they go to the 

right limiting cases? Are the equations dimensionally consistent?

6. Substitute numerical values. Compare the result with what you would expect 

from intuition. You should form the habit of scrutinizing the answer to every 

engineering calculation to see if the result is in accord with your intuition. 

Does it make sense? Is it the right order of magnitude? Checking orders 

of magnitude is an important step. This is diffi cult in the beginning when 

one’s intuition is undeveloped, but it is just this process which develops the 

intuition and forms the foundation for future judgments. A good engineer 

gains something from every computation he makes. For in stance, would you 

expect a bar of certain dimensions to support a mosquito, a mouse, a man, a 

car, or a truck? Reexamine the idealizations and the assumptions in the light 

of the results; for instance, is it still reasonable to neglect friction in the light 

of the normal forces which are now known?

7. Compare the predictions with the behavior in the actual system by test and 

experiment.

8. If at any point satisfactory results are not achieved, reconsider the previous 

steps. A frequent diffi culty is a failure to select an appropriate system or 
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systems and to defi ne the actions on it by its surroundings. Alternatively, it 

may be necessary to alter the assumptions regarding the characteristics of the 

system, i.e., to construct a different idealized model of the system.

 SUMMARY

It is emphasized in this chapter that it is but rational to apply the basic principles of 

mechanics relating to forces and motion to understand the behavior and to develop 

sound design rules in practical applications.  Every analysis of a mechanical system 

involves three important steps, namely, study of forces, study of deformation/ 

motion  and the relationship between them.

The concept of force as directed interaction and its moment about a point is 

introduced and elaborated.  Study of forces can be effected by isolating the systems 

of suitable ‘scale’ from their environment and replacing them by equivalent 

‘external’ forces.  There are different ways by which one can idealize the connection 

between the isolated body and the external environment. The equivalent external 

forces arising for each of them is listed and explained. A couple of forces, often 

called a couple, is shown to be independent of the point in consideration for taking 

moment.  

Such a diagram that shows all the necessary and interacting forces and moments 

is called the free-body diagram and it is a very useful diagram to provide critical 

results for models of physical systems. Applying Newton’s laws on these results in 

conditions of equilibrium, some important particular results have been obtained:

1.  If only two forces act, one must be parallel and opposite to the other.

2. Just three forces cannot have arbitrary orientation.  They all must lie on a 

particular plane.  

It should be noted that frictional force is static or kinetic depending on whether 

there is relative motion or not at the contact. The direction of kinetic friction 

is in the direction of motion of the contacting body. The coeffi cient of friction is 

independent of area of contact and the surface roughness(!). In case of friction 

problems, one needs to examine different possible cases and analyze for consistency 

in the forces obtained as solution.   

There are some elements where it is important to make sure the replaced contact 

forces refl ect the behavior.  An example in terms of Hooke’s joint that connects two 

rotating shafts is shown to highlight this point.  

Finally, the procedures for solving problems related to mechanical systems is 

reviewed and outlined. 

PROBLEMS

 1.1 The angles between the vector F = Fxi + Fy   j + Fzk and the coordinate axes 

are qx, qy , and qz. The cosines of these angles are known as direction cosines. 

Evaluate the direction cosines in terms of the components of F. Show that

cos2 qx + cos2 qy + cos2 qz = 1

 1.2 A vector F = Fxi + Fy   j = Faa + Fbb, where i, j and a, b are pairs of 

perpendicular unit vectors in a plane.
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  Show that

Fa = Fx cos q + Fy sin q

Fb = –Fx sin q + Fy cos q
  and

Fx = Fa cos q – Fb sin q
Fy = Fa sin q + Fb cos q

Prob. 1.2  

  These equations may also be written in the matrix form

   
F

F

F

F
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b

x

y

È
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˘
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È

Î
Í

˘

˚
˙

cos sin

sin cos

q q

q q

  or

F¢ = TF  F = T–1F¢  Ttr = T–1

 1.3 According to the distributive law for vector cross products

r ¥ F1 + r ¥ F2 = r ¥ (F1 + F2)

  This states that the sum of the moments of two concurrent forces about a 

point is equal to the moment of the vector sum of the forces about the same 

point. Verify this by simple geometry in the special case where F1 and F2 lie in 

the xy plane and intersect at the point P, and r is the displacement vector OP.

 1.4 Let F be a force vector which passes through the point P(x,y,z) and which 

has components Fx , Fy , and Fz. Show that the moment of F about the origin 

of coordinates O can be represented by the determinant

M

i j k

o

x y z

x y z

F F F

=

 1.5 Let F be an arbitrary vector through the origin and let a, b, c be three 

arbitrary noncoplanar unit vectors passing through the origin. It is desired to 

decompose F into vectors parallel to a, b, and c; that is, it is desired to fi nd 

magnitudes La, Lb, and Lc such that

 F = Laa + Lbb + Lcc

  Sketch this and show that it involves a parallelepiped whose edges are 

parallel to a, b, and c with F as the diagonal. Use the properties of the scalar 

triple product to show that

  La =
¥
¥

F b c

a b c

i

i

  with similar expressions for Lb and Lc.
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 1.6 Find the force and moment which must be applied at O to hold the light bar 

shown in equilibrium.

Prob. 1.6  

 1.7 For a set of coplanar forces show that any of the following alternative 

conditions for equilibrium imply Eqs (1.7) and (1.8).

 (a) The sum of all forces in any two nonparallel directions in the plane is 

zero, and the resultant moment about any point in the plane is zero.

 (b) The total moments of all forces about two points P and Q in the plane 

are zero, and the sum of the force components parallel to PQ is zero.

 (c) The total moments of all forces about three noncollinear points O, P, 

and Q are zero.

  Note that the conclusion here for coplanar forces is that there exist three 

independent equa tions from equilibrium considerations. If three equations 

are not suffi cient for the determination of all the unknowns, the system is 

statically indeterminate.

 1.8 Find the reactive forces and the moment at the wall for the cantilever beam 

supported as shown in the fi gure.

Prob. 1.8  

 1.9 Two equal cylinders, each weighing 900 N are placed in a box as shown. 

Neglecting friction between the cylinders and the box, estimate the reactions 

at A, B, and C.

Prob. 1.9  
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 1.10 Frequently, a force F and a moment M act at the same point as shown in the 

fi gure for a coplanar system. Show that a coplanar force and moment may 

be replaced with an equal force displaced sideways a specifi ed distance a = 

[M|/|F|.   The steps are shown in the fi gure.

Prob. 1.10  

 1.11 Find the force carried in each bar of the hinged equilateral triangle when 

loaded as shown.

Prob. 1.11  

 1.12 Estimate the force in link AB when the weight of the boat supported by the 

davit is 7 kN.

Prob. 1.12  
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 1.13 Compare the forces F required to just start the 900-N lawn roller over a 

75-mm step when (a) the roller is pushed and (b) the roller is pulled.

Prob. 1.13  

 1.14 The bracket ABC is free to swing out horizontally on the vertical rod. 

Estimate the forces transmitted to the vertical rod at A and B when a 900-N 

load is supported at C. Show magnitudes and directions on a clear sketch.

Prob. 1.14  

 1.15 A 100-N force is required to operate the foot pedal as shown. Determine the 

force in the connecting link and the force exerted by the lever on the bearing 

at O. Neglect the weight of the lever.

Prob. 1.15  
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 1.16 A spot weld which holds the bracket to the plate at point A as shown in the 

fi gure can withstand a maximum twist in the plane of the plate of 100 N◊m.   

Determine the maximum load W.

Prob. 1.16  

 1.17 Find the forces in the remaining bars of Example 1.4.

 1.18 During a hurricane, some of the wires attached to a power pole are broken 

so that the loading of the pole is as shown in the sketch. There are two wires 

still attached to the crossarm, exerting loads of 2000 N and 2500 N parallel 

to the x axis. There is a transformer weighing 5000 N whose center of gravity 

lies in the yz plane a distance of 6 m above the ground and 1 m from the 

center of the pole. Neglect the weight of the pole. The pole is buried in the 

ground for a depth of 2 m. Find the forces and moments which act on on the 

buried section GA at the ground level G.

Prob. 1.18  

 1.19 An airplane engine pod is suspended from the wing by the strut AG shown. 

The propeller turns clockwise when viewed from behind. The weight of the 

engine is 11 kN and may be assumed to act at G. Find the force and moment 

exerted by the strut onto the wing at A when the engine is delivering 17.5 kN 

thrust and 20,000 N◊m of torque.



50 An Introduction to the Mechanics of Solids

Prob. 1.19  

 1.20 The top of a tin can is removed, and the empty can is inverted over a pair of 

billiard balls on a table as shown in the sketch. For certain combinations of 

sizes and weights the confi guration shown is stable. For other combinations 

the can tips over when released. It is proposed to set up a demonstration for 

a temperance lecture by using in sequence a frozen-orange-juice can and a 

beer can with the same pair of billiard balls. Investigate whether tipping will 

occur for the following sizes and weights.

   Orange juice Beer

  Diameter of ball 45 mm 45 mm

  Weight of ball 2.0 N 2.0 N

  Diameter of can 50 mm 70 mm

  Weight of empty can with lid removed 0.57 N 1.0 N

Prob. 1.20  

 1.21 A rigid rod with negligible weight and 

small transverse dimensions carries a 

load W whose position is adjustable. 

The rod rests on a small roller at A 

and bears against the vertical wall at 

B. Determine the distance x for any 

given value of q such that the rod 

will be in equilibrium. Assume that 

friction is negligible.

 1.22 A light frame is hinged at A and B 

and held up by a temporary prop at 

C. Find the reactions at A, B, and C 

when an 8-kN load is supported at D.

Prob. 1.21  
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Prob. 1.22  

 1.23 It is desired to lift the wheelbarrow shown with one hand at the handle A by 

applying at A a vertical force F and a twisting moment M about the axis of 

the handle. Estimate the magnitudes of F and M.

Prob. 1.23  

 1.24 In building construction it is common to build a fl oor or a roof on temporary 

supports which permit “leveling up” before setting the permanent columns in 

place. The sketch below shows one of the ways in which this “leveling up” is 

performed. The temporary column C supports a weight of 10 kN. Driving in 

the wedge at B lifts one end of the rigid bar AB and hence lifts C by half as 

much.

 (a) Estimate the minimum force between hammer and wedge which will 

cause the wedge to move farther in, assuming all coeffi cients of friction 

as 0.3.

 (b) What would happen if the coeffi cients of friction were too small? What 

is the value of the coeffi cient of friction which marks the border line 

between desirable and undesirable perform ance?
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Prob. 1.24  

 1.25 A freely pivoted light rod of length l is pressed against a rotating wheel by 

a force P applied to its middle. The friction coeffi cient between the rod and 

wheel materials is f. Compute, for both directions of rotation, the friction 

force F as a function of the variables l, P, and f, and any others which are 

relevant. One of these two situations is sometimes referred to as a friction 

lock.  Which one, and why?

Prob. 1.25  

 1.26 The drawing shows a section through the latch of a screen door.

 (a) Find the force P required to just start the latch sliding under the 

following assumptions:

 1. The coeffi cient of friction between all surfaces shown in the sketch 

is 0.3.

 2. The hinges of the door are well oiled, and their distance from the 

latch is large compared with the dimensions in the sketch.

 3. The spring of the latch exerts a force of 4.5 N, due to its 

compression, along its center line.

 (b) What would P be if there were no friction?
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Prob. 1.26  

 1.27 A four-engine jet transport, which weighs 1000 kN fully loaded, has its 

center of gravity at the location shown in the sketch. Before taking off for 

Europe the pilot must test the engines by operating them, one at a time, at a 

thrust of about 40 kN. As he checks the left outboard engine, the other three 

engines idle at negligible thrust. The rear-wheel brakes are locked during the 

test, but the nose wheel has no brakes. In addition the nose wheel is mounted 

on a caster, so it cannot resist a sidewise force.

 (a) What forces does the ground exert on the landing wheels during the 

test? 

 (b) What must the coeffi cient of friction between ground and wheels be to 

prevent the rear wheels from slipping?

Prob. 1.27  
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 1.28 A 50:1 worm-gear reducer is bolted down at A and B. An input 

torque M1 of 15 N.m turns the worm at a steady rate in the direction 

shown. The output shaft rotates as shown against a resisting torque 

Mo. Neglecting friction in the gears, estimate the forces acting on the 

reducer housing exerted by the bolts at A and B when the above torques 

are acting.

Prob. 1.28  

 1.29 An electric motor is mounted in a three-point support as shown. The motor 

weighs 80 N, which may be assumed to act at the center of the motor. 

Before starting, the belt tensions are 125 N each. When running, the motor 

is delivering a torque of 2.7 N.m. What are the reactions at the supports A, B, 

and C when the motor is running?

Prob. 1.29  

 1.30 The crane shown is supported by cables BD and BE. Determine the cable 

tensions.
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Prob. 1.30  

 1.31 Determine the forces in the six members of the truss shown.

Prob. 1.31  

 1.32 In this problem you are to determine the forces on the tip of the needle 

in a record player. Consider the case shown in the fi gure where the 

needle is tracking an 20-cm-diameter groove. The groove and needle 

geometry are as shown. The arm holding the needle is fi rst statically 

  

Prob. 1.32  
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  balanced so that its center of gravity lies exactly at the pivot point. A 

0.02 N weight is then placed directly above the needle tip to supply 

the required tracking force. The arm pivot is a frictionless ball joint. 

The coeffi cient of friction between the needle and the groove is 0.2.

   Determine the forces acting on the needle tip and show these clearly on a 

sketch.

 1.33 Adjustable supports that can be slid up and down vertical posts are very 

useful in many applications. Such a support is shown, with pertinent 

dimensions. If the coeffi cient of friction between post and support is 0.30, 

and if a load 50 times the weight of the hanger is to be placed on the hanger, 

what is the minimum value of x for no slipping of the hanger?

Prob. 1.33  

 1.34 The clean-air car shown has the following characteristics:

  Wheelbase L = 250 cm 

  Weight W = 10 kN

  Weight distribution (on level ground), 60 percent on rear wheels 

  Power h.p. = 75 MW, rear-wheel drive 

  Height of center of gravity h = 0.5 m 

  Wheel diameter d = 0.5 m

  If the coeffi cient of friction between tires and road is f = 0.7, what is the 

maximum hill angle q that can be climbed?

Prob. 1.34  

 1.35 Obstetric forceps are medical instruments designed for the extraction under 

certain conditions of a child from the mother during delivery. The instruments 

vary considerably in size and shape but basically it is a forcep or lever with a 

blade designed to allow for a fi rm hold upon the fetal head. Additional force 

is exerted on the fetal head during delivery by the walls of the birth canal. 

Forceps in crude versions existed in the 12th century and the forerunner of the 

modern forceps was devised in the latter part of the 16th century.
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Prob. 1.35  

   Two designs of forceps are shown in the fi gure. If the applied traction 

(pulling) force FT is 120 N for each design and the clamping force in the 

crossed-lever design is 20 N, determine the forces applied by the forcep 

blades on the fetal head. Assume that the birth canal exerts a constant force 

on the fetal head.  Which design is better?

 1.36 Assume that frictionless, smooth, identical logs are piled in a box truck 

(sides perpendicular to the bottom). The truck is forced off the highway and 

comes to rest on an even keel lengthwise but with the bed at an angle q with 

the horizontal as shown. As the truck is unloaded, what is the least angle for 

q so that when the fourth log is removed the three remaining logs stay where 

they are?

Prob. 1.36  



58 An Introduction to the Mechanics of Solids

 1.37 A circular cylinder A rests on top 

of two half-circular cylinders B 

and C, all having the same radius 

r. The weight of A is W and that of 

B and C is ½ W each. Assume that 

the coeffi cient of friction between 

the fl at surfaces of the half-

cylinders and the horizontal table 

top is f. Determine the maximum 

distance d between the centers of the half-cylinders to maintain equilibrium.

 1.38 Determine the force exerted on each side of a bicycle chain link by the bolt 

cutters shown in the fi gure if the handles are subjected to a force of 320 N.

Prob. 1.38  

 1.39 A block of weight W rests on an 

inclined plane which makes an 

angle q = tan–1 ¾ as shown. A force 

P, parallel to the x axis, is applied to 

the block and gradually increased 

from zero; when P reaches the value 

0.4W the block begins to slide. What 

is the coeffi cient of friction between 

the block and the inclined plane?

 1.40 A lightweight portable crane for 

mountain bridge construction is 

needed. Experience with other 

cranes has indicated that the simple 

design and erection shown in the fi gure is convenient for the fi eld. In 

particular, the required application of the crane is in loading and unloading 

bridge parts weighing 5000 N. To save weight, it was decided to design 

the crane system such that the cables BD, BE, and BC would carry (when 

W = 5000 N) no more than 6000 N by adjusting the angle g and limiting 

the angle of swing of the boom AC about the mast AB. The length of cable 

BC is adjustable. What is needed is a simple sheet, possibly with a graph, 

showing the operator in the fi eld what angle g for a given W will give him a 

Prob. 1.37  

Prob. 1.39  
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maximum swing a or what the limits on a are for a given g.   Prepare such 

an information sheet.

Prob. 1.40  

   The vertical mast AB of the crane is rigidly supported by two guy wires 

BD and BE. The line of intersection of the vertical plane ABC with the 

horizontal plane ADE is defi ned by a.

 1.41 The mast AD is acted on by a 1.6-kN force and supported by cables CE and 

DF as shown. Find the reaction force exerted on the mast by the frictionless 

ball-and-socket joint at A and also the tensions in the cables CE and DF.

Prob. 1.41  

 1.42 A man holds an 80-N weight in his hand. The forearm and hand weigh 16 N, 

and the elbow is fl exed to a right angle as shown. Compute fi rst the force 
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required in the fl exor muscle 

and the force in the humerus 

against the ulna to support the 

load neglecting friction.

   If the coeffi cient of friction in 

the elbow joint is 0.015, what 

change in the previously deter-

mined muscle force is required 

(a) to raise the load, and (b) to 

just support it. The radius of 

curva ture of the joint is 20 mm.

 1.43 A folding camp stool rests upon a horizontal fl oor (neglect friction) and is 

loaded as shown in the fi gure. Determine the magnitude of the shear force 

on the pin A and the position of the load on the bar BC to make this force a 

maximum.

Prob. 1.43  

 1.44 A window air-conditioning unit is supported by a round rod as shown. For 

what angle q will the required cost of the rod be a minimum?

Prob. 1.44  

 1.45 A longshoreman can barely start pushing a trunk up a 30º concrete ramp. 

He can barely hold it from sliding back when the slope is 60º. What is the 

coeffi cient of static friction between the trunk and the concrete?

Prob. 1.42  



Fundamental Principles of Mechanics 61

Prob. 1.45  

 1.46 Tensile tests are being run on a specimen of high-strength carbon-fi lament 

material with the confi guration shown. The pins are fi xed in the grips but 

loose in the heads. The coeffi cient of friction is 0.15 and the materials may 

be assumed rigid. As the heads are moved apart by the motion of the testing 

machine, how far might the line of application of the load be displaced from 

the center of the specimen? Assume the worst possible location of the pins in 

the holes. Evaluate for the following values of the dimensions:

Prob. 1.46  
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 dp = 0.6 cm 

 dh = 0.7 cm

 t
s
 = 0.2 cm

 L = 50 cm

 Ls = 10 cm

 P = 20 kN

 1.47 Figure (a) shows the external forces assumed to be acting on a version of an 

SST just prior to touchdown. Figure (b) shows the pertinent dimensions. The 

following information is given:

 (a) The “Canard” (forward) control surface is set at its zero-lift angle of 

attack, and the drag force on it is Dc = 500i N, which is applied at ACc 

(Figure (b)).

 (b) The aircraft weight is W = –2000j kN, acting at the CG.

 (c) The lift and drag forces on the wing, Lw = Lwj and Dw= Dwi, act at ACw. 

The aero dynamic moment about ACw can be neglected.

 (d) The lift and drag forces on the tail, Lt = Lt j, Dt = Dti, act at ACt. 

Further, the lift-to-drag ratio for the tail is given as (L/D)t = 1.2. The 

aerodynamic moment about ACt, can also be neglected.

 (e) The thrust T has a magnitude of 800 kN and acts along the thrust axis, 

a line parallel to and 5 m below the aircraft center line (Figure (b)).

 (f) The aircraft is assumed to be in static equilibrium. Determine the 

numerical values of the tail lift Lt and the lift-to-drag ratio for the wing.

Prob. 1.47  

 1.48 In building an orbiting space laboratory it will be necessary to drill holes 

in the fl at steel wall of a space vehicle. The astronaut doing the drilling is 

unable to apply any appreciable amount either of force or of torque during 

the drilling so that it is necessary to mount the drill in a holder with three 

legs terminating in magnets, which grip the wall of the space vehicle. If 

the drilling torque is 15 N◊m, and the normal force is 50 N, compute the 
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minimum allowable holding force at each leg if the friction coeffi cient 

between the legs and space vehicle is 0.4.

Prob. 1.48  
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Introduction to 

Mechanics of

Deformable Bodies

2.1 INTRODUCTION

2

As pointed out in Chap. 1, 
the attack on a problem in 
applied mechanics begins with 
the selection of the system to 
be analyzed, a starting point 
common with scientifi c investi-
gations in all fi elds. This process 
of selection usually is a dual one 
of identifi cation and simplifi cation—

identifi cation of a system we re-
cognize as representing a reason-
ably complete description of the 
interrelationships of the actual 
physical situation, and simpli-
fi cation of this system until we 
have a model which we are cap-
able of analyzing.

2.2 ANALYSIS OF DEFORMABLE BODIES

In this book we shall restrict ourselves to situations in which the acceleration is 

zero and where the movements of the system are restricted to deformations. 

Consequently, when we have selected our model we shall analyze this model, as 

outlined in Sec. 1.7, by the following three steps:

1. Study of forces and equilibrium requirements

2. Study of deformation and conditions of geometric fi t  (2.1)

3. Application of force-deformation relations

We dignify these three steps with an equation number because they are 

fundamental to all work in the mechanics of deformable bodies; we shall make 

frequent reference to them.

In Chap. 1 the problems were limited to cases which involved only the fi rst of 

the above three steps. In this chapter we shall consider cases for which the analysis 

will contain all three of the above steps.

We can illustrate the use of Eq. (2.1) in the analysis of deformable systems by 

considering the following three examples.
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Example 2.1(a)
 A machine part carrying a load F terminates in a piston 

  which fi ts into a cavity, as shown in Fig. 2.1. Within the cavity 

are two springs arranged coaxial with each other. Each spring has the characteristic 

that the force required to defl ect it is proportional to the amount of defl ection. Such 

a spring is said to have a  linear force-defl ection relation, and the amount of force 

required to produce a unit defl ection is called the  spring constant of the spring. 

We use the symbols kA and kB to denote the spring constants of the two springs 

in the cavity. When the springs are unloaded, each has the same length L. We 

wish to know how much of the load F is carried by the spring with constant kA.

The fi rst step in the analysis is to select our model. This is a relatively simple 

step in this situation; the model consists simply of the piston and the two springs, as 

shown in the sketches in Fig. 2.1(b). We have assumed that the springs have been 

made with fl at ends such that the compressing force, which is distributed around 

the periphery of the spring, can be considered to act along the spring axis. We have 

also assumed that gravity effects can be ignored without substantially changing the 

problem. We now apply the steps of (2.1) to this model.

STUDY OF FORCES AND EQUILIBRIUM REQUIREMENTS

To ensure that a body is in equilibrium we isolate that body from its surround ing 

environment and replace the environment with the forces which are the sole effect 

of the environment on the body. As noted in Chap. 1, the sketch which shows the 

body and all the forces acting on it is called the free-body sketch; in Fig. 2.1(b) are 

free-body sketches of the piston and of the two springs. Equilibrium of a given free 

body requires that Eqs (1.5) and (1.6) be satisfi ed. Thus, for each of the three free 

bodies in Fig. 2.1(b), we must have

 SF = 0 

 SM = 0

Considering fi rst the piston, we see that the forces acting on it all have the same 

line of action and thus SM = 0. Since we have only forces in the y direction, the 

equation SF = 0 is satisfi ed when

    SFy = FA + FB – F = 0  (a)

By taking equal and opposite forces at the ends of each spring in Fig. 2.1(b), we 

have satisfi ed the conditions SM = 0 and SF = 0 for the springs.

STUDY OF DEFORMATION AND CONDITIONS OF GEOMETRIC FIT

Our purpose in studying the nature of the deformation and the conditions of 

geometric fi t is to determine what constraints or restrictions these factors impose 

upon the deformations. Put another way, we want to fi nd what are the requirements 

for  geometric compatibility with the restraints. It will be necessary to express these 

requirements in a quantitative or analytical manner. In the problem at hand the 

action of the piston is to cause both springs to move the same amount as the piston, 

and thus the requirement for geometric compatibility is simply

 dA = dB = d (b)

APPLICATION OF FORCE-DEFORMATION RELATIONS

In order to deal precisely with the manner in which the deformation of a physical 

body is related to the forces acting on it, we must express this relation quantitatively, 



66 An Introduction to the Mechanics of Solids

either by equations or by graphs. For this problem the force-defl ection relation is a 

simple one: The force in each spring is linearly proportional to the defl ection of the 

spring, and the constant of propor tionality is the spring constant. Thus,

 FA = kAdA

 FB = kBdB (c)

We note that the spring constant has the units of force per unit length, e.g., 

newton/m, or lb/in. With Eqs (a), (b), and (c) we have in quantitative form all the 

information we can write down about the force balance, the geometric fi t, and the 

force-defl ection characteristics of the system shown in Fig. 2.1(a). We have at 

this stage completed the physical part of the analysis. We now manipulate these 

equations mathematically, eliminating the defl ections, to obtain the desired result.
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The total defl ection of the piston is therefore
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There are a few additional observations that can be made from the above 

example:

(a) If there is a spring whose stiffness equals k = kA + kB, then the defl ection of 

the corresponding spring set  should be d = F/k.

 In other words, the net stiffness of the system is given by ktotal = kA + kB. 

Systams made with two springs in parallel have a stiffness equal to the sum 

of the two individual springs.

(b) The above argument could be extended further by taking for example, kA to 

be that of a system of two other springs in parallel with stiffness say, kA1
, 

and kA2
. This will lead to the effective stiffness of the system of the parallel 

springs k kA A1 2
,  and kB to be k = kA + kB = k k kA A B1 2

+ + . By induction, we 

can conclude that (‘n’ springs in parallel have a stiffness with a net stiffness 

equal to the sum of the individual stiffnesses)

 k = k1 + k2 + … + kn

(c) One can easily fi nd that the softer of the two springs takes less load. This 

also holds good  for more than two springs. 

(d) Even if there is one stiff spring among many soft springs, the stiff springs 

takes more load or offers more resistance to defl ection.

 (This is one of the reasons why even a small stone under a mattress stings 

when we sleep! There is a non-uniform distribution of force over an area 

covering the springs.)

Example 2.1(b)
 This is a variation of Example 2.1(a). Instead of two springs coaxial

  to each other, there are two springs in the cavity one over the 

other as shown in Fig. 2.1(c).

Let us make an assumption that the spring (1) and (2) are light and stiff 

comparatively. Each body is now represented in Fig. 2.1(d) along with the 

appropriate forces they experience.
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FORCE EQUILIBRIUM

As done in the earlier example, the force equilibrium is applied, i.e.,

 SF = 0

SM = 0, and as you can see is a redundant condition since all force are coaxial.

Applying force equilibrium condition for the piston (1), we get

 SFy = FA – F = 0 (a)

Similarly, for piston (2) , we get

 SFy = FB – FA = 0 fi F = FA = FB (b)

So that we have the same force, F = FA = FB acting on all the parts shown in 

Fig. 2.1(d), in comparison with the Problem 2.1(a), where external force F is the sum 

of the forces in the springs FA + FB, have the two springs experience the same force.

  

Fig. 2.1   Example 2.1

STUDY OF DEFORMATION AND CONDITION OF GEOMETRIC FIT

From Fig. 2.1(d), it is clear that the bottom springs get compressed by an extent, 

say, d1 with respect to rigid bottom. Therefore, if d is the defl ection at the top piston 
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(2), then the spring A undergoes a compression equal to the difference of d and d1. 

Therefore, the compression of spring A is given by

 dA = d – d1 and dB = d1  (c)

Both d and d1 are quantities yet to be found out.

FORCE-DEFORMATION RELATIONS

As in the previous examples, if we assume that the force in each spring is linearly 

proportional to defl ection it undergoes through its spring constant, we have, for 

each of the springs A and B,

 FA = kA dA = kA(d – d1) and

 FB = kB dB = kB d1  (d)

eliminating d1 from equations (d), and realizing that both the springs undergo same 

forces, F = FA = FB

We obtain,

 d = F
1 1

k kA B

+Ê
ËÁ

ˆ
¯̃

 (e)

or d = 
F

k

where 
1

k
 = 

1 1

k kA B

+  (f)

Note that here the effective stiffness of the assembly in Fig. 2.1(c) in which the 

springs A and B are connected in series, the reciprocal of the effective stiffness 

(also called [the fl exibility]) is the sum of the reciprocals of each of the stiffnesses 

kA and kB.

It should be noted that the effective stiffness of the system, k is lesser than either 

of the two springs kA, kB.

Another way to understand the effective stiffness relationships between the 

individual spring stiffnesses is to look at fl exibility.

The fl exibility of a spring is the reciprocal of the stiffness of the spring. It is the 

amount of defl ection the spring has to understand to create a unit force in the spring.

 
1

f
 = k or f

k
=

1

Therefore, for two springs A and B in series, we have the system fl exibility f 

given by, 

f = fA + fB
Again, the similar concept as in the previous example can be extended have to 

show that for ‘n’ springs in series, the effective stiffness, f, is given by

f = f1 + f2 +   fn.

Example 2.2
 A very light and stiff wood plank of length 2L is attached to two 

  similar springs of spring constant k, as shown in Fig. 2.2(a). The 

springs are of length h when the plank is resting on them. Suppose that a man steps 

up on the middle of the plank and begins to walk slowly toward one end. We should 

like to know how far he can walk before one end of the plank touches the ground; 

that is, we want to know the distance b in Fig. 2.2(b), when the right end E of the 
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plank is just in contact with the ground. Note that the springs can exert tension as 

well as compression.

Again we begin by selecting a model to represent the system. Our model is 

shown in Fig. 2.2(c) and (d). In this model we show no force at the right end E 

because we are interested in the limiting case where the plank just comes in contact 

with the ground. We represent the man by his weight W located at the distance b 

from the center. Because the plank is described as being light, we neglect its 

weight; it follows as a consequence of this assump tion that the springs in Fig. 2.2(a) 

are exerting no force on the plank, and thus h is the free length of each spring. 

Finally, we have assumed that the stiffness of the plank is such that we can consider 

it to remain absolutely straight so the defl ections of the springs are as illustrated in 

Fig. 2.2(d). We now analyze the model using the three steps of (2.1).

Fig. 2.2  Example 2.2

FORCE EQUILIBRIUM

Applying the conditions 

 SF = 0 

 SM = 0
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to the free body of the plank in Fig. 2.2(c), we fi nd that the fi rst of these is satisfi ed 

when

 SFy = FC + FD  – W = 0 (a)

and the second is satisfi ed when

 SMC = 2aFD – (a + b)W = 0 (b)

The springs in Fig. 2.2(d) satisfy the equilibrium requirements of two-force 

members.

STUDY OF GEOMETRY OF DEFORMATION AND REQUIREMENTS OF GEOMETRIC 

COMPATIBILITY

When the plank remains straight, we see from the similar triangles in Fig. 2.2(d) 

that the lengths of the springs have the following ratio:

  
h

h

L a

L a

C

D

=
+
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 (c)

Also, the defl ections of the springs are 

 dC = h – hC

 dD = h – hD 
(d)

RELATIONS BETWEEN FORCES AND DEFLECTIONS

Here, since both springs have the same spring constant, the force defl ection 

relations are

 FC = kdC

 FD = kdD 
(e)

Equations (a), (b), (c), (d), and (e) give us seven independent relations for the 

seven unknowns FC, FD, hC, hD, dC, dD, and b. Solving these equations, we fi nd that 

the value of b is given by
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It also is of interest to calculate the spring defl ections in terms of the value of b 

determined by Eq. (f). These become

  
dC

W

k

b

a
= -Ê

ËÁ
ˆ
¯̃2

1

  dD

W

k

b

a
= +Ê

ËÁ
ˆ
¯̃2

1  
(g)

We see that dD is always positive in the sense defi ned in Fig. 2.2(d). dC is 

positive so long as b < a. When b = a, the man is directly over the spring D, and, 

as would be expected, all the load is taken by the spring D, and the defl ection and 

force in the spring C are zero. When b > a, then dC is negative (i.e., the spring 

extends). In Fig. 2.2(c) we assumed that b > a and that the spring C is compressed. 

If after making these assumptions in a particular case the result from (f) was that 

b > a, then we would fi nd from our algebra that both dC and FC were negative; we 

would interpret these negative results to mean that the actual dC and FC were in 

directions opposite to those defi ned as positive in Fig. 2.2(d).
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A number of additional remarks can be made concerning (f). If we rewrite (f) in 

a slightly different form
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we see the basic  nondimensional ratios of the problem. It is always good practice in 

any engineering problem to consider the physical meaning of the nondimensional 

quantities which appear in the problem. The ratio (W/2k)/h is the ratio of the 

defl ection of the springs to the original length of the springs when b = 0, that is, 

when the man is standing midway between the springs. If this ratio is small, then 

b/L might exceed unity and our analysis does not apply. If this ratio is near 1, i.e., if 

the springs are soft, then b/L is near zero.

Another question of interest is the effect of different spring constants on the 

value of b. We expect that the result for b/L will depend on the ratios a/L, W/2kCh, 

and on the ratio of the spring constants, for example, g = kC/kD. The result for b/L is 

(Prob. 2.40)
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Equation (i) is a surprisingly complicated function of the ratio of the spring 

constants. Note that (i) reduces to (h) when g = 1.

Example 2.3(a)
 A light rigid bar ABC is supported by three springs, as shown in 

  Fig. 2.3(a). Before the load P is applied, the bar is horizontal. The 

distance from the center spring to the point of application of P is la, where l is a 

dimensionless parameter which can vary between l = – 1 and l = 1. The problem 

is to determine the defl ections in the three springs as functions of the load position 

parameter l. We shall obtain a general solution for arbitrary values of the spring 

constants and display the results for the par ticular set kA = (l/2)k, kB = k and kC = 

(3/2)k.

The system is modeled by a rigid weightless bar and three linear-elastic springs.   

We analyze this model by following the steps of (2.1).

STUDY OF FORCES AND EQUILIBRIUM REQUIREMENTS

Free-body diagrams for the springs and for the bar are shown in Fig. 2.3(b) and 

Fig. 2.3(c). We note that there are three unknown parallel forces acting on the bar 

in Fig. 2.3(c) and only two independent equilibrium requirements; i.e., the problem 

is statically indeterminate. The best we can do is to use the equilibrium conditions 

to express two of the forces in terms of the third. If we take the middle force FB 

as our primary unknown, we can conveniently obtain FA and FC in terms of FB by 

requiring balance of moments about C and A, respectively,

 SMC = 0 2aFA = (1 – l)aP – aFB

 SMA = 0 2aFC = (1 + l)aP – aFB 

(a)

STUDY OF GEOMETRIC COMPATIBILITY REQUIREMENTS

In order for the springs to remain connected to the bar, it is necessary for the spring 

defl ections in Fig. 2.3(b) to be the same as the corresponding bar defl ections in 
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Fig. 2.3(c). Since the bar ABC is rigid, it is necessary that the points A, B, and C in 

Fig. 2.3(c) remain collinear. Because two points deter mine a straight line, one of 

the three defl ections can be expressed in terms of the other two. Thus, if the end 

defl ections dA and dC are given, the midpoint defl ection must be

  dB = l/2(dA + dC) (b)

Fig. 2.3  Example 2.3(a)

RELATIONS BETWEEN FORCES AND DEFORMATIONS

For the linear springs in Fig. 2.3(b) we have
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Equations (a), (b), and (c) are six independent relations among the six unknowns: 

the three forces and the three defl ections. The equations are conveniently solved by 

substituting (a) into (c) to obtain all the defl ections in terms of FB and then inserting 

these defl ections into (b) to obtain a single equation for FB. Once FB is known, FA 

and FC are given by (a). Finally, when the forces are known, the defl ections are 

given by (c). For general values of the spring constants we fi nd
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Note that each defl ection is a linear function of the load position parameter l. 

Figure 2.3(d) shows how these defl ections vary for the particular case kA = 
1
2 k, 

kB = k, and kC = 3
2

k. Note that for each position of the load, the middle defl ection 

at B is always midway between the end defl ections A and C. Note also that when 

the load is near one end, the defl ection at the other end is negative. In order for our 

solution to be valid in these ranges it is necessary for the springs to be capable of 

working in compression.

It is interesting to observe that when the load is at the position indicated by lo 

in Fig. 2.3(d), all three spring defl ections are equal. This means that the bar defl ects 

without tipping when the load is applied at this position. For any other value of l 

the bar tips.

As derived, the line marked A in Fig. 2.3(d) represents the defl ection dA(l) 

as the load position parameter l is varied. We can, however, give an alternate 

interpretation to this line. It also represents the actual position of the bar when the 

load is applied at point A. To see this we note that when the load is at point A the 

defl ections at the three spring locations are given by the ordinates of the three lines 

at l = –1. If we transfer the ordinate dB( –1) to the location of point B (that is, 

l = 0) and transfer the ordinate dC(–1) to the location of point C (that is, l = 1), we 

note that the transferred ordinates (see horizontal dashed transfer lines) lie precisely 

on the line marked A. The lines marked B and C in Fig. 2.3(d) also have this same 

reciprocal property. They represent either the defl ection at the labeled position when 

the load is varied, or they represent the position of the bar when the load is applied 

at the labeled position. The position marked lo then has an additional signifi  cance. 

It is the one point on the bar whose defl ection is independent of the load location. It 

acts as a pivot point for the bar as the load position is varied.

For arbitrary values of the spring constants in Fig. 2.3(a), the qualitative behavior 

is similar to that described for the particular set of spring constants used to construct 

Fig. 2.3(d). It can be shown that, in general, the pivot loca tion is given by

  lo
C A

A B C

k k

k k k
=

-
+ +

 (e)

and the invariant defl ection at this location is

  d l( )o
A B C

P

k k k
=

+ +
 (f)

In these examples we have found it necessary to consider all three steps 

of (2.1) in order to obtain the desired information about the system behavior. In 

Example 2.2, for a given value of b we could have found the values of FC and FD 

by considering only step 1. As noted in Chap. 1, such systems in which we can 

determine the forces without reference to the deformations or the force-deformation 

relations are called statically determinate systems. In other situations, such as 

in Examples 2.1 and 2.3, we fi nd that the forces cannot be determined with out 

considering the deformations, and we call these statically indeterminate systems; 

in such cases it always will be necessary to consider all three steps, even though we 

are interested only in the forces.
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Although the three steps of (2.1) underlie the analysis of all problems in the 

mechanics of deformable bodies, the knowledge of their existence does not ensure that 

a solution will be found to any given problem. In any given situation the possibility of 

fi nding a solution depends upon the relative complexity of the physical situation, the 

diffi culty in defi nding a suffi ciently accurate and yet suffi ciently simple model, and the 

problems involved in formulating the three analytical steps when studying the model.

Example 2.3(b)
 For the below rod, let us determine the various quantities such as 

  axial force in each member, axial stress, axial strain and fi nally 

axial defl ection with respect to the left end 1, in terms of x. It is a good practice to 

draw these diagrams. For example axial force diagram is the distribution of axial 

force in the member with respect to x. This diagram tells us force information about 

the quantities at any point of the axial member.

Fig. 2.4(a)  Example 2.3(b)

AXIAL FORCE DIAGRAM

Axial force in 1–2 is a constant since no other force is acting between 1 and 2. 

Thus, simple free-body diagram of section at x from 1 will reveal the axial force. 

We assume that the cut face has a direction along the x has positive axial force if 

points in x-direction.

Fig. 2.4(b)  Simple free-body diagram for Example 2.3(b)

Thus, we have 

   P1 + A = 0

 fi  A(x) = – P1

Similarly for 2–3, we have

   A(x) = P3
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Fig. 2.4(c)  Axial force diagram for Example 2.3(b)
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2.3  UNIAXIAL LOADING AND  DEFORMATION

The basic type of deformation which will be considered in most of the problem 

situations in this chapter is shown in Fig. 2.5(a). A bar is loaded by two forces, and 

we are interested in the relative motion of the points of application of the two forces. 

Consider the deformation of three rods of identical material, but having different 

lengths and cross-sectional areas as shown. Assume that for each bar the load is 

gradually increased from zero, and at several values of the load a measurement is 

made of the elongation d. If the maximum elongation is very small (say, not greater 

than 0.1 percent of the original length1), then for most materials the results of 

the three tests will be represented by a plot like Fig. 2.5(b) or like Fig. 2.5(c). The 

relative positions of the three curves in each plot are what we would expect from the 

experience we have had with easily deformable bodies such as rubber bands.

Fig. 2.5  Uniaxial loading

If the experimental data are replotted with load over area as ordinate and 

elongation over original length as abscissa, the test results for the three bars can 

be represented by a single curve, as shown in Fig. 2.6(a) or (b). The fact that this 

replotting brings all the data from different test specimens into common agreement 

greatly simplifi es the problem of determining the load-deformation behavior of 

materials. Thus, to obtain the uniaxial load-elongation characteristics of a partic-

ular material, we can test a single specimen and present the results as a plot of P/A 

against d/L, as illustrated in Fig. 2.6.

1 In Chap. 5 there is a discussion of the load-elongation curves for larger elongations.
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If the uniaxial load-elongation relation of the material is linear, then this relation 

can be expressed by giving the slope of the straight line in Fig. 2.5(a). This slope is 

called the  modulus of elasticity and usually is denoted by the symbol E. In terms of 

the coordinates of Fig. 2.5(a), E is defi ned by

   E
P A

L
=

d

Since P/A has the dimensions of force per unit area and d/L is dimensionless, the 

dimensions of E are those of force per unit area (in Chap. 4 we will defi ne a termi-

nology in which P/A is the average stress across the area A, while d /L is the average 

 strain along the length L). Using the units of newton for force and meter for length, 

E has the dimensions N/m2 (often called a pascal, Pa). Using the units of pound 

for force and inch for length, E has the dimensions lb/in.2 (usually abbreviated as 

psi). Typical values of E for a few materials are given in Table 2.1; for example, for 

steel, E is approximately 205 GN/m2.

Material E, psi E, kN/m2

Tungsten carbide 60–100 ¥ 106 410–690 ¥ 106

Tungsten  58 ¥ 106  400 ¥ 106

Molybdenum  40 ¥ 106  275 ¥ 106

Aluminum oxide  47 ¥ 106  325 ¥ 106

Steel and iron 28–30 ¥ 106 194–205 ¥ 106

Brass  15 ¥ 106  103 ¥ 106

Aluminum  10 ¥ 106  69 ¥ 106

Glass  10 ¥ 106  69 ¥ 106

Cast iron 10–20 ¥ 106 69–138 ¥ 106

Wood  1–2 ¥ 106 6.9–13.8 ¥ 106

Nylon, epoxy, etc.  4–8 ¥ 104 27.5–55 ¥ 104

Collagen  2–15 ¥ 103 13.8–103 ¥ 103

Soft rubber  2–8  ¥ 102 13.8–55 ¥ 102

Smooth muscle  2–150  13.8–1034

Elastin  50–100  345–690

 1 N/m2 = pascal (Pa)

If we rewrite the defi nition for E, we obtain an expression for d

   d =
PL

AE  (2.2)

Equation (2.2) is a simple form of  Hooke’s law,2 so named after  Robert Hooke 

who was the fi rst to record that many materials have a linear relation between load 

and deformation. (He also was the inventor of the Hooke’s joint discussed in Sec. 

1.10.) It should be noted that, when the load-defl ection curve is linear, a solid bar 

subjected to end loads acts in the same manner as the coiled springs with which we 

are familiar. If we had a “spring” made of a bar of steel 103 mm2 in area and 1 m 

long, the spring constant would be, from Eq. (2.2),

Table 2.1

2 Hooke’s law for loading in more than one direction will be discussed in Chap. 5.
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If the material is nonlinear, then it will not be possible to represent the uniaxial 

load-elongation relation by a single constant; in fact, it will be necessary to specify 

this relation by an actual curve such as that illustrated in Fig. 2.6(b). Analytical 

work with a nonlinear load-elongation curve is generally more com plicated than 

that with a linear material whose load-elongation relation can be expressed by 

the simple analytical expression of (2.2). For this reason, when materials are only 

slightly nonlinear, it has become common practice to approxi mate the data by a 

straight line with a slope which will fi t the nonlinear behavior as well as possible. 

Cast iron, copper, and zinc are examples of slightly nonlinear materials for which 

one fi nds tabulated values of the modulus of elasticity. In the following sections, 

in addition to the linear problems, we shall consider a problem in which we use 

the actual load-elongation curve of a nonlinear material. We believe that the use of 

nonlinear load-elongation curves gives some insights which would not be obtained 

if only linear materials were dealt with.

Fig. 2.6  Uniaxial-loading data of Fig. 2.5(b) and c plotted as P/A versus d/L

For most materials, experiments with small deformations show that the 

shortening of a rod due to a compressive force is equal to the extension due to a 

tensile force of the same magnitude. We shall assume, therefore, that Eq. (2.2) and 

curves such as Fig. 2.6 represent behavior in compression as well as in tension.

Usually, in order to construct a truss as shown in Fig. 2.6(a) members of 

appropriate length are calculated according to geometry, as are made ready for 

fabrication with appropriate ends for assembly. Two ways of joining are generally 

adopted, (1) welding, (2) riveting/bolting (with a gadet plate, usually to make sure 

alignment is met). There one situations when slight mismatches in lengths of the 

members that may occur in a deferminate truss, this doesn’t pose a problem since 

no additional forces are developed during fabrication due to errors in the fabrication 

lengths of the truss members (why?).

This is also the case when we discuss about the displacement constraints of A 

and B. Slight shifts in the support conditions do not affect or introduce additional 

stresses in the truss member of a determinate truss.
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2.4 STATICALLY DETERMINATE SITUATIONS

The most straightforward way to become familiar with the ideas implied in (2.1) 

is to use them in the solution of several problems. In this section we shall consider 

statically determinate problems, i.e., ones in which the forces can be obtained 

without reference to the geometry of deformation.

Example 2.4
 Figure 2.7 shows a triangular frame supporting a load of 20 kN. 

  This is the same frame that was considered in Example 1.3; in the 

present instance the type and size of members and the nature of the connections are 

specifi ed in greater detail. Our aim is to estimate the displacement at the point D 

due to the 20-kN load carried by the chain hoist.

As a model for the behavior of this system we shall take the same one that was 

fi nally chosen in Example 1.3. Essentially, this model [Fig. 2.8(a)] is one in which 

the bolted connection at C is treated as a frictionless pinned joint. Following (2.1), 

we analyze this model.

Fig. 2.7  Example 2.4
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FORCE EQUILIBRIUM

The forces in the members were determined in Example 1.3. These are shown in the 

free-body sketch of Fig. 2.7(b).

FORCE-DEFORMATION RELATIONS

Equation (2.2) gives the deformations of the members BD and CD due to the forces 

acting on the ends of the members. These deformations are
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GEOMETRIC COMPATIBILITY

Geometric compatibility of the deformations requires that the bars BD and CD 

move in such a way that, while the bars change lengths by the amounts calculated 

above, they remain straight and also remain fastened together at D. The mechanism 

by which this can be accomplished is illustrated in Fig. 2.8(c). Assume, for the 

moment, that the bars are uncoupled at D and allowed to change lengths by dBD 

and dCD so that the bars now are of lengths BDl and CD2, respectively. We see from 

the sketch that we can bring the ends D1 and D2 into coincidence without further 

change in the lengths of the bars by rotating the bars BD1 and CD2 about B and C as 

centers. Thus, due to the action of the 20-kN load, the point D moves to D3, and the 

deformed shape of the structure is as shown in the dotted position in Fig. 2.8(c).

Locating the point D3 at the intersection of the two arcs in Fig. 2.8(c) is a 

rather lengthy calculation. Fortunately, since the deformations of the bars are only 

very small fractions of the lengths (these deformations are exaggerated greatly in 

Fig. 2.8), we can, with great accuracy, replace the arcs by the tangents to the arcs at 

D1 and D2 and obtain the intersection D4 as an approximation to the location of D3. 

Because of its simplicity and accuracy, this approximation is used in practically all 

engineering calculations of defl ections of structures.

Employing this approximation of replacing the arcs with tangents, we illustrate 

in Fig. 2.8(d) the calculation of the horizontal and vertical displace ments by which 

the point D moves to D4. We begin by laying off SBD and SCD to locate the points D1 

and D2. At D1 and D2 we erect the perpen diculars (tangents) D1G and D2F; these 

perpendiculars intersect in the desired point D4. From the geometry of Fig. 2.8(d) 

we then can write

 dH = dCD = 0.0915 mm

 dV = D2F + FD4 (b)

  = DC + FG

   
= + =2 1 77d dBD CD . mm

We thus have accomplished our objective of making an estimate of the 

displacement of the point D of the frame in Fig. 2.7. As stated in Chap. 1, we shall 

return to this problem again in Chap. 8, using another model of the actual structure; 
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at that time we shall fi nd that the displacements calculated above represent a very 

good engineering estimate.

In analyzing a deformable structure according to the steps (2.1), the equilibrium 

requirements of the fi rst step should be satisfi ed in the deformed equilibrium 

confi guration. In most engineering applications the defor mations are so small that 

it is suffi ciently accurate to apply the equilibrium requirements to the undeformed 

confi guration. As an example of this ap proximation the forces in Fig. 2.8(b) were 

obtained by applying the equilib rium requirements to the undeformed frame. If 

the equilibrium requirements are applied to the deformed shape of Fig. 2.8(d), the 

forces in the bars are not signifi cantly different (the tension in BD is decreased 

by 12 N, and the compression in CD is decreased by 0.6 N). In Chap. 9 we shall 

consider a class of problems where it is essential to apply the equilibrium require-

ments in deformed confi gurations.

Fig. 2.8  Example 2.4
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Example 2.5
 Figure 2.9(a) shows the truss of Example 1.4 with exactly the 

  same loads. The truss material is aluminum; all the outer  members 

of the truss have a cross-sectional area of 20 cm2, and each of the three inner 

members has an area of 10 cm2. We wish to determine how much the length of each 

member changes due to the loads shown in Fig. 2.9(a).

Fig. 2.9  Example 2.5

We adopt as a model the same one chosen in Example 1.4; namely, one where 

the roller support at B can exert only a vertical reaction, and one where the force in 

each member is directed along the member. Applying the steps (2.1) to our model, 

we fi nd the following.

FORCE EQUILIBRIUM

By continuing in a similar manner the analysis of bar forces started in Example 

1.4, the force in each member of the truss may be obtained. The results of such an 
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analysis are shown in Fig. 2.9(b), where the symbols T and C are used to indicate 

whether the force is tensile or compressive.

GEOMETRIC COMPATIBILITY OF DEFORMATION

The members of the truss make up a series of triangles, and the truss is the sum of 

these triangles. If the pins are frictionless and allow free rotation, then the three 

members which form any one triangle also will form a triangle if the three members 

change their lengths. Furthermore, adjacent triangles can distort independently 

of each other in the present example, since the roller support at B is free to move 

horizontally to accommodate the distortion of the triangles which make up the truss. 

From this we conclude that each member of the truss is free to lengthen or shorten 

without any restraint being imposed by the other members of the truss. The overall 

behavior of the truss is indicated in Fig. 2.9(c), where the defl ections have been 

exaggerated greatly for purposes of illustration.

RELATIONS BETWEEN FORCES AND DEFORMATIONS

The deformation of each member is obtained from Eq. (2.2). For example, the 

deformations of the three members which make up the triangle ACD are
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The changes in length of the other members of the truss can be obtained from 

similar calculations.

The determination of the displacement of any point, say D, in the truss of 

Fig. 2.9(c) is a fairly cumbersome calculation. However, the principles involved in 

such a calculation are quite simple, as was illustrated in Example 2.4. Computer 

programs have been devised to facilitate the calculation of displacements. This 

will be illustrated in Sec. 2.5. In Sec. 2.6 we shall develop an  energy method which 

provides a convenient means of calculating defl ections of linearly elastic structures.

Example 2.6(a)
 The stiff horizontal beam AB in Fig. 2.10(a) is supported by

  two soft copper rods AC and BD of the same cross-sectional 

area but of different lengths. The load-deformation diagram for the copper is 

shown in Fig. 2.10(b). A vertical load of 150 kN is to be suspended from a roller 

which rides on the horizontal beam. We do not want the roller to move after the 

load is put on, so we wish to fi nd out where to locate the roller so that the beam 

will still be horizontal in the defl ected position. Also, we should like to know if 

the location would be the same if the load is increased from 150 kN to 300 kN.

Before proceeding with the solution to the problem, we should like to point out 

that this situation is fundamentally the same as that treated in Example 2.2: Find 

the location of a load which will produce a specifi ed defl ection of a stiff beam 
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supported on two “springs.” The present situation is only computationally more 

complicated than Example 2.2 because of the nonlinear nature of the “springs.”

We select the model in Fig. 2.10(c) as representing the behavior of the system. 

In this model we have assumed that the points A and B defl ect vertically to A¢ and 

B¢, and that the beam is stiff enough to be considered rigid. Also, we have assumed 

that there are no horizontal forces or couples acting between the beam and the bars. 

Applying to this model the three steps of (2.1), we obtain the following.

Fig. 2.10  Example 2.6(a)

FORCE EQUILIBRIUM

The equilibrium requirements of SF = 0 and SM = 0 will be satisfi ed for the free 

body of the beam in Fig. 2.10(c) when

 SFy = FA + FB – 150 = 0 
(a)

 SMA¢ = FB  –  c(150) = 0
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GEOMETRIC COMPATIBILITY

Since the beam moves down without rotating, we must have

 dA = dB (b)

Using this equality, we see from the lengths of the bars in Fig. 2.10(a) that

 
d d d d dA

A

B

A

B B B

BL L L
= = = =

1 3
2

2 6
2

. .
 (c)

RELATION BETWEEN FORCE AND DEFORMATION

The diagram in Fig. 2.10(b) gives the relation between force and elongation. For 

example, if we enter the diagram with

 FB /AB = 100 MN/m2, we fi nd dB/LB = 0.0015 (d)

The relations (a), (c), and (d) represent the formulation of the three steps of 

(2.1); that is, they represent our analysis of the physics of the problem. We now 

must combine (a), (c), and (d) mathematically to fi nd the correct location of the 

roller. Dividing the fi rst of Eqs (a) by AA, we have

  
F

A

F

A A

A

A

B

A A

+ =
150

     

Substituting AA = AB = 1300 mm2, we obtain the following relation.

  
F

A

F

A

A

A

B

A

+ = 115
2

MN

m
 (e)

We now select an arbitrary value of dB /LB. Then, using (c) to obtain dA/LA, we 

enter the diagram in Fig. 2.10(b) and obtain FB/AB and FA/AA. We then check to see 

if these values satisfy (e). If (e) is not satisfi ed, we make a new guess for dB/LB and 

obtain new values for FA/AA and FB/AB. Proceeding in this way, we fi nd the points a 

and b in Fig. 2.10(b). From these points,

 
F

A

A

A

 = 74 MN/m2 FA = 96.2 kN

 
F

A

B

B

 = 41 MN/m2 FB = 53.3 kN (f)

 
d A

AL
 = 0.001 m/m dA = dB = 1.3 mm

Substituting this value for FB in the second of Eqs (a), we obtain the required 

location of the roller.

 c = 0.355 m (g)

If we repeated the analysis for a load of 300 kN, the solution would be 

represented by the points a¢ and b¢ in Fig. 2.10(b), with the results

 FA = 182 kN

 FB = 118 kN

 dA  = dB = 1.69 mm 

(h)

 c = 0.393 m

It is not surprising that this value of c differs from the previous result, since a 

nonlinear material does not produce equal increments of elongation for equal 
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increments of load. For example, in Fig. 2.10(b) a value of P/A of 50 MN/m2 

produces a d/L of 0.0006, whereas the next increment of 50 MN/m2 produces an 

increment in d/L of 0.0009.

Example 2.6(b)
 

Fig. 2.11(a)  Example 2.6(b)

BOW

Force vs displacement F vs d to be plotted. The string under initial tension.

Fig. 2.11(b)  String under initial tension

Let kdAC = FAC

 2FAC = F/sin q (a)

 dAC = AC – AB/2

  = L/cos q – L = L (L/cos q–1)

\ 2FAC = 2kdAC = 2kL (1/cos q – 1)

Using (a), F = 2 kL (tan q – sin q) (b)

 dCD = L tan q

  tan q = 
d

q
d

d

CD CD

CD
L L

, sin
( )

=
+2 2 1 2/  (c)

Using (c) in (b)

 F = 2
2 2 1 2

kL
L L
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d
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ˆ
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CDd 3

2

We thus get a non-linear response.

Notice importantly that it is possible to obtain a non-linear response from linear 

springs as shown.

Fig. 2.11(c)  Plot of force vs displacement

Example 2.7
 A thin ring of internal radius r, thickness t, and width b is 

  subjected to a uniform pressure p over the entire internal surface, 

as shown in Fig. 2.12(a). A view looking down the axis of the ring is sketched in 

Fig. 2.12(b). We should like to determine the forces in the ring. We also should like 

to determine the deformation of the ring due to the internal pressure.

The model which we assume to represent the behavior of the hoop is shown in 

Fig. 2.12(c), which is a free body obtained by cutting the hoop on a diameter. We 

assume that at the cut sections 1 and 2 there are acting tangential and radial forces 

FT and FR which resist the internal pressure. Note that if, at Section 1, we arbitrarily 

assign to FT and FR the directions shown in Fig. 2.12(c), then the directions shown 

at Section 2 in the same sketch follow automatically from the symmetry of the hoop 

and its loading. We now apply (2.1) to our model.

FORCE EQUILIBRIUM

Before examining in detail the free body of Fig. 2.12(c), it will be instructive to 

examine the free body of the other half of the hoop, shown in Fig. 2.12(d). The 
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directions of the forces FT and FR in Fig. 2.12(d) follow directly from those in 

Fig. 2.12(c) according to Newton’s third law. We observe that the forces FT act in 

similar manner on the two halves of the hoop, but the forces FR act inward on the 

upper half and outward on the lower half. This action of the forces FR violates the 

symmetry which we expect to fi nd in the two halves of the hoop. We can resolve 

this paradox in only one way; we must conclude that the radial forces FR are zero, 

and that on any radial cut made across the hoop there is acting only a tangential 

force FT.

Returning now to the free body of Fig. 2.12(c), we see that moment equilibrium 

is satisfi ed about the hoop center. Also, force equilibrium in the x direction is 

satisfi ed as a result of the symmetry, and thus to ensure equilib rium we need only 

require force balance in the y direction. Considering an arc length r Dq on the inner 

surface of the ring, there will be acting on this arc a radial force

 DFp = p[b(r Dq)] (a)

Fig. 2.12  Example 2.7

The component in the y direction of this radial force is

 DFy = DFp sin q = p[b(r Dq)] sin q (b)

In the limit as Dq Æ 0 the sum of the forces DFy acting on the free body of 

Fig. 2.12(c) becomes the integral in the following force-balance equation

 SFy = pbr d FTsin q q
q

q p
- =

=

=

Ú 2 0
0

 (c)

Integrating (c) we fi nd

 FT = prb (d)
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It is of interest to note that the quantity [(r Dq)sin q] in (b) is the projection on 

the x axis of the arc length r Dq. Thus the force DFy can be seen to be numerically 

equal to the pressure p acting over the projected area which is seen when we look 

in the y direction. Since this is true for each element of arc length, it must also be 

true for the entire half hoop for which the projected area is 2rb, and our equilibrium 

equation for the half hoop can be written directly as

 SFy = p(2rb) – 2FT  = 0 (e)

FORCE-DEFORMATION RELATION

The hoop may be thought of as a fl at plate of thickness t, width b, and length 

2p(r + t/2) subjected to a tensile force FT given by (d). Using this model, we can 

calculate from (2.2) the increase in the circumference of the hoop, dT.

  d
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GEOMETRIC COMPATIBILITY

Since the circumference of a circle of radius r is equal to 2pr, an increase in 

circumference of dT must be accompanied by a radial expansion dR, as shown in 

Fig. 2.12(e), where

  d
d

p
R

T=
2

 (g)

Substituting (f), we fi nd
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 ( )

If we have a thin hoop we can neglect t/2r compared to unity, and thus arrive at 

the following result which is used in engineering calculations involving thin hoops.

  dR

pr

tE
=

2

 (i)

The approximations inherent in the “thin-ring” treatment above are typical of 

many “engineering approximations.” In order to realistically employ approximate 

methods, we must learn to judge a good approximation from a poor one. We 

develop this capability by comparing the approximate result with either an exact 

result or an experimental result. For rings, where exact analytical solutions are 

available for “thick rings,” we fi nd that the approxi mate solutions are good when 

t/r < 0.1 (see Sec. 5.7).

Example 2.8
 This problem situation is illustrated in Fig. 2.13(a) and (b). In a 

  test on an engine, a braking force is supplied through a lever arm 

EF to a steel brake band CBAD which is in contact with half the circumference of 

a 600-mm-diameter fl ywheel. The brake band is 1.6 mm thick and 50 mm wide 

and is lined with a relatively soft material which has a kinetic coeffi cient of friction 

f = 0.4 with respect to the rotating fl ywheel. The operator wishes to predict how 

much elongation there will be in the section AB of the brake band when the braking 

force is such that there is a tension of 40 kN in the section BC of the band.
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We begin to formulate our model by drawing a free-body sketch of the 

section AB of the brake band, shown in Fig. 2.13(c). There will be forces acting 

at all points of contact between the band and the drum. These forces are shown 

as components normal and tangential to the surface of contact, where we assume 

the tangential component is caused by friction between the fl ywheel and the lining 

and thus is shown acting in the same direction as the motion of the fl ywheel past 

the band. Figure 2.13(d) shows a free-body sketch of an element of the band. In 

this sketch it is assumed that the force in the band is a tangential force T which 

varies along the circumference, changing by an amount DT over the length R Dq. 

The total radial component of force on the element is given the symbol DN, and the 

tangential component caused by the friction then is fDN. We shall assume that the 

Fig. 2.13  Example 2.8
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force T is carried entirely by the steel band and not at all by the lining, which was 

described as being relatively soft. We now have specifi ed a model which is explicit 

in its provision for carrying of the loads and thus should be a suitable basis for 

calculating the desired elongation.

It is important to emphasize that because the tension varies along the brake band 

we will derive a  differential equation for its variation along the band. We do this by 

considering the differential element shown in Fig. 2.13(d) and letting the size of the 

element shrink to zero. By letting the element size become vanishingly small, we 

are fi nding the conditions which must be satisfi ed at a point on the band.

Proceeding in the same manner as in the previous examples, we analyze this 

model with the use of Eq. (2.1).

FORCE EQUILIBRIUM

All the forces on the small element in Fig. 2.13(d) may be considered con current, 

and thus equilibrium is satisfi ed when SF = 0. All forces are parallel to the rq plane, 

and SF = 0 can be satisfi ed conveniently by requiring that the sum of the force 

components in the r and q directions be zero.

  Â = D -
D

- + D
D

=F N T T Tr sin ( ) sin
q q

2 2
0  

(a)

  Â = + D
D

-
D

- D =F T T T f Nq

q q
( ) cos cos

2 2
0

Considering the free body in Fig. 2.13(d), we note that the angle Dq is small (in 

the limit, zero). For small angles it is frequently convenient to make the following 

approximations.

 sin q ª q 

 tan q ª q 

 cos q ª 1

These approximations are accurate up to surprisingly large values of q as shown 

in Table 2.2.   Using these approximations, Eqs (a) become

  D -
D

- + D
D

=N T T T
q q

2 2
0( )     

(b)
  (T + DT) – T – f DN = 0

 

q
sin q tan q cos q

Degrees Radians

 0 0 0 0 1

 5 0.0873 0.0872 0.0875 0.9962

 10 0.1745 0.1736 0.1763 0.9848

 15 0.2618 0.2588 0.2679 0.9659

Neglecting DT compared to 2T in the fi rst of (b), and eliminating DN between 

the two equations, we obtain 

Table 2.2
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D
D

T
f T

q
=  (c)

In the limit as Dq Æ 0 this becomes the derivative

 
dT

d
f T

q
=  (d)

Integrating (d) and satisfying the boundary condition that T = TAD at q = 0, we 

obtain

 T T eAD
f= q (e)

where e is the base of natural logarithms. We now can calculate TAD from the 

condition that T = TBC = 40 kN at 0 = p. Then,

 T = 40e0.4q kN (f)

By application of equilibrium alone, we have found the force in the brake band 

and thus the problem is statically determinate. Before going on to consider the 

elongation, we should like to emphasize the surprising nature of the variation in 

tension in the brake band. The tension varies exponentially with angular location, 

the tension at B being 3.5 times that at A. If the band extended all around the 

circumference of the fl ywheel, the ratio of the tensions at the ends would be 12.3! 

Many machines employ this frictional behavior to advantage, much as the sailor 

uses it to halt the motion of a large ship by taking a few turns of a rope about a 

piling.

RELATION BETWEEN FORCE AND DEFORMATION

Applying (2.2) to the small element of length R Dq, we fi nd the elongation Dd to be

 D =
D

d
qTR

AE
 (g)

We see that the elongation varies with position along the band. To calculate total 

defl ection, we need to consider the integral of the incremental variations along the 

band.

GEOMETRIC COMPATIBILITY

The total elongation of the brake band from A to B, dAB, is the sum of the tangential 

elongations Dd of the small elements of length R Dq shown in Fig. 2.13(d). In the 

limit as Dq Æ 0 this sum becomes the following integral:
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Substituting (e) and integrating, we obtain an estimate of the elongation of the 

section AB.
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2.5  STATICALLY INDETERMINATE SITUATIONS

We shall now consider two examples in which we must examine the deformation 

of the system in order to determine the manner in which the forces are distributed 

within the system.

Example 2.9
 Figure 2.14(a) shows the pendulum of a clock which has a 12-N 

  weight suspended by three rods of 760-mm length. Two of the 

rods are made of brass and the third of steel. We wish to know how much of the 

12-N suspended weight is carried by each rod.

Our model of the system is shown in Fig. 2.14(b). We assume that the support at 

the top and the weight at the bottom are stiff and act as rigid members. Because of 

the symmetry of the rod arrangement and the loading, each brass rod will carry the 

same load and all three rods will elongate the same amount. Applying the steps of 

(2.1) to our model, we obtain the following results:

Fig. 2.14  Example 2.9

FORCE EQUILIBRIUM

SM = 0 is satisfi ed because of the symmetry of the force system. SF = 0 is satisfi ed 

by

 SFy = l2 – FS – 2FB = 0 (a)
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GEOMETRIC COMPATIBILITY

The rods extend equal amounts, and so

 dS = dB (b)

RELATION BETWEEN FORCES AND DEFORMATIONS

Using Eq. (2.2), we obtain

 dS
S S

S S

F L

A E
=  dB

B B

B B

F L

A E
=  (c)

Combining (b) and (c),
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( . ) ( )
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.

1 3 200 760

2 5 100 760
0 541

2

2
F FB B  (d)

Combining (a) and (d), we fi nd

 FS = 2.55 N 

  FB = 4.72 N

Example 2.10(a)
 Figure 2.15(a) shows an instrument suspension consisting of two 

  aluminum bars and one steel rod mounted in a stiff frame, 

together with a spring EA which is inclined at 45º to BA. In assembly the nut on the 

steel rod at D is tightened so there is no slack in the line BAD, and then the spring 

EA is installed with suffi cient extension to produce a force of 50 N. We wish to fi nd 

the defl ection of the joint A (relative to the frame) caused by the spring loading.

A simple model of the system is shown in Fig. 2.15(b). We assume that the frame 

is essentially rigid compared to the aluminum bars and the steel rod; thus the points 

B, C, and D can be considered as fi xed, and the defl ection may be measured relative

Fig. 2.15  Example 2.10(a)
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to these fi xed points. Also, we shall consider the steel rod to be pinned at point D; 

this is a good approximation since AD is such a slender member (its length is 53 

times its diameter) that any rotational restraint offered by the nut and washer will 

be negligible. Finally, we assume that the action of the 50 N spring force will be to 

move the point A to a new position A¢, as shown in Fig. 2.15(b). Applying (2.1) to 

our model, we fi nd the following.

FORCE EQUILIBRIUM

We assume that the forces in the members AC and AD are tensile and the force 

in AB is compressive, as illustrated in the free body of joint A in Fig. 2.15(c). (It 

should be noted that, if we obtain a negative value for one of these forces, it will 

mean only that we assumed the wrong direction for the force; thus, in complicated 

situations one should not waste a lot of time deciding which “sense” to give to an 

unknown reaction, since the algebraic sign of the result will tell whether the original 

assumption was correct.) For the free body in Fig. 2.15(c) the requirement of SM = 0 

is satisfi ed by the concurrence of all the forces, and SF = 0 can be satisfi ed by

 Â = - - =F F Fx AD AB

50

2
0

 Â = - =F Fy AC

50

2
0  

(a)

The statically indeterminate nature of the situation is indicated by the fact that 

we cannot determine the values of FAB and FAD from these equilibrium equations 

alone.

GEOMETRIC COMPATIBILITY

The defl ections will be very small compared with the lengths of the bars. Thus, 

using the approximation developed in Example 2.4, we may assume that a 

movement of the end of a bar in a direction perpendicular to the axis of the bar can 

be accomplished without any change in the length of the bar. Then the extensions 

and contractions of the bars are

 dAC = dy extension

 dAD = dx extension (b)

 dAB = dx compression

RELATION BETWEEN FORCES AND DEFORMATIONS
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Solving (a), (b), and (c) simultaneously, we obtain

 FAD = 5.29 N tension 

 FAB = 30.06 N compression 

 dy = 6.06 ¥ 10–3  cm (d)

 dx = 5.14 ¥ 10–4 cm

Example 2.10(b)
 

Fig. 2.16(a)  Example 2.10(b)

∑ Construction Procedure: AB + AC + CD + BD + BC

∑ Now AD is to be inserted and one fi nds that the length AD is samller and has 

to be pulled to put it in the place at D.

∑ What is the radial force created?

∑ Notice that there are no external forces.

Length of AD is about 2 mm shorter than needed to fi t to D after this is 

connected to A. This is often a problem with assembly of indeterminate structures. 

In this case, the member AD is pulled by the misfi t length of 2 mm and fi tted at D. 

This introduces a “residual force” in the truss means that even in the case of no 

external forces, there are forces present in the members that self-equilibrate.

The method of fi nding out this set of residual forces in the members is fairly 

simple in this case since the degree of indeterminacy (number of members to be 

removed to make it a determinate truss) is one.

In this problem, the simplest 

thing to do is to release AD at D so 

that it returns to its original length 

of 2 mm short of the required 

500 2 mm.  The defl ection of 

the point D due to a unit force 

applied along AD should fi rst be 

determined. When this defl ection 

equals the elongation of AD, that 

is the force on AD. See Fig. 2.15.
Fig. 2.16(b)  Plot of force vs displacement
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Now, equilibrium can be enforced at any node to obtain the appropriate forces 

developed in the truss due to the misfi t.

The forces could either be distributed or otherwise.

Often, the elongation of 2 mm can be accomplished in other different ways such 

as thermal expansion, etc.

2.6  COMPUTER ANALYSIS OF TRUSSES

In Example 2.5 we considered the calculation of forces in each member and support 

reactions of a plane truss, we did not carry the calculations very far, except to note 

that the procedure, while straightforward, is a fairly “cumbersome” calculation. 

A procedure of this type are ideal for computer applications. There are many 

computer programs available for the analysis of structures. In this section, we will 

consider a specifi c program and use it for the analysis of plane truss problems. It 

is not our intention to present the method used in the program except to say that 

most computer programs use a matrix formulation which encompass the three steps 

of (2.1). Our discussion is to provide a general overview of the use of a specifi c 

program to obtain forces in the members and support reactions.

The program we will briefl y discuss is written in MATLAB which is provided 

in the book website. This program is very convenient in determining forces in each 

member of two-dimensional structure consists of prismatic bars with pinned joints 

and subjected to concentrated loads.

Let us return once again to the truss problem discussed in Example 2.5 and 

analyse it using the program provided. It is clean that we must input to the computer 

precisely those quantities which are required to solve for the forces in members and 

support reactions, namely:

1. Structure geometry – coordinates of joints and supports

   – information about supports (fi xed or wheel) and its 

direction vector.

   – informations about which members connect which 

joints.

2. Loading – coordinates of the loading point and direction vector.

Figure 2.17 shows the plane truss with numbering of joints. Table 2.3 shows the 

input data for this example. We will briefl y discuss about the input as well as steps 

involved in running the program.

Fig. 2.17  Truss of Example 2.5 shows numbering of joints



Introduction to Mechanics of Deformable Bodies 97

function trussinput;

global connectiveJoints

global trussForces

global structure

%  x y

structure(1).joints = …

4.*[  0 0

  2 0

  4 0

  1 1

  3 1

  2 2];

% j1 j2

structure(1).bars = …

[ 1 2

 2 3

 2 4

 2 5

 2 6

 1 4

 4 6

 3 5

 5 6];

% reaction types

%  1=wheels

%  2=fi xed

% joint  type    x     y

structure(1).supports = …

[ 1 2 0 1;

 3 1 0 1]

% s j x y

trussForces = …

] 1 5 0 –50;

 1 6 0 -75];

saveTruss (‘trussinput.mat’);

 Joint Coordinates

Each joint is numbered as shown in Fig. 2.17 in its x–y coordinates. The coordinates 

of the joints contained in fi rst matrix.

 Member Connections

Each member is connected between two joints. The second matrix consists 

information about member connection between which two Joints.

Table 2.3
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 Support Informations

The third matrix consists of informations about type of the support (fi xed or wheel) 

and its direction vectors.

 Loading

The information about loading point, its direction vector and magnitude is provided 

in the fourth matrix.

All the above information are to be provided in the ‘trussinput’ function fi le of 

the MATLAB as given in Table 2.3. Running this function fi le creates and stores 

.mat fi le in the current directory.

Type ‘mta’ in the command window to get  GUI (Graphics user interface) 

window. This window contains the ‘File’ menu where we open the fi lename.mat fi le 

to load the truss which is to be analysed.

The GUI draws the truss that we loaded and it is ready for analysis. Pressing 

the push button “Analyse” in the GUI window solves the problem and the output 

results are provided as text written over the members and reactions.

This program is very convenient since the output is graphics and it is very easy 

to perceive it. Figure 2.18 shows the output for Example 2.5.

Fig. 2.18  

It should be clear from the above that the problem just solved was statically 

determinate. If, however, both truss supports were fi xed, such that point B could not 

move, the problem would become statically indeterminate. The reader is encouraged 

to try out the program provided for statically indeterminate case. Details of the code 

and how to run it are provided in the book website. Please refer to the preface for 

the web address.

The use of any similar computer program indicates the convenience of the use of 

standard structural-mechanics computer programs. An engineer must often decide 

whether to use a hand computation procedure or to turn to a computer as compared 

with the value of the engineer’s time. In preliminary design stages, an engineer 

often gains additional insights by performing rough calculations himself. When the 
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overall design layout has been settled, detailed calculations for ranges of parameter 

values are often turned over to the computer.

2.7  ELASTIC  ENERGY;   CASTIGLIANO’S  THEOREM

In this section we give a brief introduction to the concept of energy and develop a 

powerful tool for calculating defl ections of elastic systems.

The work done by a force vector F when its point of application moves through 

a displacement vector ds is the scalar, or dot, product

 F ◊ ds = F cos q ds

where q is the angle between F and ds. In general, F will vary as the point of 

application follows a certain path so that the total work done by F is given by an 

integral

 ÚF ◊ ds

When work is done by an external force on certain systems, their internal 

geometric states are altered in such a way that they have the potential to give back 

equal amounts of work whenever they are returned to their original confi gurations. 

Such systems are called  conservative, and the work done on them is said to be 

stored in the form of  potential energy. For example, the work done in lifting a 

weight is said to be stored as gravitational potential energy. The work done in de-

forming an elastic spring is said to be stored as elastic potential energy. By con trast, 

the work done in sliding a block against friction is not recoverable; i.e., friction is a 

nonconservative mechanism.

Consider the elastic, but not necessarily linear, spring in Fig. 2.19. Let the spring 

undergo a gradual elongation process during which the external force F remains 

in equilibrium with the internal tension. The potential energy U associated with an 

elongation d is defi ned to be the work done by F in this process

  F ds◊ = =Ú Ú Fd U
0

d
d  (2.3)

In Fig. 2.19(b), this energy appears as the shaded area under the force-defl ection 

curve. Note that U is a function of the elongation d. If this spring should happen to 

be part of a larger elastic system, it will always contribute the energy (2.3) to the 

total stored energy of the system whenever its individual elongation is d.

The magnitude of the energy that a given spring or member can store is some-

times an important consideration in mechanical design. Parts which are subjected to 

impact loads are often chosen on the basis of their capacity to absorb energy.

Next, consider the general elastic system of Fig. 2.20(a), which can be loaded 

by an arbitrary number of loads. At a typical loading point Ai the load is Pi, and the 

equilibrium displacement due to all the loads is si. If, during the loading process, the 

displacements si are permitted to grow slowly through a sequence of equilibrium 

confi gurations, the total work done by all the external loads will equal3 the total 

potential energy U stored by all the internal elastic members

 Â =Ú
i

i i

i
UP ds

s

0
i  (2.4)

3 See Prob. 2.53.
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 Fig. 2.19  Nonlinear spring (a) has defl ection d due to force F. Potential energy U is area under 

force-defl ection curve (b). Complementary energy U* is area above curve (c)

We next introduce the concepts of complementary work and complementary 

energy to obtain a result parallel to (2.4) but with the roles of force and defl ection 

interchanged.

When the point of application of a variable force F undergoes a displacement s, 

the  complementary work is

 Ús • dF

When complementary work is done on certain systems, their internal force 

states are altered in such a way that they are capable of giving up equal amounts 

of complementary work when they are returned to their original force states. Under 

these circumstances the complementary work done on such a system is said to be 

stored as  complementary energy. The class of systems which store complementary 

energy is not as wide as that which stores potential energy, but it does include all 

elastic systems for which the equilibrium requirements can be applied in the un-

deformed confi guration.4

Let us reconsider the gradual loading process for the nonlinear spring of 

Fig. 2.19(a). The complementary energy U* associated with a force F is defi ned to 

be the complementary work done by F

 Ús • dF = d
0

F

Ú  dF = U* (2.5)

In Fig. 2.19(c) this appears as the shaded area above the force-defl ection curve. 

Note that U* is a function of the force F. If this spring should happen to be part of 

a larger elastic system, it will always contribute the complementary energy (2.5) to 

the total system complementary energy whenever the force in it has the value F.

4 See, for example,  T. M. Charlton, “Energy Methods in Applied Statics,” p. 63, Blackie and 

Son, Ltd., London, 1959.
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Now we return to the general elastic structure of Fig. 2.20(a). To facilitate the 

calculation of complementary work we show, in Fig. 2.20(b), the displacement si 

decomposed into components parallel and perpendicular to Pi. The parallel, or in-

line, component is called di. Now if the loads in Fig. 2.17(a) are gradually increased 

from zero so that the system passes through a succession of equilibrium states, 

the total complementary work done by all the external loads will equal5 the total 

complementary energy U* stored by all the internal elastic members.

 Â = Â =Ú Ú
i

i i i i

i i
dP Us dP

P P

0 0
i d *

 (2.6)

The energy functions U and U* have many uses in mechanics. They are used to 

construct variational principles6 which provide alternatives to the direct application 

of the steps (2.1). These principles in turn form the starting point for a variety7 

of approximate solution techniques. We shall not, however, discuss these matters 

further in this book. Our reason for introducing the energy functions here is that 

we wish to prove a theorem which provides a simple but powerful tool for the 

calculation of defl ections in elastic systems.

 Fig. 2.20  General elastic structure (a) subjected to loads Pi applied at points Ai; 

(b) enlarged view showing displacements si at points Ai

5 See Prob. 2.54.
6 See, for example, chap. 1 of  S. H. Crandall,  D. C. Karnopp,  E. F. Kurtz, Jr., and  D.C. 

Pridmore-Brown, “Dynamics of Mechanical and Electromechanical Systems,” McGraw-

Hill Book Company, New York, 1968.
7 See, for example,  H. L. Langhaar, “Energy Methods in Applied Mechanics,” John Wiley 

& Sons, Inc., New York, 1962, and S. H. Crandall, “Engineering Analysis,” McGraw-Hill 

Book Company, New York, 1956.
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The theorem follows almost immediately from (2.6). Suppose that the system in 

Fig. 2.20(a) is in its equilibrium position with the complementary energy (2.6). We 

now consider a small increment DPi to the load Pi while all the other loads remain 

fi xed. The internal forces will change slightly to maintain force equilibrium, and 

the increment in complementary work will equal the increment in comple mentary 

energy DU *.   For small DPi we have, approximately

 di DPi = DU*

or

 
D
D

=
U

Pi
i

*

d

In the limit as DPi Æ 0 this approaches a derivative which we indicate as a 

partial derivative since all the other loads were held fi xed

 
∂
∂

=
U

Pi
i

*

d  (2.7)

This result is a form of Castigliano’s theorem (extended to nonlinear systems). 

It states that if the total complementary energy U* of a loaded elastic system is 

expressed in terms of the loads, the in-line defl ection at any particular loading point 

is obtained by differentiating U* with respect to the load at that point. The theorem 

can be extended to include moment loads Mi as well as force loads Pi. In the case of 

a moment load, the in-line displacement is the angle of rotation fi about the axis of 

the moment vector Mi, and in place of (2.7) we have

 
∂
∂

=
U

Mi
i

*

f  (2.8)

Although the theorem just proved applies to nonlinear elastic systems, we shall 

in this book use it only in connection with linear systems. In linear systems there is 

an essential simplifi cation. In Fig. 2.19 we see that, in general, U* π U, but when 

the force-deformation relation is linear the two shaded regions become triangles of 

equal area; that is, U* = U. This means that for linear systems it is not essential to 

make a distinction between complementary energy and potential energy.

For example, consider a linear spring with the force-defl ection law

 F = kd (2.9)

where k is the spring constant. According to (2.3), U = 
1
2

2kd , and according to 

(2.5), U* = F2/2k, but because of (2.9) these are equal in magnitude. As a con-

sequence we shall henceforth discontinue making a distinction between potential 

and complementary energies. We shall use the nonspecifi c appellation elastic 

energy for any expression which has the same magnitude as U = U*. Thus for the 

linear spring we say that the elastic energy is

 U k F
F

kA
= = =

1

2

1

2 2
2

2

d d  (2.10)

Similarly, for the linear uniaxial member illustrated in Figs 2.4 and 2.5 the elastic 

energy is

 U
EA

L
P

P L

EA
= = =

2

1

2 2
2

2

d d  (2.11)
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In subsequent chapters we shall derive analogous expressions for elastic energy 

in members with more complex loading patterns.

To apply Castigliano’s theorem to a linear-elastic system it is necessary to 

express the total elastic energy of the system in terms of the loads. This requires 

using the equilibrium requirements to express the internal member forces in terms 

of the applied loads. Then from formulas such as (2.10) and (2.11) the energy of 

each internal member is obtained. The total elastic energy U results from adding the 

energies of all the internal members. Finally, the in-line defl ection di at any loading 

point Ai is obtained by differentiation with respect to the load Pi

 di
i

U

P
=

∂
∂

 (2.12)

Example 2.11(a)
 Consider the system of two springs shown in Fig. 2.18. We shall 

  use Castigliano’s theorem to obtain the defl ections d1 and 

d2 which are due to the external loads P1 and P2. To satisfy the equilibrium 

requirements the internal spring forces must be

 Fx = P1 + P2 
(a)

 F2 = P2

The total elastic energy, using (2.10), is 

 U U U
P P

k

P

k
= + =

+
+1 2

1 2
2

1

2
2

22 2

( )
 (b)

The defl ections then follow from (2.12)

 d1
1

1 2

1

=
∂
∂

=
+U

P

P P

k
 

 d2
1

1 2

1

2

2

=
∂
∂

=
+

+
U

P

P P

k

P

k
 (c)

For this case it is easy to verify that this solution satisfi es all the requirements of 

the steps (2.1).

Example 2.11(b)
 Let us consider now the system of springs shown in Example 2.1(a)

  [Fig. 2.1(a)], applying the same procedure as 2-11-1, we obtain,

U = U1 + U2,  U1 and U2 being energy in each spring. We also have

 F1 + F2 = F

or F2 = F – F1

Therefore,

 U = U1 + U2

 = 
F

k

F F

k

A

A

A

B

2 2

2 2
+

-( )

Now, the defl ection can simply be calculated as,

 dA = 
∂
∂

=
U

F

F

kA

A

A
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 Fig. 2.21  Example 2.11

 dB = 
∂
∂

=
-U

F

F F

kB

A

B

 dA = dB fi F
k

k k
FA

A

A B

=
+

◊

and d = dA = dB = 
∂
∂
U

F

 d = 
∂
∂

=
+

U

F

F

k kA B

Example 2.12
 Let us consider again Example 2.4 (also Example 1.3), and 

  determine the defl ections using Castigliano’s theorem. In Fig. 

2.22 the isolated system from Example 2.4 is shown together with the applied loads.

Because we will treat the members of the frame as springs, their “constants” are 

also given.

The total stored energy is the sum of the energy stored in the two members. 

We should note that the two energies add together even though one member is in 

tension and one in compression. We use the equilibrium requirements to express the 

member forces F1 and F2 in terms of the load P so that the total energy is

 U U U
P

k

P

k

P

k

P

k
= + = + = +1 2

1
2

1

2
2

2

2

1

2

22 2

2

2 2
 (a)

We can calculate directly the defl ection of point D in the direction of P (positive 

downward) from Eq. (2.12).

 dP

U

P P

P

k

P

k
P

k k
=

∂
∂

=
∂

∂
+

Ê
ËÁ

ˆ
¯̃

= +
Ê
ËÁ

ˆ
¯̃

2

1

2

2 1 22
2

1 1

2
 (b)

 dP = 2 ¥ 20[0.0421 + 0.0023] ¥ 10–6 = 1.77 mm

In order to calculate the horizontal defl ection at point D using Castigliano’s 

theorem, there must be a horizontal force at D—but, alas, the horizontal force at D is 

zero. We can satisfy both requirements by ap plying a fi ctitious horizontal force Q and, 

after we have determined the horizontal displacement ∂U/∂Q in terms of P and Q, 

then setting Q = 0. Figure 2.23 shows the frame isolated with both P and Q applied. 

The forces in the individual bars which are required to satisfy the equilibrium require-

ments are indicated. The total energy in terms of the loads P and Q is
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k

k

1

6 6

2

3 6

491 10 205 10

3 2

23 73

3 2 10 205 10

3

218 6

=
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¥
=

=
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=

-
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.

.

MN/m

77 MN/m

Fig. 2.22  Example 2.12

Fig. 2.23  Structure of Fig. 2.19 with fi ctitious load Q at D

 U
P

k k
P Q= + -

2

2

1

2

2

1 2

2( )  (c)

and

 dQ

U

Q

P Q

k
=

∂
∂

= -
-

0
2

 (d)

but Q = 0, therefore

 dQ

P

k
=

-
=

2

0 0915. mm

Note the ease by which the defl ections can be obtained by the use of the energy 

method when compared to the method used in Example 2.4.

Example 2.13
 As a fi nal example in this chapter, let us use Castigliano’s theorem 

  to determine defl ections in the truss problem that we considered 

in Example 2.5 and in the computer-solution example of Sec. 2.5.

The method of solution here is exactly the same as in the previous example; i.e., 

we calculate the total energy in terms of the real and fi ctitious loads, and determine 

defl ections by taking appropriate derivatives. How ever, because a larger number of 
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members is involved, it is worthwhile to set up a system that permits the necessary 

manipulations with the least effort.

If a truss is made of n axially loaded members, the energy stored in the ith 

member, according to (2.11), is

 
U

F L

A E
i

i i

i i

=
2

2  (a)

and the total energy in the system of n members is

 
U Ui

i

n

=
=
Â

1
 (b)

The defl ection at any external (applied or fi ctitious) load P, in the direction of P, 

is simply

 dP
i i

i i

i i

i i

i

i

n

i

nU

P P

F L

A E

F L

A E

F

P
=

∂
∂

=
∂

∂
=

∂
∂==

ÂÂ
2

11 2  (c)

The quantity ∂Fi /∂P, which represents the rate of change of the force in the ith 

member with load P, can be thought of as the load in the ith member due to a unit 

load at P. Why? For convenience, we can rewrite (c) in terms of three quantities 

which we shall tabulate separately

 dP i

i

n
i

i i

iF
L

A E

F

P
=

∂
∂=

Â
1

 (d)

We will again number the members as shown in Fig. 2.24. In Fig. 2.24 we show 

the truss properly supported by R1, R2, and R3 and loaded by  fi ctitious forces P and 

Q at the two points where we wish to determine defl ection information. In Example 

2.5 we solved for the forces Fi due to the actual applied loads. We can now set 

up a system for evaluating (d). In order to evaluate, using (d), the defl ection at the 

joint at which the fi ctitious load P is applied, it appears that we need to fi nd the 

forces Fi in each mem ber as a function of the actual applied loads and in terms of 

P. However, once the member forces are found, we set P = 0 in (d). Therefore, we 

can use immediately the member forces Fi from the actual loads and the forces for a 

unit load at P to evaluate ∂Fi /∂P.

Fig. 2.24  Example 2.13

In Table 2.4 we have tabulated the individual quantities in (d) as well as their 

products. In the fi rst column the Fi are the  actual forces in each member; that is, P 
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does not appear here because it is actually zero. Ignore for now the appearance of 

Q in the fi rst two rows. This will be used later to solve the statically indeterminate 

case where Q is not zero. The second column is self-explanatory. The third and 

fourth columns show the load in each of the i members due to only a unit load P 

and for a unit load Q (Fig. 2.25). In the last columns we tabulate the appropriate 

products and their sums to get displacements. The power of this method should now 

be apparent.

Fig. 2.25  Unit loads on truss of Example 2.13

 Truss solution by energy methods

i
Fi

kN

(L/AE)

m/kN

∂
∂
F

P

i
∂
∂
F

Q

i FL

AE

F

P

∂
∂

Ê
ËÁ

ˆ
¯̃ i

FL

AE

F

Q
i

∂
∂

Ê
ËÁ

ˆ
¯̃

1 + 50 + Q 1.142   l0–5 1/2  + 1 2.855    10–4 5.71   10–4

2 + 75 + Q 1.142  10–5 1/2  + 1 4.282   10–4 8.565     l0–4

3 – 106 8.08   10–6 -1 2  0 6.056   10–4

4 – 70.71 8.08  10–6 -1 2  0 4.04   10–4

5 – 70.71 8.08  10–6 -1 2  0 4.04   10–4

6 – 70.71 8.08  10–6 -1 2  0 4.04   10–4

7  0 2.02  10–5  0  0 0

8 – 35.35 2.02  10–5  0  0 0

9 + 25 2.85  10–5        1  0 7.125 ¥10–4

S = 32.438 ¥ 10–4 S = 14.275 ¥ 10–4

 = dy  = dx

If we wish, we can also solve the statically indeterminate case of the truss which 

we considered in our discussion of the computer solution in Sec. 2.5 (Fig. 2.18). We 

simply require that ∂U/∂Q = 0 as there is no horizontal motion at the point at which 

Q acts. Thus from Eq. (d) and Table 2.4

 Â
∂
∂

= = + + + ¥ -F
L

A E

F

Q
Q Qi

i

i i

i 0 50 75 1 142 10 5[ ][ . ]

or

 Q = – 62.5 kN

Table 2.4
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With very little effort we have determined the indeterminate support force.

If now we wish to solve for the defl ection at P, we must reevaluate the products 

in rows 1 and 2 of Table 2.4 with Q at its actual value as determined above. These 

new values are

i
FL

AE

F

P i Q

∂
∂

Ê
ËÁ

ˆ
¯̃ π, 0

1 2.855 ¥ 10–4 + 0.571 Q ¥ 10–5

2 4.282 ¥ 10–4 + 0.571 Q ¥ 10–5

The values for members 3 through 9 do not change since they carry no Q. 

Therefore

 
dP

U

P
Q=

∂
∂

= ¥ - ¥- -32 438 10 1 142 104 5. .

 but

 Q = – 62.5 kN

 Thus

 dP = 32.438 ¥ 10–4 – 7.1375 ¥ 10–4

 dP = 2.53 ¥ 10–3 m

Note that this agrees with value given by the computer output in Table 2.3.

 SUMMARY

We have considered in this chapter several examples of quite different situations 

involving deformable bodies, and we have found that all of them could be handled 

within the same framework of model formulation followed by application of the 

steps (2.1). By now it must be apparent that the reduction of a given physical system 

to an idealized model is an essentially creative step and that there are no simple 

rules for mastering this art. As we gain factual knowledge and develop resourcefulness 

by applying this knowledge to a wide variety of situations, we become more skillful, 

both in creating simple but effective models and in analyzing them.

It should also be clear that although the steps (2.1) are suffi cient to set up 

problem solutions, the mathematical evaluation of the solutions may be tedious. We 

saw that the computer is of tremendous help in solving complex problems in volving 

many loads or many members. We also saw that for certain problems of moderate 

complexity, an energy method can greatly facilitate the solution.

In the following chapters we shall consider more complex situations of loading, 

structural shape, and material behavior. As we proceed to more sophis ticated 

problems, we must be careful not to confuse the complexity of the physical facts in 

any given situation with the physical principles involved. In all cases the principles 

are simply those contained in the three steps of (2.1).
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1. The analysis of deformable bodies involves three fundamental steps:

 ∑ Study of forces and equilibrium requirements.

 ∑ Study of deformation and conditions, of geometric fi t.

 ∑ Application of force deformation relation.

2. The study of forces and equilibrium requirements starts with a free-body 

diagram in order to account for all the terms in the equations.

3. Uniaxial load-elongation curve for most material is linear when the 

elongation is less than 0.1 percent of original length. The slope of the linear 

st-line is called modulus of Elasticity, E = 
P A

L

/

/d
.

4. Experiments show that modulus of elasticity of most materials is similar for 

both the compression and tension cases.

5. A system is said to be statically determinable when the forces or reactions 

can be determined by solving equilibrium equations alone without reference 

to the geometry of deformation.

6. In most engineering applications, the deformations are so small, that it 

suffi ciently allows the application of equilibrium requirements to undeformed 

confi guration.

7. A structure is said to be statically indeterminate, when the static equilibrium 

equations are not suffi cient for determining internal forces and reactions on 

that structure.

8. Castigliano’s theorem uses energy method in solving static indeterminate 

cases. The determination of load ‘P’ on a constrained member requires 

∂U/∂P = 0. When ‘U’ is the complementary energy.

PROBLEMS

 2.1 A wood diving board is hinged at one end and supported 1.5 m from this end 

by a spring with a constant of 35 kN/m. How much will the spring defl ect if 

a young man weighing 600 N stands at the end of the board? Will the spring 

defl ection be altered if the board is made very rigid?

Prob. 2.1  

 2.2 A safety valve for a pressure system has a discharge hole of 50-mm diameter. 

The spring has a free length of 250 mm and a spring constant of 120 kN/m. 

At what pressure will the valve open?
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Prob. 2.2  

 2.3 A 2.5-m-diameter sound baffl e weighing 1.1 kN is to be hung from a ceiling 

with three springs which are to be mounted on radii making angles of 120° 

with each other, as shown in the sketch. Three springs, each 250 mm long, 

are delivered to the job. Springs a and b have a spring constant of 14 kN/m 

and spring c one of 16 kN/m. If the springs a and b are mounted 1 m from 

the center, how far from the center should the spring c be mounted if the 

sound baffl e is to hang level?

Prob. 2.3  

 2.4 An operator of a punch press operates part of the press by pushing a foot 

lever. The lever has a spring to return it to position after each push. The 

operator has complained that he gets tired pushing the lever. Can you suggest 

a change in the spring which may make the operator’s job easier?

Prob. 2.4  
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 2.5 High-speed rail-transportation 

design requires a knowledge 

of defl ection characteristics of

the various components of the 

roadway. If the member AB 

of a truss section as shown is 

assumed rigid, estimate the 

angle the member AB makes 

with the horizontal when a load 

acts at the position indicated. 

Bars AC, BC, and BD are 

steel with the cross sections 

indicated.

 2.6 The stiff member AB is horizontal before the load of 20 kN is applied 

at A. The three steel bars ED, BD, and BC are fastened with pins at their 

ends. Find (a) the force in the bar BD, and (b) the horizontal and vertical 

movement of the point A

Prob. 2.6  

 2.7 A small railroad bridge is constructed of steel members, all of which have a 

cross-sectional area of 3250 mm2. A train stops on the bridge, and the loads 

applied to the truss on one side of the bridge are as shown in the sketch. 

Estimate how much the point R moves horizontally because of this loading.

Prob. 2.7  

 2.8 Estimate how much the point B of the truss in Example 2.5 moves 

horizontally.

 2.9 Determine the elongation of member BC due to the force of P = 500 kN. BC 

is steel and is 20 cm2 in cross-sectional area.

Prob. 2.5
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Prob. 2.9  

 2.10 In the pin-jointed cantilever truss shown, all the members have a cross-

sectional area A and elastic modulus E. Find:

 (a) the forces in the rods due to the load W, distinguishing between tension 

and compression.

 (b) the vertical defl ection of the loaded joint.

Prob. 2.10  

 2.11 A square reinforced-concrete 

pier 0.3  0.3 m in cross 

section and 1.2 m high is 

loaded as shown in the fi gure. 

The concrete is strengthened 

by the addition of eight 

vertical 25  25 mm square 

steel reinforcing bars placed 

symmetrically about the verti-

cal axis of the pier. Find the 

stress (force/unit area) in the 

steel and concrete and the 

defl ection. For concrete, take 

E = 17 GN/m2.

 2.12 Consider the pin-connected framework loaded as shown in the fi gure. Find 

the axial force in each bar. The two outer bars are identical with cross-

sectional area A0; the inner bar has a cross-sectional area A. All bars have the 

same modulus of elasticity E.

Prob. 2.11
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Prob. 2.12  

 2.13 In Example 2.3 (see Fig. 2.3), for general values of the spring constants 

show that the defl ection at point A when the load is at x = la as given by 

Eq. (d) is also equal to the defl ection at the location x = la when the load 

is at point A.

 2.14 In a particular machine it is 

necessary to have a very stiff 

spring with a “kink” in the load-

defl ection curve. The suggested 

design consists of a 150-mm-

diameter brass cylinder with a 

6.25-mm wall thickness and a 250-

mm-diameter aluminum cylinder 

with 6.25-mm wall thickness, the 

aluminum cylinder being made 

0.08 mm shorter than the brass 

cylinder.

   Sketch accurately the graph of the load-

defl ection relation for this spring.

