

PHP PROGRAMMING WITH MYSQL

PHP PROGRAMMING

WITH MYSQL

D O N G O S S E L I N , D I A N A K O K O S K A ,

R O B E R T E A S T E R B R O O K S

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

S E C O N D E D I T I O N

© 2011 Course Technology, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored or used in any form or by
any means—graphic, electronic, or mechanical, including but not limited
to photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 United States Copyright
Act—without the prior written permission of the publisher.

Library of Congress Control Number: 2009940005

ISBN-13: 978-0-5387-4584-0
ISBN-10: 0-5387-4584-3

Course Technology
20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions with
offi ce locations around the globe, including Singapore, the United Kingdom,
Australia, Mexico, Brazil, and Japan. Locate your local offi ce at:
www.cengage.com/global

Cengage Learning products are represented in Canada by
Nelson Education, Ltd.

To learn more about Course Technology, visit
www.cengage.com/coursetechnology

Purchase any of our products at your local college store or at our preferred
online store www.CengageBrain.com

Some of the product names and company names used in this book have
been used for identifi cation purposes only and may be trademarks or regis-
tered trademarks of their respective manufacturers and sellers.

Course Technology, a part of Cengage Learning, reserves the right to revise
this publication and make changes from time to time in its content without
notice.

PHP Programming with MySQL, Second
Edition
Don Gosselin, Diana Kokoska, Robert
Easterbrooks

Executive Editor: Marie Lee

Acquisitions Editor: Amy Jollymore

Managing Editor: Tricia Coia

Senior Product Manager: Alyssa Pratt

Developmental Editor: Dan Seiter

Content Project Manager: Jennifer Feltri

Editorial Assistant: Zina Kresin

Art Director: Marissa Falco

Text Designer: Shawn Girsberger

Cover Designer: Cabbage Design Company

Cover Image: © CSA Images

Print Buyer: Julio Esperas

Copy Editor: Camille Kiolbasa

Proofreader: Andrea Schein

Indexer: Alexandra Nickerson

Compositor: Integra

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,
submit all requests online at www.cengage.com/permissions

Further permissions questions can be e-mailed to
permissionrequest@cengage.com

Printed in the United States of America

1 2 3 4 5 6 7 13 12 11 10

www.cengage.com/global
www.cengage.com/coursetechnology
www.CengageBrain.com
www.cengage.com/permissions

Brief Contents

 Preface xiv

CHAPTER 1 Gett ing Star ted wi th PHP 1

CHAPTER 2 Funct ions and Contro l Structures 74

CHAPTER 3 Manipulat ing Str ings 124

CHAPTER 4 Handl ing User Input 188

CHAPTER 5 Work ing wi th F i les and Director ies 233

CHAPTER 6 Manipulat ing Arrays 298

CHAPTER 7 Work ing wi th Databases and MySQL 380

CHAPTER 8 Manipulat ing MySQL Databases with PHP . . 446

CHAPTER 9 Managing State Informat ion 496

CHAPTER 10 Developing Object -Or iented PHP 556

APPENDIX A Work ing wi th XHTML 620

APPENDIX B Conf igur ing a Personal Web Server 636

APPENDIX C Formatt ing Str ings. 641

APPENDIX D Secure Coding with PHP 648

APPENDIX E Error Handl ing and Debugging. 655

APPENDIX F Connect ing to SQL Server
and Oracle Databases 671

 Index 679

v

Contents

 Preface xiv

CHAPTER 1 Gett ing Star ted wi th PHP 1

Creating Basic PHP Scripts 2
Creating PHP Code Blocks 3

Standard PHP Script Delimiters 3
The <script> Element 6
Short PHP Script Delimiters 8
ASP-Style Script Delimiters 9
Understanding Functions 10
Displaying Script Results12
Creating Multiple Code Declaration Blocks 17
Case Sensitivity in PHP20
Adding Comments to a PHP Script20

Using Variables and Constants 22
Naming Variables .23
Declaring and Initializing Variables23
Displaying Variables 24
Modifying Variables 25
Defining Constants28

Working with Data Types 30
Numeric Data Types 31
Boolean Values .33
Arrays .33
Avoiding Assignment Notation Pitfalls 40

Building Expressions40
Arithmetic Operators41
Assignment Operators 48
Comparison and Conditional Operators. 51
Logical Operators .55
Special Operators .58
Type Casting .59
Understanding Operator Precedence61

vi

Summing Up .63
Comprehension Check 65
Reinforcement Exercises68
Discovery Projects . .72

CHAPTER 2 Funct ions and Contro l Structures 74

Working with Functions75
Defining Functions75
Calling Functions. .77
Returning Values . .78

Understanding Variable Scope 82
The global Keyword 82

Making Decisions .83
if Statements .84
if . . . else Statements 87
Nested if and if . . . else Statements 89
switch Statements 92

Repeating Code .95
while Statements. 96
do . . . while Statements 100
for Statements . 103
foreach Statements 105

Including Files . 109
Summing Up . 111
Comprehension Check 112
Reinforcement Exercises 116
Discovery Projects . 122

CHAPTER 3 Manipulat ing Str ings 124

Constructing Text Strings. 125
Working with String Operators 126
Adding Escape Characters and Sequences 128
Simple and Complex String Syntax 131

Working with a Single String 134
Counting Characters and Words in a String 134
Modifying the Case of a String 135
Encoding and Decoding a String. 138
Other Ways to Manipulate a String 139

Working with Multiple Strings 141
Finding and Extracting Characters and Substrings 141
Replacing Characters and Substrings 144
Dividing Strings into Smaller Pieces 147

vii

 C O N T E N T S

Converting between Strings and Arrays 151
Comparing Strings . 154

String Comparison Functions 156
Determining the Similarity of Two Strings 158
Determining if Words Are Pronounced Similarly 159

Working with Regular Expressions 160
Writing Regular Expression Patterns 161
Matching Any Character 162
Matching Characters at the Beginning or End of a String . 163
Matching Special Characters 163
Specifying Quantity 164
Specifying Subexpressions 165
Defining Character Classes 166
Matching Multiple Pattern Choices 169
Pattern Modifiers 169

Summing Up . 171
Comprehension Check 172
Reinforcement Exercises 175
Discovery Projects . 180

CHAPTER 4 Handl ing User Input 188

Using Autoglobals . 189
Building XHTML Web Forms 191

Adding an action Attribute 192
Adding a method Attribute 192

Processing Form Data 194
Retrieving Submitted Data 194

Handling Submitted Form Data 199
Determining if Form Variables Contain Values 199
Validating Entered Data 199
Handling Multiple Errors 201
Redisplaying the Web Form 203
Using the Submitted Data 206

Creating an All-in-One Form 209
Validating an All-in-One Form 209
Processing the Web Form. 210
Redisplaying the Web Form 210

Displaying Dynamic Content Based on a URL Token 212
Using a Web Page Template. 212
Navigating within a Web Page Template 214
Displaying the Dynamic Content 214

Summing Up . 218
Comprehension Check 219

viii

C O N T E N T S

Reinforcement Exercises 221
Discovery Projects . 229

CHAPTER 5 Work ing wi th F i les and Director ies 233

Understanding File Types and Permissions 234
Understanding File Types 234
Working with File Permissions 236

Working with Directories 238
Reading Directories 238
Creating Directories 241
Obtaining File and Directory Information 242

Uploading and Downloading Files 247
Uploading Files . 247
Downloading Files 252

Reading and Writing Entire Files 257
Writing an Entire File 257
Reading an Entire File 262

Opening and Closing File Streams 267
Opening a File Stream 267
Closing a File Stream. 270
Writing Data Incrementally 270
Locking Files . 272
Reading Data Incrementally 275

Managing Files and Directories 278
Copying and Moving Files 278
Renaming Files and Directories 280
Removing Files and Directories 281

Summing Up . 283
Comprehension Check 285
Reinforcement Exercises 288
Discovery Projects . 292

CHAPTER 6 Manipulat ing Arrays 298

Manipulating Elements 299
Adding and Removing Elements from the Beginning

of an Array . 304
Adding and Removing Elements from the End of an Array . 308
Adding and Removing Elements Within an Array 310
Removing Duplicate Elements 314

Declaring and Initializing Associative Arrays 316
Iterating Through an Array 323
Finding and Extracting Elements and Values 328

ix

 C O N T E N T S

Determining if a Value Exists 328
Determining if a Key Exists 333
Returning a Portion of an Array 334

Manipulating Arrays 336
Sorting Arrays . 336
Combining Arrays 343
Comparing Arrays 348

Understanding Multidimensional Arrays 350
Creating Two-Dimensional Indexed Arrays 351
Creating Two-Dimensional Associative Arrays 355
Creating Multidimensional Arrays with

a Single Statement 356
Working with Additional Dimensions 357

Using Arrays in Web Forms 359
Summing Up . 365
Comprehension Check 366
Reinforcement Exercises 369
Discovery Projects . 376

CHAPTER 7 Work ing wi th Databases and MySQL 380

Introduction to Databases 381
Understanding Table Relationships 382
Working with Database Management Systems 388
Querying Databases with Structured Query

Language (SQL) 390
Getting Started with MySQL 392

Logging in to MySQL 392
Working with MySQL Monitor 394
Understanding MySQL Identifiers 395
Getting Help with MySQL Commands 396

Working with MySQL Databases 399
Creating Databases 399
Selecting a Database. 400
Deleting Databases 401

Defining Database Tables 402
Specifying Field Data Types 402
Creating Tables . 404
Altering Tables. . 406
Deleting Tables . 408

Modifying User Privileges 408
Granting Privileges 409
Revoking Privileges 411

x

C O N T E N T S

Working with Database Records 412
Adding Records . 412
Retrieving Records 415
Using Aggregate Functions 418
Sorting Query Results 421
Filtering Query Results 423
Updating Records 425
Deleting Records 427

Working with phpMyAdmin 428
Logging in to phpMyAdmin 428
Working with Databases 431
Working with Tables 432
Exporting and Importing Tables 432

Summing Up . 433
Comprehension Check 435
Reinforcement Exercises 438
Discovery Projects . 443

CHAPTER 8 Manipulat ing MySQL Databases with PHP . . 446

Connecting to MySQL with PHP 448
Determining which MySQL Package to Use 448
Opening and Closing a MySQL Connection 448
Reporting MySQL Errors 451
Suppressing Errors with the Error Control Operator 452

Working with MySQL Databases 453
Creating a Database 453
Selecting a Database. 455
Deleting a Database 458

Working with Tables 459
Using mysql_query() 459
Creating and Deleting Tables 460

Manipulating Records 464
Adding, Deleting, and Updating Records 464
Returning Information on Affected Records 469

Retrieving Records. 473
Working with Query Results 473
Closing Query Results 479
Accessing Query Result Information 479

Summing Up . 482
Comprehension Check 483
Reinforcement Exercises 487
Discovery Projects . 493

xi

 C O N T E N T S

CHAPTER 9 Managing State Informat ion 496

Understanding State Information 497
Using Hidden Form Fields to Save State Information 506
Using Query Strings to Save State Information 515
Using Cookies to Save State Information 517

Creating Cookies 518
The name and value Arguments 519
The expires Argument 521
The path Argument 525
The domain Argument 525
The secure Argument 526
Reading Cookies . 526
Deleting Cookies . 529

Using Sessions to Save State Information 530
Starting a Session 531
Working with Session Variables 532
Deleting a Session 536

Summing Up . 538
Comprehension Check 539
Reinforcement Exercises 542
Discovery Projects . 548

CHAPTER 10 Developing Object -Or iented PHP 556

Introduction to Object-Oriented Programming 557
Understanding Encapsulation 559
Object-Oriented Programming and Classes 560

Using Objects in PHP Script 563
Working with Database Connections as Objects 565
Defining Custom PHP Classes 573
Collecting Garbage. 578

Declaring Data Members 578
What Is Information Hiding? 579
Using Access Specifiers 580
Serializing Objects 582

Working with Member Functions 584
Using the $this Reference. 585
Initializing with Constructor Functions 585
Cleaning Up with Destructor Functions 587
Writing Accessor and Mutator Functions 588
Serialization Functions 594

Summing Up . 600
Comprehension Check 601

xii

C O N T E N T S

Reinforcement Exercises 604
Discovery Projects . 611

APPENDIX A Work ing wi th XHTML 620

APPENDIX B Conf igur ing a Personal Web Server 636

APPENDIX C Formatt ing Str ings. 641

APPENDIX D Secure Coding with PHP 648

APPENDIX E Error Handl ing and Debugging. 655

APPENDIX F Connect ing to SQL Server
and Oracle Databases 671

 Index 679

xiii

 C O N T E N T S

Preface

PHP: Hypertext Preprocessor, or PHP, is an open source program-
ming language that is used for developing interactive Web sites. More
specifi cally, PHP is a scripting language that is executed from a Web
server. Created in 1995, PHP is one of the fastest-growing program-
ming languages today. Th e TIOBE Programming Community Index1
ranked PHP as the third most popular programming language in the
world.

One of the primary reasons for PHP’s popularity is its simplicity. Th e
language is relatively easy to learn, allowing new programmers to
quickly incorporate PHP functionality into a Web site. MySQL is an
open source relational database that is often used with PHP. Together,
PHP and MySQL are becoming one of the most popular technology
combinations for Web site development.

PHP is a dynamic, growing language with new functionality added
on a regular basis. PHP is supported by a community of developers
and users who add features and contribute updates that expand the
functionality of the code. Th e PHP Group coordinates the develop-
ment eff orts of more than 400 user groups in more than 80 countries.
Although the PHP Group does not impose formal specifi cations, it
does issue recommendations for how PHP should and should not be
used. Complete documentation for all versions of the PHP language
is available at www.php.net. You should bookmark this site, because it
will become your primary point of reference as you progress through
this book.

PHP Programming with MySQL teaches Web development with
PHP and MySQL for students with little programming or database
experience, although knowledge of XHTML and Web page design is
helpful. Th is book covers the basics of PHP and MySQL along with
introductions to advanced topics, including object-oriented program-
ming and how to build Web sites that incorporate authentication and
security. After you complete this course, you will be able to use PHP
and MySQL to build professional-quality, database-driven Web sites.

Appendix A
provides a
refresher on
scripting in
XHTML,

 validating XHTML code
(including an explanation
of the Strict DTD), and
formatting with
Cascading Style Sheets
(CSS).

1 Th e TIOBE Programming Community Index at http://www.tiobe.com/index.php/content/
paperinfo/tpci/index.html for September 2009.

xiv

www.php.net
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

The Approach
Th is book introduces a variety of techniques, focusing on what you
need to know to start writing PHP scripts. In each chapter, you build
and create PHP scripts using the new concepts introduced in the
chapter. Each chapter ends with a chapter summary, review ques-
tions, Reinforcement Exercises, and Discovery Projects that highlight
major concepts and let you apply the concepts you have learned. Th e
Reinforcement Exercises include both guided and free-form exercises
that reinforce the skills you learn in the chapter and provide addi-
tional ways to apply your knowledge in new situations. At the end of
each chapter, you will also complete Discovery Projects to apply the
skills you learned in the chapter and expand the functionality of an
ongoing comprehensive Web site project.

Overview of This Book
Th e examples and exercises in this book will help you achieve the fol-
lowing objectives:

Learn how to use PHP with well-formed Web pages •

Understand PHP variables and data types and the operations that •
can be performed on them

Add functions and control structures to your PHP scripts •

Use PHP to manipulate strings •

Use PHP with Web forms •

Access fi les and directories with PHP •

Use PHP to manipulate data in arrays •

Work with databases and MySQL •

Manipulate MySQL databases with PHP •

Save state information using hidden form fi elds, query strings, •
cookies, and sessions

Include object-oriented programming techniques in your PHP •
scripts

PHP Programming with MySQL presents 10 chapters that cover spe-
cifi c aspects of PHP and MySQL Web development. Chapter 1 intro-
duces the basic structure and syntax of PHP and discusses variables,
data types, expressions, and operators. Th is early introduction of key
PHP concepts gives students a framework for better understand-
ing more advanced concepts and techniques later in this book, and

xv

P R E FA C E

allows them to work on more comprehensive projects from the start.
Chapter 2 covers functions and introduces structured logic using
control structures and statements. Chapter 3 discusses techniques
for manipulating strings. Chapter 4 introduces dynamic hyperlinks,
processing form data, and handling user input with PHP. Chapter 5
explains how to read and store data in text fi les on a local computer.
Chapter 6 covers advanced techniques for working with indexed and
associative arrays. Chapter 7 introduces how to work with MySQL
databases, while Chapter 8 discusses techniques for working with
MySQL databases with PHP. Chapter 9 explains how to save state
information using hidden form fi elds, query strings, cookies, and ses-
sions. Chapter 10 presents basic object-oriented programming tech-
niques that you can use in your PHP scripts.

New to This Edition!
Th is edition includes several enhancements:

Th e previous edition of this book included chapters on Web script- •
ing and confi guring a Web server. To allow this book to introduce
PHP scripting in the fi rst chapter, these two topics have been
moved to Appendix A and Appendix B.

Facts, Carefuls, and Pointers appear in the margin for easier •
identifi cation.

Examples have been enhanced, and exercises and projects have •
been updated. A comprehensive Web development project that
applies chapter concepts begins in Chapter 1 and continues
through Chapter 10, resulting in a PHP code demonstration site.

Th e chapter on manipulating strings (now Chapter 3) has been •
expanded to include Perl Compatible Regular Expressions (PCRE).

A new chapter, Handling User Input (Chapter 4), contains sepa- •
rate, expanded coverage of Web forms and Web templates.

Th e chapter on fi les and directories (now Chapter 5) has a new •
topic that discusses uploading and downloading fi les.

Th e chapter on manipulating arrays (Chapter 6) now includes cov- •
erage of square bracket notation to process form input.

Debugging techniques are introduced in the database chapters as •
they naturally occur in the scripts. Advanced topics are covered in
the appendix.

Two appendices have been added. Appendix E addresses error •
handling and debugging, and Appendix F discusses connecting to
SQL Server and Oracle databases.

xvi

P R E FA C E

Supplemental materials have been expanded with the addition of a •
midterm exam, fi nal exam, and comprehensive guided project.

Features
PHP Programming with MySQL is a superior textbook because it
includes the following features:

CHAPTER OBJECTIVES. Each chapter in this book begins with a list
of the important concepts to be mastered within the chapter. Th is list
provides you with a quick reference to the contents of the chapter as
well as a useful study guide.

ILLUSTRATIONS AND TABLES. Illustrations help you visualize
common components and relationships. Tables list conceptual items
and examples in a visual and readable format.

POINTERS. Th ese helpful asides provide you with practical
advice and proven strategies related to the concept being
discussed.

FACTS. Th ese notes provide additional helpful information
on specifi c techniques and concepts.

CAREFUL. Th ese short warnings point out troublesome issues
that you need to watch for when writing PHP scripts.

SHORT QUIZZES. Quick comprehension checks at the end of each
major topic assess understanding of the section material.

SUMMING UP. Th ese brief overviews of chapter content provide a
helpful way to recap and revisit the ideas covered in each chapter.

COMPREHENSION CHECK. Th is set of 20 review questions rein-
forces the main ideas introduced in each chapter. Th ese questions will
help you determine how well you understand the concepts covered in
the chapter.

REINFORCEMENT EXERCISES. Although it is important to
understand the concepts behind PHP programming, no
amount of theory can improve on applied knowledge. To this

end, along with conceptual explanations, each chapter provides
Reinforcement Exercises for each major topic to give you practical
experience. Because the Reinforcement Exercises require diff erent
solutions from the exercises in the chapter, they provide you with a
wider variety of situations to practice implementing PHP.

xvii

P R E FA C E

DISCOVERY PROJECTS. Th e Discovery Projects at the
end of each chapter are designed to help you apply what

you have learned to a single, comprehensive Web site. Th e Web site
will become more diverse and functional as you progress through the
chapters. In addition, many of the Discovery Projects can be trans-
lated or modifi ed into real-world Web applications.

Instructor Resources
Th e following supplemental materials are available when this book
is used in a classroom setting. All of the resources available with this
book are provided to the instructor on a CD.

Electronic Instructor’s Manual • . Th e Instructor’s Manual that
accompanies this textbook includes additional instructional mate-
rial to assist in class preparation, including items such as Sample
Syllabi, Chapter Outlines, Technical Notes, Lecture Notes, Quick
Quizzes, Teaching Tips, Discussion Topics, and Sample Midterm
and Final Projects.

ExamView • ®. Th is textbook is accompanied by ExamView, a power-
ful testing software package that allows instructors to create and
administer printed, computer (LAN-based), and Internet exams.
ExamView includes hundreds of questions that correspond to the
topics covered in this text, enabling students to generate detailed
study guides that include page references for further review. Th e
computer-based and Internet testing components allow students
to take exams at their computers, and save the instructor time by
grading each exam automatically.

PowerPoint Presentations • . Th is book comes with Microsoft
PowerPoint slides for each chapter. Th ese are included as a teach-
ing aid for classroom presentation and can be made available to
students on the network for chapter review or printed for class-
room distribution. Instructors can add their own slides for addi-
tional topics they introduce to the class.

Data Files • . Files that contain all of the data necessary for complet-
ing the Reinforcement Exercises and Discovery Projects are pro-
vided through the Course Technology Web site at www.cengage.
com/coursetechnology, and are also available on the Instructor’s
Resource CD.

Solution Files • . Solutions to end-of-chapter review questions,
Reinforcement Exercises, and Discovery Projects are provided on the
Teaching Tools CD and the Course Technology Web site at www.cen-
gage.com/coursetechnology. Th e solutions are password protected.

xviii

P R E FA C E

www.cengage.com/coursetechnology
www.cengage.com/coursetechnology
www.cen-gage.com/coursetechnology
www.cen-gage.com/coursetechnology

Distance Learning • . Course Technology is proud to pres-
ent online test banks in WebCT and Blackboard, to provide
the most complete and dynamic learning experience possible.
Instructors are encouraged to make the most of the course, both
online and offl ine. For more information on how to access your
online test bank, contact your local Course Technology sales
representative.

Acknowledgements
A text such as this represents the hard work of many people, not
just the authors. We would like to thank all the people who helped
make this book a reality. First and foremost, we thank Dan Seiter,
Development Editor; Tricia Coia, Managing Editor; Alyssa Pratt,
Senior Product Manager and Amy Jollymore, Acquisitions Editor, for
helping us get the job done. We also thank Jennifer Feltri and Tintu
Th omas, Content Project Managers.

Many, many thanks to the reviewers who provided plenty of com-
ments and positive direction during the development of this book:
Mathew Cantore, Hudson Valley Community College; Kathleen
Harmeyer, University of Baltimore; Michael McLaughlin, Brigham
Young University – Idaho; and Zizhong Wang, Virginia Wesleyan
College.

We also thank our families and friends for their support during this
process. We would especially like to thank our spouses, John and
Linda, for putting up with our odd schedules and long hours. Diana
would like to recognize her students at the University of Maine at
Augusta, who make teaching such an enjoyable experience. Bob’s
children, Teresa and Phillip, provided plenty of enthusiastic support
and encouragement as well.

Read This Before You Begin
Th e following information will help you as you prepare to use this
textbook.

To the User of the Data Files
To complete the steps and projects in this book, you will need data
fi les that have been created specifi cally for this book. You can obtain
the fi les electronically from the Course Technology Web site by con-
necting to www.cengage.com/coursetechnology and then searching for
this book title.

xix

P R E FA C E

www.cengage.com/coursetechnology

Using Your Own Computer
You can use a computer in your school lab or your own computer
to complete the chapters, Reinforcement Exercises, and Discovery
Projects in this book. To use your own computer, you will need the
following:

A Web browser • , such as Microsoft Internet Explorer 7 or later or
Mozilla Firefox 3 or later.

A code-based HTML editor • or a text editor, such as
Notepad++. A word-processing program will not work, as it
inserts formatting information into the document that will
cause your scripts to fail.

An FTP client • that will allow you to upload your completed fi les
to a remote Web server.

If you choose to install your own PHP Web server, but not use one
of the xAMP packages as explained in Appendix B, you will need the
following:

A Web server • , such as Apache HTTP Server or Microsoft
Internet Information Services.

PHP 5 or later • . PHP is a server-side scripting language developed
by the PHP Group (http://www.php.net/).

MySQL 4.1 or later • . MySQL is an open source database devel-
oped by MySQL AB (http://www.mysql.com/).

To the Instructor
To complete all the exercises and chapters in this book, your stu-
dents must work with a set of data fi les. You can obtain the data
fi les through the Course Technology Web site at www.cengage.com/
coursetechnology.

Course Technology Data Files
You are granted a license to copy the data fi les to any computer or
computer network used by people who have purchased this book.

Visit Our World Wide Web Site
Additional materials designed especially for this book might be available
for your course. Periodically search www.cengage.com/coursetechnology
for more information and materials to accompany this text.

Appendix B
contains
detailed
instructions
on how to use

xAMP to install an Apache
Web server, PHP, and
MySQL.

xx

P R E FA C E

http://www.php.net/
http://www.mysql.com/
www.cengage.com/coursetechnology
www.cengage.com/coursetechnology
www.cengage.com/coursetechnology

C H A P T E R 1
Getting Started
with PHP

In this chapter you will:

Create basic PHP scripts

Create PHP code blocks

Work with variables and constants

Study data types

Use expressions and operators

PHP: Hypertext Preprocessor, or PHP, is an open-source, server-
side programming language. PHP is specifi cally designed to fi ll the
gap between static HTML pages and fully dynamic pages, such as
those generated through CGI code. PHP is embedded directly in the
XHTML source code; throughout the book you will apply the W3C
standard syntax and structure for XHTML documents and integrate
CSS to format the document for browser display. You will explore the
basic syntax and structure of the PHP scripting language and learn to
upload fi les to a remote server.

As you progress through the book, functional examples and com-
prehensive, hands-on learning activities will reinforce the concepts
presented and demonstrate how PHP and MySQL work together to
provide the Web developer with a set of tools that build content-rich
Web applications with database connectivity.

You will write your PHP scripts in a basic text editor. An editor
designed to work with XHTML, with features such as built-in syntax
highlighting and indentation, is helpful but not necessary. To run the
PHP script, you will need an FTP client to upload the PHP source
code fi les to a Web server and have access to a browser to view the
Web pages on the Internet. In this chapter, you will study the basics of
how to create PHP scripts.

Creating Basic PHP Scripts
JavaScript and PHP are both referred to as embedded languages
because code for both languages is embedded within a Web page
(either an HTML or XHTML document). You type this code directly
into a Web page as a separate section. Although JavaScript code can
be added to standard Web page documents that have an extension
of .html, a Web page document containing PHP code must have an
extension of .php. Whenever a request is made for a document with
an extension of .php, the Web server sends the fi le to the scripting
engine for processing. Th e scripting engine then processes any PHP
code it encounters. Although PHP fi les use an extension of .php, they
can contain the same HTML or XHTML elements you would fi nd in
a static Web page. Th e scripting engine ignores any non-PHP code
and only processes the PHP code it fi nds within PHP code blocks
(which you study next). Th e Web server then returns the results of the
PHP script and any HTML or XHTML elements found in the PHP fi le
to the client, where the fi le is rendered by the client’s Web browser. In
most cases, the results returned from a PHP script, such as database
records, are formatted with HTML or XHTML elements. Th is means
that PHP code is never sent to a client’s Web browser; only the result-
ing Web page that is generated from the PHP code and HTML or

2

C H A P T E R 1 Getting Started with PHP

XHTML elements found within the PHP fi le are returned to the cli-
ent. Later in this chapter, you will see an example of a Web page that is
returned to a client from a PHP fi le that contains both PHP code and
XHTML elements. First, you need to learn about PHP code blocks.

Short Quiz

1. Defi ne the term “embedded language” as it applies to PHP.

2. Why should you avoid using the .php extension if the
 document contains only XHTML code?

3. Explain why you do not see any PHP code when you view the
source code of a PHP page in the browser.

Creating PHP Code Blocks
You write PHP scripts within code declaration blocks, which are
separate sections on a Web page that are interpreted by the scripting
engine. You can include as many code declaration blocks as you want
within a document. Th is section discusses the following four types of
code declaration blocks you can use to write PHP:

Standard PHP script delimiters •

Th e • <script> element

Short PHP script delimiters •

ASP-style script delimiters •

Standard PHP Script Delimiters
Th e standard method of writing PHP code declaration blocks is to
use the <?php and ?> script delimiters. A delimiter is a character
or sequence of characters used to mark the beginning and end of a
code segment. When the scripting engine encounters the <?php and
?> script delimiters, it processes any code between the delimiters as
PHP. Th e individual lines of code that make up a PHP script are called
statements. You need to use the following syntax in a document to
tell the Web server that the statements that follow must be inter-
preted by the scripting engine:
<?php
statements;
?>

It is possible
to create a
PHP fi le that
does not
need to con-
tain any PHP

code. However, if the fi le
contains no PHP code,
you should name the fi le
with an extension of .html
to avoid having the fi le
processed by the script-
ing engine unnecessarily.

You can use
any valid
extension
you want for
your PHP
scripts,

 provided that your Web
server is confi gured to
process the extensions
you use with the scripting
engine. However, .php is
the default extension that
most Web servers use to
process PHP scripts. For
this reason, the fi les you
create with this book that
contain PHP code will
have an extension of .php.

3

Creating PHP Code Blocks

Th e following script contains a single statement that writes the text
“Explore Africa!” to a Web browser window using an echo statement,
as you will study shortly:
<?php
echo "Explore Africa!";
?>

Notice that the preceding statement ends in a semicolon. PHP, along
with other programming languages, including C++ and Java, requires
you to end all statements with a semicolon. Note that the primary
purpose of a semicolon is to identify the end of a statement, not the
end of a line. Just as Web browsers ignore white space in an HTML or
XHTML document, the scripting engine ignores white space within
code blocks. For this reason, semicolons are critical to identify the
end of a statement. Th is also means that you do not need to place
each statement on its own line. For example, the following script con-
tains two echo statements on the same line, with each statement end-
ing in a semicolon:
<?php
echo "Explore "; echo "Africa!";
?>

Further, statements can be placed on the same line with the <?php
and ?> script delimiters, as follows:
<?php echo "Explore "; echo "Africa!"; ?>

Although the preceding syntax is legal, for better readability you
should typically use separate lines for the <?php and ?> script delimit-
ers and for each statement within a code block. However, many of the
examples in this book show delimiters and statements on the same
line to conserve space.

Th e PHP Group offi cially recommends that you use standard PHP
script delimiters to write PHP code declaration blocks. One reason
is that standard PHP script delimiters are guaranteed to be available
on any Web server that supports PHP. (As you will learn shortly, both
short PHP script delimiters and ASP-style script delimiters can be
disabled.) However, the primary reason for using standard PHP script
delimiters is that they are the only method that is completely compli-
ant with XML. (Th e Web page examples and exercises in this book
are written in XHTML, which is based on XML.) XML is preferred
for Web development not only because it is the basis of XHTML
documents, but because it has become the standard for exchanging
data on the Internet. For this reason, you should always ensure that
any Web pages or scripts you create are compliant with XML.

4

C H A P T E R 1 Getting Started with PHP

Even though the PHP Group offi cially recommends that you use stan-
dard PHP script delimiters to write PHP, some Web developers prefer
the other types of code declaration blocks, so you should be able to
recognize the other delimiters when you see them.

To create a PHP script that contains standard PHP script delimiters:

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, header
information, and <body> element. Use the strict DTD and
“PHP Code Blocks” as the content of the <title> element.
Your document should appear as follows:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>PHP Code Blocks</title>
<meta http-equiv="content-type"
 content="text/html; charset=iso-8859-1" />
</head>
<body>
</body>
</html>

3. Add the following paragraph element and standard PHP
script delimiters to the document body. Be sure to nest the
script delimiters within the paragraph element. Th e paragraph
element forces the output from the script delimiters to render
on a separate line.
<p>
<?php
?>
</p>

4. Add the following echo statement (shown in bold) between
the script delimiters:
<p>
<?php
echo "This text is displayed using standard PHP
script delimiters. ";
?>
</p>

5. Save the document as PHPCodeBlocks.php in the Chapter
directory for Chapter 1. Be sure to use an extension of .php,
which is required for your Web server to recognize the fi le as
a PHP script.

5

Creating PHP Code Blocks

6. Use FTP to upload the PHPCodeBlocks.php fi le to the Web
server. Once you have successfully uploaded the docu-
ment, validate it with the W3C XHTML Validator at http://
validator.w3.org/. (Instructions for validating XHTML
documents are included in Appendix A.)

7. Open the PHPCodeBlocks.php fi le in your Web browser
by entering the following URL: http://<yourserver>/
PHP_Projects/Chapter.01/Chapter/PHPCodeBlocks.php
(replacing <yourserver> with the name of the Web server
provided by your instructor). You should see the Web page
shown in Figure 1-1.

Figure 1-1 Output of a PHP script with standard PHP script delimiters

8. Close your Web browser window.

The <script> Element
A second option for creating PHP code blocks is to use the XHTML
<script> element. When the <script> element is used with PHP,
you must assign a value of “php” to the language attribute of the
<script> element to identify the code block as PHP. When the PHP
scripting engine encounters a <script> element with “php” assigned
to its language attribute, it processes any code within the element
as PHP on the server before returning the Web page. Th e syntax for
using PHP with the <script> element is as follows:
<script language="php">
statements;
</script>

Th e following example contains the same echo statement you saw
with the standard PHP script delimiters, but this time the statement
is contained within a PHP <script> element:
<script language="php">
echo "Explore Africa!";
</script>

6

C H A P T E R 1 Getting Started with PHP

http://validator.w3.org/
http://validator.w3.org/

Like the standard PHP script delimiters, the <script> element is
always available on any Web server that supports PHP. Unfortunately,
the <script> element’s language attribute is deprecated in XHTML.
Further, the scripting engine ignores <script> elements that include
the type attribute, which is required for compatibility with both the
strict and transitional DTDs. For this reason, you cannot validate
documents that include PHP <script> elements.

To add a PHP <script> element to the PHPCodeBlocks.php
document:

1. Return to the PHPCodeBlocks.php document in your text
editor.

2. Add the following paragraph element and <script> element
to the end of the document body:
<p>
<script language="php">
</script>
</p>

3. Add the following echo statement (shown in bold) between
the script delimiters:
<p>
<script language="php">
echo "This text is displayed using a PHP script
section.";
</script>
</p>

4. Save the PHPCodeBlocks.php document, upload it to the
Web server, and then open it from your Web server. Your
Web browser should appear similar to Figure 1-2.

Figure 1-2 Output of a PHP script after adding a PHP script section

5. Close your Web browser window.

7

Creating PHP Code Blocks

Short PHP Script Delimiters
A simplifi ed method of writing PHP code declaration blocks is to use
the short <? and ?> script delimiters. Short PHP script delimiters are
similar to standard PHP script delimiters, except they do not include
‘php’ in the opening delimiter. Th e syntax for short PHP script delim-
iters is as follows:
<? statements; ?>

Th e following example shows how to use short delimiters with the
echo statement you saw earlier:
<? echo "Explore Africa!"; ?>

Unlike the <?php and ?> script delimiters and the <script> element,
which are always available on any Web server that supports PHP, the
short <? and ?> delimiters can be disabled in a Web server’s php.ini
confi guration fi le. Because a Web server on which your PHP script
will run might not always be under your control, the PHP Group
discourages the use of short delimiters, especially when developing
scripts that will be redistributed and used by other Web develop-
ers. Although you can use short PHP script delimiters if you prefer,
your PHP scripts will not work if your Web site is hosted by an ISP
that does not support short PHP script delimiters. Another reason to
avoid the short <? and ?> delimiters is that you cannot use them in
XML documents, although you can use them in XHTML documents,
including documents that conform to the strict DTD. With XML
documents, you must use the <?php and ?> script delimiters.

To add short PHP script delimiters to the PHPCodeBlocks.php
document:

1. Return to the PHPCodeBlocks.php document in your text
editor.

2. Add the following paragraph element and short PHP script
delimiters to the end of the document body:
<p>
<?
?>
</p>

3. Add the following echo statement (highlighted in bold)
between the script delimiters:
<p>
<?
echo "This text is displayed using short PHP
script delimiters.";
?>
</p>

8

C H A P T E R 1 Getting Started with PHP

4. Save the PHPCodeBlocks.php document, upload it, and open
it from your Web server. Your Web browser should appear
similar to Figure 1-3.

Figure 1-3 Output of a PHP script after adding short PHP script delimiters

5. Close your Web browser window.

ASP-Style Script Delimiters
Some Web developers prefer to use the ASP-style script delimiters of
<% and %> to develop PHP scripts. Th e syntax for ASP-style script
delimiters is similar to that of short PHP script delimiters, as follows:
<% statements; %>

Th e following example shows how to use ASP-style script delimiters
with the echo statement you saw earlier:
<% echo "Explore Africa!"; %>

Like short PHP script delimiters, ASP-style script delimiters are com-
pliant with XHTML, including the strict DTD, but not with XML.
ASP-style script delimiters can also be enabled or disabled in the
php.ini confi guration fi le, so you should not use them unless you are
sure they are enabled on any Web servers on which your PHP scripts
will run. Unless you are a hard-core ASP developer who only uses
PHP occasionally, or if you are using an HTML editor that does not
support PHP script delimiters, there is little reason to use ASP-style
script delimiters.

To add ASP-style script delimiters to the PHPCodeBlocks.php
document:

1. Return to the PHPCodeBlocks.php document in your text
editor.

9

Creating PHP Code Blocks

2. Add the following paragraph element and ASP-style script
delimiters to the end of the document body:
<p>
<%
%>
</p>

3. Add the following echo statement (shown in bold) between
the script delimiters:
<p>
<%
echo "This text is displayed using ASP-style
script delimiters.";
%>
</p>

4. Save the PHPCodeBlocks.php document, upload it, and open
it from your Web server. Your Web browser should appear
similar to Figure 1-4.

Figure 1-4 Output of a PHP script after adding ASP-style script delimiters

5. Close your Web browser window.

Understanding Functions
Before you start writing PHP scripts, you need to understand the
basics of functions. Th e term function refers to a subroutine (or
individual statements grouped into a logical unit) that performs a
specifi c task. PHP includes numerous built-in functions that perform
various types of tasks. You will work with many built-in PHP func-
tions throughout this book. To execute a function, you must invoke,
or call, it from somewhere in your script. Th e statement that calls a
function is referred to as a function call and consists of the function
name followed by any data that the function needs. Th e data (which
you place in parentheses following the function name) are called

10

C H A P T E R 1 Getting Started with PHP

arguments or actual parameters. Sending data to a called function
is called passing arguments. Many functions generate, or return,
some sort of a value that you can use in your script. For example, PHP
includes a round() function that rounds a decimal value to the near-
est whole number. You pass a number as an argument to the round()
function, which calculates and returns the nearest whole number.
Th e following statement calls the round() function and passes to it
a value of 3.556. Th e round() function calculates and returns a value
of 4, which is then displayed with an echo statement.
<?php echo round(3.556); ?>

Many functions can accept multiple arguments, which you separate
with commas. For example, the second argument you pass to the
round() function determines the number of digits after the decimal
point that it should use to round the number. Th e following state-
ment calls the round() function and then passes to it a fi rst argument
of 3.556 and a second argument of 2. Th e round() function calculates
and returns a value of 3.56 (rounded to two decimal places), which is
then displayed with an echo statement.
<?php echo round(3.556, 2); ?>

To create a PHP script that uses the phpinfo() function to create a
Web page that lists diagnostic information for the current PHP con-
fi guration on the Web server:

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, header
information, and <body> element. Use the strict DTD and “PHP
Diagnostic Information” as the content of the <title> element.

3. Add the following standard PHP script delimiters and
phpinfo() function to the document body. Be certain to
include the parentheses and semicolon in the statement con-
taining the phpinfo() function.
<?php
phpinfo();
?>

4. Save the document as PHPTest.php in the Chapter direc-
tory for Chapter 1 and upload the document to the Web
server. You will not be able to validate this page with the W3C
XHTML Validator because the phpinfo() function inserts a
second set of HTML headers.

5. Open the PHPTest.php fi le in your Web browser by entering
the following URL: http://<yourserver>/PHP_Projects/Chap-
ter.01/Chapter/PHPTest.php. You should see a Web page

You learn more
about func-
tions, including
how to create
your own, in
Chapter 2.

11

Creating PHP Code Blocks

similar to the one shown in Figure 1-5, which lists diagnostic
information for PHP.

Figure 1-5 PHP Diagnostic Information Web page

6. Close your Web browser window.

Displaying Script Results
When you write a PHP script, you will often want to display the
results of the script in the Web page that is returned as a response
to a client. For example, you might want the Web page to display
database records that the client requested or the result of a calcula-
tion that was processed by the PHP script. Recall that the scripting
engine ignores any non-PHP code and only processes the PHP code
it fi nds within PHP code blocks. Th e Web server then returns the

12

C H A P T E R 1 Getting Started with PHP

results of the PHP script and any HTML or XHTML elements found
in the PHP fi le to the client, where it is rendered by the client’s Web
browser. To return these script results to the client, you must use an
echo statement, which you’ve already seen, or the print statement.
Th e echo and print statements create new text on a Web page that
is returned as a response to a client.

You might be thinking that the echo and print statements are func-
tions. Actually, they are not functions, but language constructs of the
PHP programming language. A programming language construct
refers to a built-in feature of a programming language. Th e echo and
print statements are nearly identical, but they have some diff erences.
For example, the print statement returns a value of 1 if it is success-
ful or a value of 0 if it is not successful, while the echo statement does
not return a value. You need to learn a little more about functions
before you can understand why the print statement returns a value.
However, keep in mind that you can use the exact same syntax with
the print statement that you use with the echo statement.

To modify the PHPCodeBlocks.php document so it uses print state-
ments instead of echo statements:

1. Return to the PHPCodeBlocks.php document in your text
editor.

2. Replace each of the echo statements with a print statement.
For example, the statement within the standard PHP script
delimiters should read as follows:
<?php
print "This text is displayed using standard PHP
script delimiters.";
?>

3. Save the PHPCodeBlocks.php document, upload it, and then
open it from your Web server. Th e document should render
the same as it did with the echo statements.

4. Close your Web browser window.

You should understand that the only reason to use the echo and
print statements is to include the results of a PHP script within a
Web page that is returned to a client. For example, you might want
to return a new Web page based on information a user enters into a
form for an online transaction and submits to a Web server. You can
use a PHP script to process the submitted information and return a
new Web page to the client that displays the sales total, order con-
fi rmation, and so on. If you simply want to display text in a Web
page that is returned to the client, there is no need to use anything
but standard XHTML elements. Th e procedures for submitting and

13

Creating PHP Code Blocks

processing data are a little too complicated for this introductory
chapter. In this chapter, you use the echo and print statements to
return the results of a script to a client in order to learn the basics
of PHP.

For both the echo and print statements, you need to include a text
string that contains the text that will appear in the Web browser. A
literal string is text that is contained within double or single quota-
tion marks. As you saw earlier, the following echo statement uses
double quotation marks to display the text “Explore Africa!” in the
Web browser window:
<?php echo "Explore Africa!"; ?>

You can also use single quotation marks with the preceding echo
statement, as follows:
<?php echo 'Explore Africa!'; ?>

Th e echo and print statements support multiple arguments. If you
want to pass multiple arguments to the echo and print statements,
separate them with commas, just as with arguments passed to a func-
tion. In the following example, three text string arguments are passed
to the echo statement:
<?php echo "Explore Africa, ", "South America, ",

 " and Australia!"; ?>

To create a script that passes multiple arguments to an echo
statement:

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, header
information, and <body> element. Use the strict DTD and
“How to Talk Like a Pirate” as the content of the <title>
element.

3. Add the following heading element to the document body:
<h1>How to Talk Like a Pirate</h1>

4. Next, add paragraph tags and a standard PHP script delimiter
to the end of the document body:
<?php
?>

5. Now add the following echo statement to the PHP code block:
echo "Avast me hearties! ",
 "Return handsomely with some fi ne swag, ye

scurvy dogs! ",
 "Else, we be keelhaulin' ye' next morn . . . ";

14

C H A P T E R 1 Getting Started with PHP

6. Save the document as PirateTalk.php in the Chapter direc-
tory for Chapter 1, and upload the document to the Web
server. After you upload the document, attempt to validate it
with the W3C XHTML Validator. You will get a “text is not
allowed here” error, which you will fi x in a later exercise.

7. Open the PirateTalk.php fi le from your Web server by enter-
ing the following URL: http://<yourserver>/PHP_Projects/
Chapter.01/Chapter/PirateTalk.php. Your Web browser
should appear similar to Figure 1-6.

Figure 1-6 “How to Talk Like a Pirate” Web page

8. Close your Web browser window.

You can also use parentheses with the echo and print statements in
the same manner that you use them with functions, as follows:
<?php echo("Explore Africa, ", "South America, ",
 " and Australia!"); ?>

You will not use parentheses with most of the echo and print state-
ments you write in this book. However, you should be able to recog-
nize the parenthesized version as just another form of the echo and
print statements, not a separate type of function.

So far, the arguments you have seen and used with the echo state-
ments have consisted of plain text that is rendered in the Web
browser’s default font. To format the output of text that is displayed
with echo and print statements, you can use any XHTML formatting
elements you want as part of the text string arguments. Th e following
code shows a modifi ed version of the previous script, but this time
the echo statement includes several XHTML elements to format the
appearance of the text string in a Web browser. Figure 1-7 shows how
the script is rendered in a Web browser.
<?php echo "<p>Explore Africa,
",
 "South America,
",
 " and Australia!</p>"; ?>

15

Creating PHP Code Blocks

Figure 1-7 Output of an echo statement
with XHTML elements

To modify the PirateTalk.php script so the echo statement includes
XHTML elements:

1. Return to the PirateTalk.php script in your text editor.

2. Modify the values passed to the echo statement so they
include paragraph and line break elements, as follows:
echo "<p>Avast me hearties!
",
 "Return handsomely with some fi ne swag,
ye

scurvy dogs!
",
 "Else, we be keelhaulin' ye' next morn . . . </p>";

3. Save the PirateTalk.php fi le and upload it to the Web server.
Validate the document with the W3C XHTML Validator (the
error should be gone now), and then open the document from
your Web server. Th e document should appear similar to
Figure 1-8.

Figure 1-8 “How to Talk Like a Pirate” Web page after adding XHTML elements to the
echo statement

4. Close your Web browser window.

You study
additional
techniques for
working with
text strings in
Chapter 3.

16

C H A P T E R 1 Getting Started with PHP

Creating Multiple Code Declaration Blocks
You can include as many PHP script sections as you want within a
document. However, when you include multiple script sections in a
document, you must include a separate code declaration block for
each section. Th e following document includes two separate script
sections. Th e script sections create the information that is displayed
beneath the <h2> heading elements.
 . . .
</head>
<body>
<h1>Multiple Script Sections</h1>
<h2>First Script Section</h2>
<?php echo "<p>Output from the fi rst script
section.</p>"; ?>
<h2>Second Script Section</h2>
<?php echo "<p>Output from the second script
section.</p>"; ?>
</body>
</html>

Remember that PHP code declaration blocks execute on a Web server
before a Web page is sent to a client. If users were to view the source
document after they received the PHP document, they would not
see any PHP code declaration blocks. Instead, the users would only
see the results returned from the PHP code. Th e following example
shows how the source code for the preceding document appears after
a user receives it. Notice that the PHP code declaration blocks have
been converted to elements and text. Figure 1-9 shows how the text
and elements appear in a Web browser.
 . . .
</head>
<body>
<h1>Multiple Script Sections</h1>
<h2>First Script Section</h2>
<p>Output from the fi rst script section.</p>
<h2>Second Script Section</h2>
<p>Output from the second script section.</p>
</body>
</html>

17

Creating PHP Code Blocks

Figure 1-9 Output of a document with two PHP script sections

Even though many people may enjoy talking like a pirate, the
PirateTalk.php document is of limited use in demonstrating how
to write PHP scripts. Th erefore, in the next exercise, you will write
a PHP script that displays the results of several built-in PHP func-
tions using multiple script sections. You will use the phpversion(),
zend_version(), and ini_get() functions. Th e phpversion() func-
tion returns the version of PHP that processed the current page. Th e
zend_version() function returns the version number of the Zend
Engine, which is PHP’s scripting engine. Th e ini_get() function
returns the value assigned to a directive in the php.ini confi guration
fi le. You need to pass the name of a directive to the ini_get() func-
tion, surrounded by quotation marks.

To create a script with multiple script sections:

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, header
information, and <body> element. Use the strict DTD and
“PHP Environment Info” as the content of the <title>
element.

3. Add the following heading element to the document body:
<h1>PHP Environment Info</h1>

18

C H A P T E R 1 Getting Started with PHP

4. Add the following elements, text, and PHP code block to the
document body. Th e code block displays the PHP version
number using the phpversion() function.
<p>This page was rendered with PHP version
<?php
echo phpversion();
?>.
</p>

5. Add the following elements, text, and PHP code block to the
end of the document body. Th e code block displays the Zend
Engine version number using the zend_version() function.
<p>The PHP code was rendered with Zend Engine
version
<?php
echo zend_version();
?>.
</p>

6. Finally, add the following elements, text, and PHP code blocks
to the end of the document body. Th e code blocks use the
ini_get() function to display PHP’s default MIME type and
the maximum amount of time that a PHP script is allowed to
execute.
<p>PHP's default MIME type is
<?php
echo ini_get("default_mimetype");
?>.
</p>
<p>The maximum allowed execution time of a PHP
script is
<?php
echo ini_get("max_execution_time");
?>
seconds.</p>

7. Save the document as MultipleScripts.php in the Chapter
directory for Chapter 1. After you save and upload the docu-
ment, validate it with the W3C XHTML Validator.

8. Open the MultipleScripts.php fi le from your Web server
by entering the following URL: http://<yourserver>/
PHP_Projects/Chapter.01/Chapter/MultipleScripts.php.
Your Web browser should appear similar to Figure 1-10.

19

Creating PHP Code Blocks

Figure 1-10 Web page with multiple PHP scripts

9. Close your Web browser window.

Case Sensitivity in PHP
Unlike XHTML and JavaScript, programming language constructs in
PHP are mostly case insensitive, although there are some exceptions.
Th is means that you can use any of the following versions of the echo
statement without receiving an error message:
<?php
echo "<p>Explore Africa,
";
Echo "South America,
";
ECHO " and Australia!</p>";
?>

Even though you can use whatever case you want, be certain to use
the letter cases presented in this book for consistency and to make it
easier to locate any problems in your scripts.

Adding Comments to a PHP Script
When you write a script, whether in PHP or any other programming
language, it is considered good programming practice to add com-
ments to your code. Comments are lines you place in your code that
do not get executed, but provide helpful information. Comments
include the name of the script, your name and the date you created
the program, notes to yourself, or instructions to future programmers
who might need to modify your work. When you are working with
long scripts, comments make it easier to understand how a program
is structured.

Exceptions
to PHP’s
case insensi-
tivity include
variable and
constant

names, which are case
sensitive. You will study
 variables and constants
later in this chapter.

20

C H A P T E R 1 Getting Started with PHP

PHP supports two kinds of comments: line comments and block
comments. A line comment automatically terminates at the end of
the line in which it is inserted. To create a line comment, add either
two forward slashes (//) or the pound symbol (#) before the text you
want to use as a comment. (You do not need to include both.) Th e //
or # characters instruct the scripting engine to ignore all text imme-
diately following the characters to the end of the line. You can place a
line comment either at the end of a line of code or on its own line.

Block comments allow multiple lines of comment text to be added.
You create a block comment by adding a forward slash and an asterisk
(/*) before the start of the text that you want included in the block,
and adding an asterisk and a forward slash (*/) after the last character
in the block. Any text or lines between the opening /* characters and
the closing */ characters are ignored by the PHP engine. Th e following
code shows a PHP code block containing line and block comments. If
a client requests a Web page containing the following script in a Web
browser, the scripting engine ignores the text marked with comments.
<?php
/*
This line is part of the block comment.
This line is also part of the block comment.
*/
echo "<h1>Comments Example</h1>"; // Line comment
// This line comment takes up an entire line.
This is another way of creating a line comment.
/* This is another way of creating
a block comment. */
?>

To add comments to the PHP Environment Info Web page:

1. Return to the MultipleScripts.php document in your text
editor.

2. Add the following block comment immediately after the fi rst
opening PHP script delimiter:
/*
PHP code for Chapter 1.
The purpose of this code is to demonstrate how to
add multiple PHP code blocks to a Web page.
*/

3. Next, add the following line comments immediately after the
block comment, taking care to replace your name with your
fi rst and last name and today’s date with the current date:
// your name
today's date

Block
 comments
cannot be
nested
inside other
block com-

ments. A block comment
stops at the fi rst */,
regardless of how many
/* characters precede it.

Comments
created with
two slashes
(//) or the
/* and */
characters

are also used in C++,
Java, and JavaScript.
Comments created with
the pound symbol (#) are
used in Perl and shell
script programming.

21

Creating PHP Code Blocks

4. Save the MultipleScripts.php document, upload it to the Web
server, and validate the document with the W3C XHTML
Validator. Open the document from your Web server to
ensure that the comments are not displayed.

5. Close your Web browser window.

Short Quiz

1. How many code declaration blocks can be inserted in a PHP
document?

2. Why does the PHP Group recommend that you use standard
PHP script delimiters to write PHP code declaration blocks?

3. What character or characters are used as delimiters to sepa-
rate multiple arguments (parameters) in a function declara-
tion or function call?

4. Describe the type of information that the phpinfo() function
generates.

5. Identify the two types of comments available in PHP and indi-
cate when each would be used.

Using Variables and Constants
One of the most important aspects of programming is the ability to
store values in computer memory and to manipulate those values.
Th ese stored values are called variables. Th e values, or data, con-
tained in variables are classifi ed into categories known as data types.
In this section, you will learn about PHP variables and data types, and
the operations that can be performed on them.

Th e values a program stores in computer memory are commonly
called variables. Technically speaking, though, a variable is actually a
specifi c location in the computer’s memory. Data stored in a specifi c
variable often changes. You can think of a variable as similar to a stor-
age locker—a program can put any value into it, and then retrieve the
value later for use in calculations. To use a variable in a program, you
fi rst have to write a statement that creates the variable and assigns it a
name. For example, you can have a program that creates a variable to
store the current time. Each time the program runs, the current time
is diff erent, so the value varies.

22

C H A P T E R 1 Getting Started with PHP

Programmers often talk about “assigning a value to a variable,” which
is the same as storing a value in a variable. For example, a shopping
cart program might include variables that store the current cus-
tomer’s name and purchase total. Each variable will contain diff erent
values at diff erent times, depending on the name of the customer and
the items the customer is purchasing.

Naming Variables
Th e name you assign to a variable is called an identifi er. You must
observe the following rules and conventions when naming a variable:

Identifi ers must begin with a dollar sign (• $).

Identifi ers may contain uppercase and lowercase letters, numbers, •
or underscores (_). Th e fi rst character after the dollar sign must be
a letter.

Identifi ers cannot contain spaces. •

Identifi ers are case sensitive. •

One common practice is to use an underscore character to separate indi-
vidual words within a variable name, as in $my_variable_name.
Another option is to use initial capital letters for each word in a variable
name, as in $MyVariableName.

Unlike other types of PHP code, variable names are case sensitive.
Th erefore, the variable named $MyVariable is completely diff erent
from one named $Myvariable, $myVariable, or $MYVARIABLE. If
you receive an error when running a script, be sure that you are using
the correct case when referring to any variables in your code.

Declaring and Initializing Variables
Before you can use a variable in your code, you have to create it. Th e
process of specifying and creating a variable name is called declar-
ing the variable. Th e process of assigning a fi rst value to a variable is
called initializing the variable. Some programming languages allow
you to fi rst declare a variable without initializing it. However, in PHP,
you must declare and initialize a variable in the same statement, using
the following syntax:
$variable_name = value;

Th e equal sign in the preceding statement assigns an initial value to
(or initializes) the variable you created (or declared) with the name
$variable_name.

If you
attempt to
declare a
variable
without
 initializing it,

you will receive an error.

23

Using Variables and Constants

Th e value you assign to a variable can be a literal string, a numeric
value, or a Boolean value. For example, the following statement
assigns the literal string “Don” to the variable $MyName:
$MyName = "Don";

When you assign a literal string value to a variable, you must enclose
the text in single or double quotation marks, as shown in the preced-
ing statement. However, when you assign a numeric or Boolean value
to a variable, do not enclose the value in quotation marks or PHP will
treat the value as a string instead of a number. Th e following state-
ment assigns the numeric value 59 to the variable $RetirementAge:
$RetirementAge = 59;

In addition to assigning literal strings, numeric values, and Boolean
values to a variable, you can assign the value of one variable to
another. For instance, in the following code, the fi rst statement
declares a variable named $SalesTotal and assigns it an initial value
of 0. (Remember that in PHP you must initialize a variable when
you fi rst declare it.) Th e second statement creates another variable
named $CurOrder and assigns it a numeric value of 40. Th e third
statement then assigns the value of the $CurOrder variable (40) to the
$SalesTotal variable.
$SalesTotal = 0;
$CurOrder = 40;
$SalesTotal = $CurOrder;

Displaying Variables
To display a variable with the echo statement, you simply pass the
variable name to the echo statement, but without enclosing it in quo-
tation marks, as follows:
$VotingAge = 18;
echo $VotingAge;

If you want to display text strings and variables in the same statement,
you can pass them to the echo statement as individual arguments,
separated by commas. For example, the following code displays the
text shown in Figure 1-11. Notice that the text and elements are con-
tained within quotation marks, but the $VotingAge variable is not.
echo "<p>The legal voting age is ", $VotingAge, ".</p>";

24

C H A P T E R 1 Getting Started with PHP

Figure 1-11 Output from an echo statement
that is passed text and a variable

You can also include variable names inside a text string, although the
results you see on the screen depend on whether you use double or
single quotation marks around the text string that includes the vari-
able name. If you use double quotation marks, the value assigned to
the variable will appear. For example, the following statement displays
the same output that is shown in Figure 1-11:
echo "<p>The legal voting age is $VotingAge.</p>";

By contrast, if you use a variable name in a text string enclosed by
single quotation marks, the name of the variable will appear. For
example, the following statement displays the output shown in
Figure 1-12:
echo '<p>The legal voting age is $VotingAge.</p>';

Figure 1-12 Output of an echo statement that
includes text and a variable surrounded by single
quotation marks

Modifying Variables
You can modify the variable’s value at any point in a script. Th e fol-
lowing code declares a variable named $SalesTotal, assigns it an
initial value of 40, and displays it using an echo statement. Th e third
statement changes the value of the $SalesTotal variable and the
fourth statement displays the new value. Figure 1-13 shows the out-
put in a Web browser.

25

Using Variables and Constants

$SalesTotal = 40;
echo "<p>Your sales total is $$SalesTotal</p>";
$SalesTotal = 50;
echo "<p>Your new sales total is $$SalesTotal</p>";

Figure 1-13 Results of a script that includes a changing variable

It’s an old tradition among programmers to practice a new language
by writing a script that prints or displays the text “Hello World!”. If
you are an experienced programmer, you have undoubtedly created
“Hello World” programs in the past. If you are new to programming,
you will probably create “Hello World” programs as you learn pro-
gramming languages. Next, you will create your own “Hello World”
program in PHP. You will create a simple script that displays the text
“Hello World!”, says “Hello” to the sun and the moon, and displays a
line of scientifi c information about each celestial body. You will use
variables to store and display each piece of information.

To create the “Hello World” program:

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, header
information, and <body> element. Use the strict DTD and
“Hello World” as the content of the <title> element. Your
document should appear as follows:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<head>
<title>Hello World</title>
</head>
<body>
</body>
</html>

3. Add the following standard PHP script delimiters to the docu-
ment body:
<?php
?>

The two
adjacent
dollar signs
are not
 special
 syntax. The

fi rst dollar sign, because
it is not immediately
 followed by a variable
name, is treated as a
literal dollar sign charac-
ter and displayed on the
page. The second dollar
sign and the variable
name that follows it are
treated as an identifi er,
and the value of the
 identifi er is displayed
on the page.

26

C H A P T E R 1 Getting Started with PHP

4. In the code block, type the following statements to declare the
variables containing the names of each celestial body, along
with variables containing scientifi c information about each
celestial body:
$WorldVar = "World";
$SunVar = "Sun";
$MoonVar = "Moon";
$WorldInfo = 92897000;
$SunInfo = 72000000;
$MoonInfo = 3456;

5. Add the following statements to the end of the script sec-
tion to display the values stored in each of the variables you
declared and initialized in the last step:
echo "<p>Hello $WorldVar!
";
echo "The $WorldVar is $WorldInfo miles from the
 $SunVar.
";
echo "Hello ", $SunVar, "!
";
echo "The $SunVar's core temperature is
 approximately $SunInfo
 degrees Fahrenheit.
";
echo "Hello ", $MoonVar, "!
";
echo "The $MoonVar is $MoonInfo miles in
 diameter.</p>";

6. Save the document as HelloWorld.php in the Chapter direc-
tory for Chapter 1. After you save and upload the document,
validate it with the W3C XHTML Validator.

7. Open the HelloWorld.php fi le in your Web browser by enter-
ing the following URL: http://<yourserver>/PHP_Projects/
Chapter.01/Chapter/HelloWorld.php. You should see the
Web page in Figure 1-14.

Figure 1-14 Output of HelloWorld.php

8. Close your Web browser window.

If you
receive error
messages,
make sure
that you
typed all the

variables in the correct
case. (Remember that
variables in PHP are case
sensitive.)

27

Using Variables and Constants

Defi ning Constants
A constant contains information that does not change during the
course of program execution. You can think of a constant as a vari-
able with a static value. A common example of a constant is the value
of pi (π), which represents the ratio of the circumference of a circle to
its diameter. Th e value of pi never changes from a constant value of
approximately 3.141592.

Unlike variable names, constant names do not begin with a dollar
sign ($). In addition, it is common practice to use all uppercase letters
for constant names. When you create a constant, you do not declare
and initialize it the way you declare a variable. Instead, you use the
defi ne() function to create a constant. Th e syntax for the defi ne()
function is as follows:
defi ne("CONSTANT_NAME", value);

Th e value you pass to the defi ne() function can be a text string, num-
ber, or Boolean value. In the following example, the fi rst constant def-
inition passes a text string to the defi ne() function while the second
constant defi nition passes a number:
defi ne("DEFAULT_LANGUAGE", "Navajo");
defi ne("VOTING_AGE", 18);

By default, constant names are case sensitive, as are variables.
However, you can make constant names case insensitive by passing a
Boolean value of TRUE as a third argument to the defi ne() function, as
follows:
defi ne("DEFAULT_LANGUAGE", "Navajo", TRUE);

With the preceding statement, you can refer to the
DEFAULT_LANGUAGE constant using any letter case, including
default_language or Default_Language. However, standard
 programming convention is to use all uppercase letters for con-
stant names, so you should avoid making your constant names case
 insensitive.

When you refer to a constant in code, remember not to include a dol-
lar sign, as you would with variable names. You can pass a constant
name to the echo statement in the same manner as you pass a vari-
able name (but without the dollar sign), as follows:
echo "<p>The legal voting age is ", VOTING_AGE, ".</p>";

Th e preceding statement displays the text “Th e legal voting age is 18.”
in the Web browser. Unlike variables, you cannot include the constant
name within the quotation marks that surround a text string. If you
do, PHP treats the constant name as ordinary text that is part of the

Remember
that you
cannot
change the
value of a
constant

after you defi ne it in your
program. If you attempt
to use the defi ne()
function to change the
value of an existing
 constant, you will receive
an error.

28

C H A P T E R 1 Getting Started with PHP

string. For example, consider the following statement, which includes
the constant name within the quotation marks that surround the text
string:
echo "<p>The legal voting age is VOTING_AGE.</p>";

Instead of displaying the value of the constant (18), the preceding
statement displays “Th e legal voting age is VOTING_AGE.” in the
Web browser.

To replace the $WorldInfo, $SunInfo, and $MoonInfo variables in
the HelloWorld.php script with constants:

1. Return to the HelloWorld.php document in your text editor.

2. Replace the $WorldInfo, $SunInfo, and $MoonInfo variable
declarations with the following constant defi nitions:
defi ne("WORLD_INFO", 92897000);
defi ne("SUN_INFO", 72000000);
defi ne("MOON_INFO", 3456);

3. Replace the $WorldInfo, $SunInfo, and $MoonInfo variable
references in the echo statements with the new constants. Th e
modifi ed echo statements should appear as follows:
echo "<p>Hello ", $WorldVar, "!
";
echo "The $WorldVar is ", WORLD_INFO,
 " miles from the $SunVar.
";
echo "Hello ", $SunVar, "!
";
echo "The $SunVar's core temperature is
 approximately ",
 SUN_INFO, " degrees Fahrenheit.
";
echo "Hello ", $MoonVar, "!
";
echo "The $MoonVar is ", MOON_INFO, " miles in
 diameter.</p>";

4. Save and upload the HelloWorld.php document and then vali-
date it with the W3C XHTML Validator.

5. Open the HelloWorld.php document from your Web server.
Th e Web page should look the same as it did before you
added the constant declarations.

6. Close your Web browser window.

Short Quiz

1. Describe the two-step process of making a variable available
for use in the PHP script.

PHP includes
numerous
predefi ned
constants that
you can use in
your scripts.

29

Using Variables and Constants

2. Explain the syntax for displaying a variable or variables in the
PHP script using the echo or print statements.

3. How do you make a constant name case insensitive?

Working with Data Types
Variables can contain many diff erent kinds of values—for example,
the time of day, a dollar amount, or a person’s name. A data type
is the specifi c category of information that a variable contains. Th e
concept of data types is often diffi cult for beginning programmers to
grasp because in real life you don’t often distinguish among diff erent
types of information. If someone asks you for your name, your age, or
the current time, you don’t usually stop to consider that your name
is a text string and that your age and the current time are numbers.
However, a variable’s specifi c data type is very important in program-
ming because the data type helps determine the manner in which the
value is stored and how much memory the computer allocates for the
data stored in the variable. Th e data type also governs the kinds of
operations that can be performed on a variable.

Data types that can be assigned only a single value are called primi-
tive types. PHP supports the fi ve primitive data types described in
Table 1-1.

Data Type Description

Integer numbers The set of all positive and negative numbers and
zero, with no decimal places

Floating-point
numbers

Positive or negative numbers with decimal places or
numbers written using exponential notation

Boolean A logical value of “true” or “false”

String Text such as “Hello World”

NULL An empty value, also referred to as a NULL value

Table 1-1 Primitive PHP data types

Th e PHP language also supports reference, or composite, data types,
which can contain multiple values or complex types of information,
as opposed to the single values stored in primitive data types. Th e two
reference data types supported by the PHP language are arrays and
objects. In this chapter, you will study basic array techniques. You will
learn about advanced arrays and objects in later chapters.

PHP also
supports a
“resource”
data type,
which is a
special vari-

able that holds a refer-
ence to an external
resource, such as a data-
base or XML fi le.

The term
NULL refers
to a data type
as well as a
value that can

be assigned to a variable.
Assigning the value NULL
to a variable indicates
that the variable does not
contain a usable value. A
variable with a value of
NULL has a value
assigned to it—null is
really the value “no
value.” You assign the
NULL value to a variable
when you want to ensure
that the variable does not
contain any data. For
instance, with the
$SalesTotal variable
you saw earlier, you may
want to ensure that the
variable does not contain
any data before you use
it to create another pur-
chase order.

30

C H A P T E R 1 Getting Started with PHP

Many programming languages require that you declare the type of
data that a variable contains. Such programming languages are called
strongly typed programming languages. Strong typing is also
known as static typing because the data type for a variable will not
change after it has been declared. Programming languages that do not
require you to declare the data types of variables are called loosely
typed programming languages. Loose typing is also known as
dynamic typing because the data type for a variable can change after
it has been declared. PHP is a loosely typed programming language.
In PHP, you are not required to declare the data type of variables,
and, in fact, you are not allowed to do so. Instead, the PHP scripting
engine automatically determines what type of data is stored in a vari-
able and assigns the variable’s data type accordingly. Th e following
code demonstrates how a variable’s data type changes automatically
each time the variable is assigned a new literal value.
$ChangingVariable = "Hello World"; // String
$ChangingVariable = 8; // Integer number
$ChangingVariable = 5.367; // Floating-point

// number
$ChangingVariable = TRUE; // Boolean
$ChangingVariable = NULL; // NULL

Th e next two sections focus on two commonly used data types:
numeric and Boolean.

Numeric Data Types
Numeric data types are an important part of any programming lan-
guage and are particularly useful for arithmetic calculations. PHP
supports two numeric data types: integers and fl oating-point num-
bers. Integers are positive and negative numbers and zero, with no
decimal places. Th e numbers −250, −13, 0, 2, 6, 10, 100, and 10,000
are examples of integers. Th e numbers −6.16, −4.4, 3.17, .52, 10.5, and
2.7541 are not integers; they are fl oating-point numbers. A fl oating-
point number contains decimal places or is written in exponential
notation. Exponential notation, or scientifi c notation, is a short-
ened format for writing very large numbers or numbers with many
decimal places. Numbers written in exponential notation are repre-
sented by a value between −10 and 10 that is multiplied by 10 raised
to some power. Th e notation for “times ten raised to the power” is an
uppercase or lowercase E. For example, the number 200,000,000,000
can be written in exponential notation as 2.0e11, which means “two
times ten to the power eleven.”

Although you
cannot
declare a data
type when you
fi rst create a

variable, you can force a
variable to be converted
to a specifi c type. You
learn how to force a vari-
able to be a specifi c type
at the end of this section.

 Strictly
speaking,
there are dif-
ferences
between the

terms “strong typing” and
“static typing,” and
between “loose typing”
and “dynamic typing.”
The specifi cs of these
differences are beyond
the scope of this book.
The terms “strongly
typed” and “loosely
typed” are used here in
the generic sense, not in
the technical sense.

31

Working with Data Types

To create a script that assigns integers and exponential numbers to
variables and displays the values:

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, header
information, and <body> element. Use the strict DTD and
“Display Numbers” as the content of the <title> element.

3. Add the following standard PHP script delimiters to the docu-
ment body:
<?php
?>

4. Add the following lines to the script section; they declare an
integer variable and a fl oating-point variable:
$IntegerVar = 150;
$FloatingPointVar = 3.0e7; // fl oating-point

// number 30000000

5. Finally, to display the values of the variables, add the following
statements to the end of the script section:
echo "<p>Integer variable: $IntegerVar
";
echo "Floating-point variable: $FloatingPointVar</p>";

6. Save the document as DisplayNumbers.php in the Chapter
directory for Chapter 1, upload the document to the Web
server, and validate the document with the W3C XHTML
Validator.

7. Open the DisplayNumbers.php fi le in your Web browser
by entering the following URL: http://<yourserver>/
PHP_Projects/Chapter.01/Chapter/DisplayNumbers.php.
Th e integer 150 and the number 30000000 (for the exponen-
tial expression 3.0e7) should appear in your Web browser
 window, as shown in Figure 1-15.

Figure 1-15 Output of DisplayNumbers.php

8. Close your Web browser window.

32

C H A P T E R 1 Getting Started with PHP

Boolean Values
A Boolean value is a value of “true” or “false”. (You can also think of
a Boolean value as either “yes” or “no”, or “on” or “off ”.) Boolean values
are most often used for deciding which parts of a program should
execute and for comparing data. In programming languages other
than PHP, you can use the integer value 1 to indicate a Boolean value
of TRUE and 0 to indicate a Boolean value of FALSE. In PHP program-
ming, however, you can only use the words TRUE or FALSE to indicate
Boolean values. PHP then converts the values TRUE and FALSE to the
integers 1 and 0. For example, when you attempt to use a Boolean
variable of TRUE in a mathematical operation, PHP converts the vari-
able to an integer value of 1. Th e following shows a simple example
of a variable that is assigned the Boolean value of TRUE. Figure 1-16
shows this output in a Web browser. Notice that the Boolean value of
TRUE is displayed as the integer 1.
$RepeatCustomer = TRUE;
echo "<p>Repeat customer: $RepeatCustomer</p>";

Figure 1-16 Output of a Boolean value

Arrays
An array is a set of data represented by a single variable name. You
can think of an array as a collection of variables contained within a
single variable. You use arrays when you want to store groups or lists
of related information in a single, easily managed location. Lists of
names, courses, test scores, and prices are typically stored in arrays.
Figure 1-17 conceptually shows how you can store the names of the
Canadian provinces using a single array named $Provinces[]. Array
names are often referred to with the array operators ([and]) at the
end of the name to clearly defi ne them as arrays. You can use the
array to refer to each province without having to retype the names
and possibly introduce syntax errors through misspellings.

33

Working with Data Types

Figure 1-17 Conceptual example of an array

Declaring and Initializing Indexed Arrays
In PHP, you can create numerically indexed arrays and associative
arrays. In this chapter, you will study numerically indexed arrays. You
will learn how to use associative arrays in Chapter 6.

An element refers to a single piece of data that is stored within an
array. By default, the numbering of elements within a PHP array
starts with an index number of zero (0). (Th is numbering scheme can
be very confusing for beginners.) An index is an element’s numeric
position within the array. You refer to a specifi c element by enclosing
its index in brackets at the end of the array name. For example, the
fi rst element in the $Provinces[] array is $Provinces[0], the sec-
ond element is $Provinces[1], the third element is $Provinces[2],
and so on. Th is also means that if you have an array consisting of
10 elements, the 10th element in the array has an index of 9.

You create an array using the array() construct or by using the array
name and brackets. Th e array() construct uses the following syntax:
$array_name = array(values);

Th e following code uses the array() construct to create the
$Provinces[] array:
$Provinces = array("Newfoundland and Labrador", "Prince
Edward Island", "Nova Scotia", "New Brunswick", "Quebec",
"Ontario", "Manitoba", "Saskatchewan", "Alberta", "British
Columbia");

Th e following code shows another example of the preceding array
declaration, but this time with line breaks to make it more readable:
$Provinces = array(
 "Newfoundland and Labrador",
 "Prince Edward Island",
 "Nova Scotia",

The identi-
fi ers you use
for an array
name must
follow the
same rules

as identifi ers for vari-
ables: Array names must
begin with a dollar sign,
can include uppercase
and lowercase letters,
can include numbers or
underscores (but not as
the fi rst character after
the dollar sign), cannot
include spaces, and are
case sensitive.

34

C H A P T E R 1 Getting Started with PHP

 "New Brunswick",
 "Quebec",
 "Ontario",
 "Manitoba",
 "Saskatchewan",
 "Alberta",
 "British Columbia"
);

To create a script that declares and initializes an array using the
array() construct:

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, header
information, and <body> element. Use the strict DTD and
“Central Valley Civic Center” as the content of the <title>
element.

3. Add the following elements, text, and standard PHP script
delimiters to the document body:
<h1>Central Valley Civic Center</h1>
<h2>Summer Concert Season</h2>
<?php
?>

4. Add the following lines to the script section to declare and
initialize an array named $Concerts[]:
$Concerts = array("Jimmy Buffett", "Chris Isaak",
"Bonnie Raitt", "James Taylor", "Alicia Keys");

5. Save the document as Concerts.php in the Chapter directory
for Chapter 1.

You can also use the following syntax to assign values to an array by
using the array name and brackets:
$Provinces[] = "Newfoundland and Labrador";
$Provinces[] = "Prince Edward Island";
$Provinces[] = "Nova Scotia";
$Provinces[] = "New Brunswick";
$Provinces[] = "Quebec";
$Provinces[] = "Ontario";
$Provinces[] = "Manitoba";
$Provinces[] = "Saskatchewan";
$Provinces[] = "Alberta";
$Provinces[] = "British Columbia";

Unlike in variables, the preceding statements in arrays do not over-
write the existing values. Instead, each value is assigned to the
$Provinces[] array as a new element using the next consecutive
index number.

Note that the
fi nal element
in the array
does not have
a comma

following the value.
Inserting a comma after
the fi nal element will
cause a syntax error.

35

Working with Data Types

To add more elements to an array using statements that include the
array name and brackets:

1. Return to the Concerts.php document in your text editor.

2. Add the following statements immediately after the statement
containing the array() construct:
$Concerts[] = "Bob Dylan";
$Concerts[] = "Ryan Cabrera";

3. Save the Concerts.php document.

Most programming languages require that all elements in an array be
of the exact same data type. However, in PHP, the values assigned to
diff erent elements of the same array can be of diff erent data types. For
example, the following code uses the array() construct to create an
array named $HotelReservation, which stores values with diff erent
data types in the array elements:
$HotelReservation = array(
 "Don Gosselin", // guest name (string)
 2, // # of nights (integer)
 89.95, // price per night (fl oating-point)
 true); // nonsmoking room (Boolean)

Accessing Element Information
You access an element’s value the same way you access the value of
any variable, except you include brackets and the element index. For
example, the following code displays the value of the second ele-
ment (“Prince Edward Island”) and fi fth element (“Quebec”) in the
$Provinces[] array. Figure 1-18 shows the output.
echo "<p>Canada's smallest province is
 $Provinces[1].
";
echo "Canada's largest province is $Provinces[4].</p>";

Figure 1-18 Output of elements in the
$Provinces[] array

To fi nd the total number of elements in an array, use the count()
function. You pass to the count() function the name of the array

36

C H A P T E R 1 Getting Started with PHP

whose elements you want to count. Th e following code uses
the count() function to display the number of elements in the
$Provinces[] array and the $Territories[] array. Figure 1-19
shows the output.
$Provinces = array("Newfoundland and Labrador", "Prince
Edward Island", "Nova Scotia", "New Brunswick", "Quebec",
"Ontario", "Manitoba", "Saskatchewan", "Alberta", "British
Columbia");
$Territories = array("Nunavut", "Northwest Territories",
"YukonTerritory");
echo "<p>Canada has ", count($Provinces), " provinces and ",
 count($Territories), " territories.</p>";

Figure 1-19 Output of the count() function

To add statements that use the count() function to display the num-
ber of scheduled concerts and the names of each performer:

1. Return to the Concerts.php document in your text editor.

2. Add the following output statements to the end of the code
block, but above the closing ?> delimiter:
echo "<p>The following ", count($Concerts),
 " concerts are scheduled:</p><p>";
echo "$Concerts[0]
";
echo "$Concerts[1]
";
echo "$Concerts[2]
";
echo "$Concerts[3]
";
echo "$Concerts[4]
";
echo "$Concerts[5]
";
echo "$Concerts[6]</p>";

3. Save and upload the Concerts.php document and then vali-
date it with the W3C XHTML Validator.

4. Open the Concerts.php fi le in your Web browser by enter-
ing the following URL: http://<yourserver>/PHP_Projects/
Chapter.01/Chapter/Concerts.php. Your Web browser should
appear similar to Figure 1-20.

37

Working with Data Types

Figure 1-20 Output of Concerts.php

5. Close your Web browser window.

PHP includes the print_r(), var_export(), and var_dump() func-
tions, which you can use to display or return information about
variables. Th ese functions are most useful with arrays because they
display the index and value of each element. You pass to each func-
tion the name of an array (or other type of variable). Th e following
print_r() function displays the index and values of each element
in the $Provinces[] array. Figure 1-21 shows the output. Notice in
the fi gure that the 10 Canadian provinces are assigned to elements 0
through 9 in the $Provinces[] array.
print_r($Provinces);

Figure 1-21 Output of the $Provinces[]
array with the print_r() function

A looping
statement
provides a
more effi cient
method for

displaying all the elements
of an array. You will learn
about looping statements
in Chapter 2.

38

C H A P T E R 1 Getting Started with PHP

Th e print_r() function does not include any XHTML formatting
tags, so the array elements are displayed as a continuous string of
text. To display the array elements on individual lines instead, place
the print_r() function between echo statements for opening and
closing XHTML <pre> tags.
echo "<pre>";
print_r($Provinces);
echo "</pre>";

Modifying Elements
You modify values in existing array elements in the same fashion as
you modify values in a standard variable, except that you include
the index for an individual element of the array. Th e following
code assigns values to the fi rst three elements in an array named
$HospitalDepts[]:
$HospitalDepts = array(
 "Anesthesia", // fi rst element (0)
 "Molecular Biology", // second element (1)
 "Neurology"); // third element (2)

After you have assigned a value to an array element, you can change it
later, just as you can change other variables in a script. To change the
fi rst array element in the $HospitalDepts[] array from “Anesthesia”
to “Anesthesiology,” you use the following statement:
$HospitalDepts[0] = "Anesthesiology";

To modify the second and third elements in the $Concerts[] array
from Bonnie Raitt and James Taylor to Joe Cocker and Van Morrison:

1. Return to the Concerts.php document in your text editor.

2. Add the following statements above the fi rst echo statement:
$Concerts[2] = "Joe Cocker";
$Concerts[3] = "Van Morrison";

3. Save and upload the Concerts.php document and then vali-
date it with the W3C XHTML Validator.

4. Open the Concerts.php fi le in your Web browser by entering
the following URL: http://<yourserver>/PHP_Projects/Chap-
ter.01/Chapter/Concerts.php. Th e concert list should include
Joe Cocker and Van Morrison instead of Bonnie Raitt and
James Taylor.

5. Close your Web browser window.

39

Working with Data Types

Avoiding Assignment Notation Pitfalls
In this section, you have learned three diff erent assignment syntaxes.
Each does something completely diff erent, and it is easy to get them
confused.

Th is statement assigns the string “Hello” to a variable named $list.
$list = "Hello";

Th is statement assigns the string “Hello” to a new element appended
to the end of the $list array.
$list[] = "Hello";

Th is statement replaces the value stored in the fi rst element (index 0)
of the $list array with the string “Hello”.
$list[0] = "Hello";

Short Quiz

1. Explain why you do not need to assign a specifi c data type to
a variable when it is declared.

2. Positive and negative numbers and 0 with no decimal places
belong to which data type?

3. Explain how you access the value of the second element in an
array named $signs.

4. What function can be used to determine the total number of
elements in an array?

5. Illustrate the value of using the print_r() function to return
information about an array variable.

Building Expressions
Variables and data become most useful when you use them in an
expression. An expression is a literal value or variable (or a combina-
tion of literal values, variables, operators, and other expressions) that
can be evaluated by the PHP scripting engine to produce a result. You
use operands and operators to create expressions in PHP. Operands
are variables and literals contained in an expression. A literal is a
static value such as a string or a number. Operators are symbols,

40

C H A P T E R 1 Getting Started with PHP

such as the addition operator (+) and multiplication operator (*),
which are used in expressions to manipulate operands. You have
worked with several simple expressions so far that combine operators
and operands. Consider the following statement:
$MyNumber = 100;

Th is statement is an expression that results in the literal value 100
being assigned to $MyNumber. Th e operands in the expression are the
$MyNumber variable name and the integer value 100. Th e operator is
the equal sign (=). Th e equal sign is a special kind of operator, called
an assignment operator, because it assigns the value 100 on the right
side of the expression to the variable ($MyNumber) on the left side of
the expression. Table 1-2 lists the main types of PHP operators. You
will learn more about specifi c operators in the following sections.

Type Description

Array Performs operations on arrays

Arithmetic Performs mathematical calculations

Assignment Assigns values to variables

Comparison Compares operands and returns a Boolean value

Logical Performs Boolean operations on Boolean operands

Special Performs various tasks; these operators do not fi t within
other operator categories

String Performs operations on strings

Table 1-2 PHP operator types

PHP operators are binary or unary. A binary operator requires an
operand before and after the operator. Th e equal sign in the statement
$MyNumber = 100; is an example of a binary operator. A unary oper-
ator requires a single operand either before or after the operator. For
example, the increment operator (++), an arithmetic operator, is used
for increasing an operand by a value of 1. Th e statement $MyNumber++;
changes the value of the preceding $MyNumber variable to 101.

Next, you will learn more about the diff erent types of PHP operators.

Arithmetic Operators
Arithmetic operators are used in PHP to perform mathematical cal-
culations, such as addition, subtraction, multiplication, and division.
You can also use an arithmetic operator to return the modulus of a
calculation, which is the remainder left when you divide one number
by another number.

This is not a
comprehen-
sive list of all
supported
PHP operator

types. Several complex
operator types are
beyond the scope of this
book and are not included
in this list.

You study
string
 operators in
Chapter 3
and arrays in
Chapter 6.

The operand
to the left of
an operator is
known as the
left operand,

and the operand to the
right of an operator is
known as the right
operand.

41

Building Expressions

Arithmetic Binary Operators
Table 1-3 lists the PHP binary arithmetic operators and their
descriptions.

Symbol Operation Description

+ Addition Adds two operands

− Subtraction Subtracts the right operand from the left
operand

* Multiplication Multiplies two operands

/ Division Divides the left operand by the right operand

% Modulus Divides the left operand by the right operand
and returns the remainder

Table 1-3 PHP arithmetic binary operators

Th e following code shows examples of expressions that include
arithmetic binary operators. Figure 1-22 shows how the expressions
appear in a Web browser.
// ADDITION
$x = 100;
$y = 200;
$ReturnValue = $x + $y; // $ReturnValue is assigned the

value 300
echo '<p>$ReturnValue after addition expression: ',
 $ReturnValue, "</p>";
// SUBTRACTION
$x = 10;
$y = 7;
$ReturnValue = $x − $y; // $ReturnValue changes to 3
echo '<p>$ReturnValue after subtraction expression: ',
 $ReturnValue, "</p>";
// MULTIPLICATION
$x = 2;
$y = 6;
$ReturnValue = $x * $y; // $ReturnValue changes to 12
echo '<p>$ReturnValue after multiplication expression: ',
 $ReturnValue, "</p>";
// DIVISION
$x = 24;
$y = 3;
$ReturnValue = $x / $y; // $ReturnValue changes to 8
echo '<p>$ReturnValue after division expression: ',
 $ReturnValue, "</p>";
// MODULUS
$x = 3;
$y = 2;
$ReturnValue = $x % $y; // $ReturnValue changes to 1
echo '<p>$ReturnValue after modulus expression: ',
 $ReturnValue, "</p>";

42

C H A P T E R 1 Getting Started with PHP

Figure 1-22 Results of arithmetic expressions

Notice in the preceding code that when PHP performs an arith-
metic calculation, it performs the operation on the right side of the
assignment operator and then assigns the value to a variable on the
left side of the assignment operator. For example, in the statement
$ReturnValue = $x + $y;, the operands $x and $y are added, and
then the result is assigned to the $ReturnValue variable on the left
side of the assignment operator.

You might be confused by the diff erence between the division (/)
operator and the modulus (%) operator. Th e division operator per-
forms a standard mathematical division operation. In comparison,
the modulus operator returns the remainder left from the division of
two integers. Th e following code, for instance, uses the division and
modulus operators to return the result of dividing 15 by 6. Th e result
is a value of 2.5, because 6 goes into 15 exactly 2.5 times. But if you
express this in whole numbers, 6 goes into 15 only 2 times, with a
remainder of 3. Th us, the modulus of 15 divided by 6 is 3 because 3 is
the remainder after the integer division. Figure 1-23 shows the output.
$DivisionResult = 15 / 6;
$ModulusResult = 15 % 6;
echo "<p>15 divided by 6 is
 $DivisionResult.</p>"; // displays '2.5'
echo "The whole number 6 goes into 15 twice, with a
 remainder of $ModulusResult.</p>"; // displays '3'

Figure 1-23 Division and modulus expressions

43

Building Expressions

You can include a combination of variables and literal values on the
right side of an assignment statement. For example, any of the follow-
ing addition statements are correct:
$ReturnValue = 100 + $y;
$ReturnValue = $x + 200;
$ReturnValue = 100 + 200;

However, you cannot include a literal value as the left operand of an
assignment operator because the PHP scripting engine must have a
variable to which to assign the returned value. Th erefore, the state-
ment 100 = $x + $y; causes an error.

When performing arithmetic operations on string values, the PHP
scripting engine attempts to convert the string values to numbers.
Th e variables in the following example are assigned as string values
instead of numbers because they are contained within quotation
marks. Nevertheless, the PHP scripting engine correctly performs the
multiplication operation and returns a value of 6.
$x = "2";
$y = "3";
$ReturnValue = $x * $y; // the value of $ReturnValue is 6

Arithmetic Unary Operators
Arithmetic operations can also be performed on a single variable
using unary operators. Table 1-4 lists the unary arithmetic operators
available in PHP.

Symbol Operation Description

++ Increment Increases an operand by a value of 1

−− Decrement Decreases an operand by a value of 1

Table 1-4 PHP arithmetic unary operators

Th e increment (++) and decrement (−−) unary operators can be used
as prefi x or postfi x operators. A prefi x operator is placed before a
variable. A postfi x operator is placed after a variable. Th e statements
++$MyVariable; and $MyVariable++; both increase $MyVariable
by 1. However, the two statements return diff erent values. When you
use the increment operator as a prefi x operator, the value of the oper-
and is increased by a value of 1 before it is returned. When you use
the increment operator as a postfi x operator, the value of the operand
is increased by a value of 1 after it is returned. Similarly, when you use
the decrement operator as a prefi x operator, the value of the operand
is decreased by a value of 1 before it is returned, and when you use

44

C H A P T E R 1 Getting Started with PHP

the decrement operator as a postfi x operator, the value of the operand
is decreased by a value of 1 after it is returned. If you intend to assign
the incremented or decremented value to another variable, it makes a
diff erence whether you use the prefi x or postfi x operator.

You use arithmetic unary operators in any situation in which you pre-
fer a simplifi ed expression for increasing or decreasing a value by 1.
For example, the statement $Count = $Count + 1; is identical to the
statement ++$Count;. As you can see, if your goal is only to increase
the value of a variable by 1, it is easier to use the unary increment
operator.

For an example of when you would use the prefi x operator or the
postfi x operator, consider an integer variable named $StudentID
that is used for assigning student IDs in a class registration script.
One way of creating a new student ID number is to store the last
assigned student ID in the $StudentID variable. When it’s time
to assign a new student ID, the script could retrieve the last value
stored in the $StudentID variable and then increase its value by
1. In other words, the last value stored in the $StudentID vari-
able will be the next number used for a student ID number. In this
case, you would use the postfi x operator to increment the value
of the expression after it is returned by using a statement similar
to $CurStudentID = $StudentID++;. If you are storing the last
assigned student ID in the $CurStudentID variable, you would want
to increment the value by 1 and use the result as the next student ID.
In this scenario, you would use the prefi x operator, which increments
the value of the expression before it is returned using a statement
similar to $CurStudentID = ++$StudentID;.

Figure 1-24 shows a simple script that uses the prefi x increment oper-
ator to assign three student IDs to a variable named $CurStudentID.
Th e initial student ID is stored in the $StudentID variable and initial-
ized to a starting value of 100. Figure 1-25 shows the output.

Figure 1-24 Script that uses the prefi x increment operator

45

Building Expressions

Figure 1-25 Output of the prefi x version of the
student ID script

Th e script in Figure 1-26 performs the same tasks, but uses a postfi x
increment operator. Notice that the output in Figure 1-27 diff ers from
the output in Figure 1-25. Because the fi rst example of the script uses
the prefi x increment operator, which increments the $StudentID
variable before it is assigned to $CurStudentID, the script does
not use the starting value of 100. Rather, it fi rst increments the
$StudentID variable and uses 101 as the fi rst student ID. In compari-
son, the second example of the script does use the initial value of 100
because the postfi x increment operator increments the $StudentID
variable after it is assigned to the $CurStudentID variable.

Figure 1-26 Script that uses the postfi x increment operator

Figure 1-27 Output of the postfi x version of
the student ID script

46

C H A P T E R 1 Getting Started with PHP

To create a script that performs arithmetic calculations:

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, header
information, and <body> element. Use the strict DTD and
“Arithmetic Examples” as the content of the <title> element.

3. Add the following standard PHP script delimiters to the docu-
ment body:
<?php
?>

4. Add the following statements to the script section to declare
two variables. Th ese statements include a $Number variable
to contain a number, which you will use in several arithmetic
operations, and a $Result variable to contain the value of
each arithmetic operation.
$Number = 100;
$Result = 0;

5. Now add the following statements that perform addition,
subtraction, multiplication, and division operations on the
$Number variable and assign each value to the $Result vari-
able. Th e $Result variable is displayed after each assignment
statement.
$Result = $Number + 50;
echo '<p>$Result after addition = ', $Result, "
";
$Result = $Number / 4;
echo '$Result after division = ', $Result, "
";
$Result = $Number − 25;
echo '$Result after subtraction = ', $Result, "
";
$Result = $Number * 2;
echo '$Result after multiplication = ', $Result,
"
";

6. Next, add the following two statements. Th e fi rst state-
ment uses the increment operator to increase the value of
the $Number variable by 1 and assigns the new value to the
$Result variable. Th e second statement displays the $Result
variable. Notice that the increment operator is used as a prefi x
operator, so the new value is assigned to the $Result variable.
If you had used the postfi x increment operator, the $Number
variable would have been incremented by 1 after the old value
of the $Number variable was assigned to the $Result variable.
$Result = ++$Number;
echo '$Result after increment = ', $Result, "</p>";

47

Building Expressions

7. Save the document as ArithmeticExamples.php in the
Chapter directory for Chapter 1, upload the document to the
Web server, and then validate the document with the W3C
XHTML Validator.

8. Open the ArithmeticExamples.php fi le in your Web browser
by entering the following URL: http://<yourserver>/PHP_
Projects/Chapter.01/Chapter/ArithmeticExamples.php.
Figure 1-28 shows the output.

Figure 1-28 Output of ArithmeticExamples.php

9. Close your Web browser window.

Assignment Operators
Assignment operators are used for assigning a value to a variable.
You have already used the most common assignment operator, the
equal sign (=), to assign values to the variables that you declared. Th e
equal sign assigns an initial value to a new variable or assigns a new
value to an existing variable. For example, the following code creates a
 variable named $MyFavoriteSuperHero, uses the equal sign to assign
it an initial value, and then uses the equal sign again to assign it a
new value:
$MyFavoriteSuperHero = "Superman";
$MyFavoriteSuperHero = "Batman";

PHP includes other assignment operators in addition to the equal
sign. Th ese additional operators, called compound assignment
operators, perform mathematical calculations on variables and lit-
eral values in an expression and then assign a new value to the left
operand. Table 1-5 displays a list of the common PHP assignment
operators.

48

C H A P T E R 1 Getting Started with PHP

Symbol Operation Description

= Assignment Assigns the value of the right operand to the left operand

+= Compound addition
assignment

Adds the value of the right operand to the value of the left
operand and assigns the new value to the left operand

−= Compound subtraction
assignment

Subtracts the value of the right operand from the value of the left
operand and assigns the new value to the left operand

*= Compound multiplication
assignment

Multiplies the value of the right operand by the value of the left
operand and assigns the new value to the left operand

/= Compound division
assignment

Divides the value of the left operand by the value of the right
operand and assigns the new value to the left operand

%= Compound modulus
assignment

Divides the value of the left operand by the value of the right
operand and assigns the remainder (modulus) to the left operand

Table 1-5 Common PHP assignment operators

Th e following code shows examples of the diff erent assignment oper-
ators. Figure 1-29 shows the output.
echo "<p>";
$x = 100;
$y = 200;
$x += $y; // $x changes to 300
echo $x, "
";
$x = 10;
$y = 7;
$x −= $y; // $x changes to 3
echo $x, "
";
$x = 2;
$y = 6;
$x *= $y; // $x changes to 12
echo $x, "
";
$x = 24;
$y = 3;
$x /= $y; // $x changes to 8
echo $x, "
";
$x = 3;
$y = 2;
$x %= $y; // $x changes to 1
echo $x, "
";
$x = "100";
$y = 5;
$x *= $y; // $x changes to 500
echo $x, "</p>";

49

Building Expressions

Figure 1-29 Assignment operators

To create a script that uses assignment operators:

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, header
information, and <body> element. Use the strict DTD and
“Assignment Examples” as the content of the <title> element.

3. Add the following standard PHP script delimiters to the
 document body:
<?php
?>

4. Type the following statements in the script section. Th ese
statements perform several compound assignment operations
on a variable named $ChangingVar. After each assignment
operation, the result is displayed.
$ChangingVar = 100;
$ChangingVar += 50;
echo "<p>";
echo "Variable after addition assignment =
$ChangingVar
";
$ChangingVar −= 30;
echo "Variable after subtraction assignment =
$ChangingVar
";
$ChangingVar /= 3;
echo "Variable after division assignment =
$ChangingVar
";
$ChangingVar *= 8;
echo "Variable after multiplication assignment =
$ChangingVar
";
$ChangingVar %= 300;
echo "Variable after modulus assignment =
$ChangingVar</p>";

5. Save the document as AssignmentExamples.php in the
Chapter directory for Chapter 1, upload the document to the
Web server, and then validate the document with the W3C
XHTML Validator.

50

C H A P T E R 1 Getting Started with PHP

6. Open the AssignmentExamples.php fi le in your Web
browser by entering the following URL: http://<yourserver>/
PHP_Projects/Chapter.01/Chapter/AssignmentExamples.php.
Figure 1-30 shows the output.

Figure 1-30 Output of AssignmentExamples.php

7. Close the Web browser window.

Comparison and Conditional Operators
Comparison operators are used to determine how one operand
compares to another. A Boolean value of TRUE or FALSE is returned
after two operands are compared. For example, the statement
5 < 3 returns a Boolean value of FALSE because 5 is not less than 3.
Table 1-6 lists the PHP comparison operators.

Symbol Operation Description

== Equal Returns TRUE if the operands are equal

=== Strict equal Returns TRUE if the operands are equal and of the same data
type

!= or <> Not equal Returns TRUE if the operands are not equal

!== Strict not equal Returns TRUE if the operands are not equal or not of the same
data type

> Greater than Returns TRUE if the left operand is greater than the right
operand

< Less than Returns TRUE if the left operand is less than the right operand

>= Greater than or equal to Returns TRUE if the left operand is greater than or equal to
the right operand

<= Less than or equal to Returns TRUE if the left operand is less than or equal to the
right operand

Table 1-6 PHP comparison operators

51

Building Expressions

You can use number or string values as operands with comparison
operators. When two numeric values are used as operands, the PHP
scripting engine compares them numerically. For example, the state-
ment $ReturnValue = 5 > 4; results in TRUE because the number
5 is numerically greater than the number 4. When two non-numeric
values are used as operands, the PHP scripting engine compares them
in alphabetical order. Th e statement $ReturnValue = "b" > "a";
returns TRUE because the letter b is alphabetically greater than
the letter a. When one operand is a number and the other is a
string, the PHP scripting engine attempts to convert the string
value to a number. If the string value cannot be converted to a
number, a value of FALSE is returned. For example, the statement
$ReturnValue = 10 == "ten"; returns a value of FALSE because the
PHP scripting engine cannot convert the string “ten” to a number.
However, the statement $ReturnValue = 10 == "10"; returns a
value of TRUE because the PHP scripting engine can convert the string
“10” to a number.

Th e comparison operator is often used with another kind of
operator, the conditional operator. Th e conditional operator
executes one of two expressions, based on the results of a con-
ditional expression. Th e syntax for the conditional operator is
conditional_expression ? expression1 : expression2;. If
conditional_expression evaluates to TRUE, expression1 executes.
If conditional_expression evaluates to FALSE, expression2
executes.

Th e following code shows an example of the conditional operator:
$BlackjackPlayer1 = 20;
 ($BlackjackPlayer1 <= 21) ? $Result =
 "Player 1 is still in the game." : $Result =
 "Player 1 is out of the action.";
echo "<p>", $Result, "</p>";

In the example, the conditional expression checks to see if
the $BlackjackPlayer1 variable is less than or equal to 21. If
$BlackjackPlayer1 is less than or equal to 21, the text “Player
1 is still in the game” is assigned to the $Result variable. If
$BlackjackPlayer1 is greater than 21, the text “Player 1 is
out of the action” is assigned to the $Result variable. Because
$BlackjackPlayer1 is equal to 20, the conditional statement returns
a value of TRUE, the fi rst expression executes, and “Player 1 is still in
the game” appears on the screen. Figure 1-31 shows the output.

The
 comparison
operator ==
consists of
two equal
signs and

performs a different
 function from the one
performed by the assign-
ment operator, which
consists of a single equal
sign (=). The comparison
operator compares
 values, whereas the
assignment operator
assigns values.

Comparison
operators are
often used
with two
kinds of spe-

cial statements: condi-
tional statements and
looping statements. You
will learn how to use
comparison operators in
such statements in
Chapter 2.

52

C H A P T E R 1 Getting Started with PHP

Figure 1-31 Output of a script with a conditional operator

To create a script that uses comparison and conditional operators:

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, header
information, and <body> element. Use the strict DTD and
“Comparison Examples” as the content of the <title>
element.

3. Add the following standard PHP script delimiters to the docu-
ment body:
<?php
?>

4. Add the following statements to the script section to perform
various comparison operations on two variables. Notice that
the comparison statements use the conditional operator to
assign a text value of TRUE or FALSE to the $ReturnValue
variable.
$Value1 = "fi rst text string";
$Value2 = "second text string";
$ReturnValue = ($Value1 == $Value2 ? "true" :
"false");
echo '<p>$Value1 equal to $Value2: ', $ReturnValue,
"
";
$Value1 = 50;
$Value2 = 75;
$ReturnValue = ($Value1 == $Value2 ? "true" :
"false");
echo '$Value1 equal to $Value2: ', $ReturnValue,
"
";
$ReturnValue = ($Value1 != $Value2 ? "true" :
"false");
echo '$Value1 not equal to $Value2: ', $ReturnValue,
"
";
$ReturnValue = ($Value1 <> $Value2 ? "true" :
"false");
echo '$Value1 not equal to $Value2: ', $ReturnValue,
"
";
$ReturnValue = ($Value1 > $Value2 ? "true" :
"false");

53

Building Expressions

echo '$Value1 greater than $Value2: ', $ReturnValue,
"
";
$ReturnValue = ($Value1 < $Value2 ? "true" :
"false");
echo '$Value1 less than $Value2: ', $ReturnValue,
"
";
$ReturnValue = ($Value1 >= $Value2 ? "true" :
"false");
echo '$Value1 greater than or equal to $Value2: ',
$ReturnValue, "
";
$ReturnValue = ($Value1 <= $Value2 ? "true" :
"false");
echo '$Value1 less than or equal to $Value2 : ',
$ReturnValue, "
";
$Value1 = 25;
$Value2 = 25;
$ReturnValue = ($Value1 === $Value2 ? "true" :
"false");
echo '$Value1 equal to $Value2 AND the same data
type: ',
$ReturnValue, "
";
$ReturnValue = ($Value1 !== $Value2 ? "true" :
"false");
echo '$Value1 not equal to $Value2 AND not the same
data type: ',
$ReturnValue, "</p>";

5. Save the document as ComparisonExamples.php in the
Chapter directory for Chapter 1, upload the document to the
Web server, and then validate the document with the W3C
XHTML Validator.

6. Open the ComparisonExamples.php fi le in your Web
browser by entering the following URL: http://<yourserver>/
PHP_Projects/Chapter.01/Chapter/ComparisonExamples.php.
Figure 1-32 shows the output.

Figure 1-32 Output of ComparisonExamples.php

54

C H A P T E R 1 Getting Started with PHP

7. Close your Web browser window.

Logical Operators
Logical operators are used for comparing two Boolean operands for
equality. Boolean operands are operands that are limited to the val-
ues TRUE or FALSE. For example, a script for an automobile insurance
company might need to determine whether a customer is male and
under 21 to determine the correct insurance quote. As with compari-
son operators, a Boolean value of TRUE or FALSE is returned after two
operands are compared. Table 1-7 lists the PHP logical operators.

Symbol Operation Description

&& or AND Logical And Returns TRUE if both the left operand and right operand return
a value of TRUE; otherwise, it returns a value of FALSE

|| or OR Logical Or Returns TRUE if either the left operand or right operand returns
a value of TRUE; otherwise (neither operand returns a value of
TRUE), it returns a value of FALSE

XOR Logical Exclusive Or Returns TRUE if only one of the left operand or right operand
returns a value of TRUE; otherwise (neither operand returns
a value of TRUE or both operands return a value of TRUE), it
returns a value of FALSE

! Logical Not Returns TRUE if an expression is FALSE and returns FALSE if
an expression is TRUE

Table 1-7 PHP logical operators

For the logical Or operator, you can use either || or OR. For the logi-
cal And operator, you can use either && or AND. Th e logical Or, logi-
cal Exclusive Or, and the logical And operators are binary operators
(requiring two operands), whereas the logical Not (!) operator is a
unary operator (requiring a single operand). Logical operators are
often used with comparison operators to evaluate expressions, allow-
ing you to combine the results of several expressions into a single
statement. For example, the logical And operator is used to determine
whether two operands return an equivalent value. Th e operands
themselves are often expressions. Th e following code uses the logical
And (&&) operator to compare two separate expressions:
$Gender = "male";
$Age = 17;
$RiskFactor =
 $Gender=="male" && $Age<=21; // returns TRUE

55

Building Expressions

In the preceding example, the $Gender variable expression evaluates
to TRUE because it is equal to “male” and the $Age variable expression
evaluates to TRUE because its value is less than or equal to 21. Because
both expressions are TRUE, $RiskFactor is assigned a value of TRUE.
Th e statement containing the logical And operator (&&) essentially
says, “If variable $Gender is equal to ‘male’ and variable $Age is less
than or equal to 21, then assign a value of TRUE to $RiskFactor.
Otherwise, assign a value of FALSE to $RiskFactor.” In the following
code, however, $RiskFactor is assigned a value of FALSE because the
$Age variable expression does not evaluate to TRUE. Notice that the
following code uses the AND version of the logical And operator.
$Gender = "male";
$Age = 28;
$RiskFactor =
 $Gender=="male" AND $Age<=21; // returns FALSE

Th e logical Or operator checks to see if either expression evaluates
to TRUE. For example, the statement containing the logical Or opera-
tor (||) in the following code says, “If variable $SpeedingTicket is
greater than 0 or variable $Age is less than or equal to 21, then assign
a value of TRUE to $RiskFactor. Otherwise, assign a value of FALSE to
$RiskFactor.”
$SpeedingTicket = 2;
$Age = 28;
$RiskFactor =
 $SpeedingTicket > 0 || $Age <= 21; // returns TRUE

Th e $RiskFactor variable in the preceding example is assigned a
value of TRUE because the $SpeedingTicket variable expression
evaluates to TRUE, even though the $Age variable expression evaluates
to FALSE. Th is result occurs because the logical Or operator returns
TRUE if either the left or right operand evaluates to TRUE. Th e follow-
ing example shows another version of the preceding code, but this
time using the OR version of the logical Or operator:
$SpeedingTicket = 2;
$Age = 28;
$RiskFactor =
 $SpeedingTicket > 0 OR $Age <= 21; // returns TRUE

Th e following code is an example of the logical Not (!) operator,
which returns TRUE if an operand evaluates to FALSE and returns
FALSE if an operand evaluates to TRUE. Notice that because the logical
Not (!) operator is unary, it requires only a single operand.
$Traffi cViolations = true;
$SafeDriverDiscount =
 !$Traffi cViolations; // returns FALSE

56

C H A P T E R 1 Getting Started with PHP

Th e following code is an example of the logical Exclusive Or (XOR)
operator, which returns TRUE if only one of the operands is TRUE, but
not both.
$RightSideSteering = true;
$Country = "England";
$IncorrectSteering =
 $RightSideSteering == true
 XOR $Country == "England"; // returns FALSE
To create a script that uses logical operators:

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, header
information, and <body> element. Use the strict DTD and
“Logical Examples” as the content of the <title> element.

3. Add the following standard PHP script delimiters to the docu-
ment body:
<?php
?>

4. Add the following statements to the script section that use
logical operators on two variables. Th e conditional expres-
sions evaluate the logical expressions and then assign a text
value of TRUE or FALSE to the $ReturnValue variable.
$TrueValue = true;
$FalseValue = false;
$ReturnValue = ($TrueValue ? "true" : "false");
echo "<p>$ReturnValue
";
$ReturnValue = ($FalseValue ? "true" : "false");
echo "$ReturnValue
";
$ReturnValue = ($TrueValue || $FalseValue ? "true" :
"false");
echo "$ReturnValue
";
$ReturnValue = ($TrueValue && $FalseValue ? "true" :
"false");
echo "$ReturnValue
";
echo "</p>";

5. Save the document as LogicalExamples.php in the Chap-
ter directory for Chapter 1, upload the document to the
Web server, and then validate the document with the W3C
XHTML Validator.

6. Open the LogicalExamples.php fi le from your Web server by
entering the following URL: http://<yourserver>/PHP_Proj-
ects/Chapter.01/Chapter/LogicalExamples.php. Figure 1-33
shows the output.

Logical opera-
tors are often
used within
conditional
and looping

statements such as the
if . . . else, for,
and while statements.
You will learn about
 conditional and looping
 statements in Chapter 2.

57

Building Expressions

Figure 1-33 Output of LogicalExamples.php

7. Close the Web browser window.

Special Operators
PHP also includes the special operators that are listed in Table 1-8.
Th ese operators are used for various purposes and do not fi t within
any other category.

Symbol Operation

[and] Accesses an element of an array

=> Specifi es the index or key of an array element

, Separates arguments in a list

? and : Executes one of two expressions based on the results of a
conditional expression

instanceof Returns TRUE if an object is of a specifi ed object type

@ Suppresses any errors that might be generated by an expression
to which it is prepended (or placed before)

(int), (integer), (bool),
(boolean), (double),
(string), (array),
(object)

Casts (or transforms) a variable of one data type into a variable of
another data type

Table 1-8 PHP special operators

You will be introduced to the special PHP operators as necessary
throughout this book, beginning with the casting operators in the
next section.

58

C H A P T E R 1 Getting Started with PHP

Type Casting
Even though PHP automatically assigns the data type of a variable,
sometimes you want to ensure that a variable is of the data type
expected by your script. One way to ensure this is through casting,
or type casting, which copies the value contained in a variable of
one data type into a variable of another data type. Th e PHP syntax for
casting variables is $NewVariable = (new_type) $OldVariable;.
Th e (new_type) portion of the syntax is the type-casting operator
representing the type to which you want to cast the variable. Note
that casting does not change the data type of the original variable.
Rather, casting copies the data from the old variable, converts it to the
data type specifi ed by the type-casting operator, and then assigns the
value to the new variable.

Type-casting operators are useful because the data type of variables
can change during the course of program execution. Th is can cause
problems if you attempt to perform an arithmetic operation on a vari-
able that happens to contain a string or the NULL value. For example,
the fi rst statement in the following code assigns a string value of “55
mph” to a variable named $SpeedLimitMiles. Th e second state-
ment then multiplies the $SpeedLimitMiles variable by 1.6 to con-
vert the value to kilometers. Notice that the second statement also
includes the (int) operator, which converts the string value in the
$SpeedLimitMiles variable to an integer.
$SpeedLimitMiles = "55 mph";
$SpeedLimitKilometers = (int) $SpeedLimitMiles * 1.6;
echo "$SpeedLimitMiles is equal to
 $SpeedLimitKilometers kph";

Th e third statement in the preceding code displays the text “55 mph
is equal to 88 kph” to the Web browser. Th e (int) operator con-
verted the string value of “55 mph” to an integer value of 55, which
was multiplied by 1.6 to calculate the kilometers. To be honest, the
PHP scripting engine would have performed the type cast automati-
cally, without the (int) operator. However, it doesn’t hurt to use type
casting to ensure that your variables are of the expected data type.
Th is is especially true if you need to perform operations on data that
is entered by users. As you will learn in Chapter 4, one of the most
common uses of PHP is to process form data that is submitted from
a client. You cannot be sure that a user will enter form data correctly,
so it’s a good idea for you to ensure that the data entered is of the type
expected by your script.

PHP can
convert a
string to a
numeric
value if the
string starts

with a numeric value. Any
subsequent non-numeric
characters are ignored.

You can also
perform a
type cast
with the
settype()
function.

59

Building Expressions

Instead of just guessing data types, you can view a variable’s type by
using the gettype() function, which returns one of the following
strings, depending on the data type:

Boolean •

Integer •

Double •

String •

Array •

Object •

Resource •

NULL •

Unknown type •

You pass the name of a variable to the gettype() function as a
parameter using the syntax gettype($variable_name);. For
example, the fi rst statement in the following code declares a double
variable named $MortgageRate (a double is a PHP fl oating-
point number). Th e second statement passes the name of the
$MortgageRate variable to the gettype() function. Th e value
returned from the gettype() function is then displayed by an echo
statement. Th e following code displays the text string “double” to the
screen.
$MortgageRate = .0575;
echo gettype($MortgageRate);

Although you can use the gettype() function to view a variable’s
data type, there are easier ways within PHP to determine if a variable
is of a specifi c data type. Th e best way is to use one of the 15 is_*()
functions that test for various kinds of data types. Each function
returns a Boolean value to indicate whether the variable is of a given
data type. For instance, the is_numeric() function tests whether
a variable contains a numeric data type, whereas the is_string()
function tests whether a variable contains a string data type. Th ere
are also more specifi c is_*() functions, such as the is_int() func-
tion, which tests whether a variable is an integer data type, and the
is_double() function, which tests whether a variable is a double data
type. To use an is_*() function, you pass a variable name as an argu-
ment to the function you want to use. Th e following example uses
the is_double() function along with the conditional operator to test
the data type of the $MortgageRate variable. Th e conditional expres-
sion passes the $MortgageRate variable to the is_double() function,
and then determines whether the returned result is TRUE. Because

60

C H A P T E R 1 Getting Started with PHP

the $MortgageRate variable is a double data type, a value of TRUE is
returned with the text “Th e variable contains a decimal number.”
$MortgageRate = .0575;
$Result = ((is_double($MortgageRate)) ?
 "The variable contains a decimal number." :
 "The variable does not contain a decimal number.");
echo $Result;

Th e following example contains a modifi ed version of the miles-to-
kilometers script. Th is time, a conditional operator uses the is_int()
function to determine whether the $SpeedLimitMiles variable is an
integer. If the variable is an integer, its value is simply multiplied by
1.6 and assigned to the $SpeedLimitKilometers variable. However,
if the variable is not an integer (in this case, it’s not), its value is cast
to an integer data type before being multiplied by 1.6 and assigned to
the $SpeedLimitKilometers variable.
$SpeedLimitMiles = "55 mph";
$SpeedLimitKilometers = ((is_int($SpeedLimitMiles)) ?
 $SpeedLimitMiles * 1.6 :
 (int) $SpeedLimitMiles * 1.6);
echo "$SpeedLimitMiles is equal to
 $SpeedLimitKilometers kph";

Understanding Operator Precedence
When using operators to create expressions in PHP, you need to be
aware of the precedence of an operator. Th e term operator prece-
dence refers to the order in which operations in an expression are
evaluated. Table 1-9 shows the order of precedence for PHP opera-
tors. Operators in the same grouping in Table 1-9 have the same
order of precedence. When performing operations with operators in
the same precedence group, the order of precedence is determined by
the operators’ associativity—that is, the order in which operators of
equal precedence execute. Associativity is evaluated on a left-to-right
or a right-to-left basis.

Symbol Operator Associativity

new clone New object—highest precedence None

[] Array elements Right to left

++ −− Increment/Decrement Right to left

(int) (double) (string)

(array) (object)
Cast Right to left

@ Suppress errors Right to left

Table 1-9 Operator precedence in PHP (continues)

61

Building Expressions

Operators in a higher grouping have precedence over operators in
a lower grouping. For example, the multiplication operator (*) has
a higher precedence than the addition operator (+). Th erefore, the
statement 5 + 2 * 8 evaluates as follows: Th e numbers 2 and 8 are
multiplied fi rst for a total of 16, and then the number 5 is added,
resulting in a total of 21. If the addition operator had a higher prece-
dence than the multiplication operator, the statement would evaluate
to 56 because 5 would be added to 2 for a total of 7, which would then
be multiplied by 8.

As an example of how associativity is evaluated, consider the multi-
plication and division operators, which have an associativity of left
to right. Th is means that the statement 30 / 5 * 2 results in a value of
12—although the multiplication and division operators have equal
precedence, the division operation executes fi rst due to the left-to-
right associativity of both operators. If the operators had right-to-
left associativity, the statement 30 / 5 * 2 would result in a value of 3
because the multiplication operation (5 * 2) would execute fi rst. By
comparison, the assignment operator and compound assignment
operators, such as the compound multiplication assignment operator
(*=), have an associativity of right to left. Th erefore, in the following
code, the assignment operations take place from right to left. Th e
variable $x is incremented by 1 before it is assigned to the $y variable

The preced-
ing list in
Table 1-9
does not
include

bitwise operators.

Symbol Operator Associativity

instanceof Types None

! Logical Not Right to left

* / % Multiplication/division/modulus Left to right

+ − . Addition/subtraction/string
concatenation

Left to right

< <= > >= <> Comparison None

== != === !== Equality None

&& Logical And Left to right

|| Logical Or Left to right

?: Conditional Left to right

= += −= *= /= %= .= Assignment Right to left

AND Logical And Left to right

XOR Logical Exclusive Or Left to right

OR Logical Or Left to right

, List separator—lowest precedence Left to right

Table 1-9 Operator precedence in PHP

(continued)

62

C H A P T E R 1 Getting Started with PHP

using the compound multiplication assignment operator (*=). Th en,
the value of variable $y is assigned to variable $x. Th e result assigned
to both the $x and $y variables is 8.
$x = 3;
$y = 2;
$x = $y *= ++$x;

You can use parentheses with expressions to change the associativ-
ity with which individual operations in an expression are evaluated.
For example, the statement 5 + 2 * 8, which evaluates to 21, can be
rewritten to (5 + 2) * 8, which evaluates to 56. Th e parentheses tell
the PHP scripting engine to add the numbers 5 and 2 before multiply-
ing by the number 8. Using parentheses forces the statement to evalu-
ate to 56 instead of 21.

Short Quiz

1. What symbol is used to divide the left operand by the right
operand and return the remainder?

2. Explain the diff erence between an assignment operator and a
compound assignment operator.

3. Explain the diff erence between a prefi x operator and a postfi x
operator.

4. Defi ne the term “associativity” as it applies to the order of
precedence.

Summing Up

JavaScript and PHP are both referred to as embedded languages •
because code for both languages is embedded within a Web page
(either an HTML or XHTML document).

You write PHP scripts within code declaration blocks, which are •
separate sections within a Web page that are interpreted by the
scripting engine.

Th e individual lines of code that make up a PHP script are called •
statements.

63

Summing Up

Th e term “function” refers to a subroutine (or individual state- •
ments grouped into a logical unit) that performs a specifi c task.

Comments are nonexecuting lines that you place in code to con- •
tain various types of remarks, including the name of the script,
your name and the date you created the program, notes to yourself,
or instructions to future programmers who might need to modify
your work. Comments do not appear in output or change the
functionality of the script.

Th e values a program stores in computer memory are commonly •
called variables.

Th e name you assign to a variable is called an identifi er. •

A constant contains information that cannot change during the •
course of program execution.

A data type is the specifi c category of information that a variable •
contains.

PHP is a loosely typed programming language. •

An integer is a positive or negative number or zero, with no deci- •
mal places.

A fl oating-point number contains decimal places or is written in •
exponential notation.

A Boolean value is a logical value of “true” or “false”. •

An array contains a set of data represented by a single variable name. •

An expression is a single literal value or variable, or a combination •
of literal values, variables, operators, and other expressions, that
can be evaluated by the PHP scripting engine to produce a result.

Operands are variables and literals contained in an expression. A •
literal is a value such as a string or a number.

Operators are symbols, such as the addition operator (• +) and
multiplication operator (*), used in expressions to manipulate
operands.

A binary operator requires an operand before and after the •
operator.

A unary operator requires a single operand either before or after •
the operator.

Arithmetic operators are used in the PHP scripting engine to •
perform mathematical calculations, such as addition, subtraction,
multiplication, and division.

64

C H A P T E R 1 Getting Started with PHP

Assignment operators are used for assigning a value to a variable. •

Comparison operators are used to determine how one operand •
compares with another.

Th e conditional operator executes one of two expressions, based •
on the results of a conditional expression.

Logical operators are used to perform operations on Boolean •
operands.

Casting or type casting creates an equivalent value in a specifi c •
data type for a given value.

Operator precedence is the order in which operations in an •
expression are evaluated.

Comprehension Check

1. What is the default extension that most Web servers use to
process PHP scripts?

a. .php

b. .html

c. .xhtml

d. .ini

2. What do you use to separate multiple arguments that are
passed to a function?

a. a period (.)

b. a comma (,)

c. a forward slash (/)

d. a backward slash (\)

3. You create line comments in PHP code by adding
 to a line you want to use as a comment.
(Choose all that apply.)

a. ||

b. **

c. #

d. //

65

Comprehension Check

4. Block comments begin with /* and end with .

a. */

b. /*

c. //

d. **

5. Which of the following is a valid variable name?

a. SalesOrder

b. salesOrder

c. $SalesOrder

d. $1SalesOrder

6. You are not required to initialize a variable when you fi rst
declare it in PHP. True or False?

7. Which is the correct syntax for declaring a variable and
assigning it a string?

a. $MyVariable = "Hello";

b. $MyVariable = "Hello"

c. "Hello" = $MyVariable;

d. $MyVariable = Hello;

8. Explain the concept of data types.

9. Explain the purpose of the NULL data type.

10. A loosely typed programming language .

a. does not require data types of variables to be declared

b. requires data types of variables to be declared

c. does not have diff erent data types

d. does not have variables

11. How many decimal places does an integer store?

a. zero

b. one

c. two

d. as many as necessary

66

C H A P T E R 1 Getting Started with PHP

12. Which of the following values can be assigned to a Boolean
variable? (Choose all that apply.)

a. TRUE

b. FALSE

c. 1

d. YES

13. Which of the following refers to the fi rst element in an
indexed array named $Employees[]?

a. $Employees[0]

b. $Employees[1]

c. $Employees[fi rst]

d. $Employees[a]

14. Th e modulus operator (%) .

a. converts an operand to base 16 (hexadecimal) format

b. returns the absolute value of an operand

c. calculates the percentage of one operand compared to
another

d. divides two operands and returns the remainder

15. What value is assigned to the $ReturnValue variable in the
statement $ReturnValue = 100 != 200;?

a. TRUE

b. FALSE

c. 100

d. 200

16. Which arithmetic operators can be used as both prefi x and
postfi x operators? (Choose all that apply.)

a. ++

b. −−

c. +

d. −

67

Comprehension Check

17. Th e logical And (&&) operator returns TRUE
if .

a. the left operand returns a value of TRUE

b. the right operand returns a value of TRUE

c. the left operand and right operand both return a value
of TRUE

d. the left operand and right operand both return a value
of FALSE

18. What value is assigned to the $ReturnValue variable in the
statement $ReturnValue = !$x;, assuming that $x has a
value of TRUE?

a. TRUE

b. FALSE

c. NULL

d. undefi ned

19. Th e order of priority in which operations in an expression are
evaluated is known as .

a. prerogative precedence

b. operator precedence

c. expression evaluation

d. priority evaluation

20. What is the value of the expression 4 * (2 + 3)?

a. 11

b. −11

c. 20

d. 14

Reinforcement Exercises

Exercise 1-1

In this project, you will create and modify a script that stores interest
rates in an array.

1. Create a new document in your text editor.

68

C H A P T E R 1 Getting Started with PHP

2. Type the <!DOCTYPE> declaration, <html> element, header
information, and <body> element. Use the strict DTD and
“Interest Array” as the content of the <title> element.

3. Add the following standard PHP script delimiters to the docu-
ment body:
<?php
?>

4. Add the following statements to the script section:
$InterestRate1 = .0725;
$InterestRate2 = .0750;
$InterestRate3 = .0775;
$InterestRate4 = .0800;
$InterestRate5 = .0825;
$InterestRate6 = .0850;
$InterestRate7 = .0875;

5. Using the array() construct, modify the statements you
added in the preceding step so the variables are saved in an
array named $RatesArray. Also, add statements to the pro-
gram that display the contents of each array element.

6. Save the document as InterestArray.php in the Projects
directory for Chapter 1, upload the document to the server,
and then validate it with the W3C XHTML Validator. After
the document is valid, open it in your Web browser to see
how it renders.

7. Close your Web browser window.

Exercise 1-2

What value is assigned to $ReturnValue for each of the following
expressions?

1. $ReturnValue = 2 == 3;

2. $ReturnValue = "2" + "3";

3. $ReturnValue = 2 >= 3;

4. $ReturnValue = 2 <= 3;

5. $ReturnValue = 2 + 3;

6. $ReturnValue = (2 >= 3) && (2 > 3);

7. $ReturnValue = (2 >= 3) || (2 > 3);

69

Reinforcement Exercises

Exercise 1-3

You use the number_format() function when you want to for-
mat the appearance of a number. Th e number_format() function
adds commas that separate thousands and determines the number
of decimal places to display. You can pass two arguments to the
number_format() function: Th e fi rst argument represents the literal
number or variable you want to format, and the second argument
determines the number of decimal places to display. If you exclude
the second argument, the number is formatted without decimal
places.

In this project, you will create a script that demonstrates how to use
the number_format() function.

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, header
information, and <body> element. Use the strict DTD and
“Single Family Home” as the content of the <title> element.

3. Add the following standard PHP script delimiters to the docu-
ment body:
<?php
?>

4. Add the following statements to the script section. Th e
fi rst statement assigns an integer value to a variable named
$SingleFamilyHome. Th e second statement then formats
the value in the $SingleFamilyHome variable and assigns the
formatted number to the $SingleFamilyHome_Print vari-
able. Th e number in the $SingleFamilyHome_Print variable
will include a comma that separates the thousands and will
include two decimal places. Th e fi nal statement displays the
formatted number on the screen.
$SingleFamilyHome = 399500;
$SingleFamilyHome_Display =
 number_format($SingleFamilyHome, 2);
echo "<p>The current median price of a single family
 home in Pleasanton, CA is
 $$SingleFamilyHome_Display.</p>";

70

C H A P T E R 1 Getting Started with PHP

5. Save the document as SingleFamilyHome.php in the
Projects folder for Chapter 1, upload the document to the
server, and then validate it with the W3C XHTML Validator.
After the document is valid, close it in your text editor, and
then open it in your Web browser to see how it renders. You
should see the text “Th e current median price of a single fam-
ily home in Pleasanton, CA is $399,500.00.” displayed on the
screen.

6. Close your Web browser window.

Exercise 1-4

Write a script that assigns the days of the week to an array named
$Days[]. Use output statements to display “Th e days of the week in
English are: ” along with the values in the $Days[] array. Following
the output statements, reassign the values in the $Days[] array
with the days of the week in French. Sunday is Dimanche, Monday
is Lundi, Tuesday is Mardi, Wednesday is Mercredi, Th ursday is
Jeudi, Friday is Vendredi, and Saturday is Samedi. Th en use output
statements to display “Th e days of the week in French are: ” along
with the French values in the $Days[] array. Save the document as
DaysArray.php.

Exercise 1-5

You can use the round(), ceil(), and fl oor() functions to
round a fraction up or down to the nearest whole number. Th e
round() function rounds a fraction to the nearest whole number,
the ceil() function rounds a fraction up to the nearest whole num-
ber, and the fl oor() function rounds a fraction down to the nearest
whole number. Write a script that demonstrates the use of these
functions. Save the document as RoundedValues.php.