 2.15 Some miners are trapped 2000 m below the 

surface. They make their way to the bottom 

of an abandoned shaft. At the surface is 

a hoist with 1990 m of 2.5 cm diameter 

standard plow-steel hoisting rope. A 30- 

cm length of this rope weighs 10 N and 

has a spring constant (including the effect 

of untwisting) of about 2 ¥ 106 N/cm. If 

you think the miners can be hoisted to the 

surface, explain quantitatively how this can 

be done.

 2.16 The rigging on the main mast of a sloop consists of two 1 cm-diameter 

stainless-steel wire ropes on either side of the mast. The cables go from the 

top of the mast to a spreader and then down to the deck. The wood mast has a 

cross-sectional area of 150 cm2. A 0.5 m length of the wire rope has a spring 

Prob. 2.14  

Prob. 2.15
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constant (including the effect of untwisting) of 250 kN/cm. In mounting the 

rigging the four wire ropes are brought up snug and then the turnbuckles 

(which have 10 threads per cm) are turned 15 more turns. Estimate the 

compressive force in the mast after the turnbuckles have been tightened.

Prob. 2.16

 2.17 A very stiff horizontal member is supported by two vertical steel rods 

of different cross-sectional area and length. If a vertical load of 120 kN is 

applied to the horizontal beam at point B, estimate the vertical defl ection of 

the point B.

 

Prob. 2.17

 2.18 Two linear springs of different spring constant are connected in series as 

shown. Calculate the overall spring constant of the assembly.
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Prob. 2.18  

 2.19 A stiff beam is hinged at one end and supported by two springs of spring 

constant k. Where should a force P be applied so that the spring constant of 

the system (P divided by the defl ection under P) is 
20

9
k ?

Prob. 2.19  

 2.20 A stiff horizontal bar AB is supported by three springs with different spring 

constants, arranged as shown. Where should a force P be applied so as to 

keep the bar AB horizontal? With P in this position how much does the bar 

move down because of P?

Prob. 2.20

 2.21 An inventor devises a springboard playground toy for children which 

consists of a tough, lightweight plastic board attached to a heavy steel frame 

by three springs. The free lengths of all three springs are 300 mm and the 

spring constants are k1 = k3 = 17 kN/m; k2 = 21 kN/m.
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   In order to test the strength of the connections, the inventor, who weighs 

620 N, climbs onto the board and stands at several places. As she stands at 

the location shown, what forces are transmitted to the frame connections?   

What angle does the board make with the horizontal?

Prob. 2.21

 2.22 A 35-m fl agpole is made of 20-cm-

diameter steel pipe. It is attached 

to its foundation by a ball-and-

socket joint and is supported in 

the upright position by four 1 cm-

diameter high-strength steel wires, 

as shown in the sketch. When there 

is no wind, the tension in the wires 

is negligible. In a hurricane the 

wind blows hard from the south, 

and its effect can be represented 

by a horizontal force of 5 kN at the 

mid-height of the pole.

   Estimate how far the top of 

the pole moves from its original 

position, which was vertically 

above the base.

 2.23 In the structure shown in (a) the member AB is very rigid in comparison to 

BC. It is desired to estimate the vertical defl ection at B when a load of 400 N 

is supported at B. It is known that when the 400-N load is supported entirely 

by BC, as in (b), the defl ection at B is 23 mm.

Prob. 2.22
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Prob. 2.23  

 2.24 A bolt is threaded through a tubular sleeve, and the nut is turned up just tight 

by hand as shown. Using wrenches, the nut is then turned further, the bolt 

being put in tension and the sleeve in compression. If the bolt has 5 threads 

per cm, and the nut is given an extra 

quarter turn (90º ) by the wrenches, 

estimate the tensile force in the bolt 

if both the bolt and sleeve are of 

steel and the cross-sectional areas 

are

   Bolt area = 6 cm2 

   Sleeve area = 4 cm2

 2.25 A rigid beam AC is supported at its left end A by a pin. At its right end C 

it is supported by another rigid bar CF, which is in turn supported by an 

aluminum rod at D and a steel rod at E. Before any loads are applied the rigid 

bars both are level. A known load P is applied at point F and an unknown 

load Q at point B.

   Find Q in terms of P if the rigid bar CF is to be level after the two loads 

are applied.

Prob. 2.25  

Prob. 2.24
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 2.26 A water pipe is made of long-

itudinal wooden staves held to-

gether with circumferential steel 

bars of 2 cm diameter, as shown 

in the sketch. The pressure of the 

water in the pipe is 50 N/cm2. 

Because of the danger of leakage 

between the staves, the diameter 

D of the rod centerline cannot be 

allowed to increase more than 

0.1 cm due to the water pressure.

   Estimate the maximum allow-

able longitudinal spacing s between 

the circumferential rods.

 2.27 A lightweight rope of area A and 

modulus of elasticity E is hung over 

a stationary shaft. A weight W is 

attached to the longer end, and, at 

the same time, the rope is forced 

against the shaft with a horizontal 

force P just suffi cient to prevent 

the weight from dropping. Find the 

value of P if the static coeffi cient 

of friction between the rope and the 

shaft is f.

 2.28 A brake is designed as shown. A 

25 ¥ 1.5 mm steel band restrains 

the wheel from turning when a 225 N-m torque is applied. The friction 

coeffi cient is 0.4. Find the tensions T1 and T2 
that just keep the wheel from 

rotating.

Prob. 2.28  

 2.29 A hawser from a ship is wrapped four times around a rotating capstan as 

shown in the fi gure. The dockworker pulls with a force of 200 N. What is the 

maximum force the man can exert on the boat if the coeffi cient of friction 

between the capstan and hawser is 0.3?

Prob. 2.26

Prob. 2.27
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Prob. 2.29

 2.30 Calculate the frictional resistance to rotation of a dry thrust bearing 

maintaining a load F as shown in the fi gure.

Prob. 2.30  

 2.31 A composite hoop consists of a 

brass hoop of 300-mm internal 

radius and 3-mm thickness, 

and a steel hoop of 303-mm 

internal radius and 6-mm radial

thickness. Both hoops are 6-mm

thick normal to the plane of the 

hoop. If a radial pressure of 1.4 

MN/m2 is put in the brass hoop, 

estimate the tangential forces in 

the brass and steel hoops.

 2.32 What will be the radial expan-

sion of the brass cylinder in 

Prob. 2.31 when the pressure is 

1.4 MN/m2?

 2.33 Show that in Example 2.8 the distribution of radial force per unit length 

along the circumference is

dN

R d

T

R

T

R

ADe f

q

q

= =

 

Prob. 2.31
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 2.34 A group of students, 22 in all, have a tug of war using a manila rope of 

1.5 cm diameter. They start with a rope initially 15 m long and dispose 

themselves as shown in the sketch. A team will win when they pull their end 

of the rope over the edge of the fi eld. When the rope is stretched, they want 

a clearance of 1 m at each end between the end of the rope and the edge of 

the fi eld. They estimate that each man can pull about 500 N. A 0.5 m length 

of the rope has a spring constant of 60 kN/cm, including the effect of the 

untwisting of the rope.

   How long should they make the fi eld?

Prob. 2.34  

 2.35 Illustrated is a schematic diagram of a cable-control system for the rudder 

of a subsonic jet trainer aircraft. The rudder lever arm is connected to the 

pilot’s foot control by 4.5-mm-diameter extra-fl exible stainless-steel cable, 

a 25-mm length of which has a spring constant of 60 MN/m (including 

the effect of untwisting).  The cables have an initial tension of 1.4 kN.

Prob. 2.35

  Cable length from rudder lever arm to the pilot’s foot control is about 

6 m. The pilot can push on his foot control with a force of about 700 N. In 

a static test of the rudder control system a force was exerted on the rudder 

and gradually increased until the pilot could no longer hold his foot control 

stationary. Through what angle had the rudder rotated when the force 

reached the level which just caused the pilot’s foot control to move? Would 
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this angle have been different if there had been no initial tension in the 

cables?

 2.36 A packing case weighing 100 kN is unloaded on a ramp making an angle 

of 30° with the horizontal. The static coeffi cient of friction between box 

and ramp is 0.2. To keep the box from sliding down the ramp a 5 ¥ 5 cm 

piece of wood is placed between the case and the ramp as shown. How 

much does the piece of wood shorten because of its being used for this 

purpose?

Prob. 2.36  

 2.37 A 2 cm-outside-diameter brass tube is to be compressed 0.1 cm by means 

of a steel screw clamp, each screw of which has 10 threads per cm and an 

effective cross-sectional area of 0.5 cm2. It is known that it will take 5 kN to 

compress the brass tube 0.1 cm. The tube is put into the clamp with the jaws 

parallel and just touching the tube. How many turns must be given the screw 

C to compress the tube 0.1 cm?

Prob. 2.37  
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 2.38 When designing electrical equipment which involves high-amperage 

currents, it is necessary to consider the magnetic forces on the conductors. 

For instance, in a synchrotron the copper coils alternately expand and 

contract due to magnetic forces. Consider a case in which the copper coil is 

placed in a steel ring, as shown in the sketch. Estimate the tangential force in 

the copper coil when the magnetic force reaches a value of 70 kN per meter 

of circumference, directed radially outward. (Take the modulus of elasticity 

of copper to be 117 GN/m2).

Prob. 2.38  

 2.39 To obtain a particular nonlinear spring behavior, an instrument designer uses 

a linear material B and a nonlinear material C in the design shown in the 

sketch. A rod of material B is used in tension between the yoke and the upper 

support, and a rod of material C is used in compression between the yoke 

and the bottom support. The assembly is manufactured with great precision 

so that there is no slack in the system when P = 0. If a load of 1.5 kN is 

carried by the yoke, how much does the yoke move? Also, how much of the 

load is carried by the rod of material B?

Prob. 2.39
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 2.40 Consider Example 2.2 in which the spring constants are now kC and kD. 

Verify that Eq. (i) is the solution.

 2.41 For the system of Example 2.5 calculate the vertical displacement of point F 

using the methods of Example 2.4 and using the energy method of Example 

2.11.

 2.42 A statically indeterminate 45º truss is made as shown. 

Construction is such that the members fi t together 

with negligible interference when P is zero. All struts 

are of the same material and same cross section. 

Using energy methods, calculate the load in member 

CD.

 2.43 Find the horizontal and vertical movement at A due 

to a 5000-N vertical load at that point. Members AB 

and AC are steel tubes with an area of 15 cm2 each. 

Member AD is an aluminum rod with an area of 10 

cm2. The members are fastened to a rigid base with bolted connections, and 

are pinned together at A. Explicitly state the assumptions used in developing 

your model.

Prob. 2.43  

 2.44 A very rigid beam ABC is supported at point A by an elastic hinge and at 

point B by two springs connected in series. A force P can be applied to the 

beam at a variable distance x from point A. The beam can be assumed to be 

weightless. Determine:

 (a) The force acting on the beam at support B in terms of the force P, the 

spring constants k1, k2, and k3, and the variable x

 (b) The angular displacement of the beam about the hinge at A(qA) in terms 

of P, k1, k2, k3, and the variable x

Prob. 2.44  

Prob. 2.42
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 2.45 Calculate the energy stored in a uniform bar under a 

constant load F0 with and without the inclusion of the 

weight of the bar. The weight per unit length of the bar is 

assumed to be w. 

 2.46 The optimal design of trusses for minimum weight very 

often is required. In optimal design for minimum weight 

many factors must be considered, among them the stresses 

in bars in tension, forces in bars in compression which 

might cause large sideward defl ections (buckling), and 

the availability of structural members for the design. The 

cantilever truss shown in Fig. (a) supported at A and B is to carry the loads 

shown at joints C and D. It is required to redesign, if possible, the truss for 

minimum weight such that the maximum stress in any tension member does 

not exceed 140 MPa and the maximum force Pc in any compression member 

is less than

Pc ⬉ 
108

2

I

L
(N); I (m4); L (m)

  where I is the cross-sectional moment of inertia of the member and L is the 

length of the member.

Prob. 2.46  

   A complete optimum solution for this truss structure providing the 

optimum properties of the members is not a realistic task because there are 

only two aluminum structural members available for construction. They have 

the properties:

Prob. 2.45
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 1. A = 15 cm2; I = 25 cm4; weight/m = 100 N

 2. A = 20 cm2; I = 40 cm4; weight/m = 130 N

  Two possible redesigns which hold the support and loaded joints fi xed 

are shown in (b) and (c). Find a design of the truss with minimum weight 

consistent with the above constraints.

 2.47 A prestressed concrete reactor vessel for a high-temperature gas-cooled 

nuclear reactor is shown. The vessel is prestressed, with wire “tendons” 

axially, circumferentially (hoop), and across the heads. For this problem, 

consider only the circumferential or hoop loadings. There are 310 steel hoop 

tendons as shown. They are distributed around in the wall sections. Each 

tendon has 170 wires 0.5 cm in diameter.

   Estimate the prestress tensile force which may be applied to each hoop 

tendon prior to pressurization. Estimate how large a pressure can be 

applied before the prestressed concrete goes into tension. Use a “thin-ring” 

approximation. The properties are

  Concrete in compression E = 10 GPa, maximum compressive stress sf = 40 MPa. 

The steel tendon wire E = 210 GPa, maximum allowable stress 1 GPa

Prob. 2.47  

 2.48 When long pipes are incorporated in a hydraulic or fl uid system, one of the 

factors that determines the speed at which the system can respond is the 

speed of propagation of pressure waves in the pipes. This speed is essentially 

the same as the speed of sound and is given by

c
k

= =speed
1

1 2( )r

  where

    r = mass density of the fl uid

    k = compressibility = (DV/V) DP
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  where DV is the change in the volume V due to a pressure DP. Thus materials 

with low k are favored for hydraulic systems where speed is important.

   All this is just background. Now here is the problem:

   One of the factors that places a lower limit on k is the change in volume of 

the pipe itself. Consider a steel pipe of diameter D and wall thickness t.

   If a pressure DP is applied to the fl uid in the pipe, the volume inside 

the pipe will increase by an amount DV due to the expansion of the pipe. 

Calculate k = (DV/V)/DP for the pipe in terms of D, L, t, E, and V. The pipe is 

very long compared to its diameter. State clearly any assumption you make.

   For D = 12.5 mm, t = 1.25 mm, and L = 6 m, what is the lower limit to k?

Prob. 2.48  

 2.49 During normal child delivery the fetal head is pushed through the birth 

canal by the increased pressure in the uterus during contraction. However, 

in certain cases (lower uterine spasm) no descent by the fetal head is 

noticed. If the amniotic-fi uid pressure in the uterus during a contraction is 

approximately 60 mm Hg, fi nd the driving force on the fetal head when there 

is no motion of the head.

Prob. 2.49  

 2.50 In order to increase its pressure capability, a copper tube is tightly wrapped 

with a single layer of square stainless-steel wire. During wrapping, the wire 

tension is maintained at 450 N.

 (a) How much does the tube radius 

decrease during wrapping? (Neglect 

any axial force in the tube.)

 (b) Determine the internal pressure 

which will just cause the stress 

to reach the maximum allowable 

value in either the tube or the wire. 

(Neglect any axial force in the 

tube.) Prob. 2.50
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  Tube: Copper Wire: Stainless steel

  Inner radius 22 mm Square wire, 1.25 ¥ 1.25 mm

  Thickness 2.5 mm E = 205 GN/m2

  E = 140 GN/m2 s max = 1 GN/m2

  s max = 210 MN/m2

 2.51 An inventor has fi led a patent for a weighing device with adjustable 

sersitivity. He claims that by adjusting the pre-tension in the springs A and B 

by screwing up on the nut C the sensitivity (millimeters of pointer movement 

per kN of load) of the device can be altered. What is the sensitivity when 

L = 600 mm? Is the device more or less sensitive when L = 660 mm? How 

much?

Prob. 2.51

 2.52 A steel cable hangs under its own weight. The diameter of the cable is not 

constant but varies in a manner that makes the tensile stress at all points 

along the cable the same. Derive the differential equation that describes the 

variation of cable diameter with position along the cable. Solve the equation 

and fi nd the expression for d1 in terms of d2, L, s0 and g (the weight per unit 

volume of the cable).
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Prob. 2.52

 2.53  The system shown consists of three nonlinear-elastic springs interconnected 

as shown. Show that for this system the statement (2.4) has the form

Pd F dei i

e

i

i
d

d
= ÚÂÚ o

 =1
o

3

  where ei is the elongation and Fi is the force in the ith element. Prove the 

truth of this statement directly by using the requirements of equilibrium and 

geometric compatibility to relate the ei and Fi to d and P.

Prob. 2.53  

 2.54  Show that for the system of Prob. 2.53 the statement (2.6) has the form

ddP e dF
P

i i

Fi

i
o oÚ ÚÂ=

=1

3

  Prove the truth of this statement directly by using the requirements of 

equilibrium and geometric compatibility to relate the ei and Fi to d and 

P. Note that in Probs 2.53 and 2.54 it is unnecessary to know the force-

defl ection laws for the springs.

 2.55  Show for the system of Fig. 2.18 that if the component of Pi which is in-line 

with si is called fi then
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  where U is the total elastic potential energy of the system expressed in 

terms of the displacements of the loading points. This theorem, which is 

complementary to (2.7), is called Castigliano’s fi rst theorem, whereas (2.12) 

is called Castigliano’s second theorem.

ADDITIONAL PROBLEMS

 1. In the development of reinforced composites such as nanotube reinforced 

polymer composites, one of the fundamental issues that engineers are 

concerned with is the interfacial bonding that will determine the load transfer 

capability between the nanotube and the matrix. A test that is often conducted 

to get an idea of this is the fi ber pull out test. In order to model the test 

condition, an idealization 

can be done by assuming 

that the matrix is an elastic 

medium and offers a 

constant elastic resistance 

to pull, i.e. the force 

produced is proportional 

to elongation that the fi ber 

experiences. Also, assume 

that there is uniform stress 

across the cross-section of the fi ber being pulled.

 (a) Write down the equilibrium equation for the fi ber. The fi ber has an 

elongational elastic constant, E and is circular in cross section with a 

radius ‘r’. The matrix can be assumed to have a constant spring constant 

to the elongational displacement of the fi ber at the interface as, k, per 

unit length. i.e. a unit length of matrix offers force, k, to the fi ber for a 

unit elongation.

 (b) Find the length, L, of the fi ber beyond which force of interaction is less 

than 10% of P between the interface of fi ber and matrix.

 2. In an oil fi eld, a uniform cross-section long steel drill pipe got stuck in hard 

clay. It is necessary to determine at what depth this has occurred. Suggest 

a procedure to help fi nd the depth 

at which the pipe is stuck. Make 

suitable assumptions.

 3. In the pin-connected framework 

shown, both the members have an 

identical cross-sectional area, a, and 

elastic modulus, E. All the members 

can be assumed to remain elastic in 

your calculations.  (Assume Ea/L = 1)

 Prob. 2.1

Prob. 2.3(a)
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 (a) For the loading as shown, fi nd the stiffness of the framework (stiffness = 

the force  per unit defl ection along the force).

 (b) The stiffness was found to be 

not enough. Therefore, it was 

decided that a vertical member 

would be added, as shown in 

dotted lines in the fi gure (with 

the same cross-sectional area 

and elastic modulus as other 

members). Find the percentage 

change in stiffness after this 

addition. 

 (c) If while inserting the vertical member, it was found that the length of the 

member was only 0.99L and it had to be elongated elastically to be joined 

with pins C and D. No external force acts when inserting the vertical 

member. For what load F, will the vertical member have no load?

 4. A steel rod and a rubber rod of the length ‘L’ are joined together in series to 

form a rod of length 2L. This assembly in turn is joined together in parallel 

with another rubber rod of length 2L. Elastic modulus of steel is nearly 250 

times that of rubber. The cross-section of all the bars = a. Can you quickly 

estimate the rough stiffness of the total assembly? Assume rubber rod 

elongates linearly with force.

 5. The stiffness of a particular spring varies linearly with its elongation or 

contraction as keff = k0 + K¢ |∆|. Force on the spring is gradually increased 

from 0 to F. What would be the elongation in the spring?

 6. Often, in measurement devices made of composite structures, the mismatch 

of coeffi cient of thermal expansion leads to unwanted defl ections that 

introduce errors in the device. One such example is shown in the fi gure where 

the composite structure is constructed using two rods made of materials with 

coeffi cients of thermal expansion, a1 and a2. In order to avoid errors in the 

device in question, it is desirable to make sure that the connecting point, A, 

of the assembly does not move on temperature change. If E1 and E2 are the 

elastic moduli of the two materials, determine the relation that should be 

satisfi ed between a1, a2, E1 and E2 such that error is minimized. The two 

rods are of same cross-sectional area.

Prob. 2.6

 7. In a bicycle, the hub transfers the load from the body to the wheel through 

the spokes. But, hub is actually suspended hung by the spokes from the top 

of the rim than direct transfer of compressive force on to the bottom of the 

rim that is in contact with the ground. Explain the statement.

Prob. 2.3(c)



Forces and 
Moments 

Transmitted by 
Slender Members

3.1 INTRODUCTION

3

In the previous chapter we con-
sidered the fundamental basis 
for the study of mechanics 
of solids, summarized in the 
three steps of (2.1). While it 
is true that considerations of 
forces, deformations, and force-
deformation relations are all 
that are required in the analysis 
of deformable solids, it is also 
true that there is a depth of 
sophistication in each of these 
considerations which we have 
not yet plumbed. In this and the 
following two chapters we shall 
reexamine the signifi cance of the 
separate steps of (2.1) in order 
to lay a more secure foundation 
for our subsequent study of 
complete problems which again 
require the simultaneous con- 
sideration of all three steps.
 In this chapter we shall be 
concerned only with step 1, the 
study of forces and the equilib- 
rium requirements, as applied 
to slender members. In Chapter 
4 we shall extend this study to 
solids of arbitrary confi guration 
and also investigate the  geometry 

of deformation of solids. In 
Chapter 5 we shall give a more 
extended description of the 
force-deformation relationships 
of solids. We shall then be 
ready to study, in the fi nal four 
chapters, complete problems of 
fundamental engineering impor-
tance.
 If we look critically at any 
engineering structure, be it a 
bridge, an auto mobile, or a 
house, we shall note that a large 
portion of the load-carrying 
members can be classifi ed, as 
 slender members. By a slender 
member we mean any part 
whose length is much greater 
(say at least fi ve times greater) 
than either of its cross-sectional 
dimensions. This classifi cation 
includes such things as beams, 
columns, shafts, rods, stringers, 
struts, and links. Even if a long, 
thin rod is formed into a hoop 
or a coil spring whose diameter 
is large compared with the 
thickness of the rod, it still 
retains its identity as a slender 
member.
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 A slender member can be 
pulled, bent, and twisted. We 
have already considered tensile 
and compressive loadings along 

the axis of a member. We now 
turn to a study of forces and 
moments which tend to twist or 
bend the member.

3.2 GENERAL METHOD

A general method for determining the forces and moments acting across any 

section of a slender member which is in equilibrium is to imagine a  hypothetical 

cut or section across the member at the point of interest. If we then consider either 

part of the member as an isolated free body, the force and moment required at the 

section to keep that part of the member in equilibrium can be obtained by applying 

the conditions for equilibrium. In general, there will be both a force and a moment 

acting across the section.

For convenience, we usually resolve the force and the moment into com ponents 

normal and parallel to the axis of the member (Fig. 3.1). In Fig. 3.1 the x axis has 

been oriented so as to coincide with the longitudinal axis of the member. The y and 

z axes lie in the plane of the cross section; the choice of their particular orientation 

within the cross section usually is governed by the shape of the section or by the 

direction of the transverse loading being carried by the member.

Fig. 3.1  Forces and moments acting on a section of a member

The notation Fxx, . . . , etc., of the components in Fig. 3.1 is used to indicate 

both the orientation of the cross section and the direction of the particular force 

or moment component. The fi rst subscript indicates the direction of the outwardly 

directed normal vector to the face of the cross section. The cross-sectional face 

will be called positive when the outward normal points in a positive coordinate 

direction and negative when its outwardly directed normal vector points in the 

negative coordinate direction; thus, the cross-sectional face in Fig. 3.1 is a positive 

face. The second subscript indicates the coordinate direction of the force or moment 

component. Thus, Fxy is the force acting on the x section in the y direc tion, and Mxz is 

the moment component in the z direction. These different com ponents have different 

effects on the member, and hence they have been given special names, as follows:
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 Fxx  Axial force. This component tends to elongate the member and is often 

given the symbol F or Fx. We discussed such forces in Chapters 1 and 2.

 Fxy, Fxz  Shear force. These components tend to shear one part of the member 

relative to the adjacent part and are often given the symbols V, or Vy and Vz.

  Mxx  Twisting moment. This component is responsible for the twisting of the 

member about its axis and is often given the symbol Mt or Mtx.

 Mxy, Mxz  Bending moments.   These components cause the member to bend and 

are often given the symbols Mb, or Mby and Mbz.

In Chapters 6, 7, and 8 we shall investigate the relation of these force and 

moment components to the stresses and deformations in the member. Our primary 

concern now is with the calculation of the magnitude of these components.

To ensure consistency and reproducibility of analyses it will be convenient to 

defi ne a sign convention for the axial force, shear force, twisting moment, and 

bending moment. We shall defi ne these to be positive when the force or moment 

component acts on a  positive face in a  positive coordinate direction; the force and 

moment components shown in Fig. 3.1 all are positive according to this convention. 

Note that Newton’s third law concerning action and reaction implies that a positive 

component also results when a  negatively directed component acts on a  negative 

face. For example, in Fig. 3.2 let S and S ¢ be sections of a slender member obtained 

by making a hypothetical cut and separating the surfaces. By Newton’s third law 

the axial forces Fx are equal and opposite. On the section S , Fx is a positive axial 

force since a force component in the positive x direction acts on a cross section 

whose outward normal is in the positive x direction. On the section S ¢, Fx is also 

a positive axial force since a force component in the negative x direction acts on a 

cross section whose outward normal is in the negative x direction.

Fig. 3.2  Positive axial force Fx is a tensile force

Figure 3.1 illustrates the general case where 

six components of force and moment act across 

a section. In many instances the problem is 

considerably simpler in that all forces act in one 

plane. If the plane of loading is the xy plane, only 

three components occur: the axial force Fxx (F), 

the shear force Fxy (V), and the bending moment 

Mxz (Mb), Fig. 3.3.

As we mentioned above, the determination of 

stresses and deformations in a slender member 

requires a knowledge of the forces and moments. 

Fig. 3.3  Force and moment 

components in two 

dimensions
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The steps in volved in solving for the forces and moments in a slender member may 

be organized as follows:

1. Idealize the actual problem, i.e., create a model of the system, and isolate the 

main structure, showing all forces acting on the structure.

2. Using the equations of equilibrium (SF = 0 and SM = 0), calculate any 

unknown external or support forces.

3. Cut the member at a section of interest, isolate one of the segments, and 

repeat step 2 on that segment.

Example 3.1
 As an example, let us consider a beam supporting a weight near 

  the center and resting on two other beams, as shown in 

Fig. 3.4(a). It is desired to fi nd the forces and moments acting at section C.

∑ Use equations of equilibrium to fi nd out support forces and reactions.

∑ To fi nd the internal forces, section the model at the point of interest and 

draw the free body diagram for the given section, fi nding the forces and the 

moments using equilibrium conditions.

∑ Equate the unknown forces with the known forces to get the shear force and 

the bending moment.

In this particular problem we have to exercise judgment as to the nature of the 

support forces. If the beam is not completely rigid, it will tend to bend slightly, as 

in Fig. 3.4(b). The reactions between the beam and the supports will then be forces 

passing through the inner corners of the supports as shown. These reactions will 

in general have a normal component per pendicular to the beam and a frictional 

 Fig. 3.4  Example 3.1. Calculation of shear force and bending moment at a section of a beam



Forces and Moments Transmitted by Slender Members 135

component tangent to the beam. We can say very little about the magnitude and 

sense of the friction forces. Like the stepladder of Example 1.7, the sense of the 

friction forces depends on the previous history of the system. We can say that the 

friction forces are limited by the static coeffi cient of friction. When the coeffi cient of 

friction is small, we can be satisfi ed that the friction forces will be small compared 

with the normal forces. On the basis of these considerations we idealize the system 

in Fig. 3.4(c), where we have shown vertical reactions at A and B. There is now no 

ambiguity; we will get defi nite answers for this idealization. These results would 

provide a quantitative framework upon which to base estimates of the indeterminate 

longitudinal forces in the manner of Example 1.7. In Fig. 3.4(c) we have also 

neglected the weight of the beam itself on the basis that it is small in comparison with 

the load W. The following dis cussion applies to the idealized model of Fig. 3.4(c).

In order to calculate the support forces at A and B we apply the re quirements for 

equilibrium to the isolated body AB in Fig. 3.4(c). Since all the forces are parallel to 

the y axis, the requirement SF = 0 is met by

 SFy = RA + RB – W = 0 (a)

and the requirement SM = 0 is met by

 SMA = RBL – Wa = 0 (b)

Although it is not diffi cult to solve (a) and (b) simultaneously for RA and RB, 

we may note that it is often possible to avoid simultaneous equations by using 

alternative forms of the equilibrium requirements.1 For example, here we could use, 

in addition to (b), the requirement

 SMB = W b – RAL = 0 (c)

which gives directly RA = Wb/L, RB = Wa/L. We exclude an unknown force when 

we balance moments about a point on the line of action of that force. If the lines of 

action of two unknown forces intersect, a moment equation written about that point 

will not contain either force. By judicious choice of the equilibrium requirements 

used in any particular problem we can often simplify the subsequent mathematical 

manipulations.

Thus, we have calculated the support forces; we know all the forces external to 

our system. We now desire to know the internal forces at C. To do this, we make 

the forces at C external by cutting the beam at C and isolating either part. For 

completeness in this example we show both parts isolated in Fig. 3.4(d). In general, 

we should have forces in the x, y, and z directions and moments about the three 

axes, as shown in Fig. 3.1. Since our model is two dimensional with no horizontal 

forces, we need only V and Mb. Note that V and Mb are oppositely directed in the 

two free-body diagrams in accordance with Newton’s third law but bear the same 

labels, since in the left-hand free body the face of the cut has an outward normal 

directed in the positive x direction while in the right-hand free body the face of the 

cut has an outward normal directed in the negative x direction. We now apply the 

equilibrium requirements to either part (the left part is easier) and obtain

1 See Prob. 1.7 for alternative conditions of equilibrium.
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V R
Wb

L
A= - = -

 M R x
Wb

L
xb A= =  (d)

for the shear force and bending moment at x.

For some purposes it is adequate to know the internal forces and moments at 

a single section. More often it is necessary to know how these internal forces and 

moments vary along the length of the member. For example, a designer usually needs 

an estimate of the magnitude and location of the maximum force and moment in 

order to design a member of suitable cross section and material. When we consider 

the defl ection of a shaft or a beam in Chapters 6 and 8, we shall need complete 

descriptions of the twisting and bending moments as functions along the length.

A graph which shows shear force plotted against distance along a beam is called 

a  shear-force diagram. A similar graph showing bending moment as a function of 

distance is called a  bending-moment diagram. Axial-force diagrams and twisting-

moment diagrams are also employed in discussing slender members.

Shear-force and bending-moment diagrams can be constructed by extending the 

technique described above for obtaining the shear force and bending moment at a single 

location. It is only necessary to consider the location of the cut as the independent 

variable and plot the shear force and bending moment obtained as functions of 

this variable. To illustrate this we return to the idealized model of Fig. 3.4(c).

Example 3.2
 It is desired to obtain the shear-force and bending-moment 

  diagrams for the idealized beam of Fig. 3.4(c) which is redrawn 

in Fig. 3.5(a).

∑ This is similar to solved Example 3.1, except that the shear force and the 

bending moment need to be found out for sections throughout the length of 

the beam.

∑ Sign convention is important to show the variation of the SF and BM.

∑ Separate into portions of the beam for which one single expression can be 

written.

∑ Draw the shear force and bending moment at the points where the force 

changes, using relevant sign conventions.

In Example 3.1 we obtained the values

 V
Wb

L
= -  

(a)

M
Wb

L
xb =

as the shear force and bending moment at the section C, a distance x from the left 

end. These results are valid for any value of x between x = 0 and x = a. We can 

thus consider Eqs (a) to defi ne the shear-force and bending-moment diagrams in 

the range 0 < x < a. These equations are sketched in the left-hand portions of Fig. 

3.5(b) and (c).
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 Fig. 3.5  Example 3.2. Shear-force and bending-moment diagrams for beam of Fig. 3.4(c)

To complete the diagrams, we consider 

in Fig. 3.6 a free-body diagram of the right 

element of the beam when the cut has been 

made at a distance x where now a < x < L.   The 

equilibrium conditions for this element yield

 V R
Wa

L
B= =  

(b)

 
M R L x

Wa

L
L xb B= - = -( ) ( )

These equations are represented in the 

right-hand portion of the shear-force and 

bending-moment diagrams of Fig. 3.5. The 

sign convention of positive force or moment when a positive component acts on 

a positive face or when a negative component acts on a negative face is shown for 

this system in the small sketches to the right of the diagrams.

3.3  DISTRIBUTED LOADS

In the previous section it was assumed that the load acting on the slender member 

and the support forces were concentrated or “point” forces. Another idealization 

which is commonly employed is the concept of a  continuously distributed loading.

In Fig. 3.7 a beam is subjected to a distributed loading of parallel forces. Such 

forces might arise from fl uid or gas pressures, or from magnetic or gravita tional 

attractions. Let the total force on a length Dx be denoted by DF; then the  intensity of 

loading q is defi ned as the limit

Fig. 3.6  Example 3.2. Free-body 

diagram for computing V 

and Mb when a < x < L
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 q
F

xx
=

D
DD Æ

lim
0

 (3.1)

and has the dimensions of force per unit 

length. The intensity of loading will, in 

general, vary with position. In engineering 

work the most common distribu tions are the 

 uniform distribution where q(x) is constant 

and the  linearly varying distribution where 

q(x) has the form Ax + B.

To avoid error in dealing with distributed 

loading, it is convenient to adopt a sign 

convention for loading. We shall consider 

a loading to be positive when it acts in 

the direction of a positive coordinate axis. 

Positive loading forces Fy and Fz are shown 

in Fig. 3.8.

Example 3.3
 Consider the cantilever 

  beam AB, built in at the 

right end, shown in Fig. 3.9(a). Bricks having 

a total weight W have been piled up in triangular fashion. It is desired to obtain 

shear-force and bending-moment diagrams.

∑ The steps are essentially similar to the previous solved examples (3.1 and 

3.2).

∑ However,  since distributed forces are acting, some of the force resultants 

have to found out by integrate through the length of the free-body portion of 

the beam after considering a differential element to fi nd the integrand.  

∑ Draw the SFD and BMD using appropriate sign conventions.

In Fig. 3.9(b) the loading has been idealized as a continuous linearly varying 

distribution of intensity q = –w = –wox/L. The maximum intensity wo is at present 

unknown, but we shall relate it to the total weight W . The interaction with the wall 

is represented by the reaction RB and the clamping moment MB. Figure 3.9(b) is 

thus a free-body diagram of the entire system.

To obtain the support reactions we apply the conditions for equilibrium to 

Fig. 3.9(b). The reaction RB can be obtained from the requirement of vertical-force 

balance. In Fig. 3.9(c) we show a small element of length Dx on which the total 

load is w Dx. In the limit as DxÆ0 the sum of these forces acting on the beam can 

be represented as an integral over the length of the beam. The statement of vertical 

equilibrium is then

 Â = - =ÚF R w dxy B
o

L
0  (a)

Substituting wox/L for w and integrating gives

 R
w

L
x dx

w L
B

o

o

L
= =Ú o

2
 (b)

Fig. 3.7  Distributed load of intensity q
Fig. 3.8  Sign convention for positive 

loading forces on a member
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Fig. 3.9  Example 3.3. Distributed load handled by integration

We may note parenthetically here that the integral in (a) and (b) also represents 

the total load W, so that we have in addition found the connection between wo and 

W.
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w

W

L
o = 2

 (c)

To obtain MB we use the requirement of moment equilibrium about point B. 

Since RB passes through B, it does not contribute to the moment around B. To obtain 

the moment of the distributed load, we again use integration. The small element in 

Fig. 3.9(c) has a load of w Dx with a lever arm (L – x) about point B. In the limit the 

total (counterclockwise) moment about B is then

 
w L x dx M B

L
( )- +Úo  

(d)

which must vanish for equilibrium. Substituting for w and integrating yields

 
- = -ÚM

w

L
x L x dxB

o
L

( )
0

  = -
Ê
ËÁ

ˆ
¯̃

w

L

L Lo
3 3

2 3

  = =2
6 32

3W

L

L WL
 (e)

The support reactions are thus given by (b) and (e).

To obtain the internal force and moment at an arbitrary section x, we consider 

the free body in Fig. 3.9(d). We can evaluate the shear force V and the pending 

moment Mb by applying the requirements of equilibrium. The contributions from 

the distributed load are again obtained by using integration. The variable x is 

introduced as a dummy variable in the integration to avoid confusion with x which 

is here the length of the segment.

 Â = - =ÚF V w dy

x
x 0

0
 

(f)

    
Â = + - =ÚM M w x dx b

x
( )x x 0

0

Inserting wox/Lfor w and w integrating leads easily to 

 
V w

x

L
o=

2

2  
(g)

 
M w

x

L
b o= -

3

6

which are valid for any value of x between 0 and L. These equations are sketched in 

the shear-force and bending-moment diagrams in Fig. 3.9(e) and (f).

3.4  RESULTANTS OF DISTRIBUTED LOADS

Two systems of forces are said to be  statically equivalent if it takes the same set 

of additional forces to reduce each system to equilibrium. A single force which 

is statically equivalent to a distribution of forces is called the  resultant of the 

distributed force system.
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In solving problems where the loading 

is distributed, it is often more con venient to 

work with the resultant of the distributed load 

on the member rather than to work with the 

actual distribution. This is permissible only 

when we are evaluating external reactions 

on the member; it is not allowable when 

calculating internal forces and moments. This 

restriction can be illustrated by considering 

two similar beams, loaded as in Fig. 3.10. It 

is clear that the loading on beam (b) is the 

resultant of the loading on beam (a) and that 

the external support forces are the same in 

both cases. The internal forces and moments 

and the deformations of the beams are, 

however, quite different.

Consider a one-dimensional loading 

of parallel forces of intensity q(x) in

Fig. 3.11. To determine the magnitude of its 

resultant R and its location x , we write the 

equations of equilibrium twice, once using 

the actual load q(x) and again using the 

resultant R at x . The two sets of equations 

must give identical reaction forces if R is to 

be the resultant of the distributed load.

 
Â = - - =ÚF q dx R Ry A B

L
0

0

and

 SFy = R – RA – RB = 0

 Â = - =ÚM x q d x R LA

L

B
0

0( )

and

 SMA = Rx – RBL = 0

Thus, the conditions on R and on x are

 R q dx
L

= Ú0
 and x

xqdx

R

L

=
Ú0

 (3.2)

These results have a simple interpretation if we consider the curve of loading 

intensity q(x) plotted against x to make up a  loading diagram. The fi rst of (3.2) then 

states that the resultant is equal to the  total area of the loading diagram, while the 

second states that the line of action of the resultant passes through the  centroid of 

the loading diagram.

The reader is reminded that the centroid of an area in the xy plane has the 

coordinates

Fig. 3.10  A given loading (a), when 

replaced by its resultant 

(b), produces the same 

support reactions but not 

the same internal forces 

and moments nor the 

same defl ections

Fig. 3.11  The resultant R of distri-

buted loading q(x)
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 x
xdA

dA
= Ú

Ú
 y

y dA

dA
= Ú

Ú
 (3.3)

where the integrals extend over the area in question, and that the centroid of a 

volume has the coordinates

 x
x dV

dV
= Ú

Ú   y
y dV

dV
= Ú

Ú   z
z dV

dV
= Ú

Ú  (3.4)

where the integrals extend over the volume in question.

The above treatment for a loading which varies in one direction can be extended 

to two and three dimensions. If a distributed load of parallel forces acts on a given 

area A in the xy plane with an intensity p (force per unit area), the resultant R is a 

single force parallel to the given distribution with magnitude

 
R p dA= Ú  

(3.5)

The line of action of the resultant pierces the xy plane in the point with 

coordinates

 
x

xpdA

R
y

ypdA

R
= =Ú Ú  

(3.6)

In each case the integral is taken over the given area A.

Similarly, if a distributed load of parallel forces acts throughout a given volume 

V with an intensity g (force per unit volume), the resultant R is a single force parallel 

to the given distribution with magnitude

 
R dV= Ú g

 (3.7)

The line of action of the resultant passes through the point with coordinates

 x
x dV

R
y

y dV

R
z

z dV

R
= = =Ú Ú Úg g g

 (3.8)

Here each integral extends over the given volume V. The most important 

application of this last case occurs when the distributed loading is due to  gravity 

acting on the material within V. In this case the resultant (3.7) is called the  weight, 

and the point determined by (3.8) is called the  center of gravity. If the weight 

density g is constant throughout the volume, then the center of gravity (3.8) 

coincides with the centroid of volume (3.4).

To show the application of resultants to the analysis of beams with distributed 

loading, we reconsider the system of Example 3.3.

Example 3.4
 Figure 3.12(a), which is the same as Fig. 3.9(b), shows the free-

  body diagram of the cantilever beam AB with a linearly varying 

distrib uted load.

∑ The resultant of a linearly varying distributed load acts at two-thirds the 

distance from the zero intensity.  The total resultant load is equal to the area 

under the linear distribution curve (here it is a triangular distribution).
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In Fig. 3.12(b) the distributed load has been replaced by a single resultant R at the 

location x. Since the loading diagram is a triangle, its area is half the product of base 

times altitude, and its centroid is two-thirds the distance from vertex to midpoint of 

opposite side. Thus, without further calculation, we have

R
w Lo=

2

 x
L

=
2

3
 

(a)

The external supports RB and MB are now easily obtained by applying the 

conditions of equilibrium to Fig. 3.12(b).

Fig. 3.12  Example 3.4.  A distributed loading is replaced by its resultant

 SFy = RB – R = 0 or R
w Lo=

2
 (b)

 SMB = R(L – x) + MB = 0 or M
w L

B
o= -

2

6
  (c)

These values are identical with those obtained in Example 3.3.

It is not permissible to use the above resultant R to calculate shear force and 

bending moments within the beams. We can, however, section the beam at an 

arbitrary point x, as in Fig. 3.13(a), and then the shear force and bending moment 

at the section become external forces for the isolated beam element of Fig. 3.13(b). 

We may replace the distributed force acting on the portion of the beam, shown in 

Fig. 3.13(b), by its resultant R¢. Now, using the same technique as in the fi rst part of 

this example, we obtain from the equilibrium conditions applied to Fig. 3.13(c)

V R
w x

L

x w x

L

o o= ¢ =
2 2

2

 M R
x w x

L
b

o= - ¢ = -
3 6

3

 

(d)

These values are equivalent to those obtained in Example 3.3, which were used 

in sketching the shear-force and bending-moment diagrams of Fig. 3.9.
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 Fig. 3.13  Example 3.4. Distributed loading on a segment of a beam is replaced by its resultant

3.5  DIFFERENTIAL EQUILIBRIUM RELATIONSHIPS

We now turn to an alternative procedure for obtaining internal forces and moments 

along a slender element. Instead of cutting a beam in two and applying the 

equilibrium conditions to one of the segments, we consider a very small element 

of the beam as a free body. The conditions of equilibrium combined with a limiting 

process will lead us to  differential equations connecting the load, the shear force, and 

the bending moment. Integration of these relationships for particular cases furnishes 

us with an alternative method for evaluating shear forces and bending moments.

Figure 3.14 shows a beam element of length Dx. The external actions on this 

element are the distributed load of intensity q acting over the length Dx and the 

shear forces and bending moments on the two faces as shown in Fig. 3.14(b). In 

Fig. 3.14(c) we have replaced the distributed loading by its resultant R. Strictly, we 

should compute R and its location according to (3.2). It is, however, clear that if 

the variation of q(x) is smooth and if Dx is very small then R is very nearly given 

by q(x) Dx, and the line of action of R will very nearly pass through the midpoint 

O of the element. In the interests of simplicity and clarity (and at the expense of 

mathematical rigor) we shall assume in writing the equilibrium conditions that Dx 

is already so small that we can safely take R to have the magnitude q Dx and to pass 

through O. The conditions of equilibrium applied to Fig. 3.14(c) are then

 SFy = V + DV + q Dx – V = 0 
(3.9)

Â = + D + + D
D

+
D

- =M M M V V
x

V
x

Mo b b b( )
2 2

0

Before completing the limiting process, we rearrange (3.9) as follows:
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D
D

+ =
V

x
q x( ) 0

 
D
D

+ = -
DM

x
V

Vb

2
 

(3.10)

Fig. 3.14  Free-body diagram of small ele ment isolated from a beam under distributed loading

Now as Dx approaches zero, so also do DV and DMb. The ratios in (3.10) tend to 

differential quotients or derivatives. Thus the limiting forms of (3.10) when Dx goes 

to zero are

 
dV

dx
q+ = 0 (3.11)

 
dM

dx
Vb + = 0  (3.12)

These are the basic differential equations relating the load intensity q(x) with 

the shear force V(x) and bending moment Mb(x) in a beam. Equations (3.11) and 

(3.12) can be integrated from a section at x = x1, where the shear force and bending 

moment take the values V(x1) and Mb(x1), to a section x = x2, where the corre-

sponding values are V(x2) and Mb(x2),

 V x V x q dx
x

x
( ) ( )2 1 0

1

2- + =Ú  (3.13)

 M x M x V dxb b
x

x
( ) ( )2 1 0

2- + =Ú
1

 (3.14)

To illustrate the application of these equations, we consider the following example.
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Example 3.5
 In Fig. 3.15(a) a beam carrying a uniformly distributed load 

  of intensity q = –wo is supported by a pinned joint at A and a 

roller support at B. We shall obtain shear-force and bending-moment diagrams by 

integra tion of the differential relationships (3.11) and (3.12).

∑ Integrate the differential relations between load, shear and bending moment 

to obtain the shear force and bending moment expressions applying the given 

boundary conditions.

The free-body diagram of the whole beam in Fig. 3.15(b) shows the reaction 

RB directed vertically because of the roller joint. Then, since the loading is also 

vertical, the remaining reaction RA at the pin can only be vertical if the beam is to 

be in equilibrium. In Fig. 3.15(c) we have sketched the loading diagram q = –wo. 

We now write (3.11) for this case and integrate

dV

dx
wo- = 0

 V – wox = C1 (a)

Fig. 3.15  Example 3.5

We could evaluate the constant of integration C1 if we knew the shear force at 

any particular value of x. We do know that at the end x = 0, V = –RA, and at the end 

x = L, V = RB, but, since we have not yet evaluated these reactions, let us retain C1 
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as an unknown constant. We next write (3.12) for this case, using for V its value as 

given by (a).

 
dM

dx
w x Cb

o+ + =1 0  (b)

Integrating (b) introduces another constant of integration C2.

 Mb + ½wox
2 + C1x = C2 (c)

We have two boundary conditions available to fi x C1 and C2. There is no moment 

restraint at either end of the beam, hence

 Mb = 0   at x = 0 
(d)

Mb = 0   at x = L

Inserting these boundary conditions in (c) yields C1 = –½woL and C2 = 0.

The shear force and bending moment are then given by (a) and (c) as

 V w x
L

o= -Ê
ËÁ

ˆ
¯̃2

 

(e)
Mb = ½wox(L – x)

These relations are sketched in the shear-force and bending-moment diagrams in 

Fig. 3.15(d) and (e). Notice that in this procedure we did not need to calcu late the 

reactions. Now that we have the solution (e), we can obtain the reactions because, 

except for sign, the reactions are just the values of V at x = 0 and x = L. It follows 

from Fig. 3.15(d) that

 R R
w L

A B
o=
2

 (f)

In this particular problem the result (f) is almost self-evident from sym metry, 

and we might have used this to evaluate C1 in (a).

The results of this particular problem are of considerable practical importance 

because the uniformly distributed load is so common. For example, if the only 

load on a beam is its own weight, we have a uniformly distributed load whenever 

the beam is of uniform cross section. In designing roof beams and fl oor joists in 

buildings, it is customary to design on a basis of uniformly distributed loading.

There are many alternative ways of using the differential relationships (3.11) 

and (3.12) to assist in obtaining shear-force and bending-moment diagrams. Notice 

in Fig. 3.15 that the slope of the bending-moment curve is the negative ordinate 

of the shear-force curve. In particular, the bending moment is maximum when the 

shear force is zero. The slope of the shear-force curve is the negative ordinate of 

the loading diagram. It is often possible to use these relations in a qualitative way 

to predict the general shape of the diagrams and then to calculate a few key points 

(such as ends) in order to tie down the curves in a quantitative manner.

Example 3.6
 Consider the beam shown in Fig. 3.16(a) with simple 

  transverse supports at A and B and loaded with a uniformly 

distributed load q = –wo over a portion of the length. It is desired to obtain the 

shear-force and bending-moment diagrams. In contrast with the previous example, 
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it is not possible2 to write a single differential equation for V and M which will 

be valid over the complete length of the beam. Instead let subscripts 1 and 2 

indicate values of variables in the loaded and unloaded segments of the beam.

∑ This problem is similar to the previous problem, but the load is acting on 

only a part of the beam and not its entire length. So in order to compute the 

shear force and bending moment diagram, we must consider the two parts of 

the beam in which the load acts and the part of the beam in which no load 

acts and must integrate accordingly using valid boundary conditions.

Fig. 3.16  Example 3.6

Using (3.11) in each segment and integrating gives

dV

dx
wo

1 0- =   
dV

dx

2 0=

 V1 – wox = C1  V2 = C2 (a)

Next we write (3.12) in each segment, using the V’s from (a)

 
dM

dx
w x Cb

o
1

1 0+ + =  
dM

dx
Cb2

2 0+ =  (b)

and integrating again gives

 M w x C x Cb o1
2

1 3

1

2
+ + =  Mb2 + C2x = C4 (c)

We have, as in the previous example, the boundary conditions at each end

 Mb1 = 0 at x = 0 Mb2 = 0 at x = L (d)

2 At least not without inventing a special notation, as will be done in the next section.
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However, we need two additional conditions in order to determine the remaining 

two arbitrary constants. These follow from equilibrium require ments at the junction 

of the two segments

V1 = V2 at x = a

 Mb1= Mb2 at x = a 
(e)

Inserting these boundary conditions into (a) and (c) leads to

 C3 = 0 C LC w ao4 2
21

2
= =

 C1 = C2 – woa C
w a

L

o
2

21

2
=  (f)

    C w a
a

L
w a

L b

L
o o1

1

2
2

1

2
= -Ê

ËÁ
ˆ
¯̃

= -
+( )

The shear-force and bending-moment diagrams can be constructed from

 V w x
w a

L
L bo

o
1

2
= - +( )  0   x   a

 V
w a

L

o
2

1
2

2

=  a   x   L 
(g)

and

 Mb
w a

L
L b x w xo

o1
1
2

2

2
= + + -( )  0   x   a

 Mb w a
w a x

L
o

o
2

1
2

2 1
2

2

= -  a   x   L 
(h)

as shown in Fig. 3.16(b) and (c).

Clearly, if the loading requires separate representations for a number of segments 

each with its own differential equation form, it becomes very awkward to carry 

along the additional arbitrary constants which are later eliminated by matching 

the V’s and M’s at the junctions of the segments. In the next section a notation is 

introduced which greatly facilitates the handling of multisegment problems.

3.6  SINGULARITY FUNCTIONS

In the foregoing section, we demonstrated how the relatively routine procedure of 

integration could be used to obtain shear-force and bending-moment diagrams for 

beams with distributed loads. Where there are concentrated-force and concen trated-

moment loadings or where the distributed load suddenly changes its magni tude, we 

have seen that the procedure just outlined becomes fairly cumbersome unless a special 

mathematical apparatus is available to handle discontinuous load ings. In this section 

we introduce a family of singularity functions specifi cally designed for this purpose.

Figure 3.17 shows fi ve members of the family.3

3 This use of a family of singularity functions is common in engineering and physics. Our 

notation is patterned after that used by  W. H. Macauley, Note on the Defl ection of Beams, 

Mes. Math., vol. 48, pp. 129–130, 1919. A review of the use of such functions for beam 

problems is found in  W. D. Pilkey, Clebsch’s Method for Beam Defl ections, J. Eng. Educ., 

vol. 54, pp. 170–174, 1964.
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 f x x an

n
( ) = -  (3.15)

When n   0 the notation (3.15) has the following signifi cance: If the expres sion 

in the pointed brackets is negative (i.e., if x < a), the value of fn(x) is zero; if the 

expression in the pointed brackets is positive (i.e., if x > a), then the value of fn(x) 

is just (x – a)n. Thus the pointed brackets are like ordinary brackets except for the 

one idiosyncrasy that they are blind to negative quantities. The function < x – a >0 

is called the  unit step starting at x = a, and the function x a- 1 is called the  unit 

ramp starting at x = a. The integration law for these functions is x a dx
x a

n

n
n

x
- =

-
+

+

- •Ú
1

1
 n   0 (3.16)

The fi rst two members of the family 

shown in Fig. 3.17 are exceptional. To 

emphasize this, the exponent is written 

below the bracket instead of above. These 

functions are zero everywhere except at 

x = a where they are infi nite. They are, 

however, infi nite4 in such a way that

 
x a dx x a

x
- = -- --•Ú 2 1  

 x a dx x a
x

- = ---•Ú 1

0  

(3.17)

The function x a- -1  is called the 

 unit concentrated load or the  unit impulse 

function. In physics texts it is known as 

the  Dirac delta function. The function 

x a- -2
 is called the  unit concentrated 

moment or the  unit doublet function.

The integration laws (3.16) and (3.17) 

permit us to obtain shear forces and bending 

moments by integration from any loading 

distribution which we are able to represent 

in terms of the family (3.15). Figure 3.18 

illustrates some examples of load-intensity 

distributions and how they are represented 

by singularity functions. Most practical cases of beam loading can be built up by 

superposition of the cases shown in Fig. 3.18. The following examples illustrate the 

process.

Example 3.7
 We consider the problem studied in Example 3.6 again, but we

   shall utilize the singularity functions.

∑ This presents an easy to use tool in solving the problems of distributed 

loading in beams under a multitude of conditions, which encompasses all the 

aforementioned methods of solving for SF and BMDs.

Fig. 3.17  Family of singularity functions

4 For a more rigorous treatment see Probs. 3.44, 3.45, and 3.46 at the end of this chapter.
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Fig. 3.18  Examples of loading intensities represented by singularity functions

In Fig. 3.19(b) the load intensity q is given in a form which permits easy 

translation into the singularity functions. The load q = –wo, which stops at x = a in

Fig. 3.19(a), is shown continuing on to B, but at x = a the supple mentary load q = 

wo is started. This cancels the other load, leaving no net distributed load after x = a. 

Now, with the aid of Fig. 3.18, we write the load-intensity function

 q x w w x ao o( ) = - + - 0
 (a)

which is valid for 0 < x < L. Substituting (a) into (3.11) and integrating we fi nd

 V x w x w x a Co o( ) = - - +1

1
 (b)

In particular, V(0) = C1, but this is just –RA, which is easily found from a 

moment-balance equation about point B to give

 - = - +Ê
ËÁ

ˆ
¯̃

R
w a

L
b

a
A

o

2
 (c)

Integrating (b) in accordance with (3.12) with C1 known gives

 M
w x w

x a
w a

L
b

a
x Cb

o o o= - + - + +Ê
ËÁ

ˆ
¯̃

+
2

2

2
2 2 2

 (d)

where C2 = 0 since Mb(0) = 0.

The shear-force and bending-moment diagrams are easily constructed using (b) 

and (d) with C1 and C2 known. To help the reader interpret (b), each term has been 

sketched separately in Fig. 3.19(c) before showing the resultant shear-force diagram 

in Fig. 3.19(d). In similar fashion each term of (d) has been sketched separately in 

Fig. 3.19(e) before showing the resultant bending-moment diagram in Fig. 3.19(f).
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Fig. 3.19  Example 3.7

An important practical result in a problem like this is the magnitude and location 

of the maximum bending moment. The location is given by the point where the 

shear force passes through zero in Fig. 3.19(d), and the magni tude is obtained by 

evaluating (d) at this location.

There are many alternative techniques for solving problems like this one. The 

method we have shown involved the separate evaluation of a support reaction 

which was used in evaluating an arbitrary constant of integration. An alternate 

procedure involves the introduction of the support reactions into the loading term 

as unknowns and their determination from the two boundary conditions on the 

moments at the ends of the beam.

Let us work through this example again, this time including the reactive forces in 

the loading term q(x). With the aid of Fig. 3.18, we write the load-intensity function
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 q x R x w x w x a R x LA o o B( ) = - + - + -- -1

0 0

1
 (e)

This representation is valid for all x, since it gives q = 0 when x is outside of the 

segment between A and B. Now, according to (3.13) and the integra tion laws (3.16) 

and (3.17), we have, since V = 0 at x = –•,

 - = = - + - + -
-•ÚV x q dx R x w x w x a R x L
x

A o o B( )
0 1 1 0  (f)

A second integration using (3.14), and the fact that Mb = 0 at x = –•, yields

 M x V dx R x
w

x
w

x a R x Lb

x

A
o o

B( ) = = - + - + -
-•Ú 1 2 2 1

2 2
 (g)

If RA and RB were known, (f) and (g) would furnish the complete solution for the 

shear force and bending moment. It is not diffi cult to obtain the reactions from a 

separate calculation, and in some cases this may prove to be the simplest procedure. 

We can, however, use our results to determine the reactions by making use of our 

observation that there should be no internal forces and moments outside of the segment 

AB. If we make x just slightly larger than x = L, the shear force (f) should vanish, that is,

RA – woL + wo(L – a) + RB = 0

 RA + RB = woa (h)

and the bending moment (g) should also vanish, that is,

R L
w

L
w

L aA
o o- + - =

2 2
02 2( )

 R
w L b

L
A

o=
-

2

2 2

 (i)

Equations (h) and (i) furnish two relations for determining the two reactions RA 

and RB. Note that these relations are, in fact, the conditions for equi librium of the 

entire beam. Vertical-force balance is indicated by (h), and balance of moments 

about point B is indicated by (i). What this means is simply that the satisfaction 

of the equilibrium requirements for every differ ential element of the beam implies 

satisfaction of the equilibrium require ments of the entire beam.

Example 3.8
 In Fig. 3.20(a) the frame BAC is built-in at B and subjected to a 

  load P at C. It is desired to obtain shear-force and bending-

moment diagrams for the segment AB.

∑ Use free body analysis; cut the frame at AB where the shear force and 

bending moment diagram has to be evaluated.

∑ Proceed with differential analysis as in previous examples.

In Fig. 3.20(b) a free-body analysis of the segment AC has been made. In order 

to maintain equilibrium, there must be a force P and a moment PL/2 transmitted 

across the cut at A. Figure 3.20(c) is a free-body diagram of the segment AB. At A 

the force and moment shown were obtained from Newton’s third law and the results 

of Fig. 3.20(b). At B we have shown the force reaction RB and the moment reaction 

MB from the built-in support.

Now the force and moment at A are actually transmitted across the dimension b, 

and the force and moment at B are actually transmitted along some small distance 

into the wall. We shall, however, idealize these and take them to be concentrated 
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forces and moments at the points A and B. Since there is no loading between A and 

B, q(x) = 0 and from (3.11) 

 V(x) = C1 (a)

where C1 = – P because of the assumed concentrated force at A. Integrating again 

using (3.12) we fi nd

 Mb(x) = Px + C2 (b)

and setting Mb(0) = –PL/2 gives C2 = –PL/2. With C1 and C2 known, we can sketch 

the shear-force and bending-moment diagrams as shown in Fig. 3.20(d) and (e).

Fig. 3.20  Example 3.8

The preceding examples have shown the advantage of the singularity-function 

method. However, the reader may be left with the question of when to include 

the reactive forces into the loading-intensity function, or, if the reactive forces 

are to be included in q(x), should they be evaluated fi rst from overall equi librium 
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requirements or should they be evaluated as in the second part of the solution to 

Example 3.7 after integration of (3.11) and (3.12). There are no defi nite answers 

to these questions; all that can be said is that the best way to proceed depends 

upon the problem. However, in general, the algebraic work is simplifi ed if all the 

reactions are determined fi rst from overall equilibrium (assum ing that this can be 

done). Inclusion of these now-known reactive forces into the loading function will 

still require a decision. It is to be emphasized again, however, that whatever route is 

followed, all constants of integration must be evaluated carefully from the support 

conditions. Let us consider another example in which it is necessary to include the 

reactive forces into the loading term.

Example 3.9
 The loading on a beam is assumed to have the shape shown in 

  Fig. 3.21(a). It is required to fi nd the location of the supports A 

and B such that the bending moment at the midpoint is zero.

∑ Draw the free-body diagram, as in all problems, and fi nd the reactions

∑ Write the load intensity function, q(x)

∑ Integrate to fi nd the shear force and bending moment diagram as in previous 

examples.

∑ Equate Mb to zero, to fi nd the value of ‘a’.

As our fi rst step the reactive forces at A and B will be found. From symmetry

 R R RA B= =
1

2
 (a)

where R is the resultant of the load-distribution curve [Fig. 3.21(b)]

 R w x dx w
x

L
dx

w L
o

o

L
o

L
= = =ÚÚ ( ) sin

p

p

2

0
 (b)

Fig. 3.21  Example 3.9
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The load-intensity function can now be written in the form

 q x w
x

L

w L
x a

w L
x L ao

o o( ) sin ( )= - + - - -- -
p

p p1 1  (c)

Upon integration of (c) using (3.11), we fi nd

 V
w L x

L

w L
x a

w L
x L a Co o o= - - - - - - +

p

p

p p
cos ( )

0 0

1
 (d)

where C1 is the constant of integration.   But V = 0 at x = 0, so that

 C
w Lo

1 =
p

 (e)

Upon integration of (d) using (e) and (3.12), we fi nd M
w L

x
L x

L

w L
x a

w L
x L a Cb

o o o= - -Ê
ËÁ

ˆ
¯̃

+ - + - - +
p p

p

p p
sin ( )

1 1

2
 (f)

The constant C2 = 0 since Mb at x = 0 is zero. Therefore Mb will vanish at x = L/2 if

 a
L

=
p

 (g)

3.7  FLUID FORCES

In many applications structural components are subjected to forces due to fl uids in 

contact with the structure.

Fluids at rest, for example, water in a water-fi lled balloon, offer no appreciable 

resistance to changes of shape if the forces causing the change of shape are applied 

slowly enough. This suggests that in a fl uid at rest there are no frictional forces 

between the particles of fl uid. As a consequence of this observation we can say that 

the force per unit area or  hydrostatic pressure p at a point in a fl uid at rest is normal 

to any surface passing through that point. That is, we can say that in a liquid at rest 

the pressure at a point is the same in all directions. Further, the pressure on a surface 

acts in the opposite direction to the outward-pointing normal to the surface (see Fig. 

3.22(a)). We are familiar with these results from our knowledge of pressure in a 

gas.

A simple equilibrium consideration for a fl uid under the action of gravity will 

show that the pressure is a linear function of distance from the free surface. In Fig. 

3.22(b) a small cylindrical element of fl uid is shown in equilibrium under fl uid 

pressures and the weight of the fl uid element g DA Dz, where g is the weight density 

of the fl uid, DA is the cross-sectional area of the cylindrical element, and Dz is the 

vertical thickness of the element.

Force equilibrium in the horizontal plane is satisfi ed identically from sym metry, 

and equilibrium in the z direction requires

p DA + g DA Dz – (p + Dp) DA = 0

or in the limit

dp

dz
= g
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Fig. 3.22  (a) Fluid pressure acts normal to the surface; (b) element of fl uid in a gravity fi eld

If the reference pressure at z = 0 is taken as po, for example, atmospheric 

pressure at the surface z = 0, then

p = g z + po

We will now consider an example employing the results that fl uid pressure acts 

normal to a surface and is a linear function of depth.

Example 3.10
 Figure 3.23 shows a 1.5-m-square gate which is retaining the water

  at half the length of the gate as shown. If it is assumed that the 

total pressure load on the gate is transmitted to the supports at A, B, D, and E by 

means of symmetrically located simply supported beams AB and DE, fi nd the 

maximum bending moment in the beams. The bottom edge DA of the gate is 0.6 m 

below the water line, and g = 9.8 kN/m3.

∑ Compute the total load/load as a function of height acting on the gate.

∑ After computing the load function, compute the shear force and bending 

moment using the method of singularity functions.

∑ Find the support reactions if required.

The fl uid pressure acts normal to the gate, is uniform on lines parallel to DA, and 

varies linearly from zero pressure (above atmospheric) at the middle of the gate to a 

maximum pressure pA along the bottom edge where

 pA = g zA = (9.8)(0.6) = 5.88 kN/m2 (a)

Fig. 3.23  Example 3.10
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To obtain the loading on the beams we assume that the pressure loading on the 

shaded strip in Fig. 3.23(b) is carried equally by the two beams. If the pressure at 

this location is p(x), the load per unit length w(x) carried by one of the beams is

 w(x) = (1.5/2)p(x) (b)

This implies that w(x) varies along the length of a beam in the same fashion as 

p(x), as indicated in Fig. 3.23(c) for the beam AB. This loading can be represented 

by the expression

 q x w xo( ) .= - Ê
ËÁ

ˆ
¯̃

-
4

3
0 75

1 (c)

where wo is obtained by evaluating (b) at the bottom of the gate 

 wo = 0.75pA = 4.41 kN/m (d)

The resultant R of this loading is 
1
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ˆ
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Ê
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ˆ
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= Ê
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ˆ
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w wo o, and its line of action 
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ˆ
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ˆ
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ˆ
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 m 

from A.

Integrating (c) using (3.11) gives 

 - = - - +V x w x Co( ) .
2

3
0 75

2

1
 (e)

Now

 V(0)= –RB = –C1 (f)

and RB is computed by taking moments about A and using the resultant, R, to get

 

1 5
1
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1

16

. R R

R w

B

B o

= Ê
ËÁ

ˆ
¯̃

= Ê
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ˆ
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Integrating (e) using (3.12) leads to

 M x w x w x Cb o( ) .= - - + +
2

9
0 75

1

16

3

2  (h)

and C2 = 0 in order that the moment vanish at x = 0. Now the maximum bending 

moment is located in this case between A and C at the point where V = 0. Solving 

(e) for x0 such that V(xo) = 0 gives xo = 1.056 m. Substi tution into (h) gives for the 

maximum bending moment

 Mb(xo) = 319 N . m (i)

3.8  THREE-DIMENSIONAL PROBLEMS

The foregoing treatment of straight slender members subjected to forces lying in a 

single plane passing through the member may be extended to handle arbitrary three-

dimensional loadings of slender members. In the general case, as shown in Fig. 3.1, 

there will be a vector force and vector moment acting at any section of the member. 

The force and moment can be obtained by applying the equilibrium requirements to 
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either segment of the cut member or by applying the equilibrium requirements to a 

differential element and integrating. The three-dimensional aspects of the problem 

can be handled by using vector notation or by reducing the problem to three two-

dimensional problems by resolving all forces and moments into three components. 

This will be illustrated in the following examples.

Example 3.11
 As an example of a curved slender member we show 

  [Fig. 3.24(a)] a piece of refi nery piping AB anchored at B and 

bent into a quadrant of a circle of center O and radius a. It is desired to obtain force 

and moment diagrams for this segment of pipe when a transverse load P is acting as 

shown.

∑ Cut the member at any section perpendicular to its plane.

∑ Compute force and moments, use vector notation for simplifi cation.

∑ Using equilibrium relations as in previous problems, set the force and 

moment equations to zero to obtain shear force, bending and twisting 

moment equations.

The same basic procedure is used as before. A cut is made at C, and the segment 

AC is isolated as a free body in Fig. 3.24(b). To help describe the forces and 

moments, we have introduced the rectangular coordinate system (x, r, s) at the face 

of the cut. Here s = aq is arc length along the pipe, and r is radial distance from 

O. The force P at the free end A can be held in equilibrium by the force Vx and the 

torques Mss and Msr acting on the section C providing

 SF = Pi + Vxi = 0 (a)

 SMC = Mssus + Msrur + rCA ¥ (Pi) = 0 (b)

where i, ur, and us are unit vectors in the x, r, and s directions and rCA is the vector 

distance from C to A. In order to express rCA in terms of the unit vectors, we may 

note from Fig. 3.24(a) that

 rCA = rOA – rOC = aj – aur (c)

where j is the unit vector in the y direction, and that, from Fig. 3.24(c),

 j = ur cos q – us sin q (d)

Fig. 3.24  Example 3.11
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Therefore

 rCA = – a(l – cos q) ur – a sinqus (e)

Equation (e) may also be obtained directly from Fig. 3.24(b). Upon sub stitution 

of (e) into (b) and evaluation of the cross products, we fi nd

 SMC = Mssus + Msrur + P[a(l – cos q)us – a sin qur] = 0 (f)

Setting the coeffi cient of each unit vector separately equal to zero in (a) and (f) 

yields

   Vx= –P

   Msr = Pa sin q (g)

   Mss = –Pa(l – cos q)

These are the shear force, bending moment, and twisting moment acting at the 

general angle q. Figure 3.25 shows their variation with arc length s = aq along with 

sketches of the sign conventions employed.

Fig. 3.25  Shear-force, bending-moment, and twisting-moment diagrams for Example 3.11

Example 3.12
 Consider the offset bell-crank mechanism in Fig. 3.26(a). 

  A shaft supported in journal bearings at A and D is loaded as shown 

and has offset links attached at B and C. The problem is to obtain diagrams showing 

the variation of shear force, bending moment, and twisting moment in the shaft AD.

∑ Assume two planes of action in which the shear force and bending, twisting 

moments act.

∑ As in previous examples, use equilibrium reactions and draw the resultant 

shear force and bending moment diagram for the crank mechanism.

We fi rst idealize the problem in Fig. 3.26(b) by assuming that the bearings exert 

forces perpendicular to the shaft but do not exert any moments. The magnitude 

of the reactions at A and D can be determined by applying the equilibrium 

requirements to the set of forces shown in Fig. 3.26(b). If these forces are in 
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equilibrium, their resultant moment about any point is zero. It is most convenient 

to take moments about points A and D because we thereby exclude two unknown 

forces from each equation and thus obviate the need for solving simultaneous 

equations. Using i, j, and k to represent unit vectors in the x, y, and z directions, we 

have

SMA = (15i + 15k) ¥ (–Pj) + (35i + 25j) ¥ (–1 ) + (50i) ¥ (Dy j + Dzk) = 0

 SMD = (–15i + 25j) ¥ (–1k) + (–35i + 15k) ¥ (–Pj) + (50i) ¥ (Ax j + Azk) = 0

Working out the vector products we obtain

 SMA = 15Pk + 15Pi + 35j – 25i + 50Dxk – 50Dz j = 0 (a)

 SMD = –15j – 25i + 35Pk + 15Pi + 50 Ayk + (–50Azj) = 0

Fig. 3.26  Example 3.12. (a) A three-dimensional crank mechanism; (b) an idealized model of  

 the mechanism

Collecting terms in these relations leads to

 SMA = (15P – 25)i + (35 – 50Dz)j + (15P + 50Dy)k = 0 (b)

 SMD = (–25 + 15P)i + (–15 + 50Az) j + (35P – 50Ay)k = 0

and since all three components of a vector must vanish if the vector is to vanish, we 

fi nd
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 P = 1.666 kN 

 Ay = 1.666 kN

 Az = 0.3 kN (c)

 Dy = –0.5 kN

 Dz = 0.7 kN

Having obtained the reactions, we can now determine the forces and moments 

at any section of the shaft. For example, in Fig. 3.27 we have sketched a free body 

of one segment of the shaft after a cut has been made at some point O which lies 

between B and C. At the cut are shown three unknown force components Fx, Vy, 

and Vz and three unknown moment components Mt, Mby, and Mbz. These can be 

evaluated by requiring that the system of Fig. 3.27 be in equilibrium.

Fig. 3.27  Example 3.12. Forces and moments at a general point O of the idealized model 

of Fig. 3.26(b)

 SF = iFx + j(1.1666 – 1.666 + Vy) + k(0.3 + Vz) = 0

SMo = iMt + jMby + kMbz + 0.3xj – 1.1666xk + (15 ¥ 1.666)i + (x – 15)(1.666)k = 0

 = i[Mt + 15(1.666)] + j[Mby + 0.3x] + k[Mbz – 1.1666x + (x – 15)(1.666)] = 0 (d)

Setting the coeffi cients of i, j, and k separately equal to zero provides us with the 

following forces and moments at any section for which 15 cm < x < 35 cm.

 Fx = 0 Mt = –25 kN-cm

 Vy = 0.5 kN Mby = –0.3x kN-cm (e)

 Vz = –0.3 kN Mbz = –0.5x + 25 kN-cm

If we repeat this analysis for the ranges 0 < x < 15 cm and 35 cm < x < 50 

cm, we then have all the information required to construct the force and moment 

diagrams illustrated in Fig. 3.28.

An alternate procedure for arriving at these same diagrams is to return to the 

idealized three-dimensional system of Fig. 3.26 and consider the three two-

dimensional projections shown in Fig. 3.29. The forces shown in each projection 

must constitute an equilibrium set. Furthermore, by using Fig. 3.29(a) alone, it is 

possible to determine P and the value of the twisting moment between points B and 

C; by using Fig. 3.29(b) alone, it is possible to determine the reactions Az and Dz 

and the values of Vz and Mby at any section; and by using Fig. 3.29(c) along with 

the value of P previously obtained, it is possible to determine the reactions Ay and 
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Dy and the values of Vy and Mbz at any section. The reader should pause long enough 

here to verify that this process is actually equivalent to that previously outlined. The 

stage at which a three-dimensional vector system is resolved into com ponents is a 

matter of personal preference.

Fig. 3.28  Example 3.12. Forces and moments diagrams for the shaft of Fig. 3.26

The shear forces and bending moments which are given in terms of y and z 

components in Fig. 3.28 can be vectorially combined and represented in a three-

dimensional manner, as sketched in Fig. 3.30(a). This information may also be 

presented as in Fig. 3.30(b) where we plot the magnitude of the resultant shear force 

and bending moment together with the angles which defi ne the planes in which these 

quantities act. It is of interest to note that in the central portion BC the plane of the 

resultant shear force is not per pendicular to the resultant bending-moment vector.



164 An Introduction to the Mechanics of Solids

Fig. 3.29  Example 3.12. Projections of the forces in Fig. 3.26(b) on the three coordinate planes

The results of this example suggest that the maximum bending moment along a 

straight member subjected to point loads (no distributed loads) must always occur 

at a loading point rather than at a point between loads. This is easy to see when 

all the forces lie in one plane, for then the moment diagram consists entirely of 

straight-line segments. It is not immediately obvious that this should still be true 

in the general three-dimensional case where the resultant moment diagram may 

have curved segments, as in Fig. 3.30(b). It can be shown,5 however, that where the 

resultant moment diagram is not made up of straight lines it is made up of curves 

which are concave outward, and hence that a maximum never occurs between 

loads. It is possible for a minimum to occur between loading points.

The examples in this chapter have illustrated two general approaches to 

obtaining internal forces and moments in slender members. In all cases we have 

capitalized on the fact that when a system is in equilibrium then any isolated sub-

system of the original system is also in equilibrium. In one procedure the sub system 

was one of the two segments resulting from an imaginary cut or section of a slender 

member. In the other procedure the subsystem was an infi nitesimal element. This 

latter procedure required integration in order to obtain the forces and moments.

In all the examples treated in this chapter it was possible to obtain complete 

solutions using only the conditions of equilibrium; i.e., these situations were all 

statically determinate. In later chapters we shall meet statically indeterminate 

slender members. In these cases we must use the equilibrium conditions, just as 

we have in this chapter, but we also must include steps 2 and 3 of (2.1). Solutions 

will be obtained by simultaneously satisfying the requirements of all three steps.

5 See Prob. 3.43.



Forces and Moments Transmitted by Slender Members 165

Fig. 3.30  Example 3.12. Resultant shear-force and bending-moment diagrams for the crank  

 mechanism of Fig. 3.26

 SUMMARY

The physical understanding and formulation of a problem are the most important 

part of solving a problem and thus, greater emphasis should be laid upon those, 

more than the solution itself !
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Forces and Moments Transmitted by Slender Members

General method

The steps involved in the solving for the forces and moments in a slender member 

may be organized as to idealize the actual problem, by drawing relevant free body 

diagrams; calculate unknown external or support forces by using the equation of 

equilibrium (SF = 0, SM = 0); cut the member at sections of interest, isolating one 

at a time and apply the equations of equilibrium on that section to compute the 

internal forces.

Distributed loads

In case of distributed loading of parallel forces, it would be convenient to consider 

the intensity of loading at a small section and then integrate it through the length of 

the member to obtain the loading conditions. 

Resultant of distributed loads

While analyzing slender members subjected to distributed loads, the resultant load 

is equal to the area of the loading in magnitude and acts through the centroid of the 

area in the direction of the distributed loads. It should be however kept in the mind 

that this resultant load should not be used in evaluating the internal forces and the 

moments in the beam, as the nature of deformation may vary.

Differential equilibrium relations

An alternative method of evaluating the shear forces and bending moments is to 

consider a small section of the beam as a free body and apply the conditions of 

equilibrium, which will eventually lead us to differential equations connecting the 

load, the shear forces and the bending moments.

Singularity function

Singularity functions are used to handle discontinuous loading, given by fn(x) = 

<x – a>n. They are integrated as < - > =
< - >

+
≥

-•

+

Ú x a dx
x a

n
nn

x n 1

1
0, .

Fluid forces

For fl uid forces acting on the solid, the hydrostatic pressure acts normal to the 

surface of contact and can be treated as distributed load and the aforementioned 

methods of evaluation can be utilized, using the differential equation 
dp

dz
= g .

Three-dimensional problems

The three-dimensional problems can be handled effectively by using vector notation 

or by reducing the problem to three 2-dimensional problems by resolving the forces 

and moments into three components.

Hence, while it is true that consideration of forces, deformation and the force 

deformation relationships are very much required in the analysis of deformable 

solid bodies (2.1), we have understood by this chapter that there exists a depth of 

sophistication in the aforementioned equations (2.1) that is also vital in the analysis 

of deformable bodies. By concerning yourself with the study of forces and the 

equilibrium requirements, as applied to slender bodies, in this chapter, we may 

extend this study to solids of arbitrary confi guration, the geometry of deformable 

solids, and the force deformation relationships in the subsequent chapters.
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PROBLEMS

 3.1-3.8 In each case, sketch shear-force and bending-moment diagrams. Indicate 

sign convention employed and label important values.

Prob. 3.1  

Prob. 3.2  

Prob. 3.3  

Prob. 3.4  
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Prob. 3.5  

Prob. 3.6  

Prob. 3.7  

Prob. 3.8  

 3.9 Determine the axial force, the shear force, and the bending moment acting at 

any section q in the circular arc AB.

Prob. 3.9  
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 3.10 Find the reactions and expressions for the shear force and bending moment 

as functions of distance along the beam.

Prob. 3.10  

 3.11 Sketch the diagram of bending moment as a function of q for the semicircular 

member.

Prob. 3.11  

 3.12 Sketch shear-force and bending-moment diagrams for the cantilever beam 

which carries a concentrated force P and a distributed load of intensity wo 

force per unit length.

Prob. 3.12  

 3.13. Draw sketches showing the internal forces and moments acting at sections 1, 

2, and 3 in the member shown.
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Prob. 3.13  

 3.14 Calculate the internal forces and moments acting at sections 1 and 2 in the 

structure shown. 

Prob. 3.14  

 3.15 Calculate the internal forces and moments acting at sections 1 and 2 in the 

pinned framework shown.

Prob. 3.15  



Forces and Moments Transmitted by Slender Members 171

 3.16 The sketch shows a possible set of muscle forces acting on the femur of 

a man who is running upstairs. Find the unknown reactions RA and RD in 

terms of P and show how the trans verse force varies along the femoral shaft. 

Show how the bending moment varies along the shaft, and comment on the 

compensating effect of the muscles attached at B and C in terms of re ducing 

the bending moments in the shaft.

Prob. 3.16  

 3.17 A carpenter with a power saw has a 6-m plank of uniform weight per unit 

length wo and two sawhorses. He wishes to cut a 1.8-m length from the 

plank, but in order to minimize 

splitting of the ends he wants to cut it 

at a point where the bending moment 

in the plank is zero. If he places one 

sawhorse at one end of the plank, 

where should he put the other so that 

the bending moment will be zero 1.8 

m from the other end of the plank?

 3.18 A section of a scaffold consists of a plank laid across two supports and 

extending a distance a on either side of the supports. A mason working at 

the center of the plank thinks that he should stack his supply of bricks on the 

ends of the plank in order to minimize the bending moment in the plank. Is 

he correct? If equal numbers of bricks are stacked at each end of the plank, 

for what weight of bricks, WB, is the maximum bending moment in the plank 

a minimum? The man weighs WM.

Prob. 3.17
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Prob. 3.18  

 3.19 The rocket shown experiences a wind gust during its vertical ascent which 

results in the loading shown. Rotation of the system may be prevented if the 

resultant moment about the center of mass of the system vanishes. This is to 

be achieved by varying the orientation of the thrust vector T with respect to 

the vertical axis.

  (a) What relationship must exist among T, a, po, and L in order that this 

requirement be satisfi ed?

  (b) Determine the internal shear force and bending moment at L/4 and 3L/4 

in terms of po.

Prob. 3.19  

 3.20 A portion of an airplane landing gear is shown, with a coplanar force system 

present. Frictionless pin joints with their axes perpendicular to the plane of 

the paper are located at A, B, and C.

  (a) Find reaction forces at A, B, and C.

  (b) Find all forces (i.e., all axial loads, shears, and moments) along each 

member AD, DE, EG, DC, and CB; show in the sketch for each member 

the positive sense of each force and moment.
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Prob. 3.20  

 3.21 (a) Cilia are motile hairlike appendages on the free surfaces of certain 

cells. They are present in the trachea and in the reproductive tracts of 

humans as well as in lower animals. Their motion can be considered as 

made up of an effective stroke which can be thought of as a pendular 

Prob. 3.21
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   motion with constant angular velocity through an angle of approximately 

140º and a return or recovery stroke as shown in the fi gure. For the 

confi guration shown in the fi gure in which the cilium is arrested 

by a force F = 2.2 nN, calculate the moment at the cell boundary.

  (b) If a cilium moving in a viscous fl uid rotates through its effective stroke, 

estimate the driving moment at the cell boundary. The viscous force on 

an element of length of the cilium may be taken to be proportional to 

the length of the element, the angular velocity, the viscosity, and to a 

function which depends upon the 

position along the cilium.

 3.22 Construct shear-force and bending-

moment diagrams for the case where 

the concentrated moment is Mo = 

PL/4.

 3.23 (a)–(h). Solve Problems 3.1–3.8 

again, but this time obtain the shear-

force and bending-moment diagrams 

by using the singularity-function 

notation.

 3.24 A diving board is supported by a 

hinged joint at the left end and a 

simple support near the center. How 

should the distance a be varied in 

order that the maximum bending 

moment should be the same for divers 

of all weights?

 3.25 A bookshelf is made by placing a 

wooden plank on two brick supports. 

Where should the bricks be placed 

so as to make the maximum bending 

moment as small as possible?

 3.26 A pivoted fl agpole is to be erected by using a gin pole and winch as shown. 

Where should the rope be attached to the fl agpole so that during erection the 

maximum bending moment is as small as possible?

Prob. 3.26  

Prob. 3.24

Prob. 3.25

Prob. 3.22
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 3.27 A metal rod is bent into a circular arc of radius R with an arc of 270º. One 

end of the rod is fi xed so that the arc lies in a horizontal plane. Give the 

magnitude and location of the maximum bending and twisting moments 

when a weight W is hung fi rst at A, then B, then C.

Prob. 3.27  

 3.28 A radio antenna protrudes 540 mm above the fuselage of an airplane. A guy 

wire is attached to the end of the antenna to strengthen it against drag forces. 

Assuming that the drag force is uniformly distributed and has a total resultant 

D, fi nd the force the guy wire should exert in order to minimize the bending 

moment in the antenna.

Prob. 3.28  

 3.29 When the load P is applied, the coil spring shown has a pitch equal to the 

coil radius. Find the maximum bending and twisting moments in the coil.

Prob. 3.29  
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 3.30 A number of small, two-wheeled boat trailers have a suspension system 

similar to that shown. Estimate the maximum twisting and bending moments 

in the 50-cm bar and the 60-cm bar when the wheels are carrying loads of 

2500 N each. A wheel with a 5.00–8 tire has an outside diameter of 10 cm + 

20 cm + 10 cm = 40 cm.

Prob. 3.30  

 3.31 A fl exible cable is supported at two points A and B a distance 2L apart. The 

cable is loaded with weights such that in each horizontal unit distance there 

is a total weight of wo. The cable is observed to sag a distance c below the 

supports. Consider a free-body sketch of a segment of cable from x = 0 to 

x = x. Show that the horizontal component H of the cable tension T(x) is 

independent of x. Show that the slope 

of the cable at x is

 

dy

dx

w x

H

o=

  Integrate this equation to obtain the 

equation of the cable. Evaluate H in 

terms of wo and the dimensions of the 

cable.

 3.32 A curved shaft capable of transmitting bending and twisting moments is 

supported in bearings at A and B which are only capable of exerting single 

force reactions perpendicular to the shaft. Twisting moments MA and MB are 

applied to the ends of the shaft. Find the force reactions at A and B and the 

magnitude of MB required for equilibrium, all in terms of the magnitude of 

MA. Sketch twisting- and bending-moment diagrams.

Prob. 3.32  

Prob. 3.31
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 3.33 The differential equations (3.11) and (3.12) were derived for a slender 

member extending in the x direction with loading in the y direction. To 

emphasize this, we can write (3.11) and (3.12) as follows:

dV

dx
q

y

y+ = 0

  (a)

  
dM

dx
Vbz

y+ = 0

  Show that for a slender member extending in the y direction with loading in 

the x direction the corresponding equations are

dV

dy
qx

x+ = 0

  (b)

  
dM

dy
Vbz

x- = 0

  There are six different combinations of slender members extending in one 

coordinate direction with transverse loading in another coordinate direction. 

Verify that for three of these the differential equations corresponding to 

(3.11) and (3.12) have the sign pattern of (a) and that for the other three the 

sign pattern is that of (b).

 3.34 A wooden dam is made of planks fastened to uprights which are driven 

into the river bed. The uprights are a distance 2.4 m apart, and the water 

is 1.8 m deep. Draw shear-force and bending-moment diagrams for the 

uprights.

Prob. 3.34  

 3.35 A hollow metal sphere with a diameter of 50 cm and a weight of 750 N is 

used as a valve to close a 30 cm-diameter hole in the freshwater tank shown. 

What force F is required to just open the valve?
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Prob. 3.35  

 3.36 The gate AB blocks a 2.4 m-wide opening in a freshwater reservoir. Find the 

reaction force F on the support at A.

Prob. 3.36  

 3.37 The shaft AD is supported in bearings at A and D and has pulleys attached 

at B and C. The pulley at B is 20-cm diameter while that at C is 30-cm 

diameter. The shaft transmits a maximum of 20 kW at 1750 rpm. The belt 

tensions are adjusted so that

T

T

T

T

1

2

3

4

3= =

  Sketch the shear-force, bending-moment, and twisting-moment diagrams 

for AD, labeling important values. (Note : A horsepower is 745 N-m/s. 

Rotational power is the product of torque times angular velocity in radians 

per unit time.)
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Prob. 3.37  

 3.38 A shaft is supported in bearings A and B, has a crank attached to one end, 

and transmits a moment Mo. Sketch the shear-force, bending-moment, and 

twisting-moment diagrams for the shaft.

Prob. 3.38  

 3.39 A 125-mm-diameter 20º spur gear is attached to the end of a 125-mm-long 

cantilevered shaft. A smaller gear (ratio 3:1) transmits a 130 N . m torque. 

Sketch the shear-force, bending-moment, and twisting-moment diagrams for 

the cantilevered shaft, labeling important values.
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Prob. 3.39  

 3.40 A crankshaft for a single-cylinder engine is shown mounted in bearings at 

each end. It is in equilibrium under the action of the connecting-rod force 

and the shaft torque Mo. The engine has:

    Bore 64 mm 

    Stroke 75 mm

    Connecting-rod length 125 mm

  Show diagrams for shear, bending moment, and twisting moment for the two 

end sections of the crankshaft.

Prob. 3.40  

 3.41 A closely wound coil spring of coil radius R can have the “ ends” in either 

of the positions shown. Calculate the shear forces, bending moments, and 

twisting moments at a typical point on the coil for the two cases.
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Prob. 3.41  

 3.42 Compression springs may buckle under an axial load. Part of the study of this 

phenomenon requires the effect of the bending moment M on the moments 

and forces at the points A and B. Determine the local shear force, bending 

moment, and twisting moment at a section through the wire at point A. Do 

the same for B.

Prob. 3.42  

 3.43 A straight slender member along the x axis is subjected to only point loads 

along its length which are all parallel to the yz plane. Show that the diagrams 

for Mby and Mbz must be made up of a number of straight-line segments 

connected at the points of loading, and the maximum of either component 

must always occur at a loading point. Now consider the resultant bending 

moment

M M Mb by bz= +2 2

  Show that if

   Mby = Ax + B

   Mbz = Cx + D

  where A, B, C, and D are arbitrary constants in a certain segment of the 

member, then

d Mb

dx

2

2
  0

  and therefore that the resultant moment curve is either straight or concave 

outward. 
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 3.44 Consider the loading function q–1(x, u) defi ned by

  

q x u
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  Show that in the limit as u Æ 0, q–1(x, 

u) approaches a unit “concentrated 

force” x -1 , located at the point x = 0. 

The limit of the function q–1 (x – a, u) is denoted by x a- -1 . Consider a 

cantilever beam, free at x = 0 and built-in at x = L, subjected to the loading 

q–1(x, u). Sketch the shear-force and bending-moment diagrams and discuss 

their limiting forms when u Æ 0.

 3.45 Consider the loading function q–2(x, u) defi ned by
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  Show that in the limit as u Æ 0, 

q–2(x,u) approaches a “concentrated 

couple” x -2  located at x = 0 and 

with value unity. The limit of the 

function q–2(x – a, u) when located 

at the point x = a is denoted by 

x a- -2 . Consider a cantilever beam, free at x = 0 and built-in at x = L, 

subjected to the loading q–2(x,u). Sketch the shear-force and bending-moment 

diagrams and discuss their limiting forms when u Æ 0.

 3.46 Show that for any fi xed u

q x a u dx q x a u
x

- --•
- = -Ú 2 1( , ) ( , )

  and, therefore, assuming that the limit and integration operations can be 

interchanged,

x a dx x a
x

- = -- --•Ú 2 1

Prob. 3.44

Prob. 3.45



Stress and Strain

4.1 INTRODUCTION

4

In Chapter 2 we considered 
deformable bodies in which 
the loadings and resulting de-
formations were assumed to be 
unidirectional. We found the 
relation between load and the 
resulting deformation in terms 
of the shape of the body and 
a property of the material (the 
modulus of elasticity). But we 
only did so under the assump-
tion that conditions were uniform 
from one point to another. As we 
extend our study of deformable 
solids to more common cases 
where conditions are nonuniform, 
we shall fi nd that it is necessary to 
study the behavior in differentially 
small elements within the body. 
At the same time, it is usually 
necessary to consider two- or 
three-dimensional aspects of 
the behavior of the material. For 
example, the transverse defl ection 
of a beam in bending turns out 
to depend on the distribu tion, 
both along and across the beam, 
of the axial force per unit area. 

To derive the overall behavior 
of a body from the properties 
of differentially small elements 
within the body still requires 
the use of the three fundamental 
principles of equilib rium, geo-
metric compatibility, and the 
relations between force and de-
formation.
 In this and the following 
chapter we shall investigate the 
signifi cance of our three basic 
principles when they are applied 
to the localized behavior of 
the material at a point within a 
deformable body. Equilibrium 
at a point and the geometry 
of deformation at a point are 
considered in the remaining 
sections of this chapter, and 
the relations between force and 
deformation at a point within a 
real material are discussed in the 
next chapter. Succeeding chapters 
will build upon this foundation in 
examining the action of structures 
of various shapes under a variety 
of loadings.
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4.2  STRESS

Recall that in Sec. 2.2 we found that force and deformation in bars under tensile 

loading could be related to a material property by considering force per unit area 

and extension per unit length. We fi rst consider how the concept of internal force 

per unit area can be extended to a more general shape and loading such as that 

shown in Fig. 4.1.

Fig. 4.1  Continuous body acted on by external forces

To examine these internal forces at some point O in the interior of the body, 

we pass a plane whose normal vector is n through the point O, as shown in 

Fig. 4.2. In order for the separate halves of the body to be in equilibrium, there 

must, in general, be internal forces transmitted across the cutting plane. If we divide 

the plane into a number of small areas, and we measure the forces acting on each of 

these, we will observe that these forces in general vary from one small area to the 

next, as shown in Fig. 4.2. On the small area DA whose normal vector is n centered 

on the point O, there will be acting a force of DF which is inclined to the surface DA 

at some arbitrary angle [Fig. 4.3(a)]. When we consider the problem of describing 

com pletely the action of the force vector DF, we have to specify the orientation and 

size of the face on which DF acts, the magnitude of DF, and the orientation of DF 

with respect to the face.

Fig. 4.2  Internal forces acting on a plane whose normal is n
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We now introduce the concept of the stress vector T
n( )

 acting at the point O on a 

plane whose normal is n passing through O. We defi ne the stress vector as

 T
Fn( )

=
D
DD Æ

lim
A A0

 (4.1)

We see that T
n( )

is  force intensity or stress acting on a plane whose normal is n 

at the point O. We have used this notation for the force intensity to emphasize T
n( )

is a vector and that it acts on a plane passing through the point O whose normal 

is n [Fig. 4.3(c)]; T
n( )

 does not act in general in the direction of n. In assuming the 

existence of the limit in (4.1), we have in effect made a  continuum hypothesis with 

respect to the distribution of internal forces. This is an idealization of the behavior 

in a real material, where DF decreases smoothly with DA only when DA is large 

in comparison with the microstructure (metallurgical or molecular) of the material 

[Fig. 4.3(b)].

Fig. 4.3  (a) Force vector acting on element of area DA and (b) indication of limiting process 

which defi nes stress vector T
n( )

; (c) stress vector T
n( )

 acting on an element of area A 

whose normal is n at the point O

There are four major characteristics of stress we must keep in mind: (1) the 

physical dimensions of stress are force per unit area, (2) stress is defi ned at a point 

upon an imaginary plane or boundary dividing the material into two parts, (3) stress 

is a vector equivalent to the action of one part of the material upon another, and (4) 

the direction of the stress vector is not restricted. We may write the stress vector in 

terms of its components with respect to the coordinate axes in the form

 T
n( )

 =Tx

( )n

i + Ty

( )n

j + Tz

( )n
k (4.2)

It is convenient in what follows to express the stress vector at a point acting 

on a plane whose normal is n in terms of stress vectors acting on planes which 

pass through the point parallel to the coordinate planes. Once we have found the 

components of the stress vectors acting on the coordinate planes we will relate these 

to the components of T
n( )

.
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Let us return to our discussion of the continuous body shown in Fig. 4.1 and now 

pass through the point O a plane mm parallel to the yz plane and consider the free 

body to the left of the plane mm. We divide the plane mm into a large number of 

small areas, each Dy by Dz, as shown in Fig. 4.4. We will now repeat our arguments 

for the force vector and the force intensity for the arbitrarily defi ned plane with 

normal n by applying them to an element of area in the plane mm. On the small 

area DA centered on the point O there will be acting a force DF which is inclined 

to the surface mm at some arbitrary angle. We will describe the force vector DF in 

terms of a set of rectangular force components, and the most convenient set of axes 

will prove to be a set in which one axis is normal to the sur face and the other two 

are parallel to the surface. Figure 4.5 shows the rectan gular components of the force 

vector DF referred to such a set of axes.

 Fig. 4.4  Internal forces acting on plane mm

Fig. 4.5  Rectangular components of the force vector DF acting on the small area centered 

on point O

Before proceeding further, it will be useful to adopt a convention which 

allows us to identify precisely a specifi c area or face on the surface of a body. 

For example, if we cut out a parallelepiped whose edges are parallel to the x, y, z 

axes, as shown in Fig. 4.6, there will be six separate plane surfaces which enclose 
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the volume, and we need a concise 

notation for unambiguously identifying 

each of these. We shall use the same 

convention adopted in Chapter 3 and 

identify a surface face in terms of the 

coordinate axis normal to the surface. 

A face will be defi ned as positive when 

its outwardly directed normal vector 

points in the direction of the positive 

coordinate axis, and as negative when 

its outward normal vector points in the 

negative coordinate direction. Thus, in 

Fig. 4.6, the face 1–4–5–8 is a positive z 

face, and the face 2–3–6–7 is a negative 

z face. In Fig. 4.5 the plane mm is a positive x face.

If we now return to Fig. 4.5 and take the ratios DFx /DAx, DFy /DAx, and DFz /DAx, 

we have three quantities which establish the average intensity of force on the face 

of area DAx = Dy Dz. In the limit as DAx Æ 0 these ratios defi ne the force intensity 

acting on the x face at the point O; these values of the three force intensities are 

defi ned as the  stress components associated with the x face at point O. They are 

the components of the stress vector acting on the x face at the point O; that is, they 

are the components of the stress vector acting on an element of area whose normal 

points in the positive x direction.

We note that we must use two directions to defi ne a stress component: one 

direction to identify the face on which the stress component acts, and a second 

direction to specify the force component from which the stress component is 

derived. The stress components parallel to the surface will be called  shear-stress 

components and will be denoted by t. The shear-stress component acting on the x 

face in the y direction will be identifi ed as txy, where the fi rst subscript denotes the 

direction of the normal to the face and the second denotes the direction in which the 

stress component acts. The stress component perpendicular to the face will be called 

a  normal stress component and will be denoted by s  . The normal stress component 

acting on the x face will act in the x direction and thus will be identifi ed as sxx. 

Because the two subscripts on normal stress components are al ways identical, it has 

become common practice to write only one of these, with the understanding that 

the second subscript is implied; thus, we shall use sx as short -hand for sxx. Using 

the above notation, the stress components on the x face at point O are defi ned as 

follows in terms of the force intensity ratios:

 s x
A

x

xx

F

A
=

D
DD Æ

lim
0

 t xy
A

y

xx
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 t xz
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D
DD Æ
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0

Fig. 4.6  Defi nition of positive and neg ative 

faces
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These stress components are illustrated in Fig. 4.7.

It will be convenient to adopt a sign convention for stress components. We shall 

again use the same convention adopted in Chapter 3 and defi ne the resulting stress 

component to be positive when a positively directed force component acts on a 

positive face. Alternatively, a positive stress component results when a negatively 

directed force component acts on a negative face; by a consideration of action 

and reaction, we see that this defi nition follows from the fi rst. When a positively 

directed force component acts on a negative face or a negatively directed force 

component acts on a positive face, the resulting stress component will be negative. 