Exercise 1-6

Write a script that uses a conditional operator to determine whether
a variable contains a number and whether the number is even. You
need to use the is_numeric() function and the conditional operator.
For fl oating-point numbers, you need to use the round() function to
convert the value to the nearest whole number. Save the document as
IsEven.php.

71

Reinforcement Exercises

Discovery Projects
At the end of each chapter, you will apply the concepts you have
learned to a single, ongoing project. When completed, this project
will be a comprehensive Web site that demonstrates application of
many of the PHP concepts covered in the textbook. Th e Chinese
zodiac theme was selected because it lends itself well to many of
the PHP constructs you will learn in future chapters. All fi les for the
Chinese Zodiac site will be saved in a folder named ChineseZodiac in
the root Web folder on the server.

Th e following Discovery Projects will prepare you for the design and
development of your site:

Discovery Project 1-1

You will need to select a color scheme and design or fi nd free
Chinese zodiac graphic elements. You can search on the Web for free
theme sets or image sets that contain banners, borders, background
images, buttons, icons, lines, and bullets designed around a specifi c
theme.

Create a Web banner image with a title of “Th e Chinese Zodiac” and
a subtitle of “A Code Demonstration for PHP”.

Save the banner image as ChineseZodiacBanner with an appropriate
graphic extension (.jpg, .gif, or .png) in an Images folder within the
ChineseZodiac folder and upload the document to the server.

Open the ChineseZodiacBanner image in both Internet Explorer and
Mozilla Firefox to determine if it displays well on the Web.

Discovery Project 1-2

Create nine buttons (approximately 150×30 pixels) with the follow-
ing face texts and fi lenames: “Home Page” = HomePage.img, “Site
Layout” = SiteLayout.img, “Control Structures” = ControlStructures.
img, “String Functions” = StringFunctions.img, “Web Forms” =
WebForms.img, “Midterm Assessment” = MidtermAssessment.
img, “State Information” = StateInformation.img, “User Templates” =
UserTemplates.img, and “Final Project” = FinalProject.img. Replace
.img with the appropriate extension for the image fi le type, such as
.jpg, .gif, or .png. Save the buttons in the Images folder within the
ChineseZodiac folder and upload the buttons to the server.

If your site
layout is
designed to
have but-
tons at the

top and a text navigation
bar on the left, you will
want a banner that is
approximately 392×72
pixels. If you plan to have
both the button naviga-
tion and text navigation at
the top, you will want a
banner that is approxi-
mately 468×60 pixels.

72

C H A P T E R 1 Getting Started with PHP

Discovery Project 1-3

Research the Chinese zodiac and write a few paragraphs about it in
your text editor to acquaint your audience with the concept of the
Chinese horoscope and its origin. Cite your sources. Save the docu-
ment as ChineseZodiac.txt in the ChineseZodiac folder and upload
the document to the server.

Discovery Project 1-4

Search for free images (in any size) for each of the 12 signs of the
Chinese zodiac. You will use these images in later projects. Try to
fi nd images that are similar in size, style, and form. Try to keep the
height of the image between 50 and 100 pixels, and the width of the
image between 50 and 150 pixels. Use the name of the sign as the
name of the image fi le (as in Rooster.jpg or Pig.gif). Save each of the
images with an appropriate extension in the Images folder within the
ChineseZodiac folder, and upload the images to the server.

73

Discovery Projects

C H A P T E R 2
Functions and
Control Structures

In this chapter, you will:

Study how to use functions to organize your PHP code

Learn about variable scope

Make decisions using if, if . . . else, and switch
statements

Repeatedly execute code using while, do . . . while,
for, and foreach statements

Learn about include and require statements

So far, the code you have written has consisted of simple statements
placed within script sections. However, almost all programming
languages, including PHP, allow you to group programming state-
ments into logical units. In PHP, groups of statements that you can
execute as a single unit are called functions. You will learn how to
create your own custom functions in this chapter. Th e code you have
written so far has also been linear in nature. In other words, your
programs start at the beginning and end when the last statement in
the program executes. Decision-making and looping statements allow
you to determine the order in which other statements execute in a
program. Controlling the fl ow of code and making decisions during
program execution are two of the most fundamental skills required in
programming. In this chapter, you will learn about decision-making
 statements and fl ow-control statements.

Working with Functions
In Chapter 1, you learned that PHP includes numerous built-in func-
tions that you can use in your scripts. Functions are useful because
they make it possible to treat a related group of PHP statements as a
single unit. In this section, you will learn how to write custom func-
tions. Th en, you will learn how to use these functions in your scripts.

Defi ning Functions
Before you can use a function in a PHP program, you must fi rst cre-
ate, or defi ne, it. Th e lines of code that make up a function are called
the function defi nition. Th e syntax for defi ning a function is as
follows:
<?php
function name_of_function(parameters) {
 statement(s);
}
?>

Parameters are placed within the parentheses that follow the func-
tion name. A formal parameter, or simply a parameter, is a vari-
able that is passed to a function when it is called. To declare a
parameter, you only need to place the parameter name within the
parentheses of a function defi nition. In other words, you do not
need to explicitly declare and initialize a parameter as you do a
regular variable. For example, suppose you want to write a func-
tion named calculateSalesTotal() that calculates the sales
total of a number contained in a parameter named $Subtotal
for an online transaction. Th e function name would be written as

As shown in
the preced-
ing example,
functions
must be

contained within
<?php . . . ?> tags,
like all PHP code.

75

Working with Functions

calculateSalesTotal($Subtotal). In this case, the function declara-
tion is declaring a new formal parameter (which is a variable) named
$Subtotal. Functions can contain multiple parameters separated
by commas. To declare three separate number parameters in the
calculateSalesTotal() function, you might write the function name
as calculateSalesTotal($Subtotal, $SalesTax, $Shipping).
Note that parameters such as $Subtotal, $SalesTax, and
$Shipping receive their values when you call the function from
 elsewhere in your program. You can also assign default values to a
parameter as follows:
function sampleFunction($Num1="100", $Num2="200",
$Num3="300") {
 echo ("<p>$Num1</p>");
 echo ("<p>$Num2</p>");
 echo ("<p>$Num3</p>");
}

Following the parentheses that contain the function parameters is a
set of curly braces (called function braces) that contain the function
statements. Function statements do the actual work of the function
(such as calculating the sales total), and must be contained within
the function braces. Th e following example of a function displays the
names of multiple companies:
function displayCompanyName($Company1, $Company2,
$Company3) {
 echo "<p>$Company1</p>";
 echo "<p>$Company2</p>";
 echo "<p>$Company3</p>";
}

Notice how the preceding function is structured. Th e opening
curly brace is on the same line as the function name, and the clos-
ing curly brace is on its own line following the function statements.
Each statement between the curly braces is indented fi ve character
spaces. Th is structure is one standard format used by PHP program-
mers. However, other formats are used; many originated with other
programming languages and were carried forward to use with PHP.
Remember that tabs, spaces, and line breaks are included to help the
programmer and are ignored by the PHP scripting engine. For simple
functions, it is often easier to include the function name, curly braces,
and statements on the same line. For example, the following simpli-
fi ed version of the displayCompanyName() function is declared on a
single line:
function displayCompanyName($Company) {
 echo "<p>$Company</p>"; }

Functions do
not have to
contain
parameters.
Many func-

tions only perform a task
and do not require exter-
nal data. For example,
you might create a func-
tion that displays the
same message each time
a user visits your Web
site; this type of function
only needs to be exe-
cuted and does not
require any other
information.

76

C H A P T E R 2 Functions and Control Structures

Calling Functions
A function defi nition does not execute automatically. Creating a func-
tion defi nition only names the function, specifi es its parameters, and
organizes the statements it will execute. As you learned in Chapter 1,
you must use a function call to execute a function from elsewhere in
your program. When you pass arguments to a function, the value of
each argument is assigned to the value of the corresponding formal
parameter in the function defi nition. (Again, remember that formal
parameters are simply variables that are declared within a function
defi nition.)

In PHP 3 and earlier, it was necessary to put a function defi nition
above any calling statements to ensure that the function was created
before it was actually called. If you did not follow this convention, you
received an error. Th is convention is no longer necessary in PHP 4
and later versions, but you should continue to place your function
defi nitions above any calling statements to comply with good pro-
gramming practices. Th e following code shows a script that displays
the name of a company. Figure 2-1 shows the output. Notice that the
function is defi ned above the calling statement.
function displayCompanyName($CompanyName) {
 echo "<p>$CompanyName</p>";
}
displayCompanyName("Course Technology");

Figure 2-1 Output of a call to a custom function

Th e script that generates the output shown in Figure 2-1 contains a
statement that calls the function and passes the literal string “Course
Technology” to the function. When the displayCompanyName()
function receives the literal string, it assigns the string to the
$CompanyName variable.

77

Working with Functions

Unlike variables, function names are case insensitive, which means
you can call the displayCompanyName() function with any of the
 following statements:
displayCompanyName("Course Technology");
DisplayCompanyName("Course Technology");
DISPLAYCOMPANYNAME("Course Technology");

However, it is good practice to always call a function using the same
case that was used to defi ne the function name.

Returning Values
In many instances, you might want your program to receive the
results from a called function and then use those results in other
code. For instance, consider a function that calculates the average of a
series of numbers that are passed to it as arguments. Such a function
is useless if your program cannot display or use the result elsewhere.
As another example, suppose you have created a function that sim-
ply displays the name of a company. Suppose also that you want to
alter the program so it uses the company name in another section of
code. You can return a value from a function to a calling statement by
assigning the calling statement to a variable. Th e following statement
calls a function named averageNumbers() and assigns the return
value to a variable named $ReturnValue. Th e statement also passes
three literal values to the function.
$ReturnValue = averageNumbers(1, 2, 3);

To actually return a value to a $ReturnValue variable, the code must
include a return statement within the averageNumbers() function.
A return statement returns a value to the statement that called the
function. Th e following script contains the averageNumbers() func-
tion, which calculates the average of three numbers. Th e script also
includes a return statement that returns the value (contained in the
$Result variable) to the calling statement.
function averageNumbers($a, $b, $c) {
 $SumOfNumbers = $a + $b + $c;
 $Result = $SumOfNumbers / 3;
 return $Result;
}

In the next steps, you will create a script that contains two functions.
Th e fi rst function displays a message when it is called, and the second
function returns a value that is displayed after the calling statement.

In PHP, a func-
tion does not
necessarily
have to return
a value.

78

C H A P T E R 2 Functions and Control Structures

To create a script that contains two functions:

1. Create a new document in your text editor. Type the
<!DOCTYPE> declaration, <html> element, header information,
and <body> element. Use the strict DTD and “Two Functions”
as the content of the <title> element.

2. Add the following script section to the document body:
<?php
?>

3. Add the fi rst function to the script section as follows. Th is
function writes a message to the screen using an argument
that will be passed to it from the calling statement.
function displayMessage($FirstMessage) {
 echo "<p>$FirstMessage</p>";
}

4. Add the second function, which displays a second message, to
the end of the script section. In this case, the message (“Th is
message was returned from a function.”) is defi ned within the
function itself. Th e only purpose of this function is to return
the literal string to the calling statement.
function returnMessage() {
 return "<p>This message was returned from a
 function.</p>";
}

5. Add the following three statements to the end of the
script section. Th e fi rst statement displays the text string
“Th is message was displayed from a function.” in the Web
browser. Th is statement does not receive a return value.
Th e second statement assigns the function call to a variable
named $ReturnValue, but does not send any arguments
to the function. Th e third statement writes the value of the
$ReturnValue variable to the screen.
displayMessage("This message was displayed from a
function.");
$ReturnValue = returnMessage();
echo $ReturnValue;

6. Save the document as TwoFunctions.php in the Chapter
directory for Chapter 2, and then upload the document to the
Web server.

7. Open the TwoFunctions.php fi le in your Web browser by
entering the following URL: http://<yourserver>/PHP_
Projects/Chapter.02/Chapter/TwoFunctions.php. You should
see the Web page shown in Figure 2-2.

79

Working with Functions

Figure 2-2 Output of TwoFunctions.php

8. Close your Web browser window.

Passing Parameters by Reference
Normally, the value of a variable is passed as the parameter of a
function. PHP passes the parameter by value, which means that a
local copy of the variable is created to be used by the function. Any
changes made to the parameter’s value within the function are lost
when control is passed from the function back to the program.

Sometimes you would like the function to change the value of the
parameter. If so, you can pass the parameter by reference—instead
of a local copy, the actual variable is used within the function. Any
changes to that variable made by the function will remain after the
function completes.

To pass by reference, you insert an ampersand (&) before the dollar
sign of the parameter name in the function declaration. You call the
function using the same syntax as before, and do not add an amper-
sand before the name of the variable being passed as a parameter.

Th e following example includes two functions. Th e fi rst,
IncrementByValue(), accepts the parameter by value. Th e second,
IncrementByReference(), accepts the parameter by reference.
Figure 2-3 shows the output.
<?php
function IncrementByValue($CountByValue) {
 ++$CountByValue;
 echo "<p>IncrementByValue() value is
 $CountByValue.</p>";
};

function IncrementByReference(&$CountByReference) {
 ++$CountByReference;
 echo "<p>IncrementByReference() value is
 $CountByReference.</p>";
};

Using an
ampersand
when calling
the function
will generate

a warning message.

80

C H A P T E R 2 Functions and Control Structures

$Count = 1;
echo "<p>Main program starting value is $Count.</p>";
IncrementByValue($Count);
echo "<p>Main program between value is $Count.</p>";
IncrementByReference($Count);
echo "<p>Main program ending value is $Count.</p>";
?>

Figure 2-3 Function declarations by value and by reference

As you can see in Figure 2-3, both functions increment the parameter.
However, when control returns to the main program, the value of
$Count is only changed after calling IncrementByReference().

In scripts that include functions, where and how you declare variables
is very important. In the following section, you will study variable
scope, a topic that will help you understand how to use variables in
scripts that include functions.

Short Quiz

1. Explain the two-step process of creating user-defi ned func-
tions in a PHP script.

2. Describe the purpose of the return statement in a function.

3. Explain why some functions do not need parameters.

4. Explain why some functions do not have a return statement.

5. Explain the diff erence between passing a parameter to a
 function by value versus by reference.

When
 passing a
parameter
by refer-
ence, the

calling function must pass
a variable. Passing a
constant, a static value,
or an expression will
cause the PHP script
to fail.

81

Working with Functions

Understanding Variable Scope
When you use a variable in a PHP program, particularly a complex
program, you need to be aware of the variable’s scope—that is, you
need to think about where in your program a declared variable can
be used. A variable’s scope can be either global or local. A global
 variable is declared outside a function and is available to all parts
of your program. A local variable is declared inside a function and
is only available within that function. Local variables cease to exist
when the function ends. If you attempt to use a local variable outside
the function in which it is declared, you will receive an error message.

Th e following script includes a function that contains a local variable.
When the function is called, the local variable displays successfully
within the function. However, when the script tries to display the
local variable from outside the function defi nition, an error mes-
sage is generated because the local variable ceases to exist when the
 function ends.
<?php
$GlobalVariable = "Global variable";
function scopeExample() {
 $LocalVariable = "<p>Local variable</p>";
 echo "<p>$LocalVariable</p>"; // displays
 // successfully
}
scopeExample();
echo "<p>$GlobalVariable</p>";
echo "<p>$LocalVariable</p>"; // error message
?>

The global Keyword
With many programming languages, global variables are automati-
cally available to all parts of your program, including functions.
However, this is not the case in PHP. As an example, the out-
put statement in the following script generates an error because
$GlobalVariable is not recognized within the scope of the
scopeExample() function:
<?php
$GlobalVariable = "Global variable";
function scopeExample() {
 echo "<p>$GlobalVariable</p>"; // error message
}
scopeExample();
?>

In PHP, you must declare a global variable with the global keyword
inside a function defi nition to make the variable available within

The formal
parameters
within the
parentheses
of a function

declaration are local
variables.

82

C H A P T E R 2 Functions and Control Structures

the scope of that function. When you declare a global variable
with the global keyword, you do not need to assign the variable
a value, as you do when you declare a standard variable. Instead,
your declaration statement only needs to include the global key-
word along with the name of the variable. Th e correct syntax is
global $variable_name;. Th e following code shows a modifi ed ver-
sion of the preceding script. Th is time, the code declares the global
variable within the function, which allows the output message to be
displayed successfully.
<?php
$GlobalVariable = "Global variable";
function scopeExample() {
 global $GlobalVariable;
 echo "<p>$GlobalVariable</p>";
}
scopeExample();
?>

Short Quiz

1. Defi ne the term variable scope.

2. Explain the diff erence between a local variable and a global
variable.

3. A variable declared outside of a function must be declared to
be available within the function by using which keyword?

Making Decisions
When you write a computer program, regardless of the program-
ming language, you often need to execute diff erent sets of statements
depending on some predetermined criteria. For example, you might
create a program that needs to execute one set of code in the morning
and another set of code at night. Or, you might create a program that
depends on user input to determine exactly what code to run. For
instance, suppose you create a Web page through which users place
online orders. If a user clicks an Add to Shopping Cart button, a set
of statements must execute to build the list of items to be purchased.
However, if the user clicks a Checkout button, an entirely diff erent set
of statements must execute to complete the transaction. Th e process
of determining the order in which statements execute in a program
is called decision making or fl ow control. Th e most common type

It is consid-
ered good
program-
ming prac-
tice to pass

a global variable to a
function as a parameter
by reference rather than
use the global key-
word. Whenever possible,
you should pass the vari-
able to the function.
Using the global
 keyword when passing
the variable by reference
is not possible.

83

Making Decisions

of decision-making statement is the if statement, which you study in
the following section.

if Statements
Th e if statement is used to execute specifi c programming code if
the evaluation of a conditional expression returns a value of TRUE. Th e
syntax for a simple if statement is as follows:
if (conditional expression)
 statement;

Th e if statement contains three parts: the keyword if, a conditional
expression enclosed within parentheses, and the executable state-
ments. Note that the conditional expression must be enclosed within
parentheses.

If the condition being evaluated returns a value of TRUE, the statement
immediately following the conditional expression executes. After
the if statement executes, any subsequent code executes normally.
Consider the following code. Th e if statement uses the equal (==)
comparison operator to determine whether the variable $ExampleVar
is equal to 5. (You learned about operators in Chapter 1.) Because the
condition returns a value of TRUE, two echo statements execute. Th e
fi rst echo statement is generated by the if statement when the condi-
tion returns a value of TRUE, and the second echo statement executes
after the if statement is completed.
$ExampleVar = 5;
if ($ExampleVar == 5) // Condition evaluates to 'TRUE'
 echo "<p>The variable is equal to $ExampleVar.</p>";
echo "<p>This text is generated after the 'if'
statement.</p>";

In contrast, the following code displays only the second echo state-
ment. Th e condition evaluates to FALSE because $ExampleVar is
assigned the value 4 instead of 5.
$ExampleVar = 4;
if ($ExampleVar == 5) // Condition evaluates to 'FALSE'
 echo "<p> This text will not appear.</p>";
echo "<p> This is the only text that appears.</p>";

You can use a command block to construct a decision-making struc-
ture for performing multiple statements with a single if statement.
A command block is a group of statements contained within a set of
braces, similar to the way function statements are contained within a
set of braces. Each command block must have an opening brace ({)
and a closing brace (}). If a command block is missing either brace, an
error occurs. Th e following code shows a script that runs a command

The statement
immediately
following the
if statement
in this exam-

ple can be written on the
same line as the if
statement itself.
However, using a line
break and indentation
makes the code easier
for the programmer to
read.

84

C H A P T E R 2 Functions and Control Structures

block if the conditional expression within the if statement evaluates
to TRUE:
$ExampleVar = 5;
if ($ExampleVar == 5) { // Condition evaluates to 'TRUE'
 echo "<p>The condition evaluates to true.</p>";
 echo '<p>$ExampleVar is equal to ', "$ExampleVar.</p>";
 echo "<p>Each of these lines will be displayed.</p>";
}
echo "<p>This statement always executes after the 'if'
statement.</p>";

When an if statement contains a command block, the statements in
the command block execute when the if statement condition evalu-
ates to TRUE. After the command block executes, the code that follows
executes normally. When the condition evaluates to FALSE, the com-
mand block is skipped, and the statements that follow execute. If the
conditional expression within the if statement in the preceding code
evaluates to FALSE, only the echo statement following the command
block executes.

In the next steps, you will create a script to roll a pair of dice and
evaluate the outcome. For this exercise, you will use the function
rand(1,6), which generates a random integer from 1 to 6.

To create the dice script:

1. Create a new document in your text editor. Type the
<!DOCTYPE> declaration, <html> element, header information,
and <body> element. Use the strict DTD and “Dice Roll” as
the content of the <title> element.

2. Add the following script section to the document body:
<?php
?>

3. Add the following code to the beginning of the script
section. Th is will create the $FaceNamesSingular and
$FaceNamesPlural arrays and populate them with text.
$FaceNamesSingular = array("one", "two", "three",
"four", "fi ve", "six");
$FaceNamesPlural = array("ones", "twos", "threes",
"fours", "fi ves", "sixes");

4. Now create the CheckForDoubles function. It takes two
parameters, $Die1 and $Die2, and uses echo statements and
the global $FaceNamesSingular and $FaceNamesPlural
arrays to display one of two diff erent messages, depending on
whether $Die1 equals $Die2 (doubles were rolled).

85

Making Decisions

function CheckForDoubles($Die1, $Die2) {
 global $FaceNamesSingular;
 global $FaceNamesPlural;
 if ($Die1 == $Die2) // Doubles
 echo "The roll was double ",
 $FaceNamesPlural[$Die1-1], ".
";
 if ($Die1 != $Die2) // Not Doubles
 echo "The roll was a ",
 $FaceNamesSingular[$Die1-1],
 " and a ", $FaceNamesSingular[$Die2-1],
 ".
";
}

5. Now create the DisplayScoreText() function. Th is func-
tion takes one parameter, $Score, and displays a string that
shows the special name for that score. At this point, the
DisplayScoreText() function only displays a message for a
select few scores and displays nothing for the others.
function DisplayScoreText($Score) {
 if ($Score == 2)
 echo "You rolled snake eyes!
";
 if ($Score == 3)
 echo "You rolled a loose deuce!
";
 if ($Score == 5)
 echo "You rolled a fever fi ve!
";
 if ($Score == 7)
 echo "You rolled a natural!
";
 if ($Score == 9)
 echo "You rolled a nina!
";
 if ($Score == 11)
 echo "You rolled a yo!
";
 if ($Score == 12)
 echo "You rolled boxcars!
";
}

6. Now defi ne the $Dice[] array, using the rand(1,6) function
to generate the random values for the fi rst two elements of
the array. Add the two values together and store the results in
the $Score variable. Th en display a message showing the total
score.
$Dice = array();
$Dice[0] = rand(1,6);
$Dice[1] = rand(1,6);
$Score = $Dice[0] + $Dice[1];
echo "<p>";
echo "The total score for the roll was
$Score.
";

7. Finally, call the CheckForDoubles() function using the two
elements of the $Dice[] array as the parameters, and call the

86

C H A P T E R 2 Functions and Control Structures

DisplayScoreText() function using the $Score variable as
the parameter.
CheckForDoubles($Dice[0],$Dice[1]);
DisplayScoreText($Score);
echo "</p>";

8. Save the document as DiceRoll.php in the Chapter direc-
tory for Chapter 2, and then upload the document to the Web
server.

9. Open the DiceRoll.php fi le in your Web browser by enter-
ing the following URL: http://<yourserver>/PHP_Projects/
Chapter.02/Chapter/DiceRoll.php. You should see a Web page
similar to the one shown in Figure 2-4. Each time you refresh
the page, the rand(1,6) function will generate two new val-
ues, one for each of the dice, and the page will change to dis-
play the information for the new roll values.

Figure 2-4 Output of DiceRoll.php

10. Close your Web browser window.

if . . . else Statements
So far, you’ve learned how to use an if statement to execute a state-
ment (or statements) if a condition evaluates to TRUE. In some situ-
ations, however, you might want to execute one set of statements
when the condition evaluates to FALSE, and another set of statements
when the condition evaluates to TRUE. In these cases, you need to add
an else clause to your if statement. For instance, suppose you create
a form that includes a check box that users click to indicate whether
they want to invest in the stock market. When the user submits the
form to a PHP script, an if statement in the script might contain a
conditional expression that evaluates the user’s input. If the condi-
tion evaluates to TRUE (the user clicked the check box), the if state-
ment displays a Web page on recommended stocks. If the condition

87

Making Decisions

evaluates to FALSE (the user did not click the check box), the state-
ments in an else clause display a Web page on other types of invest-
ment opportunities.

An if statement that includes an else clause is called an if . . . else
statement. You can think of an else clause as a backup plan that is
implemented when the condition returns a value of FALSE. Th e syntax
for an if . . . else statement is as follows:
if (conditional expression)
 statement;
else
 statement;

You can use command blocks to construct an if . . . else statement
as follows:
if (conditional expression) {
 statements;
}
else {
 statements;
}

Th e following code shows an example of an if . . . else statement:
$Today = "Tuesday";
if ($Today == "Monday")
 echo "<p>Today is Monday</p>";
else
 echo "<p>Today is not Monday</p>";

In the preceding code, the $Today variable is assigned a value
of “Tuesday.” If the condition ($Today == "Monday") evalu-
ates to FALSE, control of the program passes to the else clause,
the statement echo "<p>Today is not Monday</p>"; executes,
and the string “Today is not Monday” is displayed. If the $Today
variable had been assigned a value of “Monday,” the condition
($Today == "Monday") would have evaluated to TRUE, and the state-
ment echo "<p>Today is Monday</p>"; would have executed. Only
one statement or command block executes: either the statement or
command block following the if statement or the statement or com-
mand block following the else clause. Regardless of which statement
or command block executes, any code following the if . . . else
statements executes normally.

Th e PHP code for the DiceRoll.php document you created earlier uses
multiple if statements to evaluate whether the dice roll resulted in
doubles. Although the multiple if statements function properly, they
can be simplifi ed using an if . . . else statement.

An if state-
ment can be
constructed
without the
else

clause. However, the
else clause can only be
used with an if
statement.

88

C H A P T E R 2 Functions and Control Structures

To simplify the DiceRoll.php script by replacing two if statements
with one if . . . else statement:

1. Return to the DiceRoll.php document in your text editor.

2. Because you only need the if statement to test for doubles,
you can display the message for rolls that are not doubles
in the else clause. Modify the CheckForDoubles() func-
tion so that the two if statements are replaced with a single
if . . . else statement. Th e following code shows how the
statements for the CheckForDoubles() function should look:
 if ($Die1 == $Die2) // Doubles
 echo "The roll was double ",
 $FaceNamesPlural[$Die1-1], ".
";
 else // Not Doubles
 echo "The roll was a ",
 $FaceNamesSingular[$Die1-1],
 " and a ", $FaceNamesSingular[$Die2-1],
 ".
";

3. Save and upload the DiceRoll.php document.

4. Open the DiceRoll.php fi le in your Web browser by enter-
ing the following URL: http://<yourserver>/PHP_Projects/
Chapter.02/Chapter/DiceRoll.php. You should still see a
Web page similar to the one shown in Figure 2-4. Use the
refresh button to verify that both doubles and nondoubles are
 displayed correctly.

5. Close your Web browser window.

Nested if and if . . . else Statements
As you have seen, you can use a control structure such as an if or
if . . . else statement to allow a program to make decisions about
what statements to execute. In some cases, however, you might want
the statements executed by the control structure to make other deci-
sions. For instance, you might have a program that uses an if state-
ment to ask users if they like sports. If users answer “yes”, you might
want to run another if statement that asks users whether they like
team sports or individual sports. You can include any code you want
within the code block for an if or if . . . else statement; these state-
ments can include other if or if . . . else statements.

When one decision-making statement is contained within
another decision-making statement, they are referred to as nested
 decision-making structures. An if statement contained within an
if statement or within an if . . . else statement is called a nested if
statement. Similarly, an if . . . else statement contained within an
if or if . . . else statement is called a nested if . . . else statement.

89

Making Decisions

You use nested if and if . . . else statements to perform condi-
tional evaluations that must be executed after the original conditional
evaluation. For example, the following code evaluates two conditional
expressions before the echo statement executes:
if ($SalesTotal >= 50)
 if ($SalesTotal <= 100)
 echo "<p>The sales total is between 50 and 100,
 inclusive.</p>";

Th e echo statement in the preceding example only executes if the
conditional expressions in both if statements evaluate to TRUE.

Th e PHP code in the DisplayScoreText() function of the
DiceRoll.php document is somewhat ineffi cient because it contains
an extended series of if statements, all of which need to be processed.
A more effi cient method of performing the same task is to divide the
scores into groups. For example, by checking if doubles were rolled, we
could divide the list into two groups: one for score names that are for
doubles only, and another for score names that do not apply to dou-
bles. If doubles were rolled, the if portion of the statement executes
the code that selects the text to display from one set of if statements.
However, if doubles were not rolled, the else portion of the statement
will select the text to display from the second group of if statements.

To modify the DiceRoll.php program so it uses nested if . . . else
statements to display the score text:

1. Return to the DiceRoll.php document in your text editor.

2. Modify the CheckForDoubles() function to return a Boolean
value indicating whether doubles were rolled by adding the
text shown in bold.
function CheckForDoubles($Die1, $Die2) {
 global $FaceNamesSingular;
 global $FaceNamesPlural;
 $ReturnValue = false;

 if ($Die1 == $Die2) { // Doubles
 echo "The roll was double ",
 $FaceNamesPlural[$Die1-1], ".
";
 $ReturnValue = true;
 }
 else { // Not Doubles
 echo "The roll was a ",
 $FaceNamesSingular[$Die1-1],
 " and a ",
 $FaceNamesSingular[$Die2-1], ".
";
 $ReturnValue = false;
 }

 return $ReturnValue;
}

Braces were
added to both
the if and
else portions
of the

if . . . else statement
so that each section
could contain two state-
ments: the original echo
statement and the new
statement that assigns
the appropriate value
(TRUE or FALSE) to the
$ReturnValue
variable.

90

C H A P T E R 2 Functions and Control Structures

3. Modify the DisplayScoreText() function to accept a second
parameter, which is a Boolean value that is TRUE if doubles
were rolled and FALSE otherwise. Add the text shown in bold
to the function declaration:
function DisplayScoreText($Score, $Doubles) {

4. Modify the DisplayScoreText() function body to use nested
if . . . else statements. Use the new $Doubles Boolean
parameter to determine if doubles were rolled or not. Check
for the two scores that can only occur if doubles were rolled
within the command block for the if portion of the state-
ment, and check for the remainder in the command block for
the else portion of the statement. When fi nished, your code
should appear as follows:
function DisplayScoreText($Score, $Doubles) {
 if ($Doubles) { // Doubles were rolled
 if ($Score == 2) // Double ones
 echo "You rolled snake eyes!
";
 if ($Score == 12) // Double sixes
 echo "You rolled boxcars!
";
 }
 else { // Doubles were not rolled
 if ($Score == 3)
 echo "You rolled a loose deuce!
";
 if ($Score == 5)
 echo "You rolled a fever fi ve!
";
 if ($Score == 7)
 echo "You rolled a natural!
";
 if ($Score == 9)
 echo "You rolled a nina!
";
 if ($Score == 11)
 echo "You rolled a yo!
";
 }
}

5. Modify the call to the CheckForDoubles() function to store
the return value in a variable called $Doubles. Pass this new
value as the second parameter to the DisplayScoreText()
function. Th e code should appear as follows, with the new
code in bold:
$Doubles = CheckForDoubles($Dice[0],$Dice[1]);
DisplayScoreText($Score, $Doubles);

6. Save the DiceRoll.php document and upload the document to
the Web server.

91

Making Decisions

7. Open the DiceRoll.php fi le in your Web browser by enter-
ing the following URL: http://<yourserver>/PHP_Projects/
Chapter.02/Chapter/DiceRoll.php. You should still see a Web
page similar to the one shown in Figure 2-4.

8. Close your Web browser window.

switch Statements
Another PHP statement that is used for controlling program fl ow is
the switch statement. Th e switch statement controls program fl ow
by executing a specifi c set of statements depending on the value of an
expression. Th e switch statement compares the value of an expres-
sion to a value contained within a special statement called a case
label. A case label represents a specifi c value and contains one or
more statements that execute if the value of the case label matches
the value of the switch statement’s expression. For example, your
script for an insurance company might include a variable named
$CustomerAgeGroup. A switch statement can evaluate the variable
and compare it to a case label within the switch construct. Th e
switch statement might contain several case labels for diff erent age
groups that calculate insurance rates based on a customer’s age. If the
$CustomerAgeGroup variable is equal to 25, the statements that are
part of the “25” case label execute and calculate insurance rates for
customers who are 25 or older. Although you could accomplish the
same task using if or if . . . else statements, using a switch state-
ment makes it easier to organize the diff erent branches of code that
can be executed.

A switch statement consists of the following components: the key-
word switch, an expression, an opening brace, one or more case
statements, a default label, and a closing brace. A case statement
consists of a case label, the executable statements, and the keyword
break. Th e syntax for the switch statement is as follows:
switch (expression) {
 case label:
 statement(s);
 break;
 case label:
 statement(s);
 break;
 . . .
 default:
 statement(s);
 break;
}

92

C H A P T E R 2 Functions and Control Structures

A case label consists of the keyword case, followed by a literal value
or variable name, followed by a colon. PHP compares the value
returned from the switch statement expression to the literal value or
value of the variable named following the case keyword. If a match
is found, the statements following the case label statements execute.
For example, the case label case 3.17: represents a fl oating-point
integer value of 3.17. If the value of a switch statement expression
equals 3.17, the case 3.17: label statements execute. You can use a
variety of data types as case labels within the same switch statement.
Th e following code shows examples of four case labels:
case $ExampleVar: // variable name
 statement(s);
 break;
case "text string": // string literal
 statement(s);
 break;
case 75: // integer literal
 statement(s);
 break;
case -273.4: // fl oating-point literal
 statement(s);
 break;

Another type of label used within switch statements is the default
label. Th e default label contains statements that execute when the
value returned by the switch statement expression does not match
any case label. A default label consists of the keyword default fol-
lowed by a colon.

When a switch statement executes, the value returned by the
expression is compared to each case label in the order in which it is
encountered. After a matching label is found, its statements execute.
Unlike the if . . . else statement, execution of a switch statement
does not automatically stop after the particular case label statements
execute. Instead, the switch statement executes all its statements
until it ends. A switch statement ends automatically after the PHP
interpreter encounters its closing brace (}). You can, however, use a
special kind of statement, called a break statement, to exit a switch
statement after it has performed its required task. A break statement
is used to exit control structures.

Th e following code shows a switch statement contained within
a function. When the function is called, it is passed an argument
named $AmericanCity. Th e switch statement compares the con-
tents of the $AmericanCity argument to the case labels. If a match
is found, the city’s state is returned and a break statement ends the
switch statement. If a match is not found, the value “United States” is
returned from the default label.

A case
label can be
followed by
a single
statement

or multiple statements.
However, unlike with if
statements, multiple
statements for a case
label do not need to be
enclosed within a com-
mand block in PHP.

Other pro-
gramming
languages,
such as Java
and C++,
require all

case labels within a
switch statement to be
of the same data type.

A break
statement is
also used to
exit other
types of con-

trol statements, such as
the while,
do . . . while, and for
looping statements. You
will learn about these
statements later in this
chapter.

93

Making Decisions

function city_location($AmericanCity) {
 switch ($AmericanCity) {
 case "Boston":
 return "Massachusetts";
 break;
 case "Chicago":
 return "Illinois";
 break;
 case "Los Angeles":
 return "California";
 break;
 case "Miami":
 return "Florida";
 break;
 case "New York":
 return "New York";
 break;
 default:
 return "United States";
 break;
 }
}
echo "<p>", city_location("Boston"), "</p>";

To modify the DiceRoll.php script to use a switch statement for the
score text:

1. Return to the DiceRoll.php document in your text editor.

2. Replace the nested if . . . else statements with the following
switch statement in the DisplayScoreText() function. Note
the use of the nested if . . . else statement in the default
case that allows the DisplayScoreText() function to display
a message for all of the possible rolls:
 switch ($Score) {
 case 2:
 echo "You rolled snake eyes!
";
 break;
 case 3:
 echo "You rolled a loose deuce!
";
 break;
 case 5:
 echo "You rolled a fever fi ve!
";
 break;
 case 7:
 echo "You rolled a natural!
";
 break;
 case 9:
 echo "You rolled a nina!
";
 break;

You do not
have to
include a
break
 statement

after the statements for
the fi nal case or
default statement,
but it is normally included
as a good programming
practice.

94

C H A P T E R 2 Functions and Control Structures

 case 11:
 echo "You rolled a yo!
";
 break;
 case 12:
 echo "You rolled boxcars!
";
 break;
 default:
 if ($Score % 2 == 0) { /* An even
 number */
 if ($Doubles) {
 echo "You rolled a hard
 $Score!
";
 }
 else { /* Not doubles */
 echo "You rolled an easy
 $Score!
";
 }
 }
 break;
}

3. Save and upload the DiceRoll.php document.

4. Open the DiceRoll.php fi le in your Web browser by enter-
ing the following URL: http://<yourserver>/PHP_Projects/
Chapter.02/Chapter/DiceRoll.php. Th e program should func-
tion just as it did in the previous three examples with the
addition of the new messages for easy and hard even scores.

5. Close your Web browser window.

Short Quiz

1. What are the three required components of an if statement?

2. Describe how the use of command blocks makes an
if . . . else control structure more effi cient.

3. Explain the purpose of the default label in a switch
statement.

Repeating Code
Th e statements you have worked with so far execute one after the
other in a linear fashion. Th e if, if . . . else, and switch state-
ments select only a single branch of code to execute, then continue
to the statement that follows. But what if you want to repeat the

95

Repeating Code

same statement, function, or code section 5 times, 10 times, or 100
times? For example, you might want to perform the same calculation
until a specifi c number is found. In this case, you need to use a loop
statement, a control structure that repeatedly executes a statement
or a series of statements while a specifi c condition is TRUE or until a
specifi c condition becomes TRUE. In this chapter, you will learn about
four types of loop statements: while, do . . . while, for, and foreach
statements.

while Statements
One of the simplest types of loop statements is the while statement,
which repeats a statement or series of statements as long as a given
conditional expression evaluates to TRUE. Th e syntax for the while
statement is as follows:
while (conditional expression) {
 statement(s);
}

Th e conditional expression in the while statement is enclosed within
parentheses following the keyword while. As long as the conditional
expression evaluates to TRUE, the statement or command block that
follows executes repeatedly. Each repetition of a looping statement
is called an iteration. When the conditional expression evaluates
to FALSE, the loop ends and the next statement following the while
statement executes.

A while statement keeps repeating until its conditional expression
evaluates to FALSE. To ensure that the while statement ends after
performing the desired tasks, you must include code that tracks the
progress of the loop and changes the value produced by the condi-
tional expression. You can track the progress of a while statement,
or any other loop, with a counter. A counter is a variable that incre-
ments or decrements with each iteration of a loop statement.

Th e following code shows a simple script that includes a while state-
ment. Th e script declares a variable named $Count and assigns it an
initial value of 1. Th e $Count variable is then used in the while state-
ment conditional expression ($Count <= 5). As long as the $Count
variable is less than or equal to 5, the while statement loops. Within
the body of the while statement, the echo statement displays the
value of the $Count variable, then the $Count variable increments by a
value of 1. Th e while statement loops until the $Count variable incre-
ments to a value of 6.

Many pro-
grammers
often name
counter vari-
ables

$Count, $Counter, or
something similar. The
letters i, j, k, l, x, y, and z
are also commonly used
as counter names. Using
a name such as count,
or the letter i (for incre-
ment) helps you to
remember (and lets other
programmers know) that
the variable is being used
as a counter.

96

C H A P T E R 2 Functions and Control Structures

$Count = 1;
while ($Count <= 5) {
 echo "$Count
";
 ++$Count;
}
echo "<p>You have displayed 5 numbers.</p>";

Th e preceding code displays the numbers 1 to 5, with each number
representing one iteration of the loop. When the counter reaches 6,
the message “You have displayed 5 numbers.” appears, thus demon-
strating that the loop has ended. Figure 2-5 shows the output of this
simple script.

Figure 2-5 Output of a while statement using an increment operator

You can also control the repetitions in a while loop by decrementing
(decreasing the value of) counter variables. Consider the following
script:
$Count = 10;
while ($Count > 0) {
 echo "$Count
";
 --$Count;
}
echo "<p>We have liftoff.</p>";

In this example, the initial value of the $Count variable is 10, and the
decrement operator (--) is used to decrease the value of the $Count
variable by 1. When the $Count variable is greater than zero, the
statement within the while loop displays the value of the $Count vari-
able. When the value of $Count is equal to zero, the while loop ends,
and the statement immediately following it displays. Figure 2-6 shows
the script output.

97

Repeating Code

Figure 2-6 Output of a while statement using a decrement operator

Th ere are many ways to change the value of a counter variable and to
use a counter variable to control the repetitions of a while loop. Th e
following example uses the *= assignment operator to multiply the
value of the $Count variable by 2. When the $Count variable reaches a
value of 128 (the fi rst multiple of 2 greater than 100), the while state-
ment ends. Figure 2-7 shows the script output.
$Count = 1;
while ($Count <= 100) {
 echo "$Count
";
 $Count *= 2;
}

Figure 2-7 Output of a while statement using the assignment operator *=

98

C H A P T E R 2 Functions and Control Structures

To ensure that the while statement will eventually end, you must
include code within the body of the while statement that changes
the value of the conditional expression. For example, you may have a
while statement that displays even numbers between 0 and 100. You
need to include code within the body of the while statement that
ends the loop after the last even number (100) displays. If you do not
include code that changes the value used by the conditional expres-
sion, your program will be caught in an infi nite loop. In an infi nite
loop, a loop statement never ends because its conditional expression
is never FALSE. Consider the following while statement:
$Count = 1;
while ($Count <= 10) {
 echo "The number is $Count";
}

Although the while statement in the preceding example includes a
conditional expression that checks the value of a $Count variable,
there is no code within the while statement body that changes the
$Count variable value. Th e $Count variable will continue to have a
value of 1 through each iteration of the loop. Th is means that the text
string “Th e number is 1” will be displayed repeatedly until the user
closes the Web browser window.

To modify the DiceRoll.php script to evaluate fi ve rolls using a while
statement:

1. Return to the DiceRoll.php document in your text editor.

2. Immediately after the declaration of the $Dice array, declare
and initialize two new variables: $DoublesCount and
$RollNumber.
$DoublesCount = 0;
$RollNumber = 1;

3. After the new variable declarations, create a while loop by
adding the code shown in bold. Also, revise the echo state-
ment by making the change shown in bold.
while ($RollNumber <= 5) {
 $Dice[0] = rand(1,6);
 $Dice[1] = rand(1,6);
 $Score = $Dice[0] + $Dice[1];
 echo "<p>";
 echo "The total score for roll $RollNumber was
 $Score.
";
 $Doubles = CheckForDoubles($Dice[0],$Dice[1]);
 DisplayScoreText($Score, $Doubles);
 echo "</p>";
 if ($Doubles)
 ++$DoublesCount;
 ++$RollNumber;
} // End of the while loop

You can
use the
continue
statement to
halt a looping

statement and restart the
loop with a new iteration.

99

Repeating Code

4. Add the following line after the while loop to display the
number of times doubles were rolled:
echo "<p>Doubles occurred on $DoublesCount of the
fi ve rolls.</p>";

5. Save and upload the DiceRoll.php document.

6. Open the DiceRoll.php fi le in your Web browser by enter-
ing the following URL: http://<yourserver>/PHP_Projects/
Chapter.02/Chapter/DiceRoll.php. Figure 2-8 shows how the
program appears in a Web browser.

Figure 2-8 Output of DiceRoll.php after adding a while statement

7. Close your Web browser window.

do . . . while Statements
Another PHP looping statement, similar to the while statement, is
the do . . . while statement. Th e do . . . while statement executes a
statement or statements once, then repeats the execution as long as
a given conditional expression evaluates to TRUE. Th e syntax for the
do . . . while statement is as follows:

100

C H A P T E R 2 Functions and Control Structures

do {
 statement(s);
} while (conditional expression);

As you can see in the syntax description, the statements execute
before a conditional expression is evaluated. Unlike the simpler while
statement, the statements in a do . . . while statement always execute
once before a conditional expression is evaluated.

Th e following do . . . while statement executes once before the con-
ditional expression evaluates the count variable. Th erefore, a single
line that reads “Th e count is equal to 2” appears. After the conditional
expression ($Count < 2) executes, the $Count variable is equal to 2.
Th is causes the conditional expression to return a value of FALSE, and
the do . . . while statement ends.
$Count = 2;
do {
 echo "<p>The count is equal to $Count</p>";
 ++$Count;
} while ($Count < 2);

Note that the preceding example includes a counter within the body
of the do . . . while statement. As with the while statement, you need
to include code that changes the conditional expression to prevent an
infi nite loop.

In the following example, the while statement never executes
because the count variable does not fall within the range of the con-
ditional expression:
$Count = 2;
while ($Count < 2) {
 echo "<p>The count is equal to $Count</p>";
 ++$Count;
}

Th e following script shows an example of a do . . . while statement
that displays the days of the week, using an array:
$DaysOfWeek = array("Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "Sunday");
$Count = 0;
do {
 echo $DaysOfWeek[$Count], "
";
 ++$Count;
} while ($Count < 7);

In the preceding example, an array is created containing the days of
the week. A variable named $Count is declared and initialized to zero.
(Remember, the fi rst subscript or index in an array is zero.) Th erefore,
in the example, the statement $DaysOfWeek[0]; refers to Monday.
Th e fi rst iteration of the do . . . while statement displays “Monday”

101

Repeating Code

and then increments the count variable by 1. Th e conditional expres-
sion in the while statement then checks to determine when the last
element of the array has been displayed. As long as the count is less
than seven (which is one number higher than the index of the largest
element in the $DaysOfWeek[] array), the loop continues. Figure 2-9
shows the output of the script in a Web browser.

Figure 2-9 Output of days of week script in a Web browser

Next, you will replace the while statement in the DiceRoll.php script
with a do . . . while statement. Because the two types of statements
are so similar, there is little benefi t in replacing the while statement.
You will add a do . . . while statement to the script for practice.

To use a do . . . while statement:

1. Return to the DiceRoll.php document in your text editor.

2. Change the while statement to a do . . . while statement, as
follows:
do {
 $Dice[0] = rand(1,6);
 $Dice[1] = rand(1,6);
 $Score = $Dice[0] + $Dice[1];
 echo "<p>";
 echo "The total score for roll $RollNumber was
 $Score.
";
 $Doubles = CheckForDoubles($Dice[0],$Dice[1]);
 DisplayScoreText($Score, $Doubles);
 echo "</p>";
 if ($Doubles)
 ++$DoublesCount;
 ++$RollNumber;
} while ($RollNumber <= 5); /* End of the do . . .
 while loop */

102

C H A P T E R 2 Functions and Control Structures

3. Save and upload the DiceRoll.php document.

4. Open the DiceRoll.php fi le in your Web browser by enter-
ing the following URL: http://<yourserver>/PHP_Projects/
Chapter.02/Chapter/DiceRoll.php. Th e output should still
appear as shown in Figure 2-8.

5. Close your Web browser window.

for Statements
So far, you have learned how to use the while and the do . . . while
statements to repeat, or loop through, code. You can also use the
for statement to loop through code. Specifi cally, the for statement
is used for repeating a statement or series of statements as long as a
given conditional expression evaluates to TRUE. Th e for statement
performs essentially the same function as the while statement: if a
conditional expression within the for statement evaluates to TRUE,
the for statement executes and continues to execute repeatedly until
the conditional expression evaluates to FALSE.

A primary diff erence between while and for statements is that,
in addition to a conditional expression, the for statement can also
include code that initializes a counter and changes its value with each
iteration. Th is is useful because it provides a specifi c place for you to
declare and initialize a counter, and to update its value, which helps
prevent infi nite loops. Th e syntax of the for statement is as follows:
for (counter declaration and initialization; condition;
 update statement) {
 statement(s);
}

When the PHP interpreter encounters a for loop, the following steps
occur:

1. Th e counter variable is declared and initialized. For example,
if the initialization expression in a for loop is $Count = 1;,
a variable named $Count is declared and assigned an initial
value of 1. Th e initialization expression is only started once,
when the for loop is fi rst encountered.

2. Th e for loop condition is evaluated.

3. If the condition evaluation in Step 2 returns a value of TRUE,
the for loop statements execute, Step 4 occurs, and the pro-
cess starts over again with Step 2. If the condition evaluation
in Step 2 returns a value of FALSE, the for statement ends and
the next statement following the for statement executes.

103

Repeating Code

4. Th e update statement in the for statement is executed. For
example, the $Count variable may increment by 1.

Th e following script shows a for statement that displays the contents
of an array:
$FastFoods = array("pizza", "burgers", "french fries",
"tacos", "fried chicken");
for ($Count = 0; $Count < 5; ++$Count) {
 echo $FastFoods[$Count], "
";
}

As you can see in this example, the counter is initialized, evaluated,
and incremented within the parentheses. You do not need to include
a declaration for the $Count variable before the for statement, nor do
you need to increment the $Count variable within the body of the for
statement. Figure 2-10 shows the output of the fast foods script.

Figure 2-10 Output of the fast foods script

Using a for statement is more effi cient because you do not need as
many lines of code. Consider the following while statement:
$Count = 1;
while ($Count <= 5) {
 echo "$Count
";
 ++$Count;
}

You could achieve the same fl ow control more effi ciently by using a
for statement as follows:
for ($Count = 1; $Count <= 5; ++$Count) {
 echo "$Count
";
}

Th e following code shows an example of the “days of the week”
script you saw earlier. Th is time, however, the script includes a

You can omit
any of the
three parts of
the for state-
ment, but you

must include the semico-
lons that separate each
section. If you omit a
section, be sure you
include code within the
body that will end the
for statement, or your
program might get
caught in an infi nite loop.

104

C H A P T E R 2 Functions and Control Structures

for statement instead of a do . . . while statement. Notice that the
declaration of the $Count variable, the conditional expression, and
the statement that increments the $Count variable are now all con-
tained within the for statement. Using a for statement instead of a
do . . . while statement simplifi es the script somewhat because you
do not need as many lines of code.
$DaysOfWeek = array("Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "Sunday");
for ($Count = 0; $Count < 7; ++$Count) {
 echo $DaysOfWeek[$Count], "
";
}

To replace the do . . . while statement in DiceRoll.php with a for
statement:

1. Return to the DiceRoll.php document in your text editor.

2. Change the do . . . while statement to a for statement, as
follows:
for ($RollNumber = 1; $RollNumber <= 5;
++$RollNumber) {
 $Dice[0] = rand(1,6);
 $Dice[1] = rand(1,6);
 $Score = $Dice[0] + $Dice[1];
 echo "<p>";
 echo "The total score for roll $RollNumber was
 $Score.
";
 $Doubles = CheckForDoubles($Dice[0],$Dice[1]);
 DisplayScoreText($Score, $Doubles);
 echo "</p>";
 if ($Doubles)
 ++$DoublesCount;
} // End of the for loop

3. Save and upload the DiceRoll.php document.

4. Open the DiceRoll.php fi le in your Web browser by enter-
ing the following URL: http://<yourserver>/PHP_Projects/
Chapter.02/Chapter/DiceRoll.php. Th e output should still
appear as shown in Figure 2-8.

5. Close your Web browser window.

foreach Statements
Th e foreach statement is used to iterate or loop through the ele-
ments in an array. With each loop, a foreach statement moves to the
next element in an array. Unlike other types of looping statements,
you do not need to include any sort of counter within a foreach
statement. Instead, you specify an array expression within a set of

105

Repeating Code

parentheses following the foreach keyword. Th e basic syntax for the
foreach statement is as follows:
foreach ($array_name as $variable_name) {
statement(s);
}

During each iteration, a foreach statement assigns the value of the
current array element to the $variable_name argument specifi ed in
the array expression. You use the $variable_name argument to access
the value of the element that is available in an iteration. For example,
the following code declares the same $DaysOfWeek[] array you’ve
seen a few times in this chapter. During each iteration, the expression
in the foreach statement assigns the value of each array element to
the $Day variable. An echo statement within the foreach statement’s
braces displays the value of the current element.
$DaysOfWeek = array("Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "Sunday");
foreach ($DaysOfWeek as $Day) {
 echo "<p>$Day</p>";
}

Th e foreach statement in the preceding code simply displays the days
of the week to the Web browser.

Th e more advanced form of the foreach statement allows you to
retrieve both the index (or key) and the value of each array element.
foreach ($array_name as $index_name => $variable_name) {
statement(s);
}

Th is form of the foreach statement works almost exactly the same
as the basic form. Th e only diff erence is that the index of the current
array element is stored in the $index_name variable. For example, the
following code declares the $DaysOfWeek[] array again. During each
iteration, the expression in the foreach statement assigns the index
value of each array element to the $DayNumber variable and the value
of each array element to the $Day variable. An echo statement within
the foreach statement’s braces displays the index and value of the
current element. Figure 2-11 shows the output of this version.
$DaysOfWeek = array("Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "Sunday");
foreach ($DaysOfWeek as $DayNumber => $Day) {
 echo "<p>Day $DayNumber is $Day</p>";
}

You will
receive an
error if you
attempt to
use a

foreach statement with
any variable types other
than arrays.

106

C H A P T E R 2 Functions and Control Structures

Figure 2-11 Output of the foreach script with index values

To create a fi nal version of DiceRoll.php that displays all possible out-
comes of rolling two dice:

1. Return to the DiceRoll.php document in your text editor.

2. Immediately after the declaration of the $FaceNamesSingular
and $FaceNamesPlural arrays, declare a new array named
$FaceValues, as follows:
$FaceValues = array(1, 2, 3, 4, 5, 6);

3. Delete the declaration of the $Dice array and add a new dec-
laration for a variable named $RollCount, as follows:
$RollCount = 0;

4. Create a new array called $ScoreCount and initialize it using
the following for loop:
$ScoreCount = array();
for ($PossibleRolls = 2; $PossibleRolls <= 12;
++$PossibleRolls) {
 $ScoreCount[$PossibleRolls] = 0;
}

107

Repeating Code

5. Replace the for statement with the following two nested
foreach statements:
foreach ($FaceValues as $Die1) {
 foreach ($FaceValues as $Die2) {

6. Delete the two calls to rand(1,6) and the $Score variable
assignment, and insert the following lines in their place:
 ++$RollCount;
 $Score = $Die1 + $Die2;
 ++$ScoreCount[$Score];

7. Modify the call to the CheckForDoubles() function to use
$Die1 and $Die2 instead of $Die[0] and $Die[1].
 $Doubles = CheckForDoubles($Die1,$Die2);

8. Replace the single closing brace for the for loop with two
closing braces for the two foreach loops:
 } // End of the foreach loop for $Die2
} // End of the foreach loop for $Die1

9. Modify the echo statement that displays the doubles count
with an echo statement that displays the doubles count and
the roll count.
echo "<p>Doubles occurred on $DoublesCount of the
$RollCount rolls.</p>";

10. Finally, add a foreach loop to display the number of times
each score occurred. Use the second form of the foreach
statement to get the array index, which is the score.
foreach ($ScoreCount as $ScoreValue => $ScoreCount) {
 echo "<p>A combined value of $ScoreValue
 occurred $ScoreCount of $RollCount
 times.</p>";
}

11. Save and upload the DiceRoll.php document.

12. Open the DiceRoll.php fi le in your Web browser by enter-
ing the following URL: http://<yourserver>/PHP_Projects/
Chapter.02/Chapter/DiceRoll.php. Th e output should appear
as shown in Figure 2-12.

108

C H A P T E R 2 Functions and Control Structures

Figure 2-12 Output of DiceRoll.php with foreach statements

13. Close your Web browser window.

Short Quiz

1. All loops require what feature to ensure that the looping will
eventually end and not result in an infi nite loop?

2. What four looping structures are used in PHP?

3. Explain the purpose of a “counter” variable when executing a
loop.

4. Which type of looping structure is used to iterate through ele-
ments of an array?

Including Files
Th e include, require, include_once, and require_once statements,
much like the echo statement, are not considered actual functions,
but rather language constructs that are built into PHP. Th e primary
use of the include and require statements is to reuse content on

109

Including Files

multiple Web pages by allowing you to insert the content of an exter-
nal fi le, called an include fi le, in your PHP scripts.

Th e diff erence between the two statements is that the include state-
ment only generates a warning if the include fi le cannot be found,
whereas the require statement halts the processing of the Web page
and displays an error message if the include fi le cannot be found.
Th e include_once and require_once statements are similar to the
include and require statements, except they assure that the external
fi le is added to the script only once, which helps to avoid confl icts
with variable values or function names that might occur if the fi le was
included multiple times.

Th e PHP scripting engine starts fresh for each include fi le. Th is
means that if you use PHP code in the include fi le, it must be con-
tained within a PHP script section. If the calling PHP fi le already
contains the four basic XHTML tags (<html>, <head>, <title>, and
<body>), the include fi le requires only that XHTML formatting tags
be used with XHTML content. Th e include fi le is typically saved with
a prefi x of inc_ to identify it as an include fi le, as opposed to a com-
plete .php fi le. An extension of .php is still used so that the fi le will
be processed by the PHP scripting engine. However, diff erent servers
use diff erent confi gurations, so you need to verify the appropriate fi le
extension to use with your ISP.

One common use of the include and require statements is to
display common header and footer content at the top and bottom
of every page of your Web site. Instead of copying and pasting the
header and footer code into each individual page, you can simply put
your header content in one include fi le and your footer content in
another include fi le. Th en, on each page that you want the header and
footer to appear, you can simply refer to the include fi le with either an
include or require statement.

Another common use of include fi les is to store sensitive information
that the program needs, but that should not be available to Web site
visitors. Because the path of the fi lename passed to the include and
require statements is based on the server’s fi le system, not the Web-
accessible fi le structure, you can store include fi les outside of the fi le
structure available to Web browsers. For example, assume that your
server is confi gured so that the public_html folder in your user home
directory is available for Web site visitors. For the user dgosselin, any
fi le stored in /home/users/dgosselin/public_html/ or its subdirecto-
ries would be browsable. However, if dgosselin created the folder /
home/users/dgosselin/php_include/, that folder would not be brows-
able. Any fi les stored in /home/users/dgosselin/php_include/ will be

110

C H A P T E R 2 Functions and Control Structures

processed by the PHP scripting engine if the fi les are included using
one of the include family of statements.

The include family of statements supports relative and
absolute path notation. That means you can include a fi le
from the parent folder by using the “../” notation, as in
include("../inc_CommonHeader.php");. Similarly,
if you were to place the included fi les in a folder named Includes,

you could use the notation include("Includes/inc_CommonHeader.php");
to access the fi les in the Includes subdirectory.

Short Quiz

1. Describe the purpose of the group of include, require,
include_once, and require_once statements.

2. When might you want to use the require statement instead
of the include statement?

3. Why is it important that you add PHP script delimiters to
each PHP block in the include fi le?

4. Explain why one might want to save all include fi les in a sepa-
rate folder and how this folder can be accessed.

Summing Up

Th e lines of code that make up a function are called the function •
defi nition.

A function parameter that is passed by a value is a local copy of the •
variable.

A function parameter that is passed by a reference is a reference to •
the original variable.

A global variable is declared outside a function and is available to •
all parts of your program.

A local variable is declared inside a function and is only available •
within that function.

Th e process of determining the order in which statements execute •
in a program is called decision making or fl ow control.

111

Summing Up

Th e • if statement is used to execute specifi c programming code if
the evaluation of a conditional expression returns a value of TRUE.

An • if statement that includes an else clause is called an
if . . . else statement. An else clause executes when the
 condition in an if . . . else statement evaluates to FALSE.

When one decision-making statement is contained within •
another decision-making statement, they are referred to as nested
 decision-making structures.

Th e • switch statement controls program fl ow by executing a
 specifi c set of statements depending on the value of an expression.

A loop statement is a control structure that repeatedly executes •
a statement or a series of statements while a specifi c condition is
TRUE or until a specifi c condition becomes TRUE.

A • while statement tests a condition prior to executing a series of
statements at each iteration of the loop.

Th e • do . . . while statement tests a condition after executing a
series of statements.

Th e • for statement combines the initialization, conditional evalua-
tion, and update portions of a loop into a single statement.

Th e • foreach statement is used to iterate or loop through the
 elements in an array.

Th e • include, require, include_once, and require_once
 statements insert the contents of an external fi le at the location
of the statement.

Comprehension Check

1. A(n) allows you to treat a related group of
PHP commands as a single unit.

a. statement

b. variable

c. function

d. event

2. Functions must contain parameters. True or False?

3. Explain how to use a return statement to return a value to a
statement that calls a function.

112

C H A P T E R 2 Functions and Control Structures

4. A variable that is declared outside a function is called
a variable.

a. local

b. class

c. program

d. global

5. A local variable must be declared .

a. before a function

b. after a function

c. within the braces of a function defi nition

d. with the local keyword

6. Explain the diff erence between passing a parameter to a func-
tion by value versus by reference.

7. Which of the following is the correct syntax for an if
statement?

a. if ($MyVariable == 10);

 echo "Your variable is equal to 10.";

b. if $MyVariable == 10

 echo "Your variable is equal to 10.";

c. if ($MyVariable == 10)

 echo "Your variable is equal to 10.";

d. if ($MyVariable == 10),

 echo "Your variable is equal to 10.";

8. An if statement can include multiple statements provided
that they .

a. execute after the if statement’s closing semicolon

b. are not contained within a command block

c. do not include other if statements

d. are contained within a command block

113

Comprehension Check

9. Which is the correct syntax for an else clause?

a. else (echo "Displayed from an else clause.";

b. else echo "Displayed from an else clause.";

c. else "echo 'Displayed from an else clause.'";

d. else; echo "Displayed from an else clause.";

10. Th e switch statement controls program fl ow by executing a
specifi c set of statements, depending on .

a. the result of an if . . . else statement

b. the version of PHP being executed

c. whether an if statement executes within a function

d. the value returned by a conditional expression

11. Decision-making structures cannot be nested. True or False?

12. When the value returned by a switch statement expression
does not match a case label, the statements within
the label execute.

a. exception

b. else

c. error

d. default

13. You can exit a switch statement using a(n)
statement.

a. break

b. end

c. quit

d. complete

14. Each repetition of a looping statement is called
a(n) .

a. recurrence

b. iteration

c. duplication

d. reexecution

114

C H A P T E R 2 Functions and Control Structures

15. Which of the following is the correct syntax for a while
statement?

a. while ($i <= 5, ++$i) {

 $echo "<p>$i</p>";
}

b. while ($i <= 5) {

 $echo "<p>$i</p>";
 ++$i;
}

c. while ($i <= 5);

 $echo "<p>$i</p>";
 ++$i;

d. while ($i <= 5; $echo "<p>$i</p>") {

 ++$i;
}

16. Counter variables . (Choose all that apply.)

a. can only be incremented

b. can only be decremented

c. can be incremented or decremented

d. do not change

17. Explain how an infi nite loop is caused.

18. Which of the following is the correct syntax for a for
statement?

a. for ($i = 0; $i < 10; ++$i)

 echo "Displayed from a for statement.";

b. for ($i = 0, $i < 10, ++$i)

 echo "Displayed from a for statement.";

c. for {

 echo "Displayed from a for statement.";
} while ($i = 0; $i < 10; ++$i)

d. for ($i = 0; $i < 10);

 echo "Displayed from a for statement.";
 ++$i;

115

Comprehension Check

19. When is a for statement initialization expression executed?

a. when the for statement begins executing

b. with each repetition of the for statement

c. when the counter variable increments

d. when the for statement ends

20. Th e foreach statement can only be used with arrays. True
or False?

Reinforcement Exercises

Exercise 2-1

In this project, you will create a simple document that contains a con-
ditional operator you will rewrite into an if . . . else statement.

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, docu-
ment head, and <body> element. Use the strict DTD and
“Conditional Script” as the content of the <title> element.

3. Create a script section in the document body that includes
the following code, but replace the conditional expression
statement with an if . . . else statement. Note that the
strings are enclosed in single quotation marks so that the
name of the variable will be displayed, not the value.
<?php
$IntVariable = 75;
($IntVariable > 100) ? $Result = '$IntVariable is
greater than 100'
 : $Result = '$IntVariable is less than or equal
 to 100';
echo "<p>$Result</p>";
?>

4. Save the document as ConditionalScript.php in the Projects
directory for Chapter 2, and then upload the document to the
server.

5. Open the ConditionalScript.php fi le in your Web browser
by entering the following URL: http://<yourserver>/PHP_
Projects/Chapter.02/Projects/ConditionalScript.php.

6. Close your Web browser window.

116

C H A P T E R 2 Functions and Control Structures

Exercise 2-2

In this project, you will write a while statement that displays all odd
numbers between 1 and 100 on the screen.

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, document
head, and <body> element. Use the strict DTD and “Odd
Numbers” as the content of the <title> element.

3. Create a script section in the document body with a while
statement that displays all odd numbers between 1 and 100
on the screen.

4. Save the document as OddNumbers.php in the Projects
directory for Chapter 2, and then upload the document to the
server.

5. Open the OddNumbers.php fi le in your Web browser by
entering the following URL: http://<yourserver>/PHP_
Projects/Chapter.02/Projects/OddNumbers.php.

6. Close your Web browser window.

Exercise 2-3

In this project, you will identify and correct the logic fl aws in a while
statement.

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, document
head, and <body> element. Use the strict DTD and “While
Logic” as the content of the <title> element.

117

Reinforcement Exercises

3. Create a script section in the document body that includes
the following code:
<?php
$Count = 0;
while ($Count > 100) {
 $Numbers[] = $Count;
 ++$Count;
foreach ($Count as $CurNum)
 echo "<p>$CurNum</p>";
}
?>

4. Th e code you typed in the preceding step should fi ll the array
with the numbers 1 through 100 and then display them on the
screen. However, the code contains several logic fl aws that
prevent it from running correctly. Identify and correct the
logic fl aws.

5. Save the document as WhileLogic.php in the Projects direc-
tory for Chapter 2, and then upload the document to the
server.

6. Open the WhileLogic.php fi le in your Web browser by enter-
ing the following URL: http://<yourserver>/PHP_Projects/
Chapter.02/Projects/WhileLogic.php.

7. Close your Web browser window.

Exercise 2-4

In this project, you will modify a nested if statement so it instead
uses a compound conditional expression. You will use logical opera-
tors such as || (or) and && (and) to execute a conditional or looping
statement based on multiple criteria.

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, docu-
ment head, and <body> element. Use the strict DTD and “Gas
Prices” as the content of the <title> element.

118

C H A P T E R 2 Functions and Control Structures

3. Create a script section in the document body that includes
the following variable declaration and nested if statement:
<?php
$GasPrice = 2.57;
if ($GasPrice >= 2) {
 if ($GasPrice <=3)
 echo "<p>Gas prices are between
 $2.00 and $3.00.</p>";
}
?>

4. Modify the nested if statement you created in the previ-
ous step so it uses a single if statement with a compound
conditional expression. You need to use the && (and) logical
operator.

5. Add an else clause to the if statement that displays “Gas
prices are not between $2.00 and $3.00” if the compound con-
ditional expression returns FALSE.

6. Save the document as GasPrices.php in the Projects direc-
tory for Chapter 2 and upload the document to the server.

7. Open the GasPrices.php fi le in your Web browser by enter-
ing the following URL: http://<yourserver>/PHP_Projects/
Chapter.02/Projects/GasPrices.php.

8. Close your Web browser window.

Exercise 2-5

In this project, you will create header and footer pages that you will
add to a Web page with the include statement.

1. Create a new document in your text editor and type the
<!DOCTYPE> declaration, <html> element, document head,
and <body> element. Use the strict DTD and “Coast City
Computers” as the content of the <title> element.

119

Reinforcement Exercises

2. Add the following text and elements to the document body:
<h2>Memorial Day Sale</h2>

Compaq Presario m2007us Notebook:
$799.99
Epson Stylus CX6600 Color All-In-One Printer,
Print/Copy/Scan: $699.99
Proview Technology Inc. KDS K715s 17-inch LCD
Monitor,
Silver/Black: $199.99
Hawking Technology Hi-Speed Wireless-G Cardbus
Card:
$9.99

3. Add the following PHP code section and include state-
ment to the beginning of the document body. Th is statement
includes an external fi le named inc_header.php at the start of
the Web page.
<?php include("inc_header.php"); ?>

4. Add the following PHP code section and include statement
to the end of the document body. Th is statement includes an
external fi le named inc_footer.php at the end of the Web page.
<?php include("inc_footer.php"); ?>

5. Save the document as CoastCityComputers.php in the
Projects directory for Chapter 2.

6. Create a new document in your text editor and add the fol-
lowing text and elements:
<table width="100%" style="border: 0">
<tr><td><h1>Coast City Computers</h1></td>
<td style="text-align: right">Buy Online or
Call 1-800-555-1212</td></tr></table><hr />

7. Save the document as inc_header.php in the Projects direc-
tory for Chapter 2.

120

C H A P T E R 2 Functions and Control Structures

8. Create a new document in your text editor and add the fol-
lowing text and elements:
<hr />
<table width="100%" style="border: 0">
<tr><td>Updated 06 January,
2010</td>
<td style="text-align: right">© 2003 by Coast
City Computers.</td>
</tr>
<tr><td>
 <a href="http://validator.w3.org/check/
 referer"><img
 src="http://www.w3.org/Icons/valid-xhtml10"
 alt="Valid XHTML 1.0!" height="31"
 width="88" />
</td>
<td style="text-align: right; vertical-align:
top">All Rights Reserved.</td></tr>
</table>

9. Save the document as inc_footer.php in the Projects direc-
tory for Chapter 2.

10. Upload the CoastCityComputers.php, inc_header.php, and
inc_footer.php fi les to the server.

11. Open the CoastCityComputers.php fi le in your Web browser
by entering the following URL: http://<yourserver>/PHP_
Projects/Chapter.02/Projects/CoastCityComputers.php. Th e
contents of the header and footer documents should appear
on the Web page.

12. Close your Web browser window and text editor.

Exercise 2-6

You will use an appropriate looping statement to write a script that
displays a list of the Celsius equivalents of zero degrees Fahrenheit
through 100 degrees Fahrenheit. To convert Fahrenheit to Celsius,
subtract 32 from the Fahrenheit temperature, and then multiply
the remainder by (5/9). To convert Celsius to Fahrenheit, multiply
the Celsius temperature by (9/5), and then add 32. Use the round()
function you learned in Chapter 1 to display the Celsius tempera-
ture to one place after the decimal point. Save the document as
TempConversion.php.

121

Reinforcement Exercises

Discovery Projects
Th e Chinese zodiac site is a comprehensive project that will be
updated in the Discovery Projects section at the end of each chapter.
All fi les for the site will be saved in a directory named ChineseZodiac
in the base Web folder on the server.

Discovery Project 2-1

In your text editor, use XHTML scripting to develop the Chinese
zodiac template page, which will include fi ve sections: Header,
Footer, Text Navigation, Button Navigation, and Dynamic Content.
Th ese sections will be populated with fi ve include fi les. Use a table
layout with CSS formatting or lay out the entire site with CSS. For
this initial layout page, insert a placeholder in each section (i.e.,
[This is the header placeholder]) to identify the content that
will be included later. Save the fi le as index.php, upload it to the
ChineseZodiac folder, and view the fi le in the Web browser to verify
that it displays as intended.

Discovery Project 2-2

For each of the template sections in the index.php page, create an
include fi le. Remember that an include fi le requires only the XHTML
tags to format the content, not the entire XHTML skeleton tags
(<html>, <head>, <title>, and <body>).

Include Filenames Description

inc_header.php Inserts the banner image created in Discovery Project 1-1.

inc_button_nav.php Inserts the nine buttons created in Discovery Project 1-2. Code to submit the
buttons will be inserted in a later project.

inc_text_links.php Inserts the code for a text links bar. Code to turn the text links into hyperlinks
will be inserted in a later project.

inc_footer.php Inserts a copyright symbol and the current year.

inc_home.php Inserts a placeholder [Insert home page content here].

Table 2-1 Include fi les for the Chinese zodiac Web site

Create an Includes folder within the ChineseZodiac folder. Save each
of the include fi les (with the names listed in Table 2-1) and upload
the fi les to the Includes folder in the ChineseZodiac folder in the root
Web directory on the server.

The index
page is the
default page
that a Web
server dis-
plays in the

browser if a specifi c
fi lename is not part
of the requested
URL. If you enter
http://<yourserver>/
ChineseZodiac/ in the
browser, by default the
Web server will search
the ChineseZodiac Web
folder for an index page
using a list of fi lenames
defi ned in the server
confi guration. A standard
list of fi lenames would
likely include the follow-
ing: index.html, index.
php, index.shtml, and
index.htm. The fi rst fi le-
name from the list that
the server encounters
(from left to right) will be
opened in the browser.

122

C H A P T E R 2 Functions and Control Structures

http://<yourserver>/ChineseZodiac/
http://<yourserver>/ChineseZodiac/

Discovery Project 2-3

In index.php, replace the [Placeholders] with include statements to
include the fi ve include fi les created in Discovery Project 2-2, passing
the name of the respective include fi le to the include statement. Save
the index.php fi le and upload the document to the ChineseZodiac
folder on the server. View index.php in the browser to verify that each
of the template sections displays the correct include fi le.

Discovery Project 2-4

Write a for loop that displays a table with the 12 Chinese zodiac
signs as column headers, and with the years displayed below the
appropriate column heading. Begin the table with the year 1912 and
end with the current year. You may want to use the modulus operator
to determine the number of columns in each row of the table.

Use an array to store and display a picture of the appropriate sign
below the text header in each column. Use the pictures that you
found and uploaded in Discovery Project 1-4.

Save the script as Chinese_Zodiac_for_loop.php in the
ChineseZodiac folder and upload the document to the Web server.

Discovery Project 2-5

Modify the previous script to display the same table using a while
loop. Save the script as Chinese_Zodiac_while_loop.php in the
ChineseZodiac folder and upload the document to the Web server.

Because
directory
precedence
is set in the
server con-

fi guration fi le, it is impor-
tant to test your server’s
order of precedence.

123

Discovery Projects

C H A P T E R 3
Manipulating Strings

In this chapter you will:

Construct text strings

Work with single strings

Work with multiple strings and parse strings

Compare strings

Use regular expressions

PHP is most commonly used for producing valid XHTML code and
for processing form data submitted by users. Because all XHTML
code and form data are strings, a good PHP programmer must be
adept at dealing with strings. Th is chapter discusses techniques for
manipulating strings.

Constructing Text Strings
As you learned in Chapter 1, a text string contains zero or more char-
acters surrounded by double or single quotation marks. You can use
text strings as literal values or assign them to a variable. For example,
the fi rst statement in the following code displays a literal text string,
whereas the second statement assigns a text string to a variable. Th e
third statement then uses the echo statement to display the text string
assigned to the variable. Figure 3-1 shows the output of this code.
echo "<p>PHP literal text string</p>";
$StringVariable = "<p>PHP string variable</p>";
echo $StringVariable;

Figure 3-1 Different ways of displaying text strings

You can also surround a text string with single quotation
marks. Regardless of the method you use, a string must begin
and end with the same type of quotation mark. For example,
echo "<p>This is a text string.</p>"; is valid because
it starts and ends with double quotation marks. Likewise,
echo '<p>This is a text string.</p>'; is valid because it begins
and ends with single quotation marks. By contrast, the statement
echo "<p>This is a text string.</p>'; is invalid because it starts
with a double quotation mark and ends with a single quotation mark.
In this case, the string would display incorrectly because the PHP
scripting engine cannot tell where the literal string begins and ends.

125

Constructing Text Strings

When you want to include single quotes within a literal string, the
easiest method is to surround the literal string with double quotation
marks. Likewise, to include double quotes within a literal string, you
can surround the string with single quotation marks. For example, the
following statement assigns a text string surrounded by double quota-
tion marks to the $LatinQuote variable. Figure 3-2 shows the output
of the echo statement.
$LatinQuote = '<p>"Et tu, Brute!"</p>';
echo $LatinQuote;

Figure 3-2 Displaying a string that contains double quotation marks

Later in this chapter, you will learn other methods to include quota-
tion marks and other special characters in text strings.

Working with String Operators
Up to this point, you have displayed values from multiple literal
strings and variables by passing them to the echo and print state-
ments as multiple arguments separated by commas. For example, the
following code passes two literal strings and a variable to the echo
statement:
$Speaker = "Julius Caesar";
echo '<p>"Et tu, Brute!", exclaimed ', $Speaker, ".</p>";

In PHP, you can also use two operators to combine strings. Th e fi rst
of these operators is the concatenation operator (.). Th e following
code uses the concatenation operator to combine several string vari-
ables and literal strings, and assigns the new value to another variable:
$City = "Paris";
$Country = "France";
$Destination = "<p>" . $City . " is in "
 . $Country . ".</p>";
echo $Destination;

126

C H A P T E R 3 Manipulating Strings

Th e combined value of the $City and $Country variables and the
literal strings that are assigned to the $Destination variable is
<p>Paris is in France.</p>.

You can also combine strings using the concatenation assignment
operator (.=). Th e following code combines two text strings, but
without using the $City or $Country variables:
$Destination = "<p>Paris";
$Destination .= " is in France.</p>";
echo $Destination;

Again, the value of the $Destination variable is "<p>Paris is in
France.</p>".

To build a string using the concatenation assignment operator:

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, document
head, and <body> element. Use the strict DTD and “Musical
Scale” as the content of the <title> element.

3. Add the following script section to the document body:
<?php
?>

4. Insert the following array in the script section:
$MusicalScale = array("do", "re", "mi", "fa", "so",
"la", "ti");

5. Build an output string using a foreach loop with the
$MusicalNotes array, as follows:
$OutputString="The notes of the musical scale are: ";
foreach ($MusicalScale as $CurrentNote)
 $OutputString .= " " . $CurrentNote;

6. Add the following statements to display the results in your
browser window.
echo "<p>$OutputString</p>";

7. Save the fi le as MusicalScale.php, upload it to the Chap-
ter folder for Chapter 3, and then open the fi le in your Web
browser by entering the following URL:
http://<yourserver>/PHP_Projects/Chapter.03/Chapter/
MusicalScale.php. Figure 3-3 shows the output.

127

Constructing Text Strings

Figure 3-3 Output of MusicalScale.php

8. Close your Web browser window.

Adding Escape Characters and Sequences
You need to take extra care when using single quotation marks with
possessives and contractions in strings surrounded by single quota-
tion marks because the PHP scripting engine always looks for the fi rst
closing single quotation mark to match an opening single quotation
mark. For example, consider the following statement:
echo '<p>This code's not going to work.</p>';

Th is statement displays incorrectly because the PHP scripting engine
assumes that the literal string ends with the apostrophe following “code.”
To get around this problem, you should include an escape character
before the apostrophe in “code’s”. An escape character tells the compiler
or interpreter that the character that follows it has a special purpose.
In PHP, the escape character is the backslash (\). Placing a backslash in
front of an apostrophe tells the PHP scripting engine to treat the apos-
trophe as a regular keyboard character, such as “a,” “b,” “1,” or “2,” and not
as part of a single quotation mark pair that encloses a text string. Th e
backslash in the following statement tells the PHP scripting engine to
display the apostrophe following the word “code” as an apostrophe:
echo '<p>This code\'s going to work.</p>';

Th ere’s no need for a backslash before an apostrophe if you surround
the text string with double quotation marks, as follows:
echo "<p>This code's going to work.</p>";

Although the apostrophe in the preceding statement displays cor-
rectly, other characters require an escape character within a string
surrounded by double quotation marks. Th e escape character
combined with one or more other characters is called an escape
sequence. Th e backslash followed by an apostrophe (\') is an exam-
ple of an escape sequence. Most escape sequences carry out special
functions; for example, the escape sequence \t inserts a tab into a
string. Table 3-1 describes the escape sequences that can be added to
a double-quoted string in PHP.

128

C H A P T E R 3 Manipulating Strings

Escape
Sequence Description
\\ Inserts a backslash

\$ Inserts a dollar sign

\r Inserts a carriage return

\f Inserts a form feed

\" Inserts a double quotation mark

\t Inserts a horizontal tab

\v Inserts a vertical tab

\n Inserts a new line

\xh Inserts a character whose hexadecimal value is h, where h is
one or two hexadecimal digits (0-9, A-F), case insensitive

\o Inserts a character whose octal value is o, where o is one,
two, or three octal digits (0-7)

Table 3-1 PHP escape sequences within double quotation marks

Notice that the backslash is one of the characters inserted into a
string by an escape sequence. Because the escape character itself
is a backslash, you must use the escape sequence \\ to include a
 backslash as a character in a string. For example, to include the path
“C:\Course Technology\1687-5\” in a string, you must include a
backslash escape character before every literal backslash you want
to appear in the string, making each single backslash into a pair of
backslashes:
echo "<p>My PHP fi les are located in
C:\\Course Technology\\1687-5\\.</p>";

Th e following code shows another example of an escape character,
this time with the double quotation escape sequence (\"). Figure 3-4
shows the output.
$Speaker = "Julius Caesar";
echo "<p>\"Et tu, Brute!\" exclaimed $Speaker.</p>";

Figure 3-4 Using escape sequences for double quotes

Within a
literal string
surrounded
by double
quotation

marks, the backslash will
be displayed if you place
it before any character
other than those listed in
Table 3-1.

As a good
programming
practice, you
should include
an \n escape

sequence at the end of
an echo statement out-
put string as needed to
properly format the
XHTML source code gen-
erated by the PHP script.
Although this normally
has no effect on the Web
browser display, it makes
the XHTML source code
easier to read and debug.
The print statement
automatically appends a
“new line” character to
the string it returns.

129

Constructing Text Strings

Because the string in the previous example contained a variable, the
string would not display as intended if you used single quotes around
it, as discussed previously. Remember from Chapter 1 that vari-
ables are not expanded when the string is enclosed in single quotes.
Similarly, the escape sequences listed in Table 3-1 will be treated as
literal text if the string is enclosed in single quotes.

An alternative to using the double quotation mark escape sequence
is to use single quotation marks for the starting text portion of the
literal string and then combine the $Speaker variable with the con-
catenation operator, as follows:
$Speaker = "Julius Caesar";
echo '<p>"Et tu, Brute!" exclaimed '
 . $Speaker . ".</p>";

To use escape sequences to format text:

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, document
head, and <body> element. Use the strict DTD and “Format-
ted Text” as the content of the <title> element.

3. Add the following script section to the document body:
<?php
?>

4. Declare and initialize a variable called $DisplayValue, as
follows:
$DisplayValue=9.876;

5. Add the following PHP code to display some unformatted
text. Be sure to include the code for the opening and clos-
ing XHTML <pre> tags. Normally, the Web browser will treat
all new lines, carriage returns, and tabs as spaces. Using the
<pre> tag tells the Web browser not to convert those charac-
ters to spaces.
echo "<pre>\n";
echo "Unformatted text line 1. ";
echo "Unformatted text line 2. ";
echo "$DisplayValue = $DisplayValue";
echo "</pre>\n";

6. Add the following PHP code to display some formatted text:
echo "<pre>\n";
echo "Formatted text line 1. \r\n";
echo "\tFormatted text line 2. \r\n";
echo "\$DisplayValue = $DisplayValue";
echo "</pre>\n";

130

C H A P T E R 3 Manipulating Strings

7. Save the fi le as FormattedText.php, upload it to the server,
and then open the fi le in your Web browser by entering the
following URL:
http://<yourserver>/PHP_Projects/ Chapter.03/Chapter/
FormattedText.php. Figure 3-5 shows the output. Notice
that the unformatted lines run together but the formatted
lines do not. Th e second formatted line is indented, and the
value of $DisplayValue (9.876) appears at the beginning of
the third line of the unformatted section. However, the text
 “$DisplayValue” appears at the beginning of the third line of
the formatted section.

Figure 3-5 Output of FormattedText.php

8. Close your Web browser window.

Simple and Complex String Syntax
Values and variables can be combined in a literal string using simple
or complex syntax. Simple string syntax allows you to use the value
of a variable within a string by including the variable name inside a
text string enclosed by double quotation marks (not single quotation
marks). For example, the following code displays the text “Do you
have any broccoli?” in the Web browser:
$Vegetable = "broccoli";
echo "<p>Do you have any $Vegetable?</p>";

When the PHP scripting engine encounters a dollar sign within a
text string, it attempts to evaluate any characters that follow the dol-
lar sign as part of the variable name until it comes to a character that
is not allowed in an identifi er, such as a space. With the preceding
example, the $Vegetable variable is interpreted correctly because the
question mark is not a legal character for an identifi er. However, con-
sider the following version of the preceding code:
$Vegetable = "tomato";
echo "<p>Do you have any $Vegetables?</p>";

131

Constructing Text Strings

Because an ‘s’ is appended to the $Vegetable variable name, the pre-
ceding echo statement displays incorrectly. Th e PHP scripting engine
is attempting to locate a variable named $Vegetables (plural), which
has not been declared, so no text is displayed in place of the variable
name. To make the preceding code work, you need to surround the
variable name with curly braces ({}), as shown in the following exam-
ple. Th is type of structure, in which variables are placed within curly
braces inside a string, is called complex string syntax.
$Vegetable = "carrot";
echo "<p>Do you have any {$Vegetable}s?</p>";

Th e preceding echo statement displays the text string “Do you have
any carrots?” Complex string syntax is only recognized if the opening
brace is immediately before or after a variable’s dollar sign. Th e fol-
lowing version of the preceding code also displays correctly:
$Vegetable = "carrot";
echo "<p>Do you have any ${Vegetable}s?</p>";

However, if you place any characters between the opening brace and
the dollar sign, the contents of the string are interpreted as literal
values. For example, because the following code includes a space
between the opening brace and the dollar sign, the echo statement
displays the text string “Do you have any { carrot}s?”:
$Vegetable = "carrot";
echo "<p>Do you have any { $Vegetable}s?</p>";

To display a list of authors and their works:

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, document
head, and <body> element. Use the strict DTD and “Books
and Authors” as the content of the <title> element.

3. Add the following script section to the document body:
<?php
?>

4. Declare and initialize an array called $Books, as follows:
$Books = array("The Adventures of Huckleberry Finn",
 "Nineteen Eighty-Four",
 "Alice's Adventures in Wonderland",
 "The Cat in the Hat");

5. Declare and initialize an array called $Authors, as follows:
$Authors = array("Mark Twain",
 "George Orwell",
 "Lewis Carroll",
 "Dr. Seuss");

132

C H A P T E R 3 Manipulating Strings

6. Declare and initialize an array called $RealNames, as follows:
$RealNames = array("Samuel Clemens",
 "Eric Blair",
 "Charles Dodson",
 "Theodor Geisel");

7. Create a for loop to display a string that combines the values
from the three arrays, as follows. Note the use of complex
string syntax to ensure that the PHP scripting engine handles
the array elements correctly.
for ($i = 0; $i < count($Books); ++$i)
 echo "<p>The real name of {$Authors[$i]}, ".
 "the author of \"{$Books[$i]}\", ".
 "is {$RealNames[$i]}.</p>";

8. Save the fi le as BooksAndAuthors.php, upload it to the
server, and then open the fi le in your Web browser by enter-
ing the following URL:
http://<yourserver>/PHP_Projects/Chapter.03/Chapter/
BooksAndAuthors.php. Figure 3-6 shows the output in your
Web browser window.

Figure 3-6 Output of the Books and Authors script

9. Close your Web browser window.

Short Quiz

1. Explain the diff erence between a concatenation operator and
a concatenation assignment operator.

2. Describe two ways to display double quotation marks within a
literal string.

3. Describe the use of curly braces in complex string syntax.

133

Constructing Text Strings

Working with a Single String
PHP provides a large number of functions for analyzing, altering, and
parsing text strings. In this section, you will study basic techniques
for manipulating an individual string, including how to count char-
acters and words. You will also learn how to transpose, convert, and
change the case of text within a string.

Counting Characters and Words in a String
You will often fi nd it necessary to count characters and words in
strings. For example, you might need to count characters in a pass-
word to ensure that a user selects a password with a minimum num-
ber of characters. Or, you might have a Web page that allows users
to submit classifi ed ads that cannot exceed a maximum number of
words.

Th e most commonly used string-counting function is the strlen()
function, which returns the total number of characters in a string.
You pass to the strlen() function a literal string or the name of a
string variable whose characters you want to count. For example, the
following code uses the strlen() function to count the number of
characters in a variable named $BookTitle. Th e echo statement dis-
plays “Th e book title contains 23 characters.”
$BookTitle = "The Cask of Amontillado";
echo "<p>The book title contains " . strlen($BookTitle)
 . " characters.</p>";

Another commonly used string-counting function is the
str_word_count() function, which returns the number of words in a
string. You pass to the str_word_count() function a literal string or
the name of a string variable whose words you want to count. Th e
following example shows a modifi ed version of the preceding code,
but this time with the str_word_count() function. Th e echo statement
displays “Th e book title contains 4 words.”
$BookTitle = "The Cask of Amontillado";
echo "<p>The book title contains " .
 str_word_count($BookTitle)
 . " words.</p>";

To show the length and word count of some book titles:

1. Return to the BooksAndAuthors.php script in your text
editor.

2. Change the content of the <title> element to “Title
Information.”

The
strlen()
function
counts
escape

sequences such as \n as
one character.

134

C H A P T E R 3 Manipulating Strings

3. Delete the $Authors and $RealNames arrays.

4. Modify the for loop to display the information about the
book titles, as follows:
for ($i = 0; $i < count($Books); ++$i)
echo "<p>The title \"{$Books[$i]}\" contains " .
 strlen($Books[$i]) . " characters and " .
 str_word_count($Books[$i]) . " words.</p>";

5. Save the fi le as TitleInfo.php, upload it to the server, and
then open the fi le in your Web browser by entering the
 following URL:
http://<yourserver>/PHP_Projects/Chapter.03/Chapter/
TitleInfo.php. Figure 3-7 shows the output in your Web
browser window.

Figure 3-7 Output of the Title Information script

6. Close your Web browser window.

Modifying the Case of a String
When working with strings, you often cannot guarantee that they
will be in the correct case. Th is is especially true when dealing with
strings from external sources, such as database queries or user form
input. PHP provides several functions for manipulating the case of a
string.

For many types of codes, whether within the computer world or
not, text strings are expected to appear only in uppercase letters.
For example, U.S. state and Canadian province postal abbreviations
should always be uppercase. Th e strtoupper() function converts
all of the letters in a string to uppercase. Similarly, the strtolower()
function converts all of the letters in a string to lowercase. For

The
count_
chars()
function
returns an

array of the 256 ASCII
codes, where the value of
each element is the
 number of times that
element occurs in the
parameter string.

135

Working with a Single String

example, this function is useful when converting a document from
HTML to XHTML, because the XHTML standard specifi es that all
element and attribute tags must be lowercase.

When working with natural languages, more complex conversions
are needed. Sentences in English start with an uppercase letter.
Th e ucfirst() function ensures that the fi rst character of a string
is uppercase. If you need the reverse of ucfirst(), the lcfirst()
function converts the fi rst character of a string to lowercase. Titles of
books, songs, poems, and articles usually have the fi rst letter of each
word capitalized. Th e ucwords() function converts the fi rst character
of each word in a string to uppercase.

Consider the following example and the output shown in Figure 3-8:
$ConfusingText = "tHIs seNTEnCE iS HArD to rEAD.";
echo "<h1>Confusing Text</h1>\n";
echo "ucfirst: " . ucfirst($ConfusingText) . "
\n";
echo "lcfirst: " . lcfirst($ConfusingText) . "
\n";
echo "ucwords: " . ucwords($ConfusingText) . "
\n";
$LowercaseText = strtolower($ConfusingText);
echo "<h1>Lowercase Text</h1>\n";
echo "ucfirst: " . ucfirst($LowercaseText) . "
\n";
echo "lcfirst: " . lcfirst($LowercaseText) . "
\n";
echo "ucwords: " . ucwords($LowercaseText) . "
\n";

Figure 3-8 Using the ucfirst(), lcfirst(),
and ucwords() functions

The
ucfirst()
and
lcfirst()
functions

only change the fi rst char-
acter of a string. The
ucwords() function
only changes the fi rst
character of each word.
These functions do not
change the case of any
other character in a
string. To ensure that the
remaining characters in a
string are lowercase
when using the
ucfirst() and
ucwords()functions,
you need to use the
strtolower() function
on the string fi rst. To
ensure that the remaining
characters are uppercase
when using the
lcfirst() function,
you need to use the
strtoupper() function
on the string fi rst.

136

C H A P T E R 3 Manipulating Strings

In the three lines under the “Confusing Text” title, it is still very dif-
fi cult to read the text, because the strings are a mix of uppercase and
lowercase letters. In addition, it is hard to see what changed in the
three lines. Th e three lines under the “Lowercase Text” title are much
clearer to read and it is easier to see what changed, because all of the
text started in lowercase.

To manipulate the case of a string:

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, document
head, and <body> element. Use the strict DTD and “Word
Play” as the content of the <title> element.

3. Add the following script section to the document body:
<?php
?>

4. Declare and initialize a string called $StartingText, as
follows:
$StartingText = "mAdAm, i'M aDaM.";

5. Add the following four lines of code to convert and display
the string in uppercase and lowercase:
$UppercaseText = strtoupper($StartingText);
$LowercaseText = strtolower($StartingText);
echo "<p>$UppercaseText</p>\n";
echo "<p>$LowercaseText</p>\n";

6. Add the following four lines to display the text with diff erent
mixes of uppercase and lowercase letters:
echo "<p>" . ucfirst($LowercaseText) . "</p>\n";
echo "<p>" . lcfirst($UppercaseText) . "</p>\n";
$WorkingText = ucwords($LowercaseText);
echo "<p>$WorkingText</p>\n";

7. Save the fi le as WordPlay.php, upload it to the server, and
then open the fi le in your Web browser by entering the
 following URL:
http://<yourserver>/PHP_Projects/Chapter.03/Chapter/
WordPlay.php. Figure 3-9 shows the output in your Web
browser window.

The
ucfirst()
and
ucwords()
functions do

not always capitalize a
proper name correctly,
such as in strings that
require more than one
capital letter. Consider
trying to convert the
strings “des moines”,
“mary-elizabeth”, and
“dimaggio” to the proper
names “Des Moines”,
“Mary-Elizabeth”, and
“DiMaggio”. The
ucfirst() function will
convert the strings to
“Des moines”, “Mary-
elizabeth”, and
“Dimaggio”, respectively.
The ucwords() function
will properly convert “des
moines” to “Des Moines”,
but its conversions of the
other two strings will
match those of the
ucfirst() function.

137

Working with a Single String

Figure 3-9 Output of WordPlay.php

8. Close your Web browser window.

Encoding and Decoding a String
Because of the close relationship between XHTML, the Internet, and
PHP, several functions are built into PHP for dealing with Web pages.
Th e htmlspecialchars() and htmlspecialchars_decode() func-
tions in XHTML are only useful for processing strings. XHTML has
fi ve reserved characters: the ampersand (&), double quotation mark
("), single quotation mark ('), left angle bracket or “less than” symbol
(<), and right angle bracket or “greater than” symbol (>). To display
these characters as text on an XHTML page, they should be encoded
using HTML character entities. Th e htmlspecialchars() function
converts any occurrence of these fi ve characters to their equivalent
HTML character entity. Specifi cally, ‘&’ becomes ‘&’, ‘"’ becomes
‘"’, ‘'’ becomes ‘'’, ‘<’ becomes ‘<’, and ‘>’ becomes
‘>’. Th e htmlspecialchars_decode() function performs the
reverse operation, converting the HTML character entities into their
equivalent characters.

Passwords are required for secure access to a Web site. Storing pass-
words as plain text strings creates security and privacy issues. Th e
md5() function is a way to avoid storing passwords as plain text.
Th e md5() function uses a strong encryption algorithm (called the
Message-Digest Algorithm) to create a one-way hash of the entered
string. A one-way hash is a fi xed-length string based on the entered
text, from which it is nearly impossible to determine the original text.

Because it is a one-way hash, there is no equivalent decode function
for the md5() function. In theory, a one-way hash makes it impossible

Turning on
the PHP
confi guration
setting
“ENT_

NOQUOTES” disables the
conversion of the double
quotation mark. Turning
on the PHP confi guration
setting “ENT_QUOTES”
enables the conversion of
the single quotation
mark.

138

C H A P T E R 3 Manipulating Strings

to convert the stored hash value back to the original password to
compare against an entered password. Instead, the entered pass-
word is passed to the md5() function, and the resulting hash value is
compared against the stored hash value. If the two are the same, the
entered password is considered to be valid.

Other Ways to Manipulate a String
If a string has leading or trailing spaces, the trim() function will
remove them. To remove only the leading spaces, use the ltrim()
(left trim) function. To remove only the trailing spaces, use the
rtrim() (right trim) function.

To return only a portion of a string, use the substr() function.
Th is function takes the input string as the fi rst parameter, the start-
ing position as the second parameter, and the length of the string to
return as an optional third parameter. For numbers that are zero or
positive, the starting position is calculated from the start of the string,
with zero being the fi rst character. For negative numbers, the starting
position is calculated from the end of the string, with –1 being the
last character. If the length is omitted or is greater than the remain-
ing length of the string, the entire remainder of the string is returned.
Figure 3-10 shows the output of the following example:
$ExampleString = "woodworking project";
echo substr($ExampleString,4) . "
\n";
echo substr($ExampleString,4,7) . "
\n";
echo substr($ExampleString,0,8) . "
\n";
echo substr($ExampleString,-7) . "
\n";
echo substr($ExampleString,-12,4) . "
\n";

Figure 3-10 Some examples using the substr() function

PHP
 provides a
number of
functions for
encrypting

strings using different
algorithms.

Although
 converting a
one-way hash
value back to
the original

value is supposedly
impossible, hackers have
managed to “crack” many
one-way hash algorithms,
including the md5() algo-
rithm. Encryption algo-
rithms, like physical
locks, will not stop some-
one who is determined to
defeat them.

139

Working with a Single String

Many more functions are available in PHP to manipulate the charac-
ters in a string. Although they will not all be discussed in this section,
two deserve special mention. Th e strrev() function reverses the
order of the characters in a string, and the str_shuffle() function
randomly scrambles the order.

To add the md5(), substr(), strrev(), and str_shuffle() functions
to the Word Play example:

1. Return to the WordPlay.php script in your text editor.

2. Add the following fi ve lines before the end of the PHP block:
echo "<p>" . md5($WorkingText) . "</p>\n";
echo "<p>" . substr($WorkingText,0,6) . "</p>\n";
echo "<p>" . substr($WorkingText,7) . "</p>\n";
echo "<p>" . strrev($WorkingText) . "</p>\n";
echo "<p>" . str_shuffle($WorkingText) . "</p>\n";

3. Save the WordPlay.php fi le, upload it to the server, and then
open the fi le in your Web browser by entering the following
URL: http://<yourserver>/PHP_Projects/Chapter.03/Chapter/
WordPlay.php. Figure 3-11 shows the new Web page.

Figure 3-11 Output of the Word Play script

4. Close your Web browser window.

140

C H A P T E R 3 Manipulating Strings

Short Quiz

1. What string function would you use to determine the number
of characters in a password that a user has entered?

2. What string function would you use to determine if an essay
keyed in a <textarea> form input fi eld exceeds the maximum
number of words allowed?

3. What two string functions could be used to convert the case
of text strings to all uppercase or all lowercase letters?

Working with Multiple Strings
PHP provides many functions for splitting a string into substrings,
merging multiple strings, and changing one string based on another.
In this section, you will study basic techniques for working with more
than one string.

Finding and Extracting Characters
and Substrings
When applied to text strings, the term parsing refers to the act of
dividing a string into logical component substrings or tokens. Th is is
essentially the same process as the parsing (rendering) that occurs in
a Web browser when it extracts the necessary formatting informa-
tion from a Web page before displaying it on the screen. In the case
of a Web page, the document itself is one large text string from which
formatting and other information needs to be extracted. However, at
a programming level, parsing usually refers to the extraction of infor-
mation from string literals and variables.

In some situations, you will need to fi nd and extract characters and
substrings from a string. For example, if your script receives an e-mail
address, you may need to extract the name portion of the e-mail
address or domain name. Several functions in PHP allow you to fi nd
and extract characters and substrings from a string.

Th ere are two types of string search and extraction functions: func-
tions that return a numeric position in a text string and those that
return a character or substring. Both functions return a value of
FALSE if the search string is not found. To use functions that return
the numeric position in a text string, you need to understand that

141

Working with Multiple Strings

the position of characters in a text string begins with a value of 0,
the same as with indexed array elements. For example, the strpos()
function performs a case-sensitive search and returns the position of
the fi rst occurrence of a substring within a string. You pass two argu-
ments to the strpos() function: Th e fi rst argument is the string you
want to search, and the second argument contains the substring for
which you want to search. If the search substring is not found, the
strpos() function returns a Boolean value of FALSE. Th e following
code uses the strpos() function to determine whether the $Email
variable contains an @ character. Because the position of text strings
begins with 0, the echo statement returns a value of 9, even though
the @ character is the 10th character in the string.
$Email = "president@whitehouse.gov";
echo strpos($Email, '@'); // returns 9

If you simply want to determine whether a character exists in a string,
you need to keep in mind that PHP converts the Boolean values TRUE
and FALSE to 1 and 0, respectively. However, these values are char-
acter positions within a string. For example, the following statement
returns a value of 0 because “p” is the fi rst character in the string:
$Email = "president@whitehouse.gov";
echo strpos($Email, 'p'); // returns 0

To determine whether the strpos() function (and other string func-
tions) actually returns a Boolean FALSE value and not a 0 representing
the fi rst character in a string, you must use the strict equal operator
(===) or the strict not equal operator (!==). Th e following example
uses the strpos() function and the strict not equal operator to deter-
mine whether the $Email variable contains an @ character:
$Email = "president@whitehouse.gov";
if (strpos($Email, '@') !== FALSE)
 echo "<p>The e-mail address contains an @ character.</p>";
else
 echo "<p>The e-mail address does not contain an @
 character.</p>";

To return the last portion of a string, starting with a specifi ed char-
acter, you use strchr() or strrchr(). You pass to both functions
the string and the character for which you want to search. Both
functions return a substring from the specifi ed characters to the end
of the string. Th e only diff erence between the two functions is that
the strchr() function starts searching at the beginning of a string,
whereas the strrchr() function starts searching at the end of a
string. Th e following code uses the strrchr() function to return the
top-level domain (TLD) of the e-mail address in the $Email variable:
$Email = "president@whitehouse.gov";
echo "<p>The top-level domain of the e-mail address is "
 . strrchr($Email, ".") . ".</p>";

You fi rst
encountered
the strict not
equal
 operator in
Chapter 1.

Because
the e-mail
address in
the $Email
 variable in this

example only contains a
single period, you can
use either the strchr()
or strrchr() function.

142

C H A P T E R 3 Manipulating Strings

To use the strpos() function to check whether e-mail addresses con-
tain ampersands and a period to separate the domain name from the
top-level domain:

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, document
head, and <body> element. Use the strict DTD and “E-Mail
Validator” as the content of the <title> element.

3. Add the following script section to the document body:
<?php
?>

4. Declare an array called $EmailAddresses. Populate the list
with several valid and invalid e-mail addresses. Th e following
code provides a good starting point, but you may add more
addresses.
$EmailAddresses = array(
 "john.smith@php.test",
 "mary.smith.mail.php.example",
 "john.jones@php.invalid",
 "alan.smithee@test",
 "jsmith456@example.com",
 "jsmith456@test",
 "mjones@example",
 "mjones@example.net",
 "jane.a.doe@example.org");

Th e three top-level domains .test, .example, and .invalid,
as well as the three domains example.com, example.net, and
example.org, are special names that will never connect to a
real server.

5. Add the following function to the beginning of the script
section, immediately after the declaration statement for the
$EmailAddresses array. Th e function uses two strpos()
functions to determine whether the string passed to it con-
tains an ampersand and a period. If the string contains both
characters, a value of TRUE is returned. If not, a value of FALSE
is returned.
function validateAddress($Address) {
 if (strpos($Address, '@') !== FALSE &&
 strpos($Address,
 '.') !== FALSE)
 return TRUE;
 else
 return FALSE;
}

143

Working with Multiple Strings

6. Add the following foreach statement immediately after
the validateAddress function declaration. Th e if con-
ditional expression passes the $Address variable to the
validateAddress() function. If the function returns a value
of FALSE, the echo statement executes.
foreach ($EmailAddresses as $Address) {
 if (validateAddress($Address) == FALSE)
 echo "<p>The e-mail address $Address
 does not appear to be valid.</p>\n";
}

7. Save the fi le as PHPEmail.php, upload it to the server, and
then open the fi le in your Web browser by entering the
 following URL:
 http://<yourserver>/PHP_Projects/Chapter.03/Chapter/
PHPEmail.php. Th e output for the preceding addresses is
shown in Figure 3-12.

Figure 3-12 Output of the E-Mail Validator script

8. Close your Web browser window.

Replacing Characters and Substrings
In addition to fi nding and extracting characters in a string, you might
need to replace them. PHP provides a number of functions to replace
text within a string, including str_replace(), str_ireplace(), and
substr_replace().

Th e str_replace() and str_ireplace() functions both accept three
arguments: the string you want to search for, a replacement string,
and the string in which you want to replace characters. Th e replace-
ment functions do not modify the contents of an existing string.
Instead, they return a new string, which you can assign to a variable,
use in an echo statement, or use in your script in some other way. Th e

144

C H A P T E R 3 Manipulating Strings

following example demonstrates how to use the str_replace() func-
tion to replace “president” in the $Email variable with “vice.president”.
$Email = "president@whitehouse.gov";
$NewEmail = str_replace("president", "vice.president",
$Email);
echo $NewEmail;
 // displays 'vice.president@whitehouse.gov'

Instead of replacing all occurrences of characters within a string, the
substr_replace() function allows you to replace characters within
a specifi ed portion of a string. You pass to the substr_replace()
function the string you want to search, the replacement text, and the
starting and ending positions of the characters you want to replace.
If you do not include the last argument, the substr_replace() func-
tion replaces all the characters from the starting position to the end
of the string. For example, the following code uses the strpos() and
substr_replace() functions to replace “president” in the $Email
variable with “vice.president.”
$Email = "president@whitehouse.gov";
$NameEnd = strpos($Email, "@");
$NewEmail = substr_replace($Email, "vice.president", 0,
 $NameEnd);
echo $NewEmail;
 // displays 'vice.president@whitehouse.gov'

Th e following code demonstrates how to use the substr_replace()
function to replace text from one string when storing the value in a
new variable. Th e code uses the strpos() and strrpos() functions
to locate the starting and ending positions of the word “Medical” in
“American Medical Association”. Th e substr_replace() function
then replaces the word “Medical” with the word “Heart”, changing the
name to “American Heart Association” when storing the value in the
new location. Figure 3-13 shows the results.
$FirstStudyPublisher = "American Medical Association";
$MiddleTermStart = strpos($FirstStudyPublisher, " ") + 1;
$MiddleTermEnd = strrpos($FirstStudyPublisher, " ") -
$MiddleTermStart;
$SecondStudyPublisher = substr_
replace($FirstStudyPublisher, "Heart",
 $MiddleTermStart, $MiddleTermEnd);
echo "<p>The first study was published by the
 $FirstStudyPublisher.</p>\n";
echo "<p> The second study was published by the
 $SecondStudyPublisher.</p>\n";

145

Working with Multiple Strings

Figure 3-13 Output of the Study Publisher script

To use the str_replace() function to display a list of American pres-
idents and their terms in offi ce:

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, document
head, and <body> element. Use the strict DTD and “Presiden-
tial Terms” as the content of the <title> element.

3. Add the following script section to the document body:
<?php
?>

4. Declare an array called $Presidents. Populate the list with
the names of the fi rst fi ve presidents, as follows:
$Presidents = array(
 "George Washington",
 "John Adams",
 "Thomas Jefferson",
 "James Madison",
 "James Monroe");

5. Declare an array called $YearsInOffice. Populate the list
with the terms of the fi rst fi ve presidents, as follows:
$YearsInOffice = array(
 "1789 to 1797",
 "1797 to 1801",
 "1801 to 1809",
 "1809 to 1817",
 "1817 to 1825");

6. Declare a template string for the output as follows:
$OutputTemplate = "<p>President [NAME] served from
[TERM]</p>\n";

146

C H A P T E R 3 Manipulating Strings

7. Add the following foreach loop to retrieve each president
and create an output string from the template string:
foreach ($Presidents as $Sequence => $Name) {
 $TempString = str_replace("[NAME]", $Name,
 $OutputTemplate);
 $OutputString = str_replace("[TERM]",
 $YearsInOffice[$Sequence],
 $TempString);
 echo $OutputString;
}

8. Save the fi le as Presidents.php, upload it to the server,
and then open the fi le in your Web browser by entering the
 following URL:
http://<yourserver>/PHP_Projects/Chapter.03/Chapter/
Presidents.php. Figure 3-14 shows the output.

Figure 3-14 Output of the Presidents.php script

9. Close your Web browser window.

Dividing Strings into Smaller Pieces
If you receive a text string that contains multiple data elements sepa-
rated by a common delimiter, you will probably want to split the
string into its individual elements. A delimiter is a character or string
that is used to separate components in a list. Th e delimiter is usu-
ally not found in any of the elements. For example, you may receive
a list of names, separated by commas. Although you could use some
of the string functions you’ve seen so far to manually parse such a
string into smaller pieces, you can save yourself a lot of work by using
the strtok() function to break a string into smaller strings, called
tokens. When it is fi rst called, the syntax for the strtok() function

147

Working with Multiple Strings

is $variable = strtok(string, separators);. Th e strtok()
function assigns to $variable the token (substring) from the begin-
ning of the string to the fi rst separator. To assign the next token to
$variable, you call the strtok() function again, but only pass to
it a single argument containing the separator. Th e PHP scripting
engine keeps track of the current token and assigns the next token
to $variable, starting at the fi rst character after the separator, each
time the strtok() function is called and until the end of the string is
reached. If there are no characters between two separators, between
the start of the string and the fi rst separator, or between the last sepa-
rator and the end of the string, strtok() returns an empty string.

Th e fi rst statement in the following code assigns the names of the
fi rst fi ve American presidents to the $Presidents variable, sepa-
rated by semicolons. Th e fi rst strtok() function assigns the fi rst
token (George Washington) to the $President variable. Th e while
statement then displays the token and assigns the next token to the
$President variable. Th e while loop iterates through the tokens until
the $President variable is equal to NULL. Figure 3-15 shows the
output.
$Presidents = "George Washington;John Adams;Thomas
Jefferson;James Madison;James Monroe";
$President = strtok($Presidents, ";");
while ($President != NULL) {
 echo "$President
";
 $President = strtok(";");
}

Figure 3-15 Using strtok() to divide a list using semicolons

If you spec-
ify an empty
string as the
second argu-
ment of the

strtok() function, or if
the string does not con-
tain any of the separators
you specify, the
strtok() function
returns the entire string.

148

C H A P T E R 3 Manipulating Strings

Th e strtok() function does not divide a string into tokens by using
a substring that is passed as its second argument. Instead, it divides
a string into tokens using any of the characters that are passed in
the second argument. For example, if you include a semicolon and
a space (“; ”) in the second argument for the strtok() function, the
string is split into tokens at each semicolon or space in the string. Th e
following example contains a modifi ed version of the preceding code.
In this version, the separators arguments passed to the strtok()
functions contain a semicolon and a space. For this reason, the string
is split into tokens at each semicolon and individual space in the
$Presidents variable, as shown in Figure 3-16.
$Presidents = "George Washington;John Adams;Thomas
Jefferson;James Madison;James Monroe";
$President = strtok($Presidents, "; ");
while ($President != NULL) {
 echo "$President
";
 $President = strtok("; ");
}

Figure 3-16 Using strtok() to divide a list using
semicolons and spaces

To look for empty fi elds in a UNIX password fi le record using the
strtok() function:

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, document
head, and <body> element. Use the strict DTD and “Password
Fields” as the content of the <title> element.

149

Working with Multiple Strings

3. Add the following script section to the document body:
<?php
?>

4. Declare and initialize a string called $Record, as follows:
$Record = "jdoe:8W4dS03a39Yk2:1463:24:John
Doe:/home/jdoe:/bin/bash";

5. Declare an array called $PasswordFields, as follows:
$PasswordFields = array(
 "login name",
 "optional encrypted password",
 "numerical user ID",
 "numerical group ID",
 "user name or comment field",
 "user home directory",
 "optional user command interpreter");

6. Enter the following code to tokenize the string and display a
message for each missing fi eld:
$FieldIndex = 0;
$ExtraFields = 0;
$CurrField = strtok($Record, ":");
while ($CurrField != NULL) {
 if ($FieldIndex < count($PasswordFields))
 echo "<p>The
 {$PasswordFields[$FieldIndex]} is
 $CurrField</p>\n";
 else {
 ++$ExtraFields;
 echo "<p>Extra field # $ExtraFields is
 $CurrField</p>\n";
 }
 $CurrField = strtok(":");
 ++$FieldIndex;
}

7. Save the fi le as PasswordFields.php, upload it to the server,
and then open the fi le in your Web browser by entering the
following URL:
http://<yourserver>/PHP_Projects/Chapter.03/Chapter/
PasswordFields.php. Figure 3-17 shows the output.

150

C H A P T E R 3 Manipulating Strings

Figure 3-17 Using strtok() to parse a password record

8. Close your Web browser window.

Converting between Strings and Arrays
In addition to splitting a string into tokens, you can split a string into
an array, in which each array element contains a portion of the string.
In most cases, you will probably fi nd it more useful to split a string
into an array instead of tokens because you have more control over
each array element. With strings that are split with the strtok()
function, you can only work with a substring if it is the current token.
Although tokenizing a string is useful if you want to quickly display or
iterate through the tokens in a string, you need to assign the tokens
to another variable or array if you want to modify the tokens in any
way. By contrast, when you split a string into an array, portions of the
string are automatically assigned to elements.

You use the str_split() or explode() function to split a string
into an indexed array. Th e str_split() function splits each
character in a string into an array element, using the syntax
$array = str_split(string[, length]);. Th e length argument
represents the number of characters you want assigned to each array
element. Th e explode() function splits a string into an indexed array
at a specifi ed separator. Th e syntax for the explode() function is
$array = explode(separator, string);. Be sure to notice that the
order of the arguments for the explode() function is the reverse of

151

Working with Multiple Strings

the arguments for the strtok() function. Th e following code dem-
onstrates how to split the $Presidents string into an array named
$PresidentArray:
$Presidents = "George Washington;John Adams;Thomas
Jefferson;James Madison;James Monroe";
$PresidentArray = explode(";", $Presidents);
foreach ($PresidentArray as $President) {
 echo "$President
";
}

If the string does not contain the specifi ed separator, the entire string
is assigned to the fi rst element of the array. Also, unlike the strtok()
function, the explode() function does not separate a string at any
character that is included in the separator argument. Instead, the
explode() function evaluates the characters in the separator argu-
ment as a substring. For example, a semicolon and a space separate
each president’s name in the following code. Th erefore, you pass “; ”
as the separator argument of the explode() function.
$Presidents = "George Washington; John Adams; Thomas
Jefferson; James Madison; James Monroe";
$PresidentArray = explode("; ", $Presidents);
foreach ($PresidentArray as $President) {
 echo "$President
";
}

Th e opposite of the explode() function is the implode() function,
which combines an array’s elements into a single string, separated
by specifi ed characters. Th e syntax for the implode() function
is $variable = implode(separator, array);. Th e following
example fi rst creates an array named $PresidentsArray, then uses
the implode() function to combine the array elements into the
$Presidents variable, separated by a comma and a space. Figure 3-18
shows the output.
$PresidentsArray = array("George Washington", "John
Adams", "Thomas Jefferson", "James Madison", "James
Monroe");
$Presidents = implode(", ", $PresidentsArray);
echo $Presidents;

Figure 3-18 Using implode() to build a string from an array

If you pass
to the
explode()
function an
empty string

as the separator argu-
ment, the function returns
a Boolean value of
FALSE.

152

C H A P T E R 3 Manipulating Strings

To modify PasswordFields.php so the record is split into an array
instead of tokens:

1. Return to the PasswordFields.php script in your text editor.

2. Replace the declaration and initialization of $CurrField with
the following statement:
$Fields = explode(":",$Record);

3. Replace the while loop with a foreach loop as follows:
foreach ($Fields as $FieldIndex => $FieldValue) {
 if ($FieldIndex < count($PasswordFields))
 echo "<p>The
 {$PasswordFields[$FieldIndex]} is
 $FieldValue</p>\n";
 else {
 ++$ExtraFields;
 echo "<p>Extra field # $ExtraFields is
 $FieldValue</p>\n";
 }
}

4. Save the PasswordFields.php fi le, upload it to the server, and
then open the fi le in your Web browser by entering the fol-
lowing URL: http://<yourserver>/PHP_Projects/Chapter.03/
Chapter/ PasswordFields.php. Th e output should still look like
Figure 3-17.

5. Close your Web browser window.

Short Quiz

1. What function can be used to determine if a specifi c charac-
ter exists in a string?

2. What is the diff erence between the str_replace() function
and the str_ireplace() function?

3. What functions are used to split a string into an indexed
array?

153

Working with Multiple Strings

Comparing Strings
In Chapter 1, you studied various operators that you can use with
PHP, including comparison operators. Although comparison opera-
tors are most often used with numbers, they can also be used with
strings. Th e following statement uses the comparison operator (==)
to compare two variables containing text strings:
$Florida = "Miami is in Florida.";
$Cuba = "Havana is in Cuba.";
if ($Florida == $Cuba)
 echo "<p>Same location.</p>";
else
 echo "<p>Different location.</p>";

Because the text strings are not the same, the else clause displays
the text “Diff erent location.” You can also use comparison operators
to determine whether one letter occurs later in the alphabet than
another letter. In the following code, the fi rst echo statement executes
because the letter “B” occurs later in the alphabet than the letter “A”:
$FirstLetter = "A";
$SecondLetter = "B";
if ($SecondLetter > $FirstLetter)
 echo "<p>The second letter occurs later in the alphabet
 than the first letter.</p>";
else
 echo "<p>The second letter occurs earlier in the alphabet
 than the first letter.</p>";

Th e comparison operators actually compare individual charac-
ters according to their position in American Standard Code for
Information Interchange, or ASCII, which are numeric represen-
tations of English characters. ASCII values range from 0 to 255.
Lowercase letters are represented by the values 97 (“a”) to 122 (“z”).
Uppercase letters are represented by the values 65 (“A”) to 90 (“Z”).
Because lowercase letters have higher ASCII values than uppercase
letters, the lowercase letters are evaluated as being “greater” than the
uppercase letters. For example, an uppercase letter “A” is represented
by ASCII value 65, whereas a lowercase letter “a” is represented by
ASCII value 97. For this reason, the statement "a" > "A" returns
a value of TRUE because the uppercase letter “A” has a lower ASCII
value than the lowercase letter “a.”

To sort a list of e-mail addresses:

1. Reopen the PHPEmail.php script in your text editor.

You use the
ord() func-
tion to
return the
ASCII value

of a character, and the
chr() function to return
the character for an
ASCII value.

154

C H A P T E R 3 Manipulating Strings

2. Add the following function immediately after the
validateAddress() function. Th e function uses a nested for
loop to order the elements in the $EmailAddresses[] array.
Th e conditional expression in the if statement uses the com-
parison operator to compare each array element.
function sortAddresses($Addresses) {
 $SortedAddresses = array();
 $iLimit = count($Addresses)-1; /* Set the upper
 limit for the outer loop */
 $jLimit = count($Addresses); /* Set the upper
 limit for the inner loop */
 for ($i = 0; $i<$iLimit; ++$i) {
 $CurrentAddress = $Addresses[$i];
 for ($j = $i+1; $j<$jLimit; ++$j) {
 if ($CurrentAddress > $Addresses[$j]) {
 $TempVal = $Addresses[$j];
 $Addresses[$j] = $CurrentAddress;
 $CurrentAddress = $TempVal;
 }
 }
 $SortedAddresses[] = $CurrentAddress;
 }
 return($SortedAddresses);
}

3. Add the following code immediately after the declaration of
the sortAddresses function. Th is code sorts the list and dis-
plays the sorted results as a string.
$SortedAddresses = sortAddresses($EmailAddresses);
$SortedAddressList = implode(", ", $SortedAddresses);
echo "<p>Sorted Addresses: $SortedAddressList</p>\n";

4. Change the foreach statement to use $SortedAddresses
instead of $EmailAddresses. Th e foreach statement should
appear as follows:
foreach ($SortedAddresses as $Address) {

5. Save the PHPEmail.php fi le, upload the fi le to the browser,
and then open the fi le in your Web browser by entering the
following URL:
http://<yourserver>/PHP_Projects/Chapter.03/Chapter/
PHPEmail.php. Figure 3-19 shows the output.

155

Comparing Strings

Figure 3-19 A sorted list of e-mail addresses

6. Close your Web browser window.

In the next few sections, you will study additional functions that you
can use to compare strings in PHP.

String Comparison Functions
PHP provides many string comparison functions to determine a
wide variety of relationships between strings. Many are designed
for special purposes, but several are useful in a number of diff erent
situations.

Th e comparison functions you will probably use most often are
strcasecmp() and strcmp(). Th e only diff erence between the
two is that the strcasecmp() function performs a case-insensitive
comparison of strings, whereas the strcmp() function performs a
case-sensitive comparison. Both functions accept two arguments rep-
resenting the strings you want to compare. It’s important to under-
stand that most string comparison functions base their comparisons
on the ASCII values at the fi rst position where the characters in
the two strings diff er. Once this fi rst diff ering character position is
found, the ASCII value of the character in the fi rst string argument
is compared with the ASCII value of the corresponding character
in the second string argument. If the ASCII value in the fi rst string
argument is less than that of the second, the functions return a value
less than 0, usually –1. However, if the ASCII value of the character
in the second string argument is greater than the ASCII value of the
corresponding character in the fi rst string argument, the functions
return a value greater than 0, usually 1. For example, consider the
following strcmp() function, which compares the strings “Dan” and
“Don”. Because the “a” in “Dan” has a lower ASCII value than the “o”
in “Don”, the function returns a value less than 0.

156

C H A P T E R 3 Manipulating Strings

strcmp("Dan", "Don"); // returns a value < 0

In comparison, the following statement, which switches the “Dan”
and “Don” arguments, returns a value greater than 0:
strcmp("Don", "Dan"); // returns a value > 0

If both string values are equal, the strcmp() function returns a value
of 0, as in the following example:
strcmp("Don", "Don"); // returns 0

Keep in mind that the strcmp() function performs a case-sensitive
comparison of two strings. Th e following statement returns a value
less than 0 because the uppercase “D” in the fi rst string has a lower
ASCII value than the lowercase “d” in the second string:
strcmp("Don", "don"); // returns a value < 0

In the special case in which all the corresponding characters in the
two strings are the same, but one string argument is shorter than the
other, the shorter string argument is considered to be less than the
longer one. Th e following statement returns a value greater than 0
because “Donald” is longer than “Don”:
strcmp("Donald", "Don"); // returns a value > 0

To perform a case-insensitive comparison of two strings, use the
strcasecmp() function, which converts the text in both strings
to lowercase before they are compared. Th e following statement
returns a value of 0 because it uses the case-insensitive strcasecmp()
function:
strcasecmp("Don", "don"); // returns 0

Th e strncmp() and strncasecmp() functions are very similar to
the strcmp() and strcasecmp() functions, except that you need
to pass a third integer argument representing the number of char-
acters you want to compare in the strings. Th e following code uses
the strncmp() function to compare the fi rst three letters in two text
strings:
$FirstCity = "San Diego";
$SecondCity = "San Jose";
if (strncmp($FirstCity, $SecondCity, 3) == 0)
 echo "<p>Both cities begin with 'San'.</p>";

To modify the sortAddresses() function so it uses the
strcasecmp() function instead of comparison operators to sort the
e-mail addresses in the e-mail script:

1. Return to the PHPEmail.php script in your text editor.

157

Comparing Strings

2. Modify the conditional expression in the if statement within
the sortAddresses() function so it uses the strcasecmp()
function instead of the comparison operator, as follows:
if (strcasecmp($CurrentAddress,$Addresses[$j]) > 0) {

3. Save the PHPEmail.php fi le, upload it to the server, and then
open the fi le in your Web browser by entering the following URL:
http://<yourserver>/PHP_Projects/Chapter.03/Chapter/
PHPEmail.php. Th e results should still appear as shown
in Figure 3-19.

4. Close your Web browser window.

Determining the Similarity of Two Strings
Th e similar_text() and levenshtein() functions are used to deter-
mine the similarity between two strings (known as the Levenshtein
distance). Th e similar_text() function returns the number of char-
acters that two strings have in common, whereas the levenshtein()
function returns the number of characters you need to change for
two strings to be the same. Both functions accept two string argu-
ments representing the values you want to compare.

Th e following code demonstrates how to use the two functions with
the names “Don” and “Dan”. Figure 3-20 shows the output.
$FirstName = "Don";
$SecondName = "Dan";
echo "<p>The names \"$FirstName\" and \"$SecondName\
" have " . similar_text($FirstName, $SecondName) .
" characters in common.</p>";
echo "<p>You must change " . levenshtein($FirstName,
$SecondName). " character(s) to make the names
\"$FirstName\" and \"$SecondName\" the same.</p>";

Figure 3-20 Checking the similarity of two names

The
Levenshtein
distance is
named for
mathemati-

cian Vladimir Levenshtein,
who developed the algo-
rithm in 1965.

158

C H A P T E R 3 Manipulating Strings

Determining if Words Are Pronounced Similarly
You can use the soundex() and metaphone() functions to determine
whether two strings are pronounced similarly. Both functions return
a value representing how words sound. Th e soundex() function
returns a value representing a name’s phonetic equivalent, whereas
the metaphone() function returns a code representing an English
word’s approximate sound. For example, consider the last name of the
author of this book, Gosselin. Th e soundex() function returns a value
of “G245” for this string, whereas the metaphone() function returns
a value of “KSLN.” Th e following code uses the metaphone() function
to compare the name with an alternative spelling, “Gauselin”:
$FirstName = "Gosselin";
$SecondName = "Gauselin";
$FirstNameSoundsLike = metaphone($FirstName);
$SecondNameSoundsLike = metaphone($SecondName);
if ($FirstNameSoundsLike == $SecondNameSoundsLike)
 echo "<p>The names are pronounced the same.</p>";
else
 echo "<p>The names are not pronounced the same.</p>";

Because both versions of the name are pronounced the same way, the
preceding code displays “Th e names are pronounced the same.”

Although they perform the same type of function, the soundex() and
metaphone() functions cannot be used with each other because they
represent words with diff erent kinds of values. To compare the name
“Gosselin” with the alternative spelling of “Gauselin,” you must com-
pare the values returned from two soundex() functions, as follows:
$FirstName = "Gosselin";
$SecondName = "Gauselin";
$FirstNameSoundsLike = soundex($FirstName);
$SecondNameSoundsLike = soundex($SecondName);
if ($FirstNameSoundsLike == $SecondNameSoundsLike)
 echo "<p>The names are pronounced the same.</p>";
else
 echo "<p>The names are not pronounced the same.</p>";

Short Quiz

1. What is the diff erence between the strcasecmp() function
and the strcmp() function?

2. Why is the lowercase “a” considered to occur later in the
alphabet than the uppercase “A”?

3. Explain the diff erence between the similar_text() function
and the levenshtein() function.

159

Comparing Strings

Working with Regular Expressions
One of the more accurate ways of parsing strings involves regular
expressions, which are patterns that are used for matching and
manipulating strings according to specifi ed rules. With scripting lan-
guages such as PHP, regular expressions are most commonly used for
validating submitted form data. For example, you can use a regular
expression to ensure that a user enters a date in a specifi c format, such
as mm/dd/yyyy, or a telephone number in the format (###) ###-####.

Most scripting languages support some form of regular expres-
sions. PHP supports Perl Compatible Regular Expressions (PCRE).
Table 3-2 lists some of the PCRE functions available in PHP.

Function Description
preg_match(pattern, string) Performs a search for a matching pattern

preg_match_all(pattern, string) Performs a search for a matching pattern,
returns the number of matches found

preg_replace(pattern,

replacement, string[, limit])
Performs a replacement of a matching
pattern

preg_split(pattern, string [, limit]) Divides an input string into an array of strings
that are separated by a specifi ed matching
pattern

preg_grep(pattern, array) Filters an input array and returns an array
of those elements that match the specifi ed
pattern

preg_quote(string) Returns a string that is the input string with
any character that has special meaning for a
PCRE preceded by the escape character (\)

Table 3-2 PCRE functions

Th e most commonly used PCRE function is preg_match(). You pass
to the function a regular expression pattern as the fi rst argument
and a string containing the text you want to search as the second
argument. Th e function returns a value of 1 if a specifi ed pattern is
matched or a value of 0 if it’s not. Th e following code demonstrates
how to determine whether the $String variable contains the text
“course technology,” with lowercase letters. Th e code uses a case-
 sensitive pattern by default, so the if statement displays “No match”
because the value in the $String variable includes uppercase initials.
$String = "Course Technology";
if (preg_match("/course technology/", $String))

160

C H A P T E R 3 Manipulating Strings

 echo "<p>Match found</p>";
else
 echo "<p>No match</p>";

In comparison, the following code displays “Match found” because it
uses a case-insensitive pattern modifi er after the pattern:
$String = "Course Technology";
if (preg_match("/course technology/i", $String))
 echo "<p>Match found</p>";
else
 echo "<p>No match</p>";

Th e preceding examples were a simple demonstration of how to use
the preg_match() function. Th ere is no point in using regular expres-
sion functions with the preceding examples because you can more
easily determine whether the two strings match by using the com-
parison operator (==) or a string comparison function. Th e real power
of regular expressions comes from the patterns you write.

Writing Regular Expression Patterns
A regular expression pattern is a symbolic representation of the rules
that are used for matching and manipulating strings. As an example
of a common regular expression, consider the following code:
if (preg_match("/^[_a-z0-9-]+(\.[_a-z0-9-]+)*@[a-z0-9-]+
(\.[a-z0-9-]+)*(\.[a-z]{2,3})$/i", $Email) ==0)
 echo "<p>The e-mail address is not in a valid
 format.</p>";

Th e preceding code uses the preg_match() function to determine
whether the $Email variable is in a valid format for an e-mail address.
If the preg_match() function returns a value of 0, an echo statement
displays an appropriate message. As you can see, the logic is straight-
forward: If the e-mail address doesn’t match the regular expression,
the message is displayed. Th e complex part of the code is the pattern
passed as the fi rst argument to the preg_match() function.

Regular expression patterns are enclosed in delimiters. Th e fi rst
character in the pattern string is considered the opening delimiter.
All characters after the opening delimiter are considered part of the
pattern until the next occurrence of the opening delimiter character,
called the closing delimiter. Any characters after the closing delimiter
are considered to be pattern modifi ers.

Although you can use any character except a letter, number, or the
backslash as a delimiter character, the most common character is the
forward slash (/). If a forward slash is part of the search pattern, you

You can fi nd
many types
of prewritten
regular
expressions

on the Regular Expression
Library Web page at
http://www.regexlib.com/.

161

Working with Regular Expressions

http://www.regexlib.com/

can either use the escape character before the forward slash (\/) or
choose another valid character that is not part of the pattern.

Regular expression patterns consist of literal characters and
 metacharacters, which are special characters that defi ne the pattern
matching rules in a regular expression. Table 3-3 lists the metacharac-
ters that you can use with PCRE.

Metacharacter Description
. Matches any single character

\ Identifi es the next character as a literal value

^ Anchors characters to the beginning of a string

$ Anchors characters to the end of a string

() Specifi es required characters to include in a pattern match

[] Specifi es alternate characters allowed in a pattern match

[^] Specifi es characters to exclude in a pattern match

- Identifi es a possible range of characters to match
| Specifi es alternate sets of characters to include in a

pattern match

Table 3-3 PCRE metacharacters

Matching Any Character
You use a period (.) to match any single character in a pattern.
A period in a regular expression pattern specifi es that the pattern
must contain a value where the period is located. For example, the
following code specifi es that the $ZIP variable must contain fi ve
characters. Because the variable only contains three characters, the
preg_match() function returns a value of 0.
$ZIP = "015";
preg_match("/...../", $ZIP); // returns 0

In comparison, the following preg_match() function returns a value
of 1 because the $ZIP variable contains fi ve characters:
$ZIP = "01562";
preg_match("/...../", $ZIP); // returns 1

Because the period only specifi es that a character must be included in
the designated location within the pattern, you can include additional
characters within the pattern. Th e following preg_match() function
returns a value of 1 because the $ZIP variable contains the required
fi ve characters along with the ZIP+4 characters.

162

C H A P T E R 3 Manipulating Strings

$ZIP = "01562-2607";
preg_match("/...../", $ZIP); // returns 1

Matching Characters at the Beginning
or End of a String
Th e ^ metacharacter anchors characters to the beginning of a string,
and the $ metacharacter anchors characters to the end of a string.
An anchor specifi es that the pattern must appear at a particular posi-
tion in the string. To specify an anchor at the beginning of a line, the
pattern must begin with the ^ metacharacter. Th e following example
specifi es that the $URL variable begin with http. Because the variable
does begin with "http", the preg_match() function returns 1.
$URL = "http://www.dongosselin.com";
preg_match("/^http/", $URL); // returns 1

All literal characters following the ^ metacharacter in a pattern com-
pose the anchor. Th is means that the following example returns 0
because the $URL variable does not begin with "https" (only "http"
without the s), as is specifi ed by the anchor in the pattern:
$URL = "http://www.dongosselin.com";
preg_match("/^https/", $URL); // returns 0

To specify an anchor at the end of a line, the pattern must end with
the $ metacharacter. Th e following demonstrates how to specify that
a URL end with com:
$Identifi er = "http://www.dongosselin.com";
preg_match("/com$/", $Identifier); // returns 1

Th e preceding code returns 1 because the URL assigned to the
$Identifier variable ends with com. However, the following code
returns 0 because the URL assigned to the $Identifier variable does
not end with gov:
$Identifi er = "http://www.dongosselin.com";
preg_match("/gov$/", $Identifier); // returns 0

Matching Special Characters
To match any metacharacters as literal values in a regular expres-
sion, escape the character with a backslash. For example, a period (.)
metacharacter matches any single character in a pattern. If you want
to ensure that a string contains an actual period and not the metacha-
racter, you need to escape the period with a backslash. Th e top-level
domain in the following code is appended to the domain name with a
comma instead of a period. However, the regular expression returns 1
because the period in the expression is not escaped.

163

Working with Regular Expressions

$Identifi er = "http://www.dongosselin,com";
echo preg_match("/.com$/", $Identifier); // returns 1

To correct the problem, you must escape the period in the pattern as
follows:
$Identifi er = "http://www.dongosselin,com";
echo preg_match("/\.com$/", $Identifier); // returns 0

Escaping a dollar sign requires a little more work. Because the dollar
sign is used to indicate a variable name in PHP, it needs to be pre-
ceded by a backslash for PHP to interpret it as a literal $ character.
Th erefore, when using double quotation marks around the pattern
string, you need to enter two backslashes (\\) to insert the literal
backslash, followed by a backslash and a dollar sign (\$) to include
the literal dollar sign. Altogether, this becomes three backslashes fol-
lowed by a dollar sign (\\\$). Another option is to use single quotes
around the pattern string, and to use a single backslash before the
dollar sign (\$). Th e following code demonstrates how to use both
techniques:
$Currency="$123.45";
echo preg_match('/^\$/', $Currency); // returns 1
echo preg_match("/^\\\$/", $Currency); // returns 1

Specifying Quantity
Metacharacters that specify the quantity of a match are called
 quantifiers. Table 3-4 lists the quantifi ers that you can use with PCRE.

Quantifi er Description
? Specifi es that the preceding character is optional

+ Specifi es that one or more of the preceding characters must
match

* Specifi es that zero or more of the preceding characters can
match

{n} Specifi es that the preceding character repeat exactly n times

{n,} Specifi es that the preceding character repeat at least n times

{,n} Specifi es that the preceding character repeat up to n times

{n1, n2} Specifi es that the preceding character repeat at least n1 times
but no more than n2 times

Table 3-4 PCRE quantifi ers

Th e question mark quantifi er specifi es that the preceding character
in the pattern is optional. Th e following code demonstrates how to

164

C H A P T E R 3 Manipulating Strings

use the question mark quantifi er to specify that the protocol assigned
to the beginning of the $URL variable can be either http or https.
$URL = "http://www.dongosselin.com";
preg_match("/^https?/", $URL); // returns 1

Th e addition quantifi er (+) specifi es that one or more sequential occur-
rences of the preceding characters match, whereas the asterisk quantifi er
(*) specifi es that zero or more sequential occurrences of the preceding
characters match. As a simple example, the following code demonstrates
how to ensure that data has been entered in a required fi eld.
$Name = "Don";
preg_match("/.+/", $Name); // returns 1

Similarly, because a numeric string might contain leading zeroes,
the following code demonstrates how to check whether the
$NumberString variable contains zero or more leading zeroes:
$NumberString = "00125";
preg_match("/^0*/", $NumberString); // returns 1

Th e { } quantifi ers allow you to more precisely specify the number
of times that a character must repeat sequentially. Th e following code
shows a simple example of how to use the { } quantifi ers to ensure
that a ZIP code consists of at least fi ve characters:
preg_match("/ZIP: .{5}$/", " ZIP: 01562"); // returns 1

Th e preceding code uses the period metacharacter and the { } quan-
tifi ers to ensure that the $ZIP variable contains a minimum of fi ve
characters. Th e following code specifi es that the $ZIP variable must
consist of at least fi ve characters but a maximum of 10 characters, in
case the ZIP code contains the dash and four additional numbers that
are found in a ZIP+4 number:
preg_match("/(ZIP: .{5,10})$/", "ZIP: 01562-2607");
 // returns 1

Specifying Subexpressions
As you learned earlier, regular expression patterns can include literal
values; any strings you validate against a regular expression must
contain exact matches for the literal values contained in the pattern.
You can also use parentheses metacharacters ((and)) to specify
the characters required in a pattern match. Characters contained in
a set of parentheses within a regular expression are referred to as a
 subexpression or subpattern. Subexpressions allow you to determine
the format and quantities of the enclosed characters as a group. As

You can
validate a
ZIP code
much more
effi ciently

with character classes,
which are covered later in
this chapter.

165

Working with Regular Expressions

an example, consider the following pattern, which defi nes a regular
expression for a telephone number:
"/^(1)?(\(.{3}\))?(.{3})(\-.{4})$/"

Th e fi rst and second groups in the preceding pattern include the ?
quantifi er. Th is allows a string to optionally include a 1 and the area
code. If the string does include these groups, they must be in the exact
format of “1 ” for the fi rst pattern and “(nnn) ” for the second pattern,
including the space following the area code. Similarly, the telephone
number itself includes two groups that require the number to be in
the format of “nnn” and “–nnnn.” Because the “1 ” and the area code
pattern are optional, all of the following statements return a value of 1:
preg_match("/^(1)?(\(.{3}\))?(.{3})(\-.{4})$/", "555-
1234");
preg_match("/^(1)?(\(.{3}\))?(.{3})(\-.{4})$/", "(707)
555-1234");
preg_match("/^(1)?(\(.{3}\))?(.{3})(\-.{4})$/", "1 (707)
555-1234");

Defi ning Character Classes
You use character classes in regular expressions to treat multiple
characters as a single item. You create a character class by enclosing
the characters that make up the class with bracket ([]) metacharac-
ters. Any characters included in a character class represent alternate
characters that are allowed in a pattern match. As an example of a
simple character class, consider the word “analyze,” which the British
spell as “analyse.” Both of the following statements return 1 because
the character class allows either spelling of the word:
preg_match("/analy[sz]e/", "analyse"); // returns 1
preg_match("/analy[sz]e/", "analyze"); // returns 1

In comparison, the following regular expression returns 0 because
“analyce” is not an accepted spelling of the word:
preg_match("/analy[sz]e/", "analyce"); // returns 0

You use a hyphen metacharacter (-) to specify a range of values in a
character class. You can include alphabetical or numerical ranges. You
specify all lowercase letters as [a-z], all uppercase letters as [A-Z],
and all letters as [A-Za-z]. You specify all numeric characters as [0-9].

Th e following statements demonstrate how to ensure that only the
values A, B, C, D, or F are assigned to the $LetterGrade variable. Th e
character class in the regular expression specifi es a range of A-D or
the character “F” as valid values in the variable. Because the variable is
assigned a value of "B", the preg_match() function returns 1.
$LetterGrade = "B";
echo preg_match("/[A-DF]/", $LetterGrade); // returns 1

Notice that
the telephone
number regu-
lar expression
pattern

includes the ^ and $
metacharacters to anchor
both the beginning and
end of the pattern. This
ensures that a string
exactly matches the
 pattern in a regular
expression.

As with the
string com-
parisons
earlier, the
ranges are

based on the ASCII values
of the characters. Ranges
must be specifi ed from
smallest to largest value.

You cannot
use the
range
[A-z] or
the range

[a-Z] to match all let-
ters. The range [A-z]
contains all of the charac-
ters with ASCII values of
65 (‘A’) through 122 (‘z’),
which includes nonalpha-
betic characters such as
‘[’ and ‘^’. The range
[a-Z] means a range
from 97 to 90, which is
not in order from smallest
to largest value.

166

C H A P T E R 3 Manipulating Strings

In comparison, the following preg_match() function returns 0
because E is not a valid value in the character class:
$LetterGrade = "E";
echo preg_match("/[A-DF]/", $LetterGrade); // returns 0

To specify optional characters to exclude in a pattern match, include
the ^ metacharacter immediately after the opening bracket of a char-
acter class. Th e following examples demonstrate how to exclude the
letters E and G-Z from an acceptable pattern in the $LetterGrade
variable. Any ASCII character not listed as being excluded will match
the pattern. Th e fi rst preg_match() function returns a value of 1
because the letter A is not excluded from the pattern match, whereas
the second preg_match() function returns a value of 0 because the
letter E is excluded from the pattern match.
$LetterGrade = "A";
echo preg_match("/[^EG-Z]/", $LetterGrade); // returns 1
$LetterGrade = "E";
echo preg_match("/[^EG-Z]/", $LetterGrade); // returns 0

Th e following statements demonstrate how to include or exclude
numeric characters from a pattern match. Th e fi rst statement returns
1 because it allows any numeric character, whereas the second state-
ment returns 0 because it excludes any numeric character.
echo preg_match("/[0-9]/", "5"); // returns 1
echo preg_match("/[^0-9]/", "5"); // returns 0

Note that you can combine ranges in a character class. Th e fi rst state-
ment demonstrates how to include all alphanumeric characters and
the second statement demonstrates how to exclude all lowercase and
uppercase letters:
echo preg_match("/[0-9a-zA-Z]/", "7"); // returns 1
echo preg_match("/[^a-zA-Z]/", "Q"); // returns 0

Th e following statement demonstrates how to use character classes to
create a phone number regular expression pattern:
preg_match("/^(1)?(\([0-9]{3}\))?([0-9]{3})(\-[0-9]{4})$/",
"1 (707) 555-1234"); // returns 1

As a more complex example of a character class, examine the follow-
ing e-mail validation regular expression that you saw earlier in this
chapter. At this point, you should recognize how the regular expression
pattern is constructed. Th e statement uses a case-insensitive pattern
modifi er, so letter case is ignored. Th e anchor at the beginning of the
pattern specifi es that the fi rst part of the e-mail address must include
one or more of the characters A-Z (uppercase or lowercase), 0-9, an
underscore (_), or a hyphen (-). Th e second portion of the pattern
specifi es that the e-mail address can include a dot separator, as in “don.

167

Working with Regular Expressions

gosselin.” Th e pattern also requires the @ character. Following the lit-
eral @ character, the regular expression uses patterns like those in the
name portion of the e-mail address to specify the required structure
of the domain name. Th e last portion of the pattern specifi es that the
top-level domain must consist of at least two, but not more than three,
alphabetic characters.
preg_match("/^[_a-z0-9-]+(\.[_a-z0-9-]+)*@[_a-z0-9-]
+(\.[_a-z0-9-]+)*(\.[a-z]{2,3})$/i", $Email);

Th e backslash character is not an escape character within a character
class. To include a literal hyphen (-) in a character class, it must be
the fi nal character before the closing bracket. Otherwise, it is inter-
preted as a range indicator. To include a literal circumfl ex (^), it must
be the fi nal character before the closing bracket or the literal hyphen.
To include a literal closing bracket (]), it must be the fi rst character
after the opening bracket or negation symbol.

PCRE includes special character types that you can use to represent dif-
ferent types of data. For example, the \w expression can be used instead
of the “_0-9a-zA-Z” pattern to allow any alphanumeric characters and
the underscore character. Table 3-5 lists the PCRE character types.

Escape Sequence Description
\a alarm (hex 07)

\cx “control-x”, where x is any character

\d any decimal digit

\D any character not in \d

\e escape (hex 1B)

\f formfeed (hex 0C)

\h any horizontal whitespace character

\H any character not in \h

\n newline (hex 0A)

\r carriage return (hex 0D)

\s any whitespace character

\S any character not in \s

\t tab (hex 09)

\v any vertical whitespace character

\V any character not in \v

\w any letter, number, or underscore character

\W any character not in \w

Table 3-5 PCRE character types

If you
include any
of the three
special char-
acters -, ^,

or] anywhere else in the
character class, you will
not get the desired
results.

168

C H A P T E R 3 Manipulating Strings

Th e following statements demonstrate how to include and
exclude numeric characters from a pattern match using the
\d (digit) and \D (not a digit) character types:
preg_match("/\d/", "5"); // returns 1
preg_match("/\d/", "A"); // returns 0
preg_match("/\D/", "5"); // returns 0
preg_match("/\D/", "A"); // returns 1

As a more complex example, the following statement demonstrates
how to compose the e-mail validation regular expression with class
expressions:
preg_match("/^[\w-]+(\.[\w-]+)*@[\w-
]+(\.[\w-]+)*(\.[a-zA-Z]{2,})$/", $Email);

Matching Multiple Pattern Choices
To allow a string to contain an alternate set of patterns, you separate
the strings in a regular expression pattern with the | metacharacter.
Th is is essentially the same as using the Or operator (||) to perform
multiple evaluations in a conditional expression. For example, to
allow a string to contain either “vegetarian” or “vegan,” you include
the pattern vegetarian | vegan.

Th e following code demonstrates how to check whether a top-level
domain at the end of a string contains a required value of either .com,
.org, or .net. Th e fi rst statement returns a value of 0 because the URL con-
tains a top-level domain of .gov, whereas the second statement returns a
value of 1 because the top-level domain contains a valid value of .com.
echo preg_match("/\.(com|org|net)$/i",
 "http://www.dongosselin.gov"); // returns 0
echo preg_match("/\.(com|org|net)$/i",
 "http://www.dongosselin.com"); // returns 1

Pattern Modifi ers
PCRE patterns may be followed by optional pattern modifi ers.
Pattern modifiers are letters placed after the closing delimiter that
change the default rules for interpreting matches. Th e most common
pattern modifi er is i, which indicates that the case of a letter does
not matter when searching. Some other pattern modifi ers change
how newline characters aff ect searches. For example, newline char-
acters typically divide an input string into search strings. Th e m pat-
tern modifi er allows searches across newline characters. Also, the s
pattern modifi er changes how the . (period) metacharacter works.
Normally, the . metacharacter does not match the newline character,
but it will with the s modifi er.

169

Working with Regular Expressions

To modify the validateAddress() function so that it uses regular
expressions instead of the strpos() function to check the format of
the e-mail addresses in the e-mail script:

1. Return to the PHPEmail.php script in your text editor.

2. Modify the conditional expression in the if statement within
the validateAddress() function so it uses the preg_match()
function instead of the strpos() function, as follows:
if (preg_match("/^[\w-]+(\.[\w-]+)*@" .
 "[\w-]+(\.[\w-]+)*(\.[[A-Za-z]{2,})$/i",
 $Address)==1)

3. Save the PHPEmail.php fi le, upload it to the server, and then
open the fi le in your Web browser by entering the following URL:
http://<yourserver>/PHP_Projects/Chapter.03/Chapter/
PHPEmail.php. As shown in Figure 3-21, more invalid mes-
sages were found using regular expressions.

Figure 3-21 Output of PHPEmail.php using regular expressions

4. Close your Web browser window.

Short Quiz

1. What character is used to match any single character in a
pattern?

2. How do you specify that you want to ensure that a string con-
tains an actual period and not just any character?

170

C H A P T E R 3 Manipulating Strings

3. Describe the purpose of quantifi ers in determining if a string
matches a pattern.

4. How are subexpressions or subpatterns used in a regular
expression?

5. Describe the purpose of the | metacharacter.

Summing Up

Th e concatenation operator (• .) and the concatenation assignment
operator (.=) can be used to combine two strings.

An escape character tells the compiler or interpreter that the •
character following the escape character has a special purpose. An
escape character combined with one or more other characters is
called an escape sequence.

Simple string syntax allows you to use the value of a variable •
within a string by including the variable name inside a text string
with double quotation marks.

Th e type of structure in which variables are placed within curly •
braces inside a string is called complex string syntax.

Th e most commonly used string-counting function is the • strlen()
function, which returns the total number of characters in a string.

Th e • str_word_count() function returns the number of words in
a string.

Th e • strtoupper(), strtolower(), ucfirst(), lcfirst(), and
ucwords() functions all change the case of characters in the string.

Th e • substr() function returns the specifi ed portion of a string.

When applied to text strings, the term “parsing” refers to the act of •
dividing a string into logical component substrings or tokens.

Th ere are two types of string search and extraction functions: •
functions that return a numeric position in a text string and those
that return a character or substring.

You use the • str_replace(), str_ireplace(), and
substr_replace() functions to replace text in strings.

171

Summing Up

Th e • strtok() function breaks a string into smaller strings, called
tokens.

You use the • str_split() or explode() function to split a string
into an indexed array, in which each character in the string
becomes a separate element in the array.

Th e • implode() function combines an array’s elements into a single
string, separated by specifi ed characters.

Th e • strcasecmp() function performs a case-insensitive compari-
son of strings, whereas the strcmp() function performs a case-
sensitive comparison of strings.

Th e • similar_text() and levenshtein() functions are used to
determine the similarity of two strings.

You can use the • soundex() and metaphone() functions to deter-
mine whether two strings are pronounced similarly.

Regular expressions are a pattern of specially formatted strings •
that can be used to validate the structure of a string.

Regular expressions are made up of both literal characters and spe- •
cial characters, called metacharacters, which defi ne the pattern-
matching rules.

In a regular expression, a backslash character is used to match •
metacharacters as literal values.

Quantifi ers are metacharacters that specify the number of times a •
particular match may occur.

Subexpressions are characters contained in parentheses within a •
regular expression. Th e format and quantity of the characters in
the subexpression can be defi ned as a group.

A character class is a set of multiple characters enclosed in square •
brackets ([]) that are treated as a single unit.

Th e • | metacharacter allows a string to be composed of an alternate
set of substrings. Th e | metacharacter performs essentially the
same function as the Or (||) operator in conditional expressions.

Comprehension Check

1. Which of the following echo statements is invalid?

a. echo "<p>Welcome to the *combat zone*!</p>";

b. echo '<p>Welcome to the "combat zone"!</p>';

172

C H A P T E R 3 Manipulating Strings

c. echo "<p>Welcome to the 'combat zone'!</p>";

d. echo '<p>Welcome to the 'combat zone'!</p>';

2. Which of the following operators can be used with strings?
(Choose all that apply.)

a. .

b. ==

c. .=

d. +=

3. Explain why you need to use escape characters in strings.

4. What is the escape sequence for a single quotation mark?

a. \\

b. \'

c. \~

d. Th ere is no escape sequence for a single quotation mark.

5. Which of the following character sets do you use for complex
string syntax?

a. {}

b. []

c. ()

d. // //

6. Explain why you need to use complex string syntax. Be sure
to include an example.

7. If you include an array within a text string, you need to use
complex string syntax. True or False?

8. Which of the following functions returns the length of
a string?

a. strlen()

b. strspn()

c. substr_count()

d. strcspn()

173

Comprehension Check

9. Which of the following functions performs a case-sensitive
search for specifi ed characters in a string and returns a sub-
string from the last occurrence of the specifi ed characters to
the end of the string?

a. substr()

b. strstr()

c. strrchr()

d. strpos()

10. Explain the diff erence between the two types of extraction
functions.

11. Explain how to determine whether the strpos() function
(and other string functions) actually returns a Boolean value
of FALSE and not a 0 representing the fi rst character in a
string.

12. Which of the following functions allows you to replace
 characters within a specifi ed portion of a string?

a. str_ireplace()

b. str_replace()

c. substr_replace()

d. strstr()

13. Explain how to use the strtok() function to break a string
into tokens and then navigate through each token.

14. If you specify an empty string as the second argument of the
strtok() function, or if the string does not contain any of the
separators you specify, the strtok() function returns a value
of FALSE. True or False?

15. Which of the following functions splits each character in a
string into an array element?

a. str_split()

b. split()

c. explode()

d. implode()

174

C H A P T E R 3 Manipulating Strings

16. String comparison operators and most string comparison
functions compare individual characters according to their
ASCII value. True or False?

17. Which of the following functions returns the number of char-
acters you need to change for two strings to be the same?

a. similar_text()

b. levenshtein()

c. soundex()

d. metaphone()

18. Which of the following quantifi ers can be used to specify the
quantity of a match in a regular expression? (Choose all that
apply.)

a. question mark (?)

b. minus sign (-)

c. asterisk (*)

d. plus sign (+)

19. A \. is used to match any single character in a pattern. True
or False?

20. Which of the following character pairs match characters at
the beginning and end of a string in a regular expression?

a. * and *\

b. || and ||

c. ^ and $

d. # and #

Reinforcement Exercises

Exercise 3-1

In this project, you will create a script that validates whether a credit
card number contains only integers. Th e script will remove dashes
and spaces from the string. After the dashes and spaces are removed,
the script should reject the credit card number if it contains any other
non-numeric characters.

175

Reinforcement Exercises

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, document
head, and <body> element. Use the strict DTD and “Validate
Credit Card” as the content of the <title> element.

3. Add the following text and elements to the document body:
<h1>Validate Credit Card</h1><hr />

4. Add the following script section to the document body:
<?php
?>

5. Declare a $CreditCard array that contains three values: an
empty string, a valid credit card number with numbers and
dashes, and a credit card number with four initial uppercase
letter Os.
$CreditCard = array(
 "",
 "8910-1234-5678-6543",
 "OOOO-9123-4567-0123");

6. Add the following statements to iterate through each of the
elements in the $CreditCard array to determine if the ele-
ment contains a value.
foreach ($CreditCard as $CardNumber) {
 if (empty($CardNumber))
 echo "<p>This Credit Card Number is
 invalid because it contains an empty
 string.</p>";

7. Add the following else clause to validate the credit card number.
Th e code uses str_replace() functions to remove any dashes
and spaces in the number. Th en, a nested if...else statement
checks whether the new value is numeric. If the number is not
numeric, a warning is displayed. If the number is numeric, the
modifi ed credit card number is displayed in the Web browser.
else {
 $CreditCardNumber = $CardNumber;
 $CreditCardNumber = str_replace("-", "",
 $CreditCardNumber);
 $CreditCardNumber = str_replace(" ", "",
 $CreditCardNumber);
 if (!is_numeric($CreditCardNumber))
 echo "<p>Credit Card Number " .
 $CreditCardNumber . " is not a valid
 Credit Card number because it contains
 a non-numeric character. </p>";

176

C H A P T E R 3 Manipulating Strings

 else
 echo "<p>Credit Card Number " .
 $CreditCardNumber . " is a valid
 Credit Card number.</p>";
 }
}

8. Save the document as ValidateCreditCard.php in the
Projects directory for Chapter 3 and upload the fi le to the
server.

9. Open ValidateCreditCard.php in your Web browser by enter-
ing the following URL:
http://<yourserver>/PHP_Projects/Chapter.03/Projects/
ValidateCreditCard.php. Test the script to see if it displays a
message for an empty string, strips dashes and spaces from
the credit card numbers, and identifi es which credit card
numbers are valid.

10. Close your Web browser window.

Exercise 3-2

In this project, you will create a script that uses comparison operators
and functions to compare two strings to see if they are the same.

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, document
head, and <body> element. Use the strict DTD and “Compare
Strings” as the content of the <title> element.

3. Add the following text and elements to the document body:
<h1>Compare Strings</h1><hr />

4. Add the following script section to the document body:
<?php
?>

5. In the script section, declare and initialize two string
variables:
$firstString = "Geek2Geek";
$secondString = "Geezer2Geek"

177

Reinforcement Exercises

6. Add the following if statement to the script section. If both
the $firstString and $secondString contain a value, the
statements in the if statement execute. Th e nested if state-
ment uses the comparison operator (==) to determine if both
strings are the same. If the strings are not the same, the else
clause uses the similar_text() and levenshtein() func-
tions to compare the strings.
if (!empty($firstString) && !empty($secondString)) {
 if ($firstString == $secondString)
 echo "<p>Both strings are the same.</p>";
 else {
 echo "<p>Both strings have "
 . similar_text($firstString,
 $secondString)
 . " character(s) in common.
";
 echo "<p>You must change " .
 levenshtein($firstString,
 $secondString) . " character(s) to
 make the strings the same.
";
 }
}

7. At the end of the script section, add the following else
clause, which executes if either the $firstString or the
$secondString contains an empty value.
else
 echo "<p>Either the \$firstString variable or
 the \$secondString variable does not
 contain a value so the two strings cannot
 be compared.
 </p>";

8. Save the document as CompareStrings.php in the Projects
directory for Chapter 3 and upload the fi le to the server.

9. Open CompareStrings.php in your Web browser by entering
the following URL:
http://<yourserver>/PHP_Projects/Chapter.03/Projects/
CompareStrings.php.

10. Close your Web browser window.

Exercise 3-3

In this project, you will create a script that uses regular expressions
to validate that an e-mail address is valid for delivery to a user at
example.org. For an e-mail address to be in the correct format, only

178

C H A P T E R 3 Manipulating Strings

username or fi rst.last may appear before the @ symbol, and only
example.org or mail.example.org may appear after the @ symbol.

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, document
head, and <body> element. Use the strict DTD and “Validate
Local Address” as the content of the <title> element.

3. Add the following text and elements to the document body:
<h1>Validate Local Address</h1><hr />

4. Add the following script section to the document body:
<?php
?>

5. In the script section, declare an $email array that contains
fi ve e-mail addresses:
$email = array(
 "jsmith123@example.org",
 "john.smith.mail@example.org",
 "john.smith@example.org",
 "john.smith@example",
 "jsmith123@mail.example.org");

6. Add the following statements to iterate through each of
the elements in the $email array to determine if it is in the
 correct format:
foreach ($email as $emailAddress){
 echo "The email address “" . $emailAddress .
 "” ";
 if (preg_match("/^(([A-Za-z]+\d+)|" .
 "([A-Za-z]+\.[A-Za-z]+))" .
 "@((mail\.)?)example\.org$/i",
 $emailAddress)==1)
 echo " is a valid e-mail address.";
 else
 echo " is not a valid e-mail address.";
}

7. Save the document as ValidateLocalAddress.php in the
Projects directory for Chapter 3 and upload the fi le to
the server.

8. Open ValidateLocalAddress.php in your Web browser by
entering the following URL:
http://<yourserver>/PHP_Projects/Chapter.03/Projects/
ValidateLocalAddress.php. Test the script to see if it specifi es

179

Reinforcement Exercises

which e-mail addresses are valid and which are not. Th e sec-
ond and fourth e-mail addresses should be invalid.

9. Close your Web browser window.

Exercise 3-4

A palindrome is a word or phrase that is identical forward or back-
ward, such as the word “racecar.” A standard palindrome is similar to a
perfect palindrome, except that spaces and punctuation are ignored in
a standard palindrome. For example, “Madam, I’m Adam” is a standard
palindrome because the characters are identical forward or backward,
provided you remove the spaces and punctuation marks. Write a script
that checks words or phrases stored in two separate string variables to
determine if they are a perfect palindrome. If you feel ambitious, see if
you can modify the program to check for standard palindromes. Save
the perfect palindrome script as PerfectPalindrome.php and the
standard palindrome script as StandardPalindrome.php.

Exercise 3-5

Write a PHP program that checks the elements of a string array
named $Passwords. Use regular expressions to test whether each ele-
ment is a strong password.

For this exercise, a strong password must have at least one number,
one lowercase letter, one uppercase letter, no spaces, and at least one
character that is not a letter or number. (Hint: Use the [^0-9A-Za-z]
character class.) Th e string should also be between 8 and 16 charac-
ters long.

Th e $Passwords array should contain at least 10 elements, and at
least six of the elements should fail. Ensure that one entry fails each
of the fi ve regular expression tests and that at least one fails because
of the length. Display whether each password in the $Passwords array
was strong enough, and display the test or tests that a password failed
if it is not strong enough. Save the script as PasswordStrength.php.

Discovery Projects
Th e Chinese zodiac site is a comprehensive project that will be
updated in the Discovery Projects section at the end of each chapter.
All fi les for the site will be saved in a folder named ChineseZodiac in
the root Web folder on the server.

180

C H A P T E R 3 Manipulating Strings

Discovery Project 3-1

Create a new text document in your text editor and include home_
links_bar.inc at the top of the fi le. Remember that you will need to
insert a PHP script section to insert the include fi le.

Insert the text from the ChineseZodiac.txt fi le that you researched in
Discovery Project 1-3. Format the text using XHTML formatting tags
or style it with CSS style defi nitions. Save the fi le as inc_chinese_
zodiac.php and upload it to the Includes folder in the ChineseZodiac
folder on the server. A link to this fi le will be added in Discovery
Project 4-5.

Discovery Project 3-2

Create a new text document in your text editor and include home_
links_bar.inc at the top of the fi le. Remember that you will need to
insert a PHP script section to insert the include fi le.

Insert content describing the role of PHP in Web development and
why it has become the highest-rated tool in the Web developer’s
toolkit. Format the text using XHTML formatting tags or style it with
CSS style defi nitions.

Save the fi le as inc_php_info.php and upload the fi le to the Includes
folder in the ChineseZodiac folder on the server. A link to this fi le will
be added in Discovery Project 4-5.

Discovery Project 3-3

In your text editor, use XHTML scripting to create a text links bar
with two text links: PHP and Chinese Zodiac. Format the text using
XHTML formatting tags or style it with CSS style defi nitions. Th ese
links will be enabled in Discovery Project 4-5. Save the fi le as inc_
home_links_bar.php and upload the fi le to the Includes folder in the
ChineseZodiac folder on the server. A link to this fi le will be added in
the Discovery Projects in Chapter 4.

Discovery Project 3-4

Th e levenshtein() function and the similar_text() function both
calculate the diff erence between two strings. Because they use dif-
ferent algorithms, they can come up with diff erent answers. In this

181

Discovery Projects

project, you create a script that illustrates the diff erences by fi nding
the most similar Chinese zodiac sign names using the two functions.

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, document
head, and <body> element. Use the strict DTD and “Similar
Names” as the content of the <title> element.

3. Add the following text, elements, and PHP script section to
the document body:
<h1>Similar Names</h1><hr />
<?php
?>

4. In the script section, declare the $SignNames array and vari-
ables to track the smallest value from the levenshtein() func-
tion and the largest value from the similar_text() function.
Note that the levenshtein() function returns the number
of diff erences, so a small return value indicates that the two
strings are similar, while a large return value indicates that
the two strings are diff erent. In contrast, the similar_text()
function returns the number of matching characters, so a small
return value indicates that the two strings are diff erent, while a
large return value indicates that the two strings are similar.
$SignNames = array(
 "Rat",
 "Ox",
 "Tiger",
 "Rabbit",
 "Dragon",
 "Snake",
 "Horse",
 "Goat",
 "Monkey",
 "Rooster",
 "Dog",
 "Pig");
$LevenshteinSmallest = 999999;
$SimilarTextLargest = 0;

5. Add the following nested for loops to the end of the script
section. Th e initial value and conditional of each for loop are
designed so that each element of the array will be compared once
to every other element of the array. Within the inner for loop,
you retrieve the value from the levenshtein() function for each
pair of names and compare the returned value to the smallest
value found so far. If the returned value is smaller, this pair of
names is closer, so you store the returned value as the smallest

When search-
ing for the
largest value,
you initialize
your test vari-

able to a number below
the smallest number you
could possibly fi nd (usu-
ally 0). When searching
for the smallest value,
you initialize your test
variable to a number
above the highest number
you could possibly fi nd.

182

C H A P T E R 3 Manipulating Strings

value found so far and save the pair of names associated with
that value. You then do the same thing with the similar_text()
function, except that you test for the largest value.
for ($i=0; $i<11; ++$i) {
 for ($j=$i+1; $j<12; ++$j) {
 $LevenshteinValue =
 levenshtein($SignNames[$i],
 $SignNames[$j]);
 if ($LevenshteinValue <
 $LevenshteinSmallest) {
 $LevenshteinSmallest =
 $LevenshteinValue;
 $LevenshteinWord1 =
 $SignNames[$i];
 $LevenshteinWord2 =
 $SignNames[$j];
 }
 $SimilarTextValue =
 similar_text($SignNames[$i],
 $SignNames[$j]);
 if ($SimilarTextValue >
 $SimilarTextLargest) {
 $SimilarTextLargest =
 $SimilarTextValue;
 $SimilarTextWord1 =
 $SignNames[$i];
 $SimilarTextWord2 =
 $SignNames[$j];
 }
 }
}

6. Add the following code to the end of the script section to dis-
play the pairs of words that the functions determined are the
most similar.
echo "<p>The levenshtein() function has determined that
 "$LevenshteinWord1" and
 "$LevenshteinWord2" are the most
 similar names.</p>\n";
echo "<p>The similar_text() function has determined that
 "$SimilarTextWord1"
 and "$SimilarTextWord2" are the most
 similar names.</p>\n";

7. Save the document as SimilarNames.php in the
ChineseZodiac directory and upload the fi le to the server.

8. Open SimilarNames.php in your Web browser by entering the
following URL:
http://<yourserver>/ChineseZodiac/SimilarNames.php.
Figure 3-22 shows the output.

183

Discovery Projects

Figure 3-22 Output of SimilarNames.php

9. Close your Web browser window.

Discovery Project 3-5

In this project, you will create a script that determines which of the
12 Chinese zodiac sign names can be made using the letters in each
of a set of phrases.

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, docu-
ment head, and <body> element. Use the strict DTD and
“Embedded Words” as the content of the <title> element.

3. Add the following text, elements, and PHP script section to
the document body:
<h1>Embedded Words</h1><hr />
<?php
?>

4. In the script section, declare the $Phrases and $SignNames
arrays as follows:
$Phrases = array(
 "Your Chinese zodiac sign tells a lot about
 your personality.",
 "Embed PHP scripts within an XHTML
 document.");
 $SignNames = array(
 "Rat",
 "Ox",
 "Tiger",
 "Rabbit",
 "Dragon",

184

C H A P T E R 3 Manipulating Strings

 "Snake",
 "Horse",
 "Goat",
 "Monkey",
 "Rooster",
 "Dog",
 "Pig");

5. Add a function named BuildLetterCounts(). Th e fi rst state-
ment converts all of the letters in the string to uppercase. Th e
second statement uses the count_chars() function to create
an array of the counts of the 256 ASCII characters. Th e fi nal
statement returns the newly created array.
function BuildLetterCounts($text) {
 $text = strtoupper($text);
 $letter_counts = count_chars($text);
 return $letter_counts;
}

6. Add a function named AContainsB(). Th e function takes
two arrays created by the BuildLetterCounts() function
from Step 5. First, a default return value (TRUE) is set, then the
ord() function is used to get the ASCII values of the fi rst and
last capital letters (‘A’ and ‘Z’). Th ese values defi ne the range of
characters that need to be tested. Finally, you use a for loop
to check the counts for each uppercase letter. At any iteration,
if the count for the current character from array $A is less
than the count for the current character from array $B, the
word cannot be made from the letters in the phrase, so the
return value is set to FALSE.
function AContainsB($A, $B) {
 $retval = TRUE;
 $first_letter_index = ord('A');
 $last_letter_index = ord('Z');
 for ($letter_index = $first_letter_index;
 $letter_index <= $last_letter_index;
 ++$letter_index) {
 if ($A[$letter_index] < $B[$letter_index]) {
 $retval = FALSE;
 }
 }

 return $retval;
}

7. Create a foreach loop to step through each of the phrases.
Use the BuildLetterCounts() function to create an array of
the counts of the ASCII characters in the phrase. Initialize a
list of the words that can be made as the $GoodWords array,

185

Discovery Projects

and a list of the words that cannot be made as the $BadWords
array.
foreach ($Phrases as $Phrase) {
 $PhraseArray = BuildLetterCounts($Phrase);
 $GoodWords = array();
 $BadWords = array();
}

8. Immediately after initializing the $BadWords array, create an
inner foreach loop to step through each of the sign names.
Use the BuildLetterCounts() function to create an array
of the counts of the ASCII characters in the sign name. Use
the AContainsB() function to determine if the sign name
(B) can be made with the letters in the phrase (A). If the
AContainsB() function returns TRUE, add the sign name to
the $GoodWords array. If the AContainsB() function returns
FALSE, add the sign name to the $BadWords array.
 foreach ($SignNames as $Word) {
 $WordArray = BuildLetterCounts($Word);
 if (AContainsB($PhraseArray, $WordArray))
 $GoodWords[] = $Word;
 else
 $BadWords[] = $Word;
 }

9. After the inner foreach loop, add the following code to dis-
play the list of words that can and cannot be made from the
phrase.
 echo "<p>The following words can be made from
 the letters in the phrase
 "$Phrase":";
 foreach ($GoodWords as $Word)
 echo " $Word";
 echo "</p>\n";
 echo "<p>The following words can not
 be made from the letters in the phrase
 "$Phrase":";
 foreach ($BadWords as $Word)
 echo " $Word";
 echo "</p>\n";
 echo "<hr />\n";

10. Save the document as EmbeddedWords.php in the
ChineseZodiac directory and upload the fi le to the server.

11. Open EmbeddedWords.php in your Web browser by entering
the following URL:
http://<yourserver>/ChineseZodiac/EmbeddedWords.php.
Figure 3-23 shows the output.

186

C H A P T E R 3 Manipulating Strings

Figure 3-23 Output of EmbeddedWords.php

12. Close your Web browser window.

Links to
Similar
Names.php
and
Embedded

Words.php will be added
in Discovery Project 5-3.

187

Discovery Projects

C H A P T E R 4
Handling User Input

In this chapter, you will:

Learn about autoglobal variables

Build XHTML Web forms

Process form data

Handle submitted form data

Create an All-in-One form

Display dynamic data based on a URL token

Two of the most common ways that PHP interfaces with the user are
by accessing values from fi ll-in forms that are submitted to a PHP
script and by handling events, such as dynamically displaying pages
when the user clicks a hyperlink. Th e data needed to process these
interactions is stored in PHP autoglobals.

Using Autoglobals
PHP includes various predefi ned global arrays, called autoglobals
or superglobals, which contain client, server, and environment
information that you can use in your scripts. Table 4-1 lists the PHP
autoglobals.

Array Description
$_COOKIE An array of values passed to the current script as HTTP cookies

$_ENV An array of environment information

$_FILES An array of information about uploaded fi les

$_GET An array of values from a form submitted with the “get” method

$_POST An array of values from a form submitted with the “post” method

$_REQUEST An array of all the elements in the $_COOKIE, $_GET, and $_POST arrays

$_SERVER An array of information about the Web server that served the current script

$_SESSION An array of session variables that are available to the current script

$GLOBALS An array of references to all variables that are defi ned with global scope

Table 4-1 PHP autoglobals

Autoglobals are associative arrays, which are arrays whose elements
are referred to with an alphanumeric key instead of an index number.
An example of an associative array is a list of a company’s payroll
information that uses each employee’s last name instead of an index
number to refer to elements in the array. To refer to an element in
an associative array, you place an element’s key in single or double
quotation marks inside the array brackets. For example, the follow-
ing statements display three elements of the $_SERVER autoglobal.
Th e $_SERVER["SCRIPT_NAME"] element displays the path and name
of the current script, the $_SERVER["SERVER_SOFTWARE"] element
displays the name of the server software that executed the script, and
the $_SERVER["SERVER_PROTOCOL"] element displays the server pro-
tocol that was used to request the script. Figure 4-1 shows the output.
echo "<p>The name of the current script is ",
$_SERVER["SCRIPT_NAME"], "
";
echo "This script was executed with the following server
 software: ", $_SERVER["SERVER_SOFTWARE"], "
";
echo "This script was requested with the following server
 protocol: ", $_SERVER["SERVER_PROTOCOL"], "</p>";

You will work
with most
of the
 autoglobals
in later
chapters.

189

Using Autoglobals

Figure 4-1 Output of a script that references the $_SERVER autoglobal

As shown in the previous example, the $_SERVER autoglobal contains
information about the Web server and the PHP scripting engine, as
well as detailed information about the current Web page request. Th e
elements that are available with the $_SERVER autoglobal depend on
the Web server that executes the PHP script.

You can use the $_SERVER["SCRIPT_NAME"] element to include the
full URL path and script name of the current script. Th is is useful
when creating a link back to the current page, either as the action
attribute of an All-in-One Web form or as a link to a diff erent view
of a Web page template. Both options are discussed later in this
chapter. Use of the similar $_SERVER["PHP_SELF"] element should
be avoided because it includes any additional path information
appended to the URL. Attackers can take advantage of this addi-
tional path information to insert dangerous XHTML code into your
Web page. Th e $_SERVER["SCRIPT_NAME"] element does not include
additional path information, so hackers cannot use this method to
attack your Web site.

Th e $_ENV autoglobal contains the environmental variables set for
the operating system on the machine that hosts the Web server.
Environmental variables are variables that programs use to interact
with the system. Unlike the $_SERVER autoglobal, which contains a
predefi ned list of elements, the $_ENV elements change depending on
the operating system and the machine’s confi guration.

As mentioned in Chapter 2, you must use the global keyword to
reference a global variable within the scope of a function. You can
also use the $GLOBALS autoglobal array to refer to the global version
of a variable from inside a function. To refer to a global variable with
the $GLOBALS autoglobal, you use the variable’s name as the key in
single or double quotation marks inside the array brackets. Th e fol-
lowing example shows a modifi ed version of the script containing the
scopeExample() function you saw in Chapter 2. In this example, the
script references $GlobalVariable using the $GLOBALS autoglobal
instead of the global keyword.

You will learn
how to create
associative
arrays in
Chapter 6.

You can
use the
getenv()
function to
retrieve the

value of an element in the
$_ENV array.

The
phpinfo()
function dis-
plays the ele-
ments of the

$_ENV array and their
values in the “Additional
Modules” section, under
the “Environment”
 heading. You can revisit
the PHPTest.php script
you created in Chapter 1
to see the output of
the phpinfo()
function by opening
http://<yourserver>/
PHP_Projects/Chapter.01/
Chapter/PHPTest.php in
your Web browser.

Most
$_SERVER
and $_ENV
element
values

should not be displayed
on a public Web page
because they contain
important information that
a hacker could use to
identify weaknesses of
the server.

190

C H A P T E R 4 Handling User Input

http://<yourserver>/PHP_Projects/Chapter.01/Chapter/PHPTest.php
http://<yourserver>/PHP_Projects/Chapter.01/Chapter/PHPTest.php
http://<yourserver>/PHP_Projects/Chapter.01/Chapter/PHPTest.php

<?php
$GlobalVariable = "Global variable";
function scopeExample() {
 echo "<p>" . $GLOBALS["GlobalVariable"] . "</p>";
}
scopeExample();
?>

Th e $_GET, $_POST, and $_REQUEST autoglobals contain data entered
in Web forms and URL tokens. All of these are discussed in greater
detail later in this chapter. Th e $_FILES autoglobal contains data
about fi les uploaded to the server using Web forms, as you will learn
in Chapter 5. Th e $_COOKIE and $_SESSION autoglobals contain dif-
ferent types of state information, which are explained in Chapter 9.

For more information on any of the autoglobals, see the online PHP
documentation at http://www.php.net/docs.php.

Short Quiz

1. Which element of the $_SERVER autoglobal is used to refer to
the current script?

2. What keyword is used to reference a global variable within
the scope of a function?

3. Autoglobals are considered associative arrays. True or False?

Building XHTML Web Forms
Web forms are Web pages with interactive controls that allow users to
enter data in text input boxes, select an option from a drop-down list,
or choose a response from a check box or radio button control. Web
forms also provide a method for electronically submitting the form
data entered by the user to a program on the server that processes the
user’s input.

Web forms are used whenever the server requires information from
the user. For e-commerce sites, order processing and billing are
accomplished via Web forms. Web forms allow visitors to subscribe
to a mailing list or newsletter. Search engine sites use Web forms to
allow visitors to enter search keywords.

A Web form is a standard XHTML page. Th e only diff erence is that a
Web form requires a <form> section that contains XHTML markup,

When using
the variable
name as an
index for the
$GLOBALS

array, you omit the lead-
ing dollar sign ($) from
the name.

191

Building XHTML Web Forms

http://www.php.net/docs.php

controls (text input boxes, radio buttons, check boxes, selection
lists, text area boxes), and a submit button to send the form values
to the server for processing. A reset button to clear the form data
is optional.

Adding an action Attribute
Th e <form> opening tag requires an action attribute. Th e value of the
action attribute identifi es the program on the Web server that will
process the form data when the form is submitted. A PHP script is
often used to process form data.
<form action="http://www.example.com/HandleFormInput.php">

Adding a method Attribute
Th e opening <form> tag must also contain a method attribute, which
defi nes how the form data is submitted to the server. Th e value of
the method attribute will be either “post” or “get.” When form data
is submitted using the “post” method, the form data is embedded in
the request message. When form data is submitted using the “get”
method, the form data is appended to the URL specifi ed in the form’s
action attribute.

Earlier in this chapter, you were introduced to two autoglobals,
$_POST and $_GET, which allow you to access the values that are sub-
mitted to a PHP script from a Web form. When a Web form is sub-
mitted, PHP automatically creates and populates two global arrays:
the $_POST array, which contains values of forms that are submitted
using the post method, and the $_GET array, which contains values
from forms that are submitted using the get method.

When you click a form’s Submit button, each fi eld on the form is sent
to the Web server as a name/value pair. When the post method is
used, the name portion of the name/value pair becomes the key, or
index, of an element in the $_POST autoglobal array and the value por-
tion is assigned as the value of the array element. Th e get method is
used in the same way, except that the name portion of the name/value
pair becomes the key of an element in the $_GET autoglobal array.

When you use the get method to submit form data to the processing
script, the form data is appended to the URL specifi ed by the action
attribute. Name/value pairs appended to the end of a URL are called
URL tokens. Th e form data is separated from the URL by a question
mark (?), the individual elements are separated by an ampersand (&),
and the element name is separated from the value by an equal sign
(=). Spaces in the name and value fi elds are encoded as plus signs (+),

192

C H A P T E R 4 Handling User Input

and all other characters except letters, numbers, hyphens (-), under-
scores (_), and periods (.) are encoded using a percent sign (%) fol-
lowed by the two-digit hexadecimal representation of the character’s
ASCII value. For example:
http://www.example.net/process_Scholarship.php?fName=
John&lName=Smith&Submit=Send+Form

In the preceding example, three form elements were submitted to the
process_Scholarship.php script as URL tokens: fName, which is set to
“John”; lName, which is set to “Smith”; and “Submit” (the name of the
submit button), which is set to “Send Form”, the value assigned to the
submit button.

Th e get method is useful as a debugging technique because it allows
you to see the names and values that are being sent to the Web server.
Th e get method is also useful for creating static links to a dynamic
server process, as you will learn later in this chapter.

Because many forms request confi dential information, such as Social
Security numbers and passwords, or may contain a fi eld that requires
the user to enter more than 100 characters, examples will use the post
method to submit form data for the remainder of this book.

To create an XHTML form that contains two text input boxes for
users to enter their fi rst and last names and two buttons to clear or
submit the form data:

1. Create a new document in your text editor. Type the
!DOCTYPE declaration, <html> element, header information,
and <body> element. Use the strict DTD and “Scholarship
Form” as the content of the <title> element.

2. Add the following XHTML content to the document body:
<h2 style="text-align:center">Scholarship Form</h2>
<form name="scholarship" action=
 "process_Scholarship.php"
 method="post">
<p>First Name: <input type="text" name="fName" /></p>
<p>Last Name: <input type="text" name="lName" /></p>
<p><input type="reset" value="Clear Form" />
 <input type="submit" name="Submit" value=
"Send Form" />
</form>

3. Save the document as Scholarship.html in the Chapter direc-
tory for Chapter 4. Because Scholarship.html contains only
XHTML markup, you can view this document in the browser
locally. You should see the Web page shown in Figure 4-2.

The get
method
restricts the
number of
characters

that can be appended to
a single variable to 100.

An HTTP
request with
URL tokens
is not
secure. It is

stored in plain text in log
fi les on any machine
between the client and
server computers, as well
as on the client and
server computers them-
selves. Because the get
method encodes the data
in the URL, it would not
be practical to use the
get method to submit
sensitive information,
such as Social Security
numbers or passwords.

193

Building XHTML Web Forms

http://www.example.net/process_Scholarship.php?fName=John&lName=Smith&Submit=Send+Form
http://www.example.net/process_Scholarship.php?fName=John&lName=Smith&Submit=Send+Form

Figure 4-2 The scholarship form

4. Close your Web browser window.

Short Quiz

1. Explain the function of the action and method attributes in
the opening <form> tag.

2. Explain the diff erence(s) in how form data is submitted using
the post and get methods.

3. Describe the limitations of using the get method to submit
form data.

Processing Form Data
Th e second half of the procedure for using Web forms is processing
the form data once it is submitted. Th is is done in a form handler—a
program or script that processes the information submitted from a
Web form. A form handler includes code for verifying that the user
entered the minimum amount of data needed to process the form,
validating entered data to ensure that it is appropriate for the fi eld,
performing any tasks needed for the data submitted, and returning
appropriate output as a Web page.

Retrieving Submitted Data
After the user fi lls out the fi elds in the Scholarship.html Web form
and clicks the submit button using the post method, the names
(fName, lName, and Submit) that were assigned to the controls in the
Scholarship form automatically become keys in the $_POST autoglobal

194

C H A P T E R 4 Handling User Input

array. Also, the values the user enters in the First Name and Last
Name input boxes (“John” and “Smith” in the following example) and
the value assigned to the submit button (“Send Form”) become the
values in the $_POST array that can be accessed by the processing
script.

To create a form handler for the Scholarship.html form:

1. Create a new document in your text editor. Type the
!DOCTYPE declaration, <html> element, header information,
and <body> element. Use the strict DTD and “Scholarship
Form” as the content of the <title> element.

2. Add the opening and closing tags for the PHP script section
in the body of the document:
<?php
?>

3. Add the following code to retrieve and display the data
entered on the form:
$fi rstName = $_POST['fName'];
$lastName = $_POST['lName'];
echo "Thank you for fi lling out the scholarship form,
 ".$fi rstName." ".$lastName . ".";

4. Save the document as process_Scholarship.php in the
Chapter directory for Chapter 4.

5. Upload both Scholarship.html and process_Scholarship.php
to the server and then open Scholarship.html in the Web
browser by entering the following URL: http://<yourserver>/
PHP_Projects/Chapter.04/Chapter/Scholarship.html.

6. Enter a fi rst name and last name in the appropriate fi elds and
submit the form to the process_Scholarship.php form handler.
Figure 4-3 shows sample output in a Web browser window.

Figure 4-3 Output of the scholarship form handler

7. Close your Web browser window.

195

Processing Form Data

Handling Special Characters
Th e previous example displays correctly unless the user enters an
apostrophe in the First Name or Last Name text box on the Web
form. Recall from Chapter 3 that you should use escape sequences for
special characters in text strings, especially single or double quotes,
because they may cause problems when the PHP scripting engine
attempts to identify the end of a string. Because the data a user sub-
mits to a PHP script may contain single or double quotes, you should
use escape sequences for any user data your script receives, especially
before you write it to a data source, such as a text fi le or database.
Older versions of PHP include a feature called magic quotes, which
automatically adds a backslash (\) to any single quote ('), double
quote ("), or NULL character contained in form data that a user
submits to a PHP script. For example, if you enter a last name with
an apostrophe (such as “O’Hara”) in the Last Name text box in the
scholarship form and then submit the form to a PHP script, magic
quotes automatically escape the single quote, and the output appears
as shown in Figure 4-4.

Figure 4-4 The entered string from the Web form with magic quotes

Magic quotes are enabled within your php.ini confi guration fi le with
the directives listed in Table 4-2.

Directive Description
magic_quotes_gpc Applies magic quotes to any user-submitted

data

magic_quotes_runtime Applies magic quotes to runtime-generated
data, such as data received from a database

magic_quotes_sybase Applies Sybase-style magic quotes, which
escape special characters with a single quote
(') instead of a backslash (\)

Table 4-2 Magic quote directives

By default, magic_quotes_gpc is the only magic quote directive
enabled in the php.ini confi guration fi le.

Remember
that you can
check
whether any
of the magic

quote directives are
enabled by running the
phpinfo() function
that you used in Chapter
1. When you revisit the
PHPTest.php script you
created in Chapter 1, you
will see the
magic_quotes_gpc,
magic_quotes_
runtime, and magic_
quotes_sybase direc-
tives listed under the PHP
Core section.

196

C H A P T E R 4 Handling User Input

Magic quotes are unpopular with programmers because it’s easy to
forget whether they are enabled or disabled in PHP on a particular
server. Many PHP programmers have spent hours trying to deter-
mine why backslashes were being added to data their scripts received,
only to discover that the culprit was a magic quote directive in the
php.ini confi guration fi le. You should ask your ISP to disable magic
quotes in the php.ini confi guration fi le.

Fortunately, PHP provides an alternate method to escape strings,
even if magic quotes are disabled. Th e addslashes() function accepts
a single argument representing the text string you want to escape
and returns a string containing the escaped string. For example,
assume that a visitor to the scholarship form page enters the last
name “O’Hara”. If magic quotes are enabled, the $_POST['lName']
autoglobal element contains the value “O\’Hara”. Th e following code
escapes the single quote in the last name O’Hara in the same manner;
the output will be the same as shown in Figure 4-4:
$fi rstName = addslashes($_POST['fName']);
$lastName = addslashes($_POST['lName']);
echo "Thank you for fi lling out the scholarship form, " .
 $fi rstName . " " . $lastName . ".";

Th e existence of the addslashes() function is actually another reason
why magic quotes are unpopular. If you execute the addslashes()
function on user-submitted data when magic quotes are turned on,
you will get unexpected results. First, magic quotes will add a slash
before the apostrophe (O\'Hara). Th en the addslashes() function
will add a slash before both the slash and the apostrophe (O\\\'Hara).
Th e result is that three slashes are added when you only want one. For
example, if you execute the preceding code when magic quotes are
enabled, the text string appears as shown in Figure 4-5.

Figure 4-5 The form string after magic quotes and addslashes()

PHP also provides a function to reverse the changes made by magic
quotes or the addslashes() function. Th e stripslashes() function
removes any slashes that occur before a single quote ('), double quote
("), or NULL character. All other slashes are ignored.

See Appendix
D for an expla-
nation of secu-
rity issues
associated

with magic quotes.

Because of
the problems
they can
cause, you
should ask

your ISP to turn off magic
quotes on the server
and rely on the
addslashes() function
to escape user-submitted
text strings.

As of
 version 5.3,
magic
quotes are
deprecated

in PHP. As of version 6.0,
they have been removed.

197

Processing Form Data

To handle magic quotes in the process_Scholarship.php script:

1. Reopen the process_Scholarship.php script in your editor.

2. Modify the assignment of the $fi rstName and $lastName
 variables to use the stripslashes() function by adding the
code shown in bold:
<?php
$fi rstName = stripslashes($_POST['fName']);
$lastName = stripslashes($_POST['lName']);
echo "Thank you for fi lling out the scholarship form,
 ".$fi rstName." ".$lastName . ".";
?>

3. Save the process_Scholarship.php script, upload it to the
server, and then open Scholarship.html in the Web browser
by entering the following URL: http://<yourserver>/
PHP_Projects/Chapter.04/Chapter/Scholarship.html.

4. Enter a fi rst name or last name that contains an apostrophe to
test if the stripslashes() removed the backslashes inserted
by magic quotes. Figure 4-6 shows the output for the name
“John O’Hara”.

Figure 4-6 The scholarship form after magic quotes are removed

5. Close the browser window.

Short Quiz

1. Describe how an autoglobal $_POST array is populated when
the post method is used to submit form data.

2. Describe the role of magic quotes in working with string data.

3. What function is used to remove the backslashes added by
magic quotes or the addslashes() function?

198

C H A P T E R 4 Handling User Input

Handling Submitted Form Data
Once the data from a Web form is submitted, it needs to be processed
by the form handler in several steps. First, the form handler needs to
verify that the entered information is complete, valid, and safe. If the
information is not complete or valid, the form handler needs to pro-
vide feedback to the visitor. Next, the form handler needs to prepare
the submitted data for use. Finally, the form handler needs to use the
submitted data.

Determining if Form Variables Contain Values
Th e fi rst step in validating form data is to determine if fi elds have
data entered in them. When form data is posted using the post or get
method, all controls except unchecked radio buttons and check boxes
get sent to the server, whether they contain data or not. Because
of this, simply checking to see if there is an element in the $_POST
or $_GET array is not suffi cient to determine if a value was entered.
Th e empty() function can be used to determine if a variable contains
values. Th e empty() function returns a value of FALSE if the variable
being checked has a nonempty and nonzero value, and a value of
TRUE if the variable has an empty or zero value.

Validating Entered Data
Often, determining that a value has been entered for a form fi eld is
not suffi cient. Some fi elds require a specifi c type of data, such as an
integer or a decimal value, or data in a specifi c format, such as a date
or an e-mail address. Diff erent techniques will help verify that the
value entered in a fi eld is appropriate for the type of data that should
have been entered.

Th e best way to ensure valid form data is to build the Web form with
controls (such as check boxes, radio buttons, and selection lists)
that only allow the user to select acceptable responses. Th is method
only works if the user is confi ned to a predefi ned set of responses.
However, information such as a user name, password, or e-mail
address is unique for each user. Th is data needs to be validated to
ensure that the entered values are usable for the type of data required.

Validating Numeric Data
All data entered in a form is actually string data. PHP automatically
converts string data to numeric data if the string is in numeric for-
mat. Th e is_*() family of functions can be used to ensure that the
user enters numeric values where necessary. Comparison functions

The
empty()
function
returns a
value of

FALSE for a numeric
value of 0. If you are vali-
dating a numeric fi eld for
which 0 is a valid entry,
you must check for a
value of 0 separately.

Any data
passed to a
form handler
needs to be
validated to

protect against form-
based hacking attempts.
Appendix E contains
details on protecting your
site against these
attacks.

199

Handling Submitted Form Data

ensure that values are within a required range. Finally, the round()
function can be used to ensure that numbers have the appropriate
number of digits after the decimal point, if any. All of these functions
were introduced in Chapter 1.

For example, the following function ensures that the entered fi eld,
passed as the $data parameter, is a four-digit year between 1900 and
2100:
function validateYear($data, $fi eldName) {
 global $errorCount;
 if (empty($data)) {
 echo "<p>The fi eld $fi eldName is
 required.</p>\n";
 ++$errorCount;
 $retval = "";
 } else { // Only clean up the input if it isn't empty
 $data = trim($data);
 $data = stripslashes($data);
 if (is_numeric($data)) {
 $data = round($data);
 if (($data >= 1900) &&
 ($data <= 2100)) {
 $retval = $data;
 } else {
 echo "<p>The fi eld $fi eldName must be
 between 1900 and 2100.</p>\n";
 ++$errorCount;
 $retval = "";
 }
 } else {
 echo "<p>The fi eld $fi eldName must be a
 number between 1900 and 2100.</p>\n";
 ++$errorCount;
 $retval = "";
 }
 }
 return($retval);
}

Validating String Data
Many of the string functions covered in Chapter 3 can be used to
produce strings with consistent formatting. Regular expression func-
tions are some of the best tools for verifying that string data meets
the strict formatting required for e-mail addresses, Web page URLs,
or date values. In Chapter 3, you used regular expressions in suc-
cessive examples to continually refi ne the requirements of an e-mail
address and to isolate strings that were not in the correct format.

200

C H A P T E R 4 Handling User Input

Strings are often not formatted as expected. Th e user may enter
spaces before or after a text entry, or magic quotes may add escape
characters before a single or double quotation mark. In this chapter
and the previous one, you have been introduced to two functions that
will assist in cleaning up posted data: the stripslashes() function,
which removes the leading slashes for escape sequences in strings;
and the trim() function, which removes any leading or trailing white
space from a string.

For example, the following function ensures that the entered fi eld,
passed as the $data parameter, is a telephone number in the form
###-###-####:
function validatePhoneNumber($data, $fi eldName) {
 global $errorCount;
 if (empty($data)) {
 echo "<p>The fi eld $fi eldName is
 required.</p>\n";
 ++$errorCount;
 $retval = "";
 } else { // Only clean up the input if it isn't empty
 $data = trim($data);
 $data = stripslashes($data);
 $pattern = "/\d{3}-\d{3}-\d{4}/";
 if (preg_match($pattern, $data)) {
 $retval = $data;
 } else {
 echo "<p>The fi eld $fi eldName must be a
 telephone number in the form
 ###-###-####.</p>\n";
 ++$errorCount;
 $retval = "";
 }
 }
 return($retval);
}

Handling Multiple Errors
A common but poor programming practice is to stop processing a
form when an error is found and display the error to the user. Th e
user corrects the error, only to fi nd that another fi eld in the form
is also fi lled out incorrectly. For a large and complex form, this can
result in multiple attempts before a form is processed successfully.

A better practice is to record the error, usually in an array, and con-
tinue processing the form. Th is allows the script to display a complete
list of all the errors found. Users can then go back and correct all of
the errors at one time.

201

Handling Submitted Form Data

To validate the input of the Scholarship.html form:

1. Return to the process_Scholarship.php document in your
text editor.

2. Add a new function, displayRequired(). Th is function
accepts one argument, $fi eldName, which is the name of the
fi eld as it appears on the Web form. Th is function displays an
error message.
function displayRequired($fi eldName) {
 echo "The fi eld \"$fi eldName\" is required.
n";
}

3. Add a second new function called validateInput() below
the displayRequired() function. Th is function takes two
parameters. Th e fi rst parameter, $data, is a string to be vali-
dated. Th e second parameter, $fi eldName, is the name of the
form fi eld. Th e function returns the $data parameter after it
has been cleaned up. Notice that the function uses the global
variable $errorCount.
function validateInput($data, $fi eldName) {
 global $errorCount;
 if (empty($data)) {
 displayRequired($fi eldName);
 ++$errorCount;
 $retval = "";
 } else { // Only clean up the input if it isn't
 // empty
 $retval = trim($data);
 $retval = stripslashes($retval);
 }
 return($retval);
}

4. Immediately after the validateInput() function, declare and
initialize a new variable called $errorCount as follows:
$errorCount = 0;

5. Modify the assignment statements for the $fi rstName
and $lastName variables to receive the output of the
validateInput() function:
$fi rstName = validateInput($_POST['fName'],
"First name");
$lastName = validateInput($_POST['lName'],
"Last name");

6. Add a conditional statement immediately after the value
of $lastName has been assigned. Th is statement will either
 display the total number of errors or a “Th ank you” message if
there were no errors.

202

C H A P T E R 4 Handling User Input

if ($errorCount>0)
 echo "Please use the \"Back\" button to
 re-enter the data.
\n";
else
 echo "Thank you for fi lling out the scholarship
 form, " . $fi rstName . " " . $lastName . ".";

7. Save the document and upload it to the Web server.

8. Open the Scholarship.html page in the Web browser by enter-
ing the following URL: http://<yourserver>/PHP_Projects/
Chapter.04/Chapter/Scholarship.html.

9. Attempt to submit the form to the process_Scholarship.php
form handler without entering any data for the fi rst or last
name fi elds. You should see the result shown in Figure 4-7,
with two error messages.

Figure 4-7 Empty input with form validation

10. Close the Web browser window.

Redisplaying the Web Form
In the previous example, error messages were displayed after you vali-
dated the data input on the form. However, when you went back to
the form, you needed to rekey the information in the form controls.
A better option would be to redisplay the form with the controls set
to the values that the user entered the last time the form was submit-
ted. As a result, the user only has to enter data for fi elds that were left
empty or did not contain a valid response. Th e user does not have to
retype data that was entered correctly the fi rst time. Th is type of form
is often called a sticky form.

To redisplay the Web form, you need to add the XHTML form ele-
ments to the output of the PHP script. Because the Web form only
needs to be redisplayed if there was an error in the Web form valida-
tion, the code to output the Web form should be part of the error-
handling section of the script. Th e code to redisplay the Web form
can go into a function for convenience in isolating that part of the
code from the remainder of the script.

203

Handling Submitted Form Data

Th e most convenient way to embed large portions of XHTML code
within a PHP script is to use advanced escaping from XHTML. When
you insert a PHP script section, you are escaping from XHTML. With
advanced escaping, you close one PHP script section, insert some
XHTML elements, and then open another PHP script section to con-
tinue the script. Any XHTML code between the two script sections
is considered output, as it would have been using an echo or print
statement. You have already seen some simple examples of advanced
escaping in Chapter 1, where multiple PHP script sections appeared
in a single PHP script.

If the closing tag for the fi rst PHP script section is within a function
or the control block for a conditional structure, the XHTML code will
only be displayed when the function is called or the conditional con-
trol block is executed. If the closing tag for the fi rst PHP script section
is within the control block of a looping structure, the XHTML code
will be displayed with each iteration of the loop.

Th e following code declares a function named ShowHomePageLink().
Th e function displays an image and a message, both of which are
hyperlinks to index.php. Th is function could have been coded as a
series of echo or print statements, but it is much easier to read using
advanced escaping.
function ShowHomePageLink() {
 ?>
<p>

Home Page
</p>
 <?php
}

Th e following exercise illustrates how to redisplay the Web form.
Advanced escaping from XHTML will be used to display the Web
form. Additionally, the Web form will be a sticky form, keeping the
values of the fi elds that were entered correctly.

To redisplay the Web form within the process_Scholarship.php script:

1. Reopen the process_Scholarship.php script in your editor.

2. Add the following function to redisplay the Web form:
function redisplayForm($fi rstName, $lastName) {
?>
<h2 style = "text-align:center">Scholarship Form</h2>
<form name="scholarship" action="process_
Scholarship.php"
 method="post">

When you
close the PHP
script section
within a con-
trol block or

function declaration, the
PHP script will continue
from within the control
block or function declara-
tion when the next PHP
script section begins.

204

C H A P T E R 4 Handling User Input

<p>First Name: <input type="text" name="fName"
value="<?php echo $fi rstName; ?>" /></p>
<p>Last Name: <input type="text" name="lName"
value="<?php echo $lastName; ?>" /></p>
<p><input type="reset" value="Clear Form" />
 <input type="submit" name="Submit" value="Send
Form" />
</form>
<?php
}

3. Modify the if clause of the fi nal if. . .else statement to call
the redisplayForm() function if there were errors. Add the
text shown in bold below:
if ($errorCount>0) {
 echo "Please re-enter the information below.
\n";
 redisplayForm($fi rstName, $lastName);
}
else

4. Save the document and upload it to the Web server.

5. Open the Scholarship.html page in the Web browser by enter-
ing the following URL: http://<yourserver>/PHP_Projects/
Chapter.04/Chapter/Scholarship.html.

6. Attempt to submit the form without entering any data for one
of the two fi elds. You should see a result similar to that shown
in Figure 4-8, with one error message and the Web form with
the value you entered automatically reinserted into the same
fi eld. Enter data for the empty fi eld and resubmit the form to
see the “Th ank you” message.

Figure 4-8 The error message with the redisplayed sticky form

7. Close your Web browser window.

This code is
nearly identi-
cal to the
code in
Scholarship.

html and could be copied
from there. The only dif-
ference is the addition of
a “value” attribute to each
of the input controls,
which is used to make a
sticky form.

205

Handling Submitted Form Data

Using the Submitted Data
Once the data entered into the Web form is validated, it needs to be
used. Exactly how the data is used varies depending on the purpose
of the form. In some cases, information can be written to or queried
from a database. In other cases, a fi le can be downloaded to the user.
In this section, the data from the Web form will be used to generate
an e-mail message and display a confi rmation message for the user.

E-mailing the Web Form
In PHP, an e-mail message is sent using the mail() function. Th e basic
syntax for this function is mail(recipient(s), subject, message).

Th e value you assign to the recipient(s) argument is a string
of one or more e-mail addresses in the standard format for an
“Address Specifi er”, as defi ned by the Internet Message Format
documentation. Th e two simplest forms of address specifi ers are
the plain e-mail address, as in jdoe@example.net, and the recipi-
ent’s name followed by the e-mail address in angle brackets, as in
Mary Smith <mary.smith@example.com>.

Th e subject fi eld is a text string that will appear as the subject fi eld of
the e-mail message. Th e subject string should be plain text with no
XHTML tags or character entities. Th e message fi eld is a text string
that will appear as the body of the message. Unless special syntax
(called MIME format) is used, the message fi eld should also be plain
text with no XHTML tags or character entities.

A fourth optional additional_headers argument can include addi-
tional headers that are typically found in e-mail messages, such as
From, Cc, Bcc, and Date headers. For the From, Cc, and Bcc headers,
the same address specifi er syntax is used as in the recipient(s) fi eld.
Th e additional_headers argument needs to be formatted to con-
form to the syntax of headers in the Internet Message Format docu-
mentation. Each header needs to be on its own line. Th e line must
start with the header name, followed by a colon, a space, and the
value of the header element. For example:
Date: Fri, 03 Apr 2009 16:05:50 -0400
From: Linda M. Jones <linda@jones.example.com>
CC: Mary R. Jones <mary@jones.example.com>

Any valid e-mail header may be added using the additional_headers
argument. However, depending on the confi guration of PHP and the
mail program on the Web server, some headers may be excluded and
others may be overwritten with values defi ned by the server.

The mail()
function may
not be avail-
able on your
server (or

your local machine, if you
are running a local PHP
server). In addition to
properly confi guring PHP
to send mail, you need to
have an e-mail program
available on the server or
the local machine. If the
mail() function is not
available on your system,
you will not be able to
perform the exercise in
this section.

206

C H A P T E R 4 Handling User Input

Th e mail() function returns a value of TRUE if a message was sent
successfully or FALSE if it was not. Th e return value comes in handy
when displaying a status message for the user, which will be discussed
next. Th e following example demonstrates how to send the results of
the scholarship form as a simple e-mail message:
$To = "webmaster@example.edu";
$Subject = "Message from the Web Form";
$Message = $formMessage;
$Headers="From: $fname $lName <$emailAddress>";
mail ($To, $Subject, $Message, $Headers);

Displaying a Status Message for the User
Once all required fi elds on the form have been fi lled in and validated,
and any action such as sending an e-mail message has been com-
pleted, the user should receive a status message in the browser. A
standard practice as part of the status message is to thank the user for
completing the form. You can also display the results of any actions
initiated while processing the form data. For example, the status mes-
sage could display “Your message has been sent” if the mail() func-
tion returned TRUE, or “Your message could not be sent at this time” if
the mail() function returned FALSE.

To send e-mail from the scholarship form:

1. Reopen the process_Scholarship.php script in your text
editor.

2. Replace the else portion of the fi nal if...else statement
with the following code block:
 { // Send an e-mail
 // replace the "recipient@example.edu" with your
 // e-mail address
 $To = "recipient@mail.edu";
 $Subject = "Scholarship Form Results";
 $Message = "Student Name: " . $fi rstName. " " .
 $lastName;
 $result = mail($To, $Subject, $Message);
 if ($result)
 $resultMsg = "Your message was
 successfully sent.";
 else
 $resultMsg = "There was a problem sending
 your message.";
}

3. Add the following code immediately before the end of the
fi nal code block of the PHP script section. Using advanced
escaping and coding the message in XHTML rather than in

Electronic
mail is not
encrypted,
and any
information

contained in an e-mail
message should be con-
sidered insecure. You
should not e-mail per-
sonal or fi nancial informa-
tion entered through a
Web form. Unless the
Web form is a simple
“Contact Us” page, you
should consider storing
the information in a fi le or
database, and using the
mail() function only as
a notifi cation tool.

207

Handling Submitted Form Data

the PHP script section allows you to more easily format the
data using CSS.
?>
<h2 style = "text-align:center">Scholarship
Form</h2>
<p style = "line-height:200%">Thank you for fi lling
out the scholarship form<?php
 if (!empty($fi rstName))
 echo ", $fi rstName"
 ?>. <?php echo $resultMsg; ?>
<?php

4. Save the fi le and upload it the server.

5. Open the Scholarship.html page in the Web browser by enter-
ing the following URL: http://<yourserver>/PHP_Projects/
Chapter.04/Chapter/Scholarship.html. Figure 4-9 shows the
status message displayed in the browser window after the
form has been successfully submitted.

Figure 4-9 Sending e-mail for the scholarship form

6. Close your Web browser window.

Short Quiz

1. Under which conditions does the empty() function return
TRUE?

2. Explain the process of effi ciently handling multiple errors.

3. Defi ne the term “advanced escaping from XHTML”.

4. What are the three required arguments of the mail()
function?

208

C H A P T E R 4 Handling User Input

Creating an All-in-One Form
If you have a large form with many fi elds, or if your form requires
intensive processing, it would be more effi cient to use separate docu-
ments for the Web form and the form handler, as you have done so far
in this chapter with the XHTML Web form (Scholarship.html) and
the PHP script that processed the form (process_Scholarship.php).
Th is is known as a two-part form, because you have one page that dis-
plays the form and one page that processes the form data. However,
for simple forms that require only minimal processing, it’s often
easier to use an All-in-One form—a single script used to display a
Web form and process its data. When the user clicks the submit but-
ton, the script submits the form data to the current script. You then
use validation code to determine if data exists when the page is fi rst
displayed, and to ensure that the user has completed all the required
form fi elds and has entered valid responses.

Th e PHP script for an All-in-One form can be organized using two
conditionals. Th e fi rst conditional determines if the data has been
submitted and needs to be validated. Th e second conditional deter-
mines if the form needs to be redisplayed, either because of a valida-
tion error or because the user is opening the page for the fi rst time, or
if the form data should be processed.

Validating an All-in-One Form
Th e All-in-One form uses an if conditional to determine if data has
been submitted from the Web form or if the Web page is being viewed
for the fi rst time. Th e isset() function can be used to determine if
the $_POST['Submit'] variable has been set (in other words, if the
Submit button has been pressed). Th e argument that is passed to the
isset() function is the value that was assigned to the control’s name
attribute (name='Submit') in the Web form. Th e isset() function is
not the inverse of the empty() function, in that a variable can be set to
an “empty” value, such as the empty string (""), 0, NULL, or FALSE. All
of these values will cause the empty() function to return TRUE, because
the variable is set to an empty value, and will also cause the isset()
function to return TRUE, because the variable has been initialized.

If the $_POST['Submit'] variable is set (declared and initialized),
the script will check to see if all required fi elds are completed and all
responses are valid. If the $_POST['Submit'] variable has not been
declared and initialized, the Web form will be displayed.
if (isset($_POST['Submit'])) {
 // Validate the data
}

The only way
that an initial-
ized variable
can become
uninitialized,

causing the isset()
function to return FALSE,
is to call the unset()
function with the variable
name as the parameter.

209

Creating an All-in-One Form

Processing the Web Form
Once the data submitted by the user has been validated, the second
conditional checks to see if the submitted data passed the validation
process. If all of the validation checks succeeded for the submitted
data (all required data has been entered and in the correct format),
then the data is processed and the user receives a status message.

Redisplaying the Web Form
If the submitted data did not pass all of the validation checks, or if the
data has not yet been entered, the All-in-One form will display the
Web form, allowing the user to enter data for the fi rst time or re-enter
data that did not pass validation. As with the two-part form, you
should make the redisplayed form a sticky form, using the else clause
of the second conditional.
if (isset ($_POST['Submit'])) {
 // Process the data
}
else {
 // Display the Web form
}

To create a simple All-in-One form:

1. Create a new document in your text editor. Type the
!DOCTYPE declaration, <html> element, header information,
and <body> element. Use the strict DTD and “Number Form”
as the content of the <title> element.

2. Add the opening and closing tags for the PHP script section
in the body of the document:
<?php
?>

3. Create and initialize a Boolean variable called $DisplayForm,
which will be used to determine if the Web form should be
redisplayed, and a string variable called $Number:
$DisplayForm = TRUE;
$Number = "";

4. Add the following code to check whether the form data has
been entered. If it has, the data will be validated:
if (isset($_POST['Submit'])) {
 $Number = $_POST['Number'];
 if (is_numeric($Number)) {
 $DisplayForm = FALSE;
 } else {

210

C H A P T E R 4 Handling User Input

 echo "<p>You need to enter a numeric
 value.</p>\n";
 $DisplayForm = TRUE;
 }
}

5. Add the following code to display the form, including the
entered value for the number fi eld. Note the use of advanced
embedding of XHTML.
if ($DisplayForm) {
?>
<form name="NumberForm" action="NumberForm.php"
 method="post">
<p>Enter a number: <input type="text" name="Number"
value="<?php echo $Number; ?>" /></p>
<p><input type="reset" value="Clear Form" />
 <input type="submit" name="Submit" value="Send
Form" /></p>
</form>
<?php
}

6. Add an else clause to use the form data once it is entered
correctly, as follows:
else {
 echo "<p>Thank you for entering a number.</p>\n";
 echo "<p>Your number, $Number, squared is " .
 ($Number*$Number) . ".</p>\n ";
 echo "<p>Try
 again?</p>\n";
}

7. Save the document as NumberForm.php in the Chapter
directory for Chapter 4 and upload the document to the
server.

8. Open the Number Form page in the Web browser by enter-
ing the following URL: http://<yourserver>/PHP_Projects/
Chapter.04/Chapter/NumberForm.php. You should see the
form shown in Figure 4-10.

Figure 4-10 The NumberForm.php form when fi rst opened

You could also
use action=
"<?php
echo
$_SERVER

["SCRIPT_NAME"];
?>" in the preceding
<form> tag. The
$_SERVER["SCRIPT_
NAME"] element con-
tains the name of the
current script.

211

Creating an All-in-One Form

9. Enter a non-numeric value and click the submit button. Th e
form should reopen with an error message and the value
you entered in the text control. When you try again with a
numeric value, you should see the “Th ank you” message.

10. Close your Web browser window.

Short Quiz

1. Describe the structure of an All-in-One form.

2. How would a form handler determine if the Submit button
has been pressed?

3. What family of functions can check whether a user entered a
number in a fi eld on a Web form?

Displaying Dynamic Content Based
on a URL Token
Unlike the post method, which is ideal for working with forms, the
get method is ideal for embedding options in a hyperlink. By passing
URL tokens to a PHP script, many diff erent types of information can
be displayed from the same script. By using a Web page template with
static sections and a dynamic content section, a single PHP script
can produce the same content as multiple static XHTML pages. Web
page templates have an additional advantage of giving all of the pages
a consistent user interface.

Using a Web Page Template
Th e structure of a PHP-powered Web site is often developed using
a template—a single Web page that is divided into sections. As an
example, Figure 4-11 shows the layout of a Web page template with
the following sections: Header, Button Navigation, Dynamic Content,
and Footer.

212

C H A P T E R 4 Handling User Input

Figure 4-11 A sample Web page template page layout

You learned in Chapter 2 that when you insert the contents of an
include fi le in a PHP script, the content of the XHTML document is
displayed in the browser. Th e following code would insert the con-
tents of the inc_header.php fi le in the header section:
<?php include("inc_header.php") ?>

If you had 50 individual pages in your Web site and the same header,
button navigation, and footer on each page, and you needed to add
another e-mail address to the header content on each page, you would
have to make the addition on all 50 pages. Using a Web page template,
you could make the change only once—in the inc_header.php fi le
for the previous example. Th e header, button navigation, and footer
sections are static because the content does not change unless you
modify the include fi le. When a user navigates within a Web site that
uses static XHTML pages, a new page with a new header, footer, and
button navigation is opened each time. With Web page templates, the
content of the dynamic section will change but the content and layout
of the static sections will not.

213

Displaying Dynamic Content Based on a URL Token

Navigating within a Web Page Template
You can navigate within a Web page template using hyperlinks and
buttons, just as you can within the pages of a static XHTML Web site.
Th ere are some minor diff erences, which are explained in this section.

Using Text Hyperlinks for Navigation
When using text hyperlinks to navigate within a Web page tem-
plate, the values that specify which dynamic content to show must
be appended to the fi lename in the “href” attribute of the anchor
tag. You use the notation for the get method discussed earlier in this
chapter, with a question mark between the URL and the name/value
pairs, an ampersand between name/value pairs, and an equal sign
between the name and the value.

Th e following XHTML code creates a text hyperlink that replaces
the current include fi le that displays in the dynamic data section. In
this example, only one name/value pair is being passed, so there is
no need for the ampersand. Th e name being passed in the example is
“page”, and the value of “page” is “home_page”. Th e index.php script
will check the value of the $_GET['page'] array element to determine
which page to show in the dynamic data section.
Home

Using Form Image Buttons for Navigation
Th e following XHTML code is inserted between an opening and clos-
ing <form> tag in the section in which you want the buttons to dis-
play. Each button requires a unique value for the name attribute.
<input type="image" src="home.jpg" name="home"
 style="border:0" alt="Home" />

In the preceding example, the $_GET or $_POST array would have two
elements for this button: “home_x” and “home_y”.

Displaying the Dynamic Content
Code inserted in the dynamic data section of the index.php fi le deter-
mines which include fi le to display in the dynamic data section when
a user clicks a button or activates a hyperlink. Th roughout this chap-
ter, you have used the $_GET and $_POST autoglobals, which store the
submitted form values in an array. Th e $_REQUEST autoglobal can be
used to access the result from form data sent with either the get or post
methods. Th e following code, keyed in the dynamic data section of the
index.php fi le, processes the information submitted with either method:
$displayContents = $_REQUEST["page"];

Form image
buttons do
not pass a
value.
Instead, the

x- and y-coordinates are
sent in the form
“Button.x” and “Button.y”,
where “Button” is the
value of the name attri-
bute. In PHP, the periods
are replaced by under-
scores (_) for the $_GET
and $_POST array
indexes. For example, the
corresponding array
index for Button.x is
Button_x in the $_GET or
$_POST arrays, and the
corresponding array
index for Button.y is
Button_y.

There are
security
risks to
using the
$_REQUEST

autoglobal. It includes the
contents of the
$_COOKIE autoglobal as
well as the $_GET and
$_POST autoglobals, so
hackers could use cook-
ies to pass invalid and
potentially harmful con-
tent to a form handler.
Because of the risk, you
should avoid using the
$_REQUEST autoglobal
whenever possible.
Appendix E covers this
topic and other security
risks.

214

C H A P T E R 4 Handling User Input

To create a simple Web page template:

1. Create a new fi le in your editor as follows and save it as
inc_header.html in the Chapter directory for Chapter 4:
<h1 style="text-align: center">Sample Web Template</h1>

2. Create a new fi le in your editor as follows and save it as
inc_footer.php in the Chapter directory for Chapter 4:
<p>Today's Date: <?php echo date('r'); ?></p>

3. Create a new fi le in your editor as follows and save it as
inc_home.html in the Chapter directory for Chapter 4:
<h2>Home Page</h2>
<p>This is the default home page that displays
whenever a new visitor comes to the site</p>

4. Create a new fi le in your editor as follows and save it as
inc_about.html in the Chapter directory for Chapter 4:
<h2>About Me</h2>
<p>This is the page that tells about me and my Web
site.</p>

5. Create a new fi le in your editor as follows and save it as
inc_contact.html in the Chapter directory for Chapter 4:
<h2>Contact Me</h2>
<p>This is the page where people can use a Web form
to send me an e-mail.</p>

6. Create a new fi le in your editor as follows and save it as
inc_buttonnav.html in the Chapter directory for Chapter 4:
<form action="WebTemplate.php" method="get">
<input type="submit" name="content" value="Home" />

<input type="submit" name="content" value="About Me"
/>

<input type="submit" name="content" value="Contact
Me" />

</form>

7. Create a new document in your text editor. Type the
!DOCTYPE declaration, <html> element, header information,
and <body> element. Use the strict DTD and “Web Template”
as the content of the <title> element.

215

Displaying Dynamic Content Based on a URL Token

8. Add the following code to the body of the document:
<?php include ("inc_header.html"); ?>
<div style = "width:20%; text-align:center; fl oat:left">
<?php include ("inc_buttonnav.html"); ?>
</div>
<!-- Start of Dynamic Content section -->
<?php
?>
<!-- End of Dynamic Content section -->
<?php include ("inc_footer.php"); ?>

9. Locate the PHP script section within the “Dynamic Content”
section, which is where the button input will be processed to
determine which content page to display. Add the following
PHP code within the block:
if (isset($_GET['content'])) {
 switch ($_GET['content']) {
 case 'About Me':
 include('inc_about.html');
 break;
 case 'Contact Me':
 include('inc_contact.html');
 break;
 case 'Home': // A value of 'Home' means to
 // display the default page
 default:
 include('inc_home.html');
 break;
 }
}
else // No button has been selected
 include('inc_home.html');

10. Save the fi le as WebTemplate.php in the Chapter folder for
Chapter 4 and upload the fi le to the Web server.

11. Open WebTemplate.php in a Web browser by entering
the following URL: http://<yourserver>/PHP_Projects/
Chapter.04/Chapter/WebTemplate.php. It should appear as
shown in Figure 4-12.

216

C H A P T E R 4 Handling User Input

Figure 4-12 The Web page template script output

12. Click the buttons in the button navigation bar. Th e content in
the dynamic content section changes to refl ect the selected
button.

13. Close your Web browser window.

In the preceding example, the buttons were all named “content”. If
text hyperlinks are added, the same name can be used as the name in
the name/value pair, and the same code can process both. If you need
more buttons or text hyperlinks, simply use the name “content” and a
diff erent value, and add that value as a case in the switch statement.
Home Page

Short Quiz

1. Explain the purpose of using a Web page template for Web
site development.

2. Describe the notation for the get method used with a text
hyperlink to target dynamic content to a section of a Web
page template.

3. What autoglobal can be used to access the values of both the
get and the post methods?

217

Displaying Dynamic Content Based on a URL Token

Summing Up

PHP includes various predefi ned global arrays, called autoglobals •
or superglobals, which contain client, server, and environment
information that you can use in your scripts.
Web forms are standard XHTML Web pages with interactive •
 controls that allow users to enter data.
Th e • <form> tag requires an action attribute to identify the script
that will process the submitted data and a method attribute to iden-
tify whether the data will be sent using the get or post method.
Th e • $_POST autoglobal contains data submitted from a form using
the post method; the $_GET autoglobal contains data submitted
from a form using the get method or through a hyperlink.
Web forms may have two components: the data entry form page •
and the data processing script.
Magic quotes may be enabled for a PHP server. If enabled, the •
PHP scripting engine inserts an escape character before a single
 quotation mark, double quotation mark, or NULL character in any
submitted form data.
Th e • addslashes() function inserts an escape character before a
single quotation mark, double quotation mark, or NULL charac-
ter in a string. Th e stripslashes() function removes the escape
character before a single quotation mark, double quotation mark,
or NULL character in a string.
Th e fi rst step in processing form data is to validate the input. •

Th e • empty() function determines if the entered value has an
empty or zero value.
Th e • is_*() family of functions determines if the entered value is
of the required data type.
Regular expressions determine if an entered string value is format-•
ted correctly for the required type of entry.
Th e user should be notifi ed at the same time of all errors in the val- •
ues entered into the form.
Sticky forms are forms that are redisplayed if any errors are found •
during the validation process. Th e fi elds in a sticky form are popu-
lated with the values the user entered previously.
Advanced escaping from XHTML is a convenient way to display •
XHTML code within a PHP script section.

218

C H A P T E R 4 Handling User Input

Th e • mail() function is used to send mail from PHP; it can be used
to send form data via e-mail when the form has been successfully
completed and validated.

All-in-One Web forms combine the data entry form page and the •
data processing script into a single script.

Th e • isset() function determines if the entered value has been ini-
tialized (or set).

URL tokens use the get method and additional data appended to •
the URL to submit information to a PHP script.

Web page templates combine static elements and a dynamic •
 content section within a Web page.

Web page templates can use the • include() function within a
 conditional or switch statement to display dynamic content from
diff erent include fi les within the same section of the template.

Comprehension Check

1. Which of the following autoglobals can you use to access
 submitted form values? (Choose all that apply.)

a. $_GET

b. $_POST

c. $_SERVER

d. $_REQUEST

2. Which of the following separates the URL from the form data
in a get request?

a. ?

b. &

c. =

d. +

3. Which of the following separates multiple name/value pairs
from each other in a get request?

a. ?

b. &

c. =

d. +

219

Comprehension Check

4. What is the maximum length of a value in a get request?

5. Describe the diff erence in how data is sent to the Web server
for the get and post methods.

6. Contrast the two-part Web form with the All-in-One Web
form.

7. What are magic quotes and why are they used?

8. Which function removes the slashes that are added by magic
quotes?

9. Th e empty() function is used to do which of the following?
(Select all that apply.)

a. Clear the value of a variable.

b. Check if the length of a string variable is 0.

c. Check to see if the value of a variable is NULL.

d. Check to see if the value of a numeric variable is 0.

10. Th e is_*() family of functions can be used to verify that the
user entered the correct data type in a form fi eld. True or
False?

11. A user should fi x each data entry error before being notifi ed
of the next one. True or False?

12. A(n) form redisplays a form with the previ-
ously entered values already fi lled in.

a. error

b. sticky

c. prefi lled

d. Web

13. Explain the purpose of advanced escaping from XHTML.

14. Explain why the isset() function is not an inverse of the
empty() function.

220

C H A P T E R 4 Handling User Input

15. Th e function can be used to determine if
data has been submitted to an All-in-One form.

a. is_posted()

b. submitted()

c. isset()

d. data_found()

16. URL tokens use the post method. True or False?

17. Web page templates are made of and
 sections.

a. form, script

b. image, text

c. static, dynamic

d. content, template

18. With Web page templates, every page needs to be modifi ed to
change an image in the header section. True or False?

19. Describe two methods used to navigate within a Web page
template.

20. Th e autoglobal contains all of the elements
of both the $_GET and $_POST autoglobals.

a. $_REQUEST

b. $_RESPONSE

c. $_FORM

d. $_SESSION

Reinforcement Exercises

Exercise 4-1

Create a Web form to help in creating “Jumble” puzzles. Create a
form that has four input fi elds named Word1, Word2, Word3, and
Word4, as well as “Reset” and “Submit” buttons. Create a form pro-
cessing script that verifi es that all four words are entered, that all
of them contain only letters, and that all four are between 4 and 7

221

Reinforcement Exercises

characters long. Once all of the words have been verifi ed as correct,
use the strtoupper() and str_shuffl e() functions to produce four
jumbled sets of letters.

To create the Jumble Maker form:

1. Create a new document in your text editor. Type the
!DOCTYPE declaration, <html> element, header information,
and <body> element. Use the strict DTD and “Jumble Maker”
as the content of the <title> element.

2. Add the following XHTML form tags in the body of the
document:
<form action=
 "process_JumbleMaker.php" method="post">
Word 1: <input type="text" name="Word1" />

Word 2: <input type="text" name="Word2" />

Word 3: <input type="text" name="Word3" />

Word 4: <input type="text" name="Word4" />

<input type="reset" value="Clear Form" />
 <input type="submit" name="Submit" value="Send
Form" />
</form>

3. Save the document as JumbleMaker.html in the Projects
directory for Chapter 4.

4. Create a new document in your text editor. Type the
!DOCTYPE declaration, <html> element, header information,
and <body> element. Use the strict DTD and “Jumble Maker”
as the content of the <title> element.

5. Add the opening and closing tags for the PHP script section
in the body of the document:
<?php
?>

6. Add the displayError() function to the script section. Th is
function displays the error message, and takes two param-
eters: $fi eldName, which is the name of the fi eld as it appears
on the Web form; and $errorMsg, which describes the error
for the user. Th ere is no return value for this function.
function displayError($fi eldName, $errorMsg) {
 global $errorCount;
 echo "Error for \"$fi eldName\": $errorMsg
\n";
 ++$errorCount;
}

222

C H A P T E R 4 Handling User Input

7. Create a second function called validateWord() below the
displayError() function. Th is function takes two parame-
ters. Th e fi rst parameter, $data, is a string to be validated. Th e
second parameter, $fi eldName, is the name of the form fi eld.
Th e function returns the $data parameter after it has been
cleaned up. Notice that the function uses the global variable
$errorCount.
function validateWord($data, $fi eldName) {
 global $errorCount;
 if (empty($data)) {
 displayError($fi eldName,"This fi eld is
 required");
 $retval = "";
 } else { // Only clean up the input if it isn't
 // empty
 $retval = trim($data);
 $retval = stripslashes($retval);
 if ((strlen($retval)<4) ||
 (strlen($retval)>7)) {
 displayError($fi eldName,"Words must be
 at least four and at most
 seven letters long");
 }
 if (preg_match("/^[a-z]+$/i",$retval)==0) {
 displayError($fi eldName,"Words must be
 only letters");
 }
 }
 $retval = strtoupper($retval);
 $retval = str_shuffl e($retval);
 return($retval);
}

8. Immediately after the validateWord() function, declare and
initialize a new variable called $errorCount and a new array
called $words[] as follows:
$errorCount = 0;
$words = array();

9. Add assignment statements for the $words array variable to
receive the output of the validateWord() function for each
form fi eld:
$words[] = validateWord($_POST['Word1'], "Word 1");
$words[] = validateWord($_POST['Word2'], "Word 2");
$words[] = validateWord($_POST['Word3'], "Word 3");
$words[] = validateWord($_POST['Word4'], "Word 4");

223

Reinforcement Exercises

10. Add a conditional statement immediately after the values of
$words have been assigned. Th is statement will display the
total number of errors found or the shuffl ed words if there
were no errors.
if ($errorCount>0)
 echo "Please use the \"Back\" button to
 re-enter the data.
\n";
else {
 $wordnum = 0;
 foreach ($words as $word)
 echo "Word ".++$wordnum.": $word
\n";
}

11. Save the document as process_JumbleMaker.php in the
Projects directory for Chapter 4.

12. Upload JumbleMaker.html and process_JumbleMaker.php to
the Web server.

13. Open the JumbleMaker.html page in the Web browser
by entering the following URL: http://<yourserver>/
PHP_Projects/Chapter.04/Projects/JumbleMaker.html.

14. Test the form. It should only show the jumbled results if all
four words were entered correctly.

15. Close your Web browser window.

Exercise 4-2

In this exercise, you will create an All-in-One form that is a work-
ing “Contact Me” page. Th is page will have inputs for the subject,
the sender’s name, the sender’s e-mail address, and the message. Th e
form will also send a copy of the message to the sender.

1. Create a new document in your text editor. Type the
!DOCTYPE declaration, <html> element, header information,
and <body> element. Use the strict DTD and “Contact Me” as
the content of the <title> element.

2. Add the opening and closing tags for the PHP script section
in the body of the document:
<?php
?>

224

C H A P T E R 4 Handling User Input

3. Add a function called validateInput(). Th is function takes
two parameters. Th e fi rst parameter, $data, is a string to be
validated. Th e second parameter, $fi eldName, is the name
of the form fi eld. Th e function returns the $data parameter
after it has been cleaned up. Notice that the function uses the
global variable $errorCount.
function validateInput($data, $fi eldName) {
 global $errorCount;
 if (empty($data)) {
 echo "\"$fi eldName\" is a required fi eld.
\n";
 ++$errorCount;
 $retval = "";
 } else { // Only clean up the input if it isn't
 // empty
 $retval = trim($data);
 $retval = stripslashes($retval);
 }
 return($retval);
}

4. Add a function called validateEmail() immediately after the
validateInput() function. Th is function is almost exactly
like the validateInput() function, but it adds a regular
expression test to validate that the entered e-mail address is
in the correct format. Note that the regular expression used is
the same one introduced in Chapter 3.
function validateEmail($data, $fi eldName) {
 global $errorCount;
 if (empty($data)) {
 echo "\"$fi eldName\" is a required
 fi eld.
\n";
 ++$errorCount;
 $retval = "";
 } else { // Only clean up the input if it isn't
 // empty
 $retval = trim($data);
 $retval = stripslashes($retval);
 $pattern = "/^[\w-]+(\.[\w-]+)*@" .
 "[\w-]+(\.[\w-]+)*" .
 "(\.[[a-z]]{2,})$/i";
 if (preg_match($pattern, $retval)==0) {
 echo "\"$fi eldName\" is not a valid e-mail
 address.
\n";
 ++$errorCount;
 }
 }
 return($retval);
}

225

Reinforcement Exercises

5. Add a function called displayForm() immediately after the
validateEmail() function. Th is function takes one param-
eter for each form fi eld, and displays the form. It uses the
parameters for sticky form functionality.
function displayForm($Sender, $Email, $Subject,
$Message) {
?>
<h2 style = "text-align:center">Contact Me</h2>
<form name="contact" action="ContactForm.php"
 method="post">
<p>Your Name: <input type="text" name="Sender"
value="<?php
 echo $Sender; ?>" /></p>
<p>Your E-mail: <input type="text" name="Email"
 value="<?php echo $Email; ?>" /></p>
<p>Subject: <input type="text" name="Subject"
value="<?php
 echo $Subject; ?>" /></p>
<p>Message:

<textarea name="Message"><?php echo $Message;
 ?></textarea></p>
<p><input type="reset" value="Clear Form" />
 <input type="submit" name="Submit"
 value="Send Form" /></p>
</form>
<?php
}

6. Immediately after the displayForm() function, declare and
initialize a set of variables as follows:
$ShowForm = TRUE;
$errorCount = 0;
$Sender = "";
$Email = "";
$Subject = "";
$Message = "";

7. Next, add the following code to check for and validate the
input. Note that $_POST['Email'] is checked with the
validateEmail() function instead of the validateInput()
function.
if (isset($_POST['Submit'])) {
 $Sender =
 validateInput($_POST['Sender'],"Your Name");
 $Email =
 validateEmail($_POST['Email'],"Your E-mail");
 $Subject =
 validateInput($_POST['Subject'],"Subject");
 $Message =
 validateInput($_POST['Message'],"Message");

226

C H A P T E R 4 Handling User Input

 if ($errorCount==0)
 $ShowForm = FALSE;
 else
 $ShowForm = TRUE;
}

8. Next, add a conditional statement that checks the value
of $ShowForm. If $ShowForm is TRUE, the form is displayed.
Otherwise, an e-mail message is sent and a status message is
displayed. Note that a copy is sent to the sender.
if ($ShowForm == TRUE) {
 if ($errorCount>0) // if there were errors
 echo "<p>Please re-enter the form
 information below.</p>\n";
 displayForm($Sender, $Email, $Subject,
 $Message);
}
else {
 $SenderAddress = "$Sender <$Email>";
 $Headers = "From: $SenderAddress\nCC:
 $SenderAddress\n";
 // Substitute your own email address for
 // recipient@example.com
 $result = mail("recipient@example.com",
 $Subject, $Message, $Headers);
 if ($result)
 echo "<p>Your message has been sent. Thank you, "
 . $Sender . ".</p>\n";
 else
 echo "<p>There was an error sending your
 message, " .
 $Sender . ".</p>\n";
}

9. Save the document as ContactForm.php in the Projects
directory for Chapter 4 and upload the document to the Web
server.

10. Open ContactForm.php by entering the following URL:
http://<yourserver>/PHP_Projects/Chapter.04/Projects/
ContactForm.php. Verify that the form validates the input
fi elds correctly, redisplays the sticky form when there are
errors, and sends the e-mail message when there are no
errors.

11. Close your Web browser window.

227

Reinforcement Exercises

Exercise 4-3

Create an include fi le to assist with debugging Web forms. Th e
include fi le should create a table to display the contents of the
$_REQUEST autoglobal. Th e table will have two columns showing
each name/value pair. Use the advanced foreach statement syntax to
retrieve the index and value of each element of the $_REQUEST array.
Be sure to use the stripslashes() and htmlentities() functions
before displaying the text in the Web page. Save the document as inc_
requestDump.php. Create a second document to test the include
fi le. Save the second document as RequestDump.php.

Exercise 4-4

Create a two-part form that calculates an employee’s weekly gross
salary, based on the number of hours worked and an hourly wage
that you choose. Use an HTML document named Paycheck.html
as a Web form with two text boxes—one for the number of hours
worked and one for the hourly wage. Use a PHP document named
Paycheck.php as the form handler. Compute any hours over 40 as
time-and-a-half. Be sure to verify and validate the submitted form
data and provide appropriate error messages for invalid values.

Exercise 4-5

Create an All-in-One sticky form to solve the common “two trains
are moving toward each other” word problem. Th e form should
have three inputs, all numbers greater than 0: the speed of Train A
($SpeedA), the speed of Train B ($SpeedB), and the distance between
the two trains ($Distance). For this problem, you will need the fol-
lowing equations:
$DistanceA = (($SpeedA / $SpeedB) * $Distance) /
 (1 + ($SpeedA / $SpeedB));
$DistanceB = $Distance - $DistanceA;
$TimeA = $DistanceA / $SpeedA;
$TimeB = $DistanceB / $SpeedB;

In the preceding equations, $DistanceA and $DistanceB are the dis-
tances traveled by Trains A and B, respectively; $TimeA and $TimeB
are how long Trains A and B traveled, respectively ($TimeA should
equal $TimeB). If $SpeedA or $SpeedB is allowed to be 0, PHP will
display a “division by zero not allowed” error. Save the document as
TwoTrains.php in the Projects directory for Chapter 4.

The
strip-
slashes()
function was
introduced

earlier in this chapter. The
htmlentities() func-
tion was discussed in
Chapter 3.

228

C H A P T E R 4 Handling User Input

Discovery Projects
In the following projects, you will continue to design and develop
the Chinese Zodiac site that you began in Chapter 1. All fi les
for the Chinese Zodiac site will be saved in a directory named
ChineseZodiac in the base Web folder on the server.

Th e following projects will add interactivity to the Chinese Zodiac
Web page template by displaying alternative content in the dynamic
content section of the index.php fi le when the user clicks a button or
activates a hyperlink.

Discovery Project 4-1

In your text editor, create new include fi les with a placeholder for
page content for each of the pages identifi ed by the buttons and text
links. (Th e inc_home_page.php fi le has already been created.) Th e
contents of the pages will be populated in later projects.

Target Page Include Filenames Page Content

site_layout inc_site_layout.php [Insert site layout content here]

control_
structures

inc_control_structures.php [Insert control structure content here]

string_functions inc_string_functions.php [Insert string function content here]

web_forms inc_web_forms.php [Insert Web forms content here]

midterm_
assessment

inc_midterm_assessment.php [Insert midterm assessment content
here]

state_information inc_state_information.php [Insert state information content here]

user_templates inc_user_templates.php [Insert user template content here]

fi nal_project inc_fi nal_project.php [Insert fi nal project content here]

Table 4-3 Pages for Discovery Project 4-1

Save the fi les and upload them to the Includes folder in the
ChineseZodiac folder on the server.

Discovery Project 4-2

1. Reopen the inc_button_nav.php fi le created in Discovery
Project 2-2. Th e fi le is in the Includes folder in the
ChineseZodiac folder. Insert the code to convert the fi rst of
eight button images to hyperlinks that display the destination

229

Discovery Projects

fi le in the dynamic data section of the Chinese Zodiac Web
page template (index.php).

<img class="btn" src="Images/ButtonHomePage.gif"
alt="[Home Page]" title="Home Page"style =
 "border:0" />

2. Continue to add code for the other seven button images
targeting the content to the dynamic data section. Use the
appropriate “Target Page” value from Table 4-3 as the value of
each page parameter.

3. Save the fi le and upload it to the Web server.

Discovery Project 4-3

1. Reopen the inc_text_links.php fi le created in Discovery
Project 2-2 in your text editor. Th e fi le is stored in the
Includes folder in the ChineseZodiac folder. Modify the fi rst
text hyperlink to display the destination fi le in the dynamic
data section of the Chinese Zodiac Web page template
(index.php), as shown in the following code:
Home Page

2. Continue including additional code for the other seven hyper-
links in the text links bar, targeting the content to the dynamic
data section. Use the appropriate “Target Page” value from
Table 4-3 as the value of each page parameter.

3. Save the fi le and upload it to the Web server.

Discovery Project 4-4

1. Reopen the index.php fi le created in Discovery Project 2-2
in your text editor. Th e fi le is in the ChineseZodiac folder.
Replace the script section for the dynamic content section of
the Web page template.
if (isset($_GET['page'])) {
 switch ($_GET['page']) {
 case 'site_layout':
 include('Includes/inc_site_layout.php');
 break;
 case 'control_structures':
 include('Includes/' .
 'inc_control_structures.php');
 break;

230

C H A P T E R 4 Handling User Input

 case 'string_functions':
 include('Includes/' .
 'inc_string_functions.php');
 break;
 case 'web_forms':
 include('Includes/inc_web_forms.php');
 break;
 case 'midterm_assessment':
 include('Includes/' .
 'inc_midterm_assessment.php');
 break;
 case 'state_information':
 include('Includes/' .
 'inc_state_information.php');
 break;
 case 'user_templates':
 include('Includes/' .
 'inc_user_templates.php');
 break;
 case 'fi nal_project':
 include('Includes/' .
 'inc_fi nal_project.php');
 break;
 case 'home_page': // A value of
 // 'home_page' means
 // to display the
 // default page
 default:
 include('Includes/inc_home.php');
 break;
 }
}
else // If no button has been selected, then display
 // the default page
 include('Includes/inc_home.php');

2. Save the fi le and upload it to the ChineseZodiac folder on the
Web server.

3. Open the index.php page in the Web browser by entering the
following URL: http://<yourserver>/ChineseZodiac/index.php.

4. Verify that the content of the dynamic content section
changes each time you click a button or activate a text
hyperlink.

5. Close your Web browser window.

231

Discovery Projects

Discovery Project 4-5

Reopen inc_home_links_bar.php (created in Discovery Project 3-3)
in your text editor and enclose the two labels in <a> tags. Th e
value for the href attribute of both <a> tags will be index.php,
but each page will have diff erent URL tokens to specify the infor-
mation that should be displayed. You will continue to use the
page URL token to specify the home page by using the value
home_page. Additionally, you will use the section URL token
with diff erent values to determine which of the two versions of
the home page to display: either the one with the PHP informa-
tion (section=php) or the one with the Chinese zodiac informa-
tion (section=zodiac). For the PHP text link, the href value of
the <a> tag should be index.php?page=home_page§ion=php.
For the Chinese zodiac text link, the href value of the <a> tag
should be index.php?page=home_page§ion=zodiac. Save
inc_home_links_bar.php and upload the fi le to the Includes folder in
the ChineseZodiac folder on the server.

In your text editor, reopen the inc_home.php document that you
created in Discovery Project 2-2. Replace the placeholder [Insert
home page content here] with a PHP code section that includes
inc_home_links_bar.php at the top of the fi le.

At the end of the PHP code section, add the following code:
if (isset($_GET['section'])) {
 switch ($_GET['section']) {
 case 'zodiac':
 include('Includes/inc_chinese_zodiac.php');
 break;
 case 'php': // A value of 'php' means
 // to display the default page
 default:
 include('Includes/inc_php_info.php');
 break;
 }
}
else // If no section has been selected, then display the
 // default page
 include('Includes/inc_php_info.php');

Save the fi le as inc_home.php and upload it to the Includes folder in
the ChineseZodiac folder on the server.

Open http://<yourserver>/ChineseZodiac/index.php in the browser
and test each button and text hyperlink to verify that the content of
the dynamic data section changes when a button or text link is clicked.

232

C H A P T E R 4 Handling User Input

C H A P T E R 5
Working with Files
and Directories

In this chapter, you will:

Understand fi le types and permissions

Work with directories

Upload and download fi les

Write data to fi les

Read data from fi les

Open and close a fi le stream

Manage fi les and directories

Many programming tasks for a Web site require some form of data
storage. User fi les need to be uploaded and downloaded. Form data
needs to be saved and retrieved. Online calendars and blogs need to
be updated. One method of performing all of these tasks is through
fi les stored on the Web server. In this chapter, you will study how to
read, write, and manipulate fi les.

Understanding File Types
and Permissions
You need to understand two important fi le concepts before you can
work with fi les in PHP. Th e fi rst concept is fi le types, which aff ect
how information is stored in fi les and retrieved from them. Th e
 second concept is fi le permissions, which determine the actions
that a specifi c user can and cannot perform on a fi le.

Understanding File Types
In PHP, you can specify a fi le as one of two types: binary or text. A
binary file is a series of characters or bytes for which PHP attaches no
special meaning. Any structure to the data is determined by the appli-
cation that reads from or writes to the fi le. A text file, in contrast, is
assumed to have only printable characters and a small set of control
or formatting characters. Th e formatting characters are the binary
equivalents of the escape sequences you learned in Chapter 3, and are
listed in Table 5-1.

Escape
Sequence Meaning

Byte Value
Decimal Octal Hexadecimal

\t Horizontal tab 9 011 09

\r Line feed 10 012 0A

\v Vertical tab 11 013 0B

\f Form feed 12 014 0C

\n Carriage return 13 015 0D

Table 5-1 Control characters in a text fi le

Diff erent operating systems use diff erent escape sequences to identify
the end of a line. UNIX/Linux platforms use the \n carriage return
escape sequence, Macintosh applications usually use the \r line feed
escape sequence, and Windows operating systems use the \n carriage
return escape sequence followed by the \r line feed escape sequence.
Th e following code shows examples from all three operating systems:

234

C H A P T E R 5 Working with Files and Directories

This is how you end a line on UNIX/Linux platforms.\n
This is how you end a line on Windows operating systems.\n\r
This is how you end a line on Macintosh operating
 systems.\r

If you do not use the correct end-of-line escape sequence, you may
have problems when working with text fi les on diff erent platforms.
For example, each name in the following list ends with the \n carriage
return escape sequence, as required for UNIX/Linux operating
systems:
Blair, Dennis\n
Hernandez, Louis\n
Miller, Erica\n
Morinaga, Scott\n
Picard, Raymond\n

If you open a text fi le that contains the preceding lines in the Notepad
text editor on a Windows operating system, the \n characters are not
recognized as end-of-line markers. Instead, all of the separate strings
are displayed as one continuous string, and the font’s “nondisplayable
character” symbol (in this case, a rectangle) is displayed in place of
the \n characters, as shown in Figure 5-1.

Figure 5-1 Displaying a UNIX/Linux text fi le using Notepad in Windows

For the lines to display correctly in Windows, they must end with the
\n\r escape sequence pair, as follows:
Blair, Dennis\n\r
Hernandez, Louis\n\r
Miller, Erica\n\r
Morinaga, Scott\n\r
Picard, Raymond\n\r

Th e PHP fi le functions that you study in this chapter can usually
accommodate any of these escape sequences and end lines in a text
fi le appropriately, regardless of the operating system. Although the
examples in this book use the \n carriage return escape sequence
that is supported by UNIX/Linux operating systems, the PHP scripts
you write will function correctly on any platform. However, keep in
mind that if you attempt to open a text fi le that does not contain the
required characters for the current operating system, the line breaks

Prior to OS X,
all Macintosh
applications
and the
Macintosh

operating system used
the \r line feed escape
sequence to identify the
end of a line. Starting
with OS X, the Macintosh
operating system is built
on a Linux core. So,
although most Macintosh
applications still use the
\r escape sequence as
the end-of-line marker,
most command-line and
operating system pro-
grams use the UNIX/
Linux \n carriage return
escape sequence.

235

Understanding File Types and Permissions

may not appear correctly in your text editor. As a general rule, you
should choose the appropriate end-of-line escape sequence for your
Web server.

Working with File Permissions
As you work through this chapter, keep in mind that your ability to
access fi les on a local computer or network depends on the security
permissions that have been granted to the fi les and to the directories
where they are stored. Th e owner of a resource, such as a fi le or direc-
tory, can usually grant permission to access the resource. Th e owner
is typically the person who created the resource. Otherwise, the net-
work administrator is in charge of granting permissions to resources.

Typical permissions include the abilities to read, write, modify, and
execute. For example, you might have permission to read a fi le, but
not to write to it. Th e procedures for manually granting permissions
to resources depend on the server’s operating system.

Changing Permissions
PHP provides the chmod() function for changing the permissions of a
fi le within PHP. Th e name “chmod” is a contraction of “change mode”;
mode is another word for permissions. Th e syntax for the chmod()
function is chmod(fi lename, mode), where fi lename is the name of
the fi le to change, and mode is an integer specifying the permissions
for the fi le. Th e value of mode defi nes three types of permission (read,
write, and execute) for three levels of access (the fi le’s owner or user,
users in the group associated with the fi le, and all other users).

Th e easiest way to ensure that the proper permissions are set is to
always use a four-digit octal (base 8) value when assigning permis-
sions—octal values encode three bits per digit, which matches the three
permission bits per level of access. When PHP parses a numeric value
that contains a leading zero, the number is assumed to be in octal for-
mat, so the leftmost digit should be 0. Th e remaining digits are assigned
a value, as indicated in Table 5-2. To assign more than one permission
for an access level, add the values for the permissions together.

Permissions

First Digit
(Leftmost)
Always 0

Second Digit
User (u)

Third Digit
Group (g)

Fourth Digit
(Rightmost)
Other (o)

Read (r) 0 4 4 4

Write (w) 0 2 2 2

Execute (x) 0 1 1 1

Table 5-2 Octal values for the mode parameter of the chmod() function

See your
operating
system’s
documenta-
tion for

 information on how to
manually set permissions
for resources such as
fi les and directories.

PHP
 modeled the
chmod()
function
after the

UNIX chmod utility, so
values for the mode
parameter of the
chmod() function match
those in the chmod utility.
For other operating
 systems, the chmod()
function converts the
mode fl ags into the
 equivalent permissions
for the underlying
 operating system.

236

C H A P T E R 5 Working with Files and Directories

For example, the following code assigns read, write, and execute
 permissions to the user, read and execute permissions to the group,
and no permissions for others for the fi le example.exe:
chmod("example.exe", 0750);

Th e following example assigns read permissions to all users, but only
gives the user permission to write to the index.html fi le:
chmod("index.html", 0644);

Th e same permission bits apply to directories as well as fi les, but
the interpretation of the permissions is slightly diff erent. “Read”
 permission for a directory means that the user can list the fi les in a
directory. “Write” permission means that the user can add new fi les
to the directory. “Execute” permission means that the user can access
the fi les in the directory (assuming that the user has permissions for
the fi le itself).

Checking Permissions
For reading the permissions associated with a particular fi le, PHP
provides the fi leperms() function. Th is function takes a fi lename as
the only parameter, and returns an integer bitmap of the permissions
associated with the fi le. As with the chmod() function, the results will
be more meaningful when displayed in octal rather than decimal.
You can use PHP’s decoct() function to convert a decimal value to
an octal value. Also, because the fi leperms() function contains more
information than just the fi le permissions, the permissions can be
extracted by using the arithmetic modulus operator (%) with an octal
value of 01000. (Remember that the leading 0 indicates to PHP that
the value is in octal.)
$perms = fi leperms($testfi le);
$perms = decoct($perms % 01000);
echo "fi le permissions for $testfi le: 0" . $perms . "
\n";

Short Quiz

1. Explain the diff erence between a binary fi le and a text fi le.

2. What are the diff erent end-of-line markers for Windows,
Macintosh, and UNIX/Linux?

3. What functions are used to change and retrieve the
 permissions of a fi le?

Write
 permission
normally
implies
delete

 permission as well.

As implied in
this discus-
sion, if users
do not have
“read” permis-

sion on a directory but
have “read” permission
on a fi le within the direc-
tory, they can open the
fi le as long as they know
the name of the fi le. The
users will not be able to
see the fi le in a directory
listing, though.

237

Understanding File Types and Permissions

4. What are the three typical permissions for fi les and
directories?

5. What are the three levels of access for fi les and directories?

Working with Directories
Before you learn more about working with fi les in PHP, you should
become familiar with how PHP works with directories. By knowing
how to create, read, and move between directories, you can examine
the changes that you make to fi les. PHP includes functions for read-
ing the contents of a directory and for creating new directories.

Reading Directories
With PHP, you can read the names of fi les and directories that exist
within any specifi ed directory for which you have the appropriate
permissions. To read the contents of a directory, you use the PHP
functions listed in Table 5-3.

Function Description
chdir(directory) Changes to the specifi ed directory

chroot(directory) Changes the root directory of the
current process to the specifi ed
directory

closedir(handle) Closes a directory handle

getcwd() Gets the current working directory

opendir(directory) Opens a handle to the specifi ed
directory

readdir(handle) Reads a fi le or directory name from the
specifi ed directory handle

rewinddir(handle) Resets the directory pointer to the
beginning of the directory

scandir(directory[, sort]) Returns an indexed array containing
the names of fi les and directories in the
specifi ed directory

Table 5-3 PHP directory functions

To iterate through the entries in a directory, you open a handle to
the directory with the opendir() function. A handle is a special type

238

C H A P T E R 5 Working with Files and Directories

of variable that PHP uses to represent a resource such as a fi le or
 directory. You can then use the readdir() function to return the fi le
and directory names from the open directory. Each time you call the
readdir() function, it moves a directory pointer to the next entry
in the directory. A directory pointer is a special type of variable that
refers to the currently selected record in a directory listing. When you
fi rst open the directory using the opendir() function, the directory
pointer is reset to the start of the directory listing. Th e directory
pointer is a way of keeping track of where you are in a directory. After
the directory pointer reaches the end of the directory, the readdir()
function returns a value of FALSE. Th e following code demonstrates
how to use the readdir() function to display the names of the fi les
in the PHP program directory. Notice that the readdir() function
is included as the conditional expression for the while statement. As
long as the readdir() function does not return a value of FALSE, the
while loop continues displaying the names of the directory entries.
Also notice at the end of the code that the directory handle is closed
with the closedir() function.
$Dir = "/var/html/uploads";
$DirOpen = opendir($Dir);
while ($CurFile = readdir($DirOpen)) {
 echo $CurFile . "
\n";
}
closedir($DirOpen);

To create a new Web page that displays the contents of the “fi les”
subdirectory:

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, header
information, and <body> element. Use the strict DTD and
“View Files” as the content of the <title> element.

3. Add the following script section to the document body:
<?php
?>

4. Add the following code to the script section to read the fi les in
the “fi les” subdirectory. Notice that the while statement uses
the strcmp() function to exclude the “.” and “..” entries.
$Dir = "fi les";
$DirOpen = opendir($Dir);
while ($CurFile = readdir($DirOpen)) {
 if ((strcmp($CurFile, '.') != 0) &&
 (strcmp($CurFile, '..') != 0))
 echo "" .
 $CurFile . "
\n";
}
closedir($DirOpen);

When the PHP
scripting
engine reads
a directory,
entries are

returned for the directory
navigation shortcuts: “.”
for the current directory
and “..” for the parent
directory (the directory
above the current
directory).

239

Working with Directories

5. Save the document as ViewFiles.php in the Chapter direc-
tory for Chapter 5 and upload the fi le to the server.

6. Create a subdirectory named fi les under the Chapter direc-
tory for Chapter 5. Upload three fi les of your choosing to the
fi les subdirectory.

7. Open the ViewFiles.php fi le in your Web browser by entering
the following URL: http://<yourserver>/PHP_Projects/
Chapter.05/Chapter/ViewFiles.php. Figure 5-2 shows the out-
put for three fi les named kitten.jpg, polarbear.gif, and gorilla.gif.

Figure 5-2 Listing of the “fi les” subdirectory using the opendir(), readdir(), and
closedir() functions

8. Close your Web browser window.

Starting with PHP 5.0, you can use the scandir() function, which
returns an indexed array containing the names of fi les and directories
in the specifi ed directory, instead of using the opendir(), readdir(),
and closedir() functions. Th e following code shows how to display
the names of the fi les and directories in the PHP program directory.
Notice that this version does not use the opendir() or closedir()
functions. Instead, it just uses the scandir() function to return the
names of the entries in the PHP program directory to an array named
$DirEntries, which are then displayed with a foreach loop.
$Dir = "/var/html/uploads";
$DirEntries = scandir($Dir);
foreach ($DirEntries as $Entry) {
 echo $Entry . "
\n";
}

When you use the readdir() function to return the entries in a
directory, the entries are not sorted, but instead are returned in the
order in which they are stored by your operating system. One benefi t
of using the scandir() function instead of the readdir() function
is that the scandir() function sorts the returned entries in ascend-
ing alphabetical order. If you pass a value of 1 as a second argument

240

C H A P T E R 5 Working with Files and Directories

to the scandir() function, as shown in the following example, the
entries are sorted in descending alphabetical order:
$Dir = "/var/html/uploads";
$DirEntries = scandir($Dir, 1);
foreach ($DirEntries as $Entry) {
 echo $Entry . "
\n";
}

To modify the ViewFiles.php script so it uses the scandir() function:

1. Return to the ViewFiles.php fi le in your text editor.

2. Replace the existing statements in the script section with the
following statements that use the scandir() function:
$Dir = "fi les";
$DirEntries = scandir($Dir);
foreach ($DirEntries as $Entry) {
 if ((strcmp($Entry, '.') != 0) &&
 (strcmp($Entry, '..') != 0))
 echo "" .
 $Entry .
 "
\n";
}

3. Save the ViewFiles.php fi le and upload it to the server.

4. Open the ViewFiles.php fi le in your Web browser by enter-
ing the following URL: http://<yourserver>/PHP_Projects/
Chapter.05/Chapter/ViewFiles.php. Figure 5-3 shows the new
sorted list of fi les.