All the stress components shown in Fig. 4.7 are positive according to this sign 

convention.

 Fig. 4.7  Stress components on positive x face at point O

If we return to the continuous body shown in Fig. 4.1, we can also pass a plane 

parallel to the xy and xz planes through the point O. On the elements of area lying 

in the xy and xz plane, we defi ne stress components in analogy with (4.3). In this 

way we fi nd at the point O that the state of stress is dependent on the nine stress 

components:

 sx  txy  txz

 tyx  sy  tyz (4.4)

 tzx  tzy  sz

We see that each line of (4.4) gives the components of the stress vector acting on 

the respective coordinate plane. A knowledge of the nine components is necessary 

in order to determine the components of the stress vector T
n( )

 acting on an arbitrary 

plane with normal n. We will return to the relation between the components of T
n( )

 

and the components (4.4) in Sec. 4.5.

Returning again to the continuous body shown in Fig. 4.1, suppose that in 

addition to the plane mm we pass another plane through the body, this plane being 

parallel to mm but separated from it a small distance Dx. If we similarly pass planes 

parallel to the xz and xy planes, we fi nally cut out a parallelepiped Dx by Dy by 

Dz. The stress components acting on the faces of this element will be as shown in 

Fig. 4.8. The primes are used to indicate that the stress components on opposite 
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faces do not necessarily have the same magnitudes since the faces are separated 

by small distances. In Fig. 4.8 we assume, for example, that the stress component 

txy is uniform over the negative x face, but that when we move a dis tance Dx to the 

positive x face, the stress component in the y direction has a new value t¢xy which is 

uniform over this positive x face. Actually, the stress compo nents in Fig. 4.8 should 

be thought of as average values over the respective faces of the parallelepiped.

 Fig. 4.8  Stress components acting on the six sides of a parallelepiped

An alternative notation called index or  indicial notation for stress is often more 

convenient for general discussions in elasticity. We will briefl y discuss this notation 

here. In indicial notation the coordinate axes x, y, and z are replaced by numbered 

axes, x1, x2, and x3, respectively. The components of a vector such as the force DF 

of Fig. 4.5 are then written as DF1, DF2, and DF3, where the numerical subscript 

indicates the component with respect to the numbered coordinate axes.

The defi nitions of the components of stress acting on the x1 face, (4.3), can be 

written in indicial form as follows:

 s11
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11
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D
DD Æ
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F
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where we use the s symbol for both normal and shear stresses. The components 

of stress are distinguished by two numerical subscripts, the fi rst indicating the 

face on which the stress component acts and the second specifying the direction 

of the stress component. Similar equations can be written for components of stress 

associated with the other faces. The similarity of such equations suggests replacing 

any particular numerical subscript by an alphabetic subscript which can take on 

any of the three numerical values, 1, 2, or 3. All components of stress can now be 

defi ned by a single equation:
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 s ij
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ii

F
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D

DD Æ
lim
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 (4.5)

We can therefore think of the nine components of stress in (4.4) as simply sij, where 

i and j take on the values 1, 2, or 3. In Sec. 4.4 and 4.15 we shall encounter further 

extensions of this indicial notation.

4.3  PLANE STRESS

In many instances the stress situation is simpler than that illustrated in Fig. 4.8. 

For example, if we pull on a long, thin wire of uniform section and examine a 

small parallelepiped whose x axis coincides with the axis of the wire, then sx  and 

s¢ x will be the only nonzero stress components acting on the faces of the parallel-

epiped (and it will be necessary for equilibrium that s¢ x = sx ). Another example of 

practical interest is that of a thin sheet which is being pulled by forces in the plane 

of the sheet. If we take the xy plane to be the plane of the sheet, then sx, s¢ x, sy, s¢ y, 
txy, t¢ xy, tyx, and t¢ yx will be the only stress components acting on the parallelepiped 

of Fig. 4.8. Furthermore, the stress components turn out to be practically constant 

through the thickness of the sheet. We can assume, therefore, for a thin sheet that 

there are no variations in the stress components in the z direc tion. The state of stress 

at a given point will only depend upon the four stress components

 sx txy 
(4.6)

 tyx sy

in which the stress components are functions of only x and y. This combination of 

stress components is called plane stress in the xy plane; it is illustrated in Fig. 4.9.

There are many important problems in which the stress condition is one of plane 

stress, and for this reason we shall examine this special situation in some detail.

Fig. 4.9  Stress components which defi ne a condition of plane stress in the xy plane
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4.4 EQUILIBRIUM OF A DIFFERENTIAL ELEMENT IN PLANE STRESS

If a continuous body is in equilibrium, then any isolated part of the body must be 

acted upon by an equilibrium set of forces. The small element shown in Fig. 4.9 

represents part of a body in plane stress and therefore must be in equilibrium if the 

entire body is to be in equilibrium. The requirements of equilibrium will establish 

certain conditions which must exist between the stress components. Before 

determining these conditions, we shall express the stress components s¢x, t¢xy, s¢ y, and 

t ¢yx in more convenient form, relating them to the components sx, txy, sy, and tyx.

As we move from one point to another in the xy plane, the stress components 

vary in magnitude. Thus, in Fig. 4.9, as we move from the negative x face to the 

positive x face, the stress component txy changes in value to t¢xy. A convenient way 

to express the change in txy as we move from point to point along a path in the 

xy plane is through use of the directional derivative of txy with respect to distance 

measured along the path. This directional derivative gives the rate of change in txy 

per unit distance along the path. If txy is expressed as a function of x and y, the 

directional derivatives of txy along the x and y directions are called, respectively, 

the partial derivative of txy with respect to x and the  partial derivative of txy with 

respect to y, and they are expressed in mathematical notation as follows:

∂

∂

t xy

x
  ∂

∂

t xy

y

where the symbol ∂ is used in place of the usual differential operator d.

Using the concept of the partial derivative, we can approximate the amount a 

stress component changes between two points separated by a small distance as 

the product of the partial derivative in the direction connecting the two points 

multiplied by the distance between the points. Thus, referring to Fig. 4.9, we can 

express t¢xy as

 ¢ = +
∂

∂
Dt t

t
xy xy

xy

x
x  (4.7)

and s ¢ x , s ¢y , and t ¢yx can be expressed similarly. In Fig. 4.10 we show the element of 

Fig. 4.9 with the stress components expressed in this manner.

We now require that the element shown in Fig. 4.10 must satisfy the equi librium 

conditions SM = 0 and SF = 0. SM = 0 is satisfi ed by taking moments about the 

center of the element
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SF = 0 is satisfi ed by the following two conditions: 
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Simplifying (4.8), we obtain 
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Fig. 4.10  Stress components in plane stress expressed in terms of partial derivatives

In the limit as Dx and Dy go to zero, we see that all terms in Eq. (4.11) except tyx 

and tyx approach zero, and thus the equation reduces to

 tyx = txy (4.12)

The result expressed by (4.12) is of great importance in the study of stress at 

a point. Equation (4.12) says that in a body in plane stress the shear-stress com-

ponents on perpendicular faces must be equal in magnitude. Actually, (4.12) is 

true for any state of stress at a point. It can be proved in the most general case of 

stress at a point, as illustrated in Fig. 4.8, that to satisfy the requirement of SM 

= 0 the shear-stress components acting on perpendicular faces and in directions 

perpendicular to the line of intersection of the faces must be equal in magnitude and 

directed relative to each other, as shown in Fig. 4.8. Thus, in Fig. 4.8, tzy = tyz and 

txz = tzx in addition to the result tyx = txy given by (4.12).

Equation (4.12) was obtained from the free body of Fig. 4.10, where txy and tyx 

are both positive according to the sign convention for stress components defi ned 

in Sec. 4.2. It is clear from Eq. (4.12) that if txy were negative, then tyx also would 

have to be negative and of the same magnitude. Thus the two shear-stress com-

ponents associated with the x, y set of axes must both be positive or both be nega-

tive. These two possibilities are shown in Fig. 4.11, where, because of Eq. (4.12), 

we use the same subscript sequence to identify the shear-stress component on both 

the x face and the y face.
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Fig. 4.11  Defi nition of positive and negative txy

If we now return to Eqs (4.9) and (4.10), we fi nd, using (4.12), that the 

requirements of SF = 0 at a point lead to the differential equations
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Equations (4.13) specify the relations which must exist between the partial 

deriva tives of the stress components on perpendicular faces at a point in order to 

satisfy SF = 0 at the point.

Summarizing, we have considered the case of plane stress (Figs 4.9 and 4.10) 

and have found the requirements (4.12) and (4.13) which equilibrium imposes 

upon the stress components acting on perpendicular faces. Moment equilibrium 

has the result (4.12) that the original four stress components are reduced to three 

independent components, while force equilibrium requires that certain relations 

(4.13) exist between the partial derivatives of the stress components. For a three-

dimensional case of stress, moment equilibrium will reduce the original nine 

components of stress to six independent ones (that is, sx , sy , sz , txy , tyz , tzx). The 

satisfaction of SF = 0 for a three-dimensional state of stress will require three 

equations (see Problems 4.1 and 4.2). In some instances it may be convenient to use 

a coordinate system different from the rectangular system we have discussed here; 

e.g., in examining the twisting of a circular shaft it is convenient to use cylindrical 

coordinates. The requirements of SF = 0 can be expressed in results similar to 

(4.13) for stress components referred to other coordinate systems (see Problems 4.3 

and 4.4).

In indicial notation, the three-dimensional equations corresponding to Eqs (4.13) 

(Problem 4.1) take on the form, with sij = sji,
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Note that the second form of (4.14) stands for any of three equations, depending 

on whether the subscript j has the value 1, 2, or 3. These three equations corre-

spond to the three equations for equilibrium of forces in the x1, x2, and x3 directions, 

respectively. Each equation consists of three terms, each corresponding to a gradient 

in stress between a pair of parallel planes. The three-dimensional in dicial form of 

these equations makes their symmetry stand out more clearly than does the two-

dimensional case with the s – t notation of Eqs (4.13).

Einstein noted that in many equations of mathematical physics, the summa-

tion indicated in (4.14) is over a subscript that appears twice. As a consequence, 

he introduced the  summation convention that whenever a subscript appears twice 

in an expression written in indicial notation, a summation over that subscript is 

automatically understood (unless the contrary is explicitly stated). Thus (4.14) may 

be stated

 
∂

∂
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s ij

ix
0  (4.15)

where the summation over the repeated subscript i is implied [see (4.14)].

4.5  STRESS COMPONENTS ASSOCIATED WITH ARBITRARILY ORIENTED 

FACES IN PLANE STRESS

In the previous section we determined the conditions which equilibrium imposes 

upon the stress components on perpendicular faces at a point in a stressed body. In 

this section we examine further the problem of equilibrium of stress at a point and 

determine relationships which must exist between the stress components associated 

with faces which are not perpendicular to each other. In particular, we will fi nd how 

to express the components of the stress vector on a plane passing through a point 

when the normal to the plane is not parallel to one of the coordinate planes in terms 

of the components of stresses on the coordinate planes. We will also obtain stress 

components in a set of axes rotated with respect to the original axes in terms of the 

stress components referred to the original coordinate axes.

Let us assume that we know the values of the stress components sx , sy , and txy 

at some point in a body subjected to plane stress.

We ask the fi rst question: Do the known stress components on the x and y faces 

determine the components of the stress vector 
T
n( )

acting on a face which passes 

through the point and whose normal lies in the xy plane and makes an arbitrary 

angle with the x axis? The question is illustrated in Fig. 4.12: Does equilibrium 

uniquely determine the components Tx

( )n

, Ty

( )n

, of the stress vector T
n( )

 in terms of  sx , 

sy , txy and q?

We answer the question by considering equilibrium of a small wedge centered 

on point O, as shown in Fig. 4.13. For a suffi ciently small wedge we can consider 

the stress components to be uniform over each face. The equilibrium requirements 

SM = 0 and SF = 0 can be expressed as follows:
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z xy xy( )t t
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Â = D - D - D =F T z MN zMN z MNx x x xy

( )

cos sin
n

s q t q 0  (4.17)

Â = D - D - D =F T z MN zMN z MNy y xy y
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cos sin
n

t q s q 0  (4.18)

Fig. 4.12  Stress vector acting at point O on a plane whose normal is n for a body subjected to 

plane stress

Fig. 4.13  Stress vector and stress components acting on faces of a small wedge, cut from the 

body of Fig. 4.12, which is in a state of plane stress in the xy plane
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We see that moment equilibrium (4.16) is satisfi ed identically; this is an expected 

result since it was the satisfaction of moment equilibrium which led to the result 

(4.12) which has been included in the free-body diagram of Fig. 4.13. 

Upon simplifi cation of (4.17) and (4.18) we fi nd

 Tx

( )n
= sx cos q + txy sin q

 Ty

( )n

= txy cos q + sy sin q 

(4.19)

Equations (4.19) give the components of the stress vector acting on an element 

of area whose unit normal vector is

 n = cos qi + sin qj (4.20)

Equations (4.19) are important results because a knowledge of the vector 

components in terms of the components on coordinate faces is often required at the 

boundary of a thin body. Similar results also hold for the general three-dimensional 

body (see Sec. 4.15).

The next question we ask is: Do the known stress components on the x and y 

faces determine the stress components on a face which passes through the point and 

whose normal x¢ lies in the xy plane and makes an arbitrary angle q with the x axis? 

The question is illustrated in Fig. 4.14: Does equilibrium uniquely deter mine the 

stress components sx¢ and tx¢ y¢ in terms of sx, sy, txy , and q ?

Fig. 4.14  Thin body subjected to plane stress in the xy plane. x¢ and y¢ are a set of 

perpendicular axes lying in the plane of the body, and sx¢ tx¢ y¢  are the stress 

components acting on the posi tive x¢ face at point O

We again answer the question by considering the equilibrium of a small wedge 

centered on point O as shown in Fig. 4.15. The equilibrium requirements SF = 0 are 

now expressed in the x¢ y¢ direction as follows:

Â = D - D - D¢ ¢F z MN z MP z MPx x x xys s q t q( ) cos ( ) sin

 - D - D =( ) sin ( ) coss q t qy xyzNP zNP 0  (4.21)

Â = D + D - DF z MN zMP z MPy x y x xy¢ ¢ ¢t s q t( ) sin ( ) cos

 - D + D =( ) cos ( ) sins q t qy xyz NP z NP 0  (4.22)
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Using the trigonometric relations between the sides of the wedge, (4.21) and 

(4.22) become

 sx' = sx cos2 q + sy sin2 q + 2txy sin q cos q 
(4.23)

 tx' y' = (sy – sx) sin q cos q + txy (cos2 q – sin2 q )

Equations (4.23) demonstrate the answer to our question: The stress components 

sx. and tx'y' at the point O are uniquely determined by equilibrium from the stress 

components sx , sy , txy , and the angle q.

 Fig. 4.15  Stress components acting on faces of a small wedge, cut from body of Fig. 4.14, 

which is in a state of plane stress in the xy plane

From (4.23) it is evident that in plane stress if we know the stress components 

on any two perpendicular faces, we know the stress components on all faces whose 

normals lie in the plane. In particular, if we substitute q + 90º for q, we can obtain 

the normal stress sy ¢ acting on a face perpendicular to the y' axis.

 sy ¢ = sx sin2 q + sy cos2 q – 2txy sin q cos q (4.24)

If we know the stress components for all possible orientations of faces through 

the point in question, we say that we know the state of stress at the point. Speci-

fi cation of a state of stress in plane stress thus involves knowledge of three stress 

components, most conveniently taken as the normal and shear components on two 

perpendicular faces.1 We should be careful not to confuse a single stress component 

with the state of stress at the point.

1 It can be shown that, in the general case of three-dimensional stress, specifi cation of the 

state of stress at a point requires six pieces of information, most conveniently, the normal 

and shear-stress components associated with three mutually perpendicular faces. In a case 

of plane stress, at least three of these stress components are zero.
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4.6  MOHR’S CIRCLE REPRESENTATION OF PLANE STRESS

In order to facilitate application of (4.23) and (4.24), we shall make use of a simple 

graphical representation. To develop this representation we fi rst rewrite (4.23) and 

(4.24) by introducing  double-angle trigonometric relations

 s
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Now, in Fig. 4.16(a) we make a graphical representation of the fi rst of (4.25) by 

laying out sx' along the horizontal s axis as follows. The fi rst term on the right of 

the equation for sx' is represented by OC. The second on the right is represented by 

the horizontal component of CB, and the third term is represented by the horizontal 

component of BA. Note that CB makes the angle 2q with the s axis and that BA is 

perpendicular to CB. The normal stress sx' is thus represented by the abscissa of 

point A.

Next we turn to the second of (4.25) to obtain a graphical representation of tx'y'. 

We note that the previous construction may also be used for this purpose if we 

consider shear stresses to be laid out vertically. The fi rst term on the right of the 

equation for tx'y' is represented by the vertical component of CB, and the second 

term is represented by the vertical component of BA. The shear stress tx'y' is thus 

represented by the downward ordinate of point A.

Fig. 4.16  Development of Mohr’s circle for stress
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In a similar manner the construction CDE provides a representation of sy ¢ 

according to the third of (4.25) as well as a representation of tx' y' according to the 

second of (4.25). The normal stress sy' is represented by the abscissa of point E, and 

the shear stress tx' y' is represented by the upward ordinate of point E.

In Fig. 4.16(a) the line ABCDE, with its two right-angle turns at B and D, is 

completely fi xed by the original set of stress components sx, sy, and txy. Only its 

orientation depends on the angle q of Fig. 4.15. If we permit the angle q to change, 

the line ABCDE would change its orientation, rotating like a windmill about C. 

Points A and E would trace out arcs of a circle with center at C.

A particular orientation of interest is that corresponding to q = 0, as shown in 

Fig. 4.16(b). Note that the common abscissa of points A and B is s x and that the 

abscissa of points D and E is sy. The shear stress txy is represented by the down-

ward ordinate of point A and by the upward ordinate of point E. We have also 

drawn the line ACE, labeling its end points x and y, as indicated.

In Fig. 4.16(c) a circle has been constructed using the line xy as a diameter. 

Also shown is the diameter x' y' corresponding to the orientation of the line ACE in 

Fig. 4.16(a). The angle between the xy diameter and the x' y' diameter is 2q.

The circle in Fig. 4.16(c) is called Mohr’s circle for stress. It provides a con-

venient representation of the stress transformation equations (4.25). A set of stress 

components with respect to the xy axes is used to establish the xy diameter. Then 

stress components with respect to any rotated x' y' axes can be determined from the 

corresponding x'y' diameter. The manner in which the circle is con structed and used 

is summarized in a step-by-step list in the following paragraph. In order to follow 

these steps effi ciently, it is necessary to understand clearly how stress components 

acting in a physical body are represented in the Mohr’s circle diagram. The diagram 

is constructed in a stress plane, with normal stress s plotted horizontally and shear 

stress t plotted vertically. For normal stress, tension is positive and is plotted to the 

right of the origin of the stress plane. Compression is negative and is plotted to the 

left. For shear stress, the sign con vention is complicated by the fact that we must 

distinguish between the x and y ends of the diameter.2 Positive shear stress txy (see 

Fig. 4.11) is plotted downward at x and upward at y. Negative shear stress is plotted 

upward at x and downward at y.

Given stress components sx, sy, and txy, with respect to xy axes at a point O in 

Fig. 4.15, we can represent the state of stress at O by the rectangular element in Fig. 

4.17(a). To construct Mohr’s circle in Fig. 4.17(b), we proceed as follows:

1. Using the sign convention for stress components just given, we locate the 

point x with coordinates sx and txy and the point y with coordinates sy and txy .

2. We join points x and y with a straight line intersecting the s axis at point C, 

which is to be the center of Mohr’s circle. The abscissa of C is

 c
x y=

+s s

2
 (4.26)

2 The sign convention given for the xy plane can be extended to the yz plane, the zx plane, 

or to any plane with rectangular axes a and b. It is only necessary to imagine the xy plane 

reoriented so that the positive quadrant of x and y coincides with the positive quadrant of a 

and b to deter mine which coordinate (a or b) corresponds to x and which corresponds to y.
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3. With C as center and xy as diameter we draw the circle. The radius of the 

circle is

 r
x y

xy=
-Ê

ËÁ
ˆ

¯̃
+

È

Î
Í
Í

˘

˚
˙
˙

s s
t

2

2

2

1 2/

 (4.27)

 Once the circle has been constructed, it may be used to determine the stress 

components sx¢, sy¢, and tx¢y¢ shown in Fig. 4.17(d). These stress components 

apply to the same physical point O in the body but are in respect to the axes 

x¢ y¢ which make an angle q with the original xy axes.

4. We locate the x'y' diameter with respect to the xy diameter in Mohr’s circle 

by laying off the double angle 2q in Fig. 4.17(c) in the same sense as the 

rotation q which carries the xy axes into the x¢y¢ axes in Fig. 4.17(d).

5. Using the sign convention for stress components in Mohr’s circle, we read 

off the values of sx¢ and tx¢y¢ as the coordinates of point x¢ and the values of 

sy ¢ and tx¢ y¢ as the coordinates of point y¢.
The following example illustrates how Mohr’s circle is constructed and used in a 

specifi c numerical situation.

 
Fig. 4.17

 Stress components (a) are used to construct Mohr’s circle (b). Rotation of diameter 

through double angle in (c) provides stress components for inclined element (d)

Example 4.1
 We consider a thin sheet pulled in its own plane so that the 

  stress components with respect to the xy axes are as given in 

Fig. 4.18(a). We wish to fi nd the stress components with respect to the ab axes 

which are inclined at 45º to the xy axes. Using the foregoing steps, we lay out 

the points x and y and construct Mohr’s circle, as shown in Fig. 4.18(b). The ab 

diameter is located at 2(45º) = 90º from the xy diameter. The stress com ponents with 
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respect to the ab axes could be read off directly from an accu rately scaled diagram. 

Alternatively, we can use the geometry of the diagram to calculate as follows:

 201 = tan–1 
40

30
 = 53.2°

 r = [(30)2 + (40)2]1/2 = 50 MN/m2

 sa = 80 + 50 cos (90° – 53.2°) = 120 MN/m2

 sb = 80 – 50 cos (90° – 53.2°) = 40 MN/m2

∑ We can use two methods, i.e., use scaled diagram and fi nd the values or use 

trigonometric relations otherwise.

∑ Use Mohr’s circle to represent the normal stress and the shear stress, and then 

rotate the diameter line to twice the angle to fi nd the stress components in the 

differently oriented plane.

Because point a lies above the s axis (and point b below), the shear stress tab is 

negative.

 tab = –50 sin (90º – 53.2º) = –30 MN/m2

These stress components are shown acting in their correct directions on the faces 

of the inclined element in Fig. 4.18(c).

 Fig. 4.18  Example 4.1

Mohr’s circle provides a graphic overview of the state of plane stress at a 

point. Each possible stress-component combination sx ¢, sy¢, tx¢y¢ given by (4.25) 

is represented by some diameter of the circle. A particularly important combina-
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tion is that represented by the diameter which is aligned with the normal stress 

axis. The end points of this diameter are designated 1 and 2 in Fig. 4.19(a). The 

corresponding stress components with respect to the 1, 2 axes are shown in Fig. 

4.19(b). There are normal stresses s1 and s2, but there is no shear-stress com-

ponent. Furthermore, s1, is the maximum possible normal stress component, 

and s2 is the minimum possible normal stress component at this location in 

the body. The stresses s1 and s2 are called principal stresses, and the 1 and 

2 axes are called the principal axes of stress. In terms of the abscissa c of the 

center of the circle, (4.26), and the radius r, (4.27), the principal stresses are

 s1 = c + r  s2 = c – r (4.28)

 
Fig. 4.19

 (a) Principal stresses s1 and s2 and maximum shear stress t
max indicated on Mohr’s 

circle. (b) Element oriented along principal axes. (c) Element oriented along axes of 

maximum shear

In many cases the most convenient way to describe the state of stress at a point 

is to give the principal axes and the corresponding principal stresses.

Another combination of stress components which is of special interest is that 

represented by the vertical diameter of Mohr’s circle. The end points of this di-

ameter are designated d and e in Fig. 4.19(a), and the corresponding stress com-

ponents with respect to the de axes are shown in Fig. 4.19(c). Here the normal 

stresses are equal, and the magnitude of the shear stress is the maximum possible 

at this location. In terms of the abscissa c of the center of the circle, (4.26) and the 

radius r, (4.27), we have
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 sd = se = c  tmax= r (4.29)

The de axes are called the axes of  maximum shear. The corresponding element 

faces, perpendicular to these axes, are said to defi ne the  planes of maximum shear 

at this location in the body. Note that the axes of maximum shear are inclined at 45° 

with respect to the principal axes.

Example 4.2
 We reconsider the state of plane stress described in Example 4.1. 

  It is required to (a) locate the principal axes and evaluate the 

principal stresses and (b) locate the axes of maximum shear and evaluate the 

corresponding stress components.

∑ Draw the Mohr’s circle as in the previous problem, the distance where the 

circle intersects the σ-axis gives the principle stresses,  and the location is 

given by half of the angle from the line xy.

∑ The distance where the circle intersects the t-axis gives the maximum shear 

stresses, and the location is 45° from the axes of principle stresses.

In Fig. 4.18(b) the principal diameter is labeled 1–2. Since c = 80 MN/m2 and 

r = 50 MN/m2 the principal stresses according to (4.28) are

  s1 = c + r = 130 MN/m2 

  s2 = c – r =  30 MN/m2

The location of the principal axes with respect to the xy axes is shown in Fig. 

4.20(a), and the principal stresses are indicated.

In Fig. 4.18(b) the maximum shear diameter is labeled de. The location of 

the axes of maximum shear is indicated in Fig. 4.20(b). According to (4.29) the 

corresponding stress components are

sd = se = 80 MN/m2  tmax = 50 MN/m2

These stress components are shown in Fig. 4.20(b) acting in their correct 

directions. Note that with respect to the de axes the shear stress is negative; that is, 

tde = –50 MN/m2.

 Fig. 4.20  Example 4.2

4.7  MOHR’S CIRCLE REPRESENTATION OF A GENERAL STATE OF STRESS

Thus far we have concerned ourselves with the problem of plane stress and have 

limited ourselves to transformation of axes within that plane. Suppose we now 
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consider a situation in which the stress components associated with the z axis are 

not zero, i.e., a situation in which the state of stress may be said to be perfectly 

general. Further, let us suppose that we again wish to fi nd the stress components 

associated with the plane whose normal x' lies in the xy plane and makes an angle 

of q with the x axis. If we cut out a small wedge, similar to that of Fig. 4.15, we fi nd 

that the stress components acting on the wedge are as shown in Fig. 4.21. We note 

that, in addition to the components sx' and tx¢  y¢ on the + x¢ face, we must admit the 

possibility of another shear-stress component tzx'.

When we examine Fig. 4.21, we see that the stress components sx' and tx' y'  are 

unaffected by the stress components associated with the z axis. This results from 

the fact that for force equilibrium in the x¢ and y¢ directions the contributions of the 

components tzx and tyz acting on the +z face of the wedge are exactly balanced by 

those of the components tzx and tyz acting on the –z face.

If we now consider force equilibrium in the z direction for the wedge of Fig. 4.21, 

we fi nd the following result:

t s t t szx z zx yz zz MN
NP MP

z MP z NP
NP MP

¢ + - - - =D D D
2 2

0

 
Fig. 4.21

 Stress components acting on faces of a small wedge cut from a body in general state 

of stress

When the trigonometric relations between the sides MP, NP, and MN  are used, 

this equilibrium requirement becomes

 tzx' = tzx cos q + tyz sin q (4.30)

If we resolve the stress components tzx and tyz on the +z face into components 

perpendicular and parallel to MN, we fi nd that the right-hand side of (4.30) is the 

sum of the components perpendicular to  MN . Thus we see that tzx' is of such 

magnitude as to be equal to the shear-stress component acting on the + z face in the 

direction perpendicular to the line MN.
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As a consequence of our investigation of the general state of stress for the small 

wedge shown in Fig. 4.21, we may conclude the following: 

1. The results given by Eqs (4.25) and the Mohr’s circle representation of these 

are correct whether or not the stress components sz, tyz, and tzx are zero.

2. If either tyz or tzx is nonzero, then in general there will exist a shear-stress 

component tzx' on the x' face in addition to tx' y' . In such a case the 1 and 2 

axes of Fig. 4.19 should not be called principal axes since we wish to retain 

the designation  principal axis of stress for the normal to a face on which no 

shear-stress component acts.

We now consider further the case of plane stress and investigate the stress 

components referred to axes which do not lie in that plane. We begin by showing 

in Fig. 4.22(a) an element from the plate of Fig. 4.14 with the faces of the element 

oriented to coincide with the principal stress directions 1 and 2. The direction 3 

is perpendicular to the 1, 2 plane (the xy plane) and thus is parallel to the z axis. 

Consider all planes which can be passed parallel to the 2 axis and so intersect the 1, 

3 plane. The stress s2 would have no infl uence on the stress components on these

 Fig. 4.22  Plane stress in xy plane
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planes. The stress components on one of these planes would depend only on the 

normal stress components along the 1 axis (s1) and along the 3 axis (zero), and 

thus we can obtain another Mohr’s circle for which 1 and 3 are the principal stress 

directions. Finally, we can obtain a third Mohr’s circle which represents stress 

components on planes parallel to the 1 axis; 2 and 3 are the principal stress direc-

tions. These three circles are shown in Fig. 4.22(b) for the situation where s1 and 

s2 both are tensile. Figure 4.22(c) shows the circles when s2 is compressive and 

Fig. 4.22(d) when both s1, and s2 are compressive.

An interesting fact illustrated by Fig. 4.22 is that plane stress does not mean that 

the stress components are zero on all faces except those which contain the normal 

to the so-called plane of stress. Figure 4.22(d) and d show that in some cases of 

plane stress the maximum shear stress at the point occurs on faces whose normal is 

inclined at 45° to the so-called plane of stress.

Returning again to a general state of stress, we assert without proof that at each 

point within a body there are three mutually perpendicular planes on which there are 

no shear-stress components acting. The normals to these three planes are called the 

principal axes of stress at the point. Figure 4.23(a) illustrates an element for which 

the principal axes are labeled 1, 2, and 3. In this example the 3 axis is assumed to 

be parallel to the z axis, and thus the axes 1 and 2 must lie in the xy plane.

Fig. 4.23  Three-dimensional state of stress

If the six stress components associated with any three mutually perpendicular 

faces are specifi ed, it is possible to develop equations similar to (4.23) for the 

normal and resultant shear-stress components on any arbitrary plane passed through 

the point. It can be shown3 that the stress components for all possible planes are 

contained in the shaded area in Fig. 4.23(b) (where we have assumed a case in 

which 0 < s2 < s3 < s1). In Fig. 4.23(b) the shear stress t is the resultant shear-

stress component acting on the plane (for example, ( ) ( )t t¢ ¢ ¢+x y zx
2 2 in Fig. 4.21). 

We thus see that the values of both the maximum shear-stress and the maximum 

normal stress components at a point are known without further calculation if the 

3  A.J. Durelli,  E.A. Phillips, and  C.H. Tsao, “Introduction to the Theoretical and Experimental 

Analysis of Stress and Strain,” p. 73, McGraw-Hill Book Company, New York, 1958; 

 A. Nàdai, “Theory of Flow and Fracture of Solids,” 2nd ed., p. 96, McGraw-Hill Book 

Company, New York, 1950.
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three principal stresses at the point are known. Since in most practical situations we 

shall be dealing with either a case of plane stress or a case in which the direction 

of one of the principal stress axes is known (e.g., from symmetry), we shall not 

examine the general state of stress beyond the level discussed here.

4.8  ANALYSIS OF DEFORMATION

Thus far in this chapter we have considered the force balance at a point within a 

stressed body. The results we have obtained are based only on the requirements of 

equilibrium and are equally true for a hypothetical “rigid” body or for a real body 

which deforms under the action of stress. Our concern is with real (deformable) 

bodies, and therefore, in addition to establishing the conditions imposed by force 

balance, we must determine what restrictions the requirement of  geometric com-

patibility imposes upon the deformation of a continuous body. By a geometrically 

compatible deformation of a continuous body we mean one in which no voids are 

created in the body. This is purely a problem in the geometry of a continuum and is 

independent of the equilibrium requirements established in the foregoing sections 

of this chapter.

We begin our study by considering the 

continuous three-dimensional body of 

Fig. 4.24 which undergoes a displacement 

such that point 1 goes to 1¢, point 2 to 2¢, 
etc. The displacement of an individual 

point is a vector quantity and, if the 

particles of a continuous body undergo 

various displacements, we can represent 

the displace ment of each point by a 

displacement vector. This is illustrated in 

Fig. 4.25, where the displacement vectors 

u1, u2, u3,…, uO show the displacements 

of the points 1, 2, 3,…, O. The displacement vector of any one point may be thought 

of as the sum of component displacements parallel to a set of suitable coordinate 

axes; thus, for point n of Fig. 4.25, we can write

un = uni + vnj + wnk

where un, vn, and wn are the xyz components of the displacement of point n.

The displacement of a continuous body may be considered as the sum of two 

parts: (1) a translation and/or rotation of the body as a whole, and (2) a motion of 

the points of the body relative to each other. The translation and rotation of the body 

as a whole is called  rigid-body motion because it can take place even if the body is 

perfectly rigid. The motion of the points of a body relative to each other is called a 

deformation. In Fig. 4.26(a) we illustrate a rigid-body translation of a triangle which 

is constrained to move only in the xy plane. In Fig. 4.26(b) a rigid-body rotation 

about the corner c is shown, and Fig. 4.26(c) illustrates a type of deformation 

without rigid-body motion. The displacement of Fig. 4.26(d) is the resultant of 

these three displacements, as may be verifi ed by adding the displacement vectors of 

Fig. 4.26(a), (b), and (c).

Fig. 4.24  Example of displacement of a 

continuous body
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Fig. 4.25  Displacement vector for the displacement of Fig. 4.24

 Fig. 4.26  Examples of rigid-body motion and of deformation in the xy plane. (a) Rigid-body 

translation. (b) Rigid-body rotation about c. (c) Deforma tion without rigid-body motion. 

(d) Sum of the displacements (a), (b), and (c)
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The displacements associated with rigid-body motion can be either large or 

small, while the displacements associated with deformation usually are small. The 

description and analysis of rigid-body motion is important in dynamics where the 

forces required to produce different time rates of rigid-body motion are of interest. 

The description and analysis of deformation is important in our present study of 

the mechanics of deformable bodies where the forces required to produce different 

distortions are of interest. The remaining sections of this chapter will be devoted to 

a study of the deformation at a point in a continuous body.

4.9 DEFINITION OF  STRAIN COMPONENTS

It will simplify our discussion if, instead of considering the general case of three-

dimensional deformation, we focus our attention on a body whose particles all lie 

in the same plane and which deforms only in this plane. This type of deformation 

is called  plane strain. We shall return to the problem of three-dimensional deforma-

tion after we have completed our study of deformation in a plane.

In Fig. 4.27 we show two examples in which a thin rubber block is deformed 

in its own plane. In Fig. 4.27(b) all elements in the block have been deformed the 

same amount; we call this a state of  uniform strain. In Fig. 4.27(c) the elements 

on the right have been deformed more than those on the left; we call this a state of 

 nonuniform strain.

In examining the uniform state of deformation in Fig. 4.27(b), we note that 

originally straight lines are straight in the deformed state, but they may have 

changed their length or rotated. For example, the lines AE and CG do not rotate 

and line AE remains unchanged in length while CG shortens. By contrast, the lines 

BF and DH rotate equal and opposite amounts and both change in length by the 

same increment. Further examination of Fig. 4.27(b) does not reveal any other type 

of transformation of an originally straight line, and, in fact, it can be demon strated 

rigorously that in uniform strain an originally straight line can only trans form into 

another straight line.

 Fig. 4.27  (a) Underformed block of rubber with superimposed diagram. (b) Rubber block of 

(a) deformed in unifrom strain. (c) Rubber block of (a) deformed in nonuniform strain
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Examining now the nonuniform state of deformation in Fig. 4.27(c), we observe 

that originally straight lines are not necessarily straight in the deformed state. 

Evidently a line can remain straight, unrotated, and unchanged in length, as line 

AE; or it can remain straight, unrotated, but changed in length, as line CG; or it 

may become a continuous curve whose arc length may or may not be equal to the 

original length, as lines BF and DH. On a macroscopic scale, then, the deforma-

tion in nonuniform strain can be considerably more complicated than in the case 

of uniform strain. However, if we examine the deformation of a suffi ciently small 

portion of the block in Fig. 4.27(c), say a small area centered on O, we observe that 

over this small area the curved lines BF and DH can be replaced by their tangents, 

and that the deformation of the small area is then similar to that in Fig. 4.27(b); that 

is, within this small area the deformation is approximately uniform. In the limit as 

the small area centered on O shrinks to zero this uniform deformation becomes the 

deformation at point O.

We now consider a thin, continuous body which lies entirely in the xy plane and 

which undergoes a small geometrically compatible deformation in the xy plane. If 

we study a small element of the body, we can, in the light of the above discussion, 

consider this element to be deformed in a state of uniform strain, as illustrated in 

Fig. 4.28. For the deformed element in Fig. 4.28, let us express the deformation 

in the vicinity of point O quantitatively by giving the changes in length of the two 

lines OC and OE and the rotation of these lines relative to each other. We shall 

fi nd it convenient to defi ne dimensionless quantities which will describe these 

two aspects of the deformation. The fi rst of these, which gives a measure of the 

elongation or contraction of a line, will be called the normal strain component. The 

second, which gives a measure of the relative rotation of two lines, will be called 

the  shear-strain component.

Fig. 4.28  Deformation in the xy plane of a small element of a continuous body

The  normal strain component is defi ned as the fractional change in the original 

length of a line and is designated by the symbol   with a subscript to indicate the 

original direction of the line for which the strain is measured. Thus, from Fig. 4.28, 

the value of ex at point O is
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From the above defi nition of the normal strain component it is evident that 

normal strain is positive when the line elongates and negative when the line 

contracts.

The shear-strain component is specifi ed with respect to two axes which are 

perpendicular in the undeformed body and is designated by the symbol g, with two 

subscripts to indicate these two axes. Shear strain may be defi ned as the tangent 

of the change in angle between these two originally perpendicular axes. When the 

axes rotate so that the fi rst and third quadrants become smaller, the shear strain is 

positive; when the fi rst and third quadrants get larger, the shear strain is negative. 

Using this defi nition, we see that for the deformation illustrated in Fig. 4.28 the 

shear-strain component gxy is positive. For small shear strains (those of engineering 

interest are mostly less than 0.01) it is adequate to defi ne shear strain in terms of 

the change in angle itself (in radians) instead of in terms of the tangent of this angle 

change. Using this defi nition, we obtain from Fig. 4.28 the value of the shear strain 

at point O to be
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We have considered the deformation of the element of Fig. 4.28 in the limit as 

the element shrinks to zero size, and thus we can consider our strain components 

to defi ne the deformation at the point O. In the following section we examine the 

connection between the strain components  x,  y, and gxy and the changes in dis-

placement from position to position.

4.10 RELATION BETWEEN STRAIN AND DISPLACEMENT 

 IN PLANE STRAIN

In describing the displacement of a point, it will be convenient to deal with rec-

tangular components of the displacement vector. Thus, if we let u be the displace-

ment in the x direction of point O in Fig. 4.28 and v the displacement in the y 

direction, we can express the displacement vector of point O as

uO = ui + vj

This relation is illustrated in Fig. 4.29 where the x and y components of the dis-

placement of point O are indicated by u and v.

The displacement components u and v must be continuous functions of x and 

y to ensure that the displacement be geometrically compatible, that is, to ensure 

that no voids or holes are created by the displacement. Using the concept of partial 

derivatives, we can express the displacements of point E and C in Fig. 4.29 in 

terms of the displacements u and v of the point O and their partial derivatives, as 

illustrated in Fig. 4.29.
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Using the defi nitions previously established for the strain components  x,  y. and 

g xy, we obtain the following from Fig. 4.29 under the assumption that the strains are 

small compared with unity.
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 Fig. 4.29  Plane strain deformation expressed in terms of the components u and v and their 

partial derivatives

Not all of the relative displacement, however, involves deformation. Some of 

it arises from rigid-body rotation. For small displacement derivatives, the rotation 

about the z axis of the line OC, for example, is

( )
[ ( . / ) ]
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Likewise, the rotation about the z axis of the line OE is
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We can defi ne an average (small) rotation of the element as a whole as the average 

of the rotations of the two perpendicular line segments:
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The strain components in terms of the displacement derivatives can be sum-

marized as follows:

  x 
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∂
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   y 
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Equations (4.33) indicate that the strain components depend linearly on the 

derivatives of the displacement components. It is important to emphasize that our 

derivation for the normal and shear strains is valid under the assumption of small 

displacement derivatives compared to unity. We think of (4.33) as the components 

of strain for  small strains and  small rotations (where both are of the same order of 

magnitude) compared to unity. If we have a situation in which large deformations 

are important, then a set of nonlinear strain-displacement relations are required.4 

The derivation of the nonlinear relations usually proceeds in a way different from 

that given above. The derivation above, however, has emphasized the geometrical 

meaning of the strain components. For the case of a rigid-body translation and 

(small) rigid-body rotation we can show as expected that the strain components 

vanish (Prob. 4.29).

We have considered the deformation of the element of Fig. 4.29 in the limit as 

the size of the element shrinks to zero. Thus, we consider the strain components to 

defi ne the deformation at the point O. We therefore speak of the state of plane strain 

at a given point in a two-dimensional body as given by the strain com ponents

 x  g xy 

g yx   y 

(4.34)

where we defi ne gyx = gxy . The deformation at points adjacent to point O will in 

general differ from that at point O. The fact that two components of displacement 

serve to defi ne three components of strain in (4.33) indicates that the three com-

ponents of strain cannot vary arbitrarily in a fi eld of nonuniform strain. The 

conditions that ensure that a single value will be found for the displacement at any 

point from a knowledge of the strains are called the compatibility conditions. These 

conditions will not be derived here.5 Rather, for each problem we consider, we 

shall simply demonstrate the existence of a single-valued set of displacements from 

which the strain components are derived according to Eqs. (4.33).

If we now turn to the indicial notation introduced in Sec. 4.2 for stress, we may 

write the strain components (4.33) in the form

  1 
1

1

=
∂
∂
u

x
  2

2

2

=
∂
∂
u

x
 g g12 21

2

1

1

2

= =
∂
∂

+
∂
∂

u

x

u

x
 (4.35)

To achieve an economy of notation parallel with that realized for stresses, we 

introduce an  indicial notation eij for strains.
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  1 = e11   2 = e22  
e e12 21 12

1

2
= = g

4 See, for example,  V. V. Novozhilov, “Theory of Elasticity,” Pergamon Press, New York, 1961.
5 See, for example,  S. Timoshenko and  J.N. Goodier, “Theory of Elasticity,” 3rd ed., p. 237, 

McGraw-Hill Book Company, New York, 1970.
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Note that the shear-strain component e12 in indicial notation is half the shear-

strain component g 12 defi ned as the change in angle between the x1 and x2 axes.

For a general case of three-dimensional displacement we can describe the 

deformation at a point by specifying the three normal strain components and three 

shear-strain components associated with a set of three mutually perpendicular axes 

(see Prob. 4.16). In any given situation we choose the coordinate system which is 

most convenient for describing the deformation (see Probs. 4.17, 4.18, and 4.19).

4.11 STRAIN COMPONENTS ASSOCIATED WITH ARBITRARY

 SETS OF AXES

In the previous section we determined how the strain components referred to a set 

of perpendicular axes through a point are related to components of displacement 

parallel to those axes. In this section we examine further the problem of geometric 

compatibility at a point and determine relationships which must exist between the 

strain components associated with axes which are not perpendicular to each other.

We begin by considering the situation illustrated in Fig. 4.30, in which the 

deformation of a small element is shown in terms of the displacement components 

u¢ and v¢ parallel to the x¢ and y¢ set of axes. Analogous to Eqs (4.31) which were 

developed for the element of Fig. 4.29, the strain components  x¢,  y¢, and g x¢y¢ can 

be obtained as follows in terms of the partial derivatives of u¢and v¢ with respect to 

x¢and y¢.

  x¢ =
∂ ¢
∂ ¢
u

x

  y¢ =
∂ ¢
∂ ¢

v

y
 (4.37)
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Our next step is to inquire as to the nature of the connection between the strains 

 x¢,  y¢, and gx¢y¢ of Eqs (4.37) and the strains  x,  y, and gxy of Eqs. (4.33). We observe 

that, since geometric compatibility requires u¢ and v¢ in Fig. 4.30 to be continuous 

functions of position in the plane, we can express these displacement components 

either as functions of x¢and y¢ or as functions of x and y. If we express u¢ and v¢ as 

functions of x and y, and if we recall the chain rule for partial derivatives, we can 

write the strain components (4.37) as follows:

  x¢ =
∂ ¢
∂ ¢

=
∂ ¢
∂

∂
∂ ¢

+
∂ ¢
∂

∂
∂ ¢

u

x

u

x

x

x

u

y

y

x

  y¢ =
∂ ¢
∂ ¢

=
∂ ¢
∂

∂
∂ ¢

+
∂ ¢
∂

∂
∂ ¢

v

y

v

x

x

y

v

y

y

y
 (4.38)

 

g ¢ ¢ =
∂ ¢
∂ ¢

+
∂ ¢
∂ ¢

=
∂ ¢
∂

∂
∂ ¢

+
∂ ¢
∂

∂
∂ ¢

Ê
ËÁ

ˆ
¯̃

+
∂ ¢
∂

∂
∂ ¢x y

v

x

u

y

v

x

x

x

v

y

y

x

u

x

x

y
++

∂ ¢
∂

∂
∂ ¢

Ê
ËÁ

ˆ
¯̃

u

y

y

y



Stress and Strain 215

From the geometry of Fig. 4.30 or from Prob. 1.2 we can obtain the following 

relations:

 x = x¢ cos q – y¢ sin q 

 y = x¢sin q + y¢ cos q
 u¢ = u cos q + v sin q
 v¢ = –u sin q + v cos q 

(4.39)

 Fig. 4.30  Plane strain. Deformation of a small element  with sides originally parallel to the x¢ 
and y¢ set of axes

Substituting (4.39) into the fi rst of (4.38), we have
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Finally, substituting (4.33), we fi nd

  x¢ =  x cos2 q +  y sin2 q + gxy sin q cos q (4.40)

Proceeding in a similar manner with the other two equations of (4.38), and using 

the trigonometric relations for double angles, we get
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Equations (4.41) defi ne the conditions which geometric compatibility imposes 

on the strain components associated with different sets of perpendicular axes in 

plane strain: if the strain components  x,  y, and gxv and the angle q are specifi ed, 

the strain components  x ¢,  y ¢, and gx¢y¢  are completely determined.

4.12  MOHR’S CIRCLE REPRESENTATION OF PLANE STRAIN

When we compare Eqs (4.41) with Eqs (4.25), we see that if in (4.41) we make 

the substitution   for s and g /2 for t, we obtain (4.25). Thus it must be possible to 

represent (4.41) by a Mohr’s circle.

In the Mohr’s circle for strain (see Fig. 4.31) the normal strain components   

are plotted positive to the right, and half the shear-strain component, that is, g /2, 

is plotted vertically. If the shear strain is positive, the point representing the x axis 

is plotted a distance g /2 below the   axis and the point representing the y axis a 

distance g /2 above the   axis. If g is negative, the x-axis point is plotted a distance 

g /2 above the  -axis and the y-axis point a distance g /2 below the   axis. As in the 

case of the stress circle, relative angular positions are the same in the real body and 

in the Mohr’s circle, but the angles are doubled in the Mohr’s circle. Figure 4.31 

illustrates a situation where both gxy and gx¢y¢ are positive.

  Fig. 4.31  Mohr’s circle for plain strain
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We note that the sets of axes I, II and DE are of special interest. The I, II set is 

the only set for which the shear-strain component is zero. Also, the normal strain 

component has its maximum and minimum values on these axes. These axes are 

referred to as principal axes of strain, and the normal strain components  I and  II 

for these axes are called  principal strains. The DE set of axes is inclined at 45° to 

the principal axes of strain and is the set for which the shear-strain compo nent is a 

maximum. For this reason these axes are referred to as the  axes of max imum shear 

strain. Note that the normal strain components for these axes are equal.

To illustrate the use of Mohr’s circle for strain, we consider the following 

numerical example.

Example 4.3
 A sheet of metal is deformed uniformly in its own plane so that 

  the strain components related to a set of axes xy are6

  x = –200 ¥ 10–6 

  y = 1000 ¥ 10–6 

 gxy = 900 ¥ 10–6

∑ Use the same procedure as for Mohr’s circle of stresses, except that t is 

replaced by g/2, the normal strain components being the same.

We wish to fi nd the strain components 

associated with a set of axes x¢y¢ inclined at an 

angle of 30° clockwise to the xy set, as shown 

in Fig. 4.32. Also, we wish to fi nd the principal 

strains and the direction of the axes on which 

they exist.

Figure 4.33 shows the Mohr’s circle laid out 

on the basis of the given strains  x,  y, and gxy. 

Point x¢ lies at a relative angular position twice 

that existing in the actual body, i.e., at a position 

60° clockwise from x on the Mohr’s circle. In a 

manner similar to the calculations for the stress 

circle of Examples 4.1 and 4.2, we fi nd

2F1 = tan–1 450/600 = 36.8°

R = + =600 450 7502 2

 x¢ = (400 ¥ 10–6) – (750 ¥ 10–6) cos (60° – 36.8°) = –290 ¥ 10–6

 y¢ = (400 ¥ 10–6) – (750 ¥ 10–6) cos (60° – 36.8°) = 1,090 ¥ 10–6

Because point x¢ lies above the   axis (and point y¢ below), the shear strain gx¢y¢ is 

negative.

 
g ¢ ¢x y

2
= – (750 ¥ 10–6) sin (60° – 36.8°) = – 295 ¥ 10–6

 g x¢y¢ = – 590 ¥ 10–6

The principal strains are

6 Strains are dimensionless quantities, although they frequently are referred to in units such 

as millimeters per millimeter or inches per inch or microinches per inch.

Fig. 4.32  Example 4.3.  Location 

of x¢ y¢ axes
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 I = (400 ¥ 10–6) + (750 ¥ 10–6) = 1,150 ¥ 10–6

 II = (400 ¥ 10–6) – (750 ¥ 10–6) = – 350 ¥ 10–6

Fig. 4.33  Example 4.3. Mohr’s circle

The directions of the principal axes of strain are shown in Fig. 4.34.

To invert the statement of Example 4.3, we can say that if we take a sheet of 

metal and extend it in direction I with a strain of 1,150 ¥ 10–6 and compress it in 

a perpendicular direction II with a strain of 350 ¥ 10–6, then on a set of axes xy 

oriented as shown in Fig. 4.34 the strain components will be as given in the original 

statement of Example 4.3.

Fig. 4.34  Example 4.3. Orientation of principal axes if strain
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4.13  MOHR’S CIRCLE REPRESENTATION OF A GENERAL STATE OF STRAIN

Thus far we have considered only deformation in a single plane. Suppose we now 

consider a situation in which the strains associated with the z direction are not zero, 

i.e., a situation in which the state of strain may be said to be perfectly general. 

Further, let us suppose that we are again interested in the strains associated with 

sets of axes originally lying in the xy plane. We illustrate this situation in Fig. 4.35 

where the undeformed element OCDE, which is parallel to the xy plane, is given a 

general displacement in which the z displacement is designated by w. Figure 4.35 is 

to be compared with Fig. 4.29 in which the element OCDE displaces only in the xy 

plane (w = 0).

Fig. 4.35  General displacement of a small element originally parallel to the xy plane

In our consideration of plane strain (see Fig. 4.29), the effect of (∂v/∂x) Dx on 

the length O¢C¢ was neglected when the strains were small compared to unity. We 

see in Fig. 4.35 that the displacements (∂v/∂x) Dx and (∂w/∂x) Dx play the same 

type of role in their effect on the length O ¢C ¢, and thus we conclude that for small 

strains the out-of-plane displacement w has no effect on  x or on the normal strain 

associated with any axis originally lying in the xy plane. To the same degree of 

approximation the displacements (∂u/∂x) Dx, (∂w/∂x) Dx, (∂v/∂y) Dy, and (∂w/∂y) 

Dy have negligible effect on the angle C ¢ O ¢ E ¢, and we conclude that for small 

strains the shear strain associated with any set of axes originally lying in the xy 

plane is not infl uenced by out-of-plane deformations.

As a consequence of these characteristics of the general deformation illus trated 

in Fig. 4.35, we may state the following for small strains:

1. The results given by Eqs (4.41) and the Mohr’s circle representation of these 

are correct whether or not  z, gyz, or gzx is zero.

2. If w exists and also varies with respect to any coordinate direction in the xy 

plane, then with any arbitrarily oriented axis x¢ in the xy plane there will, in 
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general, be associated a shear-strain component gzx¢  in addition to gx¢y¢ . In 

such a case the I and II axes of Fig. 4.31 should not be called principal axes, 

since we wish to retain the designation principal axis of strain for an axis 

with which there is associated no shear strain.

To complete the picture for a general three-dimensional state of strain, we state 

here without proof that at each point in a deformed body there are three mutually 

perpendicular axes which remain perpendicular after deformation. These axes are 

called the principal axes of strain, and they determine three principal planes of 

strain with three associated Mohr’s circles illustrated by the circles I–II, II–III, and 

III–I of Fig. 4.36(b). Analogous to the case of stress, the normal and the resultant 

shear-strain components associated with any arbitrary axis will be defi ned by the 

coordinates of some determinable point7 within the shaded area in Fig. 4.36(b) 

(where we have assumed a case in which  II <  III < 0 <  I). By the resultant shear-

strain component we mean the maximum value associated with each axis. It can 

be shown that for an axis x¢ with which are associated shear strains gx¢y¢ and g zx¢, 

the maximum shear strain between x¢ and any perpendicular axis is of magnitude

( ) ( )g g¢ ¢ ¢+x y zx
2 2 .   Since in most practical cases we shall be dealing with strain 

components in a plane which contains two of the principal axes of strain, we shall 

not examine the general state of strain beyond the level discussed here.

Fig. 4.36  Three-dimensional state of strain

4.14  MEASUREMENT OF STRAINS

In order to determine whether a theoretical model really predicts the stress distri-

bution in a machine part or a structure with the desired degree of accuracy, it is 

common practice to conduct an experimental investigation to establish the actual 

stress condition as felt by the object when subjected to load. In many cases, however, 

the situation is so complicated that we are unable to develop a workable theoretical 

model for calculating the stresses. Instead, stresses can only be de termined from 

measurements on the structure, or a part thereof, under actual service conditions.

7  A. Nádai, “Theory of Flow and Fracture of Solids,” 2nd ed, p. 115, McGraw-Hill 

Book Company, New York, 1950.
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One must appreciate that, with the exception of some cases involving contact 

stresses on the outside surface of a body, it is impossible to measure stress directly. 

What is usually done in practice is to measure strain at various locations, and then 

to compute the corresponding stress values from the quantitative relations between 

stress and strain which we will fi nd in the next chapter.

The three most widely used methods for measuring strain are

1. Photoelasticity

2. Brittle coatings

3. Strain gages (of the bonded electrical resistance type)

 Photoelasticity began as a special type of model testing in which models were 

fabricated from fl at sheets of suitable (birefringent) transparent materials, subjected 

to loading in their own plane (plane stress), and examined in polarized light with 

the path of the light perpendicular to the plane of the model. The characteristic of 

the materials from which the models are made is such that the light is transmitted 

through the material with velocities which depend upon the magnitudes of both 

principal strains.

When the models are examined in a  polariscope (or between two crossed pieces 

of  Polaroid), the effect of the strain is to produce a pattern which can be interpreted 

both qualitatively and quantitatively. When white light is used, the pattern will 

contain a series of colored bands and, if monochromatic (one-color) light is 

employed, it will consist of sharply defi ned black lines on uniform background, as 

shown in Fig. 4.37 which shows a ring in diametral compression. The lines in the 

diagram are loci of constant difference between the principal stresses, or constant 

maximum shear stress.

 Fig. 4.37  Ring of photoelastic material in diametral compression (Courtesy Prof.   W.  M. Murray, 

MIT)
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Although the photoelastic method is basically suited to plane stress problems, 

methods have been found for extending it to three-dimensional applications which 

have been carried out with great success on models of pressure vessels with compli-

cated shapes, such as those employed in nuclear reactors.

More recently, very successful techniques have been developed for applying 

photoelastic coatings to fl at or curved surfaces. This has been an enormous step 

forward, as it has enabled the observation of the entire strain distribution over the 

coated surface of the structure, or a part thereof. This development has extended 

the use of photoelasticity from a laboratory device to a very practical method of 

investigating stress conditions under actual service or operating conditions. Figure 

4.38 shows a study being conducted on the landing gear for a large airplane.

 Fig. 4.38  Test setup with photoelastic coating. Aluminum-fi lled epoxy model of nose landing   

gear of Boeing 747 Superjet (Courtesy  S.S. Redner, Photoelastic, Inc.)

The  brittle coating technique involves covering the test specimen with a thin 

layer (usually less than 0.25 mm thick) of material which sets or hardens in a brittle 

condition. Two types of coating material are in general use. One is a lacquer which 

sets and is used at room temperature, and the other is a ceramic which has to be 

fi red onto the specimen but which can be used at temperatures above those which 

are suitable for the lacquer.

When the test specimen is loaded, strains are developed in the surface and in the 

coating. When these strains are large enough, the coating will crack in the direction 

perpendicular to the algebraically larger principal strain. A typical example is 

shown in Fig. 4.39 which illustrates the crack pattern in the coating on an engine 
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crankshaft. In conducting tests, it is customary practice to apply loads by increments 

and to observe the initiation of new cracks in the coating following each increment 

of load. In this manner a pattern can be developed to present an indication of 

relative magnitudes of strain. By calibration of the coating, it is possible to evaluate 

the strain magnitudes. Although this method is not as precise as photoelasticity 

and strain gages, it is relatively inexpensive and it gives an overall picture of what 

is going on. For a preliminary test prior to a detailed strain-gage study, the use of 

brittle coatings can effect considerable economy by indicating where, and in what 

orientations, strain gages should be mounted to detect the largest tensile strains.

Bonded electric resistance  strain gages are probably the most extensively used 

instruments for the measurement of normal strains on the surfaces of bodies. They

 Fig. 4.39  Stresscoat pattern on cranshaft in bending (By  W.T. Bean. Courtesy Experimental 

Mechanics, Oct. 1966, and Magnafl ux Corp.)

may be grouped in three different categories: wire, foil, or semiconductor, 

according to the nature of the sensing element. In most cases the sensing elements 

are mounted on some form of very thin carrier which permits easy installation at 

the location at which the strain is to be measured.

For the wire gages, the sensing element consists of a grid of fi ne wire (about 

0.025 mm in diameter, or slightly less); foil gages have a comparable grid which 

is produced either by photoetching or die-cutting methods from metal foil approxi-

mately 0.005 mm thick. In the United States, silicon is the favored material for 

semiconductor gages whose sensing elements are made from small pieces cut from 

a single crystal into which a controlled amount of additive has been introduced to 
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obtain certain specifi ed characteristics. In some cases involving transducers, the 

additive is diffused into a small beam or diaphragm of silicon so that the sensing 

element and its carrier are all in one piece.

All three varieties of the strain gage operate upon the basic principle that 

certain metals, and silicon, exhibit a change in electrical resistance with change in 

mechanical strain. Within certain limiting conditions, the metals chosen for sens-

ing elements exhibit essentially a linear relationship between change in strain and 

unit change in electric resistance. For silicon, the corresponding relationship is 

more complicated and basically nonlinear. However, for small strain excursions the 

relation can be taken as approximately linear for practical purposes.

The gages are bonded to the surface on which strain is to be measured and are 

usually connected to a  Wheatstone-bridge circuit for determining the unit change in 

resistance. Both static and dynamic indications can be obtained (in the latter case, 

to very high frequencies). Present-day instrumentation allows for signal processing 

so that the readout instruments indicate directly the strain or some other quantity 

such as force, torque, moment, etc.

In order to provide a complete specifi cation of the state of strain at any loca tion 

on a free (unloaded) surface, it is necessary to know two perpendicular com ponents 

of normal strain and the corresponding shear strain, or the equivalent in terms of 

three normal strains. Since the bonded resistance strain gages only measure normal 

strains, it is customary (unless some auxiliary information is available) to make 

three observations of normal strain in three independent direc tions as indicated in 

Fig. 4.40(a) Such an arrangement of axes is called a  rosette and the calculation of 

the principal strains and the direction of the principal axes from the three observed 

strains is known as  rosette analysis. A general rosette is shown in Fig. 4.40(a) and 

two widely used special rosettes in Fig. 4.40(b) and (c).

There are many techniques for deducing the state of strain from the strain -

rosette readings.8 A convenient way to describe the state of strain is to obtain its 

Mohr’s circle representation. To indicate the general nature of the problem, we shall 

illustrate how the Mohr’s circle can be constructed from the three normal strain 

readings of the 45° rosette of Fig. 4.40(b).

 Fig. 4.40  Strain-gage rosettes. (a) General rosette; (b) 45° rosette; (c) 60° rosette

8 See, for example,  M. Hetenyi, “Handbook of Experimental Stress Analysis,” p. 390, John 

Wiley & Sons, Inc., New York, 1950;  G. Murphy, Trans. ASME, vol. 67, p. A209, 1945; 

and  F.A. McClintock, Proc. Soc. Exp. Stress Anal., vol. 9, p. 209, 1951;  J.W. Dally and 

 W.F. Riley. “Experimental Stress Analysis,” Chap. 16, McGraw-Hill Book Company, New 

York, 1965;  C.C. Perry and  H.R. Lissner, “The Strain Gage Primer,” 2nd ed., Chap. 7, 

McGraw-Hill Book Company, New York, 1962.
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Example 4.4
 The strain readings  a,  b, and  c have been obtained from

  the strain gages in a 45° rosette, and we wish to construct the 

Mohr’s circle.

We begin by laying off three vertical lines at distances,  a,  b, and  c from the g /2 

axis. This is shown in Fig. 4.41(a) where it has been assumed that  a <  c, <  b. We 

next locate the point D which is midway between the two vertical lines representing 

the strains for the perpendicular axes a and c. We now, in Fig. 4.41(b), lay off Aa = 

DB above the c axis and Cc = DB below the   axis. Then, on D as center we draw 

a circle through a and c, the circle cutting the vertical through B in the point b. 

The right triangles DAa, DCc, and bBD are similar since two sides of each triangle 

are identical in length with the corresponding two sides in the other triangles. As 

a conse quence, in the Mohr’s circle, b is situated 90° from a and c that is, double 

the 45° angles in the rosette. When we examine the relative positions of  the points

 Fig. 4.41  Example 4.3. Construction of Mohr’s circle from readings of 45° strain rosette (for 

case where 0 <  a <  c  <  b)
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a, b, and c in the Mohr’s circle of Fig. 4.41(b). however, we fi nd that the positions 

are the reverse of those in the rosette, and thus this circle cannot represent the state 

of strain measured by the rosette. We proceed again, in Fig. 4.41(c), and this time 

we lay off Aa = BD below the   axis and Cc = DB above the   axis and construct 

a circle on D as center; this is correct since a, b, and c have the same relative 

orientation in this circle as in the rosette.

When the Mohr’s circle has been established, the strain components for any 

particular set of axes can be obtained from the geometry of the circle in the manner 

illustrated in Example 4.3.

A relatively recent technique for the measurement of surface strains beyond 

those mentioned above is holographic interferometry.9 With this technique, a 

special photograph known as a hologram is taken of the object while it is in the 

unstrained state. After the loads are applied and the object is deformed, a second 

hologram is taken. When the two holograms are observed together, interference 

fringes are formed and these may be interpreted to yield the strain at various points 

on the surface of the object. The technique requires a laser beam as a light source, 

the use of high-resolution fi lm and vibration-free supports to produce satisfactory 

holograms. However, the technique is a highly promising one because it is 

extremely general and can handle objects as complex as, and with such irregular 

surfaces as, printed circuit boards and growing plants.

4.15  INDICIAL NOTATION

As mentioned in Sec. 4.2, it is frequently convenient, especially in general proofs 

for three dimensions, to describe components of stress in indicial notation. The 

convenience also applies as we saw to relations involving strains and displacements 

(4.36), and also will apply as we shall see in the next chapter to the stress-strain 

relations. In this section we shall briefl y review stress and strain and the relations 

involving each in terms of indicial notation. The notation is very concise and can 

be advantageous in permitting one to keep general principles in mind without 

getting lost in the details. On the other hand, because so much meaning is implied 

by every symbol, it requires considerable experience before one fully appreciates 

the complete physical signifi cance of deceptively simple manipulations in indicial 

notation. We do not emphasize the use of indicial notation in this book. The 

discussion in this section is provided as a brief introduction to the notation to be 

found in more advanced treatments of the mechanics of solids and fl uids.

We will not rederive all the important equations of this chapter in indicial 

notation. Instead we will show how the indicial form of the equations follow 

from our previous derivations. The results will be motivated for two dimensions. 

Once the equations are obtained in two dimensions, we can by analogy obtain the 

corresponding results in three dimensions. For example, in plane stress the state of 

stress at a point is given by (4.6) which we may think of as:

 sij i, j = 1, 2 (4.42)

9 See, for example. Holographic Instrumentation Applications, NASA SP-248, National Aero-

nautics and Space Administration, Washington, D.C., 1970.
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However, (4.42) applies as well when i, j = 1, 2, 3 to the state of stress in three 

dimensions given by (4.4). We will normally omit the range of values assumed by 

the subscripts in subsequent equations.

The equilibrium equations for stress upon use of the summation convention were 

written in the form

 
∂

∂
=

s ij

ix
0  (4.15)

A still further simplifi cation in writing the equation is obtained by indicating 

partial differentiation of any function f by a comma preceding the corresponding 

subscript:

∂
∂

=
f

x
f

i
i,

Thus the three-dimensional equilibrium equation (4.15) may be written

 sij,i = 0 (4.43)

If you are in doubt about the meaning of such an abbreviated notation, write out the 

equations in detail for each numerical value of each subscript.

The expression for a vector in terms of the indicial notation takes on a very 

compact form. For example, the stress vector, (4.2), can be written in the form

 
T e
n n( ) ( )

= Ti i  
(4.44)

where ei, are the unit vectors in the x1, x2, and x3 directions.

Let us now consider the expressions for the components of the stress vector 

acting on a plane whose normal is n in terms of the stress components on the co-

ordinate faces, (4.19). We have for the unit normal vector n, (4.20),

n = cos qi + sin qj = niei 

where the ni are the  direction cosines. Equations (4.19) now take the form

 
T1 11 1 21 2

( )n

= +s sn n

 
T2 12 1 22 2

( )n

= +s sn n

or T j ij in
( )n

= s  (4.45)

The compactness of (4.45) should be compared with (4.19).

We now wish to express the  transformation law for stress and strain in indicial 

notation. In Fig. 4.42 we defi ne the angle between the new x¢i axes and the old xj 

axes by qij;. The direction cosines of the new axes with respect to the old axes are

 lij =cos qij (4.46)

For example, from Fig. 4.42

l l11 12 12
2

= = = -Ê
ËÁ

ˆ
¯̃

=cos cos cos sinq q
p

q q

 

l l22 21 21
2

= = = +Ê
ËÁ

ˆ
¯̃

= -cos cos cos sinq q
p

q q
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The advantage of the use of the direction 

cosines is that we can write transformation 

relations upon rotation of axes in a simple 

manner.

From Prob. 1.2 we found the transformation 

for the components of a vector in the form

 F¢x = Fx cos q + Fy sinq 

 F¢y = –Fx sin q + Fy cos q

where the components of the vector in the rotated x¢i axes are indicated by primes. In 

indicial notation these become upon use of (4.46) and the summation convention:

 F¢1 = F1l11 + F2l12 = Fjl1 j

 F¢2 = F1l21 + F2l22 = Fjl2j

or in a compact form for both equations:

 F¢i = lij Fj (4.47)

If we now turn to the stress transformation formula of (4.23)

s¢x = sx cos2 q + sy sin2 q + 2txy sin q cos q

we see that in view of the defi nition of direction cosines this may be written in the 

form

s ¢11 = s11 l11l11 + s22 l12l12 + s12 l11l12 + s21l12l11

or

  s ¢11 = l1il1j sij

The general transformation law for the stress components may then be written as

 s¢1j = lipljq spq (4.48)

In exactly the same way, the strain transformation law from (4.40) can be written

 e¢ij = liplJqepq (4.49)

Both the stress transformation and strain transformation formula are identical 

in form. A quantity whose components transform in this manner upon rotation of 

axes is called a tensor. Mohr’s circle is thus a graphical representation of a tensor 

transformation.

All the formulas we have written in indicial notation apply to three dimensions.

 SUMMARY

Stress and Strain

As we extend our study of deformable bodies to more common cases where the 

conditions are non-uniform, we found it convenient to use a differentially small 

element in the body and apply the conditions of equilibrium to fi nd out the external 

forces and the reactions in the body. We still found it useful to use the three 

fundamental equations (2.1). 

Stress and plane stress

 The stress or the force intensity acting on a plane whose normal is ‘n’at a point is 

T
F

A

n

A
=

Æ
lim

D

D
D0

.

Fig. 4.42  Rotation of axes; angles
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There are four major characteristics of stress we must keep in mind:

1. the physical dimensions of stress are force per unit area,

2. stress is defi ned at a point upon an imaginary plane or boundary dividing the 

material into two parts,

3. stress is a vector equivalent to the action of one part of the material upon 

another,

4. the direction of stress vector is not restricted.

We also noted that there must be two directions to defi ne a stress component: one 

direction to identify the face in which the stress acts and the other direction to 

specify the direction of the force component which caused the stress. Hence, we 

have two types of stresses, the normal stresses (tensile or compressive) and the 

tangential stresses (shear stress). We also noted that there are six independent stress 

components at a point defi ned by the state of stress (three normal stresses and three 

shear stresses).

Equilibrium of a differential element in plane stress

 We analyze the equilibrium of an infi nitesimally small element to derive the 

differential equations governing the state of stress and their relationships. By 

the force and moment balance equations, we found that the shear stresses on the 

complimentary faces are equal, and a relationship between the normal stresses and 

the shear stresses as: 
∂
∂

+
∂

∂
=

∂

∂
+

∂

∂
=

s t t s
x xy xy y

x y x y
0 0;

Stress components associated with arbitrarily oriented faces in plane stress

 Also, from (4.23), we know the stress components on all faces if we know the 

stress components on any two perpendicular faces. Hence, if we know the stress 

components for all possible orientation of faces through the point, we know the 

state of stress at the point.

Mohr’s circle representation of stress

 By using (4.23), we can represent each term of the right side of the equation 

geometrically with stresses on a plane, i.e. normal stresses in the ordinate and shear 

stresses in the abscissa, leading to what is called the Mohr’s circle. It is a useful tool 

in analyzing the state of stress in any point and is used to evaluate the principal and 

maximum shear stresses.

Analysis of deformation

 Since we are concerned with real bodies, hence we must determine what restrictions 

the requirement of geometric compatibility imposes upon the deformation of a 

continuous body. To analyze the deformation, we evaluate the strain components 

in the body, which are normal strain component and the shear strain components, 

which can be related to the deformation by the displacement relations: 

e e gx y xy

u

x

v

y

v

x

u

y
=

∂
∂

=
∂
∂

=
∂
∂

+
∂
∂

; ;  

Strain components associated with arbitrary set of axes

 By (4.41), we were able to develop equation of strain components similar to (4.23), 

which related the strain components in arbitrarily oriented planes to the components 

in perpendicular faces, and the included angle. Hence by using (4.41), we were 
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able to draw the Mohr’s circle for strain similar to the Mohr’s circle for stress, the 

difference that the angles are doubled and the shear strain is halved in the strain 

circle.

Measurement of strain

 Also, the modes of strain measurement like strain gauges, photo-elasticity, brittle 

coatings, etc.… were discussed.

Hence, with the knowledge of evaluating the state of stress at a point and the 

relationships between deformation and the strain components, it will be useful for 

us to tackle complex cases and to simplify them in the subsequent chapters.

PROBLEMS

 4.1 Show that for a general state of stress at a point, such as illustrated in 

Fig. 4.8, the requirement that SF = 0 leads to the following three equations:

   
∂
∂

+
∂

∂
+

∂
∂

=
s t tx xy zx

x y z
0

   ∂

∂
+

∂

∂
+

∂

∂
=

t s txy y yz

x y z
0

   ∂
∂

+
∂

∂
+

∂
∂

=
t t szx yz z

x y z
0

 4.2 Show that if the particles of a solid are acted on by “body forces” which are 

distributed over the volume with intensities X, Y, and Z per unit volume, then 

the requirement of SF = 0 leads to

   ∂
∂

+
∂

∂
+

∂
∂

+ =
s t tx xy zx

x y z
X 0

   ∂

∂
+

∂

∂
+

∂

∂
+ =

t s txy y yz

x y z
Y 0

   ∂
∂

+
∂

∂
+

∂
∂

+ =
t t szx yz z

x y z
Z 0

 4.3 Show that if a state of plane stress is to be described in terms of polar 

coordinates, the requirement that SF = 0 leads to the following two 

equations:

   
∂
∂

+
∂
∂

+
-

=
s t

q

s sq qr r r

r r r

1
0

   

∂
∂

+
∂
∂

+ =
t s

q

tq q qr r

r r r

1
2 0

  Note that the length of the curved boundary on the outer edge of the element 

is (r + Dr) Dq.
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Prob. 4.3  

 4.4 Show that if a general state of stress is to be described in cylindrical 

coordinates, the requirement that SF = 0 leads to the following three 

equations:

Prob. 4.4  

    
∂
∂

+
∂
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+
∂
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+
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r r z r
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1
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+
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q

s tqzr z z zr

r r z r

1
0

 4.5 Assume that in Example 4.1 [Fig. 4.18(a)] the direction of the +a axis is 

reversed, as shown in the accompanying sketch. Show that the Mohr’s circle 

for this orientation of the a and b axes is identical with that for the orientation 

given in Fig. 4.18(a). Show also that when the stress components are taken 

from the Mohr’s circle and drawn on the element in the accompanying 

sketch, the direction of the shear-stress components will be the same as in 

Fig. 4.18(c). This demonstrates that our sign convention for shear stresses 

in the Mohr’s circle has the necessary characteristic that the physical results 
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are independent of the choice of positive coordinate direction in the stressed 

body.

Prob. 4.5  

 4.6 Sketch the Mohr’s circle for stress for each of the following cases of plane 

stress.

Prob. 4.6  

 4.7 Find the principal stresses and the orientation of the principal axes of stress 

for the following cases of plane stress.

 (a) sx = 40 MN/m2 (b) sx = 140 MN/m2 (c) sx = –120 MN/m2

  sy = 0  s y = 20 MN/m2  sy = 50 MN/m2

  txy = 80 MN/m2  txy = –60 MN/m2  txy = 100 MN/m2

 (d) sx = 70 MN/m2 (e) sx = –70 MN/m2

  sy = 30 MN/m2  sy = 140 MN/m2

  txy = 60 MN/m2  txy = –40 MN/m2

 4.8 If the minimum principal stress is –7 MN/m2, fi nd sx and the angle which 

the principal stress axes make with the xy axes for the case of plane stress 

illustrated.
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Prob. 4.8  

 4.9 For the state of stress given in Prob. 4.7(c), fi nd the stress components on an 

element inclined at 30° to the xy axes.

Prob. 4.9  

 4.10 Consider a thin-walled cylinder

of internal radius r and 

thickness t. If the cylinder 

is subjected to an internal 

pressure p and an axial 

force F, show that the r, q, z 

directions are the principal 

stress directions. Show also 

that if the wall is so thin that 

t/r   1, then the stresses 

in the pipe wall are given 

approximately by

 sr = 0

  sq =
pr

t

  
s

p
z

F

rt
=

2

 4.11 For the thin-walled cylinder of Prob. 4.10, what should be the relation 

between F and p if the maximum shear-stress component in the wall is to 

Prob. 4.10
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have the same magnitude as the maximum normal stress component? 

What should be the relation between F and p if the maximum shear-stress 

component in the wall is to be half the magnitude of the maximum normal 

stress component?

 4.12 Consider a thin-walled cylindrical shell of internal radius r and thickness t, 

with ends which will contain pressure. Show that the principal stresses in the 

cylinder wall are given approximately by the following when the cylinder 

contains an internal pressure p:

  sr = 0

  
sq =

pr

t

  
s z

pr

t
=

2

 4.13 Show that in a closed-end, thin-walled cylinder subjected to internal pressure 

the maximum shear-stress component in the qz plane is one-quarter the 

maximum normal stress component in 

that plane.

 4.14 Show that in a thin-walled sphere of 

internal radius r and thickness t subjected 

to internal pressure p the principal 

stresses are given approximately by the 

following:

 sr = 0

   
sq =

pr

t2

   
sf =

pr

t2

 4.15 A rectangular plate is under a uniform 

state of plane stress in the xy plane. It is 

known that the maximum tensile stress 

acting on any face (whose normal lies 

in the xy plane) is 75 MN/m2. It is also 

known that on a face perpendicular to 

the x axis there is acting a compressive 

stress of 15 MN/m2 and no shear stress. 

No explicit information is available as 

to the values of the normal stress sy, 

and the shear stress tyx acting on the 

face perpendicular to the y axis.

   Find the stress components acting on 

the faces perpendicular to the a and b 

axes which are located as shown in the 

lower sketch. Report your results in an 

unambiguous sketch.

Prob. 4.14

Prob. 4.15
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 4.16 Show in a general three-dimensional displacement that if the displacement 

components in the x, y, and z directions are u, v and w, respectively, the strain 

components referred to the xyz axes are

   
   x y z

u
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y
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z
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 4.17 In a case of plane strain in which 

each point displaces radially in a 

rotationally symmetric fashion about 

the origin O, the displacement can be 

expressed by a single displacement 

component u in the radial direction. 

Show that the strain components 

referred to the radial, tangential (r, q) 

set of axes are

   
  r r

du

dr

u

r
= = =q g

q
0

 4.18 A general deformation in plane 

strain can be described in polar 

coordinates by expressing the 

displacement of each point as the 

vector sum of a radial component 

u and a tangential com ponent v.  

Show that in such a case the strain 

components referred to the r, q set 

of axes are 
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 4.19 Using the results of Prob. 4.18, show that if a general three-dimensional 

deformation is to be described in cylindrical coordinates r, q, and z in 

which the displacement components are u, v, and w, respectively, the strain 

components referred to the r, q, z axes are
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Prob. 4.17

Prob. 4.18
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Prob. 4.19

 4.20 In a state of plane strain in the xy plane the strain components associated 

with the xy axes are

  x = 800 ¥ 10–6 

  y = 100 ¥ 10–6 

 yxy = –800  ¥ 10–6

  Find the magnitude of the principal strains and the orientation of the principal 

strain directions.

 4.21 At a point in a body the principal strains are

  I = 700 ¥ 10–6 

  II = 300 ¥ 10–6 

  III = –300  ¥ 10–6

  What is the maximum shear-strain component at the point? What is the 

orientation of the axes which experiences the maximum shear strain?

 4.22 The readings of a 45° strain rosette (Fig. 4.40(b)) are

 (a)  a = 100 ¥ 10–6 (b)  a = 1,200 ¥ 10–6

  
 b = 200 ¥10–6   b = 400 ¥ 10–6

   c = 900 ¥ l0–6   c = 60 ¥ 10–6

  Find the magnitude of the principal strains in the plane of the rosette.

 4.23 A body is in plane strain in the xy plane. The strain components associated 

with the xy axes are

  x = –800 ¥ 10–6 

  y = –200 ¥ 10–6 

 gxy = –600 ¥ 10–6

  Show in a suitable sketch the location of the axes with which the maximum 

shear strain is associ ated. Show also the deformed shape of an element which 

originally was a parallelepiped with its faces parallel to these axes.

 4.24 Using the results of Prob. 4.19, show that if a body undergoes a displacement 

v = Cr, there will be no strains resulting from this displacement. Since there 

are no strains, this displacement must describe a rigid-body motion. What is 

this motion?
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 4.25 A long, cylindrical pressure vessel with closed ends is to be made by rolling 

a strip of plastic of thickness t and width w into a helix and making a 

continuous fused joint, as illustrated. It is desired to subject the fused joint to 

a tensile stress only 80 percent of the maximum in the parent plastic. What is 

the maximum allowable width w of the strip?

Prob. 4.25  

 4.26 In each of the two cases fi nd the principal stress directions if the stress at a 

point is the sum of the two states of stress illustrated.

Prob. 4.26  

 4.27 An open-ended, thin-walled cylinder, r = 25 cm and t = 0.25 cm is acted on 

by an internal pressure p and an axial force F. Find the values of p and F 

acting in each of the following two situations:

 (a) sm = 100 MN/m2 sn = 30 MN/m2 tmn = ?

 (b) sm = 100 MN/m2 sn = 100 MN/m2 tmn = ?

Prob. 4.27  
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 4.28 At a point in a body in plane stress the shear 

stress on the xy faces is as sketched. Also, 

it is known that the principal stresses at this 

point are

   s1 = 20 MN/m2  s2 =  –45 MN/m2

  Complete the stress picture for the xy faces; 

that is, calculate sx and sy and show them in 

proper direction and magnitude in a suitable 

sketch.

 4.29 The displacements for a rigid-body rotation 

through an angle b about an axis may be described by

 u(x, y) = (cos b – 1)X – sin by 

 v(x, y) = sin bx + (cos b – 1)y

  Determine the rotation wz (4.32) and the strains (4.33); do the strains vanish? 

What are the values of the strains and the value of wz when the rotation b is 

small?

 4.30 If the boundary portion AB of a structure 

under plane stress is stress-free as 

illustrated, the stress vector acting on 

the portion AB must be zero. Express 

the condition that the components of the 

stress vector must vanish in terms of the 

stress components with respect to the 

coordinate axes and the angle a.

 4.31 Show from (4.25) that the angles which make sx , a maximum or minimum 

correspond to the principal directions.

 4.32 Lightweight pressure vessels often use glass fi laments for resisting tensile 

forces and use epoxy resin as a binder. Find the angle of winding, a, of the 

fi laments when the ends of the vessel are closed such that the tensile forces 

in the fi laments are equal (see Prob. 4.12).

Prob. 4.32  

 4.33 Recall from Chapter 3 that the equilibrium equations for a slender beam 

(3.11) and (3.12) are

dV

dx
q

dM

dx
Vb+ = + =0 0

  Show that an integration of the equilibrium equations (4.13) across the 

thickness of a beam in plane stress reduces to the above equations where

Prob. 4.28

Prob. 4.30
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 4.34 A sea urchin egg, which may be considered a thin-walled sphere, has 

a volume of 35 ¥ 10–5 mm3 and wall thickness = 1 mm. Micropuncture 

techniques give values for the internal pressure of approximately 150 mm 

Hg. Calculate the membrane stresses in the egg wall.
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Stress-Strain-
Temperature 

Relations

5.1 INTRODUCTION

5

In Chapter 4 the ideas of stress 
and strain at a point were 
developed separately, using only
geometry and the physical con-
cepts of equilibrium of forces 
and con tinuity of displacements. 
We did not in Chapter 4 specify 
the nature of the material of the 
body. The presence of only three 
equations of equilibrium for the 
six components of stress and the 
addition of three components of 
displacement in the six equations 
relating strain to displacement 
indicates that further relations 
are needed before the equations 
can be solved to determine the 
distributions of stress and strain 
in a body; i.e., the distribution of 
stress and strain will depend on 
the material behavior of the body. 
In this chapter we shall concern 
ourselves with the relations 
between stress and strain. Two 
avenues of approach suggest 
themselves: (1) relations based 
on experimental evidence at the 
atomic level with theoretical 
extension to the macroscopic 

level or (2) relations based on 
experimental evidence at the 
macroscopic level. Although 
there has been much progress in 
the physics of solids during the 
past 40 years, the subject has not 
yet developed to the point where 
very much of the quantitative 
information required by engineers 
can be predicted from atomic 
data. We shall turn, therefore, 
to experimental data at the 
macroscopic level, obtaining the 
stress-strain relations we need by 
generalizing these data with the 
aid of physical and mathematical 
arguments.
 In this chapter we describe the 
stress-strain behavior of a wide 
variety of structural materials, 
including metals, wood, polymers, 
and composite materials. Elas-
tic, plastic, and viscoelastic 
behavior are discussed and vari-
ous mathematical models are 
established to describe elasticity 
and plasticity. For application in 
subsequent chapters, we develop 
in some detail the theory of linear 
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isotropic elasticity. More briefl y 
we describe, and give design 
criteria for, yielding of ductile 
materials, fracture of brittle 
materials, and fatigue under 
repeated loading. An attempt is 
made to give an introduction1 to 
most of the aspects of material 
behavior which are important for 
engineering applications.
 A few preliminary experiments 
may serve to illustrate the kinds 
of load-deformation behavior 
that materials exhibit. Straighten 
out a paper clip and clamp it 
between a book and the edge of 
a table, as shown in Fig. 5.1. Press 
on it lightly; release the load and 
notice that it returns to its original 
shape. This illustrates  elastic 
deformation, which is defi ned as 
the deformation that disappears 
on release of load. Reload the wire 
and note that greater deformations 
require greater loads. Increase the 
load and note that fi nally a value 
of the load is reached such that 
when this load is released the wire 
does not return all the way to its 
original shape but remains partly 
bent. Hang on the end of the wire 
a fi xed load large enough to cause 
permanent bending, and note 
that the amount of deformation 
does not increase with time. 
These phenomena characterize 
 plastic deformation, which is de-
fi ned as the deformation which 
depends on the applied load, is 
independ ent of time, and remains 
on release of load. Bend the 

wire further, keeping the force 
perpendicular to the wire. The 
force required to bend the wire 
90° is greater than that required 
to initiate plastic deformation. 
This increase in the load required 
for further plastic deformation is 
termed  strain-hardening. Note that 
as the load increases, the elastic 
deformation continues to increase, 
as is shown by the increased 
springback upon release of the 
force. Try to break the wire by 
bending it sharply. You probably 
will be unable to do so. A ductile 
structure is defi ned as one for 
which the plastic deformation 
before fracture is much larger 
than the elastic deformation. To 
get an idea of the full ductility of 
the wire, bend it into the shape 
of a U and twist it as shown in 
Fig. 5.2. The plastic deformation 
up to fracture may be a hundred 
times the elastic deformation. 
Finally, note that the wire can 
be broken by repeated bending 
back and forth. This progressive 
fracture under repeated load is 
termed  fatigue.

Fig. 5.1  Bending experiment

1 For more complete discussions of material behavior, see  F.A. McClintock and  A. Argon 
(eds), “Mechanical Behavior of Materials,” Addison-Wesley Publishing Company, 
Inc., Reading, Mass., 1966. An interesting fi lm depicting different material behavior is 
“Behavior of Structural Materials,” Film No. 2 in the McGraw-Hill Film Series on The 
Mechanics of Structures and Materials, McGraw-Hill Book Company, New York, 1969.
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Fig. 5.2  Twisting experiment

 Repeat the bending experi-
ments with a piece of “lead” from 
a mechanical pencil. We defi ne as 
 brittle a structure which exhibits 
little deformation before fracture. 
Whether brittle or ductile behavior 
occurs depends not only on the 
material involved but also on the 
temperature. For example, a steel 
paper clip under bending is ductile 
at room temperature but is brittle 
at temperatures below about –
75°C. Thus, the classifi cation of a 
structure as being ductile or brittle 
depends upon the temperature of 
test. Unless specifi cally indicated 
otherwise, room temperature is 
implied when these terms are 
used.
 Furthermore, ductility depends 
on the size of the structure. The 
cleavage of a grain or the growth 
of a hole from a nonmetallic 
inclusion are the fundamental 
mechanisms by which cracks 
grow, leading to fracture of the 
structure. These processes require 
a certain strain over regions of 
the order of a micron in size. To 
get such large strains in turn 
requires some plastic strain in a 
surrounding region perhaps a 
hundred to a thousand times as 
large. Thus in the presence of an 
accidental crack or fl aw, a small 

portion of a structure may deform 
plastically before appreciable 
localized fracture occurs. Such a 
portion would be ductile even in 
the presence of the crack. A larger 
part, however, might still have a 
large elastic region surrounding 
the plastic zone when the crack 
started to grow so that the overall 
deformation of the part would 
only be little more than the elastic 
deformation. Such a part or 
structure would be called  notch-
brittle. Of course in the absence of 
any notches or cracks the plastic 
strain required to nucleate such 
defects may be large enough 
so that even relatively large 
structures are ductile. This is the 
case with normal structural steels, 
but the higher-strength alloys, 
coming into more common use, 
tend to be notch-brittle.
 Another important behavior 
of materials becomes evident at 
absolute temperatures which are 
about half the melting point of the 
material; at these temperatures 
the deformation under constant 
load increases with time. This 
time-dependent part of the 
deformation is called  creep. For a 
steel paper clip the deformation 
due to creep becomes signifi cant 
at a temperature of about 480°C, 
whereas for aluminum the corres-
ponding temperature is about 
200°C.
 Another time-dependent phe-
nomenon is the slow recovery 
of shape which some materials 
undergo when they are unloaded. 
This may be observed by folding a 
piece of paper and then releasing 
it. Note that there is fi rst an 
immediate elastic springback 
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followed by a relatively slow 
unfolding; this is called  elastic 
aftereffect, or  recovery.
 Many plastics (long-chain 
polymers) exhibit a mixture of 
creep and elastic aftereffects at 
room temperature. The general 
term for such behavior is  visco-
elasticity, which includes the 
viscous behavior of liquids in the 
limiting case.

 These simple experiments serve 
to indicate some idealized kinds of 
material behavior under applied 
loads. In the following sections 
we shall examine some of these 
aspects more fully and discuss the 
quantitative relationships which 
are at present commonly used to 
describe these phenomena.

5.2 THE  TENSILE TEST

In common with all branches of science we wish to develop a theory which will 

allow us to predict behavior in a general situation from the results of an experiment 

made in a very simple situation. The most simple loading situation we can imagine 

is one in which a relatively slender member is pulled in the direction of its axis. 

Such a test is called a tensile test. Our aim is to use tensile-test data to formulate 

quantitative stress-strain relations which, when incorporated with equilibrium and 

compatibility requirements, will produce theoretical predictions in agreement with 

the experimental results in complicated situations.

To perform a tensile test, a piece of material is cut in the form of a cylindrical 

test specimen, such as that shown in Fig. 5.3. The ends are moved apart by a testing 

machine which indicates the load required at each stage. The elongation and lateral 

contraction are also noted as the test proceeds. Since we expect thicker specimens 

to carry higher loads, and longer ones to stretch farther, as indicated in Fig. 2.4, we 

convert the results of such tests from load and elongation to stress and strain.

Fig. 5.3  A tensile-test specimen and gages for measuring deformation
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Taking axes x, y, z such that y and z lie in the cross section and x is coincident 

with the axis of the tensile specimen, the only component of stress present is the 

axial normal component sx which is found by dividing the load by the cross-

sectional area.

Usually the only component of strain reported from a tensile test is the 

axial normal component. To obtain this strain component, two gage marks can 

be made on the specimen, and the displacement of one measured relative to 

another, as shown in Fig. 5.4. Taking the lower gage mark as a point of zero 

displacement, the displacement vectors of various points on the specimen will 

be as in Fig. 5.4. If the displacements vary uniformly over the gage length L, 

one may write

u
X

L
L= D

For small strains, application of the defi nition of strain (4.31) yields

  x

u

x

L

L
=

∂
∂

=
D

 (5.1)

Fig. 5.4  Displacements in a tensile test

The results of room-temperature tests on a variety of materials are shown in

Fig. 5.5. These tests were carried out to strains of only a few percent; in the cases 

of steel, aluminum, and the aluminum alloys this was far from the strains at which 

fracture would occur (see Fig. 5.39). As a matter of interest, the 1020 CR curve of 

Fig. 5.5(a) represents a close approximation to the behavior of the steel from which 

paper clips are made.

There are a number of features which many of the stress-strain curves of

Fig. 5.5 have in common. At fi rst there is a region where the stress is very nearly 
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proportional to the strain. The  proportional limit is defi ned as the greatest stress 

for which the stress is still proportional to the strain. The  elastic limit is defi ned as 

the greatest stress which can be applied without resulting in any permanent strain 

on release of stress. Figure 5.6(a) illustrates the loading and unloading behavior of 

a material which is elastic at stresses greater than the proportional limit. For the 

materials shown in Fig. 5.5, the proportional and elastic limits coincide. For these 

materials, if the stress is increased beyond the elastic limit and then removed, the 

stress-strain curve has the shape shown in Fig. 5.6(b). The slopes of the unloading 

and reloading curves are nearly equal to the slope in the initial elastic region. It is 

convenient to think of the total strain OB under a given stress as being made up of 

an elastic part AB and a plastic part OA.

Neither the proportional nor the elastic limits can be determined precisely, 

for they deal with the limiting cases of zero deviation from linearity and of no 

permanent set. Since plastic deformations of the order of the elastic strains are 

often unimportant, instead of reporting the elastic limit it has become standard 

practice to report a quantity called the  yield strength, which is the stress required 

to produce a certain arbitrary plastic deformation. The yield strength is determined 

by drawing through the point on the abscissa corresponding to the arbitrary plastic 

strain, usually 0.2 percent, a line which is parallel to the initial tangent to the 

stress-strain curve; the intersection of this line with the stress-strain curve defi nes 

the yield strength. This construction is illustrated in several cases in Fig. 5.5. Note 

that, because of the method of determination, these yield strengths are more sharply 

defi ned than are the proportional limits.

For many of the common steels the plastic deformation begins abruptly, resulting in 

an increase of strain with no increase, or perhaps even a decrease, in stress. For such 

materials a  yield point is defi ned as a stress level, less than the maximum attainable 

stress, at which an increase in strain occurs without an increase in stress. The stress at 

which such plastic deformation fi rst begins is called the  upper yield point; subsequent 

plastic deformation may occur at a lower stress, called the  lower yield point. [See 

curve for 1020 HR in Fig. 5.5(a)]. The upper yield point is very sensitive to rate of 

loading and accidental bending stresses or ir regularities in the specimen, so the lower 

yield point should be used for design purposes. Unfortunately, it is the upper yield 

point which is often tabulated, without being labeled as such, in tables of properties.

As plastic deformation is continued, the stress required for further plastic fl ow, 

termed the  fl ow strength, rises. This characteristic of the material in which further 

deformation requires an increase in the stress usually is referred to as  strain-

hardening of the material. Other developments as the test is carried to large plastic 

deformation are discussed in Sec. 5.12.

Note, in Fig. 5.5(c), that for glass, stress is proportional to strain up to the 

point of fracture. Its behavior is entirely elastic; there is no evidence of plastic 

deformation in either tension or compression. Also, the stress at which fracture 

occurs is much greater in compression than in tension; this is a usual characteristic 

of brittle materials.
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Fig. 5.5(a)  Stress-strain curves for three steels.

- - - - Mild steel, hot-rolled (1020 HR)

 – – Mild steel, cold-rolled (1020 CR)

 —— 0.3% C, 0.5% Mn, 0.25% Si, 0.9% Cr, balance Fe (4130 HT)

 Heat treatment: Oil quenched from 870°C, tempered at 315°C

Fig. 5.5(b)  Stress-strain curves for aluminum and two aluminum alloys.

- - - - Commercially pure aluminum, annealed (1100-0)

 – – 4.6% Cu, 1.5% Mg, 0.7% Mn, balance Al, annealed (2024-0)

 —— 4.6% Cu, 1.5% Mg, 0.7% Mn, balance Al (2024-T4)

  Water quenched from 490°C, aged 24 hr at 120°C
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Fig. 5.5(c)  Stress-strain curves for cast iron (From  L.F. Coffi n, Jr., The Flow and Fracture of a 

Brittle Material, J. Appl. Mechanics, vol. 17, pp. 233–248, 1950; and  S.H. Ingberg 

and  P.D. Sale, Compressive Strength and Deformation of Structural Steel and Cast 

Iron Shapes at Temperatures up to 950° C, Proc. ASTM, vol. 26, part 2, pp. 33–

51, 1926) and glass (From  G.W. Morey, “Properties of Glass,” Reinhold Publishing 

Corporation, New York, 1954)

Fig. 5.5(d)  Stress-strain curve for commercial polymethyl methacrylate (From  A.G.H. Dietz,  W.J. 

Gailus, and  S. Yurenka, Effect of Speed of Test upon Strength Properties of Plastics, 

Proc. ASTM, vol. 48, pp. 1160–1190, 1948)

Some materials exhibit time-dependent behavior, as shown in Fig. 5.5(d). At 

room temperature this viscoelastic behavior is commonly found in polymers whose 

structure consists of long-chain molecules with primary chemical bonds along the 

chain and secondary bonds between chains. The secondary bonds can be broken by 

thermal activation. At higher temperatures, metals can also exhibit time-dependent 

effects (Sec. 5.18). For the polymethyl methacrylate of Fig. 5.5(d), note that the 

time effect is rather small: changing the strain rate by a factor of 200 changes the 

stress at a given strain by only 30 percent. In linearly viscous liquids, on the other 

hand, a 30-percent change in stress would result from only a 30-percent change in 

strain rate. In metals at room temperature, the strain-rate effect can be observed 

but is much less; typically a 30-percent change in stress would require changing 
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the strain rate by a factor of a million or more. Thus strain-rate effects can often 

be neglected, although they may be important in com paring the behavior of the 

structure under loads over a period of 20 years to that under loads occurring during 

a collision or explosion.

Fig. 5.6  Effect of unloading and reloading. (a) Elastic; (b) plastic

For most ductile materials the stress-strain curves for tension and com pression 

are nearly the same for strains small compared to unity, and in the follow ing 

theoretical developments we shall assume that they are identical.

5.3 IDEALIZATIONS OF STRESS-STRAIN CURVES

In any problem in the mechanics of deformable bodies, we need to know the 

physical relation between stress and strain. This stress-strain relation, together with 

the equilibrium equations (4.13) and the strain-displacement relations (4.33), must 

be satisfi ed at every point in a deformable body in equilibrium. These relations 

for each differential element comprise the three steps (2.1) on which the solution 

must be based. From the foregoing discussion of the tensile test, it is evident that 

different materials often have quite dissimilar stress-strain relations, and that, with 

the exception of glass, no simple mathematical equation can fi t the entire stress-

strain curve of one of the materials in Fig. 5.5. Because we wish the mathematical 

part of our analysis to be as simple as possible, consistent with physical reality, we 

shall idealize the stress-strain curves of Fig. 5.5 into forms which can be described 

by simple equations. The appropriateness of any such idealization will depend 

on the magnitude of the strains being considered, and this in turn will depend 

upon whatever practical problem is being studied at the moment. To decide what 

idealizations of the stress-strain curves are needed, we must turn to the applications 

of mechanics in which these idealizations are used.