Figure 5-3 Listing of the “fi les” subdirectory using the scandir() function

5. Close your Web browser window.

Creating Directories
You can use the mkdir() function to create a new directory. To cre-
ate a new directory within the current directory, simply pass the
name of the directory you want to create to the mkdir() function.

241

Working with Directories

Th e following statement creates a new directory named “volunteers”
within the current directory:
mkdir("volunteers");

To create a new directory in a location other than the current direc-
tory, you can use a relative or absolute path. For example, the fi rst
statement in the following code uses a relative path to create a new
directory named “event” at the same level as the current directory by
using the “..” notation to refer to the parent directory. Th e second
statement uses an absolute path to create a new directory named
“utilities” in the PHP program directory.
mkdir("../event");
mkdir("/bin/PHP/utilities");

If you attempt to create a directory that already exists, you will
receive an error like the one shown in Figure 5-4.

Figure 5-4 Warning that a directory already exists

You will also receive a warning if you attempt to create a new direc-
tory within a directory that doesn’t exist. In the next section, you will
learn how to check whether a directory exists before attempting to
access it or create a new directory within it.

Obtaining File and Directory Information
To successfully work with fi les and directories, you need to be able to
obtain information about them. Some of the most important infor-
mation about the fi le system includes whether the fi les and directo-
ries exist and whether you have the necessary permissions to work
with them. Table 5-4 lists the common PHP fi le and directory status
functions.

242

C H A P T E R 5 Working with Files and Directories

Function Description
fi le_exists(fi lename) Determines whether a fi le or directory

exists

is_dir(fi lename) Determines whether a fi lename specifi es
a directory

is_executable(fi lename) Determines whether a fi le is executable

is_fi le(fi lename) Determines whether a fi lename specifi es
a regular fi le

is_link(fi lename) Determines whether a fi lename specifi es
a symbolic link

is_readable(fi lename) Determines whether a fi le is readable

is_writable(fi lename) or
is_writeable(fi lename)

Determines whether a fi le is writable

Table 5-4 PHP fi le and directory status functions

Th e is_readable(), is_writable() (or is_writeable()), and
is_executable() functions check the permissions of a fi le or direc-
tory to determine whether the PHP scripting engine has read, write,
or execute permissions, respectively. Th e is_dir(), is_fi le(), and
is_link() functions are used to diff erentiate among the three most
common entries in a directory listing. A symbolic link, which is iden-
tifi ed with the is_link() function, is a reference to another fi le else-
where on the system, not a fi le itself. Because each of these functions
return FALSE if a fi le does not exist, the fi le_exists() function does
not need to be used in conjunction with the other functions. By using
these functions before attempting to manipulate a fi le or directory,
you will ensure that the script runs correctly and does not produce
errors.

You can use the is_dir() function to check whether a specifi ed
fi lename is a directory before attempting to access it. Th e following
example demonstrates how to use the is_dir() function before using
the scandir() function:
$Dir = "/var/html/uploads";
if (is_dir($Dir)) {
 $DirEntries = scandir($Dir, 1);
 foreach ($DirEntries as $Entry) {
 echo $Entry . "
\n";
 }
}
else
 echo "<p>The directory " . htmlentities($Dir) .
 " does not exist.</p>\n";

243

Working with Directories

PHP includes other types of functions that return additional informa-
tion about fi les and directories. Table 5-5 lists common fi le and direc-
tory information functions.

Function Description
fi leatime(fi lename) Returns the last time the fi le was accessed

fi lectime(fi lename) Returns the last time the fi le information was
modifi ed

fi lemtime(fi lename) Returns the last time the data in a fi le was
modifi ed

fi leowner(fi lename) Returns the name of the fi le’s owner

fi lesize(fi lename) Returns the size of the fi le in bytes

fi letype(fi lename) Returns the fi le type

Table 5-5 Common fi le and directory information functions

Th e fi le type returned by the fi letype() function is a text string that
contains one of the following values: “fi fo”, “char”, “dir”, “block”, “link”,
“fi le”, “socket”, or “unknown”. Most of these refer to special resource
types that you will not encounter. All of the examples in this chapter
return either “dir” for a directory or “fi le” for a fi le.

Th e following code demonstrates how to use two of the functions
listed in Table 5-5: fi lesize() and fi letype(). Th e script builds a
table that contains the fi lename, fi le size, and fi le type. Figure 5-5
shows the output.
$Dir = "/var/html/uploads";
if (is_dir($Dir)) {
 echo "<table border='1' width='100%'>\n";
 echo "<tr><th>Filename</th><th>File Size</th>
 <th>File Type</th></tr>\n";
 $DirEntries = scandir($Dir);
 foreach ($DirEntries as $Entry) {
 $EntryFullName = $Dir . "/" . $Entry;
 echo "<tr><td>" . htmlentities($Entry) .
 "</td><td>" .
 fi lesize($EntryFullName) . "</td><td>" .
 fi letype($EntryFullName) . "</td></tr>\n";
 }
 echo "</table>\n";
}
else
 echo "<p>The directory " . htmlentities($Dir) .
 " does not exist.</p>\n";

244

C H A P T E R 5 Working with Files and Directories

Figure 5-5 Output of a script with fi le and directory information functions

To create a more detailed directory listing:

1. Return to the ViewFiles.php fi le in your text editor.

2. Replace the existing statements in the script section with the
following statements that use the scandir() function:
$Dir = "fi les";
$DirEntries = scandir($Dir);
echo "<table border='1' width='100%' >\n";
echo "<tr><th colspan='4'>Directory listing for
" . htmlentities($Dir) . "</th>
</tr>\n";
echo "<tr>";
echo "<th>Name</th>";
echo "<th>Owner ID</th>";
echo "<th>Permissions
</th>";
echo "<th>Size</th>";
echo "</tr>\n";
foreach ($DirEntries as $Entry) {
 if ((strcmp($Entry, '.') != 0) &&
 (strcmp($Entry, '..') != 0)) {
 $FullEntryName=$Dir . "/" . $Entry;
 echo "<tr><td>";
 if (is_fi le($FullEntryName))
 echo "" .
 htmlentities($Entry). "";
 else
 echo htmlentities($Entry);
 echo "</td><td align='center'>" .
 fi leowner($FullEntryName);
 if (is_fi le($FullEntryName)) {
 $perms = fi leperms($FullEntryName);

245

Working with Directories

 $perms = decoct($perms % 01000);
 echo "</td><td align='center'>
 0$perms";
 echo "</td><td align='right'>" .
 number_format(fi lesize($Full
 EntryName), 0) .
 " bytes";
 }
 else
 echo "</td><td colspan='2'
 align='center'><DIR>";
 echo "</td></tr>\n";
 }
}
echo "</table>\n";

3. Save the ViewFiles.php fi le and upload it to the server.

4. Open the ViewFiles.php fi le in your Web browser by entering
the following URL: http://<yourserver>/PHP_Projects/
Chapter.05/Chapter/ViewFiles.php. Figure 5-6 shows the
expanded list of fi les.

Figure 5-6 A detailed listing of the “fi les” subdirectory

5. Close your Web browser window.

Short Quiz

1. What three functions are used to iterate through fi les and
directories in a specifi c directory?

2. What function returns an indexed array containing the names
of fi les and directories in the specifi ed directory?

3. What is one benefi t of using the scandir() function versus
the readdir() function?

246

C H A P T E R 5 Working with Files and Directories

4. What function is used to create a directory?

5. What two functions are used to determine if a directory entry
is a fi le or a directory?

Uploading and Downloading Files
Sometimes, a Web application allows visitors to upload fi les from
their local computer, referred to as the client, to the Web server.
More often, a Web site or application allows visitors to download fi les
from the Web server to their client. Depending on the specifi c Web
 application, the fi les may be simple text fi les or they may be more
complex fi le types, such as images, documents, or spreadsheets. Th is
section describes how to upload and download fi les.

Uploading Files
Visitors using a Web application often want to customize pages with
custom graphics. For example, a registered member of a social net-
working Web site may want to post pictures on a profi le page. Other
users may want to upload documents to be used for online collabora-
tion and review. PHP provides a method for transferring fi les from a
user’s client machine to the Web server.

Selecting the File
Files are uploaded in PHP through forms. Th e form’s method attribute
must be “POST” for a fi le to be uploaded. An additional attribute,
named enctype, must be added to the opening <form> tag, and must
be set to “multipart/form-data”. Th is instructs the Web browser to
post multiple sections, one for the regular form data and one for the
fi le contents.

An input fi eld of type “fi le” within the form presents the user with a
fi le selection control. Using this control, the user can enter the full
path and name of the fi le to be uploaded. Most modern Web brows-
ers also provide a “Browse” button, which allows the user to navigate
to the appropriate fi le using a “fi le select” dialog box. A separate “hid-
den” input fi eld may be included to set the maximum allowed size of
the uploaded fi le. Th is input fi eld must be named “MAX_FILE_SIZE”
(in all capital letters) and must precede the “fi le” input fi eld within the
form. Th e input fi eld should be of type “hidden” to prevent it from
being displayed or changed, and the value is set to the maximum
number of bytes allowed for the uploaded fi le.

Using the
“MAX_FILE_
SIZE” input
is safer and
more effi -

cient than checking the
size of the fi le in the form
handler.

It is a good
practice to
display a
message
indicating

the maximum fi le size on
the Web form so the visi-
tor is not surprised by an
error message if that size
is exceeded. A common
method is to indicate the
maximum size in paren-
theses, as in “(Maximum
5,000 bytes)”, following
the “fi le” input fi eld.

247

Uploading and Downloading Files

Retrieving the File Information
When the form is posted, information for the uploaded fi le is stored
in the $_FILES[] autoglobal array, which was introduced in Chapter
4. An associative array element is created for each “fi le” input fi eld
name. Th e associative key of the element is the name of the input fi eld
from the form. Th e array element is a nested associative array con-
taining the information about the uploaded fi le. Table 5-6 shows the
keys of the nested associative array elements and describes the values
for those keys.

Key Value
'error' The error code associated with the fi le upload; an error

code of 0 indicates a successful upload

'tmp_name' The temporary location of the fi le contents

'name' The original fi lename

'size' The fi le size (in bytes)

'type' The fi le’s MIME type, as specifi ed by the client’s Web
browser

Table 5-6 The nested array keys of a $_FILES[] autoglobal array element

To retrieve the information from the $_FILES[] autoglobal array,
use the syntax $_FILES[fi lefi eld][key], where fi lefi eld is replaced
with the name of the “fi le” input element on the Web form and key is
replaced by the appropriate key from Table 5-6. For example, assume
that the Web form’s <input> fi eld was declared as follows:
<input type="fi le" name="picture_fi le" />

In the form handler, the $_FILES[] autoglobal array would contain
one element, $_FILES['picture_fi le'], which in turn contains the
following fi ve elements:
$_FILES['picture_fi le']['error'] /* Contains the error code
 associated with the fi le */
$_FILES['picture_fi le']['tmp_name'] /* Contains the
 temporary location of the fi le contents */
$_FILES['picture_fi le']['name'] /* Contains the name of the
 original fi le */
$_FILES['picture_fi le']['size'] /* Contains the size of the
 uploaded fi le in bytes */
$_FILES['picture_fi le']['type'] /* Contains the type of the
 fi le */

MIME stands
for
Multipurpose
Internet Mail
Extensions.

As the name implies,
MIME types were origi-
nally created for including
fi les in the body of an
e-mail message. Their
use has been expanded
to general use for many
Internet message types,
including XHTML. MIME
types consist of two
parts, separated by a
slash (/). The fi rst part
is the general classifi ca-
tion of the fi le type, such
as “image” or “text”. The
second part specifi es the
exact type within the
 general classifi cation, as
in “image/gif”, “image/
jpeg”, “text/plain”, or
“text/html”.

The
$_FILES
autoglobal
array is only
set if

fi le_uploads is set to
“On” or 1 in the php.ini
fi le. If you have the form
set up correctly and the
$_FILES autoglobal
array is not getting set
properly, use the
phpinfo() function to
verify that the
fi le_uploads option is
set to “On” or 1.

248

C H A P T E R 5 Working with Files and Directories

Storing the Uploaded File
As described in the previous section, the uploaded fi le is stored to
a temporary location on the Web server. Th e fi le then needs to be
moved to a more permanent location elsewhere in the directory
structure.

Th ere are some important considerations when determining the des-
tination of the uploaded fi le. Th e fi rst is whether uploaded fi les should
be immediately available or if they need to be verifi ed fi rst. If the fi le
needs to be verifi ed to ensure that it is virus-free, or of the appropri-
ate type, to list just two reasons, then the fi le should be stored in a
“sandbox” area outside the publicly accessible Web folders. Th e sec-
ond consideration is whether the fi le is a public fi le, which would be
freely available to anyone visiting the Web site, or a private fi le, which
would only be available to authorized visitors. A public fi le can be
stored within the publicly accessible Web folder structure. A private
fi le should be stored in a folder outside the publicly accessible Web
folder structure, where it is only available through a download script.

Once you determine the destination, use the move_uploaded_fi le()
function to move the uploaded fi le from its temporary location to the
permanent destination. Th e syntax for the function is:
bool move_uploaded_fi le(fi lename, destination)

Where fi lename is the contents of $_FILES[fi lefi eld]['tmp_name']
and destination is the path and fi lename of the location where the
fi le will be stored. Th e function returns TRUE if the move succeeds,
and FALSE if the move fails.

For example, to move the temporary fi le uploaded using the “picture_
fi le” input fi eld into the “uploads” subdirectory of the current direc-
tory using the fi le’s original name, you would use the following code:
if (move_uploaded_fi le($_FILES['picture_fi le']['tmp_name'],
 "uploads/" . $_FILES['picture_fi le']['name']) ===
 FALSE)
 echo "Could not move uploaded fi le to \"uploads/" .
 htmlentities($_FILES['picture_fi le']['name']) .
 "\"
\n";
else {
 chmod("uploads/" . $_FILES['picture_fi le']['name'],
 0644);
 echo "Successfully uploaded \"uploads/" .
 htmlentities($_FILES['picture_fi le']['name']) .
 "\"
\n";
}

249

Uploading and Downloading Files

In the preceding example, notice the call to the chmod() function
before the “Successfully uploaded . . .” message is displayed. By default,
the uploaded fi le is owned by the user account that owns the Web
server process and has only owner “read” and “write” privileges
(0600). To ensure that you (and everyone else) can read the fi le, use
chmod(fi lename, 0644); after calling the move_uploaded_fi le()
function, replacing fi lename with the value that you used in the
destination parameter for the move_uploaded_fi le() function.

To create a form to upload a fi le:

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, header
information, and <body> element. Use the strict DTD and
“File Uploader” as the content of the <title> element.

3. Add the following script section to the document body:
<?php
?>

4. Add the following code to the script section to read the fi les
in the “fi les” subdirectory. Th e associative array index for the
$_FILES autoglobal array is the name of the fi le input fi eld
that will be used in the Web form ('new_fi le').
$Dir = "fi les";
if (isset($_POST['upload'])) {
 if (isset($_FILES['new_fi le'])) {
 if (move_uploaded_fi le(
 $_FILES['new_fi le']['tmp_name'],
 $Dir . "/" . $_FILES['new_fi le']
 ['name']) == TRUE) {
 chmod($Dir . "/" . $_FILES['new_fi le']
 ['name'], 0644);
 echo "File \"" .
 htmlentities($_FILES['new_fi le']
 ['name']) .
 "\"successfully uploaded.

\n";
 }
 else
 echo "There was an error
 uploading \"" .
 htmlentities($_FILES['new_fi le']
 ['name']) .
 "\".
\n";
 }
}

250

C H A P T E R 5 Working with Files and Directories

5. Add the following XHTML form immediately after the
 closing PHP tag. Notice that the fi le input is named
 “new_fi le”, which is the same value used earlier as the index
into the $_FILES autoglobal array. Also notice the message
that notifi es the user of the 25,000-byte limit set in the
MAX_FILE_SIZE hidden input.
<form action="FileUploader.php" method="POST"
enctype="multipart/form-data">
<input type="hidden" name="MAX_FILE_SIZE"
value="25000" />

File to upload:

<input type="fi le" name="new_fi le" />

(25,000 byte limit)

<input type="submit" name="upload" value="Upload the
File" />

</form>

6. Save the document as FileUploader.php in the Chapter
directory for Chapter 5 and upload the fi le to the server.

7. Verify that the “fi les” directory on the Web server has read,
write, and execute permissions enabled for user, group, and
other.

8. Open the FileUploader.php fi le in your Web browser by enter-
ing the following URL: http://<yourserver>/PHP_Projects/
Chapter.05/Chapter/FileUploader.php. Attempt to upload
a fi le to the server. You should receive a message stating
whether the upload succeeded or failed.

9. After you have successfully uploaded one or more files
to the server using the FileUploader.php form, open the
ViewFiles.php file in your Web browser by entering
the following URL: http://<yourserver>/PHP_Projects/
Chapter.05/Chapter/ViewFiles.php. You should see the
new files in the directory listing. Figure 5-7 shows the
output for a new file named seahorse.jpg along with the
kitten.jpg, polarbear.gif, and gorilla.gif files. Notice that the
Owner ID for seahorse.jpg is different from those for the
other three—seahorse.jpg was created by the user account
for the PHP scripting engine, while the others were created
by the account owner.

For most
uses, grant-
ing write
permission
to others is

not a safe choice. When
making this choice, be
sure you have considered
the security risks. Do not
grant write permissions
unless it is absolutely
required.

251

Uploading and Downloading Files

Figure 5-7 Listing of the “fi les” subdirectory after uploading seahorse.jpg

10. Close your Web browser window.

Downloading Files
Normally, it is not necessary to use PHP to download fi les from the
Web server. If a fi le is stored in a directory that is within the public
XHTML directory structure, you can provide an XHTML anchor
(<a>) tag in the Web page. Th e user clicks the link, and the Web
browser downloads the fi le automatically.

With fi les that do not reside within the public XHTML directory
structure, another method is required to download the fi le. PHP
provides the tools required to download a fi le from anywhere in the
directory structure.

Th e fi rst step is to tell the PHP script which fi le to download. Th e
simplest way is with URL tokens and the $_GET[] autoglobal array.
Th is approach allows you to embed the download in a hyperlink
through an XHTML anchor (<a>) tag, similar to a standard down-
load. Because a PHP script is downloading the fi le, you have the
advantage of being able to include validation code within the script to
ensure that the user should be allowed to retrieve the fi le and that the
fi le is available before allowing the download.

Th e second step to downloading a fi le with PHP is to provide the
appropriate XHTML headers to tell the client Web browser that the
response contains more than just a Web page. Headers are infor-
mation sent to the Web browser from the Web server that tell the
browser about the data being sent. Th e types of headers to send are
listed in Table 5-7.

252

C H A P T E R 5 Working with Files and Directories

Header Description Value Example

Content-
Description

Description of
the message
contents

A text message header("Content-

Description:

File Transfer");

Content-Type MIME type and
subtype of
the message
contents

A MIME type/
subtype string

header("Content-Type:

application/force-

download");

Content-
Disposition

The attributes
of the attachment,
especially the
fi lename

A series of
name/value
pairs defi ning
the attributes of
the fi le

header("Content-

Disposition:

attachment;

fi lename=\"list.txt\"");

Content-Transfer-
Encoding

The method
used to encode
the message
contents

7bit, 8bit,
quoted-printable,
base64, binary

header("Content-

Transfer-Encoding:

base64");

Content-Length The length of
the message
contents

Number header("Content-

Length: 5000");

Table 5-7 Content headers for downloading a fi le

Th e most important thing to remember when sending headers from
PHP is that all of the headers must be sent prior to any Web content.
If even a single character of the Web page is sent prior to sending
the header, the header information will be considered text within
the Web page and not header information. Th is will prevent your fi le
from being downloaded. Th e easiest way to avoid this problem is to
ensure that the fi rst characters on the fi rst line of the PHP script are
the opening PHP tag (<?php).

PHP uses the header() function to return header information to the
client Web browser. Th e header() function takes a single parameter,
which is a text string containing the name of the header fi eld followed
by a colon, a space, and the data to associate with the header. Th e
headers listed in Table 5-7 are far from comprehensive, but they are
the only ones you need to download a fi le.

For example, the following headers tell the Web browser that a fi le
named info.doc is 5000 bytes long, is encoded using base64 encoding,
and is a fi le being downloaded:

253

Uploading and Downloading Files

header("Content-Description: File Transfer");
header("Content-Type: application/force-download");
header("Content-Disposition: attachment;
 fi lename=\"info.doc\"");
header("Content-Transfer-Encoding: base64");
header("Content-Length: 5000");

Th e “Content-Type” header can be used in two ways. If you want the
downloaded fi le to appear in the client’s Web browser as if it were a
normal fi le, use the MIME type for the fi le. For example, if you are
downloading a JPEG image, the MIME type would be “image/jpeg”.
Th e Web browser will display the image. If you want the fi le to be
saved to the user’s hard drive instead of being opened in the Web
browser, use a MIME type of “application/force-download”, which
instructs the Web browser to open a “save fi le” dialog box and write
the fi le to disk.

Th e third step, once the headers have been sent, is to send the fi le
itself. Th e PHP readfi le() function reads a fi le from disk and sends
it directly to the Web browser. Th e only required parameter for the
readfi le() function is a string containing the path and fi lename to
the fi le being sent; on success, readfi le() returns the number of bytes
sent; on failure, readfi le() returns FALSE.
readfi le("/usr/uploads/info.doc");

You are fi nished when the headers have been sent and the readfi le()
function has sent the fi le’s contents. Do not send any XHTML data,
or it will become part of the downloaded fi le information. If, however,
the headers were not sent and the readfi le() function was not called,
the PHP script can create a Web page explaining that the fi le could
not be downloaded and why. Th erefore, your code should ensure that
the headers were not sent and the readfi le() function was not called
prior to sending the Web page output.

To create a PHP downloader for the fi les subdirectory:

1. Create a new document in your text editor.

2. Add the following script section to the document body. Be sure
that there is nothing in the fi le before the opening PHP tag:
<?php
?>

3. Add the following code to the script section to check if the
requested fi le exists and is readable:
$Dir = "fi les";
if (isset($_GET['fi lename'])) {
 $FileToGet = $Dir . "/" . stripslashes
 ($_GET['fi lename']);

254

C H A P T E R 5 Working with Files and Directories

 if (is_readable($FileToGet)) {
 }
 else {
 $ErrorMsg = "Cannot read \"$FileToGet\"";
 $ShowErrorPage = TRUE;
 }
}
else {
 $ErrorMsg = "No fi lename specifi ed";
 $ShowErrorPage = TRUE;
}
if ($ShowErrorPage) {

4. Add the following code in the if section of the inner
if...else statement for the is_readable() test to download
the fi le:
header("Content-Description: File Transfer");
header("Content-Type: application/force-download");
header("Content-Disposition: attachment;
fi lename=\"" . $_GET['fi lename'] . "\"");
header("Content-Transfer-Encoding: base64");
header("Content-Length: " . fi lesize($FileToGet));
readfi le($FileToGet);
$ShowErrorPage = FALSE;

5. Add the following code immediately after the closing PHP tag
to show the error page. Note the use of advanced escaping to
display the Web page output.
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>File Download Error</title>
<meta http-equiv="content-type" content="text/html;
 charset=iso-8859-1" />
</head>
<body>
<p>There was an error downloading "<?php echo
htmlentities($_GET['fi lename']); ?>"</p>
<p><?php echo htmlentities($ErrorMsg); ?></p>
</body>
</html>
<?php
}
?>

6. Save the document as FileDownloader.php in the Chapter
directory for Chapter 5 and upload the fi le to the server.

7. Reopen ViewFiles.php. Replace the line that reads:
echo "" .
 htmlentities($Entry). "\n";

255

Uploading and Downloading Files

 with a line that reads:
echo "" .
 htmlentities($Entry). "\n";

8. Save ViewFiles.php and upload the fi le to the Web server.

9. Open the ViewFiles.php fi le in your Web browser by entering
the following URL: http://<yourserver>/PHP_Projects/Chap-
ter.05/Chapter/ViewFiles.php. Click one of the highlighted
fi lenames. Your Web browser should display a “save fi le”
dialog box like the one shown in Figure 5-8. Save the fi le and
verify that it downloaded correctly.

Figure 5-8 The “save fi le” dialog box for polarbear.gif

10. Close your Web browser window.

Short Quiz

1. What type of form input element is used to choose the fi le to
upload?

2. What hidden form input element restricts the size of the
uploaded fi le?

3. What is the name of the autoglobal array that contains the
uploaded fi le information?

256

C H A P T E R 5 Working with Files and Directories

4. What function is used to pass headers to the client Web
browser?

5. What function is used to send the contents of a fi le to the
 client Web browser?

Reading and Writing Entire Files
PHP provides functions for reading an entire fi le into a text string and
for writing a text string as a fi le. Both functions are explained in this
section.

Writing an Entire File
Th e fi le_put_contents() function writes a text string to a fi le. Th e
syntax for this function is fi le_put_contents(fi lename, string[,
options]). If the specifi ed fi lename does not exist, it is created.
However, if the specifi ed fi lename does exist, any data it contains is
overwritten. When you call the fi le_put_contents() function, you
pass to it the name of the fi le to which you want to write data, along
with a text string containing the data you want to write. For example,
the following code builds a variable named $EventVolunteers that
contains the names of volunteers at a charity event separated by line
breaks, along with a variable named $VolunteersFile that contains
the name of the fi le where the volunteer names will be stored. Th e last
statement passes the $VolunteersFile and the $EventVolunteers
variables to the fi le_put_contents() function.
$EventVolunteers = "Blair, Dennis\n";
$EventVolunteers .= "Hernandez, Louis\n";
$EventVolunteers .= "Miller, Erica\n";
$EventVolunteers .= "Morinaga, Scott\n";
$EventVolunteers .= "Picard, Raymond\n";
$VolunteersFile = "volunteers.txt";
fi le_put_contents($VolunteersFile, $EventVolunteers);

Th e fi le_put_contents() function returns the number of bytes that
were written to the fi le. If no data was written to the fi le, the func-
tion returns a value of 0. You can use the return value to determine
whether data was successfully written to the fi le, as follows:
if (fi le_put_contents($VolunteersFile, $EventVolunteers) > 0)
 echo "<p>Data was successfully written to the
 $VolunteersFile fi le.</p>\n";
else

257

Reading and Writing Entire Files

 echo "<p>No data was written to the
 $VolunteersFile
 fi le.</p>\n";

You can use an absolute or relative path with the fi lename you pass to
the fi le_put_contents() function. However, even though the func-
tion will create a fi lename that does not exist, it will not create direc-
tories that do not exist. If you specify a nonexistent directory, you will
receive an error. For this reason, you should use the is_dir() func-
tion to test whether the specifi ed fi lename is a directory before you
attempt to write to it.

In the next example, you will use the microtime() function to generate
a unique fi lename. Th e microtime() function returns a string contain-
ing two values separated by a space. Th e fi rst value is a decimal value
showing the current fraction of a second, accurate to the microsecond.
Th e second value is the current date and time in seconds. Because the
current date/time value is stored in the fi lename, the scandir() func-
tion can sort the fi les in the order they were created.

To create a form that allows visitor comments on a Web site:

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, header
information, and <body> element. Use the strict DTD and
“Visitor Comments” as the content of the <title> element.

3. Add the following script section to the document body:
<?php
?>

4. Add the following code to the script section to store the form
data entered:
$Dir = "comments";
if (is_dir($Dir)) {
 if (isset($_POST['save'])) {
 if (empty($_POST['name']))
 $SaveString = "Unknown Visitor\n";
 else
 $SaveString = stripslashes
 ($_POST['name']) . "\n";
 $SaveString .= stripslashes
 ($_POST['email']) . "\n";
 $SaveString .= date('r') . "\n";
 $SaveString .= stripslashes
 ($_POST['comment']);
 $CurrentTime = microtime();
 $TimeArray = explode(" ", $CurrentTime);
 $TimeStamp = (fl oat)$TimeArray[1] +
 (fl oat)$TimeArray[0];

In a publicly
accessible
application
on the
Internet,

using the microtime()
function would not be
suffi cient to guarantee a
unique fi lename, although
it is suffi cient to use in
this exercise.

258

C H A P T E R 5 Working with Files and Directories

 /* File name is " Comment.seconds.
 microseconds.txt" */
 $SaveFileName = "$Dir/Comment.$TimeStamp.
 txt";
 if (fi le_put_contents($SaveFileName,
 $SaveString)>0)
 echo "File \"" . htmlentities
 ($SaveFileName) .
 "\" successfully saved.
\n";
 else
 echo "There was an error writing \"" .
 htmlentities($SaveFileName) .
 "\".
\n";
 }
}

5. Add the following XHTML form immediately after the
 closing PHP tag:
<h2>Visitor Comments</h2>
<form action="VisitorComments.php" method="POST">
Your name: <input type="text" name="name" />

Your email: <input type="text" name="email" />

<textarea name="comment" rows="6" cols="100"></
textarea>

<input type="submit" name="save"
 value="Submit your comment" />

</form>

6. Save the document as VisitorComments.php in the Chapter
directory for Chapter 5 and upload the fi le to the server.

7. Create a new subdirectory named “comments”. Verify that the
“comments” directory on the Web server has read, write, and
execute permissions enabled for user, group, and other.

8. Reopen ViewFiles.php, change the title to “View Comments”,
and immediately save the fi le as ViewComments.php.

9. Change the value of $Dir to "comments", as follows:
$Dir = "comments";

10. Convert the code that uses FileDownloader.php back to a
standard hyperlink, as follows:
echo "" .
 htmlentities($Entry). "";

11. Save ViewComments.php in the Chapter directory for
 Chapter 5 and upload the fi le to the server.

12. Open the VisitorComments.php fi le in your Web browser by
entering the following URL: http://<yourserver>/PHP_Proj-
ects/Chapter.05/Chapter/VisitorComments.php. Attempt

For most
uses,
 granting
write
 permission

to others is not a safe
choice. When making this
choice, be sure you have
considered the security
risks. Do not grant write
permissions unless it is
absolutely required.

259

Reading and Writing Entire Files

to submit a comment. You should receive a message stat-
ing whether the comment was saved successfully. Figure 5-9
shows an example in which the comment was successfully
saved.

Figure 5-9 A successfully written comment using VisitorComments.php

13. After you have successfully submitted one or more comments
to the server using the VisitorComments.php form, open the
ViewComments.php fi le in your Web browser by entering
the following URL: http://<yourserver>/PHP_Projects/
Chapter.05/Chapter/ViewComments.php. You should see the
new fi les in the directory listing. Figure 5-10 shows the output
of ViewComments.php with two comments submitted.

Figure 5-10 Listing of the “comments” subdirectory with two saved comments

14. Close your Web browser window.

In addition to the fi lename and text string arguments, you can pass
a third argument to the fi le_put_contents() function that con-
tains the FILE_USE_INCLUDE_PATH or FILE_APPEND constant. Th e

260

C H A P T E R 5 Working with Files and Directories

FILE_USE_INCLUDE_PATH constant instructs PHP to search for the
specifi ed fi lename in the path that is assigned to the include_path
directive in your php.ini confi guration fi le. Th e FILE_APPEND constant
instructs PHP to append data to any existing contents in the specifi ed
fi lename instead of overwriting it.

Th e following example demonstrates how to use the fi le_put_
contents() function with the FILE_APPEND constant to add the
names of volunteers to the volunteers.txt fi le. Th e example consists of
a single script that displays and processes a form that volunteers can
use to register. Because the fi le_put_contents() function includes
the FILE_APPEND constant, any new names that are entered in the
form are appended to the volunteers.txt fi le. Figure 5-11 shows the
form in a Web browser.
<h1>Coast City Charity Event Volunteers</h1>
<?php
if (isset($_POST['fi rst_name']) && isset($_POST['last_
name'])) {
 $VolunteerFirst = addslashes($_POST['fi rst_name']);
 $VolunteerLast = addslashes($_POST['last_name']);
 $NewVolunteer = "$VolunteerLast, $VolunteerFirst\n";
 $VolunteersFile = "volunteers.txt";
 if (fi le_put_contents($VolunteersFile, $NewVolunteer,
 FILE_APPEND) > 0)
 echo "<p>" . stripslashes($_POST['fi rst_name']) .
 " " . stripslashes($_POST['last_name']) .
 " has been registered to volunteer at the
 event!</p>\n";
 else
 echo "<p>Registration error!</p>";
}
else
 echo "<p>To sign up to volunteer at the event, enter
 your fi rst and last name and click the Register
 button.</p>";
?>
<form action="EventVolunteers.php" method="POST">
<p>First Name: <input type="text" name="fi rst_name"
size="30" /></p>
<p>Last Name: <input type="text" name="last_name"
size="30" /></p>
<p><input type="submit" value="Register" /></p>
</form>

261

Reading and Writing Entire Files

Figure 5-11 Volunteer registration form

Reading an Entire File
Table 5-8 lists the PHP functions that you can use to read the entire
contents of a text fi le.

Function Description
fi le(fi lename[, use_include_path]) Reads the contents of a

fi le into an indexed array

fi le_get_contents(fi lename[,options]) Reads the contents of a
fi le into a string

readfi le(fi lename[,use_include_path]) Displays the contents of
a fi le

Table 5-8 PHP functions that read the entire contents of a text fi le

Th e fi le_get_contents() function reads the entire contents of a
fi le into a string. If you have a text fi le that contains a single block of
data (that is, not a series of lines in which each represents a single
piece of data), the fi le_get_contents() function can be useful.
For example, assume that a weather service uses a text fi le to store
daily weather forecasts. Th e following code examples use both the
fi le_put_contents() function discussed in the previous section and
the fi le_get_contents() functions. First, the fi le_put_contents()
function is used to write the daily forecast for San Francisco to a text
fi le named sfweather.txt:
$DailyForecast = "<p>San Francisco daily weather
forecast: Today: Partly cloudy. Highs from
the 60s to mid 70s. West winds 5 to 15 mph. Tonight:
Increasing clouds. Lows in the mid 40s to lower 50s. West
winds 5 to 10 mph.</p>";
fi le_put_contents("sfweather.txt", $DailyForecast);

262

C H A P T E R 5 Working with Files and Directories

Next, the fi le_get_contents() function reads the contents of the
sfweather.txt fi le into a string variable, which is then displayed with
an echo statement:
$SFWeather = fi le_get_contents("sfweather.txt");
echo $SFWeather;

To create a Web page that displays all of the visitor comments:

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, header
information, and <body> element. Use the strict DTD and
“Visitor Feedback” as the content of the <title> element.

3. Add the following script section to the document body:
<?php
?>

4. Add the following code to the script section to store the form
data entered:
$Dir = "comments";
if (is_dir($Dir)) {
 $CommentFiles = scandir($Dir);
 foreach ($CommentFiles as $FileName) {
 if (($FileName != ".") && ($FileName !=
 "..")) {
 echo "From $FileName</
 strong>
";
 echo "<pre>\n";
 $Comment = fi le_get_contents
 ($Dir . "/" .
 $FileName);
 echo $Comment;
 echo "</pre>\n";
 echo "<hr />\n";
 }
 }
}

5. Add the following XHTML form immediately before the clos-
ing PHP tag:
<h2>Visitor Feedback</h2>
<hr />

6. Save the document as VisitorFeedback.php in the Chapter
directory for Chapter 5 and upload the fi le to the server.

7. Open the VisitorFeedback.php fi le in your Web browser
by entering the following URL: http://<yourserver>/
PHP_Projects/Chapter.05/Chapter/VisitorFeedback.php.
You should see a list of all the user comments from the “com-
ments” subdirectory. Figure 5-12 shows an example with two
comments.

263

Reading and Writing Entire Files

8. Close your Web browser window.

Figure 5-12 The Visitor Feedback page with two visitor comments

If you only want to display the contents of a text fi le, you do not need
to use the fi le_get_contents() function to assign the contents to a
variable and then display the value of the variable as a separate step.
Instead, you can use the readfi le() function discussed earlier to dis-
play the contents of a text fi le to a Web browser. For example, the fol-
lowing example uses the readfi le() function to accomplish the same
task as the fi le_get_contents() example you saw earlier:
readfi le("sfweather.txt");

At times, text fi les are used to store individual lines of data, where
each line represents a single unit of information. Th e easiest way to
read the contents of a text fi le that stores data on individual lines is to
use the fi le() function, which reads the entire contents of a fi le into an
indexed array. Th e fi le() function automatically recognizes whether
the lines in a text fi le end in \n, \r, or \n\r. Each individual line in the
text fi le is assigned as the value of an element. You pass to the fi le()
function the name of the text fi le enclosed in quotation marks. For
example, the weather service that stores daily weather reports may
also store average daily high, low, and mean temperatures, separated
by commas, on individual lines in a single text fi le. Th e following code
uses the fi le_put_contents() function to write the temperatures for
the fi rst week in January to a text fi le named sfj anaverages.txt:
$January = "61, 42, 48\n";
$January .= "62, 41, 49\n";

264

C H A P T E R 5 Working with Files and Directories

$January .= "62, 41, 49\n";
$January .= "64, 40, 51\n";
$January .= "69, 44, 55\n";
$January .= "69, 45, 52\n";
$January .= "67, 46, 54\n";
fi le_put_contents("sfjanaverages.txt", $January);

Th e fi rst statement in the following code uses the fi le() function to
read the contents of the sfj anaverages.txt fi le into an indexed array
named $JanuaryTemps[]. Th e for statement then loops through
each element in $JanuaryTemps[] and calls the explode() function
from Chapter 3 to split each element at the comma into another array
named $CurDay. Th e high, low, and mean averages in the $CurDay
array are then displayed with echo statements. Figure 5-13 shows the
output.
$JanuaryTemps = fi le("sfjanaverages.txt");
for ($i=0; $i<count($JanuaryTemps); ++$i) {
 $CurDay = explode(", ", $JanuaryTemps[$i]);
 echo "<p>January " . ($i + 1) . "
\n";
 echo "High: {$CurDay[0]}
\n";
 echo "Low: {$CurDay[1]}
\n";
 echo "Mean: {$CurDay[2]}</p>\n";
}

Figure 5-13 Output of individual lines in a text fi le

265

Reading and Writing Entire Files

To modify the VisitorFeedback.php fi le so it opens the comment fi les
with the fi le() function instead of the fi le_get_contents() function:

1. Return to the VisitorFeedback.php fi le in your text editor.

2. Replace the section of code from the opening <pre> statement
to the closing </pre> statement with the following code. Notice
that because the fi rst three lines of the comment are the com-
menter’s name and e-mail address and the date of the comment,
the loop to display the comment text has a starting index of 3.
$Comment = fi le($Dir . "/" . $FileName);
echo "From: " . htmlentities($Comment[0]) . "
\n";
echo "Email Address: " . htmlentities($Comment[1]) .
"
\n";
echo "Date: " . htmlentities($Comment[2]) . "
\n";
$CommentLines = count($Comment);
echo "Comment:
\n";
for ($i = 3; $i < $CommentLines; ++$i) {
 echo htmlentities($Comment[$i]) . "
\n";
}

3. Save the VisitorFeedback.php fi le and upload it to the Web
server.

4. Open the VisitorFeedback.php fi le in your Web browser by
entering the following URL: http://<yourserver>/PHP_Projects/
Chapter.05/Chapter/VisitorFeedback.php. Figure 5-14 shows
the new version of the Web page for the same two comments.

Figure 5-14 The Visitor Feedback form using the fi le() function

5. Close your Web browser window.

266

C H A P T E R 5 Working with Files and Directories

Short Quiz

1. Explain how to determine if the fi le_put_contents() func-
tion successfully wrote data to a fi le.

2. Explain why one should use the is_dir() function before
using the fi le_put_contents() function to write data.

3. What function is useful for reading an entire fi le into a
 variable as a single block of text?

4. What is the diff erence between the fi le() and
fi le_get_contents() functions?

Opening and Closing File Streams
So far, all of the functions you have seen for reading and writing fi les
operate on an entire fi le at once. Sometimes, however, you may want to
only read or write a small part of a fi le. PHP includes several functions
for incrementally reading and writing fi les. You will learn how to use
these functions later in this chapter. But before any of these functions
can do their jobs, you must create a stream. A stream is a channel that
is used for accessing a resource to which you may read and write. For
example, you might use a stream to access a fi le. Th e input stream
reads data from a resource such as a fi le, whereas the output stream
writes data to a resource (again, such as a fi le). You have already used
an output stream with the echo and print statements. Both state-
ments send data to an output stream, which writes the data to a Web
browser window. Using a fi le stream involves the following steps:

1. Open the fi le stream with the fopen() function.

2. Write data to or read data from the fi le stream.

3. Close the fi le stream with the fclose() function.

In the following sections, you will fi rst learn how to open and close
fi le streams, and then you will learn how to write and read data using
fi le streams.

Opening a File Stream
When you use the echo or print statements to send data to an output
stream, you only need to call each statement for the data to be sent to
the stream. With external fi les, such as text fi les, you must write code

267

Opening and Closing File Streams

that opens and closes a handle to a fi le. You use the fopen() function
to open a handle to a fi le stream. Th e syntax for the fopen() function
is $open_fi le = fopen(fi lename, method);. Th e $open_fi le variable
is the handle that you can use to read data from and write data to the
fi le. Th e method argument can be one of several values that determine
what you can do with the fi le after you open it.

Table 5-9 lists the method arguments that you can use with the
fopen() function. Among other things, these arguments control the
position of the fi le pointer. Similar to the directory pointer discussed
earlier, a file pointer is a special type of variable that refers to the cur-
rently selected line or character in a fi le. Th e fi le pointer is a way of
keeping track of where you are in a fi le. Later in this chapter, you will
work with functions that change the position of the fi le pointer.

Argument Description
a Opens the specifi ed fi le for writing only and places the fi le

pointer at the end of the fi le; attempts to create the fi le if it
doesn’t exist

a+ Opens the specifi ed fi le for reading and writing and places the
fi le pointer at the end of the fi le; attempts to create the fi le if it
doesn’t exist

r Opens the specifi ed fi le for reading only and places the fi le
pointer at the beginning of the fi le

r+ Opens the specifi ed fi le for reading and writing and places the
fi le pointer at the beginning of the fi le

w Opens the specifi ed fi le for writing only and deletes any
existing content in the fi le; attempts to create the fi le if it
doesn’t exist

w+ Opens the specifi ed fi le for reading and writing and deletes
any existing content in the fi le; attempts to create the fi le if it
doesn’t exist

x Creates and opens the specifi ed fi le for writing only; returns
FALSE if the fi le already exists

x+ Creates and opens the specifi ed fi le for reading and writing;
returns FALSE if the fi le already exists

Table 5-9 Valid method argument values of the fopen() function

Th e following statement shows how to use the fopen() function to
open a handle to a fi le stream:
$VolunteersFile = fopen("volunteers.txt", "r+");

Assume that the preceding statement opens a fi le that con-
tains a list of people who have signed up to be a volunteer at an

268

C H A P T E R 5 Working with Files and Directories

event. Th e fopen() function assigns the fi le to a handle named
$VolunteersFile. Notice that the function uses a method argument
of "r+", which opens the specifi ed fi le for reading and writing and
places the fi le pointer at the beginning of the fi le. Th is allows you to
add new data to the beginning of the fi le, as illustrated in Figure 5-15.

Figure 5-15 Location of the fi le pointer when the fopen() function
uses a method argument of "r+"

If you want to open a fi le and place the fi le pointer at the end, you use
a method argument of "a+", as shown in the following statement:
$VolunteersFile = fopen("volunteers.txt", "a+");

Th e preceding statement places the fi le pointer after the last byte of
data, as illustrated in Figure 5-16.

Figure 5-16 Location of the fi le pointer when the fopen() function
uses a method argument of "a+"

By default, PHP opens a fi le in “text” mode, where end-of-line escape
sequences in the fi le will be interpreted based on the operating sys-
tem of the server and converted as necessary. Adding a “b” to the end
of the method argument forces the fi le to be opened in “binary” mode,
where no interpretation or conversion is done. Windows systems also
allow for a “text conversion” mode, which converts all UNIX-style
end-of-line escape sequences to the Windows style. To enable “text
conversion” mode, append a "t" to the end of the method argument.

When a fi le
stream is
opened for
writing and
the fi le

pointer is anywhere
except at the end of a
fi le, writing to the fi le will
overwrite any existing
data in the fi le with the
new data. Any data at
that location is lost, and
the logical structure of
the data in the fi le may be
corrupted. For this rea-
son, the "r+" method
value should be used with
caution.

For maximum
compatibility,
the PHP Group
recommends
always using

binary mode and manag-
ing end-of-line escape
sequences at the applica-
tion level.

269

Opening and Closing File Streams

Closing a File Stream
When you fi nish working with a fi le stream, use the statement
fclose($handle); to ensure that the fi le doesn’t keep taking up
space in your computer’s memory and to allow other processes to
read to and write from the fi le. Closing the fi le also forces the fi le to
be “fl ushed.” When you write to a fi le, the operating system often
buff ers the write command to a queue, saving it with other write
commands. It is much faster at the fi le level to do multiple writes at
the same time, instead of one at a time. Performing all buff ered write
commands is called “fl ushing” the write queue.

Writing Data Incrementally
Th e fi le_put_contents() function is useful if you want to
quickly replace the contents of a fi le or append data to the
end of an existing fi le. In addition to the fi le_put_contents()
function, you can also use the fwrite() function to incre-
mentally write data to a text fi le. Th e function uses the follow-
ing syntax: fwrite($handle, data[, length]);. As with the
fi le_put_contents() function, the fwrite() function returns the
number of bytes that were written to the fi le. If no data was written to
the fi le, the function returns a value of 0. You can use the return value
to determine whether data was successfully written to the fi le.

Before you can use the fwrite() function, you must fi rst open a
handle to the text fi le with the fopen() function. Because you use
the fopen() function with fwrite(), you can specify what type of
operations can be performed on the fi le and where and how the data
will be written. For example, with the fi le_put_contents() function,
you can only replace the contents of a fi le or append data to the end
of a fi le. By comparison, the method arguments of the fopen() func-
tion allow you to specify whether to open a fi le for reading or writing,
whether to create a fi le if it doesn’t exist, and whether to place the fi le
pointer at the beginning or end of the text fi le.

Th e following code demonstrates how to use the fopen() and
fclose() functions with multiple fwrite() statements to add names
to the volunteers.txt fi le:
$VolunteersFile = fopen("volunteers.txt", "ab");
fwrite($VolunteersFile, "Blair, Dennis\n");
fwrite($VolunteersFile, "Hernandez, Louis\n");
fwrite($VolunteersFile, "Miller, Erica\n");
fwrite($VolunteersFile, "Morinaga, Scott\n");
fwrite($VolunteersFile, "Picard, Raymond\n");
fclose($VolunteersFile);

The
fputs()
function is
an alias for
the

fwrite() function.

270

C H A P T E R 5 Working with Files and Directories

Th e following code contains a modifi ed version of the single script
that displays and processes a form that volunteers can use to register.
Th is time, the script uses fopen(), fwrite(), and fclose() functions
instead of the fi le_put_contents() function.
if (isset($_POST['fi rst_name']) && isset($_POST['last_
name'])) {
 $VolunteerFirst = addslashes($_POST['fi rst_name']);
 $VolunteerLast = addslashes($_POST['last_name']);
 $NewVolunteer = "$VolunteerLast, $VolunteerFirst\n";
 $VolunteersFile = fopen("volunteers.txt", "ab");
 if (fwrite($VolunteersFile, $NewVolunteer) > 0)
 echo "<p>" . stripslashes($_POST['fi rst_name']) . "
 " . stripslashes($_POST['last_name']) .
 " has been registered to volunteer at the
 event!</p>\n";
 else
 echo "<p>Registration error!</p>";
 fclose($VolunteersFile);
}
else
 echo "<p>To sign up to volunteer at the event, enter
 your fi rst and last name and click the Register
 button.</p>";
To modify the VisitorComments.php fi le so that it saves comments
using the fopen(), fwrite(), and fclose() functions instead of the
fi le_put_contents() function:

1. Return to the VisitorComments.php fi le in your text editor.

2. Replace the entire if...else statement for the
fi le_put_contents() function with the following code:
$fp = fopen($SaveFileName,"wb");
if ($fp === FALSE) {
 echo "There was an error creating \"" .
 htmlentities($SaveFileName) . "\".
\n";
}
else {
 if (fwrite($fp, $SaveString)>0)
 echo "Successfully wrote to fi le \"" .
 htmlentities($SaveFileName) .
 "\".
\n";
 else
 echo "There was an error writing to fi le \""
 . htmlentities($SaveFileName) .
 "\".
\n";
 fclose($fp);
}

3. Save the VisitorComments.php fi le and upload it to the server.

The length
argument of
the fwrite()
function allows
you to specify

the maximum number of
bytes that should be
 written. If the data
 argument you pass to the
fwrite() function is
greater than the value of
the length argument, the
data is truncated.

271

Opening and Closing File Streams

4. Open the VisitorComments.php fi le in your Web browser
by entering the following URL: http://<yourserver>/PHP_
Projects/Chapter.05/Chapter/VisitorComments.php. Enter
values in each of the fi elds and click the Submit your com-
ment button. Th e script should function the same as it did
with the fi le_put_contents() function.

5. Close your Web browser window.

Locking Files
When your program opens a text fi le via the fopen() method, there
is a chance that another program will attempt to open the same fi le.
If both programs are simply reading data from the fi le, there should
be no problem. However, if more than one program attempts to write
data to a text fi le at the same time, data corruption could occur. To
prevent multiple users from modifying a fi le simultaneously, you
need to use the fl ock() function. Th e basic syntax for this function
is fl ock($handle, operation). Th e fi rst argument you pass to the
fl ock() function is the handle that represents the open fi le. Th e sec-
ond argument you pass is one of the operational constants listed in
Table 5-10.

Constant Description
LOCK_EX Opens the fi le with an exclusive lock for writing

LOCK_NB Prevents the fl ock() function from waiting, or “blocking,”
until a fi le is unlocked

LOCK_SH Opens the fi le with a shared lock for reading

LOCK_UN Releases a fi le lock

Table 5-10 Operational constants of the fl ock() function

You use the LOCK_SH constant to create a shared lock for reading,
which allows other users to read the fi le while you have it locked. Th e
LOCK_EX constant creates an exclusive lock to write data to the fi le.
An exclusive lock prevents other users from accessing the fi le until
you are fi nished with it. After you fi nish using either lock type, you
should call the fl ock() function with the LOCK_UN constant, which
releases the lock. If you call the fl ock() function with either the
LOCK_SH or LOCK_EX constant, and the fi le you want to lock is already
locked by another user, your script waits until the other user releases
the lock. If you don’t want your script to wait until a fi le is unlocked,
you can include the LOCK_NB constant in the operation argument. As
a general rule, you should only use the LOCK_NB constant when your

272

C H A P T E R 5 Working with Files and Directories

script needs to write an exceptionally large amount of data to a fi le.
To use the LOCK_NB constant, separate it from the LOCK_SH or LOCK_EX
constant with the | (bitwise Or) operator, as shown in the following
example:

fl ock($VolunteersFile, LOCK_EX | LOCK_NB);

Th e fl ock() function returns a value of TRUE if it successfully locks a
fi le and FALSE if it fails. You can use this return value to determine
whether the lock was successful, as shown in the following code,
which contains a modifi ed example of the script that adds new names
to the volunteers.txt fi le. In this example, a single name is assigned
to the $NewVolunteer variable. Th e fl ock() function uses the LOCK_EX
constant to lock the volunteers.txt fi le for writing. If the lock is suc-
cessful, a nested if...else statement attempts to write the name to
the fi le and displays a message stating whether the fwrite() function
was successful. Th e last statement in the main if statement then uses
the LOCK_UN constant with the fl ock() function to unlock the volun-
teers.txt fi le.
$VolunteersFile = fopen("volunteers.txt", "ab");
$FirstName = "Don";
$LastName = "Gosselin";
$VolunteerFirst = addslashes($FirstName);
$VolunteerLast = addslashes($LastName);
$NewVolunteer = "$VolunteerLast, $VolunteerFirst\n";
if (fl ock($VolunteersFile, LOCK_EX)) {
 if (fwrite($VolunteersFile, $NewVolunteer) > 0)
 echo "<p>" . stripslashes($FirstName) . " " .
 stripslashes($LastName) . " has been
 registered to volunteer at the event!</p>";
 else
 echo "<p>Registration error!</p>";
 fl ock($VolunteersFile, LOCK_UN);
}
else
 echo "<p>Cannot write to the fi le. Please try again
 later</p>";
fclose($VolunteersFile);

To modify the VisitorComments.php fi le so it uses the fl ock() func-
tion when writing data to a text fi le:

1. Return to the VisitorComments.php fi le in your text editor.

2. Modify the if statement that executes the fwrite() state-
ment so it is contained within another if statement that
executes an fl ock() statement to lock the fi le. Also, add
another fl ock() statement that unlocks the fi le in place of
the fclose() statement. Th e fclose() statement should be

It’s important
to under-
stand that
the PHP fi le
locking

mechanism is simply
“advisory.” This means
that PHP does not actu-
ally shut out other pro-
grams from accessing
the fi le, as other program-
ming languages do.
Instead, PHP only pre-
vents other PHP scripts
that use fl ock() from
accessing a fi le that was
locked by another PHP
script. In other words, a
PHP script that does not
use fl ock() to open a
fi le can go ahead and
modify the fi le, even if it
is exclusively locked by
another PHP script. For
PHP fi le locking to be
effective, it’s up to you
(and your ISP) to ensure
that any scripts that open
a fi le on your server use
the fl ock() function.

273

Opening and Closing File Streams

moved outside the if...else statement for the fl ock() func-
tion. Th e end of your script should appear as follows:
 $fp = fopen($SaveFileName,"wb");
 if ($fp === FALSE) {
 echo "There was an error creating \"" .
 htmlentities($SaveFileName) .
 "\".
\n";
 }
 else {
 if (fl ock($fp, LOCK_EX)){
 if (fwrite($fp, $SaveString)>0)
 echo "Successfully wrote to
 fi le \"" .
 htmlentities(
 $SaveFileName) .
 "\".
\n";
 else
 echo "There was an error
 writing to
 fi le \"" .
 htmlentities(
 $SaveFileName) .
 "\".
\n";
 fl ock($fp, LOCK_UN);
 }
 else {
 echo "There was an " .
 "error locking fi le \"" .
 htmlentities(
 $SaveFileName) .
 " for writing\"." .
 "
\n";
 }
 fclose($fp);
 }
 }
}

3. Save the VisitorComments.php fi le and upload it to the Web
server.

4. Open the VisitorComments.php fi le in your Web browser by
entering the following URL: http://<yourserver>/PHP_Proj-
ects/Chapter.05/Chapter/VisitorComments.php. Enter values
in each of the fi elds and click the Submit your comment but-
ton. Th e script should function the same as it did before you
added the fl ock() statements.

5. Close your Web browser window.

274

C H A P T E R 5 Working with Files and Directories

Reading Data Incrementally
For large text fi les, reading the entire contents of the fi le into PHP can
take up a lot of memory on your server and aff ect the performance
of your script. Instead of reading an entire fi le into PHP, you can use
the fi le pointer to iterate through a text fi le. As mentioned earlier,
a fi le pointer is a special type of variable that refers to the currently
selected line or character in a fi le. Th e functions listed in Table 5-11
allow you to use the fi le pointer to iterate through a text fi le.

Function Description
fgetc($handle) Returns a single character and moves

the fi le pointer to the next character

fgetcsv($handle,

length[,delimiter,

string_enclosure])

Returns a line, parses the line for CSV
fi elds, and then moves the fi le pointer
to the next line

fgets($handle[,

length])
Returns a line and moves the fi le
pointer to the next line

fgetss($handle,

length[,allowed_tags])
Returns a line, strips any XHTML tags
the line contains, and then moves the
fi le pointer to the next line

fread($handle,

length)
Returns up to length characters
and moves the fi le pointer to the next
available character

stream_get_line($handle,

length, delimiter)
Returns a line that ends with a
specifi ed delimiter and moves the fi le
pointer to the next line

Table 5-11 PHP functions that iterate through a text fi le

You must use the fopen() and fclose() functions with the functions
listed in Table 5-11. With the exception of the fgetc() and fread()
functions, each time you call any of the functions listed in Table 5-11,
the fi le pointer automatically moves to the next line in the text fi le.
Th e fgetc() function does not advance the fi le pointer, while the
fread() function advances the fi le pointer to the next available char-
acter. Each time you call the fgetc() function, the fi le pointer moves
to the next character in the fi le.

Th e functions listed in Table 5-11 are often combined with the
feof() function, which returns a value of TRUE when a fi le pointer
reaches the end of a fi le. Th e feof() function accepts a single

275

Opening and Closing File Streams

argument containing the handle for the open fi le. Th e following code
demonstrates how to use the feof() function with the fgets() func-
tion, which returns a line and moves the fi le pointer to the next line.
When reading, a line is defi ned as a string of characters ending with
an end-of-line escape sequence or the end of the fi le. Th e code reads
and parses each line in the sfj anaverages.txt text fi le, similar to the
previous example that parsed the data by using the fi le() function. In
the following version, a while statement uses the value returned from
the feof() function as the conditional expression. Th e lines in the
while statement then parse and display the contents of each line, and
the last statement calls the fgets() function, which reads the current
line and moves the fi le pointer to the next line.
$JanuaryTemps = fopen("sfjanaverages.txt", "rb");
$Count = 1;
$CurAverages = fgets($JanuaryTemps);
while (!feof($JanuaryTemps)) {
 $CurDay = explode(", ", $CurAverages);
 echo "<p>Day $Count
";
 echo "High: {$CurDay[0]}
";
 echo "Low: {$CurDay[1]}
";
 echo "Mean: {$CurDay[2]}</p>";
 $CurAverages = fgets($JanuaryTemps);
 ++$Count;
}
fclose($JanuaryTemps);

For fi les other than text fi les, you use the fread() function instead of
the fgets() function. Like the fgets() function, the fread() func-
tion reads up to length bytes from the fi le stream and advances the
fi le pointer to the next available character. Unlike the fgets() func-
tion, the length parameter of the fread() function is required, and
the fread() function does not stop reading characters when an end-
of-line marker is found.

To modify the VisitorFeedback.php fi le so that it accesses the lines in
the comment fi les with fopen(), fgets(), and fclose() functions
instead of the fi le() function:

1. Return to the VisitorFeedback.php fi le in your text editor.

2. Replace the fi le() statement with the following fopen()
statement and test:
$fp = fopen($Dir . "/" . $FileName, "rb");
if ($fp === FALSE)
 echo "There was an error reading fi le \"" .
 $FileName . "\".
\n";
else {

For the
fread()
function, the
maximum
value of

length is 8192. For the
fgets() function, there
is no imposed limit to the
number of characters.
However, prior to version
4.3, PHP would default to
a length value of 1024
if no value was specifi ed.
If you think that most of
the lines being read are
longer than 8192 charac-
ters, your script will run
faster when you specify
the length value for the
fgets() function than if
you omit the value.

276

C H A P T E R 5 Working with Files and Directories

3. Replace the code that displays the contents of the fi le with the
code that uses the fgets() statement:
echo "From $FileName
";
$From = fgets($fp);
echo "From: " . htmlentities($From) . "
\n";
$Email = fgets($fp);
echo "Email Address: " . htmlentities($Email) .
 "
\n";
$Date = fgets($fp);
echo "Date: " . htmlentities($Date) . "
\n";
echo "Comment:
\n";
$Comment = "";
while (!feof($fp)) {
 $Comment .= fgets($fp);
}
echo htmlentities($Comment) . "
\n";
echo "<hr />\n"

4. Complete the else clause with the following fclose()
 statement and the closing bracket:
 fclose($fp);
}

5. Save the VisitorFeedback.php fi le and upload it to the server.

6. Open the VisitorFeedback.php fi le in your Web browser by
entering the following URL: http://<yourserver>/PHP_Proj-
ects/Chapter.05/Chapter/VisitorFeedback.php. Th e script
should function the same as it did before you replaced the
single call to the fi le() function with multiple calls to the
fgets() function.

7. Close your Web browser window.

Short Quiz

1. What is a fi le stream?

2. Explain the function of the fi le pointer as it relates to writing
data to fi les.

3. Explain the term “reading data incrementally.”

4. What function is used to prevent multiple users from modify-
ing a fi le simultaneously?

5. What function must be called if the fopen() function suc-
cessfully opened a fi le?

277

Opening and Closing File Streams

Managing Files and Directories
In addition to creating and accessing fi les, you can also use PHP to
manage fi les and the directories that store them. In fact, you can use
PHP to perform many of the same fi le and directory management
tasks that are available on most operating systems, including copying,
moving, renaming, and deleting fi les and directories. In this section,
you will study various techniques for managing fi les and directories
with PHP. First, you will learn how to copy and move fi les.

Copying and Moving Files
You use the copy() function to copy a fi le with PHP. Th e function
returns a value of TRUE if it is successful or FALSE if it is not. Th e syn-
tax for the copy() function is copy(source, destination). For the
source and destination arguments, you can include just the name
of a fi le to make a copy in the current directory or you can specify the
entire path for each argument. Th e following example demonstrates
how to use the copy() function to copy the sfweather.txt fi le to a fi le
named sfweather01-27-2010.txt in a directory named “history.” Th e
fi rst if statement checks whether the sfweather.txt fi le exists, and
the fi rst nested if statement checks whether the “history” directory
exists within the current directory. If both if statements are TRUE, the
copy() function attempts to copy the fi le.
if (fi le_exists("sfweather.txt")) {
 if(is_dir("history")) {
 if (copy("sfweather.txt",
 "history\\sfweather01-27-2010.txt"))
 echo "<p>File copied successfully.</p>\n";
 else
 echo "<p>Unable to copy the fi le!</p>\n";
}
else
 echo "<p>The directory does not exist!</p>\n";
}
else
 echo "<p>The fi le does not exist!</p>\n";

To use the copy() function to copy the visitor comments to a backup
directory:

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, header
information, and <body> element. Use the strict DTD and
“Backup Comments” as the content of the <title> element.

3. Add the following script section to the document body:
<?php
?>

278

C H A P T E R 5 Working with Files and Directories

4. Declare the following two variables in the script section.
Th e $Source variable contains the name of the Comments
 directory, “comments”, and the $Destination variable
 contains the name of the directory “backups”, where you will
back up your fi les.
$Source = "comments";
$Destination = "backups";

5. Add the following if...else statement to the end of the
script section. Th e if statement verifi es that the “backups”
directory exists and is a directory.
if (!is_dir($Destination))
 echo "The backup directory \"$Destination\" does
 not exist.\n";
else {
}

6. Within the else clause of the previous if...else statement,
add the following if...else statement, which executes the
copy() function:
 if (is_dir($Source)) {
 $TotalFiles = 0;
 $FilesMoved = 0;
 $DirEntries = scandir($Source);
 foreach ($DirEntries as $Entry) {
 if (($Entry!=".") && ($Entry!="..")) {
 ++$TotalFiles;
 if (copy("$Source/$Entry",
 "$Destination/$Entry"))
 ++$FilesMoved;
 else
 echo "Could not move
 fi le \"" .
 htmlentities($Entry) .
 "\".
\n";
 }
 }
 echo "<p>$FilesMoved of $TotalFiles
 comments successfully backed up.</p>\n";
 }
else
 echo "<p>The source directory \"" .
 $Source . "\" does not exist!</p>\n";

7. Save the document as BackupComments.php in the Chapter
directory for Chapter 5.

8. Create a new subdirectory called “backups” on the Web
server. Give write permissions to the user, group, and others.

For most
uses, grant-
ing write
permission
to others is

not a safe choice. When
making this choice, be
sure you have considered
the security risks. Do not
grant write permissions
unless it is absolutely
required.

279

Managing Files and Directories

9. Open the BackupComments.php fi le in your Web browser by
entering the following URL: http://<yourserver>/PHP_Proj-
ects/Chapter.05/Chapter/BackupComments.php. You should
see the message that the comments were successfully backed
up. Figure 5-17 shows the output when four fi les were backed
up successfully. Look in your Chapter directory for Chapter 5
on the Web server and see if the “backups” directory contains
copies of the comment fi les in your “comments” directory.

Figure 5-17 The result of successfully backing up four comment fi les with
BackupComments.php

10. Close your Web browser window.

Renaming Files and Directories
You use the rename() function to rename or move a fi le or direc-
tory with PHP. As with the copy() function, the rename() function
returns a value of TRUE if it is successful or FALSE if it is not. Th e
syntax for the rename() function is rename(old_name, new_name).
For the old_name argument, you can include just the name of a fi le to
rename the fi le in the current directory or you can specify the entire
path to the fi le being renamed. For the new_name argument, you can
include just the name of a fi le to rename the fi le named by old_name.
If you specify a path for the new_name argument, and the path is dif-
ferent from the path for the old_name argument, the fi le is eff ectively
moved from the old directory to the specifi ed directory when the fi le
is renamed. If the new_name argument is an existing directory, the fi le
specifi ed by old_name is moved to the new directory, but the fi lename
remains unchanged.

Th e following example demonstrates how to rename and move a fi le.
Notice that the script contains three levels of nested if statements to
check the fi le and directory names, and a fourth nested if statement
that verifi es whether the rename() function was successful. Th e fi rst
if statement checks to see whether the original fi le exists, the second
if statement determines whether the destination directory exists,

280

C H A P T E R 5 Working with Files and Directories

and the third if statement confi rms that a fi le of the same name does
not exist in the target directory.
$OldName = "sfweather.txt";
$NewName = "sfweather01-28-2010.txt";
$NewDirectory = "history";
if (fi le_exists($OldName)) {
 if(is_dir($NewDirectory)) {
 if (!fi le_exists($NewDirectory . "\\" . $NewName))
 {
 if (rename($OldName, $NewDirectory . "\\"
 . $NewName))
 echo "<p>File renamed
 successfully.</p>\n";
 else
 echo "<p>Unable to rename the
 fi le!</p>\n";
 }
 else
 echo "<p>The destination fi le already
 exists!</p>\n";
 }
 else
 echo "<p>The directory does not exist!</p>\n";
}
else
 echo "<p>The fi le does not exist!</p>\n";

Removing Files and Directories
You use the unlink() function to delete fi les and the rmdir() func-
tion to delete directories. You pass the name of a fi le to the unlink()
function and the name of a directory to the rmdir() function. Both
functions return a value of TRUE if successful or FALSE if not. With
both functions, you can use the fi le_exists() function to determine
whether a fi le or directory name exists before you attempt to delete it.
For example, the following code uses the fi le_exists() and unlink()
functions to delete a fi le:
$FileName = "sfweather.txt";
if (fi le_exists($FileName)) {
 if(unlink($FileName))
 echo "<p>File deleted successfully.</p>\n";
 else
 echo "<p>Unable to delete the fi le!</p>\n";
}
else
 echo "<p>The fi le does not exist!</p>\n";

281

Managing Files and Directories

Th e rmdir() function takes a little more developmental eff ort
because it does not work unless a directory is empty. To check
whether a directory is empty, you fi rst use the fi le_exists()
 function to determine whether the directory exists. Th en, you use
the scandir() function to copy the names of the fi les in the directory
to an array. Some operating systems always list two directory entries
named "." and ".." within another directory. Th e "." directory is
a reference to the current directory, whereas the ".." directory is a
reference to the directory that contains the current directory. Th e
rmdir() function only works when these are the only two entries
present, indicating that the directory is empty. Th erefore, you need
to write code that verifi es that the directory you want to delete con-
tains only the "." and ".." entries. Th e following example uses the
fi le_exists() function to see whether the “history” directory exists,
then uses the scandir() function and a foreach() loop to determine
whether the directory contains any entries other than the "." and
".." entries.
$DirName = "history";
if (fi le_exists($DirName)) {
 $DirEntries = scandir($DirName);
 $EmptyDir = TRUE;
 foreach ($DirEntries as $Dir) {
 if ($Dir != "." && $Dir != "..")
 $EmptyDir = FALSE;
 }
 if ($EmptyDir == TRUE) {
 if (rmdir($DirName))
 echo "<p>Directory deleted
 successfully.</p>\n";
 else
 echo "<p>Unable to delete the
 directory!</p>\n";
 }
 else
 echo "<p>The directory is not empty!</p>\n";
}
else
 echo "<p>The directory does not exist!</p>\n";

PHP does not contain a separate command for moving fi les. Instead,
you can rename the fi le with the rename() function and specify a new
directory in which you want to store the renamed fi le. Alternatively,
you must copy the fi le with the copy() function, and then delete the
original fi le with the unlink() function.

Although either
method works,
using the
rename()
function is

quicker and uses less
resources on the server
than copying the fi le to the
new location and deleting
the old copy.

282

C H A P T E R 5 Working with Files and Directories

Short Quiz

1. During the fi le copy process, what function is used to delete
the original fi le?

2. Why is it important to use the scandir() function before
using the rmdir() function?

3. What two entries will exist in a directory in most operating
systems, even if the directory is empty?

4. How do you move a fi le in PHP?

5. What is the diff erence between the unlink() and rmdir()
functions?

Summing Up

PHP recognizes two diff erent fi le types: text and binary. Text fi les •
contain printable characters and a small set of formatting charac-
ters. Binary fi les are a series of bytes for which PHP attaches no
special meaning.

Diff erent operating systems use diff erent character sequences to •
identify the end of a line in a text fi le.

File permissions identify the abilities that users or groups of users •
have for a particular fi le. Typical permissions include read, write,
and execute.

Th e • chmod() function modifi es the permissions of a fi le or direc-
tory. Th e fi leperms() function reads the permissions of a fi le or
directory.

A handle is a special type of variable that PHP uses to represent a •
resource such as a fi le.

To iterate through the entries in a directory, you open a handle to •
the directory with the opendir() function. You can then use the
readdir() function to return the fi le and directory names from
the open directory. You use the closedir() function to close a
directory handle.

283

Summing Up

Th e • scandir() function returns an indexed array containing the
names of fi les and directories in the specifi ed directory.

Th e • mkdir() function creates a new directory.

PHP includes various fi le and directory status functions, such as •
the fi le_exists() function, which determines whether a fi le or
directory exists.

PHP includes other types of functions that return additional infor- •
mation about fi les and directories, such as the fi lesize() function,
which returns the size of a fi le.

When uploading or downloading fi les, the server is the remote sys- •
tem and the client is the local machine.

You upload a fi le using a Web form with an input of type “fi le”. •
A hidden input named “MAX_FILE_SIZE” limits the size of the
uploaded fi le.

Th e PHP form handler retrieves the uploaded fi le from the •
$_FILES autoglobal array.

Th e • move_uploaded_fi le() function moves an uploaded fi le from
the temporary directory to a more permanent location.

To download a fi le from the XHTML directory structure, use an •
XHTML hyperlink. To download a fi le from outside the XHTML
directory structure, use the header() function to identify the fi le
and the readfi le() function to send the fi le contents to the Web
browser.

Th e • fi le_put_contents() function writes or appends a text string
to a fi le. Th e fi le_get_contents() function reads a fi le into a text
string. Th e fi le() function reads a fi le into an indexed array.

Th e stream is used for accessing a resource from which you can •
read and to which you can write. Th e input stream reads data from
a resource such as a fi le, whereas the output stream writes data to a
resource (again, such as a fi le).

Th e • fopen() function opens a stream to a text fi le.

A fi le pointer is a special type of variable that refers to the cur- •
rently selected line or character in a fi le.

When you fi nish working with a fi le stream, you use the • fclose()
function to ensure that the fi le doesn’t keep taking up space in your
computer’s memory.

Th e • fwrite() function incrementally writes data to a text fi le.

Th e • fl ock() function prevents multiple users from modifying a fi le
simultaneously.

284

C H A P T E R 5 Working with Files and Directories

Th e • feof() function determines if the fi le pointer is at the end of
the fi le.

PHP includes various functions, such as the • fread() and
fgets() functions, that allow you to use the fi le pointer to
 iteratively read a text fi le.

Th e • copy() function copies a fi le. Th e rename() function renames
or moves a fi le or directory.

Th e • unlink() function deletes fi les, and the rmdir() function
deletes directories.

PHP does not contain a separate command for moving fi les. •
Instead, you can rename the fi le with the rename() function and
specify a new directory where you want to store the renamed fi le.
Or, you must copy the fi le with the copy() function, and then
delete the original fi le with the unlink() function.

Comprehension Check

1. Which of the following escape sequences is used on
Macintosh platforms? (Select all that apply.)

a. \n

b. \r

c. \n\r

d. \r\n

2. Which of the following functions sorts directory entries?

a. scandir()

b. readdir()

c. opendir()

d. sortdir()

3. Explain when you should use fi le and directory status func-
tions such as fi le_exists() and is_dir().

4. What is the value of the enctype attribute for a Web form
that uploads a fi le?

5. What is the name of the autoglobal array that contains
uploaded fi le information?

285

Comprehension Check

6. Which of the following constants can you use with the
fi le_put_contents() function to append data to the end of a
fi le?

a. INCLUDE_FILE

b. FILE_USE_INCLUDE_PATH

c. APPEND

d. FILE_APPEND

7. Which of the following functions reads the contents of a fi le
into a string?

a. fi le()

b. fi le_get_contents()

c. fread()

d. readfi le()

8. Th e fi le() function automatically recognizes whether the
lines in a text fi le end in \n, \r, or \n\r. True or False?

9. Which of the following allows you to read data from a
resource such as a fi le?

a. an input stream

b. an output stream

c. a pointer

d. a reference

10. Which of the following best describes the "w+" method
argument?

a. creates and opens the specifi ed fi le for reading and writ-
ing; returns FALSE if the fi le already exists

b. opens the specifi ed fi le for reading and writing and places
the fi le pointer at the end of the fi le; attempts to create the
fi le if it doesn’t exist

c. opens the specifi ed fi le for writing only and deletes any
existing content in the fi le; attempts to create the fi le if it
doesn’t exist

d. opens the specifi ed fi le for reading and writing and deletes
any existing content in the fi le; attempts to create the fi le
if it doesn’t exist

286

C H A P T E R 5 Working with Files and Directories

11. A is a special type of variable that refers to
the currently selected character in a fi le.

a. character pointer

b. line pointer

c. fi le pointer

d. directory pointer

12. Explain why you should call the fclose() function when you
are fi nished working with a fi le.

13. You must open and close a fi le stream when you use the
fi le_put_contents() function. True or False?

14. What is the correct syntax for using the fwrite() function to
write a value of “Forestville Foods\n” to a fi le handle named
$SalesProspects?

a. $SalesProspects = fwrite("Forestville Foods\n");

b. fwrite($SalesProspects, "Forestville Foods\n");

c. fwrite("Forestville Foods\n", $SalesProspects);

d. fwrite("$SalesProspects, Forestville Foods\n");

15. Explain why you should lock fi les before writing data to
them.

16. Which of the following operational constants can you use
with the fl ock() function? (Choose all that apply.)

a. LOCK_EX

b. LOCK_NH

c. LOCK_SH

d. LOCK_UH

17. Which of the following functions can you use to iterate
through a text fi le? (Choose all that apply.)

a. stream_get_line()

b. fgets()

c. fread()

d. readfi le()

287

Comprehension Check

18. Which of the following functions returns a value of
TRUE when a fi le pointer reaches the end of a fi le?

a. is_end()

b. end()

c. eof()

d. feof()

19. Which of the following statements creates a directory named
“students” at the same level as the current directory?

a. mkdir("/students");

b. mkdir("students");

c. mkdir("/students/");

d. mkdir("../students");

20. Explain the two ways in which you can move a fi le with PHP.

Reinforcement Exercises

Exercise 5-1

In this project, you will create a hit counter script that keeps track
of the number of hits a Web page receives. Ensure that the Projects
directory has read and write permissions for everyone.

1. Create a new document in your text editor and type the
<!DOCTYPE> declaration, <html> element, document head, and
<body> element. Use the strict DTD and “Hit Counter” as the
content of the <title> element.

2. Add the following script section to the document body:
<?php
?>

3. Add the following statement to the script section to declare a
variable named $CounterFile that contains the name of the
fi le where the hits will be stored:
$CounterFile = "hitcount.txt";

4. Add the following if statement to the end of the script sec-
tion. Th e if statement determines whether the hitcount.txt

288

C H A P T E R 5 Working with Files and Directories

fi le already exists. If it does, the fi le_get_contents() func-
tion retrieves the value from the fi le and increments it by 1.
if (fi le_exists($CounterFile)) {
 $Hits = fi le_get_contents($CounterFile);
 ++$Hits;
}

5. Add the following else statement to the end of the script
section. Th e else statement contains a single statement that
assigns a value of 1 to the $Hits variable in the event that the
hitcount.txt fi le has not yet been created.
else
 $Hits = 1;

6. Finally, add the following statements to the end of the script
section. Th e echo statement displays the number of hits and
the if statement updates the value in the hitcount.txt fi le.
Remember that the fi le_put_contents() function opens the
fi le if it already exists or creates the fi le if it doesn’t exist.
echo "<h1>There have been $Hits hits to this page.
</h1>\n";
if (fi le_put_contents($CounterFile, $Hits))
 echo "<p>The counter fi le has been updated.
 </p>\n";

7. Save the document as HitCounter.php in the Projects direc-
tory for Chapter 5.

8. Open HitCounter.php in your Web browser by entering
the following URL: http://<yourserver>/PHP_Projects/
Chapter.05/Projects/HitCounter.php. Th e fi rst time you open
the Web page, you should see a hit count of 1. Reload the Web
page a few times to see if the count increases.

9. Close your Web browser window.

Exercise 5-2

In this project, you will create a Web page that allows visitors to your
site to sign a guest book that is saved to a text fi le. Ensure that the
Projects directory has read and write permissions for everyone.

1. Create a new document in your text editor and type the
<!DOCTYPE> declaration, <html> element, document head, and
<body> element. Use the strict DTD and “Guest Book” as the
content of the <title> element.

289

Reinforcement Exercises

2. Add the following text and elements to the document body:
<h2>Enter your name to sign our guest book</h2>
<form method="POST" action="SignGuestBook.php">
<p>First Name <input type="text" name="fi rst_name"
/></p>
<p>Last Name <input type="text" name="last_name"
/></p>
<p><input type="submit" value="Submit" /></p>
</form>
<p>Show Guest Book
</p>

3. Save the document as GuestBook.html in the Projects direc-
tory for Chapter 5.

4. Create a new document in your text editor and type the
<!DOCTYPE> declaration, <html> element, document head, and
<body> element. Use the strict DTD and “Sign Guest Book” as
the content of the <title> element.

5. Add the following script section to the document body:
<?php
?>

6. Add the following if statement to the script section to check
whether the user fi lled in the fi rst name and last name fi elds:
if (empty($_POST['fi rst_name']) || empty($_
POST['last_name']))
 echo "<p>You must enter your fi rst and last
 name. Click your browser's Back button to
 return to the Guest Book.</p>\n";

7. Add the following else clause to the end of the script section.
Th e statements in the else clause use the fwrite() function
to add visitor names to a text fi le named guestbook.txt.
else {
 $FirstName = addslashes($_POST['fi rst_name']);
 $LastName = addslashes($_POST['last_name']);
 $GuestBook = fopen("guestbook.txt", "ab");
 if (is_writeable("guestbook.txt")) {
 if (fwrite($GuestBook, $LastName . ", " .
 $FirstName . "\n"))
 echo "<p>Thank you for signing our
 guest book!</p>\n";
 else
 echo "<p>Cannot add your name to the
 guest book.</p>\n";
 }

290

C H A P T E R 5 Working with Files and Directories

 else
 echo "<p>Cannot write to the fi le.</p>\n";
 fclose($GuestBook);
}

8. Save the document as SignGuestBook.php in the Projects
directory for Chapter 5.

9. Create a document named ShowGuestBook.php that dis-
plays the names of visitors who have signed the guest book.
Use the readfi le() function to display the contents of the
guestbook.txt fi le. Note that you will need to use the <pre>
element for Web browsers to recognize the line breaks.

10. Open GuestBook.html in your Web browser by enter-
ing the following URL: http://<yourserver>/PHP_Projects/
Chapter.05/Projects/GuestBook.html. Test the form to see if
you can write data to and read data from the guestbook.txt
fi le.

11. Close your Web browser window.

Exercise 5-3

Create a document with a form that registers bowlers for a bowl-
ing tournament. Use a single text fi le that saves information for each
bowler on a separate line. Include the bowler’s name, age, and aver-
age, separated by commas. Ensure that the Projects directory has read
and write permissions for everyone.

Exercise 5-4

Create a Web page to be used for storing software development bug
reports in text fi les. Include fi elds such as product name and ver-
sion, type of hardware, operating system, frequency of occurrence,
and proposed solutions. Include links on the main page that allow
you to create a new bug report and update an existing bug report.
Ensure that the Projects directory has read and write permissions for
everyone.

Exercise 5-5

Create a Web form for uploading pictures for a high school reunion.
Th e form should have text input fi elds for the person’s name and

291

Reinforcement Exercises

a description of the image, and a fi le input fi eld for the image. To
accompany each image fi le, create a text fi le that contains the name
and description of the image. Create a separate Web page that displays
the pictures with a caption showing the name and description fi elds.
Ensure that the Projects directory has read and write permissions for
everyone.

Discovery Projects
Th e Chinese Zodiac site is a comprehensive project that will be
updated in the Discovery Projects in each chapter. All fi les for the
Chinese Zodiac site will be saved in a folder named ChineseZodiac in
the root Web folder on the server.

Discovery Project 5-1

Reopen inc_site_layout.php, which you created in Discovery
Project 4-1. Th e fi le is in the Includes folder of the ChineseZodiac folder.
Replace the “[Insert site layout content here]” placeholder with Web con-
tent that describes the process of developing a dynamic Web template.
Be sure to diff erentiate between dynamic and static content and illus-
trate the syntax for targeting content to a dynamic content section.

Save the inc_site_layout.php fi le and upload it to the server. Th e con-
tents of this fi le should appear in the dynamic content section when
you click the Site Layout button or the Site Layout text hyperlink
from the Chinese zodiac Web template.

Discovery Project 5-2

Create a new document in your text editor and create an All-in-One
Web form that prompts the user for his or her birth year. Validate
the user input to require the user to enter a number. Use a nested
if...else statement to display the appropriate version of the mes-
sage, “You were born under the sign of the [zodiac sign]”, and display
the zodiac image representing the posted year. Use the Chinese
zodiac images that you saved in the Images folder in Discovery
Project 1-4. Track the number of times each year is entered by storing
a counter for each year in a fi le in a “statistics” subdirectory. Ensure
that the PHP scripting engine has read and write permissions for the
“statistics” subdirectory. Display a message at the bottom of the page
showing how many times the specifi ed year has been entered using
the message “You are visitor [count] to enter [year]”. Use a separate
fi le for each year. Figure 5-18 shows a sample Web form and Figure
5-19 shows a sample output Web page.

292

C H A P T E R 5 Working with Files and Directories

Figure 5-18 Sample Web form for the if...else program

Figure 5-19 Sample output for the if...else statement

Save the fi le as BirthYear_ifelse.php and upload it to the
ChineseZodiac folder on the server. Create the “statistics” subdirec-
tory and ensure that the write permissions are set to allow the PHP
scripting engine to write fi les in the directory.

Reopen the BirthYear_ifelse.php fi le. Modify the script to use a
switch statement instead of the nested if...else statements. Save
the fi le as BirthYear_switch.php and upload it to the ChineseZodiac
folder on the server.

293

Discovery Projects

Discovery Project 5-3

Create a new document in your text editor and type the <!DOCTYPE>
declaration, <html> element, document head, and <body> ele-
ment. Use the strict DTD and “Show Source Code” as the content
of the <title> element. Th is script will display the source code
of a PHP script with syntax highlighting. Th is is accomplished by
using the fi le_get_contents() function you learned in this chap-
ter to read the script into a string, and by using a new function,
highlight_string(). Th e highlight_string() function takes a
string of PHP code and displays it with color-coded syntax highlight-
ing in a Web browser. To use these functions, insert the following
PHP code block in the body:
<?php
if (isset($_GET['source_fi le'])) {
 $SourceFile = fi le_get_contents(
 stripslashes($_GET['source_fi le']));
 highlight_string($SourceFile);
}
else
 echo "<p>No source fi le name entered</p>\n";
?>

Save the document as ShowSourceCode.php in the ChineseZodiac
directory and upload the document to the Web server.

Open the inc_string_functions.php fi le in your text editor and
replace the “[Insert string function content here]” placeholder text
with the title “String and Character Functions.” Add a text navigation
bar below the title with the following internal hyperlinks that link to
a description of the PHP program. You can insert the text navigation
bar directly in the inc_control_structures.php fi le or create the bar as
a separate fi le and include it.
String Functions
Character Functions

Below the text navigation bar, create a section for each hyper-
link and insert an anchor to the named section. Th e fi rst section,
“String Functions”, is for the SimilarNames.php script you created in
Discovery Project 3-4. Th e second section, “Character Functions”, is
for the EmbeddedWords.php script you created in Discovery Project
3-5. Describe the purpose of each PHP program. For example: “Th is
script counts the number of times each letter appears in a string and
compares that count to the number of times each letter appears in the
names of the Chinese zodiac signs to determine if the name can be

294

C H A P T E R 5 Working with Files and Directories

made from the characters in the string.” Th e code for the two anchor
targets is listed below.
String Functions
Character Functions

Below the descriptive content, insert a text hyperlink with the link
text “[Test the Script]” that opens the appropriate PHP script for the
section.

Add a second text hyperlink with the link text “[View the Source
Code]” that displays the source code of the respective PHP program.
Use the following code for the hyperlink, replacing fi le_name with the
name of the program referenced in the “[Test the Script]” hyperlink:
[View the
Source Code]

Save the fi le and upload it to the Includes folder in the ChineseZodiac
folder on the server. Open index.php by entering the following
URL in your Web browser’s address bar: http://<yourserver>/
ChineseZodiac/index.php. Click the String Functions button or menu
item to display the updated inc_string_functions.php. Test the links
to verify that they display properly.

Discovery Project 5-4

Open the inc_control_structures.php fi le in your text editor and
replace the “[Insert control structure content here]” placeholder text
with the title “Conditional Statements and Looping Structures.” Add
a text navigation bar below the title with the following internal hyper-
links that link to a description of the PHP program. You can insert the
text navigation bar directly in the inc_control_structures.php fi le or
create the bar as a separate fi le and include it.
If...Else Statement
Switch Statement
While Loop
For Loop

Below the text navigation bar, create a section for each hyperlink and
insert an anchor to the named section. Describe the purpose of each
PHP program. For example: “Th is all-in-one form prompts the user
to enter a 4-digit birth year, which is validated for numeric input.
Th e browser displays the user’s Chinese zodiac sign and the associ-
ated zodiac image using an if...else statement.” Th e code for the four
anchor targets is listed below:
If...Else Statement
Switch Statement

295

Discovery Projects

http://<yourserver>/ChineseZodiac/index.php
http://<yourserver>/ChineseZodiac/index.php

While Loop
For Loop

Below the descriptive content, insert a text hyperlink with the link
text “[Test the Script]” that opens the appropriate script. For the “lf...
Else Statement” section, use the BirthYear_ifelse.php script created
in Discovery Project 5-2. For the “Switch Statement” section, use the
BirthYear_switch.php script, also created in Discovery Project 5-2.
For the “While Loop” section, use the Chinese_Zodiac_while_loop.
php script created in Discovery Project 2-5. For the “For Loop”
section, use the Chinese_Zodiac_for_loop.php script created in
Discovery Project 2-4.

Add a second text hyperlink with the link text “[View the Source
Code]” that calls the ShowSourceCode.php script created in
Discovery Project 5-3 to display the source code of the appropriate
PHP script for this section. Use the following code for the hyperlink,
replacing fi le_name with the name of the program referenced in the
“[Test the Script]” hyperlink:
[View the
Source Code]

Save the fi le and upload it to the Includes folder in the ChineseZodiac
folder on the server. Open index.php by entering the following
URL in your Web browser’s address bar: http://<yourserver>/
ChineseZodiac/index.php. Click the Control Structures button or
menu item to display the updated inc_control_structures.php. Test
the links to verify that they display properly.

Discovery Project 5-5

Create an All-in-One Web form with a text area box for the user to
enter a Chinese proverb and write the data to a fi le named
proverbs.txt in the ChineseZodiac directory. Be sure that the
 proverbs.txt fi le has read and write permissions for the PHP scripting
engine. Use the fwrite() function to incrementally append each new
proverb that is submitted using the Add Chinese Proverb button on
the Web form.

Name the fi le UploadProverb.php and transfer the fi le to the
ChineseZodiac directory on the server. Open UploadProverb.php in
the Web browser and use the Web form to post a number of Chinese
proverbs to the proverbs.txt fi le on the Web server.

Reopen inc_footer.php and modify the code to use the fi le()
function to read the contents of the proverbs.txt fi le into an array.
Count the number of items in the array using the count() function

296

C H A P T E R 5 Working with Files and Directories

http://<yourserver>/ChineseZodiac/index.php
http://<yourserver>/ChineseZodiac/index.php

and store the result in a variable named $ProverbCount. Use the
PHP rand(0, $ProverbCount-1) function to generate a random
array index. Use the echo statement to display the text “A randomly
 displayed Chinese proverb read from a text fi le”. Below the descrip-
tion, display a Chinese proverb using the random index to select the
 proverb from the array.

View the Chinese Zodiac Web site in the Web browser. Refresh the
browser to verify that a diff erent proverb appears each time the
browser is refreshed.

Discovery Project 5-6

Create a PHP All-in-One Web form to upload images to the Images
subfolder in the ChineseZodiac folder on the server. Remember that
you must set the permissions on the directory to give the PHP scripting
engine write access to the directory. Name the fi le UploadImage.php
and save it in the ChineseZodiac folder, then upload it to the Web server.

Search the Web for at least fi ve small dragon images. Save them in
a folder and size them to approximately 100 pixels by 100 pixels.
Name the images Dragon1, Dragon2, and so on with a valid image
extension. Use the UploadImage.php Web form to upload the dragon
images to the Web server.

In Discovery
Project 6-1,
you will ran-
domly dis-
play one of
the dragon

images below the ran-
domly displayed Chinese
proverb.

297

Discovery Projects

C H A P T E R 6
Manipulating Arrays

In this chapter, you will:

Manipulate array elements

Declare and initialize associative arrays

Iterate through an array

Find and extract elements and values

Sort, combine, and compare arrays

Understand multidimensional arrays

Use arrays in Web forms

Earlier in this book, you learned that an array contains a set of data
represented by a single variable name. You also learned that PHP
includes two types of arrays: indexed and associative. You refer to the
elements in an indexed array by their numeric position, whereas you
refer to the elements in an associative array with an alphanumeric
key. In this chapter, you will learn how to use advanced techniques on
both indexed and associative arrays.

Manipulating Elements
As you use arrays in your scripts, you will undoubtedly need to add
and remove elements. For example, suppose you have an online shop-
ping cart program that uses an array to store the names of products
that a customer plans to purchase. As the customer selects additional
products to purchase, or decides not to purchase an item, you will
need to manipulate the elements in the array of products.

In this chapter, you work on a Message Board script that allows users
to post and read messages to and from a text fi le. (Message boards
are online discussion groups in which users with similar interests
exchange messages.) Th e Message Board script you use in this chapter
is fairly simple, unlike some of the real message boards you have prob-
ably seen and used yourself. However, the Message Board script lets
you practice the advanced array techniques presented in this chapter.

Th is simple implementation of a message board has only two pages.
PostMessage.php is an All-in-One Web form for posting messages
to the message board. MessageBoard.php is the page for viewing,
organizing, and deleting messages. Messages are written to the
messages.txt fi le at PHP_Projects/Chapter.06/Chapter/MessageBoard/
on the Web server.

To create an All-in-One form for posting messages to the Message
Board, which stores messages in a text fi le:

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, header
information, and <body> element. Use the strict DTD and
“Post Message” as the content of the <title> element.

3. Add the following script section to the document body:
<?php
?>

4. Add the following code to the script section to append the
submitted message to the messages.txt fi le. Th e code uses
the fopen(), fwrite(), and fclose() functions you stud-
ied in Chapter 5 to write the lines of the messages.txt fi le.

299

Manipulating Elements

Remember that opening a fi le with the “a” method parameter
will append to an existing fi le or create the fi le if it doesn’t
exist. Note the use of the strict comparison operator (===) to
verify that the value is FALSE and the data type is Boolean.
Because the message lines use the tilde (~) character to sepa-
rate fi elds, you will need to remove any tilde characters in the
message fi elds themselves.
if (isset($_POST['submit'])) {
 $Subject = stripslashes($_POST['subject']);
 $Name = stripslashes($_POST['name']);
 $Message = stripslashes($_POST['message']);
 // Replace any '~' characters
 // with '-' characters
 $Subject = str_replace("~", "-", $Subject);
 $Name = str_replace("~", "-", $Name);
 $Message = str_replace("~", "-", $Message);
 $MessageRecord =
 "$Subject~$Name~$Message\n";
 $MessageFile =
 fopen("MessageBoard/messages.txt",
 "ab");
 if ($MessageFile === FALSE)
 echo "There was an error saving your
 message!\n";
 else {
 fwrite($MessageFile, $MessageRecord);
 fclose($MessageFile);
 echo "Your message has been saved.\n";
 }
}

5. Add the following XHTML code after the PHP code block to
display the Web form:
<h1>Post New Message</h1>
<hr />
<form action="PostMessage.php" method="POST">
Subject:
 <input type="text" name="subject" />
Name:
 <input type="text" name="name" />

<textarea name="message" rows="6"
 cols="80"></textarea>

<input type="submit" name="submit"
 value="Post Message" />
<input type="reset" name="reset"
 value="Reset Form" />
</form>
<hr />
<p>
View Messages
</p>

The View
Messages link
will not work
until you
 create

MessageBoard.php in
the next exercise.

300

C H A P T E R 6 Manipulating Arrays

6. Save the document as PostMessage.php in the Chapter
directory for Chapter 6 and upload the fi le to the server.

7. Create a subdirectory on the Web server named
MessageBoard. Verify that the user, group, and others
are given permissions to read, write, and execute for the
 subdirectory.

8. Open the PostMessage.php fi le in your Web browser by enter-
ing the following URL: http://<yourserver>/PHP_Projects/
Chapter.06/Chapter/PostMessage.php. Figure 6-1 shows
the form.

Figure 6-1 The Post New Message page of the Message Board

9. Use the form to store some messages in messages.txt.

To create the main page for the Message Board, which displays the
messages stored in messages.txt:

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, header
information, and <body> element. Use the strict DTD and
“Message Board” as the content of the <title> element.

The user
account for
your Web
server is the
only account

that will read and write
the messages.txt fi le. By
default, the owner of a
fi le can read and write the
fi le, so there is no need
to use the chmod()
function on the
 messages.txt fi le.

301

Manipulating Elements

3. Add the following XHTML code and script section to the
document body:
<h1>Message Board</h1>
<?php
?>
<p>

 Post New Message
</p>

4. Add the following code to the script section to read the mes-
sages.txt fi le and display the messages in a table. Th is code
uses the fi le() function you learned in Chapter 5 to read
the messages.txt fi le into the $MessageArray array, and the
explode() function you learned in Chapter 3 to split each
message string into an array of substrings based on a separa-
tor string, which in this case is a tilde (~). Th e array of sub-
strings is stored in $CurrMsg.
if ((!fi le_exists("MessageBoard/messages.txt"))
 || (fi lesize("MessageBoard/messages.txt")
 == 0))
 echo "<p>There are no messages
 posted.</p>\n";
else {
 $MessageArray =
 fi le("MessageBoard/messages.txt");
 echo "<table
 style=\"background-color:lightgray\"
 border=\"1\" width=\"100%\">\n";
 $count = count($MessageArray);
 for ($i = 0; $i < $count; ++$i) {
 $CurrMsg = explode("~",
 $MessageArray[$i]);
 echo "<tr>\n";
 echo "<td width=\"5%\"
 style=\"text-align:center;
 font-weight:bold\">" .
 ($i + 1) . "</td>\n";
 echo "<td width=\"95%\">Subject:
 " .
 htmlentities($CurrMsg[0]) .
 "
\n";
 echo "Name:
 " .
 htmlentities($CurrMsg[1]) .
 "
\n";

302

C H A P T E R 6 Manipulating Arrays

 echo "<span
 style=\"text-decoration:underline;
 font-weight:bold\">Message

\n" .
 htmlentities($CurrMsg[2]) .
 "</td>\n";
 echo "</tr>\n";
}
 echo "</table>\n";
}

5. Save the document as MessageBoard.php in the Chapter
directory for Chapter 6 and upload the fi le to the Web server.

6. Open the MessageBoard.php fi le in your Web browser by
entering the following URL: http://<yourserver>/PHP_
Projects/Chapter.06/Chapter/MessageBoard.php. Figure 6-2
shows example output for three messages.

Figure 6-2 The Message Board page of the Message Board

7. Close your Web browser window.

303

Manipulating Elements

Adding and Removing Elements from the
Beginning of an Array
To add or remove elements from the beginning of an array, use the
array_shift() and array_unshift() functions. Th e array_shift()
function removes the fi rst element from the beginning of an array,
whereas the array_unshift() function adds one or more elements
to the beginning of an array. You pass to the array_shift() function
the name of the array whose fi rst element you want to remove. You
pass to the array_unshift() function the name of an array followed
by comma-separated values for each element you want to add. For
example, the following code declares and initializes an array of the
top-selling vehicles in the United States for December 2008. Th e list
needs to be updated for January 2009. Th e array_shift() function
removes the fi rst vehicle, the Chevrolet Impala, from the top of the
array. Th e array_unshift() function adds the new member of the
list, the Honda CR-V, to the top of the array. Figure 6-3 shows the
output of the print_r() function. Recall from Chapter 1 that the
print_r() function displays the indexes and values of an array. Note
the use of the XHTML <pre> tags to keep the output from being dis-
played in a single line.
$TopSellers = array(
 "Chevrolet Impala",
 "Chevrolet Malibu",
 "Chevrolet Silverado",
 "Ford F-Series",
 "Toyota Camry",
 "Toyota Corolla",
 "Nissan Altima",
 "Honda Accord",
 "Honda Civic",
 "Dodge Ram");
echo "<h2>Original Array</h2>\n";
echo "<pre>\n";
print_r($TopSellers);
echo "</pre>\n";
array_shift($TopSellers);
echo "<h2>Array after Shifting</h2>\n";
echo "<pre>\n";
print_r($TopSellers);
echo "</pre>\n";
array_unshift($TopSellers, "Honda CR-V");
echo "<h2>Array after Unshifting</h2>\n";
echo "<pre>\n";
print_r($TopSellers);
echo "</pre>\n";

304

C H A P T E R 6 Manipulating Arrays

Figure 6-3 Output of an array modifi ed with the
array_shift() and array_unshift() functions

305

Manipulating Elements

To modify MessageBoard.php to use the array_shift() function to
remove the fi rst message in the Message Board script:

1. Reopen MessageBoard.php in your text editor.

2. Add the following code to the start of the PHP block. Th e
code checks to see if an action was passed in the URL. If an
action was passed, the messages.txt fi le is checked. If the mes-
sages.txt fi le exists and it contains messages, the contents of
the messages.txt fi le are read into an array using the fi le()
function.
if (isset($_GET['action'])) {
 if ((fi le_exists(
 "MessageBoard/messages.txt")) &&
 (fi lesize(
 "MessageBoard/messages.txt") != 0)) {
 $MessageArray = fi le(
 "MessageBoard/messages.txt");
 }
}

3. Add the following switch() statement immediately after the
line that reads the contents of the messages.txt fi le into an
array. You use a switch() statement instead of an if() state-
ment because more cases will be added later. If the action is
“Delete First”, use the array_shift() function to remove the
fi rst element in the array.
switch ($_GET['action']) {
 case 'Delete First':
 array_shift($MessageArray);
 break;
} // End of the switch statement

4. Add the following if() statement after the switch() state-
ment. If any messages are left in the array, the code in the
block will be executed. Th e code will be added in the next
step. If no messages are left in the array, the messages.txt fi le
is deleted with the unlink() function.
if (count($MessageArray)>0) {
}
else
 unlink(
 "MessageBoard/messages.txt");

5. Insert the following code in the if code block of the above
if() statement. Th e fi rst statement uses the implode() func-
tion to convert $MessageArray[] into a text string, which is
assigned to the $NewMessages variable. Recall from Chapter 3
that the implode() function concatenates an array of strings

306

C H A P T E R 6 Manipulating Arrays

into a single string. Th e second statement then uses the
fopen() function to open a handle named $MessageStore to
the messages.txt fi le. Notice that the fopen() function uses the
“wb” method parameter, which opens a fi le for writing only and
deletes all of the fi le’s current contents. If successful, this allows
the fwrite() statement to replace the entire contents of the
fi le with the new list of messages in the $NewMessages variable.
$NewMessages =
 implode($MessageArray);
$MessageStore = fopen(
 "MessageBoard/messages.txt",
 "wb");
if ($MessageStore === false)
 echo "There was an error
 updating the message
 fi le\n";
else {
 fwrite($MessageStore,
 $NewMessages);
 fclose($MessageStore);
}

Th e script should appear as follows:
if (isset($_GET['action'])) {
 if ((fi le_exists(
 "MessageBoard/messages.txt")) &&
 (fi lesize(
 "MessageBoard/messages.txt") != 0)) {
 $MessageArray = fi le(
 "MessageBoard/messages.txt");
 switch ($_GET['action']) {
 case 'Delete First':
 array_shift($MessageArray);
 break;
 } // End of the switch statement
 if (count($MessageArray)>0) {
 $NewMessages =
 implode($MessageArray);
 $MessageStore = fopen(
 "MessageBoard/messages.txt",
 "wb");
 if ($MessageStore === false)
 echo "There was an error
 updating the message
 fi le\n";
 else {
 fwrite($MessageStore,
 $NewMessages);
 fclose($MessageStore);
 }
 }
 else

307

Manipulating Elements

 unlink(
 "MessageBoard/messages.txt");
 }
}

if ((!fi le_exists("MessageBoard/messages.txt"))
 || (fi lesize("MessageBoard/messages.txt")
 == 0))
 echo "<p>There are no messages
 posted.</p>\n";
else {
...

6. Modify the paragraph element at the end of the fi le so it
contains an anchor element that calls the MessageBoard.php
fi le with the proper parameters to delete the fi rst message, as
follows:
<p>

 Post New Message

 Delete First Message
</p>

7. Save the MessageBoard.php fi le and upload the fi le to the
server.

8. Open the MessageBoard.php fi le in your Web browser by
entering the following URL: http://<yourserver>/PHP_
Projects/Chapter.06/Chapter/MessageBoard.php. Click the
Delete First Message link to test the new code. Th e fi rst
message in your list should be deleted.

9. Close your Web browser window.

Adding and Removing Elements from the End
of an Array
Th e easiest way to add more elements to the end of an array is sim-
ply to use the array name and brackets syntax that you fi rst saw in
Chapter 1. For example, the fi rst statement in the following code uses
the array() construct to create the initial $HospitalDepts[] array.
Th e second statement then adds a new value, “Pediatrics,” as the
fourth element of the array.
$HospitalDepts = array(
 "Anesthesia",
 "Molecular Biology",
 "Neurology");
$HospitalDepts[] = "Pediatrics";

308

C H A P T E R 6 Manipulating Arrays

You can also add and remove elements from the end of an array
by using the array_pop() and array_push() functions. Th e
array_pop() function removes the last element from the end of an
array, whereas the array_push() function adds one or more ele-
ments to the end of an array. You pass to the array_pop() function
the name of the array whose last element you want to remove. You
pass to the array_push() function the name of an array followed
by a comma-separated list of values for each element you want to
add. In the following example, the array_pop() function removes
the last department, “Pediatrics,” from the end of the array, and the
array_push() function adds two departments, “Psychiatry” and
“Pulmonary Diseases,” to the end of the array.
$HospitalDepts = array(
 "Anesthesia",
 "Molecular Biology",
 "Neurology",
 "Pediatrics");
array_pop($HospitalDepts);
 // Removes "Pediatrics"
array_push($HospitalDepts, "Psychiatry",
 "Pulmonary Diseases");

To modify MessageBoard.php to use the array_pop() function to
remove the last message in the Message Board script:

1. Reopen MessageBoard.php in your text editor.

2. Add the following code as a second case to the switch()
statement. Th is case uses the array_pop() function to
remove the last element in the array.
case 'Delete Last':
 array_pop($MessageArray);
 break;

3. Modify the paragraph element at the end of the fi le so it con-
tains another anchor element that calls the MessageBoard.php
fi le with the proper parameters to delete the last message, as
follows:
<p>

 Post New Message

 Delete First Message

 Delete Last Message
</p>

4. Save the MessageBoard.php fi le and upload the fi le to the Web
server.

309

Manipulating Elements

5. Open the MessageBoard.php fi le in your Web browser by
entering the following URL: http://<yourserver>/PHP_
Projects/Chapter.06/Chapter/MessageBoard.php. Click the
Delete Last Message link to test the new code. Th e last mes-
sage in your list should be deleted.

6. Close your Web browser window.

Adding and Removing Elements Within an Array
So far, you have learned to add and remove elements from the begin-
ning and end of an array. Th e array_splice() function allows you to
add or remove elements located anywhere else in an array. After add-
ing or removing array elements, the array_splice() function also
renumbers the indexes for an array. Th e syntax for the function is
array_splice(array_name, start_index, number_to_delete,
values_to_insert);. Th e array_name argument indicates the name
of the array you want to modify. Th e start_index argument indi-
cates the element within the array at which elements should be added
or removed. In other words, it is the index of the fi rst element to be
deleted or moved. Th e number_to_delete argument is an integer
value that indicates the number of elements to remove from the
array, starting with the element indicated by the start_index argu-
ment. Th e values_to_insert argument is a value or array of val-
ues you want to insert into the array at the index specifi ed by the
start_index argument. Th e remaining elements of the array, if any,
are relocated to start at the fi rst index after the last inserted value.

To add an element within an array, include a value of 0 as the
third argument of the array_splice() function. For example, the
array_splice() function in the following code adds a new ele-
ment with a value of “Ophthalmology” between the “Neurology”
and “Pediatrics” elements, and renumbers the elements. Because
“Pediatrics” is the fi rst element that needs to be moved, start_index
is set to 3, the index of “Pediatrics”.
$HospitalDepts = array(
 "Anesthesia", // fi rst element (0)
 "Molecular Biology", // second element (1)
 "Neurology", // third element (2)
 "Pediatrics"); // fourth element (3)
array_splice($HospitalDepts, 3, 0,
 "Ophthalmology");

To add more than one element within an array, pass the array()
construct as the fourth argument to the array_splice() function.
Within the array() construct, include the new element values sepa-
rated by commas, as if you were creating a new array. Th e following

310

C H A P T E R 6 Manipulating Arrays

example shows how to add two new elements, “Opthalmology” and
“Otolaryngology,” between the “Neurology” and “Pediatrics” elements:
$HospitalDepts = array(
 "Anesthesia", // fi rst element (0)
 "Molecular Biology", // second element (1)
 "Neurology", // third element (2)
 "Pediatrics"); // fourth element (3)
array_splice($HospitalDepts, 3, 0,
 array("Opthalmology",
 "Otolaryngology"));

You can also delete array elements by omitting the fourth argument
from the array_splice() function. After the deletions, the remain-
ing indexes are renumbered, just as when you add new elements.
For example, to delete the second and third elements (“Molecular
Biology” and “Neurology”) from the $HospitalDepts[] array, you use
the following array_splice() statement:
$HospitalDepts = array(
 "Anesthesia", // fi rst element (0)
 "Molecular Biology", // second element (1)
 "Neurology", // third element (2)
 "Pediatrics"); // fourth element (3)
array_splice($HospitalDepts, 1, 2);

To modify MessageBoard.php to use the array_splice() function to
remove a specifi c message from the Message Board script:

1. Reopen MessageBoard.php in your text editor.

2. Add the following code as a third case to the switch() state-
ment. Th is case uses the array_splice() function to remove
the element specifi ed by the $_GET['message'] array element
from the $MessageArray array.
case 'Delete Message':
 if (isset($_GET['message']))
 array_splice(
 $MessageArray,
 $_GET['message'],
 1);
 break;

3. To restrict the second column of the table to 85% of the table
width, modify the code as follows:
echo "<td width=\"85%\">
 Subject: " .
 htmlentities($CurrMsg[0]) .
 "
\n";

If you do not
include the
third argu-
ment
(number_

to_delete), the
array_splice() func-
tion deletes all the ele-
ments from the second
argument (start_
index) to the end of the
array.

311

Manipulating Elements

4. Immediately before the line of code that defi nes the closing
</tr> tag, add the following code to defi ne a third column for
the table:
echo "<td width=\"10%\"
 style=\"text-align:center\">" .
 "<a href='MessageBoard.php?" .
 "action=Delete%20Message&" .
 "message=$i'>" .
 "Delete This Message</td>\n";

Th e row output portion of the script should appear as follows:
...
 echo "<tr>\n";
 echo "<td width=\"5%\"
 style=\"text-align:center;
 font-weight:bold\">" .
 ($i + 1) . "</td>\n";
 echo "<td width=\"85%\">Subject:
 " .
 htmlentities($CurrMsg[0]) .
 "
\n";
 echo "Name:
 " .
 htmlentities($CurrMsg[1]) .
 "
\n";
 echo "<span
 style=\"text-decoration:underline;
 font-weight:bold\">Message

\n" .
 htmlentities($CurrMsg[2]) .
 "</td>\n";
 echo "<td width=\"10%\"
 style=\"text-align:center\">" .
 "<a href='MessageBoard.php?" .
 "action=Delete%20Message&" .
 "message=$i'>" .
 "Delete This Message</td>\n";
 echo "</tr>\n";
...

5. Save the MessageBoard.php fi le and upload the fi le to the
server.

6. Open the MessageBoard.php fi le in your Web browser by
entering the following URL: http://<yourserver>/PHP_
Projects/Chapter.06/Chapter/MessageBoard.php. Select a
message and click the corresponding Delete Th is Message
link. Th e message will be deleted from the list.

7. Close your Web browser window.

312

C H A P T E R 6 Manipulating Arrays

You can also use the unset() function to remove array elements
and other variables. You pass to the unset() function the array
name with the index number of the element you want to remove
in brackets. To remove multiple elements, separate each element
name with a comma. For example, the following unset() function
removes the “Molecular Biology” and “Neurology” elements from the
$HospitalDepts[] array:
unset($HospitalDepts[1], $HospitalDepts[2]);

One problem with the unset() function is that it does not renumber
the remaining elements in the array. If you executed the print_r()
function with the $HospitalDepts[] array after executing the pre-
ceding unset() function, you would see that the “Anesthesia” element
has an index of 0 and “Pediatrics” still has an index of 3, as if you had
not removed the “Molecular Biology” and “Neurology” elements.

To renumber an indexed array’s elements, you need to use the
array_values() function. You pass to this function the name of the
array whose indexes you want to renumber. Th e array_values()
function does not operate directly on an array. Instead, it returns
a new array with the renumbered indexes. For this reason, you
need to write a statement that assigns the array returned from the
array_values() function to a new variable name or to the origi-
nal array. Th e following statement demonstrates how to use the
array_values() function to renumber the element indexes in the
$HospitalDepts[] array, and then assign the renumbered array back
to the $HospitalDepts[] array:
$HospitalDepts = array_values($HospitalDepts);

To modify the MessageBoard.php fi le so that it uses the unset()
function instead of the array_splice() function to delete messages:

1. Return to the MessageBoard.php fi le in your text editor.

2. Modify the “Delete Message” case statement as follows to
replace the array_splice() statement with the unset() and
array_values() statements:
case 'Delete Message':
if (isset($_GET['message'])) {
 $Index = $_GET['message'];
 unset($MessageArray[$Index]);
 $MessageArray =
 array_values(
 $MessageArray);
}
break;

3. Save the MessageBoard.php fi le and upload the fi le to the Web
server.

The array
passed to
the array_
values()
function is

passed by value, not by
reference. This means
that, unlike the array_
splice() function, the
array passed in is not
changed. The return value
of the array_values()
function is the renumbered
array. In the preceding
example, the return value
is written back to the
same array variable that
was passed to the
array_values()
function.

313

Manipulating Elements

4. Open the MessageBoard.php fi le in your Web browser by
entering the following URL: http://<yourserver>/PHP_
Projects/Chapter.06/Chapter/MessageBoard.php. Select a
message and click the corresponding Delete Th is Message
link. Th e message will be deleted from the list.

5. Close your Web browser window.

Removing Duplicate Elements
You might need to ensure that an array in a script does not contain
duplicate values. For example, your script may use arrays of e-mail
addresses, customer names, or sales items, each of which should
contain unique elements. You can use the array_unique() func-
tion to remove duplicate elements from an array. You pass to this
function the name of the array from which you want to remove
duplicate elements. As with the array_values() function, the
array_unique() function does not operate directly on an array.
Instead, it returns a new array with the renumbered indexes. For this
reason, you need to write a statement that assigns the array returned
from the array_unique() function to a new variable name or to the
original array.

Th e following code shows an example of the array that contains the
top-selling vehicles for 2008. Th e array should only contain unique
values, but several of the names are duplicated. Th e array_unique()
function removes the duplicate elements and then assigns the renum-
bered array back to the $TopSellers[] array. Figure 6-4 shows the
output.
$TopSellers = array(
 "Ford F-Series", "Chevrolet Silverado",
 "Toyota Camry", "Honda Accord",
 "Toyota Corolla", "Ford F-Series",
 "Honda Civic", "Honda CR-V", "Honda Accord",
 "Nissan Altima", "Toyota Camry",
 "Chevrolet Impala", "Dodge Ram",
 "Honda CR-V");
 echo "<p>The 2008 top selling vehicles
 are:</p>\n<p>";
 $TopSellers = array_unique($TopSellers);
 $TopSellers = array_values($TopSellers);
 for ($i = 0; $i < count($TopSellers); ++$i) {
 echo "{$TopSellers[$i]}
\n";
 }
 echo "</p>\n";

314

C H A P T E R 6 Manipulating Arrays

Figure 6-4 Output of an array after removing duplicate
values with the array_unique() function

To modify MessageBoard.php to use the array_unique() function to
remove duplicate messages in the Message Board script:

1. Reopen MessageBoard.php in your text editor.

2. Add the following code as a fourth case to the switch()
statement. Th is case uses the array_unique() and
array_values() functions to remove duplicate elements
from the array.
case 'Remove Duplicates':
 $MessageArray = array_unique(
 $MessageArray);
 $MessageArray = array_values(
 $MessageArray);
 break;

3. Modify the paragraph element at the end of the fi le so it con-
tains another anchor element that calls the MessageBoard.php
fi le with the proper parameters to delete the duplicate mes-
sages, as follows:
<p>

 Post New Message

<a href=
 "MessageBoard.php?action=Remove%20Duplicates">
 Remove Duplicate Messages

The array_
unique()
function
does not
renumber

the indexes after remov-
ing duplicate values in an
array. For this reason, the
preceding code includes
a statement that uses the
array_values() func-
tion to renumber the
indexes in the
$TopSellers[] array.

315

Manipulating Elements

 Delete First Message

 Delete Last Message
</p>

4. Save MessageBoard.php and upload the fi le to the Web server.

5. Open the PostMessage.php fi le in your Web browser by enter-
ing the following URL: http://<yourserver>/PHP_Projects/
Chapter.06/Chapter/PostMessage.php. Add several new
messages that contain identical information, and then click
the View Messages link to display the Message Board page.
You should see the duplicate messages. Click the Remove
Duplicate Messages link to test the new code. Any duplicate
versions of the same message should be deleted.

6. Close your Web browser window.

Short Quiz

1. What two functions are used to add or remove elements from
the beginning of an array?

2. Briefl y describe the array_pop() and array_push()
functions.

3. What function is used to add a new element at any position in
an array?

4. Explain the process of using the array_splice() function to
delete an array element.

5. What function must be used in conjunction with the
array_unique() function to renumber the indexes after the
duplicates have been removed?

Declaring and Initializing Associative
Arrays
As you know, PHP creates indexed arrays by default with a start-
ing index of 0. For example, the following code uses the array()
construct to create the indexed $Provinces[] array that you saw
in Chapter 1:

316

C H A P T E R 6 Manipulating Arrays

$Provinces = array("Newfoundland and Labrador",
 "Prince Edward Island", "Nova Scotia",
 "New Brunswick", "Quebec", "Ontario",
 "Manitoba", "Saskatchewan", "Alberta",
 "British Columbia");

With associative arrays, you can use any alphanumeric keys that you
want for the array elements. You specify an element’s key by using the
array operator (=>) in the array() construct. Th e syntax for declaring
and initializing an associative array is as follows:
$array_name = array(key => value, ...);

For example, the following code creates an array named
$ProvincialCapitals[], which contains the Canadian provinces and
their capitals. Th e name of each province is used as the element key,
and the name of each capital city is assigned as the element’s value.
$ProvincialCapitals = array(
 "Newfoundland and Labrador" => "St. John's",
 "Prince Edward Island" => "Charlottetown",
 "Nova Scotia" => "Halifax",
 "New Brunswick" => "Fredericton",
 "Quebec" => "Quebec City",
 "Ontario" => "Toronto",
 "Manitoba" => "Winnipeg",
 "Saskatchewan" => "Regina",
 "Alberta"=>"Edmonton",
 "British Columbia" => "Victoria");

You can also use the following syntax to assign key values to an asso-
ciative array by using array names and brackets. Note that when using
this syntax, you use the standard assignment operator (=) and not the
array operator (=>).
$ProvincialCapitals["Newfoundland and Labrador"]
 = "St. John's";
$ProvincialCapitals["Prince Edward Island"]
 = "Charlottetown";
$ProvincialCapitals["Nova Scotia"]
 = "Halifax";
...

Th e preceding syntax creates the array if it doesn’t exist. If the array
does exist, each assignment statement overwrites any existing ele-
ments that already use the same key or appends any new keys and
values to the end of the array.

317

Declaring and Initializing Associative Arrays

To refer to an element in an associative array, you place an element’s
key in single or double quotation marks inside the array brackets. Th e
following code displays the capitals of Quebec and British Columbia:
echo "<p>The capital of Quebec is
 {$ProvincialCapitals['Quebec']}.</p>\n";
echo "<p>The capital of British Columbia is " .
 $ProvincialCapitals["British Columbia"] .
 ".</p>\n";

If you create an associative array and then add a new element with-
out specifying a key, PHP automatically assumes that the array is
indexed and assigns the new element an index of 0 or the next avail-
able integer. Th e following example declares and initializes an array
named $TerritorialCapitals[], which contains the capitals of
the Canadian territories. Th e fi rst two statements assign keys to the
fi rst two elements in the array. However, because the third statement
does not declare a key, the element is assigned a value of 0. Figure 6-5
shows the output of the print_r() function.
$TerritorialCapitals["Nunavut"] = "Iqaluit";
$TerritorialCapitals["Northwest Territories"]
 = "Yellowknife";
$TerritorialCapitals[] = "Whitehorse";
echo "<pre>\n";
print_r($TerritorialCapitals);
echo "</pre>\n";

Figure 6-5 Output of an array with associative and indexed elements

Th e functionality of associative arrays also allows you to start the
numbering of indexed arrays at any integer you want. For example,
the following code uses the array() construct to declare and initial-
ize an array named $Territories[] that contains just the names of
the Canadian territories. Notice that only the fi rst element uses the
array operator (=>) to begin numbering at 1 instead of 0. Th e subse-
quent elements are automatically assigned the next available integer.

Associative
arrays are
best used
when the
array key

provides additional infor-
mation about the value of
the array element. In the
previous example, the
key provided the name of
the province for which the
value was the name of
the capital. When an
array is a simple list of
values, such as lines read
from a text fi le, you
should use an indexed
array because there is
not a key that provides
additional information
about the array
element’s value.

318

C H A P T E R 6 Manipulating Arrays

$Territories = array(1 => "Nunavut",
 "Northwest Territories", "Yukon Territory");

For the $Territories[] array created with the preceding statement,
the fi rst element is $Territories[1] (“Nunavut”), the second ele-
ment is $Territories[2] (“Northwest Territories”), and the third
element is $Territories[3] (“Yukon Territory”). You can also spec-
ify index values by using the array name and brackets as follows:
$Territories[1] = "Nunavut";
$Territories[2] = "Northwest Territories";
$Territories[3] = "Yukon Territory";

In many programming languages, if you declare an array and use
a starting index other than 0, empty elements are created for each
index between 0 and the index value you specify. In PHP, only the
elements specifi ed are created, regardless of the index. No empty ele-
ments are created. Th e following code shows another example of the
$Territories[] array, but this time the starting index is 100. Because
the second and third statements do not declare an index or key, the
starting index of 100 is incremented by 1 and used as the index for
the next two elements. However, as the count() function shows in
Figure 6-6, the array consists of just three elements.
$Territories[100] = "Nunavut";
$Territories[] = "Northwest Territories";
$Territories[] = "Yukon Territory";
echo "<pre>\n";
print_r($Territories);
echo "</pre>\n";
echo '<p>The $Territories array consists of ',
 count($Territories), " elements.</p>\n";

Figure 6-6 Output of an array with a starting index of 100

Use the
array_
values()
function to
renumber an

indexed array with a start-
ing element of 0.

319

Declaring and Initializing Associative Arrays

In the next exercise, the array returned with the fi le() function is
converted to an associative array that uses the message subject as the
key. Although the array will still be stored in the messages.txt fi le as
an indexed array, you will use the associative version of the array later
in this chapter to fi nd and sort data in the messages.

To modify the MessageBoard.php fi le so that the array returned with
the fi le() function is converted to an associative array:

1. Return to the MessageBoard.php fi le in your text editor.

2. Add the following for loop immediately after the $count
declaration statement in the else clause. Th e for loop
uses $MessageArray[], by way of $CurrMsg[], to build
a new associative array named $KeyMessageArray[].
Again, the explode() function is used to split each line of
$MessageArray[] into an array of message fi elds, which is
stored in $CurrMsg[]. Notice that $KeyMessageArray[] uses
the fi rst element (index 0), the subject name, in $CurrMsg[] as
the key name.
for ($i = 0; $i < $count; ++$i) {
 $CurrMsg = explode("~",
 $MessageArray[$i]);
 $KeyMessageArray[$CurrMsg[0]] =
 $CurrMsg[1] . "~" . $CurrMsg[2];
}

3. Add the following echo and print_r() statements immedi-
ately after the new for loop’s closing brace. Th e print_r()
function is only a temporary way of displaying the contents of
$KeyMessageArray[] until you learn how to iterate through
arrays in the next section.
echo "<pre>\n";
print_r($KeyMessageArray);
echo "</pre>\n";

4. Add a block comment around the echo statement for the
opening <table> tag in the else clause.

5. Add block comments around the second for loop and echo
statement for the closing </table> tag in the else clause. You
will modify this for loop in the next exercise.

Th e else portion of your modifi ed PHP script should appear
as follows:

320

C H A P T E R 6 Manipulating Arrays

else {
 $MessageArray =
 fi le("MessageBoard/messages.txt");
 /*
 echo "<table
 style=\"background-color:lightgray\"
 border=\"1\" width=\"100%\">\n";
 */
 $count = count($MessageArray);
 for ($i = 0; $i < $count; ++$i) {
 $CurrMsg = explode("~",
 $MessageArray[$i]);
 $KeyMessageArray[$CurrMsg[0]] =
 $CurrMsg[1] . "~" . $CurrMsg[2];
 }
 echo "<pre>\n";
 print_r($KeyMessageArray);
 echo "</pre>\n";
 /*
 for ($i = 0; $i < $count; ++$i) {
 $CurrMsg = explode("~",
 $MessageArray[$i]);
 echo "<tr>\n";
 echo "<td width=\"5%\"
 style=\"text-align:center;
 font-weight:bold\">" .
 ($i + 1) . "</td>\n";
 echo "<td width=\"85%\">Subject:
 " .
 htmlentities($CurrMsg[0]) .
 "
\n";
 echo "Name:
 " .
 htmlentities($CurrMsg[1]) .
 "
\n";
 echo "<span
 style=\"text-decoration:underline;
 font-weight:bold\">Message

\n" .
 htmlentities($CurrMsg[2]) .
 "</td>\n";
 echo "<td width=\"10%\"
 style=\"text-align:center\">" .
 "<a href='MessageBoard.php?" .
 "action=Delete%20Message&" .
 "message=$i'>" .
 "Delete This Message</td>\n";
 echo "</tr>\n";
 }
 echo "</table>\n";
 */
}

321

Declaring and Initializing Associative Arrays

6. Save the MessageBoard.php fi le and upload it to the server.

7. Open the MessageBoard.php fi le in your Web browser
by entering the following URL: http://<yourserver>/
PHP_Projects/Chapter.06/Chapter/MessageBoard.php. Th e
print_r() function should output an associative version of
the messages array. An example is shown in Figure 6-7.

Figure 6-7 Output of the $KeyMessageArray associative array

8. Close your Web browser window.

Short Quiz

1. Describe the diff erence in assigning a key with an indexed
array versus an associative array.

2. Explain what happens if you do not assign a key to an associa-
tive array.

3. Which operator is used to defi ne associative array keys within
the array() construct?

4. What function is used to determine the number of elements
in an associative array?

322

C H A P T E R 6 Manipulating Arrays

5. If the statement list[] = 'B'; immediately follows the
statement list[25] = 'A';, what is the array index for the
element whose value is ‘B’?

Iterating Through an Array
In Chapter 2, you learned how to use a foreach statement to iterate
through the elements in an array. As a refresher, the following exam-
ple declares and initializes an indexed array named $DaysOfWeek[]
and uses a foreach statement to iterate through it:
$DaysOfWeek = array("Sunday", "Monday",
 "Tuesday", "Wednesday", "Thursday",
 "Friday", "Saturday");
foreach ($DaysOfWeek as $Day) {
 echo "<p>$Day</p>\n";
}

Even though a foreach statement allows you to loop through the
elements of an array, it does not change the position of the internal
array pointer, a special type of variable that refers to the currently
selected element in an array. Th e internal array pointer is a way of
keeping track of which element you are working with in an array. Use
the functions listed in Table 6-1 to iterate through an array with the
internal array pointer.