Sometimes we must design structures so as to accommodate or produce certain 

desired deformations. Examples of such applications are the design of springs, 

safety valves, bumpers, crash panels, shear pins, and blowout diaphragms. Some 

such elements, e.g., springs, must accommodate the desired deformations repeatedly 

and reproducibly. In such cases the material must operate below the elastic limit, 

and a linear approximation to the stress-strain curve will be required. Crash panels 

and automobile bumpers should not deform permanently under normal usage, but 
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should deform plastically and so limit the deceleration in case of an accident. Here 

an approximation is needed for both the elastic and plastic regions. Shear pins and 

blowout diaphragms are intended to fracture completely at certain loads, and for 

such structures the elastic deformations may be of no importance at all.

Another use of the mechanics of deformable bodies is in the design of metal-

forming and cutting processes. In metal forming, the strains usually are relatively 

small compared to unity, and elastic springback may be a problem. In metal cutting, 

the strains may be even greater than unity, and elastic effects often are negligible.

Perhaps the most important use of the mechanics of deformable bodies occurs in 

designing elements so that failure will not occur.  Excessive deformation is one mode 

of failure. Machine parts often must fi t closely and reliably, and this requirement 

may not be satisfi ed if plastic deformation occurs. Even in the absence of plastic 

deformation, rather small strains will lead to large elastic de fl ections in long, thin 

members subjected to bending and twisting. Therefore, there are many members 

in which the allowable strains are limited to those found in the elastic region. For 

these members, linear-elastic relations will be suffi cient for design against excessive 

deformation.

There are other conditions under which some plastic deformation is allowable. 

A little plastic deformation around an oil hole or a fi llet may not be noticeable. In 

other situations, if dimensional changes of a few percent can be accommodated, 

then the structure may still be serviceable even though some general plastic defor-

mation has occurred. The most common instance of this is the design of structures 

against extreme overloads such as those caused by earthquakes, bomb blasts, or 

storms, and in the design of transportation equipment against bad roads, minor 

accidents, or storms. For calculations intended to assure safety under these con-

ditions, it is necessary to have a relation between stress and strain which holds 

for values of strain up to, say, 0.05. In such cases one can see from Fig. 5.5 that 

for some materials it is reasonable to assume that the stress does not change after 

yielding has begun. This assumption greatly simplifi es the mathematical treat ment 

of the problem and, at the same time, does not lead to stresses which are in error by 

more than approximately 10 percent.

 Fracture is the most dangerous mode of failure. Brittle structures are those that 

fracture with little plastic deformation compared with the elastic deforma tion, 

and so we may base all our calculations for these materials on a linear relation 

between stress and strain. For ductile structures there is as yet no quantitative 

theory which will predict fracture. Some of the diffi culty in our understanding of 

this phenomenon probably arises from our lack of knowledge of the distributions 

of stress and strain in the plastic region in front of a crack, and some from our lack 

of knowledge of strain around the holes that grow from inclusions and coalesce to 

cause fracture. To study either of these strain distributions it will be necessary to 

have available stress-strain relations which are reasonable approximations for large 

plastic strains. In some large structures fracture by hole growth can spread from 

a sharp notch even though the average stress is below the yield strength. In such 

cases the elastic strains also must be taken into account.

Another form of fracture arises when stresses, perhaps even less than the 

yield strength, are applied repeatedly, say thousands or millions of times. These 
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repetitions of stress eventually produce fi ne cracks which grow very slowly at 

fi rst and then extend rapidly across the entire part, giving very little warning of 

the impending failure. This process is known as  fatigue. (See Sec. 5.15 for a more 

complete discussion of fatigue.) Since fatigue can occur even if the stresses are 

below the yield strength, it is suffi cient for most practical design purposes to know 

the relation between the stress and the strain within the elastic region. On the other 

hand, plastic yielding certainly does occur at the tip of the growing crack, and if we 

wish really to understand the physical mechanism of the growth of fatigue cracks, 

we must use relations between stress and strain which take plasticity into account.

Failure by  corrosion can be greatly accelerated by the presence of stress. A 

small corrosion pit will cause a local stress concentration which will in turn create 

an electromotive force between the highly stressed and the less stressed regions. 

This electromotive force in turn accelerates the corrosion, and the process can lead 

to the development of cracks and fi nal fracture of the part. This problem is most 

serious when it is least expected, for example, in normally noncorroding materials 

such as brass and stainless steel. As in fatigue, the phenomenon may occur when 

stresses are below the yield strength so that the elastic stress-strain assumptions are 

of practical use.

Perhaps the most common form of mechanical failure is by  wear. The laws 

governing the overall friction and wear between two surfaces seem to depend 

primarily on the total force transmitted across the two surfaces rather than on the 

local distribution of the force. For this reason, in considering the overall effects, the 

local distributions of stress and strain are unimportant, and one may assume that 

the two bodies in contact are perfectly rigid. In studying the details of the actual 

mechanism of wear and friction, however, one must take into account the extremely 

small areas of actual load contact between two bodies and the elastic and plastic 

deformations in these regions. Another factor which must be con sidered in studying 

the detailed mechanism is the surface condition of the metal, since this condition 

may be such that these local points of contact behave in a manner quite different 

from that of the same material in bulk form.

The preceding discussion of problems arising in the mechanics of solids shows 

that there is a need for a variety of stress-strain relations, depending on the problem 

at hand. Since for most materials it is impossible to describe the entire stress-strain 

curve with a simple mathematical expression, in any given problem the behavior 

of the material is represented by an  idealized stress-strain curve which emphasizes 

those aspects of the behavior which are most important in that particu lar problem. 

Six such idealized models of material behavior are described below and illustrated 

in Fig. 5.7.

A  rigid material [Fig. 5.7(a)] is one which has no strain regardless of the applied 

stress. This idealization is useful in studying the gross motions and forces on 

machine parts to provide for adequate power and for resistance to wear.

A linearly  elastic material [Fig. 5.7(b)] is one in which the strain is proportional 

to the stress. This idealization is useful when we are designing for small deforma-

tions, for stiffness, or to prevent fatigue or fracture in brittle structures.

A  rigid-plastic material is one in which elastic and time-dependent deforma tions 

are neglected. If the stress is released, the deformation remains. Strain-hardening 
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may be neglected [Fig. 5.7(c)], or a relation for the strain-hardening may be 

assumed [Fig. 5.7(d)]; in the former case, the material is termed  perfectly plastic. 

Such idealizations are useful in designing structures for their maximum loads, in 

studying many machining and metal-forming problems, and in some detailed 

studies of fracture.

An  elastic-plastic material is one in which both elastic and plastic strains are 

present; strain-hardening may or may not be assumed to be negligible [Figs 5.7(f) 

and (e)]. These idealizations are useful in designing against moderate deforma tions 

and when carrying out detailed studies of the mechanisms of fracture, wear, and 

friction.

Fig. 5.7  Idealized models of material behavior

Other idealizations could be made, but these models are those of most practical 

use from the standpoint of mathematical simplicity. To illustrate the construction of 

an idealized stress-strain curve of a material and also to illustrate the use of such a 

curve, we consider the following example.

Example 5.1
 Two coaxial tubes, the inner one of 1020 CR steel and

  cross-sectional area As, and the outer one of 2024-T4 aluminum 

alloy and of area Aa, are compressed between heavy, fl at end plates, as shown in 

Fig. 5.8. We wish to determine the load-defl ection curve of the assembly as it is 
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com pressed into the plastic region by an axial force 

P. 

∑ We consider the symmetrical loading and 

construct the idealised model in Fig. 5.9.

∑ Apply the stress-strain relationships for the 

different conditions where steel and aluminum 

are elastic; steel is plastic and aluminum is 

elastic; both steel and aluminum are plastic. 

∑ Draw the load deformation curve applying 

equilibrium equations.

Our fi rst step is to con struct an idealized model 

of the situation, which we show in Fig. 5.9 (note 

similarity to idealized model of Example 2.1). We 

assume in Fig. 5.9 that the end plates are so stiff that 

both tubes are shortened exactly the same amount. We now apply the steps (2.1) to 

the idealized model of Fig. 5.9.

GEOMETRIC COMPATIBILITY

From Fig. 5.9 we see that, because of geometric compatibility, we must have the 

following relation between the strains:

    s a
L

= = =
d

 (a)

Fig. 5.9  Idealized model for Example 5.1

STRESS-STRAIN RELATIONS

We wish to carry the test through the elastic region to the point where both materials 

are in the plastic region. Looking at the curves for 1020 CR steel and 2024-T4 

aluminum alloy in Fig. 5.5(a) and (b), we conclude that we can, with reasonable 

accuracy, idealize both these curves as being of the elastic-perfectly plastic type of 

Fig. 5.7(e), although the 1020 CR steel is described by this model somewhat better 

than is the 2024-T4 aluminum alloy. These idealized stress-strain curves are shown 

in Fig. 5.10. From Fig. 5.10 we see that there are three regions of strain which are 

of interest as we compress the assembly.

Fig. 5.8  Example 5.1
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Fig. 5.10  Idealized stress-strain curves for Example 5.1

In the range 0       0.0032,

ss  = Es s = Es 

 sa  = Ea a = Ea  (b)

where

    
Es = =

590

0 0032
184

.
GN/m2

Ea = =
380

0 005
76

.
GN/m2

In the range 0.0032       0.005,

    ss = Ys = 590 MN/m2 (c)

sa = Ea a =Ea 

In the range 0.005    ,

ss = Ys = 590 MN/m2

 sa = Ya = 380 MN/m2 (d)

EQUILIBRIUM

In Fig. 5.9 the top plate is in equilibrium when

 SFy = ss As + sa Aa – P = 0 (e)

where As and Aa are the cross-sectional areas of the metal in the steel and aluminum 

tubes.

Combining (e) with (b), (c), and (d) in succession, we obtain the load-

deformation curve of Fig. 5.11. It should be borne in mind that this is the load-

deformation curve for the idealized materials of Fig. 5.10. If we repeat the analysis 

replacing (b), (c), and (d) by the actual stress-strain curves of the materials from 

Fig. 5.5(a) and (b), we will obtain the dotted curve shown in Fig. 5.11, which is 

only slightly different from the result using the idealized curves.
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Fig. 5.11  Load-deformation curve for Example 5.1

The idealized models introduced above represent the behavior of material as 

observed in the tensile test. We now turn to the generalization of these idealized 

uniaxial stress-strain relations for application to more general situations, where any 

or all components of stress and strain may be present.

5.4  ELASTIC STRESS-STRAIN RELATIONS

In the preceding sections stress-strain relations were considered for the special case 

of  uniaxial loading. Only one component of stress, the axial normal component, 

was present, and only the axial normal component of strain was considered. In 

this section we shall generalize the  elastic behavior in the tension test to arrive at 

relations which connect all six components of stress with all six components of 

elastic strain. We shall restrict ourselves to materials which are  linearly elastic, 

corre sponding to the idealized model of Fig. 5.7(b). We shall use as our defi nition 

of strains the one developed in Sec. 4.10 and expressed in Eqs (4.33), and thus we 

also restrict ourselves to strains small compared to unity. These assumptions are not 

a serious limitation except for materials such as rubber, in which large nonlinear 

elastic strains may occur.

As an aid to formulating general stress-strain relations from uniaxial test 

data, we shall consider some of the physical aspects of materials. All solids have 

some regularity in the arrangement of the atoms of which they are composed. 

Metals have the atoms arranged in a regular crystal lattice. Plastics consist of 

long chain molecules. Even glass has some order in the tetrahedral arrangement 

of silicon and oxygen atoms. These structural elements have different stiffnesses 

in different directions. In many materials these structural elements are arranged 

in a random fashion and are so small that there are millions of them, sometimes 

billions of billions, in a cubic inch. Even a cube of such material which appears 

small to the naked eye will have thousands of structural elements with just about 

every conceivable orientation relative to the axes of the cube. If the orientations are 

indeed random, then two cubes cut out of the material at different angles will have 
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the same statistical distribution of orientations 

of the structural elements relative to the cube 

axes, as illustrated in Fig. 5.12. Thus, the average 

stiffnesses of the two cubes will be equal—in 

fact, the average elastic properties will be the 

same for all possible orientations of coordinate 

axes within either cube. An  isotropic material is 

defi ned as one whose properties are independent 

of orientation. Materials made up of randomly 

oriented structural elements may be thought of as 

being statistically isotropic.

The general state of stress is described by 

three normal components of stress and three 

shear components of stress. The most general 

state of strain likewise can be described by three normal components of strain 

and three shear com ponents of strain. The general relations between stress and 

strain can therefore be stated in six equations, each giving the dependence of one 

component of strain on the various components of stress. We shall consider the 

various components of stress one at a time and add all their strain effects to get the 

resulting strain in the presence of all components of stress for a material which is 

assumed to be isotropic.

First, consider an element on which there 

is only one component of normal stress 

acting, as shown in Fig. 5.13. As discussed 

in the previous section on the tensile test, this 

normal component of stress will produce a 

corresponding normal component of strain. 

We are considering here only materials in 

which the strain will be directly proportional 

to the stress. This relation can be expressed in 

mathematical terms as

 x
x

E
=

s

This is another form of Hooke’s law for uniaxial loading; we fi rst discussed this 

type of behavior in Sec. 2.2, where, for a bar of area A and length L subjected to a 

load P, the above relation was expressed in the form of Eq. (2.2). The modulus of 

elasticity E is numerically equal to the slope of the line in Fig. 5.7(b).

In addition to the normal component of strain in the x direction, our experi ence 

with rubber bands, if nothing else, leads us to expect the there will be a lateral 

contraction when a bar is elongated. Detailed measurements made during the tensile 

test bear out this supposition, and the lateral compressive strain is found to be a 

fi xed fraction of the longitudinal extensional strain. Furthermore, tests in uniaxial 

compression show a lateral extensional strain which is the same fi xed fraction of 

the longitudinal compressive strain. This fi xed fraction is known as  Poisson’s 

ratio and is given the symbol v. For the uniaxial stress condition illustrated in 

Fig. 5.12  Statistically isotropic 

material

Fig. 5.13  Uniaxial normal stress
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Fig. 5.13, the lateral strains  y and  z must be equal because neither the material, 

being isotropic, nor the mode of stressing favors either direction. For a linear-elastic 

material these strains can be expressed as

   y z x
xv v

E
= = - = -

s

Now, consider the possibility of shear strains resulting from the normal stress 

sx. Again the isotropy of the material simplifi es the relations. Suppose that a shear 

strain were present, as shown in Fig. 5.14(a). A 180° rotation of the element about 

the x axis would appear to give a shear strain in the opposite sense, as shown by 

Fig. 5.14(b). But the material is assumed to be isotropic, so its stress-strain behavior 

should be independent of a 180° rotation. This contradiction is avoided only if 

the shear strain due to a normal stress component vanishes. Similar arguments 

show that the other two components of shear strain also must vanish, and that, 

consequently, a normal stress produces only normal strains.

Fig. 5.14  Hypothetical shear strain due to normal stress

Suppose, now, that a second normal component of stress sy is present. Be cause 

of the linearity of the stress-strain relation, an increment of stress will always 

produce the same increment of strain regardless of the level of stress before the 

increment was added. The strains resulting from sy are linearly related to sy and are 

directly additive to the strains due to sx. Furthermore, because of the isotropy, the 

strains due to sy will be

  y

y

E
=

s

   x z y

y
v v

E
= = - = -

s

where the constants E and v are the same as those appearing in the expressions for 

the strains due to sx. Analogous results are obtained for the strains due to sz.

A further argument is required to rule out the possibility of a strain  y due to 

the stress tzx. The rotation of Fig. 5.15(a) would again change the sign of the shear 

stress, but the sign of a hypothetical  y would be unchanged. The linearity of the 

material, however, requires consistent changes of sign for a proportionality between 
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 y and tzx. Again the contradiction is avoided only if the normal strain is absent. 

Similar symmetry and linearity arguments show that no strain com ponents other 

than gzx can exist, singly or in combination, as a result of the shear-stress component 

tzx. More generally, we conclude that each shear-stress com ponent produces 

only its corresponding shear-strain component. Furthermore, linearity requires 

proportionality between stress and strain, and isotropy requires that the constant of 

proportionality, G, be independent of orientation, i.e.,

g
t

g
t

g
t

zx
zx

xy

xy

yz

yz

G G G
= = =

G is called the  shear modulus.

Fig. 5.15  Hypothetical normal strain due to shear stress

Considering now a linear-elastic isotropic material with all components of stress 

present, we can summarize the above arguments by writing down the follow ing 

stress-strain relations which are applicable to this case:

 
 x x y z

E
v= - +

1
[ ( )]s s s

 
 y y z x

E
v= - +

1
[ ( )]s s s

  z z x y
E

v= - +
1

[ ( )]s s s  (5.2)
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These equations are known as the generalized Hooke’s law.
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As may be seen from the above equations for the shear strains, a consequence 

of isotropy is the fact that the principal axes of strain at a point of a stressed body 

coincide with the principal axes of stress at that point. The angular relations in the 

Mohr’s circles for stress and for strain are therefore identical, and in determining 

the location of the principal axes corresponding to a given state of stress, one may 

use either the Mohr’s circle for stress or that for strain.

There is one more piece of information which the isotropy of the material can 

give. So far, in developing the stress-strain equations, we have only made use of the 

fact that the properties of the material are the same in the three orthogonal directions 

x, y, and z. A further relation between the elastic constants can be found from the 

fact that the material has the same properties referred to any set of coordinate 

axes. To illustrate this, we begin by considering a state of pure shear as shown in 

Fig. 5.16. Using (5.2) we obtain the following result for the shear strain:

 g
t

xy
G

=  (a)

It is possible to obtain another expression for gxy in the manner indicated in 

Fig. 5.16. To do this we proceed as follows: The stress component t is equivalent 

to a principal state of stress with components s1 = t, s2 = –t referred to the 1, 2 

coordinate axes. The principal strains referred to these axes are

  1
1 2 1

= - =
+s s t

E
v

E

v

E

( )

 2
2 1 1

= - = -
+s s t

t
E

v
E

v

E

( )

Fig. 5.16  Equivalent states of stress and strain

Now, upon use of the strain transformation formulas, we can express the shearing 

strain with respect to the xy axes in terms of the principal strains in the form

 g txy

v

E
= - =

+
  1 2

2 1( )
 (b)

The expressions (a) and (b) for gxy must be equal, and this identity requires the 

following relation between the elastic constants:

 G
E

v
=

+2 1( )
 (5.3)

It is true, although it will not be proved here, that no other choice of co ordinate 

axes gives any added information about the elastic constants, and thus for an 

isotropic material there are just two independent elastic constants. Typical values 

for various materials are given in Table 5.1.



Stress-Strain-Temperature Relations 259

 
El

as
tic

 co
ns

ta
nt

s f
or

 is
ot

ro
pic

 m
at

er
ial

s a
t r

oo
m

 te
m

pe
ra

tu
re

M
a
te

ri
a
l

C
o
m

p
o
si

ti
o
n

M
o
d
u
lu

s 
o
f 

el
a
st

ic
it

y 
E

, 

G
N

/m
2

P
o
is

so
n
’s

ra
ti

o
, 
v

S
h
ea

r

m
o
d
u
lu

s 
G

, 

G
N

/m
2

C
o
ef

f.
 o

f 
li

n
ea

r 

ex
p
a
n
si

o
n
 a

, 

1
0

–
6
/C

M
a
ss

 D
en

si
ty

1
0

3
 k

g
/m

3

A
lu

m
in

u
m

1
P

u
re

 a
n
d
 a

ll
o
y

6
8
–
7
8
.6

0
.3

2
–
0
.3

4
2
5
.5

–
2
6
.5

2
0
.0

–
2
4
.1

2
.6

6
–
2
.8

8

B
ra

ss
1
,2

6
0
–
7
0
%

 C
u
, 
4
0
–
3
0
%

 Z
n

1
0
0
–
11

0
0
.3

3
–
0
.3

6
3
6
.5

–
4
1
.4

1
9
.8

–
2
0
.9

8
.3

6
–
8
.5

0

C
o
p
p
er

1
,2

,3
11

7
–
11

8
0
.3

3
–
0
.3

6
6
3
.4

–
6
4
.8

1
6
.6

–
1
6
.9

8
.9

4
–
8
.9

7

Ir
o
n
, 
ca

st
2
,3

2
.7

–
3
.6

%
 C

8
9
–
1
4
5

0
.2

1
–
0
.3

0
3
5
.8

–
5
6
.5

1
0
.4

6
.9

5
–
7
.3

4

S
te

el
1
,2

C
ar

b
o
n
 a

n
d
 l

o
w

 a
ll

o
y

1
9
3
–
2
2
0

0
.2

6
–
0
.2

9
7
5
.8

–
8
2
.0

9
.9

–
1
2
.8

7
.7

2
–
7
.8

6

S
ta

in
le

ss
 s

te
el

3
,7

1
8
%

 C
r,

 8
%

 N
i

1
9
3
–
2
0
7

0
.3

0
7
3
.1

1
4
.9

–
1
6
.9

7
.6

4
–
7
.9

2

T
it

an
iu

m
1
,2

P
u
re

 a
n
d
 a

ll
o
y

1
0
6
–
11

4
0
.3

4
4
1
.4

8
.8

2
4
.5

1

G
la

ss
4

V
ar

io
u
s

5
0
–
7
9

0
.2

1
–
0
.2

7
2
6
.2

–
3
2
.4

5
.9

4
–
9
.5

4
2
.3

8
–
3
.8

8

M
et

h
y
l 

m
et

h
ac

ry
la

te
5

2
.4

–
3
.5

0
.3

5
1
.0

3
9
0

1
.1

6

P
o
ly

et
h
y
le

n
e5

0
.1

4
–
0
.3

8
0
.4

5
0
.1

1
7

1
8
0

0
.9

1

R
u
b
b
er

6
0
.0

0
0
7
6
–
0
.0

0
4
1

0
.5

0
0
.0

0
0
3
–
0
.0

0
1

1
2
6
–
1
9
8

1
.0

–
1
.2

4

1
  C

.J
. 
S

m
it

h
el

ls
, 
“M

et
al

s 
R

ef
er

en
ce

 B
o
o
k
”,

 I
n
te

rs
ci

en
ce

 P
u
b
li

sh
er

s,
 I

n
c.

, 
N

ew
 Y

o
rk

, 
1
9
5
5
. 

C
O

N
V

E
R

S
IO

N
 F

A
C

T
O

R
S

:
2
  L

.S
. 
M

ar
k
s,

 “
M

ec
h
an

ic
al

 E
n
g
in

ee
rs

 H
an

d
b
o
o
k
,”

 M
cG

ra
w

-H
il

l 
B

o
o
k
 C

o
m

p
an

y,
 N

ew
 Y

o
rk

, 
1
9
5
8
. 

1
 G

N
 m

2
 =

 1
4
5
 ¥

 1
0

3
 p

si
3
 “

M
et

al
s 

H
an

d
b
o
o
k
,”

 A
m

er
ic

an
 S

o
ci

et
y
 f

o
r 

M
et

al
s,

 C
le

v
el

an
d
, 
1
9
4
8
.  

 
 

1
 p

si
 =

 6
.8

9
5
 k

N
/m

2

4
  G

.W
. 
M

o
re

y,
 “

P
ro

p
er

ti
es

 o
f 

G
la

ss
,”

 p
. 
1
6
, 
R

ei
n
h
o
ld

 P
u
b
li

sh
in

g
 C

o
rp

o
ra

ti
o
n
, 
N

ew
 Y

o
rk

, 
1
9
5
4
.

5
 M

o
d
er

n
 P

la
st

ic
s,

 E
n
cy

cl
o
p
ed

ia
 I

ss
u
e,

 v
o
l.

 3
4
, 
1
9
5
6
.

6
  U

.S
. 
R

u
b
b
er

 C
o
.,
 “

E
n
g
in

ee
ri

n
g
 P

ro
p
er

ti
es

 o
f 

R
u
b
b
er

,”
 F

o
rt

 W
ay

n
e,

 I
n
d
.,
 1

9
5
0
.

7
  C

.L
. 
M

an
te

ll
, 
“E

n
g
in

ee
ri

n
g
 M

at
er

ia
ls

 H
an

d
b
o
o
k
,”

 M
cG

ra
w

-H
il

l 
B

o
o
k
 C

o
m

p
an

y,
 N

ew
 Y

o
rk

, 
1
9
5
8
.

T
a
b

le
 5

.1



260 An Introduction to the Mechanics of Solids

A number of elastic materials are not isotropic but have a basic structural 

orientation which extends throughout the material. Examples of these materials and 

their stress-strain relations are discussed in Sec. 5.10.

5.5  THERMAL STRAIN

In the elastic region the effect of temperature on strain appears in two ways: fi rst, 

by causing a modifi cation in the values of the elastic constants, and second, by 

directly producing a strain even in the absence of stress. The effect on the elastic 

constants for many materials is small for a temperature change of a hundred degrees 

Centigrade and will not be further considered. The strain due to temperature change 

in the absence of stress is called thermal strain and is denoted by the superscript 

t on the strain symbol thus:  t. For an isotropic material, symmetry arguments 

show that the thermal strain must be a pure expansion or contraction with no 

shear-strain components referred to any set of axes. The thermal strains are not 

exactly linear with temperature change, but for temperature changes of one or two 

hundred degrees Fahrenheit we can closely describe the actual variation by a linear 

approximation. We then obtain the following thermal strains due to a change in 

temperature from To to T.

   x
t =  y

t =  z
t = a(T – To)

 g x y
t =  g y z

t  = g z x
t = 0  

(5.4)

The quantity a is called the  coeffi cient of linear expansion. Average values of a 

for temperature variations in the vicinity of room temperature are tabulated in Table 

5.1 for a variety of common materials.

The total strain at a point in an elastic body is the sum of that due to stress 

and that due to temperature. Denoting the elastic strain due to stress by  e and the 

thermal part by  t, the total strain derived from the displacements is given by

  
 =  e +  t (5.5)

For example, if the material is rigidly restrained so that no strain is possible, the 

elastic part of the strain will be the negative of the thermal strain, since the total 

strain is zero.

5.6 COMPLETE EQUATIONS OF ELASTICITY

The  theory of elasticity is the name given to that body of knowledge which deals 

with the distribution of stress and strain in elastic bodies subjected to given loads, 

displacements, and distributions of temperature. We now are in a position to state 

completely the foundations of the theory of elasticity. The problem is to fi nd 

distributions of stress and strain which meet the prescribed loads and displacements 

on the boundary and which at every point within satisfy the equilibrium equations, 

the stress-strain-temperature relations, and the geometrical conditions associated 

with the defi nition of strain and the concept of continuous displacements. The 

problem was outlined previously in broad generality by the three steps given in 
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(2.1). For convenience we summarize below, under the three steps of (2.1), explicit2 

equations which must be satisfi ed at each point of a nonaccelerating, isotropic, 

linear-elastic body subject to small strains.

 Equilibrium

On the surface the stress components must be in equilibrium with the given external 

loads, and within the body they must satisfy the following equilibrium equations:

∂
∂

+
∂

∂
+

∂
∂

+ =
s t tx xy zx

x y z
X 0

 
∂

∂
+

∂

∂
+

∂

∂
+ =

t s txy y yz

x y z
Y 0  (5.6)

∂
∂

+
∂

∂
+

∂
∂

+ =
t t szx yz z

x y z
Z 0

where X, Y, and Z are body forces which are distributed over the volume with 

intensities X, Y, and Z per unit volume. Equations (5.6) are generalizations of the 

two-dimensional equilibrium equations given in (4.13) (see Prob. 4.2).

 Geometric Compatibility

The displacements must match the geometrical boundary conditions and must be 

continuous functions of position with which the strain components are associated, 

as follows:

 x xy

u

x

v

x

u

y
=

∂
∂

=
∂
∂

+
∂
∂

g

  y yz

v
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w
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∂
∂

=
∂
∂
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∂
∂

g  (5.7)

 z zx

w
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z

w

x
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∂
∂

=
∂
∂

+
∂
∂

g

where u, v, and w are the displacement components in the x, y, and z directions. 

These equations are three-dimensional extensions of (4.33) (see Prob. 4.16).

 Stress-Strain-Temperature Relations

In addition to the relations between stress and strain components, we must include 

the effect of temperature on the strain components. Both of these effects are 

included in the following relations:

  x x y z o
E

v T T= - + + -
1

[ ( )] ( )s s s a

 
 y y z x o

E
v T T= - + + -

1
[ ( )] ( )s s s a

2 These equations may be written in abbreviated form by using indicial notation. See

Prob. 5.49.
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  z z x y o
E

v T T= - + + -
1

[ ( )] ( )s s s a  (5.8)
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The equilibrium equations (5.6), the strain-displacement equations (5.7), and the 

strain-stress-temperature relations (5.8) provide 15 equations for the six components 

of stress, the six components of strain, and the three components of displacement. 

These 15 equations are the foundation for what is commonly called  linear elasticity 

theory. The equations are linear because of the linear material behavior assumed 

in (5.8) and also because of the restriction to small strains in (5.7). An additional 

consequence of (5.7) is that the strains (and hence the stresses) are associated 

with the undeformed confi guration. This in turn means that (5.6) represents an 

application of the equilibrium requirements in the undeformed confi guration. Thus 

the complete equations (5.6), (5.7), and (5.8) apply to deformations of iso tropic, 

linearly elastic solids which involve small strains and for which it is accept able to 

apply the equilibrium requirements in the undeformed confi guration.

In order to obtain solutions to these equations it is generally necessary, because 

of the derivatives which appear in (5.6) and (5.7), to perform integrations. To fi x the 

solution for a particular elastic body it is necessary to prescribe  boundary conditions 

at every point on the surface of the body. Most commonly, either the  displacement 

vector of the boundary point is specifi ed, or the  stress vector (4.2) applied by an 

external load is specifi ed. It can be shown3 that, if at every point on the surface of an 

elastic body, either the displacement vector or the surface stress vector is prescribed, 

then there exists a unique solution which satisfi es (5.6), (5.7), and (5.8) throughout 

the interior and which meets the prescribed boundary conditions on the surface.

Uniqueness proofs also have been obtained for certain types of plastic material 

behavior.4 The three factors of equilibrium, geometric compatibility, and force-

deformation behavior of the material form the central core on which these proofs of 

existence and uniqueness are based. This is the basis for stating that the three steps 

of (2.1) contain all the principles which need to be considered in problems in the 

mechanics of deformable solids.

Our aim in presenting the complete equations of elasticity in this introductory 

text is to acquaint the reader with the essentially simple nature of the rigorous 

foundations of an important fi eld in the mechanics of solids. In spite of the 

3 See, for example,  S. Timoshenko and  J.N. Goodier, “Theory of Elasticity,” 3rd ed., p. 269, 

McGraw-Hill Book Company, New York, 1970; or  C. Wang, “Applied Elasticity,” p. 38, 

McGraw-Hill Book Company, New York, 1953.
4 A discussion of this point at the graduate level is given by  R. Hill, A General Theory

of Unique ness and Stability in Elastic-plastic Solids, J. Mech. Phys. Solids, vol. 6, pp. 236–

249, 1958.



Stress-Strain-Temperature Relations 263

simplicity of the general problem statement, it has been diffi cult to obtain exact 

solutions to particular cases. There is a growing store of known solutions, but in 

most engineering applications it is still necessary to use results which are in some 

sense approximate. For example, a common approximation is to replace the actual 

boundary conditions for a physical system by simpler ones in an idealized model. In 

other cases approximate solutions are constructed which satisfy some, but not all, of 

the interior equations; for instance, the equilibrium requirements might be satisfi ed 

exactly at every interior point, but the geometric compatibility requirements would 

be satisfi ed only in some gross overall average sense. Numer ical methods often 

involve approximating the body by fi nite elements which satisfy the governing 

equations in an overall manner but may violate equilibrium, com patibility, or 

boundary conditions at points along their boundaries.5 The degree of approximation 

which is acceptable will depend upon the circumstances of each situation; the 

defl ection of the hairspring of a good watch would obviously have to be determined 

with greater accuracy than that of the wind-up spring of a child’s cheap toy. The 

question of whether or not an approximation is good can be answered by comparing 

several different approximations which bound the actual situation or by making 

the ultimate test of any physical theory, which is to compare the theoretical results 

predicted by an analysis with experimental results obtained from the actual physical 

situation.

In this introductory study of the mechanics of solids we shall primarily 

be concerned with the three steps of (2.1), expressed not in the infi nitesimal 

formulation of (5.6), (5.7), and (5.8) but expressed, instead, on a macroscopic 

level in terms of rods, shafts, and beams. We do consider, however, two simple 

examples of complete solutions to the infi nitesimal formulation in this and the 

following section. Furthermore, we use the formulation of (5.6), (5.7), and (5.8) to 

make critical evaluations of the macroscopic force-defl ection relations which are 

developed in subsequent chapters.

To illustrate how a relatively simple problem situation can be idealized into a 

theoretical model and, further, to illustrate the application of the equations of 

elasticity to this model, we shall consider the following problem.

Example 5.2
 A long, thin plate of width b, thickness t, and length L is placed 

  between two rigid walls a distance b apart and is acted on by an 

axial force P, as shown in Fig. 5.17(a). We wish to fi nd the defl ection of the plate 

parallel to the force P. 

∑ Idealize the model using suitable assumptions, kinematically admissible.

∑ Compute the possible stresses and the strains by equilibrium and geometric 

compatibility.

∑ Use equation ex = 1/E (sx – usy) and  solve the equations for the defl ections 

in the plate parallel to P.

 We idealize the situation in Fig. 5.17(b). In con structing this model we have 

assumed:

1. The axial force P results in an axial normal stress uniformly distributed over 

the plate area, including the end areas.

5 See, for example,  P. Tong and  J.N. Rossettos, “Finite-Element Method,” MIT Press, 

Cambridge, Mass., 1977.
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2. There is no normal stress in the thin direction. (Note that this implies a case 

of plane stress in the xy plane.)

3. There is no deformation in the y direction, that is,  y = 0. (Note that this 

implies a case of plane strain in the xz plane.)

4. There is no friction force at the walls (or, alternatively, it is small enough to 

be negligible).

5. The normal stress of contact between the plate and wall is uniform over the 

length and width of the plate. We now satisfy the requirements (2.1) for the 

idealized model of Fig. 5.17(b).

Fig. 5.17  Example 5.2. (a) Actual problem; (b) idealized model

EQUILIBRIUM

Equilibrium with the external loads is satisfi ed when the stresses existing in the 

plate are

 s s s sx y z

P

bt
= - = - =0 0  (a)

 txy= tyz= tzx= 0

These stresses also satisfy the equilibrium equations (5.6), and therefore we 

assume them to be the stresses acting throughout the plate.

GEOMETRIC COMPATIBILITY

Since the walls are rigid, the plate cannot expand in the y direction, and therefore

  y = 0 (b)

Also, in terms of d, we can s write

 
 x

L
= -

d  (c)
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STRESS-STRAIN RELATIONS

In view of (a) and because the temperature is constant, Eqs (5.8) reduce to

    x x y y y x z x y
E

v
E

v
v

E
= - = - = +

1 1
( ) ( ) ( )s s s s s s  (d)

 gxy = gyz = gzx = 0

Solving the system of equations (a), (b), (c), and (d), we fi nd

 
s sy xv v

P

bt
= = -

 d = -( )1 2v
PL

Ebt
  (e)

 
 z v v

P

Ebt

v

v L
= + =

-
( )1

1

d

We note that the presence of the rigid walls reduces the axial defl ection of the 

plate by the factor (1 – v2).

STRAIN-DISPLACEMENT RELATIONS

If we consider the origin of coordinates to be in the center of the plate and assume 

that this point does not move in either the x or the z direction, then by substituting 

the strains into Eqs (5.7) and integrating all six relations, it can be shown that the 

proper displacements for this plate are

 u
L

x= -
d

 v = 0  (f)

 
w

v

v L
z= -

-1

d

We have thus obtained a rigorous and exact solution to the elasticity problem 

for the idealized model of Fig. 5.17(b). It should be emphasized that we have not 

obtained an exact solution to the actual problem of Fig. 5.17(a), where there is a 

concentrated force rather than a uniformly distributed stress acting on the ends 

of the plate. The problem of Fig. 5.17(a) was itself an approximation to a more 

realistic loading over a small region of contact. On the basis of experiments in 

similar situations, it is probable that the overall defl ection of the actual plate is near 

that estimated from the idealized model. Also, it is probable that away from the 

ends the stress distribution for the actual plate is quite close to that for the model, 

even though the stress distributions are quite different in the vicinity of the ends. 

We shall return to this point in Sec. 5.7 in connection with the discussion of St. 

Venant’s principle. This problem is an illustration from a class of situations in which 

it is very diffi cult to get an exact solution to the real problem, but in which it is 

relatively easy to get an exact or nearly exact solution to an idealized approximation 

of the real problem.
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5.7 COMPLETE ELASTIC SOLUTION FOR A THICK-WALLED CYLINDER

In this section we consider a further example of an exact solution within the theory 

of elasticity for homogeneous isotropic solids. The problem in this case arises in 

many engineering applications so that the solution is, in itself, of considerable 

technical importance. Furthermore, the solution exhibits several characteristics 

which are representative of a wide class of more complicated problems. Much 

insight into the nature of elastic solutions can thus be gained from a study of this 

one example.

Consider the cylinder with inner radius ri and outer radius ro shown in Fig. 

5.18(a). We shall determine the distribution of stress within the cylinder when it is 

subjected to the external loadings indicated in Fig. 5.18(b). There is uniform inner 

pressure pi, uniform outer pressure po, and uniform axial tensile stress so. This 

confi guration provides a model for several practical problems. For example, the 

cylinder might be a thick-walled pressure vessel where the important load is the 

inner pressure or a submersible hull where the important load is the outer pressure.

Fig. 5.18  Thick-walled cylinder (a) subjected to inner and outer pressures and axial tension 

(b). Cylindrical coordinates and displacement components (c).

Alternatively, if the height h were small compared with the radii, the cylinder might 

be a plate or a disk, and the important load might be the inner pressure which arises 

from a “shrink-fi t” attachment to a shaft.



Stress-Strain-Temperature Relations 267

To take advantage of the cylindrical symmetry, we use the cylindrical co ordinates 

r, q, and z shown in Fig. 5.18(c). Also indicated in Fig. 5.18(c) are the components 

u, v, and w in the r, q, and z directions of the displacement vector in cylindrical 

coordinates. The 15 equations of elasticity in cylindrical coordinates consist of the 

three equilibrium equations of Prob. 4.4, six  strain-displacement equations of Prob. 

4.19, and the six  stress-strain equations in cylindrical co- ordinates corresponding to 

(5.2). The boundary conditions are

 sr = –pi  trz = 0  trq = 0 (a)

on the inner surface r = ri,

 sr = –po  trz = 0  trq = 0 (b)

on the outer surface r = ro, and

 sz = so  trz = 0  tqz = 0 (c)

on the top and bottom surfaces, where z = h and z = 0. The problem is to deter mine 

the stresses which together with the strains and displacements satisfy the 15 interior 

equations and the three boundary conditions at each point on the boundary surface.

The general problem is greatly simplifi ed in the present case because of the 

radial symmetry of loading. Based on symmetry, we shall look for a solution in 

which v, the q component of displacement, vanishes everywhere and in which all 

stresses, strains, and displacements are independent of q. If we fi nd such a solu tion, 

we know from the uniqueness principle that it is indeed the solution. We also make 

the tentative hypothesis, based on the uniformity of the axial loading, that sz = so 

throughout the interior and that all stresses and strains are independent of z. With 

these assumptions the problem collapses to manageable size. The shear stresses trq, 

tqz, trz and the corresponding strains grq, gqz, grz vanish everywhere. What remains 

are two displacements u and w, two stresses sr, and sq, and three strains  r,  q, and 

 z, with a single  equilibrium equation,

 s s sqr r

dr r
+

-
= 0 (d)

three strain-displacement equations,

    r z

du

dr

u

r

dw

dz
= = =q  (e)

and three stress-strain equations,
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1

[ ( )]s s sq
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1
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  z z r
E

v= - +
1

[ ( )]s s sq

together with the boundary conditions

 sr = –pi at r = ri (g)
 sr = –po at r = ro
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We now outline a possible systematic procedure for obtaining a solution to (d), 

(e), and (f) which meets the boundary conditions (g). Starting from an unknown 

radial displacement u(r), we use (e) to express the transverse strains  r and  q as 

functions of u. Then from the fi rst two equations of (f) we solve for the transverse 

stresses sr and sq in terms of  r and  q and thus obtain the stresses also as functions 

of u. Finally, substituting the stresses into (d) leads to the following differential 

equation for u(r)

 
d u

dr r

du

dr

u

r

2

2 2

1
0+ - =  (h)

The general solution to (h) is

 u Ar
B

r
= +  (i)

where A and B are constants of integration. We now retrace our steps, sub stituting 

(i) in place of u to obtain expressions for the strains and the stresses which are 

functions of r and the constants A and B. The constants are then evaluated by 

requiring the radial stress to meet the boundary conditions (g). Finally, after 

substituting back for A and B, we obtain the following expressions for the transverse 

stresses
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(5.9)

The axial strain is obtained by substituting these stresses together with sz = so 

into the third equation of (f),

  z
o i i o o

o i
E

v

E

p r p r

r r
= -

-

-

s 2
2 2

2 2
 (5.10)

Note that  z is independent of position within the cylinder. The axial 

displacement w thus varies linearly with z. It can be shown that in obtaining these 

results we have exactly satisfi ed the original set of 15 equations and the boundary 

con ditions of (a), (b), and (c). This justifi es our tentative hypotheses concerning the 

symmetry of the solution. We turn now to a discussion of the signifi cance of the 

results (5.9) and (5.10).

We note that the transverse stresses sr and sq both vary with the radial 

coordinate r and depend linearly on the pressure loadings pi and po. The trans verse 

stresses, however, are independent of the axial loading so. The uniform axial strain 

 z depends on the axial loading so and on the pressure loadings (through the action 

of Poisson’s ratio).

To study the behavior of the transverse stresses (5.9), we consider several special 

cases. When the inner and outer pressures are both equal (that is, pi = po = p), 

we fi nd that sr = sq = –p throughout the interior. When the outer pressure is 

absent (po = 0), we note that an inner pressure pi results in a compressive radial 
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stress which varies from sr = –pi at the inner wall to ar = 0 at the outer wall. The 

tangential stress sq is tensile throughout with peak magnitude occurring at the inner 

wall r = ri. The manner in which sr and sq vary with r is indicated in Fig. 5.19(a) 

for a cylinder in which ro = 2ri. Figure 5.19(b) displays the corresponding distri-

butions of stress due to an outer pressure po when the inner pressure is absent (pi = 

0). Note that the numerically greatest stress in both Fig. 5.19(a) and Fig. 5.19(b)  is 

the tangential stress sq at the inner wall of the cylinder.

Fig. 5.19  Distribution of radial stress sr(r) and tangential stress sq(r) in cylinder with

ro = 2ri due to (a) inner pressure pi and (b) outer pressure po

When the cylinder wall-thickness t = ro – ri, becomes small in comparison with 

ri, the solution (5.9) approaches the thin-walled-tube approximation of Prob. 4.10 

(see Prob. 5.47).

The axial stress sz = so and the axial strain (5.10) do not vary in the interior of 

the cylinder. Two important special cases occur commonly in applications. When 

the axial stress vanishes (so = 0), the cylinder is said to be subject to a  plane stress 

distribution. In this case the axial strain  z is generally not zero (unless piri
2 = poro

2). 

When the axial strain vanishes ( z = 0), the cylinder is said to be subject to a  plane 

strain distribution. In this case the axial stress is generally not zero (again, unless 

pir
2
i = poro

2).

Two characteristics of the solution just obtained for a circular cylinder extend 

to isotropic elastic cylinders of arbitrary contour (but constant height h) subjected 

to transverse loads which vary arbitrarily around the contour (but which are 

uniform with respect to z). In such cases it can be shown that the transverse stress 
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distribution is independent of any uniform axial stress or axial strain. In particular, 

the transverse stress distribution in plane stress is identical with the stress 

distribution in plane strain if the transverse boundary conditions are identical.

A second characteristic of the solution (5.9) is that, although it depends on 

the material’s being homogeneous, isotropic, and linearly elastic, the stresses 

are independent of the actual magnitudes of the elastic parameters E and v. This 

result extends to cylinders of arbitrary contour,6 provided that the resultants of 

the transverse boundary stresses acting on each closed contour are separately zero 

(e.g., in Fig. 5.18 the resultant of the pressure forces acting on the inner wall alone 

is zero, and the resultant of the pressure forces acting on the outer wall alone is 

also zero). This condition would not be met, for example, if, after the cylinder of 

Fig. 5.18 was shrunk onto a shaft, the shaft was pressed or twisted so as to exert a 

net force or moment on the cylinder. The fact that the stress distributions in these 

circumstances are independent of the elastic parameters is of great importance 

for experimental stress analysis. It permits predicting the stress distribution in 

one material from measurements on a geometrically similar specimen of another 

material. In particular, photoelastic analysis using birefringent polymer specimens 

can be used to predict stress distributions in metals, even though the elastic moduli 

are of quite different order of magnitude (see Sec. 4.14).

The exact solution (5.9) permits us to verify a very general qualitative principle 

in elasticity known as  St. Venant’s principle.7 Consider two sets of boundary stress 

vectors which are to be applied to the same elastic body. Let these loadings be 

identical over all the boundary surface except over a certain small region R where 

they differ. The resulting internal stress distributions will, in general, be different 

throughout the interior, but St. Venant’s principle asserts that signifi cant differences 

in internal stress will be localized in the immediate neighborhood of R if the two 

loadings over the region R are  statically equivalent. No general state ment can be 

made as to precisely how large the neighborhood of signifi cant dif ference will 

be. This depends on the size, shape, and location of the small region R, as well 

as on the nature of the different loadings over R. If   represents a representative 

lineal dimension of the region R, then a rough rule of thumb is that, for engineering 

purposes, the differences in internal stress become an in signifi cant fraction of the 

surface stress differences at distances from the surface that are more than two or 

three times greater than  .

To verify this we consider the cylinder of Fig. 5.18 in the special case where 

the inner radius is very small in comparison with the outer radius (ri   ro). Let one 

transverse loading system consist of no load at all (that is, pi = 0, po = 0), and let 

the other loading consist of an inner pressure pi = p, with po = 0. Here the loadings 

are identical except over the region R, which consists of the inner wall of small 

radius ri. The representative dimension   of the region R may be taken as ri. On this 

surface the two loadings are statically equivalent since the resultant of the inner 

6 See, for example,  N.I. Muskhelishvilli, “Some Basic Problems of the Mathematical Theory 

of Elasticity,” 2nd English ed., p. 160,  P. Noordhoff, Ltd., Groningen, Netherlands, 1963.
7 See, for example,  S. Timoshenko and  J.N. Goodier, “Theory of Elasticity,” 3rd ed., p. 39, 

McGraw-Hill Book Company, New York, 1970.
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pressure forces is zero. Now the interior stresses for the fi rst loading system vanish 

everywhere, while for the second loading system the internal stresses as given by 

(5.9) are approximately

 s sqr
i ip

r

r
p

r

r
= - Ê
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ˆ
¯̃

= Ê
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ˆ
¯̃

2 2
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where ri   ro. On the inner boundary the stresses for the two loading systems differ 

in magnitude by p. Equations (j) indicate that the differences in internal stresses 

decay to less than 10 percent of this magnitude at interior points for which r is 

slightly greater than 3ri. At such points the distance to the boundary is slightly 

greater than 2ri. This provides rough confi rmation of the rule of thumb given in 

connection with St. Venant’s principle. In Example 5.2 the nature of the stress 

distribution to be expected in the actual plate away from the ends was obtained by 

appealing to St. Venant’s principle. In that case the region R is the end surface of 

the bar, and the representative dimension   is the width of the bar b.

Finally, we can use the exact result (5.9) to illustrate the concept of  stress 

concentration. When an elastic body with a local geometrical irregularity, such as 

an oil hole, a keyway, or a notch, is stressed, there usually is a localized variation 

in stress state in the immediate neighborhood of the irregularity. The peak stress 

levels at the irregularity may be several times larger than the nominal stress levels 

in the bulk of the body. Under these circumstances the irregularity is said to cause 

a stress concentration. As an illustration consider again the cylinder of Fig. 5.18 for 

the case where ri   ro, but now let the transverse loading be the outer pressure only, 

that is, pi = 0, po = p. The small hole of radius ri can be considered as a geometrical 

irregularity in an otherwise solid cylinder. The exact stress distribution in the 

interior is given by (5.9). It can be shown (see Prob. 5.48) that away from the small 

hole the stress state is very nearly biaxial compression, with sr = sq = –p, while 

at the surface of the hole the stress state is simple tension, with sr = 0 and sq very 

nearly equal to 2p. The peak stress level is thus nearly twice that in the bulk of 

the cylinder. The change in stress state is concentrated in the near vicinity of the 

hole: approximately 90 percent of the change takes place within a radius of r = 3ri. 

Further discussion of stress concentrations is given in Sec. 5.9.

5.8 STRAIN ENERGY IN AN ELASTIC BODY

In Sec. 2.6 the concept of elastic energy was introduced in terms of springs and 

uniaxial members. Here we extend the concept to arbitrary linearly elastic bodies 

subjected to small deformations. In (2.10) the elastic energy U stored in a linear 

spring is given in three forms: in terms of the defl ection d, in terms of the force F, 

or in terms of the defl ection d and the force F. We shall fi nd the latter form

 U = ½Fd (5.11)

most convenient for our present purposes. Because of the linearity, force and 

defl ection grow in proportion during the loading process, and thus the total work 

done is just one-half the product of the fi nal force and the fi nal defl ection.
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Let us apply this concept to an infi nitesimal element within a linearly elastic 

body. Figure 5.20(a) shows a uniaxial stress component sx acting on a rectangular 

element, and Fig. 5.20(b) shows the corresponding deformation including the 

elonga tion due to the strain component  x. The elastic energy stored in such an 

element is commonly called  strain energy. In this case the force sx dy dz acting on 

the positive x face does work as the element undergoes the elongation  x dx. In a 

linearly elastic material, strain grows in proportion to stress. Thus the strain energy 

dU stored in the element, when the fi nal values of stress and strain are sx and  x, is

 dU = ½(sx  dy dz)( x dx) = ½sx  x
 dV (5.12)

where dV = dx dy dz is the volume of the element. If an elastic body of total volume 

V is made up of such elements, the total strain energy U is obtained by integration

 U dVx x
V

= Ú
1

2
s   (5.13)

As an elementary application of (5.13) we reconsider the linear uniaxial 

member of Figs 2.4 and 2.5. In this case the stress and strain can be taken to be 

uniform through the volume of the member. With sx = P/A and  x = d/L, we have
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since V = LA. Note that (5.14) agrees with the result (2.11) obtained in Sec. 2.6.

Consider next the shear-stress component txy acting on the infi nitesimal element 

in Fig. 5.20(c). The corresponding deformation due to the shear-strain component 

gxy is indicated in Fig. 5.20(d). In this case the force txy dx dz acting on the positive 

y face does work as that face translates through the distance yxy dy. Because of 

linearity, gxy and txy grow in proportion as the element is deformed. The strain energy 

stored in the element, when the fi nal values of strain and stress are gxy and txy, is

 dU = ½(txy dx dz)(gxy dy) = ½txygxy dV (5.15)

Results analogous to (5.12) and (5.15) can be written for any other pair of stress 

and strain (components for example, sy and  y or txy and yyz) whenever the stress 

component involved is the only stress acting on the element.

Finally, we consider a general state of stress in which all six stress components 

are present. The corresponding deformation will in general involve all six strain 

components. The individual strain components may depend on more than one 

stress component [e.g., see the fi rst three equations of (5.2)], but we assume that 

the dependence is linear. Thus, if we imagine a gradual loading process in which 

all stress components maintain the same relative magnitudes as in the fi nal stress 

state, the strain components will also grow in proportion, maintaining the same 

relative magnitudes as in the fi nal strain state. During this process in which all 

stresses and strains are growing, a single stress component such as sx will do work 

only on the deformation due to its corresponding strain  x (this can be seen in 

Fig. 5.20 by observing that, for small strains, none of the other strains  y,  z, gxy, gyz, 

or gxz involve a change in the distance between the x faces of the element). The total 

strain energy stored in the element when the fi nal stresses are sx, sy, sz, txy, tyz, tzx 

and the fi nal strains are  x,  y,  z, gxy, gyz, gzx is thus

 dU = ½(sx  x + sy  y + sz  z + txygxy + tyzgyz + tzxgzx)dV (5.16)
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Fig. 5.20  Infi nitesimal element subjected to: uniaxial tension (a), with resulting deformation 

(b); pure shear (c), with resulting deformation (d)

In general, the fi nal stresses and strains vary from point to point in the body. The 

strain energy stored in the entire body is obtained by integrating (5.16) over the 

volume of the body

 U dVx
V

x y y z z xy xy yz yz zx zx= + + + + +Ú
1

2
( )s s s t g t g t g    (5.17)

This formula for strain energy applies to small deformations of any linearly 

elastic body. For isotropic materials the stress-strain relations (5.2) can be inserted 

in (5.17) to obtain formulas for the strain energy completely in terms of strain 

components, or completely in terms of stress components (see Prob. 5.51). In 

the case of plane stress or plane strain parallel to the xy plane, (5.17) reduces to

 U s dVx x y y xy xy
V

= + +Ú
1

2
( )s t g   (5.18)

In Chapters 6 and 7 we shall use these results to develop special formulas for 

strain energy in torsion and bending.

5.9  STRESS CONCENTRATION

We noted in Sec. 5.7 that when an elastic body with a local geometrical irregularity, 

such as an oil hole, a keyway, or a notch, is stressed, there usually is a localized 

variation in the stress state in the immediate neighborhood of the irregularity. The 

maximum stress levels at the irregularity may be several times larger than the nominal 

stress levels in the bulk of the body. This increase in stress caused by the irregularity 



274 An Introduction to the Mechanics of Solids

in geometry is called a stress concentration. Where the stress concentration cannot 

be avoided by a change in design, it is important to base the design on the local 

value of the stress rather than on an average value. The usual pro cedure in design 

is to obtain the local value of the stress by use of a  stress concentration factor. 

The stress concentration factor Kt, is defi ned as the ratio of the max imum stress 

smax, in the presence of a geometric irregularity or discontinuity, to the nominal 

stress snom, which would exist at the point if the irregularity were not there

Kt = smax/snom

The magnitude of this factor depends upon the particular geometry and loading 

involved, but factors of 2 or more are common.

The determination of the stress concentration factor in practical engineering 

situations is a diffi cult problem, and only a few stress concentrations have been studied 

exactly.8 What has been done is to obtain a few exact solutions, check them against 

results from photoelastic stress analysis, and from them make esti mates of what the 

stress concentration factor should be in a variety of other practical cases. A typical 

stress concentration factor curve is shown in Fig. 5.21. Similar curves may be found 

in the literature. In the absence of a stress concentra tion curve for a particular design 

application, it may be possible to estimate the stress concentration factor by an empirical 

equation.9

Fig. 5.21  Stress concentration factor Kt for a circular groove in a solid circular shaft with 

tensile force P. (From  C. Lipson and R. Juvinall, “Handbook of Stress and Strength,” 

The Macmillan Company, New York, 1963)

8 For more complete discussions, see  R.E. Peterson, “Stress Concentration Factors in 

Design,” John Wiley & Sons, Inc., New York, 1953;  G.N. Savin, “Stress Concentration 

around Holes”, Pergamon Press, New York, 1961 (translated from the Russian edition).
9 More complete discussion of the use of the empirical equation may be found in  F.A. 

McClintock and  A. Argon, op. cit., Chap. 11.
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Consider the stress concentration shapes shown in Fig. 5.22. In each of these, 

there is a radius of curvature a at the root of a notch and a relevant di mension which 

may be taken to be either the half-thickness of the remaining material, or the height 

of a shoulder. Let the least of such dimensions be called c.

Fig. 5.22  Examples of stress concentration confi gurations

Then the strain or stress concentration factor is given approximately by
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In Sec. 5.7 we noted that the stress concentration factor for a small hole in a 

large cylinder under outer pressure was approximately equal to 2. The same result 

may be obtained from (5.19) by taking both c and a to equal the hole radius ri and 

by choosing the intermediate value of unity for the numerical coeffi cient. In using 

(5.19), the numerical coeffi cient should be chosen at the low end of the range for 

fi llets with generous radii and for bending and torsion, and it should be chosen at the 

high end for tension. While Eq. (5.19) appears to possess some vagueness, it does 

provide a handy working approximation to elastic stress and strain concentrations.

Usually the stress concentration factor is defi ned in terms of maximum stress. We 

shall fi nd that other aspects of the state of stress may be important; e.g., for yielding 

it is often the maximum difference of principal stress components that is critical. In 

cases involving plastic fl ow and ductile fracture, the strain concentra tion rather than 

the stress concentration may be the important variable. In elasticity the stress and 

strain concentrations are more or less in proportion, whereas in plasticity the strain 

concentrations can be much higher. The plastic stress concentrations are limited to at 

most a few times the yield strength. How ever, discussion of plastic stress and strain 

concentrations is beyond the scope of this text.10 In the remainder of this book we will 

discuss a number of situations where the effect of stress concentrations may play a 

role. However, in the interests of simplicity we do not usually consider the evaluation 

and use of stress concentra tion factors. In practical engineering situations, however, 

the possibility of stress concentrations should always be considered.

10 See further discussion in  F.A. McClintock and  A. Argon, op.cit., Chaps 11 and 18.
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5.10 COMPOSITE MATERIALS AND ANISOTROPIC ELASTICITY

Fiber-reinforced composite materials are of rapidly growing practical importance; 
they are also very old. When bricks were simply dried mud, it is mentioned in the 
Bible that the Egyptian pharaoh punished the Israelites by making them gather 
their own straw for brickmaking. The importance of fi ber length was known even 
then, for we are told that the Israelites had to gather stubble instead of straw. Other 
composites are rope and fabrics, especially coated fabrics. Steel-reinforced concrete 
was introduced in the 19th century. We shall consider reinforced concrete later in 
connection with the bending of beams, but here we turn to the newer materials, 
consisting of fi ne, extremely high-strength fi bers embedded in a matrix. For room-
temperature service a polymer matrix, typically epoxy, is most useful. Metal 
matrices for high-temperature service have not yet proven practical.

Properties of the currently most promising fi bers are shown in Table 5.2. Glass 
has the advantage of least cost, but has relatively low stiffness. The boron fi lament 
is commercially available, but it has the disadvantage that it is produced by plating 

onto a tungsten substrate which is inherently expensive. Furthermore, the relatively 

 Properties of high-strength fi bers

Glass11 Boron12 Graphite

Property Type E Type S Stiff Strong

Diameter, mm 0.00508–0.0203 0.102 0.0070–0.0090

Specifi c gravity 2.54 2.50 2.63 1.96 1.74

Modulus of Elasticity, GPa 73.6 88.4 386 >390 >245

Tensile Strength, GPa 3.15–3.85 4.6 3.15 >1.40 >2.46

Cost per kg m       1968

epoxy tape  1969

  1970

$ 2.3 $ 68

$ 270

$ 225

$ 172

large diameter of the boron fi laments means that much of the available strength 
is lost in bending the fi bers to form curved parts. Graphite fi laments are the most 
promising because of their very high stiffness and strength, combined with low 
weight. They are formed by heating fi ne monofi laments in a vacuum under tension 
to drive off the hydrogen and to form graphite crystals aligned with the fi ber axis. 
Variations in the pyrolyzing temperature give essentially two different grades of 
graphite, one stiffer but weaker than the other. The chief problem is the cost. If it 
continues to drop to the order of $100/lb there will be a very wide range of uses, 
not only in aircraft and space but also in high-speed machinery where stiffness is 
important to control vibrations. Examples are machine tools, circular saws, printing 
presses, and textile machinery. Other uses include springs, bearings, and pressure 
vessels. Where weight is important, it is interesting to compare the fi brous materials 
with more conventional ones on the basis of tensile strength per unit density and 

modulus of elasticity per unit density, as shown in Fig. 5.23. Beryllium is the most 

attractive solid metal, but its brittleness prevents its use in many cases and makes 

its processing quite expensive (it is also highly toxic).

Table 5.2

11  L.J. Broutman and  R.H. Krock (eds.), “Modern Composite Materials,” Addison-Wesley 

Publishing Company, Inc., Reading, Mass., 1967.
12 Manufacturers’ data in this and the following tables include those from Celanese, 3M, 

PPG, and Whittaker.
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Fibers require a matrix to hold them in place during normal handling. Much 
of the advantage of the fi bers themselves is lost in this process, as indicated in 
Table 5.3 and Fig. 5.23. In general the compressive modulus should be the same as 
the tensile value. The compressive strength is limited by buckling of fi bers within 
the matrix, whereas the tensile strength is determined by fracture from fl aws. The 

bending properties are included for reference.

Fig. 5.23  Specifi c tensile strength (tensile strength per unit weight density g ) and specifi c 

modulus of high-strength materials. Metals are in sheet form and isotropic

 Uniaxial properties of fi ber laminates, parallel fi bers in epoxy matrix

Property Glass Boron Graphite

Volume, % fi ber 64 (wt.) 50 55

Specifi c gravity 1.8 1.5–1.6

Tensile modulus, GPa 72°F 40 210–225 175–230 125–155

 300°F 175–225 125–140

Tensile strength, GPa 72°F 1.12 1.33–1.62 0.74–0.85 1.05–1.40

 300°F 0.74–0.81 1.05–1.33

Compressive modulus, GPa 72°F 247–253

Compressive strength, GPa 72°F 3.1–3.24 0.53–0.77 0.84–1.13

Flexural modulus, GPa 72°F 37.3 1.97 162–225 127–148

 300°F 7.04 170 141–211 120–128

Flexural strength, GPa 72°F 1.162 1.726 0.85–0.98 1.3–1.76

 300°F 0.211 1.51 0.67–0.74 1.1–1.55

Short beam, shear  

strength, GPa 72°F 0.12 0.05–0.063 0.092–0.11

 300°F 0.063 0.035 0.056–0.063

Table 5.3
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Naturally the properties of a composite material will be different across the 

fi bers from what they are along them. Materials with different properties in dif ferent 

directions are called  anisotropic. Examples of other anisotropic materials are shown 

in Fig. 5.24. The most frequently observed example is wood. Flat-sawed wood cut 

from the outer sections of a tree will have the growth rings or cylinders aligned 

in approximately parallel planes. The stiffness of the wood is markedly different 

across these growth planes from what it is parallel to them. A single crystal of 

metal has the atoms arranged in a regular array. Since the atoms are more densely 

packed in certain directions than others, it is not surprising that the stiffnesses are 

different in different directions. Even polycrystalline metals, if rolled, are likely to 

have a preferred orientation of structure because the plastic deformation tends to 

line up the crystals in certain directions and tends at the same time to elongate and 

fl atten them. In discussing materials such as these, where there is a basic structure, 

it is convenient to choose coordinate axes related to that structure. In the examples 

shown in Fig. 5.24 the structures all appear identical after a 180° rotation about any 

one of the three orthogonal coordinate axes. Such materials are called  orthotropic.

Fig. 5.24  Orthotropic materials

An orthotropic material is a special case of an anisotropic material. An 

example of more general anisotropy is the crystal structure shown in Fig. 5.25,

Fig. 5.25  An anisotropic crystal structure
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in which the atomic spacings in the three crystallographic directions are unequal 

and the crystallographic directions are not orthogonal. No rotations short of 360° 

give the same geometrical confi guration. Here there is an interrelation between 

all components of stress and strain. If we assume that the strains in an elastic 

anisotropic material are linearly related to the stresses, then the stress-strain 

relations are given in (5.20), where the elastic constants appearing in the stress-

strain relations are denoted by double subscripts, the fi rst referring to the strain 

component and the second to the stress component:13
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 (5.20)

Actually, the elastic constants with unequal subscripts are the same when the 

order of the subscripts is reversed: S12 = S21, S45 = S54, etc. This can be proved from 

the fact that the net-work on loading and subsequent unloading of the material 

should be zero, regardless of the order of application or removal of the various 

components of stress.

The symmetry of an orthotropic material requires that there be no interaction 

between the various shear components or the shear and normal components when 

the x, y, z axes are chosen parallel to the axes of structural symmetry. Thus the 

stress-strain relations reduce to:

 x = S11sx + S12sy + S13sz  gxy =  S44txy 

  y = S21sx + S22sy + S23sz  gyz =  S55tyz (5.21)

 z = S31sx + S32sy + S33sz  gzx =  S44txy

where S12 = S21, S13 = S31, and S23 = S32.

Table 5.4 gives the orthotropic elastic constants for several fi ber-reinforced 

epoxy materials. Complete data are diffi cult to fi nd in the literature, and data are 

often given in terms of different constants. Note, as also shown in Fig. 5.23, that 

where transverse strength is desired, the cross-ply construction reduces the specifi c 

stiffness and strength to values that are little if any in excess of those corresponding 

to high-strength alloys. Table 5.5 gives orthotropic elastic constants for four types 

of wood. Table 5.6 shows the variation of modulus of elasticity with orientation as 

a function of angle for several materials. In general, these results can be obtained 

from the elastic coeffi cients referred to the structure of the material, as discussed 

below for cubic metals. Alternatively, explicit expressions can be found for the 

elastic constants as a function of angle.14

If a material has equal properties in three orthogonal directions, it is said to 

have a  cubic structure. In this case many of the elastic constants in Eqs (5.21) are 

identical, and those equations reduce to:

13 In many books, 4 denotes yz, 5 denotes zx, and 6 denotes xy.
14 See, for example,  McClintock and  Argon, op. cit., pp. 74, 78.
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 Orthotropic elastic constants for fi ber-epoxy materials
 Fiber axis x, sheet normal z

Coeff. 

of linear 

expansion, 

10–6/°F

Fiber Directions
S11, m

2/N, 

¥ 10–11

S

S

22

11

S

S

12

11

S

S

44

11

ax ay

Isotropic 1/E 1 –v 2(1 + v)

Glass A15 0° 2.526 3.25 –(0.28 to 0.30) 15.0

Glass B15 0° 2.483 4.8 12.3

0°, 90° 3.832 1 7.1  7.1

+45° 8.80 1 7.1  7.1

0°, 60°, 120° 4.96–5.39 1 8.4  8.4

Boron 0° 0.44–468 8.2–9.4 –(0.17 to 0.20) 16.2–17.6

0°, 90° 0.780–823 1 –0.05

+45° 3.690 1 –0.85

 Orthotropic elastic constants for various woods
 Axes defi ned in Fig. 5.24

Material

Mois- 

ture 

%

Den-

sity,

kg/m3

S11, m
2/N, 

¥ 10–11

S

S

22

11

S

S

33

11

S

S

12

11

S

S

23

11

S

S

31

11

S

S

44

11

S

S

55

11

S

S

66

11

Balsa 9 673

to 235.7

14.193

–11.354

20 70 –0.3 –15 –0.5 18 200 29

Yellow birch 12 673.4 6.812

–7.10

13 20 –0.5 –9 –0.5 14 60 15

Douglas-fi r 12 454

to 505

7.238–9.8 15 20 –0.4 –7 –0.5 16 140 13

Sitka spruce 12 370

to 420

8.37–9.08 13 23 –0.4 –6 –0.5 16 20 16

Note: Thermal coeffi cients of expansion are not given because moisture effects are much more important 

than thermal effects under normal conditions.

Source: “Wood Handbook,” U.S. Department of Agriculture Handbook no. 72, 1955.

 x = S11sx + S12(sy + sz)  gxy =  S44txy 

  y = S11sy + S12(sz + sx)  gyz =  S44tyz (5.22)

 z = S11sz + S12(sx + sy)  gzx =  S44tzx

The isotropy condition (equal properties in all directions) which resulted in 

Eq. (5.3) is not in general satisfi ed, so there remain three independent elastic 

constants. The elastic constants for several common cubic metals are listed in 

Table 5.7. Although some progress has been made in calculating these constants 

from quantum mechanics, the values are more accurately found by experiment.

Table 5.4

Table 5.5

15 Glasses A and B are from two different manufacturers.
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Even with cubic symmetry, the stiffness of a crystal depends markedly on the 
orientation. Suppose we wish to determine the effects of a single normal com ponent 
of stress referred to noncrystallographic axes, such as the a, b, c axes of Fig. 5.26. 
Using Mohr’s circle for stress, we can determine the components of stress referred to 
the crystallographic axes x, y, and z. Then, from the stress-strain relations expressed 
relative to the crystallographic directions, Eqs (5.22), we can determine the strains 
referred to the crystallographic axes. Finally, using Mohr’s circle for strain, the 
state of strain can be described in terms of the specimen axes a, b, and c. The ratio 
between the normal stress component sa and the normal strain component  a gives 
the modulus of elasticity in the a direction. This modulus of elasticity may differ from 
that in one of the crystallographic directions by a large amount. In the case of a single 
crystal of iron, for example, the stiffness is about twice as great in the direction of the 

body diagonal of the cube as it is in the direction of the edge of the cube.

Fig. 5.26  Tensile test with specimen axes not coincident with crystallographic axes

 Modulus of elasticity for orthotropic materials in sheet form
 For various directions in the plane of the sheet as a function of angle with 

principal structural direction in plane of sheet

Material

Principal 

Structural 

Direction

Angle

0° E 

GPa

45° E 

GPa

90° E 

GPa

Cold-rolled iron16 Direction of rolling 231 206 275

Cold-rolled copper17 Direction of rolling 139.5 109.2 141

Cold-rolled copper, recrystallized17 Direction of rolling 70.45 123.3 67

Glass-fi ber-reinforced polyester18 Direction of warp 14–19 8.45–12.7 12–16.91

A more striking feature of the elastic behavior of cubic or orthotropic materials 
is that a normal stress component will produce a shear-strain component, and vice 
versa, when the axes of the specimen do not correspond to a symmetry axis of 
the structure of the material. In this case, the stress-strain relations referred to the 

specimen axes take on their most general anisotropic form, as given in Eqs. (5.20).

Table 5.6

16  E. Goens and  E. Schmid, On the Elastic Anisotropy of Iron, Naturwissenschaften, vol. 19, 

pp. 520–524, 1931.
17  J. Weertz, Elasticity of Copper Sheet, Z. Metallk., vol. 25, pp. 101–103, 1931.
18 “Plastics for Aircraft,” part I, “Reinforced Plastics,” ANC 17 Panel, Civil Aeronautics 

Board, U.S. Department of Commerce, 1955.
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 Elastic constants for cubic materials

Material
S11,

10–11 m2/N

S12,

10–11 m2/N

S44,

10–11 m2/N

S11 –S12 – ½ 

S44, 10–11 m2/N

Al 1.5613 –0.568 3.45 0.397

Cu 1.462 –0.6103 1.3058 1.419

Fe 0.741 –0.2768 0.8445 0.594

Pb 9.13 –0.4116 6.813 6.1316

W 0.2526 –0.071 0.646 0

95% Al, 5% Cu 1.476 –0.6812 3.633 0.03406

72% Cu, 28% Zn 1.902 –0.823 1.362 1.3625

Source: F. Seitz and T.A. Read, Theory of the Plastic Properties of Solids, I, J. Appl. Phys., vol. 12, pp. 

100–118, 1941.

When making a tensile test on a specimen whose axis is not a symmetry axis of the 

structure, the occurrence of the shear-strain component makes it diffi cult to design 

specimens and grips which produce purely tensile stresses without secondary 

bending and shearing stresses.

In orthotropic materials the coeffi cients of thermal expansion will, in general, 

be different in the different crystallographic directions. For a material with cubic 

symmetry, it can be shown by symmetry arguments that the thermal strains 

referred to the axes of cubic symmetry consist only of three equal normal strains. 

From Mohr’s circle for strain it then can be seen that there are no shear-strain 

components, and thus the thermal strain in a material with cubic symmetry also 

must be one of equal expansion or contraction in all directions.

5.11 CRITERIA FOR  INITIAL YIELDING

We now turn to the problem of what happens when, in a general state of stress, 

the material is stressed to the point where it no longer behaves in a linearly elastic 

manner. For some materials, such as rubber, the deformation is still elastic, even 

after the proportional limit has been passed. For viscoelastic materials, the non-

linear stress-strain curve in the tension test may be due to viscous fl ow. For most 

materials, however, including metals, the deviation from proportionality in a 

uniaxial tensile test is an indication of the beginning of plastic fl ow (yielding). 

In this section we shall consider the problem of determining the conditions for 

yielding when any or all of the stress components are present; that is, using the data 

obtained in a simple tensile test, we shall look for relations which will predict the 

onset of yielding in a general state of stress. Again we shall restrict ourselves to 

polycrystalline materials which are at least statistically isotropic.

A brief introduction to the physical phenomena occurring in a metal being 

deformed elastically and plastically may help one to understand the ideas which 

will be proposed to correlate quantitatively the yielding phenomenon. During 

elastic deformation of a crystal, there is a uniform shifting of whole planes of atoms 

relative to each other, as shown in Fig. 5.27(a), where the solid circles represent the 

atoms in their deformed position. Plastic deformation, on the other hand, depends 

on the motion of individual imperfections in the crystal structure. One kind of 

Table 5.7
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imperfection, called an  edge dislocation, is shown in cross section in Fig. 5.27(b). 

The dislocation consists of a series of planes (parallel to the paper) in each of 

which there is an area, shown enclosed in the circle, where three atoms are located 

above two atoms. Under the presence of a shear stress this dislocation will tend 

to migrate, as shown in the series of sketches, until there has been a dis placement 

of the upper part of the crystal relative to the lower by approximately one atomic 

spacing. These dislocations can move in a variety of directions on a number of 

different crystallographic planes. By a combination of such motions, plastic strain 

can be produced. If this slip, or plastic strain, takes place on one crystallographic 

plane, very low stresses, of the order of 100 kN/m2, are required to produce it. The 

relatively high stresses observed in engineering metals arise from the interactions of 

dislocations with each other, with alloying atoms or phases, and with the boundaries 

of the multitude of crystals making up the polycrystalline aggregate. There may 

Fig. 5.27  Deformation of a crystal lattice. (a) Elastic deformation; (b) plastic deformation

be millions of these crystals and a million kilometers of dislocations in a cubic 

millimeter of plastically deformed metal. It is important to note that a consequence 

of this simple model is that shear stress is the dominant agent in the migration of 

these dislocations. A hydrostatic state of stress (equal normal components in three 

directions) would not tend to move the dislocation. Further, volume changes are 

small, since net changes in the crystal-lattice spacing are restricted to localized 

areas around the dislocation, and while some intersect ing dislocations can leave 

strings of vacancies or holes behind them, this effect is small compared with the 

other deformations involved.
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Not too surprisingly, little quantitative understanding of plastic deforma tion 

has yet been obtained from atomic physics. We shall derive the relations between 

stress and plastic-strain increments from symmetry arguments and from empirical 

evidence gathered from large-scale (not atomic-scale) experiments, coupled with 

the observations from the above model that density changes are unimportant and 

that pure pressure does not produce plastic strain.

While some very fi ne-scale plastic fl ow takes place by occasional motion of 

dislocations in a few individual crystals at low stress levels, for most engineering 

metals the readily observable plastic deformation takes place rather abruptly. In 

the uniaxial tensile test, the condition for the beginning of fl ow was described by 

the yield strength, giving the axial normal component of stress at which practically 

important plastic deformation was observed. When several components of stress are 

present, yielding must depend on some particular combination of these com ponents. 

For example, consider a thin-walled cylinder of internal radius r and wall thickness 

t with an internal pressure and axial load, as discussed in Prob. 4.10. The radial 

stress is small compared with the tangential stress (by the ratio t/r), and thus we 

may consider a small element of this shell as being in plane stress with the principal 

stress components indicated in Fig. 5.28(b). Experiments have been carried out on 

such thin-walled tubes with various amounts of axial load applied to deter mine 

under what combinations of these two normal components of stress the material 

will yield. The results of such experiments are shown in Fig. 5.29.

Fig. 5.28  Example of biaxial stress in a thin-walled cylinder

There is at present no theoretical way of calculating what the relation be tween 

the stress components should be to correlate yielding in a three-dimensional state of 

stress with yielding in the uniaxial tensile test. Two empirical equations have been 

proposed which are reasonably simple and, at the same time, reasonably descriptive 

of the data. Each is based on the following two general considerations. First, the 

state of stress can be described completely by giving the magnitude and orientation 

of the principal stresses, but, since we are considering only isotropic materials, 

the orientation of the principal stresses is unimportant, and thus these criteria for 

yielding are based only on the magnitude of the principal stresses. Second, since 

experimental work19 has substantiated the expectation from disloca tion theory that 

19  P.W. Bridgman, “Studies in Large Plastic Flow and Fracture,” McGraw-Hill Book 

Company, New York, 1952.
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a hydrostatic state of stress does not affect yielding, the two criteria are based not 

on the absolute magnitude of the principal stresses but rather on the magnitude of 

the differences between the principal stresses.

Fig. 5.29  Yielding of thin-walled tubes under combined stress. (From  W. Lode, Versuche uber 

den Einfl uss der mittleren Hauptspannung auf das Fliessen der Metalle  Eisen, 

Kupfer, und Nickel,  Z. Physik, vol. 36, pp. 913–939, 1926)

The fi rst of these criteria assumes that yielding can occur in a three-dimen sional 

state of stress when the root mean square of the differences between the principal 

stresses reaches the same value which it has when yielding occurs in the tensile test. 

Letting Y denote the stress at which yielding begins in the simple tensile test, the 

principal stresses are s1 = Y, s2 = s3 = 0. Thus, in the tensile test, yielding occurs 

when the root mean square of the differences between the principal stresses is

1
3 1 2

2
2 3

2
3 1

2[( ) ( ) ( ) ]s s s s s s- + - + -

= - + - + - =1
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Carrying the factor 2
3

 over to the left side for convenience, this criterion can be 

expressed as follows: For a general state of stress, yielding can occur when

 
1
2 1 2

2
2 3

2
3 1

2[( ) ( ) ( ) ]s s s s s s- + - + - = Y  (5.23)

where, again, Y is the stress at which yielding begins in the tensile test. This 

criterion is known by the names of a number of men who independently conceived 
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it:  Maxwell,  Mises,  Huber,  Hencky. It is also known as the distortion-energy 

criterion, or the octahedral shear-stress criterion, for yielding. We shall refer to it 

as the  Mises yield criterion. When a stress state is known in terms of stress com-

ponents with respect to nonprincipal axes, it is convenient to use the following 

transformation of the Mises yield criterion:20

 [ {( ) ( ) ( ) } ]1
2

2 2 2 2 2 2
3 3 3

1

2s s s s s s t t tx y y z z x xy yz zx Y- + - + - + + + =  (5.24)

A geometrical interpretation of the criterion (5.23) can be visualized by 

considering a space in which the coordinates of a point are given by the principal 

stresses s1, s2, and s3. The criterion (5.23) then is represented in this space by a 

right-circular cylinder of radius 2
3

Y whose axis makes equal angles with the s1, 

s2, and s3 coordinate axes, as illustrated in Fig. 5.30. Yielding occurs for any state 

of stress which lies on the surface of this circular cylinder. When we have a state of 

plane stress (s3 = 0), the Mises criterion is represented by an ellipse on a diagram 

for which s1 and s2 are the coordinates, as shown in Fig. 5.29.

Fig. 5.30  Geometrical representation in principal stress space of the Mises and maximum 

shear-stress yield criteria

The second empirical criterion assumes that yielding occurs whenever the 

maximum shear stress reaches the value it has when yielding occurs in the tensile 

test. The maximum shear stress (see Fig. 4.23) is one-half the difference between 

the maximum and minimum principal stresses, and it occurs on faces inclined at 

45° to the faces on which the maximum and minimum principal stresses act.

In the tensile test the maximum shear stress is Y/2, so this criterion says that 

yielding occurs when

 t
s s

max
max min=

-
=

2 2

Y
 (5.25)

This criterion is known as the  Tresca, the Guest, or the maximum shear-stress 

criterion. We shall refer to it as the  maximum shear-stress criterion.

20 This can be shown, for example, from  W. Prager and  P.G. Hodge, “Theory of Perfectly 

Plastic Solids,” pp. 16, 22, 23, John Wiley & Sons, Inc., New York, 1951; or  A. Mendelson, 

“ Plasticity, Theory and Application,” pp. 37, 77, The Macmillan Company, New York, 1968.
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A geometrical interpretation also can be made for the maximum shear-stress 

criterion. In the above-mentioned s1, s2, s3 space, the criterion (5.25) can be 

represented by a hexagonal cylinder inscribed within the right-circular cylinder 

of the Mises criterion, as illustrated in Fig. 5.30. Yielding occurs for any state of 

stress which lies on the surface of this hexagonal cylinder. For plane stress (s3 = 0) 

the maximum shear-stress criterion is represented by the six-sided polygon shown 

inscribed within the Mises ellipse in Fig. 5.29.

The application of the maximum shear-stress criterion to the problem of yielding 

under combined stress, such as that occurring in the thin-walled cylinder of Fig. 

5.28, is not as straightforward as the application of the Mises criterion because 

some judgment must be exercised in determining which difference between the 

principal stresses is the maximum. For example, consider the tube to be under 

primarily axial tension with just a little internal pressure. The stress on an element 

of the tube wall will be as shown in Fig. 5.31. The maximum difference in principal 

stresses occurs between the z and r components, the latter component being 

essentially zero (sr is smaller than sq by a factor of t/r and thus may be neglected 

for a thin-walled tube). Increasing the internal pressure does not change either the 

sr (approximately) or the sz components of stress, so the addition of the internal 

pressure does not increase the tendency 

to yield. This corresponds to proceeding 

along the straight line from A toward B in 

Fig. 5.29. When the internal pressure is great 

enough so that the sq component of stress 

equals the sz  component of stress, the shear 

stress on the plane at 45° to the q and r axes 

becomes equal to the shear stress on the 

plane at 45° to the z and r axes. This situation 

corresponds to the point B of Fig. 5.29. Further 

increases in the ratio of internal pressure to 

axial load result in the maximum difference 

in principal stresses occurring between the 

sq and the sr components so that now the 

axial load does not contribute to the tendency 

to yielding. This situation is sketched in 

Fig. 5.32, and if we keep the internal pressure 

constant and decrease the axial load, this 

corresponds to pro ceeding along the straight 

line from B toward C in Fig. 5.29. If we 

now start to compress the tube in the axial 

direction, we have the condition shown in 

Fig. 5.33. Now sr is the intermediate stress, 

and Eq. (5.25) shows that any increase in the 

axial compressive stress must be accompanied 

by an equal decrease in the tangential tensile 

Fig. 5.31  State of stress in cylinder 

wall of Fig. 5.28(a) when 

sz and sr determine the 

maximum shear stress

Fig. 5.32  State of stress in cylinder 

wall of Fig. 5.28(a) when 

sq and sr determine the 

maximum shear stress
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stress; this corresponds to proceeding along 

the straight line from C to D in Fig. 5.29. 

Thus the different sides of the polygon in Fig. 

5.29 correspond to different components of 

the stress being the contributing ones in the 

shear-stress yield criterion.

The experimental results plotted in 

Fig. 5.29 are intermediate between the 

maximum shear-stress and the Mises criteria 

but closer to the latter. This is generally the 

case for initial yielding of annealed isotropic 

metals.

5.12 BEHAVIOR BEYOND INITIAL YIELDING IN THE TENSILE TEST

When the tensile test of a ductile material is carried beyond the point of initial 

yielding, we can consider unloading and subsequent loading of the specimen, or 

we can carry the test further by increasing the load until the specimen fractures. Let 

us fi rst consider the case of loading and unloading [see Fig. 5.6(b)]. The following 

description is an idealized description of the behavior of a real material during 

loading and unloading beyond initial yielding; a more complete description of the 

factors contributing to post-yielding plastic behavior in a general state of stress 

will be given in Sec. 5.16. It is assumed that the stress-strain curve obtained from 

a uniaxial tensile test is as shown in Fig. 5.34(a). A fresh specimen of the material 

[Fig. 5.34(b)] is stretched in tension to point A, where the plastic extensional strain 

is 1
3  B

p
 and the stress is sA. The load is released, bringing the specimen to point C, 

and then reapplied as compression. Further yielding begins when the stress – sA is 

reached at point A¢. As the compressive load is increased, yielding con tinues along 

the curve A¢B¢, which has the same shape as the curve AB in Fig. 5.34(a). When the 

point B¢ is reached, a compressive plastic strain of 2
3  B

p  has occurred between A¢ 
and B¢, and the stress required to cause further yielding has reached the value –sB. 

If the load is now released, the material returns to D¢. A reapplication of the tensile 

load will cause the material to move along the curve D¢B¢F¢, which is identical with 

the curve DBF in Fig. 5.34(a). Thus, in constructing the curve of Fig. 5.34(b), the 

assumption has been made that all the plastic-strain increments along the loading 

path have contributed in a positive manner to the strain-hardening so that the 

material in state D¢ has been strain-hardened the same amount as the material in 

state D in Fig. 5.34(a).

We shall, in the following chapters, consider applications in which only very 

simple models of plastic behavior are required. As an illustration of a case where both 

elastic and plastic strains are of importance, we consider the following problem.

Example 5.3
 Returning to Example 5.1, we ask, what will happen if we remove

  the load P after we have strained the combined assembly so that 

both the steel and the aluminum are in the plastic range, that is, beyond a strain 

of 0.005?

Fig. 5.33  State of stress in cylinder 

wall of Fig. 5.28(a) when 

sq and sz determine the 

maximum shear stress
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∑ This is a case of loading to plastic range and unloading the load.

∑ Knowing the defl ection after unloading, we write the stresses after unloading 

in terms of the yield stress and defl ections.

∑ By plotting stress-strain diagram, we see that residual stresses are built up in 

the material.

Fig. 5.34  Example of simple loading path. (a) Stress-strain curve in uniaxial tensile test; 

(b) stress-strain behavior in alternate uniaxial tension and compression

We can again use the model of Fig. 5.9, and the equilibrium relation (e) and 

geometric compatibility relation (a) still remain valid. We need new stress-strain 

relations which will be valid during unloading.
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STRESS-STRAIN RELATIONS

As indicated in Fig. 5.34, unloading is an elastic process, no further plastic 

deformation occurring until the stress has been completely reversed and reaches 

the current value of the fl ow stress. If we let do be the defl ection when the 

assembly is loaded by P and d the defl ection after the load has been decreased 

somewhat, then, taking into account the compatibility relation (a), the stress-

strain behavior of the material will be as illustrated in Fig. 5.35, where S and A 

represent the states of the steel and aluminum under the load P, and S¢ and A¢ 
represent the states after the load has been decreased somewhat. From Fig. 5.35 

we obtain the following stress-strain relations describing the unloading curves SS¢ 
and AA¢:

 s
d d

s s s
oY E
L

= -
-

 

(f)

s
d d

a a a
oY E
L

= -
-

Fig. 5.35  Example 5.3. Stress-strain behavior of the assembly of Example 5.1 when the load P 

is decreased after both the steel and aluminum alloy have been strained plastically

Substituting (f) into Eq. (e) of Example 5.1 and setting P = 0, we obtain

 A Y E
L

A Y E
L

s s s
o

a a a
o-

-Ê
ËÁ

ˆ
¯̃

+ -
-Ê

ËÁ
ˆ
¯̃

=
d d d d

0  (g)

From this we fi nd

 
d do s s a a

s s a aL

A Y A Y

A E A E

-
=

+
+

 (h)

Substituting (h) into (f), we fi nd the residual stresses which remain in the 

assembly after the load has been removed.
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The algebraic signs of ss and sa were defi ned in Fig. 5.9; a positive value in (i) 

indicates compression and a negative value indicates tension.

We see that, as a result of the yielding, there are residual stresses “locked 

into” the assembly upon release of the load. It is worthwhile both as a check of 

the equations (i) and as an aid to the development of judgment to consider several 

limiting cases. We note from (i) that the residual stresses will be zero only when the 

initial yield strains  sY = Ys/Es and  aY = Ya/Ea are equal. Since in the present case 

 aY >  sY, the equations (i) show that the steel will be in tension and the aluminum 

in compression. We also note from the fi rst of (i) that since  aY < 2 sY, the residual 

stress in the steel cannot reach the value of the fl ow stress, whatever the ratio As/Aa, 

and thus the equations (i) are valid for any value of As/Aa. Finally, we note that if 

the area of steel is reduced to zero we would expect the steel to exert a negligibly 

small force on the aluminum through the end plates; the second of Eqs (i) predicts 

this result.

Let us now consider the case again when a tensile test of a ductile material is 

carried beyond the point of initial yielding. The behavior is as illustrated in Fig. 

5.36: as the specimen is deformed plastically, there is an increase in the load 

required for further elongation, but eventually the load reaches a maximum from 

which it steadily decreases until the specimen fractures. To describe the behavior 

of the material during this process—as distinct from the overall behavior of 

the specimen—it is necessary to distinguish between the stress based on the 

original cross-sectional area of the specimen and the stress based on the actual 

cross-sectional area at any stage of the elongation. Since the cross-sectional area 

decreases as the specimen is elongated, the stress based on the actual area is greater 

than that based on the original area.

Fig. 5.36  Complete load-elongation curve of a ductile material in a tensile test



292 An Introduction to the Mechanics of Solids

The intensity of load per unit of actual area is called the  true stress; this stress 

describes the load intensity the material actually experiences. The intensity of load 

per unit of original area is called the engineering stress. For strains small compared 

to unity, the fractional decrease in cross-sectional area is small, and the true stress 

and engineering stress are essentially equal; even when the axial strain has reached 

the relatively large (for engineering purposes) value of 0.05, the true stress is only 

about 5 percent greater than the engineering stress.

Returning to the tensile-test behavior, as plastic deformation is continued, the 

load required for further plastic fl ow increases. Finally a point is reached where the 

increase in fl ow strength no longer compensates for the decrease in cross-sectional 

area, and the load required to cause further elongation begins to decrease. At this 

point the load has passed a maximum and, consequently, so also has the engineering 

stress. This maximum value of the engineering stress is termed the tensile strength. 

The phrase “ tensile strength” is something of a misnomer, for the true stress at this 

point is already higher than the tensile strength, and will con tinue to rise as the test 

proceeds. Due to unavoidable variations someone particular section of the specimen 

will arrive at the condition where the increase in 

fl ow stress will not compensate for the decrease in 

area, while the other sections of the specimen will 

still be able to carry higher loads. From this stage 

on, the plastic deformation will be concentrated 

in that section which fi rst reaches the condition of 

maximum load. As the load decreases, governed 

by the product of area times fl ow stress in the 

weakest section, the other sections remain at 

essentially constant area but with decreasing 

stress to maintain equilibrium with the decreasing 

load. This process of nonuniform deformation is 

called  necking, and examples21 of it are shown in 

Fig. 5.37. The tensile test reaches its conclusion 

when a small crack develops at the center of 

the neck and spreads outward to complete the 

fracture.

In describing the strain in the tensile test, two different approaches have been 

used. The fi rst of these uses Eq. (5.1) to defi ne the strain as the ratio of the change 

in length to the original length of the specimen. Thus for a specimen of original 

length Lo the strain corresponding to the length Lf is defi ned as

  x
o

f o

o

L

L

L L

L
=

D
=

-
 (5.26)

This is analogous to the engineering stress defi ned in terms of the original area 

and is called an  engineering strain. The second approach to strain regards the total 

strain as being the sum of a number of increments of strain, thus

Fig. 5.37  Examples of necking

21 Further discussion of the phenomenon of necking of a tensile specimen is given in Sec. 9.7.
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where L is the current length of the specimen when the increment of elongation DL 

occurs. If Lo is the original length of the specimen, then in the limit as DL Æ 0 the 

strain  
x
 corresponding to the length Lf is given by the following integral:

  x

f

o
L

L dL

L

L

Lo

f= =Ú In  (5.27)

This strain, obtained by adding up the increments of strain which are based 

on the current dimensions, is called a true strain. Sometimes true strain is called 

logarith mic strain because of the form of (5.27); however, in some situations the 

idea of redefi ning the coordinates for each incremental deformation does not lead to 

a logarithmic form, and hence the term true strain is preferred.

When deciding which defi nition of strain to use in describing the behavior 

beyond initial yielding in the tensile test, the balance is in favor of using true strain. 

One reason for this is that most of the dislocation processes are more conveniently 

described by an incremental concept of strain. A second reason is that when a 

ductile metal is tested both in tension and in compression, the true-stress and true-

strain curves practically coincide, whereas the two curves are quite different when 

engineering strain is used; from the standpoint of dislocation theory one would 

expect the curves to coincide.

For strains small compared to unity it is not quantitatively important which 

defi nition is used, since the numerical results will be substantially equal. For 

example, if the engineering strain is 0.05, the true strain is 0.0488, a difference of 

only about 2 percent. It should be noted that even where the total strain is small 

compared to unity, the plastic strain can be many times larger than the elastic strain. 

For instance, when the total strain in the 1020 HR steel in Fig. 5.5(a) is 0.01, the 
plastic strain is about 8 times the elastic part. Thus even for very small strains it is a 
good approximation to assume for our tensile specimen that

AoLo = Af Lf

since dislocation theory suggests and experiment verifi es that the volume remains 

nearly constant during plastic deformation. Substituting the above relation into 

(5.27), we obtain

  x
o

f

o

f

A

A

D

D
= =ln ln2  (5.28)

where Do is the original diameter and Df is the diameter corresponding to  x. If we now 

measure the change in length during the early portion of the tensile test (say up to a 

strain of 0.05) and calculate ex from (5.27) [or, for that matter, from (5.26)], and then 

measure the minimum diameter of the specimen during the latter part of the test and 

calculate  x from (5.28), we shall determine throughout the entire tensile test the true 

strain of the most highly strained part of the material. The advantage of (5.28) over 

(5.27) is that the latter allows us to measure the strain of a specimen in the necked region 

where, because of the nonuniform strain, one must use in effect a zero gage length.

Figure 5.38 illustrates the results obtained when the data from uniaxial tensile 

and compression tests are plotted on an engineering basis and on a true basis. In 
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compression, as the specimen is shortened, the cross-sectional area increases, and thus 

the true stress is less than the engineering stress.

Fig. 5.38  Stress-strain curves for hot-rolled low-carbon steel (1020 HR)

The complete tensile true-stress-true-strain curves for the materials of 

Fig. 5.5(a) and (b) are shown in Fig. 5.39(a) and (b). In addition to the yield point 

(or 0.2 percent yield strength) the tensile strength (T.S.) is indicated for each 

material. Essentially the tensile strength tells the designer the maximum load that a 

long, thin part can carry in tension. However, before the tensile strength is reached 

the part may become unserviceable due to excessive deformation.

Fig. 5.39(a)  Complete stress-strain curves from tensile tests of three steels

 ------ Mild steel, hot-rolled (1020 HR)

 — — Mild steel, cold-rolled (1020 CR)

 ——— 0.3% C, 0.5% Mn, 0.25% Si, 0.9% Cr, balance Fe (4130 HT)

  Oil quenched from 870°C, tempered at 315°C



Stress-Strain-Temperature Relations 295

Fig. 5.39(b)  Complete stress-strain curves from tensile tests of aluminum and two 

aluminum alloys

 ------ Commercially pure aluminum, annealed (1100-0)

 — — 4.6% Cu, 1.5% Mg, 0.7% Mn, balance Al, annealed (2024-0)

 ——— 4.6% Cu, 1.5% Mg, 0.7% Mn, balance Al (2024-T4)

   Water quenched from 490°C, aged 24 hr at 120° C

In addition to its strength, another important property of a material is its ductility 

before fracture. The ductility of a material can be described by the  reduction of area 

(R.A.), defi ned as the ratio of the decrease in area to the initial area. One can show 

that for round bars the reduction of area is related to the true strain at fracture  f by 

the equation

R.A. = - -
1 e f 

where e denotes the base of natural logarithms. As shown in Fig. 5.37(b), the 

necking process is much more complicated in the case of sheets. A more fre quently 

quoted measure of the ductility of the material is the  elongation, defi ned as the 

change in gage length to fi nal fracture divided by the original gage length (i.e., 

the engineering strain at fracture). As a measure of ductility of the material, the 

elongation has the disadvantage that it is an engineering, rather than a true, strain, 

and furthermore it consists of some sort of weighted average of the uniform strain 

in the un-necked portion and the higher strain in the necked region of the specimen. 

As such, it is very dependent on the length, as indicated in Fig. 5.38, as well as on 

the cross-sectional dimensions of the specimen.

5.13 FRACTURE OF DUCTILE SPECIMENS AND STRUCTURES

The question might be asked as to whether information on the ductile behavior of 

a tensile-test specimen can be used to predict fracture in structures under a more 
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general state of stress. The answer is not yet known. For one thing, even fracture 

in a tensile test is complicated by the fact that the curvature at the neck of the 

tensile specimen alters the state of stress in the neck.  Bridgman22 has given an 

approximate method of correcting for the effect of the curvature, and the curves of 

Fig. 5.39 include this correction. Recent work, however, casts some doubt on this 

correction without providing a fi rm alternative. Another problem of predicting the 

fracture of ductile structures under general loadings from the tensile-test behavior 

is that compressive behavior is different from tensile be havior. For instance, in 

“compression” testing, many materials fracture only after suffi cient barreling has 

occurred to produce a transverse tension. Bridgman has further shown, in uniaxial 

tensile tests in the presence of large hydrostatic pressures, that the stress-strain 

curve at small strains is nearly identical to that for ordinary (atmospheric) pressure, 

but that fracture occurs at much higher strains. Thus, fracture depends not only on 

the differences of the principal stresses, as does yielding, but also on their absolute 

values as well.

The actual fracture process of a ductile specimen or structure can occur by 

several different metallurgical mechanisms, the most important of which are 

cleavage (separation normal to the direction of maximum tensile stress) and the 

growth of holes by plastic deformation around inclusions (which depends on the 

mean normal tension and on the shear strain). In other words, a ductile structure 

can fracture by either a cleavage or a hole-growth mechanism. Conversely, a large 

enough structure with a crack in it can be brittle, whether it fails by the cleavage 

or the hole-growth mechanism. It is unwise, therefore, even though the terms are 

used frequently, to speak of brittle and ductile materials. Rather, one should speak 

of brittle or ductile structures. Either kind of structure may fracture by either the 

cleavage or the hole-growth mechanism. In fact, depending on the size of the 

structure, as well as on the temperature and the strain rate, steel can undergo an 

abrupt transition from the hole-growth mechanism to the cleavage mechanism. 

Although progress is being made,23 there is not yet a comprehensive theory nor a 

quantitative correlation of these various phenomena of fracture.

5.14 FRACTURE OF BRITTLE SPECIMENS AND STRUCTURES

At fi rst glance, there are some materials, such as glass and ceramics, which seem 

to fracture with no prior plastic deformation. However, even glass, when cut 

with a sharp tungsten carbide cutter, exhibits microscopic curved chips similar to 

the larger ones produced in machining metals. The apparent brittleness of glass 

and of structures of large sections made of normally ductile steels and aluminum 

alloys arises from the presence of cracks which concentrate the stress and strain 

so that the cleavage or hole-growth mechanisms of fracture can occur before the 

entire specimen or structure becomes plastic. We fi rst consider specimens that are 

large enough, for the materials and microcracks involved, so that design can be 

based on an average stress. To design against fracture in such specimen-structure 

22  P. W. Bridgman, op. cit., Chap. 1.
23 See, for example,  McClintock and  Argon, op. cit., Chap. 16; or  H. Liebowitz (ed.), 

“Treatise on Fracture,” Academic Press, Inc., New York, 1969–1970.
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combinations (e.g., glass and ceramics), we must seek a criterion for fracture rather 

than for yielding. A criterion can be derived from the assumption that fracture 

occurs when the local stress around the worst crack in the material reaches a critical 

value. The problem, then, is to fi nd the highest stress on the worst crack under the 

average macroscopic stress. When this 

highest stress reaches the same value 

it would have for fracture in a tensile 

loading of the material, the crack grows. 