Function Description
current(array) Returns the current array element

each(array) Returns the key and value of the current array element
and moves the internal array pointer to the next
element

end(array) Moves the internal array pointer to the last element

key(array) Returns the key of the current array element

next(array) Moves the internal array pointer to the next element

prev(array) Moves the internal array pointer to the previous element

reset(array) Resets the internal array pointer to the fi rst element

Table 6-1 Array pointer iteration functions

As a simple example of how to use the iteration functions, the
next() function in the following code moves the internal array
pointer in the $DaysOfWeek[] array to the second array element
(“Monday”), whereas the end() function moves the internal array

323

Iterating Through an Array

pointer to the fi nal array element (“Saturday”). Th e echo statements
use the current() function to display the value of the element in the
$DaysOfWeek[] array where the internal array pointer is located.
next($DaysOfWeek);
echo "<p>" . current($DaysOfWeek) . "</p>\n";
end($DaysOfWeek);
echo "<p>" . current($DaysOfWeek) . "</p>\n";

You might be wondering why you need iteration functions at all. Why
not just use a foreach statement or other type of looping statement
to iterate through an array? For indexed arrays, a looping statement is
usually all you need to work with the elements in an array. However,
because the keys in an associative array might not be in a predict-
able sequence, you can’t always use a looping statement to determine
which element you are currently working with in associative arrays.
For example, consider the following code, in which a foreach state-
ment is used to display the values in the $ProvincialCapitals[]
array. To display an element key (which, in this case, contains the
name of each province), you can use the key() function. However,
the key() function only returns the key of the element at the loca-
tion of the internal array pointer. Because the internal array pointer
points to the fi rst element by default, the following code displays the
fi rst element value (“Newfoundland and Labrador”), as shown in
Figure 6-8:
$ProvincialCapitals = array(
 "Newfoundland and Labrador" => "St. John's",
 "Prince Edward Island" => "Charlottetown",
 "Nova Scotia" => "Halifax",
 "New Brunswick" => "Fredericton",
 "Quebec" => "Quebec City",
 "Ontario" => "Toronto",
 "Manitoba" => "Winnipeg",
 "Saskatchewan" => "Regina",
 "Alberta"=>"Edmonton",
 "British Columbia" => "Victoria");
foreach ($ProvincialCapitals as $Capital) {
 echo "The capital of " .
 key($ProvincialCapitals) .
 " is $Capital
\n";
}

For the
Windows
version of
the PHP
scripting

engine, the key() func-
tion may not work properly
within a foreach loop.
Instead, you should use
the advanced foreach
syntax described in the
next section.

324

C H A P T E R 6 Manipulating Arrays

Figure 6-8 Output of an associative array without advancing
the internal array pointer

One method to display the correct key for each element is to add the
next() function. Th e following code causes the key to be displayed
correctly, as shown in Figure 6-9:
foreach ($ProvincialCapitals as $Capital) {
 echo "The capital of " .
 key($ProvincialCapitals) .
 " is $Capital
\n";
 next($ProvincialCapitals);
}

Figure 6-9 Output of an associative array while advancing
the internal array pointer

If you use
an iteration
function to
move the
internal

array pointer either
before the fi rst element
or after the last element
in an array, the only way
to move the array pointer
back to a valid element in
the array is to use the
reset() or end()
functions.

325

Iterating Through an Array

To modify the MessageBoard.php fi le so it includes code that iterates
through $KeyMessageArray[]:

1. Return to the MessageBoard.php fi le in your text editor.

2. Remove the echo statements for the <pre> and </pre> tags
and the print_r() function. Remove the block comment
around the echo statement for the <table> tag, and remove
the block comments around the second for loop and the clos-
ing </table> tag from the else clause.

3. Between the two for loops, add the following statement to
declare and initialize a variable named $Index. You will use
the $Index variable to numerate the associative elements in
$KeyMessageArray[].
$Index = 1;

4. Modify the second for loop into the following foreach loop.
Be sure to modify the portions of the code that are high-
lighted in bold and to add the next() statement to the end of
the loop. Note that the indexes for the $CurrMsg array have
changed from 1 to 0 and from 2 to 1.
foreach($KeyMessageArray as $Message) {
 $CurrMsg = explode("~", $Message);
 echo "<tr>\n";
 echo "<td width=\"5%\"
 style=\"text-align:center\">" .
 $Index . "</td>\n";
 echo "<td width=\"85%\">
 Subject: " .
 htmlentities(
 key($KeyMessageArray)) .
 "
";
 echo "
 Name: " .
 htmlentities($CurrMsg[0]) .
 "
";
 echo "<span
 style=\"text-decoration:underline;
 font-weight:bold\">
 Message
\n" .
 htmlentities($CurrMsg[1]) .
 "</td>\n";
 echo "<td width=\"10%\"
 style=\"text-align:center\">" .
 "<a href='MessageBoard.php?" .
 "action=Delete%20Message&" .
 "message=" . ($Index - 1) .
 "'>Delete This Message" .
 "</td>\n";

326

C H A P T E R 6 Manipulating Arrays

 echo "</tr>\n";
 ++$Index;
 next($KeyMessageArray);
}

5. Save the MessageBoard.php fi le and upload it to the server.

6. Open the MessageBoard.php fi le in your Web browser by
entering the following URL: http://<yourserver>/PHP_
Projects/Chapter.06/Chapter/MessageBoard.php. Th e mes-
sages should display normally.

7. Close your Web browser window.

Another option for displaying the key and the element is to use the
advanced foreach() syntax described in Chapter 2. You recall that
the advanced syntax uses the array operator to separate the key and
element values, as in the following example. Th e output will be the
same as shown previously in Figure 6-9.

$ProvincialCapitals = array(
 "Newfoundland and Labrador" => "St. John's",
 "Prince Edward Island" => "Charlottetown",
 "Nova Scotia" => "Halifax",
 "New Brunswick" => "Fredericton",
 "Quebec" => "Quebec City",
 "Ontario" => "Toronto",
 "Manitoba" => "Winnipeg",
 "Saskatchewan" => "Regina",
 "Alberta"=>"Edmonton",
 "British Columbia" => "Victoria");
foreach ($ProvincialCapitals as $Province =>
 $Capital) {
 echo "The capital of $Province is
 $Capital
\n";
}

Short Quiz

1. Describe the purpose of the internal array pointer.

2. Explain why you might need to use an internal array pointer
when working with associative arrays.

3. What is the purpose of the key() function?

4. When using a foreach statement to iterate through the ele-
ments of an array, what function must be used to move to the
next element in the array?

327

Iterating Through an Array

5. What two functions are used to move an internal array
pointer to the beginning or end of an array?

Finding and Extracting Elements
and Values
Th is section discusses methods for fi nding and extracting elements
and values in an array. One of the most basic methods for fi nding a
value in an array is to use a looping statement to iterate through the
array until you fi nd the value. For example, the for statement in the
following code loops through the $HospitalDepts[] array to see if
it contains “Neurology”. If it does, a message displays and the break
statement ends the for loop.
$HospitalDepts = array("Anesthesia",
 "Molecular Biology", "Neurology",
 "Pediatrics");
for ($i = 0; $i <= count($HospitalDepts); ++$i) {
 if ($HospitalDepts[$i] == "Neurology") {
 echo "<p>The hospital has a Neurology
 department.</p>\n";
 break;
 }
}

Rather than writing custom code like that in the preceding example,
you can use functions that PHP provides for fi nding and extracting
elements and values in an array.

Determining if a Value Exists
You can use the in_array() and array_search() functions to deter-
mine whether a value exists in an array. Th e in_array() function
returns a Boolean value of TRUE if a given value exists in an array. Th e
array_search() function determines whether a given value exists in
an array, then returns the index or key of the fi rst matching element
if it exists or FALSE if it does not. Both functions accept two argu-
ments: Th e fi rst argument represents the value to search for (some-
times called the “needle”), and the second argument represents the
name of the array in which to search (also called the “haystack”). For
example, the following code uses the in_array() function to search
for “Neurology” in the $HospitalDepts[] array. In this example, the
in_array() function is used in an if statement’s conditional expres-
sion to determine whether “Neurology” exists in the array.

328

C H A P T E R 6 Manipulating Arrays

if (in_array("Neurology", $HospitalDepts))
 echo "<p>The hospital has a Neurology
 department.</p>";

Th e following example demonstrates how to use the array_search()
function with the $TopSellers[] array:
// This array is ordered by sales, high to low.
$TopSellers = array("Ford F-Series",
 "Chevrolet Silverado", "Toyota Camry",
 "Honda Accord", "Toyota Corolla",
 "Honda Civic", "Nissan Altima",
 "Chevrolet Impala", "Dodge Ram",
 "Honda CR-V");
$SearchVehicle = "Ford F-Series";
$Ranking = array_search($SearchVehicle,
 $TopSellers);
if ($Ranking !== FALSE) {
 ++$Ranking; // Convert the array index
 // to the rank value
 echo "<p>The $SearchVehicle is ranked # " .
 $Ranking . " in sales for 2008.</p>\n";
}
else
 echo "<p>The $SearchVehicle is not one of
 the top ten selling vehicles for
 2008.</p>\n";

In the preceding code, the comparison statement in the if statement
uses the strict not equal operator (!==). Th is operator is necessary
because PHP equates a Boolean value of FALSE with 0, which is also
the value that identifi es the fi rst element in an indexed array. Th e
strict not equal operator determines whether the 0 value assigned to
the $Ranking variable is really a Boolean value of FALSE or the index
value of 0. Because “Ford F-Series” is in the fi rst element of the array
(which is identifi ed with an index of 0), a numeric value of 0 (not a
Boolean value of FALSE) is assigned to the $Ranking variable.

When you work with arrays, you should always ensure that your
indexes or keys are unique. If you do not use unique values, multiple
values will be assigned to the same array index. Because the Message
Board script uses message subjects as element keys in the associa-
tive array that is displayed, you need to ensure that each subject is
unique. Remember that although the MessageBoard.php script dis-
plays the message data using an associative array, the data is stored as
individual lines in messages.txt that you convert to an indexed array
using the fi le() function. Because the message subject is stored in an
element in the array that is returned with the fi le() function, you use
the array_values() function to check whether the subject exists as a
value in the array.

329

Finding and Extracting Elements and Values

To modify the Message Board script so that users can only enter
unique subjects:

1. Open the PostMessage.php fi le in your text editor.

2. Add the following statements before the statement that
declares and initializes the $MessageRecord variable. Th e
fi rst statement declares and initializes an empty array
named $ExistingSubjects that you will use to determine
whether a subject already exists. Th e if statement is very
similar to the code in the MessageBoard.php fi le. First, the
conditional expression checks whether the messages.txt fi le
exists and if it is larger than 0 KB. If the condition evaluates
to TRUE, the fi le() function assigns the text in messages.txt
to $MessageArray[]. Th e for loop then explodes each ele-
ment in $MessageArray[] into the $CurrMsg[] array. Finally,
the subject, which is stored in $CurrMsg[0], is added to the
$ExistingSubjects array.
$ExistingSubjects = array();
if (fi le_exists(
 "MessageBoard/messages.txt") &&
 fi lesize("MessageBoard/messages.txt")
 > 0) {
 $MessageArray = fi le(
 "MessageBoard/messages.txt");
 $count = count($MessageArray);
 for ($i = 0; $i < $count; ++$i) {
 $CurrMsg = explode("~",
 $MessageArray[$i]);
 $ExistingSubjects[] = $CurrMsg[0];
 }
}

3. Immediately after the preceding code, add the following if
statement, which uses the in_array() function to determine
if the entered subject is found in the $ExistingSubjects
array. If the subject already exists, an error message is dis-
played and the $Subject variable is set to an empty string.
if (in_array($Subject, $ExistingSubjects)) {
 echo "<p>The subject you entered
 already exists!
\n";
 echo "Please enter a new subject and
 try again.
\n";
 echo "Your message was not saved.</p>";
 $Subject = "";
}

4. Add the following code shown in bold. Th ese changes place
the existing code, which saves the record to messages.txt, into
an else clause for the preceding if statement. Add two new

330

C H A P T E R 6 Manipulating Arrays

lines to set the $Subject and $Message variables to an empty
string if the message was successfully saved. Th e code should
appear as follows, with the new code in bold:
else {
 $MessageRecord =
 "$Subject~$Name~$Message\n";
 $MessageFile = fopen(
 "MessageBoard/messages.txt",
 "ab");
 if ($MessageFile === false)
 echo "There was an error saving
 your message!\n";
 else {
 fwrite($MessageFile,
 $MessageRecord);
 fclose($MessageFile);
 echo "Your message has been
 saved.\n";
 $Subject = "";
 $Message = "";
 }
}

5. Just before the closing tag for the PHP code block, insert the
following else clause to the if (isset($_POST['submit']))
statement. Th ese lines clear out the $Subject, $Name, and
$Message variables if there is no posted data.
else {
 $Subject = "";
 $Name = "";
 $Message = "";
}

Th e PHP code block should appear as follows:
<?php
if (isset($_POST['submit'])) {
 $Subject = stripslashes($_POST['subject']);
 $Name = stripslashes($_POST['name']);
 $Message = stripslashes($_POST['message']);
 // Replace any '~' characters
 // with '-' characters
 $Subject = str_replace("~", "-", $Subject);
 $Name = str_replace("~", "-", $Name);
 $Message = str_replace("~", "-", $Message);
 $ExistingSubjects = array();
 if (fi le_exists(
 "MessageBoard/messages.txt") &&
 fi lesize("MessageBoard/messages.txt")
 > 0) {

331

Finding and Extracting Elements and Values

 $MessageArray = fi le(
 "MessageBoard/messages.txt");
 $count = count($MessageArray);
 for ($i = 0; $i < $count; ++$i) {
 $CurrMsg = explode("~",
 $MessageArray[$i]);
 $ExistingSubjects[] = $CurrMsg[0];
 }
 }
 if (in_array($Subject, $ExistingSubjects)) {
 echo "<p>The subject you entered
 already exists!
\n";
 echo "Please enter a new subject and
 try again.
\n";
 echo "Your message was not saved.</p>";
 $Subject = "";
 }
 else {
 $MessageRecord =
 "$Subject~$Name~$Message\n";
 $MessageFile =
 fopen("MessageBoard/messages.txt",
 "ab");
 if ($MessageFile === FALSE)
 echo "There was an error saving your
 message!\n";
 else {
 fwrite($MessageFile, $MessageRecord);
 fclose($MessageFile);
 echo "Your message has been saved.\n";
 $Subject = "";
 $Message = "";
 }
 }
}
else {
 $Subject = "";
 $Name = "";
 $Message = "";
}
?>

6. Make the changes shown below in bold to convert the Web
form into a sticky form.
Subject:
 <input type="text" name="subject"
 value="<?php echo $Subject; ?>" />
Name:
 <input type="text" name="name"
 value="<?php echo $Name; ?>" />

<textarea name="message" rows="6"
 cols="80"><?php echo $Message;
 ?></textarea>

332

C H A P T E R 6 Manipulating Arrays

7. Save the PostMessage.php fi le and upload it to the server.

8. Open the PostMessage.php fi le in your Web browser by enter-
ing the following URL: http://<yourserver>/PHP_Projects/
Chapter.06/Chapter/PostMessage.php. Add a new message.
Try adding another message with exactly the same subject
as the message you just entered. You should see a message in
the Post Message form handler page informing you that the
subject already exists. Figure 6-10 shows an attempt to post
another message with the subject “String Question”. Notice
that the Subject fi eld has been cleared because of the error,
but the other fi elds have been maintained.

Figure 6-10 The error message for a duplicated subject when posting a new message

9. Close your Web browser window.

Determining if a Key Exists
In addition to determining whether a specifi c value exists in an
array, you can also use the array_key_exists() function to deter-
mine whether a given index or key exists. You pass two arguments
to the array_key_exists() function: Th e fi rst argument represents
the key to search for (the needle), and the second argument repre-
sents the name of the array in which to search (the haystack). As an
example, suppose you develop an online chat room in which only
members can post messages. Each visitor selects a “screen name”

333

Finding and Extracting Elements and Values

when he or she joins. Now suppose that the screen name is an ele-
ment’s key in an associative array, and the name of the member who
selected the screen name is the element’s value. Before assigning
a member to a particular screen name in the array, you could use
the array_key_exists() function to determine whether another
member has already selected that screen name. Th e following code
shows some screen names that are assigned to an array named
$ScreenNames[]. Before allowing a new member to have the screen
name “Fat Man,” the if statement uses the array_key_exists()
function to determine whether the array element already exists.
$ScreenNames["Dancer"] = "Daryl";
$ScreenNames["Fat Man"] = "Dennis";
$ScreenNames["Assassin"] = "Jennifer";
if (array_key_exists("Fat Man", $ScreenNames))
 echo "<p>{$ScreenNames['Fat Man']} is
 already 'Fat Man'.</p>\n";
else {
 $ScreenNames["Fat Man"] = "Don";
 echo "<p>{$ScreenNames['Fat Man']} is now
 'Fat Man'.</p>";
}

You can use the array_keys() function to return an indexed array
that contains all the keys in an associative array, as shown in the fol-
lowing example. A new indexed array named $UsedScreenNames[],
which contains the keys from the $ScreenNames[] array, is created
with the array_keys() function. A for loop then displays the values
in the $UsedScreenNames[] array.
$ScreenNames["Dancer"] = "Daryl";
$ScreenNames["Fat Man"] = "Dennis";
$ScreenNames["Assassin"] = "Jennifer";
$UsedScreenNames = array_keys($ScreenNames);
echo "<p>The following screen names are already
 assigned:</p>\n";
for ($i = 0; $i < count($UsedScreenNames);
 ++$i) {
 echo "<p>{$UsedScreenNames[$i]}</p>\n";
}

You can also pass a second argument to the array_keys() function
that specifi es an element value for which to search. Th ese keys are
returned only for elements that match the specifi ed value.

Returning a Portion of an Array
You use the array_slice() function to return (copy) a portion of
an array and assign it to another array. Th e syntax for the function
is array_slice(array_name, start_index, number_to_return);.

334

C H A P T E R 6 Manipulating Arrays

Th e array_name argument indicates the name of the array from
which you want to extract elements. Th e start_index argument
indicates the start position within the array to begin extracting ele-
ments. Th e number_to_return argument is an integer value that
indicates the number of elements to return from the array, start-
ing with the element indicated by the start_index argument. Th e
syntax for returning a portion of an array with the array_slice()
function is very similar to the syntax for deleting a portion of an
array with the array_splice() function. Th e main diff erence is
that the array_splice() function removes elements, while the
array_slice() function returns an array containing those elements.

Th e following example demonstrates how to use the array_slice()
function to return the fi rst fi ve elements in the $TopSellers[]
array. Th e elements are assigned to a new element named
$FiveTopSellers[]. Figure 6-11 shows the output.
// This array is ordered by sales, high to low.
$TopSellers = array("Ford F-Series",
 "Chevrolet Silverado", "Toyota Camry",
 "Honda Accord", "Toyota Corolla",
 "Honda Civic", "Nissan Altima",
 "Chevrolet Impala", "Dodge Ram",
 "Honda CR-V");
$FiveTopSellers = array_slice($TopSellers, 0, 5);
echo "<p>The fi ve best-selling vehicles for
 2008 are:</p>\n";
for ($i = 0; $i < count($FiveTopSellers); ++$i) {
 echo "{$FiveTopSellers[$i]}
\n";
}

Figure 6-11 Output of an array returned with the array_slice() function

335

Finding and Extracting Elements and Values

Short Quiz

1. Diff erentiate between the value returned by the in_array()
function and the array_search() function.

2. What function can be used to return an indexed array of all
keys in an associative array?

3. What does the array_key_exists() function do?

4. What function is used to return a portion of an array and
assign it to another array?

Manipulating Arrays
In the preceding section, you studied techniques for working with
the individual elements in an array. In this section, you will study
 techniques for manipulating entire arrays, including how to sort,
combine, and compare arrays.

Sorting Arrays
You sort arrays using the functions listed in Table 6-2.

Function Description
array_multisort(array[,

array, ...])
Sorts multiple arrays or multidimensional arrays

arsort(array[, SORT_REGULAR |

SORT_NUMERIC | SORT_STRING])
Sorts an array in descending order (largest to smallest) by
value and maintains the existing keys for an associative array

asort(array[, SORT_REGULAR |

SORT_NUMERIC | SORT_STRING])
Sorts an array in ascending order (smallest to largest) by
value and maintains the existing keys for an associative array

krsort(array[, SORT_REGULAR |

SORT_NUMERIC | SORT_STRING])
Sorts an array in descending order by key and maintains the
existing keys for an associative array

ksort(array[, SORT_REGULAR |

SORT_NUMERIC | SORT_STRING])
Sorts an array in ascending order by key and maintains the
existing keys for an associative array

natcasesort(array) Performs a case-sensitive natural order sort by value and
maintains the existing keys for an associative array

natsort(array) Performs a case-insensitive natural order sort by value and
maintains the existing keys for an associative array

Table 6-2 Array sorting functions (continues)

336

C H A P T E R 6 Manipulating Arrays

Th e most commonly used array sorting functions are sort() and
rsort() for indexed arrays, and asort(), arsort(), ksort(), and
krsort() for associative arrays. Th ese functions operate directly
on an array, not on a new copy of an array, as occurs with the
array_values() function. Th is means that you can execute each
function simply by passing the name of an array to it.

Th e two “natural order” sort functions, natsort() and natcasesort(),
use a special sorting algorithm. Rather than sorting only on the ASCII
values of the corresponding characters, the algorithm treats one or
more successive numeric characters as an integer value and sorts by
integer value. For example, consider the following array of message
fi lenames:
$MessageFiles = array(
 "message5.txt",
 "message3.txt",
 "message6.txt",
 "message1.txt",
 "message9.txt",
 "message4.txt",
 "message7.txt",
 "message2.txt",
 "message8.txt",
 "message10.txt");

Function Description

rsort(array[, SORT_REGULAR |

SORT_NUMERIC | SORT_STRING])
Sorts an array in descending order by value, removes any
existing keys for an associative array, and renumbers the
indexes starting with 0

sort(array[, SORT_REGULAR |

SORT_NUMERIC | SORT_STRING])
Sorts an array in ascending order by value, removes any
existing keys for an associative array, and renumbers the
indexes starting with 0

uaksort(array[,

comparison_function])
Sorts an array in ascending order by value using a
comparison function and maintains the existing keys for an
associative array

uksort(array[,

comparison_function])
Sorts an array in ascending order by key using a comparison
function and maintains the existing keys for an associative
array

usort(array[,

comparison_function])
Sorts an array in ascending order by value using a
comparison function, removes any existing keys for an
associative array, and renumbers the indexes starting with 0

Table 6-2 Array sorting functions

(continued)

337

Manipulating Arrays

If you used the sort() function on this array, the values would appear
in the order “message1.txt”, “message10.txt”, “message2.txt”, . . . ,
“message9.txt”. Although this ordering is correct when looking at the
ASCII values, it is not the expected result. If you used the natsort()
function instead, the values would appear in the order “message1.txt”,
“message2.txt”, . . . , “message9.txt”, “message10.txt”, because “10” is a
larger numeric value than any of the other numeric values.

Keep in mind that the sort function you use depends on whether
you need to sort an indexed or associative array. For example, the
sort() and rsort() functions sort indexed arrays and renumber the
element indexes. Th e following code demonstrates how to sort the
indexed $FiveTopSellers array in ascending and descending order.
Figure 6-12 shows the output.
// This array is ordered by sales, high to low.
$TopSellers = array("Ford F-Series",
 "Chevrolet Silverado", "Toyota Camry",
 "Honda Accord", "Toyota Corolla",
 "Honda Civic", "Nissan Altima",
 "Chevrolet Impala", "Dodge Ram",
 "Honda CR-V");
$FiveTopSellers = array_slice($TopSellers, 0, 5);
echo "<p>The fi ve best-selling vehicles for 2008
 by number of vehicles sold are:</p>\n";
for ($i = 0; $i < count($FiveTopSellers); ++$i) {
 echo "{$FiveTopSellers[$i]}
\n";
}
echo "</p>";
sort($FiveTopSellers);
echo "<p> The fi ve best-selling vehicles for 2008
 in alphabetical order are:</p><p>";
for ($i = 0; $i < count($FiveTopSellers); ++$i) {
 echo "{$FiveTopSellers[$i]}
";
}
echo "</p>";
rsort($FiveTopSellers);
echo "<p>The fi ve best-selling vehicles for 2008
 in reverse alphabetical order are:</p><p>";
for ($i = 0; $i < count($FiveTopSellers); ++$i) {
 echo "{$FiveTopSellers[$i]}
";
}
echo "</p>";

338

C H A P T E R 6 Manipulating Arrays

Figure 6-12 Output of an array after applying the sort() and
rsort() functions

To modify MessageBoard.php to use the sort() function to sort the
messages in the Message Board script by subject in ascending order:

1. Reopen MessageBoard.php in your text editor.

2. Add the following code as a fi fth case to the switch() state-
ment. Th is case uses the sort() function to sort the array in
ascending order.
case 'Sort Ascending':
 sort($MessageArray);
 break;

3. Modify the paragraph element at the end of the fi le so
that it contains another anchor element that calls the
MessageBoard.php fi le with the proper parameters to sort
the messages in ascending order, as follows:

If you use
the sort()
and
rsort()
functions on

an associative array, the
keys are replaced with
sequential indexes start-
ing with 0.

339

Manipulating Arrays

<p>

 Post New Message

<a href=
 "MessageBoard.php?action=Sort%20Ascending">
 Sort Subjects A-Z

<a href=
 "MessageBoard.php?action=Remove%20Duplicates">
 Remove Duplicate Messages

 Delete First Message

 Delete Last Message
</p>

4. Save the MessageBoard.php fi le and upload it to the Web
server.

5. Open the MessageBoard.php fi le in your Web browser by
entering the following URL: http://<yourserver>/PHP_
Projects/Chapter.06/Chapter/MessageBoard.php. Click the
Sort Subjects A-Z link to test the new code. Th e message list
should sort by subject in ascending order.

6. Close your Web browser window.

Th e following code includes a statement that uses the sort() func-
tion on the $ProvincialCapitals[] array you saw earlier. Recall that
with this array, province names are used as element keys. However,
the sort() function in the following code replaces the keys with
indexes, as shown in Figure 6-13.
$ProvincialCapitals = array(
 "Newfoundland and Labrador" => "St. John's",
 "Prince Edward Island" => "Charlottetown",
 "Nova Scotia" => "Halifax",
 "New Brunswick" => "Fredericton",
 "Quebec" => "Quebec City",
 "Ontario" => "Toronto",
 "Manitoba" => "Winnipeg",
 "Saskatchewan" => "Regina",
 "Alberta" => "Edmonton",
 "British Columbia" => "Victoria");
sort($ProvincialCapitals);
echo "<pre>\n";
print_r($ProvincialCapitals);
echo "</pre>\n";

340

C H A P T E R 6 Manipulating Arrays

Figure 6-13 Output of an associative array after sorting
with the sort() function

To sort an associative array by value and maintain the existing keys,
you use the asort() function, as follows:
asort($ProvincialCapitals);
echo "<pre>\n";
print_r($ProvincialCapitals);
echo "</pre>\n";

Th e asort() function in the preceding code sorts the values and
maintains the existing keys, as shown in Figure 6-14.

Figure 6-14 Output of an associative array after sorting
with the asort() function

341

Manipulating Arrays

To perform a reverse sort on an associative array and maintain the
existing keys, be sure to use the arsort() function, not the rsort()
function. Th e following statement demonstrates how to perform a
reverse sort on the $ProvincialCapitals[] array:
arsort($ProvincialCapitals);

To sort an associative array by key and maintain the existing keys, you
use the ksort() function, as follows:
ksort($ProvincialCapitals);
echo "<pre>\n";
print_r($ProvincialCapitals);
echo "</pre>\n";

Th e ksort() function in the preceding code sorts and maintains the
existing keys, as shown in Figure 6-15.

Figure 6-15 Output of an associative array after sorting
with the ksort() function

To perform a reverse sort on an associative array by key and main-
tain the existing keys, use the krsort() function. Th e following
statement demonstrates how to perform a reverse sort on the
$ProvincialCapitals[] array:
krsort($ProvincialCapitals);

To modify MessageBoard.php to use the rsort() function to sort the
messages in the Message Board script by subject in descending order:

1. Reopen MessageBoard.php in your text editor.

342

C H A P T E R 6 Manipulating Arrays

2. Add the following code as a sixth case to the switch() state-
ment. Th is case uses the rsort() function to sort the array in
descending order.
case 'Sort Descending':
 rsort($MessageArray);
 break;

3. Modify the paragraph element at the end of the fi le so
that it contains another anchor element that calls the
MessageBoard.php fi le with the proper parameters to sort
the messages in descending order, as follows:
<p>

 Post New Message

<a href=
 "MessageBoard.php?action=Sort%20Ascending">
 Sort Subjects A-Z

<a href=
 "MessageBoard.php?action=Sort%20Descending">
 Sort Subjects Z-A

<a href=
 "MessageBoard.php?action=Remove%20Duplicates">
 Remove Duplicate Messages

 Delete First Message

 Delete Last Message
</p>

4. Save the MessageBoard.php fi le and upload it to the Web
server.

5. Open the MessageBoard.php fi le in your Web browser by
entering the following URL: http://<yourserver>/PHP_
Projects/Chapter.06/Chapter/MessageBoard.php. Click the
Sort Subjects Z-A link to test the new code. Th e message list
should sort by subject in descending order.

6. Close your Web browser window.

Combining Arrays
If you want to combine arrays, you have two options. You can either
append one array to another or merge the two arrays. To append
one array to another, you use the addition (+) or additive compound
assignment operator (+=). Unlike in arithmetic addition, order is
important when appending one array to another array. Th e array on
the left side of the operator is the primary array, or the array that
PHP starts with. Th e array on the right side of the operator is the

You can
use the
 shuffl e()
function to
randomize the

order of array elements.
The shuffl e() function
removes any existing
keys from an associative
array, and renumbers the
indexes starting with 0.

343

Manipulating Arrays

secondary array, or the array being appended to the primary array.
When you use either operator, PHP ignores any array elements in the
secondary array where the indexes or keys already exist in the pri-
mary array. Because indexed arrays start at 0 by default, the addition
operators are not an eff ective way of merging indexed arrays. Th is
method works well for associative arrays, as long as none of the asso-
ciative array keys of one array is found in the other array.

To help illustrate that addition operators do not work well for
indexed arrays, consider the following code, which declares and ini-
tializes $Provinces[] and $Territories[] as indexed arrays. Th e
$Territories[] array is appended to the $Provinces[] array with
the addition (+) operator, and the resulting array is assigned to an
array named $Canada[]. However, notice in Figure 6-16 that the
$Canada[] array only contains the elements that were assigned to
the $Provinces[] array. Th is occurs because the three indexes in the
$Territories[] array (0, 1, and 2) already exist in the $Provinces[]
array and are therefore ignored.
$Provinces = array("Newfoundland and Labrador",
 "Prince Edward Island", "Nova Scotia",
 "New Brunswick", "Quebec", "Ontario",
 "Manitoba", "Saskatchewan", "Alberta",
 "British Columbia");
$Territories = array("Nunavut",
 "Northwest Territories", "Yukon Territory");
$Canada = $Provinces + $Territories;
echo "<pre>\n";
print_r($Canada);
echo "</pre>\n";

Figure 6-16 Output of two indexed arrays combined with the
addition operator

344

C H A P T E R 6 Manipulating Arrays

In comparison, the following code declares and initializes
$ProvincialCapitals[] and $TerritorialCapitals[] as associa-
tive arrays. Th e $TerritorialCapitals[] array is appended to the
$ProvincialCapitals[] array with the addition (+) operator, and the
resulting array is assigned to an array named $CanadianCapitals[].
Because the keys in the $TerritorialCapitals[] array do not
exist in the $ProvincialCapitals[] array, the elements in the
$TerritorialCapitals[] array are successfully appended to the ele-
ments in the $ProvincialCapitals[] array, as shown in Figure 6-17.
$ProvincialCapitals = array(
 "Newfoundland and Labrador" => "St. John's",
 "Prince Edward Island" => "Charlottetown",
 "Nova Scotia" => "Halifax",
 "New Brunswick" => "Fredericton",
 "Quebec" => "Quebec City",
 "Ontario" => "Toronto",
 "Manitoba" => "Winnipeg",
 "Saskatchewan" => "Regina",
 "Alberta"=>"Edmonton",
 "British Columbia" => "Victoria");
$TerritorialCapitals = array(
 "Nunavut" => "Iqaluit",
 "Northwest Territories" => "Yellowknife",
 "Yukon Territory" => "Whitehorse");
$CanadianCapitals = $ProvincialCapitals +
 $TerritorialCapitals;
echo "<pre>\n";
print_r($CanadianCapitals);
echo "</pre>\n";

Figure 6-17 Output of two associative arrays combined with the addition operator

345

Manipulating Arrays

You can also combine two arrays with the compound assignment
operator (+=), as follows:
$CanadianCapitals += $ProvincialCapitals;
$CanadianCapitals += $TerritorialCapitals;

Instead of appending one array to another, you can merge two or more
arrays with the array_merge() function. Th e syntax for the function is
$new_array = array_merge(array1, array2 [, array3, ...]);.
Th e array1 array is copied to the $new_array array, then the array2
array is appended to $new_array, then the array3 array is appended
to $new_array, and so on. If you use the array_merge() func-
tion with associative arrays, the keys in the array you are append-
ing overwrite any duplicate keys from previously merged arrays.
With indexed arrays, all elements in one array are appended to
another array and renumbered. Th e following statement demon-
strates how to combine the associative $ProvincialCapitals[] and
$TerritorialCapitals[] arrays:
$CanadianCapitals = array_merge(
 $ProvincialCapitals,
 $TerritorialCapitals);

Th e following code demonstrates how to combine the indexed
$Provinces[] and $Territories[] arrays. In contrast to the
examples that used the addition (+) and additive compound assign-
ment (+=) operators, this version successfully combines both arrays,
renumbers the indexes, and stores the result in the $Canada[] array,
as shown in Figure 6-18.
$Provinces = array("Newfoundland and Labrador",
 "Prince Edward Island", "Nova Scotia",
 "New Brunswick", "Quebec", "Ontario",
 "Manitoba", "Saskatchewan", "Alberta",
 "British Columbia");
$Territories = array("Nunavut",
 "Northwest Territories", "Yukon Territory");
$Canada = array_merge($Provinces, $Territories);
echo "<pre>\n";
print_r($Canada);
echo "</pre>\n";

346

C H A P T E R 6 Manipulating Arrays

Figure 6-18 Output of two indexed arrays combined with the
array_merge() function

In addition to appending and merging the elements in two arrays,
you can create a new associative array that uses the values from one
array as keys and element values from another array. To do this, you
use the array_combine() function. For example, the following code
declares a $Territories[] array and a TerritorialCapitals[]
array and then combines the two arrays into a new array named
$CanadianTerritories[].
$Territories = array("Nunavut",
 "Northwest Territories",
 "Yukon Territory");
$TerritorialCapitals = array("Iqaluit",
 "Yellowknife", "Whitehorse");
$CanadianTerritories = array_combine(
 $Territories, $TerritorialCapitals);

To add the array_combine() function to the MessageBoard.php fi le
to create a new associative array:

1. Return to the MessageBoard.php fi le in your text editor.

2. Modify the for loop in the else clause as follows. Th e sec-
ond and third statements in the loop create two separate
arrays: $KeyArray[] and $ValueArray[]. Th e third state-
ment then uses the array_combine() function to create
$KeyMessageArray[].

347

Manipulating Arrays

for ($i = 0; $i < $count; ++$i) {
 $CurrMsg = explode("~", $MessageArray[$i]);
 $KeyArray[] = $CurrMsg[0];
 $ValueArray[] = $CurrMsg[1]. "~" .
 $CurrMsg[2];
 $KeyMessageArray = array_combine($KeyArray,
 $ValueArray);
}

3. Save the MessageBoard.php fi le.

4. Open the MessageBoard.php fi le in your Web browser by
entering the following URL: http://<yourserver>/PHP_
Projects/Chapter.06/Chapter/MessageBoard.php. Th e mes-
sage list should look the same as it did before you added the
array_combine() function.

5. Close your Web browser window.

Comparing Arrays
PHP includes several functions for comparing the con-
tents of two or more arrays. Two of the most basic com-
parison functions are array_diff() and array_intersect().
Th e array_diff() function returns an array of elements
that exist in one array but not in any other arrays to which
it is compared. Th e syntax for the array_diff() function is
$new_array = array_diff(array1, array2 [, array3, ...]);.
A new array is returned containing elements that exist in $array1
but do not exist in any of the other array arguments. Keys and
indexes are not renumbered in the new array. As an example, con-
sider the following code, which declares and initializes an array
named $Top10inArea[] that contains the names of the 10 largest
countries in area, and another array named $Top10inPopulation[]
that contains the names of the 10 largest countries in population.
Th e array_diff() function determines which of the most populous
countries are not the largest countries by comparing the values in the
$Top10inPopulation[] and $Top10inArea[] arrays, and assigns the
diff erence to the $Result[] array. Th e array_values() statement
then renumbers the indexes in the $Result[] array. Th e $Result[]
array contains the fi ve countries shown in Figure 6-19; these coun-
tries are among the largest in population, but not in area.
$Top10inArea = array("Russia", "China",
 "Canada", "United States", "Brazil",
 "Australia", "India", "Argentina",
 "Kazakhstan", "Algeria");
$Top10inPopulation = array("China", "India",
 "United States", "Indonesia", "Brazil",
 "Pakistan", "Bangladesh", "Russia",
 "Nigeria", "Japan");

348

C H A P T E R 6 Manipulating Arrays

$Result = array_diff($Top10inPopulation,
 $Top10inArea);
$Result = array_values($Result);
echo "<p>The following of the most populous
 countries are not also the largest in
 area:</p>\n";
echo "<p>\n";
for ($i = 0; $i < count($Result); ++$i) {
 echo "{$Result[$i]}
\n";
}
echo "</p>\n";

Figure 6-19 Output of an array created with the array_diff() function

Th e array_intersect() function returns an array of the
 elements that are common to all of the arrays that are
 compared. Th e syntax for the array_intersect() function is
new_array = array_intersect(array1, array2 [, array3, ...]);.
As with the array_diff() function, keys and indexes are not renum-
bered in the new array, so you must use the array_values() func-
tion to renumber an indexed array. Th e following code uses the
array_intersect() function on the same $Top10inArea[] and
$Top10inPopulation[] arrays. Th e output in Figure 6-20 shows the
names of the fi ve countries that are among the largest in both area
and population.
$Result = array_intersect($Top10inPopulation,
 $Top10inArea);
$Result = array_values($Result);
echo "<p>The following of the most populous
 countries are also among the largest in
 area:</p>\n";
echo "<p>\n";
for ($i = 0; $i < count($Result); ++$i) {
 echo "{$Result[$i]}
\n";
}
echo "</p>\n";

349

Manipulating Arrays

Figure 6-20 Output of an array created with the array_intersect()
function

Short Quiz

1. Explain the diff erence between the sort() and asort()
functions.

2. What is the purpose of the ksort() and krsort() functions?

3. What are the two methods of combining arrays?

4. Explain the diff erence between the array_diff() and
array_intersect() functions.

Understanding Multidimensional Arrays
Th e arrays you have created so far are known as one-dimensional
arrays because they consist of a single index or key. You can also
create multidimensional arrays that consist of multiple indexes
or keys. Th e procedures for creating multidimensional arrays are
essentially the same as for indexed and associative arrays. However,
to avoid confusion, you will fi rst learn how to create indexed multi-
dimensional arrays.

350

C H A P T E R 6 Manipulating Arrays

Creating Two-Dimensional Indexed Arrays
Th e most common type of multidimensional array is a two-
 dimensional array, which has two sets of indexes or keys. To under-
stand how a two-dimensional array works, fi rst consider the following
one-dimensional indexed array named $Gallons[] that converts gal-
lons to various other measures of volume:
$Gallons = array(
 128, // ounces
 16, // cups
 8, // pints
 4 // quarts
);

Th is single-dimensional array works fi ne if you only need to store a
single set of volume conversions. However, what if you want to store
additional volume conversions, such as quarts to cups? Table 6-3 lists
conversion rates for each of the measures of volume in the preceding
example.

Ounces Cups Pints Quarts Gallons

Ounces 1 0.125 0.0625 0.03125 0.0078125

Cups 8 1 0.5 0.25 0.0625

Pints 16 2 1 0.5 0.125

Quarts 32 4 2 1 0.25

Gallons 128 16 8 4 1

Table 6-3 Volume conversion table

Th e fi rst set of indexes (or keys) in a two-dimensional array deter-
mines the number of rows in the array, and the second set of indexes
(or keys) determines the number of columns. Th e easiest way to
create a two-dimensional array is to fi rst create individual arrays for
each of the rows the array will include. Th e following statements
declare and initialize individual indexed arrays for each of the rows in
Table 6-3:
$Ounces = array(1, 0.125, 0.0625, 0.03125,
 0.0078125);
$Cups = array(8, 1, 0.5, 0.25, 0.0625);
$Pints = array(16, 2, 1, 0.5, 0.125);
$Quarts = array(32, 4, 2, 1, 0.25);
$Gallons = array(128, 16, 8, 4, 1);

A multidimensional array in PHP is essentially “an array of arrays.”
To declare and initialize a multidimensional array with the preced-
ing data, you include each of the array names as an element value in

351

Understanding Multidimensional Arrays

a new declaration. For example, the following statement uses each of
the preceding array names to declare and initialize a two-dimensional
indexed array named $VolumeConversions[]:
$VolumeConversions = array($Ounces, $Cups,
 $Pints, $Quarts, $Gallons);

You refer to the values in a multidimensional indexed array by
including two sets of brackets following the array name with
the syntax array_name[index][index]. Th e fi rst set of brackets
refers to the row, and the second set of brackets refers to the col-
umn. Table 6-4 illustrates the elements and index numbers in the
$VolumeConversions array.

0 (Ounces) 1 (Cups) 2 (Pints) 3 (Quarts) 4 (Gallons)

0 (Ounces) 1 0.125 0.0625 0.03125 0.0078125

1 (Cups) 8 1 0.5 0.25 0.0625

2 (Pints) 16 2 1 0.5 0.125

3 (Quarts) 32 4 2 1 0.25

4 (Gallons) 128 16 8 4 1

Table 6-4 Elements and indexes in the $VolumeConversions[] array

To access the conversion value from quarts to cups, you
refer to the fourth row (index 3) and second column
(index 1) of the $VolumeConversions[] array as follows:
$VolumeConversions[3][1]. Th e following statement displays the
conversion value from quarts to cups:
echo "<p>1 quart converts to " .
 $VolumeConversions[3][1] . " cups.</p>\n";

Use the same format to set or modify an element value in a two-
 dimensional indexed array. Th e following statement demonstrates
how to set the conversion value for cups (row index 1) to quarts (col-
umn index 3):
$ConversionValues[1][3] = 0.25;

To add an indexed two-dimensional array to the MessageBoard.php
fi le for displaying the contents of the messages.txt fi le:

1. Return to the MessageBoard.php fi le in your text editor.

2. Replace the fi rst for loop in the else clause with the fol-
lowing foreach loop. Th is construct loops through
$MessageArray[] and explodes each element into the
$CurrMsg[] array. Notice that the last statement in the
loop assigns the $CurrMsg[] array to $KeyMessageArray[],

352

C H A P T E R 6 Manipulating Arrays

which creates a two-dimensional array. Because the
$KeyMessageArray[] statement includes two array brack-
ets at the end of the array name, each subsequent value in
$CurrMsg[] is appended to $KeyMessageArray[].
foreach ($MessageArray as $Message) {
 $CurrMsg = explode("~", $Message);
 $KeyMessageArray[] = $CurrMsg;
}

3. Delete the following statement:
$Index = 1;

4. Modify the second foreach loop at the end of the else
clause into the following for loop. Th e $i variable is used for
looping through the elements in the fi rst dimension of the
array. However, because each “row” in the two-dimensional
$KeyMessageArray[] only contains three elements (subject,
name, and message), the second dimension is referred to
using literal values.
for ($i = 0; $i < $count; ++$i) {
 echo "<tr>\n";
 echo "<td width=\"5%\"
 style=\"text-align:center\">" .
 ($i + 1) . "</td>\n";
 echo "<td width=\"85%\">
 Subject: " .
 htmlentities(
 $KeyMessageArray[$i][0]) .
 "
";
 echo "
 Name: " . htmlentities(
 $KeyMessageArray[$i][1]) .
 "
";
 echo "<span style=\"font-weight:bold;
 text-decoration:underline\">
 Message
" .
 htmlentities(
 $KeyMessageArray[$i][2]) .
 "</td>\n";
 echo "<td width=\"10%\"
 style=\"text-align:center\"><a
 href='MessageBoard.php?" .
 "action=Delete%20Message&" .
 "message=$i'>Delete This
 Message</td>\n";
 echo "</tr>\n";
}

353

Understanding Multidimensional Arrays

Th e if...else statement of the completed script should
appear as follows:
if ((!fi le_exists("MessageBoard/messages.txt"))
 || (fi lesize("MessageBoard/messages.txt")
 == 0))
 echo "<p>There are no messages
 posted.</p>\n";
else {
 $MessageArray =
 fi le("MessageBoard/messages.txt");
 echo "<table
 style=\"background-color:lightgray\"
 border=\"1\" width=\"100%\">\n";
 $count = count($MessageArray);
 foreach ($MessageArray as $Message) {
 $CurrMsg = explode("~", $Message);
 $KeyMessageArray[] = $CurrMsg;
}
for ($i = 0; $i < $count; ++$i) {
 echo "<tr>\n";
 echo "<td width=\"5%\"
 style=\"text-align:center\">" .
 ($i + 1) . "</td>\n";
 echo "<td width=\"85%\">
 Subject: " .
 htmlentities(
 $KeyMessageArray[$i][0]) .
 "
";
 echo "
 Name: " . htmlentities(
 $KeyMessageArray[$i][1]) .
 "
";
 echo "<span style=\"font-weight:bold;
 text-decoration:underline\">
 Message
" .
 htmlentities(
 $KeyMessageArray[$i][2]) .
 "</td>\n";
 echo "<td width=\"10%\"
 style=\"text-align:center\"><a
 href='MessageBoard.php?" .
 "action=Delete%20Message&" .
 "message=$i'>Delete This
 Message</td>\n";
 echo "</tr>\n";
}
 echo "</table>\n";
}

5. Save the MessageBoard.php fi le and upload it to the Web
server.

354

C H A P T E R 6 Manipulating Arrays

6. Open the MessageBoard.php fi le in your Web browser by
entering the following URL: http://<yourserver>/PHP_
Projects/Chapter.06/Chapter/MessageBoard.php. Th e message
list should look the same as it did before you added the two-
dimensional array.

7. Close your Web browser window.

Creating Two-Dimensional Associative Arrays
Th e following statements declare the same volume conversion arrays
you saw earlier, but this time as associative arrays. Th e primary diff er-
ence in creating two-dimensional associative arrays is that you need
to specify the key for each element:
$Ounces = array("ounces" => 1, "cups" => 0.125,
 "pints" => 0.0625, "quarts" => 0.03125,
 "gallons" => 0.0078125);
$Cups = array("ounces" => 8, "cups" => 1,
 "pints" => 0.5, "quarts" => 0.25,
 "gallons" => 0.0625);
$Pints = array("ounces" => 16, "cups" => 2,
 "pints" => 1, "quarts" => 0.5,
 "gallons" => 0.125);
$Quarts = array("ounces" => 32, "cups" => 4,
 "pints" => 2, "quarts" => 1,
 "gallons" => 0.25);
$Gallons = array("ounces" => 128, "cups" => 16,
 "pints" => 8, "quarts" => 4,
 "gallons" => 1);

You can access elements in the preceding arrays by specifying an
element’s key. For example, you can access the volume conversion
from cups to pints with $Cups["pints"]. Th ings get a little confusing
when you use the preceding array names to declare and initialize an
associative version of the two-dimensional $VolumeConversions[]
array. For example, the following statement is the same statement you
saw earlier to declare and initialize the indexed version of the two-
 dimensional $VolumeConversions[] array:
$VolumeConversions = array($Ounces, $Cups,
 $Pints, $Quarts, $Gallons);

Because the preceding statement does not declare keys for the ele-
ments represented by each of the individual arrays, the fi rst dimen-
sion in the resulting $VolumeConversions[] array is indexed and the
second dimension is associative. To access the conversion value from
quarts to cups, you refer to the fourth row (index 3) and second col-
umn (associative key “cups”) of the $VolumeConversions[] function
as follows: $VolumeConversions[3]["cups"]. Although this syntax

355

Understanding Multidimensional Arrays

is legal, it can be confusing. To make both dimensions associative,
assign keys to each of the array names in the statement that declares
and initializes the $VolumeConversions[] array, as follows:
$VolumeConversions = array("ounces" => $Ounces,
 "cups" => $Cups, "pints" => $Pints,
 "quarts" => $Quarts, "gallons" => $Gallons);

Figure 6-21 illustrates the elements and keys in the
$VolumeConversions[] array.

Figure 6-21 Elements and keys of the $VolumeConversions[] array

Assigning keys to each of the array names in the declaration state-
ment for the $VolumeConversions[] array allows you to access the
volume conversion value from quarts to cups by using keys for both
array dimensions. Th e following statement displays the volume con-
version value from quarts to cups.
echo "<p>1 quart converts to " .
 $VolumeConversions["quarts"]["cups"] .
 " cups.</p>";

Use the same format to modify an element value in a two-dimen-
sional associative array. Th e following statement demonstrates how to
modify the volume conversion value from quarts to cups:
$VolumeConversions["quarts"]["cups"] = 4;

Creating Multidimensional Arrays
with a Single Statement
In the preceding two sections, you created multidimensional arrays
using a series of statements. First, you created the individual arrays,
and then you created the multidimensional array itself. You can also
create a multidimensional array with a single statement. Instead of
writing separate declaration statements, you can include the array
construct for each individual array as the value for each element
within the declaration statement for the multidimensional array. Th e
following example demonstrates how to declare an indexed version
of the multidimensional $VolumeConversions[] array with a single
statement:

356

C H A P T E R 6 Manipulating Arrays

$VolumeConversions = array(
 array(1, 0.125, 0.0625, 0.03125,
 0.0078125), // Ounces
 array(8, 1, 0.5, 0.25, 0.0625), // Cups
 array(16, 2, 1, 0.5, 0.125), // Pints
 array(32, 4, 2, 1, 0.25), // Quarts
 array(128, 16, 8, 4, 1) // Gallons
);

Th e following example demonstrates how to declare an associative
version of the multidimensional $VolumeConversions[] array with a
single statement:
$VolumeConversions = array(
 "ounces" = array("ounces" => 1,
 "cups" => 0.125, "pints" => 0.0625,
 "quarts" => 0.03125, "gallons" =>
 0.0078125),
 "cups" = array("ounces" => 8, "cups" => 1,
 "pints" =>0.5, "quarts" => 0.25,
 "gallons" => 0.0625),
 "pints" = array("ounces" => 16, "cups" => 2,
 "pints" =>1, "quarts" => 0.5,
 "gallons" => 0.125),
 "quarts" = array("ounces" => 32, "cups" =>
 4, "pints" =>2, "quarts" => 1,
 "gallons" => 0.25),
 "gallons" = array("ounces" => 128,
 "cups" => 16, "pints" =>8, "quarts" =>
 4, "gallons" => 1)
);

When creating multidimensional arrays in a single statement, prop-
erly formatting your code is very important. Without proper struc-
ture and indentation, the single-statement declaration is considerably
more diffi cult to decipher than a series of statements.

Working with Additional Dimensions
Multidimensional arrays are not limited to two dimensions. You can
include as many dimensions as you need when you declare the array.
However, the more dimensions you use, the more complex the array
becomes. Beginning programmers rarely need to use arrays larger
than two dimensions, so this book does not spend much time dis-
cussing how to create them. Nevertheless, you should understand
that the concepts underlying arrays of three or more dimensions are
similar to those for two-dimensional arrays. As an example, consider
an array that stores quarterly sales fi gures by state for a company’s
fi ve-person sales force. For this type of multidimensional array, you
would need three indexes. Th e fi rst index would consist of 50 ele-
ments, one for each state. Th e second index would consist of fi ve
elements, one for each salesperson. Th e third index would consist of

357

Understanding Multidimensional Arrays

four elements, one for each quarter in the year. You can think of such
an array as containing 50 tables, with each table containing a row for
each salesperson and a column for each quarter. Table 6-5 shows how
the Alaska table might appear for the fi rst year in an associative ver-
sion of the array.

Quarters of the year

Q1 Q2 Q3 Q4

Salesperson Sam 874 76 98 890

Jane 656 133 64 354

Lisa 465 668 897 64

Hiroshi 31 132 651 46

Jose 654 124 126 456

Table 6-5 The Alaska table of a three-dimensional array

To create the three-dimensional array, you fi rst declare individual
arrays for each of the rows in Table 6-5. Th en, you create two-dimen-
sional arrays for each state, which consist of the individual arrays
containing each salesperson’s fi gures for that particular state. Finally,
you create the three-dimensional array by assigning each of the two-
dimensional state arrays as elements in the three-dimensional array.
Th e following statements demonstrate how to build a three-dimen-
sional array named $AnnualSales[] for the state of Alaska. Th e fi rst
fi ve statements declare individual arrays for each salesperson’s quar-
terly fi gures in the state. Th e sixth statement creates a two-dimen-
sional array named $Alaska[] that contains the quarterly sales fi gures
for each salesperson. Th e last statement creates a three-dimensional
array named $AnnualSales[] by assigning the two-dimensional
$Alaska[] array as an element.
$AlaskaForSam = array("Q1" => 874, "Q2" => 76,
 "Q3" => 98, "Q4" => 890);
$AlaskaForJane = array("Q1" => 656, "Q2" => 133,
 "Q3" => 64, "Q4" => 354);
$AlaskaForLisa = array("Q1" => 465, "Q2" => 668,
 "Q3" => 897, "Q4" => 64);
$AlaskaForHiroshi = array("Q1" => 31, "Q2" => 132,
 "Q3" => 651, "Q4" => 46);
$AlaskaForJose = array("Q1" => 654, "Q2" => 124,
 "Q3" => 126, "Q4" => 456);
$Alaska = array("Sam" => $AlaskaForSam,
 "Jane" => $AlaskaForJane, "Lisa" =>
 $AlaskaForLisa, "Hiroshi" =>
 $AlaskaForHiroshi, "Jose" =>
 $AlaskaForJose);
$AnnualSales["Alaska"] = $Alaska;

358

C H A P T E R 6 Manipulating Arrays

To access or modify a value in a three-dimensional array, you must
specify all dimensions. For example, the following statement displays
Hiroshi’s third-quarter sales fi gures for Alaska:
echo "</p>Hiroshi's third-quarter sales fi gure
 for Alaska is " .
 $AnnualSales['Alaska']['Hiroshi']['Q3'] .
 ".</p>";

PHP diff ers from most other computer languages in its use of multi-
dimensional arrays. Most other languages require that each row have
the same number of columns. PHP is more fl exible, allowing each
row to have as many or as few records as needed. PHP also does not
require that all rows use the same keys or indexes to refer to a specifi c
column. Although this fl exibility is very useful in the right situations,
it is usually best to use a consistent number of columns with the same
keys or indexes.

Short Quiz

1. What is the diff erence between a one-dimensional array and a
multidimensional array?

2. What is the most common type of multidimensional array?

3. In a two-dimensional array, the fi rst set of indexes can be
thought of as , and the second set of indexes
can be thought of as . (Fill in the blanks.)

4. What is the primary diff erence between creating two-dimen-
sional associative arrays and two-dimensional indexed arrays?

5. Explain how to create a two-dimensional array in a single
statement.

Using Arrays in Web Forms
One of the most useful features of PHP arrays is that you can use
them with XHTML form input elements. Th is is convenient when
you have multiple matching input fi elds, such as the item rows in an
online order form. Several syntaxes may be used, depending on how
you want the array to be created in PHP.

To have PHP store the form data in an array, you modify the name
attribute of the input element to use array notation. If the indexes

359

Using Arrays in Web Forms

of the array elements are unimportant, you only need to append an
opening and closing square bracket ([]) to the value of the name attri-
bute. Th e data from any element with the same value for the name
attribute will be appended to an array with that name.

For example, the following XHTML form code creates three input
text boxes, for which the entered text will be stored as an array in
$_POST['answers']:
<form method='post' action='ProcessForm.php'>
<p>Enter the fi rst answer:
<input type='text' name='answers[]' /></p>
<p>Enter the second answer:
<input type='text' name='answers[]' /></p>
<p>Enter the third answer:
<input type='text' name='answers[]' /></p>
<input type='submit' name='submit'
 value='submit' />
</form>

When a form with input elements that use array notation for the
value of the name attribute is processed within PHP, the data values
for the input elements are stored in a nested array within the $_POST
autoglobal array. Th e array is accessed by using the name specifi ed in
the name attribute without the square brackets as the associative array
key for the $_POST array. For example, to access the array of answers
from the previous example, you use $_POST['answers'].

Because no indexes or keys are entered in the value of the name attri-
bute in the original form, PHP assigns an index of 0 to the fi rst ele-
ment, 1 to the second, and so forth. Th is is the equivalent of using
the syntax answers[]='Some Text'; to assign the value of an array
element within PHP.

As a nested array within the $_POST array, all of the standard PHP
array notation and functions can be applied to the element of the
$_POST array. Consider the following code:
if (is_array($_POST['answers'])) {
 $Answers = $_POST['answers'];
 if (is_array($Answers)) {
 $Index = 0;
 foreach ($Answers as $Answer) {
 ++$Index;
 echo "The answer for question " .
 " $Index is '" .
 htmlentities($Answer) .
 "'
\n";
 }
 }
}

360

C H A P T E R 6 Manipulating Arrays

In this example, because there are three input text fi elds on the origi-
nal form, three lines will be displayed. Th e data will be displayed in
the order posted, which is the order in which the input elements
occur on the original Web form. Figure 6-22 shows an example out-
put with the answers “gorilla”, “kitten”, and “polar bear”.

Figure 6-22 Output of an array posted from a Web form

Multidimensional array notation can also be used to process the
posted form information. Th e following code produces the same
results as the foreach example above, but uses multidimensional
array notation, the count() function, and a for loop. Th e output for
this example will look identical to the output of the previous example.
if (is_array($_POST['answers'])) {
 $Answers = $_POST['answers'];
 if (is_array($Answers)) {
 $count = count($Answers);
 for ($i = 0; $i < $count; ++$i) {
 echo "The answer for question " .
 ($i+1) . " is '" .
 htmlentities($Answers[$i]) .
 "'
\n";
 }
 }
}

If the order of the form inputs is important, you can include either
an index or an associative key between the opening and closing
array brackets. When using associative keys in Web forms, you do
not use quotes around the associative array key name. Th e syntax
<input type='text' name='answers[Q1]' /> will work, but the
syntax <input type='text' name='answers['Q1']' /> will not.

For example, the following code will ensure that indexes 1, 2, and 3
are associated with answers 1, 2, and 3, respectively:

361

Using Arrays in Web Forms

<form method='post' action='ProcessForm.php'>
<p>Enter the fi rst answer:
<input type='text' name='answers[1]' /></p>
<p>Enter the second answer:
<input type='text' name='answers[2]' /></p>
<p>Enter the third answer:
<input type='text' name='answers[3]' /></p>
<input type='submit' name='submit'
 value='submit' />
</form>

Th e following code will associate the key ‘Question 1’ with the fi rst
answer, ‘Question 2’ with the second answer, and ‘Question 3’ with
the third answer:
<form method='post' action='ProcessForm.php'>
<p>Enter the fi rst answer:
<input type='text' name='answers[Question 1]'
 /></p>
<p>Enter the second answer:
<input type='text' name='answers[Question 2]'
 /></p>
<p>Enter the third answer:
<input type='text' name='answers[Question 3]'
 /></p>
<input type='submit' name='submit'
 value='submit' />
</form>

To create an All-in-One Web form quiz about the capitals of the New
England states:

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, header
information, and <body> element. Use the strict DTD and
“New England State Capitals” as the content of the <title>
element.

3. Add the following script section to the document body:
<?php
?>

4. Add the following code to the script section to declare an
associative array of the New England state capitals:
$StateCapitals = array(
 "Connecticut" => "Hartford",
 "Maine" => "Augusta",
 "Massachusetts" => "Boston",
 "New Hampshire" => "Concord",
 "Rhode Island" => "Providence",
 "Vermont" => "Montpelier"
);

362

C H A P T E R 6 Manipulating Arrays

5. Add the following if...else statement to determine if the
answers have been posted:
if (isset($_POST['submit'])) {
}
else {
}

6. Add the following code to the if clause of the if...else
statement to validate the answers:
$Answers = $_POST['answers'];
if (is_array($Answers)) {
 foreach ($Answers as
 $State => $Response) {
 $Response =
 stripslashes($Response);
 if (strlen($Response)>0) {
 if (strcasecmp(
 $StateCapitals[$State],
 $Response)==0)
 echo "<p>Correct! The
 capital of $State is " .
 $StateCapitals[$State] .
 ".</p>\n";
 else
 echo "<p>Sorry, the capital
 of $State is not '" .
 $Response . "'.</p>\n";
 }
 else
 echo "<p>You did not enter a
 value for the capital of
 $State.</p>\n";
 }
}
echo "<p>
 Try again?</p>\n";

7. Add the following code to the else clause of the if...else
statement to display the Web form:
echo "<form action='NewEnglandCapitals.php'
 method='POST'>\n";
foreach ($StateCapitals as
 $State => $Response)
 echo "The capital of $State is:
 <input type='text' name='answers[" .
 $State . "]' />
\n";
 echo "<input type='submit'
 name='submit'
 value='Check Answers' /> ";
 echo "<input type='reset' name='reset'
 value='Reset Form' />\n";
 echo "</form>\n";

363

Using Arrays in Web Forms

8. Save the document as NewEnglandCapitals.php in the
Chapter directory for Chapter 6 and upload the fi le to the
server.

9. Open the NewEnglandCapitals.php fi le in your Web browser
by entering the following URL: http://<yourserver>/PHP_
Projects/Chapter.06/Chapter/NewEnglandCapitals.php.
Figure 6-23 shows the form. Enter your answers and click the
Check Answers button to see how you did.

Figure 6-23 The “New England Capitals” quiz Web form

10. Close your Web browser window.

Short Quiz

1. What attribute in the Web form <input> tag must be changed
for the value to be sent as an array element?

2. Can arrays created from Web forms be indexed arrays, asso-
ciative arrays, or both? Explain.

3. Should quotation marks be used in the associative array key
name for a Web form? Why or why not?

364

C H A P T E R 6 Manipulating Arrays

Summing Up
Th e • array_shift() function removes the fi rst element from the
beginning of an array, whereas the array_unshift() function adds
one or more elements to the beginning of an array.

Th e • array_pop() function removes the last element from the end
of an array, whereas the array_push() function adds one or more
elements to the end of an array.

Th e • array_splice() function adds or removes array elements.

Th e • unset() function removes array elements and other variables.

Th e • array_values() function renumbers an indexed array’s
elements.

Th e • array_unique() function removes duplicate elements from
an array.

With associative arrays, you specify an element’s key by using the •
array operator (=>).

Th e internal array pointer refers to the currently selected element •
in an array.

Th e • in_array() function returns a Boolean value of TRUE if a given
value exists in an array.

Th e • array_search() function determines whether a given value
exists in an array and 1) returns the index or key of the fi rst match-
ing element if the value exists, or 2) returns FALSE if the value does
not exist.

Th e • array_key_exists() function determines whether a given
index or key exists.

Th e • array_slice() function returns a portion of an array and
assigns it to another array.

Th e most commonly used array sorting functions are • sort()
and rsort() for indexed arrays, and ksort() and krsort() for
 associative arrays.

To append one array to another, you use the addition (• +) or the
compound assignment (+=) operator.

Th e • array_merge() function merges two or more arrays.

Th e • array_diff() function returns an array of elements that exist
in one array but not in any other arrays to which it is compared.

Th e • array_intersect() function returns an array of elements that
exist in all of the arrays that are compared.

365

Summing Up

A multidimensional array consists of multiple indexes or keys. •

When array notation is used in the name of a Web form input, the •
value gets stored in a nested array within the $_POST or $_GET array.

When using associative array notation in a Web form, you omit •
the quotation marks around the key name.

Comprehension Check

1. Which of the following functions removes the fi rst element
from the beginning of an array?

a. array_shift()

b. array_unshift()

c. array_push()

d. array_pop()

2. Explain the easiest way to add elements to the end of an
indexed array.

3. Which of the following functions removes the last element
from the end of an array? (Choose all that apply.)

a. array_shift()

b. array_unshift()

c. array_push()

d. array_pop()

4. Explain how to use the array_splice() function to add and
remove elements to and from an array.

5. After removing elements from an array, the unset() function
automatically renumbers the remaining elements. True or
False?

6. Which of the following functions removes duplicate elements
from an array?

a. array_duplicates()

b. array_unique()

c. remove_duplicates()

d. unique()

366

C H A P T E R 6 Manipulating Arrays

7. What is the correct syntax for declaring and initializing an
associative array?

a. $AutoMakers = array(“Ford” . “Mustang”,
“Chevrolet” . “Corvette”);

b. $AutoMakers = array(“Ford” = “Mustang”, “Chevrolet”
= “Corvette”);

c. $AutoMakers = array(“Ford” > “Mustang”, “Chevrolet”
> “Corvette”);

d. $AutoMakers = array(“Ford”
=> “Mustang”, “Chevrolet” => “Corvette”);

8. If an array contains a mixture of indexes and keys, what value
or key is used if you do not specify one when adding a new
element to the array?

9. If you declare an array in PHP and use a starting index other
than 0, empty elements are created for each index between 0
and the index value you specify. True or False?

10. Which of the following functions moves an array’s internal
pointer to the fi rst element?

a. fi rst()

b. top()

c. start()

d. reset()

11. Which of the following functions returns the value of an ele-
ment where an array’s internal pointer is positioned?

a. current()

b. key()

c. array()

d. array_values()

12. Explain the diff erence between the in_array() and
array_search() functions.

367

Comprehension Check

13. Which of the following locates a key named “Ford” in an array
named $AutoMakers[]?

a. array_key_exists($AutoMakers => “Ford”);

b. $AutoMakers = array_key_exists(“Ford”);

c. array_key_exists($AutoMakers, “Ford”);

d. array_key_exists(“Ford”, $AutoMakers);

14. Explain how to use the array_slice() function to return a
portion of an array and assign it to another array.

15. Which of the following functions performs a reverse sort on
an array? (Choose all that apply.)

a. asort()

b. usort()

c. rsort()

d. krsort()

16. Which of the following operators can you use to append one
array to another? (Choose all that apply.)

a. .

b. +

c. +=

d. =>

17. If you use the array_merge() function with indexed arrays,
all elements in one array are appended to another array and
renumbered. True or False?

18. Which of the following returns an array of elements that exist
in all of the arrays that are compared?

a. usort()

b. array_common()

c. array_diff()

d. array_intersect()

368

C H A P T E R 6 Manipulating Arrays

19. Suppose you are working with an indexed two-dimensional
array named $InterestRates[][], where each dimension
begins with an index of 0. Which of the following refers to the
second element in the fi rst dimension and the third element
in the second dimension?

a. $InterestRates[1],[2]

b. $InterestRates[1][2]

c. $InterestRates[1, 2]

d. $InterestRates[1].[2]

20. Which is the correct Web form syntax for creating the auto-
global element $_POST['item']['quantity']?

a. <input type="text" name="item['quantity']" />

b. <input type="text" name='item["quantity"]' />

c. <input type="text" name='item[quantity]' />

d. <input type="text" name="item["quantity"]" />

Reinforcement Exercises

Exercise 6-1

Create a Song Organizer script that stores songs in a text fi le. Include
functionality that allows users to view the song list and prevents the
same song name from being entered twice. Also, include code that
sorts the songs by name, deletes duplicate entries, and randomizes
the song list with the shuffl e() function.

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, header
information, and <body> element. Use the strict DTD and
“Song Organizer” as the content of the <title> element.

3. Add the following XHTML code and script section to the
document body:
<h1>Song Organizer</h1>
<?php
?>

369

Reinforcement Exercises

4. Add the following code to the script section to handle any
parameters in the URL:
if (isset($_GET['action'])) {
 if ((fi le_exists("SongOrganizer/songs.txt"))
 && (fi lesize("SongOrganizer/songs.txt")
 != 0)) {
 $SongArray = fi le(
 "SongOrganizer/songs.txt");
 switch ($_GET['action']) {
 } // End of the switch statement
 }
}

5. Add the following code to the body of the switch statement
to handle the three options (Sort Ascending, Remove
Duplicates, and Shuffl e):
case 'Remove Duplicates':
 $SongArray = array_unique(
 $SongArray);
 $SongArray = array_values(
 $SongArray);
 break;
case 'Sort Ascending':
 sort($SongArray);
 break;
case 'Shuffl e':
 shuffl e($SongArray);
 break;

6. Add the following code immediately after the switch state-
ment to save the song list after it has been modifi ed:
if (count($SongArray)>0) {
 $NewSongs = implode($SongArray);
 $SongStore = fopen(
 "SongOrganizer/songs.txt",
 "wb");
 if ($SongStore === false)
 echo "There was an error
 updating the song fi le\n";
 else {
 fwrite($SongStore, $NewSongs);
 fclose($SongStore);
 }
}
else
 unlink("SongOrganizer/songs.txt");

370

C H A P T E R 6 Manipulating Arrays

7. Add the following code to the end of the script section to
handle any data submitted from the Web form:
if (isset($_POST['submit'])) {
 $SongToAdd = stripslashes(
 $_POST['SongName']) . "\n";
 $ExistingSongs = array();
 if (fi le_exists("SongOrganizer/songs.txt")
 && fi lesize("SongOrganizer/songs.txt")
 > 0) {
 $ExistingSongs = fi le(
 "SongOrganizer/songs.txt");
 }
}

8. Add the following if statement immediately after the block
where the song fi le data was read into the $ExistingSongs
array. Th is if statement checks to see if the song name
entered is already in the song list, and displays a message if
the song already exists.
if (in_array($SongToAdd, $ExistingSongs)) {
 echo "<p>The song you entered already
 exists!
\n";
 echo "Your song was not added to the
 list.</p>";
}

9. Add the following else clause to the preceding if statement.
Th is else clause adds the new song to the song list fi le.
else {
 $SongFile = fopen(
 "SongOrganizer/songs.txt", "ab");
 if ($SongFile === false)
 echo "There was an error saving
 your message!\n";
 else {
 fwrite($SongFile, $SongToAdd);
 fclose($SongFile);
 echo "Your song has been added to
 the list.\n";
 }
}

Although this
form does not
allow for dupli-
cate entries,
you still need

to be able to remove
them if necessary. There
may be other methods of
adding songs to the list,
and the other methods
may allow duplicate
entries.

371

Reinforcement Exercises

10. Add the following code to the end of the script section to dis-
play the song list, or a message that there are no songs in the
list if the list is empty:
if ((!fi le_exists("SongOrganizer/songs.txt"))
 || (fi lesize("SongOrganizer/songs.txt")
 == 0))
 echo "<p>There are no songs in the
 list.</p>\n";
else {
 $SongArray = fi le(
 "SongOrganizer/songs.txt");
 echo "<table border=\"1\" width=\"100%\"
 style=\"background-color:lightgray\">\n";
 foreach ($SongArray as $Song) {
 echo "<tr>\n";
 echo "<td>" . htmlentities($Song) .
 "</td>";
 echo "</tr>\n";
 }
 echo "</table>\n";
}

11. Add the following XHTML code immediately after the PHP
script section to display hyperlinks for the three functions in
the switch statement (Sort Ascending, Remove Duplicates,
and Shuffl e):
<p>

 Sort Song List

 Remove Duplicate Songs

 Randomize Song list

</p>

12. Next, add the following XHTML code to create a Web form
for entering new song names into the song list:
<form action="SongOrganizer.php" method="post">
<p>Add a New Song</p>
<p>Song Name: <input type="text" name="SongName"
 /></p>
<p><input type="submit" name="submit"
 value="Add Song to List" />
<input type="reset" name="reset"
 value="Reset Song Name" /></p>
</form>

13. Save the document as SongOrganizer.php in the Projects
directory for Chapter 6 and upload the fi le to the server.

372

C H A P T E R 6 Manipulating Arrays

14. Open the SongOrganizer.php fi le in your Web browser by
entering the following URL: http://<yourserver>/PHP_
Projects/Chapter.06/Projects/SongOrganizer.php.

15. Close your Web browser window.

Exercise 6-2

In this project, you will create a multidimensional array that contains
the measurements, in inches, for several boxes that a shipping com-
pany might use to determine the volume of a box.

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, docu-
ment head, and <body> element. Use the strict DTD and “Box
Array” as the content of the <title> element.

3. Create a script section in the document body:
<?php
?>

4. Declare and initialize an associative multidimensional array
using the information shown in the following table:

Length Width Depth

Small box 12 10 2.5

Medium box 30 20 4

Large box 60 40 11.5

5. Add statements to the end of the script section that display
the volume (length * width * depth) of each box.

6. Save the document as BoxArray.php in the Projects directory
for Chapter 6, and then close the document in your text editor.

7. Open the BoxArray.php fi le in your Web browser by enter-
ing the following URL: http://<yourserver>/PHP_Projects/
Chapter.06/Projects/BoxArray.php.

8. Close your Web browser window.

Exercise 6-3

Create a Web form that shows the mileage between European capi-
tals. Use a two-dimensional associative array to store the mileages.

1. Create a new document in your text editor.

373

Reinforcement Exercises

2. Type the <!DOCTYPE> declaration, <html> element, header
information, and <body> element. Use the strict DTD and
“European Travel” as the content of the <title> element.

3. Add the following script section to the document body:
<?php
?>

4. Add the following code to the script section to declare an
associative array of European cities and the distances between
them in kilometers, and the conversion factor for kilometers
to miles:
$Distances = array(
 "Berlin" => array(
 "Berlin" => 0,
 "Moscow" => 1607.99,
 "Paris" => 876.96,
 "Prague" => 280.34,
 "Rome" => 1181.67
),
 "Moscow" => array(
 "Berlin" => 1607.99,
 "Moscow" => 0,
 "Paris" => 2484.92,
 "Prague" => 1664.04,
 "Rome" => 2374.26
),
 "Paris" => array(
 "Berlin" => 876.96,
 "Moscow" => 641.31,
 "Paris" => 0,
 "Prague" => 885.38,
 "Rome" => 1105.76
),
 "Prague" => array(
 "Berlin" => 280.34,
 "Moscow" => 1664.04,
 "Paris" => 885.38,
 "Prague" => 0,
 "Rome" => 922
),
 "Rome" => array(
 "Berlin" => 1181.67,
 "Moscow" => 2374.26,
 "Paris" => 1105.76,
 "Prague" => 922,
 "Rome" => 0
)
);
$KMtoMiles = 0.62;

374

C H A P T E R 6 Manipulating Arrays

5. Add the following if statement to process the entered cities:
if (isset($_POST['submit'])) {
 $StartIndex = stripslashes($_POST['Start']);
 $EndIndex = stripslashes($_POST['End']);
 if (isset(
 $Distances[$StartIndex][$EndIndex]))
 echo "<p>The distance from $StartIndex
 to $EndIndex is " .
 $Distances[$StartIndex][$EndIndex]
 . " kilometers, or " . round(
 ($KMtoMiles *
 $Distances[$StartIndex][$EndIndex]),
 2) . " miles.</p>\n";
 else
 echo "<p>The distance from $StartIndex
 to $EndIndex is not in the
 array.</p>\n";
}

6. Add the following XHTML code after the PHP script to dis-
play the Web form:
<form action="EuropeanTravel.php" method="post">
<p>Starting City:
<select name="Start">
</select></p>
<p>Ending City:
<select name="End">
</select></p>
<p><input type="submit" name="submit"
 value="Calculate Distance" /></p>
</form>

7. Add the following PHP script between the opening and clos-
ing XHTML tags for the “Start” <select> element to insert
the list of city names:
<?php
 foreach ($Distances as
 $City => $OtherCities) {
 echo "<option value='$City'";
 if (strcmp($StartIndex,$City)==0)
 echo " selected";
 echo ">$City</option>\n";
 }
?>

8. Add the following PHP script between the opening and clos-
ing XHTML tags for the “End” <select> element to insert the
list of city names:

375

Reinforcement Exercises

<?php
 foreach ($Distances as
 $City => $OtherCities) {
 echo "<option value='$City'";
 if (strcmp($EndIndex,$City)==0)
 echo " selected";
 echo ">$City</option>\n";
 }
?>

9. Save the document as EuropeanTravel.php in the Projects
directory for Chapter 6 and upload the fi le to the server.

10. Open the EuropeanTravel.php fi le in your Web browser
by entering the following URL: http://<yourserver>/PHP_
Projects/Chapter.06/Projects/EuropeanTravel.php.

11. Close your Web browser window.

Exercise 6-4

Use the techniques you learned in this chapter to create a Guest Book
script that stores visitor names and e-mail addresses in a text fi le.
Include functionality that allows users to view the guest book and
prevents the same user name from being entered twice. Also, include
code that sorts the guest book by name and deletes duplicate entries.

Exercise 6-5

Create an online order form as a Web form. Allow visitors to enter a
quantity for at least fi ve items for sale. Each item should have a name,
description, and price. Th e form should have buttons to update the totals
for the quantities entered and to submit the order. Save the orders to a
subdirectory called OnlineOrders in the Projects directory for Chapter
6. Use the date and time to create a unique fi lename for each order.

Discovery Projects
Th e Chinese Zodiac site is a comprehensive project that will be
updated in the Discovery Projects in each chapter. All fi les for the
Chinese Zodiac site will be saved in a folder named ChineseZodiac in
the root Web folder on the server.

Discovery Project 6-1

Reopen inc_footer.php from the Includes folder and use the array
constructs introduced in Chapter 6 to randomly display a dragon

376

C H A P T E R 6 Manipulating Arrays

image below the randomly displayed Chinese proverbs each time the
browser is refreshed. Use the small dragon images that you uploaded
to the Images folder in Discovery Project 5-6.

Use the functions you learned in Chapter 5 to read the fi lenames
from the Images folder into an array. Because you have other images
in the Images folder besides your dragon images, you should fi lter
the contents of the folder to add only fi les that have a fi lename of
Dragon1, Dragon2, etc., and a valid image extension before adding
them to your array. Th e easiest way to fi lter the fi lenames is to use a
regular expression such as '/ˆDragon\d+\.(gif|jpg|png)$/'. When
the array is populated, use the shuffl e() function to randomly reor-
der the array. Select the name in the fi rst array element of the shuffl ed
array as the random image to display.

Discovery Project 6-2

Open a new document in your text editor and create an All-in-One
form that prompts the user to enter the 12 zodiac signs in random
order in a text box. Th e signs must be separated with commas.
Inform the user that you will display the signs in an alphabetized list
after the form has been submitted.

Use the array sort functions introduced in this chapter to alphabetize
the signs and then display them in an ordered list.

Save the fi le as AlphabetizeSigns.php and upload the fi le to the
ChineseZodiac folder on the Web server.

Reopen inc_web_forms.php from the Includes folder and replace
the “[Insert Web forms content here]” placeholder with Web content
that describes the processing of user input on a Web page. Include a
description of how to create and process a Web form.

Add a section called “Alphabetizing User Input” and briefl y describe
the function of the AlphabetizeSigns.php script. Refer to Discovery
Project 5-4 to add “[Test the Script]” and “[View the Source Code]”
links below the descriptive data.

Add a text navigation bar at the top of the document with an internal
link to the “Alphabetizing User Input” section.

Save the inc_web_forms.php fi le and upload it to the server. Th e con-
tents of this fi le should appear in the dynamic content section when
you click the Web Forms button or the Web Forms text hyperlink
from the Chinese zodiac Web template.

377

Discovery Projects

Discovery Project 6-3

Create a PHP script with an associative array that uses image fi le-
names as the keys and image captions as the values. Use the keys and
values from the array to create a thumbnail gallery of images in which
you display a small hyperlinked image to open a larger version of
the image. Use the zodiac sign images that you saved in your Images
folder in Chapter 1. Set a width and height for the thumbnails that are
less than half of the height and width of the images. Format the dis-
play of the thumbnail gallery.

Save the fi le as ZodiacGallery.php and upload it to the
ChineseZodiac folder on the Web server. Test the script.

Reopen inc_web_forms.php and add another text link (Image
Gallery) to the text navigation bar that links to the Image Gallery
descriptive text. Below the Alphabetizing Signs descriptive text,
add a new section called “Image Gallery” with descriptive text and
hyperlinks for “[Test the Script]” and “[View the Source Code]” for
ZodiacGallery.php.

Discovery Project 6-4

Reopen the BirthYear_switch.php fi le created in Discovery Project
5-2, and modify the script to create a multidimensional array named
$AnimalSigns[] that stores the information in the following table:

Animal Signs

“Start Date” “End Date” “President”

“Rat” 1900 2020 George Washington

“Ox” 1901 2021 Barack Obama

“Tiger” 1902 2022 Dwight Eisenhower

“Rabbit” 1903 2023 John Adams

“Dragon” 1904 2024 Abraham Lincoln

“Snake” 1905 2025 John Kennedy

“Horse” 1906 2026 Theodore Roosevelt

“Goat” 1907 2027 James Madison

“Monkey” 1908 2028 Harry Truman

“Rooster” 1909 2029 Grover Cleveland

“Dog” 1910 2030 George Walker Bush

“Pig” 1911 2031 Ronald Reagan

378

C H A P T E R 6 Manipulating Arrays

For example, $AnimalSigns["Monkey"] is an array that con-
tains three elements: $AnimalSigns["Monkey"]["Start Date"]
is 1908, $AnimalSigns["Monkey"]["End Date"] is 2028, and
$AnimalSigns["Monkey"]["President"] is “Harry Truman.”

Access the multidimensional array to display the following message
in addition to the message and image displayed by the original script
(text in bold will change depending on the sign being displayed): “If
your Chinese zodiac sign is the Rat, you share a zodiac sign with
President George Washington. Years of the Rat include 1900, 1912,
1924, 1936, 1948, 1960, 1972, 1984, 1996, 2008, and 2020.”

To display the message shown above, you can use the following code.
Th e variable $ChosenSign contains the name of the animal. Th e year
string is stored in the $SignMessage variable.
$SignMessage = "If your Chinese zodiac sign is
 the $ChosenSign, you share a zodiac sign
 with President " .
 $AnimalSigns[$ChosenSign]["President"] .
 ". ";
$SignMessage .= "Years of the $ChosenSign
 include ";
for ($i = $AnimalSigns[$ChosenSign]["Start Date"];
 $i < $AnimalSigns[$ChosenSign]["End Date"];
 $i+=12)
 $SignMessage .= $i . ", ";
$SignMessage .= "and " .
 $AnimalSigns[$ChosenSign]["End Date"] . ".";

Save the BirthYear_switch.php script and upload the fi le to the
ChineseZodiac folder on the Web server. Open the main page
(index.php) for the Chinese Zodiac site. Click the Control Structures
button or Control Structures text link and select the Switch
Statement link to test the functionality of the script.

379

Discovery Projects

C H A P T E R 7
Working with
Databases and
MySQL

In this chapter you will:

Study the basics of databases and MySQL

Work with MySQL databases

Defi ne database tables

Modify user privileges

Work with database records

Work with phpMyAdmin

A common use of Web pages is to gather information stored in a
database on a Web server. Most server-side scripting languages,
including PHP, allow you to create Web pages that can read and write
data to and from databases. In this chapter, you will take a break from
PHP to learn how to work with MySQL databases. Your goal is to
learn the basics of database manipulation. Th en, in Chapter 8, you
will apply many of the techniques from this chapter to PHP scripts
that manipulate MySQL databases.

MySQL is an open source database originally developed by MySQL
AB and owned by Sun Microsystems (http://www.mysql.com/). Many
people mistakenly believe that MySQL is part of PHP. Even though
MySQL is probably the database used most often with PHP, it is just
one of many databases that PHP can manipulate directly or through
Open Database Connectivity (ODBC). As its name implies, MySQL
uses Structured Query Language, or SQL, as its data manipula-
tion language. MySQL is primarily used for Web applications and is
extremely popular for several reasons; fi rst and foremost, it’s open
source and free.

Introduction to Databases
Formally defi ned, a database is an ordered collection of information
that a computer program can quickly access. You can probably think
of many databases that you work with in everyday life. For example,
your address book is a database. So is the card fi le of recipes in a
kitchen. Other examples of databases include a company’s employee
directory and a fi le cabinet of client information. Essentially, any
information that can be organized into ordered sets of data, and
then quickly retrieved, can be considered a database. A collection
of hundreds of baseball cards thrown into a shoebox is not a data-
base because an individual card cannot be quickly or easily retrieved
(except by luck). However, if the baseball card collection was orga-
nized in binders by team, and then further organized according to
each player’s fi eld position or batting average, it could be considered a
database because you could quickly locate a specifi c card.

Th e information stored in computer databases is actually stored in
tables similar to spreadsheets. Each row in a database table is called
a record. A record in a database is a single, complete set of related
information. Each recipe in a recipe database, for instance, is a single
database record. Each column in a database table is called a fi eld.
Fields are the individual categories of information stored in a record.
Examples of fi elds in a recipe database might include ingredients,
cooking time, cooking temperature, and so on.

381

Introduction to Databases

http://www.mysql.com/

To summarize, you can think of databases as consisting of tables,
which consist of records, which consist of fi elds. Figure 7-1 shows an
example of an employee directory for programmers at an applica-
tion development company. Th e database consists of fi ve records,
one for each employee. Each record consists of six fi elds: last_name,
first_name, address, city, state, and zip.

Figure 7-1 Employee directory database

Th e database in Figure 7-1 is an example of a fl at-fi le database, one
of the simplest types of databases. A flat-file database stores infor-
mation in a single table, and it is usually adequate for simple collec-
tions of information. However, with large and complex collections of
information, a better solution is a relational database, which stores
information across multiple related tables. Although you will not
work with a relational database in this chapter, understanding how
they work is helpful because relational databases are among the most
common in use today.

Understanding Table Relationships
Relational databases consist of one or more related tables. In fact,
large relational databases can consist of hundreds or thousands of
related tables. Regardless of the number of tables, however, you cre-
ate relationships within the database by working with two tables at
a time. One table in a relationship is always considered to be the
primary table, and the other table is considered the related table.
A primary table (also called a parent table) is the main table in
a relationship that is referenced by another table. A related table
(also called a child table) references a primary table in a relational
database.

Two other
types of
database
systems you
might

encounter are hierarchical
databases and network
databases.

382

C H A P T E R 7 Working with Databases and MySQL

Tables in a relationship are connected using primary and foreign
keys. A primary key is a fi eld or fi elds that contain a unique identi-
fi er for each record in a primary table. A primary key is a type of
index, which identifi es records in a database to make retrievals and
sorting faster. An index or primary key can consist of just a single
fi eld (a simple key), or it can be a combination of multiple fi elds (a
compound or composite key). A foreign key is a fi eld or fi elds in a
related table that refer to the primary key in a primary table. A for-
eign key can also be a simple key or a compound key to match the
primary key in the parent table. Primary and foreign keys link records
across multiple tables in a relational database.

Th ere are three basic types of relationships within a relational data-
base: one-to-one, one-to-many, and many-to-many. A one-to-one
relationship exists between two tables when a related table contains
exactly one record for each record in the primary table. You create
one-to-one relationships when you want to break information into
multiple, logical sets. It is important to understand that informa-
tion in the tables in a one-to-one relationship can usually be placed
in a single table. However, you might want to break the information
into multiple tables to better organize it into logical sets. Another
reason for using one-to-one relationships is that you can make the
information in one of the tables confi dential and accessible only by
certain people. For example, you might want to create a person-
nel table that contains basic information about employees, similar
to the information in the table in Figure 7-1. Yet, you might also
want to create a payroll table that contains confi dential information
about each employee’s salary, benefi ts, and other types of compen-
sation, which can be accessed only by the Human Resources and
Accounting departments. Figure 7-2 shows two tables, Employees
and Payroll, that have a one-to-one relationship. Th e primary table
is the employee information table from Figure 7-1. Th e related table
is a payroll table that contains confi dential salary and compensation
information. Notice that each table contains an identical number of
records; one record in the primary table corresponds to one record in
the related table. Th e relationship is achieved by adding a primary key
to the Employees table and a foreign key to the Payroll table.

While primary
keys must
be unique,
foreign keys
do not have

the same requirement.
Duplicate foreign keys
are used later in this sec-
tion when one-to-many
relationships are
discussed.

383

Introduction to Databases

Figure 7-2 One-to-one relationship

A one-to-many relationship exists in a relational database when one
record in a primary table has many related records in a related table.
You create a one-to-many relationship to eliminate redundant infor-
mation in a single table. Ideally, primary and foreign keys are the
only pieces of information in a relational database table that should
be duplicated. Breaking tables into multiple related tables to reduce
redundant and duplicate information is called normalization. Th is
process reduces the size of a database and decreases the opportu-
nity for error when the same information is repeated. For example,
consider the table in Figure 7-3. Th e table lists every programming
language in which the fi ve programmers are profi cient. Th e repetition
of programmers’ names is an example of redundant information that
can occur when all of the information is stored in a single table.

384

C H A P T E R 7 Working with Databases and MySQL

Figure 7-3 Table with redundant information

A one-to-many relationship provides a more effi cient and less redun-
dant method of storing this information in a database. Figure 7-4
shows the same information organized into a one-to-many
relationship.

385

Introduction to Databases

Figure 7-4 One-to-many relationship

In Figure 7-4, the tables are not normalized because the language
fi eld contains duplicate values. Recall that primary and foreign keys
are the only pieces of information in a relational database that should
be duplicated. To further reduce repetition, you could organize the
Languages table in Figure 7-4 into another one-to-many relationship.
However, a better choice is to create a many-to-many relationship,
which exists in a relational database when many records in one table
are related to many records in another table.

Consider the relationship between programmers and programming
languages. Each programmer can work with many programming
languages, and each programming language can be used by many

In some
databases,
the table
containing
multiple

records for one entity (for
example, the program-
ming language table in
Figure 7-4) is the primary
table. In these cases, the
relationship is often
referred to as a many-to-
one relationship.

386

C H A P T E R 7 Working with Databases and MySQL

programmers. To create a many-to-many relationship, you must use a
junction table because most relational database systems cannot work
directly with many-to-many relationships. A junction table creates a
one-to-many relationship for each of the tables in a many-to-many
relationship. A junction table contains foreign keys from the two
tables in a many-to-many relationship, along with any other fi elds
that correspond to a many-to-many relationship. A junction table is
often called a linking table or a cross-reference table.

Figure 7-5 contains an example of a many-to-many relationship
between the Employees table and a Languages table. Th e Employees
table contains a primary key named employee_id, and the Languages
table contains a primary key named language_id. A junction table
named Experience contains two foreign keys, one corresponding to
the employee_id primary key in the Employees table and one cor-
responding to the language_id primary key in the Languages table.
Th e Experience junction table also contains a fi eld named years.
You add records to the Experience junction table to build a list of
the years that each programmer has been working with a particular
programming language. Because each combination of employee_id
and language_id is unique, the two columns provide a convenient
compound primary key, eliminating the need for a separate primary
key fi eld.

In a junction
table, the
foreign keys
may be used
as a com-

pound primary key.

387

Introduction to Databases

Figure 7-5 Many-to-many relationship

Working with Database Management Systems
Although a full-scale database is much more complex than the
examples given so far, you now have enough information about
table relationships to create and manipulate database tables. One
or more applications used to access and manage a database is called
a database management system, or DBMS. A DBMS is also used
to defi ne a database’s schema, which is the structure of a database,
including its tables, fi elds, and relationships. A DBMS runs on many
diff erent platforms, ranging from personal computers to network
servers, and diff erent DBMSs exist for diff erent types of database

388

C H A P T E R 7 Working with Databases and MySQL

formats. A DBMS that stores data in a fl at-fi le format is called a
flat-file database management system. A DBMS that stores data
in a relational format is called a relational database management
system, or RDBMS. Other types of DBMSs are hierarchical and net-
work database management systems. In addition to the open source
MySQL DBMS, some of the more popular relational DBMSs include
Oracle, Sybase, and SQL Server for network servers, and Microsoft
Access and Paradox for PCs.

Database management systems perform many of the same functions
as other types of applications you might have encountered, such as
word-processing and spreadsheet programs. For example, a DBMS
creates new database fi les and contains interfaces that allow users to
enter and manipulate data. One of the most important functions of
a DBMS is the structuring and maintenance of the database fi le. In
addition, a DBMS must ensure that data is stored correctly in a data-
base’s tables, regardless of the database format (fl at-fi le, relational,
hierarchical, or network). In relational databases, the DBMS ensures
that the appropriate information is entered according to the relation-
ship structure in the database tables. Many DBMSs also have security
features that restrict user access to specifi c data.

Another important aspect of a DBMS is its querying capability.
A query is a structured set of instructions and criteria for retrieving,
adding, modifying, and deleting database information. Most database
management systems use a data manipulation language, or DML, for
creating queries. Diff erent DBMSs support diff erent DMLs. However,
structured query language, or SQL (sometimes pronounced sequel),
is a standard data manipulation language among many DBMSs.

Many DBMSs include tools that make it easier to build queries.
MySQL includes MySQL Query Browser, a tool that allows you to
work with MySQL queries in a graphical environment. You can use
MySQL Query Browser to create queries by typing SQL commands
into the query area at the top of the screen or by dragging tables and
fi elds from the Schemata area to the query area.

Although working with an interface to design queries is helpful, you
must still use the DBMS’s data manipulation language (for example,
when accessing databases with PHP). Because SQL is the underlying
data manipulation language for many DBMSs, including MySQL, you
will learn more about the language as you progress through this chapter.

It is important to understand that even though many DBMSs sup-
port the same database structures (fl at-fi le, relational, hierarchical, or
network), each DBMS is an individual application that creates its own
proprietary fi le types. For example, even though Access and Paradox
are both relational DBMSs, Access creates its database fi les in a

PostgreSQL is
another open
source rela-
tional DBMS
that is becom-

ing a popular alternative
to MySQL. You can fi nd
more information on
PostgreSQL at http://
www.postgresql.org/.

Many DBMSs
also use
a data
 defi nition
language,

or DDL, for creating
 databases, tables, fi elds,
and other database
components.

389

Introduction to Databases

http://www.postgresql.org/
http://www.postgresql.org/

proprietary format with an .accdb extension (.mdb for Access 2003
and earlier), whereas Paradox creates a set of database fi les in a diff er-
ent proprietary format, with the data stored in fi les with a .db exten-
sion. Although both Paradox and Access contain fi lters that allow you
to import the other’s fi le formats, the database fi les are not completely
interchangeable between the two programs. Th e same is true for most
DBMSs; they can import each other’s fi le formats, but they cannot
directly read each other’s fi les.

In today’s ever-evolving technology environment, an application
must often access multiple databases created in diff erent DBMSs.
For example, a company might need a PHP script that simultane-
ously accesses a large legacy database written in Sybase and a newer
database written in Oracle. Converting the large Sybase database to
Oracle would be cost prohibitive. On the other hand, the company
cannot continue using the older Sybase database exclusively because
its needs have grown beyond the older database’s capabilities. So, the
company must be able to access the data in both systems.

To allow easy access to data in various database formats, Microsoft
established the Open Database Connectivity standard (ODBC).
ODBC allows compliant applications to access any data source for
which there is an ODBC driver. ODBC uses SQL commands (known
as ODBC SQL) to allow an ODBC-compliant application to access
a database. Essentially, an ODBC application connects to a database
for which there is an ODBC driver and then executes ODBC SQL
commands. Th en, the ODBC driver translates the SQL commands
into a format that the database can understand. PHP includes strong
support for ODBC, and includes functionality that allows you to
work directly with diff erent types of databases without going through
ODBC. Some of the databases that you can access directly from PHP
include Oracle, Informix, MySQL, and PostgreSQL. By eliminating
the ODBC layer, your PHP scripts will be faster. Furthermore, PHP
code that directly accesses a database allows you to access proprietary
DBMS functions that are not supported by ODBC. Th erefore, your
rule of thumb should be to always use direct database access if it is
available in PHP. Otherwise, use PHP’s ODBC functionality to access
ODBC-compliant databases.

Querying Databases with Structured Query
Language (SQL)
Programmers at IBM developed SQL in the 1970s as a way to query
databases for specifi c criteria. Since then, SQL has been adopted by
numerous DBMSs running on mainframes, minicomputers, and PCs.
In 1986, the American National Standards Institute (ANSI) approved

In Chapter 8,
you will learn
how to use
PHP to
access

MySQL databases
directly.

390

C H A P T E R 7 Working with Databases and MySQL

an offi cial standard for the SQL language. In 1991, the X/Open and
SQL Access Group created a standardized version of SQL known as
the Common Applications Environment (CAE) SQL draft specifi ca-
tion. Even with two major standards available, however, most DBMSs
use their own version of the SQL language. MySQL corresponds
primarily to the ANSI SQL standard, although it includes a few of its
own extensions to the language.

SQL uses fairly easy-to-understand statements to execute database
commands. SQL statements are composed of keywords that perform
actions on a database. Table 7-1 lists several SQL keywords that are
common to most versions of SQL.

Keyword Description
DELETE Deletes a row from a table

FROM Specifi es the tables from which to retrieve or delete records

INSERT Inserts a new row into a table

INTO Determines the table into which records should be inserted

ORDER BY Sorts the records returned from a table

SELECT Returns information from a table

UPDATE Saves changes to fi elds in a record

WHERE Specifi es the conditions that must be met for records to be
returned from a query

Table 7-1 Common SQL keywords

Th e simple SQL statement SELECT * FROM Employees returns all
fi elds (using the asterisk wildcard) from the Employees table. Th e fol-
lowing code shows a more complex SQL statement that selects the
last_name and first_name fi elds from the Employees table if the
record’s city fi eld is equal to “Spencer.” Th e results are then sorted by
the last_name and first_name fi elds using the ORDER BY keyword.
Notice that commas separate multiple fi eld names.
SELECT last_name, fi rst_name FROM Employees
WHERE city = "Spencer" ORDER BY last_name, first_name;

Short Quiz

1. Explain the diff erence between a fl at-fi le database and a rela-
tional database.

2. Explain the relationship between a primary key and a foreign
key.

If you ever
work directly
with another
DBMS, keep
in mind that

the SQL you learn in this
chapter might not corre-
spond directly to that
DBMS’s version of SQL.

You will
study many
of the basic
SQL key-
words in this

chapter. For in-depth
information on SQL state-
ments supported in
MySQL, refer to the
MySQL Reference Manual
at http://dev.mysql.com/
doc/mysql/en/index.
html.

391

Introduction to Databases

http://dev.mysql.com/doc/mysql/en/index.html
http://dev.mysql.com/doc/mysql/en/index.html
http://dev.mysql.com/doc/mysql/en/index.html

3. Describe the role of a junction (linking) table.

4. How does Open Database Connectivity (ODBC) assist in
database management?

5. Defi ne the acronym SQL and explain its role in database
manipulation.

Getting Started with MySQL
As open source software, MySQL is a logical fi t with Apache and
PHP, both of which are also developed as open source software. But
there are other reasons for MySQL’s popularity: It is also fast and
reliable, and it supports other programming languages besides PHP,
including C, C++, and Java. MySQL is also fairly easy to use and
install and is available on a number of diff erent platforms.

Th ere are several ways to interface with a MySQL database server
to access and manage your databases, including MySQL Monitor,
phpMyAdmin, and PHP database functions. Th e MySQL program
you will primarily use in this chapter is MySQL Monitor, which is
a command-line program for manipulating MySQL databases. You
execute the MySQL Monitor program with the mysql command,
which you run through an SSH connection, a telnet connection, or in
a console window on the server itself. Your instructor should provide
you with the information and tools needed to create a command-line
connection to the MySQL server.

In the next section, you will learn how to log in to MySQL.

Logging in to MySQL
To access or manipulate databases with MySQL programs such as
MySQL Monitor (mysql) or phpMyAdmin, you need to log in to
the MySQL database server. To use MySQL Monitor to log in to the
server, enter the following command:
mysql -h host -u user –p

In the preceding command, the -h argument allows you to specify
the host name where your MySQL database server is installed. Th e
default value for this argument is localhost, so if you are work-
ing with an instance of a MySQL database server that is installed on
your local computer, you do not need to specify the -h argument
and host name. However, if you are working with a MySQL database

Before con-
tinuing with
this chapter,
be sure that
you have

been provided access to
an account on a server
with a MySQL installation,
or that you have followed
the instructions in
Appendix B for installing
and testing one of the
xAMP packages.

MySQL
Monitor will
operate the
same regard-
less of

whether you use an SSH
connection, a telnet con-
nection, or a console
window on the server. For
the remainder of this
chapter, the term “con-
sole window” refers to
the window in which you
enter commands.

Several exam-
ples in this
chapter show
the contents
of a console

window and contain both
displayed text and text
that you enter. To distin-
guish between the two
types of text, the text that
you enter is shown in
bold, even though it won’t
appear in bold in the con-
sole window. Additionally,
the symbol [ENTER] will
indicate where you need
to press the Enter key.
This symbol does not
actually appear on the
screen.

392

C H A P T E R 7 Working with Databases and MySQL

server on an ISP’s Web site, you need to enter your ISP’s host name.
Th e -u argument allows you to specify a user account name, and the
-p switch prompts you for a password. For example, the following
command logs the user name dongosselin into MySQL Monitor on a
UNIX installation of MySQL:
[dongosselin] $ mysql –h php_db -u dongosselin -p[ENTER]
Enter password: **********[ENTER]
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 6611 to server version: 4.1.9-nt

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

To log in to MySQL Monitor:

1. Open a new console window.

2. Log in with the following command. Be sure to replace host
and user with the host name and user name provided by your
ISP or instructor.
mysql -h host -u user –p

When prompted, enter the password provided by your ISP or instruc-
tor. If you are working on a UNIX platform, your screen should look
like Figure 7-6.

Figure 7-6 MySQL Monitor on a UNIX platform

You are
 successfully
logged in
when you see
the mysql>
prompt.

393

Getting Started with MySQL

When you fi nish working with MySQL Monitor, you can log out and
exit the program by entering either the exit or quit command. You
are successfully logged out when you see “Bye” and your command
prompt is restored to the command line for your operating system.
Th e following example shows how the command line appears on a
Windows installation of MySQL:
mysql> exit[ENTER]
Bye

[dongosselin] $

To log out of MySQL Monitor:

1. Return to MySQL Monitor.

2. Type exit or quit and press Enter. You should see “Bye”
printed to the screen and the command prompt restored to
the command line for your operating system.

Working with MySQL Monitor
Th e mysql> command prompt in MySQL Monitor is where most
of the action occurs when you create or manipulate databases in
MySQL. If you are familiar with graphical database management
systems, such as Microsoft Access, you might need some time to get
used to the mysql> command prompt. However, keep in mind that
most database management systems, including Access, use SQL to
manipulate databases. MySQL just removes the graphical “front end”
and allows you to enter SQL commands directly. After you become
familiar with working in MySQL Monitor, you may fi nd that you
 prefer manipulating databases with the mysql> command prompt
over using a graphical DBMS because you have more precise con-
trol over your database. You may also fi nd that a graphical front end
might not always be available for the database that you need to use,
so your only option is to use a command-line utility. It’s also worth
repeating that you must understand how to write SQL commands
manually to access MySQL databases from PHP scripts, as you do in
the next chapter.

When you enter a SQL command at the mysql> command prompt,
you must terminate the command with a semicolon. For example, the
following SQL statement lists all of the databases currently defi ned
for your user name:

Although the
screen cap-
tures in this
chapter are
taken from a

UNIX operating system
console window, the
MySQL Monitor portion of
your window should
appear the same regard-
less of which operating
system you use.

394

C H A P T E R 7 Working with Databases and MySQL

MYSQL> SHOW DATABASES;[ENTER]
+-------------+
| Database |
+-------------+
| dongosselin |
| mysql |
| test |
+-------------+
3 rows in set (0.00 sec)
mysql>

If you omit the ending semicolon when you enter a SQL statement,
MySQL Monitor assumes that you want to enter a multiple-line
 command and changes the prompt to ->, which indicates that you
need to enter the next line of the command. For example, the follow-
ing version of the SHOW command does not include the terminating
semicolon. For this reason, the command prompt changes to -> so
that you can enter more statements.
mysql> SHOW DATABASES[ENTER]
 ->

To fi nish executing the preceding statement, just type a semicolon by
itself at the -> command prompt and press Enter.

Th e SQL keywords you enter in MySQL Monitor are not case
 sensitive, so you can enter any of the following statements to list the
databases available to you:
mysql> SHOW databases;[ENTER]
mysql> show databases;[ENTER]
mysql> SHOW DATABASES;[ENTER]

Although you can use any case for SQL keywords, most programmers
follow the convention of using uppercase letters for SQL keywords
and using lowercase or mixed case for the names of databases, tables,
and fi elds.

Understanding MySQL Identifi ers
In MySQL, you must defi ne identifi ers (names) for databases, tables,
fi elds, indexes, and aliases. An alias is an alternate name that you
can use to refer to a table or fi eld in SQL statements. In MySQL, all
identifi ers except aliases are limited to 64 characters in length. Aliases
can be up to 255 characters. For database and table names, you can
include any characters that your operating system allows in directory
names and fi lenames, with the exception of forward slashes (/), back-
slashes (\), and periods (.). Fields, indexes, and aliases can consist of
any characters, including forward slashes, backslashes, and periods.

You can use
the up and
down arrow
keys on the
keyboard to

scroll back through previ-
ously entered commands.
Once the command is
selected, you can edit it.
Be sure that the cursor is
at the end of the com-
mand before pressing the
Enter key, or anything
after the insertion point
will be ignored.

395

Getting Started with MySQL

Identifi ers in MySQL are quoted using the backtick, or left single
quote, character ('). Any identifi er may be enclosed in backticks, but
certain identifi ers must be enclosed in backticks. Th e following list
shows when an identifi er must be quoted.

An identifi er that includes any character except standard alphanu- •
meric characters, underscores (_), or dollar signs ($)

An identifi er that contains one or more space characters •

An identifi er that is a reserved word in MySQL •

An identifi er made entirely of numeric digits •

An identifi er that contains a backtick character •

As shown in the preceding list, an identifi er must be enclosed in
backtick characters for the identifi er to contain a backtick character.
Additionally, the backtick character within the identifi er must be
escaped by preceding it with a backtick character. For example, the
identifi er don't must be encoded as 'don''t'.

For example, if the first name and last name fi elds in the
Employees table include spaces, you must use backticks to refer to
the fi elds. Th e following statement demonstrates how to return the
first name and last name fi elds from the Employees table:
mysql> SELECT * 'fi rst name', 'last name' FROM Employees[ENTER]
 -> WHERE city = "Spencer" ORDER BY 'last name', 'first
name';[ENTER]

Even though SQL keywords are not case sensitive, the case sensitivity
of database and table identifi ers depends on your operating system.
MySQL stores each database in a directory of the same name as the
database identifi er. Tables are stored in the database directory in fi les
of the same name as the table identifi er. Directory names and fi le-
names are not case sensitive on Windows platforms, but are case sen-
sitive on UNIX/Linux systems. Th is means that you do not need to
worry about case sensitivity in database and table names on Windows
platforms, but you do need to observe letter case when referring to
database and table names on UNIX/Linux systems.

Getting Help with MySQL Commands
Most of the commands you enter in MySQL Monitor are SQL com-
mands. However, MySQL Monitor includes additional commands,
such as exit and quit, which are not part of the SQL language. If you
type help; or ? at the MySQL command prompt, you should see sev-
eral support URLs along with the following command descriptions
shown in Table 7-2:

Many other
DBMSs do
not allow
special char-
acters such

as the space in identi-
fi ers, nor do they allow
identifi ers to start with a
digit. To allow for portabil-
ity across systems, many
programmers specify
identifi ers using the most
common naming conven-
tion, which uses a letter
for the fi rst character,
followed only by letters,
numbers, and the under-
score (_) character.

Field and
index identi-
fi ers are
case insensi-
tive on all
platforms.

396

C H A P T E R 7 Working with Databases and MySQL

Each of the preceding commands has a long and a short form. Th e
long form of each command is not case sensitive, so you can use any
case you want. (For example, QUIT and Quit are both acceptable.)
However, for the sake of consistency, you should stick with the letter
cases that are presented in this book for each command. Th e short
form of each command allows you to type a backslash and a single
character to execute the command. Unlike each command’s long
form, the short form is case sensitive. To enter the short form of the
quit command, for example, you must use \q, not \Q. With both the
long and short forms of each command, you can include a semicolon
to terminate the line, although it is not required.

The edit,
nopager,
pager, and
system
commands
are only

available on UNIX/Linux
systems.

Command
Short
Form Description

? \? Synonym for “help”

clear \c Clear command

connect \r Reconnect to the server. Optional arguments are db and host.

delimiter \d Set query delimiter

edit \e Edit command with $EDITOR

ego \G Send command to MySQL server and display result vertically

exit \q Exit MySQL. Same as quit.

go \g Send command to MySQL server

nopager \n Disable pager, print to stdout

help \h Display this help

note \t Don’t write into outfi le

pager \P Set PAGER [to_pager]. Print the query results via PAGER.

print \p Print current command

prompt \R Change your MySQL prompt

quit \q Quit MySQL

rehash \# Rebuild completion hash

source \. Execute a SQL script fi le. Takes a fi lename as an argument.

status \s Get status information from the server

system \! Execute a system shell command

tee \T Set outfi le [to_outfi le]. Append everything into given outfi le.

use \u Use another database. Takes database name as argument.

Table 7-2 List of common MySQL commands

397

Getting Started with MySQL

To log back in to MySQL Monitor and display help for the MySQL
Monitor commands:

1. Return to your console window and log back in to MySQL
with the root account, or with the user name and password
supplied by your ISP or instructor.

2. Type help; or ? at the MySQL command prompt and press
Enter. You should see a list of MySQL commands, as shown
in Figure 7-7.

3. Log out by typing \q at the MySQL command prompt and
pressing Enter. You should see “Bye” displayed on the screen
and the command prompt restored to the command line for
your operating system.

Figure 7-7 MySQL command help

Short Quiz

1. What is the termination character for a SQL statement?

2. What SQL command(s) log you out of MySQL Monitor?

3. Explain how a multiline SQL statement is structured in
MySQL Monitor.

4. How can you browse through previous SQL commands in
MySQL Monitor?

398

C H A P T E R 7 Working with Databases and MySQL

Working with MySQL Databases
Th is section explains the basics of working with databases in MySQL.

Creating Databases
You use the CREATE DATABASE statement to create a new database.
Th e following statement creates the vehicle_fleet database:
mysql> CREATE DATABASE vehicle_fl eet;[ENTER]
Query OK, 1 row affected (0.00 sec)

If the database is created successfully, you see the “Query OK” mes-
sage shown in the preceding example. If the database already exists,
you see the following message:
mysql> CREATE DATABASE vehicle_fl eet;[ENTER]
ERROR 1007: Can't create database 'vehicle_fleet';
database exists

To use a specifi c database, you must select it by executing the
USE database statement, as follows:
mysql> USE vehicle_fl eet;[ENTER]
Database changed

You see the “Database changed” message if MySQL successfully
changes to the specifi ed database. User accounts that do not have
permission to work with a specifi ed database receive an error mes-
sage similar to the following:
mysql> USE vehicle_fl eet;[ENTER]
ERROR 1044: Access denied for user 'dongosselin'@'%' to
database 'vehicle_fleet'

Creating a new database does not automatically make the new database
the active database. You must follow the CREATE DATABASE command
with a USE database command to use the newly created database.

To verify that you are in the correct database, you use the MySQL
built-in function DATABASE(). Th e DATABASE() function returns the
name of the currently active database. Unlike PHP, when you call a
function in MySQL, you must use the SELECT keyword before the
function. Th is tells MySQL to execute the function and return the
result. To verify that you are using the vehicle_fleet database, you
would enter the following:
mysql> SELECT DATABASE();[ENTER]

Keep in mind that the CREATE DATABASE statement only creates a new
directory for the specifi ed database. Before you can add records to a
new database, you must fi rst defi ne the tables and fi elds that will store
your data. Later in this chapter, you will learn how to defi ne tables
and fi elds in a database.

You will
study how to
manage user
accounts
and permis-

sions later in this chapter.

399

Working with MySQL Databases

To create a new database:

1. Return to MySQL Monitor. You should still be logged in from
the preceding exercise.

2. Enter the following command to create the sitevisitors
database:
mysql> CREATE DATABASE sitevisitors;[ENTER]

3. After you see the “Query OK” message, enter the following
command to select the sitevisitors database:
mysql> USE sitevisitors;[ENTER]

4. After you see the “Database changed” message, type
the following command to ensure that you selected the
sitevisitors database:
mysql> SELECT DATABASE();[ENTER]

Selecting a Database
To view the databases that are available, use the SHOW DATABASES
statement shown earlier, as follows:
mysql> SHOW DATABASES;[ENTER]
+---------------+
| Database |
+---------------+
| vehicle_fleet |
+---------------+
1 row in set (0.00 sec)

No database is selected when you fi rst log in to MySQL. To work with
a database, you must fi rst select it by executing the USE database
statement, just as you did after creating the database. For example,
the following statement selects the vehicle_fleet database:
mysql> USE vehicle_fl eet;[ENTER]
Database changed

If you forget which database is selected, you can use the
SELECT DATABASE() statement to display the name of the currently
selected database, as follows:
mysql> SELECT DATABASE();[ENTER]
+---------------+
| DATABASE() |
+---------------+
| vehicle_fleet |
+---------------+
1 row in set (0.00 sec)

Th e response from the SELECT DATABASE(); command shows that
you are in the vehicle_fleet database.

If you install
a local ver-
sion of
MySQL, two
databases

are installed with it:
mysql and test. The
mysql database con-
tains user accounts and
other information required
for your installation of the
MySQL database server.
The test database
ensures that the data-
base server is working
properly.

400

C H A P T E R 7 Working with Databases and MySQL

To log back in to MySQL Monitor and select a database:

1. Return to your console window and log back in to MySQL
with the root account or with the user name and password
supplied by your ISP or instructor.

2. Type the following command to display the databases that are
available in your MySQL installation. By default, you should
only see the mysql and test databases, although your installa-
tion might include more.
mysql> SHOW DATABASES;[ENTER]

3. Type the following at the MySQL command prompt to select
the mysql database:
mysql> USE mysql;[ENTER]

4. After you see the “Database changed” message, type the follow-
ing command to ensure that you selected the mysql database:
mysql> SELECT DATABASE();[ENTER]

Your screen should look like Figure 7-8.

Figure 7-8 MySQL Monitor after selecting a database

Deleting Databases
To delete a database, you execute the DROP DATABASE statement,
which removes all tables from the database and deletes the database
itself. Th e syntax for the DROP DATABASE statement is as follows:
DROP DATABASE database;

401

Working with MySQL Databases

Th e following statement deletes the vehicle_fleet database:
mysql> DROP DATABASE vehicle_fl eet;[ENTER]
Query OK, 0 rows affected (0.00 sec)

To delete the test database:

1. Return to MySQL Monitor.

2. Type the following command to ensure that the test database
exists in your MySQL installation:
mysql> SHOW DATABASES;[ENTER]

3. If you see the test database in the list of available databases,
enter the following command to delete it:
mysql> DROP DATABASE test;[ENTER]

4. After you see the “Query OK” message, enter the following com-
mand again to ensure that the test database no longer exists:
mysql> SHOW DATABASES;[ENTER]

Short Quiz

1. What statement creates a new directory for a specifi ed database?

2. What built-in function can be used to return the name of the
active database?

3. What statement must be executed to change to a specifi ed
database from the active database?

4. What statement is used to delete a database and any tables it
contains?

Defi ning Database Tables
Th is section explains how to select fi eld data types, create tables, and
delete existing tables. Remember that before you can add tables to a
database, you must fi rst create the database, as described earlier in
this chapter.

Specifying Field Data Types
By now, you should thoroughly understand that PHP variables consist
of diff erent data types, which are the specifi c categories of informa-
tion that a variable can contain. Just like PHP variables, the fi elds

 Although the
vehicle_
fl eet data-
base is
deleted with

this command, it will be
re-created for use with
examples later in this
chapter.

You must be
logged in as
the root
user or have
DROP privi-

leges to delete a data-
base. You will study
privileges later in this
chapter.

If you are
working with
an instance
of MySQL
that is

hosted by an ISP, the
test database might
have already been
deleted or you might not
have suffi cient privileges
to delete databases.

402

C H A P T E R 7 Working with Databases and MySQL

in a table also store data according to type. Recall that one of the
most important purposes of a variable’s data type is to determine
how much memory the computer allocates for the data stored in the
variable. Similarly, the data types in database fi elds determine how
much storage space the computer allocates for the data in the data-
base. MySQL includes numerous data types that are categorized into
numeric types, string types, and date/time types. Table 7-3 lists some
of the common MySQL data types.

Type Storage Range Special information

BOOL 1 byte –128 to 127 0 is considered FALSE

TINYINT 1 byte –128 to 127

SMALLINT 2 bytes –32,768 to 32,767

MEDIUMINT 3 bytes –8,388,608 to 8,388,607

INT or
INTEGER

4 bytes –2,147,483,648 to 2,147,483,647

BIGINT 8 bytes –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

FLOAT 4 bytes –3.402823466E+38 to
–1.175494351E-38, 0,
and 1.175494351E-38 to
3.402823466E+38

0 to 24 bits of precision

DOUBLE or
DOUBLE

PRECISION

8 bytes –1.7976931348623157E+308 to
–2.2250738585072014E-308, 0,
and 2.2250738585072014E-308 to
1.7976931348623157E+308

25-53 bits of precision

DATE 3 bytes ‘0000-00-00’, ‘1000-01-01’ to
‘9999-12-31’

TIME 3 bytes ‘–838:59:59’ to ‘838:59:59’

CHAR (m) Number of bytes
specifi ed by m

Fixed-length string between 0 to
255 characters

VARCHAR (m) Varies up to the
number of bytes
specifi ed by m

Variable-length string with a maximum
length between 0 to 65,535
characters

Maximum length is 255 in
older versions

ENUM Varies One of a set of predefi ned strings

SET Varies Zero or more of a set of predefi ned
strings, separated by commas

Table 7-3 Common MySQL data types

403

Defi ning Database Tables

To keep your database from growing too large, you should choose the
smallest data type possible for each fi eld. For example, the SMALLINT
data type stores integer values between –32,768 and 32,767 and
occupies 2 bytes of storage space, regardless of how small the value
is. In comparison, the BIGINT data type stores integer values between
–9,223,372,036,854,775,808 and 9,223,372,036,854,775,807 and occu-
pies 8 bytes of storage space, no matter how small the value. If you
know that a value you assign to a fi eld will always be between –32,768
and 32,767, you should use the SMALLINT data type instead of the
BIGINT data type, which saves 6 bytes per record. For a single record,
this is not a huge savings, but it could be for a database table with
thousands or even millions of records.

Creating Tables
To create a table, you use the CREATE TABLE statement, which specifi es
the table and column names and the data type for each column. Th e
syntax for the CREATE TABLE statement is as follows:
CREATE TABLE table_name (column_name TYPE, ...);

Th e following statement creates the vehicles table in the
vehicle_fleet database. Th e fi rst three columns in the table are
VARCHAR data types; the license fi eld can be a maximum of 10 char-
acters, the make fi eld can be a maximum of 25 characters, and the
model fi eld can be a maximum of 50 characters. Th e miles fi eld is a
FLOAT data type. Th e last fi eld, assigned_to, is also a VARCHAR data
type, with a maximum of 40 characters.
mysql> CREATE TABLE vehicles (license VARCHAR(10),[ENTER]
 -> make VARCHAR(25), model VARCHAR(50), miles FLOAT,[ENTER]
 -> assigned_to VARCHAR(40));[ENTER]

After you create a table, you can use the DESCRIBE statement to dis-
play how the table is structured. Th e following DESCRIBE statement
displays the structure of the vehicles table below the command:
mysql> DESCRIBE vehicles;[ENTER]
+-------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+-------------+------+-----+---------+-------+
license	varchar(10)	YES		NULL	
make	varchar(25)	YES		NULL	
model	varchar(50)	YES		NULL	
miles	float	YES		NULL	
assigned_to	varchar(40)	YES		NULL	
+-------------+-------------+------+-----+---------+-------+
5 rows in set (0.00 sec)

Th e result of the preceding DESCRIBE vehicles; command showed
six columns, not just the two for Field and Type. Th e other four

You can fi nd
a complete
listing of
MySQL data
types in the

MySQL Reference Manual
at http://dev.mysql.com/
doc/mysql/en/index.html.

To store text
in a fi eld,
you specify
a data type
of CHAR(m)

or VARCHAR(m). For
both data types, you
replace m with the maxi-
mum number of charac-
ters you anticipate the
fi eld will store. In general,
you should use the
VARCHAR(m) data type
because the amount of
storage space it occupies
varies according to the
number of characters in
the fi eld.

Be sure you
have exe-
cuted the
USE state-
ment to

select a database before
executing the
CREATE TABLE state-
ment, or you might cre-
ate your new table in the
wrong database.

You can exe-
cute the SHOW
TABLES
statement to
display a list

of the tables in the cur-
rent database.

404

C H A P T E R 7 Working with Databases and MySQL

http://dev.mysql.com/doc/mysql/en/index.html
http://dev.mysql.com/doc/mysql/en/index.html

columns show special characteristics or restrictions on the fi elds
that can be defi ned in MySQL. Th e values for these columns can be
specifi ed in the CREATE TABLE statement. Th e Null column indicates
whether the fi eld can be left empty or not. Th e Key fi eld indicates
which type of key, if any, is defi ned for the fi eld (PRIMARY, UNIQUE,
or INDEX). Th e Default column shows the value that will be inserted
automatically in the fi eld if no value is specifi ed. Th e Extra col-
umn indicates any special features about the fi eld, such as an auto-
 increment value.

Next, you will create a table named pagevisits in the sitevisitors
database. Th e table will contain detailed information about every
visit to a Web page on your site. Th e table will contain seven
fi elds: page_filename, visit_date, visit_time, previous_page,
request_method, remote_host, and remote_port. Th e visit_date
fi eld will be a DATE data type, the visit_time fi eld will be a TIME data
type, the remote_port fi eld will be an INTEGER data type, and the
rest of the fi elds will be VARCHAR data types. Note that the TIME data
type can be used to store a specifi c time or a measure of time. In the
pagevisits table, the visit_time fi eld will contain the duration of
each visit. For the DATE data type, dates must be entered in the for-
mat YYYY-MM-DD; for the TIME data type, times must be entered in the
 format HH:MM:SS.

To create the pagevisits table:

1. Return to MySQL Monitor.

2. Enter the following command to select the sitevisitors
database:
mysql> USE sitevisitors;[ENTER]

3. Enter the following command to create the pagevisits table:
mysql> CREATE TABLE pagevisits (page_filename
VARCHAR(250), visit_date DATE,[ENTER]
 -> visit_time TIME, previous_page
VARCHAR(250),[ENTER]
 -> request_method VARCHAR(10), remote_host
VARCHAR(250), remote_port INT);[ENTER]

4. After you see the “Query OK” message, enter the following
command to view the structure of the new table. Your screen
should look like Figure 7-9.
mysql> DESCRIBE pagevisits;[ENTER]

405

Defi ning Database Tables

Figure 7-9 DESCRIBE statement displaying the structure of the pagevisits table

Altering Tables
Over time, the original table defi nition may not be suffi cient for your
needs. New fi elds may be needed, existing fi elds may become obso-
lete, or the fi eld modifi ers may no longer be appropriate. To modify
the structure of a table, you use the ALTER TABLE statement. Th e state-
ment has several diff erent syntaxes, depending on the change being
made.

Adding Columns
To add fi elds to a table with the ALTER TABLE statement, use the
 following syntax:
ALTER TABLE table_name ADD [COLUMN] (column_name column_
type [, column_name column_type ...]);

Th e following statement adds a new column of type INT named
model_year to the vehicles table in the vehicle_fleet database:
mysql> ALTER TABLE vehicles ADD COLUMN (model_year
INT);[ENTER]

Modifying Column Types
To change the data type of an existing fi eld in a table with the
ALTER TABLE statement, use the following syntax:
ALTER TABLE table_name MODIFY [COLUMN] column_name
column_type;

The keyword
COLUMN is
required for
standard SQL,
but not for

MySQL. When adding a
single column, the paren-
theses around the list of
column_name and
 column_type specifi ers
are optional.

406

C H A P T E R 7 Working with Databases and MySQL

Because the model_year fi eld will hold only four-digit years, it can
fi t in a two-byte SMALLINT rather than a four-byte INT. Th e following
statement changes the column type of the model_year fi eld from INT
to SMALLINT in the vehicles table in the vehicle_fleet database:
mysql> ALTER TABLE vehicles MODIFY COLUMN model_year
SMALLINT;[ENTER]

Unlike the ADD COLUMN clause, the MODIFY COLUMN clause applies to
only a single fi eld.

Renaming Columns
To change the name of an existing fi eld in a table with the
ALTER TABLE statement, use the following syntax:
ALTER TABLE table_name CHANGE [COLUMN] column_name
new_name column_type;

Th e following statement changes the name of the miles fi eld to
mileage in the vehicles table in the vehicle_fleet database:
mysql> ALTER TABLE vehicles CHANGE COLUMN miles mileage
FLOAT;[ENTER]

Like the MODIFY COLUMN clause, the CHANGE COLUMN clause applies to
only a single fi eld. Th e column_type must always be specifi ed, even
if it doesn’t change. To change the data type of the fi eld at the same
time, you specify the new column type for column_type. As when
using the MODIFY COLUMN clause, make sure that any existing data can
be converted to the new data type.

Renaming Tables
To change the name of an existing table with the ALTER TABLE
 statement, use the following syntax:
ALTER TABLE table_name RENAME [TO] new_name;

Th e following statement changes the name of the vehicles table to
company_cars in the vehicle_fleet database:
mysql> ALTER TABLE vehicles RENAME TO company_cars;[ENTER]

Removing Columns
To remove an existing fi eld from a table with the ALTER TABLE state-
ment, use the following syntax:
ALTER TABLE table_name DROP [COLUMN] column_name;

Th e following statement removes the assigned_to column from the
company_cars table in the vehicle_fleet database:
mysql> ALTER TABLE company_cars DROP COLUMN assigned_to;[ENTER]

Be careful
when chang-
ing the data
type of a
column. If

the data stored in the
fi eld cannot be converted
to the new data type, the
data will be lost. In the
previous example, any
data values for the
model_year column
that are not in the range
–32,758 to 32,757 will
be set to NULL.

407

Defi ning Database Tables

Deleting Tables
To delete a table, you execute the DROP TABLE statement, which
removes all data and the table defi nition. Th e syntax for the
DROP TABLE statement is as follows:
DROP TABLE table;

Th e following statement deletes the company_cars table from the
vehicle_fleet database:
mysql> DROP TABLE company_cars;[ENTER]

Short Quiz

1. Explain the importance of selecting the most appropriate data
type for table fi elds.

2. Illustrate the SQL syntax to create a table.

3. What six columns are shown in the output of the
DESCRIBE table statement?

4. What SQL keywords are used with the ALTER TABLE statement
to add columns, modify columns, rename columns, or
remove columns for an existing table?

Modifying User Privileges
MySQL assigns privileges to specify which actions and operations
a user can perform with a table or database. By default, only admin-
istrator accounts such as the root account have full permissions on
every database object. Regular users normally cannot create or drop
databases. Within a database, the database owner and the root user
are the only users who can create, alter, and drop tables, unless other
users are expressly granted these permissions. Users can also be
restricted in their ability to insert, update, delete, and select records
from tables.

For security purposes, user accounts should only be assigned the
minimum necessary privileges to perform given tasks. For example,
if a user should only be able to view records from a table, you should
only assign the SELECT privilege to the user’s account. Th is helps
secure your database by preventing the user from unintentionally (or
maliciously) changing or tampering with database records.

You must be
logged in as
the root
user or have
DROP privi-

leges to delete a table.

Although the
company_
cars table is
deleted with
this com-

mand, it will be re-created
for use with examples
later in this chapter.

408

C H A P T E R 7 Working with Databases and MySQL

Th is section provides an overview of how to manage user privileges.
Table 7-4 lists common MySQL database privileges.

Privilege Description
ALL Assigns all privileges to the user

ALTER Allows the user to modify the table structure

CREATE Allows the user to create databases, tables, and indexes

DELETE Allows the user to delete records

DROP Allows the user to delete databases and tables

INDEX Allows the user to create and delete indexes

INSERT Allows the user to add records

SELECT Allows the user to select records

UPDATE Allows the user to modify records

USAGE Creates a user with no privileges

Table 7-4 Common MySQL database privileges

Granting Privileges
You use a GRANT statement to create user accounts and assign privi-
leges. Th e basic syntax for the GRANT statement is as follows:
GRANT privilege [(column)] [, privilege [(columns)] ...]
 ON {table | * | *.* | database.*}
 TO user [IDENTIFIED BY 'password'];

Privileges can be granted at the following levels: column, table, data-
base, and global. Th e fi rst line in the GRANT statement syntax allows
you to specify individual columns to apply privileges. Th e ON por-
tion of the GRANT statement determines the level to which privileges
apply at the table, database, and global levels. You can specify the
name of an individual table in the current database or an asterisk,
which applies privileges to all the tables in the current database. If you
specify “*.*”, privileges are applied at a global level to all databases in
your MySQL installation. You can also indicate a specifi c table within
another database by appending the table name to the database name
with a period.

Th e GRANT statement creates the user account if it does not exist and
assigns the specifi ed privileges. If the user account already exists, the
GRANT statement just updates the privileges. As an example, the fol-
lowing statement creates a new user named dongosselin and assigns
SELECT, INSERT, and UPDATE privileges to the user for all tables in the
currently selected database. Th e statement also assigns a password of
'rosebud' to the dongosselin account.

For informa-
tion on addi-
tional
privileges,
including

administrator privileges,
refer to the MySQL
Reference Manual at
http://dev.mysql.com/
doc/mysql/en/index.
html.

409

Modifying User Privileges

http://dev.mysql.com/doc/mysql/en/index.html
http://dev.mysql.com/doc/mysql/en/index.html
http://dev.mysql.com/doc/mysql/en/index.html

mysql> GRANT SELECT, INSERT, UPDATE[ENTER]
 -> ON *[ENTER]
 -> TO dongosselin IDENTIFIED BY 'rosebud';[ENTER]

Th e following statement assigns privileges to the user dongosselin to
a table named students in the currently selected database:
mysql> GRANT SELECT, INSERT, UPDATE[ENTER]
 -> ON students[ENTER]
 -> TO dongosselin;[ENTER]

Th e following statement assigns privileges to the user dongosselin at
the global level to all databases in a MySQL installation:
mysql> GRANT SELECT, INSERT, UPDATE[ENTER]
 -> ON *.*[ENTER]
 -> TO dongosselin;[ENTER]

Th e following statement assigns privileges to the user dongosselin to
the company_cars table in the vehicle_fleet database:
mysql> GRANT SELECT, INSERT, UPDATE[ENTER]
 -> ON vehicle_fleet.company_cars[ENTER]
 -> TO dongosselin;[ENTER]

Finally, the following statement uses a wildcard (*) to assign privileges
to the user dongosselin to all tables in the vehicle_fleet database:
mysql> GRANT SELECT, INSERT, UPDATE[ENTER]
 -> ON vehicle_fleet.*[ENTER]
 -> TO dongosselin;[ENTER]

All of the preceding examples specifi ed the user dongosselin. MySQL
does not support wildcards for the user.

To create a new user account with privileges to the sitevisitors
database:

1. Return to MySQL Monitor.

2. Enter the following statement to create a new user account
with CREATE, DROP, ALTER, DELETE, INDEX, INSERT, SELECT, and
UPDATE privileges assigned to all the tables in the sitevisi-
tors database. Th e statement also assigns a password to the
account. Enter your own name (as one word) and a password
you will remember.
mysql> GRANT CREATE, DROP, ALTER, DELETE, INDEX,
INSERT, SELECT, UPDATE[ENTER]
 -> ON sitevisitors.*[ENTER]
 -> TO yourname IDENTIFIED BY 'password';[ENTER]

3. Type exit or quit and press Enter to log out of MySQL.

After you
create a
user
account, you
do not need

to specify a password
when updating privileges.
However, if you specify a
password other than the
current password for an
existing user account, the
password is reset.

If you are
working with
a hosted
instance of
MySQL, you

might not have been
assigned privileges to
create user accounts.

410

C H A P T E R 7 Working with Databases and MySQL

4. Enter the following command to log back in to MySQL with
the user account and password you just created:
mysql -u yourname –p

5. When prompted, enter the new password you assigned to the
user account.

Revoking Privileges
You use the REVOKE statement to take away privileges from an exist-
ing user account for a specifi ed table or database. Th e syntax for the
REVOKE statement is as follows:
REVOKE privilege [(column)] [, privilege [(columns)]] ...
 ON {table | * | *.* | database.*}
 FROM user;

Th e following example revokes INSERT and UPDATE privileges from
the dongosselin user account for the company_cars table in the
vehicle_fleet database:
mysql> REVOKE INSERT, UPDATE[ENTER]
 -> ON vehicle_fleet.company_cars[ENTER]
 -> FROM dongosselin;[ENTER]

Th e REVOKE ALL PRIVILEGES statement removes all privileges from a
user account for a specifi ed table or database. Th e following example
takes away all privileges from the dongosselin user account for the
company_cars table in the vehicle_fleet database:
mysql> REVOKE ALL PRIVILEGES[ENTER]
 -> ON vehicle_fleet.company_cars[ENTER]
 -> FROM dongosselin;[ENTER]

In this chapter, the user account you created does not need the INDEX
privilege, so you revoke it in the next exercise.

To revoke privileges:

1. Return to MySQL Monitor.

2. Type exit or quit and press Enter to log out of MySQL.

3. Log back in to MySQL with the root account.

4. When prompted, enter the password you assigned to the root
account.

5. Enter the following command to revoke the INDEX privilege to
the tables in the sitevisitors database from your user account:
mysql> REVOKE INDEX[ENTER]
 -> ON sitevisitors.*[ENTER]
 -> FROM yourname;[ENTER]

You must be
logged in
with the
root
account or

have suffi cient privileges
to revoke privileges from
another user account.

411

Modifying User Privileges

6. Type exit or quit and press Enter to log out of MySQL.

7. Log back in to MySQL with your user account.

8. Enter the following command to select the sitevisitors
database:
mysql> use sitevisitors;[ENTER]

Short Quiz

1. Explain the term “user privileges.”

2. What are the four levels for which privileges may be granted?

3. What statement is used to take away privileges from an exist-
ing user account for a specifi ed table in the database?

Working with Database Records
As described earlier, a record is a set of related fi eld data stored as
a single row in a table. A table can store an unlimited number of
records, each with its own set of data. In this section, you will learn
how to add records to a table and how to update and delete existing
records.

Adding Records
You add individual records to a table with the INSERT statement. Th e
basic syntax for the INSERT statement is as follows:
INSERT INTO table_name (column1, column2, ...)
VALUES(value1, value2, ...);

Th e values you enter into the VALUES list will be stored, in order, in
the columns specifi ed after the table name. Any values that you want
left NULL can be omitted from the column list, or you can put the
name in the column list and the keyword NULL in the corresponding
position in the VALUES list. For example, the following statement adds
a new row to the company_cars table in the vehicle_fleet database:
mysql> INSERT INTO company_cars (license, model_year,
make, model, mileage)[ENTER]
 -> VALUES('CK-2987', 2009, 'Toyota', 'Corolla',
3508.4);[ENTER]

412

C H A P T E R 7 Working with Databases and MySQL

You can also omit the column list, as follows:
INSERT INTO table_name VALUES(value1, value2, ...);

When you omit the column list, the values you enter in the VALUES list
must be in the same order in which you defi ned the table fi elds, and
each fi eld in the table must have a specifi ed value, even if the value
specifi ed is NULL. For example, the following statement adds a new row
(record) to the company_cars table in the vehicle_fleet database:
mysql> INSERT INTO company_cars VALUES('CK-2987', 2009,[ENTER]
 -> 'Toyota', 'Corolla', 3508.4);[ENTER]

Specify NULL in any fi elds for which you do not have a value. For
example, if you do not know the mileage of the vehicle, you can enter
NULL as the last item in the VALUES list, as follows:
mysql> INSERT INTO company_cars VALUES('CK-2987', 2009,[ENTER]
 -> 'Toyota', 'Corolla', NULL);[ENTER]

Although it is permissible to omit the column list from the INSERT
statement, it is generally considered a poor programming practice. If
the structure of the table changes, values will not be assigned to the
appropriate columns.

To add two records to the pagevisits table in the sitevisitors
database:

1. Return to MySQL Monitor.

2. Enter the following command to add a record to the
pagevisits table:
mysql> INSERT INTO pagevisits (page_filename, visit_
date, visit_time,[ENTER]
 -> previous_page, request_method, remote_host,
remote_port)[ENTER]
 -> VALUES('contact.php', '2012-03-17',
'10:32:29',[ENTER]
 -> 'index.php', 'GET', 'cis_lab_24.example.edu',
80);[ENTER]

3. After you see the “Query OK” message, add another record, as
follows:
mysql> INSERT INTO pagevisits (page_filename, visit_
date, visit_time,[ENTER]
 -> previous_page, request_method, remote_host,
remote_port)[ENTER]
 -> VALUES('guest_book.php', '2012-03-17',
'10:35:18',[ENTER]
 -> 'contact.php', 'GET', 'cis_lab_24.example.
edu', 80);[ENTER]

Your screen should look like Figure 7-10.

413

Working with Database Records

Figure 7-10 MySQL Monitor after adding two records to the pagevisits table

Sometimes you need to insert more than one row of data. You can
use multiple INSERT statements, but you also can insert multiple
records with a single INSERT statement, using the following syntax:
INSERT INTO table_name (column1, column2, ...)
VALUES(value1, value2, ...), (value1, value2, ...), ...;

As shown above, multiple VALUE lists are separated by commas. Each
value list is inserted as a separate record into the table. As with the
single-record INSERT statement shown previously, the column list is
optional, but should be included for good form.

For large data sets stored in external fi les, it is much more effi cient to
use the LOAD DATA statement to add multiple records to a database
table. You use the LOAD DATA statement with the full path and name
of a local text fi le that contains the records you want to add. Th e syn-
tax for the LOAD DATA statement is as follows:
LOAD DATA INFILE 'fi le_path' INTO TABLE table_name
(column1, column2, ...);

Place each record in the text fi le on a separate line and place tabs
between each fi eld. Th e fi elds will be stored into the columns speci-
fi ed in the column list in the order specifi ed. As with the INSERT
statement, the column list is optional, but should always be used.
If the column list is omitted, the values on each line must be in the
same order in which you defi ned the table fi elds. For missing fi eld val-
ues, do not use the keyword NULL, because it will be interpreted as the

In order to
use the
LOAD DATA
statement,
your account

needs to be given FILE
privileges, which allows
the MySQL user account
to access any fi les on the
server that are available
to the MySQL server
account (not the user’s
server account).

414

C H A P T E R 7 Working with Databases and MySQL

text value “NULL”, not as a NULL value. Simply use consecutive tabs
with nothing between them.

Th e following statement loads a fi le named company_cars.txt into the
company_cars table in the vehicle_fleet database:
mysql> LOAD DATA INFILE 'company_cars.txt' INTO TABLE
company_cars;[ENTER]

To add new records to the pagevisits table in the sitevisitors
database:

1. Return to MySQL Monitor.

2. Enter a LOAD DATA statement that inserts records from the
page_visits.txt fi le in your Chapter directory for Chap-
ter 7. Be certain to enter the full path for the location of
your data fi les. Enter the following command, replac-
ing path_to_PHP_folders with the full path for your
PHP_Projects directory:
mysql> LOAD DATA INFILE 'path_to_PHP_folders/
Chapter.07/Chapter/page_visits.txt'[ENTER]
 -> INTO TABLE pagevisits [ENTER]
 -> FIELDS TERMINATED BY ',';[ENTER]

3. You should see a result similar to the following:
Query OK, 12 rows affected (0.01 sec)
Records: 12 Deleted: 0 Skipped: 0 Warnings: 0

mysql>

Retrieving Records
You use the SELECT statement to retrieve records from a table. Th e
basic syntax for a SELECT statement is as follows:
SELECT criteria FROM table_name;

You use the asterisk (*) wildcard with the SELECT statement to
retrieve all fi elds from a table. You can also specify individual fi elds to
return by separating fi eld names with a comma. Th e following state-
ment returns the model and mileage fi elds from the company_cars
table in the vehicle_fleet database:

The optional
FIELDS
TERMINATED
BY clause of
the LOAD

DATA statement allows
you to change the fi eld
separator to something
other than a tab.

If your MySQL
account does
not have
FILE privi-
leges, skip the

following exercise.

Use the
MySQL serv-
er’s direc-
tory path,
not the Web
URL path.

The path
names in the
preceding
examples
are broken

into multiple lines due to
space limitations and
would generate errors if
used as shown. On UNIX/
Linux and Windows plat-
forms, you need to enter
the path name on a single
line or you will receive an
error. Also, on Windows
platforms, be sure to
escape the backward
slashes in your path, or
use forward slashes, as
shown in the preceding
example.

415

Working with Database Records

mysql> SELECT model, mileage FROM company_cars;[ENTER]
+---------+---------+
| model | mileage |
+---------+---------+
Corolla	3508.4
Cobalt	24829.4
Focus	24829.4
Civic	48891.1
Sentra	28336.7
Accord	77484.4
Camry	855.5
Fusion	95.9
Malibu	57024.2
Sonata	62993.6
Altima	17398.3
+---------+---------+
11 rows in set (0.00 sec)

To enter SELECT statements that return records from the pagevisits
table in the sitevisitors database:

1. Return to MySQL Monitor.

2. Enter the following SELECT statement, which returns all
records from the pagevisits table. Your output should look
like Figure 7-11, although the lines might wrap, depending on
your screen resolution.
mysql> SELECT * FROM pagevisits;[ENTER]

416

C H A P T E R 7 Working with Databases and MySQL

Figure 7-11 SELECT statement that returns all records from the pagevisits table

3. Enter the following SELECT statement, which returns the
visit_date, previous_page, and page_filename fi elds
from the pagevisits table. Your output should look like
Figure 7-12.
mysql> SELECT visit_date, previous_page, page_
filename FROM pagevisits;[ENTER]

417

Working with Database Records

Figure 7-12 SELECT statement that returns the visit_date, previous_page, and
page_filename fi elds from the pagevisits table

Using Aggregate Functions
You often need to summarize data in a set of records, rather than
view the individual records. SQL off ers various functions that you
can include in queries to retrieve this aggregate data. Table 7-5 shows
these functions.

Function Description
AVG() Return the average value of the argument

COUNT() Return a count of the number of rows returned

GROUP_CONCAT() Return a concatenated string

MAX() Return the maximum value

MIN() Return the minimum value

STD() Return the population standard deviation

STDDEV_POP() Return the population standard deviation

STDDEV_SAMP() Return the sample standard deviation

STDDEV() Return the population standard deviation

SUM() Return the sum

VAR_POP() Return the population standard variance

VAR_SAMP() Return the sample variance

VARIANCE() Return the population standard variance

Table 7-5 SQL aggregate functions

418

C H A P T E R 7 Working with Databases and MySQL

Th e GROUP_CONCAT() and VARIANCE() functions were added
in Version 4.1 of MySQL. Th e STDDEV_POP(), STDDEV_SAMP(),
VAR_POP(), and VAR_SAMP() functions were added in Version 5.0.3
of MySQL.

Th e COUNT() function has two unique features when compared to
the other aggregate functions. First, you can use the wildcard (*)
instead of a fi eld name as the function argument. Second, the key-
word DISTINCT can be used after the opening parenthesis. When the
DISTINCT keyword is used, each unique value is counted as 1, no mat-
ter how many records contain that value.

Th ere are two ways to use the aggregate functions. If only aggregate
functions are used in the SELECT statement, the aggregate values
include all records returned based on the WHERE clause. Th e following
query will return 31476.991042397, the average of the mileage col-
umn for all records in the company_cars table:
mysql> SELECT AVG(mileage) FROM company_cars;[ENTER]

To retrieve aggregate values for groups of records, you use the
GROUP BY clause and include the fi elds that you use to group the
records as part of the query. Th e following query will return the aver-
age mileage for each model year:
mysql> SELECT model_year, AVG(mileage)[ENTER]
 -> FROM company_cars[ENTER]
 -> GROUP BY model_year;[ENTER]
+------------+-----------------+
| model_year | AVG(mileage) |
+------------+-----------------+
2006	77484.3984375
2007	56302.967447917
2008	25998.5
2009	10453.350341797
2010	475.70000076294
+------------+-----------------+
5 rows in set (0.00 sec)

To determine the number of pages visited from each remote_host:

1. Return to MySQL Monitor.

2. Enter the following SELECT statement, which returns each
remote_host from the pagevisits table with the number of
pages visited from that remote_host. Your output should look
like Figure 7-13.
mysql> SELECT remote_host, COUNT(*)[ENTER]
 -> FROM pagevisits[ENTER]
 -> GROUP BY remote_host;[ENTER]

419

Working with Database Records

Figure 7-13 SELECT statement that returns the total number of visits from each
remote_host in the pagevisits table

3. Enter the following SELECT statement, which returns each
remote_host from the pagevisits table with the number of
distinct pages visited from that remote_host. Note that the
wildcard was replaced by the name of the fi eld that contains
the names of the pages visited. Your output should look like
Figure 7-14. Because three of the remote_host values had
multiple records with the same value in the page_filename
fi eld, those three values had fewer distinct records than they
had records.
mysql> SELECT remote_host, COUNT(DISTINCT page_
filename)[ENTER]
 -> FROM pagevisits[ENTER]
 -> GROUP BY remote_host;[ENTER]

Figure 7-14 SELECT statement that returns the number of different pages visited from
each remote_host in the pagevisits table

420

C H A P T E R 7 Working with Databases and MySQL

Sorting Query Results
You use the ORDER BY keyword with the SELECT statement to per-
form an alphanumeric sort of the results returned from a query.
Th e following statement returns the make and model fi elds from the
company_cars table in the vehicle_fleet database and sorts the
results by the make fi eld. Th e statement also performs a secondary
sort on the model fi eld:
mysql> SELECT make, model FROM company_cars ORDER BY make,
model;[ENTER]
+-----------+---------+
| make | model |
+-----------+---------+
Chevrolet	Cobalt
Chevrolet	Malibu
Ford	Focus
Ford	Fusion
Honda	Accord
Honda	Civic
Hyundai	Sonata
Nissan	Altima
Nissan	Sentra
Toyota	Camry
Toyota	Corolla
+-----------+---------+
11 rows in set (0.01 sec)

To perform a reverse sort, add the DESC keyword after the name of
the fi eld by which you want to perform the sort. (DESC stands for
“descending.”) Th e following statement returns the make and model
fi elds from the company_cars table in the vehicle_fleet database
and reverse sorts the results by the make fi eld:
mysql> SELECT make, model FROM company_cars ORDER BY make
DESC, model;[ENTER]
+-----------+---------+
| make | model |
+-----------+---------+
Toyota	Camry
Toyota	Corolla
Nissan	Altima
Nissan	Sentra
Hyundai	Sonata
Honda	Accord
Honda	Civic
Ford	Focus
Ford	Fusion
Chevrolet	Cobalt
Chevrolet	Malibu
+-----------+---------+
11 rows in set (0.00 sec)

421

Working with Database Records

To enter several SELECT statements that sort records from the
pagevisits table in the sitevisitors database:

1. Return to MySQL Monitor.

2. Enter the following SELECT statement, which returns the
visit_date, previous_page, and page_filename fi elds from
the pagevisits table, and sorts the returned records by
previous_page and page_filename. Your output should look
like Figure 7-15.
mysql> SELECT visit_date, previous_page, page_
filename[ENTER]
 -> FROM pagevisits ORDER BY previous_page, page_
filename;[ENTER]

Figure 7-15 SELECT statement that returns the visit_date, previous_page, and
page_filename fi elds from the pagevisits table, and sorts the returned records by
previous_page and page_filename

3. Enter the following SELECT statement, which returns the
visit_date, previous_page, and page_filename fi elds from
the pagevisits table, and performs a descending sort of the
returned records by visit_date. Your output should look like
Figure 7-16.
mysql> SELECT visit_date, previous_page, page_
filename[ENTER]
 -> FROM pagevisits ORDER BY visit_date
DESC;[ENTER]

422

C H A P T E R 7 Working with Databases and MySQL

Figure 7-16 SELECT statement that returns the visit_date, previous_page, and
page_filename fi elds from the pagevisits table, and performs a descending sort of the
returned records by visit_date

Filtering Query Results
Th e criteria portion of the SELECT statement determines which
fi elds to retrieve from a table. You can also specify which records
to return by using the WHERE keyword. For example, the following
statement returns all records from the company_cars table in the
vehicle_fleet database in which the make fi eld is equal to “Toyota”:
mysql> SELECT * FROM company_cars WHERE make='Toyota';[ENTER]
+---------+--------+---------+---------+------------+
| license | make | model | mileage | model_year |
+---------+--------+---------+---------+------------+
| CK-2987 | Toyota | Corolla | 3508.4 | 2009 |
| 8331-RT | Toyota | Camry | 855.5 | 2010 |
+---------+--------+---------+---------+------------+
2 rows in set (0.00 sec)

SQL includes the keywords AND and OR that you can use to specify
more detailed conditions about the records you want to return.
For example, the following statement returns all records from the
company_cars table in the vehicle_fleet database in which the
model_year fi eld is equal to 2007 and the mileage is less than 60000:

423

Working with Database Records

mysql> SELECT * FROM company_cars WHERE model_
year=2007[ENTER]
 -> AND mileage<60000;[ENTER]
+---------+-----------+--------+---------+------------+
| license | make | model | mileage | model_year |
+---------+-----------+--------+---------+------------+
| AK-1234 | Honda | Civic | 48891.1 | 2007 |
| MN-304 | Chevrolet | Malibu | 57024.2 | 2007 |
+---------+-----------+--------+---------+------------+
2 rows in set (0.00 sec)

Th e following statement shows an example of how to use the OR key-
word by returning all records from the company_cars table in the
vehicle_fleet database in which the make fi eld is equal to “Toyota”
or “Honda”. Th e statement also sorts the returned records by mileage.
mysql> SELECT * FROM company_cars WHERE
make='Toyota'[ENTER]
 -> OR make='Honda' ORDER BY mileage;[ENTER]
+---------+--------+---------+---------+------------+
| license | make | model | mileage | model_year |
+---------+--------+---------+---------+------------+
8331-RT	Toyota	Camry	855.5	2010
CK-2987	Toyota	Corolla	3508.4	2009
AK-1234	Honda	Civic	48891.1	2007
C9L-2Y2	Honda	Accord	77484.4	2006
+---------+--------+---------+---------+------------+
4 rows in set (0.00 sec)

To enter several SELECT statements that use the WHERE keyword to fi l-
ter records from the pagevisits table in the sitevisitors database:

1. Return to MySQL Monitor.

2. Enter the following SELECT statement, which returns
all records from the pagevisits table in which the
previous_page fi eld is equal to “index.php”. Your output
should look like Figure 7-17.
mysql> SELECT * FROM pagevisits WHERE
previous_page='index.php';[ENTER]

424

C H A P T E R 7 Working with Databases and MySQL

Figure 7-17 SELECT statement that returns all records from the pagevisits table
in which the previous_page fi eld is equal to “index.php”

3. Enter the following SELECT statement, which returns all
records from the pagevisits table in which the remote_port
fi eld is greater than 80. Your output should look like
Figure 7-18.
mysql> SELECT * FROM pagevisits WHERE remote_
port>80;[ENTER]

Figure 7-18 SELECT statement that returns all records from the pagevisits table
in which the remote_port fi eld is greater than 80

Updating Records
If you need to update records in a table, you use the UPDATE state-
ment. Th e basic syntax for the UPDATE statement is as follows:
UPDATE table_name
SET column_name=value
WHERE condition;

425

Working with Database Records

Th e UPDATE keyword specifi es the name of the table to update, and the
SET keyword specifi es the value to assign to the fi elds in the records
that match the condition in the WHERE keyword. For example, the fol-
lowing statement modifi es the mileage of the Ford Fusion to 368.2:
mysql> UPDATE company_cars SET mileage=368.2[ENTER]
 -> WHERE make='Ford'[ENTER]
 -> AND model='Fusion';[ENTER]
Query OK, 1 row affected (0.27 sec)
Rows matched: 1 Changed: 1 Warnings: 0

Notice that the preceding statement uses the WHERE keyword to spec-
ify that the make fi eld should be equal to “Ford” and the model fi eld
should be equal to “Fusion”. Th is ensures that only the correct record
is updated. If the statement only specifi ed that the make fi eld should
be equal to “Ford”, the mileage fi eld would have been updated to
368.2 for all other records in the table that included a make fi eld with
a value of “Ford”.

Next, you enter several UPDATE statements to modify records from
the pagevisits table in the sitevisitors database. Th e table
contains one record that includes a value of “contact.php” in the
previous_page fi eld and another record that includes “contact.php”
in the page_filename fi eld. Assume that the page name has been
changed to “contact_us.php.”

To enter several UPDATE statements to modify records from the
pagevisits table in the sitevisitors database:

1. Return to MySQL Monitor.

2. Enter the following UPDATE statement to modify the
previous_page fi eld in records in the pagevisits table from
“contact.php” to “contact_us.php” (two rows will be changed):
mysql> UPDATE pagevisits[ENTER]
 -> SET previous_page='contact_us.php'[ENTER]
 -> WHERE previous_page='contact.php';[ENTER]

3. Enter the following UPDATE statement to modify the
page_filename fi eld in records in the pagevisits table
from “contact.php” to “contact_us.php” (three rows will be
changed):
mysql> UPDATE pagevisits[ENTER]
 -> SET page_filename='contact_us.php'[ENTER]
 -> WHERE page_filename='contact.php';[ENTER]

4. Enter the following SELECT statement to view all the records
in the table. Th e "contact.php" values should now be
"contact_us.php."
mysql> SELECT * FROM pagevisits;[ENTER]

426

C H A P T E R 7 Working with Databases and MySQL

Deleting Records
To delete records from a table, you use the DELETE statement. Th e
basic syntax for the DELETE statement is as follows:
DELETE FROM table_name
WHERE condition;

Be careful when you use the DELETE statement because it deletes all
records that match the condition. Th erefore, carefully construct the
conditions assigned to the WHERE keyword. For example, the follow-
ing statement deletes the record for the 2006 Honda Accord from the
company_cars table in the vehicle_fleet database:
mysql> DELETE FROM company_cars WHERE model_
year=2006[ENTER]
 -> AND make='Honda'[ENTER]
 -> AND model='Accord';[ENTER]
Query OK, 1 row affected (0.28 sec)

To delete all the records from a table, omit the WHERE clause. Th e fol-
lowing statement deletes all the records from the company_cars table:
mysql> DELETE FROM company_cars;[ENTER]
Query OK, 10 rows affected (0.28 sec)

To delete several records from the pagevisits table in the
sitevisitors database:

1. Return to MySQL Monitor.

2. Enter the following statement to delete the fi rst record in the
table:
mysql> DELETE FROM pagevisits WHERE
visit_date='2012-03-17'[ENTER]
 -> AND visit_time='10:32:29';[ENTER]

3. Enter the following statement to delete the next record in the
table:
mysql> DELETE FROM pagevisits WHERE
visit_date='2012-03-17'[ENTER]
 -> AND visit_time='10:35:18';[ENTER]

4. Enter the following SELECT statement to view all the records
in the table. Th e table should now only consist of 12 records.
mysql> SELECT * FROM pagevisits;[ENTER]

Short Quiz

1. When the column names are omitted from the INSERT INTO
statement, what two important considerations must be
followed?

A bug in some
versions of
MySQL
causes the
message to

show “0 rows affected”
for a DELETE FROM
statement without a
WHERE clause, even if
rows were deleted.

427

Working with Database Records

2. What SQL command is used to add records from an external
text fi le?

3. What value should be entered in a text fi eld as a placeholder
for missing values?

4. What clause can specify the delimiter in a text fi le that is used
as a data source for a MySQL table?

5. What keyword is used to specify a reverse or descending sort
order for selected records in a table?

Working with phpMyAdmin
You must learn the proper SQL syntax to store, manipulate, and
retrieve data in a MySQL database from PHP, but SQL can be cum-
bersome for database administration and maintenance. Normally, you
create the table structure in MySQL using a graphical interface and
maintain the data with PHP.

Th e phpMyAdmin application is an open source tool written in PHP
to handle the administration of MySQL databases. Th e phpMyAdmin
tool can perform all of the administrative tasks that you’ve already
studied in this chapter, plus many others you haven’t learned yet. Th e
full functionality of phpMyAdmin is beyond the scope of this section,
but you will learn the basics of the interface and be exposed to some
common activities.

Logging in to phpMyAdmin
Your instructor should have provided you with a link to a Web page
for logging in to phpMyAdmin. When you visit the Web page, you
should see a page like the one shown in Figure 7-19. Enter the user
name and password provided by your instructor in the appropriate
fi elds, and then click the Login button.

Be sure that
phpMyAdmin
has been
installed on
the MySQL

server before continuing
with this section.

428

C H A P T E R 7 Working with Databases and MySQL

Figure 7-19 The phpMyAdmin login page

If you enter an incorrect user name or password, you will see a page
like the one shown in Figure 7-20, with an error message above the
Login button. Th e error message will be something like “#1045 -
Access denied for user ‘username’@‘ host’ (using password: YES)”,
where username is the user name that you entered, and host is the
name of the computer you are using. Th e user name and password
fi elds are still available, so you can attempt to log in again.

Different ver-
sions of php-
MyAdmin will
have a slightly
different lay-

out. Although the location
on the screen may
change, the features
described in this section
will be available some-
where on the screen.

429

Working with phpMyAdmin

Figure 7-20 The phpMyAdmin invalid login message

Once you have successfully entered your user name and pass-
word, you should see the phpMyAdmin main screen, as shown in
Figure 7-21. Whenever you need to return to the main screen, click
the small house icon in the upper-left corner.

430

C H A P T E R 7 Working with Databases and MySQL

Figure 7-21 The phpMyAdmin main screen

If you have access to more than one database, the left side of the
screen will display a drop-down list of databases to which you have
access, with the number of tables in each database listed in parenthe-
ses after the name. When you select the database, the phpMyAdmin
main screen appears. Th e name of the selected database and its tables
will be listed on the left side of the screen below the drop-down list.
Figure 7-21 shows a database (student200) with no tables defi ned.

Working with Databases
If you do not have access to more than one database, and you do not
have privileges to create databases, you can skip this section.

Th e right side of the main screen has two columns, one for MySQL
and one for phpMyAdmin. Th e fi rst option under the MySQL col-
umn header is “Create new database”. If you do not have privileges
to create a new database, you cannot select this option, and the mes-
sage “No Privileges” will appear beneath it, as shown in Figure 7-21.
If you have privileges, a text box appears beneath the “Create new
database” option with a Create button beside it. Enter the name of
the new database and click the Create button. Th e database will be
created and selected as the active database, much like entering the
USE database command in MySQL Monitor.

431

Working with phpMyAdmin

Th e fourth option under the MySQL column header is “Databases”.
Clicking this option opens a page with four tabs across the top of the
screen, and a list of the available databases beneath. Clicking a data-
base name from the list opens the Structure page for that database.
On this screen, you can drop and modify existing tables in the list.
You can also create new tables and rename the database using the
fi elds beneath the list.

Working with Tables
Once you have selected the database, any tables in that database are
listed on the left side of the screen. To view the table structure, click
the Properties icon from the table list of the database screen, or click
the table name on the left side of the screen. Th e Structure page
opens for the selected table. On this screen, you can drop and modify
existing fi elds in the list. You can also create new fi elds and indexes
using the fi elds beneath the list.

Click the Browse tab to open the Browse page for the selected table.
Th is page allows you to view, edit, and delete records in the table.
Click the Insert tab to open the Insert page for the selected table. Th is
page allows you to add records to the table.

Th e last two tabs, Empty and Drop, are shown in red for two reasons.
First, they do not take you to a separate Web page. Second, and more
important, these two tabs can cause you to lose all of the data in the
table. Th erefore, you should only click these two tabs when you are
sure that you want to delete all records from the table or remove the
table from the database.

Exporting and Importing Tables
Th e Export tab on the Table Web page allows you to automatically
generate a SQL script with all of the SQL commands to create and
populate the table with all of the existing data. Th is is convenient
when you want to move an entire table from one database to another.
For example, you could do all of the exercises in this chapter in a local
MySQL database. When fi nished, you could export all of the tables
and import them in the MySQL database on the remote server for
your instructor to review.

To export the table and data, click the SQL radio button in the Export
list. Th e default “SQL options” settings do not need to be changed.
Click the “Save as fi le” check box, ensuring that the box is checked.
Click the Go button to have phpMyAdmin generate the script. Th e
next step varies depending on the browser you are using. In Mozilla

432

C H A P T E R 7 Working with Databases and MySQL

Firefox, click the “Save fi le” radio button in the next dialog box and
click OK. Th e fi le is automatically saved to a Downloads folder with
the active database assigned as the fi lename and an .sql extension.
Remember the name and location of your download. If you are using
Internet Explorer to export the table, click the Save button in the File
Download dialog box and navigate to the location where you want to
save the fi le. Th e fi lename will be the name of the active table with an
.sql extension.

To import the table and data, navigate to the Database page for the
destination database. Click the SQL tab, which displays the Run SQL
query screen for that database. In the lower section, click the Browse
button to display the File Upload dialog box. Navigate to the fi le
that you exported (it will have an .sql extension), and click the Open
button. When you click the Go button in the lower-right corner of
the screen, phpMyAdmin will load and run the script fi le. When
completed, phpMyAdmin shows the imported script, and the table
appears in the list on the left side of the screen. If the import is suc-
cessful, a message appears at the top of the window: “Your SQL-query
has been executed successfully”. If the table could not be imported, a
message appears and describes the error. Click the Structure tab to
verify that the imported table now appears in the list of tables for the
schema.

Short Quiz

1. What message is displayed at the database page if the user has
not been assigned the privilege to create new databases?

2. Th e tab from the table page displays the
records in the selected table.

3. Describe the process of exporting the structure and contents
of a table from one database and importing it into another
database using the phpMyAdmin tool.

Summing Up
A database is an ordered collection of information that a computer •
program can quickly access.

A record in a database is a single, complete set of related •
information.

 Because the
exported fi le
is an SQL
script, you

use the SQL tab to run
the script that creates the
table and inserts the data.
The Import tab is used
when importing delimited
text fi les, much like using
the LOAD DATA
command in MySQL
Monitor.

433

Summing Up

Fields are the individual categories of information stored in a record. •

A fl at-fi le database stores information in a single table. •

A relational database stores information across multiple related tables. •

A query is a structured set of instructions and criteria for retriev- •
ing, adding, modifying, and deleting database information.

Structured query language, or SQL (pronounced • sequel), is a
 standard data manipulation language among many database
 management systems.

MySQL Monitor is a command-line program that you use to •
manipulate MySQL databases.

To work with a database, you must fi rst select it by executing the •
USE database statement.

You use the • CREATE DATABASE statement to create a new database.

To delete a database, you execute the • DROP DATABASE state-
ment, which removes all tables from the database and deletes the
 database itself.

Th e fi elds in a table also store data according to type. To keep your •
database from growing too large, you should choose the smallest
data type possible for each fi eld.

To create a table, you use the • CREATE TABLE statement, which
specifi es the table and column names and the data type for
each column.

To modify a table, you use the • ALTER TABLE statement, which spec-
ifi es the table being changed and the change to make.

To delete a table, you execute the • DROP TABLE statement, which
removes all data and the table defi nition.

You use a • GRANT statement to create user accounts and assign
 privileges, which refer to the operations that a user can perform
with a database.

You use the • REVOKE statement to take away privileges from an
existing user account for a specifi ed table or database.

You add individual records to a table with the • INSERT statement.

To add multiple records to a database, you use the • LOAD DATA
 statement with a local text fi le that contains the records you want
to add.

You use the • SELECT statement to retrieve records from a table.

434

C H A P T E R 7 Working with Databases and MySQL

You use the • ORDER BY keyword with the SELECT statement to per-
form an alphanumeric sort of the results returned from a query. To
perform a reverse sort, add the DESC keyword after the name of the
fi eld by which you want to perform the sort.

You can specify which records to return from a database by using •
the WHERE keyword.

You use the • UPDATE statement to update records in a table.

You use the • DELETE statement to delete records from a table.

Th e phpMyAdmin graphical tool simplifi es the tasks associated •
with creating and maintaining databases and tables.

Comprehension Check

1. A fl at-fi le database consists of a single table. True or False?

2. Explain how relational databases are organized.

3. What is the correct term for the individual pieces of informa-
tion that are stored in a database record?

a. element

b. fi eld

c. section

d. container

4. What is the name of one table’s primary key when it is stored
in another table?

a. key symbol

b. record link

c. foreign key

d. unique identifi er

5. Breaking tables into multiple related tables to reduce redun-
dant and duplicate information is called .

a. normalization

b. redundancy design

c. splitting

d. simplifi cation

435

Comprehension Check

6. Suppose you have a relational database for a dry-cleaning
company. Each customer of the company can have multiple
items in a cleaning order. What type of relationship exists
between the order and the items?

a. one-to-one

b. one-to-many

c. many-to-one

d. many-to-many

7. has become the standard data manipulation
language among many database management systems.

a. Java

b. SQL

c. ASP.NET

d. PERL

8. Files created by diff erent database management systems are
completely interchangeable. True or False?

9. What is the default value of the mysql command’s -h
argument?

a. database

b. mysqlmonitor

c. mysqladmin

d. localhost

10. What character must terminate SQL commands in MySQL
Monitor?

a. colon (:)

b. semicolon (;)

c. ampersand (&)

d. period (.)

436

C H A P T E R 7 Working with Databases and MySQL

11. With what characters do you quote identifi ers that include
special characters?

a. quotation marks (')

b. double quotation marks (")

c. backticks (')

d. tildes (~)

12. SQL keywords are case sensitive in MySQL Monitor.
True or False?

13. Explain case sensitivity issues for fi le and directory names.

14. Which of the following statements displays the available
 databases in your MySQL installation?

a. SHOW DATABASES;

b. SHOW DATABASES();

c. LIST FILES;

d. GET LIST();

15. What’s the fi rst thing you should do after creating a new
database?

a. Save the database.

b. Restart MySQL Monitor.

c. Select the database.

d. Create a table.

16. Th e statement changes a table named
 “visitors” to a table named “guests”.

a. RENAME visitors TO guests;

b. ALTER TABLE CHANGE visitors TO guests;

c. ALTER TABLE visitors RENAME guests;

d. RENAME TABLE visitors guests;

17. A GRANT statement does not create new user accounts.
True or False?

437

Comprehension Check

18. Explain how to add multiple records to a table using a single
SQL statement.

19. Which of the following keywords causes the ORDER BY clause
to perform a reverse sort of database records?

a. DESC

b. REVERSE

c. DESCEND

d. SORTR

20. Which of the following is the correct string for a fi lter that
narrows a query result to include only records in which the
State fi eld is equal to Massachusetts?

a. WHERE State = 'Massachusetts'

b. State = 'Massachusetts'

c. WHERE 'State' = Massachusetts

d. 'State' = 'Massachusetts'

Reinforcement Exercises

Exercise 7-1

In this project, you will create a database to contain tables of batting
 statistics for major league baseball teams. You will then create a table
named teamstats in the baseball_stats database and add records
to the new table from a fi le named team_stats.txt in your Projects
directory for Chapter 7.

1. Log in to MySQL Monitor with your root account or with the
user name and password supplied by your ISP or instructor.

2. Enter the following command to create a database named
baseball_stats:
mysql> CREATE DATABASE baseball_stats;[ENTER]

3. After you see the “Query OK” message, enter the following
command to select the baseball_stats database:
mysql> USE baseball_stats;[ENTER]

If you do not
have database
creation privi-
leges, skip
steps 1

through 3. If you do not
have the FILE privilege,
skip this exercise.

438

C H A P T E R 7 Working with Databases and MySQL

4. After you see the “Database changed” message, type
the following command to ensure that you selected the
baseball_stats database:
mysql> SELECT DATABASE();[ENTER]

5. Enter the following command to create the teamstats table.
Th e Team fi eld uses the VARCHAR data type. Eleven of the col-
umns use INT data types, and the remaining two fi elds use
FLOAT data types. Each of the statistical fi eld names uses com-
mon baseball abbreviations, such as G for games, AB for at-
bats, R for runs, and HR for home runs.
mysql> CREATE TABLE teamstats (Team VARCHAR(50),
FirstYear INT,[ENTER]
 -> G INT, W INT, L INT, Pennants INT, WS INT,[ENTER]
 -> R INT, AB INT, H INT, HR INT, AVG FLOAT,[ENTER]
 -> RA INT, ERA FLOAT);[ENTER]

6. After you see the “Query OK” message, enter the following
command to display the structure of the new table:
mysql> DESCRIBE teamstats;[ENTER]

7. Enter a LOAD DATA statement that inserts records from the
team_stats.txt fi le in your Projects directory for Chapter 7
into the teamstats table. Replace path_to_PHP_folders with
the full path for your PHP_Projects directory for Chapter 7.
mysql> LOAD DATA INFILE 'path_to_PHP_folders/
Chapter.07/Projects/team_stats.txt'[ENTER]
 -> INTO TABLE teamstats;[ENTER]

8. After you see the “Query OK” message, enter the following
command to view all the records in the teamstats table:
mysql> SELECT * FROM teamstats;[ENTER]

Exercise 7-2

In this project, you will write SQL statements that return team
names, games played, and number of at-bats from the teamstats
table in the baseball_stats database. You will also write SQL state-
ments that return the teams that have the least and most all-time
home runs. For these select queries, you will need to use the LIMIT
keyword, which restricts the number of records returned from the
database. For example, if you specify a value of 10 with the LIMIT
keyword, the database returns the fi rst 10 records that match the con-
ditions of your query. Finally, you will write SQL statements that use
the SUM() function to return the total number of games played by all

Use the
MySQL serv-
er’s direc-
tory path,
not the Web
URL path.

439

Reinforcement Exercises

teams and the AVG() function to return the common batting average
for all teams.

1. Return to MySQL Monitor.

2. Enter the following SELECT statement, which returns the team,
G (games played), and AB (at bats) fi elds from the teamstats
table:
mysql> SELECT team, G, AB FROM teamstats;[ENTER]

3. Enter the following SELECT statement, which returns the team,
G (games played), and AB (at bats) fi elds from the teamstats
table, sorted by team name:
mysql> SELECT team, G, AB FROM teamstats ORDER BY
team;[ENTER]

4. Enter the following SELECT statement, which returns the team,
G (games played), and AB (at bats) fi elds from the teamstats
table, reverse sorted by team name:
mysql> SELECT team, G, AB FROM teamstats ORDER BY
team DESC;[ENTER]

5. Enter the following SELECT statement, which returns the team
and HR (home runs) fi elds. Th e statement sorts the records by
the HR fi eld and includes the LIMIT keyword, assigned a value
of 1. Because the records are sorted in ascending order, the
statement returns the fi rst record, which lists the team with
the least all-time home runs: the Tampa Bay Rays, with 1713.
mysql> SELECT team, HR FROM teamstats ORDER BY HR
LIMIT 1;[ENTER]

6. Enter the following SELECT statement, which also returns
the team and HR (home runs) fi elds. Th e statement reverse
sorts the records by the HR fi eld and includes the LIMIT key-
word, assigned a value of 1. Because the records are sorted
in descending order, the statement returns the fi rst record,
which lists the team with the most all-time home runs: the
New York Yankees, with 13,914.
mysql> SELECT team, HR FROM teamstats ORDER BY HR
DESC LIMIT 1;[ENTER]

7. Enter the following SELECT statement, which uses the SUM()
function to return the total number of games played by sum-
ming the contents of the G fi elds. Because each game played
was between two teams in the database, the sum will be twice
the actual number of games, so you divide the result by two.
You should see a value of 182,525.
mysql> SELECT SUM(G)/2 FROM teamstats;[ENTER]

440

C H A P T E R 7 Working with Databases and MySQL

8. Enter the following SELECT statement, which uses the AVG()
function to return the batting average for all teams by averag-
ing the contents of the AVG fi elds. You should see a value of
0.26199999650319.
mysql> SELECT AVG(AVG) FROM teamstats;[ENTER]

9. Unfortunately, this is not the true all-time batting average,
because each team has a diff erent number of at-bats. Enter
the following SELECT statement, which gets the weighted
average per team, and divides by the total number of at-bats.
You should see a value of 0.26256022536176.
mysql> SELECT SUM(AVG*AB)/SUM(AB) FROM
teamstats;[ENTER]

Exercise 7-3

In this project, you will add a new table for home run leaders to the
baseball_stats database. Before you create the new table, you will
create a text fi le using data from the teamstats table. You will then
import the data from the text fi le into MySQL to create a new table
named hrleaders. To create the home run leaders table, you will use
the INTO OUTFILE clause with a SELECT statement. Th e INTO OUTFILE
clause copies the returned records into a specifi ed fi le. You will use
the FIELDS TERMINATED BY and LINES TERMINATED BY clauses
to specify how the text fi le should be structured. Because you will
import the home run records into the new table, you separate each
fi eld with a tab and each line with a line break. If you do not have the
FILE privilege, skip this exercise.

1. Return to MySQL Monitor.

2. Enter the following SQL statement, which returns the team
and HR fi elds for the teams with the highest number of home
runs. Replace path_to_PHP_folders with the full path for
your PHP_Projects directory for Chapter 7. Notice that the
statement uses the ORDER BY and DESC keywords to perform
a reverse sort of the fi elds. Th e results are sent to a text fi le
named hrleaders.txt, with each fi eld separated by a tab and
each line separated by a line break escape sequence (\n).
mysql> SELECT team, HR FROM teamstats[ENTER]
 -> ORDER BY HR DESC LIMIT 10[ENTER]
 -> INTO OUTFILE 'path_to_PHP_folders/Chapter.07/
Projects/hrleaders.txt'[ENTER]
 -> FIELDS TERMINATED BY '\t'[ENTER]
 -> LINES TERMINATED BY '\n';[ENTER]

An error code
of 13 indi-
cates that you
do not have
write privi-

leges to the destination
directory.

Use the
MySQL serv-
er’s direc-
tory path,
not the Web
URL path.

441

Reinforcement Exercises

3. Enter the following command to create a table named
hrleaders:
mysql> CREATE TABLE hrleaders (Team VARCHAR(50), HR
INT);[ENTER]

4. Enter the following LOAD DATA statement to import records
from the hrleaders.txt fi le into the hrleaders table.
Replace path_to_PHP_folders with the full path for your
PHP_Projects directory for Chapter 7.
mysql> LOAD DATA INFILE 'path_to_PHP_folders/
Chapter.07/Projects/hrleaders.txt'[ENTER]
 -> INTO TABLE hrleaders;[ENTER]

5. After you see the “Query OK” message, enter the following
command to view all the records in the hrleaders table:
mysql> SELECT * FROM hrleaders;[ENTER]

6. Finally, enter the following command to list the tables in the
baseball_stats database. You should see the hrleaders and
teamstats tables listed.
mysql> SHOW TABLES;[ENTER]

7. Exit from MySQL Monitor.

Exercise 7-4

Create a demographics database with a table that contains the fol-
lowing fi elds: country, primary language, and population. Enter
records for at least 10 countries. You can fi nd demographic informa-
tion for various countries in many places on the Internet, including
Wikipedia (http://www.wikipedia.org/). Write queries that return the
following:

A list of all records sorted by country name •

Th e country with the highest population •

Th e country with the lowest population •

Countries that share a common language, such as French •

Exercise 7-5

Database design techniques include the ability to identify and design
fi ve normalization levels: fi rst normal form through fi fth normal
form. Search the Internet or visit your local library for information on
these techniques and describe how to identify and design each nor-
malization level.

Use the
MySQL serv-
er’s direc-
tory path,
not the Web
URL path.

442

C H A P T E R 7 Working with Databases and MySQL

http://www.wikipedia.org/

Discovery Projects
Th e Chinese Zodiac site is a comprehensive project that will be
updated in the Discovery Projects in each chapter. All fi les for the
Chinese Zodiac site will be saved in a folder named ChineseZodiac
in the root Web folder on the server, and all database tables will be
stored in the chinese_zodiac database.

Discovery Project 7-1

In this project, you will create a database named chinese_zodiac
that will contain the tables for the Chinese zodiac. You will then
 create a table named zodiacsigns in the chinese_zodiac database
and add records to the new table manually using INSERT statements.
Th e zodiacsigns table will contain the defi ning information about
each sign. At this point, the example is very simple, but it will be built
upon as needed.

1. Log in to MySQL Monitor with your root account or with the
user name and password supplied by your ISP or instructor.

2. Enter the following command to create a database named
chinese_zodiac:
mysql> CREATE DATABASE chinese_zodiac;[ENTER]

3. After you see the “Query OK” message, enter the following
command to select the chinese_zodiac database:
mysql> USE chinese_zodiac;[ENTER]

4. After you see the “Database changed” message, type
the following command to ensure that you selected the
chinese_zodiac database:
mysql> SELECT DATABASE();[ENTER]

5. Enter the following command to create the zodiacsigns
table. Both fi elds use the VARCHAR data type.
mysql> CREATE TABLE zodiacsigns (Sign
VARCHAR(10),[ENTER]
 -> President VARCHAR(75));[ENTER]

6. After you see the “Query OK” message, enter the following
command to display the structure of the new table:
mysql> DESCRIBE zodiacsigns;[ENTER]

If you do not
have database
creation privi-
leges, skip
steps 1
through 3.

443

Discovery Projects

7. Use one or more INSERT statements to add records to the
zodiacsigns table for each of the 12 signs of the Chinese
zodiac. Th e values used to populate the fi elds come from
 Discovery Project 6-4.

For example, the following command will insert the appropri-
ate values for the Rat:
mysql> INSERT INTO zodiacsigns (Sign, President) [ENTER]
 -> VALUES ('Rat', 'George Washington'); [ENTER]

8. After you have successfully entered information for all
12 signs, enter the following command to view all the records
in the zodiacsigns table:
mysql> SELECT * FROM zodiacsigns;[ENTER]

Discovery Project 7-2

In this project, you will create a table named zodiacfeedback in the
chinese_zodiac database. Th is table will be used later to store user
feedback about the Chinese Zodiac site.

1. Reopen MySQL Monitor.

2. Type the following command to ensure that you selected the
chinese_zodiac database:
mysql> SELECT DATABASE();[ENTER]

3. Enter the following command to create the zodiacfeedback
table. Th e message_date fi eld is of type DATE and the
message_time fi eld is of type TIME. Th e sender and message
fi elds are of type VARCHAR. Th e public_message fi eld is of a
new type called ENUM. Th e ENUM type requires that the fi eld
only be populated with values specifi ed in the CREATE TABLE
or ALTER TABLE statement that created the fi eld. In this case,
the public_message fi eld can only contain the values “Y” for
yes and “N” for no.
mysql> CREATE TABLE zodiacfeedback (message_date
DATE,[ENTER]
 -> message_time TIME, sender VARCHAR(40),[ENTER]
 -> message VARCHAR(250), public_message
ENUM('Y','N'));[ENTER]

4. After you see the “Query OK” message, enter the following
command to display the structure of the new table:
mysql> DESCRIBE zodiacfeedback;[ENTER]

444

C H A P T E R 7 Working with Databases and MySQL

Discovery Project 7-3

Log in to MySQL Monitor. At the SQL command prompt, select the
chinese_zodiac database. Enter the SQL statement to create a table
named zodiacyears to store the years for each sign of the Chinese
zodiac. Th e table should have two fi elds: the year and the name of the
sign for that year.

Enter the SQL command to view the structure of the new table.
Capture an image of the display and save the image as a fi le named
DP7-3.ext (replacing the .ext with the appropriate extension
for the image type). Upload the fi le to the Images folder in the
ChineseZodiac directory on the server.

Discovery Project 7-4

Create a tab-delimited text fi le that lists the years and signs, one year
per line, for the Chinese zodiac. For the years and the corresponding
signs, refer to the display generated by Chinese_Zodiac_for_loop.php
from Discovery Project 2-4 and Chinese_Zodiac_while_loop.php from
Discovery Project 2-5. Save the text fi le as zodiac_years.txt and upload
the fi le to the ChineseZodiac directory in the root Web folder on the
server.

Enter the SQL statement to populate the zodiacyears table with
the contents of the zodiac_years.txt fi le. Query the table and sort the
results, fi rst by sign and then by year.

Discovery Project 7-5

Create a table called randomproverb to store the proverbs from
Discovery Project 5-5. Th e table should have a proverb_number fi eld
of type INT, a proverb fi eld of type VARCHAR of at least 100 characters,
and a display_count fi eld to track the number of times each proverb
is displayed.

Copy the proverbs.txt fi le (which you created in Discovery
Project 5-5) from the ChineseZodiac directory to a fi le called prov-
erb_load.txt and open it in your editor. Modify the fi le so that each
line has a unique numerical index, a tab, the proverb, another tab, and
a zero (for the count). Save and upload the fi le, then import the fi le
into the randomproverb table using MySQL Monitor.

You will
 modify inc_
footer.php to
use this
table in

Discovery Project 8-5.

445

Discovery Projects

C H A P T E R 8
Manipulating MySQL
Databases with PHP

In this chapter, you will:

Connect to MySQL from PHP

Work with MySQL databases using PHP

Create, modify, and delete MySQL tables with PHP

Use PHP to manipulate MySQL records

Use PHP to retrieve database records

One of PHP’s greatest strengths is its ability to access and manipulate
databases. With its strong support for Open Database Connectivity
(ODBC), you can use PHP to gain direct access to any database that
is ODBC compliant, including Oracle, Informix, PostgreSQL, and
MySQL. PHP also allows you to work directly with diff erent types of
databases without going through ODBC.

PHP also supports other methods of accessing data sources, including
SQLite, database abstraction layer functions, and PEAR DB. SQLite
and database abstraction layer functions work with fi le-based data-
bases instead of server-based databases such as MySQL. Th e PHP
Extension and Application Repository (PEAR) is a library of open
source PHP code. One of the most popular PEAR code modules
is PEAR DB, which simplifi es access between PHP and a database
server by providing a generic interface that works with various types
of database systems, similar to how ODBC works. Although PEAR
DB and ODBC perform similar functions, PEAR DB is designed spe-
cifi cally to work with PHP, whereas ODBC is a more generic protocol
used by many programming languages and database management
systems.

With so many database connectivity options, how do you decide
which method to use for accessing databases with PHP? First, you
need to select a database management system. If you are new to data-
base development, you should probably start with an open source
database such as PostgreSQL or MySQL, because they are free and
fairly easy to learn. After you select a database, you need to determine
whether PHP can access it directly or whether it must go through a
layer such as ODBC or PEAR DB. Using ODBC or PEAR DB makes
it easier for you to write PHP code that can be used with a variety of
databases. However, your PHP script will be faster if it can access a
database directly, without going through a PEAR DB or ODBC layer.
Th erefore, if you think your PHP script will need to access more than
one type of database, you should use PEAR DB or ODBC. To be more
precise, you should use PEAR DB over ODBC because PEAR DB is
designed specifi cally for the PHP language. Yet, ODBC is sometimes
preferable, especially when you need to access Microsoft data source
products such as Access or Excel. However, if you plan to work with
a single database, such as MySQL, and you are more concerned with
your Web application’s performance than its compatibility with mul-
tiple database systems, use PHP’s direct database access if it’s available
for your database management system.

In this chapter, you will study how to use PHP to directly access
MySQL.

447

Manipulating MySQL Databases with PHP

Connecting to MySQL with PHP
As you work through this chapter, keep in mind that almost every-
thing you learned about MySQL in the preceding chapter is applica-
ble to this chapter. Although you need to learn a few new functions to
access MySQL with PHP, you will execute the same SQL statements
that you used with MySQL Monitor. Th e great benefi t of using PHP
or some other server-side scripting language to read from and write
to a database server is that you can create a Web-based interface,
which makes it much easier for visitors to interact with your database.

Before you can use PHP to read from and write to MySQL databases,
you need to enable MySQL support in PHP and learn how to connect
to the MySQL database server.

Determining which MySQL Package to Use
In PHP versions earlier than PHP 5, support for MySQL was installed
by default. However, starting with PHP 5, you must enable MySQL
support in PHP by confi guring your PHP installation to use the
mysqli or mysql package.

Th e mysqli (MySQL Improved) package became available with PHP
5, and is designed to work with MySQL version 4.1.3 and later. If you
use earlier versions of PHP or MySQL, you must use the mysql pack-
age. With newer versions of PHP and MySQL, you can use either
mysql or mysqli. Because the mysqli package is the object-oriented
equivalent of the mysql package, and object-oriented PHP is not cov-
ered until Chapter 10, this chapter concentrates on the mysql package.

Opening and Closing a MySQL Connection
Before you can use PHP to access the records in a database, you
must fi rst use the mysql_connect() function to open a connection
to a MySQL database server. Opening a connection to a database
is similar to opening a handle to a text fi le, as you did in Chapter 5.
However, instead of returning a fi le handle, the mysql_connect()
function returns a link identifi er as an integer if it connects success-
fully to the database or a Boolean FALSE if it doesn’t. You assign the
return value from the mysql_connect() function to a variable that
you can use to access the database in your script. Th e basic syntax for
the mysql_connect() function is as follows:
$connection = mysql_connect("host" [, "user", "password"])

In the preceding example, the host argument allows you to specify
the host name where your MySQL database server is installed. If you
are connecting to an instance of the MySQL database server that is

There are
mysqli_*
equivalents
for each of
the

mysql_* functions used
in this chapter. The code
will be different because
of the object-oriented
nature of the mysqli_*
functions.

You can
use the
phpinfo()
function you
learned in

Chapter 1 to determine
which MySQL libraries are
installed on your Web
server.

448

C H A P T E R 8 Manipulating MySQL Databases with PHP

running on the same server as the PHP scripting engine, use a value of
“localhost” or “127.0.0.1” for the host argument. However, if you are
working with a MySQL database server that is running on a diff erent
(remote) server than the PHP scripting engine, you need to enter the
name or IP address of the MySQL server. Th e user and password argu-
ments allow you to specify a MySQL account name and password. For
example, the following command connects the user name “dongosselin”
with a password of “rosebud” to a local instance of the MySQL database
server. Th e database connection is assigned to the $DBConnect variable.
$DBConnect = mysql_connect("localhost", "dongosselin",
 "rosebud");

When your PHP script ends, any open database connections close
automatically. However, you should get into the habit of explicitly
closing database connections with the mysql_close() function when
you fi nish using them. Th is ensures that the connection doesn’t keep
taking up space in your Web server’s memory while the script fi nishes
processing. You close a database connection by passing the database
connection variable to the mysql_close() function. Th e following
statement closes the $DBConnect database connection variable that
was opened in the preceding statement:
mysql_close($DBConnect);

After you connect to a database with the mysql_connect() function,
you can use the functions listed in Table 8-1 to return information
about your installation of the MySQL server.

Function Description
mysql_get_client_info() Returns the MySQL client version

mysql_get_client_version() Returns the MySQL client version as an integer

mysql_get_host_info(connection) Returns the MySQL database server
connection information

mysql_get_proto_info(connection) Returns the MySQL protocol version

mysql_get_server_info(connection) Returns the MySQL database server version

Table 8-1 MySQL server information functions

Th e terms client and server require some explanation. Because the
client and server are defi ned in relation to MySQL, the Web server
where the PHP script is running is the client when communicat-
ing with the MySQL server. Th e mysql_get_client_info() and
mysql_get_client_version() functions return information about
the mysql package that PHP is using. Th e remainder of the functions
return information about the database server and the MySQL appli-
cation running on it.

To change
users after
connecting
to a data-
base, use

the mysql_change_
user() function.

The mysql_
get_
client_
info() and
mysql_

get_ client_
version() functions do
not accept any argu-
ments. These functions
do not actually require a
database connection, as
they return information
about your local client,
not the MySQL server.
However, you must pass
the variable representing
the database connection
to the rest of the func-
tions listed in Table 8-1.

449

Connecting to MySQL with PHP

To create a PHP script that connects to MySQL and uses the func-
tions listed in Table 8-1 to display information about your installation
of MySQL:

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, header infor-
mation, and <body> element. Use the strict DTD and “MySQL
Server Information” as the content of the <title> element.

3. Add the following heading element to the document body:
<h1>MySQL Database Server Information</h1>

4. Add the following script section to the end of the document body:
<?php
?>

5. Add the following mysql_connect() statement to the script sec-
tion. Replace host, user, and password with the MySQL host
name, user name, and password assigned by your instructor.
$DBConnect = mysql_connect("host", "user", "password");

6. At the end of the script section, add the following statements,
which display information about your installation of MySQL server:
echo "<p>MySQL client version: "
 . mysql_get_client_info() . "</p>\n";
if ($DBConnect===FALSE)
 echo "<p>Connection failed.</p>\n";
else {
 echo "<p>MySQL connection: "
 . mysql_get_host_info($DBConnect) . "</p>\n";
 echo "<p>MySQL protocol version: "
 . mysql_get_proto_info($DBConnect) . "</p>\n";
 echo "<p>MySQL server version: "
 . mysql_get_server_info($DBConnect) . "</p>\n";

7. Finally, add the following statement to the end of the script sec-
tion to close the database connection. Note that you only close
the connection if the mysql_connect function successfully
established a connection with the MySQL server:
 mysql_close($DBConnect);
}

8. Save the document as MySQLInfo.php in the Chapter direc-
tory for Chapter 8, and then upload the document to the server.

9. Open the MySQLInfo.php fi le in your Web browser by enter-
ing the following URL: http://<yourserver>/PHP_Projects/
Chapter.08/Chapter/MySQLInfo.php. Your Web browser should
look like Figure 8-1, although the information displayed from
each function might be diff erent for your MySQL installation.

450

C H A P T E R 8 Manipulating MySQL Databases with PHP

10. Close your Web browser window.

Figure 8-1 MySQLInfo.php in a Web browser

Reporting MySQL Errors
If an error prevents the connection from being created, it is useful to
know why the mysql_connect() function failed. Th e mysql_error()
function returns a text string describing the error, and the
mysql_errno() function returns the numeric code of the error. You
can use these functions when debugging your code, as they provide
specifi c details about the cause of the error.

When debugging MySQL functions, it is often convenient to use the
following abbreviated syntax to handle errors:
$DBConnection = (mysql_connect(...) ||
 die(mysql_error());

Th is syntax is a short way of writing code that displays the MySQL
error message and exits the script if the mysql_connect() func-
tion fails (and returns FALSE). Otherwise, the return value of the
mysql_connect() function is assigned to $DBConnection and the
script continues processing on the next line. Because the die() func-
tion exits the script immediately, any further script output, such as
navigation buttons or a Web form, is not displayed. For this reason,
do not use the die() function when it will prevent the Web page
from displaying properly.

To obtain error information for any other functions that access a
MySQL database, such as the ones discussed in this section, you use
the same two error functions. After you connect to a MySQL server,
you can pass to the mysql_errno() and mysql_error() functions the
variable representing the database connection. Th is is useful if you

If you
receive a
warning that
PHP cannot
load a

dynamic library or an
error message such as
“Call to undefi ned function
mysql_connect()”,
MySQL support is not
correctly enabled for your
PHP installation.

The exit()
function
works the
same as
the die()

 function, and exits the
script immediately.

451

Connecting to MySQL with PHP

have multiple connections open, and need to report on an error for a
specifi c connection.

Th e mysql_error() and mysql_errno() functions only return the
results of the previous mysql_*() function (excluding mysql_error()
and mysql_errno() themselves). It is important to call these func-
tions before calling another function in the mysql package; otherwise,
the error information will be lost.

Suppressing Errors with the Error
Control Operator
Although standard error messages generated by programming lan-
guages such as PHP are helpful to programmers, they represent a
potential security risk, as mentioned earlier. Also, they may confuse
less technical users, who might think they somehow caused the error.
Errors can and will occur, but you should never let your users think
that they did something wrong.

Functions in PHP, including those in the mysql package, normally dis-
play errors and warnings as they occur. You can suppress those mes-
sages by using the error control operator (@). You can place the error
control operator before any expression, although it is most commonly
used with built-in PHP functions, especially functions that access
external data sources such as fi les and databases. Using the error
control operator to suppress error messages does not mean you can
ignore errors. Instead, it provides a more graceful way of handling an
error that does not reveal information about the underlying system.
In the following example, which contains a modifi ed version of inc_
db_catalog.php, both the mysql_connect() and mysql_select_db()
functions are preceded by error control operators to suppress any
error messages that may occur:
<?php
$DBName = "catalog";
$DBConnect = @mysql_connect("php_db", "dongosselin", "rosebud");
if ($DBConnect === FALSE)
 echo "<p>Connection error: "
 . mysql_error() . "</p>\n";
else {
 if (@mysql_select_db($DBName, $DBConnect) === FALSE) {
 echo "<p>Could not select the \"$DBName\" " .
 "database: " . mysql_error($DBConnect) .
 "</p>\n";
 mysql_close($DBConnect);
 $DBConnect = FALSE;
 }
}
?>

In the
mysqli
package,
connection
errors are

reported using the
mysqli_connect_
error() and mysqli_
connect_errno()
functions, which do not
accept any parameters.
For all other database
errors, the mysqli_
error() and mysqli_
errno() functions are
used, and are called in
the same manner as
mysql_error() and
mysql_errno().

You should
never dis-
play the
actual error
message or

error number returned by
the mysql_error()
and mysql_errno()
functions in a production
PHP script. Information
returned by these func-
tions could expose vulner-
abilities of the server,
providing a means of
attacking it. In a produc-
tion environment, these
scripts should be rewrit-
ten to display a custom
error message that does
not reveal information
about the PHP scripting
engine or the MySQL
database, and to write
the error code and mes-
sage to a log fi le.

452

C H A P T E R 8 Manipulating MySQL Databases with PHP

Short Quiz

1. Explain why you need to save the return value of the
mysql_connect() function to a variable.

2. When is it valid to use the value of “localhost” as the host
argument in the mysql_connect() function?

3. Explain why you should always use the mysql_close() func-
tion to close the database connection when you are fi nished
accessing the database.

4. Contrast the return value of the mysql_error() function and
the mysql_errno() function.

5. Describe how the error control operator is used to handle
errors.

Working with MySQL Databases
Although you will usually use MySQL Monitor, phpMyAdmin, or
similar tools to perform database structural changes, you can use
PHP to perform these tasks. Th e mysql package provides the neces-
sary functions for creating, selecting, and deleting databases.

Creating a Database
As you saw in Chapter 7, you must create a database to hold
the tables that store data. In MySQL Monitor, you used the
CREATE DATABASE statement. In PHP, you use the mysql_create_db()
function. Its basic syntax is:
$result = mysql_create_db("dbname" [, connection]);

You may notice that the connection value is optional. If the link con-
nection is not specifi ed, PHP uses the last connection opened using
mysql_connect(). Th is simplifi es the code if you only have one link
connection open at a time. Th e mysql_create_db() function returns
a Boolean TRUE value if successful, or FALSE if an error occurred.

Using the
error control
operator
does not
disable error

checking. It only sup-
presses the error mes-
sages from being
displayed.

In this chap-
ter, you will
use the
mysql_
error()

function to return the
actual error messages
from the MySQL data-
base. This function helps
you locate and correct
errors in your code.

You may
not have
privileges
to create
databases

for the MySQL server to
which you are connect-
ing. If so, you may
receive one of two error
messages: an “insuffi -
cient privileges” message
from the MySQL server
or an “undefi ned function”
message for the
mysql_create_db()
function.

453

Working with MySQL Databases

Th e following code uses a mysql_create_db() statement to create a
database named catalog from the $DBConnect database connection:
$DBName = "catalog";
$DBConnect = mysql_connect("php_db", "dongosselin", "rosebud");
if ($DBConnect === FALSE)
 echo "<p>Connection error: "
 . mysql_error() . "</p>\n";
else {
 if (mysql_create_db("$DBName", $DBConnect) === FALSE)
 echo "<p>Could not create the \"$DBName\" " .
 "database: " . mysql_error($DBConnect) .
 "</p>\n";
 else
 echo "<p>Successfully created the " .
 "\"$DBName\" database.</p>\n";
 mysql_close($DBConnect);
}

To create a PHP script that creates a database named newsletter:

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, header infor-
mation, and <body> element. Use the strict DTD and “Creating
Database” as the content of the <title> element.

3. Add the following script section to the end of the document
body:
<?php
?>

4. Add the following statements to the script section to connect to
the MySQL server. Replace host with the MySQL server name
provided by your instructor, and replace user and password
with the MySQL user name and password you created in
Chapter 7.
$DBName = "newsletter";
$DBConnect = mysql_connect("host", "user", "password ");
if ($DBConnect === FALSE)
 echo "<p>Connection error: "
 . mysql_error() . "</p>\n";
else {
}

5. In the else clause of the if...else statement, add the follow-
ing statements to create the newsletter database:

454

C H A P T E R 8 Manipulating MySQL Databases with PHP

 if (mysql_create_db($DBName, $DBConnect) === FALSE)
 echo "<p>Could not create the \"$DBName\" " .
 "database: " . mysql_error($DBConnect) .

"</p>\n";
 else
 echo "<p>Successfully created the " .
 "\"$DBName\" database.</p>\n";

6. Add the following statement to the end of the else clause to
close the database connection:
mysql_close($DBConnect);

7. Save the document as CreateNewsletterDB.php in the
Chapter directory for Chapter 8, and then upload the document
to the server.

8. Open CreateNewsletterDB.php in your Web browser by enter-
ing the following URL: http://<yourserver>/PHP_Projects/
Chapter.08/Chapter/CreateNewsletterDB.php. Th e Web page
should inform you that the newsletter database was created or
provide an error message that explains why the database was not
created.

9. Close your Web browser window.

Figure 8-2 Error message when the mysql_create_db() function is unavailable because
of insuffi cient privileges

Selecting a Database
As you saw in Chapter 7, you must fi rst select a database with the
USE database statement when you log on to MySQL Monitor.
You select a database or change to a diff erent database with the
mysql_select_db() function. Th e syntax for the function is
mysql_select_db(database [, connection]). Th e function returns
a Boolean value of TRUE if it successfully selects a database or FALSE if
it doesn’t. For example, the following code uses a mysql_select_db()
statement to open the catalog database from the $DBConnect

If you do not
have “Create
Database”
privileges on
your MySQL

server, you may see an
error like the one shown
in Figure 8-2.

455

Working with MySQL Databases

database connection, and displays a simple “Selected the “Catalog”
Database” message if successful:
$DBName = "catalog";
$DBConnect = mysql_connect("php_db", "dongosselin", "rosebud");
if ($DBConnect === FALSE)
 echo "<p>Connection error: "
 . mysql_error() . "</p>\n";
else {
 if (mysql_select_db($DBName, $DBConnect) === FALSE)
 echo "<p>Could not select the \"$DBName\" " .
 "database: " . mysql_error($DBConnect) . "</p>\n";
 else {
 // Use the else portion of the if statement for
 // additional statements that access or manipulate
 // the database
 echo "<p>Selected the \"$DBName\" database</p>\n";
 }
 mysql_close($DBConnect);
}

Usually, you have several pages that all use the same database. Also,
it is a security risk to have passwords in fi les that are directly acces-
sible from the Web. For these reasons, you can use an include fi le to
connect to the MySQL server and select a database. For example, the
inc_db_catalog.php fi le contains the following script:
<?php
$DBName = "catalog";
$DBConnect = mysql_connect("php_db", "dongosselin", "rosebud");
if ($DBConnect === FALSE)
 echo "<p>Connection error: "
 . mysql_error() . "</p>\n";
else {
 if (mysql_select_db($DBName, $DBConnect) === FALSE) {
 echo "<p>Could not select the \"$DBName\" " .
 "database: " . mysql_error($DBConnect) .

"</p>\n";
 mysql_close($DBConnect);
 $DBConnect = FALSE;
 }
}
?>

Th e primary diff erence between the code in an include fi le and the
code embedded in a PHP script itself is that the code in the include
fi le closes the connection and sets the connection variable to FALSE if
the database named in $DBName could not be selected. Th e following
PHP script uses the inc_db_catalog.php include fi le to produce the
same output as the previous example:

456

C H A P T E R 8 Manipulating MySQL Databases with PHP

include("inc_db_catalog.php");
if ($DBConnect !== FALSE) {
 // Use the if statement for additional statements
 // that access or manipulate the database
 echo "<p>Selected the \"$DBName\" database</p>\n";
 mysql_close($DBConnect);
}

Th e PHP script only needs to verify that $DBConnect is not FALSE
before using any database functions. Also, the script only calls the
mysql_close() function if $DBConnect is not FALSE, because the
connection was already closed or was never successfully opened if
$DBConnect is FALSE.

To create a PHP script that uses an include fi le to select the
newsletter database:

1. Create a new document in your text editor.

2. Add the following script section:
<?php
?>

3. Add the following statements to the script section to connect to
the MySQL server. Replace host with the MySQL server name
provided by your instructor, and replace user and password
with the MySQL user name and password you created in
Chapter 7. If you could not create the newsletter database ear-
lier, change “newsletter” to the name of the default database pro-
vided for your user account. Note that the error control operator
is used to suppress MySQL connection error messages.
$DBName = "newsletter";
$DBConnect = @mysql_connect("host", "user", "password");
if ($DBConnect === FALSE)
 echo "<p>Connection error: "
 . mysql_error() . "</p>\n";
else {
}

4. In the else clause of the if...else statement, add the follow-
ing statements to select the newsletter database and close the
connection on failure. Again, the error control operator is used
to suppress error messages.
 if (@mysql_select_db($DBName, $DBConnect)
 === FALSE) {
 echo "<p>Could not select the \"$DBName\" " .
 "database: " . mysql_error($DBConnect) .
 "</p>\n";
 mysql_close($DBConnect);
 $DBConnect = FALSE;
 }

457

Working with MySQL Databases

5. Save the document as inc_db_newsletter.php.

6. Create another new document in your text editor.

7. Type the <!DOCTYPE> declaration, <html> element, header infor-
mation, and <body> element. Use the strict DTD and “Select
Test” as the content of the <title> element.

8. Add the following script section to the end of the document body:
<?php
?>

9. Add the following include() statement to the script section:
include("inc_db_newsletter.php");

10. After the include() statement, add the following statements
to handle a successful selection of the newsletter database:
if ($DBConnect !== FALSE) {
 echo "<p>Selected the \"$DBName\" database</p>\n";
 mysql_close($DBConnect);
}

11. Save the document as SelectTest.php in the Chapter direc-
tory for Chapter 8, and then upload inc_db_newsletter.php
and SelectTest.php to the Web server.

12. Open SelectTest.php in your Web browser by entering the fol-
lowing URL: http://<yourserver>/PHP_Projects/Chapter.08/
Chapter/SelectTest.php. Th e Web page should inform you
that the newsletter database was selected or should provide
an error message.

13. Close your Web browser window.

Deleting a Database
To delete a database, you use the mysql_drop_db() function. Th e
syntax is:
$Result = mysql_drop_db("dbname" [, connection]);

Th e mysql_drop_db() function returns TRUE if the database was suc-
cessfully dropped, or FALSE if an error occurred. If a value of FALSE
is returned, you use the mysql_error() function to display the error
message.

As with the
mysql_
create_db()
function, you
may not have

privileges to delete a
database. If so, $Result
will be FALSE.

458

C H A P T E R 8 Manipulating MySQL Databases with PHP

Short Quiz

1. What PHP function is used to create a new database?

2. Name the equivalent MySQL command for the USE database
statement used in MySQL Monitor to change to a diff erent
database.

3. You use which PHP function to delete an existing database?

Working with Tables
In this section, you will learn how to use PHP to work with MySQL
and tables. More specifi cally, you will learn how to create and delete
tables. As you will see, the SQL statements in this section are identi-
cal to the SQL statements you saw in Chapter 7. Th e only diff erence is
that they are executed with PHP instead of MySQL Monitor.

Using mysql_query()
In PHP, you use the mysql_query() function to send SQL statements
to MySQL. Th e mysql_query() function is the workhorse of PHP
connectivity with MySQL; almost every SQL command you send to
MySQL from PHP is executed with this function. Its basic syntax is
mysql_query(query [, connection]). Th e mysql_query() function
returns one of three values, depending on the type of query executed.
For SQL statements that do not return information from the data-
base, such as the CREATE TABLE statements, the mysql_query() func-
tion returns a value of TRUE if the statement executes successfully.
For SQL statements that return information from the database, such
as SELECT and SHOW statements, the mysql_query() function returns
a result pointer that represents the query results. A result pointer is
a special type of variable that refers to the currently selected row in
the list of records returned by MySQL, called a resultset. Th e result
pointer is a way of keeping track of where you are in a resultset. You
assign the result pointer to a variable, which you can use to access
the resultset in PHP. Th e mysql_query() function returns a value of
FALSE for any SQL statements that fail, regardless of whether they
return information from the database. As an example, the following
code selects the vehicle_fl eet database you saw in Chapter 7. Th e
code then executes the mysql_query() function to select information
from the company_cars table and assigns the result pointer to a vari-
able named $QueryResult.

For informa-
tion that you
want to
store perma-
nently, you

should use MySQL
Monitor instead of PHP to
create and delete tables.
Creating and deleting
tables with PHP is most
useful when you only
need to store information
temporarily for the cur-
rent Web browser
session.

459

Working with Tables

$Result = @mysql_select_db("vehicle_fl eet", $DBConnect);
if ($Result===FALSE)
 echo "<p>Unable to select the database.</p>"
 . "<p>Error code " . mysql_errno($DBConnect)
 . ": " . mysql_error($DBConnect) . "</p>";
else {
 echo "<p>Successfully opened the database.</p>";
 $SQLstring = "SELECT model_year, make, model FROM
 company_cars";
 $QueryResult = mysql_query($SQLstring, $DBConnect)
 mysql_close($DBConnect);
}

Creating and Deleting Tables
To create a table, you use the CREATE TABLE statement with
the mysql_query() function. Be sure you have executed the
mysql_select_db() function before executing the CREATE TABLE
statement, or you might create your new table in the wrong database.
Assuming that you have a link connection established and stored in
$DBConnect and used the mysql_select_db() function to select the
vehicle_fl eet database, the following code creates a table named
drivers in the vehicle_fl eet database:
$SQLstring = "CREATE TABLE drivers (name VARCHAR(100), "
 . "emp_no SMALLINT, hire_date DATE, "
 . "stop_date DATE)";
$QueryResult = @mysql_query($SQLstring, $DBConnect);
if ($QueryResult===FALSE)
 echo "<p>Unable to execute the query.</p>"
 . "<p>Error code " . mysql_errno($DBConnect)
 . ": " . mysql_error($DBConnect) . "</p>";
else
 echo "<p>Successfully created the table.</p>";

If the table already exists in the selected database, the preceding code
would produce the error code and message shown in Figure 8-3.

When
mysql_
query()
returns a
resultset,

you use the mysql_
num_rows() function to
determine the number of
records in the resultset.
The mysql_num_
rows() function takes a
single parameter, which
is the resultset variable. If
the parameter is not a
valid resultset, mysql_
num_rows() returns
FALSE.

460

C H A P T E R 8 Manipulating MySQL Databases with PHP

Figure 8-3 Error code and message that appear when you attempt to
create a table that already exists

To prevent your code from trying to create a table that already exists,
use a mysql_query() function that checks for the table using the
SHOW TABLES LIKE command. If the function executes successfully
and does not return 0 rows, the table already exists. You determine
the number of rows in the resultset with the mysql_num_rows() func-
tion. Th e following code demonstrates how to check whether a table
exists before attempting to create it:
$TableName = "drivers";
$SQLstring = "SHOW TABLES LIKE '$TableName'";
$QueryResult = @mysql_query($SQLstring, $DBConnect);
if (mysql_num_rows($QueryResult) > 0) {
 echo "<p>The $TableName table already exists!</p>";
}
else {
 $SQLstring = "CREATE TABLE drivers (name VARCHAR(100), "
 . "emp_no SMALLINT, hire_date DATE, "
 . "stop_date DATE)";
 $QueryResult = @mysql_query($SQLstring, $DBConnect);
 if ($QueryResult===FALSE)
 echo "<p>Unable to execute the query.</p>"
 . "<p>Error code " . mysql_errno

($DBConnect)
 . ": " . mysql_error($DBConnect) . "</p>";
 else
 echo "<p>Successfully created the table.</p>";
}

One common practice in MySQL, and databases in general, is to cre-
ate a numeric index that is used as a primary key identifi er for each
record. To identify a fi eld as a primary key in MySQL, you include
the PRIMARY KEY keywords when you fi rst defi ne a fi eld with the
CREATE TABLE statement. Th e AUTO_INCREMENT keyword is often used
with a primary key to generate a unique ID for each new row in a
table. For the fi rst row inserted into a table, a fi eld created with the

461

Working with Tables

AUTO_INCREMENT keyword is assigned a value of 1. Th e value of the
fi eld for each subsequently added row is incremented by 1 from the
preceding row. Another keyword that is often used with primary keys
is NOT NULL, which requires a fi eld to include a value. As an example,
the following SQL statement defi nes a primary key named id for the
company_cars table using the SMALLINT data type. Th e id fi eld defi ni-
tion also includes the NOT NULL and AUTO_INCREMENT keywords.
CREATE TABLE company_cars (id SMALLINT NOT NULL AUTO_
INCREMENT PRIMARY KEY, license VARCHAR(10), model_year
SMALLINT, make VARCHAR(25), model VARCHAR(50), mileage
FLOAT);

To create a script that creates the subscribers table in the
newsletter database the fi rst time the script is called:

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, header infor-
mation, and <body> element. Use the strict DTD and “Create
‘subscribers’ Table” as the content of the <title> element.

3. Add the following script section to the end of the document
body:
<?php
?>

4. Add the following include() statement to the script section:
include("inc_db_newsletter.php");

5. After the include() statement, add the following statements to
handle a successful selection of the newsletter database:
if ($DBConnect !== FALSE) {
 mysql_close($DBConnect);
}

6. Add the following variable declarations and mysql_query()
statement immediately before the mysql_close() function. Th e
mysql_query() statement checks the database for a table named
subscribers.
$TableName = "subscribers";
$SQLstring = "SHOW TABLES LIKE '$TableName'";
$QueryResult = @mysql_query($SQLstring, $DBConnect);

7. Add the following variable declarations and mysql_query()
statement immediately before the mysql_close() function. Th e
statements in the if statement only execute if the $QueryResult
contains 0 rows, which means that the table does not yet
exist. Notice that the CREATE TABLE statement creates the
subscriberID fi eld as an auto-incrementing primary key.

You will be
introduced
to the
AUTO_
INCREMENT

keyword later in this
chapter.462

C H A P T E R 8 Manipulating MySQL Databases with PHP

if (mysql_num_rows($QueryResult) == 0) {
 $SQLstring = "CREATE TABLE subscribers (subscriberID
 SMALLINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(80), email VARCHAR(100),
 subscribe_date DATE,
 confi rmed_date DATE)";
 $QueryResult = @mysql_query($SQLstring, $DBConnect);
 if ($QueryResult === FALSE)
 echo "<p>Unable to create the subscribers

 table.</p>"
 . "<p>Error code " . mysql_errno($DBConnect)
 . ": " . mysql_error($DBConnect) . "</p>";
 else
 echo "<p>Successfully created the "
 . "subscribers table.</p>";
}
else
 echo "<p>The subscribers table already

 exists.</p>";

8. Save the document as CreateSubscribersTable.php in the
Chapter directory for Chapter 8, and then upload the document
to the Web server.

9. Open CreateSubscribersTable.php in your Web browser by
entering the following URL: http://<yourserver>/PHP_Projects/
Chapter.08/Chapter/CreateSubscribersTable.php. Th e Web page
should inform you that the subscribers table was created or
should provide an error message.

10. Close your Web browser window.

To delete a table, you use the DROP TABLE statement with the
mysql_query() function. Th e following code demonstrates how to
delete the drivers table using similar error handling as the code that
created the table:
$TableName = "drivers";
$SQLstring = "SHOW TABLES LIKE '$TableName'";
$QueryResult = @mysql_query($SQLstring, $DBConnect);
if (mysql_num_rows($QueryResult) == 0)
 echo "<p>The $TableName table does not exist!</p>";
else {
 $SQLstring = "DROP TABLE $TableName";
 $QueryResult = @mysql_query($SQLstring, $DBConnect);
 if ($QueryResult === FALSE)
 echo "<p>Unable to execute the query.</p>"
 . "<p>Error code " . mysql_errno($DBConnect)
 . ": " . mysql_error($DBConnect) . "</p>";
 else
 echo "<p>Successfully deleted the table.</p>";
}
mysql_close($DBConnect);

463

Working with Tables

Short Quiz

1. What function is used to send SQL statements to MySQL?

2. Describe the role of the result pointer in database querying.

3. Write a short script that demonstrates how to check whether
a table exists before attempting to create it.

4. Which function returns the number of records in a resultset?

5. What MySQL statement is used with the mysql_query()
function to delete a table?

Manipulating Records
In this section, you will learn how to use PHP to add, update, and
delete database records. As you work through the rest of this chapter,
you should recognize the SQL statements because you worked with
them in Chapter 7. Th e primary diff erence is that, instead of manually
executing SQL statements by typing them in MySQL Monitor as you
did in Chapter 7, you will use PHP statements to access MySQL and
execute SQL statements for you.

Adding, Deleting, and Updating Records
To add records to a table, you use the INSERT and VALUES keywords
with the mysql_query() function. Remember that you should
specify the columns that you are populating, and that the values
in the VALUES list must be in the same order. For example, the fol-
lowing statements add a new row to the company_cars table in the
vehicle_fl eet database:
$SQLstring = "INSERT INTO company_cars " .
 " (license, model_year, make, model, mileage) " .
 " VALUES('CPQ-893', 2011, 'Honda', 'Insight', " .
 " 49.2)";
$QueryResult = @mysql_query($SQLstring, $DBConnect);
if ($QueryResult === FALSE)
 echo "<p>Unable to execute the query.</p>"
 . "<p>Error code " . mysql_errno($DBConnect)
 . ": " . mysql_error($DBConnect) . "</p>";
else
 echo "<p>Successfully added the record.</p>";

464

C H A P T E R 8 Manipulating MySQL Databases with PHP

Also remember that you can specify NULL in any fi elds for which you
do not have a value. For example, if you do not know the mileage for
the Honda Insight, you can enter NULL as the last item in the VALUES
list, as follows:
$SQLstring = "INSERT INTO company_cars " .
 " (license, model_year, make, model, mileage) " .
 " VALUES('CPQ-893', 2011, 'Honda', 'Insight', " .
 " NULL)";

When you add records to a table that includes an AUTO_INCREMENT
fi eld, you omit the column name and value from the lists. Th e follow-
ing SQL statement inserts a new record into the company_cars table
of the vehicle_fl eet database. If it is the fi rst record added to the
table, its primary key will be assigned a value of 1.
INSERT INTO company_cars (license, model_year, make, model,
mileage) VALUES('AK 4321', 2012, 'Toyota', 'Prius', 23);

Alternatively, you can include the column name in the list and specify
NULL for the fi eld value. Th e following SQL statement inserts the same
new record as the previous example:
INSERT INTO company_cars (id, license, model_year, make, model,
mileage) VALUES(NULL, 'AK 4321', 2012, 'Toyota', 'Prius', 23);

To add multiple records to a database from an external fi le, you use
the LOAD DATA statement with the name of the local text fi le that
contains the records you want to add. Th e following statement loads
a fi le named company_cars.txt into the company_cars table in the
vehicle_fl eet database:
$SQLstring = "LOAD DATA INFILE 'company_cars.txt' " .
 " INTO TABLE company_cars";

To update records in a table, you use the UPDATE statement with the
same syntax you learned in Chapter 7. Th e UPDATE keyword specifi es
the name of the table to update and the SET keyword specifi es the
value to assign to the fi elds in the records that match the condition in
the WHERE keyword. For example, the following statements modify the
mileage of the 2007 Honda Civic to 50112.3 miles:
$SQLstring = "UPDATE company_cars SET mileage=50112.3
 WHERE license='AK-1234'";
$QueryResult = @mysql_query($SQLstring, $DBConnect);
if ($QueryResult === FALSE)
 echo "<p>Unable to execute the query.</p>"
 . "<p>Error code " . mysql_errno($DBConnect)
 . ": " . mysql_error($DBConnect) . "</p>";
else
 echo "<p>Successfully modifi ed the record.</p>";

To delete records from a table, you use the DELETE statement with
the mysql_query() function. Remember that the WHERE keyword

As you
learned in
Chapter 7,
you can
insert mul-

tiple value sets with a
single command, using
multiple value lists sepa-
rated by commas.

465

Manipulating Records

determines which records to delete in the table. For example, the fol-
lowing statement deletes the record for the 2007 Chevrolet Malibu
from the company_cars table in the vehicle_fl eet database:
$SQLstring = "DELETE FROM company_cars WHERE make='Chevrolet'
 AND model='Malibu' AND model_year=2007";
$QueryResult = @mysql_query($SQLstring, $DBConnect);
if ($QueryResult === FALSE)
 echo "<p>Unable to execute the query.</p>"
 . "<p>Error code " . mysql_errno($DBConnect)
 . ": " . mysql_error($DBConnect) . "</p>";
else
 echo "<p>Successfully deleted the record.</p>";

To delete all the records in a table, omit the WHERE clause. For
example, the following statement deletes all the records in the
company_cars table:
$SQLstring = "DELETE FROM company_cars";

In the next exercise, you will create an All-in-One Web form that
adds a new subscriber record to the subscribers table in the
newsletter database. You also use the mysql_insert_id() func-
tion, which returns the ID created with AUTO_INCREMENT in the last
INSERT operation. You pass to the mysql_insert_id() function the
variable to which you assigned the database connection with the
mysql_connect() function. Th e mysql_insert_id() function is use-
ful when you need to fi nd the primary key created for new records
you add to a database table.

To create the All-in-One Web form that adds a new subscriber record
to the subscribers table in the newsletter database:

1. Create a new document in your text editor.

2. Type the <!DOCTYPE> declaration, <html> element, header infor-
mation, and <body> element. Use the strict DTD and “Subscribe
to our Newsletter” as the content of the <title> element.

3. Add the following header and script section to the end of the
document body:
<h1>Subscribe to our Newsletter</h1>
<?php
?>

4. Add the following if statement to the script section to deter-
mine whether the form has been submitted, and initialize the
form if it has not been submitted:
if (isset($_POST['Submit'])) {
}
else {

466

C H A P T E R 8 Manipulating MySQL Databases with PHP

 $ShowForm = TRUE;
 $SubscriberName = "";
 $SubscriberEmail = "";
}

5. In the code block for the if clause in the script section, add the
following code to validate the submitted form data:
 $FormErrorCount = 0;
 if (isset($_POST['SubName'])) {
 $SubscriberName = stripslashes($_POST

['SubName']);
 $SubscriberName = trim($SubscriberName);
 if (strlen($SubscriberName) == 0) {
 echo "<p>You must include your
 name!</p>\n";
 ++$FormErrorCount;
 }
 }
 else {
 echo "<p>Form submittal error (No
 'SubName' fi eld)!</p>\n";
 ++$FormErrorCount;
 }
 if (isset($_POST['SubEmail'])) {
 $SubscriberEmail = stripslashes($_
 POST['SubEmail']);
 $SubscriberEmail = trim($SubscriberEmail);
 if (strlen($SubscriberEmail) == 0) {
 echo "<p>You must include your
 email address!</p>\n";
 ++$FormErrorCount;
 }
 }
 else {
 echo "<p>Form submittal error (No
 'SubEmail' fi eld)!</p>\n";
 ++$FormErrorCount;
 }

6. Immediately after validating the submitted form data, add the
following if...else statement to determine whether the form
will be processed:
 if ($FormErrorCount == 0) {
 }
 else
 $ShowForm = TRUE;

7. In the if clause of the if...else statement that determines
whether the form will be processed, add the following variable
assignment and include statement:
 $ShowForm = FALSE;
 include("inc_db_newsletter.php");

467

Manipulating Records

8. Immediately after the include statement, add the following if
statement that determines if the database connection is valid:
 if ($DBConnect !== FALSE) {
 }

9. In the code block for the previous if statement, set the follow-
ing variables to the values shown. Note that the date() function
now takes the string “Y-m-d” as a parameter, which ensures that
the date string is in the “YYYY-MM-DD” format that MySQL
recognizes. Also note that the id and confi rmed_date fi elds are
omitted from the column list for the INSERT statement. Th e id
fi eld will be assigned automatically because it is defi ned with the
AUTO_INCREMENT keyword. Th e confi rmed_date fi eld will be
inserted as NULL.
 $TableName = "subscribers";
 $SubscriberDate = date("Y-m-d");
 $SQLstring = "INSERT INTO $TableName " .
 "(name, email, subscribe_date) VALUES " .
 "('$SubscriberName', '$SubscriberEmail',
 '$SubscriberDate')";

10. Next, add the following code to use the mysql_query() func-
tion to execute the query, report any errors, and close the
database connection:
 $QueryResult = @mysql_query($SQLstring, $DBConnect);
 if ($QueryResult === FALSE)
 echo "<p>Unable to insert the values into
 the subscriber table.</p>"
 . "<p>Error code " . mysql_errno($DBConnect)
 . ": " . mysql_error($DBConnect) . "</p>";
 else {
 $SubscriberID = mysql_insert_id($DBConnect);
 echo "<p>" . htmlentities($SubscriberName) .
 ", you are now subscribed to our

newsletter.
";
 echo "Your subscriber ID is

 $SubscriberID.
";
 echo "Your email address is " .
 htmlentities($SubscriberEmail)

. ".</p>";
 }
 mysql_close($DBConnect);

11. Finally, add the following code immediately before the closing
PHP script tag. Th is code uses advanced escaping to display
the Web form if appropriate.

In a produc-
tion environ-
ment, you
would nor-
mally have

separate fi elds for a
user ID and the table’s
primary key.

468

C H A P T E R 8 Manipulating MySQL Databases with PHP

if ($ShowForm) {
 ?>
<form action="NewsletterSubscribe.php" method="POST">
<p>Your Name:
<input type="text" name="SubName" value="<?php echo
$SubName; ?>" /></p>
<p>Your Email Address:
<input type="text" name="SubEmail" value="<?php echo
$SubEmail; ?>" /></p>
<p><input type="Submit" name="Submit" value="Submit"
/></p>
</form>
 <?php
}

12. Save the fi le as NewsletterSubscribe.php in the Chapter
directory for Chapter 8 and upload the fi le to the Web server.

13. Open the NewsletterSubscribe.php fi le in your Web browser
by entering the following URL: http://<yourserver>/PHP_
Projects/Chapter.08/Chapter/NewsletterSubscribe.php. Enter
values into the New Subscriber Registration form and click
the Submit button. You should be assigned a new subscriber
ID of 1 the fi rst time you submit a valid name and address, a
2 the second time, and so forth. You should see a Web page
similar to the one in Figure 8-4, depending on which sub-
scriber you are.

Figure 8-4 Newsletter Subscriber Web form results

Returning Information on Affected Records
Th e functions mysql_affected_rows() and mysql_info() return
information on the records that were aff ected by an INSERT,
UPDATE, or DELETE query. First, you will learn how to use the
mysql_affected_rows() function.

469

Manipulating Records

Using the mysql_affected_rows() Function
As discussed earlier, with queries that return results, such as SELECT
queries, you can use the mysql_num_rows() function to fi nd the
number of records returned from the query. However, with queries
that modify tables but do not return results, such as INSERT, UPDATE,
and DELETE queries, you can use the mysql_affected_rows() func-
tion to determine the number of aff ected rows. You pass to the
mysql_affected_rows() function the variable that contains the data-
base connection returned from the mysql_connect() function—not
the variable containing the result pointer from the mysql_query()
function. For example, the following statements display the number
of rows aff ected by an UPDATE query. Figure 8-5 shows the output in a
Web browser.
$SQLstring = "UPDATE company_cars SET mileage=50112.3
 WHERE license='AK-1234'";
$QueryResult = @mysql_query($SQLstring, $DBConnect);
if ($QueryResult === FALSE)
 echo "<p>Unable to execute the query.</p>"
 . "<p>Error code " . mysql_errno($DBConnect)
 . ": " . mysql_error($DBConnect) . "</p>";
else
 echo "<p>Successfully updated "
 . mysql_affected_rows($DBConnect) . "
 record(s).</p>";

Figure 8-5 Output of the mysql_affected_rows() function for an
UPDATE query

Th e following code contains another example of the
mysql_affected_rows() function, this time with a DELETE query:
$SQLstring = "DELETE FROM company_cars WHERE license='AK-1234'";
$QueryResult = @mysql_query($SQLstring, $DBConnect);
if ($QueryResult === FALSE)
 echo "<p>Unable to execute the query.</p>"
 . "<p>Error code " . mysql_errno($DBConnect)
 . ": " . mysql_error($DBConnect) . "</p>";

470

C H A P T E R 8 Manipulating MySQL Databases with PHP

else
 echo "<p>Successfully deleted "
 . mysql_affected_rows($DBConnect) . " record(s).</p>";

Using the mysql_info() Function
For queries that add or update records, or that alter a table’s structure,
you can use the mysql_info() function to return information about the
query. Th is function returns the number of operations for various types
of actions, depending on the type of query. For example, with INSERT
queries, the mysql_info() function returns the number of records
added and duplicated, along with the number of warnings. However,
for LOAD DATA queries, the mysql_info() function returns the num-
ber of records added, deleted, and skipped, along with the number of
warnings. As with the mysql_affected_rows() function, you pass
to the mysql_info() function the variable that contains the database
connection from the mysql_connect() function. Th e mysql_info()
function returns information about the last query that was executed on
the database connection. However, the mysql_info() function returns
information about queries that match one of the following formats:

INSERT INTO . . . (. . .) SELECT . . . •

INSERT INTO . . . (. . .) VALUES (. . .), (. . .), (. . .) •

LOAD DATA INFILE . . . •

ALTER TABLE . . . •

UPDATE . . . •

For any queries that do not match one of the preceding formats, the
mysql_info() function returns an empty string. Notice that the format
for adding records with the INSERT and VALUES keywords includes mul-
tiple value sets. Th e mysql_info() function only returns query infor-
mation when you add multiple records with the INSERT keyword. For
example, the mysql_info() function in the following example returns
an empty string because the INSERT query only adds a single record:
$SQLstring = "INSERT INTO company_cars " .
 " (license, model_year, make, model, mileage) " .
 " VALUES('CPQ-893', 2011, 'Honda', 'Insight', " .
 " 49.2)";
$QueryResult = @mysql_query($SQLstring, $DBConnect);
if ($QueryResult === FALSE)
 echo "<p>Unable to execute the query.</p>"
 . "<p>Error code " . mysql_errno($DBConnect)
 . ": " . mysql_error($DBConnect) . "</p>";
else {
 echo "<p>Successfully added the record.</p>";
 echo "<p>" . mysql_info($DBConnect) . "</p>";
}

471

Manipulating Records

In comparison, the following statements display the query informa-
tion shown in Figure 8-6 because the INSERT query adds multiple
records:
$SQLstring = "INSERT INTO company_cars " .
 " (license, model_year, make, model, mileage) " .
 " VALUES " .
 " ('CPQ-894', 2011, 'Honda', 'Insight', 49.2), " .
 " ('CPQ-895', 2011, 'Honda', 'Insight', 17.9), " .
 " ('CPQ-896', 2011, 'Honda', 'Insight', 22.6)";
$QueryResult = @mysql_query($SQLstring, $DBConnect);
if ($QueryResult === FALSE)
 echo "<p>Unable to execute the query.</p>"
 . "<p>Error code " . mysql_errno($DBConnect)
 . ": " . mysql_error($DBConnect) . "</p>";
else {
 echo "<p>Successfully added the record.</p>";
 echo "<p>" . mysql_info($DBConnect) . "</p>";
}

Figure 8-6 Output of the mysql_info() function for an INSERT query
that adds multiple records

Th e mysql_info() function also returns information for LOAD DATA
queries. Th e following statements display the output shown in
Figure 8-7:
$SQLstring = "LOAD DATA INFILE 'company_cars.txt'
 INTO TABLE company_cars;";
$QueryResult = @mysql_query($SQLstring, $DBConnect);
if ($QueryResult === FALSE)
 echo "<p>Unable to execute the query.</p>"
 . "<p>Error code " . mysql_errno($DBConnect)
 . ": " . mysql_error($DBConnect) . "</p>";
else {
 echo "<p>Successfully added the record.</p>";
 echo "<p>" . mysql_info($DBConnect) . "</p>";
}

472

C H A P T E R 8 Manipulating MySQL Databases with PHP

Figure 8-7 Output of the mysql_info() function for a LOAD DATA query

Short Quiz

1. What statement is used to add multiple records to a database
from an external fi le?

2. Explain the purpose of the three keywords in the following
SQL query:
$SQLstring = "UPDATE company_cars SET mileage=50112.3
 WHERE license='AK-1234'";

3. What records would be deleted from the company_cars table
using the following query?
$SQLstring = "DELETE FROM company_cars";

4. What argument is passed to the mysql_affected_rows()
function to determine the number of rows aff ected by a
query?

Retrieving Records
In this section, you will learn how to use PHP to retrieve records
from tables in a database.

Working with Query Results
Recall that for SQL statements that return results, such as SELECT and
SHOW statements, the mysql_query() function returns a result pointer
that represents the query results. You assign the result pointer to a
variable, which you can use to access the resultset in PHP. To access

473

Retrieving Records

the database records through the result pointer, you must use one of
the functions listed in Table 8-2.

Function Description
mysql_data_seek($Result, position) Moves the result pointer to a specifi ed row in the

resultset

mysql_fetch_array($Result,

MYSQL_ASSOC | MYSQL_NUM |

MYSQL_BOTH)

Returns the fi elds in the current row of a resultset
into an indexed array, associative array, or both,
and moves the result pointer to the next row

mysql_fetch_assoc($Result) Returns the fi elds in the current row of a resultset
into an associative array and moves the result
pointer to the next row

mysql_fetch_lengths($Result) Returns the fi eld lengths for the current row in a
resultset into an indexed array

mysql_fetch_row($Result) Returns the fi elds in the current row of a resultset
into an indexed array and moves the result pointer
to the next row

Table 8-2 Common PHP functions for accessing database results

First, you will learn how to use the mysql_fetch_row() function to
retrieve fi elds into an indexed array.

Retrieving Records into an Indexed Array
In Chapter 5, you learned how to use the fgets() function, which
returns a line from a text fi le and moves the fi le pointer to the next
line. Th e mysql_fetch_row() function is very similar, in that it
returns the fi elds in the current row of a resultset into an indexed
array and moves the result pointer to the next row. You can then use
the array to access the individual fi elds in the row. As an example, the
following code displays the contents of the fi elds in the fi rst row of the
company_cars table in the vehicle_fl eet database:
$SQLstring = "SELECT * FROM company_cars";
$QueryResult = @mysql_query($SQLstring, $DBConnect);
if ($QueryResult === FALSE)
 echo "<p>Unable to execute the query.</p>"
 . "<p>Error code " . mysql_errno($DBConnect)
 . ": " . mysql_error($DBConnect) . "</p>";
else {
 $Row = mysql_fetch_row($QueryResult);
 echo "<p>License: {$Row[0]}
";
 echo "Make: {$Row[1]}
";
 echo "Model: {$Row[2]}
";
 echo "Mileage: {$Row[3]}
";
 echo "Year: {$Row[4]}</p>";
}

474

C H A P T E R 8 Manipulating MySQL Databases with PHP

Th e mysql_fetch_row() function in the preceding example returns
the fi elds in the current row or a value of FALSE when it reaches
the last row in the resultset. Th is allows you to iterate through all
the rows in a resultset. Th e following code shows a more complete
example that uses a while statement to display all of the rows in the
company_cars table to an HTML table. Figure 8-8 shows how the
table appears in a Web browser.
$SQLstring = "SELECT * FROM company_cars";
$QueryResult = @mysql_query($SQLstring, $DBConnect);
echo "<table width='100%' border='1'>\n";
echo "<tr><th>License</th><th>Make</th><th>Model</th>
 <th>Mileage</th><th>Year</th></tr>\n";
while (($Row = mysql_fetch_row($QueryResult)) !== FALSE) {
 echo "<tr><td>{$Row[0]}</td>";
 echo "<td>{$Row[1]}</td>";
 echo "<td>{$Row[2]}</td>";
 echo "<td align='right'>{$Row[3]}</td>";
 echo "<td>{$Row[4]}</td></tr>\n";
}
echo "</table>\n";

Figure 8-8 Output of the company_cars table in a Web browser

To create a script that selects and displays all of the records in the
subscribers table:

1. Create a new document in your text editor.

475

Retrieving Records

2. Type the <!DOCTYPE> declaration, <html> element, header
information, and <body> element. Use the strict DTD and
“Newsletter Subscribers” as the content of the <title> element.

3. Add the following header and script section to the end of the
document body:
<h1>Newsletter Subscribers</h1>
<?php
?>

4. Add the following include() statement to the script section:
include("inc_db_newsletter.php");

5. After the include() statement, add the following statements to
handle a successful selection of the newsletter database:
if ($DBConnect !== FALSE) {
 mysql_close($DBConnect);
}

6. Add the following variable declarations and mysql_query()
statement immediately before the mysql_close() function. Th e
mysql_query() statement selects all existing records from the
subscribers table.
$TableName = "subscribers";
$SQLstring = "SELECT * FROM $TableName";
$QueryResult = @mysql_query($SQLstring, $DBConnect);

7. Add the following statements immediately before the
mysql_close() function. Th ese statements use the
mysql_fetch_row() function to display the results in a table:
echo "<table width='100%' border='1'>\n";
echo "<tr><th>Subscriber ID</th>" .
 "<th>Name</th><th>Email</th>" .
 "<th>Subscribe Date</th>" .
 "<th>Confi rm Date</th></tr>\n";
while (($Row = mysql_fetch_row($QueryResult)) !== FALSE) {
 echo "<tr><td>{$Row[0]}</td>";
 echo "<td>{$Row[1]}</td>";
 echo "<td>{$Row[2]}</td>";
 echo "<td>{$Row[3]}</td>";
 echo "<td>{$Row[4]}</td></tr>\n";
};
echo "</table>\n";

8. Save the fi le as ShowNewsletterSubscribers.php in the
Chapter directory for Chapter 8, and then upload the document
to the Web server.

476

C H A P T E R 8 Manipulating MySQL Databases with PHP

9. Open ShowNewsletterSubscribers.php in your Web browser by
entering the following URL: http://<yourserver>/PHP_Projects/
Chapter.08/Chapter/ShowNewsletterSubscribers.php. Your Web
page should look like Figure 8-9, although you may have added
or deleted more entries.

10. Close your Web browser window.

Figure 8-9 Output of the ShowNewsletterSubscribers.php script

Retrieving Records into an Associative Array
Th e mysql_fetch_assoc() function returns the fi elds in the cur-
rent row of a resultset into an associative array and moves the
result pointer to the next row. Th e primary diff erence between the
mysql_fetch_assoc() function and the mysql_fetch_row() func-
tion is that instead of returning the fi elds into an indexed array, the
mysql_fetch_assoc() function returns the fi elds into an associative
array and uses each fi eld name as the array key. For example, the fol-
lowing code uses the mysql_fetch_assoc() function to display the
contents of the fi elds in the fi rst row in the company_cars table of the
vehicle_fl eet database. Notice that the echo statements refer to keys
instead of indexes in the $Row[] array.
$Row = mysql_fetch_assoc($QueryResult);
echo "<p>License: {$Row['license']}
";
echo "Make: {$Row['make']}
";
echo "Model: {$Row['model']}
";
echo "Mileage: {$Row['mileage']}
";
echo "Year: {$Row['year']}</p>";

477

Retrieving Records

Th e following code shows an associative array version of the while
statement that displays all of the rows in the company_cars table to an
HTML table:
$SQLstring = "SELECT * FROM company_cars";
$QueryResult = @mysql_query($SQLstring, $DBConnect);
echo "<table width='100%' border='1'>\n";
echo "<tr><th>License</th><th>Make</th><th>Model</th>
 <th>Mileage</th><th>Year</th></tr>\n";
while (($Row = mysql_fetch_assoc($QueryResult)) !== FALSE) {
 echo "<tr><td>{$Row['license']}</td>";
 echo "<td>{$Row['make']}</td>";
 echo "<td>{$Row['model']}</td>";
 echo "<td align='right'>{$Row['mileage']}</td>";
 echo "<td>{$Row['year']}</td></tr>\n";
}
 echo "</table>\n";

To change the query statement in ShowNewsletterSubscribers.php
that selects all the records in the subscribers table so that it uses an
associative array:

1. Return to the ShowNewsletterSubscribers.php document in
your text editor.

2. Replace the mysql_fetch_row() function with a
mysql_fetch_assoc() function.

3. Modify the echo statements in the while statement so they ref-
erence the keys in the associative array instead of the index val-
ues. Your modifi ed code should appear as follows:
 while (($Row = mysql_fetch_assoc($QueryResult))
 !== FALSE) {
 echo "<tr><td>{$Row['subscriberID']}</td>";
 echo "<td>{$Row['name']}</td>";
 echo "<td>{$Row['email']}</td>";
 echo "<td>{$Row['subscribe_date']}</td>";
 echo "<td>{$Row['confi rmed_date']}</td></tr>\n";
 };

4. Save the ShowNewsletterSubscribers.php fi le and upload it
to the server.

5. Open ShowNewsletterSubscribers.php in your Web browser by
entering the following URL: http://<yourserver>/PHP_Projects/
Chapter.08/Chapter/ShowNewsletterSubscribers.php. Your Web
page should look the same as it did before you modifi ed the code
to use the mysql_fetch_assoc() function.

6. Close your Web browser window.

478

C H A P T E R 8 Manipulating MySQL Databases with PHP

Closing Query Results
When you are fi nished working with query results retrieved with the
mysql_query() function, you should use the mysql_free_result()
function to close the resultset. Th is ensures that the resultset doesn’t
keep taking up space in your Web server’s memory. (As you’ll recall,
you need to close a database connection for the same reason.) If you
do not call mysql_free_result(), the memory used by the resultset
will be freed when the script completes. To close the resultset, pass
to the mysql_free_result() function the variable containing the
result pointer from the mysql_query() function. Th e following code
uses the mysql_free_result() function to close the $QueryResult
variable:
$SQLstring = "SELECT * FROM company_cars";
$QueryResult = @mysql_query($SQLstring, $DBConnect);
if ($QueryResult === FALSE)
 echo "<p>Unable to execute the query.</p>"
 . "<p>Error code " . mysql_errno($DBConnect)
 . ": " . mysql_error($DBConnect) . "</p>";
else
 echo "<p>Successfully executed the query.</p>";
...
mysql_free_result($QueryResult);
mysql_close($DBConnect);

To add a mysql_free_result() function to the
ShowNewsletterSubscribers.php script:

1. Return to the ShowNewsletterSubscribers.php document in
your text editor.

2. Add the following statement above the mysql_close()
statement:
mysql_free_result($QueryResult);

3. Save the ShowNewsletterSubscribers.php fi le and upload it to
the Web server. Th en open the script in your Web browser by
entering the following URL: http://<yourserver>/PHP_Projects/
Chapter.08/Chapter/ShowNewsletterSubscribers.php. Your
Web page should look the same as it did before you added the
mysql_free_result() function.

4. Close your Web browser window.

Accessing Query Result Information
As you have learned, the functions mysql_affected_rows()
and mysql_info() return information on the records that were
aff ected by a query. You also learned that the mysql_num_rows()

You can only
use the
mysql_
free_
result()

function with SQL state-
ments that return results,
such as SELECT queries,
and only when the SQL
statement successfully
returned results. If you
attempt to use the
mysql_free_result()
function with SQL state-
ments that do not return
results, such as the
CREATE DATABASE and
CREATE TABLE state-
ments, or on an empty
resultset, you will receive
an error.

479

Retrieving Records

function returns the number of rows in a query result. You use
the mysql_num_fi elds() function to return the number of fi elds
in a query result. As with the mysql_num_rows() function, the
mysql_num_fi elds() function accepts a database connection variable
as an optional argument.

Th e following code demonstrates how to use both functions with
the query results returned from the vehicle_fl eet database. If the
number of rows and fi elds in the query result are not equal to zero, an
echo statement displays the number of rows and fi elds. However, if
the number of rows and fi elds in the query result are equal to zero, an
echo statement displays “Your query returned no results.” Figure 8-10
shows the output if the company_cars table in the vehicle_fl eet
database contains 11 rows and 5 fi elds.
$SQLstring = "SELECT * FROM company_cars";
$QueryResult = @mysql_query($SQLstring, $DBConnect);
if ($QueryResult === FALSE)
 echo "<p>Unable to execute the query.</p>"
 . "<p>Error code " . mysql_errno($DBConnect)
 . ": " . mysql_error($DBConnect) . "</p>";
else
 echo "<p>Successfully executed the query.</p>";
$NumRows = mysql_num_rows($QueryResult);
$NumFields = mysql_num_fi elds($QueryResult);
if ($NumRows != 0 && $NumFields != 0)
 echo "<p>Your query returned " .
 mysql_num_rows($QueryResult) . " rows and "
 . mysql_num_fi elds($QueryResult) . " fi elds.</p>";
else
 echo "<p>Your query returned no results.</p>";
mysql_close($DBConnect);

Figure 8-10 Output of the number of rows and fi elds returned from a query

480

C H A P T E R 8 Manipulating MySQL Databases with PHP

To add statements to the ShowNewsletterSubscribers.php script that
display the number of returned rows and fi elds:

1. Return to the ShowNewsletterSubscribers.php document in
your text editor.

2. Add the following statements above the
mysql_close($DBConnect); statement:
$NumRows = mysql_num_rows($QueryResult);
$NumFields = mysql_num_fi elds($QueryResult);
echo "<p>Your query returned the above "
 . mysql_num_rows($QueryResult)
 . " rows and ". mysql_num_fi elds($QueryResult)
 . " fi elds:</p>";

3. Save the ShowNewsletterSubscribers.php fi le, upload it to the
Web server, and open it in your Web browser by entering the
following URL: http://<yourserver>/PHP_Projects/Chapter.08/
Chapter/ShowNewsletterSubscribers.php. Your Web page should
look like Figure 8-11.

4. Close your Web browser window.

Figure 8-11 The Newsletter Subscribers table with row and fi eld counts

481

Retrieving Records

Short Quiz

1. What two functions return the fi elds in the current row of a
resultset into an indexed array and move the pointer to the
next row?

2. Describe the diff erences between the mysql_fetch_row()
function and the mysql_fetch_assoc() function.

3. Contrast the mysql_num_rows() function and the
mysql_num_fi elds() function.

4. What function is used to close the query resultset when you
are fi nished working with the results?

5. Explain why the mysql_free_result() function does
not work with the CREATE DATABASE and CREATE TABLE
statements.

Summing Up

Th e • mysql_connect() function opens a connection to a MySQL
database server.

Th e • mysql_close() function closes a database connection.

Th e • mysql_errno() function returns the error code from the last
attempted MySQL function call or zero if no error occurred.

Th e • mysql_error() function returns the error message from the
last attempted MySQL function call or returns an empty string if
no error occurred.

Th e • die() and exit() functions terminate script execution.

Th e error control operator (• @) suppresses error messages.

You use the • mysql_create_db() function to create a new database.

Th e • mysql_select_db() function selects a database.

You use the • mysql_drop_db() function to delete a database.

Th e • mysql_query() function sends SQL statements to MySQL.

482

C H A P T E R 8 Manipulating MySQL Databases with PHP

A result pointer is a special type of variable that refers to the •
 currently selected row in a resultset.

You use the • CREATE TABLE statement with the mysql_query()
function to create a table.

Th e • PRIMARY KEY clause indicates a fi eld or fi elds that will be used
as a referential index for the table.

Th e • AUTO_INCREMENT clause creates a fi eld that is automatically
updated with the next sequential value for that column.

Th e • NOT NULL clause creates a fi eld that must contain data.

You use the • DROP TABLE statement with the mysql_query()
 function to delete a table.

You use the • LOAD DATA statement and the mysql_query() function
with a local text fi le to add multiple records to a database.

You use the • UPDATE statement with the mysql_query() function to
update records in a table.

You use the • DELETE statement with the mysql_query() function to
delete records from a table.

Th e • mysql_info() function returns the number of operations for
various types of actions, depending on the type of query.

Th e • mysql_fetch_row() function returns the fi elds in the cur-
rent row of a resultset into an indexed array and moves the result
pointer to the next row.

Th e • mysql_fetch_assoc() function returns the fi elds in the cur-
rent row of a resultset into an associative array and moves the
result pointer to the next row.

Th e • mysql_free_result() function closes a resultset.

Th e • mysql_num_rows() function returns the number of rows in
a query result, and the mysql_num_fi elds() function returns the
number of fi elds in a query result.

Comprehension Check

1. Which of the following functions opens a database connection?

a. open()

b. mysql_open()

c. openConnection()

d. mysql_connect()

483

Comprehension Check

2. Which of the following functions closes a database
connection?

a. close()

b. mysql_close()

c. mysql_free()

d. mysql_free_connect()

3. To which of the following functions do you need to pass a
variable representing the database connection? (Choose all
that apply.)

a. mysql_get_client_info()

b. mysql_get_host_info()

c. mysql_get_proto_info()

d. mysql_get_server_info()

4. Which of the following functions terminates script execution?
(Choose all that apply.)

a. exit()

b. bye()

c. die()

d. quit()

5. Describe three types of errors that can occur when accessing
MySQL databases and other types of data sources with PHP.

6. Th e following code structure prevents MySQL error messages
from being displayed if the database connection is not avail-
able. True or False?
$DBConnect = mysql_connect("localhost", "dongosselin",
 "rosebud");
if (!$DBConnect)
 echo "<p>The database server is not available.</p>";
else {
 echo "<p>Successfully connected to the database

 server.</p>";
 mysql_close($DBConnect);
}

484

C H A P T E R 8 Manipulating MySQL Databases with PHP

7. Which of the following functions reports the error message
from the last failed database connection attempt?

a. mysql_errmsg()

b. mysql_error_msg()

c. mysql_errno()

d. mysql_error()

8. Which of the following characters suppresses error messages
in PHP?

a. *

b. &

c. #

d. @

9. What is the correct syntax for selecting a database with the
mysql_select_db() function? (Select all that apply.)

a. mysql_select_db(connection)

b. mysql_select_db(database)

c. mysql_select_db(database, connection)

d. database = mysql_select_db(connection)

10. Write a simple code segment that demonstrates how to use a
mysql_query() function to prevent your code from attempt-
ing to create a table that already exists.

11. Explain what a result pointer is and how to create and use one.

12. Which of the following SQL keywords creates an auto-
 incrementing fi eld?

a. AUTO

b. INCREMENT

c. AUTO_INCREMENT

d. AUTOINCREMENT

485

Comprehension Check

13. Which of the following statements is used to create a query
string in $SQLstring to delete the company_cars table?

a. $SQLstring = "DELETE TABLE company_cars";

b. $SQLstring = "DROP TABLE company_cars";

c. $SQLstring = "REMOVE TABLE company_cars";

d. $SQLstring = "CANCEL TABLE company_cars";

14. When using the INSERT and VALUE keywords to add records
to a table using the mysql_query() function, what keyword is
used to indicate that there is no value for a fi eld?

15. Which of the following functions returns the number of rows
aff ected by queries that do not return results, such as INSERT,
UPDATE, and DELETE queries?

a. mysql_affected_rows()

b. mysql_rows()

c. mysql_get_changed()

d. mysql_fetch_rows()

16. Th e function returns the number of opera-
tions for various types of actions, depending on the type of
query.

a. mysql_get_info()

b. mysql_operations()

c. mysql_info()

d. mysql_num_rows()

17. Which of the following functions returns the fi elds in the
 current row of a resultset into an indexed array? (Select all
that apply.)

a. mysql_fetch_data()

b. mysql_fetch_array()

c. mysql_index_row()

d. mysql_fetch_row()

486

C H A P T E R 8 Manipulating MySQL Databases with PHP

18. Which of the following functions returns the fi elds in the
 current row of a resultset into an associative array?

a. mysql_assoc_fetch()

b. mysql_fetch_keys()

c. mysql_fetch_assoc()

d. mysql_fetch_index()

19. Which of the following functions closes a resultset to ensure
that it doesn’t keep taking up space in your Web server’s
memory?

a. mysql_free_result()

b. mysql_result_close()

c. mysql_free()

d. mysql_close_result()

20. Write a simple code segment that demonstrates how to use
the mysql_num_rows() and mysql_num_fi elds() functions to
determine whether a SQL query returned results.

Reinforcement Exercises

Exercise 8-1

In this project, you will create a Web page that allows visitors to your
site to sign a guest book that is saved to a database.

1. Create a new document in your text editor and type the
<!DOCTYPE> declaration, <html> element, document head, and
<body> element. Use the strict DTD and “Guest Book” as the
content of the <title> element.

2. Add the following text and elements to the document body:
<h2>Enter your name to sign our guest book</h2>
<form method="POST" action="SignGuestBook.php">
<p>First Name <input type="text" name="fi rst_name"
/></p>
<p>Last Name <input type="text" name="last_name"
/></p>
<p><input type="submit" value="Submit" /></p>
</form>

487

Reinforcement Exercises

3. Save the document as GuestBook.html in the Projects
 directory for Chapter 8.

4. Create a new document in your text editor and type the
<!DOCTYPE> declaration, <html> element, document head, and
<body> element. Use the strict DTD and “Sign Guest Book” as
the content of the <title> element.

5. Add the following script section to the document body:
<?php
?>

6. Add the following statements to the script section to ensure
that visitors enter their fi rst and last names:
if (empty($_POST['fi rst_name']) || empty($_
POST['last_name']))
 echo "<p>You must enter your fi rst and last
 name! Click your browser's Back button to
 return to the Guest Book form.</p>";

7. Add the following statement to the script section to connect
to the database. Replace host with the host name of your
MySQL server, and user and password with the MySQL user
name and password you created in Chapter 7.
else {
 $DBConnect = @mysql_connect("host", "user",
 "password");
 if ($DBConnect === FALSE)
 echo "<p>Unable to connect to the database

 server.</p>"
 . "<p>Error code " . mysql_errno()
 . ": " . mysql_error() . "</p>";

8. Add the following statements to the end of the script section
to create a database named guestbook if it does not already
exist:
 else {
 $DBName = "guestbook";
 if (!@mysql_select_db($DBName, $DBConnect)) {
 $SQLstring = "CREATE DATABASE $DBName";
 $QueryResult = @mysql_query($SQLstring,
 $DBConnect);
 if ($QueryResult === FALSE)
 echo "<p>Unable to execute the

 query.</p>"
 . "<p>Error code " . mysql_
 errno($DBConnect)
 . ": " . mysql_error($DBConnect)

 . "</p>";

488

C H A P T E R 8 Manipulating MySQL Databases with PHP

 else
 echo "<p>You are the fi rst

 visitor!</p>";
 }
 mysql_select_db($DBName, $DBConnect);

9. Add the following statements to the end of the script section
to create a table named count if it does not already exist. Th e
table consists of a single auto-incrementing primary key fi eld
named countID.
 $TableName = "visitors";
 $SQLstring = "SHOW TABLES LIKE '$TableName'";
 $QueryResult = @mysql_query($SQLstring, $DBConnect);
 if (mysql_num_rows($QueryResult) == 0) {
 $SQLstring = "CREATE TABLE $TableName
 (countID SMALLINT
 NOT NULL AUTO_INCREMENT PRIMARY KEY,
 last_name VARCHAR(40), fi rst_name VARCHAR(40))";
 $QueryResult = @mysql_query($SQLstring,
 $DBConnect);
 if ($QueryResult === FALSE)
 echo "<p>Unable to create the table.</p>"
 . "<p>Error code " . mysql_
 errno($DBConnect)
 . ": " . mysql_error($DBConnect) .
 "</p>";

10. Finally, add the following statements to the end of the script
section. Th ese mysql_query() statements add the visitor to the
database. Th e last statement closes the database connection.
 $LastName = stripslashes($_
 POST['last_name']);
 $FirstName = stripslashes($_
 POST['fi rst_name']);
 $SQLstring = "INSERT INTO $TableName
 VALUES(NULL, '$LastName',
 '$FirstName')";
 $QueryResult = @mysql_
 query($SQLstring, $DBConnect);
 if ($QueryResult === FALSE)
 echo "<p>Unable to execute the

 query.</p>"
 . "<p>Error code " . mysql_
 errno($DBConnect)
 . ": " . mysql_
 error($DBConnect) . "</p>";
 else
 echo "<h1>Thank you for signing

 our guest book!</h1>";
 }
 mysql_close($DBConnect);
 }
}

489

Reinforcement Exercises

11. Save the document as SignGuestBook.php in the Projects
directory for Chapter 8. Upload both SignGuestBook.php and
GuestBook.html to the server.

12. Open GuestBook.html in your Web browser by entering
the following URL: http://<yourserver>/PHP_Projects/
Chapter.08/Projects/GuestBook.html. Test the form to see if
you can add your name to the database.

13. Close your Web browser window.

Exercise 8-2

In this project, you will add a document to the Guest Book program
you created in Reinforcement Exercise 8-1. Th is document displays
the entries in the guest book.

1. Create a new document in your text editor and type the
<!DOCTYPE> declaration, <html> element, document head, and
<body> element. Use the strict DTD and “Guest Book Posts”
as the content of the <title> element.