 Griffi th24 developed these ideas into the 

fracture criterion shown in Fig. 5.40 (for 

the case in which one of the principal 

stresses is zero, analogous to that shown 

in Fig. 5.29 for plastic yielding). Note 

that tensile stresses are far more serious 

than compressive stresses. When both 

principal stresses are tensile, the fracture 

criterion is simply that failure will occur 

when the larger principal stress becomes 

the same as the fracture stress in a uniaxial tensile test.

When all three principal stresses are compressive, as is the case with rocks 

deep in the ground, Griffi th’s theory seems to predict lower strengths than are 

actually obtained. The presence of normal or shear forces transmitted across the 

faces of cracks, a possibility not considered by Griffi th, is part of the cause of this 

discrepancy, but more appears to be due to the fact that cracks in compression are 

initially stable, and that macroscopic fracture only occurs when a number of cracks 

interact in some unknown statistical fashion.

When the specimen is not large enough in relation to the critical crack sizes 

involved, it is necessary to carry out tests on precracked specimens rather than 

on smooth specimens. The analysis and procedures for such testing have been de-

veloped within the last 20 years.25 The further problem of predicting the behavior 

of large brittle structures from tests on small ductile specimens is as yet unsolved.

5.15  FATIGUE

As illustrated by the experiment with a paper clip in Sec. 5.1, Fig. 5.2, loads or 

deformations which will not cause fracture in a single application can result in 

fracture when applied repeatedly. Fracture may occur after a few cycles, as in the 

paper-clip experiment, or after millions of cycles. This process of fracture under 

repeated loading is called fatigue. Fatigue is important in that it is one of the three 

common causes of mechanical failure, the others being wear and corrosion. At the 

present time the mechanisms of fatigue failure are not well understood, and design 

procedures to avoid fatigue are not precise. In this section we hope to provide an 

24 See, for example,  E. Orowan, Fracture and Strength of Solids, Repts. Progr. in Phys.. 

Phys. Soc. London, vol. 12, pp. 185–232, 1949.
25 See, for example,  McClintock and  Argon, op. cit., or Liebowitz, op. cit.

Fig. 5.40  Griffi th criterion for brittle fracture 

under plane stress. s3 = 0
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awareness of the problems encountered and an introduction to current methods of 

solution.

Consider a situation in which the stress at a point in a body varies with time, as 

shown in Fig. 5.41. Experiments show that the alternating stress component sa is 

the most important factor in determining the number of cycles of load a material 

can withstand before fracture, while the mean stress level sm is less im portant, 

particularly if sm is negative (compressive). For a given machine part the fatigue life 

is strongly infl uenced by the quality of the surface fi nish, the possible residual stresses 

within the part, the presence of surface or subsurface cracks, the presence of stress 

concentrations, the chemical nature of the environment, and the material itself.

Fig. 5.41  Time-varying stress

The results of tests on an aluminum alloy are shown in Fig. 5.42(a). Here 

the mean stress sm was zero. The stress amplitude sa is plotted against (the 

logarithm of) the number of cycles N required to cause failure. Notice that the 

life increases very rapidly with decrease in stress, especially after a life of about 

107 cycles has been reached. It is customary to designate the stress which can 

be withstood for some specifi ed number of cycles as the  fatigue strength of the 

material. For example, from Fig. 5.42(a) it can be said that the fatigue strength 

of 2024-T4 aluminum alloy, when tested as unnotched bars, is about 205 MPa 

for I06 cycles and 165 MPa for 107 cycles. Some materials, of which ferrous 

metals are an out standing example, have the property of a stress level which the 

material can withstand for an indefi nite number of cycles without failure; this 

stress level, corresponding to essentially infi nite life, is called the  endurance limit.

It may be seen from Fig. 5.42(a) that when tests are run on notched specimens, 

the number of cycles to failure is substantially less than that for smooth specimens 

having the same diameter at the root of the notch. In plotting the data in 

Fig. 5.42(a), it has been assumed that the stresses are determined only by the 

minimum  diameter, and thus, that the stress in the minimum cross section of the 

notched bar is equal to that in the smooth specimen when equal loads are applied 

to each. Actually, in a notched specimen the stress distribution is complex, and in 

a small region close to the notch the stresses are larger than in a smooth specimen 

of the same diameter. This increase in stress is caused by the abrupt change in the 

geometry of the specimen in the vicinity of the notch and is a stress concentration 

(Sec. 5.9). If the actual stress at the root of the notch had been used in plotting 

the data for the notched bar in Fig. 5.42(a), there would be much better agreement 

between the two sets of data.
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Fig. 5.42(a)  Fatigure curve for 2024-T4 aluminum alloy. [From  C.W. McGregor and  

N. Grossman, The Effects of Cyclic Loading on the Mechanical Behavior of 

24S-T4 and 75S-T6 Aluminum Alloys and SAE 4130 Steel, Nat. Advisory 

Comm.  Aeronaut., Tech. Notes, No. 2812, October, 1952. (24S-T4 is the former 

designation of the alloy now designated as 2024-T4).]

Fatigue cracks are most likely to form and grow from locations where holes 

or sharp reentrant corners (e.g., notches) cause stress concentrations. In designing 

parts to withstand repeated stresses, it is important to avoid stress concentrations. 

Keyways, oil holes, and screw threads are potential sources of trouble and require 

special care in design in order to prevent fatigue failures.

Figure 5.42(b) shows fatigue curves for a number of different materials. To 

determine each curve may require many tests, because of the fl at slope and the 

scatter due to variations in surface fi nish [Fig. 5.42(c)]. Each curve also represents 

only one state of mean stress (most often zero), one surface fi nish, one environment, 

etc. The problems associated with obtaining a complete set of fatigue data for a 

wide range of conditions are readily apparent. In the remainder of this section, we 

shall briefl y consider effects of fatigue variables and simple design criteria.

Endurance limit when mean stress is zero There is a tremendous amount of fatigue data 

in the literature, and one can usually fi nd test data appropriate to the particular 

problem. However, as a crude “rule of thumb” we fi nd that, for reversed bending 

tests (sm = 0) on smooth polished specimens in air, the approxi mate endurance 

limit stress se is related to the ultimate tensile strength sult, as follows:26

Ferrous materials:  se /sult ª 0.4 (infi nite life)

Nonferrous materials:  se /sult  ª 0.25 (108 cycles)

26 In this section we shall let se represent either the endurance limit, when such a limit exists, 

or the fatigue strength at a specifi ed very large number of cycles, namely, 108 cycles. This 

is not consis tent with general practice wherein these two quantities are given different 

symbols.
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If the ultimate strength is not known, the yield stress can be used and the result 

will be conservative.

Stress concentration From Fig. 5.42(a) we see that a stress concentration can greatly 

reduce the allowable alternating stress component. For design purposes, we search 

for fatigue data, under appropriate conditions, with proper stress con centrations. 

In the absence of such data, we require a criterion for adjusting the allowable 

endurance limit for different stress concentrations. Unfortunately, this is not a 

simple, nor precise, problem.

Fig. 5.42(b)  Fatigue data for different materials. (Data obtained from  Carl C. Osgood, 

“Fatigue-Design,” Interscience Publishers, New York, 1971;  F.A. McClintock and  A. 

Argon, op. cit.;  I. Johansson,  G. Persson, and  R. Hiltscher, Determination of static 

and fatigue compressive strength of hard-metals, Powder Met., vol. 13, no. 26, 

p. 449, 1970;  C.R. Smith, Small specimen data for predicting life of full scale 

structures, in “Symposium on Fatigue Tests of Aircraft Structures: Low-Cycle, Full 

Cycle, and Helicopters,” ASTM Special Tech nical Publication 338, 1962, American 

Society for Testing and Materials; “Metals Hand book,” 8th ed., vol. 1, Properties 

and Selection of Metals, American Society for Metals.)
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Fig. 5.42(c)  Fatigue data for 5 percent Cr-Mo-V steel bars heat-treated to 240,000 MPa to 

265,000 MPa tensile strength. Note that at a typical stress level there is a range 

of almost a factor of 10 between the shortest and longest fatigue life, while at 

any fatigue life, there is a range of about 20 percent be tween the highest and 

lowest stress level

In Sec. 5.9 we discussed the magnitude of the stress concentration factor Kt, in 

elastic media; the subscript “t” in Kt refers to the fact that this is a theoretical ratio of 

maximum stress to nominal stress snom if the material remains purely elastic, that is,

Kt =
Ê
ËÁ

ˆ
¯̃

s

s
max

nom elastic, theoretical

It has become common practice to regard a stress concentration as reducing the 

strength of a material rather than increasing the stress. That is, the endurance limit 

in terms of the nominal stress for a material with no size effect and no yielding 

would be regarded as being reduced by the factor Kt. However, the effect of the 

stress concentration is not as severe as would appear from Kt. Yielding compli-

cates the picture by decreasing the stress concentration while increasing the strain 

concentration, and it is the local microplastic strain that initiates fatigue cracks. 

Practically these effects are all combined into a fatigue-strength reduction factor Kf.

K K Kf f t= < <
unnotched fatigue strength

notched fatigue strength
( )1

Values of Kf are tabulated for different materials and geometries.27 For large 

specimens or structures, Kf tends to approach Kt. For very high values of Kt 

corresponding to preexisting cracks, there is hardly any defi nite endurance limit, 

and it is more useful to correlate fatigue crack growth rates with a stress intensity 

factor.28

27 See, for example,  G. Sines and  J. Waisman (eds), “Metal Fatigue,” McGraw-Hill Book 

Com pany, New York, 1959.
28 See, for example,  H. Liebowitz (ed), op. cit.
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Endurance limit in the presence of mean stress Experimental data for infi nite fa tigue life of 

unnotched specimens under a mean stress sm and an alternating stress sa tend to 

follow the curved line shown in the diagram of Fig. 5.43(a). These experimental 

results are limited by the fact that, when the maximum stress (mean stress plus 

alternating stress) is equal to the yield strength sY, the specimen may begin to 

fail by deformation even without fatigue. In this case an elastic stress analysis 

will no longer apply. The limitation on the stress levels because of yielding is 

shown by the dashed lines in Fig. 5.43(a). Also, it is found experimentally that 

a compressive mean stress has no detrimental (nor benefi cial) effect on fatigue 

life. These observations have given rise to a simple design criterion for infi nite 

life in the presence of a mean and alternating stress for uniaxial states of stress. 

We note fi rst that in the absence of any alternating stress, the specimen will not 

fail if the mean stress is less than the ultimate tensile stress. This is point B in 

Fig. 5.43(a). Similarly, in the absence of mean stress the specimen will not fail 

if the alternating stress is less than the endurance limit as determined above. 

This is point A in Fig. 5.43(a). The straight line joining A and B is called the 

 Goodman-Soderberg criterion. It is a simple approximate representation for the 

combinations of sm and sa which provide infi nite fatigue life. This criterion for 

the prediction of fatigue life is generally conservative, since most data lie above 

the straight line AB.

Fig. 5.43  Diagram for the prediction of fatigue life. (a) Goodman-Soderberg line AB; 

(b) effect of fatigure-strength reduction factor

As we discussed above, when sm = 0, the presence of a stress concentration 

reduces the nominal endurance limit by the fatigue-strength reduction factor Kf. 

Because of plastic fl ow in ductile materials, the effect of the mean stress level sm on 

fatigue life is not appreciably altered by the stress concentration. As a consequence, 

the Goodman-Soderberg criterion is extended to include the effects of stress con-

centration by taking the straight line A¢B in Fig. 5.43(b) to represent infi nite life 

combinations of mean and alternating stresses. For ductile ferrous materials, Kf £ 

3 for threads, holes, fi llets, keyways, etc. For aluminum, magnesium, and titanium, 

unless one has data to the contrary it is best to assume that Kf = Kt.

Surface condition In most instances (not all) fatigue cracks originate at the surface of 

a part at an imperfection or other stress concentration. Thus the physical character 

of the surface is most important. Contrary to common belief, a smooth, unstressed, 

virgin surface is not best for fatigue strength. Such a surface, which is produced 
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by electrochemical machining or electrochemical polishing, will generally give an 

endurance limit as low as ½ of  that obtainable from a specimen having high surface 

compressive stresses produced by gentle grinding, shot peening, etc. On the other 

hand, a cracked or tensile stressed surface can give an endurance limit ½ that of the 

virgin surface; such a surface is generally obtained from various “hot” processes 

such as electrodischarge machining, abrasive grinding, laser cutting, etc.29 Thus a 

4:1 variation can be obtained through process variations. Table 5.8 shows typical 

data for Inconel 718.

Environment: thermal and chemical The effect of temperature on the endurance limit 

appears closely related to the effect of temperature on the ultimate tensile strength. 

Thus, as temperature changes, we alter se in proportion to the change in sult; i.e., 

if sult is reduced by 30 percent, we assume a 30 percent reduction in se. Generally, 

within useful temperature ranges, this effect is small.

 Effect of surface fi nishing method on endurance limit–Inconel 718

Process Endurance limit, GPa

A. Gentle surface grind 0.4227

B. Electrochemical machining 0.2747

C. Electrodischarge machining 0.155

D. B Plus shot peen 0.5495

E. C Plus shot peen 0.465

The effect of the chemical environment, on the other hand, can be extremely 

large. Embrittling media, such as liquid metals, can reduce the material strength to 

zero (as in the case of aluminum immersed in liquid gallium at 100°F). Corro sive 

media generally have strong effects; the fatigue strength of steel, in a salt water-

spray environment, may be reduced to 10 to 20 percent of its nominal value. A 

freshwater environment may have half this effect.

Example 5.4
 A rod is to be loaded axially with a mean tensile stress s0 plus 

  an alternating axial stress sa = ½s0. The rod has a small radial 

hole such that Kt = 3. We wish to have a factor of safety of 2. The material is a 

titanium alloy with an ultimate tensile strength of 827 MPa and an en durance limit 

(sm = 0) of 414 MPa. How large can s0  be?

∑ Plot the Goodman-Soderburg diagram, and determine the value of the mean 

tensile stress.

Let us plot a Goodman-Soderberg-type diagram as shown in Fig. 5.44.

The upper line represents the basic material; the next line shows stress com-

binations which will provide a safety factor of 2; the lowest line incor porates the 

fatigue strength reduction factor Kf of 3 (not applied to sm). The dashed line is the 

load line sa = ½sm. The required value of s0 = 103 MPa is read off as the abscissa 

of the point of intersection of the latter two lines.

29 “Surface Integrity of Machined Structural Components,” Air Force Materials Laboratory 

Report AFML-TR-70-11, March, 1970.

Table 5.8
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Fig. 5.44  Example 5.4. Goodman-Soderberg diagrams: A, for basic material; B, for material 

with a safety factor of 2; C, for material with a safety factor of 2 plus allowance for 

stress concentration factor Kt = 3

5.16 CRITERIA FOR CONTINUED YIELDING

The next question of interest is how the tendency for further yielding in a general 

state of stress varies as the material is plastically deformed. In answering this 

question for materials which yield initially according to the Mises criterion, it has 

been assumed that the tendency for further yielding can be measured by an  equiva-

lent stress s which is defi ned as follows:

 s s s s s s s= -( ) + -( ) + -( )1
2 1 2

2

2 3

2

3 1

2
[ ]  (5.29)

To illustrate the use of this equivalent stress, we would say that initial yielding 

can occur when  s =Y.

If the tendency to yield is given by (5.29), then our original question can 

be reduced to asking: How does s  vary with the plastic deformation? This is a 

question which required many years and much experimentation to answer, but with 

the advantage of hindsight we can develop a logical answer to this question in the 

short argument which follows.

If the material does not strain-harden in the tensile test, the equivalent stress 

presumably remains constant at the value Y. If the material strain-hardens, how ever, 

the equivalent stress rises. On what parameter of the deformation does this increase 

depend? Since elastic deformations do not affect the dislocation structure of the 

material, we expect the increase to depend only on the plastic strain. Just as the 

equivalent stress depends on more than one component of the stress, so the amount 

of strain-hardening would be expected to depend on more than one component of 

the plastic strain. If we assume that the material remains reasonably isotropic, we 

can base the description of the plastic strains on the principal com ponents of plastic 

strain without regard to their orientation. Furthermore, since the volume of the metal 

remains nearly constant, we expect the strain-hardening to depend on some function 

of the differences between the plastic-strain components. Finally, if we bend a piece 

of soft wire and then straighten it to its original shape, it becomes more resistant 
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to further plastic deformation—but the total strain is zero and therefore the strain-

hardening cannot depend directly on the total strains. It seems reasonable, therefore, 

to suggest that the strain-hardening depends on some function of the plastic-strain 

increments, a function which is always increasing since we do not usually observe 

strain-softening. These conditions are all met by assuming that the equivalent stress 

depends upon the  equivalent plastic strain, defi ned by

        
p p p p p p pd d d d d d= - + - + -Ú 2

9 1 2
2

2 3
2

3 1
2[( ) ( ) ( ) ]  (5.30)

where the integral is taken over the entire loading path. The factor 2
9

 is introduced so 

that the equivalent strain is equal to the axial strain in a tensile test (see Prob. 5.35).

Equation (5.30) postulates a model of material behavior in which compressive 

plastic-strain increments have the same effect on strain-hardening as do extensional 

plastic-strain increments. Also, this material has the property that if it will yield 

under a given set of stresses it will also yield if all the stresses are reversed. These 

properties of material behavior were illustrated in Fig. 5.34, which illustrated the 

physical reasoning underlying (5.30). In constructing the curve of Fig. 5.34(b), the 

basic assumptions underlying Eq. (5.30) have been followed, in that all the plastic-

strain increments along the loading path have contributed in a positive manner to 

the strain-hardening so that the material in state D¢ has been strain-hardened the 

same amount as the material in state D in Fig. 5.34(a).

Whether or not (5.29) and (5.30) are good descriptions of the yielding tendency 

of a material depends upon how well s   and   p  correlate with the available data; 

Fig. 5.45(a) shows the equivalent stress s   plotted versus the equivalent plastic 

strain  p for thin-walled tubes with various amounts of internal pressure and axial 

load. This type of correlation is fairly satisfactory when the ratios of the principal 

stresses remain constant during the test. The correlation is put to a more severe 

test when the kind of stressing is changed during the test, as, for example, when 

Fig. 5.45(a)  Tests on plastic deformation of copper tubes with different fi xed ratios of 

stress components correlated on the basis of equivalent stress and equivalent 

plastic strain. (Points represent seven different ratios of s1/s2, varying from 

0 to 1.) (From  E.A. Davis, Increase of Stress with Permament Strain and Stress-

strain Relations in the Plastic State for Copper under Combined Stresses, Trans. 

ASME, vol. 65, pp. A187–A196, 1943)
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fi rst tensile, then shear, and then tensile stresses are applied. The results of such 

tests are given in Fig. 5.45(b). When the change in stress during the test is a 

complete reversal, the correlation is less satisfactory, as illustrated in Fig. 5.45(c). 

The lowered elastic limit observed on the reversals of load in Fig. 5.45(c) is 

called the  Bauschinger effect. It has been found that the correlation of equivalent 

stress with equivalent plastic strain is not good when appreciable anisotropy 

is developed during the straining, since the equivalent strain “remembers” 

only a sort of averaged total amount of plastic strain and not the distribution 

of components of this total with respect to various axes within the material.

Fig. 5.45(b)  Alternating tension and shear correlated on the basis of equivalent stress and 

equivalent plastic strain. ( W. Sautter,  A. Kochendorfer, and  U. Dehlinger, The Laws 

of Plastic Deformation,  Z. Metallk., vol. 44 pp. 553–565, 1953)

Fig. 5.45(c)  Tests involving complete reversal of torsion of thin-walled copper tubes, correlated 

on the basis of equivalent stress and equivalent plastic strain. (99.99% pure 

copper, annealed at 600 K, 1,000 grains/mm2.) (From  J.A. Meyer, unpublished 

research at M.I.T., 1957)

For materials which yield initially according to the maximum shear-stress 

criterion, it has been found that the tendency for further yielding can be measured 

by an  equivalent shear stress t , defi ned as follows:
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t

s s
=

-max min

2

 (5.31)

Using this concept of yielding, we would say that initial yielding can occur when 

t = Y/2.

As may be seen from Fig. 4.36, the maximum shear strain is numerically 

equal to the difference between the maximum and the minimum normal strains. 

Further, since the principal axes of stress and of strain are coincident in a body, the 

maximum shear strain occurs on the same set of axes with which is associated the 

maximum shear stress.

In determining how t, will vary with the plastic deformation, there is some 

theoretical evidence30 for again choosing the equivalent strain to depend on the 

strain components in the same way that the equivalent stress depends on the stress 

companents. Thus, the  equivalent plastic shear strain has been taken to be the integral 

of the maximum shear component of the plastic-strain increments, as follows:

 g p p pd d= -Ú [( ) ( ) ]max min   (5.32)

where, again, the integral is to be taken over the entire loading path. When the 

experimental results plotted in Fig. 5.45(a) and (b) are replotted on this basis, 

the results shown in Fig. 5.46(a) and (b) are obtained. The correlation by the 

shear-stress criterion is usually not quite as good as with the Mises criterion, but 

Figs 5.45(a) and 5.46(a) show that the shear-stress criterion gives better correlation 

at high strains for these tests on copper tubes. The choice as to which correlation to 

use in a given situation is often governed by mathematical convenience, although, 

as we shall see below, the components of strain derived from the Mises yield 

criterion are much closer to physical observations than are those found from the 

maximum shear-stress criterion.

Fig. 5.46(a)  Tests on plastic deformation of copper tubes, with different fi xed ratios of stress 

components correlated on the basis of equivalent shear stress and equivalent 

plastic shear strain. (Same data as in Fig. 5.45a)

30   R. Hill, “The Mathematical Theory of Plasticity,” p. 52, Oxford University Press, New 

York, 1950;   D.C. Drucker, A More Fundamental Approach to Plastic Stress-strain 

Relations, Proc. First U.S. Natl. Congr. Appl. Mech., pp. 487–491, 1951.
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Fig. 5.46(b)  Alternating tension and shear correlated on the basis of equivalent shear stress 

and equivalent plastic shear strain. (Same data as in Fig. 5.45b)

It should be noted that the data in Figs 5.45(a) and 5.46(a) extend up to very 

large strains, and in plotting the data true stress and true strain (based on incremen-

tal defi nitions) were used. Most practical stress analysis—i.e., cases where analysis 

can yield meaningful numerical results—is limited to strains less than about 0.05 to 

0.10, and in such cases it is suffi ciently accurate to use engineering stress and strain 

in the analysis. In metal-working operations, where the shape must be changed, 

however, the true stress and strain are needed.

5.17 PLASTIC STRESS-STRAIN RELATIONS

In the previous section we discussed how the data from the tensile test could be 

generalized through the use of an equivalent stress and an equivalent plastic strain 

to predict when plastic deformation would occur under a general state of stress. 

However, this correlation gave no indication of how the individual components 

of plastic strain depend on the stress components. In this section we shall discuss 

relations which give the plastic-strain components as functions of the stress com-

ponents. We shall discuss more than one such set of relations because, as was 

indicated by the experimental correlations discussed in the previous section, no 

one simple plastic-deformation theory has been found to give superior agreement 

with experiment in all situations. In the developments which follow we shall use 

plausibility arguments to lead us rather directly to the stress-strain relations; the 

reader should be aware that in so doing we compress into a few pages the contribu-

tions of many men over a number of years.31

As a start let us take the elastic stress-strain relations (5.2) and attempt to 

modify them to fi t the plastic case, assuming that yielding occurs according to the 

Mises criterion. As discussed in Sec. 5.11, plastic straining occurs with essentially 

no volume change, so we fi rst modify (5.2) to fi t this experimental fact. It can be 

shown (see Prob. 5.2) that the percentage change in volume is given by

31 See  A. Mendelson, “Plasticity: Theory and Application,” The Macmillan Company, New 

York, 1968, for further discussion and references.
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D
= + +
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V
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Substituting (5.2) in this equation, we obtain

D
=

-
+ +

V
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v

E
x y z

1 2
( )s s s

and thus to ensure zero volume change for the plastic components of strain, we 

must take v = 1
2

.

A second modifi cation of (5.2) follows from the fact that plastic strain is not 

linearly proportional to stress. In place of E we must use a factor which varies in 

some manner with the amount of plastic deformation. It can be shown that if we 

use the ratio of the equivalent stress to the equivalent plastic strain32 of the Mises 

criterion, that is, s/ p, we obtain a set of stress-strain relations which have the 

required symmetry implied by (5.2) and which predict the correct result for the 

tensile test. With these modifi cations in the elastic equations (5.2) we obtain the 

Hencky33 stress-strain relations
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These equations are referred to as representing a deformation theory of plasticity. 

While these equations are applicable in many situations, there are some problems to 

which they defi nitely are not applicable because a deformation theory of plasticity 

overlooks an important physical fact connected with plastic deformation. To gain 

further insight into this problem, let us return to some more paper-clip experiments. 

As before, open up the clip into the shape of a U. Twist it elastically. Then change 

the loading from twisting to bending, again being careful not to cause any plastic 

deformation. Note that the deformation is now the same as if you had omitted 

the twisting and simply bent it in the fi rst place. That is, in the elastic region the 

deformation depends only on the fi nal load and is independent of the path by which 

the load was reached.

Now carry out a similar experiment with plastic deformation. Twist the base of 

the U through 90° and then gradually apply a bending moment while releasing the 

twisting moment; continue bending until a little plastic bending defor mation has 

occurred. Note that the plastic twisting deformation still is present, even after the 

load has been changed to bending. Thus we see that in plastic deformation the total 

plastic strains depend not only on the fi nal load but also on the path by which the 

load was reached.

32 To be theoretically consistent in this development, we should obtain  p by eliminating the 

integral sign in (5.30) and using  1
p, ..., instead of d 1

p ..., under the square root sign.
33  H. Hencky, Zur Theorie Plastischer Deformationen und der hierdurch im Material 

Hervorgerufenen Nebenspannungen, Proc. First Intern. Congr. Appl. Mech., pp. 312–317, 

Delft, 1924.
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Try another experiment. Twist the wire plastically a little, and unload. Note 

the twisting deformation. Now bend it plastically a little. Note that the initial 

twisting deformation remains and there is added to it some bending deforma-

tion. Now twist it some more. Note the increase in twisting deformation, while 

the bending deformation remains. From this experiment we can conclude that in 

plastic deformation the kind of load determines the increment of strain but not its 

total value; the total value of a plastic-strain component is given by the integral 

of the increments of the plastic-strain component over whatever loading history 

the material has undergone. When Hencky’s equations are modifi ed to include the 

idea that the current stress components determine only the current increments of the 

plastic-strain components, the Levy-Mises equations34 are obtained.
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These relations generally are referred to as the Mises equations and represent an 

 incremental theory of plasticity.

To illustrate how the equations (5.34) can be used, if a body is at the point of 

incipient plastic deformation and a stress increase is applied, giving an increase in 

equivalent stress of ds, the increment in equivalent strain, d p, is found from the 

equivalent stress-strain curve of the material, e.g., Fig. 5.45(a). Then the increments 

in the plastic-strain components can be found from (5.34). For materials with a 

horizontal stress-strain curve in the plastic region, i.e., perfectly plastic materials, 

no increase in yield strength can occur, and the extent of the plastic deformation, 

and hence the magnitude of d p, is determined by external conditions. For example, 

in twisting a paper clip nearly constant torque is required from the time plastic fl ow 

begins until fracture, and the extent of deformation rather than the torque controls 

the process.

There is theoretical and experimental evidence35 for using the Mises equations 

(5.34) only with the Mises yield criterion (5.29). The same theoretical ideas suggest 

that when using the maximum shear-stress yield criterion (5.31), the plastic deforma-

tion should be assumed to be a pure shear strain of the coordinate axes with which 

are associated the maximum shear stress. This pure shear is in fact the equivalent 

plastic shear-strain increment dg p defi ned by (5.32), and from a consideration of the 

Mohr’s circle for the plastic-strain increments, it may be deduced that this deforma-

tion implies that the principal plastic-strain increments are

34  M. Levy, Compt. rend., vol. 70, p. 1323, 1870; and R. von Mises, Mechanik der festen 

Körper in plastisch-deformablen Zustand, Ges. Wiss. Göttingen, Nachs., mathphys. 

Klasse, 1913, pp. 582–592.
35  R. Hill, “The Mathematical Theory of Plasticity,” p. 52, Oxford University Press, New 

York, 1950;  D.C. Drucker, A More Fundamental Approach to Plastic Stress-strain 

Relations, Proc. First U.S. Natl. Congr. Appl. Mech., pp. 487–491, 1951;  McClintock and 

 Argon, op. cit., pp. 283–288.
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where max, int, and min refer, respectively, to the axes having the (algebraically) 

maximum, intermediate, and minimum principal stresses. Equations (5.35) satisfy 

the requirements that there be zero volume change and that the plastic-strain 

increments be determined by the current stresses (which defi ne the principal stress 

directions). When t and d t are known, the increment in equivalent plastic-strain 

d gp is found from a plot such as Fig. 5.46(a). For a perfectly plastic material the 

value of dgp is determined by the boundary conditions, which must prescribe the 

magnitude of the deformation.

The choice between using the Mises yield criterion (5.29) and the Mises fl ow 

rule (5.34) or the shear-stress yield criterion (5.31) and the shear fl ow rule (5.35) 

is a moot one. The Mises formulation fi ts most experimental data more accurately. 

The shear formulation is sometimes simpler but is ambiguous at other times, for 

example, when two of the principal stresses are equal. The Hencky equations (5.33) 

will not predict correct results in a situation involving a complicated loading path, 

but in a situation where the ratios of the stresses are kept constant and the stresses are 

continuously increased, and never decreased, the results are identical with the Mises 

incremental theory (5.34). There are many situations where these conditions are 

approximately fulfi lled, and the use of (5.33) in such cases may considerably simplify 

the mathematics and predict results which are within a few percent of the exact ones.

From a strictly theoretical viewpoint, when considering plastic behavior, one 

should also include the elastic effects (e.g., most real materials are elastic-plastic, 

as illustrated in Fig. 5.7(e) and (f)). Thus the elastic strains given by (5.8) should 

be added to the plastic strains given by an appropriate set of plastic stress-strain 

relations such as (5.33), (5.34), or (5.35). These combined stress-strain relations, 

together with the equilibrium equations (5.6) and the geometrical conditions (5.7), 

constitute the complete equations of plasticity.

Much of the present theoretical work in plasticity is concerned with cases where 

the elastic strains are neglected; i.e., the material is considered to be rigid-plastic, 

as illustrated in Fig. 5.7(c) and (d). This assumption reduces the complexity of 

the problem greatly and provides a fairly good approximation for many important 

practical problems. Using this type of material model, approximate methods have 

been developed36 for estimating the load-carrying capacity of reasonably complex 

structures. In most of this work—and certainly in elastic-plastic analysis—the 

strains are small enough (less than 0.05 to 0.10) so that the engineering and true 

defi nitions of stress and strain yield essentially equal results, and the choice of 

which to use is governed by convenience.

36 See, for example,  J.F. Baker,  M.R. Horne, and  J. Heyman, “The Steel Skeleton,” vol. 

II, “Plastic Behaviour and Design,’’ Cambridge University Press, New York, 1956; and 

 P.G. Hodge, Jr., “Plastic Analysis of Structures,” McGraw-Hill Book Company, New 

York, 1959.
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The theory of plasticity is of more recent origin than the theory of elasticity, and, 

for this reason, as well as because of the obviously more complicated nature of the 

plastic stress-strain relations, relatively few problems have been solved. The most 

common ones involve plane strain of a nonhardening material; some of these results 

are strikingly different from what might be guessed from elasticity theory. Also, 

plasticity theory has given a much better understanding of some of the observed 

failures of structures and machines.

In presenting the foregoing detailed discussion of yielding and plastic be havior, 

it has been our aim to acquaint the reader with the basic concepts which are 

currently useful in describing these phenomena. There is little doubt that this area 

will continue to be one of the most active fi elds of research in the mechanics of 

solids since so many problems of scientifi c and engineering interest involve plastic 

behavior.

5.18  VISCOELASTICITY

Thus far we have discussed time-independent behavior of materials. In this section 

we will briefl y discuss the time-dependent behavior of engineering metals at high 

temperature and of plastics (polymers).

At ordinary temperatures the stress-strain relations of most engineering metals 

are independent of the duration of the loading. At elevated temperatures, however, 

the strain resulting from a fi xed stress continues to grow with time. A typical plot 

of strain versus time is sketched in Fig. 5.47. The intercept of the curve at t = 0 

gives the elastic (and possibly also plastic) strain which occurs almost immediately 

on application of the load. There follows a period 

of decreasing rate of strain (primary creep), then 

a period of uniformly increasing strain (secondary 

creep), and fi nally a period of accelerating strain 

rate as the specimen necks or cracks just before the 

fracture (tertiary creep). The uniform rate of creep 

during secondary creep has been experimentally 

determined37 for many materials from uniaxial 

tensile creep tests at constant load.

In using this uniaxial creep data to predict creep rates in situations under 

combined stress, the ideas of equivalent stress and strain used in plasticity have 

proved useful. Assuming that the equivalent creep stress s is defi ned by the Mises 

criterion (5.29), the following equations for the creep rates have been found to give 

reasonable agreement with experiment:
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with similar equations for d y
c/dt and d z

c/dt, and

Fig. 5.47   Creep curve

37 See, for example, Report on the Elevated-temperature Properties of Chromium-

molybdenum Steels, ASTM Spec. Tech. Publ. 151, 1953; Report on the Elevated-

temperature Properties of Se lected Super-strength Alloys, ASTM Spec. Tech. Publ. 160, 

1954.
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with similar equations for dgyz
c/dt and dgzx

c/dt. In these equations the effective creep 

rate d  c/dt is defi ned by the quantity under the integral sign in (5.30) with creep 

rates substituted for the plastic-strain increments, i.e., with d 1
c/dt used in place of 

d 1
p, etc.

For metals, the coeffi cient

3d dtc
 

s
depends very strongly on both stresses and temperature. In the case of liquids, 

however, the ratio is relatively independent of stress. When the coeffi cient of 

viscosity m is introduced for the reciprocal of this ratio, (5.36) and (5.37) become 

the stress-strain rate equations for a viscous incompressible fl uid. This can be 

seen if we express the strain rates in (5.36) and (5.37) in terms of the velocity 

components 
� � �u v w, , .and
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The negative of the mean normal stress 1
3

( )s s sx y z+ +  is the pressure p. 

Equations (5.38) and (5.39), together with the corresponding equations for sy, sz, 

tyz, and txz, are the constitutive equations for viscous incompressible fl ow.38 When 

combined with momentum and continuity requirements they give the Navier-Stokes 

equations of fl uid mechanics.

Another form of time-dependent behavior appears in polymers. Polymers consist 

of long-chain molecules in which the links along the chain are held together by 

primary chemical bonds, typically between carbon atoms. The binding between 

the chains is due to secondary chemical bonds, which have low enough energy so 

that thermal motion is continually breaking and rearranging the bonds. An applied 

stress will bias such rearrangements, resulting in gradual fl ow or deformation with 

time. At low stress levels the effects are linearly proportional to the applied stress. 

Such mechanisms give rise to creep under constant applied stress, to the elastic 

aftereffect observed in the gradual unfolding of a freshly folded piece of paper, and 

to the strain-rate effect in the stress-strain curve of polymethyl methacrylate, shown 

in Fig. 5.5(d). Such time-dependent phenomena are called viscoelasticity.

The linear dependence of viscoelastic strain on stress turns out to mean that 

whenever the stress distribution does not depend on the elastic constants E and 

v, which is true for almost all of the problems of plane elasticity discussed in this 

book, the viscoelastic stress distribution is constant with time and identical to the 

elastic stress distribution. With constant applied loads, the resulting time-dependent 

38 See, for example,  I. Shames, “Mechanics of Fluids,” pp. 277–279, McGraw-Hill Book 

Company, New York, 1962.
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deformation can be found from the creep curve of the material, which gives strain 

as a function of time under constant applied stress39 (Fig. 5.47).

The linear dependence of strain at a given time on the stress history allows creep 

curves for all stress levels within the linear range to be correlated by plotting the 

strain per unit applied stress, called the creep compliance, as a function of time. A 

typical plot is shown in Fig. 5.48. At high stress levels the fl ow of polymer chains 

past each other is produced directly 

by the stress, without waiting for 

thermal motion, and the strain has 

a greater than-linear dependence on 

stress. As a rough estimate, linear 

behavior usually extends to 1 or 2 

percent of immediately recoverable 

elastic strain, which includes the 

maximum strains of interest in most 

structural applications.

As might be expected from the importance of thermal motion in breaking 

secondary bonds, temperature has a strong effect on the creep rate. To show the 

effect over a reasonable range of times and temperatures, it is necessary to use a 

logarithmic scale. At the same time, for comparison with the modulus of elasticity, 

the stress divided by the time-dependent strain, called the creep modulus, is plotted 

as in Fig. 5.49(a). Note that a change in temperature seems to correspond to a 

shift in the logarithm of the time. This correlation is usually but not always valid. 

It is often used to extrapolate laboratory tests to the long times needed to predict 

defl ections in structures. The effect of temperature is shown even more dramatically 

in Fig. 5.49(b), although the time-temperature shift is not evident in this form.

The time-temperature behavior of viscoelasticity makes it diffi cult to present 

data in tabular form. Most data are available in the form of curves derived from 

tests in which a constant strain is applied and the resulting relaxation of stress with 

time is noted. These tests have the advantage that shape changes are negligible, 

which may not be the case for creep in the relatively soft, viscous regimes. Figures 

5.49(a) and 5.49(b) were actually obtained from such data, using the conversion 

scheme described by Ferry.40 Further data may be found in the literature.41

39 For examples of the calculation of deformations see, for example,  D.C. Drucker, “Introduction 

to Mechanics of Deformable Solids,” McGraw-Hill Book Company, New York, 1967.
40  J.D. Ferry, “Viscoelastic Properties of Polymers,” Chap. 4, John Wiley & Sons, Inc., New 

York, 1961.
41  J.R. McLoughlin and  A.V. Tobolsky, The Viscoelastic Behavior of Polymethylmethacrylate, 

J. Colloid. Sci., vol. 7, pp. 555–568, 1952;  A.E. Moehlenpah,  O. Ishai, and  A.T. DiBenedetto, 

The Effect of Time and Temperature on the Mechanical Behavior of a “Plasticized” Epoxy 

Resin under Different Loading Modes, J. Appl. Polymer Sci., vol. 13, pp. 1231–1245, 1969; 

 J.T. Seitz and  C.F. Balazs, Application of Time-temperature Superposition Principles to 

Long-term Engineering Properties of Plastic Materials, Polymer Eng. Sci., pp. 151–160, 

April, 1968;  M. Takahashi,  M.C. Shen,  R.B. Taylor, and  A.V. Tobolsky, Master Curves for 

Some Amorphous Polymers, J. Appl. Polymer Sci., vol. 8, pp. 1549–1561, 1964;  J.B. Yannas 

and  A.V. Tobolsky, Approximate Master Curves for Amorphous Polymers from Modulus-

temperature Data, J. Macromol. Chem., vol. I, pp. 399–402, 1966.

Fig. 5.48  Creep compliance as a function of 

time
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When the history of stress is not constant, the history of strain can still be 

obtained by numerically superimposing the results of creep, relaxation, constant 

strain rate, or other tests.42

Fig. 5.49   Creep in polymethylmethacrylate. Calculated from data of McLoughlin and 

Tobolsky, op. cit., using formula of Ferry, op. cit.

42 See, for example,  McClintock and  Argon, op. cit., pp. 247–248.
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 SUMMARY

Introduction

In the last chapter, we have derived only three equations of equilibrium for the six 

components of stress. Also, the addition of three components of displacement in 

the six equations relating strain to displacement indicated that further relations are 

needed to determine the distribution of stress and strain in the body. These relations 

are based on experimental evidence at the atomic level with theoretical extension 

to macroscopic level or relations based at the macroscopic level. Various terms like 

elastic and plastic deformation, strain hardening, fracture, fatigue, creep, elastic 

aftereffect, recovery, etc. are discussed.

The tensile test

It is a simple loading situation in which a slender member is pulled along its axis, in 

order to formulate the quantitative stress–strain relation experimentally. In a typical 

result for a steel specimen, the fi rst part of the observation is in the proportional 

limit where stress is proportional to strain; the elastic limit can be defi ned as the 

greatest stress which can be applied without resulting in any permanent strain on 

release of stress. 

As plastic deformation continues, strain hardening takes place, or fl ow strength 

rises. Some materials exhibit time-dependent behavior, termed as viscoelastic 

property, where the secondary bonds across the chain are broken by thermal 

activity.

Idealization of stress–strain curves

From the earlier discussions, it is evident that different materials have dissimilar 

stress–strain relations. Since we tend to make our mathematical models as simple as 

possible, we had idealized the stress–strain curves of Fig. 5.5. The idealized stress–

strain curves are represented by Fig. 5.7, with reference to 

∑ rigid materials

∑ linearly elastic materials

∑ rigid plastic material

∑ elastic plastic material

∑ perfectly plastic material

∑ elastic-perfectly plastic material

Elastic stress–strain relations

To derive the relation between stress and strain, by restricting to linearly elastic 

materials under uni-axial loading and subjected to small strains as in the Eq. (4.33). 

The Poisson’s ratio is defi ned as the ratio between the lateral strain and longitudinal 

strain.

ex = [sx – u (sy + sz)]/E and gxy = txy/G which can be extended to the other 

components also.

Also, we have   gxy = e1 – e2 = 2 (1 + u)  t/E;

 G = E/(2(1 + u))
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Thus, for a linearly isotopic material, there are only two independent elastic 

constants.

Thermal strains

The strain due to temperature difference in the absence of stress is called the 

thermal strain, with no shear strain and only pure expansion and contraction for 

isotropic material, the strain denoted by ex
t = ey

t = ez
t = a (T – To), where a is the 

coeffi cient of linear expansion.

Complete equations of elasticity

The complete equations of elasticity are written based on the conditions of 

equilibrium, geometric compatibility, and the stress–strain-temperature relations, as 

discussed in (5.6), (5.7), (5.8).

Strain energy density an elastic body

We know that, from (2.10), U = ½ Fd, where the total work is one-half of the 

total force and defl ection. Thus, extending this to the more general case of three-

dimensional problems, we have

 U = ½ Úv (sxex + syey + szez + txygxy + tyzgyz + tzxgzx)

Stress concentration

We had noted that in elastic bodies with geometric irregularities, the maximum 

stress levels in the vicinity of the irregularity may be several times greater than the 

nominal stress level in the bulk of the body. This phenomenon is called as stress 

concentration, given by 

Kt = smax / nom, where Kt is called the stress concentration factor.

Composite materials and anisotropic elasticity

As we had seen, the property of the composite material are be different along the 

fi bers from what they are across the fi bers. This property is called anisotropy. When 

the structures appear identical after they have been rotated by 180°, about any one 

of the orthogonal coordinate axes, they are called orthotropic materials, a special 

case of anisotropic materials. The stress-strain relations are given by Eq. (5.20).

While performing a tensile test on a specimen whose axis is not a symmetric 

axis of the structure, the occurrence of secondary shear–strain component makes it 

diffi cult to design the specimen and the grips which produce purely tensile stresses 

without secondary shearing and bending stresses.

Criteria for initial yielding

For the onset of yielding in a material subjected to a general state of stress, two 

empirical relations are provided to correlate yielding in a three-dimensional state a 

stress to or uni-axial tensile loading.

The relations are given in Eqs (5.23), (5.24) and (5.25).
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Fatigue

The process of fracture under repeated loading is termed fatigue. The stress 

amplitude which can be withstood for some specifi c number of cycles is termed 

as the fatigue strength of the material. The endurance limit is the stress level, 

corresponding to practically infi nite life cycle without failure.

Usually, fatigue cracks initiate from small and microscopic irregularities on 

the surface or the subsurface of the material. Notches increase stresses by stress 

concentration. The endurance limit stresses are given by the popular Goodman–

Soderburg criterion. Environment also plays a vital role in fatigue by shortening or 

improving the life of the material.

Plastic stress–strain relations

Similar in form to elastic stress–strain equations, the plastic stress–strain equations 

are given in (5.33). They are referred to as the deformation theory of plasticity. An 

incremental theory, referred to as the Levy–Mises equation is given by (5.34)

Viscoelasticity

The time-dependent behavior of metals at high temperatures and plastics is termed 

as viscoelasticty. A typical plot is given by Fig. 5.47, expressing regions of primary 

creep, secondary creep and tertiary creep.  The mechanism of creep in plastics is 

attributed to the thermal breakdown of secondary bonds across the polymer chains.

PROBLEMS

 5.1 An elastic material with modulus of elasticity E and Poisson’s ratio v 

originally fi lls a square cavity of sides 2a and height L in a rigid block. A 

rigid cap is placed on top of the elastic material, and when there is a force 

Fo acting on the cap the height of the elastic material is observed to have 

decreased by an amount c. Calculate the magnitude of the force Fo.

Prob. 5.1  

 5.2 Show that for small strains the fractional change in volume is the sum of the 

normal strain components associated with a set of three perpendicular axes.
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 5.3 (a) Using the result of Prob. 5.2, prove that for an isotropic, linearly elastic 

material,

D
=

+ + -V

V

v

E

x y z( )( )s s s 1 2

  (b) The bulk modulus of a linearly elastic material is defi ned as the ratio of 

the hydrostatic pressure to the fractional decrease in volume.

B
p

V V
=

-D( )

  Show that for an isotropic material the bulk modulus is given by

B
E

v
=

-3 1 2( )

 5.4 With the aid of the results of Prob. 5.3, discuss the stability under hydrostatic 

pressure of a hypothetical material with a Poisson’s ratio greater than 
1
2  .

 5.5 Prove that in a linear isotropic material txy component of shear stress cannot 

produce  a gyz component of shear strain.

 5.6 Prove that in a linear isotropic material a txy component of shear stress 

cannot produce a uniform expansion or contraction consisting of three equal 

normal components of strain.

 5.7 Invert the stress-strain-temperature relations (5.8) to obtain the stresses in 

terms of the strains.

 5.8 The stresses in a fl at steel plate in a condition of plane stress are

    sx = 130 MN/m2

    sy = –70 MN/m2

   txy = 80 MN/m2

  Find the magnitude and orientation of the principal strains in the plane of the 

plate. Find also the magnitudes of the third principal strain (perpendicular to 

the plane of the plate).

 5.9 In a fl at steel plate which is loaded in the xy plane, it is known that

   sx = 145 MN/m2

   txy = 42 MN/m2

    z = –3.6 ¥ 10–4

  What is the value of the stress sy?

Prob. 5.9  

 5.10 The principal strains in the plane of a fl at aluminum plate which is loaded in 

its plane are
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    1 = 3.2 ¥ 10–4

    2 = –5.4 ¥ 10–4

  Find the stresses sx, sy, and txy, where the x, y axes are located as shown in 

the sketch.

Prob. 5.10  

 5.11 Let Ao be the original area of a tensile-test specimen and let A be the value 

at some point during a test. If the test has progressed to a point where the 

elastic strains can be neglected compared to the plastic strains, show that the 

reduction of area of the specimen is given by

Reduction of area =
-

= - -A A

A
eo

o

x1  

  where  x is the true strain [defi ned by Eq. (5.27)] and e is the base of natural 

logarithms.

 5.12 A long, thin-walled cylindrical tank has a radius r and a wall thickness t. 

Its ends are closed, and when a pressure p is put in the tank a strain gage 

mounted on the outside surface in a direction parallel to the axis of the tank 

measures a strain of  o. What is the pressure in the tank?

Prob. 5.12  

 5.13 A sheet of metal in the form of a circle has a small circular hole cut out of 

it, as indicated in the sketch. If the sheet is initially free of stress and is not 

restrained in any fashion, what general shape will the originally circular 

boundaries assume if the sheet is heated uniformly to a temperature T above 

its original temperature?
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Prob. 5.13  

 5.14 A small experimental pressure vessel is made from a 20 cm long brass cylinder 

of 15 cm mean diameter and 0.2 cm wall thickness, and two 1 cm thick steel 

plates held together by three 0.5 cm diameter steel bolts set on a 20 cm diameter 

bolt circle. The vessel is put together with the nuts on the three bolts brought 

up snug, and then each nut is tightened one-half turn additional. Estimate the 

internal pressure at which the vessel is certain to leak.

Prob. 5.14  

 5.15 Discuss stress changes which may be found in a continuous railroad rail due 

to temperature changes during a 24-hr period. What forces must be applied 

to hold the rail in place? Where must these forces be applied and how do 

they depend upon the length of the rail?

 5.16 If a steel plate is clad with a thin layer of soft aluminum on both sides, how 

hot can the assembly be heated without causing plastic fl ow? Assume that 

the aluminum does not slide on the steel and that the stress-strain curves are 

independent of temperature.



322 An Introduction to the Mechanics of Solids

 5.17 It is desired to produce a tight fi t of a steel shaft in a steel pulley. The internal 

diameter of the hole in the pulley is 24.950 mm, while the outside diameter of 

the shaft is 25.000 mm. The pulley will be assembled on the shaft by either 

heating the pulley or cooling the shaft and then putting the shaft in the pulley 

hole and allowing the assembly to reach a uniform temperature. Is it more 

effective to heat the pulley or to cool the shaft? What temperature change would 

be required in each case to produce a clearance of 0.025 mm for easy assembly?

 5.18 An aircraft fuselage is constructed with circular ribs connected by 

longitudinal stringers and an outer skin riveted to the stringers but not in 

contact with the ribs. If insulation is placed between the skin and the ribs, the 

temperature of the skin and stringers may become quite dif ferent from that of 

the ribs. Find the state of stress and strain in the skin due to cooling it and the 

stringers 50°F below the temperature of the ribs. Note that the skin is free to 

expand longi tudinally, but that lateral expansion is at least partly constrained 

by the ribs. Neglect the effects of curvature. For simplicity, consider two 

extreme cases, the fi rst in which the ribs are so heavy as to prevent any lateral 

strain, and the second in which the ribs are so light that they offer prac tically 

no constraint at all. Consider the material to be 2024-T4 aluminum alloy.

Prob. 5.18  

 5.19 A cantilever bridge is built out from piers at either end and is to be joined in 

the middle. Discuss with a numerical example the problem of lining up the 

two halves of the span if the truss on one side of the roadway is in the sun 

and that on the other side is in the shade.

Prob. 5.19  

 5.20 A long, thin-walled cylindrical tank of length L just fi ts between two rigid 

end walls when there is no pressure in the tank. Estimate the force exerted on 

the rigid walls by the tank when the pressure in the tank is p and the material 

of which the tank is made follows Hooke’s law.
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Prob. 5.20  

 5.21 A long, thin-walled cylinder tank just fi ts in a rigid cylindrical cavity 

when there is no pressure in the tank. Estimate the tangential stress in the 

cylindrical-tank wall when the pressure in the tank is p and the material of 

which the tank is made follows Hooke’s law.

Prob. 5.21  

 5.22 A thin-walled cylindrical tank with its ends closed by thick plates is put 

under internal pressure. Derive an expression for the ratio of the change in 

length to the change in diameter.

 5.23 A thin-walled cylinder with closed ends and a thin-walled sphere of the same 

diameter and wall thickness are put under the same internal pressure. Find 

the ratio of the change in diameter of the cylinder to the change in diameter 

of the sphere.

 5.24 Find expressions for the elastic displacements in a uniform bar under tensile 

loading. Show that your solution satisfi es the 15 equations of the theory of 

elasticity.

Prob. 5.24  

 5.25 If the clad plate of Prob. 5.16 is heated 50°C above the temperature which 

initiates yielding and then is cooled, what is the resulting state of stress and 

strain? Assume that the clad plate was free of stress before it was heated.
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 5.26. A composite hoop (the same hoop as in Prob. 2.31) consists of a brass hoop 

of 300-mm internal radius and 3-mm thickness, and a steel hoop of 303-mm 

internal radius and 6-mm thick ness. Both hoops are 60 mm wide normal 

to the plane of the hoop. If the composite hoop is heated uniformly to a 

temperature 85°C above room temperature, estimate the stresses in the brass 

and steel hoops.

 5.27 A batch of 2024-T4 aluminum alloy yields in uniaxial tension at the stress 

so = 330 MN/m2. If this material is subjected to the following state of stress, 

will it yield according to (a) the Mises criterion, and (b) the maximum shear-

stress criterion?

   sx = 138 MN/m2  txy = 138 MN/m2

   sy = –69 MN/m2  tyz = 0

   sz = 0   tzx = 0

 5.28 It is proposed to check the safety of a thin-walled, cylindrical pressure vessel 

made of hot-rolled low-carbon steel by measuring changes in length and 

circumference as the internal pressure is increased. How much change in 

length and circumference would occur before the material yielded?

 5.29 Calculate the ratio of axial to tangential strain when the pressure inside a 

long, thin-walled, closed-end cylinder is increased to the point where enough 

plastic fl ow has occurred so that elastic strains may be neglected.

 5.30 Alclad sheet consists of an aluminum alloy covered with a thin layer of purer 

aluminum for corrosion resistance. For example, 16-gage 2024-T4 alclad 

has a total thickness of 0.13 cm, of which 0.013 cm on either side is the 

pure aluminum cladding. What are the residual stresses in the cladding and 

in the core as a narrow strip of this material is stretched 2 percent and then 

re leased? Consider two approximations, in both cases using an elastic-perfectly 

plastic model to describe the data for the two materials in Fig. 5.5(b).

 (a) First make a simple analysis in which it is assumed that the cladding is 

so thin that it exerts negligible infl uence on the core.

 (b) Repeat (a), taking into account the fi nite thickness of the cladding and its 

restraining effect on the core.

 5.31 A chain hoist is attached to the ceiling through two tie rods at an angle q 

to the vertical, as shown in the sketch. The tie rods are made of cold-rolled 

steel with yield strength Y, and each has 

an area A.

 (a) What is the load at which both rods 

become plastic, so that large-scale 

plastic deforma tion begins?

 (b) By how much would this load be 

increased if a third rod of area A were 

added, as shown by the dotted line?

 (c) What is the load-defl ection relation 

when the defl ections are elastic in all 

three rods? (Hint: For an assumed 

vertical defl ection d, fi nd the loads 

carried by the pair of diagonal bars Prob. 5.31
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and by the vertical strut separately, and then add to get the total load as a 

function of defl ection.)

 (d) If the three-member frame is loaded until all three rods become fully 
plastic, and then the load is released, fi nd the residual stress in the central 
rod. What result would you expect for the extreme cases of q = 0 and 

q = p/2? Does your analysis give this?

 5.32 A stiff horizontal bar 012 is hinged at one end. Two rods of equal length 
and area are attached to the bar as shown. The material of the rods is elastic 
perfectly plastic. The load P is increased until both rods have become plastic, 
and then it is removed. Find the residual stresses in the two rods. Find also 
the change in angle which the bar 012 makes with the horizontal when the 

load is removed.

Prob. 5.32  

 5.33 If a very long, thin bar of metal is stretched to fracture, almost all the 
elongation will be due to uniform strain, since the necked region is so short 
relative to the length of the piece. On this basis calculate the change in length 
before fracture in rods 0.5 cm diameter by 100 cm long of cold-rolled and 
hot-rolled mild steel. Contrast the ratio of these changes in length with the 
ratio of the true strains at fracture for the two materials.

 5.34 The most commonly quoted results of a tensile test are the yield point or 
yield strength, the tensile strength, the percentage elongation, and the 
percentage of reduction of area. How can one tell from these results whether 

or not any necking occurred before fracture?

 5.35 Show that, in a tensile test where the plastic stress–strain relations (5.34) 

govern the material behavior, the equivalent plastic strain defi ned by Eq. 

(5.30) is equal to the axial normal component of strain.

 5.36 In the solution for the displacement in a thick-walled cylinder, Eq. (i) of 

Sec. (5.7), evaluate the constants of integration A and B from the boundary 

conditions to obtain an expression for the displacement in terms of the outer 

and inner pressures.

 5.37 There are many practical situations where it is desirable to shrink-fi t an 

external member on a shaft. The inner diameter of the external member is 
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usually made slightly less than the outer diameter of the shaft. The external 

member is then expanded by heating, slipped over the shaft, and allowed to 

cool. A steel shaft with an outer diameter of 450 mm and an inner diameter 

of 30 mm has a steel tube 75-mm-thick shrunk-fi t onto it. The inner diameter 

of the tube is machined to be 1.25 mm less than the outer diameter of the 

shaft. Determine the expressions for the stresses in the shaft.

 5.38 Show that if the x, y, z and a, b, c axes are related as shown in Fig. 5.26, then 

the shear strain gab resulting from the normal stress aa is

g

s
q qab

a

S S S= + - -Ê
ËÁ

ˆ
¯̃11 22 44

1

2
2 2sin cos

  Find the maximum value this ratio will have for iron.

 5.39 Show by symmetry arguments that in linear orthotropic materials a shear-

stress component referred to the structural axes will produce only the 

corresponding shear-strain component referred 

to the structural axes.

 5.40 A steel pipe is held by two fi xed supports 

as shown in the fi gure. When mounted, the 

temperature of the pipe was 20°C. In use, 

however, cold fl uid moves through the pipe, 

causing it to cool considerably. If we assume 

that the pipe has a uniform temperature 

of –15°C and if we take the coeffi cient of 

linear expansion to be 12 ¥ 10–6/°C for this 

temperature range, determine the state of stress 

and strain in the central portion of the pipe as a 

result of this cooling. Neglect local end effects 

near the supports and neglect body forces and 

fl uid pressure and drag forces.

 5.41 Shown is a steel bolt and nut and an aluminum 

sleeve. The bolt has 6 threads per cm and, when 

the material is at 60°F, the nut is tightened one-

quarter turn. The temperature is then raised 

from 60 to 100°F. Determine the stresses in 

both bolt and sleeve.

 5.42 Blowing up a spherical toy balloon becomes 

easier once the balloon “starts” to infl ate. A typical 

experimental curve of internal pressure versus 

balloon diameter is shown. Attempt to formulate 

a simple explanation of these phenomenon under 

the assumption that the rubber of the balloon is 

an incompressible linearly elastic material. You 

should be able to obtain an analytical expression 

for the curve of pressure in the balloon versus 

diameter which is similar to the fi rst portion of the 

experimental curve.

Prob. 5.40

Prob. 5.41
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Prob. 5.42  

 5.43 In the structure shown, all three bars have the same cross-sectional area A 

and are com pelled to have the same length L, although this common length 

is free to expand or contract as the temperature changes. The bar materials 

have unequal thermal expansion coeffi cients and elastic moduli:

   a1 = a   a2 = 2a
   E1 = E  E2 = 2E

Prob. 5.43  

  Material 1 is elastic-plastic, being ideally plastic beyond a strain of  Y, 

while material 2 can be taken to remain elastic throughout the excursions 

described below. The system is assembled at temperature T = 0 with no stress 

in the bars. The problem is to analyze the behavior of the structure as the 

temperature T is increased. Specifi cally, answer the following questions:
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 (a) If T is small enough, the entire system is elastic and the displacement u 

returns to zero when T returns to zero. Find the limiting temperature TY 

for which, as soon as T > TY, some yielding occurs in material 1.

 (b) When T = TY, what is the corresponding displacement u?

 (c) If now the temperature is raised to T = 2TY, what is the displacement u at 

this temperature?

 (d) When the temperature is T = 2TY, 

what is the plastic strain in the 

material 1?

 5.44 A bolt-sleeve-washer combination 

is tightened with a torque wrench to 

produce an axial strain in the bolt of 

0.0005. The assembly is then heated 

to 95°C. What will be the compressive 

stress in the washer at the new 

temperature? The bolt is steel and has 

cross-sectional area As = 310 mm2. 

The sleeve is aluminum and has cross-

sectional area 625 mm2 and length L = 

150 mm. The washer is steel and has 

cross-sectional area Ac = 625 mm2 and 

thickness h = 1.5 mm.

 5.45 A materials test is performed by 

pressurizing the chamber shown. The 

specimen is machined to have cross-

sectional area A at the ends and area kA 

in the test section (0 < k < 1). What is 

the stress state in the test-section when 

the pressure (above atmospheric) in 

the chamber is p? Under atmospheric 

conditions, the material yields in simple 

tension at sY = 280 MN/m2. How large 

must the pressure p be to produce 

yielding? For this case, does it make any 

difference whether you use the Mises or 

the maximum shear-stress criterion?

 5.46 We wish to electroplate copper onto 

sheet steel to improve corrosion 

resistance. However, when copper is plated under normal conditions, the 

resulting copper layer has a residual tensile stress of 21 MN/m2, which is 

harmful from a fatigue point of view. In order to obtain a copper layer which is 

either stress-free or under compressive stress, it is suggested that we either:

 (a) Alter the temperature of the plating bath such that at room temperature 

the layer will be stress-free, or

 (b) Carry out the plating while the steel sheet is subject to a uniaxial tensile 

loading, such that when the load is removed the layer will be stress-free.

Prob. 5.44

Prob. 5.45
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  Analyze both methods, determining the oath temperature for the fi rst case 

and the tensile stress for the second. Would both methods provide the same 

resultant stress confi guration? Which would you recommend?

    Thickness a, (°C)–1 
 sY, GPa 

  Steel 0.250 mm 10.8 ¥ 10–6 700 MN/m2

  Copper 0.025 mm 16.2 ¥ 10–6 70 MN/m2

 5.47 Show that the stresses (5.9) for po = 0, pi = p reduce to the results for a thin-

walled tube (Prob. 4.10) as t/ri becomes small. Plot s and sq, for t/ri = 0.05 

from the exact solution and from the thin-walled-tube approximation.

 5.48 A circular plate (or short cylinder) of outer radius a has a small central hole 

of radius c, where c   a. The plate is subjected to an outer pressure p as 

shown; there is no axial force.

 (a) Calculate the maximum normal 

stress existing in the plate in the 

limit as c/a Æ 0, that is, as the hole 

becomes microscopic in size.

 (b) Calculate the ratio of this maximum 

stress to the maximum stress which 

would exist in a solid circular plate of 

radius a loaded with an outer pressure 

p.

  This ratio gives the stress concentration 

factor for a small hole in a plate which 

is subjected to hydrostatic (equal in all 

directions) stress in the plane of the 

plate.

 5.49 Consider the indicial form (see Sec. 4.15) of the complete equations of 

elasticity in Sec. 5.6. Show that (5.6)–(5.8) can be written in the form

   si j, i + Xj = 0

   
e u uij t j j i= +1

2
( ), ,

   
e

v

E

v

E
Tij ij ij ij=

+
- + D

1
s d q ad

  where dij is called the Kronecker delta and is equal to 1 when i = j and equal 

to zero when i π j, and where

   q = s11+ s22 + s33 = sii

 5.50 Show that the strain energy stored in a body (5.17) can be written in indicial 

notation in the form

   
U e dVij ij= Ú1

2
( )s

 5.51 Show that the strain-energy expression (5.17) for an isotropic material can be 

written in terms of stresses in the form
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Prob. 5.48
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  or in terms of the strain
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 5.52 A composite material is made by aligning continuous fi bers of boron 

d = 0.005 cm diameter and bonding them together in a linear array with an 

epoxy resin as shown in the sketch. The modulus of elasticity of the boron 

fi bers is 350 GPa and that of the epoxy resin 3.5 GPa.

 (a) What are the Young’s moduli of 

the composite material in the 1 

and 2 directions for a volume 

fraction of 40 percent of the boron 

fi bers (the densities of the boron 

and resin may be assumed equal)?

 (b) If a second composite layer with 

fi bers lined up parallel to the 

2 direction is glued on top of 

the fi rst layer, what would the 

new moduli be in the 1 and 2 

directions?

 (c) Does the structure described in 

part (b) possess isotropy in the 

plane?

 5.53 Show that Eq. (5.20) in indicial 

notation can be written in the form

   j = Sjiti     Sij = Sji    =1,…,6

  where

   j =  x,…,gzx ti = sx,…,tzx

 5.54 A threaded steel rod is subject to a mean tensile stress of 210 MPa. The 

ultimate strength for the material is 900 MPa, and Kf for the threaded section 

is 2.6. Estimate the maximum alternating stress that can be applied.

 5.55 A closed-end cylindrical tank of 25 cm diameter is made of 0.1 cm thick 

steel having an endurance limit of 300 MPa. The tank is supplied with air 

from a pump in such a fashion that there are alternating pressure pulses, 

equal in amplitude to 15 percent of the mean pressure. For a safety factor of 

3, what maximum mean pressure would you recommend? (Assume that due 

to fi ttings and so forth, Kf may approach 3.)

 5.56 A magnesium alloy rod (HM21A-T8) is to be used for a fi nite life application. 

The mean stress is 80 MPa and the alternating stress is 120 MPa. Estimate 

by using a suitable modifi cation of the Goodman-Soderberg diagram and 

Fig. 5.42(b) the number of cycles to failure of the rod.

Prob. 5.52
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6.1 INTRODUCTION

6

In Chapter 2 we saw how the three 
steps of (2.1) formed the basis for 
the analysis of simple problems 
in the mechanics of solids. In the 
intervening chapters we have 
studied each of the three steps 
separately, extending considerably 
our under standing of these steps. 
We are now ready to use them in 
the analysis of problems of major 
engineering importance.
 In this chapter we shall 
consider the problem of twisting, 
or torsion. A slender element 
subjected primarily to twist is 
usually called a  shaft. Twisted 
shafts play an important part in 
many mechanisms. A major use 
of such shafts is in the transfer 
of mechanical power from one 
point to another; Figs 6.1 and 6.2 
show familiar examples of this 
use of shafts in torsion. In other 
situations a twisted shaft can be 
used to provide a spring with 
prescribed stiffness with respect 
to rotation; examples of this are 
the torsion-bar spring system 
on automobiles (see Prob. 6.34), 
and, on a different scale, the 
measurement of extremely small 

forces by an instrument which 
uses a very fi ne wire in torsion as 
the basic “spring” (see Prob. 6.25).
 In the transmission of power 
by a shaft in torsion, we are 
interested primarily in the 
twisting moment which can be 
transmitted by the shaft without 
damage to the material, and 
hence we wish to know what the 
stresses are in the shaft. In the use 
of a shaft as a torsional spring, 
we are interested primarily in the
relation between the applied 
twisting moment and the 
resulting angular twist of the 
shaft. In order to obtain this 
 overall force-deformation relation, 
we shall have to consider the 
distribution of stress and strain 
throughout the entire member. 
This will give us an opportunity 
to study a complete nontrivial 
solution in the theory of 
elasticity. We shall also consider 
simple cases involving plasticity. 
The analyses considered in this 
chapter furnish the foundation 
for most engineering calculations 
involving shafts.
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Fig. 6.1  Schematic representation of power transmission in an automobile. Combustion 

in the cylinder compresses gas which exerts compressive force on the piston rod. 

Piston rods tend to twist (and bend) the crankshaft. The torsion is transmitted by 

the drive shaft to the rear gear box, which in turn exerts torsion on the rear axles

Fig. 6.2  Schematic representation of power transmission in a lathe. The torque generated 

electromagnetically in the motor is transmitted to a pulley by a shaft in torsion. A 

belt in tension transfers power to another shaft in torsion which drives the work 

piece

 We have said that a complete 
solution to a problem in the 
mechanics of solids can be 
obtained by following the 
three steps of (2.1). In a new 
nonroutine problem it is not 
always clear in what order 
these steps should be executed. 
In many cases it is necessary 
to come back to each step 
several times before a solution 
is obtained. For example, one 
might consider all the obvious 
relations under step 1 and then 

proceed to step 2, but in carrying 
out step 2 it might become clear 
that certain aspects of step 1 
had been overlooked. In the 
torsion problem it proves most 
convenient to begin our analysis 
by examining the geometric 
behavior of a twisted shaft and 
from this to construct a plausible 
model for the deformation. Next 
the stress-strain relations are 
incorporated, and then, fi nally, 
the conditions of equilibrium are 
applied.



Torsion 333

6.2 GEOMETRY OF DEFORMATION OF A TWISTED CIRCULAR SHAFT

We shall consider uniform circular shafts made of isotropic material. Figure 6.3(a) 

illustrates a circular shaft loaded only by twisting couples Mt, at its ends. The 

cylindrical coordinates r, q, z, which we shall employ in the subsequent develop-

ment, are shown. Figure 6.3(b) illustrates the fact that equilibrium requires that each 

cross section of the shaft must transmit the twisting moment Mt.

Fig. 6.3  (a) Circular shaft loaded at ends by twisting moments Mt which cause a relative 

rotation f between the ends; (b) illustrating that every cross section A is acted on by 

a twisting  moment Mt

Let us start our consideration of possible modes of deformation by isolating 

from the shaft a slice Dz in length with faces originally plane and normal to the 

axis of the shaft, as shown in Fig. 6.4(a). We take this slice from somewhere near 

the middle of the shaft so that we are away from any possible end effects. Before 

proceeding further, we observe that, since any other slice taken from this region will 

have an identical original shape and will be subject to the same twisting moment, 

we can expect it to have the same deformation; i.e., the pattern of deformation 

will not vary along the length of the shaft. Our aim is to deduce a plausible mode 

of deformation for such a slice. In this process we shall appeal to one of the most 

powerful arguments of science, the argument of  symmetry. Because of its simple 

shape, the circular shaft is particularly vulnerable to symmetry arguments.

Suppose, in Fig. 6.4(a), that the originally straight radius OA deformed into the 

curved line OA¢. Since the material is isotropic and the slice has full geo metric 

circular symmetry about the z axis, we must then conclude that all radii are deformed 

into identical curved lines, as illustrated by the radius OF in Fig. 6.4(b). Furthermore, 

these curved lines must all lie in a plane; i.e., the ends of the slice remain plane during 
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the deformation. We can demonstrate this by a simple symmetry argument. Suppose 

that one end of the slice bulged out or dished in. Symmetry would then require 

that the other end do the same: but it would be impossible to fi t a number of such 

deformed slices together to form a complete continuous shaft. Thus we conclude that 

when a circular shaft is twisted, its cross sections must remain plane.

Fig. 6.4  Thin slice showing hypothetical deformation

We consider next the slice shown in the upper part of Fig. 6.5. We focus our 

attention on the section HOABCJ, which is planar before deformation. Now, when 

the twisting moment Mt, is applied, this section will 

deform into some distorted shape H ¢OA ¢B ¢CJ ¢. 
Let us tentatively assume that the curvatures of the 

lines H¢OA¢ and B¢CJ¢ are as indicated in Fig. 6.5. 

We can show, however, that this assumption leads 

to a contradiction by considering in the lower part 

of Fig. 6.5 the very next slice of the shaft. Since 

this element is subjected to the same deforma tion as 

the element above, we expect the diameter A1O1H1 

to deform into a curved line A¢1O1H ¢1 with the 

same shape as A¢OH¢ above. Such a deformation, 

however, would violate geometric compatibility 

since the curvatures of A¢1O1H ¢1 and B¢CJ ¢ have 

opposite sense. It would be impossible to fi t these 

two elements together when deformed as shown.

Since the curvature assumed for B¢CJ ¢ in 

Fig. 6.5 has led to a contradiction, we next make 

the tentative hypothesis that B¢CJ ¢ has the opposite 

curvature, as indicated in Fig. 6.6(a). This would 

permit matching adjacent elements. Neverthe-

less, this pattern of deformation also leads to a 

contradiction. To see this, we rotate the element in 

Fig. 6.6(a) about the axis XX which is perpendicular 

to the element HOABCJ. After a rotation of 180° 

the element is upside down, as shown in Fig. 6.6(b). 

Fig. 6.5  The assumed shape 

of B¢CJ¢ does not 

match A¢1O1H¢1
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Now we compare Fig. 6.6(a) with 6.6(b). The elements are of identical shape and 

material and are subjected to identical loadings. Therefore they should have identical 

deformations. The curvatures of diameters in the two elements, however, are of 

opposite sense. Thus the assumption that diametral lines deform into curved lines 

Fig. 6.6  Rotating (a) about X-X through 180° yields (b), which has undergone different 

deformation even though the twisting moment and geometry are the same

is ruled out by symmetry, and we are forced to the conclusion that the deformation 

pattern must be as indicated in Fig. 6.7. Straight diameters are carried into straight 

diameters by the twisting deformation.

Fig. 6.7  If the diameter HA remains straight during deformation, then rotation of (a) about 

X-X produces (b) which is identical in terms of deformation

To summarize, our repeated application of the argument of symmetry has 

established that the circular shaft must deform such that each plane cross section 

originally normal to the axis remains plane and normal and does not distort within 

its own plane. Symmetry of deformation has not ruled out a symmetrical expansion 

or contraction of the circular cross section or a lengthening or shortening of the 
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cylinder. It does not seem plausible, however, that such dilationul deforma tions 

would be an important part of the deformation due to a twisting moment. We shall 

make the tentative assumption that the extensional strains all vanish.

  r =  q =  z = 0

It will turn out that on the basis of this assumption we shall arrive at a consistent 

theory which meets all the requirements of the theory of elasticity, providing the 

amount of twist is small. For most structural materials the amount of twist is small. 

For materials like rubber, where large twists are possible, our theory is too simple, 

and the above assumptions must be reexamined.1

With the assumption that extensional strains vanish, the only remaining possible 

mode of deformation is one in which the cross sections of the shaft remain 

undeformed but rotate relative to each other. This deformation is pictured in 

Fig. 6.8. A slice of length Dz is shown before twisting in Fig. 6.8(a). After twisting, 

the bottom section has rotated through the angle f and the top section has rotated 

through the angle f + Df, as shown in Fig. 6.8(b). The relative rotation causes 

rectangular elements EFGH to shear into parallelograms E1F1G1H1. The originally 

right angle EHG is sheared into the acute angle E1H1G1. With reference to the r, 

q, z system of coordinates shown in Fig. 6.8(a), this kind of shear deforma tion is 

denoted by the symbol g q z. The magnitude of g q z is given by the limiting value of 

the angle E0H1E1 in Fig. 6.8(b) when the size of the element approaches zero. The 

geometry of the triangles E0H1E1 and OE0E1 permits us to relate the shear strain vqz 

to the twist angle f.

 g
f f

q z
z z

E E

H E

r

z
r

d

dz
= = =

Æ Æ
lim lim

D D

D
D0

0 1

1 0 0
 (6.1)

Fig. 6.8  Analysis of deformation of a slice of circular shaft subjected to torsion

1 See, for example,  R.S. Rivlin and  D.W. Saunders, Large Elastic Deformations of Isotropic 

Materials. VII. Experiments on the Deformation of Rubber, Phil. Trans. Roy. Soc. (London) 

A, vol. 243, pp. 251–288, 1951.
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It is important to emphasize that this states that the shear strain varies in direct 

proportion to the radius, from no shear at the center to a greatest shear at the out side, 

where r = ro (i.e., the element A1B1C1D1 in Fig. 6.8 has this greatest shear strain).

We have already noted that each slice of length Dz deforms in the same way as 

any other, so that we can conclude that df/dz is a constant along a uniform section 

of shaft subjected to twisting moments at the ends. We call df/az the twist per unit 

length, or the rate of twist.

Returning to Fig. 6.8, we can see that our assumption regarding no distortion 

within the plane of the cross section implies that the right angle DHG goes over 

into a right angle D1H1G1 and hence that grq = 0. Also the right angle EHD goes 

over into the right angle E1H1D1 (at least for small deformation) because of our 

assumption that plane cross sections remain plane. This implies that grz = 0.

Thus, from symmetry and the plausible assumption that the extensional strains 

are zero, we have arrived at the following distribution of strains:

 r =  q =  z = grq = grz = 0

 g
f

q z r
d

dz
=  (6.2)

These strains were derived from the geometrically compatible deformation of 

Fig. 6.8 by simple geometry. An alternative procedure leading to (6.2) is to de scribe 

the displacements mathematically in terms of cylindrical coordinates and to obtain 

the strains from the differential equations relating strains to displacements. This 

procedure is outlined in Prob. 6.36 at the end of the chapter.

We next turn to a consideration of the force-deformation relations of the shaft 

material.

6.3 STRESSES OBTAINED FROM STRESS-STRAIN RELATIONS

It should be noted that in deducing the strains (6.2) in the previous section, the 

only restriction placed on the material was that it must be isotropic, but within this 

restriction it could be elastic or plastic, linear or nonlinear. In this section we wish 

to consider the stresses for a material which follows Hooke’s law.

Using Hooke’s law in cylindrical coordinates, we fi nd that the stress compo nents 

related to the strain components given by (6.2) are

sr = sq = sz = trq = trz = 0

 t g
f

q qz zG Gr
d

dz
= =  (6.3)

where G is the shear modulus. This state of stress is illustrated in Fig. 6.9(a), 

where tqz is the only stress component acting on the small element referred to the 

cylindrical coordinates. The stress components acting on a cross section of the shaft 

are shown in Fig. 6.9(b); the only component acting is the tangential shear-stress 

component tqz, whose magnitude varies linearly with radius as given by (6.3).
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6.4  EQUILIBRIUM REQUIREMENTS

Analysis of the deformations and stress-strain relations have led us to a proposal for 

the form of the strain and stress distributions in a circular shaft subjected to torsion. 

Both the shear strain g q z and the shear stress t q z are proportional to the rate of twist 

df/dz, which is still unknown. We next require that our stresses meet the conditions 

of equilibrium.

First of all, we note that the stress distribution given by (6.3) and shown in 

Fig. 6.9(b) leaves the external cylindrical surface of the shaft free of stress, as it 

should. Inside the shaft each element, such as that shown in Fig. 6.9(a), is in equi-

librium because the shear stress t q z does not change in the q direction (because 

of symmetry) nor in the z direction (because of the uniformity of the deformation 

and stress pattern along the length of the shaft). The shearing stress is therefore 

the same on each z and q face of the element in Fig. 6.9(a), and thus the element 

is in equilibrium. We can also show that the stresses (6.3) satisfy the equilibrium 

equations in cylindrical coordinates (Prob. 4.4).

Fig. 6.9  (a) Stress components acting on a small element; (b) distribution of shearing stress 

on cross section

On each cross section of the shaft the resultant of the stress distribution must be 

equal to the applied twisting moment Mt. Because of the rotational symmetry of the 

stress distribution shown in Fig. 6.9(b), it is clear that the force resultant must be zero. 

The only resultant of the stress distribution in Fig. 6.9(b) is, therefore, the moment

 r dA Mz t
A

( )tq =Ú  (6.4)

where dA is the element of area and the integral is to be taken over the cross-

sectional area A of the shaft.
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6.5  STRESS AND DEFORMATION IN A TWISTED ELASTIC

CIRCULAR SHAFT

In the preceding three sections we have considered the geometry of deformation, 

the stress-strain relations, and the equilibrium requirements of a twised circular 

shaft made of isotropic material which obeys Hooke’s law. The results of this 

analysis are summarized in Eqs (6.2), (6.3), and (6.4). In this section we combine 

these physical results in a manner which will produce the interrelations which are 

of interest to us: the relation between tqz and Mt and the relation between f and Mt.

If we substitute t q z from (6.3) into the equilibrium relation (6.4), we obtain

 M G
d

dz
r dA G

d

dz
It z

A
= =Ú

f f2
 (6.5)

where I r dAz
A

= Ú 2 is called the  polar moment of inertia of the cross-sectional area 

about the axis of the shaft. For a shaft of radius ro and diameter d, we can readily 

perform the integration to obtain

 I
r d

z
o= =

p p4 4

2 32
 (6.6)

From (6.5) we obtain the rate of twist, df/dz, in terms of the applied twisting 

moment
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For a shaft of length L which is loaded at the ends by twisting moments, as illus-

trated in Fig. 6.3(a), the total  angle of twist between the ends is obtained by 

integrating (6.7):

 f = =Ú
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GI
dz

M L

GI

t

z

L
t

z
0

 (6.8)

where f is given in radians.

When we substitute df/dz from (6.7) into (6.3), we obtain the stress in terms of 

the applied twisting moment.

 tq z
t

z

M r

I
=  (6.9)

Recapitulating, we have considered the problem of the twisting of a solid 

circular shaft and have obtained a relation (6.8) between the applied twisting 

moment and the resulting angle of twist and a relation (6.9) between the twisting 

moment and the resulting stress distribution. The stress and strain distributions (6.2) 

and (6.3) on which these were based do, in fact, satisfy the fundamental equations 

of elasticity so that for every small element the requirements of equilibrium, of 

geometric compatibility, and of Hooke’s law are satisfi ed (see Prob. 6.36). Further-

more, the boundary condition of no stress on the outside cylindrical surface is 

satisfi ed. The only possible shortcoming of our solution occurs at the ends of the 

shaft. If our solution is to be valid at the ends, then the externally applied twisting 

moment must actually be distributed according to the pattern of Fig. 6.9(b). In many 
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practical cases (e.g., when Mt is applied by the jaws of a wrench), the actual stress 

distribution at the end, although statically equivalent to Mt, is widely different from 

that of Fig. 6.9(b). According to St. Venant’s principle, we expect that our solution 

provides an excellent approximation to the actual stress and strain distri bution in 

the central portion of the shaft and that the approximation is probably adequate 

to within a diameter or two of the ends. This means that if the shaft is reasonably 

long our estimate (6.8) of the total twist is probably not very much affected by the 

manner of loading at the ends. We cannot, however, use (6.9) to predict the local 

stresses at the ends.

It is unusual to encounter a situation in which the shape of the body, the loading 

imposed on it, and the resulting deformations are so simple that an exact solution 

according to the theory of elasticity can be obtained as straightforwardly as in this 

case. In most engineering situations we have to be content with a “solution” which 

does not satisfy all the conditions of elasticity exactly.

When we consider a length of circular shaft to be a structural element, the 

relation (6.8) becomes the load-deformation relation to be used in the third step of 

(2.1). It is often convenient to state (6.8) in the form

 
M GI

L

t z

f
=  (6.10)

which gives the twisting moment per radian of twist. This ratio is analogous to 

a spring constant which gives tensile force per unit length of stretch. The ratio 

in (6.10) is called the  torsional stiffness of the shaft and is often denoted by the 

symbol k or c.

The complete solution to any problem involving a twisted elastic shaft consists of 

establishing equilibrium between the internal twisting moments and the external loads, 

of satisfying the conditions of geometric restraint on the rotation of the shaft, and of 

satisfying the load-deformation relations (6.8) or (6.10). In almost all practical cases 

we have to consider the stresses in the shaft as an indepen dent design consideration in 

addition to the angle of twist, and we use (6.9) to evaluate the stresses.

We illustrate the application of (2.1) to the behavior of twisted circular shafts in 

the following examples.

Example 6.1
 Two small lathes are driven by the same motor through a 1  cm

  diameter steel shaft, as shown in Fig. 6.10(a). We wish to know 

the maximum shear stress in the shaft due to twisting and the angle of twist between 

the two ends of the shaft.

∑ Draw the free-body diagram and represent the forces and the torques acting 

on the shaft.

∑ Use the torsion equation for shear stress at the outer radius, where it is 

maximum.

We begin the analysis by idealizing the situation, as shown in Fig. 6.10(b). Here 

we represent each pulley loading by its static equivalent of a force of 120 N through 

the axis of the shaft and a couple about the z axis of 8 Nm. Because each pulley 

is supported by a pair of immediately adjacent bearings, we make the idealization 

that the 120 N transverse forces are balanced by the bearing reactions in such a 
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way that there is negligible shear force and bending moment transmitted beyond 

the bearings. In this case it is only necessary for the motor to supply a torque MA, as 

shown. We now apply the steps of (2.1) to the model of Fig. 6.10(b).

Fig. 6.10  Example 6.1

EQUILIBRIUM

Establishing moment equilibrium, we have, since all moment vectors are parallel to 

z, SMA = 0 if

MA – 8 Nm – 8 Nm = 0

 MA = 16 Nm (a)

The twisting moments in sections AB and BC of the shaft are then clearly

 MAB = 16 Nm  MBC = 8 Nm (b)

GEOMETRIC COMPATIBILITY

We wish to fi nd the angle fAC which describes the rotation of the end C with respect 

to the end A. From the sketch in Fig. 6.10(b) we see that

 fAC = fAB + fBC (c)

LOAD-DEFORMATION RELATION

From Eq. (6.8) we have

 f fAB
AB AB

z
BC

BC BC

z

M L

GI

M L

GI
= =  (d)
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where, from Table 5.1, G = 81 GPa. Combining Eqs (b), (c), and (d), and having 

proper regard for units, we fi nd

 fAC = 0.192 rad � 11° (e)

The maximum shear stress occurs at the outside of the shaft in section AB. Using 

(6.9) we fi nd

 ( ) .maxtq z
AB o

z

M r

I
= = 81 6 MPa  (f)

Example 6.2
 A couple of 70 Nm is applied to a 25-mm-diameter 2024-0 

  aluminum-alloy shaft, as shown in Fig. 6.11(a). The ends A and C 

of the shaft are built-in and prevented from rotating, and we wish to know the angle 

through which the center cross section O of the shaft rotates.

∑ Idealise the problem by drawing the free-body diagram.

∑ Both the parts of the shaft must rotate by the same angle of twist.

∑ Use torsion equation to fi nd the angle of twist.

We idealize the situation in Fig. 6.11(b). The shaft is statically indeter minate 

since we cannot determine MA and MC from equilibrium considerations alone. In 

Fig. 6.11(c) we show isolated free bodies of three sections of the shaft. Applying 

(2.1), we obtain:

Fig. 6.11  Example 6.2

EQUILIBRIUM

Satisfying moment equilibrium for the complete shaft shown in Fig. 6.11(b) (or for 

the middle segment in Fig. 6.11(c)) yields

 MA + MC – 70 = 0 (a)
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GEOMETRIC COMPATIBILITY

Continuity of the shaft at the point B requires that

 fBC = fBA (b)

LOAD-DEFORMATION RELATION

From Eq. (6.8) we have

f fBA
A AB

z
BC

C BC

z

M L

GI

M L

GI
= =
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z

M L
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=  (c)

Combining Eqs (a), (b), and (c), we fi nd

M
L

L
MA

BC

AC
B= = 52 5. Nm

 M
L

L
MC

AB

AC
B= = 17 5. Nm  (d)

 fOC = 0.021 rad = 1.20°

6.6  TORSION OF ELASTIC HOLLOW CIRCULAR SHAFTS

If we examine the arguments which were used in 

developing Eqs (6.8) and (6.9) for the solid circular 

shaft, we shall fi nd the arguments apply with equal 

validity2 to a circular shaft with a concentric hole. 

The only difference is that the integral in (6.4) 

now extends over an annulus instead of a complete 

circle. Thus (6.8) and (6.9) describe the behavior of 

the hollow circular shaft of Fig. 6.12, providing the 

polar moment of inertia is taken as
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Making a concentric hole in a shaft does not 

reduce the torsional stiffness in proportion to 

the amount of material removed. An element 

of material near the center of the shaft has a 

low stress and a small moment arm and thus 

Fig. 6.12  Stress distribution 

in elastic hollow 

circular shaft

2 These arguments apply with only minor alterations to 

any case in which there is circular symmetry of the 

shaft, e.g., a shaft made up of two concentric tubes 

(see Prob. 6.19) or a composite shaft in which a tube 

of one material is bonded to a core of another material 

(see Prob. 6.3).
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contrib utes less to the twisting moment than an element near the outside of 

the shaft. More precisely, the torsional stiffness (6.10) for a given length of 

given material depends only on the polar moment of inertia I
Z
, and from (6.11) 

it is clear that the size of the hole enters only in the fourth power of the ratio 

di/do. The maximum shear stress (6.9) for a given twisting moment also depends 

in the same manner on the size of the hole. To dramatize this behavior, consider 

the two shafts in Fig. 6.13 which have the same cross-sectional area but markedly 

different maximum stresses and 

deformation. It is apparent that a 

given amount of material is used 

most effi ciently in torsion when 

it is formed into a hollow shaft. 

When construction of a hollow 

shaft requires the extra labor of 

boring out a solid shaft of the 

correct outside diameter, it is not 

worthwhile to make a hollow shaft 

except in applications where weight 

is critical. There is also a limit on 

the increase in effectiveness that 

can be obtained by increasing the 

diameter and decreasing the wall 

thickness. If the wall is made too 

thin, the cylinder wall will buckle3 

due to compressive stresses which 

act in the wall on surfaces inclined 

at 45° to the axis of the cylinder.4

6.7  STRESS ANALYSIS IN TORSION; COMBINED STRESSES

It is sometimes of interest to determine the stress components related to axes other 

than the r, q, z set. A convenient way to determine these stress components is to use 

Mohr’s circle for stress. Figure 6.14 shows the stress components related to the q, z 

axes (we may use the two-dimensional Mohr’s circle because there is no stress in the r 

direction), and Fig. 6.15 shows the resulting Mohr’s circle. From the Mohr’s circle we 

see that the principal stresses are s1 (tensile) and s2 (compressive) with magnitudes 

|s1| = |s2| = |t q z|. The orientation of the principal diameter in the Mohr’s circle is 90° 

from the q, z diameter. The principal directions in the shaft must then be 45° from the 

q, z directions. The principal stress components are sketched in Fig. 6.14.

In certain special cases the existence of these principal stress components and 

their principal directions can be demonstrated directly. For example, if a piece 

of chalk (which is a brittle material with a low tensile strength and much larger 

strength in compression and shear) is twisted, the chalk will fracture along a spiral

3 See Sec. 9.3.
4 See Sec. 6.7.

Fig. 6.13  Illustration of advantages of hollow 

shaft over solid shaft of same cross-

sectional area
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Fig. 6.14  The principal stresses in torsion are equal tension and compression acting on faces 

inclined at 45° to the axis of the shaft

line normal to the direction of maximum 

tension (e.g., along the line AB in 

Fig. 6.14). To give another example, as was 

mentioned in Sec. 6.6 a very thin-walled, 

hollow cylinder will buckle in the direction 

of maximum compression; if a piece of paper 

is rolled into a cylinder and twisted, this 

mode of failure will become evident.

A circular shaft is often subjected to 

longitudinal and bending deformations 

in addition to torsion. At this stage in our 

discussion we have not yet considered 

the distribution of stresses in bending, but 

we are familiar with simple axial (tensile 

or compressive) loadings on slender members. We are thus equipped to consider 

the combined-stress problem resulting from axial loading combined with torsion. 

The following example illustrates how the resultant state of stress is obtained by 

superposition of the individual effects. The justifi cation for superposition lies in 

the linearity of Eqs (5.6), (5.7), and (5.8) underlying the theory of elasticity. The 

stresses and strains contributed by one form of loading are not altered by the pres-

ence of another kind of loading.

Fig. 6.15  Mohr’s circle for stress for 

element of shaft in torsion
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Example 6.3
 In Fig. 6.16(a) a uniform, homogeneous, circular shaft is shown 

  subjected simultaneously to an axial tensile force P and a twisting 

moment Mt.

∑ Consider an infi nitely  small element at any point on the shaft.

∑ Analyze the forces and the stresses using equilibrium equations.

∑ Draw the Mohr’s circle to fi nd the state of stress of the shaft material.

In Fig. 6.16(b) the individual stress distributions are sketched for the separate loads. 

Due to the twisting moment, we have the distribution of Fig. 6.9(b) which is given 

analytically by (6.9).

 tq z
t

z

M r

I
=  (a)

Fig. 6.16  Example 6.3. Combined stresses due to torsion and tension
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Due to the tensile force, we show a uniform stress distribution in Fig. 6.16(b). A 

demonstration of the validity of this distribution can be given along the same lines 

used at the beginning of this chapter (see also Prob. 5.24). Sym metry considerations 

lead to the postulate that plane cross sections remain plane but displace uniformly 

under tensile load. This implies a uniform distribution of axial strain and hence 

a uniform distribution of axial stress. In order to be in equilibrium with P the 

magnitude of the axial stress must be

 s
p

z
o

P

r
=

2  (b)

In Fig. 6.16(c) these stresses are shown acting on a small element on the surface of 

the shaft where r = ro. The individual stresses are fi rst shown separately and then 

superposed to represent the combined-stress state.

The most convenient method of describing the combined-stress state is to use the 

principal stress components. The Mohr’s circle diagram used to obtain the principal 

stresses is sketched in Fig. 6.17(a), and the principal directions indicated in 

Fig. 6.17(b). Note that this element is in a state of plane stress, i.e., the third 

principal stress s3 is zero.

Fig. 6.17  Example 6.3. Principal directions and principal stresses

6.8  STRAIN ENERGY DUE TO TORSION

In Sec. 2.6 the concept of elastic energy is introduced, and its application in the 

calculation of elastic defl ections by the use of Castigliano’s theorem is demon-

strated. In Sec. 5.8 a formula for the strain energy in a linearly elastic body 

subjected to an arbitrary distribution of stress and strain is developed. In this section 

we apply that result specifi cally to the case of torsion of circular members and 

consider an example of Castigliano’s theorem applied to torsional deformation.

In torsion of an isotropic elastic shaft of circular cross section, the only 

nonvanishing stress amd strain components are t q z and g q z, according to (6.3) and 

(6.2). The total strain energy (5.17) thus reduces to

 U dVz z
V

 =
1

2
t gq qÚ  (6.12)
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where the integration is over the volume of the shaft. Setting g q z = t q z /G and 

introducing (6.9), we fi nd
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M r
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dz r dAt

z
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where the integrations are over the length L and cross-sectional area A of the shaft. 

Since the latter integral is just the polar moment of inertia Iz, the torsional strain 

energy is

 U
M

GI
dzt

z
L

= Ú
2

2
 (6.13)

This formula may also be derived by considering each differential slice of thickness 

dz of the shaft to act as a torsional spring. If the fi nal values of the twisting moment 

and twisting angle are Mt and df, respectively, the work done during a loading 

process in which these grow in proportion is

 dU M d M
d

dz
dzt t= =

1

2

1

2
f

f
 (6.14)

When (6.7) is substituted for df/dz and the result is integrated over the length of the 

shaft, we obtain (6.13) again.

We recall that Castigliano’s theorem states that if the total elastic energy in a 

system is expressed in terms of the external loads, the in-line defl ection di of the 

point of application of a particular load Pi is given by the partial derivative

di
i

U

P
=

∂
∂

We illustrate the application of this to a torsional system in the following example.

Example 6.4
 Consider a closely wound coil spring of radius R loaded by a 

  force P [Fig. 6.18(a)]. The spring consists of n turns of wire with 

wire radius r. We wish to fi nd the defl ection of the spring and hence the spring 

constant.

∑ Consider an infi nitely small element of the spring, or a turn of the spring, 

whichever is suitable for your analysis.

∑ The defl ection is found by the Castigliano’s theorem, writing the defl ection in 

terms of force P, R and n.

∑ The spring constant is the ratio of force to defl ection.

First we fi nd the internal forces and moments acting on a section of the spring 

(Prob. 3.41). From the free-body diagram in Fig. 6.18(b), we see that the twisting 

moment Mt is independent of position on the spring and is equal to PR. The strain 

energy associated with the twisting moment is

 U
P R

GI
dz

P R

GI
R d

P R

GI
n

z
L

z
O

n

z

= = =Ú Ú
2 2 2 22 2 3

2 2 2
2q p

p
 (a)

There is additional strain energy in the spring due to the transverse shear force 

P. It can be shown, however (see Prob. 7.27), that the ratio of strain energy due to 
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transverse shear to strain energy due to torsion is proportional to (r/R)2 and hence is 

small for springs of usual design. For simplicity we shall neglect the contribution of 

the transverse force and consider (a) to repre sent the total strain energy in the spring.

Fig. 6.18  Example 6.4

Therefore the defl ection in the direction of P is

 d p=
∂
∂

=
U

P

PR

GI
n

z

3

2  (b)

and the spring constant becomes

 k
P GI

nR

z= =
d p2 3  (c)

Upon substituting for the moment of inertia Iz in (c), we fi nd that

k
Gr

nR
=

4

34

where r is the radius of the wire. We see that the spring constant is inversely 

proportional to the number of coils n and directly proportional to the fourth power 

of the wire radius. For example, if we increase the wire radius by 19 percent, the 

spring constant is doubled.

In this example, Castigliano’s theorem has provided a simple means of 

evaluating an elastic defl ection in a system of some geometric complexity. It is 

possible to obtain the same result by direct application of (6.7), but the analysis is 

considerably less simple (see Prob. 6.30).

6.9 THE ONSET OF YIELDING IN TORSION

In Chapter 5 two criteria for the initiation of yielding of metals were described in 

general terms. We return to these briefl y for the special case of torsion.
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In order to apply either criterion to a particular material it is necessary to obtain 

(experimentally) the yield stress Y in uniaxial tension. Then, to decide whether 

yielding will occur in a general state of stress, we compute the equivalent or 

effective stress s
-

 (or t
-

) according to the criterion employed and compare with Y.

The principal stresses acting on an element of a shaft in torsion were obtained in 

Sec. 6.7 (see Fig. 6.15).

 s1 = tqz s2 = –tqz s3 = 0 (6.15)

Using the  Mises criterion (5.23), the effective stress s
-

 is

s t t tq q q
- = + - + -1

2
2 2 22[( ) ( ) ( ) ]z z z

 = 3tq z
 (6.16)

and thus an element of a shaft in torsion would be expected to begin yielding when

 tq z Y Y= =
1

3
0 577.  (6.17)

according to the Mises criterion.

Using the  maximum shear-stress criterion (5.25), the equivalent shear stress t
-

 

is simply

 t tq
- = z  (6.18)

and thus an element of a shaft in torsion would be expected to begin yielding when

 tq z Y Y= =
1

2
0 500.  (6.19)

according to the maximum shear-stress criterion.

Torsion involves a stress state which gives rise to the maximum discrepancy 

between the two criteria (see Fig. 5.29). As can be seen from (6.17) and (6.19), this 

discrepancy is about 15 percent. From the point of view of the designer trying to 

avoid yielding, it is more conservative to design on the basis of (6.19).

Since the shear stress tqz is proportional to the radius r in an elastic shaft, it is 

clear that according to either criterion the elements on the outer surface of the shaft 

will reach the yield condition fi rst. In the following section we in vestigate what 

happens if the shaft is twisted beyond this point.

6.10  PLASTIC DEFORMATIONS

We shall consider a solid circular shaft twisted into the plastic range. It is im portant 

to remember that in passing from elastic to plastic behavior there is no alteration 

in the conditions of equilibrium or in the conditions of geometric com patibility. 

The only change is in the stress-strain relation. The symmetry argu ments at the 

beginning of this chapter which led to the conclusion that the only nonvanishing 

strain component was g q z remain valid whether the material is elastic or plastic. 

What will be different is the relation between g q z and t q z.
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One way in which the relation between t q z and g q z for a given material can be 

obtained is by direct experiment in which the material is subjected to uniform pure 

shear (e.g., torsion of a thin-walled tube). A simpler, if less exact, procedure is to 

make use of tension test data and to predict the relation between t q z and g q z in 

torsion by using one of the  plastic fl ow rules (5.34) or (5.35).