2. Add the following script section to the document body:
<?php
?>

3. Add the following statement to the script section to connect
to the database. Replace host with the host name of your
MySQL server, and user and password with the MySQL user
name and password you created in Chapter 7.
$DBConnect = @mysql_connect("host", "user", "password ");
if ($DBConnect === FALSE)
 echo "<p>Unable to connect to the database

 server.</p>"
 . "<p>Error code " . mysql_errno()
 . ": " . mysql_error() . "</p>";

4. Add the following statements to the end of the script section
to connect to the guestbook database. If the database does
not exist, a message reports that the guest book does not con-
tain any entries.
else {
 $DBName = "guestbook";
 if (!@mysql_select_db($DBName, $DBConnect))
 echo "<p>There are no entries in the guest

 book!</p>";

490

C H A P T E R 8 Manipulating MySQL Databases with PHP

5. Add the following statements to the end of the script section
to select all the records in the visitors table. If no records
are returned, a message reports that the guest book does not
contain any entries.
 else {
 $TableName = "visitors";
 $SQLstring = "SELECT * FROM $TableName";
 $QueryResult = @mysql_query($SQLstring,
 $DBConnect);
 if (mysql_num_rows($QueryResult) == 0)
 echo "<p>There are no entries in

 the guest book!</p>";

6. Add the following statements to the end of the script section
to display the records returned from the visitors table:
 else {
 echo "<p>The following visitors have

 signed our guest book:</p>";
 echo "<table width='100%' border='1'>";
 echo "<tr><th>First Name</th><th>Last

 Name</th></tr>";
 while (($Row = mysql_fetch_
 assoc($QueryResult)) !== FALSE) {
 echo "<tr><td>{$Row['fi rst_
 name']}</td>";
 echo "<td>{$Row['last_name']}</
 td></tr>";
 }

7. Add the following statements to the end of the script section
to close the database connection and the result pointer:
 }
 mysql_free_result($QueryResult);
 }
 mysql_close($DBConnect);
}

8. Save the document as ShowGuestBook.php in the Projects
directory for Chapter 8.

9. Return to the GuestBook.html document in your text edi-
tor and add the following text and elements to the end of the
document body:
<p>Show Guest Book</p>

491

Reinforcement Exercises

10. Save the GuestBook.html fi le, and then open it in your Web
browser by entering the following URL: http://<yourserver>/
PHP_Projects/Chapter.08/Projects/GuestBook.html. Click the
Show Guest Book link to see if the script functions correctly.

11. Close your Web browser window.

Exercise 8-3

Create a Web page to be used for storing software development bug
reports in a MySQL database. Include fi elds such as product name
and version, type of hardware, operating system, frequency of occur-
rence, and proposed solutions. Include links on the main page that
allow you to create a new bug report and update an existing bug
report.

Exercise 8-4

Create a Web site for tracking, documenting, and managing the
process of interviewing candidates for professional positions. On
the main page, include a form with fi elds for the interviewer’s name,
position, and date of interview. Also include fi elds for entering the
candidate’s name, communication abilities, professional appearance,
computer skills, business knowledge, and interviewer’s comments.
Clicking the Submit button should save the data in a MySQL data-
base. Include a link for opening a document that displays each candi-
date’s interview information.

Exercise 8-5

Create a Web page that stores airline surveys in a MySQL database.
Include fi elds for the date and time of the fl ight, fl ight number, and
other fi elds you consider appropriate for identifying a particular
fl ight. Also, include groups of radio buttons that allow the user to rate
the airline on the following criteria:

Friendliness of customer staff •

Space for luggage storage •

Comfort of seating •

Cleanliness of aircraft •

Noise level of aircraft •

492

C H A P T E R 8 Manipulating MySQL Databases with PHP

Th e radio buttons for each question should have the following
options: No Opinion, Poor, Fair, Good, and Excellent. Include a View
Past Survey Results button on the main survey page that displays a
list of past survey results.

Discovery Projects
Th e Chinese Zodiac site is a comprehensive project that will be
updated in the Discovery Projects in each chapter. All fi les for the
Chinese Zodiac site will be saved in a folder named ChineseZodiac
in the root Web folder on the server, and all database tables will be
stored in the chinese_zodiac database.

Discovery Project 8-1

Th is Discovery Project will build upon Discovery Project 7-2, in
which you created a zodiacfeedback table to store the date, time,
sender, message content, and display status of user feedback about the
Chinese Zodiac Web site.

Now you will create the user interface—a Web form that contains
an appropriate title, subtitle, and instructions. Include form inputs
to enter the sender’s name (a text box for the sender fi eld), message
(a text area for the message fi eld), whether the message should be
publicly displayed (a check box for the public_message fi eld), and a
Submit button to transfer the data to the processing script, process_
zodiac_feedback.php, which you will create in Discovery Project 8-2.
Save the fi le as zodiac_feedback.html and upload the fi le to the
ChineseZodiac directory on the server. Open the Web form in the
browser to verify that all the input fi elds are displayed properly.

Discovery Project 8-2

In this project, you will create the process_ zodiac_feedback.php
script to process the form information submitted with the zodiac_
feedback.html Web form created in Project 8-1, and to store the
information in the zodiacfeedback table in the chinese_zodiac
database.

Open a blank document in the text editor and insert the following
script, replacing host with the name of the host of the MySQL server,
and user and password with your user name and password.
<?php
$db_name="chinese_zodiac";
//assign the connection and selected database to a variable
$DBConnect = mysql_connect("host", "user", "password ");

When you
were intro-
duced to Web
forms in
Chapter 4,

you learned that the best
way to validate user input
was to provide sample
input and/or restrict the
values that could be
entered in a form (like the
check box used to
restrict the value of the
display_message fi eld to
‘Y’ or ‘N’).

493

Discovery Projects

if ($DBConnect === FALSE)
 echo "<p>Unable to connect to the database server.</p>"
 . "<p>Error code " . mysql_errno()
 . ": " . mysql_error() . "</p>";
else {
 //select the database
 $db = mysql_select_db($db_name, $DBConnect);
 if ($db === FALSE) {
 echo "<p>Unable to connect to the database

 server.</p>"
 . "<p>Error code " . mysql_errno()
 . ": " . mysql_error() . "</p>";
 mysql_close($DBConnect);
 $DBConnect = FALSE;
 }
}
?>

Save the fi le as inc_connect.php and upload the fi le to the Includes
subdirectory of the ChineseZodiac directory on the Web server.

Once all fi elds have been validated, you will “include” the inc_con-
nect.php fi le to connect to the server and select the chinese_zodiac
database. Assign the table name to a variable $db_table.

Use the INSERT and VALUES keywords with the mysql_query() func-
tion to insert the values from the form into the appropriate fi elds in
the zodiacfeedback table. Be sure to store the system date and time
in the message_date and message_time fi elds. Include a message that
thanks the user for entering a comment and reports that the com-
ment was successfully added.

Save the form as process_zodiac_feedback.php and upload the fi le
to the ChineseZodiac directory on the server. Test the script by open-
ing zodiac_feedback.html in the browser and completing and submit-
ting the form four times. Be sure to select ‘Y’ and ‘N’ alternately, so
that some messages will be public and others will be private.

Open phpMyAdmin and use the Browse command to verify that four
rows have been successfully written to the zodiacfeedback table.

Discovery Project 8-3

Create a new PHP script in your text editor to select all rows in the
zodiacfeedback table that contain a public_message value of ‘Y’ and
save the resultset to a $QueryResult variable. Remember that you
must include the inc_connect.php fi le.

Use the mysql_fetch_assoc() function to display the resultset in an
attractive table format. Save the fi le as view_zodiac_feedback.php
in the ChineseZodiac folder and upload the fi le to the server. Open

Because the
inc_connect.
php fi le con-
tains informa-
tion about the

database server and login
information, it would nor-
mally be stored in a direc-
tory outside of the
Web-accessible fi le struc-
ture, so that it would not
be directly accessible
from a Web browser. To
simplify this exercise, you
will store the inc_con-
nect.php fi le in the same
directory as the other
include fi les.

494

C H A P T E R 8 Manipulating MySQL Databases with PHP

the view_zodiac_feedback.php fi le in the browser to verify that all
public messages are displayed.

Discovery Project 8-4

Reopen inc_web_forms.php in the Includes subdirectory of the
ChineseZodiac directory. At the bottom of the fi le, add two sections,
one for each new link. Describe the process of the Zodiac Feedback
form in the fi rst, and describe the process of retrieving records from
a database in the second. Add [Test the Script] and [View the Script]
links for each. When clicked, the [Test the Script] links should open
the zodiac_feedback.html and view_zodiac_feedback.php scripts.
When the [View the Script] links are clicked, they should display the
source code for the process_zodiac_feedback.php and view_zodiac_
feedback.php scripts.

Add two new text links to the top of the fi le: Add Zodiac Feedback
and View Zodiac Feedback, which link to the two sections you added
to the bottom of the fi le.

Save the inc_web_forms.php fi le and upload it to the Includes folder
in the ChineseZodiac directory on the Web server.

Open inc_home_links_bar.php, which you created in Discovery
Project 3-3. Th e fi le is in the Includes folder in the ChineseZodiac
directory on the Web server. Add a Site Feedback text link that opens
zodiac_feedback.html. Save the inc_home_links_bar.php fi le and
upload the fi le to the server. Display the Chinese Zodiac Web site in
the browser and click the Site Feedback text link to test the site feed-
back process.

Discovery Project 8-5

Open inc_footer.php, which you created in Discovery Project 2-2
and modifi ed in Discovery Project 5-5. Modify the fi le to query a ran-
dom quote from the randomproverb table instead of the proverbs.txt
fi le. Use the count() MySQL aggregate function to determine the
number of proverbs in the table. Use the PHP rand() function to
determine which proverb to display.

Each time you retrieve a proverb from the randomproverb table,
update the display_count for that record with a MySQL query func-
tion using the index fi eld, as follows:
$SQLString = "UPDATE randomproverb SET display_count ".
 " = display_count + 1 WHERE proverb = " .
 $ProverbArray;

495

Discovery Projects

C H A P T E R 9
Managing State
Information

In this chapter, you will:

Learn about state information

Use hidden form fi elds to save state information

Use query strings to save state information

Use cookies to save state information

Use sessions to save state information

Information about individual visits to a Web site is called state
 information. HTTP was originally designed to be stateless, which
means that Web browsers stored no data about pages viewed on
previous visits to a Web site. In this chapter, you will learn how to
 maintain state, or store persistent data about a Web site visit, using
hidden form fi elds, query strings, cookies, and sessions. When you
maintain state, HTTP is said to be stateful.

Understanding State Information
Th e original stateless design of the Web allowed early Web servers to
process requests for Web pages quickly because they did not need to
remember any unique requirements for diff erent clients. Similarly,
Web browsers needed no special information to load a particular
Web page from a server. Although this stateless design was effi cient,
it was also limiting. Because a Web server could not remember indi-
vidual user information, the browser was forced to treat every visit
to a Web page as an entirely new session, even if the browser had just
opened a diff erent Web page on the same server. Th is design ham-
pered interactivity and limited the amount of personal interaction a
Web site could provide.

Th is chapter shows diff erent methods of maintaining state informa-
tion. Although the chapter focuses on establishing a user’s identity
and maintaining it as the user visits diff erent pages on a Web site, this
is only one example of what you can do when state information is
maintained.

Web portal sites provide individual users with customizable pages
made of sections, each of which displays content such as a calendar,
friends list, message queue, or news headlines. Users set prefer-
ences for what each section displays. Th is information is stored
in a database, in a record associated with the user’s ID. Whenever
the user returns to a previously visited page, the user’s preferences
are retrieved from the database and the Web page is displayed
accordingly.

One of the most important reasons to maintain a visitor’s identity
within a Web site is for Web page access control. Consider a Web-
based time tracking system, which might have links for entering,
reviewing, approving, and reporting an employee’s work hours. All
employees need access to the links for entering and reviewing their
own hours. A supervisor needs additional access to review the time
sheets. A payroll clerk needs access to reports of all employees’ hours,
once the hours have been approved. All of these permissions can
be stored in the database, linked to the user’s ID. Once the visitor’s

497

Understanding State Information

identity has been established, the PHP script can limit the available
pages based on permissions in the database.

Customizations do not need to be limited to an individual user’s iden-
tity. A Web-based time tracking system may be shared by a number
of companies. A company that has an existing Web site may already
have developed a unique look for its site, with custom colors, fonts,
and styles. By associating each user with a company, and storing
information about that company’s custom design in the database, the
PHP script can display a page that matches the look of the company’s
own Web pages, providing a consistent user experience.

A user’s browsing history can also be used to customize a Web site.
Many online stores display a list of recently viewed or recently pur-
chased merchandise when a user returns to their Web site. Th ese
individual histories and orders are stored in a database, and then
retrieved when the visitor returns to the store’s Web site. Some sites
employ complex algorithms that analyze a user’s history and then
present a list of recommended items.

Th e four tools for maintaining state information with PHP are hidden
form fi elds, query strings, cookies, and sessions. Th is chapter shows
you how to use each tool to maintain state information while working
with the College Internship Available Opportunities Web site, which
consists of four Web pages. Figure 9-1 illustrates how visitors navigate
through the Web site.

Figure 9-1 College Internship Available Opportunities
Web site page fl ow

498

C H A P T E R 9 Managing State Information

Th e fi rst page that visitors open is the Registration/Log In page,
which is in the upper-left corner of Figure 9-1. New visitors to the
Web site must fi rst get an Intern ID and enter their contact informa-
tion before accessing the Available Opportunities page, which is the
site’s main page. Visitors are required to use a valid e-mail address
as their user name. Returning visitors can enter their login informa-
tion and access the Available Opportunities page directly. Figure 9-2
shows the Registration/Log In Web page.

Figure 9-2 Registration/Log In Web page

After a user logs in, the Web site must keep track of information
about the user the entire time the client Web browser navigates

499

Understanding State Information

through the various pages on the site. In other words, the Web site
must maintain state information about the client session.

As you work with the College Internship Available Opportunities
Web site, keep in mind that the goal of this chapter is to teach you
how to maintain state information with PHP. Th e Web site is inten-
tionally simple to allow you to focus on using state techniques. It does
not have the most effi cient or elegant design possible. For example,
the PHP code that makes up the Web site contains minimal valida-
tion functions to keep the code structure simple and focus on the
techniques presented in this chapter. If you try to cause an error (or
“break” a script), you will succeed. Most important, remember that
even though the Web site requires user ID numbers and passwords, it
is not secure. Refer to your Web server’s documentation for informa-
tion on how to secure your Web site.

To create a database named internships, along with three tables
named interns, opportunities, and assigned_opportunities:

1. Log in to MySQL Monitor with the MySQL user name and
password you created in Chapter 7.

2. Enter the following command to create a database named
internships:
mysql> CREATE DATABASE internships;[ENTER]

3. After you see the “Query OK” message, enter the following
command to select the internships database:
mysql> USE internships;[ENTER]

4. Enter the following command to create the interns table:
mysql> CREATE TABLE interns (internID SMALLINT NOT
NULL AUTO_INCREMENT PRIMARY KEY, email VARCHAR(40),
password_md5 VARCHAR(32), fi rst VARCHAR(40),
last VARCHAR(40));[ENTER]

5. Enter the following command to create the opportunities
table:
mysql> CREATE TABLE opportunities (opportunityID
SMALLINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
company VARCHAR(40), city VARCHAR(25), start_date
DATE, end_date DATE, position VARCHAR(30), description
VARCHAR(250));[ENTER]

6. Enter the following command to create the
assigned_opportunities table:
mysql> CREATE TABLE assigned_opportunities
(opportunityID SMALLINT, internID SMALLINT,
date_selected DATE, date_approved DATE);[ENTER]

500

C H A P T E R 9 Managing State Information

7. Enter the following command to load the opportunities.txt
fi le into the opportunities table. Be sure to include the full
path to opportunities.txt.
mysql> LOAD DATA INFILE 'opportunities.txt' INTO
TABLE opportunities;[ENTER]

8. After you see the “Query OK” message, type exit or quit and
press Enter to log out of MySQL Monitor.

To create the Registration/Log In page:

1. Create a new document in your text editor and type the
<!DOCTYPE> declaration, <html> element, header information,
and <body> element. Use the strict DTD and “College Intern-
ships” as the content of the <title> element.

2. Add the following text and elements to the document body:
<h1>College Internships</h1>
<h2>Register / Log In</h2>
<p>New interns, please complete the top form to
register as a user. Returning users, please complete
the second form to log in.</p>
<hr />

3. Add the following Web form to allow new interns to register
for an intern ID:
<h3>New Intern Registration</h3>
<form method="post" action="RegisterIntern.php">
<p>Enter your name: First
 <input type="text" name="first" />
Last:
 <input type="text" name="last" /></p>
<p>Enter your e-mail address:
 <input type="text" name="email" /></p>
<p>Enter a password for your account:
 <input type="password" name="password" /></p>
<p>Confirm your password:
 <input type="password" name="password2" /></p>
<p>(Passwords are case-sensitive and
 must be at least 6 characters long)</p>
<input type="reset" name="reset"
 value="Reset Registration Form" />
<input type="submit" name="register"
value="Register" />
</form>
<hr />

4. Add a second Web form to allow returning users to log in.
Th e VerifyLogin.php script will be created later in the chapter.

501

Understanding State Information

<h3>Returning Intern Login</h3>
<form method="post" action="VerifyLogin.php">
<p>Enter your e-mail address:
 <input type="text" name="email" /></p>
<p>Enter your password:
 <input type="password" name="password" /></p>
<p>(Passwords are case-sensitive and
 must be at least 6 characters long)</p>
<input type="reset" name="reset"
 value="Reset Login Form" />
<input type="submit" name="login" value="Log In" />
</form>
<hr />

5. Save the document as InternLogin.php in the Chapter direc-
tory for Chapter 9 and upload the document to the server.

To create the New Intern Registration page:

1. Create a new document in your text editor and type the
<!DOCTYPE> declaration, <html> element, header information,
and <body> element. Use the strict DTD and “Intern Registra-
tion” as the content of the <title> element.

2. Add the following text, elements, and script section to the
document body:
<h1>College Internship</h1>
<h2>Intern Registration</h2>
<?php
?>

3. Add the following code to the script section to validate the
e-mail address entered. Th e preg_match() function is the
same one used in Chapter 3.
$errors = 0;
$email = "";
if (empty($_POST['email'])) {
 ++$errors;
 echo "<p>You need to enter an e-mail address.</p>\n";
}
else {
 $email = stripslashes($_POST['email']);
 if (preg_match("/^[\w−]+(\.[\w−]+)*@" .
 "[\w−]+(\.[\w−]+)*(\.[a-zA-Z]{2, })$/i",
 $email) == 0) {
 ++$errors;
 echo "<p>You need to enter a valid " .
 "e-mail address.</p>\n";
 $email = "";
 }
}

Although this
document has
no PHP code
sections, it is
saved as a

PHP fi le because PHP
code will be added later
in this chapter.

502

C H A P T E R 9 Managing State Information

4. Add the following code to the script section to validate the
password. Th e code verifi es that both password fi elds were
entered, that they match, and that the password is at least 6
characters long.
if (empty($_POST['password'])) {
 ++$errors;
 echo "<p>You need to enter a password.</p>\n";
 $password = "";
}
else
 $password = stripslashes($_POST['password']);
if (empty($_POST['password2'])) {
 ++$errors;
 echo "<p>You need to enter a confirmation

 password.</p>\n";
 $password2 = " ";
}
else
 $password2 = stripslashes($_POST['password2']);
if ((!(empty($password))) && (!(empty($password2)))) {
 if (strlen($password) < 6) {
 ++$errors;
 echo "<p>The password is too short.</p>\n";
 $password = "";
 $password2 = "";
 }
 if ($password <> $password2) {
 ++$errors;
 echo "<p>The passwords do not match.</p>\n";
 $password = "";
 $password2 = "";
 }
}

5. Add the following if statement to the end of the script
section to connect to the database server and open the
internships database. Be sure to replace host with the host
name of your MySQL server, and user and password with
your user name and password.
if ($errors == 0) {
 $DBConnect = @mysql_connect("host", "user",
 "password");
 if ($DBConnect === FALSE) {
 echo "<p>Unable to connect to the database

 server. " .
 "Error code " . mysql_errno() . ": " .
 mysql_error() . "</p>\n";
 ++$errors;
 }

503

Understanding State Information

 else {
 $DBName = "internships";
 $result = @mysql_select_db($DBName,
 $DBConnect);
 if ($result === FALSE) {
 echo "<p>Unable to select the

 database. " .
 "Error code " . mysql_
 errno($DBConnect) .
 ": " . mysql_error($DBConnect) .
 "</p>\n";
 ++$errors;
 }
 }
}

6. Add the following statements to the end of the script section
to verify that the e-mail address entered is not already in the
interns table:
$TableName = "interns";
if ($errors == 0) {
 $SQLstring = "SELECT count(*) FROM $TableName" .
 "where email=$email";
 $QueryResult = @mysql_query($SQLstring,
 $DBConnect);
 if ($QueryResult !== FALSE) {
 $Row = mysql_fetch_row($QueryResult);
 if ($Row[0]>0) {
 echo "<p>The email address entered (" .
 htmlentities($email) .
 ") is already registered.</p>\n";
 ++$errors;
 }
 }
}

7. Add the following if statement to show the appropriate mes-
sage if there were errors:
if ($errors > 0) {
 echo "<p>Please use your browser's BACK button
 to return" .
 " to the form and fix the errors
 indicated.</p>\n";
}

8. Finally, at the end of the script section, enter the following
statements to add the new user to the interns table. Note
that an MD5 hash of the password is stored in the database
for security reasons. Each user’s Intern ID value is the pri-
mary key of the row in which the user’s personal information
is stored. Th erefore, the mysql_insert_id() function returns

504

C H A P T E R 9 Managing State Information

the primary key to the $InternID variable. Th e last statement
closes the database connection.
if ($errors == 0) {
 $first = stripslashes($_POST['first']);
 $last = stripslashes($_POST['last']);
 $SQLstring = "INSERT INTO $TableName " .
 " (first, last, email, password_md5) " .
 " VALUES('$first', '$last',
 '$email', " .
 " '" . md5($password) . "')";
 $QueryResult = @mysql_query($SQLstring,
 $DBConnect);
 if ($QueryResult === FALSE) {
 echo "<p>Unable to save your registration " .
 " information. Error code " .
 mysql_errno($DBConnect) . ": " .
 mysql_error($DBConnect) . "</p>\n";
 ++$errors;
 }
 else {
 $InternID = mysql_insert_id($DBConnect);
 }
 mysql_close($DBConnect);
}

9. Add the following text and elements immediately before the
end of the script section:
if ($errors == 0) {
 $InternName = $first . " " . $last;
 echo "<p>Thank you, $InternName. ";
 echo "Your new Intern ID is " .
 $InternID . ".</p>\n";
}

10. Save the document as RegisterIntern.php in the Chapter
directory for Chapter 9 and upload the document to the
server.

11. Open the InternLogin.php fi le in your Web browser by
entering the following URL: http://<yourserver>/PHP_
Projects/Chapter.09/Chapter/InternLogin.php. Enter a valid
e-mail address and a password of at least 6 characters in the
New Intern Registration form. Be sure to enter the same
password in the confi rmation fi elds or you will receive an
error. Click the Register button to obtain an Intern ID value.
You should see the Web page shown in Figure 9-3. (Th e fi rst
Intern ID value should be 1.)

12. Close your Web browser window.

You learned
in Chapter 8
that the pri-
mary key for
a table and

the public identifi er (such
as the “Intern ID” value)
are normally separate
fi elds.

505

Understanding State Information

Figure 9-3 New Intern Registration Web page after successful registration

Short Quiz

1. Describe the term “state information.”

2. What are the advantages of a stateless design?

3. What are the disadvantages of a stateless design?

4. What are three applications for which maintaining state infor-
mation may be useful?

5. What are the four tools for maintaining state information?

Using Hidden Form Fields to Save
State Information
As you should know from your study of HTML, a hidden form fi eld is
not displayed by the Web browser, so it allows you to hide information
from users. You create hidden form fi elds with the <input> element.
Hidden form fi elds temporarily store data that needs to be sent to a
server along with the rest of a form, but that a user does not need to
see. You create hidden form fi elds using the same syntax for other fi elds
created with the <input> element: <input type="hidden">. Th e only
attributes you can include with a hidden form fi eld are name and value.

When you submit a form to a PHP script, you can access the values
submitted from the form by using the $_GET[] and $_POST[] auto-
globals. If you then want to pass form values from one PHP script
to another, you can store the values in hidden form fi elds, which are
submitted along with other types of form fi elds.

Hidden input
elements
are visible in
the URL
when you

use the get method, and
are visible in the source
code of the Web page.
Do not use a hidden input
element to hold sensitive
information such as pass-
words, because it is not
secure.

506

C H A P T E R 9 Managing State Information

Next, you will create the Verify Login and Available Opportunities
pages and add a form with a hidden input on the New Intern
Registration page. When the user successfully logs in using the
Registration/Log In page or successfully registers as a new intern on
the New Intern Registration page, the Intern ID is submitted to the
Available Opportunities page.

To create the Verify Login page:

1. Create a new document in your text editor and type the
<!DOCTYPE> declaration, <html> element, header information,
and <body> element. Use the strict DTD and “Verify Intern
Login” as the content of the <title> element.

2. Add the following text, elements, and script section to the
document body:
<h1>College Internship</h1>
<h2>Verify Intern Login</h2>
<?php
?>

3. Add the following if statement to the script section to
 connect to the database server and open the internships
database. Be sure to replace host with the host name of your
MySQL server, and user and password with your user name
and password.
$errors = 0;
$DBConnect = @mysql_connect("host", "user",
"password");
if ($DBConnect === FALSE) {
 echo "<p>Unable to connect to the database

 server. " .
 "Error code " . mysql_errno() . ": " .
 mysql_error() . "</p>\n";
 ++$errors;
}
else {
 $DBName = "internships";
 $result = @mysql_select_db($DBName,
 $DBConnect);
 if ($result === FALSE) {
 echo "<p>Unable to select the database. " .
 "Error code " . mysql_
 errno($DBConnect) .
 ": " . mysql_error($DBConnect) .
 "</p>\n";
 ++$errors;
 }
}

507

Using Hidden Form Fields to Save State Information

4. Add the following statements to the end of the script section
to verify that the e-mail address and password entered are in
the interns table. Remember that the MD5 hash of the pass-
word is stored in the database, not the password itself.
$TableName = "interns";
if ($errors == 0) {
 $SQLstring = "SELECT internID, first, last FROM
 $TableName"
 . " where email='" . stripslashes($_
 POST['email']) .
 "' and password_md5='" .
 md5(stripslashes($_POST['password'])) . "'";
 $QueryResult = @mysql_query($SQLstring,
 $DBConnect);
 if (mysql_num_rows($QueryResult)==0) {
 echo "<p>The e-mail address/password " .
 " combination entered is not valid.
 </p>\n";
 ++$errors;
 }
 else {
 $Row = mysql_fetch_assoc($QueryResult);
 $InternID = $Row['internID'];
 $InternName = $Row['first'] . " " .
 $Row['last'];
 echo "<p>Welcome back, $InternName!</p>\n";
 }
}

5. Add the following if statement to show the appropriate
 message if there were errors:
if ($errors > 0) {
 echo "<p>Please use your browser's BACK button
 to return " .
 " to the form and fix the errors
 indicated.</p>\n";
}

6. Finally, add the following code to the end of the PHP script
section to include the form with the hidden fi eld if there were
no errors.
if ($errors == 0) {
 echo "<form method='post' " .
 " action='AvailableOpportunities.php'>\n";
 echo "<input type='hidden' name='internID' " .
 " value='$InternID'>\n";
 echo "<input type='submit' name='submit' " .
 " value='View Available Opportunities'>\n";
 echo "</form>\n";
}

508

C H A P T E R 9 Managing State Information

7. Save the document as VerifyLogin.php in the Chapter direc-
tory for Chapter 9 and upload the fi le to the server.

To add the form with the hidden input to the New Intern Registration
page:

1. Reopen the RegisterIntern.php script in your text editor.

2. Add the following code to the end of the PHP script section to
include the form with the hidden fi eld if there were no errors:
if ($errors == 0) {
 echo "<form method='post' " .
 " action='AvailableOpportunities.php'>\n";
 echo "<input type='hidden' name='internID' " .
 " value='$InternID'>\n";
 echo "<input type='submit' name='submit' " .
 " value='View Available Opportunities'>\n";
 echo "</form>\n";
}

3. Save RegisterIntern.php in the Chapter directory for
 Chapter 9 and upload the fi le to the server.

To create the Available Opportunities page:

1. Create a new document in your text editor and type the
<!DOCTYPE> declaration, <html> element, header informa-
tion, and <body> element. Use the strict DTD and “Available
Opportunities” as the content of the <title> element.

2. Add the following text, elements, and script section to the
document body:
<h1>College Internship</h1>
<h2>Available Opportunities</h2>
<?php
?>

3. Add the following statement to the script section, which
retrieves the Intern ID submitted in the hidden form fi eld.
If no ID was submitted, set $InternID to −1, which will not
match any records. Th e $_REQUEST[] autoglobal array is used
because it contains all of the array elements of the $_GET[],
$_POST[], and $_COOKIE[] autoglobal arrays. Each of these
arrays will be used later in the chapter to pass the Intern ID to
this page.
if (isset($_REQUEST['internID']))
 $InternID = $_REQUEST['internID'];
else
 $InternID = −1;

In a real-
world PHP
application,
you should
use the

$_GET[], $_P0ST[],
or $_COOKIE[] auto-
global as appropriate.
You should avoid using
the $_REQUEST[] auto-
global because of associ-
ated security issues. (For
a more complete explana-
tion, see Appendix D,
“Secure Coding with
PHP”.)

509

Using Hidden Form Fields to Save State Information

4. Add the following statements to the end of the script section
to connect to the database server and open the internships
database. Be sure to replace host with the name of your
MySQL server, and user and password with your user name
and password.
$errors = 0;
$DBConnect = @mysql_connect("host", "user",
"password");
if ($DBConnect === FALSE) {
 echo "<p>Unable to connect to the database

 server. " .
 "Error code " . mysql_errno() . ": " .
 mysql_error() . "</p>\n";
 ++$errors;
}
else {
 $DBName = "internships";
 $result = @mysql_select_db($DBName,
 $DBConnect);
 if ($result === FALSE) {
 echo "<p>Unable to select the database. " .
 "Error code " . mysql_
 errno($DBConnect) . ": " .
 mysql_error($DBConnect) . "</p>\n";
 ++$errors;
 }
}

5. Add the following statements to the end of the script section
to retrieve the user’s information from the interns table.
Notice in this version that the SQL statement uses the Intern
ID, which is stored in the $InternID variable, to retrieve user
information from the table.
$TableName = "interns";
if ($errors == 0) {
 $SQLstring = "SELECT * FROM $TableName WHERE " .
 " internID='$InternID'";
 $QueryResult = @mysql_query($SQLstring, $DBConnect);
 if ($QueryResult === FALSE) {
 echo "<p>Unable to execute the query. " .
 "Error code " . mysql_
 errno($DBConnect) . ": " .
 mysql_error($DBConnect) . "</p>\n";
 ++$errors;
 }
 else {
 if (mysql_num_rows($QueryResult) == 0) {
 echo "<p>Invalid Intern ID!</p>";
 ++$errors;
 }
 }
}

510

C H A P T E R 9 Managing State Information

6. Add the following statements to the end of the script section
to retrieve the user’s fi rst and last names from the resultset:
if ($errors == 0) {
 $Row = mysql_fetch_assoc($QueryResult);
 $InternName = $Row['first'] . " " . $Row['last'];
} else
 $InternName = "";

7. Add the following statements to the end of the script sec-
tion. Th e query checks the assigned_opportunities table to
determine if the current intern ID has been approved for an
opportunity.
$TableName = "assigned_opportunities";
$ApprovedOpportunities = 0;
$SQLstring = "SELECT COUNT(opportunityID) FROM
$TableName " .
 " WHERE internID='$InternID' " .
 " AND date_approved IS NOT NULL";
$QueryResult = @mysql_query($SQLstring, $DBConnect);
if (mysql_num_rows($QueryResult) > 0) {
 $Row = mysql_fetch_row($QueryResult);
 $ApprovedOpportunities = $Row[0];
 mysql_free_result($QueryResult);
}

8. Add the following statements to the end of the script sec-
tion. Th e query retrieves the list of opportunity IDs from
the assigned_opportunities table that has been selected
for the current intern ID. Th e query result is stored in the
$SelectedOpportunities array. Th e last statement frees the
data retrieved by the query.
$SelectedOpportunities = array();
$SQLstring = "SELECT opportunityID FROM $TableName " .
 " WHERE internID='$InternID'";
$QueryResult = @mysql_query($SQLstring, $DBConnect);
if (mysql_num_rows($QueryResult) > 0) {
 while (($Row = mysql_fetch_row($QueryResult))
 !== FALSE)
 $SelectedOpportunities[] = $Row[0];
 mysql_free_result($QueryResult);
}

9. Add the following statements to the end of the script sec-
tion. Th e query retrieves the list of opportunity IDs from the
assigned_opportunities table that has been approved for
any intern ID. An opportunity that has been approved is no
longer available for selection. Th e query result is stored in the
$AssignedOpportunities array. Th e last statement frees the
data retrieved by the query.

511

Using Hidden Form Fields to Save State Information

$AssignedOpportunities = array();
$SQLstring = "SELECT opportunityID FROM $TableName " .
 " WHERE date_approved IS NOT NULL";
$QueryResult = @mysql_query($SQLstring, $DBConnect);
if (mysql_num_rows($QueryResult) > 0) {
 while (($Row = mysql_fetch_row($QueryResult))
 !== FALSE)
 $AssignedOpportunities[] = $Row[0];
 mysql_free_result($QueryResult);
}

10. Add the following statements to the end of the script sec-
tion. Th e query retrieves the list of opportunities from
the opportunities table. Th e query result is stored in the
$Opportunities array. Th e last statement closes the database
connection.
$TableName = "opportunities";
$Opportunities = array();
$SQLstring = "SELECT opportunityID, company, city, " .
 " start_date, end_date, position,
 description " .
 " FROM $TableName";
$QueryResult = @mysql_query($SQLstring, $DBConnect);
if (mysql_num_rows($QueryResult) > 0) {
 while (($Row = mysql_fetch_assoc($QueryResult))
 !== FALSE)
 $Opportunities[] = $Row;
 mysql_free_result($QueryResult);
}
mysql_close($DBConnect);

11. Add the following statements to the end of the script sec-
tion. Th e statements dynamically build a table of the available
opportunities. Th e table also contains links to the RequestOp-
portunity.php script, which you will create later in this chap-
ter. Th e last paragraph element contains a link back to the
Registration/Log In page.
echo "<table border='1' width='100%'>\n";
echo "<tr>\n";
echo " <th style='background-color:cyan'>Company</
th>\n";
echo " <th style='background-color:cyan'>City</th>\n";
echo " <th style='background-color:cyan'>Start
Date</th>\n";
echo " <th style='background-color:cyan'>End
Date</th>\n";
echo " <th style='background-color:cyan'>Position</
th>\n";
echo " <th style='background-color:cyan'>Description</
th>\n";
echo " <th style='background-color:cyan'>Status</
th>\n";

512

C H A P T E R 9 Managing State Information

echo "</tr>\n";
foreach ($Opportunities as $Opportunity) {
 if (!in_array($Opportunity['opportunityID'],
 $AssignedOpportunities)) {
 echo "<tr>\n";
 echo " <td>" .
 htmlentities($Opportunity['company']) .
 "</td>\n";
 echo " <td>" .
 htmlentities($Opportunity['city']) .
 "</td>\n";
 echo " <td>" .
 htmlentities($Opportunity
 ['start_date']) .
 "</td>\n";
 echo " <td>" .
 htmlentities($Opportunity['end_date']) .
 "</td>\n";
 echo " <td>" .
 htmlentities($Opportunity['position']) .
 "</td>\n";
 echo " <td>" .
 htmlentities($Opportunity
 ['description']) .
 "</td>\n";
 echo " <td>";
 if (in_array($Opportunity['opportunityID'],
 $SelectedOpportunities))
 echo "Selected";
 else {
 if ($ApprovedOpportunities>0)
 echo "Open";
 else
 echo "<a href=
 'RequestOpportunity.php?" .
 "internID=$InternID&" .
 "opportunityID=" .
 $Opportunity['opportunityID'] .
 "'>Available";
 }
 echo "</td>\n";
 echo "</tr>\n";
 }
}
echo "</table>\n";
echo "<p>Log Out</
p>\n";

12. Save the document as AvailableOpportunities.php in the
Chapter directory for Chapter 9.

13. Open the InternLogin.php fi le in your Web browser by
entering the following URL: http://<yourserver>/PHP_
Projects/Chapter.09/Chapter/InternLogin.php. In the

Passing the
Intern ID as
a URL token
is very inse-
cure. Later

in this chapter, you will
learn better methods to
maintain secure data (like
the Intern ID) across Web
pages.

513

Using Hidden Form Fields to Save State Information

Returning Intern Login form, enter the e-mail address and
password that you registered with the New Intern Registra-
tion form and click the Log In button. You should see the
“Welcome back” message shown in Figure 9-4.

Figure 9-4 The Verify Login Web page for a successful login

14. Click the View Available Opportunities button to open the
Available Opportunities page, which is shown in Figure 9-5.

Figure 9-5 The Available Opportunities Web page with the Intern information at the top of the screen

514

C H A P T E R 9 Managing State Information

15. Close your Web browser window.

Short Quiz

1. What two attributes are used in a hidden fi eld to temporarily
store data and send it to the server?

2. Hidden fi elds can be retrieved from which autoglobals?

3. Explain the risks associated with using hidden elements to
submit form data using the get method.

Using Query Strings to Save State
Information
One way to preserve information following a user’s visit to a Web
page is to append a query string to the end of a URL. As you learned
in Chapter 4, a query string is a set of name/value pairs appended
to a target URL. It consists of a single text string that contains
one or more pieces of information. For example, the name/value
pairs for a user’s fi rst and last name may consist of something like
"fi rstName=Don" and "secondName=Gosselin". You can use a query
string to pass information such as search criteria from one Web page
to another; simply add a question mark (?) immediately after the
URL, followed by the query string that contains the information you
want to preserve in name/value pairs. In this manner, you are pass-
ing information to another Web page, similar to the way you can pass
arguments to a function or method. You separate individual name/
value pairs within the query string using ampersands (&). A question
mark (?) and a query string are automatically appended to the URL
of a server-side script for any forms that are submitted with the GET
method. However, you can also append a query string to any URL on
a Web page; if you do, PHP will treat the information as if it were sub-
mitted with the GET method. Th e following code provides an example
of an <a> element that contains a query string consisting of three
name/value pairs:
<a href="http://www.example.com/TargetPage.php?fi rstName=
Don&lastName=Gosselin&occupation=writer">Link Text

You can access any query string data that is appended to a URL from
PHP by using the $_GET[] autoglobal, the same as for any forms sub-
mitted with the GET method. For example, the TargetPage.php script
(the target of the link) can display the values from the query string in

515

Using Query Strings to Save State Information

the preceding element by using the following statements. Figure 9-6
shows the output in a Web browser.
echo "<p>{$_GET['firstName']} {$_GET['lastName']} is a
{$_GET['occupation']}.</p>\n";

Figure 9-6 Output of the contents of a query string

To modify the Verify Login page so that the Intern ID is passed as a
query string instead of being stored in a hidden form fi eld:

1. Return to the VerifyLogin.php document in your text editor.

2. Replace the form that contains the hidden form fi elds with the
following text and elements. Th e PHP script appends a query
string to the AvailableOpportunities.php URL consisting of a
name/value pair of internID=$InternID.
echo "<p><a href='AvailableOpportunities.php?" .
 "internID=$InternID'>Available " .
 " Opportunities</p>\n";

3. Save the VerifyLogin.php document.

4. Open the InternLogin.php fi le in your Web browser by
entering the following URL: http://<yourserver>/PHP_
Projects/Chapter.09/Chapter/InternLogin.php. In the Return-
ing Intern Login form, enter the e-mail address and password
that you registered with the New Intern Registration form
and click the Log In button. As shown in Figure 9-7, you
should see the “Welcome Back” Web page with a link instead
of the Submit button.

5. Click the Available Opportunities link to open the Available
Opportunities page. Th e page should open just as it did with
the hidden form fi eld.

516

C H A P T E R 9 Managing State Information

Figure 9-7 Login Successful Web page after replacing the form with a link

Short Quiz

1. Explain how a query string is used to pass information from
one Web page to another.

2. Query strings permanently maintain state information. True
or False?

3. Illustrate how the XHTML anchor (<a>) element can be used
to append a query string to a hyperlink.

4. Describe how data appended to a URL can be accessed using
the $_GET[] autoglobal.

Using Cookies to Save State
Information
When choosing a method of saving state information, you need to
consider whether you want the state information to be available
after the current session of a Web page has ended—in other words,
whether you want the state information to be permanent. Query
strings do not permanently maintain state information because the
information contained in a query string is available only when you
open a Web page using that query string. After a Web page that reads
a query string closes, the query string is lost. Hidden form fi elds
maintain state information between Web pages, but the data they
contain is also lost when the Web page that reads the hidden fi elds

517

Using Cookies to Save State Information

closes. To make it possible to store state information for more than
just the current Web page, Netscape Communications added support
for cookies to the Mosaic Netscape Web browser. Cookies, derived
from the programming concept called “magic cookies,” are small
pieces of information about a user that are stored by a Web server
in text fi les on the user’s computer. Nearly all modern Web browsers
support the use of cookies, which can be temporary or persistent.
Temporary cookies remain available only for the current browser ses-
sion. Persistent cookies remain available beyond the current browser
session and are stored in a text fi le on a client computer.

Each time the Web client visits a Web server, saved cookies for the
requested Web page are sent from the client to the server. Th e server
then uses the cookies to customize the Web page for the client.
Cookies were originally created for use with CGI scripts, but are now
commonly used by client-side scripting languages such as JavaScript
and server-side scripting languages such as PHP.

You have probably seen cookies in action if you have ever visited a
Web site where you entered a user name in a prompt dialog box or in
a text fi eld, and then found that you were greeted by that user name
the next time you visited the Web site. Th is greeting could occur with
each subsequent visit to the same Web site, whether during the same
browser session or during a diff erent browser session days or weeks
later. Th e Web page remembers your personal information by storing
it locally on your computer in a cookie. Another example of a cookie
is a counter that tracks the number of times an individual user has
visited a Web site.

Th e use of cookies has a number of limitations. Individual Web
browsers can limit the number of cookies each server or domain can
store on a user’s computer (normally between 20 and 70 cookies). In
addition, Web browsers can limit the total number of cookies stored
on a user’s computer (at least 300). If these limits are exceeded, a Web
browser may start discarding older cookies. Additionally, the maxi-
mum size for an individual cookie is limited to 4 kilobytes.

Creating Cookies
You use the setcookie() function to create cookies in PHP. Th e syn-
tax is as follows:
setcookie(name [, value, expires, path, domain, secure])

You create a cookie by passing to the setcookie() function a
required name argument and fi ve optional arguments: value, expires,
path, domain, and secure. You must pass each of the arguments in
the order specifi ed in the preceding syntax. To omit the value, path,

518

C H A P T E R 9 Managing State Information

and domain arguments, specify an empty string as the argument
value. To omit the expires and secure arguments, specify 0 as the
argument value.

You must call the setcookie() function before you send the Web
browser any output, including white space, HTML elements, or out-
put from the echo or print statements. If any output exists before
you call the setcookie() function, you will receive an error and the
function returns a value of FALSE. Also, keep in mind that users can
choose whether to accept cookies that a script attempts to write
to their systems. If the setcookie() function runs successfully, it
returns a value of TRUE, even if a user rejects the cookie.

The name and value Arguments
Although the only required argument of the setcookie() function
is the name attribute, a cookie is of no use if you do not specify the
value argument because a cookie with a NULL value is indistinguish-
able from a nonexistent cookie. Cookies created with only the name
and value arguments are temporary cookies because they are avail-
able for only the current browser session. Th e following code creates
a cookie named fi rstName and assigns it a value of “Don”:
<?php
setcookie("firstName", "Don");
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>College Internships</title>
...

You can call the setcookie() function multiple times to create addi-
tional cookies—but again, remember that setcookie() statements
must come before any other output on a Web page. Th e following
example creates three cookies:
setcookie("fi rstName", "Don");
setcookie("lastName", "Gosselin");
setcookie("occupation", "writer");

PHP also allows you to store cookie values in indexed or associative
arrays by appending array operators ([]) and an index or key to the
cookie name within the setcookie() function. Th e following state-
ments create an indexed cookie array named professional[] that
contains three cookie values:
setcookie("professional[0]", "Don");
setcookie("professional[1]", "Gosselin");
setcookie("professional[2]", "writer");

Notice that
the script
section is
placed above
the HTML

elements in the preceding
example. Remember that
you must call the
setcookie() function
before you send the Web
browser any output,
including white space,
HTML elements, or output
from the echo or print
statements; otherwise,
you will receive an error.

519

Using Cookies to Save State Information

Th e following statements create an associative version of the
professional[] cookie array:
setcookie("professional['fi rstName']", "Don");
setcookie("professional['lastName']", "Gosselin");
setcookie("professional['occupation']", "writer");

By default, cookies cannot include semicolons or other special char-
acters such as commas or spaces, because cookies are transmitted
between Web browsers and Web servers using HTTP, which does not
allow certain nonalphanumeric characters to be transmitted in their
native format. However, you can use special characters in cookies you
create with PHP because the setcookie() function automatically
encodes, or converts, special characters in a text string to their cor-
responding hexadecimal ASCII value, preceded by a percent sign. For
example, 20 is the hexadecimal ASCII equivalent of a space character,
and 25 is the hexadecimal ASCII equivalent of a percent sign (%). In
URL encoded format, each space character is represented by %20, and
each percent sign is represented by %25. After encoding, the contents
of the string "tip=A standard tip is 15%" would read as follows:
tip=A%20standard%20tip%20is%2015%25

Encoding does not occur for standard alphanumeric characters such as
A, B, and C or 1, 2, and 3, or for any of the following special characters:

- _ . ! ~ * ‘ ()

It also does not encode the following characters that have special
meaning in a URL:

; / ? : @ & = + $,

For example, the backslash (/) character is not encoded because it
is used for designating a path on a fi le system. PHP automatically
decodes special characters when you read cookie values. (You will
learn how to read cookies later in this chapter.)

To modify the New Intern Registration page so that the Intern ID is
stored in a temporary cookie:

1. Return to the RegisterIntern.php document in your text
editor.

2. Cut and paste the existing PHP script section above the
<!DOCTYPE> declaration. Th is is necessary because the
setcookie() function, which you will add later in this
 exercise, must be called before any output statements.

3. Immediately after the opening of the PHP script section, add the
following code to declare and initialize the $Body string variable:
$Body = "";

The start of
the opening
PHP tag
must be the
fi rst charac-

ter on the fi rst line of the
fi le. If anything precedes
the opening PHP tag,
even white spaces or
blank lines, your code will
produce an error.

520

C H A P T E R 9 Managing State Information

4. Replace each occurrence of the echo statement with the
$Body .= assignment statement. For example, the code:
 echo "<p>You need to enter an e-mail
 address.</p>\n";

becomes:
 $Body .= "<p>You need to enter an e-mail
 address.</p>\n";

5. Add the following setcookie() statement above the
mysql_close() statement at the end of the script section.
Th is statement creates a new cookie named internID that
contains the newly assigned Intern ID.
setcookie("internID", $InternID);

6. Within the <body> tags, add the following PHP script to
 display the output generated by the previous PHP script:
<?php
echo $Body;
?>

7. Save the RegisterIntern.php document and upload it to the
Web server.

The expires Argument
For a cookie to persist beyond the current browser session, you
must use the expires argument with the setcookie() function.
You might use a cookie that expires after one week or less to store
data that needs to be maintained for a limited amount of time. For
example, a travel agency may store data in a cookie that temporarily
holds a travel reservation until it expires after one week. Or, an online
retail site may store shopping cart information in cookies that expire
after only 15 minutes. Th e expires argument determines how long
a cookie can remain on a client system before it is deleted. Cookies
created without an expires argument are available for only the cur-
rent browser session. You assign to the expires argument a value
representing the date or time when the client system is to delete the
cookie. Use PHP’s time() function to return the current time and add
to it an integer in seconds to specify the time to delete the cookie. Th e
following setcookie() function specifi es that the fi rstName cookie
expires in 3600 seconds, or one hour from now:
setcookie("firstName", "Don", time()+3600);

By multiplying the number of seconds in a minute and an hour, and
then multiplying that value by the necessary number of hours or days,

When develop-
ing a PHP
script, you
may acciden-
tally create,

but not delete, persistent
cookies that your pro-
gram does not need.
Unused persistent cook-
ies can sometimes inter-
fere with the execution of
a PHP script, so you may
want to delete your
browser cookies periodi-
cally, especially while
developing a PHP script
that uses cookies. To
delete cookies in Firefox,
click Tools on the menu
bar and select Options. In
the Options dialog box,
click “Use custom set-
tings for history” in the
“Firefox will:” drop-down
box, and then click the
Show Cookies button.
Highlight the desired
cookie and click the
Remove Cookie button,
or click the Remove All
Cookies button to remove
them all. To delete cook-
ies in Microsoft Internet
Explorer, click Tools on
the menu bar and click
Internet Options. Click the
General tab of the
Internet Options dialog
box, and then click the
Delete button in the
Browsing history section.
In the next dialog box,
click the Delete cookies
button.

521

Using Cookies to Save State Information

you can specify an expiration time more easily. Th e following example
specifi es that the fi rstName cookie expires in one week by multiplying
the number of seconds in a minute (60), the number of minutes in an
hour (60), the number of hours in a day (24), and then the number of
days in a week (7).
setcookie("firstName", "Don", time()+(60*60*24*7));

To create the Request Opportunity page, which creates a persistent
cookie containing the date of the visitor’s last selection:

1. Create a new document in your text editor and type the
<!DOCTYPE> declaration, <html> element, header informa-
tion, and <body> element. Use the strict DTD and “Request
Opportunity” as the content of the <title> element.

2. Add the following text and elements to the document body:
<h1>College Internship</h1>
<h2>Opportunity Requested</h2>
<?php
 echo $Body;
?>

3. Add a script section above the opening <!DOCTYPE>
declaration:
<?php
?>

4. Add the following statements to the script section to validate
the submitted data:
$Body = "";
$errors = 0;
$InternID = 0;
if (isset($_GET['internID']))
 $InternID = $_GET['internID'];
else {
 $Body .= "<p>You have not logged in or
 registered. " .
 " Please return to the " .
 " <a href='InternLogin.
 php'>Registration / " .
 " Log In page.</p>";
 ++$errors;
}
if ($errors == 0) {
 if (isset($_GET['opportunityID']))
 $OpportunityID = $_GET['opportunityID'];
 else {
 $Body .= "<p>You have not selected an
 opportunity. " .
 " Please return to the " .
 " <a href='AvailableOpportunities.
 php?" .

The following
steps use the
versions of
Firefox and
Internet

Explorer for Windows that
were available when this
book was published.
Different systems and
versions have different
procedures.

The
script
section
will
contain a

setcookie() function,
so be sure to create the
script section above the
opening <!DOCTYPE>
declaration; otherwise,
you will receive an error.

522

C H A P T E R 9 Managing State Information

 "internID=$InternID'>Available " .
 " Opportunities page.</p>";
 ++$errors;
 }
}

5. Add the following statements to the end of the script sec-
tion to connect to the database server and open or create the
internships database. Be sure to replace host with the name
of your MySQL server, and user and password with your user
name and password.
if ($errors == 0) {
 $DBConnect = @mysql_connect("host", "user",
 "password");
 if ($DBConnect === FALSE) {
 $Body .= "<p>Unable to connect to the
 database " .
 " server. Error code " . mysql_
 errno() . ": " .
 mysql_error() . "</p>\n";
 ++$errors;
 }
 else {
 $DBName = "internships";
 $result = @mysql_select_db($DBName,
 $DBConnect);
 if ($result === FALSE) {
 $Body .= "<p>Unable to select the
 database. " .
 "Error code " . mysql_
 errno($DBConnect) .
 ": " . mysql_error($DBConnect)
 . "</p>\n";
 ++$errors;
 }
 }
}

6. Add the following statements to the end of the script
section to mark the opportunity as selected in the
assigned_opportunities table and close the database con-
nection. Th e date() function is used to return the current
date and time as a formatted string. For the $DisplayDate
variable, the format string "l, F j, Y, g:i A" creates a
date string in a user-friendly format; the day of the week, the
month name, and the day and year are followed by the time as
hours and minutes AM or PM. For the $DatabaseDate vari-
able, the format string "Y-m-d H:i:s" creates a date string
in the format MySQL uses: “yyyy-mo-dd hh:mi:ss”, where
yyyy is a four-digit year, mo is a two-digit month, dd is a two-
digit day of the month, hh is a two-digit number indicating

523

Using Cookies to Save State Information

the hours since midnight, mi is a two-digit minute, and ss is a
two-digit second.
$DisplayDate = date("l, F j, Y, g:i A");
$DatabaseDate = date("Y-m-d H:i:s");
if ($errors == 0) {
 $TableName = "assigned_opportunities";
 $SQLstring = "INSERT INTO $TableName " .
 " (opportunityID, internID, " .
 " date_selected) VALUES " .
 " ($OpportunityID, $InternID, " .
 " '$DatabaseDate')";
 $QueryResult = @mysql_query($SQLstring,
 $DBConnect) ;
 if ($QueryResult === FALSE) {
 $Body .= "<p>Unable to execute the query. " .
 " Error code " . mysql_
 errno($DBConnect) .
 ": " . mysql_error($DBConnect) .
 "</p>\n";
 ++$errors;
 }
 else {
 $Body .= "<p>Your request for opportunity
 # " .
 " $OpportunityID has been
 entered " .
 " on $DisplayDate.</p>\n";
 }
 mysql_close($DBConnect);
}

7. Add the following statements to the end of the script section
to provide a link back to the Available Opportunities page if
the Intern ID is valid, or to the Registration/Log In page if the
Intern ID is not valid.
if ($InternID > 0)
 $Body .= "<p>Return to the <a href='" .
 "AvailableOpportunities.
 php?internID=$InternID'>" .
 "Available Opportunities page.</p>\n";
else
 $Body .= "<p>Please <a href='InternLogin.
 php'>Register " .
 " or Log In to use this page.</p>\n";

8. Add the following statements to the end of the script section
to create a persistent cookie named LastRequestDate. Th e
urlencode() function is used because of the special charac-
ters needed for the date and time. Th e cookie is set to expire
one week from now.

524

C H A P T E R 9 Managing State Information

if ($errors == 0)
 setcookie("LastRequestDate",
 urlencode($DisplayDate),
 time()+60*60*24*7);

9. Save the document as RequestOpportunity.php in the
Chapter directory for Chapter 9 and upload the fi le to the
Web server.

The path Argument
Th e path argument determines the availability of a cookie to other
Web pages on a server. By default, a cookie is available to all Web
pages in the same directory. However, if you specify a path, a cookie is
available to all Web pages in the specifi ed path and in all its subdirec-
tories. For example, the following statement makes the cookie named
fi rstName available to all Web pages located in the marketing direc-
tory or any of its subdirectories:
setcookie("firstName", "Don", time()+3600, "/marketing/");

To make a cookie available to all directories on a server, use a forward
slash (/) to indicate the root directory:
setcookie("firstName", "Don", time()+3600, "/");

Many diff erent types of Web applications use the same cookie name,
such as username or id. Th is can cause confl icts if both Web applica-
tions are on the same Web site. Th erefore, you should always place
PHP applications that use cookies into their own directory and use
the path argument to specify the directory for that application. Th is
approach will prevent diff erent applications from changing the same
cookie, which would result in erratic behavior for the scripts.

The domain Argument
Using the path argument allows cookies to be shared across a
server. Some Web sites, however, are very large and use a num-
ber of servers. Th e domain argument is used for sharing cookies
across multiple servers in the same domain. Note that you cannot
share cookies outside of a domain. For example, if the Web server
programming.gosselin.com needs to share cookies with the Web
server writing.gosselin.com, the domain argument for cookies set
by programming.gosselin.com should be set to .gosselin.com.
Th at way, cookies created by programming.gosselin.com are avail-
able to writing.gosselin.com and to all other servers in the domain
gosselin.com.

If you use a
/develop-
ment
 directory
when develop-

ing cookie-based PHP
applications, and place
each application in its
own subdirectory of the
/development direc-
tory, you will help avoid
confl icts not only between
PHP applications in devel-
opment, but with other
PHP applications that are
already installed.

525

Using Cookies to Save State Information

Th e following code shows how to make a cookie at
programming.gosselin.com available to all servers in the
gosselin.com domain:
setcookie("firstName", "Don", time()+3600, "/",
".gosselin.com");

The secure Argument
Internet connections are not always considered safe for transmitting
sensitive information. Unscrupulous people can steal personal infor-
mation online, such as credit card numbers, passwords, and Social
Security numbers. To protect private data transferred across the
Internet, Netscape Communications developed Secure Sockets Layer,
or SSL, to encrypt and transfer data across a secure connection. URLs
for Web pages that support SSL usually start with https: instead
of http:. Th e secure argument indicates that a cookie can only be
transmitted across a secure Internet connection using HTTPS or
another security protocol. To use this argument, you assign a value of
1 (for TRUE) or 0 (for FALSE) as the last argument of the setcookie()
function. For example, to specify the secure attribute for a cookie,
you use a statement similar to the following:
setcookie("firstName", "Don", time()+3600, "/",
".gosselin.com", 1);

Reading Cookies
Cookies that are available to the current Web page are automati-
cally assigned to the $_COOKIE[] PHP autoglobal array. You can then
access each cookie by using the cookie name as a key in the associa-
tive $_COOKIE[] array. (Recall that autoglobals are associative arrays.)
Th e following statement displays the value assigned to the fi rstName
cookie:
echo $_COOKIE['firstName'];

When you create a cookie with the setcookie() function, the cookie
is not available to the current Web page until you reload it. For
example, the following statement causes an error when the Web page
fi rst loads because you cannot access the fi rstName, lastName, and
occupation cookies until you reload the Web page:
setcookie("fi rstName", "Don");
setcookie("lastName", "Gosselin");
setcookie("occupation", "writer");
echo "{$_COOKIE['firstName']} {$_COOKIE['lastName']} is a
{$_COOKIE['occupation']}.";

Elements
of the
$_COOKIE[]
autoglobal
array are

also automatically
assigned to the
$_REQUEST[] auto-
global array, along with
all of the elements of the
$_POST[] and
$_GET[] autoglobal
arrays.

526

C H A P T E R 9 Managing State Information

To ensure that a cookie is set before you attempt to use it, you can
use the isset() function, the same as when you check whether form
variables contain values.
setcookie("fi rstName", "Don");
setcookie("lastName", "Gosselin");
setcookie("occupation", "writer");
if (isset($_COOKIE['firstName'])
 && isset($_COOKIE['lastName'])
 && isset($_COOKIE['occupation']))
 echo "{$_COOKIE['firstName']} {$_COOKIE['lastName']}
 is a {$_COOKIE['occupation']}.";

When you store cookies in indexed or associative arrays, PHP
stores the cookies as two-dimensional arrays within the $_COOKIE[]
autoglobal. Th erefore, you must use multidimensional array syntax
to read each cookie value. You refer to cookie arrays by using the
cookie name as the fi rst dimension and each index or key that rep-
resents a cookie value as the second dimension. For example, the
following statements create and display an indexed version of the
professional[] cookie array:
setcookie("professional[0]", "Don");
setcookie("professional[1]", "Gosselin");
setcookie("professional[2]", "writer");
if (isset($_COOKIE['professional']))
 echo "{$_COOKIE['professional'][0]}
 {$_COOKIE['professional'][1]} is a
 {$_COOKIE['professional'][2]}.";

Th e following statements create and display an associative version of
the professional[] cookie array:
setcookie("professional[fi rstName]", "Don");
setcookie("professional[lastName]", "Gosselin");
setcookie("professional[occupation]", "writer");
if (isset($_COOKIE['professional']))
 echo "{$_COOKIE['professional']['firstName']}
 {$_COOKIE['professional']['lastName']} is a
 {$_COOKIE['professional']['occupation']}.";

To modify the Available Opportunities page so that it reads the stored
LastRequestDate cookie:

1. Return to the AvailableOpportunities.php document in
your text editor.

2. Add the following statements, which read the
LastRequestDate cookie from the $_COOKIE[] autoglobal
array, immediately after the statement that retrieves the
Intern ID from the $_REQUEST[] autoglobal array. You need
both sets of code because the Registration/Log In page still
uses a query string to log in existing users.

527

Using Cookies to Save State Information

if (isset($_COOKIE['LastRequestDate']))
 $LastRequestDate = $_COOKIE['LastRequestDate'];
else
 $LastRequestDate = "";

3. Add the following statements above the statements that dis-
play the table of opportunities. Th is code displays the value of
the LastRequestDate cookie if it is set.
if (!empty($LastRequestDate))
 echo "<p>You last requested an internship
 opportunity " .
 " on $LastRequestDate.</p>\n";

4. Save the AvailableOpportunities.php document and upload it
to the Web server.

5. Open the InternLogin.php fi le in your Web browser by
entering the following URL: http://<yourserver>/PHP_
Projects/Chapter.09/Chapter/InternLogin.php. In the Return-
ing Intern Login form, enter the e-mail address and password
that you registered with the New Intern Registration form
and click the Log In button. You should see the same “Wel-
come Back” Web page.

6. Click the Available Opportunities link to open the Avail-
able Opportunities page. Th e page should open just as it did
before.

7. Click the Available link in the Status column of one of the
opportunities to open the Request Opportunity page. You
should see an acknowledgement message like the one shown
in Figure 9-8.

Figure 9-8 Request Opportunity Web page displaying a successful request

8. Click the Available Opportunities link to open the Available
Opportunities page. Th e page should now show the oppor-
tunity as “Selected” and should display the time of your last

528

C H A P T E R 9 Managing State Information

selection above the table. Figure 9-9 shows that Opportunity 1
was selected.

Figure 9-9 Available Opportunities Web page displaying text from a persistent cookie

9. Close your Web browser window.

Deleting Cookies
You do not need to delete temporary cookies because they automati-
cally cease to exist when the current browser session ends. Persistent
cookies are also automatically deleted when the time assigned to
the setcookie() function’s expires argument elapses. To delete a
persistent cookie before the time assigned to the expires argument
elapses, set the value to an empty string and assign a new expiration
value to a time in the past. You do this by subtracting any number of
seconds from the time() function. Th e following statements delete
the fi rstName, lastName, and occupation cookies by subtracting 3600
seconds (one hour) from the current time:
setcookie("fi rstName", "", time()−3600);
setcookie("lastName", "", time()−3600);
setcookie("occupation", "", time()−3600);

If you do not
set the value
to an empty
string, the
old value will

persist until you close the
Web browser.

529

Using Cookies to Save State Information

Short Quiz

1. Detail the diff erences between temporary cookies and persis-
tent cookies.

2. Describe three limitations of cookies.

3. Explain why the setcookie() function must be called before
any output is sent to the browser.

4. Why is it important to set the expiration date of a cookie in
a script when you might want to greet the user by name the
next time he or she visits the Web?

5. What is the purpose of the domain argument?

Using Sessions to Save State
Information
Cookies are a common state preservation technique used by various
Web development tools in addition to PHP. However, several security
issues are involved with saving state in cookies on a client computer.
First, you cannot ensure the security of every client computer on
which your PHP scripts will run. Th is means that any private infor-
mation stored in cookies, including Social Security numbers and
credit card information, may be accessible by hackers. Because of
these risks, many clients confi gure their Web browsers not to accept
cookies. (You can disable cookies in every current Web browser.)
Unfortunately, this also disables any cookie preservation code in your
PHP scripts.

PHP off ers a more secure alternative to cookies: storing state infor-
mation in sessions. Th e term session refers to a period of activity
when a PHP script stores state information on a Web server. A ses-
sion is similar to a temporary cookie in that it is only available for the
current browser session. If you want to store state information that
will be available when a client revisits your Web site in the future, you
must use cookies. Sessions are a little harder to use than cookies, but
because sessions store state information on a Web server rather than
on the user’s computer, they are much safer to use—provided you
properly secure your Web server. Another benefi t to using sessions is
that they allow you to maintain state information even when clients
disable cookies in their Web browsers.

Many clients
do not
accept cook-
ies due to
the rampant

rise of spyware, which is
malicious software that
gathers user information
from a local computer for
marketing and advertising
purposes without the
user’s knowledge. Users
increasingly choose to
disable cookies to pre-
vent spyware from gath-
ering user information
from stored cookies.

The php.ini
confi guration
fi le contains
numerous
directives that

you can use to control
how sessions behave in
your environment.

530

C H A P T E R 9 Managing State Information

Starting a Session
Whenever you need to work with sessions in a PHP script, you
must call the session_start() function, which starts a new ses-
sion or continues an existing one. When you start a new session, the
session_start() function generates a unique session ID to identify
the session. A session ID is a random alphanumeric string that looks
something like 7f39d7dd020773f115d753c71290e11f. In addition to
generating a session ID, the session_start() function creates a text
fi le on the Web server that has the same name as the session ID, pre-
ceded by sess_. For example, the session ID text fi le for the preceding
session ID would be named sess_7f39d7dd020773f115d753c71290
e11f. Any variables that are generated for a session are stored on the
Web server in this text fi le.

Session ID text fi les are stored in the Web server directory specifi ed
by the session.save_path directive in your php.ini confi guration fi le.

Th e session_start() function does not accept any arguments,
nor does it return a value that you can use in your script. Instead,
you simply call the session_start() function by itself in your PHP
script, as follows:
<?php
session_start();
...

Like the setcookie() function, you must call the session_start()
function before you send the Web browser any output, including
white space, HTML elements, or output from the echo or print state-
ments. If any output exists before you call the session_start() func-
tion, you receive an error and the function returns a value of FALSE.

If a client’s Web browser is confi gured to accept cookies, the session
ID is assigned to a temporary cookie named PHPSESSID. However,
because you cannot be certain that every client accepts cookies, you
should also pass the session ID as a query string or hidden form fi eld
to any Web pages that are called as part of the current session. You
pass a session ID in a name/value pair of PHPSESSID=session ID. You
use the session_id() function to retrieve the session ID for the cur-
rent session. For example, the following code starts a session and uses
the session_id() function to pass the session ID as a query string to
a Web page named Occupation.php:
<?php
session_start();
...
?>
<p><a href='<?php echo "Occupation.php?PHPSESSID="
 . session_id() ?>'>Occupation</p>

531

Using Sessions to Save State Information

You can also use the constant SID, which contains a string that con-
sists of "PHPSESSID=" and the session ID. Th e following example
demonstrates how to use the constant SID to pass the session ID as a
query string to another page:
<?php
session_start();
...
?>
<p><a href='<?php echo "Occupation.php?"
 . SID ?>'>Occupation</p>

For hidden form fi elds, assign a value of PHPSESSID to the name attri-
bute and use the session_id() function to assign the session ID to
the value attribute of the <input> element, as follows:
<input type="hidden" name="PHPSESSID"
 value='<?php echo session_id() ?>' />

To modify the Registration/Log In page so that it uses a session that
tracks the Intern ID number of the current user:

1. Return to the InternLogin.php document in your text editor.

2. Insert the following PHP script section above the opening
<!DOCTYPE> declaration:
<?php
?>

3. Add the following session_start() statement to the begin-
ning of the script section:
session_start();

4. Modify the action attribute of the two forms so they pass the
session ID in a query string. Th e modifi ed links should appear
as follows:
<form method="post" action="RegisterIntern.php?<?php
 echo SID; ?>">
...
<form method="post" action="VerifyLogin.php?<?php
 echo SID; ?>">

5. Save the InternLogin.php document and upload it to the Web
server.

Working with Session Variables
You store session state information in the $_SESSION[] autoglobal.
When you call the session_start() function, PHP either initializes a
new $_SESSION[] autoglobal or retrieves any variables for the current
session (based on the session ID) into the $_SESSION[] autoglobal.

The SID
constant
may or may
not be
defi ned on

your system. It is enabled
through a confi guration
setting in the php.ini fi le.
If SID is not enabled on
your system, use
PHPSESSID as the name
and the return value of
the session_id()
function as the value
instead.

532

C H A P T E R 9 Managing State Information

For example, the following code declares and initializes three vari-
ables—fi rstName, lastName, and occupation—in the $_SESSION[]
autoglobal:
<?php
session_start();
$_SESSION['firstName'] = "Don";
$_SESSION['lastName'] = "Gosselin";
$_SESSION['occupation'] = "writer";
?>
<p><a href='<?php echo "Occupation.php?"
 . session_id() ?>'>Occupation</p>

When a user clicks the Occupation link, the fi rstName, lastName, and
occupation variables are available in the $_SESSION[] autoglobal on
the Occupation.html page. If the Occupation.html page contains the
following script section, it displays Don Gosselin is a writer :
<?php
session_start();
echo "<p>" . $_SESSION['firstName'] . " " .
$_SESSION['lastName']
 . " is a " . $_SESSION['occupation'] . "</p>\n";
?>

As with cookies, you can use the isset() function to ensure that a
session variable is set before you attempt to use it, as follows:
<?php
session_start();
if (isset($_SESSION['firstName']) &&
isset($_SESSION['lastName']) &&
isset($_SESSION['occupation']))
 echo "<p>" . $_SESSION['firstName'] . " "
 . $_SESSION['lastName'] . " is a "
 . $_SESSION['occupation'] . "</p>\n";
?>

To modify the New Intern Registration page so that it stores the
Intern ID number in the $_SESSION[] autoglobal:

1. Return to the RegisterIntern.php document in your text
editor.

2. Add a session_start() statement to the beginning of the
script section:
session_start();

3. Locate the statement at the end of the script section that
declares the $InternID variable and modify it so the ID
returned from the mysql_insert_id() function is assigned to
the $_SESSION[] autoglobal, as follows:
$_SESSION['internID'] = mysql_insert_id($DBConnect);

533

Using Sessions to Save State Information

4. Modify the paragraph element in the document body that dis-
plays the Intern ID so it refers to the $_SESSION['internID']
autoglobal variable instead of the $InternID variable, as
follows:
 $Body .= "Your new Intern ID is " .
 $_SESSION['internID'] . ".</p>\n";

5. Replace the code that uses the hidden input in a form with a
link that uses the session ID, as follows:
$Body .= "<p><a href='AvailableOpportunities.php?" .
 SID . "'>View Available Opportunities</p>\n";

6. Save the RegisterIntern.php document and upload it to the
Web server.

To modify the Verify Login page so that it stores the Intern ID num-
ber in the $_SESSION[] autoglobal:

1. Return to the VerifyLogin.php document in your text editor.

2. Add a PHP script section with a session_start() statement
before the <!DOCTYPE> tag:
<?php
session_start();
?>

3. Locate the statement at the end of the script section that
declares the $InternID variable and modify it so the
ID returned from the database query is assigned to the
$_SESSION[] autoglobal, as follows:
$_SESSION['internID'] = $Row['internID'];

4. Replace the code that creates a link that passes the Intern ID
with a link that passes the session ID, as follows:
 echo "<p><a href='AvailableOpportunities.php?" .
 SID . "'>Available Opportunities</p>\n";

5. Save the VerifyLogin.php document and upload it to the Web
server.

To modify the Available Opportunities page so that it uses the Intern
ID number from the $_SESSION[] autoglobal:

1. Return to the AvailableOpportunities.php document in
your text editor.

2. Add a PHP script section with a session_start() statement
before the <!DOCTYPE> tag:
<?php
session_start();
?>

534

C H A P T E R 9 Managing State Information

3. Remove the following code that uses the
$_REQUEST['internID'] element:
if (isset($_REQUEST['internID']))
 $InternID = $_REQUEST['internID'];
else
 $InternID = −1;

4. Modify the three queries that use $InternID so that they use
$_SESSION['internID'] instead, as follows:
 $SQLstring = "SELECT * FROM $TableName WHERE " .
 " internID='" . $_SESSION['internID] . "'";
...
$SQLstring = "SELECT COUNT(opportunityID) FROM
$TableName " .
 " WHERE internID='" . $_SESSION['internID'] . "' " .
 " AND date_approved IS NOT NULL";
...
$SQLstring = "SELECT opportunityID FROM $TableName " .
 " WHERE internID='" . $_SESSION['internID'] . "'";

5. Modify the link to RequestOpportunity.php to use the session
ID instead of the Intern ID, as follows:
 echo "<a href='RequestOpportunity.php?" .
 SID . "&opportunityID=" .
 $Opportunity['opportunityID'] .
 "'>Available";

6. Save the AvailableOpportunities.php document and upload it
to the Web server.

To modify the RequestOpportunity.php document so that it uses the
session ID to retrieve user information:

1. Return to the RequestOpportunity.php document in your
text editor.

2. Add the following statement to the beginning of the script
section to start the session:
session_start();

3. Remove the following section that checks the
$_GET['internID'] autoglobal:
if (isset($_GET['internID']))
 $InternID = $_GET['internID'];
else {

and replace it with the following if statement that checks the
$_SESSION['internID'] autoglobal:
if (!isset($_SESSION['internID'])) {

535

Using Sessions to Save State Information

4. In both sections of code that link to the AvailableOpportu-
nities.php page, replace the Intern ID in the link so that the
 session ID is passed instead, as follows:
 $Body .= "<p>You have not selected an
 opportunity. " .
 " Please return to the " .
 " <a href='AvailableOpportunities.
 php?" .
 SID . "'>Available " .
 " Opportunities page.</p>";
...
 $Body .= "<p>Return to the <a href='" .
 "AvailableOpportunities.php?" . SID .
 "'>" .
 "Available Opportunities page.
 </p>\n";

5. Modify the insert query string so it refers to the
$_SESSION['internID'] autoglobal variable instead of the
$InternID variable, as follows:
 $SQLstring = "INSERT INTO $TableName " .
 " (opportunityID, internID, " .
 " date_selected) VALUES " .
 " ($OpportunityID, " .
 $_SESSION['internID']
 . ", '$DatabaseDate')";

6. Locate the if statement that checks if $InternID is greater
than 0, and modify it to refer to the $_SESSION['internID']
autoglobal variable instead, as follows:
if ($_SESSION['internID'] > 0)

7. Save the RequestOpportunity.php document and upload it to
the Web server.

Deleting a Session
Although a session automatically ends when the current browser
session ends, sometimes you need to delete a session manually. For
example, you might want to give users the opportunity to end a ses-
sion by clicking a Log Out button or link, or you might want a session
to end if it is inactive for a specifi ed period of time. To delete a ses-
sion, you must perform the following steps:

1. Execute the session_start() function. (Remember that you
must call the session_start() function whenever you need
to work with sessions in a PHP script.)

536

C H A P T E R 9 Managing State Information

2. Use the array() construct to reinitialize the $_SESSION[]
autoglobal.

3. Use the session_destroy() function to delete the session.

For example, the following code deletes a session:
<?php
session_start();
$_SESSION = array();
session_destroy();
?>

To modify the Registration/Log In page so that it deletes any existing
sessions whenever a user opens it:

1. Return to the InternLogin.php document in your text editor.

2. Add the following code immediately after the
session_start() function in the PHP script section:
$_SESSION = array();
session_destroy();

3. Save the InternLogin.php document and upload it to the Web
server.

4. Open the InternLogin.php fi le in your Web browser by enter-
ing the following URL: http://<yourserver>/PHP_ Projects/
Chapter.09/Chapter/InternLogin.php. Enter the e-mail
address and password for a registered user and click the Log
In button. You should see the Login Successful page. Click the
Available Opportunities link to open the Available Oppor-
tunities page. Notice the session ID appended to the URL in
your browser’s address box.

5. Click the Log Out link on the Available Opportunities page to
execute the session deletion code.

6. Close your Web browser window.

Short Quiz

1. Describe two problems with cookies that do not aff ect
sessions.

2. Explain the purpose of the temporary cookie named
PHPSESSID.

3. How does the constant SID pass the session ID as a query
string to another page?

537

Using Sessions to Save State Information

4. What function is used to ensure that the session variable is set
before you attempt to use it?

5. What function must be used when a visitor uses a Log Out
button to end a session?

Summing Up

Information about individual visits to a Web site is called state •
information. Maintaining state means to store persistent informa-
tion about Web site visits.

To pass form values from one PHP script to another, you can store •
the values in hidden form fi elds, which are submitted along with
other types of form fi elds.

One way to preserve information following a user’s visit to a Web •
page is to append a query string to the end of a URL. To pass infor-
mation from one Web page to another using a query string, add a
question mark (?) immediately after a URL, followed by the query
string containing the information you want to preserve in name/
value pairs.

Cookies, also called magic cookies, are small pieces of informa- •
tion about a user that are stored by a Web server in text fi les on
the user’s computer. Cookies can be temporary or persistent.
Temporary cookies remain available only for the current browser
session. Persistent cookies remain available beyond the current
browser session and are stored in a text fi le on a client computer.

You use the • setcookie() function to create cookies in PHP. You
must call the setcookie() function before you send the Web
browser any output, including white space, HTML elements, or
output from the echo or print statements.

Cookies created with only the • name and value arguments of the
setcookie() function are temporary cookies, because they are
available for only the current browser session.

For a cookie to persist beyond the current browser session, you •
must use the expires argument with the setcookie() function.

Th e • path argument of the setcookie() function determines the
availability of a cookie to other Web pages on a server.

538

C H A P T E R 9 Managing State Information

Th e • secure argument of the setcookie() function indicates that a
cookie can only be transmitted across a secure Internet connection
using HTTPS or another security protocol.

To delete a persistent cookie before the time elapses in the •
assigned expires argument, assign a new expiration value to a
time in the past and clear the value. You do this by subtracting any
number of seconds from the time() function and setting the value
of the cookie to the empty string.

Sessions refer to periods of activity when a PHP script stores state •
information on a Web server. When you start a new session, the
session_start() function generates a unique session ID to iden-
tify the session. If a client’s Web browser is confi gured to accept
cookies, the session ID is assigned to a temporary cookie named
PHPSESSID.

You must call the • session_start() function before you send the
Web browser any output, including white space, HTML elements,
or output from the echo or print statements.

You store session state information in the • $_SESSION[] autoglobal.

To delete a session, you execute the • session_start() function,
use the array() construct to reinitialize the $_SESSION[] auto-
global, and then call the session_destroy() function.

Comprehension Check

1. HTTP was originally designed to store data about individual
visits to a Web site. True or False?

2. Stored information about a previous visit to a Web site is
called information.

a. HTTP

b. client-side

c. state

d. prior

3. Describe the diff erent types of information about a user that a
Web server might need to store.

4. Explain how to use form fi elds to temporarily store user
information.

539

Comprehension Check

5. In what format are items in a query string appended to a
 target URL?

a. in comma-delimited format

b. as predefi ned values

c. as name/value pairs

d. in name, value, length format

6. Explain how query string data that is appended to a URL is
retrieved in PHP.

7. What is the correct syntax for creating a temporary cookie
that contains a value of “blue”?

a. $Color = setcookie("blue");

b. setcookie("color", "blue");

c. setcookie("blue", "color");

d. setcookie("blue");

8. You must manually encode and decode cookie values. True or
False?

9. By default, cookies created without the expires argument of
the setcookie() function are available for 24 hours. True or
False?

10. Cookies created without the expires argument of the
setcookie() function are called .

a. transient

b. temporary

c. permanent

d. persistent

11. Which of the following examples specifi es that a cookie
should expire in three days?

a. time()+48h

b. time()+24h*3

c. time()+60*60*24*7

d. time()+60*60*24*3

540

C H A P T E R 9 Managing State Information

12. Th e availability of a cookie to other Web pages on a server
is determined by the argument of the
setcookie() function.

a. path

b. directory

c. system

d. server

13. Which argument of the setcookie() function is used for
sharing cookies outside of a domain?

a. domain

b. share

c. secure

d. You cannot share cookies outside of a domain.

14. You use the to read cookies in PHP.

a. $_COOKIE[] autoglobal

b. $_COOKIES[] autoglobal

c. cookie() function

d. getcookie() function

15. How do you delete cookies before the time assigned to the
setcookie() function’s expires argument elapses?

a. Assign a NULL value with the setcookie() function.

b. Set the value to an empty string and assign a new expira-
tion value to a time in the past.

c. Execute the deletecookie() function.

d. You cannot delete a cookie before the time assigned to the
setcookie() function’s expires argument elapses.

16. Explain the security risks involved with cookies and how ses-
sions off er a more secure method of maintaining state.

17. Unlike the setcookie() function, you can call the
session_start() function from any location on a Web page.
True or False?

541

Comprehension Check

18. What is the name of the cookie that PHP creates for a session?

a. SESSION

b. PHPSESSION

c. SESSIONID

d. PHPSESSID

19. Explain how to pass a session ID to other PHP scripts when
cookies are not available.

20. You use the to access session variables in
PHP.

a. $_SESSION[] autoglobal

b. $_SESSIONS[] autoglobal

c. session() function

d. getsession() function

Reinforcement Exercises

Exercise 9-1

In this project, you will create a Cancel Selection page for the College
Internship Available Opportunities Web site.

1. Create a new document in your text editor and type the
<!DOCTYPE> declaration, <html> element, header informa-
tion, and <body> element. Use the strict DTD and “Cancel
Selection” as the content of the <title> element.

2. Add the following PHP script section before the <!DOCTYPE>
tag to start a session:
<?php
session_start();
?>

3. Add the following text, elements, and script section to the
document body:
<h1>College Internship</h1>
<h2>Cancel Selection</h2>
<?php
 echo $Body;
?>

542

C H A P T E R 9 Managing State Information

4. Add the following statements to the end of the fi rst script
section, immediately after the session_start() function, to
verify that the correct information was passed to this page:
$Body = "";
$errors = 0;
if (!isset($_SESSION['internID'])) {
 $Body .= "<p>You have not logged in or
 registered. " .
 " Please return to the " .
 " <a href='InternLogin.
 php'>Registration / " .
 " Log In page.</p>\n";
 ++$errors;
}
if ($errors == 0) {
 if (isset($_GET['opportunityID']))
 $OpportunityID = $_GET['opportunityID'];
 else {
 $Body .= "<p>You have not selected an
 opportunity. " .
 " Please return to the " .
 " <a href='AvailableOpportunities.
 php?" . SID . "'>Available " .
 " Opportunities page.</p>\n";
 ++$errors;
 }
}

5. Next, add the following code to connect to the database
server and open the internships database. Be sure to replace
host with the name of the MySQL server, and user and
password with your user name and password.
if ($errors == 0) {
 $DBConnect = @mysql_connect("host", "user",
 "password");
 if ($DBConnect === FALSE) {
 $Body .= "<p>Unable to connect to the
 database " .
 " server. Error code " . mysql_
 errno() . ": " .
 mysql_error() . "</p>\n";
 ++$errors;
 }
 else {
 $DBName = "internships";
 $result = @mysql_select_db($DBName,
 $DBConnect);

543

Reinforcement Exercises

 if ($result === FALSE) {
 $Body .= "<p>Unable to select the
 database. " .
 "Error code " . mysql_
 errno($DBConnect) .
 ": " . mysql_error($DBConnect)
 . "</p>\n";
 ++$errors;
 }
 }
}

6. Next, add the following code to delete the appropri-
ate row from the assigned_opportunities table. Do not
allow the selection to be deleted if it has been approved.
(Approved selections have a date in the date_approved
column, while selections that have not been approved have
a NULL value in the date_approved column.) Use the
mysql_affected_rows() function to indicate whether any
rows were deleted.
if ($errors == 0) {
 $TableName = "assigned_opportunities";
 $SQLstring = "DELETE FROM $TableName" .
 " WHERE opportunityID=$OpportunityID " .
 " AND internID=" . $_
 SESSION['internID'] .
 " AND date_approved IS NULL";
 $QueryResult = @mysql_query($SQLstring,
 $DBConnect) ;
 if ($QueryResult === FALSE) {
 $Body .= "<p>Unable to execute the query. " .
 " Error code " . mysql_
 errno($DBConnect) .
 ": " . mysql_error($DBConnect) .
 "</p>\n";
 ++$errors;
 }
 else {
 $AffectedRows = mysql_affected_
 rows($DBConnect);
 if ($AffectedRows == 0)
 $Body .= "<p>You had not previously " .
 " selected opportunity # " .
 $OpportunityID . ".</p>\n";
 else
 $Body .= "<p>Your request for
 opportunity # " .
 " $OpportunityID has been " .
 " removed.</p>\p";
 }
 mysql_close($DBConnect);
}

544

C H A P T E R 9 Managing State Information

7. Add the following statements to the end of the script section
to display the appropriate link for the visitor to use:
if ($_SESSION['internID'] > 0)
 $Body .= "<p>Return to the <a href='" .
 "AvailableOpportunities.php?" . SID . "'>" .
 "Available Opportunities page.</p>\n";
else
 $Body .= "<p>Please <a href='InternLogin.
 php'>Register " .
 " or Log In to use this page.</p>\n";

8. Save the document as CancelSelection.php in the Chapter
directory for Chapter 9.

9. Reopen the AvailableOpportunities.php document.

10. Find the line that displays the word “Selected” in the Status
column. Replace that line with the following code that allows
the intern to cancel his or her selection:
 echo "Selected
" .
 "<a href='CancelSelection.php?" .
 SID . "&opportunityID=" .
 $Opportunity['opportunityID'] .
 "'>Cancel Selection";

11. Save the AvailableOpportunities.php document. Upload it
and CancelSelection.php to the Web server.

12. Open the InternLogin.php fi le in your Web browser by
entering the following URL: http://<yourserver>/PHP_
Projects/Chapter.09/Chapter/InternLogin.php. Enter the
e-mail address and password for a registered user and click
the Log In button. You should see the Login Successful
page. Click the Available Opportunities link to open the
Available Opportunities page. Locate an opportunity that you
have selected, or select a new opportunity. Click the Cancel
Selection link to open the Request Internship Web page,
which is shown in Figure 9-10.

Figure 9-10 Cancel Selection Web page of the College Internship Web site

Because this
Web page
must inter-
act with the
Web pages

in the Chapter directory,
this fi le must also be
uploaded to the Chapter
directory, not the Projects
directory.

545

Reinforcement Exercises

13. Click the Available Opportunities link to return to the
Available Opportunities page. Th e opportunity for which you
cancelled the selection should be listed as available.

14. Close your Web browser window.

Exercise 9-2

In this project, you will create a cookies program that stores the date
and time of a user’s last visit.

1. Create a new document in your text editor and type the
<!DOCTYPE> declaration, <html> element, header information,
and <body> element. Use the strict DTD and “Last Visit” as
the content of the <title> element.

2. Add the following script section above the <!DOCTYPE>
declaration:
<?php
?>

3. Add the following if...else statement to the script sec-
tion to assign a value to the $LastVisit variable. If the
$_COOKIE['lastVisit'] variable is set, the date and time of
the last visit is assigned to the $LastVisit variable. Otherwise,
the variable is assigned a value of “Th is is your fi rst visit!”
if (isset($_COOKIE['lastVisit']))
 $LastVisit = "<p>Your last visit was on "
 . $_COOKIE['lastVisit'];
else
 $LastVisit = "<p>This is your first visit!</p>\n";

4. Add the following statement to the end of the script sec-
tion. Th e statement uses the date() function with the
setcookie() function to assign the date to the $LastVisit
variable. Notice that the cookie is set to expire in one year.
setcookie("lastVisit", date("F j, Y, g:i a"),
 time()+60*60*24*365);

5. To the document body, add the following output directive,
which displays the value of the $LastVisit variable:
<?php echo $LastVisit; ?>

6. Save the document as LastVisit.php in the Projects direc-
tory for Chapter 9, and then close the document in your text
editor.

546

C H A P T E R 9 Managing State Information

7. Open the LastVisit.php fi le in your Web browser by enter-
ing the following URL: http://<yourserver>/PHP_Projects/
Chapter.09/Projects/LastVisit.php. Th e fi rst time you open the
page, you should see “Th is is your fi rst visit!” in the browser
window. Reload the Web page; you should see the date and
time in the browser window.

8. Close your Web browser window.

Exercise 9-3

Create a document with a “nag” counter that reminds users to reg-
ister. Save the counter in a cookie and display a message reminding
users to register every fi fth time they visit your site. Create a form in
the body of the document that includes text boxes for a user’s name
and e-mail address along with a Registration button. Normally, reg-
istration information would be stored in a database. For simplicity,
this step will be omitted from this exercise. After a user fi lls in the
text boxes and clicks the Registration button, delete the nag counter
cookie and replace it with cookies containing the user’s name and
e-mail address. After registering, display the name and e-mail address
cookies whenever the user revisits the site.

Exercise 9-4

You can use PHP’s rand() function to generate a random integer. Th e
rand() function accepts two arguments that specify the minimum
and maximum integer to generate, respectively. For example, the
statement $RandNum = rand(10, 20) generates a random integer
between 10 and 20 and assigns the number to the $RandNum vari-
able. Create a guessing game that uses sessions to store a random
number between 0 and 100, along with the number of guesses
the user has attempted. Each time the user guesses wrong, dis-
play the number of times the user has guessed. Include a Give Up
link that displays the generated number for the current game. Also
include a Start Over link that deletes the user session and uses the
header("location:URL") function to navigate to the main page.

Exercise 9-5

Create a set of Web pages that registers users for a professional con-
ference. Use a session to track users as they navigate through the Web
pages. Include three separate Web pages that contain forms: the fi rst
form gathers the user’s name and contact information, the second

547

Reinforcement Exercises

form gathers the user’s company information, and the third form
prompts users to select the seminars they want to attend at the con-
ference. Include a fourth page that displays the submitted informa-
tion. Th e fourth page should include links that allow users to edit the
submitted data, along with a Submit button that saves the informa-
tion to a database. A fi fth page should display a confi rmation that the
information was successfully saved. Include code based on reading
e-mail addresses that prevents the same user from registering twice.

Discovery Projects
Th e Chinese Zodiac site is a comprehensive project that will be
updated in the Discovery Projects in each chapter. All fi les for the
Chinese Zodiac site will be saved in a folder named ChineseZodiac
in the root Web folder on the server, and all database tables will be
stored in the chinese_zodiac database.

Discovery Project 9-1

In this project, you will create a basic site counter to track the num-
ber of visitors to your site. Referring back to Discovery Project 8-2,
connect to the server and the chinese_zodiac database.

In the chinese_zodiac database, create a new table named
visit_counter. Th e table should contain two fi elds: id and counter.
Th e id fi eld will be an auto-incrementing primary key with an INT
data type and the counter fi eld will be an INT data type. Insert a new
record in the table with an id of NULL and a counter of 0. Th e id fi eld
should be automatically set to 1.

Open a blank document in the text editor. Within PHP delimiters,
include inc_connect.php and then insert the following script that sets
a cookie with an expiration of one day, so that visitors are not counted
each time they return to the Web page that has the counter.
<?php
// include the inc_connect.php file with database
// connection data
...
/* set a cookie if this is the first visit – the expires
argument is 1 day to prevent visits from incrementing each
time the user returns to the page that contains the site
counter */
if (empty($_COOKIE["visits"])) {
 // increment the counter in the database
 mysql_query("UPDATE visit_counter " .
 " SET counter = counter + 1 " .
 " WHERE id = 1 ");

548

C H A P T E R 9 Managing State Information

 // query the visit_counter table and assign the counter
 // value to the $visitors variable
 $queryResult = mysql_query("SELECT counter " .
 " FROM visit_counter WHERE id = 1");
 if (($row = mysql_fetch_assoc($queryResult)) !== FALSE)
 $visitors = $row['counter'];
 else
 $visitors = 1;
 // Set the cookie value
 setcookie("visits", $visitors, time()+(60*60*24));
}
else // Otherwise, assign the cookie value to the $visitor
 // variable
 $visitors = $_COOKIE["visits"];
?>

Save the fi le as inc_site_counter.php and upload the fi le to the
Includes folder in the ChineseZodiac directory on the server.

Open index.php, which you last modifi ed in Discovery Project 4-4,
from the ChineseZodiac directory. As the fi rst line of code, within the
PHP delimiters, include the inc_site_counter.php script. Save the
fi le and upload it to the ChineseZodiac directory on the server.

Open inc_footer.php from the Includes folder in the ChineseZodiac
directory on the server. You last modifi ed inc_footer.php in Discovery
Project 8-5. At the location in the script that you would like to display
your counter, add the following script:
<p>Total visitors to this site: <?php echo $visitors; ?></p>

Save the inc_footer.php fi le and upload it to the Includes folder in
the ChineseZodiac directory on the server.

Open index.php in the browser. Th e display should read “Total visi-
tors to this site: 1”. Refresh the browser. Th e display should remain the
same. Delete cookies in your browser and open index.php again. Th e
display should now read “Total visitors to this site: 2”.

Discovery Project 9-2

In this project, the Chinese zodiac site will have sponsors. Each spon-
sor needs to have a banner ad. Each time a visitor returns to the site, a
diff erent banner should appear.

For this project, you will need at least fi ve banners that advertise
products or services of interest to a visitor to the Chinese zodiac
site. (Th ese products might include fortune cookies and origami, for
example.) In any graphics program, design fi ve banners (125px by
125px), and then save them respectively as banner1, banner2, ban-
ner3, banner4, and banner5 with a valid graphic extension. Upload

You can use
CSS or tables
to format the
counter to
appear in any
style.

549

Discovery Projects

these fi les to the Images folder in the ChineseZodiac directory on the
server.

To add banner ad images to the Chinese zodiac site:

1. Open a blank document in the text editor.

2. Within PHP delimiters, insert the following code, which cre-
ates an array named $banner_array that stores the fi ve ban-
ner images you created. Replace the .ext fi le extension with
the appropriate extension for each image fi le type. Th e script
then uses the count() function to store the total number of
elements in the array to a variable called $banner_count.
$banner_array = array(
 "Images/banner1.ext",
 "Images/banner2.ext",
 "Images/banner3.ext",
 "Images/banner4.ext",
 "Images/banner5.ext");
$banner_count = count($banner_array);

3. Immediately after the preceding code, but within the PHP
script section, add the following code that sets or updates a
cookie with an expiration date of one week. If the visitor has
not returned within a week, the banner ads will start fresh. To
ensure that the fi rst banner ad does not always appear when a
visitor fi rst opens the page, you will use the rand() function
to select a random starting point.
if (empty($_COOKIE["lastbanner"])) {
 // generate a random index greater than or equal
 // to 0, and less than the number of elements in
 // the $banner_array array
 $banner_index = rand(0, $banner_count-1);
}
else {
 // assign the cookie value to the $banner_index
 // variable
 $banner_index = $_COOKIE["lastbanner"];
 // increment the banner index, and use the modulus
 // operator to ensure that the index is greater
 // than or equal to 0, and less than the number
 // of elements in the $banner_array array
 $banner_index = (++$banner_index) % $banner_count;
}
// Set or update the cookie value
setcookie("lastbanner", $banner_index,
time()+(60*60*24*7));

4. Save the fi le as inc_banner_display.php and upload it to the
Includes folder in the ChineseZodiac directory on the server.

550

C H A P T E R 9 Managing State Information

5. Open index.php, which you modifi ed in the previous project.
At the top of the document, but after the existing include()
statement, write the code to include inc_banner_display.php.

6. Open inc_button_nav.php from the Includes folder. You last
modifi ed inc_button_nav.php in Discovery Project 4-2. Above
the code for the navigation buttons, include the following
PHP code block, which uses the $banner_index variable to
display the corresponding image element in the array:
<?php
include("Includes/inc_banner_display.php");
// statement to determine which banner image to display
$image = $banner_array[$banner_index];
?>

7. Immediately after the PHP code block, add the following
statement that displays the appropriate image saved in the
$image variable.
<img class="btn" src="<?php echo $image; ?>"
 alt="[Banner Ad]" title="Banner Ad"
 style = "border:0" />

8. Save inc_button_nav.php and upload it to the server. Open
index.php in the browser to verify that a banner ad appears
above the button navigation. Refresh the browser. Each time
the browser is refreshed, the next banner image in the array
should appear. When the last banner in the array appears, the
cycle should begin again with banner1.

Discovery Project 9-3

In this project, you will create a simple Web site survey with fi ve
questions that will use sessions to track the user responses.

To create the Web site survey:

1. Create a new document in the text editor and create a PHP
code block at the top of the document that includes the
session_start() function:
<?php
session_start();
?>

2. Before the end of the PHP code block, insert the following
array of fi ve questions and the code to save the number of
questions into the $question_count variable:

During the
development
stage, you
may want to
insert echo

"<p>PHP Session ID
is " . session_
id() . "</p>\n"; in
the PHP code block to
 display the assigned
 session ID.

551

Discovery Projects

$survey_questions = array(
 1 => "Was the navigation straightforward and " .
 " did all the links work?",
 2 => " Was the selection of background color, " .
 " font color, and font size appropriate?",
 3 => " Were the images appropriate and did they " .
 " complement the Web content?",
 4 => " Were the descriptions of the PHP program " .
 " complete and easy to understand?",
 5 => " Was the PHP code structured properly and " .
 " well commented?");
$question_count = count($survey_questions);

3. Immediately after assigning the value to $question_count,
check to see if $_SESSION['CurrentQuestion'] is set
using the following code. If it is set, increment it. If it is
not set, set it to 0. Also, store the previous response if
$_SESSION['CurrentQuestion'] is set and greater than 0 and
the autoglobal element $_POST['response'] is set.
if (isset($_SESSION['CurrentQuestion'])) {
 if (($_SESSION['CurrentQuestion'] > 0) &&
 (isset($_POST['response']))) {
 $_SESSION['Responses'][$_
 SESSION['CurrentQuestion']]
 = $_POST['response'];
 }
 ++$_SESSION['CurrentQuestion'];
}
else
 $_SESSION['CurrentQuestion'] = 0;

4. After the closing PHP tag, type the <!DOCTYPE> declaration,
<html> element, header information, and <body> element.
Use the strict DTD and “Web Survey” as the content of the
<title> element.

5. In the body of the Web page, add the following header and
PHP tag:
<h1>Web Survey</h1>
<?php
?>

6. In the PHP code section, add the following code with
advanced escaping to display diff erent information based on
the value of $_SESSION['CurrentQuestion']:
if ($_SESSION['CurrentQuestion'] == 0) {
?>
<p></p>
<?php
}
else if ($_SESSION['CurrentQuestion'] > $question_

552

C H A P T E R 9 Managing State Information

count) {
?>
<p></p>
<?php
}
else {
}

7. In the if clause of the if...else statement, add a para-
graph explaining the purpose of the survey, such as “Th ank
you for reviewing the Chinese Zodiac Web site. Your candid
responses to the following fi ve questions will help improve the
eff ectiveness of our PHP demonstration site.” Th is explanatory
paragraph should go within the opening and closing <p> tags.

8. In the else if clause of the if...else statement, add a
statement within the opening and closing <p> tags that thanks
the user for completing the survey. After the opening PHP
tag, add code to use the standard e-mail headers to e-mail the
survey results to your e-mail address. Build the body of the
message using the $_SESSION['Responses'] array. Display
the survey results on the page so that the visitor can see the
fi ve questions and the selected responses.

9. In the fi nal else clause of the if...else statement, add the
following code to display the current question:
 echo "<p>Question " . $_SESSION['CurrentQuestion'] .
 ": " . $survey_questions[$_
 SESSION['CurrentQuestion']]
 . "</p>\n";

10. Add the following code to insert a form with a
method of post and an action of "web_survey.php" if
$_SESSION['CurrentQuestion'] is less than or equal to the
number of questions. Insert a hidden form fi eld to pass the
session ID from page to page. Use a nested if...else state-
ment to display the appropriate text on the Submit button and
to include radio buttons for the visitor to select an answer if a
question is being displayed.
if ($_SESSION['CurrentQuestion'] <= $question_count)
{
 echo "<form method='post' action='web_survey.
 php'>\n";
 echo "<input type='hidden' name='PHPSESSID'
 value=' " .
 session_id() . "' />\n";
 if ($_SESSION['CurrentQuestion'] > 0) {
 echo "<p><input type='radio'
 name='response' " .
 " value='Exceeds Expectations' /> " .
 " Exceeds Expectations
\n";

553

Discovery Projects

 echo "<input type='radio' name='response' " .
 " value='Meets Expectations'" .
 " checked='checked' /> " .
 " Meets Expectations
\n";
 echo "<input type='radio' name='response' " .
 " value='Below Expectations'> " .
 " Below Expectations</p>\n";
 }
 echo "<input type='submit' name='submit' value='";
 if ($_SESSION['CurrentQuestion'] == 0)
 echo "Start the survey";
 else if ($_SESSION['CurrentQuestion'] ==
 $question_count)
 echo "Finished";
 else
 echo "Next Question";
 echo "' />\n";
 echo "</form>\n";
}

11. Save the fi le as web_survey.php and upload the fi le to the
ChineseZodiac directory on the server.

12. Reopen inc_state_information.php (last modifi ed in
Discovery Project 4-1) in your text editor and add a descrip-
tion of the Web survey program. Include a [Test the Script]
link that opens web_survey.php and a [View the Source
Code] link that displays the PHP source code for the survey
page. Save the fi le and upload it to the Includes folder in the
ChineseZodiac directory on the server.

13. Open the Chinese zodiac Web site, then click the State
Information button and text links to verify that the program
runs properly. Click the [Test the Script] link for the Web sur-
vey to open web_survey.php. Select a response for each ques-
tion. Th e fi nal page should display the “thank you” message,
the results of the survey, and a link back to the Chinese zodiac
site if the survey was opened in a new window rather than the
dynamic content section. Th e results should also be sent to
your e-mail address.

Discovery Project 9-4

In this project, you will design the gateway portal for a Chinese
zodiac social networking site that will create a login system to allow
users to register, log in, create and update user profi les, display pho-
tos, and view all user profi les.

Th e gateway page should contain a welcome screen (with header and
footer) and two sections:

554

C H A P T E R 9 Managing State Information

1. Registered User Login [Insert placeholder text here]

2. New User Registration [Insert placeholder text here]

Insert a header, footer, and welcome content on the page and save it
as index.php in a ZodiacProfi les subdirectory in the ChineseZodiac
directory on the server.

In the browser, open index.php from the ZodiacProfi les subdirectory
to verify that the gateway portal appears correctly.

Discovery Project 9-5

In this project, you will create the database tables required to store
the profi le information.

Referring back to Discovery Project 8-2, connect to the server and the
Chinese zodiac database. Create two tables named zodiac_profi les
and profi le_pictures using the properties in Tables 9-1 and 9-2:

Field Name Field Properties
profi le_id UNSIGNED INT NOT NULL AUTOINCREMENT PRIMARY KEY

fi rst_name VARCHAR(25) NOT NULL

last_name VARCHAR(25) NOT NULL

user_email VARCHAR(255) NOT NULL

user_name VARCHAR(25) NOT NULL

user_password VARCHAR(25) NOT NULL

user_sign VARCHAR(25) NOT NULL

user_profi le TEXT NOT NULL

Table 9-1 The zodiac_profi les table

Field Name Field Properties
profi le_id INT NOT NULL

profi le_title VARCHAR(100) NOT NULL

picture_ link VARCHAR(200) NOT NULL

Table 9-2 The profi le_pictures table

View the structure of the two tables in either MySQL Monitor
or PHPMyAdmin, capture an image of each display, and save the
images as DP9-5a.ext and DP9-5b.ext, respectively (replacing
the .ext with the appropriate extension for the image type). Upload
the fi les to an Images folder in the ZodiacProfi les subdirectory of the
ChineseZodiac directory on the server.

555

Discovery Projects

C H A P T E R 10
Developing Object-
Oriented PHP

In this chapter, you will:

Study object-oriented programming concepts

Use objects in PHP scripts

Declare data members in classes

Work with class member functions

Th e PHP programs you have written so far have mostly been self-
contained—that is, most elements of the code, such as variables,
statements, and functions, exist within a script section. For example,
you might create a Web page for an online retailer that uses PHP to
calculate the total for a sales order, including state sales tax and ship-
ping. However, suppose the retailer sells diff erent types of products
on diff erent Web pages, with one page selling apparel, another page
selling electronics, and so on. If you want to reuse the code that cal-
culates sales totals on multiple Web pages, you must copy all of the
statements or recreate them from scratch for each Web page. Object-
oriented programming takes a diff erent approach. Essentially, object-
oriented programming allows you to use and create objects, which
are complex data structures built of variables and functions that work
together to represent a single entity. In other words, object-oriented
programming allows you to hide a complex logical construct behind a
simple interface.

PHP 5 added many new object-oriented programming capabilities to
the language. Th ese capabilities rival features in other object-oriented
languages, such as Java and C++. Entire books are written about
object-oriented programming, but this chapter focuses on the basics
to get you started in creating object-oriented PHP scripts.

Introduction to Object-Oriented
Programming
Th e term object-oriented programming (OOP) refers to the concept
of merging related variables and functions into a single interface. Th e
term object specifi cally refers to programming code and data that
can be treated as an individual unit or component. (Objects are often
also called components.) For example, you might create a Loan object
that calculates the number of payments required to pay off a loan.
Th e Loan object might also store information such as the principal
loan amount and the interest rate. Th e term data refers to informa-
tion contained within variables or other types of storage structures.
Th e functions associated with an object are called methods, and the
variables associated with an object are called properties or attributes.
In the Loan object example, a function that calculates the number of
payments required to pay off the loan is a method. Th e principal loan
amount and the interest rate are properties of the Loan object.

Objects can range from simple controls, such as a button, to entire
programs, such as a database application. Some programs consist
entirely of other objects. You’ll often encounter objects that have been
designed to perform a specifi c task. For example, in a retail sales pro-
gram, you could refer to all of the code that calculates the sales total

557

Introduction to Object-Oriented Programming

as a single object. You could then reuse that object repeatedly within
the same program or in others.

C++, Java, and Visual Basic are some popular object-oriented program-
ming languages. Programmers can use any of these languages to cre-
ate objects themselves or use objects created by other programmers.
Often, objects are packaged into libraries, which can be used by other
programs built for the same operating system. For example, if you are
creating an accounting program in Visual Basic, you can use an object
named Payroll that is in a library created in C++. Th e Payroll object
might contain one method that calculates the amount of federal and
state tax to deduct, another function that calculates the FICA amount
to deduct, and so on. Properties of the Payroll object might include
an employee’s number of tax withholding allowances, federal and state
tax percentages, and the cost of insurance premiums. You do not need
to know how the Payroll object was created in C++, nor do you need
to recreate it in Visual Basic. You only need to know how to access the
methods and properties of the Payroll object from Visual Basic.

A simple object-oriented accounting program is illustrated in Figure
10-1. In this fi gure, the accounting program is composed of three
separate objects, or components: an AccountsReceivable object, a
Payroll object, and an AccountsPayable object. It is important to
understand that you do not need to rewrite these three objects for the
accounting program; the program only needs to call their methods
and provide the correct data to their properties.

Figure 10-1 Accounting program and components

The diagram
in Figure 10-1
was created in
Unifi ed
Modeling

Language (UML), a lan-
guage that uses symbols
to represent software
elements such as
objects, methods, and
properties. UML is useful
for designing and docu-
menting software and
other types of engineer-
ing systems.

558

C H A P T E R 1 0 Developing Object-Oriented PHP

Understanding Encapsulation
Objects are encapsulated, which means that all code and required
data are contained within the object itself. In most cases, an encap-
sulated object consists of a single computer fi le that contains all code
and required data. Encapsulation places code inside what program-
mers like to call a “black box.” When an object is encapsulated, you
cannot see “inside” it—all internal workings are hidden. Th e code
(methods and statements) and data (variables and constants) con-
tained in an encapsulated object are accessed through an interface.
An interface refers to the methods and properties that are required
for a source program to communicate with an object. For example,
the interface elements required to access a Payroll object might be
a method named calcNetPay(), which calculates an employee’s net
pay, and properties containing the employee’s name and pay rate.

When you include encapsulated objects in your programs, users can
only see the methods and properties of the object that you allow them
to see. By removing the ability to see inside the black box, encapsula-
tion reduces the complexity of the code, allowing programmers who
use the code to concentrate on the task of integrating it into their
programs. Encapsulation also prevents other programmers from
accidentally introducing a bug into a program, or from possibly even
stealing the code and claiming it as their own.

You can compare a programming object and its interface to a hand-
held calculator. Th e calculator represents an object, and you represent
a program that wants to use the object. You establish an interface
with the calculator object by entering numbers (the data required by
the object) and then pressing calculation keys (which represent the
methods of the object). You do not need to know, nor can you see,
the inner workings of the calculator object. As a programmer, you are
concerned only with an object’s methods and properties. To continue
the analogy, you are only concerned with the result you expect the
calculator object to return. Figure 10-2 illustrates the idea of the cal-
culator interface.

559

Introduction to Object-Oriented Programming

Figure 10-2 Calculator interface

Microsoft Word® is another example of an object and its interface.
Word itself is actually an object made up of numerous other objects.
Th e program window (or user interface) is one object. Th e items
you see in the interface, such as the menu and toolbars, are used
to execute methods. For example, the Bold button on the toolbar
executes a bold() method. Th e text of your document is the data you
provide to the program. You can use Word without knowing how its
various methods work; you only need to know what each method
does, and provide the data (text) and execute the appropriate meth-
ods when necessary. In the same way, when using objects in your
payroll code, you only need to provide the necessary data (such as an
employee’s gross pay) and execute the appropriate method (such as
the calcNetPay() method).

Object-Oriented Programming and Classes
In object-oriented programming, the code, methods, attributes, and
other information that make up an object are organized into classes.
Essentially, a class is a template, or blueprint, that serves as the basis
for new objects. When you use an object in your program, you actu-
ally create an instance of the class of the object. An instance is an
object that has been created from an existing class. An instance of an
object is the equivalent of a house built from a blueprint. When you
create an object from an existing class, you instantiate the object.

Later in this chapter, you will learn how to create, or instantiate,
an object from built-in PHP classes and from custom classes that
you write yourself. However, as an immediate example, consider an
object named BankAccount that contains methods and properties you
might use to record transactions associated with a checking or sav-
ings account. Th e BankAccount object is created from a BankAccount
class. To use the BankAccount class, you create an instance of the

560

C H A P T E R 1 0 Developing Object-Oriented PHP

class. A particular instance of an object inherits its methods and
properties from a class—that is, it takes on the characteristics of
the class on which it is based. Th e BankAccount object, for instance,
would inherit all of the methods and properties of the BankAccount
class. As another example, when you create a word-processing docu-
ment, which is a type of object, it usually inherits the properties of a
template on which it is based. Th e template is a type of class, and the
document inherits characteristics of the template, such as font size,
line spacing, and boilerplate text. In the same manner, programs that
include instances of objects inherit the object’s functionality.

In this chapter, you will create the Web site for an online order form
in an online store application. Th e application includes information
about each store and a custom inventory for each store. Th e primary
store you will use is Gosselin’s Gourmet Coff ee, which sells various
blends of coff ee beans. Th e purpose of the Web site is to demonstrate
code reuse with classes. As you progress through this chapter, you
will develop a class named OnlineStore that handles the functional-
ity of building a working online store. Online store classes are very
popular with PHP development because of the many Web sites that
allow visitors to purchase items. Rather than recreating the same
functionality for each online store, you can much more easily develop
the Web site by reusing an existing online store class. As you create
the OnlineStore class, notice that its functionality has nothing to do
with Gosselin’s Gourmet Coff ee or coff ee beans. Instead, the code is
generic enough that it can be used with any Web site that sells prod-
ucts, provided the pages in the site and the associated database con-
form to the requirements of the class.

First, you create the database and tables that store the online store
information and products. Th e OnlineStore class requires that store
information is stored in a table containing six fi elds: storeID, name,
description, welcome, css_fi le, and email_address. Th e storeID
fi eld is the primary key and consists of a unique text fi eld. For exam-
ple, the primary key for Gosselin’s Gourmet Coff ee is COFFEE. Th e
OnlineStore class also requires that product information is stored in
a table containing fi ve fi elds: productID, storeID, name, description,
and price. Th e productID fi eld is the primary key and consists of a
unique text fi eld. For example, the primary key for the fi rst product
for Gosselin’s Gourmet Coff ee is COFFEE001. Th e storeID stores the
unique ID number for the store that sells the product. To keep things
simple, the OnlineStore class does not store customer or payment
information. Instead, the class simply uses session IDs to keep track
of each user’s shopping cart.

Next, you create a database named online_stores along with two
tables: store_info, to contain confi guration information for each

Class names
in traditional
object-ori-
ented pro-
gramming

usually begin with an
uppercase letter. This
convention is also
 followed in PHP.

561

Introduction to Object-Oriented Programming

store, and inventory, to contain product information. Your Chapter
directory for Chapter 10 contains two text fi les, store_info.txt and
inventory.txt, which contain store and product information to load
into each database table.

To create the Online Stores database:

1. Log in to MySQL Monitor with the MySQL user name and
password you created in Chapter 7.

2. Enter the following command to create a database named
online_stores:
mysql> CREATE DATABASE online_stores;[ENTER]

3. After you see the “Query OK” message, enter the following
command to select the online_stores database:
mysql> USE online_stores;[ENTER]

4. Enter the following command to create the store_info table:
mysql> CREATE TABLE store_info (storeID VARCHAR(10)
PRIMARY KEY,[ENTER]
 -> name VARCHAR(50), description VARCHAR(200),
welcome TEXT,[ENTER]
 -> css_file VARCHAR(250), email_address
VARCHAR(100));[ENTER]

5. After you see the “Query OK” message, enter a LOAD DATA
statement that inserts records into the store_info table from
the store_info.txt fi le in your Chapter directory for Chapter
10. Replace path with the path to your Chapter directory for
Chapter 10.
mysql> LOAD DATA INFILE 'path/store_info.txt'[ENTER]
 -> INTO TABLE store_info;[ENTER]

6. Enter the following command to create the inventory table:
mysql> CREATE TABLE inventory (storeID
varchar(10),[ENTER]
 -> productID VARCHAR(10) PRIMARY KEY,[ENTER]
 -> name VARCHAR(100), description VARCHAR(200),
price FLOAT);[ENTER]

7. After you see the “Query OK” message, enter a LOAD DATA
statement that inserts records into the inventory table from
the inventory.txt fi le in your Chapter directory for Chapter
10. Replace path with the path to your Chapter directory for
Chapter 10.
mysql> LOAD DATA INFILE 'path/inventory.txt'[ENTER]
 -> INTO TABLE inventory;[ENTER]

562

C H A P T E R 1 0 Developing Object-Oriented PHP

8. Type exit or quit and press Enter to log out of MySQL
Monitor.

Short Quiz

1. Discuss the benefi ts of object-oriented programming.

2. Explain how objects can be shared by multiple programming
languages such as PHP, C++, and Visual Basic.

3. Identify three benefi ts of encapsulating code.

4. Defi ne the term “instance of a class.”

Using Objects in PHP Scripts
Up to this point, all of the PHP scripts you have written contained
procedural statements that did not rely on objects. Many of the
skills you have learned so far will help you construct object-oriented
programs. However, object-oriented techniques will help you build
more extensible code that is easier to reuse, modify, and enhance. In
this section, you will learn how to work with database connections
as objects to help you understand how to use objects in your scripts.
Th en, you will learn how to defi ne your own custom classes.

Before you begin working with database connections as objects, you
fi rst need to understand a few basics of how to work with objects in
PHP. You declare an object in PHP by using the new operator with a
class constructor. A class constructor is a special function with the
same name as its class; it is called automatically when an object from
the class is instantiated. For example, the class constructor for the
BankAccount class is BankAccount(). Th e syntax for instantiating an
object is as follows:
$ObjectName = new ClassName();

Th e identifi ers you use for an object name must follow the same rules
as identifi ers for variables: Th ey must begin with a dollar sign, can
include numbers or an underscore (but not as the fi rst character after
the dollar sign), cannot include spaces, and are case sensitive. Th e fol-
lowing statement instantiates an object named $Checking from the
BankAccount class:
$Checking = new BankAccount();

563

Using Objects in PHP Scripts

Class constructors are primarily used to initialize properties when an
object is fi rst instantiated. For this reason, you can pass arguments
to many constructor functions. For example, the BankAccount class
might require you to pass the account number as a parameter, as
follows:
$Checking = new BankAccount(01234587);

After you instantiate an object, you use the combination of a hyphen
and a greater-than symbol (->) to access the methods and properties
contained in the object. Together, these two characters are referred to
as member selection notation. Using member selection notation is
similar to using an operator in that you append one or more charac-
ters (in this case, ->) to an object, followed by the name of a method
or property. With methods, you must also include a set of parenthe-
ses at the end of the method name, just as you would with functions.
Like functions, methods can also accept arguments.

Th e following statements demonstrate how to call two methods,
getBalance() and getCheckAmount(), from the $Checking object.
Th e getBalance() method does not require any arguments, whereas
the getCheckAmount() method requires an argument containing the
check number.
$Checking->getBalance();
$CheckNumber = 1022;
$Checking->getCheckAmount($CheckNumber);

To access property values in an object, you do not include parenthe-
ses at the end of the property name, as you do with functions and
methods, nor do you include a dollar sign before the property name.
For example, the following statements update and display the value in
a property named $Balance in the $Checking object:
$CheckAmount = 124.75;
$Checking->Balance = $Checking->Balance + $CheckAmount;
printf("<p>Your updated checking account balance is
$%.2f.</p>", $Checking->Balance);

Next, you start creating the GosselinGourmetCoff ee.php script,
which displays the coff ee products available for purchase. Th e fi rst
version of the script simply queries the database and displays a table
with the product information. Later in this chapter, you will modify
the script so it uses the OnlineStore class.

To create the GosselinGourmetCoff ee.php script:

1. Create a new document in your text editor and type the
<!DOCTYPE> declaration, <html> element, header informa-
tion, and <body> element. Use the strict DTD and “Gosselin’s
Gourmet Coff ee” as the content of the <title> element.

The
printf()
function,
which allows
you to format

variables in an output
string, is described in
Appendix C. In this exam-
ple, the format specifi er
%.2f causes the balance
to be displayed as a fl oat-
ing-point number (f) with
two digits (specifi ed by
the 2) after the decimal
point.

564

C H A P T E R 1 0 Developing Object-Oriented PHP

2. Add the following text and elements to the document body:
<h1>Gosselin's Gourmet Coffee</h1>
<h2>Description goes here</h2>
<p>Welcome message goes here</p>
<p>Inventory goes here</p>

3. Save the document as GosselinGourmetCoff ee.php in the
Chapter directory for Chapter 10 and upload the document to
the Web server.

4. Open the GosselinGourmetCoff ee.php fi le in
your Web browser by entering the following URL:
http://<yourserver>/PHP_Projects/Chapter.10/Chapter/
GosselinGourmetCoff ee.php. Your Web browser should look
like Figure 10-3.

Figure 10-3 The Gosselin’s Gourmet Coffee Web page

5. Close your Web browser window.

Working with Database Connections as Objects
PHP allows you to connect to and manipulate MySQL and other
types of databases using either procedural statements or object-ori-
ented techniques. Although you should not notice any performance
issues when using procedural statements or object-oriented tech-
niques to access MySQL databases, you can expect object-oriented
techniques to become the preferred method as PHP continues to
evolve. For this reason, you should get used to the object-oriented
method of accessing MySQL databases. As mentioned in Chapter
8, the mysqli package is the object-oriented equivalent of the mysql
package. Th e mysqli package will be used throughout this chapter.

You access MySQL database connections as objects by instantiat-
ing an object from the mysqli class. Th e mysqli class contains

At this point,
the fi le has no
PHP code
sections.
Normally, a

fi le like this would be
saved with an .html exten-
sion. You save it with a
.php extension because
you will add PHP code
later in the chapter.

565

Using Objects in PHP Scripts

methods and properties that have the same functionality as the
procedural MySQL database connection statements you have used
so far. For example, the equivalent of the mysql_query() function
is a method named query() in the mysqli class, and the equiva-
lent of the mysql_affected_rows() function is a property named
affected_rows in the mysqli class. Next, you will learn how to
instantiate and close a MySQL database connection object.

Instantiating and Closing a MySQL Database Object
In Chapter 8, you learned how to use the mysql_connect() function
to open a connection to a MySQL database server. When connecting
to the MySQL database server using object-oriented techniques, you
instantiate an object from the mysqli class. You pass to the mysqli
class the same host, user, password, and database arguments that
you pass to the mysql_connect() and mysql_select_db() functions.
For example, the following statements use the mysql_connect() and
mysql_select_db() functions to connect to a MySQL database server:
$DBConnect = mysql_connect("php_db", "dongosselin",
 "rosebud");
mysql_select_db("real_estate", $DBConnect);

In comparison, you use the following statement to connect to the
MySQL database server using a mysqli object:
$DBConnect = new mysqli("php_db", "dongosselin",
 "rosebud", "real_estate");

Th e preceding statement uses the mysqli() constructor function to
instantiate a mysqli class object named $DBConnect.

Instead of using the mysql_close() function to explicitly close the
database connection when you fi nish working with it, you call the
close() method of the mysqli class. For example, the following state-
ment closes the database connection represented by the $DBConnect
object (remember that $DBConnect is an object of the mysqli class):
$DBConnect->close();

To add statements to the GosselinGourmetCoff ee.php script that
instantiate and close a database connection to the MySQL database
server using a mysqli object:

1. Create a new document in your text editor with the following
script section:
<?php
?>

2. Add the following statements to the script section to connect
to the database server using a mysqli object. Th e code uses

You can
use the
select_db()
method of the
mysqli

object to select a
 different database.

566

C H A P T E R 1 0 Developing Object-Oriented PHP

an if statement to store an error message in the $ErrorMsgs
array if there was a connection error. Be sure to replace host,
user, and password with your MySQL server name, user
name, and password.
$ErrorMsgs = array();
$DBConnect = new mysqli("host", "user", "password",
 "online_store");
if (!$DBConnect)
 $ErrorMsgs[] = "The database server is not
 available.";

3. Save the document as inc_OnlineStoreDB.php in the Chap-
ter directory for Chapter 10.

4. Return to the GosselinGourmetCoff ee.php script in your
text editor.

5. Add the following script section to the start of the document,
before the <!DOCTYPE> tag:
<?php
require_once("inc_OnlineStoreDB.php");
?>

6. Add the following script section to the body of the document,
immediately before the closing </body> tag:
<?php
if (count($ErrorMsgs)) {
 foreach ($ErrorMsgs as $Msg)
 echo "<p>" . $Msg . "</p>\n";
}
else
 echo "<p>Successfully connected to the
 database.<p>\n";
?>

7. Add the following script section to the end of the document
to close the database connection:
<?php
$DBConnect->close();
?>

8. Save the GosselinGourmetCoff ee.php fi le and then upload
inc_OnlineStoreDB.php and GosselinGourmetCoff ee.php to
the Web server.

9. Open the GosselinGourmetCoff ee.php script in your Web
browser by entering the following URL: http://<yourserver>/
PHP_Projects/Chapter.10/Chapter/GosselinGourmetCoff ee.
php. You should see the message about successfully connect-
ing to the database server (see Figure 10-4).

567

Using Objects in PHP Scripts

Figure 10-4 Gosselin’s Gourmet Coffee Web page after connecting to the database server

10. Close your Web browser window.

Handling MySQL Errors
When you use procedural syntax to connect to the MySQL database
server, the mysql_connect() function returns a value of FALSE if
the database connection attempt fails. However, when you use the
mysqli() constructor function to instantiate a new database object
from the mysqli class, an object is instantiated even if the database
connection fails. Th at means the if (!$DBConnect) statement in
inc_OnlineStoreDB.php would always evaluate to FALSE. To deter-
mine if the database connection attempt failed when working with
the mysqli object, you need to use the connect_errno data member
of the mysqli object to retrieve the error code from the last connec-
tion attempt. A value of 0 indicates no error, or a successful connec-
tion. A nonzero value indicates that the connection attempt failed, as
in the following example:
$DBConnect = @new mysqli("php_db", "dgosselin",
"rosebud");
if ($DBConnect->connect_errno) {
 echo "<p>Unable to connect to the database server.</p>"
 . "<p>Error code " . $DBConnect->connect_errno
 . ": " . $DBConnect->connect_error . "</p>\n";
}
else {
// code that executes if the database connection attempt
// succeeded
}

Notice in the preceding example that the fi rst statement, which
instantiates the database connection object, uses the error control
operator, @, to suppress error messages. Recall that you can place the

568

C H A P T E R 1 0 Developing Object-Oriented PHP

error control operator before any expression to suppress error mes-
sages. Th e error control operator in the preceding example is placed
before the new operator because it begins the expression that instanti-
ates the database connection object.

It is important to note that the mysqli class members connect_errno,
connect_error, errno, and error are data members, or variables, of
the database connection object. In the procedural mysql package, the
corresponding mysql_errno() and mysql_error() are functions.

Most of the methods of the mysqli class return values of TRUE
or FALSE, depending on whether the operation was successful.
Th erefore, for any methods of the mysqli class that fail (as indi-
cated by a return value of FALSE), you can use the same if...else
structure as you did in Chapter 8. For example, the following state-
ment checks the return value of the select_db() method to display
an error message if a value of FALSE was returned. Notice that the
object-oriented $DBConnect->errno and $DBConnect->error data
members are used in place of the procedural mysql_errno() and
mysql_error() functions, and that the statement which calls the
select_db() method also uses the error control operator to suppress
error messages.
$DBName = "vehicle_fl eet";
$Result = @$DBConnect->select_db($DBName);
if ($Result === FALSE)
 echo "<p>Unable to select the database. " .
 "Error code " . $DBConnect->errno .
 ": " . $DBConnect->error . "</p>\n";
else {
 // Code to execute if database selected successfully.
}

To add MySQL error-checking functionality to the
GosselinGourmetCoff ee.php script:

1. Return to the inc_OnlineStoreDB.php script in your text
editor.

2. Add the error control operator (@) before the new keyword, as
follows:
$DBConnect = @new mysqli("host", "user", "password",
 "online_stores");

3. Replace the if statement with the following if statement that
checks the value of the $DBConnect object’s connect_errno
data member to see if it is nonzero, indicating a connection
error:

569

Using Objects in PHP Scripts

if ($DBConnect->connect_errno)
 $ErrorMsgs[] = "Unable to connect to the
 database server." .
 " Error code " . $DBConnect->connect_errno
 . ": " . $DBConnect->connect_error;

4. Save the inc_OnlineStoreDB.php fi le.

5. Return to the GosselinGourmetCoff ee.php script in your
text editor.

6. Remove the following two lines of code that display a message
if there were no errors:
else
 echo "<p>Successfully connected to the database
 .<p>\n";

7. Replace the $DBConnect->close(); statement with the fol-
lowing if statement, which verifi es that there are no connect
errors before attempting to close the connection:
if (!$DBConnect->connect_error)
 $DBConnect->close();

8. Save the GosselinGourmetCoff ee.php fi le and then upload
inc_OnlineStoreDB.php and GosselinGourmetCoff ee.php to
the Web server.

9. Open the GosselinGourmetCoff ee.php script in your Web
browser by entering the following URL: http://<yourserver>/
PHP_Projects/Chapter.10/Chapter/GosselinGourmetCoff ee.
php. Th e Web page should look the same as it did before
you added the MySQL error-checking functionality, with
the exception of the “Successfully connected to the database
server” message, which no longer appears.

10. Close your Web browser window.

Executing SQL Statements
Recall that you send SQL statements to MySQL with procedural syn-
tax by using the mysql_query() function. With a mysqli object, you
use the query() method of the mysqli class. Th e query() method
accepts a single argument representing the SQL statement you
want to send to the MySQL database server. For queries that return
results using procedural syntax, you use the mysql_fetch_row()
function to return the fi elds in the current row of a resultset into an
indexed array. You use the mysql_fetch_assoc() function to return
the fi elds in the current row of a resultset into an associative array.
In comparison, with a mysqli object, you call the fetch_row() and
fetch_assoc() methods of the mysqli class.