In this chapter we shall confi ne our analytical treatment to the elastic-perfectly 

plastic material whose stress-strain curve is shown in Fig. 5.7(e). For this material 

the problem of predicting the relation between torsional shear stress and shear strain 

then becomes trivial. In the elastic range the constant of pro portionality between 

t q z and g  q z is the shear modulus G. Once the material yields at a particular point 

there is no strain-hardening, so the equivalent 

or effective stress s
-

(or t- ) remains constant 

at that point for all further plastic strain. This 

means that tqz remains constant, as shown in 

Fig. 6.19. The only difference be tween the 

Mises and the maximum shear-stress fl ow 

rules is in the yield stress values, which are 

given by (6.17) and (6.19), respectively. In 

order to include both possi bilities we have 

called the yield-point shear stress simply tY 

in Fig. 6.19. The corresponding shear strain is 

called gY.

We now turn to the analysis of the twisting of a solid circular shaft of material 

whose stress-strain relation in pure shear is given by Fig. 6.19. As long as the shaft 

remains elastic the results of Sec. 6.5 still apply. As the shaft is twisted further, 

plane cross sections continue to rotate with respect to one another, and the variation 

of shear strain g q z still remains linearly proportional to r, as indicated in Fig. 6.8. 

Because of Fig. 6.19, the shear stress t q z will be distributed as shown in Fig. 6.20.

To obtain quantitative representations of the sketches in Fig. 6.20, we pro ceed as 

follows. The elastic relations (6.8) and (6.9) apply until the yield-point situation in 

Fig. 6.20(b) is reached. Let us call the twisting moment and twisting angle associated 

with this stress distribution TY and fY, respectively. Then from (6.8) and (6.9) we have

 T
I

r
rY

Y z

o
Y o= =

t p
t

2
3  

(6.20)
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where L is the length of the shaft. Now as the shaft is twisted further the shear strain 

at the outer radius becomes larger than gY. At some intermediate radius rY the strain 

will be just equal to gY. We still have the geometric relation (6.1) between shear 

strain and twist angle

 g
f f

q z r
d

dz
r

L
= =  (6.21)

from which we can solve for rY when f > fY.

Fig. 6.19  Shear-stress–shear-strain 

curve for elastic-perfectly 

plastic material
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 (6.22)

Using the fact that tY = GgY and introducing the second of (6.20), we fi nd
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G
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Y
o

Y= =
g

f

f

f  (6.23)

Next, we obtain a quantitative representation for the stress distribution tqz 

corresponding to the strain distribution g q z of (6.21) by using the stress-strain 

relation of Fig. 6.19. In the inner elastic core O < r < rY,

t q z = Gg q z

 =  G
L

r
r

r
Y

Y

f
t=  (6.24)

In the outer plastic region rY < r < ro,

 t q z = tY (6.25)

The stress distribution defi ned by (6.24) and (6.25) is sketched in Fig. 6.20(c).

Fig. 6.20  Shear-stress distribution in a twisted shaft of material having the stress-strain 

curve of Fig. 6.19. (a) Entirely elastic; (b) onset of yield; (c) partially plastic; 

(d) fully plastic

Finally, we use the equilibrium requirement that the stress distribution of 

Fig. 6.20(c) should be equivalent to the applied twisting moment Mt.
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This result can be put into a more useful fi nal form by introducing the yield-point 

twisting moment from (6.20) and the twisting angle from (6.23).

 M Tt Y
Y= -

Ê
ËÁ

ˆ
¯̃

4

3
1

1

4

3

3

f

f  (6.27)

This nonlinear relationship is valid when 

f > fY. For smaller angles of twist the 

connection between twisting moment 

and twisting angle is given by the linear 

relationship (6.8). The resulting curve 

made up from (6.8) and (6.27) is sketched 

in Fig. 6.21. The  limit or  fully plastic 

twisting moment TL corresponding to the 

stress distribution of Fig. 6.20(d) is 
4
3 TY 

and is theoretically approached only in 

the limit as f Æ •. As Fig. 6.21 shows, 

this limit is approached very rapidly (for 

example, Mt = 1.32TY when f = 3fY).

6.11 RESIDUAL STRESSES

The result incorporated in Fig. 6.21 is valid for a steadily increasing twisting moment. 

If we assume that the material of the shaft unloads elastically after it has been 

strained plastically (see Fig. 5.6), then if at any stage the twisting mo ment were to 

be decreased, the twisting-moment-twisting-angle curve would trace out a straight 

line parallel to the original elastic relation of (6.8), as sketched in Fig. 6.22. The 

justifi cation for this lies in the fact that the geometric and equilibrium requirements 

for torsion remain unchanged while the stress-increment-strain–increment relation is 

now elastic for the entire shaft.

If the twisting moment were to be 

decreased to zero (point C in Fig. 6.22), the 

shaft would be left with the permanent twist 

OC. It is interesting to note that although 

there is no external load on the shaft in this 

condition, there is a distribu tion of self-

balancing internal stresses in the shaft. These 

internal stresses which are “locked in” the 

material by the plastic deformation are called 

 residual stresses.

Fig. 6.21  Twisting-moment–twisting-

angle relationship for solid 

circular shaft made of 

material with stress-strain 

curve of Fig. 6.19

Fig. 6.22  Unloading a plastically 

deformed shaft
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The distribution of residual stresses can be found by using superposition. The 

plastic deformation under Mt leads to the stress distribution of Fig. 6.23(a) which 

corresponds to increasing the twist until point A of Fig. 6.22 is reached. This 

process is nonlinear, but the elastic unloading along ABC in Fig. 6.22 is linear. The 

hypothetical distribution of elastic stresses required to develop a twisting moment of 

–Mt is shown in Fig. 6.23(b). When parts (a) and (b) of Fig. 6.23 are superposed, we 

end up with no external twisting moment but with a distri bution of residual stresses, 

as shown in Fig. 6.23(c). The outer part of the shaft carries shearing stresses of the 

opposite sense to that imposed by the original application of the load, while the 

inner part carries stresses of the same sense as those originally imposed.

Fig. 6.23  Residual shear-stress distribution in a shaft which has been twisted into the plastic 

region and unloaded

Under some circumstances the reversed stresses obtained in this manner might 

be larger than the yield stress in the opposite direction. In this case simple linear 

superposition would not be applicable (see Prob. 6.41).

6.12  LIMIT ANALYSIS

In the preceding two sections we have seen the complications which arise when 

we try to follow the details of a deformation which involves both elastic and 

plastic strains. For the simple case of pure torsion we are actually able to perform 

the analysis. In more complicated structures the corresponding analysis is often so 

forbiddingly complex as to make exact analysis almost hopeless in practical cases.

For design purposes there exists an extraordinarily simple approximate analysis 

which includes the basic yield phenomenon of plasticity but omits all detailed 

considerations of intermediate stress and strain distributions. This procedure is 

called limit analysis and is used by designers of complex structures constructed 

from metals having a pronounced yield point. We shall introduce the ideas of limit 

analysis here in connection with torsion. In Chapter 8 we shall apply the same 

technique to the bending of beams.

The basic idea underlying limit analysis is that any member made of a material 

with a pronounced yield point will have a fairly well-defi ned  limit load such that 

the deformations never become large until the load approaches the limit load. 

The deformations, even though partially plastic, will be small as long as the load 
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remains appreciably less than the limit load. Whenever the member undergoes a 

large deformation, the load that it carries is approximately the limit load. This is 

just the behavior that we have obtained for a simple shaft of elastic-perfectly plastic 

material in torsion. The twisting angle is fi nite and small (see Fig. 6.21) as long as 

the twisting moment is appreciably less than the limit moment. For large twisting 

angles the twisting moment approaches the limit moment asymptotically.

When such a shaft is built into a statically indeterminate structure, it often 

happens that large deformations of the shaft are only possible when there are large 

deformations in other parts of the structure. The structure as a whole may not suffer 

large deformation until several interconnected parts simultaneously undergo large 

deformations.

The process of limit analysis consists of studying the geometry of a structure to 

determine which combinations of parts must undergo large deformations simul-

taneously in order to cause large deformations of the structure and then of studying 

the equilibrium requirements to determine what external loads correspond to these 

deformations. This last step is much simpler than usual in the mechanics of solids 

because now we know that each individual part undergoing large deformation must be 

carrying its fully plastic or limiting load. The external limit loading is obtained from 

the condition that it be in equilibrium with the limit loads on the individual parts.

Example 6.5
 We return to the system of Example 6.2, shown here in 

  Fig. 6.24(a). Instead of asking for the deformation under a given 

moment MB when the shaft remains elastic, we ask what is the limiting value for MB 

which results in large angular displacements at B.

∑ The limiting twisting moment occurs when the material is plastically 

deformed in torsion, or has attained the yield value of shear stress.

∑ It is given by the geometrical compatibility which requires the two parts of 

the shaft  to have large deformations.

Fig. 6.24  Example 6.5. Limit analysis of a statically indeterminate torsion member

In order for there to be large rotation at B, there must be large twisting of both 

AB and BC. This occurs, as shown in Fig. 6.24(b), when both AB and BC carry the 

fully plastic or limiting twisting moment TL. Equilibrium at B requires

 (MB)L = 2TL (a)
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The simplicity of this limit analysis as compared with the elastic analysis of 

Example 6.2 should be noted. Note that the three basic considerations (equilibrium, 

geometric compatibility, and force-deformation relation) are used, but in a 

simplifi ed form. It is  geometric compatibility which requires that both AB and 

BC have large deformations. The fact that both shafts carry TL is due to a force-

deformation relation; in order to have large defor mation the twisting moment must 

be fully plastic. Finally, equilibrium at B was used to establish (a).

For comparison with (a) we might use the elastic analysis to fi nd the value of MB 

which fi rst caused yielding anywhere in the system. From Example 6.2 it is clear 

that the largest stress in the system will occur in AB. The twisting moment at A will 

be equal to TY when the loading MB takes the value (MB)Y. The relation between 

these can be obtained from (d) in Example 6.2 without repeating the analysis.

( )M
L

L
TB Y

AC

BC
Y=

 = 4
3

TY  (b)

To compare with (a), we use the result of Fig. 6.21 thatT TL Y= 4
3

 to obtain

 (MB)L = 2(MB)Y (c)

Thus the loading at B which causes unlimited twisting is twice that which fi rst 

causes yielding anywhere in the shaft.

In the above example there was only one possible mechanism resulting in 

large deformations. In more complicated systems there are often two or more 

combinations which can result in large deformation. When this is so, it is necessary 

to evaluate the limit load for each possible combination. The actual combination 

which will occur is that corresponding to the lowest limit load.

6.13  TORSION OF RECTANGULAR SHAFTS

In some situations slender members with other than circular cross sections are subjected 

to torsion. The analysis at the beginning of this chapter, which was based on symmetry 

arguments, breaks down when applied to 

such sections. For example, if a shaft having 

a square cross section is twisted, symmetry 

arguments like those in Sec. 6.2 can be 

used to show that in the element pictured in 

Fig. 6.25 the four dotted lines remain straight 

(see Probs. 6.20 and 6.21). However, all other 

lines in the cross section can deform when 

the shaft is twisted without violating the 

requirements of symmetry.

If we rule a grid of small squares on 

the surface of a square shaft, the resulting 

deformation after twist is illustrated in 

Fig. 6.26. A corner element can have no 

Fig. 6.25  In torsion of a square shaft, 

symmetry requires that the 

dotted lines remain straight 

and perpendicular to the 

z axis. All other lines in the 

cross section can deform
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stresses acting on it and hence is undistorted in the deformed shaft. The originally 

plane cross sections have deformed or warped out of their own planes. In general, 

torsion of shafts which do not possess circular symmetry produces deformations that 

involve rigid-body rotations of one cross section with respect to another ac companied 

by warping out of the original planes of the cross sections.

Fig. 6.26  Deformation of a square shaft in torsion. The originally plane cross sections have 

warped out of their own planes

Exact solutions for the torsion of rectangular shafts using the equations 

developed in Chapter 5 are available, both for elastic5 and elastic-perfectly plastic6 

materials, but relatively sophisticated mathematical techniques are required. We 

shall not pursue the theoretical development any further but will simply list some of 

the results of the elastic analysis.

For a long, rectangular shaft with cross-section dimensions a and b with b   a, 

the maximum shearing stress neglecting end effects occurs in the middle of the side 

a, as shown in Fig. 6.27, and has the magnitude

  ( )maxt yz
tc

M

ab
= 1 2

 (6.28)

where c1 is  given in Table 6.1 as a function of the ratio a/b. The torsional stiffness 

of a long rectangular shaft is

5 See, for example,  S. Timoshenko and  J.N. Goodier, “Theory of Elasticity,” 3rd ed., Chap. 

10, McGraw-Hill Book Company, New York, 1970.
6 See, for example,  W. Prager and  P.G. Hodge, Jr., “The Theory of Perfectly Plastic Solids,” 

p. 67, John Wiley & Sons, Inc., New York, 1951.
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where G is the shear modulus and c2 is given in Table 6.1.

Fig. 6.27  Rectangular shaft subject to twisting moments

 Coeffi cients for torsion of rectangular shafts

a/b c1 c2

 1 4.81 0.141

 1.5 4.33 0.196

 2 4.06 0.229

 3 3.74 0.263

 5 3.44 0.291

 10 3.20 0.312

6.14 TORSION OF HOLLOW,  THIN-WALLED SHAFTS

In the case of torsion of circular shafts, we were able to obtain a mathematically 

exact solution by elementary methods. For rectangular shafts exact solutions have 

been obtained but by fairly advanced methods. In this section we discuss a class of 

shafts for which a simple approximate analysis is available.

An exact analysis requires the simultaneous consideration of equilibrium, geo-

metric compatibility, and the force-deformation relationship. Our approximate 

analysis uses equilibrium, but instead of carefully examining the other two require-

ments, we substitute a plausible guess as to the nature of the stress distribution.

We consider a long, hollow, cylindrical shaft of noncircular section and with a 

wall thickness t which need not be constant around the circumference but which is 

small compared with the overall dimensions of the cross section. A small element of 

Table 6.1
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length Dz of such a shaft is shown subjected to twisting moments Mt in Fig. 6.28(a). 

The n, s, z axes identify the normal, the tangential, and the axial directions.

We begin by making a plausible assumption regarding the type of stress 

distribution which results from the twisting. Our previous experience with torsion 

suggests that there will certainly be shearing stresses tsz. What about other stress 

components? The normal stress sn is zero on the inside and outside surfaces. 

Since the wall thickness is small, it is not unreasonable to assume that sn is 

zero throughout. A similar argument applies to the components tnz and tns. The 

components sz and ss are not ruled out by thinness of the wall. We can, however, 

rule out the existence of ss by considering the equilibrium of an element such as 

that in Fig. 6.28(b) (see Prob. 6.22). Regarding sz, we can say that since there is 

no axial force, the resultant of the sz distribution must be zero. This does not guar-

antee that sz is everywhere zero, but it does suggest that sz may not be an important 

stress component. On this basis we make the idealizing assumption that sz is zero. 

We thus have made the plausible assumption that tsz is the only nonzero stress 

component in the shaft of Fig. 6.28.

Fig. 6.28  Shear fl ow in a thin-walled tube

In Fig. 6.28(b) we show a free-body sketch of an arbitrary element 1-2 taken 

from the cross section of Fig. 6.28(a). The shear stress tsz will be distributed along 
the top and bottom and on the vertical faces 1 and 2. A convenient concept to 
introduce at this time is the  shear fl ow q, defi ned as follows:

 q dnsz
t

t
=

-Ú t
2

2

 (6.30)

The shear fl ow is the shear force per unit length. It is the resultant, across the 
thickness, of the shear-stress distribution. It is convenient to use the shear fl ow in 

discussions where the precise distribution of tsz across the thickness is unknown or 
unimportant.

The vertical sides 1 and 2 in Fig. 6.28(b) have length Dz so the total vertical forces 

on these faces are q1 Dz and q2 Dz, as indicated. The next step is to use the fact that the 

element in Fig. 6.28(b) is in equilibrium. For balance of vertical forces we must have

 q1 = q2 (6.31)

Thus, the shear fl ows at two arbitrary positions must be equal. This means that 

the shear fl ow is constant around the cross section of the shaft. It is this fact which 
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accounts for the designation shear fl ow. There is a clear analogy between shear fl ow in 

the thin-walled shaft and the fl ow of an incompressible fl uid around a closed channel.

It remains to evaluate the shear fl ow in terms of the applied twisting mo ment Mt. 

In Fig. 6.29(a) the force on the element of length Ds is q Ds and its lever arm about 

O is h. The contribution of this element to the twisting moment is

 DMt = q Dsh (6.32)

When Ds is small, we can approximate Dsh by twice the area DA of the shaded 

triangle in Fig. 6.29. The total twisting moment is the sum of all such contributions 

or simply

 Mt = 2qA (6.33)

where A is the total area enclosed by the shaft. Optimum accuracy is obtained by 

extending A to the mid-thickness of the wall as shown in Fig. 6.29(b); however, our 

approximation is based on the thinness of the shaft wall so that use of the inner or 

outer area should not make much quantitative difference. If there is a large difference 

between these, we are probably outside the realm of validity of our approximation.

Fig. 6.29  Evaluation of the twisting moment

The result (6.33) links the shear fl ow with the applied twisting moment. It was 

obtained on the basis of equilibrium considerations alone after making the plausible 

assumption that only the tsz stress component was involved. If it is valid at all, it 

should be valid independently of the material behavior, e.g., elastic or plastic. More 

complete investigations7 have shown that this approximation is in fact very good 

for thin-walled, hollow shafts.

In the elastic range it is plausible to postulate further that the stress tsz is 

uniformly distributed across the thickness. In this case (6.30) yields q = tszt, and, on 

substituting in (6.33), we obtain

 t sz
tM

At
=

2.
 (6.34)

as the shearing stress in a thin-walled, hollow shaft due to a twisting moment Mt.

The approximate theory just presented is useful but incomplete. We have said 

nothing about the deformations and are still unable to do so without further analysis.8 

The result (6.33) is valid for plastic behavior but (6.34) is not (see Prob. 6.27). 

7 ‘See, for example,  S. Timoshenko and  J.N. Goodier, “Theory of Elasticity,” 3rd ed., p. 332, 

McGraw-Hill Book Company, New York, 1970.
8 See, for example,  J.T. Oden, “Mechanics of Elastic Structures,” p. 46. McGraw-Hill Book 

Company, 1967. See also Prob. 6.42.
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This fact is not of great practical signifi cance because in a thin-walled shaft the 

difference between the twisting moment which fi rst initiates yielding and that which 

corresponds to the fully plastic condition is very small. (The difference approaches 

zero as the wall thickness t approaches zero.)

Example 6.6
 Compare the stresses in a uniform thin-walled circular shaft as 

  predicted by the approximate theory of this section and as 

predicted by the exact theory of Sec. 6.6.

∑ The exact theory predicts that the shear stress varies linearly with the radius, 

maximum at the outer wall.

∑ The approximate theory predicts that the shear stress is uniformly distributed 

across the wall thickness.

∑ Using the two equations, compare the results.

Figure 6.30 shows the cross section of the shaft. According to the exact theory, 

the shear stress tqz varies linearly with the radius and has its maximum value at the 

outer radius. Using (6.9) and (6.11), we have
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According to the approximate theory of this section, the shear stress tsz is 

uniformly distributed across the wall thickness. Using (6.34) and the quantities in 

Fig. 6.30, we obtain
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For example, when ri /ro = 0.9, there is only 4.7 percent difference between (a) and 

(b); when ri /ro = 0.75, there is 10.7 percent difference.

 SUMMARY

Introduction

Shafts are used widely in many engineering purposes, form transmission of power 

in automobiles to small torsional springs in watches. In those examples, we are 

Fig. 6.30  Example 6.6
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interested in the applied twisting moment and the accompanying angular twist in 

the member.

Geometry of spacing of a twisted circular shaft

In the analysis of circular members, it will be convenient to use polar co-ordinates, 

r, q, z for our analysis. We were able to prove that when the circular shaft is twisted, 

its cross sections must remain plane. Also, straight diameters are straight after the 

twisting deformations, i.e, the straight lines in the axial plane remain straight. Thus 

from the symmetry and the plausible assumption that the extensional strains are 

zero, we have arrived at the distribution of strain given below: 

er = eq  = ez = grq = grz = 0

Stresses obtained from stress-strain relations

Using Hooke’s law in cylindrical co-ordinates, we fi nd the stress components 

related to the strain components given by (6.3), showing that the shear stress 

component varies linearly along the radius.

Equilibrium requirements

By the requirements of equilibrium, we showed that the shearing stresses are same 

on the z and q face of the element.

 Due to the rotational symmetry, when the twisting moment is applied, the force 

resultant must be zero.

 ÚA r (tqz ◊ dA) = Mt

Stresses and deformations in a twisted elastic circular shaft

Combining the physical results of the previous sections, we obtain the torsional 

equation involving torsional stiffness as Mt  /j = G Iz /L

The complete solution to any problem involving a twisted elastic shaft consists of 

obtaining the equilibrium between the internal twisting moments and the external 

loads, solving the geometric compatibility and the load deformation relations.

Stress analysis in torsion; combined stresses

A satisfactory result is obtained by considering the Mohr’s circle of stresses of an 

infi nitesimally small element in the material of the member, and to fi nd the principal 

stresses. Also, the stresses and strains contributed by one form of loading are not 

altered by the presence of another kind of loading. 

Strain energy due to torsion

The strain energy due to torsion can be obtained by using the relation:

U = 1/2 ÚV (tqz ◊ gqz) ◊ dV

 This relation can also be obtained by using the Castigliano’s theorem as explained 

in the previous chapters.

The onset of yielding in torsion

To decide the occurrence of yielding in a general state of stress, we compute the 

equivalent or effective stress according to the criterion developed and compare it 

with Y (yield stress), by using the von-Mises criterion. Thus, we can expect the 

shaft to yield due to torsion when

tqz = 0.5 Y
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Plastic deformations

The tension test data is used to predict the relation between shear stress and strain 

by using the plastic fl ow rules. The torsional effect in an elastic–perfectly plastic 

material is depicted in Fig 6.19. Also, there is a non-linear relationship between Mt 

and Ty. For smaller angles of twist, a linear relationship can be approximated. The 

limit or fully plastic twisting moment TL  = 4/3 TY is approached when j Æ •.

Residual stresses

If we assume that the material unloads elastically after the shaft has been deformed 

plastically, then if at any stage the twisting moment were to be decreased, the 

twisting moment-twisting angle curve would trace a straight line parallel to the 

original elastic relation. After unloading the internal stresses which are locked in the 

material by plastic deformation are called residual stresses, shown in Fig. 6.23(a), 

(b), (c).

Torsion of rectangular shafts

The analysis of members based on symmetry for circular shafts do not hold good 

for square or rectangular shafts. The deformation is shown clearly in Fig. 6.26, 

where the maximum shear stress occurs at the mid-point of the face, given by 

Eq. 6.28.

Torsion of hollow thin walled shafts

An approximate solution is substituted for the load-deformation relations and 

geometric compatibility, for determining the nature of stress distribution. We have 

shown that the shear fl ow (i.e. the shear-force per unit length) is constant around 

the cross section of the shaft, and in the elastic range, the shear stress is uniformly 

distributed across the thickness of the shaft.

 Thus, we have described the state of stress of members subjected to shear and 

torsion. 

PROBLEMS 6.1 If a twisting moment of 1100 N m is applied to the end of a 50-mm-diameter 

steel shaft, what is the maximum shearing stress developed and the angle of 

twist in a 1.5-m length of the shaft? 6.2 A hollow steel shaft 2.5 m long must transmit a torque of 25 kN ◊  m. The 

total angle of twist over the length of the shaft is not to exceed 2.0° and the 

maximum allowable shearing stress is 82 MN/m2. Find the dimensions of the 

shaft, i.e., its inside and outside diameters. 6.3 A composite shaft is made up of an inner circular cylinder of elastic material 

with shear modulus G1 and an outer circular annulus of elastic material with 

shear modulus G2. The materials are bonded securely at the interface ri. 

Using the text derivation in Secs. 6.2 to 6.5 as a model, derive formulas for 

the twist angle f and for the shear stress tqz which result from the application 

of the twisting moment Mt.
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 Prob. 6.3   6.4 A 4130 HT steel shaft of 3 cm diameter and of length 1 m transmits a torque 

just below that which causes plastic deformation. Calculate the angle of twist 

between the ends of the shaft.

 6.5 A hollow steel shaft of 5 cm outside diameter is made of 1020 CR steel. 

What is the maxi mum internal diameter of the shaft which will just allow it to 

transmit without any yielding a torque of (a) 3750 Nm, and (b) 7500 Nm?

 6.6 A torque Mt of 10 N◊ m is applied as shown to the steel shafts geared together. 

Calculate the angle of twist at the point where the torque is applied.

Prob. 6.6   6.7 For the system of Prob. 6.6, what maximum torque Mt may be applied before 

a shear stress of 275 MN/m2 is reached in either shaft?
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and shafts is frequently employed. The parts are made so that in assembly 

it is necessary to hold one of the 75 mm gears stationary and rotate the 

corresponding 125 mm gear through a 3° angle in order to get the gears to 

mesh. There is a “locked-in” torque in the system, and when the system is 

driven by application of an external torque to one of the gears, the system 

of gears and shafts constitutes a power loop in which the average power is 

much larger than the externally supplied power. Calculate the maximum 

shear stresses in the two shafts after they are assembled but before external 

torque is applied. The shafts are made of 1020 CR steel.

Prob. 6.8   6.9 When the system of shafts and gears as shown is assembled, it is found that, 

to get the gears to mesh, the 75-mm-diameter gear must be held stationary 

and the 125-mm-diameter gear rotated through 3°. Calculate the maximum 

shear stresses in the two shafts after assembly but before ex ternal torque is 

applied. The shafts are made of 1020 CR steel.

Prob. 6.9  
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together at point B. Ends A and C are fastened securely so that the shafts 

cannot rotate at these points. An external twisting couple Mo is applied to the 

shafts at point B. Find the twisting couples exerted on the ends of the shafts 

at A and C.

Prob. 6.10  

 6.11 For the diagram of the 

system in Prob. 6.10, assume 

that the two rods are made 

of different materials. It 

is found that the twisting 

couples at A and at C are 

equal. What relation must 

hold between the diameters, 

lengths, and moduli of the 

two materials? 6.12 A plate is riveted to a fi xed 

member by means of six 

2 cm rivets as shown. Show 

how the theory of torsion 

can be used to estimate the 

shear stress in the rivets. 

How much additional force 

P could be exerted before 

the average shear stress 

exceeded 70 MPa in any of 

the rivets? 6.13 A composite shaft is made of a 25-mm-diameter core of 2040-0 aluminum 

alloy and a 4130 steel (tempered 315°C) case of outside diameter 27.5 mm. 

What maximum torque can be applied to a 1.5-m length of the shaft (a) 

before plastic yielding starts, and (b) before the shaft fails through excessive 

plastic deformation? At what angle of twist does deformation commence? 6.14 Consider the steel shaft shown in the fi gure which has applied to its surface a 

linearly varying twisting-moment distribution. Take the distributed twisting 

moment to have a resultant moment Mt. Determine the angle of twist at the 

end of the shaft.

Prob. 6.12
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Prob. 6.14   6.15 If the free end of the shaft of Prob. 6.14 is now fi xed into a rigid wall 

support, fi nd the twisting moment at the walls. Take L = 3 m and d = 80 mm. 6.16 Find the distribution of twisting moment and angle of twist distribution along 

the steel shaft shown.

Prob. 6.16   6.17 For a hollow shaft whose outside diameter is twice its inside diameter, derive 

the relation between the horsepower that may be transmitted, the rpm, the 

maximum allowable shear stress, and the outside diameter do. 6.18 A hollow shaft of 1020 HR steel has an outside diameter of 10 cm and a bore 

diameter of 8 cm, the centers of the two circles being eccentric by 0.2 cm. 

Estimate the maximum torque that the shaft will carry without the occurrence 

of yielding. 6.19 A torsion member is fabricated from two concentric thin-walled tubes as 

shown. At the ends the tubes are welded to rigid disks so that both tubes are 

forced to twist as a unit. Let the shaft length be L, and let the material in both 

shafts be elastic-perfectly plastic with shear modulus G and yield stress tY in 

shear.

 (a) Find the twisting moment TY and twisting angle fY corresponding to the 

fi rst occurrence of yielding in the assembly.

 (b) Find the limiting twisting moment TL when the assembly becomes fully 

plastic. At what twisting angle is TL reached?

 (c) After reaching the fully plastic condition of (b), the applied twisting 

moment is removed. What will be the elastic springback angle, and 

what will be the residual stress distribution?
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Prob. 6.19 6.20 A square isotropic shaft is being twisted. The sketches show proposed 

deformations of the radii OM and ON in the plane of the cross section. Use 

a symmetry argument to show that one of these is an impossible mode of 

deformation.

Prob. 6.20   6.21 Consider the two possible patterns of displacement in the z direction for 

the points M and N shown in the square shaft subjected to torsion. Use a 

symmetry argument to show that one of these is an impossible mode of 

deformation.

Prob. 6.21  
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Use the element sketched to deduce that ss must also vanish.

Prob. 6.22   6.23 An elevator system consists of an electric motor, a drive shaft, a wheel, and 

the elevator cage and counterweight as shown. When a certain number of 

people step into the cage, it moves down through 0.5 cm. Assuming that the 

shaft and the cable are both made of steel, that the rotor of the motor does 

not move, and that there are suffi cient bearings to prevent bending of the 

shaft, calculate the weight of the passengers that stepped in.

Prob. 6.23   6.24 A fl exible shaft consists of a 3-mm-diameter steel wire in a fl exible hollow 

tube which im poses a frictional torque of 0.45 N ◊ m per meter. The shaft is 

to be used for applying a torque of 0.33 N ◊ m to actuate a switch. What is the 

maximum length of shaft that may be used without exceeding the elastic limit 

in shear of the wire, 28 MN/m2? What will then be the “play” at the knob end 

if the shaft is used to turn the switch fi rst in one direction and then in the other?
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Prob. 6.24    6.25 An adsorption microbalance consists of 

a horizontally mounted quartz fi ber AB 

of diameter 0.010 mm and length 80 

mm which is put under enough tension 

so that it is nearly straight. To its middle 

C is glued a thin rod DE, a metal foil 

of dimensions 30 ¥ 20 mm being 

attached to D and a counterbalance 

of negligible surface area to E, so 

that DE is horizontal in dry air. If the 

microbalance is placed in moist air so 

that a monolayer of water (thickness 

10–7 mm) forms on all surfaces, by how 

much must the pointer at B be turned 

to bring DE back to the horizontal 

position? (Gquartz = 30 GN/m2). 6.26 An extruded 2024-T4 aluminum-alloy tube has a thin-wall rectangular cross 

section and is subjected to a twisting moment Mt as shown. Neglecting the 

stress concentrations at the corners, estimate the value of Mt which fi rst 

causes yielding in the section.

Prob. 6.26  

Prob. 6.25
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6.26, assuming the material can be taken as elastic-perfectly plastic. Find 

the magnitude of x in order that there should be the same shear fl ow in (a) 

as in (b). Neglecting complications at the corners, evaluate the limiting 

twisting moment TL and compare it with TY, the twisting moment at the fi rst 

occurrence of yielding.

Prob. 6.27   6.28 The steering system of an automobile consists of a steering wheel, of a 

steering column which is a shaft of 2 cm diameter, and of a linkage which 

gives a 20 : 1 reduction in angular rotation between the steering wheel and 

the tires. Each of the front wheels carries 5 kN of the weight of the car, and 

the tires are infl ated to a pressure of 200 kPa. If the coeffi cient of friction 

between rubber and the ground is 0.6, calculate the maximum stress set up 

in the steering column while the wheels are being turned. (Note: To keep 

the calculation simple, assume that the contacting region between tire and 

ground is circular, and that the pressure over it is uniformly 200 kPa).

Prob. 6.28   6.29 A solid shaft of radius ro, made of an elastic-perfectly plastic material, is 

twisted through an angle f1, which is suffi cient to cause plastic deformation 
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in those parts of the shaft with r > ro  /2. If the twisting moment is then 

removed, calculate the permanent twist angle f2 which remains in the shaft. 6.30 The close-coiled spring shown is made of an 

elastic material with shear modulus G. Show 

that an element of length R Dq is principally 

subjected to a twisting moment and a shearing 

force. Assume that the defl ection of the 

spring is due primarily to the twist. Study the 

geometry to determine the contribution to the 

total defl ection d which comes from twisting 

the element of length R Dq. Use integration to 

show that if there are n complete coils in the 

spring, then

d =
4 3

4

PR n

Gr 6.31 A handyman’s screw driver has a shaft of 

6-mm diameter. Estimate the compressive 

force and twisting torque that he might apply 

in tightening a screw. What is the order of 

magnitude of the corresponding compressive 

stress in the shaft compared with the shear stress due to torsion? 6.32 The center section of a T-handle socket wrench is made of alclad tubing 

(2024-T4 aluminum alloy with two thin layers of 1100-0 pure aluminum on 

the outside and inside for added corrosion resistance). The mean diameter 

of the tubing is 18 mm, the thickness of the alloy is 3 mm, and the pure 

aluminum layers are each 0.8-mm thick. If a 400-N force is applied to each 

end of the T handle as shown, and the forces are then removed, estimate the 

residual stresses which remain in the pure aluminum and in the aluminum 

alloy.

Prob. 6.32   6.33 A diamond-drill boring machine consists of a steel bit set with diamonds 

which is rotated by means of hollow steel rods coupled by screw joints. 

Water is forced through the hollow rods by a pump, and returns to the 

surface through the annular space between the rods and the walls of the hole, 

Prob. 6.30
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carrying the cuttings with it. Enough tension is maintained at the top of the shaft 

so that the compressive force between the bit and the bottom of the hole is small. 

If a torque of 3000 Nm is applied to the top of the shaft, how deep would the 

hole be when yielding begins in the shaft? The yield stress in simple tension is 

Y = 350 MPa. Use either the Mises or maximum shear yield criterion.

Prob. 6.33   6.34 It is proposed to use torsion-spring suspensions for an automobile’s front 

wheels. The conditions under which each steel torsion spring, consisting of a 

solid, circular shaft, must operate, are as follows:

 1. It must take up the static force at the wheel, 5 kN.

 2. It must provide a spring constant at the wheel of 25 kN/m.

 3. Defl ections of the wheel, up or down, of up to 15 cm must be possible 

without a shear stress exceeding 350 MPa being set up in the shaft.

 4. The length L of the shaft should not exceed 3 m.

 5. The length x of the arm on the shaft cannot be larger than 75 cm.

  Derive a relation between x and L and see if you can design a suspension 

which meets these conditions. What will be the shaft diameter?

Prob. 6.34  
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and N and passing through frictionless bearings at P and Q. The shafts are of 

length L and diameters dA and dB, respectively. Two stiff horizontal beams, C 

and D, are attached perpendicularly to the ends of the shafts, and contact one 

another at E. When a weight W is suspended from C at a distance a/2 from 

the end, what will be the angles of twist fA and fB, and what will be the force 

F transmitted at point E? The shear modulus of the shafts is G.

Prob. 6.35   6.36 Let u, v and w be the displacements in the r, q, and z directions of cylindrical 

coordinates. Using the results of Prob. 4.19, show that the strains of (6.2) are 

compatible with the displacements

    u = 0

    v = rf
     w = 0

  Verify that the solution of the torsion problem obtained in Sec. 6.5 also 

satisfi es Hooke’s law in cylindrical coordinates and the equilibrium equations 

in cylindrical coordinates (given in Prob. 4.4) and that therefore the solution 

is an exact solution within the framework of the theory of elasticity. 6.37 Show that by assuming only that  r and  q vanish, the development of the 

text in Secs 6.2 to 6.5 can be repeated and that in order for the solution to 

satisfy the 15 equations of the theory of elasticity it is necessary for  z to be 

zero everywhere. 6.38 A series of rods of fresh compact bone from a human femur were tested 

in torsion. If the samples had a cross-sectional diameter of approximately 

1.9 mm and four tests yielded breaking torques of 0.100, 0.125, 0.100, 0.110 

N ◊ m, fi nd the average torsional shear stress at breaking. 6.39 A given piece of metal will store more energy the more highly stressed it 

is below the yield point of the material. The “effi ciency” of a spring can be 

defi ned as the ratio of the strain energy in the spring when the maximum 

stress is equal to the yield stress, to the strain energy in the spring when all 

the spring material is at the yield stress. Calculate the effi ciency of a torsional 

spring, i.e., a shaft of length L with a twisting moment T.
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function of twisting moment for a circular shaft if the material follows the 

stress-strain law g = kt2. 6.41 A solid circular shaft of material whose stress-strain law is shown in Fig. 

6.19 has been given a very large pretwist in one direction. Determine the 

twisting-moment-twisting-angle curve for this shaft if it is now twisted in 

the opposite direction. Show that this curve is initially linear but begins to 

depart from linearity when the magnitude of the reverse twisting moment is 

2/3 TY. This illustrates the fact that in general the force-deformation relation 

of a solid depends on the past history of the solid. Only when the material 

remains in the linear-elastic range can we be sure that the force-deformation 

relation is independent of the previous history. 6.42 Consider Figs 6.28 and 6.29 and Eq. (6.34). We wish to calculate the angle 

of twist of a thin-walled tube using Castigliano’s theorem. The energy stored 

in the tube may be written in the form

U
G

dn ds dzsz= ÚÚÚ
1

2
2t

  Show that the angle of twist is given by

f = = Ú
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t

4 2 � 6.43 The compact torsion-bar spring sketched below consists of an inner shaft 

of radius Ri and a sleeve whose outer radius is Ro. There is a very small 

clearance between the shaft and the inner surface of the sleeve. The material 

has an elastic shear modulus G and a yield stress in shear of tY.

 (a) Determine the torsional spring constant of the spring under the action of 

the twisting moment Mt.

 (b) In a well-designed spring the outer sleeve will yield under the same 

twisting moment as the inner shaft. Develop an equation for determining 

the ratio Ro  /Ri in order that this will occur.

Prob. 6.43   6.44 A circular shaft AE of length 5a, diameter d, and shear modulus G is welded 

to a support at end A and has a rigid arm of length b welded to its other end, 

E. A pointer is fastened to the shaft at C. When the shaft is unloaded, the 
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pointer and the rigid arm are both horizontal, as shown in (a). A weight W 

is now hung on the end of the rigid arm and, at the same time, moments MB 

and MD are applied to the shaft at points B and D such that the pointer and 

the rigid arm remain horizontal, as shown in (b). Find the values of MB, and 

MD required to keep the pointer and rigid arm horizontal when the weight W 

is hung on the arm.

Prob. 6.44   6.45 It is proposed to measure Newton’s gravitational constant by hanging a 

10-m length of Mylar tape from a rod in a high ceiling and fastening the end 

to a 2-m-length aluminum rod. On each end of the rod a cast-iron cannon ball 

of mass 5 kg is fastened. Take the Mylar to have a tension modulus of 1.4 ¥ 

109 N/m2, a Poisson’s ratio of 0.40, and cross-sectional dimensions 25.4 by 

0.254 mm. Verify that hanging the weights on the tape will not overload the 

Mylar, which has a maximum elastic strain capacity of 10 percent. When the 

whole device has stopped shaking and oscillating, the position of the balls 
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is carefully determined, and then an aluminum bucket fi lled with lead shot 

is placed near each of the balls as shown. The distance between the center 

of the iron balls and the center of the buckets is 400 mm, and each bucket 

is fi lled with 100 kg of lead shot. Estimate the expected defl ection of each 

cannon ball if the gravitational attraction between two masses each of 1 kg 

separated by 1 m is 6.67 ¥ 10–11 N.

Prob. 6.45  
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Stresses due to 
Bending

7.1 INTRODUCTION

7

When a slender member is 
subjected to transverse loading, 
we say it acts as a beam. We 
can fi nd many examples of 
beam action in our immediate 
environment: the horizontal 
members in buildings (commonly 
called joists and girders) act as 
beams in transferring the vertical 
fl oor loading to the columns and 
foundation walls; the leaf springs 
of an automobile suspension 
transfer the body weight to 
the axle through beam action; 
the wings of an airplane act as 
beams in supporting the weight 
of the fuselage.
 In Chapter 3 we found that if 
we sectioned a transversely loaded 
member, as illustrated in Fig. 
7.1, a shear force and a bending 
moment would in general have 
to act on the cross section in order 
to maintain equilibrium. Our aim 
in this chapter is to determine the 
distributions of stresses which 
have the shear force V and the 
bending moment Mb as their 
resultant. Although we shall, of 
necessity, consider the nature of 

the deformation of beams, we 
shall postpone until Chapter 8 a 
detailed study of the defl ection of 
beams under various conditions 
of support and loading.

Fig. 7.1  Cross section of a beam showing 

shear force and bending moment 

resulting from loading in the xy 

plane

 Our method of approach 
will be similar to that followed 
in the investigation of torsion 
in Chapter 6, and to a certain 
extent our results will be similar. 
In Chapter 6 we were able to 
satisfy the requirements of the 
three steps of (2.1) at each point 
in a circular shaft; i.e., we were 
able to obtain the exact solution 
according to the theory of 
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elasticity for this cross section. 
For the case of thin-walled, 
hollow shafts we obtained a 
useful approximate solution 
on the basis of equilibrium 
conditions alone. In this chapter 
we shall also obtain an exact 

solution within the theory of 
elasticity for the special case of a 
beam subjected to pure bending. 
For more general cases we shall 
obtain approximate distributions 
of stresses on the basis of 
equilibrium considerations.

7.2 GEOMETRY OF DEFORMATION OF A SYMMETRICAL BEAM  

  SUBJECTED TO PURE BENDING

We begin by considering an originally straight beam which is uniform along its 

length, whose cross section is symmetrical about the plane of loading, as illustrated 

in Fig. 7.2, and whose material properties are constant along the length of the 

beam and symmetrical with respect to the plane of loading. We further restrict our 

immediate attention to the case where such a beam transmits a bending moment 

which is constant along its length, as shown in Fig. 7.2(b). A beam which transmits 

a constant bending moment is said to be in  pure bending. We select this simple case 

as a starting point because, as will become evident, there is suffi cient symmetry in 

this situation so that the deformation pattern can be fi xed by symmetry arguments 

alone. After establishing the nature of the deformation, we shall introduce the 

stress-strain relations and then complete the three steps (2.1) by requiring that the 

resulting stress distribution have the resultant Mb which is required for equilibrium 

of the beam as a whole.

Fig. 7.2  Symmetrical beam loaded in its plane of symmetry. (a) In general, both shear force 

and bending moment are transmitted; (b) in pure bending there is no shear force, 

and a constant bending moment is transmitted

Since our originally straight beam will deform into some curved shape, it is a 

useful preliminary step to introduce the concept of  curvature. The curvature of a 

plane curve is defi ned as the rate of change of the slope angle of the curve with 

respect to distance along the curve. In Fig. 7.3 we illustrate a curve AD whose 

curvature is in the xy plane. The normals to the curve at B and C intersect in the 

point O ¢. The change in the slope angle between B and C is Df. When Df is small, 

the arc Ds is approximately O¢BDf. In the limit as point C approaches B, that is, as 
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Ds Æ 0, the curvature at point B is defi ned as
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ds s O Bs s

f f
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1 1

 

(7.1)

where r = OB is the radius of curvature at point B.

Fig. 7.3  The line AD has curvature df/ds = 1/r at point B, where r = OB is the radius if 

curvature at point B

We turn now to the geometry of deformation of pure bending in Fig. 7.4(a), 

where AD, BE, and CF represent three equidistant plane sections, all perpendicular 

to the axis of an initially straight beam. In Fig. 7.4(b) we show the beam bent by 

bending moments Mb applied at the ends in the plane of symmetry, and in Fig. 7.4(c) 

we show the two deformed elements formed by the surfaces A1D1, B1E1, and C1F1.

Because each of these elements is loaded in its plane of symmetry, we can argue that 

the deformation of each will be symmetrical about its plane of symmetry. Further, 

since in their undeformed shape these elements were identical and since they are 

subjected to identical bending moments, it is reasonable to suppose (at least where 

these elements are far from the ends) that their deformed shapes will be identical. 

If, for instance, the surface A1D1 of element A1D1E1B1 bulged out, we would expect 

the corresponding surface B1E1 of element B1E1F1C1 to bulge out by the same 

amount. However, the latter action requires the surface B1E1 of element A1D1E1B1 

to be dished in, and this destroys the end-to-end symmetry of deforma tion which 

this element must possess. We conclude, therefore, that the surfaces A1D1, B1E1, and 

C1F1 must be plane surfaces perpendicular to the plane of sym metry. Thus in pure 

bending in a plane of symmetry plane cross sections remain plane. Furthermore, 

the fact that each element deforms identically means that the initially parallel 

plane sections now must have a common intersection, as illustrated by point O in 

Fig. 7.4(b), and that the beam bends into the arc of a circle centered on this intersection.

It should be noted that the above arguments have not ruled out the possibility of 

deformation of a plane section within its own plane. Such deformation does in fact 

occur, the only restriction on it being that it must be symmetrical with respect to the 

plane of symmetry. We shall postpone detailed consideration of this deformation of 

the cross section until Sec. 7.5.
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Fig. 7.4  Overall deformation of a symmetrical beam subjected to pure bending in its plane of 

symmetry

We now pursue further the geometry of deformation in order to obtain the 

distribution of strain which is implied by our conclusion that plane cross sections 

remain plane. In Fig. 7.5(a) we show a segment of the beam before deformation. 

In Fig. 7.5(b) the deformed trace of the beam in the plane of symmetry is shown. 

While cross sections have remained plane, the originally straight longitudinal lines 

have become arcs of circles. Some of these lines have elongated and some of them 

have shortened in the deformation. There is one line in the plane of symmetry which 

has not changed in length. Although we do not yet know its precise location, we 

call this line the  neutral axis and set up our coordinate system in the undeformed 

beam so that the x axis coincides with the neutral axis. The xy plane is the plane of 

symmetry, and the xz plane is called the  neutral surface.

Now, although we admit that there may be deformation of the cross section in 

its own plane, we make the following assumption. We assume that the deforma-

tion will be suffi ciently small so that we can use the coordinates of a point in the 

undeformed cross section to provide an adequate approximation to the location of 

the point after deformation. Thus if IJ and MN, which are separated by the distance 

y in the undeformed beam of Fig. 7.5(a), are deformed into concentric cir cular arcs 

I1J1 and M1N1 in Fig. 1.5(b), we assume that the difference between their radii of 

curvature can still be taken as y. We use the symbol r for the radius of curvature of 

the deformed neutral axis M1N1. The radius of curvature of I1J1 is then r – y.
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Fig. 7.5  (a) Undeformed beam; (b) trace of deformed beam in the plane of symmetry

Since IJ = MN = M1 N1 from the defi nition of neutral axis, the strain of I1 J1 is

  
⑀x

I J IJ

IJ
=

-1 1

 =
-I J M N

M N

1 1 1 1

1 1

 (7.2)

The circular arcs in Fig. 7.5(b) can be expressed in terms of the angle Df.

 M1N1 = rDf  I1J1= (r – y)Df (7.3)

Inserting these in (7.2) and using the defi nition of curvature (7.1), we obtain

 ⑀x

y d

ds
y= - = -

r

f
 (7.4)

as the distribution of longitudinal strain in the plane of symmetry of the beam. 

We see that the strain varies linearly with y; the minus sign indicates that there is 

shortening above the neutral axis and lengthening below. The derivation of (7.4) 

applies strictly only to the  plane of symmetry, but we shall assume that (7.4) 

describes the longitudinal strain at all points in the cross section of the beam. When 

we have obtained our solution, we shall discuss the validity of all our assumptions.

In addition to (7.4), we can conclude from the symmetry arguments which 

require plane sections to remain plane that

 gxy = gxz = 0 (7.5)
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for all points in the cross section of the beam. We can make no quantitative 

statements about the strains Œy, Œx, and gyz beyond the remark that they must be 

symmetrical with respect to the xy plane.

7.3 STRESSES OBTAINED FROM STRESS-STRAIN RELATIONS

The arguments which led to (7.4) and (7.5) are independent of the beam material 

(or materials), provided only that the material properties do not change along the 

length of the beam and that these properties are symmetrical with respect to the xy 

plane. Within these limitations the material can be nonisotropic, linear or nonlinear, 

elastic or plastic. In this section we shall restrict ourselves to beams made of  linear 

isotropic elastic material, i.e., to materials which follow Hooke’s law (5.2). For the 

analysis of composite elastic beams see Probs. 7.46 and 7.51.

The strain components of (7.4) and (7.5) are related to the stress components by 

(5.2), as follows:
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Thus we learn that the shear-stress components txy and t
ĻĽ

 must vanish in pure 

bending.

7.4  EQUILIBRIUM REQUIREMENTS

In this section we turn to the third of the steps of (2.1) and consider the requirements 

of equilibrium. Equilibrium requires that the resultant of the stress distribution over 

the cross section of the beam should equal the bending moment Mb, as indi cated 

in Fig. 7.6. Letting sx DA be the force on the elemental area DA of Fig. 7.7, we can 

express the equilibrium requirements as follows:

 
Â = =ÚF dAx x

A
s 0

 
Â = =ÚM z dAy x

A
s 0

 (7.7)

 
Â = =ÚM y dA Mz x b

A
s

where the integrals are to be taken over the total area A of the cross section. Here 

again, we make the fundamental assumption that the deformation of the cross 

section is suffi ciently small so that we can use the undeformed coordinates to locate 

points in the deformed cross section; i.e., although the stresses must be accom-

panied by the deformation, we shall assume that for the purposes of equilibrium we 

can associate the stress at a point with the position of that point in the undeformed 

beam.
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Fig. 7.6  The resultant of the stress distribution in pure bending must be the bending moment Mb

Fig. 7.7  Force acting on an elemental area DA of the beam of Fig. 7.6(a)

7.5 STRESS AND DEFORMATION IN SYMMETRICAL ELASTIC BEAMS  

 SUBJECTED TO PURE BENDING

We have considered the problem from the standpoint of all three of the steps of 

(2.1). Our aim now is to draw out the solution which meets the requirements of (7.6) 

and (7.7). Examining (7.6) and (7.7), we note that the requirements (7.7) involve 

only sx while the fi rst of (7.6) also includes the transverse normal stresses sy and 

sz. We could eliminate sy and sz by using the second and third relations of Hooke’s 

law (5.2) to introduce the transverse normal strains ⑀y and ⑀z, but this would not get 

us very far since we can say nothing quantitative about these strains. An impasse 

has been reached, and in order to proceed it is necessary to make some assumption 

about the transverse behavior. In searching for a reasonable assump tion, we observe 

that the external surfaces of the elemental slice of thickness Dx in Fig. 7.8 are free 

of normal and shear stresses. The slenderness of the beam suggests the plausibility 

of assuming that the transverse stresses sy, sz, and tyz remain zero throughout the 

interior of the beam. We shall proceed on the basis of this assumption; i.e., we shall 

assume

 sy = sz = tyz = 0 (7.8)
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Fig. 7.8  The transverse stresses s y , s z , and t yz are assumed to be zero

With the assumption (7.8) we are left with only one nonzero stress component. 

From the fi rst of (7.6) we obtain

 s
f

x E
y

p
E

d

ds
y= - = -  (7.9)

as the form of the longitudinal normal stress distribution in pure bending of a beam 

whose material follows Hooke’s law. This linear variation of stress with distance 

from the neutral surface was used for the stress distribution illustrated in Fig. 7.6(a). 

It remains to locate the position of the neutral surface.

Continuing now to draw out the solution, we substitute (7.9) into the fi rst of (7.7).

 Â = = - = - =ÚÚÚF dA E
y

dA
E

y dAx x
AAA

s
r r

0  (7.10)

This result tells us that when a linearly elastic beam of constant modulus E bends 

(i.e., when E/r does not vanish), the fi rst moment of the cross-sectional area about 

the neutral surface must be zero. Stated otherwise, the neutral surface must pass 

through the centroid of the cross-sectional area.

It should be noted that for linear-elastic beams made of more than one material or 

for beams whose material behaves in a nonlinear fashion, the neutral surface can still 

be located by setting SFx = 0, but in general in such cases, the neutral surface will 

not pass through the centroid of the cross-sectional area (see Probs. 7.46 and 7.50).

Substituting (7.9) into the second of (7.7), we have

 Â = = - = - =ÚÚÚM z dA E
y

zdA
E

yzdAy x
AAA

s
r r

0  (7.11)

The integral on the right in (7.11) is zero because of the symmetry of the cross 

section with respect to the xy plane, and thus the second of (7.7) is satisfi ed.

Substituting (7.9) into the last of (7.7), we have

 Â = - = = =ÚÚÚM y dA yE
y

dA
E

y dA Mz x b
AAA

s
r r

2  (7.12)

The integral on the right in (7.12) is known as the second moment of the beam 

cross-sectional area or as the moment of inertia of the area about the neutral axis. 

It can be computed once the specifi c shape of the cross section is known. We shall 

denote this integral by Izz.
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 I y dAzz
A

= Ú 2  (7.13)

We think of Izz as the moment of inertia about the z axis. Important properties of 

the moment of inertia are summarized in Probs. 7.5 and 7.9.

Substituting (7.13) in (7.12), we obtain the following expression for the 

curvature as a function of the bending moment:
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When the bending moment is positive, the curvature is positive, that is, concave 

upward.

Finally, by substituting (7.14) in our earlier expressions for strain and stress, 

namely, (7.4) and (7.9), we get the results

 ⑀x
b

zz

M y

EI
= -  (7.15)

and

 s x
b

zz

M y

I
= -  (7.16)

which express the longitudinal strain and stress in terms of the applied bending 

moment. Again we note that the stress distribution is linear and from (7.16) that 

the fi bers on the top surface of the beam are in compression while the fi bers on the 

bottom surface are in tension [Fig. 7.6(a)].

To complete our solution, we substitute (7.8) and (7.16) into Hooke’s law (5.2) 

to obtain the transverse strain components.
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(7.17)

 gyz = 0

Thus there is a deformation of the cross section. The normal strains in the plane 

of the cross section are proportional to the axial normal strain but of opposite sense. 

Since the axial normal strain is compressive at the top of the beam and tensile at the 

bottom, the top of the cross section expands while the bottom of the cross section 

contracts. The deformed shape of an originally rectangular beam is shown in 

Fig. 7.9. Our result for Œz implies that lines in the cross section originally parallel 

to the z axis have deformed into arcs of circles, and, in particular, that the trace of 

the neutral surface on the cross section has become an arc with curva ture –v(1/r), 

as illustrated in Fig. 7.9. This transverse curvature of the beam is called  anticlastic 

curvature; it can be seen quite easily if a rubber eraser is bent between the thumb 

and forefi nger in the manner indicated in Fig. 7.10. As a result of the anticlastic 

curvature, the deformed neutral surface is a surface of double curvature (Fig. 7.9). 

A further result of the anticlastic curvature is that the neutral axis is the only line in 

the deformed neutral surface whose curvature is in a plane parallel to the original 

plane of symmetry of the beam.
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Fig. 7.9  Deformed shape of an originally rectangular beam subjected to pure bending in a 

plane of symmetry

In arriving at our solution, we have had to 

make several assumptions: it was assumed 

that the locations of stresses and strains in 

the deformed beam of Fig. 7.9 could be 

approximated by the corresponding locations 

in the undeformed beam of Fig. 7.5(a); it 

was assumed that the strain variation (7.4) 

applied to the entire cross section and not 

just to the plane of symmetry; and, fi nally, it 

was assumed that the transverse stresses were 

zero. Nevertheless, our solution can be shown 

to satisfy all the requirements of the theory of 

elasticity for small deformations of slender 

members, providing the externally applied bending moments are applied by a 

distribution of stresses conforming to (7.16). The strains (7.5), (7.15), and (7.17) 

are geometrically compatible (see Prob. 7.32); the stresses (7.6), (7.8), and (7.16) 

satisfy the differential equations of equilibrium; and at every point the stresses and 

Fig. 7.10  Illustrating how a rubber 

eraser can be bent to 

demonstrate the presence 

of anticlastic curvature
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strains satisfy Hooke’s law (5.2). More extensive studies have shown1 that when the 

externally applied moments are applied in a manner which differs from (7.16), our 

solution is still very accurate in the central portion of the beam in accord with St. 

Venant’s principle and only becomes appreciably in error near the ends. The length 

of these transition regions at the ends are of the order of the depth of the beam cross 

section.

Before illustrating the foregoing theory by applying it to some examples, it 

is interesting to observe the similarity between the bending-stress distribution 

illustrated in Fig. 7.6(a) and the shearing-stress distribution in torsion of circular 

shafts shown in Fig. 6.9(b). Also of interest is the correspondence between 

Eqs (7.14) and (6.7) and between (7.16) and (6.9).

It should be mentioned also that the above discussion of initially straight beams 

may be carried over to the pure bending of curved beams (see Prob. 7.33). It has been 

found from the analysis of curved beams that formula (7.16) for the distribution of 

stress across the beam thickness is reasonably accurate for curved beams when the 

radius of the curved beam is greater than about 5 times the thick ness of the beam.2

Example 7.1
 A steel beam 25 mm wide and 75 mm deep is pinned to supports 

  at points A and B, as shown in Fig. 7.11(a), where the support B 

is on rollers and free to move horizontally. When the ends of the beam are loaded 

with 5-kN loads, we wish to fi nd the maximum bending stress at the mid-span of 

the beam and also the angle Dfo subtended by the cross sections at A and B in the 

deformed beam.

∑ It should be noted that the bending moment at the center acts in such a way 

that the top is in tension! 

∑ Integrating the curvature, i.e., the rate of angle change with respect to the 

distance along the length of the beam between A and B, we get the angle 

subtended by A and B.

We attack this problem, as usual, within the framework of (2.1). Our 

fi rst step is to determine the bending moment which is required to satisfy 

equilibrium at each point along the beam; this is shown in the diagram in Fig. 

7.11(b). From this diagram we see that the central portion AB is one of constant 

bending moment, and thus this part of the beam is in a state of pure bending.

To calculate the stress from (7.16), we must locate the coordinate axes and 

calculate Izz. The centroid lies at the mid-height of the cross section, as shown in 

Fig. 7.11(c), and using (7.13) we fi nd
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(a)

which on substituting b = 25 mm and h = 75 mm yields

 Izz = 8.789 ¥ 105 mm4 (b)

1  G. Horvay, The End Problem of Rectangular Strips, Trans. ASME, vol. 75, pp. 87–94, 

576–582, 1953.
2 Formulas for the calculation of maximum stress in curved members are given in  R.J. Roark, 

“Formulas for Stress and Strain,” 4th ed., p. 164, McGraw-Hill Book Company, New York, 

1965.
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Fig. 7.11  Example 7.1

The maximum bending stress occurs at the distance farthest from the neutral 

surface. At the mid-span the bending stress at the top of the beam is found from 

(7.16) to be
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If we use y = –37.5 mm, we obtain a numerically equal compressive stress at the 

bottom of the beam.

To obtain the angle change Dfo, we begin by observing that the “force-

deformation” relation which is applicable to this situation is the moment-curvature 

relation (7.14). Using E = 205 GN/m2, we fi nd the curvature in the segment AB to be
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 = –8.325 ¥ 10–3 rad/m (d)

The total angle change between A and B is found by integration of the curva ture 

relation (d).
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  = –8.325 ¥ 10–3 rad/m ¥ 1.5 m

  = –0.0124 rad

  = –0.72° (e)

The magnitude of the angle labeled Dfo in Fig. 7.11(d) is thus 0.72°. Note that 

this angle has been exaggerated in the fi gure. As a matter of interest, the radius of 

curvature of the section AB can be obtained from (7.1).
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This is indicated in Fig. 7.11(d), where ro = –r.

Example 7.2
 We wish to fi nd the maximum tensile and compressive bending 

  stresses in the symmetrical T beam of Fig. 7.12(a) under the action 

of a constant bending moment Mb.

∑ The main task here is to fi nd the centroid and the centroidal moment of inertia.

∑ The rest is straightforward.  

∑ Note that the bending stresses at the top are high compared to the bottom 

since the widths are different.

Since we have the relation (7.16) available, our task in this problem centers 

around the location of the neutral surface and the evaluation of Izz. As a fi rst 

step we must locate the z axis in the centroid of the cross section. (A review of 

the calculation for the location of the centroid of an area is given in Prob. 7.1.) In 

Fig. 7.12(b) we consider the beam to be made up of the rectangle 1 of dimensions 

b by 2h and the rectangle 2 of dimensions 6b by h/2, and we let y represent the 

distance from the base to the centroid of the cross section. Then (see Prob. 7.1),
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The location of the axes in the cross section is shown in Fig. 7.12(c). We 

calculate the moment of inertia for the rectangle 1 by use of the parallel-axis 

theorem (see Prob. 7.5).
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Similarly, for the rectangle 2 we obtain
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Then, for the entire cross section

 I I I bh bh bhzz zz zz= + = + =( ) ( )1 2
3 3 343

24

13

16

125

48
 (d)



Stresses due to Bending 391

Fig. 7.12  Example 7.2

Now, substituting (d) in (7.16) together with y = - 3
4

h, we fi nd the maximum 

tensile bending stress
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The maximum compressive bending stress occurs at y = +1 3
4

h,
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The stress distribution in the beam is illustrated in Fig. 7.12(d). We see that the 

maximum compressive stress is approximately 2.3 times greater than the maximum 

tensile stress.



392 An Introduction to the Mechanics of Solids

This example illustrates that the determination of the stress distribution in beams 

requires the location of the centroidal axis and the evaluation of the moment of 

inertia about this axis. For the more common structural cross sections, such as I 

beams, this information is available in tables.3

7.6 STRESSES IN SYMMETRICAL ELASTIC BEAMS TRANSMITTING BOTH  

 SHEAR FORCE AND BENDING MOMENT

Pure bending is a relatively uncommon type of loading for a beam. As we have 

seen in Chapter 3, it is much more common for a shear force to be present, as illus-

trated in Fig. 7.2(a). It is more diffi cult to obtain an exact solution to this problem 

since the presence of the shear force means that the bending moment varies along 

the beam and hence many of the symmetry arguments of Sec. 7.2 are no longer 

applicable. Exact solutions within the theory of elasticity are available for certain 

types of load variation along the beam,4 but their development is beyond the mathe-

matical scope of this book.

In this section we shall describe what is frequently referred to as the engineering 

theory of the stresses in beams—to distinguish it from the elasticity theory men-

tioned in the preceding paragraph. To develop this engineering theory, we make 

the assumption that the bending-stress distribution (7.16) is valid even when the 

bending moment varies along the beam, i.e., when a shear force is present. Thus, 

the engineering theory of beams assumes that the longitudinal or bending stress 

distribution at a location x is given by (7.16). Then, by requiring that equilibrium 

be satisfi ed for certain well-selected free bodies, we can estimate the stress distribu-

tion which has the shear force as its resultant. Since we do not include the satis-

faction of geometric compatibility and satisfaction of the stress-strain relations in 

our analysis, we have no a priori certainty that the results are accurate. However, 

experimental evidence and comparison with some of the aforementioned solutions 

from the theory of elasticity show that the estimates of the stress distribution are 

satisfactory for most engineering purposes.

Beginning our analysis, we show in Fig. 7.13(a) a length Dx of a beam which 

is subjected to both bending and shear. We take the case where there is no external 

transverse load acting on the element so that the transverse shear force V is inde-

pendent of x. A variation in bending moment with x is represented by the incre-

ment DMb. We assume that the bending stresses are given by (7.16). As indicated 

diagrammatically in the sketch in Fig. 7.13(b), due to the increase DMb in the bending 

moment over the length Dx, the bending stresses acting on the positive x face of the 

beam element will be somewhat larger than those on the negative x face. We next 

consider the equilibrium of the segment of the beam shown in Fig. 7.13(c), which 

we obtain by isolating that part of the beam element of Fig. 7.13(b) above the plane 

defi ned by y = y1. Due to the unbalance of bending stresses on the ends of this 

3 See, for example, “The American Institute of Steel Construction Manual of Steel 

Construction.”
4  S. Timoshenko and  J.N. Goodier, “Theory of Elasticity,” 3rd ed., chap. 11, McGraw-Hill 

Book Company, New York, 1970.
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segment, there must be a force DFyx acting on the negative y face to maintain force 

balance in the x direction. We show this positive shear force DFyx in the negative x 

direction consistent with the fact that the face on which it acts is a negative y face.

Fig. 7.13  Calculation of shear stress txy in a symmetrical beam from equilibrium of a segment 

of the beam

Expressing this equilibrium requirement in quantitative form, we have
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where the integrals are to be taken over the shaded area A1 in Fig. 7.13(d), that is, 

over the range from y = y1 to y = c. Substituting (7.16) in (7.18), we fi nd
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Dividing both sides of (7.19) by Dx and taking the limit, we obtain
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Substituting the moment equilibrium requirement (3.12) for the beam element of 

Fig. 7.13(a),
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we get the result
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This result may be written more concisely by introducing the following abbrevia-

tions:
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The quantity qyx, which is the total longitudinal shear force transmitted across 

the plane defi ned by y = y1 per unit length along the beam, is called the  shear fl ow. 

This is the same sense in which the term shear fl ow was used in the discussion of 

torsion of hollow, thin-walled shafts in Sec. 6.14. The integral Q is simply the fi rst 

moment of the shaded area A1 in Fig. 7.13(d) about the neutral surface. Intro ducing 

(7.22) into (7.21), we obtain as the relation for shear fl ow due to bending
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If in the presence of a shear force the bending stresses are in fact given by (7.16), 

then (7.23) is an exact expression for the shear fl ow. The shear fl ow qyx obviously 

is the resultant of a shear stress tyx distributed across the width b of the beam. 

Our derivation gives us no information as to the nature of this distribution, but if 

we make the assumption that the shear stress is uniform across the beam, we can 

estimate the shear stress tyx at y = y1 to be
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Finally, making use of the moment equilibrium requirement (4.12), we estimate 

the shear stress on the x faces to be uniform across the width of the beam and of 

magnitude
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zz
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(7.25)

In Fig. 7.13(e) we show on the faces of the segment the nature of the shear-stress 

distribution given by (7.25). The stress has a constant value along the negative y 

face, and on the x faces it varies from this constant value at the bottom to zero at 

the top.

The foregoing theory can be proved to be internally consistent in that it can 

be shown that for a beam of arbitrary cross section the resultant of the stress 

distribution (7.25) over the cross section is in fact the shear force V (see Prob.7.43).
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In summary, we have assumed that the bending stresses in a beam with a variable 

moment distribution are given by (7.16). On the basis of this assumption and from 

consideration of equilibrium, we found the shear-fl ow distribution (force per unit 

length) given by (7.23). Finally, we assumed the shear stress to be uni form across 

the width of the beam to obtain the shear-stress distribution on the x face given by 

(7.25) (where both Q and b are functions of y1).

Shear-stress Distribution in Rectangular Beams

An alternative procedure for obtaining the shear-stress distribution in a beam of 

rectangular cross section is possible if we assume from the start that the shear 

stresses are distributed uniformly across the width. The stress distribution in 

Fig. 7.14 is then a case of plane stress and the equilibrium equations (4.13) apply.
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Fig. 7.14  Calculation of shear stress txy in a rectangular beam from the equilibrium equations  

(4.13)

If we deal with a case where the shear force does not vary with x, the shear stress 

also will be independent of x, and the second of (4.13) is automatically satisfi ed 

since the normal stress sy has been assumed to be zero [cf. Eq. (7.8)]. Substituting 

(7.16) into the fi rst of (4.13) and using (3.12), we obtain
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(7.26)

We now integrate (7.26) with respect to y from the level y = y1 where txy is to be 

evaluated, to the level y = h/2, which defi nes the top surface of the beam.
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Because there is no shear stress on the exposed top surface of the beam, txy is zero at 

y = h/2. Thus, when the limits are substituted, we obtain the following result for the 

shear stress at y = y1:
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(7.27)

The shear stress is a maximum at the neutral surface and falls off parabolically, 

as illustrated in Fig. 7.15. The reader should verify that, in the case of a rectangular 

cross section, (7.25) reduces to the same distribution as (7.27).

Fig. 7.15  Illustration of parabolic distribution of shear stress t xy in a rectangular beam

If we calculate the shear strain in a rectangular beam by substituting the stress 

distribution (7.27) into Hooke’s law (5.2), we fi nd that the shear strain gxy also 

varies parabolically across the section, from a maximum at the neutral surface to 

zero at the top and bottom. This implies that the originally plane cross sections 

distort in the manner illustrated in Fig. 7.16. We note that if shear force is constant 

along the length of the beam, any longitudinal line IJ does not change its length 

as it deforms into the position I1J1. From this we would suppose that the presence 

of a constant shear force would have little effect on the bending-stress distribution 

(7.16). This is, in fact, the case; the exact solution from the theory of elasticity 

shows that (7.14) and (7.16) are still correct when there is a constant shear force. 

As stated previously, this means that the expression (7.23) for the shear fl ow is also 

exact for the case of constant shear force. Both (7.14) and (7.16) are in error when 

the shear force varies along the beam, but the magnitude of error is small for long, 

slender beams and, consequently, (7.23) represents a good estimate even in the
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Fig. 7.16  Distortion of rectangular beam due to shear force which is constant along the length 

of the beam

presence of a varying shear force. Thus at each section of a beam in the  engineering 

theory of elastic beams, we take the bending stresses to be distributed according 

to (7.16) and the transverse shear stresses to be distributed according to (7.25) 

independently of how Mb(x) and V(x) vary along the length of the beam.

Shear-stress Distribution in I Beams

If we examine the 1 beam in Fig. 7.17, we gain further insight into the shear-stress 

distribution in beams. In Fig. 7.17(b) we show a small segment which has been cut 

from the top fl ange by a vertical plane through BC. We see that here there must be 

a shear force DFzx on the positive z face to maintain equilibrium in the x direction. 

If we carry through an analysis similar to that which led to (7.23), we obtain for the 

shear fl ow on the positive z face the result
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zz
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where Q is the fi rst moment of the shaded area A1 in Fig. 7.17(c) about the z axis. 

If we make the assumption that the shear stress is uniform across the thickness t1 

of Fig. 7.17(b) (which becomes a better and better approximation as the section is 

thinner), we can estimate the shear stress at the point B in the fl ange to be
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The shear stress txy in the web can be estimated from (7.25). In Fig. 7.17(d) we 

show the shear-stress distribution over the cross section of the beam; in each fl ange 

the stess txz varies linearly from a maximum at the junction with the web to zero 

at the edge, while in the web the stress txy has a parabolic distribution. There also 

are txy stresses in the fl anges, but they are small compared with the txz stresses 

illustrated in the sketch. The stress distribution at the junction of the web and fl ange 

is quite complicated; standard rolled I beams are provided with generous fi llets at 

these points to reduce the stress concentration.
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 Fig. 7.17  Calculation of shear stress in an I beam

It is worthwhile to emphasize again that in the engineering theory of beams the 

shear fl ows in bending are obtained simply from the equilibrium requirement of 

force balance along the axis of the beam. Another illustration of this calculation is 

given in the following example.

Example 7.3
 In making the brass beam of Fig. 7.18(a), the box sections are 

  soldered to the 1 cm plate, as indicated in Fig. 7.18(b). If the 

shear stress in the solder is not to exceed 1000 N/cm2, what is the maximum shear 

force which the beam can carry?

∑ Basically the shear fl ow at each soldered joint needs to be found out.  

∑ Since the transfer of shear is occurring from the box like cross section through 

the solder to the web, Q has to be found out for that box like section till the 

solder joints both sides.

The solder has to carry the unbalanced bending stress acting over the cross-

sectional area of the box shown in Fig. 7.18(c). Assuming that the shear fl ow is 

equal in each solder joint, the shear fl ow qzx in each joint is given by (7.28)
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 where Q is the fi rst moment of the shaded area in Fig. 7.18(c) about the z axis. If we 

approximate this area by the complete square annulus, we have

 Q = 12.5 [(5)2 – (4)2] = 112.5 cm3 (b)

Assuming that the shear stress is constant across each solder joint, the shear fl ow in 

each joint is

 qzx = (1000) (0.5) = 500 N/cm (c)

Substituting these values into (a), we obtain

 
V

q I

Q

zx zz= =
2

38551 N

Fig. 7.18  Example 7.3

as the maximum shear force the beam can carry without exceeding an average shear 

stress of 1000 N/cm2 in the solder joints.

COMPARATIVE MAGNITUDES OF BENDING AND SHEAR STRESSES

It is of interest to investigate the comparative magnitudes of the bending stresses 

and the shear stresses in beams. The ratio between the maximum values of these 
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stresses will be different for different beams and for different types of loadings on 

the same beam, but we can get an idea of the important factors which affect this 

ratio by investigating a specifi c example.

Example 7.4
 A rectangular beam is carried on simple supports and 

  sub jected to a central load, as illustrated in Fig. 7.19. We wish to 

fi nd the ratio of the maximum shear stress (txy)max to the maximum bending stress 

(sx)max.

∑ The two maxima don’t occur at the same location!

∑ Maximum shear stress occurs at the neutral axis!

The maximum bending stress occurs at mid-span where the bending moment has 

its maximum value of
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The bending stresses are of equal magnitude on the top and the bottom of the 

beam (compression on the top and tension on the bottom). From Example 7.1 we 

have
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Substituting (a) and (b) in (7.16), we fi nd the bending stress at the bottom 

(y = –h/2) to be
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The shear force has the constant magnitude P/2 between the load and each 

support. The shear stress is a maximum at the neutral surface, i.e., at the mid-height 

of the beam, as illustrated in Fig. 7.19. Substituting  y1 = 0 in (7.27), we fi nd
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(d)

Fig. 7.19  Example 7.4. Rectangular beam on simple supports and with a central load
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We note that (d) states that the maximum shear stress in a rectangular beam is 

one and one-half times the average shear stress.

Combining (c) and (d), we get the ratio of the maximum shear stress to the 

maximum bending stress in the beam of Fig. 7.19.
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(e)

Thus the bending and shear stresses are of comparable magnitude only when L 

and h are of the same magnitude. Since L is much greater than h in most beams 

(say, L > 10h), it may be seen from (e) that the shear stresses txy will usually be an 

order of magnitude smaller than the bending stresses sx.

If a different loading is put on the beam in Fig. 7.19, the ratio of the maximum 

stresses will again be found to depend upon the ratio of the depth to the length 

of the beam, although, of course, the factor of proportionality will differ from that 

just found (see Prob. 7.44). If beams of other cross-sectional shape are investigated, 

similar results are obtained. The factor of proportionality does, however, depend 

importantly on the shape of the section; e.g., the factor of ½ in (e) can be as large as 

3 or 4 for I beams with thin webs (see Prob. 7.45).

LOCALIZED BUCKLING IN I BEAMS

From the point of view of reducing bending stress, it is apparent from (7.16) that for 

a given cross-sectional area of beam it is best to distribute that area so that Izz is as 

large as practical, i.e., to concentrate the area as far as possible from the centroid. 

Rolled steel beams, of which the I beam of Fig. 7.17 is an example, are designed 

to have this feature. If the design is pushed 

too far in this direction, however, buckling 

phenomena will be encountered. For 

instance, if the cross-sectional area of the I 

beam of Fig. 7.17 was kept constant while 

the depth was increased at the expense of a 

decrease in the fl ange thickness, the beam 

might fail by a buckling of the compression 

fl ange at a stress level well below that at 

which the material would yield. On the 

other hand, if an increase in beam depth was 

accomplished at the expense of a decrease 

in web thickness, the compressive stresses 

resulting from the transmission of shear 

along the beam might cause buckling of the 

web. The orientation of these compressive 

stresses for an element at the neutral surface 

is shown in Fig. 7.20 (see Example 7.5). It 

is possible to make reasonable estimates5 

5  F.R. Shanley, “Strength of Materials”, pp. 618, 624, McGraw-Hill Book Company, New 

York, 1957.

Fig. 7.20  Illustration of compressive and 

tensile stresses acting on an 

element at the neutral surface 

in the web of an I beam 

transmitting a shear force (see 

Example 7.5)
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of the onset of localized buckling in these cases, but we shall not pursue the 

problem further here because the details of these analyses are beyond the scope of 

this book. We shall, however, return in Chapter 9 to a general discussion of buckling 

phenom ena.

7.7 STRESS ANALYSIS IN BENDING; COMBINED STRESSES

If one is interested in the possibility of yielding, or fracture, or localized buckling of 

a beam, it is necessary to examine the stress distribution in detail and to deter mine 

the state of stress at critical points in the beam. To illustrate the type of analysis 

involved when a beam transmits both shear force and bending moment, we consider 

the following example.

Example 7.5
 It is desired to investigate the state of stress at points B and C

  in the top fl ange and web of the I beam of Fig. 7.21(a) when a 

shear force V and a bending moment Mb are being transmitted.

∑ Apart from the bending stress sxx, the nature of shear stress at the web and 

the fl ange will be different!  On the web it is  txy and at the fl ange it is txz.

The bending stress sx is given by (7.16), and the shear stress txy is given by 

(7.25). The magnitude of the shear stress txz is given by (7.29); its sense is shown in 

Fig. 7.17(d). These stress components are shown in Fig. 7.21(a). The Mohr’s circles 

 Fig. 7.21  Example 7.5. Combined stresses in an I beam due to shear and bending
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for stress drawn in Fig. 7.21(b) and (c) are constructed from these components 

and lead to the principal stresses s1 and s2 which are indicated in Fig. 7.21(d). To 

determine the most critical point in the cross section, it would be necessary to have 

a criterion for comparison (e.g., a yield criterion, a fracture criterion, or a buckling 

criterion) and then to compare the states of stress at B and C as the points take on 

all possible positions in the fl ange and the web. This can be a lengthy analysis. In 

long, slender beams, as pointed out in Example 7.4, the greatest shear stress txy or 

txz is an order of magnitude smaller than the greatest bending stress sx. Hence for 

many practical purposes we can neglect the shear-stress contribution, except, as we 

noted previously, for consideration of possible buckling.

A frequent type of loading condition is one in which a beam transmits a 

longitudinal force and/or a twisting moment in addition to a shear force and a 

bending moment. When there is a longitudinal force in addition to shear and bending, 

the analysis is similar to that outlined in Example 7.5, with the addition of a uniform 

axial stress due to the longitudinal force. In the following example we condider 

the combination of bending moment, twisting moment, and longitudinal force.

Example 7.6
 In Fig. 7.22(a) an elastic circular shaft is shown transmitting 

  simultaneously a bending moment Mb, an axial tensile force 

P, and a twisting moment Mt. We wish to study the state of combined stress.

∑ Locate the possible locations fi rst (see Fig. 7.7)

∑ Fortunately, where there is maximum bending stress, there is zero transverse 

shear. So, we need to only fi nd with maximum torsional shear and bending 

stress. At B, both are acting! Therefore, could be critical. Top and bottom 

points of B should be verifi ed.

∑ Critical condition may depend also on the yield condition used.

This problem represents the addition of a bending moment to the loading 

condition considered in Example 6.3, and our method of approach is exactly 

parallel. In Fig. 7.22(b) the individual stress distribution are sketched for the 

separate loads. Due to the bending moment, we have the distribution given by 

(7.16) (note that Mb in Fig. 7.22(a) is such as to cause tension when y is positive).
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Due to the axial tensile force P, we have a uniform axial stress.
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Finally, due to the twisting moment, we have the distribution given by (6.9).

 tq z
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M r

I
=  (c)

In Fig. 7.22(c) we show the individual stresses acting on an element at y = ro. (At 

this element the distributions (a) and (c) have their greatest magnitude.) These are 

superposed to give the resultant combined stress state at the right. The Mohr’s circle 

diagram for this point is sketched in Fig. 7.23(a), and the principal stress directions 

are indicated in Fig.7.23(b). Note that this element has an unloaded surface, and 

thus the state is one of plane stress.
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Fig. 7.22  Example 7.6. Combined stresses in a solid circular member due to bending, tension, 

and torsion

Fig. 7.23  Example 7.6. Principal directions and principal stresses at the most critically stressed 

point
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7.8 STRAIN ENERGY DUE TO BENDING

The strain energy in a linearly elastic body subjected to an arbitrary distribution of 

stress and strain is given by (5.17). In this section we specialize that result to beams 

subjected to bending. We consider fi rst the case of pure bending where the only 

nonvanishing stress component is the longitudinal stress (7.16). The total strain 

energy (5.17) thus reduces to
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where the integration is over the entire volume of the beam. Substituting from 

(7.16) for sx, we fi nd
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where the integrations are over the length L and cross-sectional area A of the beam. 

Since the latter integral is just the second moment of area Izz, the bending strain 

energy is
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(7.31)

This formula may also be derived by 

considering each differential element 

of length dx to act as a bending spring. 

If, in Fig. 7.24, the fi nal values of the 

bending moment and bending angle are 

Mb and df, respectively, the work done 

during a loading process in which these 

grow in proportion is
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When (7.14) is substituted for df/

dx and the result is integrated over the 

length of the beam, we obtain (7.31) 

again.

When a beam is subjected to transverse shear in addition to bending, there are, 

in general, transverse shear-stress components txy and txz in addition to the bending 

stress sx; e.g., see Fig. 7.17(d). The total strain energy (5.17) then becomes
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(7.32)

Fig. 7.24  Differential element of beam 

bends through angle df under 

action of bending moment Mb
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The fi rst integral on the right is identical in form with the strain energy (7.30) 

in pure bending. The second integral is the contribution to the strain energy due to 

the transverse shear stresses. For slender members the latter contribution is almost 

always negligible in comparison with the former. This may be inferred from the 

discussion in Sec. 7.6 concerning the comparative magnitudes of the bending and 

shear stresses. If sx is an order of magnitude larger than txy and txz, then, since 

the integrals in (7.32) depend on the squares of the stresses, we see that the fi rst 

integral is two orders of magnitude larger than the second. As a con sequence, it is 

common to neglect the contribution to the strain energy due to the trans verse shear 

stresses. The pure-bending formula (7.31) is then used to represent the total strain 

energy in a beam whether there is transverse shear or not. In any particular case 

the magnitude of the second integral in (7.32) can be estimated if an approximate 

distribution of txy and txz can be determined.

As an illustration we return to the rectangular beam of Fig. 7.19 to compute the 

total strain energy and to compare the relative magnitudes of the bending and shear 

contributions. The bending moment Mb(x) and shear force V(x) for the loading of 

Fig. 7.19 are

Mb(x) = P(x/2 – < x – L/2 >1)

V(x) = P(–1/2 + < x – L/2 >0)

for 0 < x < L. The distribution of transverse shear stress in a beam with rectangu lar 

cross section, obtained in Sec. 7.6, is
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for 0 < x < L, –h/2 < y < h/2, and –b/2 < z < b/2. If we denote by Ub the fi rst integral 

on the right of (7.32) and use (7.31) to evaluate it, we have
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because of the symmetry of the bending-moment diagram. Thus the  bending 

contribution to the strain energy is
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where we have used Izz = bh3/12. If we denote by Us the second integral on the right 

of (7.32), the  transverse shear contribution to the energy is
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The total strain energy in the beam is the sum of these contributions
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(7.35)

Note that the ratio of the two contributions is 
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Thus, for a beam with L > 10h and with Poisson’s ratio v = 0.28, the shear contri-

bution is less than 3 percent of the bending contribution. For engineering purposes 

it would generally be permissible to neglect the transverse shear contribution in 

evaluating the strain energy of such a beam.

For beams with other loadings and other cross-sectional shapes, the ratio of Us to 

Ub is always proportional to the square of the ratio of beam depth to beam length. 

The factor of proportionality does, however, depend on the loading pattern and on 

the shape of the cross section; e.g., the numerical factor of 
6
5  in (7.35) can be as 

large as 12 for I beams.

7.9 THE ONSET OF YIELDING IN BENDING

When a beam is subjected to pure bending, the state of stress is one in which the 

principal stresses are given by

 s1 = sx  s2 = s3 = 0 (7.36)

which is the same state of stress that exists in a tension (or compression) test. Thus 

if the material has a yield stress Y in simple tension, the criterion for yielding in 

pure bending is simply that yielding will occur when

 sx = Y (7.37)

As soon as the state of stress becomes more complicated (e.g., by the addition 

of shear forces or twisting moments or longitudinal forces), the onset of yielding 

must include the type of combined stress analysis outlined in Sec. 7.7. There are 

two criteria available to signal the onset of yielding: the Mises criterion (5.23) and 

the maximum shear-stress criterion (5.25). Even in relatively simple structures the 

most critically stressed point may not be obvious, and calculations may have to be 

made for more than one point, as illustrated in the following example.

Example 7.7
 A circular rod of radius r is bent into the shape of a U to form 

  the structure of Fig. 7.25(a). The material in the rod has a yield 

stress Y in simple tension. We wish to determine the load P that will cause yielding 

to begin at some point in the structure.

∑ Note that it is possible to superimpose stresses due to each of Mb, P and Mt 

As indicated in Fig. 7.25(b), there are fi ve possible locations for the most 

critically stressed point. The bending and twisting moments acting at these locations 

are shown in Fig. 7.25(c) through g. From these the choice narrows down to either 

location B1 or B2; it is not obvious which of these is more critical.
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The bending and torsional shear stresses acting on an element on the top of the 

beam at location B1 are indicated in Fig. 7.26(a). Although there is a shear force P at 

this location, the corresponding shear stress txy is zero at the top and bottom of the 

beam where the bending and torsional shear stresses are maximum. The radius of the 

Mohr’s circle for the element at B1, shown in Fig. 7.26(a), is
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(a)

Fig. 7.25  Example 7.7. Bending and twisting moments at fi ve critical locations in a structure

Using (a), we fi nd the principal stresses at the point to be
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Substituting (b) into the Mises yield criterion (5.23),
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we obtain the result that yielding begins when
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Substituting (b) into the maximum shear-stress criterion (5.25),

 

t max = +
Ê
ËÁ

ˆ
¯̃

=
1

2
4

2

PLr

I

PLr

I

Y

zz zz  

(e)

we fi nd that yielding is predicted when
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(f)

Note the discrepancy of 9 percent between the loads predicted by the two criteria.

Repeating the foregoing calculations for the element on top of the beam at 

location B2, illustrated in Fig. 7.26(b), we fi nd the principal stresses to be
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and that according to the Mises criterion, yielding occurs when
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xx= 0 210.
 

(h)

Fig. 7.26  Example 7.7 (a) Maximum stress condition at location B1; (b) maximum stress 

condition at location B2
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while according to the maximum shear-stress criterion, yielding occurs when

 
P

I Y

Lr

xx= 0 200.
 

(i)

The maximum shear-stress criterion predicts yielding at locations B1, and B2 at the 

same load, indicating that the Mohr’s circles in Fig. 7.26(a) and (b) are of equal size. 

The Mises criterion identifi es B2 as the critical location and predicts yielding there at 

a load 5 percent greater than the load for yielding according to the maximum shear-

stress criterion.

7.10 PLASTIC DEFORMATIONS

We now consider the behavior of a beam in pure bending as the bending moment is 

increased beyond the value which produces the onset of yielding at the point farthest 

removed from the neutral surface. We shall restrict our attention to symmetrical 

beams. We shall further restrict our inquiry to beams in which the material has the 

elastic-perfectly plastic stress-strain behavior of Fig. 5.7(e); such a stress-strain 

diagram is repeated in Fig. 7.27. The Mises and the maximum shear-stress criteria 

predict yielding at the same bending-stress level since pure bending corresponds to a 

uniaxial state of stress.

 Fig. 7.27  Elastic-perfectly plastic material

In Fig. 7.28 we illustrate the changes which occur in the bending-stress distribution 

in a rectangular beam as the curvature is increased. As has been emphasized earlier, 

the nature of the geometric deformation is independent of the stress-strain behavior of 

the material, and hence (7.4) describes the bending strains throughout the entire range 

of bending deformation of the beam
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y d
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y= - = -
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f

 

(7.4)

In the elastic region, that is, 0 < (sx)max < Y, the moment-curvature relation is given 

by
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 and the stress distribution is

 

s x
b

zz

M y

I
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(7.16)

as illustrated in Fig. 7.28(a). We give the symbol MY to the bending moment which 

corresponds to the onset of yielding in the beam, as shown in Fig. 7.28(b). MY 

corresponds to the situation where sx = –Y at y = +h/2, and thus from (7.16) we obtain
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(7.38)

We use the notation (1/r)Y to indicate the curvature corresponding to MY. Since Œx 

= – ŒY at y = +h/2, we can use (7.4) to express this curvature as
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(7.39)

Fig. 7.28  Bending-stress distribution in a rectangular beam of elastic-perfectly plastic material 

as the curvature is increased until the fully plastic moment ML is reached at infi nite 

curvature

We now examine the behavior as the curvature is increased beyond (1/r)Y. As 

the curvature is increased, the strain increases according to (7.4), and because of 

the stress-strain behavior shown in Fig. 7.27, the resulting stress distribution is as 

illustrated in Fig. 7.28(c). Letting yY be the coordinate which defi nes the extent of 

the inner elastic region of behavior, we can describe the variation in stress above 

the neutral surface by
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 s x
Y

y

y
Y= -  When 0 < y < yY 

(7.40)

 sx  = –Y When y y
h

Y < <
2

The stress below the neutral surface varies in the same manner but with opposite 

sign. The stress distributions above and below the neutral surface will contribute equally 

to the bending moment, so, taking an element of area of size DA = bDy, we can express 

the bending moment as (with due regard for the sign convention for stresses)

 

M y dA

yb dy yb dy

b x
A

x x
y

hy

Y

Y

=

= - -Ê
Ë

ˆ
¯

Ú
ÚÚ

s

s s2
2

0
 

(7.41)

Substituting (7.40) in (7.41) and performing the integration, we obtain, after 

simplifi cation, the following result for the bending moment:

 

M
bh

Y
y

h
b

Y= -
Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

2
2

4
1

1

3 2
 

(7.42)

The strain at yY has the value –ŒY, and using this, we obtain from (7.4) the 

curvature corresponding to the moment given by (7.42).
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Combining (7.39) and (7.43), we get
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Finally, substituting (7.38) and (7.44) in (7.42), we fi nd the bending moment to 

be given by
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(7.45)

when the curvature 1/r is greater than (1/r)Y.

The variation of Mb with curvature is shown in Fig. 7.29. As the curvature 

increases, the moment approaches the asymptotic value 3
2

MY  which we call the 

 fully plastic moment, or  limit moment, and for which we use the symbol ML. The 

stress distribution which produces ML is shown in Fig. 7.28(d); the stress has the 

magnitude Y over the entire cross section. As the curvature increases, Mb approaches 

ML more rapidly than yY approaches zero; for example, when yY = 1
6

2( )h , the 

bending moment is within 1 percent of the fully plastic value. Thus, whenever the 

curvature of a beam is large compared with the curvature (1/r)Y at which yielding 

begins, we can assume that the bending moment transmitted is essentially the limit 

moment ML. The ratio K of the fully plastic moment to the moment which causes 

the onset of yielding is a function of the geometry of the cross section. Values of 

this ratio are given in Table 7.1 for a few cross sections.
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The theory just presented provides a useful basis for the engineering design of 

beams which will be loaded into the plastic range. It is not, however, a complete 

theory within the framework of the mathematical theory of plasticity.

Fig. 7.29  Moment-curvature relation for the rectangular beam of Fig. 7.28. The positions (a), 

(b), (c), and (d) correspond to the stress distributions shown in Fig. 7.28

When a shear force is present, i.e., when the deformation is no longer pure 

bending, the plastic behavior is altered somewhat since the state of stress is no 

longer a simple uniaxial state. However, the results of analyses which include the 

shear force6 show that the effect of shear force on the value of the bending moment 

corresponding to fully plastic behavior is negligible in beams of reasonable length. 

Consequently, in the engineering theory of plastic bending it is assumed that the 

bending-stress distributions of Fig. 7.28 and the moment-curvature relation (7.45) 

are still valid when a shear force is present, i.e., when the bending moment varies 

along the beam. We turn next to the consideration of such a case.

In Fig. 7.30(a) a hypothetical experiment is sketched. A rectangular beam 

of elastic-perfectly plastic material is to be forced down at the center by a screw 

jack. A load cell measures the resulting force P which is transmitted to the beam 

by the screw jack. The bending moment in the beam varies linearly from zero 

at the ends to a maximum of Pa/2 at the center. The sketches in Fig. 7.30 show

 Ratio of limit bending moment to bending moment at onset of yielding

Cross section K = ML/MY

Solid rectangle 1.5

Solid circle 1.7

Thin-walled circular tube 1.3

Typical I beam 1.1–1.2

successive stages as the screw jack gradually depresses the center of the beam. At fi rst 

the behavior is completely elastic, and the force P increases in linear proportion to the 

central defl ection. In the following chapter we shall obtain the precise relationship 

between defl ection and force for cases like this. Here it is suffi cient to say that the 

defl ection involved is very small.

Table 7.1

6  P. G. Hodge, Jr., “Plastic Analysis of Structures,” p. 213, McGraw-Hill Book Company, 

New York, 1959.
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In Fig. 7.30(b) the point has been reached where the central bending moment is 

MY, and yielding begins at the top and bottom of the cross section. The value of the 

force P corresponding to the onset of yielding is, using (7.38),
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(7.46)

As the beam is defl ected further, two zones of yielded material begin to grow, 

as shown in Fig. 7.30(c). These zones extend from the center where the bending 

moment is greater than MY out to the points where the bending moment is just equal 

to MY. The force P continues to grow during this stage of the defl ection but at a less 

rapid rate than when the beam was entirely elastic.

Fig. 7.30  Creation of a plastic hinge as the center of the beam is forced downward by a screw 

jack. The load cell measures the force P developed by the screw jack
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The yielded zones continue to grow as the screw jack is advanced until the 

confi guration of Fig. 7.30(d) is reached. At this point the yielded zones just touch at 

the center of the beam. The bending moment there is ML with the stress distribution 

pictured in Fig. 7.28(d). The value of P corresponding to the limit bending moment is
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2
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(7.47)

Although the curvature at the central point is now infi nite, the slope is still fi nite and 

continuous and so is the defl ection. The central defl ection can, in fact, be shown7 

to be only 2.2 times the central defl ection corresponding to the onset of yield in 

Fig. 7.30(b).

Since the central cross section is now completely plastic, any further motion of the 

screw jack can be accommodated by plastic fl ow at the center without any additional 

deformation of the rest of the beam and without further increase in the force P. Thus 

further defl ection of the beam results in a fi nite discontinuity in slope at the center, as 

shown in Fig. 7.30(e). This localized deformation is called a  plastic hinge.

Although the hypothetical experiment just discussed was based on the engi-

neering theory of elastic-perfectly plastic beams, it represents a surprisingly 

accurate model of the behavior of real materials with pronounced yield points. 

Experiments8 with beams of 1020 HR steel agree very well with the theory up to 

moderate values of the hinge angle Df. For very large deformations the strain-

hardening of the material causes deviations from the perfectly plastic theory.

If the loading on a beam is distributed along the beam, the plastic behavior of 

the beam will differ in some respects from that described above. As the defl ec tion is 

increased, the maximum bending moment will mathematically only asymp totically 

approach the value ML. However, from a practical standpoint, when the defl ection 

is large compared to the defl ection at which yielding begins, the maximum bending 

moment may be taken to be ML. Large plastic strains will not be restricted to the 

section of the beam which has the maximum bending moment, but will occur in 

a localized region extending to either side of the section of maximum bending 

moment. This region of localized deformation, although less sharply defi ned than 

that occurring under a concentrated load, is also called a plastic hinge.

In Sec. 8.7 we shall show how plastic limit analysis can be extended to structures 

constructed from beams. We shall see that large deformations of a structure 

require the formation of one or more plastic hinges. The important result that we 

have developed here is that whenever a plastic hinge forms, the bending moment 

transmitted across the hinge may be taken to be the limit moment ML.

In the following example we consider another aspect of the plastic behavior of 

beams.

Example 7.8
 An originally straight rectangular bar is bent around a 

  circular mandrel of radius R0 – h/2, as shown in Fig. 7.31(a). 

As the bar is released from the mandrel, its radius of curvature increases to 

7 See Prob. 8.63.
8  J.F. Baker,  M.R. Home, and  J. Heyman, “The Steel Skeleton,” vol. II, “Plastic Behavior 

and Design,” Chap. 3, Cambridge University Press, London, 1956.
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R1, as indicated in Fig. 7.31(b). This change of curvature is called  elastic 

springback; it becomes a factor of great importance when metals must be 

formed to close dimensional tolerances. Our interest here is in the amount of this 

springback and in the residual stresses which remain after the bar is released.

∑ The curvature at A in Fig. 7.32 is known – (Ro). It is going to springback 

to R1, say. Since the springback is purely elastic, we can fi nd out change in 

curvature using the elastic bending relation. Thus, R1 can be found out!

∑ To get the residual stress, the process can be thought of (1) reaching the limit 

moment, ML and then, (2) unloading elastically by, ML. Superimposing the 

two fetches the residual stresses!

Fig. 7.31  Example 7.8. Illustration of elastic springback which occurs when an originally straight 

rectangular bar is released after undergoing large plastic bending deformation

The moment-curvature behavior of the bar is sketched in Fig. 7.32. As the bar is 

bent around the mandrel, the curve OFA traces out the moment-curvature relation. 

When the bar is released, the resulant bending moment decreases elastically to 

zero along the line AC parallel to the original elastic portion OF. The decrease in 

curvature due to the springback thus is
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Fig. 7.32  Example 7.8. Moment-curvature relation for the complete cycle of loading and 

unloading the rectangular bar in Fig. 7.31

Using (7.39), we can express (1/r)Y as
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Combining (a) and (b), we fi nd
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(c)

The stress distribution when the bar has the curvature 1/R0 is shown in 

Fig. 7.33(a). The bending moment corresponding to this stress distribution is

 Mb = ML = 
3

2
MY  (d)

If to this stress distribution we now add the fi ctitious elastic-stress distribution 

shown in Fig. 7.33(b), which has as its resultant a bending moment of magnitude

 Mb =  -
3

2
MY  (e)

we have zero net net bending moment corresponding to the released condition in 

Fig. 7.31(b). The residual-stress distribution then existing in the bar is as illustrated 

in Fig. 7.33(c). Above the neutral surface the stress varies linearly from –Y at the 

center to +Y/2 at the inner radius of the bar; below the neutral surface the variation 

is linear from +Y at the center to –Y/2 at the outer radius.

 
M M M
b L Y

= = 3
2  

M M
b Y

= - 3
2  

M
b

= 0

 

1 1

0r
=
R

 

D
1 3

2

1

r r
= -

Ê
ËÁ

ˆ
¯̃
Y  

1 1 1 3

2

1

1 0r r
= = -

Ê
ËÁ

ˆ
¯̃R R
Y

 (a) (b) (c)

Fig. 7.33  Example 7.8. Illustrating calculation of the residual-stress distribution in the bar of 

Fig. 7.31(b).

If we now added a further negative bending moment, we could decrease the 

curvature still further beyond the value 1/R1. At fi rst, such action would be elastic, 

but when this additional bending moment exceeded the value

 Mb = -
1

2
M y  (f)

there would be reversed yielding at the inner and outer radii of the bar.
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7.11 BENDING OF UNSYMMETRICAL BEAMS

In this section we extend the theory of bending of 

elastic beams beyond the basic case of a symmetrical 

cross section bent in its plane of symmetry. As before, 

we derive the distribution of bending stress over 

the cross section only for the case of pure bending. 

According to the engineering theory of bending, we 

simply assume that the same distribution occurs in the 

presence of transverse shear. Our results will apply to 

beams of symmetrical cross section which are loaded 

unsymmetrically and to beams of unsymmetrical 

cross section. The general case is illustrated in 

Fig. 7.34 where a beam of arbitrary cross section 

(shown as trian gular for aid in visualization) transmits 

a bending moment Mb of arbitrary orienta tion.

Our procedure will be similar to that followed 

for symmetrical beams, although we shall take advantage of the results already 

obtained. We fi rst study the geometry of a curve whose plane of curvature has 

arbitrary orientation. We shall show that when the slope angles are small the 

resultant curvature may be decom posed into component curvatures in two planes 

at right angles. The stresses which correspond to these component curvatures are 

then obtained and superposed to give the stress distribution and bending moment 

corresponding to the resultant curvature. This solution can also be inverted to 

provide the curvature when an arbitrary bending moment is given. The results we 

will obtain are also valid for beams subjected to transverse shear loads in addition 

to the bending moment.

We begin by considering the geometry of Fig. 7.35 where the curvature of the arc 

AC is in the xm plane which makes an angle q with the xy plane. The projec tions of 

AC are A1C1 and A2C2 in the xy and xz planes. We shall show that when the angle f is 

small there is a very simple relation between the curvature of AC and the curvatures of 

the projections A1C1 and A2C2.

In Fig. 7.36 we show the arc AC in the xm plane. By defi nition its curvature is
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When f is small, the arc Ds is approximately equal to its projection Dx. The 

angle CAB between tangent and chord at A is one-half of the central angle AOC 

(Fig. 7.36). When f and Df are small, the intercept BC is then approximately
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(7.49)

The curvature of AC (7.48) can then be approximated as follows:
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(7.50)

Fig. 7.34  Unsymmetrical 

beam subjected 

to pure bending
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Fig. 7.35  AC is an element of an arc with curvature df/ds in the xm plane. A1C1 and A2C2 are 

projections of AC with curvature da/ds1 and db/ds2, respectively.

Fig. 7.36  View of xm plane in Fig. 7.35, showing the curve AC in true size
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when f is small. Similar results hold for the projections A1C1 and A2C2.
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Turning back to Fig. 7.35, the relations between the intercepts B1C1, B2C2, and 

BC are

 
B C BC1 1 = cosq

 
(7.52)

 
B C BC2 2 = cosq

When these are inserted in (7.51) and the results compared with (7.50), we see 

that within the limitations of the small-angle restriction we have established the 

important fact that
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The curvatures of the projected curves are simply the components of the 

curvature of the original curve.

We now apply this result to the pure bending of an unsymmetrical beam. We 

assume that the neutral axis of an originally straight beam does in fact have the 

curvature df/ds in the xm plane, as represented by the arc AC in Fig. 7.35. We shall 

determine the resulting stress distribution and the bending moment trans mitted. It will 

be convenient to determine the stress distribution due to each of the two component 

curvatures (7.53) occurring separately and then to superpose these results to obtain 

the stress distribution due to the resultant curvature df/ds in the xm plane.

Figure 7.37 shows the stresses which result from the curvature da/ds1 in the 

xy plane. The argument here is based on the development at the beginning of this 

chapter. We assume that the longitudinal strain is still given by (7.4).
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Assuming as before that sx is the only nonzero stress component, Hooke’s law 

(5.2) gives
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(7.55)

which is the distribution pictured in Fig. 7.37. In order for there to be no net 

longitudinal force resultant, it is again necessary for the neutral surface to pass 

through the centroid of the cross section.
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 Fig. 7.37  Bending-stress distribution due to curvature da/ds1 in the xy plane

In a completely similar fashion we obtain the stress distribution
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shown in Fig. 7.38 which results from a curvature db/ds2 in the xz plane. Here also, 

the neutral surface must pass through the centroid.

Fig. 7.38  Bending-stress distribution due to curvature db/ds2 in the xz plane

We now consider the general case where there is a curvature df/ds in the xm 

plane. This curvature may be considered as the sum of the two component 

curvatures of (7.53). The resulting stress distribution, pictured in Fig. 7.39(a), is 

then just the sum of the distributions (7.55) and (7.56).
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The resultant of this distribution of stress is the bending moment Mb shown 

in Fig. 7.39(b) with components Mby and Mbz. These resultants are computed as 

follows:

 

M y dA E
d

ds
y dA

d

ds
yz dAbz x

A AA
= - = +

Ê
ËÁ

ˆ
¯̃Ú ÚÚ s

a b

1

2

2  
(7.58)

 

M z dA E
d

ds
yz dA

d

ds
z dAby x

A AA
= = - +

Ê
ËÁ

ˆ
¯̃Ú ÚÚ s

a b

1 2

2

where the integrals are taken over the entire cross-sectional area A. We introduce 

the following symbolism for these integrals:
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Fig. 7.39  Bending-stress distribution due to curvature df/ds in the xm plane

The fi rst two, Izz and Iyy, are the moments of inertia of the cross-sectional area, 

and the third Iyz, is called the  product of inertia of the cross-sectional area with 

respect to the y and z axes. It can be shown (see Prob. 7.9) that there is always 

some orienta tion of the y, z axes, even in unsymmetrical cross sections, for which 

the product of inertia vanishes. Axes for which the product of inertia vanishes are 

called  principal axes of inertia. Using the notation of (7.59), we can write (7.58) as 

follows:
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bz zz yz= +
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a b

1 2  (7.60)
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Finally, we can restate this in terms of the resultant curvature df/ds of the neutral 

axis and the angle q which locates the plane of resultant curvature by using (7.53).

 
M E

d

ds
I Ibz zz yz= +

f
q q( cos sin )

 (7.61)

 
M E

d

ds
I Iby yz yy= - +

f
q q( cos sin )

This pair of equations can be considered as the generalization of the moment-

curvature relation (7.14). Equations (7.61) do in fact reduce to (7.14) when the 

curvature is in the xy plane (q = 0) and the xy plane is a plane of symmetry (Iyz = 0).

In general the orientation of the resultant bending moment is not parallel to 

the neutral surface. It may be shown from (7.61) that the necessary and suffi cient 

condition for the bending-moment vector to be parallel to the neutral surface is 

that the bending-moment vector must be parallel to a principal axis of inertia of the 

cross section.

For a known curvature df/ds with known orientation q, we can use (7.61) to 

obtain the bending-moment components. The bending-stress distribution is given 

by (7.57), and on using (7.53) we have

 
s

f
q qx E

d

ds
y z= - +[ cos sin ]

 
(7.62)

which can be considered as a generalization of (7.9). Note that the bracketed term 

on the right of (7.62) is equal to the coordinate m in Fig. 1.39(b). The two relations 

(7.61) and (7.62) yield the complete solution when the curvature is given.

To solve the opposite problem, namely, to fi nd the curvature and stresses when 

the bending moment is given, we invert our previous results. Going back to (7.60), 

we consider the bending-moment components to be known and solve for the 

curvature components.
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 (7.63)
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zz yy yz

b f
q

2 2

= =
+

-
sin
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This pair of expressions permits us to solve for the magnitude and orientation 

of the resultant curvature. (The magnitude is given by the square root of the sums 

of the squares of the curvature components, and the tangent of q is given by their 

quotient.) We can obtain the resulting stress distribution without calculating the 

component curvatures by simply substituting (7.63) in (7.57) to obtain
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 s x

yy yz bz yz zz by

zz yy yz

yI zI M yI zI M

I I I
= -

- + -

-

( ) ( )

2

 (7.64)

This is the stress distribution pictured in Fig. 7.39(a); the bending-moment 

com ponents are shown in Fig. 7.39(b). The distribution (7.64) not be considered as 

the generalization of (7.16). Note that (7.64) does in fact reduce to (7.16) when Mby 

= 0 and when Iyz = 0. Note also that intersection of the neutral surface and the yz 

plane (i.e., the n axis in Fig. 7.39 is the locus of points for which sx = 0 in (7.64).

In applying the above theory to practical cases, it usually is possible to orient the 

coordinate system so that some of the terms in the equation drop out. One approach, 

and probably the simplest, is to choose the y, z axes so that they are principal 

axes of inertia for the cross section. Another approach is to align either the y or z 

axis with the resultant moment vector; this also results in a simplifi cation of the 

equations. The latter approach is used in the following example.

Example 7.9
 A rectangular cantilever beam transmits a bending moment 

  whose plane of action is inclined at 30° to the long axis of 

symmetry, as shown in Fig. 7.40(a). We wish to determine the curvatures in the xy 

and xz planes and the bending stress in the beam.

∑ It is straightforward to use equation 7.63 to obtain the curvatures, and given the 

location of the point on the cross-section, one can use 7.64 to fi nd the stress.

∑ Neutral axis can be found out by solving for q in equation 7.63.

∑ Alternative way of solving this is to take the axes to be coinciding with 

principal axes of moments of inertia.

The moments and product of inertia for the beam cross section are (see Prob. 

7.12)

 Izz = 1.75c4   Iyy = 0.75c4   Iyz = 0.87c4 (a)

Substituting these in the fi rst of (7.63), we fi nd

 

d

ds

c

c c c

M

E

bza

1

4

4 4 4 2

0 75

1 75 0 75 0 87
=

-
.

( . )( . ) ( . )
 

(b)

 
= 1 36

4
.

M

Ec

bz

From the second of (7.63) we then obtain
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(c)

The bending stress will be a maximum at a corner. We shall investigate the corners 

A and B; the stresses at A¢ and B¢ will be reversed in sign. The coordinates of A and B 

are shown in Fig. 7.40(b). Substituting these in (7.64), we get:

At A,

 s x

c c c c

c c c
= -

-
-

( . )( . ) ( . )( . )

( . )( . ) ( .

1 55 0 75 0 32 0 87

1 75 0 75 0 87

4 4

4 4 44 2)
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M

c
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(d)
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At B, 

 s x

c c c c

c c c
= -

-
-

( . )( . ) ( . )( . )

( . )( . ) ( .

1 05 0 75 1 18 0 87

1 75 0 75 0 87

4 4

4 4 44 2)
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= +0 44

3
.

M

c

bz

 

(e)

Fig. 7.40  Example 7.9

Since the stresses are of opposite sign at the corners A and B, we conclude that 

the neutral surface must intersect the side AB. This conclusion is verifi ed when, 

from (7.63), we fi nd

 

q = -
Ê

Ë
Á

ˆ

¯
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ˆ
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.1 1
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c
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yy
 

(f)

which places the neutral surface in the position shown in Fig. 7.40(c). It is of 

interest to note how the beam tends to bend in its “weak plane,” i.e., how closely 

the neutral surface coincides with the long axis of symmetry of the cross section.

7.12 SHEAR FLOW IN THIN-WALLED OPEN SECTIONS; SHEAR CENTER

The determination of shear fl ows in unsymmetrical beams follows the same procedure 

as outlined previously for symmetrical beams. When shear forces are present, the 
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bending moment varies along the length of the beam. We assume, however, that the 

bending stresses are still distributed according to (7.64). The shear fl ows are then 

obtained from the requirement of longitudinal equilibrium applied to free bodies of 

elements of the beam.

We shall confi ne our treatment to thin-walled open sections, as shown in 

Fig. 7.41(a). The term “open” is used to distinguish these sections from the thin-

walled sections considered in Sec. 6.14 which were “closed.” We shall assume 

that the resultant shear fl ow in the cross section at any point has the direction s of 

the center line of the wall; i.e., we neglect any shear fl ow in the direction n. This 

assumption is only strictly true in the limit of infi nitely thin walls, but it furnishes 

a useful approximation whenever the wall thickness is small compared with the 

overall dimensions of the cross section.

In Fig. 7.41 an unsymmetrical beam with a thin-walled open section is loaded in 

a plane parallel to the xy plane, and thus Vz = Mby = 0. To calculate the shear fl ow at 

some point C in the cross section, we isolate the segment BC shown in Fig. 7.41(b), 

where B is a free edge. The force qsx Dx on the positive s face must balance the 

unequal bending stresses acting on the ends of the element. Carrying through the 

analysis in the same manner as in Sec. 7.6, with the exception that in place of (7.16) 

we use (7.64) for sx, we obtain the result

 

q q
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I I I
I y dA I z dAxs sx
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zz yy yz

yy yz
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ˆ
¯ÚÚ2

11
 

(7.65)

where the integrals are, respectively, the fi rst moment of the shaded area A1 

(Fig. 7.41) about the plane y = 0 and about the plane z = 0.

Fig. 7.41  Calculation of shear fl ow in an unsymmetrical beam of thin-walled, open cross section 

due to loading in a plane parallel to the xy plane

If we now determine the resultant of the shear fl ow qxs, acting over the face of 

the cross section, we shall fi nd it to be a force Vy, but in general this force will not 

act through the centroid as indicated in Fig. 7.41(a); rather, the resultant will be 

located some distance, say ez, from the centroid, as illustrated in Fig. 7.42(a).
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When the loading is in a plane parallel to the xz plane,9 qxs is given by

 

q q
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zz yy yz

zz yz
AA

= =
-

-
-Ê

Ë
ˆ
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(7.66)

and the resultant of the shear fl ow is a force Vz which will in general be located 

some distance, say ey, from the centroid as illustrated in Fig. 7.42(b). The distances 

ez and ey depend only on the pattern of the shear fl ow and are independent of the 

magnitudes Vy and Vz.

 Fig. 7.42  Resultants of shear-fl ow distributions pass through the shear center S

When the loadings of Fig. 7.42(a) and (b) are superposed to give the general 

case, the resultant of the shear fl ows will be a force V which is the vector sum of 

Vy and Vz and whose line of action must pass through the point S with coordinates 

(ey,ez). This point, shown in Fig. 7.42(c), is called the  shear center. No matter 

what the magnitude or orientation of the resultant shear V, the line of action of 

V will pass through the shear center. Note that the location of S depends on the 

shear-fl ow distributions (7.65) and (7.66), which in turn depend on the bending-

stress distribution (7.64) which we have assumed to be valid for the case of varying 

bending moment. Every elastic beam cross section has a shear center S, although 

by using the engineering theory of stresses in beams, we are only able to locate S in 

symmetrical sections and in thin-walled sections.

9 See Prob. 3.33.
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An important property of the shear center is shown in Fig. 7.43, where a 

cantilever beam having the cross section of Fig. 7.42 is loaded through the centroid 

of the end cross section by a force P with components Py and Pz. We consider in Fig. 

7.43(b) a free body of the length (c) of the beam. We assume that the bending stresses 

in the section x = – c are distributed according to (7.64). The shear fl ows will then be 

given by (7.65) and (7.66), and the resultant shear-force components will have the lines 

of action shown in Fig. 7.43(b). For the free body of Fig. 7.43 to be in equilibrium, a 

twisting moment Mtx must be acting on the left end to maintain moment equilibrium 

about the x axis. There must be torsional strains and stresses in the beam in order to 

generate the twisting moment Mtx, and, as a conse quence, the beam of Fig. 7.43(a) 

will twist as well as bend when the force P is applied. It is apparent that if the force P 

was applied at the shear center S in the end cross section, as illustrated in Fig. 7.43(c), 

then the twisting moment would be zero and the force P would produce only bending.

Fig. 7.43  Illustrating the presence of a twisting moment when the force P is not applied 

through the shear center S
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Thus, if it is desired to bend a beam by transverse forces without twisting the 

beam, each transverse force should pass through the shear center of the cross 

section of application.

To locate the shear center, one fi nds the intersection of resultants of the shear-

fl ow distributions for successive loading in two perpendicular planes, as indicated 

in Fig. 7.42. When the section has an axis of symmetry, the shear center lies on 

this axis, and thus only loading in the plane perpendicular to this axis need be 

considered. The following is an example of the calculation for a section without 

symmetry.

Example 7.10
 We wish to determine the distribution of shear fl ows in the angle 

  section of Fig. 7.44(a) whose centroid location and moments and 

product of inertia we obtain from Prob. 7.7.

 
I a t I a t I a tzz yy yz= = = -

4

3

1

4

1

3
3 3 3

 
(a)

∑ It is straightforward to use equation 7.65 to obtain the curvatures, and one can 

verify the answer by integrating the shear stress on the top fl ange along the x 

direction to be horizontal shear force and along the leg to be the vertical shear 

force. The one along x should give the shear force, Vx to be zero.

∑ The shear center, S, naturally has to be the intersection of the two straight 

legs!

We begin by considering loading in a plane parallel to the xy plane. For purposes 

of illustration the bending-stress distribution given by (7.64) is shown in Fig. 

7.44(b). The shear fl ow qxz in the horizontal leg can be obtained from (7.65). In 

developing the relation (7.65) for qxs, the coordinate s in Fig. 7.41 increased as 

we moved around the section in a counterclockwise manner. In the horizontal leg 

the coordinate z increases as we move in a counterclockwise manner, and hence z 

corresponds to s. Thus from (7.65) we can write
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(b)

We evaluate the integrals from the sketch in Fig. 7.44(c).
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(c)

Substituting (a) and (c) in (b) and simplifying, we fi nd
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(d)

The shear fl ow qxy in the vertical leg also can be obtained from (7.65). As we 

move in a counterclockwise manner in the vertical leg, the coordinate y decreases 

and hence y corresponds to –s. Thus from (7.65) we can write
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(e)

From Fig. 7.44(d) we obtain
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Combining (a), (f), and (e), we fi nd, after simplifying, 
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Fig. 7.44  Example 7.10. Calculation of shear-fl ow distribution in a thin walled angle section 

due to loading in plane parallel to xy plane

The distributions (d) and (g) are indicated in Fig. 7.45(a). The maximum value of qxy 

(which is positive throughout the vertical leg) and the maximum positive value of qxz 

coincide with the points where the neutral surface cuts the vertical and horizontal legs in 

Fig. 7.44(b).
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As a check on the internal consistency of our analysis, we integrate across the 

horizontal leg to fi nd
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which agrees with the assumption in Fig. 7.44(a) that Vz = 0.

The resultant force in the vertical leg is found to be
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(i)

and in Fig. 7.45(b) we show the 

total resultant of the shear-fl ow 

distribution to be the shear force Vy 

in the vertical leg.

A similar analysis applies to 

loadings in a plane parallel to the 

xz plane. It is clear that for this 

loading the resultant of the shear-

fl ow distribution will be a force in 

the horizontal leg. The intersection 

of these two shear-fl ow resultants is 

at the intersection of the two legs, 

and this point is, therefore, the 

shear center for the angle. For any thin-walled angle section the horizontal shear 

fl ow is confi ned to the horizontal leg and the vertical shear fl ow is confi ned to the 

vertical leg. Their resultant must always pass through the intersection of the legs. 

Thus without further calculation we see that the shear center S of any thin-walled 

angle section must be at the intersection of the legs, as illustrated in Fig. 7.46.10

Fig. 7.46  Example 7.10. The shear center for any thin-walled angle section is at the intersection 

of the two legs of the angle

Fig. 7.45  Example 7.10. Location of resultant of 

shear-fl ow distribution

10 Additional discussion of shear center may be found, for example, in  B. Venkatraman and 

 S.A. Patel, “Structural Mechanics with Introductions to Elasticity and Plasticity,” p. 227, 

McGraw-Hill Book Company, New York, 1970.
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 SUMMARY

The concept of curvature is central to solving beam problems. The radius of 

curvature of deformation for a straight thin beam is directly related to the rate of 

change of slope with respect to the distance along the deformed curve of the beam 

(7.1).

Using the assumption of symmetric cross-section and that it undergoes pure 

bending (the perpendicular cross-sections before and after deformation remain 

plane), it can be shown that the strain along the axis at any location across the beam 

is given by (7.4) using the curvature relationship.

Equilibrium conditions and the stress-strain relations can then be applied to 

obtain the relation between curvature of the deformation and the moment applied 

to the beam along the deformed curve of the beam (7.14). The stress can be shown 

to be related to the applied moment and varies linearly with the depth of the beam 

with zero stress at the neutral axis (axis where there is no strain) and the moment of 

inertia of the cross section about the neutral axis (7.16).  

Because of Poisson’s effect, it can be shown that the transverse curvature of the 

beam is anticlastic.

The above relationships for bending are valid in the engineering sense even 

when the bending moment varies along the beam. The shear stress across the cross-

section arising due to the shear force distribution can be derived from equilibrium 

notion as given in (7.25).  

In a rectangular beam, the shear stress varies quadratic with depth with a 

maximum at the center and zero at the top and bottom fi bres.

As shown in Fig.7.17(d), shear can be thought of fl owing across the cross-

section in thin sections. The shear fl ow given by (7.28) is considered equal at every 

joint on the cross-section of the thin section.  

When the height of the cross-section is small compared to the bending causing 

effective length of the beam, the stresses due to bending (fl exural stresses) 

dominate. As depth increases, the shear stress gradually increases in comparison 

with the fl exural stress.  

A word of caution: The lengths of the thin sections on the cross-section have to be 

checked for local buckling. Thus, the fl anges and the web of the thin I section have 

to be restricted in their lengths appropriately.  

It can be noted that the stresses acting on a beam are primarily the fl exural stress 

along the axis of the beam and the transverse shear on the cross-section. Thus, 

it qualifi es to be a good example of plane stress state. Mohr’s circle can be used 

effectively to fi nd the maximum normal and shear stresses.

The strain energy due to bending is quadratic in the bending moment applied as 

given in (7.31). The strain energy due to transverse shear is found out in Equation 

7.34. It can be shown that the shear strain energy contribution is less than 3% for 

long beams with an L/h ratio of over 10.  

The onset of plastic yielding occurs at the extreme fi bers when the fl exural stress 

reaches the yield stress for a pure bending case. As the moment is increased further 
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than this, more and more fi bers of the beam starting from the extreme fi ber yield. 

The fully plastic condition sets in when almost all the fi bers have yielded about the 

neutral axis. Beyond this, the beam does not offer any more resistance to bending or 

rotation along the axis rendering another degree of freedom to the beam.  The point 

on the beam at which this occurs is called the plastic hinge. Figure 7.30 shows one 

such cases. The load at which the plastic hinge is formed to cause the structure a 

mechanism is called the limit load.

While no further resistance is offered to bending rotation during the plastic hinge 

formation, it should be noted that the resistance is not zero. Thus, upon unloading, 

there is always an elastic unloading deformation. This is called the elastic 

springback. Residual stresses remain in the beam upon unloading.  

For beams with no symmetry, the bending can be understood to occur on the 

major axes of moment of inertia of the cross-section. Thus, the resolved transverse 

moments along these directions cause stresses which can be independently 

calculated and superposed (7.64)

For unsymmetric thin cross-sections, due to the shear fl ow being unsymmetric, 

there is a resultant unbalanced torsion about the centroid of the cross-section.  

Therefore, it is important to note that the transverse force applied to cause purely 

bending moment should be applied at a point that offsets this unbalanced torsion.  

This point is called the shear center. For cross-sections made of two straight thin 

parts, the shear center can be found to be the intersection of the straight parts.

PROBLEMS

 7.1 Demonstrate that if a complicated area is considered to be the sum of a 

number of simple shapes, as illustrated in the accompanying sketches, then 

Eq. (3.3) for the location of the centroid can be expressed in the form
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Prob. 7.1  
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 7.2 Verify that the centroid of the angle section has the location shown.

Prob. 7.2  

 7.3 Show that the centroid of the triangle is 

located as shown and, also, that for the y, 

z axes through the centroid the moments 

and products of inertia are
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 7.4 Show that for a beam of arbitrary cross 

section where

 
I r dAx

A
= Ú 2

  the following relation holds:

 
I I Iyy zz x+ =

  Use this result to show that for a set of 

axes located in the centroid of the cross 

section of a solid circular shaft of radius 

r,

 
I I
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yy zz

x= = =
2 4

4p

 7.5 Letting Iyy and Izz be the moments of inertia of the area A about the y and 

z axes through the centroid, and letting Iyz be the product of inertia for the 

same axes, derive the following relations:

Prob. 7.3

Prob. 7.4
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  These relations illustrate the parallel-axis theorem.

Prob. 7.5  

 7.6 For the angle section of Prob. 7.2, show that
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 7.7 Show that the centroid of the angle section is located at
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 7.8 Calculate the moment of inertia Izz for the

Prob. 7.8  

 7.9 Show that the moments of inertia

I m dA I n dAnn
A
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= =Ú Ú2 2

  and the product of inertia 
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  about the m, n axes can be expressed in terms of Izz, Iyy, and Iyz as follows:
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Prob. 7.9  
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  Upon use of the double-angle trigonometric relations, these can be written in 

the form

I
I I I I
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yy zz yy zz
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+

+
-

-
2 2

2 2cos sinq q

 
I

I I I I
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+
2 2
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I I
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yy zz

yz=
-

+
2

2 2sin cosq q

  Then, by comparing these results with Eqs (4.25), with Iyy, Izz, – Iyz replaced 

by sx, sy, txy and with Imm, Inn, – Imn replaced by sx ¢, sy ¢, tx ¢,y ¢, show that the 

moments and product of inertia for various sets of axes through a point can 

be represented by a Mohr’s circle.

   The principal axes of inertia are those for which Imn = 0. The orientation 

of these axes is given by

tan 2
2

q =
-

-
I

I I

yz

yy zz

  Show that the principal moments of inertia are given by
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 7.10 Using the results of Probs. 7.6 and 7.9, show that the principal axes of inertia 

through the centroid of the angle section of Prob. 7.2 are located as indicated 

in the accompanying sketch, and also that

I11 = 3202.50 cm4

   I22 = 681.72 cm4

Prob. 7.10  
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 7.11 Using the results of Prob. 7.3, show that the principal axes of inertia through 

the centroid of the triangle are located as drawn in the sketch, and also that

Prob. 7.11  

I
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˘
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 7.12 Calculate the principal moments of inertia I11 and I22 for the rectangular 

beam cross section of Example 7.9. Use the results of Prob. 7.9 to show that

Izz = 1.75c4  Iyy = 0.75c4  Iyz = 0.87c4

Prob. 7.12  

 7.13. A section of a steel beam of rectangular cross section 50 ¥ 25 mm is loaded 

by a moment of 1.7 kN.m about an axis parallel to the smallest side. Sketch 

the stress distribution across the beam.
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 7.14 A steel cantilever beam 6 m long, whose cross section is shown in Prob. 7.8, 

is loaded by a 5-kN load. Find the maximum bending stress in the beam.

Prob. 7.14  

 7.15 It is proposed to use fl at steel belts for a belt drive in which very precise 

control of the motion is required. The pulley diameter is 300 mm. What 

is the thickest belt which can be wrapped 180° around the pulley without 

exceeding a stress of 280 MN/m2? What would the maximum stress be if the 

belt thickness were halved?

 7.16 A steel beam whose cross section is shown carries a uniform load per 

unit length (including the weight of the beam) of 29 kN/m. Calculate the 

maximum bending stress in the beam.

Prob. 7.16  

 7.17 Consider the beam shown. If the material has a maximum allowable stress of 

30 MPa in tension and 140 MPa in compression, fi nd the maximum value of P.

Prob. 7.17  

 7.18 A cast-iron T beam is to carry a distributed load of intensity wo over a span 

of 10a as shown. The beam is of depth a and the fl ange width is aa. Cast 

iron fractures in tension at a stress approxi mately one-third of that for which 
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failure occurs in compression [see Fig. 5.5(c)]. Assuming that the stresses 

are low enough so that Hooke’s law is a good assumption, fi nd the value of 

a for which the maximum tensile bending stress sT will be one-third that of 

the maximum compressive bending stress sC. Find also the maximum load 

intensity wo which can be carried for a given value of sT.

Prob. 7.18  

 7.19 A straight, thin steel strip of thickness t and width w is clamped to a rigid 

block of radius R with a length 4c extending from the clamp. The end of the 

strip is loaded with a force P suffi cient to bring the strip into contact with the 

block over a distance c. Assuming that c Ⰶ R, fi nd the distribution of force 

between the strip and the block in the region BC. Find also the magnitude of 

the force P in terms of the dimensions of the strip and block (and any other 

quantities deemed necessary).

Prob. 7.19  

 7.20 A rough sketch of a human femur subjected to a vertical load of 400 N is 

shown.

 (a) Determine the distribution of stress across the section BB assuming that 

the circular section is solid bone.

 (b) Same as (a), except that this time assume that the inner half of the bone 

radius consists of “spongy” bone. Assume that the “spongy” bone does 

not carry appreciable stress.

 (c) What is the percentage increase in the maximum stress of distribution 

(b) compared with the maximum stress of distribution (a)?
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Prob. 7.20  

 7.21 A new theory of Egyptian pyramid-building proposes that the large pyramid 

blocks were lifted onto sledges by the counterweighted wooden lever system 

shown in the fi gure. The sledges were then pulled up the sides of the pyramid 

by manpower. If the wood in the levers has an ultimate tensile stress of 52 

MN/m2 and ultimate shear stress of 10 MN/m2, fi nd on the basis of these 

ultimate stresses the dimensions of the smallest square piece of timber which 

will support the pyramid blocks as shown.

Prob. 7.21   7.22 A closed, thin-walled tube of radius r and thickness t is transmitting a 

bending moment Mb. Calculate the bending stress as a function of q.
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Prob. 7.22  

 7.23 A thin-walled cylindrical tank of radius r, thickness t, and length L is 

supported at its ends. It is fi lled with a heavy liquid which is vented to 

the atmosphere. If the weight of the tank is negligible compared with the 

weight of the liquid, show that the maximum bending stress in the tank is 

independent of the radius of the tank.

Prob. 7.23   7.24 A cantilever beam of width b and length L has a depth which tapers uniformly 

from d at the tip to 3d at the wall. It is loaded by a force P at the tip, as 

shown. Find the location and magnitude of the maximum bending stress.

Prob. 7.24  

 7.25 A very thin cylindrical shell stiffened by six equally spaced longitudinal bars 

welded to the cylinder as shown. Assuming that the bending stress is carried 

entirely by the longitudinal bars, estimate the maximum bending stress when 

the bending moment is 10 kNm.
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Prob. 7.25  

 7.26 A cross section of a cilium (see Prob. 3.21) 

is shown in the fi gure. The dark areas are 

fi brils which are thought to be responsible 

for the cilium motion. The bending moment 

at the base of the cilium is estimated to be 

5 ¥ 10–7 N.m, and an experimental value of 

the radius of curvature at the base is 6 mm. 

Assuming that the bending forces are carried by 

the fi brils alone, estimate the elastic modulus of 

the fi brils. The total second moment Izz of all the 

fi bril cross-sectional areas is approximately 4 ¥ 

10–8 mm4.

 7.27 To estimate the relative importance of transverse 

shear in comparison with torsion in the deformation of the tightly coiled 

spring of Fig. 6.18, one can proceed as follows. By arguments analogous to 

those in Sec. 7.6, one can derive an approximate distribution of transverse 

shear stress across the circular section of the wire. If the z axis is directed 

along the axis of the wire and the y axis parallel to the transverse force P, the 

transverse shear stress in a wire of radius r is distributed parabolically

t
p

xy y
P

r
r y( ) ( )1 4

2
1
24

3
= -

  Calculate the strain energy in the spring due to this distribution of stress, and 

verify that the ratio of strain energy Us due to transverse shear to the strain 

energy Ut due to torsion is

U

U

r

R
s

t

= Ê
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ˆ
¯̃

5

9

2

 7.28 Under average conditions, what is the maximum bending stress in the lead 

of your pencil? Make your own estimate of the geometry and the loading 

conditions.

Prob. 7.26
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Prob. 7.28  

 7.29 A beam is made of two identical metal bars soldered together. What is the ratio 

of the stiffness

k
M

d dsb
b=

f /

  of this beam to the stiffness of a beam in which the two bars are not soldered 

and act independently? What is the ratio of the maximum bending stresses 

for the two cases?

Prob. 7.29  

 7.30 The roof truss shown carries a central load W. Calculate the forces in the 

horizontal members on the top and bottom of the truss. Then calculate the 

stresses in these members and plot as a function of position along the truss. 

Now consider the truss to be a continuous beam in which only the top and 

bottom members are effective in bending. Using beam theory, calculate the 

stresses in the top and bottom of the beam as a function of position along the 

truss and plot on the previous graph for comparison. If one does consider the 

truss as a beam, what role do the diagonal members play in the beam action?

Prob. 7.30  

 7.31 If a rectangular beam is made of a material whose stress-strain curve in 

both tension and compression is well represented by s = c | ⑀ |n, derive an 

expression for the maximum bending stress in terms of the applied moment.



Stresses due to Bending 445 7.32. In the development of the theory of pure bending of symmetrical beams, the 

following strains were obtained:

⑀ ⑀ ⑀x y z xy yz zx

y
v

y
= - = = = = =

r r
g g g 0

  Using Eqs (5.7), verify that these strains result from the continuous 

displacements (see Fig. 7.9)

u
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x v y z

w v
yz
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r

r

2 2 2

2

( )

  and that, therefore, the strains are geometrically compatible. Since, for 

constant temperature, the solution also satisfi es the equilibrium equations 

(5.6) and the stress-strain-tcmperature relations (5.8), it represents a complete 

solution within the theory of elasticity.

 7.33 Consider a symmetrical beam that is initially curved in its plane of symmetry. 

Repeat the arguments of Sec. 7.2 to show that when a bending moment acts 

in the plane of initial cur vature, plane cross sections remain plane; i.e., plane 

radial cross sections in the undeformed beam become plane radial cross 

sections in the deformed beam. Demonstrate that the increase in curvature of 

the neutral axis is

Df

fR R Ro o

= -
1 1

1

  Show by taking an appropriate free body that equilibrium requires the 

existence of radial normal stresses in the interior of the beam. Finally, decide 

whether or not the tangential strain distribu tion is linear across the radial 

depth of the beam.11

Prob. 7.33  

11 For a detailed discussion of initially curved beams, see  F. R. Shanley, “Strength of 

Materials,” p. 322, McGraw-Hill Book Company, New York, 1957.
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 7.34 A plate is a “beam” in which the thickness is very small compared to the 

width, as shown in part (a) of the fi gure. It is observed experimentally that, 

when a plate is bent by the application of moments to the ends, the central 

part forms a cylindrical surface and the anticlastic curvature is restricted to 

the vicinity of the edges, as shown in part (b) of the fi gure. (Bend a piece of 

cardboard to verify this behavior.) Proceeding from this observed geometric 

behavior, develop the following relation for the curvature of the central 

cylindrical portion:

d

ds

v M

Eh

f

r
= =

-1 12 1 2

3

( )

  where M is the bending moment per unit width of plate in the central portion. 

Show also that in the central cylindrical portion the bending stress sx is given 

by

s x

yM

h
=

12

3

Prob. 7.34  

 7.35 A bookshelf is made out of 6 mm plate glass. For long-time service, ordinary 

plate glass cannot safely be stressed to more than about 7 MN/m2 in tension. 

If the supports are located in the optimum position, estimate the average 

weight of books per unit length which can be placed along the shelf.

Prob. 7.35  

 7.36. Two 50 ¥ 100 mm beams are glued together as shown. What is the required 

glue strength for the two loading directions?
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Prob. 7.36  

 7.37 When the shear force is 30 kN, calculate the shear fl ow qxy in the vertical 

plate of the beam of Example 7.3 at the following locations:

 (a) Just above the solder joint

 (b) Just below the solder joint

 (c) At the neutral surface

 7.38 A closed, thin-walled tube of radius r and thickness t is transmitting a shear 

force V. Calculate the shear-fl ow distribution qxs as a function of q.

Prob. 7.38  

 7.39. Two designs have been suggested for building a box beam by nailing 

together four pieces of wood of equal thickness. The dimensions b and h and 

the spacing s are equal in both designs. If the beam is to carry loading in the 

xy plane, is one design better than the other?

Prob. 7.39  
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 7.40. The sketch shows the cross section of a T beam which is transmitting both 

a bending moment and a shear force. What is the ratio of the maximum 

bending stress in the stem to that in the fl ange? What is the ratio of the 

maximum average shear stress txy in the stem to the maximum average shear 

stress txz in the fl ange?

Prob. 7.40   7.41. The built-up beam illustrated is clamped together with 0.5 cm bolts with a 

spacing s as shown. If each bolt can safely resist a shear force across it of 

2 kN, what is the bolt spacing required when the shear force V is 50 kN?

Prob. 7.41

 7.42 Using (7.27) for the distribution of shear stress txy in a rectangular beam, 

show that the resultant of this stress distribution is the shear force V.
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 7.43 With Q defi ned as in (7.22), show that

dQ

dy
by

1
1= -

  Using this fact and the technique of integration by parts, show that for an 

arbitrary symmetrical beam the resultant of the shear stress txy given by 

(7.25) is the shear force V, that is, show that

t xy
A

dA V=Ú
  where A is the area of the beam cross section.

 7.44 A rectangular beam on simple supports has bricks piled uniformly along 

its length such that there is a total weight wo of bricks per unit length along 

the beam. Determine the ratio of the maximum bending stress sx to the 

maximum shear stress txy.

Prob. 7.44  

 7.45 The beam illustrated has cross-sectional proportions which are typical of 

“wide-fl ange” steel beams that are used extensively in building construction. 

Determine the ratio of the maximum bending stress sx to the maximum shear 

stress txy when the beam carries a central load as indicated.

Prob. 7.45  

 7.46 Consider the problem of pure bending of the symmetrical composite beam 

which has been made by bonding together two materials of different elastic 

properties. Carry out a development parallel to that given in Secs 7.2 to 7.5 

to obtain the deformation and the stresses in the composite beam. Show that 

the neutral surface is located by the distance yN pictured, where
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  and that the moment-curvature relation is

 (b) 
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  where (Izz)1 and (Izz)2 are, respectively, the moments of inertia of the 

areas A1 and A2 about the neutral surface. Finally, show that the bending 

stress in the beam is given by

 (c) ( )
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E I E I
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  where i takes on the value of 1 or 2, depending on which material we 

are interested in.

Prob. 7.46  

 7.47 Study the behavior in the vicinity of the joint which bonds the two materials 

in the composite beam of Prob. 7.46. Consider, in particular, the case when 

the two materials have different Poisson’s ratios, and discuss the validity of 

the assumption that in pure bending of composite beams all stresses vanish 

except sx.

 7.48 In an attempt to make a beam which combines light weight with large 

stiffness, 6.25 mm steel plates are riveted to the top and bottom of an 

aluminum-alloy I beam for which Izz = 23.70 ¥ 106 mm4. By what ratio is the 

stiffness

k
M

d dsb
b=

f /

  of the I beam increased by the addition of the plates? In the composite beam 

what is the ratio of the maximum bending stress in the aluminum to that in 

the steel?
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Prob. 7.48  

 7.49 A 1020 HR steel pipe in a chemical plant is lined with 2024-0 aluminum 

alloy for corrosion resistance. When the pipe is installed in the piping system, 

what is the maximum bending moment it can withstand without exceeding 

the yield stress of either the steel or the aluminum alloy?

Prob. 7.49  

 7.50 A rectangular beam is made of a material with different properties in 

compression from those in tension, as shown by the curve. Find the 

maximum bending moment the beam can resist without exceeding the yield 

stress in tension or in compression.

Prob. 7.50  
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 7.51 Concrete is a brittle material which has good strength in compression but 

very little strength in tension. Despite its low tensile strength, economic use 

can be made of concrete in reinforced-concrete construction in which steel 

bars are imbedded in the concrete to provide tensile action. For a reinforced-

concrete beam, carry out a development parallel to that given in Secs 7.2 to 

7.5 under the assumptions that no tensile stresses are carried by the concrete 

and that the tensile stress in the steel is uniform over the bars. Show that the 

neutral surface is located at a distance kd below the top of the beam, where 

the factor k is determined by the following quadratic equation.

E d kd A E
b kd

s s c( )
( )

- - =
2

2
0

Prob. 7.51  

  Show also that the tensile stress in the steel and the maximum compressive 

stress in the concrete are given by
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 7.52 The reinforced-concrete beam 

shown in the sketch contains 

fi ve 2 cm diameter steel bars. 

If the tensile stress in the steel 

is not to exceed 140 MPa and 

the compressive stress in the 

concrete is not to exceed 10 

MPa, what is the maximum 

bending moment which the 

beam can transmit? Take Ec as 

10 GPa. Prob. 7.52
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 7.53 Assume that the diameter of the steel bars in the reinforced-concrete beam 

of Prob. 7.52 is changed so that, when the beam is transmitting its maximum 

allowable bending moment, the tensile stress in steel is 140 MPa and the 

maximum compressive stress in concrete is 10 MPa. What would be the 

diameter of the bars in the new design, and what would be the maximum 

allowable bending moment? (Note: A beam designed so that the maximum 

permissible stresses in the steel and the concrete are reached simultaneously, 

as in the above design, is said to have balanced reinforcement.)

 7.54 Prestressed concrete is a type of reinforced concrete which makes maximum 

use of both the compressive strength of concrete and the high tensile strength 

that can be obtained in cold-drawn steel wires. A prestressed-concrete beam 

can be made by stretching the steel reinforcing before the concrete is poured 

and then removing the forces on the ends of the reinforcing after the concrete 

has hardened and cured, thereby straining the concrete in compression. In 

subsequent bending, the concrete at any point can experience a tensile 

bending strain equal in magnitude to the com pressive prestrain at the point 

without, in fact, experiencing a net tensile strain. Consider a 25 ¥ 50 cm2 

beam prestressed by seventy-six 0.4 cm diameter cold-drawn steel wires 

arranged as indicated in the sketch. The tension in the wires is 1 GPa after 

the ends of the wires are released. Calculate the stress and strain distribution 

in the concrete after the ends of the wires are released. Then calculate the 

maximum bending moment which this prestressed beam can transmit 

without

  (a) Producing a net tensile strain in the concrete, or

  (b) Exceeding a net compressive stress of 15 MPa in the concrete, or

  (c) Exceeding a net tensile stress of 1000 MPa in the steel wire 

  Take Ec = 10 GPa.

Prob. 7.54  

 7.55 Consider the case where a composite beam transmits a shear force in addition 

to a bending moment. Using the results of Prob. 7.46, repeat the arguments 

of Sec. 7.6 to show that the average shear stress txy at a distance yo from the 

neutral surface is given by
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  where the integral is to be taken over the area Ao in part (b) of the fi gure, that 

is, over the range from y = yo to y = c.

Prob. 7.55  

 7.56 Calculate the maximum allowable spacing of the rivets in the composite 

beam of Prob. 7.48 if the maximum shear force V is 27 kN and each rivet 

can safely carry a shear force across it of 2.2 kN.

 7.57 A 10 cm, 30 N channel section is used for the main member of a clamp, 

as shown. The centroid of the channel is 2 cm from its base, its area is 20 

cm2 and Izz = 66 cm4. The clamp ing force acts at a distance of 3 cm above 

the base of the channel. What is the maximum stress in the channel if the 

clamping force is 15 kN?

Prob. 7.57  

 7.58 Consider again the cylindrical tank of Prob. 7.23 for a particular case where 

the dimensions are fi xed and L Ⰷ r. Calculate the maximum bending stress 

when the liquid in the tank weighs g per unit volume. Suppose now the vent 

is closed and the liquid is pressurized. At what pressure p will the maximum 

axial tensile stress in the tank wall be double the maximum axial tensile 

stress when the vent is open?
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 7.59 A 12.5-mm 1045 steel bar is being 

reduced to 7.5-mm diameter in a lathe-

turning operation in which the axial 

feed force is 605 N and the tangential 

force is 1.6 kN, as indicated in the 

sketch. If the tool face is located 75 

mm from the collet which holds the 

workpiece, estimate the maximum 

shear stress existing in the workpiece at 

the collet.

 7.60 The frame of a modern chair is made 

of 1020 CR steel bar stock 50 mm 

wide and t mm thick. If the chair is to 

be used by a heavy person say 1.1 kN, what thickness of steel would you 

recommend? Make your own estimate of the loading conditions.

Prob. 7.60  

 7.61 The frame of a hacksaw is to be formed from 1.60-mm 1020 CR steel 

sheet. If the tension in the blade will be about 300 N, is the frame design 

reasonable?

Prob. 7.61  

 7.62 A 10 cm diameter 4130 HT steel rod 600 cm long is bent into the shape 

shown, where all the angles of the bent rod are right angles, and built into a 

wall at one end. What is the maximum force P which can be put on the free 

end in the direction shown without causing yielding of the rod?

Prob. 7.59
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Prob. 7.62  

 7.63 The offset arm shown consists of two uniform members, one a rod of radius 

r and length a and the other a rod of radius 1.3r and length 2a, and a conical 

connecting member of length a which tapers uniformly from a radius r to a 

radius l.3r. If the yield stress in tension is Y, deter mine the maximum force P 

which can act as shown without causing yielding anywhere.

Prob. 7.63  

 7.64 The thin-walled tube shown is built-in at one end and is fi tted with a 

frictionless piston at the other end. The only means of support of the tube 

is at the built-in end. The tube is fi lled with an incompressible fl uid, and the 

piston is acted on by an axial force F. Point N is located on the top of the 

tube to the built-in end but suffi ciently removed that local end effects can be 

neglected. For L1/R = 5, L2/R = 6, and R1/R = 1 6 , fi nd the magnitudes of 

the principal stresses at point N in terms of F, R, and and t. What is the value 

of F in terms of R, t, and Y for the onset of yielding at point N according to 

the maximum shear-stress yield criterion?
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Prob. 7.64  

 7.65 Find the ratio K = ML/MY for the T beam shown.

Prob. 7.65  

 7.66 Estimate the fully plastic moment ML for the composite pipe of Prob. 7.49.

 7.67 A beam is built of alternate layers of 0.3 cm 2024-T4 aluminum alloy and 

foam plastic, as shown. The foam plastic contributes very little to the bending 

stiffness since its modulus of elasticity is so low; its purpose is to maintain 

the separation of the four aluminum strips. The beam is bent with a moment 
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of such magnitude that the strain in the bottom strip is 0.016. What are the 

stresses in the aluminum strips and the bending moment corresponding to 

this state of deformation? If the bending moment is now removed, what will 

be the residual stresses remaining in the aluminum strips?

Prob. 7.67  

 7.68 Obtain by experiment an estimate of the fully plastic moment ML of the wire 

of a paper clip. Measure the diameter of the wire and from the experimental 

value of ML calculate the yield stress Y. (Note that the stress depends on the 

cube of the diameter, so the diameter measure ment should be reasonably 

accurate.) Compare your result against the curves given in Fig. 5.5(a). Which 

of the steels in Fig. 5.5(a) is most nearly like that of the paper clip?

 7.69 The drive between two rotating cylinders is a phosphor bronze band of 

thickness 1.00 mm. The band is made by butt-joining the two ends of 

a bronze strip with a silver brazing alloy [Fig. (b)]. During operation, the 

driving side of the band transmits a tensile force of up to 450 N, and it is 

found that after a relatively short period of operation, cracks are found in the 

brazed joint and an imminent breaking of the band at that location is feared. 

Discuss the following proposed remedies, and choose the ones you think are 

suitable.

 (a) Retain the butt-brazed joint, but increase the band thickness to 1.20 mm.

 (b) Retain the butt-brazed joint, but reduce the band thickness to 0.30 mm.

 (c) Retain the band thickness of 1.00 mm, but change to a lap-brazed joint 

[Fig. (c)].

 (d) Retain the band thickness of 1.00 mm, but change to a modifi ed lap-

brazed joint [Fig. (d)].

 (e) Retain the band of thickness 1.00 mm and the butt-brazed joint, but 

increase the band width to 75 mm.



Stresses due to Bending 459 Mechanical properties

A. Phosphor bronze B. Silver-brazing alloy

Young’s modulus 110 GN/m2 78 GN/m2

Tensile strength 560 MN/m2 275 MN/m2

Fatigue limit 220 MN/m2 105 MN/m2

Prob. 7.69  

 7.70 A strip of steel 450 mm wide, 2.2 m long, and 2.5 mm thick is to be bent 

to form a beam of rectangular cross section 150 mm deep and 75 mm 

wide. It is to be used to carry a central load of 18 kN on a simple span 

of 2.1 m as shown in Fig. (a). In Figs (b), (c), and (d) are shown three 

possible locations for the longitudinal weld to be made between the edges 

of the strip after the strip has been bent into the beam of rectangular 

shape.

 (a) Which location of the weld is worst? Why?

 (b) Which location of the weld is best? Why?

  Calculate the numerical value of the longitudinal shear stress which will 

have to be carried by the weld when it is located in the worst position.

Table 7.2
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Prob. 7.70  

 7.71 A “metal” ski is a combination of wood and metal bonded together as shown 

in the cross section on the left. For purposes of analysis we will assume 

that the ski cross section can be modeled as shown on the right, where the 

modulus of elasticity of the wood is taken to be Ew = 0.06Em. Using this 

model estimate the maximum bending stress in the ski if the ski is supported 

between snow hummocks and loaded centrally as illustrated.

Prob. 7.71  
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 7.72 When the central section of the beam in Fig. 7.30 is fully plastic, as indicated 

in Fig. 7.30(d), what is the extent of the plastic zone along the bottom of the 

beam?

 7.73 Calculate the curvature df/ds of the neutral axis of the beam in Example 7.9. 

Also, check the calculation in Example 7.9 for the bending stress at point A 

by calculating this stress from

s
f

x E
d

ds
m= -

 7.74 The stress distribution and deformation in an unsymmetrical beam may be 

calculated by considering the resultant bending moment to be the vector sum 

of components Mbl and Mb2 in the directions of the principal axes of inertia 

through the centroid, as indicated in the accom panying sketch. Verify that 

Eq. (7.64) then reduces to

s x xx
b bM

I

M

I
= -1

11
2

2

22
1

  where x1 and x2 are the position coordinates in the 1 and 2 directions, and

I dA I dA
A A

22 1
2

11 2
2= =Ú Úx x

  Using this approach, calculate the stress at point A in Example 7.9.

Prob. 7.74

 7.75 Locate the shear center for the thin-walled channel section.
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Prob. 7.75  

 7.76 Find the location of the shear center for the slit, thin-walled tube of radius r 

and thickness t.

Prob. 7.76  

 7.77 A cantilever beam has a Z-shaped section for which

I ta I ta I tazz yy yz= = = -8
3

3 2
3

3 3

  Calculate the maximum bending stress in the beam when it is loaded with an 

end load P as shown.
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Prob. 7.77  

 7.78 Determine the maximum bending stress in a beam made from an angle which 

has the section of Probs. 7.2 and 7.10 if it transmits a bending moment of 

Mby = 10 kNm.

Prob. 7.78  

 7.79. If the beam is not to twist when the force P is applied, what should be the 

location of P; that is, what should be the value of e?

Prob. 7.79  



464 An Introduction to the Mechanics of Solids

 7.80 Show that for a rectangular cantilever beam with an end load the principal 

stress directions are as indicated in the fi gure. (These two orthogonal sets of 

curves are called the stress trajectories. The principal stresses at any point 

are tangent to the two curves which intersect at the point. The curves indicate 

direction only; the magnitudes of the principal stresses vary along any given 

curve.)

Prob. 7.80  

 7.81 The cross section of a solid circular shaft of radius r is acted on by a bending 

moment Mb and a twisting moment Mt. Show that the maximum shear stress 

in the shaft is given by

t max = +
r

I
M M

yv
b t2

2 2

  Show also that this shear stress acts on planes whose normals make an angle

y = -1
2

1tan
M

M
b

t

  with the axial and tangential directions. Finally, verify that these results are 

valid for a hollow circular shaft (not necessarily thin-walled).



Defl ections due 
to Bending

8.1 INTRODUCTION

8

In this chapter we consider the 
defl ections of slender members 
which transmit bending moments. 
There are many practical design 
problems in which defl ection 
considerations are of great impor-
tance. For example, in high-speed 
machinery with close tolerances, 
excessive defl ections can cause 
interference between moving parts; 
many machine elements, such as 
leaf springs, are designed primarily 
on the basis of their defl ections; 
the failure to limit defl ections 
in the structural framework of 
buildings is often indicated by the 
development of cracks in plastered 
walls and ceilings.
 The determination of bending 
defl ections, like all the problems 
considered in this book, involves 
fi rst the selection of a model 

which is to represent the actual 
physical member. The model 
for the analysis of beams was 
fi rst introduced in Chapter 3. In 
Chapter 7 the local deformation 
and the stress distribution 
across a section of a beam were 
discussed. We did not, however, 
evaluate the overall deformation 
of the beam. We now return to 
this question and develop the 
theory for small defl ections of 
elastic beams. We then shall be 
able to make full use of (2.1) in 
structural problems involving 
beams. In particular we shall treat 
statically indeterminate beams 
which require simultaneous 
consideration of all three of the 
steps (2.1). We also shall study 
mechanisms of plastic collapse for 
statically indeterminate beams.

8.2 THE  MOMENT-CURVATURE RELATION

In Chapter 7 we saw that when a symmetrical, linearly elastic beam element is 

subjected to pure bending, as shown in Fig. 8.1, the curvature of the neutral axis is 

related to the applied bending moment by the equation

 
1

0r

f f
= = =

Æ
lim

D

D
Ds

b

zzs

d

ds

M

EI
 (8.1)
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where E is the modulus of elasticity and Izz is the moment of inertia of the cross-

sectional area. Throughout this chapter we shall always maintain the orientation 

of Fig. 8.1; i.e., the long dimension of the beam will be in the x direction, and 

the bending will take place in the xy plane usually about the z axis. Under these 

circumstances it will cause no ambiguity if, instead of the symbol Izz for the 

moment of inertia about the neutral surface, we use the abbreviation I.

Fig. 8.1  Deformation of an element of a beam subjected to bending moments Mb

The curvature of the neutral axis completely defi nes the deformation of an 

element in pure bending. To extend this to the case of  general bending where 

the bending moment varies along the length of the beam, we make a simplifying 

assumption. We assume that the shear forces which necessarily accompany a 

varying bending moment do not contribute signifi cantly1 to the overall deformation. 

Thus we assume that the deformation is still defi ned by the curvature and that the 

curvature is still given by (8.1). If we know how the bending moment varies along 

the length of the beam, we will then know how the curvature varies.

To determine the bent shape of the beam, we thus need to be able to deduce the 

defl ection of the neutral axis from a knowledge of its curvature. To facilitate this, 

we fi rst derive a differential equation relating the curvature df/ds to the defl ection 

v(x).

1 Some additional deformation due to shear does of course occur; however, for long, slender 

beams this additional deformation is negligible in comparison with the bending. See Probs. 

8.41 and 8.42, and also  S. Timoshenko and  J.N. Goodier, “Theory of Elasticity,” 3rd ed., 

pp. 46, 49, and 121, McGraw-Hill Book Company, New York, 1970.
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We start with the defi nition of the  slope of the neutral axis in Fig. 8.2(a),

 

dv

dx
= tanf

Next, differentiation with respect to arc length s gives

 

d v

dx

dx

ds

d

ds
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or, that the curvature is
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Now, from Fig. 8.2(b) we have
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so that in terms of derivatives of the defl ection, the curvature is
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+
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 (8.2)

Fig. 8.2  Geometry of the neutral axis of a beam bent in the xy plane

If we substitute (8.2) into (8.1), we obtain a nonlinear differential equation for 

the determination of v once Mb is known as a function of x2

 

d v dx

dv dx

M

EI

b
2 2

2 3 21

/

/ /[ ( ) ]+
=

2 See  W. Flügge, “Handbook of Engineering Mechanics,” p. 45–48, McGraw-Hill Book 

Company, New York, 1962, for a discussion of this nonlinear problem. See also Prob. 8.61.
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When the slope angle f shown in Fig. 8.2 is small, then dv/dx is small com pared 

to unity. If we neglect (dv/dx)2 in the denominator of the right-hand term of (8.2), 

we obtain a simple approximation for the curvature

 
d

ds

d v

dx

f
ª

2

2  (8.3)

There is less than a 1 percent error involved in the approximation (8.3) to the 

exact curvature expression (8.2) when f is less than 4.7°. In most engineering 

applica tions where relatively stiff beams are used, the slope angle is small, and we 

can use the approximation (8.3) for the curvature.

Substituting the approximate curvature (8.3) into (8.1) we obtain the linear 

differential equation

 
d v

dx

M

EI

b
2

2
=  (8.4)

which relates the bending moment to the transverse displacement. This equation 

is fundamental to our subsequent work on elastic beam defl ections. Although (8.4) 

involves an approximation to the curvature which is valid only for small bending 

angles, we shall henceforth call it the  moment-curvature relation. It is essentially a 

“force-deformation” or “stress-strain” relation in which the bending moment is the 

“force” or “stress” and the approximate curvature is the resulting “deforma tion” or 

“strain.” The relation is a linear one; the constant of proportionality EI is sometimes 

called the  fl exural rigidity or the  bending modulus.

The sign convention associated with (8.4) should be noted. We shall take the 

orientation shown in Figs 8.1 and 8.2 as standard throughout this chapter. According 

to the sign convention of Chapter 3, the bending moment shown in Fig. 8.1 is 

considered positive. The corresponding curvature in Fig. 8.1, concave up, is positive 

and corresponds to a positive value of the approximate curvature (8.3).

In solving beam-defl ection problems we will use the three steps of (2.1). We 

study the forces and use the equilibrium requirements to obtain Mb as a function of 

x. The  force-deformation relation (8.4) then gives us the approximate curvature as a 

function of x. Finally, we study the geometry of deformation as we integrate (8.4); 

the constants of integration are evaluated by imposing requirements of  geometric 

compatibility.

8.3 INTEGRATION OF THE MOMENT-CURVATURE RELATION

As outlined in the previous section, when an expression for the bending moment 

as a function of position along the beam has been obtained from force and moment 

equilibrium considerations, then direct integration of the moment-curvature relation 

leads to the correct defl ection curve, provided that the integration constants are 

determined so as to make the defl ection curve compatible with the external re-

straints. This procedure is illustrated in the following examples.

Example 8.1
 The simply supported beam of uniform cross section shown in 

  Fig. 8.3 is subjected to a concentrated load W. It is desired to 

obtain the defl ection curve of the deformed neutral axis.
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∑ Singularity function can be effectively resorted to make the integration simple 

with less constants of integration to handle.

∑ The maximum defl ection is the point at which the slope is zero! 

Fig. 8.3  Example 8.1. Simply supported beam (a) before and (b) after application of a 

concentrated load W

We begin the analysis by drawing a free-body diagram of the beam, as shown in 

Fig. 8.4(a). The reactions RA and RB are obtained from the overall force and moment 

balance conditions. Using the singularity functions and bracket notation introduced 

in Sec. 3.6, we can write a single expression for the bending moment Mb directly 

from the free body of Fig. 8.4(b).

 M
Wb

L
x W x ab = - · - Ò1  (a)

Fig. 8.4  Example 8.1. Free-body diagram of beam and segment of beam

which is valid for 0   x   L. The moment-curvature relation (8.4) com bined with 

(a) leads to
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 EI
d v

dx
M

Wb

L
x W x ab

2

2

1= = - · - Ò  (b)

Since the bending modulus EI is constant along the beam, integration of (b) 

yields

 EI
dv

dx

Wb

L

x
W

x a
c= -

· - Ò
+

2 2

1
2 2

 (c)

 EIv
Wb

L

x
W

x a
c x c= -

· -
+ +

3 3

1 2
6 6

)
 (d)

where c1 and c2 are constants of integration.

The geometric boundary conditions for this problem are that there should be no 

transverse displacement over the supports; i.e.,

 v = 0  at x = 0 and at x = L (e)

These conditions together with (d) give us the following relations for the 

determination of c1 and c2:

 0 = c2

 0
6 6

3
3

1= - +
Wb

L
L

Wb
c L  (f)

If we insert the values for c1 and c2 determined from (f) into (d), we obtain the 

following defl ection curve for the neutral axis of the beam:

 v
W

EI

bx

L
L b x x a= - - - + · - ÒÈ

ÎÍ
˘
˚̇6

2 2 2 3( )  (g)

To give some idea of order of magnitudes, let us consider the following 

particular case:

 L = 3.70 m

 a = b = 1.85 m

 W = 1.8 kN (h)

 E = 11 GN/m2

 I = 3.33 ¥ 107 mm4

These values correspond to a very common case in small-house construction. 

The beam is a nominal 50 ¥ 200 mm fl oor joist spanning 3.7 m with a central load 

close to the maximum which would be considered for a single joist of this span in 

small-house design. The value of E listed is an intermediate value for the reciprocal 

of S11 given in Table 5.5 for Douglas-fi r. If we insert the particular values (h) into 

(g), the greatest defl ection occurs at the center and has the value

 ( )
( . )

.
v

WL

EI
x L= -= - = -

¥
¥ ¥ ¥ ¥

/2

3 3

6 548

400 3 7

48 11 10 3 33 10
 (i)

 = – 1.15 mm

Another magnitude of interest is the greatest slope of the deformed neutral 

surface. For the particular case (h) the greatest slope magnitude occurs 

simultaneously at the two ends. To evaluate the slope, we can either substitute (f) 

back into (c) or differentiate (g). Inserting the values (h) and setting x = 0 yields
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dv

dx

WL

EI
x

Ê
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ˆ
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= - = -
=0

2

16
0 0042.  (j)

which may be taken as the value of the slope angle f, in radians. Converted to 

degrees, this is 0.24°.

These numerical results provide a justifi cation for the use of the approxi mate 

curvature relation (8.3) in connection with wooden structural members. Since 

wooden beams are about the most fl exible structural members employed, we can 

conclude that (8.3) provides an adequate representation of the curva ture of any 

structural element.

If in this example the bracket notation had not been used, it would have been 

necessary to represent the bending moment by separate analytical expressions 

valid on each side of the load and to integrate the two expressions separately, with 

the result that there would be four constants of integration to be evaluated. Two 

of these constants would be determined, as before, from the geometric boundary 

conditions at the ends of the beam, while the other two would be determined from 

the condition of geometric fi t that the defl ection and slope should be continuous at 

the load. We discussed this procedure in Example 3.6. These continuity conditions 

are automatically taken care of by using the bracket notation and integrating the 

singularity functions according to (3.16) and (3.17).

Example 8.2
 A uniform cantilever beam has bending modulus EI and length L. 

  It is built in at A and subjected to a concentrated force P and 

moment M applied at B, as shown in Fig. 8.5(a). We shall fi nd the defl ection d and 

the slope angle f at B due to these loads.

∑ It is a straightforward integration once the bending moment is found out as a 

function of x.

∑ The boundary conditions here are both the defl ection and the slope at x = 0 

are zero.

In order to obtain the bending moment in the interior of the beam, we isolate the 

segment of length L – x shown in Fig. 8.5(b). From this free body we obtain the 

bending moment

 Mb = –P(L – x) – M (a)

which is valid for 0 £ x £ L. Inserting (a) into the moment-curvature relation (8.4), 

we fi nd the differential equation for the beam displacement v(x),

 EI
d v

dx
PL Px M

2

2
= - + -  (b)

The geometric boundary conditions for this beam are that, at x = 0, the beam is 

built in with zero slope and zero defl ection; that is,
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Integration of (b) subject to the boundary conditions (c) proceeds as follows. A 

fi rst integration yields

 EI
dv

dx
PLx P

x
Mx c= - + - +

2

1
2

 (d)
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Fig. 8.5  Example 8.2. Cantilever beam with force and moment load

where c1 is a constant of integration. By inserting (d) into the slope bound ary 

condition in (c), we fi nd that c1 must vanish. Integration of (d) then yields

 
Elv PL
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x
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x
c= - + - +

2 3 2

2
2 6 2  (e)

where c2 is a second constant of integration. In order for (e) to satisfy the 

displacement boundary condition in (c), it is necessary for c2 to vanish. Thus the 

displacement v(x) of the neutral axis of the cantilever is

 v
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P
x
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The terminal defl ection d in Fig. 8.5(a) is given by 

 d = - = +=( )v
PL

EI

ML

EI
x L

3 2

3 2
 (g)

and the terminal slope f is

 f = - Ê
ËÁ

ˆ
¯̃

= +
=
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EIx L

2

2
 (h)
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These results are displayed in Fig. 8.5(c) and (d) for two special limiting cases. 

Figure 8.5(c) shows the case where the moment M = 0, and thus the only load on 

the cantilever is the force P. Figure 8.5(d) shows the case where P = 0, and the only 

load on the beam is the moment M.

Example 8.3
 Figure 8.6(a) shows a cantilever beam built-in at A and sub jected to 

  a uniformly distributed load of intensity w per unit length acting 

on the segment BC. It is desired to obtain the defl ection d of the neutral axis at C 

due to the distributed load in terms of the constant bending modulus EI and the 

dimensions shown.

∑ It is easier to apply the fi rst boundary condition of slope at x = 0 is zero after 

the fi rst integration itself!

∑ It is better to come up with verifi cation of the solution. For example, when b 

= 0, there is no loading in the beam and the defl ection d = 0. When a = 0, it is 

a uniform loading for which standard formula is available for defl ection at the 

end.

Fig. 8.6  Example 8.3

The analysis begins with a study of the forces and equilibrium require ments 

in Fig. 8.6(b) and (c). A free-body diagram of the entire beam, from which we 

compute the reactions, is shown in Fig. 8.6(b). In Fig. 8.6(c) a free-body diagram 

of a segment of length x is shown, from which we obtain the bending moment to be 

inserted in (8.4).

 EI
d v

dx
M wbx wb a

b w x a
b

2
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One integration of (a) leads to

 EI
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w x a
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where c1 is a constant of integration. We can evaluate c1 at this time because one of 

the conditions of geometric constraint is that at the built-in end A the slope of the 

neutral axis should remain zero.
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In order for (b) to satisfy (c) we must have c1 = 0. One more integration of (b) 

then yields

 EIv wb
x

wb a
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The constant of integration c2 is evaluated by applying the geometric require-

ment that the displacement of the neutral axis at the built-in end A should remain 

zero.

 (v)x = 0 = 0 (e)

In order for (d) to satisfy (e) we must have c2 = 0. We thus obtain from (d) an 

equation for the locus of the deformed neutral axis. The displacement labeled d in 

Fig. 8.6(a) is the negative of the value of v at x = a + b. Substituting x = a + b in (d) 

and simplifying, we obtain

 d = - = + + +
Ê
ËÁ

ˆ
¯̃= +( )v

wb

EI

a a b ab b
x a b

3 2 2 3

3

3

4 2 8
 (f)

Two special cases of (f) are of interest. When b = 0, there is no loaded portion of 

the beam and according to (f) there is no defl ection. When a = 0, the entire beam is 

loaded uniformly, and the defl ection at the end is

 d =
wb

EI

4

8
 (g)

where now (b) is the entire length of the beam.

The preceding examples have been statically determinate; i.e., the bending 

moments could be explicitly determined from the equilibrium requirements. In a 

statically indeterminate problem the conditions of equilibrium are insuffi cient 

to determine the bending moment. We must take into account the geometrical 

restrictions and the moment-curvature relation as well as the equilibrium con ditions 

before we can evaluate the bending moment. In other words, we must pursue all 

three of the steps (2.1) simultaneously. The following examples give an illustration 

of this procedure.

Example 8.4
 Figure 8.7(a) shows a beam whose neutral axis coincided with 

  the x axis before the load P was applied. The beam has a simple 

support at A and a clamped or built-in support at C. The bending modulus EI is 

constant along the length of the beam. It is desired to sketch the bending-moment 

diagram for the bending moments due to the load P.

∑ This is a statically indeterminate beam!
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∑ Release the end support and apply a reaction RA

∑ Then, the neutral axis curve solution will be a function of P and RA

∑ Now apply the condition at A that the defl ection is zero to solve for RA. (This 

is the geometric compatibility condition that is necessary to apply in this 

statically indeterminate case!)

Figure 8.7(b) shows a free-body diagram of the entire beam. Since P is given 

as vertical and RA can only be vertical, the reaction at C can only consist of a 

vertical force RC and a clamping moment MC. There are no horizontal forces, and 

hence there are only two independent equilibrium requirements, but there are three 

unknowns: RA, RC, and MC. The equilibrium conditions furnish only two relations 

between three quantities. The best we can do by considering only equilibrium is 

to take one of the reactions as an unknown and express the other two in terms of 

this unknown. For example, taking RA as unknown, the conditions of equilibrium 

applied to Fig. 8.7(b) yield

 RC = P – RA

 MC = Pb – RAL 
(a)

Similarly, applying the conditions of equilibrium to the segment of length x in 

Fig. 8.7(c) gives the following expression for the bending moment:

 Mb = RAx – P ·x – aÒ1 (b)

which is valid for 0 < x < L.

Fig. 8.7  Example 8.4

Turning to the geometrical requirements for the deformed beam, we see that now 

we have three compatibility conditions

 v = 0  at x = 0

 v = 0  at x = L  (c)



476 An Introduction to the Mechanics of Solids

 
dv

dx
= 0  at x = L

Thus, if we integrate the moment-curvature relation, we have enough con-

ditions not only to evaluate the two constants of integration but also to evaluate 

the unknown reaction RA which appears in (b). Setting up the moment-curvature 

relation (8.4) and carrying out one integration yields
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In order for the third of (c) to be satisfi ed, we must have
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Inserting (e) in (d) and carrying out one more integration gives
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In order for the fi rst of (c) to be satisfi ed we must have c2 = 0. Finally, to satisfy 

the second of (c) we must have

 0
6 6 2 2

3 3 2 3

= - + -R
L

P
b Pb L R L

A
A  (g)

from which we fi nd

 R
Pb

L
L bA = -

2

32
3( )  (h)

Thus, to complete the force analysis, we had to bring in the geometric restric-

tions and the moment-curvature relation. Now we can return to (a) with the value 

(h) to obtain explicit results for the reactions. With these values it is an easy 

matter to sketch the bending-moment diagram shown in Fig. 8.8. An interesting 

question is: Where is the location of the greatest bending moment? From Fig. 8.8 

it is clear that the greatest bending moment occurs either at B or at C depending 

on the relative position of P. By equating the magnitudes given in Fig. 8.8, we fi nd 

that when a L L= - =( ) .2 1 0 414 the bending moments at B and at C have equal 

Fig. 8.8  Example 8.4. Bending-moment diagram for the beam of Fig. 8.7
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magnitude. When a is smaller than this, the greatest bending moment is at B under 

the load, and, when a is larger than this, the greatest bending moment is at C at the 

built-in support.

The fi nal example in this section is also statically indeterminate. The situation 

in this example is somewhat unusual in that the nature of the reactions cannot be 

determined without consideration of all three of the steps (2.1).

Example 8.5
 A long uniform rod of length L, weight w per unit length, 

  and bending modulus EI is placed on a rigid horizontal table such 

that a short segment CD of length a overhangs the table, as shown in Fig. 8.9(a). 

It is required to fi nd the length b of the segment BC which lifts up from the table.

∑ Here the length b is an unknown!

∑ Since the part that is touching is going to directly transfer the transverse load 

to the table, we need to consider only the portion B for analysis.

∑ RC can be found out from equilibrium about B directly!

∑ The boundary conditions are that the slope is zero at B and defl ection is zero 

at B!

The diffi cult part of this example is the determination of the reactions with the 

table. There is clearly a concentrated vertical reaction at the edge of the table at 

C, but the nature of the reaction between the table and the segment AB is not at all 

clear, as is indicated in Fig. 8.9(b) by the arbitrary shape shown for the reaction 

distribution r(x). It is possible, however, to deduce the nature of this reaction 

distribution by considering the requirements of all three of the steps (2.1); i.e., 

by considering the equilibrium, geometric compatibility, and moment-curvature 

requirements for the beam segment AB.

We begin by observing that, since the table is fl at, the beam must have zero 

curvature in the region AB. Then from the moment-curvature relation (8.4) we 

conclude that the bending moment must be zero throughout the segment of the 

beam from A to B. Also, since the bending moment is constant (zero) along the 

beam, we reason from (3.12) that the shear force must also be zero in this region. 

Pursuing our reasoning one step further, we conclude from (3.11) that the net 

intensity of loading must be zero in the region AB because of the constant (zero) 

shear force. Thus for the free body of Fig. 8.9(c) we must have

 Mb = V = 0

 r(x) = w 
(a)

In the free body of Fig. 8.9(d) we have included the results (a); that is, we show 

the reaction in the region between A and B to be of magnitude w per unit length. If 

we now satisfy the requirement of moment equilibrium for this free body, we shall 

obtain a negative value for the bending moment Mb. A negative bending moment 

at this point (a distance Dx to the right of B) is not compatible with the requirement 

that the beam must have a positive curvature in order to leave the surface, since a 

positive curvature implies a positive bending moment. A positive bending moment 

a distance Dx to the right of B requires the existence of a preponderantly upward 

external force in this interval, and therefore we conclude that there must be a 

concentrated upward reaction force at point B, as indicated in Fig. 8.9(e). It is to be 

noted that the presence of RB is not in confl ict with any of our previous arguments 

which led to the uniformly distributed reaction in the region between A and B. Thus, 
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after a rather lengthy series of arguments, we have determined that the reaction with 

the table must be as shown in Fig. 8.9(f). By applying the equilibrium requirements 

to this free body, we obtain the magnitudes of the reactions shown in Fig. 8.9(g).

Fig. 8.9  Example 8.5. Beam overhanging edge of the table causes segment BC to lift up from 

the table

To proceed further, it is convenient to deal only with the segment of the beam 

between B and D. Relocating our coordinate system to measure x from point B, we 

obtain Mb from the free body of Fig. 8.9(g) and insert in (8.4).
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Integrating (b), we fi nd
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Since the beam is tangent to the table at x = 0, we conclude that c1 = 0. 

Integrating once more, we then obtain

 EIv
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2
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4
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The constant of integration c2 is zero since v = 0 at x = 0.

Finally, we can evaluate b from Eq. (d) by requiring the condition that v = 0 at 

x = b.

 0
12

0
24

2 2
3

4

=
-

+ -
w b a

b
b

wb( )
 (e)

Solving (e) for b, we fi nd

 b a= 2  (f)

Thus when a long, uniform, fl exible rod overhangs a rigid table by a distance 

a, the rod is not in continuous contact with the table until a distance 2 a  back 

from the edge. It is instructive to review again the conditions at point B in Fig. 8.9 

where the rod separates from the table. The defl ection and slope are both zero since 

the curved segment BC must join smoothly with the uncurved segment AB. The 

bending moment is zero since there is no bending moment in the segment AB and 

there is no mechanism for introducing a sudden change in bending moment at B. 

There is, however, a sudden appearance of shear force at B since the table can exert 

a concen trated upward reaction force.

8.4  SUPERPOSITION

If solutions to a number of defl ection problems involving simple conditions of 

load and support are available, then a convenient method for the solution of 

beam-defl ection problems consists of using the principle of superposition. This 

method depends upon the linearity of the governing relations between the load and 

defl ection, and it involves the reduction of complex conditions of load and support 

into a combination of simple loading conditions for which solutions are available. 

The solution of the original problem then takes the form of a super position of these 

solutions.

As may be noted by examining the results of the foregoing examples, the defl ection 

of a beam is linearly proportional to the applied load. This linearity depends upon 

two factors: (1) the linearity between bending moment and curvature expressed in Eq. 

(8.1), and (2) the linearity between curvature and defl ection expressed in Eq. (8.3).

The linearity of the moment-curvature relation depends upon the fact that we are 

considering linearly elastic materials. The effect of a nonlinear moment -curvature 

relation is illustrated in Fig. 8.10. In the linear case in Fig. 8.10(a) it may be seen 
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that a given increment DMb in the bending moment results in the same increment 

D(l/r) in the curvature regardless of the value of Mb to which DMb is added. Thus 

if we put a load on a beam with a linear moment-curvature relation, the increment 

of curvature added is independent of whether or not there are other loads acting on 

the beam. In the nonlinear case in Fig. 8.10(b), however, we see that the increment 

of curvature added depends on the magnitude of the other loads acting on the 

beam. Thus, in the case of nonlinear materials we cannot “superpose” curvatures; 

i.e., we cannot say that the curvature of two loads acting together is the sum of the 

curvatures of the two loads acting separately.

Fig. 8.10  Moment-curvature relations. (a) Linear; (b) nonlinear

The linearity between the curvature and the defl ection depends upon the 

assumption that the defl ections are so small that the approximate curvature (8.3) 

can be used in place of the true curvature 1/r.

When we combine the linear relation between moment and curvature and the 

linear relation between curvature and defl ection, we obtain Eq. (8.4).

 EI
d v

dx
Mb

2

2
=  (8.4)

which is a linear differential equation for the defl ection v. From the foregoing 

discussion it may be seen that the linear nature of (8.4) allows superposition of 

defl ections; i.e., the total defl ection due to a number of loads is equal to the sum of 

the defl ections due to each load acting separately.

The validity of superposition for beams which satisfy (8.4) can also be 

demonstrated analytically. Let the total bending moment be the sum of a number of 

contributions due to separate loadings.

 Mb = Mb1 + Mb2 + …

and let

 v1, v2,…

be the separate solutions of 
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Then the sum

 v = v1+ v2+…

is also a solution of (8.4) since
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In order to make use of the superposition principle to solve beam-defl ection 

problems, it is convenient to have a catalog of solutions for certain standard cases 

such as those displayed in Fig. 8.5(c) and (d). In Table 8.1, solutions of several such 

simple beam-defl ection problems are given3 for reference. These will be employed 

in the following illustrations of the use of superposition.

Example 8.6
 The cantilever beam shown in Fig. 8.11(a) carries a concen trated 

  load P and an end moment Mo. It is desired to predict the 

defl ection d at the free end C in terms of the constant bending modulus EI and the 

dimensions shown.

∑  Find the defl ection at the end C due to P and Mo separately using the table of 

formulas for standard cases and add with appropriate signs!

Using the superposition principle, we break up the combined loading of 

Fig. 8.11(a) into the two separate cases shown in Fig. 8.11(b) and (c). It is clear 

that the bending moments for these two cases do in fact add up to give the bending 

moment for the combined loading in Fig. 8.11(a). For simplicity we have sketched 

only the trace of the neutral axis in each of these cases.

Now referring to Table 8.1, cases 1 and 3, we obtain directly the following 

individual defl ections:

 
d1

2

6
3= -

Pa

EI
L a( )

 
(a)

 
d2

2

2
=

M L

EI

o

The resultant defl ection is obtained by superposing these.

 d d d= - =
- -

1 2

2 23 3

6

Pa L a M L

EI

o( )
 (b)

If the complete defl ection curves had been required, we would simply have 

combined, in the same way, the entries in Table 8.1 for the defl ections as functions 

of x.

In applying superposition, it is necessary not only to have the separate 

loads combine to give the original load but also to have the separate defl ec tion 

curves combine to give a resulting defl ection curve which meets the geometric-

3 For a larger collection, see  R.J. Roark, “Formulas for Stress and Strain,” 3rd ed., p. 100, 

McGraw-Hill Book Company, New York, 1954; see also W. Flügge, op. cit., chap. 32.
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compatibility requirements for the original problem. In this example the built-in 

boundary conditions used in Fig. 8.11(b) and (c) can be superposed to give the 

built-in boundary condition at A in Fig. 8.11(a).

Fig. 8.11  Example 8.6. Illustrating super position

It should be noted that in using superposition to obtain the solution to a 

beam-defl ection problem we again are using the three steps in (2.1) and nothing 

additional. Equilibrium is satisfi ed by requiring that the separate loadings add up 

to the original load condition. Geometric compatibility is assured by requiring 

that the sum of the separate defl ection conditions add up to the original geometric 

constraints on the beam. Finally, the force-deformation relations used are those 

given in Table 8.1 or an equivalent table.

Superposition can also be used in situations where the beam is statically 

indeterminate. A common procedure is to temporarily remove enough unknown 

reactions to make the beam statically determinate and then to calculate the defl ec-

tion due to the loads and the remaining reactions. The actual loads are then 

removed, and each previously removed reaction is then treated as a load and the 

beam defl ection calculated. The sum of all calculated defl ections is then made to 

fi t the conditions of geometric constraint imposed on the original beam; it will be 

found that these conditions will be just suffi cient to evaluate the indeterminate 

reactions. The following example illustrates this procedure.

Example 8.7
 A uniform beam which is built-in at the ends carries a con centrated 

  load P, as shown in Fig. 8.12(a). It is desired to obtain the 

bending-moment diagram.

∑ It is a superposition of three problems as shown in Fig. 8.12
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∑ We have the total displacement and the slope at C to be zero.

∑ Putting the standard formulas together, we get the reactions RC and MC

If the walls at A and C are not free to change their separation distance, then it is 

possible that the built-in supports could sustain horizontal reactions. We shall make 

the assumption that when P = 0 there is no tension or com pression in the beam. We 

further assume that the defl ection under P is suffi ciently small that any longitudinal 

tension has a negligible effect on the bending. 

(See Example 8.8 for an order-of-magnitude 

verifi cation of this kind of assumption.) We thus 

consider that the supports exert only vertical 

reactions RA and RC and clamping moments MA 

and MC. Since only two conditions of equilibrium 

are available to obtain four reaction components, 

we say that the beam has two degrees of statical 

indeterminacy.

We can make the system statically determinate 

by removing the unknown reaction components 

RC and MC at C. The resulting statically 

determinate system is shown in Fig. 8.12(b). In 

Fig. 8.12(c) and (d) we have removed the load P 

and introduced the unknown reaction components 

RC and MC as loads on the statically determinate 

cantilever of Fig. 8.12(b). Superposition of the 

three loadings of Fig. 8.12(b), (c), and (d) gives 

the loading of Fig. 8.12(a). Superposition of 

the geometric conditions at C will lead to the 

compatibility requirement of zero slope and zero 

displacement at C in Fig. 8.12(a), provided that

 d1 – d2 + d3 = 0

 f1 – f2 + f3 = 0 
(a)

Now consulting Table 8.1, cases 1,1, and 3, respectively, we fi nd
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Substitution of (b) into (a) gives a pair of simultaneous algebraic equations for 

RC and MC. Their solution is
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(c)

Fig. 8.12  Example 8.7
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Now that we have these statically indeterminate reactions, we can use the 

equilibrium requirements to obtain the remaining reactions and to calculate the 

bending moment in the usual manner. An interesting alternate way to obtain the 

bending moment is to extend the superposition argument, as shown in Fig. 8.13. In 

Fig. 8.13(b), (c), and (d) we sketch the bending-moment diagrams corresponding 

to the separate loadings of Fig. 8.12(b), (c), and (d). These are then superposed to 

obtain the resulting bending-moment diagram of Fig. 8.13(a) which corresponds to 

the original problem of Fig. 8.12(a).

Fig. 8.13  Example 8.7. Superposition of bending-moment diagrams

Example 8.8
 We return to the problem pictured in Fig. 8.14, which we have 

  already discussed in Example 1.3 and Example 2.4. In these 

previous examples we obtained the support reactions and the displacement of 

point D after making the idealization that the bolted joint at C could be treated as 

a frictionless pinned joint. We now have developed our subject to the point where 

it is profi table to reexamine this question. A complete theory of the behavior of 

bolted joints is still beyond us, but we can analyze a new limiting case based on the 

assumption that the bolted joint is completely effective in clamping the beam at C. 

This is just about as unrealistic as our earlier assumption of a pinned joint, but the 

two solutions together provide two extremes between which the actual case must lie.

Figure 8.15(a) shows the idealized model with which we shall work. The 

beam CD is taken as if built in or clamped at C. In Fig. 8.15(b) are isolated free-

body sketches of BD and CD showing the forces acting. The system is statically 

indeterminate. The compression in the horizontal beam CD has been called X. 
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All other forces and moments can be expressed in terms of X, as shown, by using 

equilibrium conditions.

Fig. 8.14  Example 8.8

The geometry of the deformation is sketched in Fig. 8.15(c), and an enlarged 

view of the neighborhood of D is shown in Fig. 8.15(d). This very closely resembles 

Fig. 2.7(d). The essential difference is that dV does not now result from the rigid-

body rotation of CD about the end C but rather from the vertical defl ection of the 

cantilever beam CD. The compatibility relationship

 d d dV CD BD= + 2  (a)

still remains valid.

Now having studied the forces and the deformations, we turn to the last 

of the three steps of (2.1). We relate the forces to the deformations by using the 

appropriate force-deformation law. For the bar BD in tension we have

 dBD
BD BD

X

EA
L

XL

EA
= =

2
2

2
 (b)
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Fig. 8.15   Example 8.8. Force analysis and geometric analysis for a model based on 

clamping assumption at C

as a statement of Hooke’s law for uniaxial loading. For the beam CD in compression 

we have, similarly,

 dCD
CD

XL

EA
=  (c)

Finally, for the vertical defl ection of the cantilever beam CD, we can use case 1 

of Table 8.1 to obtain

 dV

p x L

EI
=

-( ) 3

3
 (d)

Here we have made the assumption that the bending of the beam is unaffected 

by the compressive load. This is not completely true, as we shall see in the next 

chapter. We shall, however, proceed on the basis of this assumption, and then after 

obtaining a solution, we can reconsider this question and estimate the order of 

magnitude of error involved.

We thus take (b), (c), and (d) to represent adequately the defl ections in terms of 

the forces. Inserting these into the compatibility relation (a) yields an equation for 

determining X, from which we obtain

 X
P

I A L I A LCD BD

=
+ +1 3 6 22 2

 (e)
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Particularizing this for the case shown in Fig. 8.14, we fi nd

 X =
+ +

=
20

1 0 0014 0 0192
19 60

. .
. kN (f)

Insertion of this value into (c) and (d) yields the following displacements for 

point D:

 dH = 0.090 mm

 dV = 1.76 mm 
(g)

Before comparing these with the results of Examples 1.3 and 2.4, we shall 

estimate the error involved in our assumption that the compression in CD did 

not affect the bending. In Fig. 8.16 a free-body diagram of CD is shown with 

the loads X and P – X and the defl ection dV which were obtained in the above 

analysis. We assumed that the bending in CD was due entirely to the transverse 

force P – X. To obtain a rough order-of-magnitude check on this, let us compare 

the contributions of the compressive load and the transverse load to the bending 

moment at C.

 
M

M

C

C

(due to compressive load)

due to transverse load)(

( .
=

19 660 1 76

400 3
0 029

)( . )

( )( )
.=  (h)

Fig. 8.16  Example 8.8. Estimation of interaction between compression and bending

This indicates that any additional bending in CD because of the compressive load 

would only be of the order of 3 percent of that due to the transverse force. Since we 

assumed that all the bending was due to the transverse force, our solution for the 

transverse force P – X may be in error by about 3 percent. This would, however, 

make very little difference in the value of X or in the defl ections (g). We conclude 

that the effect of the compressive load on the bending can be safely neglected in 

this case.

Now to compare our results based on the assumption of clamping at C with the 

earlier results of Examples 1.3 and 2.4, which were based on the assumption of a 

pinned joint at C, we fi rst compare the defl ections (g) directly with the results of 

Example 2.4. We note that the defl ections in the clamped case are less than 1 percent 

smaller than in the pinned case. If we next compare the wall reactions, we fi nd that 

at B there has been a 2-percent decrease in the tensile force. At C the situation is 

more complicated. Where there was simply a horizontal compressive force of 

20 kN in the pinned case, there is, in the clamped case, a vertical component and a 

clamping mo ment in addition to the horizontal component. Figure 8.17(a) shows 

these sepa rate components, and their resultant in the form of a single force is 

pictured in Fig. 8.17(b). The offset distance CC¢ is obtained from the requirement 
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that the moment about C should be the same in Fig. 8.17(a) and (b). If we compare 

the single force in Fig. 8.17(b) with a 20-kN force acting horizontally at C, we can 

see the differences between the two cases. The magnitude of the force has changed 

by about 2 percent, its line of action has been tipped through a small angle, and the 

point of application has been shifted through a distance which is small compared 

with the distance BC between wall reactions.

Fig. 8.17  Example 8.8. Reactions at C shown as a statically equivalent, single force resultant

As a result of the comparisons made above, we would be led to the conclusion 

that the precise nature of the connecting joints in a structure made up of slender 

elements loaded only at the joints has very little infl uence on the defl ections of 

the structure or on the external reactions. This is, in fact, the case. As a result, the 

designer is justifi ed in basing his calculations of these quantities on the simplest 

model of joint behavior. The assumption of frictionless pinned joints is usually the 

easiest to deal with.

Although the choice of joint idealization has led to little change in the 

displacements and reactions, it would be wrong to say that there has been no 

signifi cant change. We have not yet considered the stresses in the indi vidual 

members. The member BD which is in uniaxial tension in both cases has had only 

a 2-percent change in stress. The member CD, however, is in uniaxial compression 

in the fi rst case and in combined compression and bending in the second case. The 

combined stress would be greatest in the bottom fl ange of the beam, where the 

direct compressive stress and the com pressive stress due to bending are additive, 

and would have its maximum value at C. This peak stress in CD in the clamped 

case would be

 s =
¥

+
¥
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which is about two and one half times the compressive stress in CD in the pinned 

case.

 s =
¥

=-

20 00
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3

.

.
. MN/m2  (j)

Thus the type of joint restraint can cause signifi cant local changes in stress 

distribution even though the overall effects are small.

A wide variety of structures (e.g., buildings, bridges, transmission towers) are 

assembled from slender members. If the joints are pinned, the structure is called a 

 truss. If the joints are rigid, the structure is called a  frame. The members of a truss 

carry axial loads, while the members of a frame generally carry shear forces and 
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bending moments as well as axial loads. The structure just analyzed (see Fig. 8.15) 

is a simple example of a mixed structure. The joints B and D are pinned as in a 

truss, but the joint C is rigid as in a frame.

The procedure followed in analyzing this simple structure can be extended to 

structures with many members and any combination of joint restraints. Although 

the process is straightforward, the amount of calculation required for a complex 

structure can be enormous. During the past century, structural engineers developed 

an array of ingenious techniques to ease the burden of calculation. A major 

breakthrough has occurred in the last decade with the systematic application of 

digital computers to structural analysis problems. A large number of general-

purpose and special-purpose structural analysis programs are now available to the 

engineer.

To illustrate the use of such a program, we show how the STRUDL program 

can be used to solve the preceding example. The input to the computer shown in 

Table 8.2 is obtained directly from Fig. 8.14. The statements under joint releases 

and member releases are necessary to describe the pinned joints at B and D. If these 

joints were rigid the structure would be a true frame.

 Input to STRUDL for Example 8.8

TYPE PLANE FRAME

UNITS KIP METER

$ KIP EQUALS KN HERE

JOINT COORDINATES

‘C’ X 0.0 Y 0.0 S

‘D’ X 3.0 Y 0.0

‘B’ X 0.0 Y 3.0 S

MEMBER INCIDENCES

1 ‘C’ ‘D’

2 ‘D’ ‘B’

CONSTANTS E 205.E+6 ALL

$ MEMBER AND JOINT NATURE DESCRIPTIONS

MEMBER RELEASES START MOMENT 2

2 END MOMENT Z

$ MEMBER PROPERTIES DESCRIPTION

MEM PROP PRISMATIC

1 AX 3.2E–3 IZ 10.E–6

2 AX 4.91E–4 IZ 19.E–9

$ DESCRIPTION OF LOADING

LOADING ‘VERTICAL’

JOINT ‘D’ LOAD FOR Y –20.

STIFFNESS ANALYSIS

$ OUTPUT REQUESTS

LIST FORCES LOADS REACTIONS DISP

Table 8.2
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Fig. 8.18  Local axes used to defi ne member forces and bending moment

The printout of the program is displayed in Table 8.3. The forces and moments 

acting on each member are given with respect to a local coordinate system for that 

member, as described in Example 2.4 and shown in Fig. 8.18. Note that the forces 

agree with the results displayed in Fig. 8.17(a). Also note that the displacements 

agree with (g) above.

8.5 THE  LOAD-DEFLECTION DIFFERENTIAL EQUATION

As an alternative to using the moment-curvature equation (8.4) to solve beam-

defl ection problems, we can make use of an equation which directly relates the 

external loading to the beam defl ection. This equation incorporates the force and 

moment equilibrium conditions and the moment-curvature relation in a single 

differential equation.

The load-defl ection differential equation is derived by starting with the 

differential equations of force and moment equilibrium which were derived in 

Chapter 3.

 
dV

dx
q+ = 0  (3.11)

 
dM

dx
Vb + = 0  (3.12)

We can express the bending moment in terms of the loading by eliminating V in 

(3.11) and (3.12).

 
d M

dx
qb

2

2
=  (8.5)

If we now combine (8.4) and (8.5), we obtain a single differential equation 

relating the transverse load-intensity function q to the transverse defl ection v.

 
d

dx
EI

d v

dx
q

2

2

2

2

Ê
ËÁ

ˆ
¯̃

=  (8.6)

Note that in (8.6) the fl exural rigidity EI has been left within the parentheses; in 

this general form the equation applies to beams with variable EI.

It should be emphasized that we have used both equilibrium relations and 

deformation relations in deriving (8.6). The boundary conditions for (8.6) will, 

in general, include both equilibrium conditions and geometric-compatibility con-
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ditions. The geometric conditions will involve restrictions on the defl ection and 

slope at certain points. The equilibrium conditions will involve restrictions on the 

shear and bending moment at certain points.

Conditions on Mb can be written in terms of v by means of the moment-curvature 

relation, which gives

 M EI
d v

dx
b =

2

2  (8.4)

while the shear force V can be expressed in terms of v by using (3.12) and (8.4) to 

get

 V
d

dx
EI

d v

dx
= -

Ê
ËÁ

ˆ
¯̃

2

2
 (8.7)

In Figs 8.19 to 8.22 we show the appropriate boundary conditions which 

correspond to four types of support conditions which are frequently used in the 

analysis of beams to represent actual physical supports.

  

 Fig. 8.19  Built-in or clamped end Fig. 8.20  Simply supported end

  

 Fig. 8.21  End restrained against ro tation Fig. 8.22  Free end

  but free to displace 

In order to solve a beam-defl ection problem using (8.6), it is fi rst necessary to 

obtain an expression for the loading intensity q(x) which is valid over the length of 

the beam (the singularity functions may be useful for this purpose). Then integration 

of (8.6) introduces four constants of integration which must be evaluated by 

applying the appropriate combination of boundary conditions. The method is quite 

general in that it applies equally well to statically indeterminate as well as statically 

determinate beams. This approach reduces beam-defl ection problems to a routine 

procedure in which physical considerations are concentrated in the selection of 

boundary conditions and the establishment of q(x), and the algebraic manipulations 

are concentrated in the process of evaluating the constants of integration.
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Example 8.9
 The beam shown in Fig. 8.23(a) is built-in at A and D and has an 

  offset arm welded to the beam at the point B with a load W 

attached to the arm at C. It is required to fi nd the defl ection of the beam at the point 

B.

∑ The trick is to cut the offset arm and replace with a vertical force and a couple 

found from equilibrium.

The effect of the arm on the beam is to supply a vertical force W and a couple 

WL/3 at B, as shown in Fig. 8.23(b). With this replacement, the load-intensity 

function q for 0 < x < L is

 q
WL

x L W x L= · - Ò - · - Ò- -
3

3 32 1.  (a)

Fig. 8.23  Example 8.9. Offset loading is equivalent to a force and a couple at B

Because of the built-in supports the boundary conditions are

 v = 0 and 
dv

dx
= 0   at   x = 0 and L (b)

Insertion of (a) into the load-defl ection differential equation (8.6) yields

 EI
d v

dx
W

L
x L x L

4

4 2 1
3

3 3= · - Ò - · - ÒÈ
ÎÍ

˘
˚̇

- -  (c)

Expressions for dv/dx and v are obtained by integrating (c).
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dv

dx

W

EI

L
x L

x L
c

x
c x c= · - Ò -

· - Ò
+ + +

È

Î
Í

˘

˚
˙

3
3

3

2 2
1

2

1

2

2 3/
/

 (d)

 v
W

EI

L
x L

x L
c

x
c

x
c x c= · - Ò -

· - Ò
+ + + +

È

Î
Í

˘

˚
˙

6
3

3

6 6 2
2

3

1

3

2

2

3 4/
/

 (e)

Substitution of (d) and (c) into the boundary conditions (b) gives four simulta-

neous equations for the constants of integration. Their solution is

   c1

8

27
=

   c L2

4

27
= -  (f)

   c3 = 0

   c4 = 0

Inserting these in (e) we fi nd

 v
W

EI
L x L x L x Lx= · - Ò - · - Ò + -È

ÎÍ
˘
˚̇27

9

2
3

9

2
3

4

3
22 3 3 2/ /  (g)

We obtain the desired defl ection by setting = L/3.

 dB x Lv
WL

EI
= - ==( )

,
3

314

2 187
 (h)

8.6  ENERGY METHODS

In Sec. 2.6, Castigliano’s theorem is used to evaluate defl ections in simple elastic 

systems and to obtain equations for determining statically indeterminate reac tions. 

In this section the formulas for strain energy in torsion and bending, developed in 

Secs 6.8 and 7.8, are used to illustrate the application of Castigliano’s theorem to 

more complicated elastic systems.

If a slender elastic shaft oriented along the axis of x carries a tensile force F(x), 

a twisting moment Mt(x), and a bending moment Mb(x), then according to (2.11), 

(6.13), and (7.31) the total strain energy in the member is

 U
F

AE
dx

M

GI
dx

M

EI
dx

L

t

x
L

b

L
= + +Ú Ú Ú

2 2 2

2 2 2
 (8.8)

where the integrations are along the length L of the shaft, and where A, Ix, and I 

are, respectively, the area, the polar moment of inertia, and the diametral moment 

of inertia of the shaft cross section, and where E and C are the tension and shear 

moduli of the shaft material. Such a member may also be subjected to transverse 

shear, but as indicated in Sec. 7.8, the corresponding contribution to the total 

strain energy of a slender member can usually be neglected in comparison with the 

bending or twisting contribution.4

4 See also Probs. 7.27 and 8.42.
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We recall that Castigliano’s theorem states that if the total elastic energy in a 

system is expressed in terms of external loads Pi, the corresponding in-line defl ec-

tions di, are given by the partial derivatives

 di
i

U

P
=

∂
∂

 (8.9)

If a defl ection d is desired at a point where there is no load (or in a direction 

which is not in line with a load), it is only necessary to introduce a fi ctitious load Q 

in the desired direction at the desired point. Then if the elastic energy is expressed 

in terms of the Pi and Q, the desired defl ection d is given by differentiating with 

respect to Q and then setting Q equal to zero.

 d =
∂
∂

Ê
ËÁ

ˆ
¯̃ =

U

Q
Q 0

 (8.10)

Castigliano’s theorem may also be used to obtain statically indeterminate 

reactions. A statically indeterminate system can always be reduced to a statically 

determinate one if enough statically indeterminate reactions Xi are temporarily 

considered to be known external loads. Then, if the elastic energy is expressed in 

terms of the Pi and the Xi, a set of equations for determining the Xi can be obtained 

from the condition that there be no in-line defl ection at each of the statically 

indeterminate reaction points

 
∂
∂

=
U

Xi

0  (8.11)

Example 8.10
 To illustrate the application of Castigliano’s theorem to beam-

  defl ection problems, we reconsider Example 8.2, in which a 

cantilever beam is loaded by a force P and a moment M, as indicated in Fig. 8.5(a).

∑ Find the bending moment as a function of x and derive the total energy by 

integrating over the entire length.  

∑ Then, differentiating the energy with respect to P gives the defl ection under 

P and slope at the point of application of M by differentiating with respect to 

M!

In this case the strain energy (8.8) consists only of the bending contribution with 

the bending moment

 Mb = –P(L – x) – M (a)

obtained from Fig. 8.5(b); that is,

 U
M

EI
dx

P L x M

EI
dxb

LL
= =

- +
ÚÚ

2 2

00 2 2

[ ( ) ]
 (b)

The terminal defl ection d is in line with the load P, and so according to (8.9),

 

d =
∂
∂

=
- + -

= +

Ú
U

P

P L x M L x

EI
dx

PL

EI

ML

EI

L ( ) ( )2

0

3 2

3 2
 (c)

The terminal slope f may be considered to be the in-line displacement corre-

sponding to the moment load M [see Eq. (2.8)]. Thus a second application of (8.9) 

yields
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f =
∂
∂

=
- +

= +

Ú
U

M

P L x M

EI
dx

PL

EI

ML

EI

L ( )

0

2

2
 (d)

The results (c) and (d) just obtained are identical with (g) and (h) of Example 

8.2. Note the relative simplicity of the calculation using Castigliano’s theorem as 

compared with direct integration of the moment-curvature relation.

Example 8.11
 To illustrate the application of energy methods to statically 

  indeterminate systems in which slender members carry both 

longitudinal and bending loads, we reconsider Example 8.8, shown in Figs 8.14 

and 8.15. In order to obtain the horizontal defl ection of point D by Castigliano’s 

theorem, we insert the fi ctitious force Q in Fig. 8.24(a).

∑ For the horizontal displacement at D, we need to apply a fi ctitious force Q 

and fi nd out the complementary strain energy.

∑ Then differentiating it with respect to P and Q and setting Q = 0 give the 

vertical and horizontal defl ections of D in terms of the reaction X that was 

released for making the structure statically determinate.  

∑ Since the defl ection point B is zero, differentiating the energy with respect to 

X and setting it equal to zero, we can get an equation to solve for X.

If the horizontal reaction X at point C is temporarily considered as an external load, 

the system becomes statically determinate. Using the equilibrium requirements it 

is possible to express all external forces and moments on the members CD and BD 

in terms of P, Q, and X, as indicated in the free-body diagrams of Fig. 8.24(b) and 

(c). The internal forces and moments acting on the section at the location x in CD 

are displayed in Fig. 8.24(d), and the internal force acting in BD is indicated in 

Fig. 8.24(e). The total strain energy in this case is due to longitudinal and bending 

loading in CD and to longitudinal loading in BD,

 U
X

A E
dx

P X Q L x

EI
dx

X Q

A E
dx

CD BD

LL
= +

- + -
+

-ÈÎ ˘̊
ÚÚ

2 2 2
2

0

2

00 2 2

2

2

( ) ( ) ( )LL

Ú  (a)

The vertical and horizontal defl ections at point D are

 

dV
Q

LU

P

P X L x

EI
dx

P X L

EI

=
∂
∂

Ê
ËÁ

ˆ
¯̃

=
- -

=
-

=
Ú

0

2

0

3

3

( )( )

( )
 (b)

 

dH

Q BD

LLU

Q

P X L x

EI
dx

X

A E
dx

P X L

E

=
∂
∂

Ê
ËÁ

ˆ
¯̃

=
- -

-

=
-

=
ÚÚ

0

2

0

2

0

3

2

3

( )( )

( )

II

XL

A EBD

-
2 2

 (c)

in terms of the statically indeterminate reaction X. To determine X we use the fact 

that the defl ection at point C in Fig. 8.24(a) is zero; i.e., according to (8.11) we have
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0
2

0

2

0

2

00
=

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
- -

+
=

ÚÚÚ
U

x

X

A E
dx

P X L x

EI
dx

X

A E
dx

Q CD BD

LLL ( )( )

== -
-

+
XL

A E

P X L

EI

XL

A ECD BD

( ) 3

3

2 2
 (d)

from which we solve for X,

 X
P

I A L I A LCD BD

=
+ +1 3 6 22 2  (e)

Fig. 8.24  Example 8.11. Free-body diagrams of: (a) complete structure, showing statically 

indeterminate reaction X and fi cti tious load Q; (b) and (c) separate members; (d) 

and (e) segments of members to obtain internal forces and moments

Note that this result agrees with (e) in Example 8.8 and also that (b) above agrees 

with (d) in Example 8.8. The horizontal defl ection (c) above can be rewritten in the 

following form by using (d),
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 dH
CD

XL

A E
=  (f)

This form is equivalent to the result (c) in Example 8.8.

The application of energy methods has thus led to the same results as the direct 

procedure described in Example 8.8. The reader should compare the relative 

convenience of the two approaches.

Example 8.12
 To illustrate the application of Castigliano’s theorem to a member 

  subjected to simultaneous bending and twisting, we calculate the 

defl ection d of the tightly coiled spring in Fig. 8.25(a). The wire has radius r and is 

formed into n complete turns of radius R. The spring is identical to that considered in 

Example 6.4 (see Fig. 6.18), except that here the ends of the spring are not brought 

into the center of the coil but extend directly from the rim of the coil. We shall see 

that this “small” difference has an important effect on the stiffness of the spring.

∑ There are both torsional moment and bending moment appearing due to the 

axial load.

∑ Then writing the total complementary strain energy in terms of P and 

differentiating with respect to P, the defl ection of the spring can be obtained.

At each section of the spring, the wire carries a transverse shear force P, a 

twisting moment Mt, and a bending moment Mb, as indicated in Fig. 8.25(b). By 

applying the equilibrium requirements to this free body, we fi nd

 Mt = PR(1 – cos q)  Mb = PR sin q (a)

Fig. 8.25  Example 8.12

The total strain energy (8.8) in the wire (of uncoiled length 2npR) due to the 

twisting and bending contributions is

 

U
P R

GI
Rd

P R

EI
R d

P R

GI

x

nn

x

=
-

+

=

ÚÚ
2 2 2 2 2 2

0

2

0

2

2 3

1

2 2

2
3

( cos ) sinq
q

q
q

pp

pp pn
P R

EI
n+

2 3

2
 (b)
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where Ix = pr4/2 and I = pr4/4. The defl ection d in Fig. 8.25(a) is, according to (8.9),

 

d p=
∂
∂

= +
Ê

ËÁ
ˆ

¯̃

= +Ê
ËÁ

ˆ
¯̃

=
+

U

P
PR n

GI

I

EI

PR n

Gr

G

E

PR n

Gr

x

3

3

4

3

4

3

4 3

2

4 4 3vv

v2 2+
Ê
ËÁ

ˆ
¯̃

 (c)

where we have used (5.3) to introduce Poisson’s ratio. Note that under the same 

load this spring defl ects nearly twice as much as the spring with centered ends in 

Example 6.4.

8.7  LIMIT ANALYSIS

In Sec. 6.12 limit analysis was introduced in connection with torsion problems. 

We now reconsider the technique as applied to bending problems. There are two 

essential steps in limit analysis. The fi rst concerns the geometry of the structure. 

It is necessary to determine what part or parts of the structure must undergo large 

deformation in order for the structure as a whole to suffer large deformations. The 

second step involves an equilibrium study to determine what external loads are 

needed to balance the limit loadings on the individual parts.

In a structure which is a beam (or several interconnected beams), the indi vidual 

part which undergoes large deformation is the  plastic hinge. In Sec. 7.10 we saw 

that as the curvature at a section of a beam of elastic-perfectly plastic material was 

increased, the bending moment grew linearly until the value MY was reached, which 

marked the onset of yielding. As the curvature was further increased, the bending 

moment asymptotically approached the limit or fully plastic bending moment ML. 

The ratio between ML and MY was denoted by the factor K and was tabulated for 

a few typical beam cross sections in Table 7.1. Whenever a section of a beam 

undergoes a curvature which is large compared with the curvature which fi rst 

causes yielding, we call that section of the beam a plastic hinge, and we make very 

little error if we assume that the bending moment of this section is ML.

A geometrically compatible large deformation of a structure is usually called a 

 collapse mechanism. Two simple examples of collapse mechanisms for beams are 

shown in Fig. 8.26. The simply supported beam in Fig. 8.26(a) can undergo large 

defl ections as soon as a plastic hinge develops at H. The statically inde terminate 

beam in Fig. 8.26(b) cannot undergo large defl ections with just a single hinge at H1 

because the cantilever section AH1 will not undergo large defl ections until a hinge 

develops somewhere along its length. With two hinges H1 and H2, as shown in 

Fig. 8.26(c), large defl ections of the beam are geometrically compatible. Thus Fig. 

8.26(c) represents a possible collapse mechanism while Fig. 8.26(b) does not.

In very general structures the location of possible hinges can be a diffi cult 

question. In the case of beams subjected to concentrated force loads and con-

centrated reactions, however, the situation is fairly simple. In Sec. 3.8 it was 

pointed out that for such cases the greatest bending moments always occur at 

a loading point or a reaction point. Plastic hinges can, therefore, develop only 
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at these points. In a complicated beam of this type there may be more than one 

collapse mechanism. It is then necessary to compare the external limit loads for 

each possible collapse mechanism. The mechanism with the smallest limit load is 

the actual collapse mechanism.

Fig. 8.26  On plastic hinge causes collapse in (a). Two plastic hinges are required for collapse of 

the beam shown in (b) and (c)

Example 8.13
 Figure 8.27 shows a beam built-in at C, simply supported at 

  A, and subjected to a concentrated load P at B. It is desired to fi nd 

the magnitude of the limit load PL which corresponds to the condition of plastic 

collapse.

∑ The bending moment diagram suggests the possible points at which plastic 

hinges can form.  In this case, it has to be B and C.

∑ Then taking moments appropriately will result in fi nding the PL.

Let the bending moment corresponding to the onset of yielding for the beam section 

be MY, and let the limiting or fully plastic bending moment be ML.

In Fig. 8.27(a) the reactions are calculated according to the equilibrium 

requirements in terms of the statically indeterminate quantity MC. The equilibrium 

analysis is extended in Fig. 8.27(b) where free bodies of the seg ments AB and BC 

are shown. Note that all shear forces and bending moments depend on the statically 

indeterminate quantity MC. It should be emphasized again that this equilibrium 

analysis is valid independently of the stress-strain law. The stress-strain law and 

the conditions of geometric compatibility enter only in fi xing the magnitude of MC. 

In Example 8.4 we have already studied this problem for the purely elastic case 

and determined MC from a condition of geometric compatibility with the support 

confi gura tion. Here our only condition for the determination of MC is the require-

ment that suffi cient hinges have formed so that P causes collapse.

In Fig. 8.27(c) we show the collapse geometry with plastic hinges at B and C. 

We obtain our quantitative result by observing that the magnitudes of the bending 

moments at B and C must both be ML. Referring to Fig. 8.27(b), we have
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Eliminating MC gives

 P
M

a
L

L= 2 5.  (b)

as the plastic limit load.

To compare this result with that of the purely elastic case, we can go back to 

Fig. 8.7 and use the formula for the maximum bending moment (which occurs at C) 

to obtain the load PY which corresponds to the initiation of yielding.

 P
M

a
Y

Y= 1 8.  (c)

Thus in terms of K = ML/MY we can write

 
P

KM

a
KPL

Y
Y= =2 5

2 5

1 8
.

.

.

or

 PL = 1.39KPY (d)

Fig. 8.27  Example 8.13. Equilibrium analysis of statically indeterminate beam, (a) and (b). 

Geometry of collapse, (c)

There are thus two factors which make PL larger than PY. One factor, K, is due to 

the redistribution of stresses in the cross section as the bending mo ment increases 

from MY to ML. The other factor (1.39 in this case) is due to the redistribution of 

bending moments along the length of the beam. When the beam acts elastically, 

the bending moment at B is smaller than at C. As plastic fl ow progresses, these two 

bending moments tend to equalize as they both approach the same limit ML in the 

condition of plastic collapse.
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Example 8.14
 The structure shown in Fig. 8.28 consists of two equal cantilever 

  beams AC and CD with roller contact at C. Given the limiting 

bending moment ML for the beams, it is desired to fi nd the limiting value of the 

load P which corresponds to plastic collapse of the structure.

∑ First come up with possible modes of collapse.

∑ At least two points have to become plastic hinges to end up as a mechanism.

∑ Smaller of the possibilities is the limit load.

The forces and equilibrium requirements are analyzed in Fig. 8.28(b) which 

shows free-body diagrams of the various beam segments. The structure is statically 

indeterminate, but all forces and moments can be expressed in terms of the single 

unknown F, which is the magnitude of the interaction at C.

Turning next to the geometry of collapse, we fi nd that there are two different 

geometrically admissible modes of collapse, as shown in Fig. 8.28(c) and (d). In 

Fig. 8.28(c) plastic hinges form at A and B, causing collapse under the load but 

without incurring large deformations in the cantilever CD. In Fig. 8.28(d) plastic 

hinges form at A and D, causing large deformations of both beams. To decide which 

collapse mechanism would actually occur, we obtain the value of P corresponding 

to each mode of collapse. The mode with the smaller value of P is the actual 

collapse mechanism.

Fig. 8.28  Example 8.14. Structure with two possible modes of collapse

For the mechanism of Fig. 8.28(c) we set the bending moments at A and B equal 

to the limiting bending moment ML.
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Eliminating F, we obtain

 P
M

L

L= 6  (b)

as the load corresponding to Fig. 8.28(c).

Similarly, for the mechanism of Fig. 8.28(d), we set the bending moments at A 

and D equal to the limiting bending moment ML.
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FL M L

2
- =

 FL = ML 
(c)

Eliminating F, we obtain

 P
M

L

L= 4  (d)

as the load corresponding to Fig. 8.28(d). Since (d) is smaller than (b), the structure 

collapses in the mechanism of Fig. 8.24(d) under the limit load

 P
M

L
L

L= 4  (e)

An alternative procedure for deciding against the result (b) is to con tinue 

the force analysis in Fig. 8.28(c), obtaining the bending moment at D which 

corresponds to (b). If we do this we fi nd that the magnitude of the bending moment 

at D must be 2ML, which is incompatible with the fact that the maximum bending 

moment can be developed in these beams is ML. This indicates that a hinge will 

form at D before the mode of Fig. 8.28(c) can ever develop.

 SUMMARY

Given that curvature of the neutral axis is related to the applied bending moment by 

Equation 8.1, it is now purely geometry to fi nd the defl ections of the beam. Making 

certain approximations of small deformations, we obtain the linear differential 

equation given in (8.4). This is the popular moment-curvature relation of beams!

To solve for beam-defl ection problems, we go through the following steps:

 1. Find M as a function x, along the length of the beam using the equilibrium 

requirements.

 2. Use moment-curvature relation (8.4) and integrate it twice.

 3. Evaluate the constants of integration by imposing essential boundary 

conditions or the geometric compatibility conditions.  
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Geometric compatibility conditions come of use when two sections of a beam 

with different loading conditions have to be integrated. The continuity of defl ection 

at the joining point of the two portions have to used to compute all constants of 

integration. If singularity functions are used, these conditions are automatically 

met!

A statically indeterminate beam can be solved by fi rst making it a redundant 

determinate beam and solving for the unknown reaction by applying the appropriate 

condition at the released point. Sometimes, all the three conditions of steps 

equilibrium, constitutive property and compatibility have to be used to solve the 

indeterminate structure.

Because we are dealing with linear elastic problems, for the same boundary 

conditions, it can be shown that there is linearity between moment and curvature 

apart from linearity between curvature and defl ections. Thus, two cases can 

be superposed to obtain a more complex case of loading. Thus. given a table of 

standard beam problem solutions, it is possible to solve many of the more complex 

loading condition problems. 

It is also possible to use the reduced single differential equation given in (8.6) 

directly to fi nd the defl ections from the given transverse loading conditions. But, 

it should be borne in mind that the boundary conditions would now include the 

equilibrium conditions also.  

Another way to fi nd the defl ections is the energy method. By fi nding the energy 

involved in a particular beam case, it is possible to fi nd the defl ection at the point by 

suitably inserting a pseudo force and fi nding the variation of the same with respect 

to the change in energy to fi nd the defl ection or rotation at that point. An advantage 

of this method is that the defl ection due to shear stress inclusion is pretty simple.  

For the case of plastically deforming beams, at the limiting case, we studied that 

plastic hinges are formed and a mechanism could set in. This can be used effectively 

to do a limit analysis. It is not diffi cult to fi nd the points at which plastic hinges 

would form (the maximum bending moment locations). By placing the plastic 

hinges at those points and introducing the limiting plastic moments, and analyzing, 

it is possible to fi nd the limiting conditions of loading. This is a very useful way of 

fi nding out limit loads that have to be considered while designing beams.

PROBLEMS

 8.1 (a)–(h) Find the defl ection of the neutral axis of each of the beams shown in 

Probs. 3.1 to 3.8. Take the bending modulus EI to be constant in each beam.

 8.2 Find the central defl ection of the uniform, simply supported beam due to the 

uniformly distributed load over the right half of the beam.

Prob. 8.2  
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 8.3 Find the defl ection at C due to the load P in terms of the length L and 

bending modulus EI of the uniform beam AC.

Prob. 8.3  

 8.4 Find the central defl ection of the uniform, simply supported beam due to the 

pair of equal, symmetrically placed loads.

Prob. 8.4  

 8.5 Find the reactions at the clamped ends of the pair of equal, uniform, elastic 

cantilevers due to the load P, assuming that the beams just held the roller 

lightly at B before the load was applied.

Prob. 8.5  

 8.6 The member ABC consists of two straight legs AB and BC of round bar stock 

of radius r welded together at B. It is built-in at A and lies in a horizontal plane 

when it is unloaded. Find the defl ection at C under the vertical load P in terms 

of the dimensions given, and the elastic constants E and v of the bar stock.

Prob. 8.6  
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 8.7 Find the slope angle f at the point A due to the applied couple Mo in terms of 

the dimensions shown, and the bending modulus EI of the uniform beam.

Prob. 8.7  

 8.8 In the fi ve-storied structure shown, the vertical columns, into which the 

fl exible horizontal beams are built, are very rigid. The diagram shows the 

original confi guration of the structure as built. Estimate the maximum 

bending moment that would be induced in the horizontal beams if the 

foundation B were to settle a distance d.

Prob. 8.8  

 8.9 The uniform beam shown has pinned supports at A, B, and C. Find the slope 

angle f at C due to the applied couple Mo.

Prob. 8.9  

 8.10 Before the load P was applied to the beam shown, the beam was straight and 

the spring was unstretched. Find the defl ection under the load P in terms of 

EI, L, and the spring constant k.
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Prob. 8.10  

 8.11 A uniform beam is built-in at both ends. Find the maximum bending moment 

and the maximum defl ection due to a uniformly distributed load of intensity 

w per unit length.

Prob. 8.11  

 8.12 A uniform cantilever beam is loaded by a total force W which is distributed 

uniformly over the middle half of the beam as shown. Show that the 

defl ection at the right end is

d =
7

64

3WL

EI

Prob. 8.12  

 8.13 The uniform beam shown has pinned supports at A, B, and C. Show that the 

defl ection under the load is

d =
23

1 536

3PL

EI,

Prob. 8.13  

 8.14 A uniform cantilever beam carries a total load of W, which is distributed in 

the linearly varying fashion shown. Find the defl ection at the right end.
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Prob. 8.14  

 8.15 The two cantilevers shown are identical in every respect except that in 

(b) there is a simple support at the right end. They are both loaded with a 

uniformly distributed load of intensity w. Compare

 1. The maximum bending moments

 2. The maximum defl ections 

  in the two cases.

Prob. 8.15  

 8.16 The two systems shown are identical in every respect except in (a) there are 

two beams of length L while in (b) there is a single beam of length 2L. The 

uniformly distributed load of intensity w is the same in both cases. Compare

 1. The reaction at the central support

 2. The maximum bending moments

 3. The maximum defl ections in the two cases.

Prob. 8.16  

 8.17 Find the defl ection at A for the two cases shown. Compare the results as the 

ratio a/L Æ 0.

Prob. 8.17  
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 8.18 The singularity functions introduced in Sec. 3.6 are useful for writing the 

bending moment at a section x based on a free body which extends to the left 

end of the beam. Investigate the family of reversed singularity functions

 gn(x) = ·a – xÒn

  and show that they are useful for writing the bending moment at a section x 

based on a free body which extends to the right end of the beam. Show that 

when n   0

 
· - Ò =

· - Ò
+

+•

Ú a x dx
a x

n
n

n

x

1

1

  and

 
· - Ò = -

· - Ò
+

+Ú
+

a x dx
a x

n
cn

n 1

1

 8.19 Verify that the bending moment in the system shown (which is the mirror 

image of Fig. 8.7) can be written as

 Mb(x) = RA(L – x) – P ·b – xÒ1

  in terms of the reversed singularity functions of Prob. 8.18. Continue 

the solution to obtain the statically indeterminate reaction RA. Compare 

corresponding steps with Example 8.4.

Prob. 8.19  

 8.20 The uniform beam is supported on three equal, equidistant springs so that 

when there is no load the beam is straight and horizontal. Find the forces in 

the three springs due to the load P.

Prob. 8.20  

 8.21 Precision measurements of molecular-beam momentum are made by using 

a tiny aluminum blade which is built-in at one end and simply supported at 

the other. The blade’s length is L = 300 mm and its cross section is rectangular, 

5 ¥ 0.1 mm. Young’s modulus for aluminum is E = 68 GN/m2. The molecular 

beam impinges on one side of the blade at a distance 0.5255L (for greatest 
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sensitivity) and is equivalent to a force P. A light beam is refl ected from the 

other side at a distance bL where the beam’s angular defl ection f is maximum.

 (a) Find the location bL for the maximum angular defl ection. 

 (b) Find the value of the maximum angular defl ection (fmax). 

 (c) Find the sensitivity ratio k = S/P.

Prob. 8.21  

 8.22 By using Castigliano’s theorem fi nd the defl ection at the end of the cantilever 

beam shown.

Prob. 8.22  

 8.23 An elastic wire of radius r has the form of a quarter circle of radius R. Obtain 

the defl ection d in the direction of the load P, taking into account bending 

and axial loading. Show that the ratio of the axial contribution to the bending 

contribution is

d

d
a

b

r

R
=

1

4

2

2

Prob. 8.23  
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 8.24 Derive a formula for the defl ection d of the structural member shown.

Prob. 8.24  

 8.25 An elastic wire of radius r has the form of a sector of a circle of radius R as 

shown. Deter mine the vertical and horizontal defl ection of the point C as a 

function of the position q of the load P along the wire.

Prob. 8.25  

 8.26 A pair of round steel rods 13 mm in diameter are welded together at right 

angles at B and built into the wall at A. The other end is pinned to an object 

that moves horizontally to the right by an amount d. What is the maximum 

stress set up in the rods if d = 25 mm and L = 1.25 m?

Prob. 8.26  

 8.27 In the course of a laser experiment, a beam of light travels in a 150-mm-

diameter steel tube of 3-mm wall thickness supported at its ends. Because 

the tube is long, the sag in the middle is such that only half the light fed into 

the tube gets out without hitting the sides of the tube. What is the length L of 

the tube? In order to reduce this sag, it is decided to use a thicker tube. If a 

steel tube with the same outside diameter but with a wall thickness of 12 mm 
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were used, how much would the sag be reduced and how much more light 

would go through?

Prob. 8.27  

 8.28 A simply supported fl oor beam carries a uniformly distributed loading of 

15 kN/m. In order to avoid possible cracking of the plaster on the ceiling 

beneath the beam, it is desired that the defl ection should not exceed 1/360 

of the span length L. If L = 3.6 m and E = 7 GN/m2, what is the minimum 

allowable value of the section moment of inertia I?

 8.29 A steel shaft 12 mm in diameter passes concentrically through a rigid 

housing whose inside diameter is 17 mm. The shaft may be considered as 

simply supported at the bearings. What is the maximum bending moment Mo 

which can be applied to the end of the shaft if the clearance between shaft 

and housing is to be not less than 2.5 mm.

Prob. 8.29  

 8.30 The beams AB and CD are each of length L and both have the same bending 

stiffness EI. The beam CD is simply supported, while AB is built-in at 

A. Before the load P is applied the two beams make light contact at their 

midpoints. Find the defl ection under the load P.

Prob. 8.30  
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 8.31 A torque wrench is a wrench which uses the defl ection of a fl at steel bar 

to measure the torque being exerted on the bolt or nut. A typical wrench is 

shown in the accompanying sketch. Calculate the scale which should be 

used to represent the torque; i.e., calculate how much defl ec tion occurs on 

the scale for a given applied torque.

Prob. 8.31  

 8.32 The signpost is made of steel pipe with 10 cm outside diameter and 8 cm 

inside diameter and is set in a concrete foundation. Estimate the lateral 

defl ection at the top of the post when a 250-N sign is hung on the arm as 

shown.

Prob. 8.32  

 8.33 A girder bridge is simply supported 

at both ends and is supported by a 

pontoon in the center of the bridge. 

How much will the pontoon sink into 

the water if the bridge is loaded by a 

uniformly distributed load w per unit 

of length? Let the length of the bridge 

be L, the weight per unit volume of 

water be g, and the water-line area of 

the pontoon be A.

Prob. 8.33
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 8.34 A simply supported beam is constructed 

by welding a very stiff beam to a beam 

which is relatively much less stiff in 

bending. What is the defl ection under a 

load P applied in the middle of the stiff 

part if we assume that this part carries a 

bending moment without any resulting 

curva ture and the fl exural rigidity of the 

other part is EI?

 8.35 A more-or-less fl exible uniform box 

of weight W and length L/3 rests in the 

middle of a simply supported beam of 

length L. Estimate the defl ection at mid-

span and compare it with an approximate 

solution obtained by replacing the box by a concentrated load W at the 

center.

 8.36 The uniform beam shown is supported above a rigid plane by two rollers of 

small diameter d. Find the magnitude P of the pair of equal forces which are 

just suffi cient to force the middle quarter of the beam into contact with the 

surface.

Prob. 8.36  

 8.37 Two separate cantilever beams of equal bending modulus EI are built-in, as 

shown in (a), and then loaded with an end load P, as shown in (b). Find the 

defl ection d under P. Assume that the two beams remain in contact at the 

points x = 0 and x = L. Then obtain the defl ection curves for both beams in 

the region 0 < x < L and prove the correctness of the assumption.

Prob. 8.37  

Prob. 8.34

Prob. 8.35



516 An Introduction to the Mechanics of Solids

 8.38 Calculate the end defl ection of the thin steel strip in Prob. 7.19 when the 

force P is such as to bring the strip into contact with the block over a distance 

c, as indicated in the sketch for Prob. 7.19.

 8.39 Find the defl ection at the tip of the tapered cantilever beam of Prob. 7.24.

 8.40 The elastic fl exure system shown 

is designed to allow the lower rigid 

rod to move hori zontally without 

changing its angular orientation. 

The fl exures are made from 

phosphor bronze with dimensions 

50 ¥ 6 ¥ 1.50 mm. The fl exures are 

rigidly attached to the support and 

to the rod. E = 100 GN/m2 and sY = 

350 MN/m2.

 (a) What is the force-defl ection relation for the system?

 (b) What is the maximum defl ection d of the rod which can occur before the 

stress in the fl exures reaches the yield stress sY?

 8.41 In the text the defl ection of a beam was considered to be due only to the 

bending, i.e., the effect of shear was neglected. An estimate of the order of 

magnitude of the shear defl ection can be obtained as follows. Let the total 

defl ection v(x) be considered as the sum of vb(x) due to bending and vs(x) due 

to shear. The bending defl ection is obtained, as in the text, by neglecting the 

presence of the shear forces. The shear defl ection, as indicated in the fi gure, 

may be estimated by neglecting the presence of the bending moments. The 

defl ection model shown in (b) is based on the simplifying assumption that the 

originally vertical plane cross sections remain plane and vertical, and that the 

element is subjected to a uniform shear strain gxy. This is an oversimplifi ca-

tion because, as indicated in Fig. 7.16, the shear strain varies across the 

section, and plane sections do not remain plane. This model will, however, 

overestimate the shear defl ection if we take the uniform shear strain gxy, to 

be equal to the maximum shear strain in the actual distribution. If txy(x) 

represents the maximum shear stress in the cross section as obtained by the 

equilibrium analysis of Chapter 7, the shear defl ection of the model pictured 

here then satisfi es the following differential equation:

 

dv

dx G

s xy=
t

  For a rectangular cantilever beam of the dimensions given in (a), show that 

the shear and bending defl ections at x = L have the following ratio:
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  and thus that the shear defl ection is less than 1 percent of the bending defl ection 

if the beam length is more than 10 times the beam cross-sectional height.

Prob. 8.40
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Prob. 8.41  

 8.42 The relative importance of transverse shear defl ection in the defl ection of 

beams is estimated in Prob. 8.41. A somewhat better approximation can 

be obtained by applying Castigliano’s theorem to the energy expressions 

developed in Sec. 7.8. Rework Prob. 8.41, using the energy approach and 

show that this leads to the estimate
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 8.43 In (a) the trace of the neutral axis of a beam which has been bent by a 

bending moment Mb(x) is shown. In (b) the corresponding values of 

Mb/EI are shown. We consider that the bending is small enough so that the 

approximation (8.3) for the curvature is valid. Use these diagrams to derive 

the following area-moment theorems: (1) The angle f12 between tangents to 

the neutral axis at x1 and x2 is equal to the cross-hatched area under the Mb/EI 

curve between x1 and x2. (2) The distance  12 between the tangent emanating 

from x1 and the neutral axis at x2 is equal to the fi rst moment of the cross-

hatched area under the Mb/EI curve between x1 and x2 about the line x = x2.

Prob. 8.43  
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 8.44 In a precision telescope, a long, uniform tube is to be simply supported by 

a pair of sym metrically placed supports, as shown. The tube is made as stiff 

as possible to minimize defl ec tions of the lenses at the ends of the tube; 

however, as the angle q is varied from 0 to 90°, gravity will cause different 

amounts of bending in the tube. This bending will have a minimum effect 

on the optical alignment if during any such bending the two lenses remain 

exactly parallel. Find the location of the supports which achieves this 

condition. Neglect the weight of the lenses in com parison with the tube.

Prob. 8.44  

 8.45 A strip of mirror glass in a precision optical instrument is to be simply 

supported by a pair of symmetrically placed supports, as shown. During 

operation the angle q will vary from 0 to 90° so that the bending due to 

gravity will vary. For what position of the supports will the deviations from 

fl atness be minimized; i.e., at any fi xed q for what value of a will the greatest 

bending slope angle in the mirror be minimized?

Prob. 8.45  

 8.46 A simple, fl exible French curve consists of a steel strip 13 mm wide ¥ 0.8 

mm thick (similar in cross section to a hacksaw blade) which has the shape 

illustrated in (a). It may be used to draw a curve joining the points A, B, and 

C, which are nearly in a straight line. To accomplish this, forces are applied 
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by fi ngers placed as shown in (b) until the strip bends into a curve passing 

through the three points. What is the curve taken up by the strip? Derive 

an equation for the defl ection of the center of the strip as a function of the 

applied force P, making plausible estimates for any dimensions not given in 

the problem. Which of the types of steel shown in Fig. 5.5(a) would be most 

suitable? Estimate the largest force P which can be applied before the strip 

deforms plastically.

Prob. 8.46  

 8.47 A bimetallic strip consists of two equal-sized strips of different materials 

which have been bonded together. If the elastic moduli and thermal 

expansion coeffi cients are E1, E2, a1 and a2, estimate the tip defl ection of the 

strip due to a temperature rise T.

Prob. 8.47  

 8.48 A rigid disk of radius R is supported by two fl exible strips, built-in as shown. 

When a couple Mo is applied to the disk, it rotates through a small angle fo. 

Find the torsional spring constant k = Mo/fo, in terms of R, L, and EI.

Prob. 8.48  

 8.49 The rectangular cantilever beam shown is made of material with elastic 

constants E and v. It is loaded by an off-center force at the end. Estimate the 

vertical defl ection directly under the load.
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Prob. 8.49  

 8.50 Suppose that both beams in the system of Prob. 8.5 have the same fully 

plastic or limit bending moment ML. Find the limiting value of P which 

corresponds to plastic collapse.

 8.51 If the beam in Prob. 8.11 has a plastic-limit moment ML, what value of load 

intensity w corresponds to plastic collapse?

 8.52 The beam AD is built-in at both ends. 

The magnitude of its fully plastic 

bending moment is ML. Find the 

limiting value of the load P on the 

swing seat which corresponds to 

plastic col lapse, as a function of the 

dimension a, where 0 < a < L. Assume 

that large deformations do not occur in 

the chains or in the seat.

 8.53 The beam shown is constructed by 

welding together two square bars of 

the same size but of different materials. 

The yield stress of material 1 is Y, 

and the yield stress of material 2 is 

0.5Y. Estimate the limit load P which 

corresponds to plastic collapse.

Prob. 8.53  

 8.54 The beam shown is built-in at A and pinned at B and C. The magnitude of 

the fully plastic bending moment is ML. Find the magnitude of P which 

corresponds to plastic collapse and sketch the mode of collapse.

Prob. 8.52
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Prob. 8.54  

 8.55 The limit bending moment in the beam shown is ML = KMY, where MY is the 

bending moment corresponding to the fi rst appearance of yielding. Show that

 

P

P
KL

Y

=
4

3

Prob. 8.55  

 8.56 Consider the system of Prob. 8.55, except now let the load P act at the center 

of the span. Show that in this case

 

P

P
KL

Y

=

 8.57 The limit bending moment in the beam shown is ML = KMY, where MY is the 

bending moment corresponding to the fi rst appearance of yielding. Show that

 

P

P
KL

Y

=
9

8

Prob. 8.57  

 8.58 In Example 8.5 it was shown that when a fl exible rod overhangs a table 

by a length a, it does not come in continuous contact with the table until a 

distance 2a  back from the edge. The length of the rod, L, must clearly be 

greater than ( )1 2+ a  for this solution to be valid. If the length of the rod 

is less than 2a, equilibrium is impossible: the rod falls off the table. Analyze 

the intermediate situation where 2 1 2a L a< < +( ) .
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 8.59 In Chapter 7 it was shown that for unsymmetrical beams the resultant 

curvature of the neutral axis is not, in general, in the plane perpendicular 

to the bending-moment vector. It was shown, however, that the resultant 

curvature could be defi ned by giving the curvatures of the projections of the 

neutral axis on the xy and xz planes (see Fig. 7.35). For small defl ections 

these curvatures can be expressed as follows in terms of the transverse 

displacement components v and w of the neutral axis in the y and z 

directions:
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  Using the moment-curvature relations (7.63) in Chapter 7, the following 

differential equations can be obtained to relate the transverse displacement 

of the neutral axis to the bending-moment components.
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  Using these results, calculate the displacement of the end of the Z-shaped 

cantilever beam of Prob. 7.77.

 8.60 Determine the horizontal and vertical components of the defl ection of the 

end of the canti lever beam of Prob. 7.78.

 8.61 An initially straight cantilever beam of length L 

is built-in at A and loaded by a moment Mo at 

B. Find the slope and defl ection at B by noting 

that the beam bends into an arc of a circle of 

radius r. For small Mo show that the results for 

the slope and defl ection approach those given in 

Table 8.1, case 3.

 8.62 The steering mechanism shown consists of a 

relatively rigid rim of radius R and a relatively 

rigid column joined by a fl exible crossarm built-

in to the rim and the column, as shown. The 

crossarm is of circular cross section with radius 

r and is made of material with elastic constants 

E and v. (a) If a couple Mx is applied to the 

rim with the column fi xed, the rim will rotate 

through a small angle fx. Estimate the stiffness 

kx = Mx/fx for rotation about the x axis. (b) If a 

couple My is applied to the rim with the column 

Prob. 8.61

Prob. 8.62
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fi xed, the rim will rotate through a small angle fy. Estimate the stiffness ky = 

My/fy for rotation about the y axis.

 8.63 Consider the simply supported, elastic-perfectly plastic rectangular beam of 

Fig. 7.30 at the stage where the plastic zones have just joined. The moment-

curvature relation for the middle third of the beam is (7.45) while the 

moment-curvature relation for the remainder of the beam is (8.1). Using the 

approximation (8.3) for the curvature, show that if the origin of coordinates 

is taken at the center of the span, the locus of the deformed neutral axis is
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  Verify that the central defl ection under this condition is 20
9

 times the central 

defl ection at the onset of yielding.

 8.64 Consider a very long, uniform beam of bending modulus EI which rests on a 

uniformly distributed elastic foundation. Assume that the foundation exerts a 

distributed reaction of intensity –kv per unit length, where the displacement 

of the beam is v(x). Verify that when an external loading q(x) is applied, the 

displacement satisfi es the following differential equation:

 
EI

d v

dx
kv q

2

4
+ =

  Show that when q = 0 the general solution of this equation is

 v = e–bx(C1 cos bx + C2 sin bx)

    + ebx(C3 cos bx + C4 sin bx)

  where b4 = k/4EI. Verify that the defl ection under a single concentrated load 

P at the middle of the very long beam is

 
d =

P

EIk( )64 3 1 4/

 8.65 A linear-elastic beam has a load P applied 

fi rst at x = x1 and then at x = x2. Maxwell’s 

reciprocal principle asserts that the defl ection 

at x – x2 when the load is at x1, is equal to the 

defl ection at x = x1 when the load is at x2; that 

is, d1(x2) = d2(x1).

 (a) Verify the reciprocal principle for the 

simply supported beam by using the 

solution in case 4 of Table 8.1.

 (b) Prove the reciprocal principle by using 

Castigliano’s theorem.

 8.66 Leonardo da Vinci suggested that concave bronze mirrors of very large focal 

lengths could be produced by rotating a thin horizontal bronze disk on a 

potter’s wheel against a copper rod which was simply supported at its ends 

Prob. 8.65
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while a slurry of a polishing compound was fed into the interface between 

the rod and the disk. If the copper rod has a diameter of 25 mm and a length 

of 2.5 m, calculate the radius of curvature of the mirror.

Prob. 8.66  

 8.67 In one of his discourses, Galileo tells a story about some Roman engineers who 

had to transport a large stone column to the construction site of a new temple. 

The standard method at that time was to place the column on two large logs 

and draw it forward with oxen. However, previous experience with columns 

of this size showed that they would break over one of the rollers. In order to 

avoid this problem, the Romans added a third support. Galileo reports that the 

column “broke upon the middle support.” Can you explain why?

Prob. 8.67  

 8.68 A rectangular beam of minimum weight is to be designed to satisfy the 

following require ments:

 1. The span L and the depth h of the beam are fi xed.

 2. The beam is to carry a given total load W, uniformly distributed along 

the length of the beam. The weight of the beam itself WB is negligible in 

comparison with W.

 3. Several materials having various values of maximum allowable stress 

smax, modulus E, and weight density g are to be considered.

 (a) In the fi rst design, defl ection is not considered to be important and 

the beam is designed strictly on the basis of strength. Show that the 

maximum value of W/WB is obtained by using the material with the 

largest value of smax /g.
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 (b) In the second design the beam is defl ection-limited; i.e., the 

maximum beam defl ection cannot be greater than a specifi ed value 

dmax, where for every material to be considered the defl ection limit 

is reached before the stress limit. In this case show that W/WB is 

maximized by the material with the largest value of E/g.

Prob. 8.68  
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Stability of 
Equilibrium: 

Buckling

9.1 INTRODUCTION

9

In the previous chapters we have 
investigated the confi gurations 
and stress distributions in 
systems which were in equili-
brium. We said that a system 
was in equilibrium if the forces 
on every subdivision were 
balanced. In this chapter we 
shall widen the scope of our 
investigation by considering the 
behavior of systems when slightly 
disturbed from their equilibrium 
confi gurations. When the forces 
no longer balance within a 
system, there will be accelerations 
and, in general, a complicated 
resulting motion. We shall not 
attempt to obtain a complete 
picture of this motion but shall 
restrict our attention to the 
following question: When slightly 
disturbed from an equilibrium con-
fi guration, does a system tend to 
return to its equilibrium position or 
does it tend to depart even further? 
It is often possible to answer this 
without going into an elaborate 
study of the accelerated motions.
 For example, consider the 
small weight on the frictionless 

surfaces of Fig. 9.1. The forces 
on the particle (gravity and the 
normal reaction of the surface) 
are clearly in balance wherever 
the surface is horizontal. These 
balance positions are indicated 
by the letter O. In Fig. 9.1(a) 
the weight is shown displaced 
slightly from its equilibrium 
position. The forces on it no 
longer balance, but the resultant 
unbalance is a  restoring force; i.e., 
the particle is accelerated back 
toward the equilibrium position. 
Such an equilibrium is called 
stable. In Fig. 9.1(c) we have the 
opposite situation. The resultant 
unbalance is an  upsetting force; 
i.e., it accelerates the particle 
away from the equilibrium 
position. Such an equilibrium is 
called unstable. In Fig. 9.1(b) we 
have the border line between the 
two previous cases; when the 
particle is displaced slightly from 
an equilibrium position, it is 
again in equilibrium, and there is 
no tendency either to return or to 
go further. Such an equilibrium 
is said to possess  neutral stability.
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Fig. 9.1  Examples of (a) stable, (b) neutral, and (c) unstable equilibrium

 By generalizing from the 
example above, we arrive at the 
following defi nition of stability 
of equilibrium. A system is said to 
be in a state of stable equilibrium 
if, for all possible geometrically 
admissible small displacements 
from the equilibrium confi gura-
tion, restoring forces arise which 
tend to accelerate the system back 
toward the equilibrium position.

 A load-carrying structure 
which is in a state of unstable 
equilibrium is unreliable and 
hazardous. A small disturbance 
can cause a cataclysmic change 
in confi guration. This represents 
a new and different mode of 
structural failure. We shall give 
several examples in the following 
sections.

9.2  ELASTIC STABILITY

In Fig. 9.2 AB is a rigid, weightless bar with a frictionless pin joint at B. When the 

bar is vertical, a vertical force P can be applied at A, and there will be equi librium 

whether P is upward, as in Fig. 9.2(a), or downward, as in Fig. 9.2(b). If P remains 

vertical, however, it is easy to see that a small rotation of AB will give rise to a 

restoring torque in (a) and an upsetting torque in (b). The strut under the load P in 

Fig. 9.2(b) is thus unstable.

Fig. 9.2  Hinged bar is (a) stable for tensile load, and (b) unstable for compressive load

This unstable structure can be stabilized by adding guy wires or transverse 

springs, as shown in Fig. 9.3(a). The vertical force P is carried entirely by AB. The 

function of the springs is simply to maintain the alignment of AB. In Fig. 9.3(b) we 
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analyze the effect of a small transverse displacement x. The pair of springs exert a 

total force 2kx which has a  restoring torque of 2kxL about B. The upsetting torque 

of P about B is Px. The stability of the structure for small defl ections depends on 

which of these is the larger, as shown below.

 Px < 2kxL (stable) (9.1)

 Px > 2kxL (unstable)

Thus the springs have stabilized the strut for small loads P, but it is still unstable 

for large loads. The border line between stability and instability occurs when P = 

2kL. This value is designated as the critical load or the buckling load.

Fig. 9.3  Analysis of hinged bar in compression stabilized by springs

An alternative method of studying this structure, which gives further insight 

into the stability problem, is indicated in Fig. 9.4. Here we take the force P to be 

applied slightly off-center. The small distance ⑀ is called the  eccentricity of the 

load. The assumption of some eccentricity provides a useful model for many types 

of imperfections which occur in actual structures; e.g., the bar might not be exactly 

straight, the springs might not be perfectly balanced, etc. We can solve for the 

transverse displacement x in the equilibrium position by balancing torques about B 

in Fig. 9.4(b).

Fig. 9.4  Transverse displacement x due to load eccentricity ⑀
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 P(x + ⑀) = 2kxL 

(9.2)

 
x

P

kL P
=

-
⑀

2

The values of load P and transverse displacement x which satisfy (9.2) are 

plotted in Fig. 9.4(c). For small values of P, the displacement x is very small, but 

when P is close to the critical value Pcrit = 2kL, the displacement is large.1

The dashed curve in Fig. 9.4(c) satisfi es (9.2) and thus represents equilibrium 

positions, but these are  unstable equilibrium positions. This can be seen by con-

sidering Fig. 9.5, which shows the confi guration corresponding to the point C in 

Fig. 9.4(c). Imagine a small disturbance of position in which the strut moves to 

the left; that is, x becomes more negative. According to Fig. 9.4(c) a smaller value 

of P is required for balance in the disturbed position. Since the load P is actually 

un changed during the disturbance, the new position is one of unbalance, and the 

direction of the unbalance is such as to move the strut further from the original 

equilibrium confi guration. Thus when P is greater than the critical load Pcrit = 2kL, 

the equilibrium positions for small x are unstable.

When P is less than the critical load, the equilibrium positions are stable. 

Furthermore, the equilibrium displacements are small if P is not too close 

to the critical load (for example, x < ⑀ if P < 1
2

Pcrit). The simple model of 

Fig. 9.4 is a good prototype for understanding the nature of elastic stability in 

more com plicated cases. In the ideal case in which the strut is exactly straight 

and the load is exactly centered, no transverse 

displacement (buckling) is possible until the critical 

load is reached. When a small imperfection is 

present, there is always a transverse displacement, 

but it remains small until the load approaches 

the critical load. In one respect the foregoing 

analysis differs from that of the earlier chapters. 

The equilibrium requirement (9.2) results from 

balancing torques in the deformed confi guration 

of Fig. 9.4(b). In the preceding chapters we have 

always assumed that, because the deformation 

was small, the equilibrium requirements could be 

applied in the undeformed confi guration. Generally 

this is acceptable if the system is elastically stable 

and not in the neighborhood of a critical load 

condition. In order to investigate stability, however, 

it is essential to apply the equilibrium requirements 

in the deformed confi guration even though the 

deformations are small.

1 Strictly speaking, Eqs (9.2) are valid only for small x. See Sec. 9.5 for a discussion of large 

defl ections. See also Prob. 9.15.

Fig. 9.5  The equilibrium 

position corres-

ponding to point 

C in Fig. 9.4(c)
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9.3  EXAMPLES OF INSTABILITY

Several instances of instability are described briefl y in this section to provide the 

reader with a qualitative appreciation of the extent of the problem. One of these 

cases will be studied in detail in Sec. 9.4.

In Fig. 9.6 a thin, deep, cantilever beam 

is shown subjected to a vertical end load. As 

long as the beam sections remain vertical, they 

resist the bending action of P very effectively, 

the deformation being of the type considered 

in Chapter 8. This is what happens for small 

values of P. If P becomes larger than a certain 

critical value, the vertical confi guration 

becomes unstable, and a small disturbance such 

as an accidental side load or tremor causes the 

beam to twist and bend sideward.

In Fig. 9.7 a fl exible column is shown 

subjected to a vertical compressive load. For 

small values of P the column remains straight 

and is compressed uniformly. If P becomes 

larger than a certain critical value, the vertical 

position of the column becomes unstable. A 

small disturbance causes the column to bend 

out or  buckle.

A somewhat similar situation is shown in 

Fig. 9.8(a), where a thin-walled cylinder (e.g., 

a beer can) is subjected to a compressive load. 

For small values of P the vertical walls remain 

cylindrical and are compressed uniformly in the 

vertical direction. If P becomes too large, this position becomes unstable. A small 

disturbance causes the vertical walls to bend in and out and to eventually crumple 

in a rather complicated pattern, as indicated in Fig. 9.8(b).

Fig. 9.8  Buckling and crumpling of the cylindrical walls of a can subjected to compressive force

Another instance of buckling of a thin-walled cylinder was mentioned in Sec. 

6.6. When such a cylinder is subjected to torsion, it will remain cylindrical, and 

the deformation will be of the type considered in Chapter 6 if the applied twisting 

Fig. 9.6  Twist-bend buckling of 

a deep, narrow beam

Fig. 9.7  Buckling of a column 

under a compressive 

load
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moment is small. When the twisting moment surpasses a certain critical value, the 

symmetrical deformation becomes unstable, and a small disturbance will cause the 

walls to buckle into wavy shapes, where the crests of the waves lie along helices 

which are at 45° with the axis of the cylinder.

It was noted in Sec. 7.6 that if the compression fl ange or the web of an I beam 

is made too thin, there is a strong likelihood that there will be local buckling when 

a bending load is placed on the beam. A similar type of buckling can sometimes be 

observed by a passenger sitting over the wing of an airplane when the air is rough. 

During momentary peak loads the top surface of the wing will distort into a rippled 

shape as the thin skin buckles locally under compression.

In Fig. 9.9 a fl exible shaft is being twisted by equal and opposite moments 

directed along the line AB. If the twisting moment is small, the axis of the shaft 

remains collinear with AB, and the shaft is twisted uniformly. When T becomes 

larger than a certain critical value, the straight confi guration becomes unstable, and 

a small disturbance will cause the shaft to bend out into a spiral-shaped space curve. 

An example of this is the twisting of long cables.

  Fig. 9.9  Twist-bend buckling of a shaft in torsion

A somewhat different sort of instability is shown in Fig. 9.10. A shallow, curved 

member is subjected to a load which tends to straighten out the member. For small 

values of P, only small defl ections result, as indicated in Fig. 9.10(a), but at a 

critical value of P the member suddenly “snaps through” to a position of opposite 

curvature, as shown in Fig. 9.10(b). This phenomenon is commonly called “oil-

canning” because the bottom of an oil can behaves in this fashion. A similar type of 

“snap-through” buckling is utilized in electric light switches. See Prob.9.7.

  Fig. 9.10  “Snap-through” instability of a shallow curved member

9.4  ELASTIC STABILITY OF FLEXIBLE COLUMNS

Out of all the examples described in Sec. 9.3 we shall investigate only one in full 

detail; namely, that shown in Fig. 9.7, the buckling of a column which is built-in at 

its base. Our reasoning and general approach can be extended to many other cases, 

but the mathematical complications increase rapidly when we consider systems 

with more complex geometry.

Before considering the stability problem, we fi rst derive the equations govern-

ing the bending of a beam subject to longitudinal as well as transverse loads. In 
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Fig. 9.11 we show a portion of such a beam and an enlarged element isolated from 

the rest of the beam. For the element to be in equilibrium, we must have

 V + DV – V + q Dx = 0
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or, on passing to the limit and discarding the infi nitesimal of higher order,
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b + + = 0

 Fig. 9.11  (a) Beam subjected to longitudinal and transverse loads; (b) freebody sketch of 

element of beam

These should be compared with (3.11) and (3.12), which are the corresponding 

equilibrium equations when P = 0. Note that the deformation of the beam enters 

into the moment-equilibrium equation of (9.4) by way of the slope dv/dx. We 

still assume that the bending moment is responsible for the deformation of the 

beam; i.e., we neglect the effect of shear on the deformation. According to (8.4), 
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where EI is the bending stiffness of the section. Eliminating Mb and V from (9.4) 

and (9.5), we arrive at the governing equation
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(9.6)

for the small defl ections of a beam subject to transverse load q(x) per unit length 

and axial compressive force P(x).

We now return to the elastic-stability problem for the cantilever beam (column) 

of Fig. 9.7, shown here again in Fig. 9.12. We take the beam to have uniform 

bending stiffness EI and assume that the buckling occurs in the plane of the sketch. 

If the beam should be accidentally displaced from a straight position, the force P 

produces a bending moment along the beam which causes the beam to bend even 

further, while the elastic forces in the beam tend to restore the original position. 



Stability of Equilibrium: Buckling 533

For small loads the straight position is stable and the beam is subjected to uniform 

compression. For large loads the straight position is unstable and the beam buckles. 

The most important single result to be obtained is the value of the critical load 

which marks the border between stability and instability. We can get this result by 

arguing that, when the critical load is acting, the restoring tendencies just balance 

the upsetting tendencies, and the system 

is in a state of neutral equilibrium. In 

Fig. 9.12 we assume that the critical load 

is acting and that it is, in fact, holding 

the beam in equilibrium in a displaced 

position. The magnitude of the critical 

load and the shape of the bent beam are 

initially unknown. We shall fi nd them by 

requiring that the governing equation (9.6) 

and the following boundary conditions be 

satisfi ed:
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The boundary conditions at x = L may be expressed in terms of v by substituting 

in the second of (9.4) and in (9.5).
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The governing equation (9.6) takes the following form when EI and P are 

constants and there is no transverse load:
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Our problem is to fi nd the equilibrium confi guration v(x) and the critical load P 

which simultaneously satisfy (9.9) and the boundary conditions at x = 0 and x = L. 

It is interesting to note that v(x) = 0 satisfi es these for any value of P. This means 

simply that the straight position of the column is always a possible equilibrium 

position. As far as the buckling problem goes, this must be considered a trivial 

solution. We are seeking the nonstraight neutral equilibrium position with its 

critical load which marks the border line between stability and instability.

The theory of differential equations teaches us that the most general solution 

to an equation having the form of (9.9) contains four independent constants of 

integrations. For certain equations (including this one) there exist routine methods 

for obtaining general solutions. We shall not here actually follow through the details 

of such a method but shall simply write down an expression which does contain 

four independent constants and which does satisfy (9.9).

Fig. 9.12  Column in a state of neutral 

equilib rium in the bent 

position
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The reader should verify that (9.10) is, in fact, a solution to (9.9) for arbitrary 

values of the four constants. Substituting (9.10) into the four boundary conditions 

of (9.7) and (9.8), we obtain the following four simultaneous equations for the 

constants of integration.
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This algebraic problem is of a rather unusual sort (it is known as an eigenvalue 

problem). Because all the right-hand members are zero, an obvious solution is c1 = 

c2 = c3 = c4 = 0. This is a true equilibrium solution (it says the beam does not bend), 

but it is the trivial solution again. Our objective is to fi nd another solution. One way 

to do this is to note that the fourth and second equations imply c2 = c3 = 0, that the 

fi rst equation implies c4 = –c1, and that then the third equation becomes simply
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This can be satisfi ed by setting c1 = 0, which is the trivial solution again, or by 

having a value of P such that
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The smallest value of P meeting this condition2 is
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Substituting back into (9.10), the corresponding defl ection curve is
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2 The other solutions to (9.13), namely, P = EIp2(2n – 1)2 / 4L2, correspond to loads which 

will hold the bent shapes v c
n x

L
= -

-Ê
ËÁ

ˆ
¯̃1 1

2 1

2
cos  for n = 2, 3, 4, ..., in equilibrium. These 

confi gura tions (called higher modes) are not of much practical signifi cance because they 

are violently un stable.

  In the analysis of vibrating systems a similar eigenvalue problem occurs, but there the 

higher modes do have practical signifi cance. See, for example.  S.H. Crandall, “Engineering 

Analysis,” Chapter 5, McGraw-Hill Book Company, New York, 1956.
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We have thus found the  critical load (9.14) and the shape (9.15) which the beam 

bends into when balancing the critical load.

Note that in (9.15) the constant c1, has not been fi xed. The defl ection v is an 

equilibrium position for any arbitrary value of c1 so long as the defl ection remains 

within the validity of the small defl ection theory. It can be shown that these are 

all neutral equilibrium positions; i.e., the critical load will hold any of these 

defl ections in equilibrium. For smaller values of P the straight column is stable; i.e., 

if any accidental bending occurs, the restoring tendencies overcome the upsetting 

tendencies. For larger values of P the straight position is no longer stable; any small 

disturbance will result in buckling of the column.

Additional insight into column buckling can be obtained by considering a case 

where there is a small imperfection in either the column or the loading; e.g., the 

column is slightly bent in its unloaded state or the load is not precisely centered. As 

an illustration we examine the case shown in Fig. 9.13(a), where the compressive 

load P is applied with a small eccentricity ⑀. This is statically equivalent to a 

central force P and a moment Mo = P⑀, as indicated in Fig. 9.13(b). A graphical 

demonstration of the equivalence is displayed in Fig. 9.13(c). We shall now investi-

gate the relation between the transverse defl ection d and the compressive force P in 

the presence of the bending moment Mo due to the eccentricity ⑀.

Fig. 9.13  Flexible column held in equilibrium by (a) a longitudinal compressive force P with 

eccentricity ⑀ and (b) the same compressive force P plus an end moment Mo. The 

equivalence of the two loadings is shown in (c)

The governing equation is still (9.9), and all the boundary condition are the 

same, except that at x = L the bending moment is now Mo instead of zero. The 

general solution (9.10) still applies. The boundary conditions provide the following 

equations for the constants of integration:
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Solving these (which now have a unique solution) and inserting in (9.10) yields
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which reduces to
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in the case of Fig. 9.13(a), where Mo = P⑀. This 

relationship is sketched in Fig. 9.14. For small 

values of P the transverse defl ection is very 

nearly zero (for example, d < ⑀ for P < 4
9

Pcrit). 

As P approaches the critical load, the defl ection 

d becomes large. Furthermore, it can be shown 

that when P is greater than the critical load, the 

equilibrium positions represented by (9.18) are 

unstable. Thus a fl exible column can be used 

as a reliable structural element only when 

the axial compres sive force which it carries 

remains somewhat below the critical load.

The critical load of a column is quite 

sensitive to the nature of the supports at the 

ends of the column. In Fig. 9.15 a number 

of different methods of column support are 

shown, together with the critical loads which 

were obtained from analyses similar to the one 

just given (see Probs. 9.8 and 9.9). Note that the critical load of a column which 

is clamped at both ends is 16 times larger than that of the column just discussed, 

which has one end free. In practical structures the idealized types of supports shown 

in Fig. 9.15 almost never occur. Most column supports provide more restraint than 

a hinged joint but not as much restraint as a clamped joint. In many cases a designer 

can use his judgment and experience to interpolate between tabulated results such 

as those given in Fig. 9.15.

Fig. 9.14  Relation between com-

pressive force P and 

transverse defl ection d 

due to eccentricity ⑀
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Fig. 9.15  Critical loads for (a) clamped-free, (b) hinged-hinged, (c) clamped-hinged, and (d) 

clamped-clamped columns. In each case the constant c shown is to be inserted in 

the formula Pcrit = cEI/L2

9.5  ELASTIC POSTBUCKLING BEHAVIOR

In the preceding analyses of the initiation of buckling, the equilibrium require-

ments have been applied in the deformed confi guration, but the assumption of small 

deformations has been retained. In order to explain the behavior of a structure once 

buckling has begun, it is necessary to include the effects of larger deformations. 

This generally requires the introduction of  geometrical nonlinearities; e.g., in the 

case of a fl exible column the nonlinear curvature-defl ection relation (8.2) must 

be used in place of the linear approximation (8.3). The resulting anal ysis is quite 

complicated and beyond the scope of this text.

We can, however, study a highly simplifi ed model whose postbuckling behavior 

is qualitatively similar to that of many actual structures, such as fl exible columns, 

plates, and shells. The model is shown in Fig. 9.16. It is the same as the spring-

stabilized strut of Fig. 9.3, except that here the springs are taken to be nonlinear. 

The geometrical nonlinearity of an actual structure is thus modeled by the analyt-

ically simpler mechanism of a nonlinear force-deformation relation. We take the 

force in each spring to be given by

 f = kx (1 + bx2/L2) (9.19)

where b is a parameter which fi xes the nature of the nonlinearity. When b > 0 

the spring is said to be a  stiffening spring. When b < 0 the spring is said to be a 

 softening spring. The relation (9.19) is plotted in Fig. 9.16(c) for b = 10, 0, and –10 

over the small defl ection range 0 < x < L/10.
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 Fig. 9.16  Strut supported by nonlinear springs with f = kx(1 + bx2/L2)

We fi rst explore the possible equilibrium positions of the strut for the ideal case 

in which the strut is initially exactly vertical and the load P is exactly centered. 

Balance of moments about point B in Fig. 9.16(b) yields

 Px – 2kLx (l + bx2/L2) = 0

from which we conclude that either x = 0 or P = 2kL(1 + bx2/L2). These loci are 

plotted in Fig. 9.17 for b = 10, 0, and –10. For small values of P the only stable 

equilibrium position is along AB, where x = 0. When the load reaches the value 

Pcrit = 2kL, transverse defl ection becomes possible. The point B in the diagrams of 

Fig. 9.17 is called a  bifurcation point because the load-defl ection path AB splits into 

two branches, BC and BD, at this point. In every case the branch BD represents 

 unstable equilibrium positions. There is a fundamental difference in the stability 

of the branch BC, depending on the nature of the nonlinearity. For stiffening 

nonlinearity, b > 0, the branch BC represents  stable equilibrium positions. This 

can be demonstrated by considering the strut in Fig. 9.16(b) to be in equilibrium, 

corresponding to a point on BC in Fig. 9.17(a), and then imagining that the strut 

is moved slightly so as to increase x without changing P. Since a larger value of P 

is required for equilibrium, the unbalanced forces in the new posi tion will tend to 

Fig. 9.17  Ideal postbuckling curves for (a) b = 10, (b) b = 0, (c) b = – 10
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move the strut back to its original equilibrium position. The solid line BC in 

Fig. 9.17(a) thus represents stable equilibrium positions. For softening nonlinearity, 

b < 0, the branch BC represents unstable equilibrium positions, as indicated 

by the dashed line in Fig. 9.17(c). For the linear case, b = 0, the branch BC in 

Fig. 9.17(b) represents  neutral equilibrium positions. The nature of the stability 

of the ideal postbuckling curve BC strongly infl uences the behavior of the 

corresponding system with small imperfections.

As a particular example of an imperfection, we next consider the behavior of the 

system of Fig. 9.16(a) when the load is positioned slightly off-center. The eccentricity 

⑀ is indicated in Fig. 9.18(a). The equilibrium relation between the displacement x and 

the load P is obtained by balancing moments about point B in Fig. 9.18(b),

 P(x + ⑀) = 2kLx(1 + bx2/L2) (9.20)

Fig. 9.18  Eccentric load on strut supported by nonlinear springs

This relation between P and x is plotted for three values of the imperfection 

parameter ⑀/L in each of the cases b = 10, 0, and –10 in Fig. 9.19. It is seen that 

as ⑀/L Æ 0, the curves approach the postbuckling curves BC of Fig. 9.17 for the 

ideal system. In the case of stiffening nonlinearity, b > 0, the equilibrium posi tions 

represented by (9.20) are stable [see Fig. 9.19(a)]. Furthermore, the trans verse 

displacement x remains small until the load P gets fairly close to Pcrit.

The situation is quite different for the case of softening nonlinearity, b < 0. As 

indicated in Fig. 9.19(c), the curves representing (9.20) rise to a maximum and then 

decrease. This is shown again in Fig. 9.20(a), where OMN represents one of these 

curves. The corresponding equilibrium positions are stable along OM and unstable 

along MN. In this case there is a maximum load Pmax which the strut can support 

with small transverse displacement x. When P = Pmax, the slightest disturbance will 

cause the system to snap-through to some large displace ment equilibrium position 

represented by point S. We shall not enter into a large displacement analysis here3 

3 For such an analysis, see Prob. 9.15.
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to.derive the equilibrium positions represented by the branch RS. In most structures 

to which this model applies, however, the equilibrium positions corresponding to 

RS represent collapse failures. To avoid such failures, it is necessary to keep the 

load P smaller than Pmax. Thus for the case of softening nonlinearity, the signifi cant 

buckling load is not Pcrit, deter mined by the bifurcation phenomenon, but is Pmax, 

which is always less than Pcrit.

Fig. 9.19  Effect of imperfection parameter ⑀/L on postbuckling behavior for (a) b = 10, 

(b) b = 0, (c) b = – 10

From Fig. 9.19(c) it is seen that Pmax depends on the magnitude of the imper-

fection parameter ⑀/L. This relationship4 is plotted in Fig. 9.20(b). Note that Pmax 

Æ Pcrit as the imperfection parameter approaches zero, but that Pmax is ex tremely 

sensitive to small imperfections. Structures whose postbuckling behavior can be 

modeled by a softening nonlinearity are said to be imperfection-sensitive.

Fig. 9.20  Maximum load for softening nonlinearity (b = – 10) depends on magnitude of 

imperfection

4 See Probs. 9.20 and 9.21.
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The model just studied provides a good qualitative description of postbuckling 

behavior of elastic beams, plates, and shells under compressive loads. In each 

case the actual nonlinearity is introduced by the geometry of large defl ections. For 

beams and plates the nonlinearity is weak but of a stiffening nature. As indi cated in 

Fig. 9.19(a), the transverse displacements for such structures with small 

imperfections grow slowly with load until the load approaches the critical load. 

There is no sharp indication as the load passes through the critical value, just a 

gradual increase in the rate of increase in displacement with increase in load.

For many shell structures the nonlinearity is quite strong and is of a softening 

nature. Such shells buckle with a sudden snap-through at an imperfection-sensitive 

maximum load which can be considerably smaller than the critical bifurcation load. 

For example, the circularly cylindrical shell under axial load, shown in Fig. 9.8, 

buckles in most tests at loads which are 1
3

 to 1
2

 of the critical load.

Throughout this section it has been assumed that the structure remains elastic 

in the postbuckling regime. In many structures the buckling problem is further 

complicated by the fact that the large deformations involved can cause yielding 

and plastic fl ow. This in turn can cause permanent deformations which may 

be undesirable, and it can initiate collapse due to plastic buckling at lower loads

than predicted for elastic buckling. An introduction to plastic buckling appears in 

Sec. 9.8.

9.6  INSTABILITY AS A MODE OF FAILURE

The designer of a structure must always be alert to the possibility of buckling. The 

various elements must be strong enough to carry their share of any possible load, 

and the structure must be rigid enough to remain in stable equilibrium under any 

contemplated loading.

In recent years the availability of high-strength alloys plus careful design for 

minimum weight have led to structures which are inherently less rigid than those 

of the past. For example, compare an airplane wing with a Gothic tower. This 

decreased rigidity has greatly increased the possibilities for instability and buckling. 

To give a brief introduction to the problem of designing for both strength and 

stability, we consider in highly simplifi ed form the problem of selecting a fl exible 

column to support a compressive load P. We take the column to be exactly straight 

and assume that the load is exactly centered. As long as the column remains straight, 

the direct compressive stress is P/A, where A is the area of the cross section. This 

stress cannot be too large or the material will fail. For example, if the material is 

ductile and we did not wish plastic fl ow to occur, we would have to keep

 P < YA (9.21)

where Y is the yield stress (in compression).

On the other hand, the column will not remain straight unless it is stable. 

Assuming that the column is supported as shown in Figs 9.7 and 9.12, the critical 

load is given by (9.14). To maintain stability, we must keep
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The designer must check to see that both (9.21) and (9.22) are satisfi ed. These 

two requirements are shown in the diagram of Fig. 9.21, where P is plotted against 

the length of the column. The combinations of P and L which simulta neously 

satisfy (9.21) and (9.22) lie in the region below the line BCD. For short columns 

the yield condition limits the allowable load, while for long columns the stability 

condition governs. The contour BCD is the failure border line for the ideal case. 

Deviations from the assumed boundary conditions lead to wide variations in 

the position of CD, while small eccentricities in the loading or in the shape 

of the column will alter the position of the entire failure border line. Because of 

these uncertainties, the column designer has been forced to rely on fairly con-

servative modifi cations5 of idealized results such as those shown in Fig. 9.21.

Fig. 9.21  Column may fail either by yielding or by buckling

When the column material has strain-hardening characteristics, a short column 

will not necessarily fail at the onset of yielding, as assumed by Eq. (9.21). In some 

applications it is possible to take advantage of the reserve strength obtained by 

permitting some plastic fl ow. This cannot be pushed too far, however, because of 

the possibility of plastic buckling. This is discussed in Sec. 9.8.

9.7  NECKING OF TENSION MEMBERS

In the above examples the initiation of instability occurs while the material is 

acting elastically, although the large defl ections which occur during the subsequent 

buckling may involve inelastic action. We consider next a case of purely plastic 

5 See, for example,  E.P. Popov, “Mechanics of Solids,” p. 535, Prentice-Hall, Inc., 

Englewood Cliffs, N.J., 1968.
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instability. This is the phenomenon of necking which occurs during the fi nal stages 

of a tension test of a ductile specimen (see Sec. 5.12).

When a uniform rod is subjected to axial tension, the stress may be assumed to 

be uniformly distributed across the cross-sectional area of the rod. During plastic 

fl ow, the cross-sectional area gets smaller as the rod elongates (plastic fl ow is 

essentially a constant-volume process). To investigate whether uniform elongation 

is stable, we analyze what would happen if, by some accident, a particular cross 

section became infi nitesimally smaller than the remainder of the rod. Since, as the 

rod is stretched, the same axial force is transmitted through all sections, the smaller 

cross section would be subjected to a slightly higher stress than its neighbors. 

Whether this would intensify the deviation from uniform elongation depends on the 

strain-hardening properties of the material. If, along with the original decrease in 

area, there went a suffi cient local increase in strain-hardening to compensate for the 

increase in stress, there would be no additional fl ow at this section until the other 

sections had deformed and hardened to the same extent. Under these circumstances 

uniform elongation is stable.

If, on the contrary, the material at the smaller section does not strain-harden 

suffi ciently to compensate for the increase in stress, then there will be local axial 

strain with additional decrease in area in response to the increase in stress. Under 

these circumstances uniform elongation is unstable. All subsequent deformation 

becomes concentrated at the section in question, and the specimen is said to 

undergo  necking, as indicated in Fig. 9.22(b).

Fig. 9.22  Necking of a plastic rod under tension

Let us make a quantitative study of this for a material whose  true-stress-

engineering-strain curve is shown in Fig. 9.23. Suppose that a small element of the 

rod in Fig. 9.22(a) has length Lo and area Ao when the rod is unstrained. If, under 

plastic strain (the elastic strain is considered negligible in comparison), the length is 

Lo + d and the area is A, the local engineering strain ⑀ and the true stress s under an 

axial force F are

 
⑀ = =

d
s

L

F

Ao  

(9.23)

Fig. 9.23  True-stress-engineering-strain curve of a strain-hardening plastic material. The tangent 

BP determines the point at which local necking begins



544 An Introduction to the Mechanics of Solids

Assuming that the plastic fl ow involves no volume change, we have

 A(Lo + d) = AoLo = constant (9.24)

We now consider the consequences of an infi nitesimal increase in strain ⑀. The 

rate of change of area is given by differentiating (9.24) and substituting for dd/d⑀ 

from (9.23).
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The axial force F required to maintain the stress-strain relation of Fig. 9.23 is

 F = As (9.26)

from (9.23). The rate of change of F is
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where we have substituted from (9.25). Now, if dF/d⑀ is positive, we know that the 

element under question will not undergo further plastic strain without an increase in 

the axial load. Furthermore, if dF/d⑀ remains positive as ⑀ is increased from zero, 

the axial force F will be an increasing function of the strain ⑀. The greater the strain 

of the element, the larger will be the force required to cause further strain.

Now, if we consider the rod to be made up of a large number of such elements in 

series, we can see that the strain will tend to be uniform along the entire rod so long 

as dF/d⑀ is positive. As F is increased, the element which begins to strain fi rst is 

always the one which has had the smallest prior strain. If by accident one element is 

strained more than its neighbors, it will not participate in further elon gation until the 

rest of the rod has “caught up with it”. Thus when dF/d⑀ is positive, uniform strain 

is stable in the sense that any departures from uniformity in strain are decreased by 

further elongation of the rod.

On the contrary, if dF/d⑀ is negative, uniform strain is unstable. In this case, if 

by some accident the strain in a particular element becomes greater than that in the 

rest, the force required to cause further fl ow of this element would be less than in 

any other. All subsequent elongation would then be concentrated in this element and 

necking would occur. Whether the necking proceeds in a con trolled manner or in a 

sudden catastrophic manner depends on how the tension test is conducted. If the 

testing machine applies a controlled total elongation to the specimen, then nothing 

spectacular happens. As the total elongation is in creased beyond the point where 

necking begins, the axial force F decreases, thus unloading the rest of the specimen, 

while in the necked portion the local strain increases and the cross-sectional area is 

further reduced. On the other hand, if the testing machine applies a controlled force 
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(e.g., a hanging weight), then as soon as necking begins it proceeds catastrophically 

to fracture. As long as the re sistance to fl ow of the material in the necked portion 

remains less than the fi xed force applied, the fl ow will continue to accelerate.

The border line between stability and instability for the uniform strain proc ess 

occurs when dF/d⑀ = 0, or when

 

d

d

s s
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(9.28)

Under this condition a local increase in strain can occur without any change in the 

axial force F. This is the largest force, Fmax, which the rod can withstand. The ratio 

Fmax/Ao is called the tensile strength of the material.

Given the true-stress–engineering-strain curve of a material, the point at which 

(9.28) is satisfi ed may be determined by the graphical construction shown in 

Fig. 9.23. The point B is located a unit distance to the left of the origin. The tangent 

BP to the stress-strain curve then will have the slope s/(1 + ⑀) as required by (9.28). 

To the left of P, dF/d⑀ is positive and uniform strain is stable. To the right of P, dF/d⑀ 

is negative and uniform strain is unstable. It is left to the reader to show that in this 

same construction the  tensile strength is given by the intercept OC (see Prob. 9.17).

9.8  PLASTIC BUCKLING

Consider the column shown in Fig. 9.24(a) which is made of a  strain-hardening 

material. The stress-strain curve (in compression) is drawn in Fig. 9.24(b). We shall 

study the behavior of the column as the load P is increased. If the column is not 

too long, the compressive stress in the material will reach the yield stress without 

elastic instability. If P is increased further, the column can remain straight while the 

material fl ows plastically. Since the material strain-hardens, it is necessary at any 

stage to increase P in order to cause further plastic fl ow.

Fig. 9.24  Column of strain-hardening material subjected to a compressive force P

We next consider the possibility of the column bending out of its straight 

position. Following the approach used in describing elastic buckling, we should 

look for a critical value of P at which bifurcation can occur for the ideal case of 

a centered load on a perfect column. We should also examine the behavior of the 

column when there is a small imperfection.

To begin the analysis, we should study the possibility of a plastically deformed 

column being in equilibrium in the slightly bent shape shown in Fig. 9.25. To do 
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this completely, taking into account the stress-strain 

curve of Fig. 9.24(b), the variation of strain in each 

cross section, and the variations from section to 

section along the length of the column, is beyond 

our present scope. In order to gain some insight into 

this phenomenon, we can attempt to fi nd a simpler 

situation which retains, at least qualitatively, the basic 

features of our problem. In Fig. 9.26(a) we show a 

rigid member ABC supported by a strain-hardening 

spring at A and at B. In this model the deformations 

can occur only in the springs. This simplifi es both the 

problem of strain distribution along the column (it is 

all concentrated at the bottom) and the problem of strain distribution throughout 

the cross section (it is all concentrated in the two extreme fi bers). We do, however, 

retain the strain-hardening aspects of the original problem by taking the force-

deformation relation for the springs to have the same form as the stress-strain curve 

for the column material. We now analyze the model of Fig. 9.26 to investigate the 

possibility of equilibrium in a slightly tipped position in the ideal case where there 

are no im perfections.

Fig. 9.26  (a) Simplifi ed model of plastic buck ling using springs at A and B which have the 

force-deformation relation shown in (b)

Suppose that when the load P has reached the value P = Po, the system is in the 

position shown in Fig. 9.27(b). Both springs have been compressed an amount do 

and the column is still straight. The force in each spring is Fo = Po/2, as indi cated in 

Fig. 9.27(c). We now examine the possibility of bifurcation at the load Po; i.e., we 

investigate the possibility of a tipped equilibrium position, as shown in Fig. 9.27(d), 

which involves only small changes in the spring forces and defl ections. Following 

the fi rst two steps of (2.1), we apply the equilibrium and geometric compatibility 

requirements to the slightly tipped position with q > 0. Figure 9.28 shows a free-

body diagram of ABC. For small q, balance of forces and moments require

 P = FB + FA

 PLq = (FB – FA)c (9.29)

Fig. 9.25  Strain-hardening 

column in slightly 

bent equilibrium 

confi guration
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Fig. 9.27  When column model (a) defl ects do under load Po as shown in (b), each spring is in 

state (do, Fo), as indicated in (c) prior to tipping through angle q in (d)

Fig. 9.28  Free body of rigid member in column of Fig. 9.26

Figure 9.29 shows the geometry of deformation. It is assumed that AB tips about a 

neutral point N, whose location (defi ned by the distance x to the left of the center O) 

is unknown. For small q, the increments in spring defl ection are

 dB – do = (c + x)q

 dA – do = (c – x)q (9.30)

The relations (9.29) and (9.30) apply independently of the force-deformation 

relation.
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Figure 9.30 shows the force-deformation relation for compression of the springs. 

To simplify the discussion of the behavior of the springs in the neigh borhood of the 

state (So, Fo), we have introduced the straight line OL, defi ned by

 F = Fo + kt(d – do) (9.31)

Fig. 9.29  Geometry of spring deformation

Fig. 9.30  Approximations of the force-deformation curve by straight lines in the neighborhood 

of do

where kt is the slope of the tangent at do, as an approximation to the curve for  continued compressive loading. We also show the elastic unloading relation as the 

straight line OU, defi ned by

 F = Fo + ke(d – do) (9.32)

where ke is the elastic spring constant.

When the column model begins to tip, there are three possible mechanisms: 

(1) both springs can continue to compress but at different rates, (2) one spring can 

continue to compress while the other begins to decompress, and (3) both springs 

can begin to decompress but at different rates. From Fig. 9.29 we see that, to have 

mechanism (1), it is necessary for the neutral point N to be to the left of A; that is, 

c < x < •. For mechanism (2) the neutral point must lie between A and B (–c < x < 

c), and for mechanism (3) the neutral point must lie to the right of B (– • < x < –c). 
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For a complete analysis it is necessary to examine all three mechanisms. It turns out 

that the analysis for the fi rst and for the third is simpler than that for the second, but 

the most important results depend on the second mechanism. We therefore proceed 

fi rst to the case where, during tipping, spring B continues to compress according to 

(9.31), while spring A starts to decompress according to (9.32). Setting Fo = Po/2 

and using (9.30), we fi nd the following force-deformation relations for this case

F
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When Eqs (9.33) are substituted into the fi rst of (9.29), we obtain

 P – Po = q[(ke + kt)x – (ke – kt)c] (9.34)

which states that, for fi xed x, the increment in column load is proportional to the tip 

angle q. Next we substitute (9.33) into the second of (9.29) to get

 P
c

L
k k c k k xe t e t= + - -[( ) ( ) ]  (9.35)

which can be considered as a relation between the column load P and the position 

x of the neutral point. The two relations (9.34) and (9.35) provide a complete 

description of the bifurcations which are possible for mechanism (2).

We see from (9.34) that when q Æ 0, P Æ Po. If we consider (9.35) to apply in 

this same limit, it defi nes a range of possible bifuraction loads Po as x varies in the 

range – c < x < c. This range of bifurcation loads extends from point Bt(x = c) to 

point Be(x = –c) in Fig. 9.31. The corresponding loads from (9.35) are

 P
c

L
kt t=

2 2

 (9.36)

 P
c

L
ke e=

2 2

 (9.37)

These are called, respectively, the  tangent-modulus load and the  critical elastic 

load. The latter would have been the critical load if the springs had remained 

linearly elastic up to the point of buckling (see Prob. 9.18). For each bifurcation 

point B, the relation (9.34) defi nes a straight line BC if x retains the same value it 

has at bifurcation. The initial portions of a number of such lines are indicated in 

Fig. 9.31. Between Bt and Bd the initial increment of P is positive; between Bd and 

Be the initial increment of P is negative. To obtain the value of Pd corresponding to 

Bd, we set P = Po in (9.34), with q π 0, to obtain

 x
k k

k k
cd

e t

e t

=
-
+

 (9.38)

and then insert this value of x in (9.35) to get

 P
c

L

k k

k kd
e t

e t

=
+

2 22

 (9.39)

which is called the  double-modulus load. In Fig. 9.31 the equilibrium positions for 

q = 0 are stable for P < Pd in the sense that it is necessary to increase the load P in 
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order to initiate tipping. Conversely, the 

equilibrium positions for q = 0 with P 

> Pd are unstable. This accounts for the 

dashed lines in Fig. 9.31.

We thus fi nd the unusual result that 

there is a range of loads between the 

tangent-modulus load Pt and the double-

modulus load Pd for which the position 

q = 0 is stable but for which tipping of 

the perfect column may begin whenever 

the load P is increased.

To complete the analysis we must 

examine the possibilities of mechanism 

(1), where (9.31) is used for both 

springs, and mechanism (3), where 

(9.32) is used for both springs. It can be 

shown that for the fi rst mechanism, there 

is only a single bifurcation point at Bt 

and that for the third mechanism there 

is only a single bifurcation point at Be. 

These are simply the end points of the 

range already discussed for mechanism 

(2).

We shall not enter into a detailed analysis of the behavior of this system when 

a small imperfection (such as an eccentricity ⑀ in the position of the load P) is 

introduced.6 The load-defl ection curve in this case has the form indicated by OMN 

in Fig. 9.31. For a small imperfection the column does not tip appreciably until the 

load approaches the value Pt. The defl ections then increase rapidly with load until 

the point M is reached where a maximum load Pmax is attained. The equilibrium 

positions corresponding to points on OM are stable under fi xed load, but those 

corresponding to points on MN are unstable. The magnitude of Pmax is always less 

than the double-modulus load Pd, but it can be larger or smaller than the tangent-

modulus load Pt, depending on the size of the imperfection.

The above analysis may be taken as a satisfactory explanation of the behavior 

of the simplifi ed model of Fig. 9.26 and as a qualitative guide to the behavior of the 

original column of Fig. 9.24. There are, however, many questions about buckling of 

structures which remain unanswered. Buckling problems constitute one of the most 

active areas of research in applied mechanics.7

Fig. 9.31  Bifurcation points for ideal strain-

hardening-column model and 

maximum load in presence of 

imperfection

6 See  N.J. Hoff, Inelastic Buckling of Columns in the Conventional Testing Machine, pp. 

383–402, in “Proceedings—Symposium on the Theory of Shells to Honor Lloyd Hamilton 

Donnell,” University of Houston, 1967.
7 See, for example,  B. Budiansky and  J. Hutchinson, A Survey of Some Buckling Problems, 

AIAA J., vol. 4, pp. 1505–1515, 1966; J. Hutchinson and  W. Koiter, Postbuckling Theory, 

Appl. Mech. Rev., vol. 23, no. 12, pp. 1353–1356, 1970.
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 SUMMARY

Introduction

Stability has to do with answering the following question: Upon slightly disturbing 

a system from one of its equilibrium confi guration in all admissible ways, will it 

return to the same equilibrium confi guration?

If yes, it is the system in stable equilibrium. If no, and if it tends to go to another 

equilibrium state, then it is in unstable equilibrium. If neither, it is in neutral 

stability.

Analysis for Stability 
While one way of testing stability is by identifying the borderline between two 

equilibrium positions, a more useful way is to introduce some slightly disturbed 

confi guration and analyze for equilibrium. Limits defi ne the critical loads.

Examples

There are several instances of stability in structures. Some common examples are

∑ Twisting buckling during bending of a narrow cross section beam.

∑ Column buckling.

∑ Crumpling of shells, e.g. cylindrical cans under compression.

∑ Bending mode during twisting of a thin wire (called the oil-canning).

∑ Steel measuring tapes—switch between the coiled confi guration and the 

straight confi guration.

Elasticity Instability in Small Deformations

The governing equation for the elastic stability for small deformation of a beam 

column is given by 9.6. Different boundary conditions could give rise to different 

buckling loads and the related mode of buckling.

 It is realistic to introduce an eccentricity when loading a column. The sway in the 

column to such an eccentrically placed load can be estimated by solving the same 

(9.6). The expression for the same is given in (9.18).  The behavior is such that the 

sway continuously varies with the load asymptotically reaching the critical buckling 

load.

Post-buckling

Larger deformations have to be introduced to induce post-buckling behavior. An 

example of a nonlinear spring is shown to elucidate the branching in behavior seen 

at a particular value of loading. Many shell structures show a reserve capacity after 

the initial buckling has occurred.

Design for Buckling

While designing structures such as columns, it is important to consider buckling 

as one of the modes of failure. While buckling is critical to a column that is long 

(higher slenderness ratio), material failure or yielding dominates a short column.  

Figure 9.21 shows that the zones that infl uence can be obtained by plotting both the 

envelopes—that of buckling and that of material failure.  
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Material Instability

Necking is one of the unstable phenomena in which the interaction between the 

material behavior and the geometric change during deformation plays an important 

role. When the reduction in the cross-sectional area is dominating compared to the 

material’s capability to harden during plastic deformations, necking starts to occur.  

Therefore, based on the strain hardening of the material, it is possible to fi nd out the 

borderline between necking failure and otherwise.

 Also, when plastic behavior initiates in a material, the deformations in the 

structure increases considerably with respect to load leading to ultimate instability.  

This is usually called the plastic buckling.

PROBLEMS

 9.1 The small weight can slide without friction on the surface AOB. Is the 

equilibrium at O stable?

Prob. 9.1  

 9.2 The rigid strut AB is pivoted without friction at B and is stabilized by a 

spring of stiffness k which is unstretched when x = 0. Find the critical value 

for a load P which is delivered by a rope passing through a guide at O.

Prob. 9.2  

 9.3 The system consists of three identical rigid bars pinned together and 

stabilized by the spring of constant k. A moment M is applied to the central 

bar, as shown. Find the critical value of M which marks the border line of 

elastic stability. What is the stability limit when M is reversed?
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Prob. 9.3   9.4 The rigid bar of length L is stabilized by a spiral spring which exerts a 

torque kq when the bar is turned through the angle q. Find the equilibrium 

defl ection angle as a function of the magnitude of P. For what values of P is 

the equilibrium stable? Assume that ⑀ is small and that the analysis can be 

limited to small angles q.

Prob. 9.4  

 9.5 The pivoted rigid strut is stabilized by the pair of linear springs oriented at 

the angle q shown. Find the critical value of the load P.

Prob. 9.5  
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 9.6 Show that the equations for small-displacement equilibrium of the system 

shown may be written as follows:

2 0

1
2

3
0

1 2

1 2

-Ê
ËÁ

ˆ
¯̃

- =

- + -Ê
ËÁ

ˆ
¯̃

=

kL

P
x x

x
kL

P
x

  Find the critical value of P which just holds the system in equilibrium in a 

displaced position.

Prob. 9.6  

 9.7 The springs AB and BC are weightless and make the small angle f when 

P = 0. Obtain the relation between the equilibrium angle q and the load P. 

Verify that it has the shape shown in the diagram. Discuss the stability on the 

various branches of this curve. What value of P causes “snap-through”?

Prob. 9.7  

 9.8 Find the critical elastic compressive load for a uniform fl exible beam which 

is hinged at both ends.

Prob. 9.8  
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 9.9 Find the critical elastic compressive load for a uniform fl exible beam which 

is clamped at both ends.

Prob. 9.9  

 9.10 Obtain an expression for the equilibrium defl ection d at the end of a 

cantilever column subjected to a compressive load P and a force F. Sketch 

the graph of d against P for constant F.

Prob. 9.10  

 9.11 The diagram of Fig. 9.21 can be made much more useful by plotting it in 

terms of dimensionless variables. Show that the instability locus is the same 

for all materials and all geometrical combinations if we plot P/AE against 

L/r, where r is the radius of gyration defi ned by I = Ar2. If we used such a 

diagram, what would be the signifi cance of the ordinate corresponding to BC 

in Fig. 9.21?

 9.12 A 1020 HR steel beam of square cross section is to be used as a cantilever 

column to support a weight of 12 kN. The length of the column is to be 2 m. 

What should the cross-sectional dimension be so that the load which would 

cause yielding or buckling is 50 kN?

 9.13 The system shown is similar to that considered in Sec. 9.2 except that the 

strut is not rigid and therefore may act like the hinged column of Prob. 9.8. 

Ascertain the mode of failure and the corresponding critical load P when the 

strut is a 25-mm-diameter 2024-T4 aluminum rod.

Prob. 9.13  
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 9.14 Use the fi rst two terms of the series expansion for cosine to verify that when 

P is small the defl ection given by (9.17) approaches MoL
2/2EI.

 9.15 Let the position of the pivoted strut be denoted by the angle q. Assume that 

the linear spring is effective in tension and in compression and that it always 

remains horizontal. Consider fi rst that the spring is unstretched when q = 0.

 (a) What is the critical value for the vertical load P when q = 0?

 (b) Determine the equilibrium value of P for large q; i.e., for any q in 0 < q 

< 2p.

 (c) For what range, or ranges, of q are the equilibrium positions in (b) 

stable?

  Next consider that the system has a slight imperfection so that the spring is 

unstretched when q = ⑀, where ⑀ is a very small angle.

 (d) Determine the equilibrium value of P as a function of q.

 (e) For what range, or ranges, of q are 

the equilibrium positions in (d) 

stable?

 (f) If P is slowly increased from zero, 

what is the value Pmax at which 

“snap-through” occurs?

 (g) Show that q jumps from q1 to q2 = 

p – q1 during snap-through, where 

sin3q1 = sin ⑀.

 (h) Show that for small q the 

geometrical nonlinearity in this 

problem can be modeled by the system of Fig. 9.16 with a nonlinearity 

parameter of b = –½.

 9.16 A spherical shell of radius ro has a thin wall of thickness to. The stress-strain 

curve of the (strain-hardening) material is known in the form of a true-stress 

s versus true-strain ⑀ curve for a uniaxial test specimen. When internal 

pressure p is introduced into the shell, it develops a state of biaxial tension 

and expands. Using (5.29) and (5.30) to defi ne s and ⑀ and assuming that 

the metal in the wall of the sphere deforms with no volume change, show 

that initially the pressure must increase to cause further expansion but that a 

maximum pressure occurs when

d

d

s
s

⑀

=
3

2

  For further expansion smaller pressures are required. What is the maximum 

pressure that the sphere can hold?

 9.17 In connection with necking of a tension member show that the tensile force 

which the member carries is given by

F
Ao=
+
s

1 ⑀

  and hence that the tensile strength Fmax/Ao is given by the intercept OC in 

Fig. 9.23.

Prob. 9.15
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 9.18 Find the elastic buckling load for the system of Fig. 9.26 on the assumption 

that the springs are completely linear; that is, F= ked for all defl ections d.

 9.19 The sketch shows a free body of the end portion of the cantilever column 

of Fig. 9.13(b). Show that substitution of the bending moment Mb into the 

moment-curvature relation (8.4) leads to the following differential equation:

EI
d v

dx
Pv P

2

2
+ = +( )⑀ d

  Verify that

v c
P

EI
x c

P

EI
x= + + +1 2sin cos ⑀ d

Prob. 9.19

  where c1 and c2 are arbitrary constants, is a solution to this differential 

equation. Show also that when the geometric boundary conditions at x = 0 

and x = L are satisfi ed, the result (9.18) is obtained for the tip defl ection d.

 9.20 Consider the nonlinear buckling model of Fig. 9.16 in the case b < 0. Show 

that the maximum point M in Fig. 9.20(a) for any value of the imperfection 

parameter ⑀/L lies on the curve

1 3
2

2
- = -

P

P

x

L

max

crit

b

  Verify that the equation for the curve displayed in Fig. 9.20(b) is

1
3 3

2

3
2

-
Ê
ËÁ

ˆ
¯̃

=
-P

P L

P

P
max max

crit crit

b ⑀

 9.21 Reconsider the nonlinear buckling model of Fig. 9.16 for the case where the 

spring relation is

f = kx(1 + ax/L)

  in place of (9.19). Sketch the ideal postbuckling curves for a > 0 and a < 

0. Rework Prob. 9.20 for the case a < 0. Show that for x > 0 the maximum 

point corresponding to M in Fig. 9.20a lies on the curve

1 2- = -
P

P

x

L
max

crit

a
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  and the equation for the curve corresponding to that in Fig. 9.20(b) is

1 4

2

-
Ê
ËÁ

ˆ
¯̃

= -
P

P L

P

P
max max

crit crit

a
⑀

 9.22 Consider Fig. 9.31 for the strain-hardening-column model. Show that the 

abscissa of the point C is given by

q =
-
+

c

L

k k

k k
e t

e t

 9.23 When the load P in Fig. 9.26 is applied with an eccentricity ⑀, the resulting 

force-defl ection curve has the form OMN in Fig. 9.31. For small P both 

springs compress, but at different rates, when P is increased. For values of P 

approaching Pmax, spring B compresses and spring A decompresses when P 

is increased. Show that the load Pr at which the force in spring A fi rst begins 

to decrease is smaller than the tangent-modulus load; that is, Pr < Pt.



Answers to 

Selected 

Problems

Chapter 1

 1.9 FA = 900 N, FB = 1800 N, FC = 900 N

 1.11 FAB = FBC = 260 N compression

  FAC = 320 N compression

 1.13 (a) 1866 N (b) 607 N

 1.18 F = 100i –1,000k lb

  M = –2,000i + 2,500j + 2,700k ft-lb

 1.23 |F| = 0.468 kN

  |M| = 0.145 kN◊m
 1.24 (a) 1364 lb (b) 0.27

 1.27 (b) f = 0.2

 1.29 F
A
 = 40j – 200k N

  F
B
 = 40j + 299k N

  F
C
 = 151.5k N

Chapter 2

 2.2 2.63 MN/m2

 2.6 (b) 0.024 in. to left, 0.11 in. down

 2.7 3.6 mm

 2.16 5,700 lb

 2.19 
3
2

a

 2.22 1.7 in.

 2.24 29,400 lb

 2.27 P
W

f
e f= - p

 2.34 59.11 ft

 2.36 0.077 in. if case slides down the ramp and comes to rest against the upper 

end of the wood; 0.135 in. if the bottom end of the wood is placed in hole in 
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ramp and the upper end is wedged against the case until it is in the position 

shown in the sketch

 2.39 0.0048 in.; 65 lb

Chapter 3

 3.6 Vmax = woL, (Mb) ax = 1
2

woL
2, at wall

 3.9 F = –P cos q, V = P sin q, Mb = –PR cos q

 3.14 At 1, Fx = 400 N, Mb = 60 N·M

  At 2, Fx = 400 N, Fa = 150 N, Mb = 37.5 N◊m
 3.25 a = 0.586L

 3.26 x = 0.7L

 3.28 T = 0.432D

 3.29 Mt = 0.988 PR, Mb = 0.157 PR

 3.30 Mb = 6,700 in.-lb, Mt = 2,120 in.-lb in the 18-in. bar; Mb = 15,000 in.-lb,

  Mt = 6,370 in.-lb in the 24-in. bar

 3.37 Vmax = 339 lb ( A to B)

  (Mb)max = 4,060 in.-lb (at B)

  (Mt)max = 900 in.lb (B to C)

 3.39 V = 2.0 kN, (Mb)max = 733 N◊m
  Mt = 115 N.m

 3.40 V = 4.0 kN, (Mb)max = 200 N◊m; Mt = 282 N◊m

Chapter 4

 4.7 (a) s1 = 102.5 MN/m2

   s2 = –62.5 MN/m2

   q1 = 36.0°

  (b) s1 = 165 MN/m2

   s2 = –5 MN/m2

   q1 = –22.5°

  (c) s1 = 96 MN/m2

   s2 = –166 MN/m2

   q1 = 65.2°

 4.8 sx = 105 MN/m2

  q1 = –26.6°

 4.11 F = –2p r2p

  F   0

 4.15 sa = 7.5 MN/m2

  sb = 52.5 MN/m2

  tab = –39.0 MN/m2
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 4.20  1 = 981 ¥ 10–6

   11 = –81 ¥ 10–6

  q1 = –24.4°

 4.22 (a)  1 = 1,000 ¥ 10–6

    11 = 0

 4.25 w = 4.9r

 4.26 (b) q1 = –28.2°

 4.27 (a) p = 0, F = 126,000 lb

 4.32 a = 54.8°

Chapter 5

 5.9 95 MN/m2

 5.10 sx = –24.7 MN/m2, sa = 0.17 MN/m2, txy = 21.2 MN/m2

 5.12 p = 2tE o /(1 – 2v)r

 5.14 340 psi

 5.16 Approximately 55°F for v = 
1
3

 5.20 F = (1 – 2v)pr2p

 5.23 (2 – v)/(1 – v)

 5.24 u
p

bhE
x v v

P

bhE
y w v

P

bhE
z= = - = -, ,

 5.27 (a) No (b) Yes

 5.29 Zero

 5.30 (a) –5,000 psi in cladding, zero in core

  (b) –5,000 psi in cladding, 1,220 psi in core

 5.31 (a) 2AY cos q

  (b) AY increase

  (c) s
q

=
+
PL

AE( cos )1 2 3

  (d) s
q

q
res = -

+
+

-Ê
ËÁ

ˆ
¯̃

Y
1 2

1 2
1

3

cos

cos

Chapter 6

 6.3 f =
+

M L

G I G I

t

1 1 2 2

  

tq z
t

i

M G r

G I G I
r r=

+
< <1
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0for

  

tq z
t

i o

M G r
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+
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for
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where I

r
I r rt

o i1

4

2
4 4

2 2
= = -

p p
( )

 6.4 t = 3,140 psi, f = 0.60°

 6.8 t =33.8 MN/m2 in top shaft, t = 24.8 MN/m2 in bottom shaft

 6.13 (a) Mt = 363 N◊m (b) Mt = 1130 N◊m; fY = 12.6°

 6.21 (a) Impossible

 6.23 466 lb

 6.24 L = 2.55 m, 2f = 6.9 rad

 6.25 1.82°

 6.26 840 N◊m
 6.28 1,570 psi

 6.40 t
p

f
p

= =
7

4

49

163 2

2

7

M

r

kLM

r

t

o

t

o

,

Chapter 7

 7.8 Izz = 2.164 × 107 mm4

 7.15 t = 0.42 mm; 140 MN/m2

 7.18 a
s

= =
3

2 10
; w

t
o

T

 7.19 P
Ewt

Rc
=

3

36

 7.24 x L
PL

bd
x= =; ( )maxs

3

4 2

 7.29 4; 0.5

 7.35 500 N/m

 7.40 1.40; 1.02

 7.41 2.94 in.

 7.45 
2

7

L

h

 7.48 2.47; 0.37

 7.52 5.80 × 105 in.-lb

 7.53 0.84 in.; 7.25 × 105 in.-lb

 7.54 1.09 × 106 in.-lb

 7.56 56.4 mm

 7.57 13,200-psi compression

 7.59 311 MN/m2

 7.63 P
r Y

a
= 0 770

2

.

 7.65 K = 1.71
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Chapter 8

 8.2 
5

768

4wL

EI

 8.3 
PL

EI

3

12

 8.4 
Pa

EI
L a

24
3 42 2( )-

 8.7 
M

EI
L ao

3
3( )+

 8.8 
6

2

EI

L

d

 8.9 
7

24

M L

EI

o

 8.10 
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EI EI kL

3

33
1

25

32 24 1
-

+
È

Î
Í
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 8.14 
WL

EI

3

15

 8.26 36.5 MN/m2

 8.28 4.68 × 10–4 m4

 8.34 
PL

EI

3

48

 8.35 
17

18 48

3WL

EI

 8.39 3

2
3

8

9

3

3
loge

PL

Ebd
-Ê
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ˆ
¯̃

 8.44 a = 0.211 L

 8.45 a = 0.223 L

 8.48 
8

3 3
3

2 2EI

L
L RL R( )+ +

 8.50 
8

3

M

L

L

 8.51 
16
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Chapter 9

 9.2 2kL

 9.3 
1
2

2kL

 9.4 P < k/L

 9.6 1
3

kL

 9.7 “Snap-through” occurs when P kL=
2

3 3

3f

 9.13 14.1 kN

 9.18 P
kc

L
crit =

2 2
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