570

C H A P T E R 1 0 Developing Object-Oriented PHP

Th e following code demonstrates how to use a mysqli object to
execute a query that returns all the records from the company_cars
table of the vehicle_fl eet database. Th e code builds a table and uses
the fetch_row() method to return the fi elds in the current row into
an indexed array. Th e code is very similar to examples you have seen
in the past few chapters. Th e biggest diff erence is that the object-
oriented query() method, which is the equivalent of the procedural
mysql_query() function, only returns TRUE for a successful query and
FALSE for a failed query.

To retrieve the results, you call the use_result() method, which
returns a mysqli_result object. You then call the fetch_row() and
fetch_array() methods of the mysqli_result object, just as you
called the procedural mysql_fetch_row() and mysql_fetch_array()
functions. One important diff erence is that the object-oriented
fetch_row() and fetch_array() methods return NULL if there
are no more results, while the procedural mysql_fetch_row() and
mysql_fetch_array() functions return FALSE.
$TableName = "company_cars";
$SQLstring = "SELECT * FROM $TableName";
$QueryResult = @$DBConnect->query($SQLstring);
if ($QueryResult === FALSE)
 echo "<p>Unable to execute the query. " .
 "Error code " . $DBConnect->errno .
 ": " . $DBConnect->error . "</p>\n";
else {
 echo "<table width='100%' border='1'>\n";
 echo "<tr><th>License</th><th>Make</th><th>Model</th>" .
 "<th>Mileage</th><th>Year</th></tr>\n";
 while (($Row = $QueryResult->fetch_row()) !== FALSE)
{
 echo "<tr><td>{$Row[0]}</td>";
 echo "<td>{$Row[1]}</td>";
 echo "<td>{$Row[2]}</td>";
 echo "<td align='right'>{$Row[3]}</td>";
 echo "<td>{$Row[4]}</td></tr>\n";
 }
 echo "</table>\n";
}

To add code to the GosselinGourmetCoff ee.php script that uses a
mysqli object query to retrieve product information from the coffee
table in the online_store database:

1. Return to the GosselinGourmetCoff ee.php script in your
text editor.

2. Remove the section of HTML code that displays the text
“Inventory goes here”.

You must be
sure to test
for NULL
and not
FALSE

when using the object-
oriented methods. If you
check for FALSE, your
code will be stuck in an
infi nite loop.

571

Using Objects in PHP Scripts

3. Add the following if statement above the statement that dis-
plays the database error messages. Th e if statement verifi es
that there are no error messages before querying the database.
Th e fi rst statement within the code block for the if statement
creates a SQL string, and the second statement uses mysqli
class syntax to perform the query. Recall that the storeID
value for Gosselin’s Gourmet Coff ee is “COFFEE”.
if (count($ErrorMsgs)==0) {
 $SQLstring = "SELECT * FROM inventory " .
 "WHERE storeID='COFFEE'";
 $QueryResult = $DBConnect->query($SQLstring);
 if ($QueryResult === FALSE)
 $ErrorMsgs[] = "<p>Unable to perform the
 query. " .
 "<p>Error code " . $DBConnect->errno .
 ": " . $DBConnect->error . "</p>\n";
}

4. Add the following else clause to the if statement that dis-
plays the error messages. Within the else clause, you build a
table showing the items available from the online store.
else {
 echo "<table width='100%'>\n";
 echo "<tr><th>Product</th><th>Description</th>" .
 "<th>Price Each</th></tr>\n";
 while (($Row = $QueryResult->fetch_assoc()) !==
 NULL) {
 echo "<tr><td>" . htmlentities($Row['name']) .
 "</td>\n";
 echo "<td>" .
 htmlentities($Row['description']) .
 "</td>\n";
 printf("<td>$%.2f</td></tr>\n", $Row['price']);
 }
 echo "</table>";
}

5. Save the GosselinGourmetCoff ee.php fi le and then upload it
to the Web server.

6. Open the GosselinGourmetCoff ee.php script in your Web
browser by entering the following URL: http://<yourserver>/
PHP_Projects/Chapter.10/Chapter/GosselinGourmetCoff ee.
php. You should see the table shown in Figure 10-5.

572

C H A P T E R 1 0 Developing Object-Oriented PHP

Figure 10-5 Gosselin’s Gourmet Coffee Web page displaying query results

7. Close your Web browser window.

Defi ning Custom PHP Classes
Classes were defi ned earlier in this chapter as the code, methods,
attributes, and other information that make up an object. In PHP,
classes more specifi cally refer to data structures that contain variables
along with functions for manipulating the variables. Th e term data
structure refers to a system for organizing data. Some of the data
structures you have already used include arrays, text fi les, and data-
base records. Th e functions and variables defi ned in a class are called
class members. Class variables are referred to as data members
or member variables, whereas class functions are referred to as
 member functions or function members. To use the variables and
functions in a class, you instantiate an object by declaring the object
as a new instance of the class. After you instantiate an object, class
data members are referred to as properties of the object and class
member functions are referred to as methods of the object.

Classes are also referred to as user-defi ned data types or programmer-
defi ned data types. Th ese terms can be somewhat misleading, however,
because they do not accurately refl ect the fact that classes can contain
member functions. In addition, classes usually contain multiple data

573

Using Objects in PHP Scripts

members of diff erent data types, so calling a class a data type becomes
even more confusing. One reason classes are called user-defi ned data
types or programmer-defi ned data types is that you can work with a
class as a single unit, or object, in the same way you work with a vari-
able. In fact, the terms “variable” and “object” are often used inter-
changeably in object-oriented programming. Th e term “object-oriented
programming” comes from the fact that you can bundle variables and
functions together and use the result as a single unit (a variable or
object).

Th is information will become clearer to you as you progress through
this chapter. For now, think of the handheld calculator example. A
calculator could be considered an object of a Calculation class. You
access all of the Calculation class functions (such as addition and
subtraction) and its data members (operands that represent the num-
bers you are calculating) through your calculator object. You never
actually work with the Calculation class yourself, only with an object
of the class (your calculator).

But why do you need to work with a collection of related variables
and functions as a single object? Why not simply call each individual
variable and function as necessary, without bothering with all this
class business? Th e truth is, you are not required to work with classes;
you can create much of the same functionality without classes as you
can by using classes. In fact, many of the scripts that you create—and
that you fi nd in use today—do not require object-oriented techniques
to be eff ective. Classes help make complex programs easier to man-
age, however, by logically grouping related functions and data and
by allowing you to refer to that grouping as a single object. Another
reason for using classes is to hide information that users of a class do
not need to access or know about; this helps minimize the amount of
information that needs to pass in and out of an object. Classes also
make it much easier to reuse code or distribute your code to others
for use in their programs. (You will learn how to create your own
classes and include them in your scripts shortly.) Packaging related
variables and functions into a class is similar to packaging them into a
single include fi le, then using the include() statement to insert them
in a PHP script. Th e diff erence is that an include fi le can only contain
a single copy of each variable, whereas each instance of a class will
contain a distinct copy of each variable.

Another reason to use classes is that instances of objects inherit their
characteristics, such as class members, from the class upon which
they are based. Th is inheritance allows you to build new classes based
on existing classes without having to rewrite the code contained in
the existing classes.

574

C H A P T E R 1 0 Developing Object-Oriented PHP

Creating a Class Defi nition
To create a class in PHP, you use the class keyword to write a class
definition, which contains the data members and member functions
that make up the class. Th e basic syntax for defi ning a class is as follows:
class ClassName {
 data member and member function definitions
}

Th e ClassName portion of the class defi nition is the name of the new
class. You can use any name you want for a structure, as long as you
follow the same naming conventions that you use when declaring
other identifi ers, such as variables and functions. Also, keep in mind
that class names usually begin with an uppercase letter to distinguish
them from other identifi ers. Within the class’s curly braces, you
declare the data type and fi eld names for each piece of information
stored in the structure, the same way you declare data members and
member functions that make up the class.

Th e following code demonstrates how to declare a class named
BankAccount. Th e statement following the class defi nition instantiates
an object of the class named $Checking.
class BankAccount {
 data member and member function definitions
}
$Checking = new BankAccount();

Because the BankAccount class does not yet contain any data mem-
bers or member functions, there isn’t much you can do with the
$Checking object. However, PHP includes a number of built-in
functions that you can use to return information about the class
that instantiated the object. For example, the get_class() function
returns the name of the class that instantiated the object. You pass the
name of the object to the get_class() function, as follows:
$Checking = new BankAccount();
echo 'The $Checking object is instantiated from the '
 . get_class($Checking) . " class.</p>\n";

You can also use the instanceof comparison operator to deter-
mine whether an object is instantiated from a given class. Th e syn-
tax for using the instanceof operator is object_name instanceof
class_name. For example, the following code uses an if statement
and the instanceof operator to determine whether the $Checking
object is an instance of the BankAccount class:
$Checking = new BankAccount();
if ($Checking instanceof BankAccount)
 echo "The \$Checking object is instantiated from the
 BankAccount class.</p>\n";

Class names
in a class
defi nition are
not followed
by parenthe-

ses, as function names
are in a function
defi nition.

See the
Class/Object
Functions
reference in
the online PHP

documentation at http://
www.php.net/docs.php
for more information on
the functions you can use
with classes and objects.

575

Using Objects in PHP Scripts

http://www.php.net/docs.php
http://www.php.net/docs.php

One built-in class function that you should use whenever you declare
an object is the class_exists() function, which determines whether
a class exists and is available to the current script. You pass to the
class_exists() function a string value containing the name of the
class you want to use. Th e function returns a value of TRUE if the class
exists and FALSE if it doesn’t. For example, the following code uses
the class_exists() function within an if statement’s conditional
expression to check for the existence of the BankAccount class. If the
class exists, the $Checking object is instantiated. If the class does not
exist, the else clause displays an error message.
if (class_exists("BankAccount"))
 $Checking = new BankAccount();
else
 echo "<p>The BankAccount class is not available!</p>\n";

Storing Classes in External Files
Although you can defi ne a class within the same document that
instantiates an object of the class, this somewhat defeats the purpose
of writing code that can be easily modifi ed and reused. If you want
to reuse the class, you need to copy and paste it between scripts.
Further, if you want to modify the class, you need to modify it
within every script that uses it. A better solution is to defi ne a class
within a single external fi le that is called from each script that needs
the class, using the include(), include_once(), require(), and
require_once() functions that you learned in Chapter 2.

To start creating the OnlineStore class and using it in
GosselinGourmetCoff ee.php:

1. Create a new document in your text editor and add a PHP
script section, as follows:
<?php
?>

2. Add the following class defi nition for the OnlineStore class
to the script section:
class OnlineStore {
}

3. Save the document as class_OnlineStore.php in the Chapter
directory for Chapter 10.

4. Return to the GosselinGourmetCoff ee.php script in your
text editor.

5. Add the following statement to the PHP script section at the
beginning of the fi le, beneath the require_once() statement
for inc_OnlineStoreDB.php. Th is statement uses another

Just as you
preface the
names of
include fi les
with “inc_” to

easily distinguish them
from regular PHP fi les,
you can preface the
name of class fi les with
“class_”, as in “class_
BankAccount.php”.

576

C H A P T E R 1 0 Developing Object-Oriented PHP

require_once() statement that makes the OnlineStore class
available to the GosselinGourmetCoff ee.php script.
require_once("class_OnlineStore.php");

6. Add the following statements beneath the statement that
includes the OnlineStore class fi le. Th ese statements instanti-
ate an object of the OnlineStore class.
if (class_exists("OnlineStore")) {
 $Store = new OnlineStore();
}
else {
 $ErrorMsgs[] = "The OnlineStore class is not
 available!";
 $Store = NULL;
}

7. Add the following statements to the start of the PHP script
section in the body of the document, immediately before the
if statement that queries the database:
if ($Store !== NULL)
 echo "<p>Successfully instantiated an object of " .
 " the OnlineStore class.</p>\n";

8. Save the GosselinGourmetCoff ee.php script and then upload
both documents to the Web server.

9. Open the GosselinGourmetCoff ee.php script in your Web
browser by entering the following URL: http://<yourserver>/
PHP_Projects/Chapter.10/Chapter/GosselinGourmetCoff ee.
php. You should see the message shown in Figure 10-6.

Figure 10-6 Gosselin’s Gourmet Coffee Web page after instantiating an OnlineStore object

10. Close your Web browser window.

577

Using Objects in PHP Scripts

Collecting Garbage
If you have worked with other object-oriented programming lan-
guages, you might be familiar with the term garbage collection,
which refers to cleaning up, or reclaiming, memory that is reserved
by a program. When you declare a variable or instantiate a new
object, you are actually reserving computer memory for the vari-
able or object. With some programming languages, you must write
code that deletes a variable or object after you fi nish with it. Th is
frees the memory for use by other parts of your program or by other
programs running on your computer. With PHP, you do not need to
worry about reclaiming memory that is reserved for your variables or
objects. Although you can manually remove a variable or object with
the unset() function, there is usually no reason to do so—as with
variables, PHP will automatically clean up unused memory when
an object within a function goes out of scope, or at the end of the
script for global objects. Th e one exception involves open database
connections. As you learned in Chapter 8, because database con-
nections can take up a lot of memory, you should explicitly close a
database connection when you fi nish with it by calling the procedural
mysql_close() function or the close() method of the mysqli class.
Th is ensures that the connection doesn’t keep taking up space in your
computer’s memory while the script fi nishes processing.

Short Quiz

1. Illustrate the syntax of instantiating an object.

2. What operator is used to access the methods and properties
contained in an object?

3. What function of the mysqli object is used to determine if a
database connection failed?

4. Illustrate the syntax used to defi ne a PHP class.

5. Explain the term “garbage collection.”

Declaring Data Members
In this section, you will learn how to declare data members within a
class. Declaring and initializing data members is a little more involved
than declaring and initializing standard PHP variables. To be able
to declare data members, you must fi rst understand the principle of
information hiding, which you will study fi rst.

578

C H A P T E R 1 0 Developing Object-Oriented PHP

What Is Information Hiding?
One of the fundamental principles in object-oriented programming
is the concept of information hiding. Information hiding gives an
encapsulated object its black box capabilities so that users of a class
can see only the members of the class that you allow them to see.
Essentially, the principle of information hiding states that class mem-
bers should be hidden when other programmers (sometimes called
clients) do not need to access or know about them. Information hid-
ing helps minimize the amount of information that needs to pass in
and out of an object. Information hiding also reduces the complexity
of the code that clients see, allowing them to concentrate on the task
of integrating an object into their programs. For example, if a client
wants to add a Payroll object to an Accounting program, the client
does not need to know the underlying details of the Payroll object’s
member functions, nor does the client need to modify any local data
members that are used by those functions. Th e client only needs to
know which of the object’s member functions to call and what data (if
any) needs to be passed to those member functions.

Now consider information hiding on a larger scale. Professionally
developed software packages are distributed in an encapsulated
format, which means that the casual user—or even an advanced
programmer—cannot see the underlying details of how the software
is developed. Imagine what would happen if Microsoft distributed
Excel without hiding the underlying programming details. Th ere is
no need for users to see these details, because users do not need to
understand how the underlying code performs the various spread-
sheet calculations. Microsoft also has a critical interest in protecting
proprietary information, as do you. Th e design and sale of software
components is big business. You certainly do not want to spend a
signifi cant amount of time designing an outstanding software com-
ponent, only to have unscrupulous programmers steal the code and
claim it as their own. Of course, you cannot hide all of the underlying
code, or other programmers will never be able to integrate your class
with their applications. But you need to hide most of it.

Information hiding on any scale also prevents other programmers
from accidentally introducing a bug into a program when modifying
a class’s internal workings. Well-intentioned programmers will often
attempt to “improve” your code, no matter how well it is written.
Before you distribute your classes to other programmers, your classes
should be thoroughly tested and bug-free. Other programmers can
thus focus on the more important task of integrating your code into
their programs using the data members and member functions you
designate.

579

Declaring Data Members

To enable information hiding in your classes, you must designate
access specifi ers for each of your class members. You will learn about
access specifi ers next.

Using Access Specifi ers
Th e fi rst step in hiding class information is to set access specifi ers for
class members. Access specifiers control a client’s access to indi-
vidual data members and member functions. Th ere are three levels
of access specifi ers in PHP: public, private, and protected. In this
chapter, you will study the public and private access specifi ers.

Th e public access specifier allows anyone to call the member func-
tion or to modify and retrieve the value of the data member. Th e
private access specifier prevents clients from calling member func-
tions or accessing data members, and is one of the key elements in
information hiding. Private access does not restrict a class’s internal
access to its own members; a class’s member function can modify
any private data member or call any private member function. Private
access restricts clients from accessing class members.

You include an access specifi er at the beginning of a data member
declaration statement. For example, the following statement declares
a public data member named $Balance in the BankAccount class and
initializes it with a value of 0:
class BankAccount {
 public $Balance = 0;
}

It is considered good programming practice to always assign an initial
value to a data member when you fi rst declare it. Th e best way to ini-
tialize a data member is with a constructor function (discussed later
in this chapter). You can also assign simple values to data members
when you fi rst declare them, although an error occurs if you attempt
to use any type of expression to initialize the data member. Th e pre-
ceding statement is valid because it only assigns a value of 0 to the
$Balance data member. However, the following statement is invalid
because it attempts to use an expression (the addition operation) to
assign a value to the $Balance data member:
class BankAccount {
 public $Balance = 1 + 2;

}

Similarly, if you have a data member named $CustomerName in the
BankAccount class, you can assign a simple text string to the data
member as follows:

The
protected
access
specifi er is
used with a

more advanced object-
oriented programming
technique called
inheritance.

Prior to PHP
5, the var
keyword was
used to
declare

class data members. If
you use the var keyword
to declare a data member
in PHP 5, it is created
with public access.

It is common
practice to list
public class
members fi rst
to clearly iden-

tify the parts of the class
that can be accessed by
clients.

580

C H A P T E R 1 0 Developing Object-Oriented PHP

class BankAccount {
 public $CustomerName = "Don Gosselin";
}

In comparison, the following statement is invalid because it attempts
to use an expression (the concatenation operation) to assign a value
to the $CustomerName data member:
class BankAccount {
 public $CustomerName = "Don" . " " . "Gosselin";
}

Recall that to access a data member, you use member selection nota-
tion. Keep in mind that when you use member selection notation,
you do not include a dollar sign before the data member name. For
example, the following statements assign a new value to the $Balance
data member and then display its value:
$Checking->Balance = 958.20;
printf("<p>Your checking account balance is $%.2f.</p>",
 $Checking->Balance);

PHP does not defi ne a default access specifi er for data members. If
you attempt to declare a data member without an access specifi er, an
error occurs. For example, the data member declaration in the follow-
ing class is invalid because it does not include an access specifi er:
class BankAccount {
 $Balance = 0; // invalid
}

Next, you declare four data members, $DBConnect, $storeID,
$inventory[], and $shoppingCart[], to the OnlineStore class. Th e
$DBConnect data member stores the database connection details.
Th e $storeID data member stores the ID of the current store. Th e
$inventory[] array keeps track of the products in the store’s inven-
tory, and the $shoppingCart[] array keeps track of the amount of
each item in a customer’s shopping cart. Th e $inventory[] and
$shoppingCart[] arrays both use the productID fi eld from the
inventory table of the online_store database as the element key. To
adhere to the principles of information hiding, you must declare all
of the data members as private. Later in this chapter, you will write
member functions that access and manipulate the values in each
array.

To add data members to the OnlineStore class:

1. Return to the class_OnlineStore.php script in your text
editor.

2. Add the following private data member declarations to the
class defi nition:

581

Declaring Data Members

private $DBConnect = NULL;
private $storeID = "";
private $inventory = array();
private $shoppingCart = array();

3. Save the class_OnlineStore.php script.

Serializing Objects
In Chapter 9, you learned about PHP’s various state preservation
techniques, including how to use sessions. In addition to keeping
track of current Web site visitors, session variables can store informa-
tion that can be shared among multiple scripts that are called as part
of the same session. But how do you share objects within the same
session? You could assign the value of an object’s data members to
session variables, but you would need to instantiate a new object and
reassign the session variable values to the data members each time
you call a new script. However, this approach would be diffi cult if
you have an object with dozens of data members. A better choice is
to serialize the object between script calls within the same session.
Serialization refers to the process of converting an object into a string
that you can store for reuse. Serialization stores both data members
and member functions into strings, which can be stored in text fi les
and databases or passed to another script. To serialize an object, you
pass an object name to the serialize() function. Th e following
statement serializes the $Checking object and assigns the returned
string to a variable named $SavedAccount:
$SavedAccount = serialize($Checking);

To convert serialized data back into an object, you use the
unserialize() function. Th e following statement converts the seri-
alized data in the $SavedAccount variable back into the $Checking
object:
$Checking = unserialize($SavedAccount);

To use serialized objects between scripts, you assign a serialized
object to a session variable. For example, the following statements
serialize the $Checking object and assign the returned string to a
variable named SavedAccount in the $_SESSION autoglobal:
session_start();
$_SESSION('SavedAccount') = serialize($Checking);

Converting a serialized value in a session variable is very similar to
converting a serialized value in a standard variable. Th e following
statement converts the serialized data in the SavedAccount session
variable back into the $Checking object:
$Checking = unserialize($_SESSION('SavedAccount'));

Serialization is
also used to
store the data
in large
arrays.

Later in this
chapter, you
will learn
how to use
two special

serialization methods,
__sleep() and
__wakeup(), in your
classes.

582

C H A P T E R 1 0 Developing Object-Oriented PHP

To modify the GosselinGourmetCoff ee.php script so it uses sessions
to store serialized OnlineStore objects:

1. Return to the GosselinGourmetCoff ee.php script in your
text editor.

2. Add a session_start() statement to the fi rst script section
at the start of the fi le:
<?php
session_start();
require_once("inc_OnlineStoreDB.php");
require_once("class_OnlineStore.php");
...

3. At the end of the fi rst script section, replace the if...else
statement that instantiates the $Store object with the follow-
ing version, which calls the unserialize() function if the
currentStore variable exists in the $_SESSION autoglobal:
if (class_exists("OnlineStore")) {
 if (isset($_SESSION['currentStore']))
 $Store = unserialize($_SESSION['currentStore']);
 else
 $Store = new OnlineStore();
}
else {
 $ErrorMsgs[] = "The OnlineStore class is not
 available!";
 $Store = NULL;
}

4. Add the following statement to the end of the else clause
at the end of the second script section, just after the
echo "</table>"; statement. Th is statement will serialize
the $Store object into a variable named currentStore in the
$_SESSION autoglobal:
$_SESSION['currentStore'] = serialize($Store);

5. Save the GosselinGourmetCoff ee.php script.

Short Quiz

1. Describe the concept of information hiding.

2. List the three levels of access specifi ers in PHP.

3. Diff erentiate between a public access specifi er and a private
access specifi er.

583

Declaring Data Members

4. Explain why objects should be serialized.

5. Describe the steps used to pass a serialized object between
scripts.

Working with Member Functions
Because member functions perform most of the work in a class, you
will now learn about the various techniques associated with them.
Member functions are usually declared as public, but they can also be
declared as private. Public member functions can be called by any-
one, whereas private member functions can be called only by other
member functions in the same class.

You might wonder about the usefulness of a private member func-
tion, which cannot be accessed by a client of the program. Suppose
your program needs some sort of utility function that clients have no
need to access. For example, the BankAccount class might need to cal-
culate interest by calling a function named calcInterest(). To use
your program, the client does not need to access the calcInterest()
function. By making the calcInterest() function private, you pro-
tect your program and add another level of information hiding. A
general rule of thumb is to create public member functions for any
functions that clients need to access and to create private member
functions for any functions that clients do not need to access.

You declare a member function within the body of a class defi nition
and include an access specifi er before the function keyword. Other
than including an access specifi er, there is little diff erence between
standard functions and member functions. Unlike data members, you
are not required to defi ne a member function with an access speci-
fi er. If you do exclude the access specifi er, the member function’s
default access is public. However, it’s good programming practice
to include an access specifi er with any member function defi nition
to clearly identify the accessibility of the function. Th e following
statement demonstrates how to declare a member function named
withdrawal() in the BankAccount class:
class BankAccount {
 public $Balance = 958.20;
 public function withdrawal($Amount) {
 $this->Balance -= $Amount;
 }
}
if (class_exists("BankAccount"))
 $Checking = new BankAccount();

584

C H A P T E R 1 0 Developing Object-Oriented PHP

else
 exit("<p>The BankAccount class is not available!</p>");
printf("<p>Your checking account balance is $%.2f.</p>",
 $Checking->Balance);
$Cash = 200;
$Checking->withdrawal(200);
printf("<p>After withdrawing $%.2f, your checking account
 balance is $%.2f.</p>", $Cash, $Checking->Balance);

Th e following version of the withdrawal() function raises an error
because the statement within the function attempts to subtract a
value from the undefi ned local variable named $Balance:
public function withdrawal($Amount) {
 $Balance -= $Amount;
}

Using the $this Reference
Within a class function, it is often necessary to refer to members
of the object. Outside of the class, you refer to the members of the
object using the name of the object, the member selection notation
(->), and the name of the member function or variable. Within the
class function defi nition, you cannot use the object name (no objects
of the class are instantiated until after the class is defi ned). PHP pro-
vides a special reference, $this, to refer to the current object of the
class. Th e $this reference uses member selection notation to access
class members in the same way you use an instantiated object to refer
to a data member. If you do not use the $this reference to refer to a
data member from within a member function, PHP treats the data
member as a variable that is local to the scope of the function.

Initializing with Constructor Functions
When you fi rst instantiate an object from a class, you will often want
to assign initial values to data members or perform other types of
initialization tasks, such as calling a function member that might
calculate and assign values to data members. Although you can
assign simple values to data members when you declare them, a bet-
ter choice is to use a constructor function. A constructor function is
a special function that is called automatically when an object from a
class is instantiated. You defi ne and declare constructor functions the
same way you defi ne other functions, although you do not include a
return type because constructor functions do not return values. Each
class defi nition can contain its own constructor function, named
either __construct() (with two leading underscore characters) or
the same name as the class. PHP fi rst searches for the __construct()

585

Working with Member Functions

function within a class defi nition. You do not need to specify an
access specifi er with a constructor function, although if you do, you
can only specify public access. Th e following code demonstrates how
to use the __construct() function to initialize the data members in
the BankAccount class (note the use of the $this reference):
class BankAccount {
 private $AccountNumber;
 private $CustomerName;
 private $Balance;
 function __construct() {
 $this->AccountNumber = 0;
 $this->Balance = 0;
 $this->CustomerName = "";
 }
}

Th e following code demonstrates how to create a constructor func-
tion using the same name as its class:
class BankAccount {
 private $AccountNumber;
 private $CustomerName;
 private $Balance;
 function BankAccount() {
 $this->AccountNumber = 0;
 $this->Balance = 0;
 $this->CustomerName = "";
 }
}

To add a __construct() function to the OnlineStore class:

1. Return to the class_OnlineStore.php script in your text
editor.

2. Add the following __construct() function defi nition to the
end of the class declaration:
function __construct() {
}

3. Add the following statements to the __construct() function
to instantiate a database object. Notice that the fi rst state-
ment uses the $this reference to refer to the $DBConnect
data member that you declared earlier. Th e assignment
statement copies the local $DBConnect variable, created in
inc_OnlineStoreDB.php, to the object data member of the
same name.
include("inc_OnlineStoreDB.php");
$this->DBConnect = $DBConnect;

4. Save the class_OnlineStore.php script.

The __con-
struct()
function takes
precedence
over a func-

tion with the same name
as the class.

For classes
that use a
database
connection,
constructor

functions are commonly
used in PHP to handle the
database connection
tasks.

586

C H A P T E R 1 0 Developing Object-Oriented PHP

5. Return to the GosselinGourmetCoff ee.php script.

6. Delete the following line that requires inc_OnlineStoreDB.php.
You no longer need the line because the OnlineStore class
handles the database connection details.
require_once("inc_OnlineStoreDB.php");

7. Save the GosselinGourmetCoff ee.php script.

Cleaning Up with Destructor Functions
Just as a default constructor function is called when a class object is
fi rst instantiated, a destructor function is called when the object is
destroyed. A destructor function cleans up any resources allocated to
an object after the object is destroyed. A destructor function is com-
monly called in two ways: when a script ends or when you manually
delete an object with the unset() function. You generally do not need
to use a destructor function, although many programmers use one
to close previously opened fi le handles and database connections. To
add a destructor function to a PHP class, create a function named
__destruct() (with two leading underscore characters). Th e follow-
ing code contains a destructor function that closes the database con-
nection opened with the constructor function:
function __construct() {
 $DBConnect = new mysqli("php_db", "dongosselin",
 "rosebud", "real_estate")
}
function __destruct() {
 $DBConnect->close();
}

To add a __destruct() function to the OnlineStore class that closes
the database object you instantiated with the __construct() function:

1. Return to the class_OnlineStore.php script in your text
editor.

2. Add the following __destruct() function defi nition to the
end of the class declaration:
function __destruct() {
}

3. Add the following statement to the __destruct() function
to close the database object. Again, notice that the statement
uses the $this reference to refer to the $DBConnect data
member.
 if (!$this->DBConnect->connect_error)
 $this->DBConnect->close();

587

Working with Member Functions

4. Save the class_OnlineStore.php script.

5. Return to the GosselinGourmetCoff ee.php script.

6. Delete the fi nal PHP script section. You no longer need it
because the OnlineStore class handles the database connec-
tion details.
<?php
if (!$DBConnect->connect_error)
 $DBConnect->close();
?>

7. Save the GosselinGourmetCoff ee.php script.

Writing Accessor and Mutator Functions
Even if you make all data members in a class private, you can still
allow your program’s clients to retrieve or modify the value of data
members via accessor and mutator functions. Accessor functions are
public member functions that a client can call to retrieve the value
of a data member. Similarly, mutator functions are public member
functions that a client can call to modify the value of a data mem-
ber. Because accessor functions often begin with the word “set” and
mutator functions often begin with “get,” they are also called set or
get functions, respectively. Set functions modify data member val-
ues; get functions retrieve data member values. To allow a client to
pass a value to your program that will be assigned to a private data
member, you include parameters in a set function’s defi nition. You
can then write code in the body of the set function that validates
the data passed from the client, prior to assigning values to private
data members. For example, if you write a class named Payroll
that includes a private data member containing the current state
income-tax rate, you could write a public accessor function named
getStateTaxRate() that allows clients to retrieve the variable’s
value. Similarly, you could write a public mutator function named
setStateTaxRate() that performs various types of validation on the
data passed from the client (such as making sure the value is not null
or not greater than 100%) prior to assigning a value to the private
state tax rate data member.

Another use of the accessor and mutator functions is to hide any
internal data conversion from the client. Your data member can only
store a single value, such as length or amount. To store this value, you
must use a particular measurement unit, such as feet or U.S. dollars.
To store a value represented in diff erent units, such as centimeters
or Japanese yen, the client would normally have to do the conver-
sion before setting the value or after getting it. With accessor and
mutator functions, you simply provide alternate set and get member

Another term
for accessor
is observer,
and another
term for

mutator is transformer.

588

C H A P T E R 1 0 Developing Object-Oriented PHP

functions that hide the conversion from the client. For example, con-
sider a Temperature class with a private data member temp, two pub-
lic accessor functions named getTempF() and getTempC(), and two
public mutator functions, setTempF() and setTempC(). Because the
client can never see temp, the client cannot tell if the temperature is
stored within the Temperature class in degrees Fahrenheit or degrees
Celsius. It doesn’t matter to the client, though, because the client can
set or get the value using either unit.

Th e following code demonstrates how to use set and get member
functions with the $Balance data member in the BankAccount class.
Th e setBalance() function is declared with an access specifi er of
public and accepts a single parameter containing the value to assign
to the $Balance data member. Th e getBalance() function is also
declared as public and contains a single statement that returns the
value assigned to the $Balance data member. Statements at the end
of the example call the functions to set and get the $Balance data
member.
class BankAccount {
 private $Balance = 0;
 public function setBalance($NewValue) {
 $this->Balance = $NewValue;
 }
 public function getBalance() {
 return $this->Balance;
 }
}
if (class_exists("BankAccount"))
 $Checking = new BankAccount();
else
 exit("<p>The BankAccount class is not available!</p>");
$Checking->setBalance(100);
echo "<p>Your checking account balance is "
 . $Checking->getBalance() . "</p>\n";

Next, you add two mutator functions and two accessor functions
to the OnlineStore class: setStoreID(), getStoreInformation(),
getProductList(), and addItem(). Th e setStoreID() func-
tion assigns a value to the $storeID data member. Th e
getStoreInformation() function queries the database and returns
an array with the store information. Th e getProductList() function
queries the database and displays a table with the product informa-
tion. Th e addItem() function allows users to add items in the table to
their shopping carts.

To add the four functions to the OnlineStore class:

1. Return to the class_OnlineStore.php script in your text
editor.

589

Working with Member Functions

2. Add the following setStoreID() function to the end of the
class defi nition. Th e function stores the store ID and popu-
lates the $inventory[] array from the inventory table based
on the store ID. At the same time, the $shoppingCart[] array
is initialized. Notice that the data is only initialized if the new
$storeID value is diff erent from the current $storeID data
member value, and that the new $storeID value is only kept if
it matches a store ID in the inventory table.
public function setStoreID($storeID) {
 if ($this->storeID != $storeID) {
 $this->storeID = $storeID;
 $SQLString = "SELECT * FROM inventory " .
 " where storeID = '" .
 $this->storeID . "'";
 $QueryResult = @$this->DBConnect->
 query($SQLString);
 if ($QueryResult === FALSE) {
 $this->storeID = "";
 }
 else {
 $this->inventory = array();
 $this->shoppingCart = array();
 while (($Row = $QueryResult->fetch_
 assoc())
 !== NULL) {
 $this->inventory[$Row['productID']]
 = array();
 $this->inventory[$Row['productID']]

['name']
 = $Row['name'];
 $this->inventory[$Row['productID']]

['description']
 = $Row['description'];
 $this->inventory[$Row['productID']]

['price']
 = $Row['price'];
 $this->
 shoppingCart[$Row['productID']]
 = 0;
 }
 }
 }
}

3. Add the following getStoreInformation() function to the
end of the class defi nition. If the $storeID data member is
empty or there is a database error, the function returns FALSE.

590

C H A P T E R 1 0 Developing Object-Oriented PHP

public function getStoreInformation() {
 $retval = FALSE;
 if ($this->storeID != "") {
 $SQLString = "SELECT * FROM store_info " .
 " where storeID = '" .
 $this->storeID . "'";
 $QueryResult = @$this->DBConnect->
 query($SQLString);
 if ($QueryResult !== FALSE) {
 $retval = $QueryResult->fetch_assoc();
 }
 }
 return($retval);
}

4. Add the following getProductList() function to the end
of the class defi nition. Th is code is similar to the statements
you added earlier to the GosselinGourmetCoff ee.php script,
except that this version adds an Add Item link to each row
in the table that executes the addItem() function to add a
product to the shopping cart. Th e statements that build the
Add Item link append the session ID variable to the link to
keep track of the current session if cookies are disabled on
the user’s Web browser. Th e link is also appended with the
product ID of the current product and the type of operation,
which other Web pages that utilize the class will use to deter-
mine which member function to call. Th is function will return
TRUE for success or FALSE for failure.
public function getProductList() {
 $retval = FALSE;
 $subtotal = 0;
 if (count($this->inventory) > 0) {
 echo "<table width='100%'>\n";
 echo "<tr><th>Product</
 th><th>Description</th>" .
 "<th>Price Each</th><th># in Cart</th>" .
 "<th>Total Price</th><th> </
 th></tr>\n";
 foreach ($this->inventory as $ID => $Info) {
 echo "<tr><td>" .
 htmlentities($Info['name'])
 . "</td>\n";
 echo "<td>" .
 htmlentities($Info['description']) .
 "</td>\n";
 printf("<td class='currency'>$%.2f

 </td>\n", $Info['price']);
 echo "<td class='currency'>" .
 $this->shoppingCart[$ID] .

"</td>\n";
 printf("<td class='currency'>$%.2f

 </td>\n", $Info['price'] *
 $this->shoppingCart[$ID]);

591

Working with Member Functions

 echo "<td><a href='" .
 $_SERVER['SCRIPT_NAME'] .
 "?PHPSESSID=" . session_id() .
 "&ItemToAdd=$ID'>Add " .
 " Item</td>\n";
 $subtotal += ($Info['price'] *
 $this->shoppingCart[$ID]);
 }
 echo "<tr><td colspan='4'>Subtotal</td>\n";
 printf("<td class='currency'>$%.2f</td>\n",
 $subtotal);
 echo "<td> </td></tr>\n";
 echo "</table>";
 $retval = TRUE;
 }
 return($retval);
}

5. Add the following addItem() function to the end of the class
defi nition. Th e fi rst statement retrieves the product ID that
was appended to the Add Item link in the getProductList()
function you added in the last step. Th e second statement
adds 1 to the count of that item in the $shoppingCart[] array.
public function addItem() {
 $ProdID = $_GET['ItemToAdd'];
 if (array_key_exists($ProdID, $this->
 shoppingCart))
 $this->shoppingCart[$ProdID] += 1;
}

6. Save the class_OnlineStore.php script.

To modify the GosselinGourmetCoff ee.php script so that it calls the
member functions you just added to the OnlineStore class:

1. Return to the GosselinGourmetCoff ee.php script in your
text editor.

2. Add the following variable declarations to the fi rst script sec-
tion, immediately after the require_once() call:
$storeID = "COFFEE";
$storeInfo = array();

3. Modify the nested if statement that creates the new
OnlineStore object as follows:
if (class_exists("OnlineStore")) {
 if (isset($_SESSION['currentStore']))
 $Store = unserialize($_
 SESSION['currentStore']);
 else {
 $Store = new OnlineStore();
 }

592

C H A P T E R 1 0 Developing Object-Oriented PHP

 $Store->setStoreID($storeID);
 $storeInfo = $Store->getStoreInformation();
}
else {
 $ErrorMsgs[] = "The OnlineStore class is not
 available!";
 $Store = NULL;
}

4. Modify the <title> tag as follows to display the store name:
<title><?php echo $storeInfo['name']; ?></title>

5. Add the following <link> tag immediately after the <title>
tag to include the style sheet for this store:
<link rel="stylesheet" type="text/css" href="<?php echo
 $storeInfo['css_file']; ?>" />

6. Modify the fi rst three statements in the body of the document
as follows to display the store information:
<h1><?php echo htmlentities($storeInfo['name']); ?></h1>
<h2><?php echo htmlentities($storeInfo['description']);
?></h2>
<p><?php echo htmlentities($storeInfo['welcome']); ?></p>

7. Replace the entire PHP script section below the previous
three lines with the following PHP script section that shows
the inventory in a table and sets the session variable:
<?php
 $Store->getProductList();
 $_SESSION['currentStore'] = serialize($Store);
?>

8. Save the GosselinGourmetCoff ee.php script and then upload
it to the Web server.

9. Open the GosselinGourmetCoff ee.php script in your Web
browser by entering the following URL: http://<yourserver>/
PHP_Projects/Chapter.10/Chapter/GosselinGourmetCoff ee.
php. Your Web browser should look similar to Figure 10-7. Do
not click any of the links or reload the Web page. If you do,
you will receive error messages because you still need to add
several other functions to the OnlineStore class.

Be sure to
add curly
braces around
the state-
ments in the

nested if statement. 593

Working with Member Functions

Figure 10-7 Web page after adding accessors and mutators to the OnlineStore object

10. Close your Web browser window.

Serialization Functions
When you serialize an object with the serialize() function, PHP
looks in the object’s class for a special function named __sleep()
(with two leading underscores), which you can use to perform many
of the same tasks as a destructor function. However, because a
destructor function is always called when a script that instantiates an
object of a class ends, you do not need to duplicate any functionality
between a destructor function and the __sleep() function. Th e pri-
mary reason for including a __sleep() function in a class is to specify
which data members of the class to serialize. If you do not include a
__sleep() function in your class, the serialize() function serializes
all of its data members.

You don’t necessarily have to serialize every data member in a class,
particularly for large objects that contain numerous data members. If
you do include a __sleep() function in your class, the function must

594

C H A P T E R 1 0 Developing Object-Oriented PHP

return an array of the data members to serialize or you will receive
an error. For example, the following code demonstrates how to use
a __sleep() function to serialize only the $Balance data member
in the BankAccount class. Notice how the name 'Balance', not the
$Balance data member, is passed to the array constructor: It does not
include the $this reference or a dollar sign. Instead, you simply pass
the name of the data member, without the leading dollar sign, sur-
rounded by either single or double quotation marks.
function __sleep() {
 $SerialVars = array('Balance');
 return $SerialVars;
}

Although the destructor function is always called, a constructor func-
tion is only called when you instantiate a new class object. Th is means
that when you use the unserialize() function to restore a serialized
class object, the constructor function does not execute. However,
when the unserialize() function executes, PHP looks in the object’s
class for a special function named __wakeup() (with two leading
underscore characters), which you can use to perform many of the
same tasks as a constructor function. You use the __wakeup() func-
tion to perform any initialization the class requires when the object is
restored. A typical use of the __wakeup() function is to initialize data
members that were not saved with the serialization process, if there
are any. Another use of the __wakeup() function is to restore any
database or fi le connections that were lost during object serialization.

To add a __wakeup() function to the OnlineStore class that restores
the connection to the online_store database when an object is
restored with the unserialize() function:

1. Return to the class_OnlineStore.php script in your text
editor.

2. Add the following __wakeup() function defi nition to the end
of the class declaration:
function __wakeup() {
}

3. Add the following statements to the __wakeup() function to
restore the database connection:
include("inc_OnlineStoreDB.php");
$this->DBConnect = $DBConnect;

4. Save the class_OnlineStore.php script and upload it to the
Web server.

595

Working with Member Functions

To modify the GosselinGourmetCoff ee.php script so it will add an
item to the cart when the visitor clicks the Add Item link:

1. Return to the GosselinGourmetCoff ee.php script in your
text editor.

2. Add the following if statement after the call to the
getStoreInformation() member function in the fi rst script
section. Th e if statement checks for the $_GET['ItemToAdd']
variable. If it is set, the addItem() method of the $Store
object executes. (You will add more operations in the Rein-
forcement Exercises section later in this chapter.)
 if (isset($_GET['ItemToAdd']))
 $Store->addItem();

Th e complete if clause should look like the following code:
if (class_exists("OnlineStore")) {
 if (isset($_SESSION['currentStore']))
 $Store = unserialize($_
 SESSION['currentStore']);
 else {
 $Store = new OnlineStore();
 }
 $Store->setStoreID($storeID);
 $storeInfo = $Store->getStoreInformation();
 if (isset($_GET['ItemToAdd']))
 $Store->addItem();
}

3. Save the GosselinGourmetCoff ee.php script and upload it to
the Web server.

4. Open the GosselinGourmetCoff ee.php script in your Web
browser by entering the following URL: http://<yourserver>/
PHP_Projects/Chapter.10/Chapter/GosselinGourmetCoff ee.
php. Click the Add Item links for the various coff ees. Your
Web browser should look similar to Figure 10-8, with updated
item amounts, prices, and subtotal values.

596

C H A P T E R 1 0 Developing Object-Oriented PHP

Figure 10-8 Gosselin’s Gourmet Coffee Web page after using the Add Item links

5. Close your Web browser window.

In studying the various class techniques presented in this chapter,
you might have forgotten that the goal of object-oriented programs is
code reuse. Now that you have developed the OnlineStore class, you
will see how easy it is to reuse the code on other Web pages by creat-
ing the OldTymeAntiques.php and ElectronicsBoutique.php scripts.

To create the OldTymeAntiques.php and ElectronicsBoutique.php
scripts:

1. Return to the GosselinGourmetCoff ee.php script in your
text editor and immediately save it as OldTymeAntiques.php.

2. Change the assignment of the $storeID variable as follows:
$storeID = "ANTIQUE";

3. Save the OldTymeAntiques.php script and then immediately
save it as ElectronicsBoutique.php.

4. Change the assignment of the $storeID variable as follows:
$storeID = "ELECBOUT";

597

Working with Member Functions

5. Save the ElectronicsBoutique.php script and close it in your
text editor.

6. Open the OldTymeAntiques.php script in your Web browser
by entering the following URL: http://<yourserver>/PHP_
Projects/Chapter.10/Chapter/OldTymeAntiques.php. Notice
how the entire appearance of the page has changed, as well
as the items available for sale. Figure 10-9 shows the Old
Tyme Antiques Web page. Click the Add Item links for the
diff erent items. Everything should work just like it did for the
 GosselinGourmetCoff ee.php Web page.

Figure 10-9 The Old Tyme Antiques online store Web page

7. Open the ElectronicsBoutique.php script in your
Web browser by entering the following URL:
http://<yourserver>/PHP_Projects/Chapter.10/Chapter/
ElectronicsBoutique.php. Notice how the appearance of the
page and the items available for sale have changed again.

598

C H A P T E R 1 0 Developing Object-Oriented PHP

Figure 10-10 shows the Electronics Boutique Web page.
Click the Add Item links for the diff erent items. Everything
should work normally for this site.

Figure 10-10 The Electronics Boutique online store Web page

8. Close your Web browser window.

Short Quiz

1. Describe a situation in which you might want to declare a
member function as private.

2. Explain the purpose of the $this reference.

3. What two names may be assigned to a constructor function?

4. Describe the purpose of a destructor function.

5. Describe the purpose of accessors and mutators.

599

Working with Member Functions

Summing Up
Th e term “object-oriented programming” (OOP) refers to the cre- •
ation of reusable software objects that can be easily incorporated
into multiple programs. Th e term “object” specifi cally refers to
programming code and data that can be treated as an individual
unit or component. (Objects are often called components.)

Th e term “data” refers to information contained within variables or •
other types of storage structures.

Th e functions associated with an object are called methods, and •
the variables associated with an object are called properties or
attributes.

Objects are encapsulated, which means that all code and required •
data are contained within the object itself.

An interface represents elements required for a source program to •
communicate with an object.

In object-oriented programming, the code, methods, attributes, and •
other information that make up an object are organized into classes.

An instance is an object that has been created from an existing •
class. When you create an object from an existing class, you are
instantiating the object.

A particular instance of an object inherits its methods and proper- •
ties from a class—that is, it takes on the characteristics of the class
on which it is based.

A constructor is a special function with the same name as its class; it •
is called automatically when an object from the class is instantiated.

Th e term “data structure” refers to a system for organizing data. •

Th e functions and variables defi ned in a class are called class mem- •
bers. Class variables are referred to as data members or member
variables, whereas class functions are referred to as member func-
tions or function members.

A class defi nition contains the data members and member func- •
tions that make up the class.

PHP provides the following functions that allow you to use •
external fi les in your PHP scripts: include(), require(),
include_once(), and require_once().

Th e principle of information hiding states that class members •
should be hidden when other programmers do not need to access
or know about them.

600

C H A P T E R 1 0 Developing Object-Oriented PHP

Access specifi ers control a client’s access to individual data mem- •
bers and member functions.

Serialization refers to the process of converting an object into a •
string that you can store for reuse.

A constructor function is a special function that is called automati- •
cally when an object from a class is instantiated.

A destructor function cleans up any resources allocated to an •
object after the object is destroyed.

Accessor functions are public member functions that a client can •
call to retrieve the value of a data member.

Mutator functions are public member functions that a client can •
call to modify the value of a data member.

When you serialize an object with the • serialize() function, PHP
looks in the object’s class for a special function named __sleep(),
which you can use to perform many of the same tasks as a destruc-
tor function.

When the • unserialize() function executes, PHP looks in the
object’s class for a special function named __wakeup(), which you
can use to perform many of the same tasks as a constructor function.

Comprehension Check

1. Reusable software objects are often referred to as
 .

a. methods

b. components

c. widgets

d. functions

2. Explain the benefi ts of object-oriented programming.

3. Th e functions associated with an object are called
 .

a. properties

b. fi elds

c. methods

d. attributes

601

Comprehension Check

4. Th e term “black box” refers to .

a. a property

b. debugging

c. encapsulation

d. an interface

5. A(n) is an object that has been created
from an existing class.

a. pattern

b. structure

c. replica

d. instance

6. An object inherits its characteristics from a class. True
or False?

7. A function that is used as the basis for an object is called
a(n) .

a. method

b. class

c. class constructor

d. object variable

8. Which of the following operators is used in member selection
notation?

a. >

b. ->

c. =>

d. .

9. What is the correct syntax to connect to the MySQL database
server using a mysqli object?

a. $Variable = mysqli_connect("host", "user", "password",
 "database_name");

b. $Variable = new mysqli_connect("host", "user",
 "password", "database_name");

602

C H A P T E R 1 0 Developing Object-Oriented PHP

c. $Variable = mysqli("host", "user", "password",
 "database_name");

d. $Variable = new mysqli("host", "user",
 "password", "database_name");

10. Explain how to handle a MySQL connection error using a
mysqli object.

11. Th e terms “variable” and “object” are often used interchange-
ably in object-oriented programming. True or False?

12. Class names usually begin with a(n) to
 distinguish them from other identifi ers.

a. number

b. exclamation mark (!)

c. ampersand (&)

d. uppercase letter

13. Which of the following functions returns the name of the
class upon which an object is based?

a. class_of()

b. instanceof()

c. class_name()

d. get_class()

14. What extension should you use for external PHP scripts,
and why?

15. Explain the principle of information hiding.

16. Which of the following access specifi ers prevents clients from
calling member functions or accessing data members?

a. internal

b. public

c. private

d. privileged

603

Comprehension Check

17. Which of the following is a valid name for a constructor
function?

a. construct()

b. __construct()

c. constructor()

d. __constructor()

18. When is a destructor called? (Choose all that apply.)

a. when a script ends

b. when the constructor function ends

c. when you delete a class object with the unset() function

d. when you call the serialize() function

19. Explain the use of accessor and mutator functions. How are
accessor functions often named? How are mutator functions
often named?

20. When serializing objects, how do you specify which data
members to serialize?

Reinforcement Exercises

Exercise 10-1

In this project, you will add two member functions, removeItem()
and emptyCart(), to the OnlineStore class. Th ese functions allow
you to remove individual items or all items from the shopping cart.

To add the removeItem() and emptyCart() member functions to the
OnlineStore class:

1. In your text editor, open the class_OnlineStore.php script
from your Chapter directory for Chapter 10.

2. Add the following removeItem() function defi nition to
the end of the class defi nition. Th e statements use the
$_GET['ItemToRemove'] variable to identify the item. If the
item is found and the value in the $shoppingCart[] array
data member for that item is greater than 0, subtract 1 from
the $shoppingCart[] array element.

604

C H A P T E R 1 0 Developing Object-Oriented PHP

private function removeItem() {
 $ProdID = $_GET['ItemToRemove'];
 if (array_key_exists($ProdID, $this->
 shoppingCart))
 if ($this->shoppingCart[$ProdID]>0)
 $this->shoppingCart[$ProdID] -= 1;
}

3. Add the following emptyCart() function defi nition to the end
of the class declaration. Th e statements empty the cart by set-
ting the value of all of the elements of the $shoppingCart[]
array data member to 0.
private function emptyCart() {
 foreach ($this->shoppingCart as $key => $value)
 $this->shoppingCart[$key] = 0;
}

4. Add the following processUserInput() function defi nition
to the end of the class declaration. Th e statements call the
appropriate member function based on elements found in the
$_GET[] array.
public function processUserInput() {
 if (!empty($_GET['ItemToAdd']))
 $this->addItem();
 if (!empty($_GET['ItemToRemove']))
 $this->removeItem();
 if (!empty($_GET['EmptyCart']))
 $this->emptyCart();
}

5. Modify the declaration of the addItem() function to change it
from public to private, as follows:
private function addItem() {

6. Next, you need to modify the getProductList() member
function so that it displays links that call the removeItem()
and emptyCart() functions. First, fi nd and remove the follow-
ing statement from the foreach loop:
 echo "<td><a href='" .
 $_SERVER['SCRIPT_NAME'] .
 "?PHPSESSID=" . session_id() .
 "&ItemToAdd=$ID'>Add " .
 " Item</td>\n";

7. Replace the echo statement removed above with the following
pair of echo statements:

605

Reinforcement Exercises

 echo "<td><a href='" .
 $_SERVER['SCRIPT_NAME'] .
 "?PHPSESSID=" . session_id() .
 "&ItemToAdd=$ID'>Add " .
 " Item
\n";
 echo "<a href='" . $_SERVER['SCRIPT_
 NAME'] .
 "?PHPSESSID=" . session_id() .
 "&ItemToRemove=$ID'>Remove " .
 " Item</td>\n";

8. Modify the echo statement immediately before the echo state-
ment that displays the closing </table> tag (the one with the
 element within <td> tags) to read as follows:
 echo "<td><a href='" .
 $_SERVER['SCRIPT_NAME'] .
 "?PHPSESSID=" . session_id() .
 "&EmptyCart=TRUE'>Empty " .
 " Cart</td></tr>\n";

9. Save the class_OnlineStore.php script.

10. Open the GosselinGourmetCoff ee.php fi le. Remove the fol-
lowing statement:
if (isset($_GET['ItemToAdd']))
 $Store->addItem();

11. Replace the statement you just deleted with the following
statement:
$Store->processUserInput();

12. Save and close the GosselinGourmetCoff ee.php fi le.

13. Repeat Steps 10 through 12 for both the OldTymeAntiques.php
fi le and the ElectronicsBoutique.php fi le.

14. Upload all four fi les (class_OnlineStore.php,
GosselinGourmentCoff ee.php, OldTymeAntiques.php, and
ElectronicsBoutique.php) to the Web server.

15. Open the GosselinGourmetCoff ee.php script in your Web
browser by entering the following URL: http://<yourserver>/
PHP_Projects/Chapter.10/Chapter/GosselinGourmetCoff ee.
php. Click the Remove Item link for various products to verify
that you cannot remove an item that hasn’t been entered.
Click the Add Item link to add items, and then click the
Remove Item link for those items to verify that the count is
reduced. Finally, click the Empty Cart link to verify that the
count for all of the items goes to 0. Figure 10-11 shows the

606

C H A P T E R 1 0 Developing Object-Oriented PHP

Gosselin’s Gourmet Coff ee Web page after adding the remove
item and empty cart functionality.

Figure 10-11 Gosselin’s Gourmet Coffee Web page

16. Close your Web browser window.

Exercise 10-2

In this project, you will add a checkout() function to the
OnlineStore class that allows customers to check out by saving
order information to a database table. For the sake of simplicity, the
checkout() function does not record customer information, although
it does use the session ID to uniquely identify each order.

607

Reinforcement Exercises

To add a checkout() function to the OnlineStore class:

1. Log in to MySQL Monitor with the MySQL user name and
password you created in Chapter 7.

2. Enter the following command to select the online_stores
database:
mysql> USE online_stores;[ENTER]

3. Enter the following command to create a table named orders,
which will contain each shopping cart order. Th e table con-
sists of three columns: orderID, productID, and quantity.
Remember from Chapter 9 that a session ID is 32 characters,
and that a product ID was defi ned as 10 characters earlier in
this chapter in the inventory table.
mysql> CREATE TABLE orders (productID
VARCHAR(10),[ENTER]
 -> orderID VARCHAR(32), quantity INT);[ENTER]

4. Leave the MySQL Monitor session open and return to the
class_OnlineStore.php script in your text editor. Add the
following checkout() function defi nition to the end of the
class defi nition. Th e foreach loop builds a SQL string for each
product in the shopping cart and inserts it into the database.
public function checkout() {
 $ProductsOrdered = 0;
 foreach($this->shoppingCart as $productID =>
 $quantity) {
 if ($quantity > 0) {
 ++$ProductsOrdered;
 $SQLstring = "INSERT INTO orders " .
 " (orderID, productID, quantity) " .
 " VALUES('" . session_id() . "', " .
 "'$productID', $quantity)";
 $QueryResult =
 $this->DBConnect->
 query($SQLstring);
 }
 }
 echo "<p>Your order has been " .
 "recorded.</p>\n";
}

5. In the getProductList() member function, immediately
after the echo statement for the closing </table> tag, insert
the following echo statement:
echo "<p><a href=' 'Checkout.php?PHPSESSID=" .
 session_id() . "&CheckOut=$storeID'>Checkout</
 a></p>\n";

If this were a
checkout form
for a real
online store,
code would

need to be added to
ensure that only one
order was placed for a
single session value. For
simplicity, that step is
omitted in this example.

608

C H A P T E R 1 0 Developing Object-Oriented PHP

6. Save the class_OnlineStore.php script.

Exercise 10-3

In this project, you will create a script named Checkout.php that calls
the checkout() function you created in Exercise 10-2.

To create the Checkout.php script:

1. Create a new document in your text editor and type the
<!DOCTYPE> declaration, <html> element, header informa-
tion, and <body> element. Use the strict DTD and leave the
<title> element empty for now.

2. Add the following PHP script section to the start of the docu-
ment, above the <!DOCTYPE> tag:
<?php
session_start();
require_once("class_OnlineStore.php");
$storeID = $_GET['CheckOut'];
$storeInfo = array();
if (class_exists("OnlineStore")) {
 if (isset($_SESSION['currentStore']))
 $Store = unserialize($_
 SESSION['currentStore']);
 else {
 $Store = new OnlineStore();
 }
 $Store->setStoreID($storeID);
 $storeInfo = $Store->getStoreInformation();
}
else {
 $ErrorMsgs[] = "The OnlineStore class is not
 available!";
 $Store = NULL;
}
?>

3. Modify the <title> tag as follows to display the store name:
<title><?php echo $storeInfo['name']; ?> Checkout</
title>

4. Add the following <link> tag immediately after the <title>
tag to include the style sheet for this store:
<link rel="stylesheet" type="text/css" href="<?php
echo
 $storeInfo['css_file']; ?>" />

5. Add the following statements in the body of the document to
display the store information:

609

Reinforcement Exercises

<h1><?php echo htmlentities($storeInfo['name']);
?></h1>
<h2>Checkout</h2>

6. Add the following PHP script section to the end of the docu-
ment body. Th e statement in the script section calls the
checkout() method.
<?php
$Store->checkout();
?>

7. Save the document as Checkout.php in the Chapter direc-
tory for Chapter 10 and then upload both Checkout.php and
class_OnlineStore.php to the Web server.

8. Open the GosselinGourmetCoff ee.php script in your Web
browser by entering the following URL: http://<yourserver>/
PHP_Projects/Chapter.10/Chapter/GosselinGourmetCoff ee.
php. Use the shopping category links to add several products
to your shopping cart, and then click the Checkout link on the
Your Shopping Cart page. You should see the message con-
fi rming your order.

9. Close your Web browser window.

10. Return to MySQL Monitor in your console window and enter
the following command. Th e products you entered should
appear in the database table.
mysql> SELECT * FROM orders;[ENTER]

11. Type exit or quit and press Enter to log out of MySQL
Monitor.

Exercise 10-4

Create a Movies class that determines the cost of a ticket to a cinema,
based on the moviegoer’s age. Assume that the cost of a full-price
ticket is $10. Assign the age to a private data member. Use a public
member function to determine the ticket price, based on the follow-
ing schedule:

Age Price

Under 5 Free

5 to 17 Half price

18 to 55 Full price

Over 55 $2 off

610

C H A P T E R 1 0 Developing Object-Oriented PHP

Exercise 10-5

Write a class-based All-in-One Web form that calculates the correct
amount of change to return when performing a cash transaction. Th e
script should have an include fi le that defi nes a class named Change.
Allow the user (a cashier) to enter the cost of a transaction and the
exact amount of money that the customer hands over to pay for
the transaction. Use set and get functions to store and retrieve both
amounts to and from private data members. Th en use member func-
tions to determine the largest amount of each denomination to return
to the customer. Assume that the largest denomination a customer
will use is a $100 bill. Th erefore, you need to calculate the correct
amount of change to return, the number of $50, $20, $10, $5, and $1
bills to return, and the number of quarters, dimes, nickels, and pen-
nies to return. For example, if the price of a transaction is $5.65 and
the customer hands the cashier $10, the cashier should return $4.35
to the customer as four $1 bills, a quarter, and a dime. Include code
that requires the user to enter a numeric value for the two cash trans-
action fi elds.

Discovery Projects
Th e Chinese Zodiac site is a comprehensive project that you have
updated in the Discovery Projects in each chapter. All fi les for the
Chinese Zodiac site are saved in a folder named ChineseZodiac in the
root Web folder on the server, and all database tables are stored in the
chinese_zodiac database.

Discovery Project 10-1

In this project, you will create an event_calendar table in MySQL to
store an event calendar, and an EventCalendar class for manipulating
the event_calendar table. In later projects, you will create Web pages
to add and delete events, and to display the calendar. For the sake of
simplicity, the ability to add and remove events will not be restricted,
and the events will consist of only a date, a title, and a description.

To create the EventCalendar class and the MySQL event_calendar
table:

1. Log in to MySQL Monitor with the MySQL user name and
password you created in Chapter 7.

611

Discovery Projects

2. Enter the following command to select the chinese_zodiac
database:
mysql> USE chinese_zodiac;[ENTER]

3. Enter the following command to create a table named
event_calendar, which will contain each calendar event. Th e
table consists of four columns: EventID, EventDate, Title,
and Description. Th e EventID fi eld is an auto-incrementing
primary key. Th e EventDate fi eld is of type DATE, and Title
and Description are both VARCHAR fi elds.
mysql> CREATE TABLE event_calendar (EventID
INT[ENTER]
 -> AUTO_INCREMENT PRIMARY KEY, EventDate
DATE,[ENTER]
 -> Title VARCHAR(50), Description
VARCHAR(250));[ENTER]

4. Type exit or quit and press Enter to log out of MySQL
Monitor.

5. Create a new document in your text editor and add a PHP
script section, as follows:
<?php
?>

6. Add the following code to connect to the chinese_zodiac
database on the MySQL server. Replace host, user, and
password with the name of the MySQL server and the user
name and password you created in Chapter 7.
$ErrorMsgs = array();
$DBConnect = @new mysqli("host", "user", "password",
 "chinese_zodiac");
if ($DBConnect->connect_error)
 $ErrorMsgs[] = "The database server is not
 available. " .
 "Connect Error is " . $mysqli->
 connect_errno .
 " " . $mysqli->connect_error . ".";

7. Save the document as inc_ChineseZodiacDB.php in the
Includes subfolder of the ChineseZodiac folder.

8. Create a new document in your text editor and add a PHP
script section, as follows:
<?php
?>

612

C H A P T E R 1 0 Developing Object-Oriented PHP

9. Add the following class defi nition for the EventCalendar class
to the script section:
class EventCalendar {
}

10. Add the following statement to the start of the class defi nition
to declare the private data member $DBConnect:
private $DBConnect = NULL;

11. Add the following __construct() function to the end of the
class defi nition:
function __construct() {
 include("Includes/inc_ChineseZodiacDB.php");
 $this->DBConnect = $DBConnect;
}

12. Add the following __destruct() function to the end of the
class defi nition:
function __destruct() {
 if (!$this->DBConnect->connect_error)
 $this->DBConnect->close();
}

13. Add the following __wakeup() function to the end of the class
defi nition:
function __wakeup() {
 include("Includes/inc_ChineseZodiacDB.php");
 $this->DBConnect = $DBConnect;
}

14. Save the document as class_EventCalendar.php in the
ChineseZodiac folder.

Discovery Project 10-2

In this project, you will create a Web page to add events to the
Chinese zodiac event calendar. You will also add a member func-
tion to the EventCalendar class that will add the new event to the
event_calendar table in the database.

To create the Web page to add events to the calendar using the
EventCalendar class:

1. Reopen the class_EventCalendar.php fi le in the text editor.

2. Add the following addEvent() function to the end of the
class defi nition. Notice that, although the $Date and $Title

613

Discovery Projects

parameters cannot be empty, the $Description parameter
can be empty.
public function addEvent($Date, $Title,
$Description) {
 if ((!empty($Date)) && (!empty($Title))) {
 $SQLstring = "INSERT INTO event_calendar" .
 " (EventDate, Title, Description) " .
 " VALUES('$Date', '$Title', '" .
 $Description . "')";
 $QueryResult =
 $this->DBConnect->query($SQLstring);
 if ($QueryResult === FALSE)
 echo "<p>Unable to save the event. " .
 "Error code " . $this->
 DBConnect->errno .
 ": " . $this->DBConnect->error
 . "</p>\n";
 else
 echo "<p>The event was successfully
 saved.</p>\n";
 }
 else
 echo "<p>You must provide a date and title
 for the event.</p>\n";
}

3. Save class_EventCalendar.php and close it in the text editor.

4. Create a new document in your text editor and type the
<!DOCTYPE> declaration, <html> element, header information,
and <body> element. Use the strict DTD and “Add Calendar
Event” as the content of the <title> element.

5. Add the following PHP script section to the beginning of the
document, above the <!DOCTYPE> declaration, to create or
retrieve an EventCalendar object:
<?php
session_start();
require_once("class_EventCalendar.php");
if (class_exists("EventCalendar")) {
 if (isset($_SESSION['currentCalendar']))
 $Calendar = unserialize($_
 SESSION['currentCalendar']);
 else {
 $Calendar = new EventCalendar ();
 }
}
else {
 $Calendar = NULL;
}
?>

614

C H A P T E R 1 0 Developing Object-Oriented PHP

6. Add the following statements and PHP code section to the
body of the document:
<h1>Add Calendar Event</h1>
<?php
 if (isset($_POST['EventDate']) &&
 isset($_POST['EventTitle']) &&
 isset($_POST['EventDesc'])) {
 if ($Calendar === NULL)
 echo "<p>There was an error " .
 creating the EventCalendar" .
 object.</p>\n";
 else
 $Calendar->addEvent(
 stripslashes($_POST['EventDate']),
 stripslashes($_POST['EventTitle']),
 stripslashes($_POST['EventDesc']));
 $_SESSION('currentCalendar') =
 serialize($Calendar);
 }
?>

7. Add the following Web form to the end of the document body
to allow user input of the event information:
<form action="AddCalendarEvent.php?PHPSESSID=<?php
echo
 session_id(); ?>" method="POST">
 <p>Date (yyyy-mm-dd): <input type="text"
 name="EventDate" /> (required)</p>
 <p>Title: <input type="text"
 name="EventTitle" /> (required)</p>
 <p>Title: <input type="text"
 name="EventDesc" /> (optional)</p>
 <p><input type="submit" name="submit"
 value="Save Event" /></p>
</form>

8. Add the following link to the end of the document body to
allow users to visit the events calendar:
<a href="EventCalendar.php?PHPSESSID=<?php echo
 session_id(); ?>">View the event calendar

9. Save the document as AddCalendarEvent.php in the
ChineseZodiac folder and upload the document to the Web
server.

Discovery Project 10-3

In this project, you will create a Web page to display the Chinese
zodiac event calendar in a monthly calendar format. For each day
with events, you will display the event title as a hyperlink to an “Event

615

Discovery Projects

Details” page, which you will create in Discovery Project 10-4. You
will also add a member function to the EventCalendar class that will
display the events from the event_calendar table in the database for
a specifi ed month.

To create the Web page to display a monthly event calendar using the
EventCalendar class:

1. Reopen the class_EventCalendar.php fi le in the text editor.

2. Add the following getMonthlyCalendar() function to the end
of the class defi nition, which has parameters for the desired
month and year. Notice that if the $Year or $Month param-
eters are empty, the current year or month is retrieved using
the date() function.
public function getMonthlyCalendar($Year, $Month) {
 if (empty($Year))
 $Year = date('Y'); // Four digit year
 if (empty($Month))
 $Month = date('n'); // Month number, no
 // leading 0
 $FirstDay = mktime(0,0,0,$Month,1,$Year);
 $FirstDOW = date('w',$FirstDay); // Day of week
 $LeapYearFlag = date('L',$FirstDay); // 1=Leap
 // Year, 0=Not
 $MonthName = date('F',$FirstDay); // Month name
 if ($Month == 2)
 $LastDay = 28 + $LeapYearFlag;
 else if (($Month == 4) || ($Month == 6) ||
 ($Month == 9) || ($Month == 11))
 $LastDay = 30;
 else
 $LastDay = 31;
 echo "<table>\n";
 // Create the calendar heading
 echo "<tr><td><a href='" . $_SERVER['SCRIPT_NAME'] .
 "?PHPSESSID=" . session_id() . "&Year=" .
 ($Year – 1) .
 "&Month=$Month'>Previous Year</td>\n";
 if ($Month==1)
 echo "<td><a href='" . $_SERVER['SCRIPT_
 NAME'] .
 "?PHPSESSID=" . session_id() . "&Year=" .
 ($Year – 1) . "&Month=12'>Previous " .
 "Month</td>\n";
 else
 echo "<td><a href='" . $_SERVER['SCRIPT_
 NAME'] .
 "?PHPSESSID=" . session_id() .
 "&Year=$Year" .
 "&Month=" . ($Month – 1) . "'>Previous " .
 "Month</td>\n";

616

C H A P T E R 1 0 Developing Object-Oriented PHP

 echo "<td colspan='3'>$MonthName $Year</td>\n";
 if ($Month==12)
 echo "<td><a href='" . $_SERVER['SCRIPT_
 NAME'] .
 "?PHPSESSID=" . session_id() . "&Year=" .
 ($Year + 1) . "&Month=1'>Next " .
 "Month</td>\n";
 else
 echo "<td><a href='" . $_SERVER['SCRIPT_
 NAME'] .
 "?PHPSESSID=" . session_id() .
 "&Year=$Year" .
 "&Month=" . ($Month + 1) . "'>Next " .
 "Month</td>\n";
 echo "<td><a href='" . $_SERVER['SCRIPT_NAME'] .
 "?PHPSESSID=" . session_id() .
 "&Year=" . ($Year – 1) .
 "&Month=$Month'>Previous Year</
 td></tr>\n";
 echo "<tr>";
 // insert empty cells for days from Sunday to
 // the first day
 for ($i = 0; $i < $FirstDOW; ++$i)
 echo "<td> </td>";
 for ($i = 1; $i <= $LastDay; ++$i) {
 if ((($FirstDOW + $i) % 7) == 1)
 echo "<tr>";
 echo "<td valign='top'>$i";
 $SQLstring = "SELECT EventID, Title " .
 " FROM event_calendar " .
 " WHERE EventDate='$Year-$Month-
 $i'";
 $QueryResult = @$this->DBConnect->
 query($SQLstring);
 if ($QueryResult !== FALSE) {
 if ($QueryResult->num_rows > 0) {
 while (($Row = $QueryResult->
 fetch_assoc()) !== NULL)
 echo "
<a
 href='EventDetails.php?"
 . "PHPSESSID=" .
 session_id() .
 "&EventID=" .
 $Row['EventID'] .
 "'>" .
 htmlentities($Row['Title'])
 . "";
 }
 }
 echo "</td>";
 if ((($FirstDOW + $i) % 7) == 0)
 echo "</tr>";
 }

617

Discovery Projects

 // insert empty cells for
 // days after the last day
 if ((($i + $j + $FirstDOW) % 7) != 0) {
 for ($j = 0; (($i + $j + $FirstDOW) % 7)
 != 0; ++$j)
 echo "<td> </td>";
 echo "</tr>";
 }
}

3. Save class_EventCalendar.php and close it in the text editor.

4. Create a new document in your text editor and type the
<!DOCTYPE> declaration, <html> element, header informa-
tion, and <body> element. Use the strict DTD and “Event
Calendar” as the content of the <title> element.

5. Add the following PHP script section to the beginning of the
document, above the <!DOCTYPE> declaration, to create or
retrieve an EventCalendar object:
<?php
session_start();
require_once("class_EventCalendar.php");
if (class_exists("EventCalendar")) {
 if (isset($_SESSION['currentCalendar']))
 $Calendar = unserialize($_
 SESSION['currentCalendar']);
 else {
 $Calendar = new EventCalendar ();
 }
}
else {
 $Calendar = NULL;
}
?>

6. Add the following statements and PHP code section to the
body of the document:
<h1>Event Calendar </h1>
<?php
 if ($Calendar === NULL)
 echo "<p>There was an error creating the " .
 " EventCalendar object.</p>\n";
 else
 $Calendar->getMonthlyCalendar(
 $_GET['Year'],
 $_GET['Month']);
?>

7. Add the following link to the end of the document body to
allow users to add events to the calendar:

618

C H A P T E R 1 0 Developing Object-Oriented PHP

<a href="AddCalendarEvent.php?PHPSESSID=<?php echo
 session_id(); ?>">Add an event to the
 calendar

8. Save the document as EventCalendar.php in the
ChineseZodiac folder.

9. Upload EventCalendar.php and class_EventCalendar.php to
the Web server.

10. Open EventCalendar.php in your Web browser by enter-
ing the following URL: http://<yourserver>/ChineseZodiac/
EventCalendar.php. You will see an empty calendar for the
current month and year. Use the link at the bottom of the
page to add some events to the calendar, then use the link at
the bottom of the page to return to the event calendar. Use
the links in the calendar header to browse through the calen-
dar and fi nd the events you entered. Remember that the links
for the events will not work until you complete Discovery
Project 10-4.

Discovery Project 10-4

Create an EventDetails.php fi le to display the title and description of
the event based on the event ID passed to the script. Add a member
function called getEventDetails() that accepts the event ID as a
parameter and retrieves and displays the event information. Use ses-
sions to serialize and unserialize the EventCalendar object.

Discovery Project 10-5

Create a RemoveCalendarEvent.php fi le to remove an event from
the calendar based on the event ID passed to the script. Add a mem-
ber function called removeCalendarEvent() that accepts the event ID
as a parameter and deletes the event information from the database.
Use sessions to serialize and unserialize the EventCalendar object.
Modify the getMonthlyCalendar() member function to add a link
after each event’s title that will call the RemoveCalendarEvent.php fi le
with the event ID as a parameter.

619

Discovery Projects

As explained in Chapter 1, PHP is an embedded scripting language.
A PHP script is embedded, or contained within, an XHTML page.
Because of this restriction, familiarity with XHTML is required for
using PHP. Th is appendix provides a brief overview of XHTML and
shows you how to install some development tools to assist you with
building XHTML and PHP fi les.

Installing an Editor
For many users of this book, the instructor and the school will pro-
vide a complete and integrated development environment. However,
if such tools are not provided, you will need a text editor for creating
your PHP fi les. You may also need an FTP or SCP client so that you
can upload the PHP fi les to a Web server.

In this section, you will learn how to install Portable Apps Suite and
Notepad++ for Windows. Portable Apps Suite is a tool that allows
you to run programs that are installed on a fl ash drive. Notepad++ is
a text editor with an integrated FTP client.

Installing Portable Apps Suite
Because USB fl ash drives have become larger and faster, you can
install applications directly onto the fl ash drive. By attaching the fl ash
drive to any compatible system, you can access your programs even if
they are not installed on that machine. Th is makes it easier to develop

A P P E N D I X A
Working with XHTML

Web pages at home and on school computers using the same devel-
opment tools.

Th ere are USB fl ash drive “portable application” solutions for most
operating systems. For Macintosh systems, the FSuite CD provides
a collection of portable applications. Linux users have Portable Apps
for Linux, and even a version of Linux that boots from a USB drive.
Portable Apps Suite is the Windows solution. Th rough the integrated
Portable Apps menu, installed applications can be launched.

To install Portable Apps Suite for Windows:

1. Insert the USB fl ash drive into an available port.

2. Open your Web browser and enter http://www.portableapps.
com in the location bar to go to the Portable Apps home page.

3. Click Suite on the navigation bar of the Portable Apps Web
page to open the Suite home page. From the Suite home page,
click the Download button, select the version you want to
install (Platform, Suite Lite, or Standard) and start the down-
load. Save the downloaded fi le to the USB drive.

4. When the download is complete, open Windows Explorer,
navigate to the USB drive, and double-click the PortableApps.
com_type_Setup_version_language.exe fi le on your fl ash drive,
where type is “Platform,” “Suite_Light,” or “Suite,” version is the
current version number, and language is a two-letter language
abbreviation (such as “en” for English).

5. Install the Portable Apps program in the root directory of
your fl ash drive.

6. After the installation is complete, view the contents of the
fl ash drive and double-click the StartPortableApps.exe fi le.
Th e Portable Apps menu displays a list of installed programs,
as shown in Figure A-1. Also, a Portable Apps icon appears in
the system tray on the taskbar.

The full
 process of
downloading
and installing
Portable Apps

Suite may take up to 20
minutes, depending on
the version you selected
and the download speed.

621

A P P E N D I X A

http://www.portableapps.com
http://www.portableapps.com

Figure A-1 The Portable Apps menu

Installing Notepad++
A graphical HTML editor can simplify the task of creating Web
pages. However, graphical HTML editors automatically add many
unfamiliar elements and attributes to documents that can confuse
you and distract from the learning process. Th erefore, this book
shows you how to create Web pages using a simple text editor.

If your instructor has not required a specifi c text editor to complete
your assignments, many options are available. Programs such as
TextPad, TextWrangler, jEdit, NEdit, and Notepad++ all provide PHP
syntax highlighting, which assists you by color-coding XHTML and
PHP keywords, comments, and operators. Many text editors, includ-
ing the ones listed above, also provide PHP parsers to check the syn-
tax of a PHP script and highlight any errors.

Notepad++ is available to install as part of Portable Apps Suite for
Windows. You can install it in your Portable Apps Suite, where it will

622

A P P E N D I X A

appear as a menu item. Additionally, Notepad++ has an integrated
FTP client, which simplifi es uploading fi les to a Web server.

To download and install Notepad++ for the Portable Apps Suite:

1. Return to the PortableApps.com Web site and select the
Applications menu link.

2. In the Development section, click the Notepad++ Portable
link.

3. Download the Notepad++ program directly to the root direc-
tory of your fl ash drive.

4. Close your browser and return to the Portable Apps menu. If
the menu is closed, you can display it by clicking the Portable
Apps icon in the system tray on the taskbar.

5. From the Portable Apps menu, click the Options but-
ton and select Install New Application. Navigate to the
NotepadPlusPlusPortable_xxx.paf.exe fi le, where xxx is the
version of Notepad++ on your fl ash drive. Click Open to
install Notepad++.

6. When the installation is complete, redisplay the Portable Apps
menu by clicking the Portable Apps Menu icon on the taskbar.
Notepad++ Portable appears in the menu list.

7. Click the Notepad++ Portable option in the Portable Apps
menu to open Notepad ++.

8. You will learn to confi gure Notepad++ as you begin to create
Web pages using XHTML and PHP. For now, click the Close
button on the title bar to close Notepad++.

9. To close the Portable Apps program, click the Portable Apps
Menu icon on the taskbar to open the menu. Click the X but-
ton in the lower-right corner to close the menu, which will
remove the icon from the system tray on the taskbar. (It is
important to close the Portable Apps program correctly to
ensure that your server profi les are available the next time
you launch the program.) You can also right-click the Portable
Apps Menu icon and select Exit to close the application.

10. Th e next time you insert your fl ash drive in the USB port,
select “Start PortableApps.com using the program provided
on this device” and click OK.

11. When the Portable Apps menu appears, select Notepad++
from the menu.

623

A P P E N D I X A

Several popular features of Notepad++ are described in the follow-
ing list. Take some time to explore all the features so you can take full
advantage of Notepad++. Figure A-2 shows Notepad++ with a PHP
script loaded.

Figure A-2 The Notepad++ editor

Syntax highlighting is a useful debugging technique as you learn •
to write PHP code because it displays elements, attributes, and
values in the source code in a diff erent color. Syntax highlighting
is applied using the default style, but you can confi gure your own
syntax highlighting for XHTML, CSS, and PHP using the Style
Confi gurator option in the Settings menu.

Th e toolbar has two Save icons—one that saves the current docu- •
ment and one that saves all open documents.

Options in the Run menu display the current document in either •
the Internet Explorer or Mozilla Firefox browser. (Firefox is the
default installation with Portable Apps Suite.)

Select Plugins | FTP SynchronizeA | Show FTP Folders to display •
an FTP pane to the right of the Notepad++ window. Click the
Open Settings Dialog icon to open a dialog box that lets you cre-
ate a server profi le. After you create a profi le, you can click the
Connect icon in the FTP pane to connect to your remote server
account and upload fi les directly to your server from Notepad++.

For a Web page to appear in the browser, it must reside in the •
folder structure within the base Web directory (www or pub-
lic_html). To upload the current fi le to a folder on the server, click

The syntax
highlighting is
not applied
until the docu-
ment is saved.

624

A P P E N D I X A

wwworpublic_html
wwworpublic_html

the folder and select “Upload current fi le to folder” from the FTP
toolbar. To upload a fi le from your fl ash drive, right-click the folder,
select “Upload other fi le here. . .”, and navigate to the destination of
the fi le you want to upload.

If you are using another text editor, use the help system or docu-
mentation to explore its features. Many features in Notepad++ are
available in other editors, and other editors may off er diff erent fea-
tures, such as automatically closing XHTML tags. Th e more familiar
you are with the text editor, the easier it will be for you to build PHP
scripts.

Once you have a basic understanding of Notepad++ or the text editor
you will use, you are ready to explore the XHTML specifi cation and
learn how to format XHTML pages using Cascading Styles Sheets
(CSS).

The Basics of XHTML
In 2001, the World Wide Web Consortium (W3C) released a for-
mal recommendation for XHTML 1.0. Th is XHTML specifi cation
requires a stricter coding standard than the earlier HTML 4.0 stan-
dard to accommodate multiple browsers and to maintain compat-
ibility with other media devices, such as PDAs and mobile phones.
One goal of XHTML is to separate information from presentation. To
accomplish this goal, the W3C decided that some common HTML
elements and attributes used for display and formatting would not be
supported in XHTML. Instead, the W3C recommends that you use
CSS to format the document for browser display.

DOCTYPE Declaration
All XHTML documents require a DOCTYPE declaration, which associ-
ates a Document Type Defi nition (DTD) with the document so the
parser can compare the XHTML fi le against the rules defi ned by the
DTD. You can use three types of DTDs with XHTML documents:
strict, transitional, and frameset. To understand the diff erences
among the DTDs, you need to understand the concept of deprecated
HTML elements. Elements and attributes are said to be deprecated
if they will not be supported by future XHTML versions or are not
currently supported by various handheld devices. Common HTML
elements that are deprecated in the XHTML 1.0 specifi cation include
<applet>, <basefont>, <center>, <dir>, <isindex>, <menu>, <s>
or <strike>, and <u>. Deprecated attributes include alink, align,
border, background, color, face, height, language, link, name,
size, text, vlink, and width. For an extensive list of deprecated

The W3C does
not actually
release a ver-
sion of a par-
ticular

technology. Instead, it
issues a formal recom-
mendation for a technol-
ogy, which essentially
means that the technol-
ogy is (or will be) a recog-
nized industry standard.

625

A P P E N D I X A

elements and attributes, read the XHTML specifi cation at the W3C
Web site (http://www.w3.org/).

One of the most signifi cant deprecated attributes is the name
attribute, which is widely used in the HTML 4.0 specifi cation.
It was typically used in the <applet>, <frame>, <iframe>, and
 element tags, and in the pseudo <a> element. A common
practice in HTML was to name a section in a document using
.... Th e attribute value "top" could
then be referenced as the destination of a text hyperlink, as in
Go to Top. In XHTML, the name attribute
has been replaced by the id attribute. Because not all browsers have
support for the id attribute, it is a good idea to enter both a name and
id attribute with the same value to ensure backward compatibility.

Th e three DTDs are distinguished in part by the degree to which they
allow or do not allow deprecated HTML elements:

Strict—Th e strict DTD defi nition restricts the use of deprecated •
tags. Because the markup validated by the strict defi nition leaves
no room for interpretation, CSS must be used to format the con-
tent for browser display. A DOCTYPE defi nition for the strict
document type is as follows:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Transitional—Th e transitional DTD defi nition allows the use of •
deprecated tags during a conversion period when newer versions
of XHTML are released and older versions become outdated.
Because deprecated formatting tags are allowed, the transi-
tional defi nition does not require the use of CSS, although it is
recommended.
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Frames—Th e frames DTD defi nition must be used when you want •
to insert the <frameset> and <frame> elements on your page.
Because frames have been deprecated and do not meet accessibil-
ity standards, you should limit or (better yet) eliminate the use of
framesets in Web documents. In HTML code, framesets have been
replaced by a <table> or CSS layout. In PHP, the concept of divid-
ing the browser window into separate sections, each displaying
an individual XHTML page, has been replaced by a Web template
that uses include statements to populate dynamic content sections.
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

For all activi-
ties and proj-
ects in this
book, you will
code your

pages to meet the speci-
fi cations defi ned for the
strict DTD.

626

A P P E N D I X A

http://www.w3.org/

Structure of an XHTML Document
Th e DOCTYPE declaration must be the fi rst line of code in your Web
page. Next, you should include the four paired tags that structure an
XHTML document: <html>, <head>, <title>, and <body>. Th e fol-
lowing template meets the strict DTD specifi cations:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 lang="en">
 <head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
 <title>XHTML 1.0 Strict Template</title>
 </head>
 <body>
 <p>[Placeholder for XHTML content]</p>
 </body>
</html>

In the <head> section, you must include a <meta> element to pro-
vide information about the Web page’s character encoding. If you
do not indicate a character encoding scheme, the Web browser
will guess at which character scheme to use, which may aff ect how
the Web page appears in the browser. You should assign a value of
"text/html;charset=iso-8859-1" to the <meta> element’s content
attribute to specify the iso8859-1 character set, which represents
English and many western European languages. Th e following state-
ment shows how to construct the content-type <meta> elements:
<meta http-equiv="Content-Type" content="text/html;
 charset=iso-8859-1" />

All XHTML documents must use <html> as the root element. Th e
XML namespace attribute xmlns is required in the <html> ele-
ment and must be assigned a URI (Uniform Resource Identifi er) of
"http://www.w3.org/1999/xhtml".

You may want to save this XHTML template as xhtml_template.html
and modify it whenever you need to structure a new XHTML docu-
ment. Simply add the new content to the template fi le and save the
modifi ed Web document with an extension of .html or .php.

Well-formed XHTML Documents
Although XHTML uses the same syntax as HTML, it requires that
your code be well formed. A well-formed document must follow a
predefi ned syntax or structure. XHTML is a Web standard main-
tained by the W3C that ensures your code meets the specifi cations

627

A P P E N D I X A

defi ned for the DTD you selected. In order for an XHTML document
to be well formed:

All markup tags must be lowercase. •

All elements must have both an opening and closing tag or be a •
single self-closing tag.

All tags must be properly nested. •

All attributes must be assigned a value (enclosed in single or dou- •
ble quotation marks).

Lowercase Markup Tags
Unlike earlier versions of HTML, where the standard was to key
markup tags in uppercase characters to distinguish them from con-
tent, XHTML requires that you key all tags in lowercase characters,
as shown in the following code:
<title>XHTML 1.0 Strict Template</title>

Required Opening and Closing Tags
In HTML, tags that did not mark up content, such as
, <hr>,
and , were called empty elements and did not require a clos-
ing tag. In XHTML, you must insert a forward slash character (/)
before the closing right angle bracket of an empty element, essen-
tially opening and closing the tag within the left and right angle
brackets. Th ese are often called self-closing tags. Th e W3C recom-
mends that you insert a space before the forward slash character, as
shown in the following code:

In HTML, even though the paragraph <p> selector marked up a
section of text, it did not require an ending </p> tag to mark the
end of the paragraph. A blank line would be inserted with or with-
out the closing </p> tag. In XHTML, the ending paragraph tag is
required.

Properly Nested Tags
Nesting refers to how elements are placed inside other elements.
When you apply multiple tags to mark up the same content,
you must open and close the markup tags in a specifi c order. In
HTML, you could enter Bold and Italicized
Content to bold and italicize the marked-up text.
HTML was not concerned with the order in which elements were
opened and closed. In XHTML, when you nest tags, the fi rst tag

In XHTML, you
cannot close
an empty
element with
a matching

closing tag. The syntax
<img src = "geek.
png" alt = "picture
of a geek god">
 is invalid.

628

A P P E N D I X A

opened must be the last tag closed, as shown in the following code.
Th e and tags are shown in bold to identify them
as the outer tags. Th e and tags are the inner tags.
Bold and Italicized Content

Attributes and Values
When you added an attribute and value to a tag in HTML, placing
the value in quotation marks was optional unless the value contained
spaces, as in <table width = 750>. In XHTML, all attribute values
must be surrounded by matching single (') or double (") quota-
tion marks, such as <table width = "750">. In HTML, you were
also allowed to use a “minimized” version of the attribute/value
pair. For example, it was common to shorten the attribute/value
pair checked = "checked" to the word checked. When specifying
that a particular radio button was already selected, you could use
<input type = "radio" name = "gender" value = "male" checked>.
In XHTML, all attributes must be specifi ed with the “maximized”
version using the attribute/value pair. Th e following code shows the
XHTML syntax to set the "gender" radio button and select the value
of "male":
<input type = "radio" name = "gender" value = "male"
 checked = "checked" />

HTML used a number of other minimized attributes, such as
selected, multiple, and noresize, that must be specifi ed using the
maximized version in XHTML. For a complete list of minimized
attributes, visit the W3C Web site at http://www.w3c.org.

Validating an XHTML Document
After you save your XHTML document, you should validate it
against the style rules defi ned by the strict, transitional, or frameset
defi nitions.

In a browser, enter http://validator.w3.org/ in the location bar to
access W3C’s Markup Validation Service. You can validate fi les by
URI, File Upload, or Direct Input. If the document meets the stan-
dards specifi ed by the DOCTYPE (in this instance, the XHTML 1.0
Strict), your results document will appear as shown in Figure A-3.

629

A P P E N D I X A

http://www.w3c.org
http://validator.w3.org/

Figure A-3 Validating a well-formed XHTML document

If the structure of the XHTML document does not meet the stan-
dards of the XHTML 1.0 strict DTD, the Validation Output in the
results document will explain the errors. An example is shown in
Figure A-4.

Figure A-4 Validating an XHTML document with errors

630

A P P E N D I X A

In this instance, the end tag for the <hr> selector was omitted on line
14 of the XHTML document.
<h2>Ready to Donate a Vehicle?</h2><hr>

Once the code has been modifi ed to insert the forward slash charac-
ter before the closing right angle bracket in the <hr /> selector, you
can save the document, upload it to the server, return to the W3C
Markup Validator, and click the Revalidate button to recheck the
modifi ed document.

In the preceding example, the Validator identifi ed four errors,
although there was only one error in the XHTML document (the
omission of the forward slash character in the <hr> tag). Once the
initial error is corrected, the document will be checked and approved
as XHTML 1.0 Strict. It is a good idea to locate and correct the errors
sequentially because correcting the fi rst error will often also correct
the remaining errors.

Using Cascading Style Sheets
When coding an XHTML document to meet the standards of the
“Strict 1.0,” the W3C recommends that you separate the data from
the display using Cascading Style Sheets. Th e term cascading refers
to the ability of Web pages to use CSS information from more than
one source. When a Web page has access to multiple CSS sources, the
styles “cascade” or “fall together.” In CSS-based design, the XHTML
content of the Web page is typed in the body of the XHTML docu-
ment and formatted by rules defi ned in a CSS style. To change colors,
sizes, and layout, you simply modify a style defi nition in the CSS.

Just like XHTML, CSS have their own type of language and syntax,
which is defi ned by the W3C, the same organization that defi nes
XHTML standards. To review the guide of current W3C CSS specifi -
cations, go to the CSS home page at http://www.w3.org/Style/CSS/.

Formatting the Document Display
A style is a collection of design rules (declarations) that defi nes how
the XHTML content will be displayed in a browser. Styles may be
used to defi ne the display of fonts, text, colors, backgrounds, lists,
boxes, and layers. You can defi ne a style for an XHTML tag in three
ways:

Inline •

Internal (also referred to as Embedded or Global) •

External (also referred to as Linked) •

If you are
using Firefox
and have
installed the
Web

Developer Tool Bar
(https://addons.mozilla.
org/en-US/fi refox/
addon/60), you can
select Tools | Web
Developer | Tools |
Validate HTML to validate
the currently displayed
browser page.

631

A P P E N D I X A

http://www.w3.org/Style/CSS/
https://addons.mozilla.org/en-US/.refox/addon/60
https://addons.mozilla.org/en-US/.refox/addon/60
https://addons.mozilla.org/en-US/.refox/addon/60

The Inline Style
To apply an inline style to an XHTML tag, such as the <body>, <h1>,
<p>, or <hr /> tag, you defi ne the style using the style attribute of
the XHTML tag. To defi ne a style, you append CSS attributes and val-
ues as the value of the style attribute.
<h1 style="text-align: center;">Content</h1>

Each CSS attribute is separated from its value by a colon (:). You can
include multiple style declarations in an inline style by separating each
declaration with a semicolon (;). Th e following code illustrates the
syntax to apply multiple style declarations to an <h1> XHTML tag:
<h1 style="text-align: center; color: green; font-weight:
bold">Content</h1>

To apply an inline style to XHTML content that is not marked up by
an XHTML tag, use opening and closing tags around the con-
tent, and use the style attribute of the tag to defi ne the CSS
attributes and values. For example, to display the word “awesome” in
bold in the sentence “CSS is an awesome formatting tool!” to distin-
guish the word from the rest of the text, you would use the following
XHTML syntax:
<p>CSS is an <span style = "font-weight:
 bold;">awesome formatting tool.</p>

Internal Style
You can use an internal style sheet to create styles that apply to an
entire Web page. You create an internal style sheet within opening
and closing <style> tags in the <head> section of the XHTML docu-
ment, usually below the ending </title> tag. Any style defi nitions
are applied to all instances of the element contained in the body of the
XHTML document. Note the term selector in the following code;
CSS uses this term to refer to an XHTML tag, such as h1 or p. Note
that CSS does not enclose the tag name in angle brackets (< and >).
...
 </title>
 <style>
 selector
 {
 attribute: value;
 attribute: value;
 }
 </style>
</head>

If you type each style defi nition on a separate line with proper indent-
ing, it is easier to read the code, and syntax errors are easier to locate

632

A P P E N D I X A

and correct. You can, however, type the entire style defi nition on a
single line:
selector { attribute: value; attribute: value; }

You can also group selectors so they share the same style declarations
by separating each selector with a comma, as shown in the following
code:
 ...
 </title>
 <style>
 h1, h4, p
 {
 text-decoration: underline;
 font-style: italic;
 }
 </style>
</title>

If you need to apply the same style to an entire section of your docu-
ment (such as a sidebar), you can enclose the section in an opening
and closing div (for “division”) tag. An id attribute must be inserted
in the div tag to uniquely identify the division. When defi ning a style
for the id attribute, you place the (#) fl ag character before the unique
id you assign to the div tag.

For example, if you wanted to apply the sidebar style to a section of a
document, you would use the following syntax:
<div id = "sidebar">
 ...
</div>

To defi ne the styles for the sidebar division, you would include the fol-
lowing CSS code within the opening and closing <style> tags:
#sidebar { background-color: lightblue; }

If you want to defi ne a style that can be applied to multiple selec-
tors, you should defi ne a class. Classes are used to style elements that
occur many times in a document (such as the <p> element). When
defi ning a style for the class attribute, you place the (.) fl ag character
before the name you assign to the class attribute in the paragraph tag.

To defi ne a class called title, you would place the following CSS
code within the opening and closing <style> tags:
.title { font-variant: small-caps; color: navy; }

To apply the title style class to a <p> tag within the body of the
XHTML document, you would use the following syntax:
<p class = "title">

633

A P P E N D I X A

You can apply the class = "title" attribute/value pair to any other
XHTML tags whose content needs to be formatted in small caps with
navy text.

External or Linked Style Sheet
An external style sheet, sometimes called a linked style sheet, is
used to defi ne a style defi nition for like tags (such as all <h1> ele-
ments) in multiple pages in one or more Web sites. You create an
external style sheet as a separate text document that contains only
text—no XHTML tags. Th e external style sheet is saved with an
extension of .css to identify it as a Cascading Style Sheet.

You should add comments to style defi nitions to help you document
and maintain the style sheet over time. Th e comments should include
information to remind yourself or others of what the code is doing. A
comment in CSS begins with a forward slash followed by an asterisk
(/*) and ends with an asterisk followed by a forward slash (*/).
/* A CSS comment */

Th e following example includes a comment that explains how the h1
style defi nition formats the <h1> tag in the XHTML document:
/* formats the h1 selector with a font that is teal, Arial
or Arial Rounded MT Bold (if not available, the default
sans-serif font), and uppercase */
h1
 {
 color: teal;
 font-family: Arial,'Arial Rounded MT Bold',sans-serif;
 text-transform: uppercase;
 }

You can attach this .css document to every page in your Web site to
which you want to apply a style defi nition. You do this by linking the
XHTML document to the external style sheet. Th is link informa-
tion is usually inserted below the ending </title> tag and above the
<style> section in your XHTML document. However, the link infor-
mation can be placed anywhere in the <head> section, except between
the beginning and ending tags of any element in the <head> section,
such as the <title> or <style> tags. Th e syntax to link the XHTML
document to the external style sheet is shown in the following code:
<link href = "fi lename.css" rel = "stylesheet"
 type = "text/css" />

You would replace fi lename.css with the path and fi lename of
the external style sheet; the value of the rel attribute is always
"stylesheet", and the value of the type attribute is always
"text/css".

You can also
use CSS
 comments
with internal
styles, within

the <style> and
</style> tags. Outside
these tags, you still need
to use the HTML
 comment tag
<!-- ... -->.

If a value in
your style
defi nition con-
tains a space,
you must

enclose the value in
either single or double
quotation marks, as
shown above with
'Arial Rounded MT
Bold'.

634

A P P E N D I X A

If your Web page does not appear in the browser with the styles that
you declared in your external style sheet, check for an error in the
following:

Placement of the link statement in the XHTML document •

Syntax of the link element •

Reference to the external style sheet (fi lename case, extension, and •
location)

Syntax of the CSS styles •

Commenting style in the external style sheet •

Style Specifi city
Sometimes, you may want one of the tags in your Web page to be
formatted with a diff erent style from the one you defi ned in your
external style sheet. You can override the external style sheet with an
internal style sheet or an inline style. Table A-1 illustrates the order of
specifi city for CSS styles.

Style Application Specifi city

Inline Applies styles to individual selectors in
the body of the XHTML document

Overrides styles declared in internal or
external style sheets

Internal Applies styles to all like selectors in a
Web page

Overrides styles declared in the external
style sheet

External Applies styles to all like selectors in
the Web site

Table A-1 CSS style specifi city

Validating CSS Styles
Enter http://jigsaw.w3.org/css-validator in the location bar of your
Web browser to validate your CSS styles at the W3C CSS Validation
Service. If the Web page validates correctly, you will receive a message
that the document validates as CSS level 2.1. If there are errors in the
CSS styles, you will be given a results document that identifi es the
source of the errors. Once the errors have been corrected, you can
revalidate the CSS styles.

Many resources on the Internet provide examples and tutorials that
explain the syntax, attributes, and values of XHTML and CSS.

If you are
using Firefox
and you have
installed the
Web

Developer Tool Bar
(https://addons.mozilla.
org/en-US/fi refox/
addon/60), you can
select Tools | Web
Developer | Tools |
Validate CSS to validate
the CSS that is applied to
the displayed browser
document.

635

A P P E N D I X A

http://jigsaw.w3.org/css-validator
https://addons.mozilla.org/en-US/.refox/addon/60
https://addons.mozilla.org/en-US/.refox/addon/60
https://addons.mozilla.org/en-US/.refox/addon/60

Understanding how to install and confi gure the software required for
creating and delivering PHP scripts is considered a critical skill for
Web developers. Even if you have access to a remote server running
Apache, PHP, and MySQL, you may prefer to develop and test your
PHP scripts on a local server before uploading them to the produc-
tion environment.

PHP can be executed on a variety of platforms, including Windows,
Linux, and Mac OS. You can download and install a local Web server
running the Apache Web server, the MySQL database management
system, and the PHP scripting engine with open source packages,
referred to as xAMP. Th e x will change depending on the operating
system. Th e A, M, and P refer to Apache, MySQL, and PHP, respec-
tively. You can install WAMP on a Windows computer, LAMP on a
Linux computer, and MAMP on a Macintosh computer. Th ese inte-
grated packages make installing and confi guring a Web server a less
technical process than installing each of the applications individually.

Installing xAMP
All of the xAMP packages are designed for easy installation on the
destination system, although the details vary. Th e following instruc-
tions explain how to install WAMP on a Windows computer. You
would follow a similar process to install LAMP on a Linux machine
or MAMP on a Macintosh platform.

Many Linux
distributions
come with
LAMP already
installed and
confi gured.

Before begin-
ning the instal-
lation
process,
ensure that

you have the appropriate
privileges or that you are
logged in as the system
superuser.

A P P E N D I X B
Configuring a
Personal Web Server

To install WAMP on a Windows computer:

1. In the location bar of your browser, enter http://www.wamps-
erver.com/en/download.php, click the download link, and
select Download WampServer. Click the Save button to save
the executable fi le on any storage device. It should only take
a few minutes to download the WampServer application.
When the installation program has fi nished downloading, a
Download Complete message appears and an icon represent-
ing an install program is displayed on your storage device.

2. Double-click the install program icon to begin the installation
process. Click the Run button. If you have a previous version
of WAMP installed on your machine, you may be prompted
to delete the older version before continuing.

3. You are welcomed by the standard setup screen, which
 recommends that you close all other applications before
 continuing. Click Next.

4. Read the terms of the license agreement. If you accept the
terms, click the “I accept the agreement” radio button. Click
Next.

5. By default, WAMP will be installed in C:\wamp\. Selecting the
default install location will make Web pages easily accessible
to the Web browser. Click Next.

6. Th e Select Additional Tasks option appears. You can click the
Create a Quick Launch icon to add an icon to the system tray
on your desktop each time Windows is launched, and you can
click the Create a Desktop icon to add a program shortcut on
the desktop, which you could use to restart the server if you
manually exit the WampServer. Click Next.

7. Click the Install button to begin the installation. Th e fi les will
be installed in the C:\wamp\ folder. Click OK.

8. If Firefox is installed on the Windows computer on which you
are installing the WampServer, you will be asked if you want
to use Firefox as your default browser with this application.
Click Yes, because Firefox comes with some useful tools for
Web design.

9. To complete your e-mail confi guration, you can leave the
Simple Mail Transfer Protocol (SMTP) at the default location
of “localhost,” enter your e-mail address at the e-mail prompt,
and click Next.

637

A P P E N D I X B

http://www.wamps-erver.com/en/download.php
http://www.wamps-erver.com/en/download.php

10. You have completed the setup, and WampServer should be
successfully installed on your local computer. By default, the
“Launch the WampServer now” option is selected. You can
leave this option selected so you can walk through a short
overview of the WampServer tools that are available to help
you manage Apache, MySQL, and PHP.

Testing the xAMP Installation
After installing your xAMP server, you should test your confi guration
to ensure that everything was installed correctly. Again, depending on
the platform, the actual steps will vary by system. Th e following steps
are for the Windows operating system, but they are illustrative of the
steps you would use on any system.

To test the local WAMP server:

1. Navigate to the C:\wamp\ directory. You will see a number
of fi les and folders that WampServer requires to run the
application.

2. Double-click the www folder (the root Web folder on your
local machine). By default, the Web folder contains one PHP
fi le named index.php. Only fi les that are stored inside the
www folder or folders under it can be displayed in your Web
browser.

3. To display index.php in the browser, open Firefox and enter
http://localhost/index.php in the location bar.

4. Th e index page displays your server confi gurations that
specify what versions of Apache, MySQL, and PHP you are
running. Th e phpinfo() link in the Tools menu provides a
link to detailed information about your PHP installation. In
Chapter 1 of this book, you used the phpinfo() function to
display the server confi gurations on the remote server. Th e
phpMyAdmin option links to an open source tool written in
PHP to handle the administration of MySQL databases (dis-
cussed in Chapter 7). Th e SQLLitemanager option links to a
database manager that is an extension of Firefox.

You may have noticed that when you selected the “Launch
WampServer now” option during installation, a small gauge-
shaped icon appeared in the system tray on your taskbar. When you
move your cursor over the WampServer icon, a Tooltip displays
“WAMPSERVER – server offl ine.” (Th e diff erence between “offl ine”
and “online” will be explained later.) For now, click the WampServer
icon and select Stop All Services from the Quick Admin section

If you installed
the
WampServer
fi les to a loca-
tion other

than the default option
(C:\wamp\), use the
actual location in place of
C:\wamp\ in the following
steps.

Notice that
you can also
open the
WampServer
menu and

click the www directory
option to open the C:\
wamp\www\ folder.

You can use
either local-
host or
127.0.0.1
(the localhost

IP address) to refer to
your local computer. You
can simply enter “local-
host” or “127.0.0.1”
because most modern
Web browsers prepend
the hypertext transfer
protocol (http://) to the
URL. If index.php is in the
root Web folder, it is
selected as the default
page to display in the
browser.

You can also
access “local-
host” in your
browser by
selecting

localhost from the
WampServer menu.

638

A P P E N D I X B

http://localhost/index.php

of the menu. Th e WampServer application closes and the icon is
removed from the system tray.

Working with the WampServer Menu
After you install the WampServer, you can launch the application as
you would any other Windows application. Click the Start button on
the taskbar and select Programs | WampServer | Start WampServer.
Th e WampServer icon appears in the system tray on the taskbar.

With the application running, you can click the WampServer icon to
display available menu options. If you click Apache or MySQL under the
Powered by Anaska heading, you can verify that the service is running.
If you select Apache from the WampServer menu and select Service
from the submenu, you will see that the Stop Service option is active,
but the Start/Resume Service option is grayed out (inactive). You can
use the Stop Service option to stop the Web server while leaving other
services available. Once the service is stopped, the Stop Service option is
grayed out (inactive), but the Start/Resume Service option is active. You
can then use the Start/Resume Service option to restart the Web server.

When you fi nish using the WampServer, you can click the
WampServer icon and select Stop All Services or right-click the icon
and select Exit.

Accessing WampServer Online
Typically, the local installation of WampServer is for development
purposes and the fi les are uploaded to a production server after they
have been tested. You probably do not want Web pages saved on your
local server to be globally accessible on the Web. For this reason, the
default option for accessibility is set to Put Offl ine.

To allow fi les saved in the root Web folder of your local computer to
be accessed outside your LAN:

1. On your LAN gateway, enable port 80 for http in fi rewalls.

2. On your LAN gateway, forward port 80 for http to the
Internet Protocol (IP) address of the computer that has
WAMP installed.

3. From the WampServer menu, click Put Online.

4. Access your Web fi les by substituting “localhost” with your
Web IP address, which you can fi nd at the Where is My IP
Web site (whereismyip.com) or by checking your gateway’s
confi guration.

The same
Stop Service
and Start/
Resume
Service

options are available for
all of the WampServer
services.

It is a good
idea to exit
the
WampServer
when you are

not developing Web
pages because it uses
computer resources and
memory.

You take
security
risks by
allowing
Internet

users to access your
local Web, PHP, and
MySQL servers. Use this
option with caution.

639

A P P E N D I X B

Installing the Directory Structure
for Student Files
As discussed in the preface, all of the fi les created and used for the
exercises, Reinforcement Exercises, and Discovery Projects in this
book conform to a standard directory layout. A .zip archive fi le that
contains the layout and all the fi les needed to complete the exercises
is available at the Cengage Web site (www.cengage.com). To install the
directories and fi les, simply unzip the archive fi le in the Web folder
on your local server (C:\wamp\www\ is the default for WAMP).

640

A P P E N D I X B

www.cengage.com

A P P E N D I X C
Formatting Strings

Using the printf() and sprintf()
Functions
PHP includes the printf() and sprintf() functions, which format
text strings for output. Th e printf() function outputs a text string
directly, similar to the print and echo statements, whereas the
sprintf() function formats a string and returns the formatted value
so that you can assign it to a variable.

Both functions accept as a fi rst argument a format control string,
which contains instructions for formatting text strings. You surround
the format control string with single or double quotation marks, the
same as you do for other types of strings. Each function also accepts
additional arguments containing the data to be formatted by the
format control string. Within the format control string, you include
a conversion specifi cation for each of the data elements you want
to format, along with any other text that you want to appear in the
formatted string. A conversion specification begins with a percent
symbol (%) and specifi es the formatting you want to apply to a data
element. You must include a conversion specifi cation for each argu-
ment that is passed to the printf() or sprintf() function after the
format control string. For example, the following code contains a
printf() function with two conversion specifi cations in the format

control string: one for the $FirstName variable and one for the
$SecondName variable:
$FirstName = "Gosselin";
$SecondName = "Gauselin";
printf("<p>The name %s is also spelled %s.</p>\n",
 $FirstName, $SecondName);

Notice that each conversion specifi cation consists of a percent sym-
bol followed by the letter s. Th e letter following the percent symbol
in a conversion specifi cation is a type specifier, which determines the
display format of each data argument that is passed to the printf()
or sprintf() function. A type specifi er of s simply displays the data
argument as a standard string. Th e preceding example is equivalent to
the following code, which uses an echo statement.
$FirstName = "Gosselin";
$SecondName = "Gauselin";
echo "<p>The name $FirstName is also spelled $SecondName
 </p>\n";

If you are only using a simple %s conversion specifi cation, it will be
easier to use the standard PHP syntax instead. For more complex
formatting, the printf() and sprintf() functions provide options
that are not available in the standard PHP syntax. Th ese options are
explained next.

Specifying Types
Table C-1 lists the type specifi ers you can use with the printf() and
sprintf() functions.

Type
Specifi er Description
b Displays the argument as a binary integer

c Displays the ASCII character for the index specifi ed by the argument

d Displays the argument as a decimal integer

u Displays the argument as an unsigned decimal integer

f Displays the argument as a fl oating-point number

o Displays the argument as an octal integer

s Displays the argument as a string

x Displays the argument as a lowercase hexadecimal integer

X Displays the argument as an uppercase hexadecimal integer

Table C-1 PHP type specifi ers

642

A P P E N D I X C

Th e following code demonstrates how to use each of the type speci-
fi ers listed in Table C-1. Figure C-1 shows the output.
$Value = 163;
print("<p>\n ");
printf("Binary integer: %b
\n ", $Value);
printf("ASCII character: %c
\n ", $Value);
printf("Decimal integer: %d
\n ", $Value);
printf("Unsigned decimal integer: %u
\n ", $Value);
printf("Floating-point number: %f
\n ", $Value);
printf("Octal integer: %o
\n ", $Value);
printf("String: %s
\n ", $Value);
printf("Lowercase hexadecimal integer: %x
\n ", $Value);
printf("Uppercase hexadecimal integer: %X
\n ", $Value);
print("</p>\n");

Figure C-1 Using the printf() and
sprintf() types

Determining Decimal Number Precision
A common use of the string formatting functions is to format num-
bers to be displayed with a specifi ed number of decimal places. For
example, it’s often necessary to format numbers as currency, with two
decimal places. However, a variable that contains the currency value
you want to display might be an integer that does not contain decimal
places, or it might be a fl oating-point number that has more than
two decimal places. By default, the f type specifi er formats numbers
with six decimal places. To specify a diff erent number of decimal
places, add a period and an integer representing the desired number
of decimal places between the percent symbol and the f type speci-
fi er in a conversion specifi cation. In the following code, a value of
99.5 is assigned to the $RetailPrice variable. When the value in the
$RetailPrice variable is multiplied by 5% to add sales tax, the result-
ing value is 104.475, which is assigned to the $PriceWithTax variable.
Th e value is then formatted to two decimal places with the printf()
statement. Figure C-2 shows the output.

643

A P P E N D I X C

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

$RetailPrice = 99.5;
$PriceWithTax = $RetailPrice * 1.05;
printf("<p>The retail price is $%.2f.</p>\n",
 $RetailPrice);
printf("<p>The price with 5%% sales tax is $%.2f.</p>\n",
 $PriceWithTax);

Figure C-2 Using the printf() statement
to format a number to two decimal places

Specifying Padding
In addition to specifying the number of decimal places that appear
to the right of a decimal point, you can specify the number of char-
acters used to output the data argument. For example, you might
have a variable that counts the number of visitors to your Web site.
Instead of just displaying the number of visitors, you might want to
format it to display the number of visitors out of a million by pad-
ding the beginning of the number with zeroes. To pad the beginning
of a string with zeroes, include a 0 and an integer representing the
number of characters the number should have between the percent
symbol and type specifi er in a conversion specifi cation. For example,
the conversion specifi cation in the following sprintf() statement
specifi es that the number should consist of seven characters. Because
the string representation of the $Visitors variable only contains four
characters, the beginning of the number is padded with three extra
zeroes, as shown in Figure C-3.
$DisplayValue = sprintf("%07d", 5767);
echo "<p>You are visitor number " .
 $DisplayValue . ".</p>\n";

Figure C-3 Padding a value with leading zeroes

You can only
use a period
and number
of decimals
in a conver-

sion specifi cation that
uses the f type specifi er.

Use two per-
cent signs
(%%) to include
a percent
symbol as a

character in a format
control string.

644

A P P E N D I X C

You can also specify that a string should be padded with spaces
instead of a 0. Simply use a space instead of the 0 or exclude the 0 in a
conversion specifi cation. However, most Web browsers automatically
replace multiple spaces on a Web page with a single space, unless you
use the <pre> element. If you want to pad a number with any charac-
ter other than a 0 or a space, you must precede it with a single quo-
tation mark ('). For example, the following code pads a string with
asterisks (*) instead of spaces or zeroes. Figure C-4 shows the output.
$Payment = 1410.23;
printf("<p>Pay the amount of \$%’*9.2f.</p>\n", $Payment);

Figure C-4 Padding with asterisks

Formatting Numbers
You can use the number_format() function to add commas that sepa-
rate thousand values and determine the number of decimal places
to display. Even if you use the printf() or sprintf() function, you
need to use the number_format() function to add commas to sepa-
rate thousands in a number. However, you should understand that the
number_format() function also converts numeric variables to strings.
For this reason, you must use the s type specifi er in a conversion
specifi cation to refer to a numeric variable that has been converted to
a string with the number_format() function. For example, the follow-
ing code uses the number_format() function to add comma separa-
tors and two decimal places to the $Payment variable. Because the
number_format() function converts the $Payment variable to a string,
the printf() statement uses the s type specifi er in the conversion
specifi cation. Figure C-5 shows the output.
$Payment = 1410;
$Payment = number_format($Payment, 2);
printf("<p>Pay the amount of $%s.</p>\n", $Payment);

Padding takes
into account
the number of
characters in
a string, not

the number of digits in an
integer. This includes the
decimal point and deci-
mal places. For example,
the number 345.10 con-
sists of six characters. If
you pad the formatting
string with zeroes and
specify that the format-
ting string should contain
eight characters, the
number will be formatted
as 00345.10.

If you add a
plus sign (+)
immediately
following the
percent sym-

bol in a conversion speci-
fi cation, positive numbers
are formatted with a plus
sign before them and
negative numbers are
formatted with a minus
sign (-) before them.
Otherwise, only negative
numbers will have a sign
preceding the value.

645

A P P E N D I X C

Figure C-5 Using the printf() and
number_format() functions together

Formatting Alignment
By default, strings are formatted with right alignment. However, if
you add a hyphen (-) immediately following the percent symbol in
a conversion specifi cation, a string is formatted with left alignment.
For example, each of the printf() statements in the following code
contains two conversion specifi cations: one for the description of a
travel expense and one for the amount of a travel expense. Th e fi rst
conversion specifi cation for the travel expense descriptions contains
a hyphen (-) immediately following the percent symbol, which aligns
the descriptions to the left. However, the second conversion specifi -
cation for the amounts does not contain hyphens, so these descrip-
tions are right-aligned by default.
<p>Expense Report</p>
<pre>
<?php
$Travel = number_format(465.43, 2);
$Accommodations = number_format(276.2, 2);
$Meals = number_format(97.34, 2);
print("Description Amount\n");
print("***********************************\n");
printf("%-15s %20s\n", "Travel", $Travel);
printf("%-15s %20s\n", "Accommodations",
 $Accommodations);
printf("%-15s %20s\n", "Meals", $Meals);
?>
</pre>

In the preceding example, notice that the PHP script section is con-
tained within an XHTML <pre> element. Th is element is necessary
to instruct the Web browser to print the multiple spaces in the script.

With UNIX/
Linux
 systems,
you can
use the

money_format() func-
tion to format a number
as currency. However,
the money_format()
function is not compatible
with Windows platforms.

646

A P P E N D I X C

Putting It All Together
Combining all of the elements described in the previous sec-
tions, the following code shows the general syntax for a conversion
specifi cation:
 % [+][pad][-][length][.decimal]type

In the preceding line of code, [+] is the optional plus sign. It indi-
cates that numeric fi elds should always display a plus or minus sign
before the value. Recall that the default setting is only to display the
sign if the value is negative. Th is option is only used for numeric type
values.

[pad] is the optional pad character to insert if the length of the argu-
ment value is less than the length specifi ed in [length]. For zeroes or
spaces, the character ‘0’ or ‘ ’ is suffi cient. All other characters must
be preceded by a single quotation mark ('). If [pad] is omitted, the
value is padded with spaces. Th is option is only used if [length] is
specifi ed.

[-] is the optional hyphen that indicates the fi eld should be left-
aligned. Th e default setting is right alignment. Th is option is only
used if [length] is specifi ed and the length of the string is less than
the value of length.

[length] is the optional minimum number of characters to be used
when displaying the value. If a string is shorter than the number of
characters specifi ed by length, pad characters will be added until the
string is the specifi ed length. Pad characters are added to the begin-
ning of the string by default, but you can pad at the end of the string
by specifying [-]. Strings that are longer than the length value will
be displayed in full, not truncated.

[.decimal] is the optional number of digits to display after the deci-
mal point for numeric values. Th is number is included in the num-
ber of characters specifi ed by [length]. You must put the decimal
point before the decimal value to indicate that you are specifying the
number of decimal places. For string values, [.decimal] specifi es
the maximum string length. Any strings longer than decimal will be
truncated to be decimal characters long.

type is the required type specifi er that indicates the data type of the
data argument. Th e valid type specifi ers are shown in Table C-1 ear-
lier in this appendix.

647

A P P E N D I X C

Understanding PHP Security Issues
Viruses, worms, data theft by hackers, and other security threats are
facts of life when it comes to Web-based applications. If you put an
application into a production environment without considering secu-
rity issues, you are asking for trouble. To combat security violations,
you need to consider both Web server security issues and secure cod-
ing issues. Web server security involves the use of technologies such
as fi rewalls, which employ both software and hardware to prevent
access to private networks connected to the Internet. One impor-
tant technology is the Secure Sockets Layer (SSL) protocol, which
encrypts data and transfers it across a secure connection. Although
Web server security is critical, the topic is better addressed in books
on Apache, Internet Information Services, and other types of Web
servers. Be sure to research security issues for your Web server and
operating system before activating a production Web site.

To provide even stronger software security, many technology com-
panies, including Microsoft and Oracle, require their developers and
other technical staff to adhere to secure coding practices and princi-
ples. Secure coding, or defensive coding, refers to writing code that
minimizes intentional or accidental security problems. Secure coding
has become a major goal for many information technology compa-
nies, due to the exorbitant cost of fi xing security fl aws in commercial
software. According to one study, it is 100 times more expensive to

A P P E N D I X D
Secure Coding
with PHP

fi x security fl aws in released software than to apply secure coding
techniques during the development phase. Th e National Institute
of Standards & Technology estimates that $60 billion a year is spent
identifying and correcting software errors. In addition, politicians
have become interested in regulating software security. Tom Ridge,
former Secretary of the U.S. Department of Homeland Security,
said, “A few lines of code can wreak more havoc than a bomb.”
Government scrutiny gives information technology companies strong
incentive to voluntarily improve the security of software products
before state and federal governments pass legislation that requires
such security.

Basically, all code is insecure unless proven otherwise. Th ere is no
magic formula for writing secure code, although you can use vari-
ous techniques to minimize security threats in your programs. Th is
appendix reviews some of the secure coding techniques you have
already studied in this book.

Even if you follow the recommendations in this appendix, your code
may not be absolutely secure. Th is appendix does not list every secu-
rity issue with PHP, databases, and Web development. As a Web
programmer, you should continually familiarize yourself with new
threats as they appear and modify your code to avoid the threats
whenever possible.

Using Secure Programming Techniques
Th is section includes a number of recommendations for making your
code more secure, including tips for securing Web forms, verifying
user identities, and securing data stored in fi les on the Web server.

Validating Submitted Form Data
In Chapter 4, you learned how to validate data that is submitted to
your scripts. Web developers often use JavaScript with forms to vali-
date or process form data before the data is submitted to a server-side
script. For example, customers may use an online order form to order
merchandise from your Web site. After customers click the form’s
Submit button, you can use JavaScript to ensure that customers have
entered important information, such as their name, shipping address,
and so on. Th e problem with using JavaScript to validate form data
is that you cannot always ensure that the data was submitted to your
PHP script from the Web page containing the JavaScript validation
code. Hackers know how to bypass JavaScript validation code in an
XHTML form by appending a query string directly to the URL of
the PHP script that processes the form. Th erefore, you should always

For more
information on
PHP security,
visit the PHP
Security

Consortium (PHPSC) Web
site at http://phpsec.
org/. PHPSC is an inter-
national group of PHP
experts dedicated to
promoting secure pro-
gramming practices
within the PHP
community.

649

A P P E N D I X D

http://phpsec.org/
http://phpsec.org/

include PHP code to validate any submitted data. If your PHP script
lacks such code, you cannot be sure that all of the necessary data was
submitted (such as a shipping address for an online order), nor can
you tell if a hacker is attempting to submit malicious data that might
harm your script or your Web site. Also recall that the POST method
sends form data as a transmission separate from the URL specifi ed by
the action attribute. Th is is one reason to use POST rather than GET as
the method for submitting form data. However, you do not guarantee
the safety of your site by having users submit form data from a Web
page using the POST method. Anyone who thoroughly understands
HTTP headers can construct a separate transmission that contains
the form data required by your script.

To ensure that your script receives the proper data, use the isset()
and empty() functions to determine if form variables contain val-
ues. Th e isset() function determines whether a variable has been
declared and initialized (or “set”), whereas the empty() function
determines whether a variable is empty. You pass to both functions
the name of the variable you want to check. If a submitted form value
must be numeric data, you should use an is_numeric() function to
test the variable. Th is ensures that hackers cannot break your code by
sending alphabetic values to scripts that expect numeric values.

Avoiding the $_REQUEST[] Autoglobal Array
Th e $_REQUEST[] autoglobal array aggregates the elements of the
$_GET[], $_POST[], and $_COOKIE[] autoglobal arrays into a single
array. Many programmers use the $_REQUEST[] array for the conve-
nience of not having to determine whether a Web form was submit-
ted using the GET or POST method. However, because the $_COOKIE[]
array is added to the $_REQUEST[]array last, any $_COOKIE[] array
elements with the same associative array key as an element in the
$_GET[] or $_POST[] arrays will be overwritten with the values from
the $_COOKIES[] array. Th is provides hackers with a way to inject
potentially dangerous data into your system.

Using Sessions to Validate User Identities
Always use sessions to validate user identities, especially at commer-
cial sites that include shopping cart mechanisms. Because sessions
store state information on a Web server, they are much safer to use—
provided you properly secure your Web server. Th e randomly gener-
ated alphanumeric string that composes a session ID is extremely
diffi cult to guess, so hackers probably cannot use this value to imper-
sonate a user. If a hacker does obtain another user’s session ID, he can
use it to steal sensitive data, such as credit card information.

650

A P P E N D I X D

Even with sessions, however, there is a chance that a hacker can
obtain a user’s session ID. For a detailed discussion of session secu-
rity issues, refer to the PHP Security Consortium’s Security Guide at
http://phpsec.org/projects/guide/.

Storing Code in External Files
Chapter 10 discusses how to store classes in external fi les. However,
external fi les are not limited to classes; you can use them to store any
type of code. Storing code in external fi les helps to secure your scripts
by hiding the code from hackers. Th is also helps to protect your code
from other programmers who might steal your scripts and claim
them as their own.

In general, you should use the include() and include_once()
functions for XHTML code that will not prevent a script from
running if the external fi le is not available. For PHP code that is
required for your script to execute, you should use the require()
or require_once() functions, which halt the processing of the Web
page if the external fi le is not available.

Choosing a Location for External Files
Your Web server has specifi c directories from which users are
allowed to retrieve fi les. Th e easiest way to ensure that a site visi-
tor cannot access a fi le is to store it outside those directories. As
discussed in Chapter 2, the include() family of functions can read
fi les stored outside of the Web structure. Files that contain secure
information or details about the underlying server should always be
stored outside the Web directory structure. Th is is also a good idea
for include fi les that do not contain sensitive information, because the
practice prevents a visitor from accessing the fi le directly.

For example, you could create a PHP_Includes directory at the same
level as your public_html or www directory. Within that directory,
you could include a PHP fi le named inc_db_info.php that assigns the
host name, user name, password, and database for a MySQL data-
base to variables named $db_host, $db_user, $db_password, and
$db_database. Th en, you could add the following line of code to the
beginning of any PHP script that needs to access the database:
require_once("../PHP_Includes/inc_db_info.php"):

After including the inc_db_info.php fi le, you will need to modify your
code to use the predefi ned variables rather than strings. Th e following

You can also
use sessions
with Web
forms to
ensure that

the form data was sub-
mitted from your server
and not from a remote
site.

Because
Web site
visitors can-
not directly
access

externally placed fi les, it
is a good idea to store
many other types of fi les
outside the Web structure
as well, including log
fi les, data fi les, and
 user-submitted fi les.

651

A P P E N D I X D

http://phpsec.org/projects/guide/

code would be used to open a database connection using the mysql
package:
$DBConnect = @mysql_connect($db_host,
 $db_user,
 $db_password);
if ($DBConnect === FALSE)
 echo "<p>Connection error: "
 . mysql_error() . "</p>\n";
else {
 if (@mysql_select_db($db_database, $DBConnect)
 === FALSE)
 echo "<p>Could not select the \"" .
 $db_database . "\" database: " .
 mysql_error($DBConnect) .
 "</p>\n";
...
}

Th e following code would be used to open a database connection
using the mysqli package:
$DBConnect = @new mysqli($db_host,
 $db_user,
 $db_password,
 $db_database);

Because the fi le that contains the database information is not acces-
sible from a Web browser, the information is more secure than if it
was stored in the public_html or www folder, or if the information
was coded directly into each script that uses the MySQL database.

Choosing an External File Extension
You can use any fi le extension for include fi les, although many pro-
grammers use an extension of .inc for XHTML fi les and other types
of information that do not need to be processed by the Web server.
Although you can use the .inc extension for external fi les containing
PHP scripts, you should avoid doing so unless your Web server is
confi gured to process .inc fi les as PHP scripts. If it isn’t, anyone can
view the contents of the fi le simply by entering the full URL in a Web
browser. Th is creates a potential security risk, especially if the exter-
nal fi le contains proprietary code or sensitive information such as
passwords. Because most Web servers process the contents of a PHP
script and only return XHTML to the client, your safest bet is to use
an extension of .php for external fi les that contain PHP code.

Accessing Databases through a Proxy User
In Chapter 7, you learned that you should create an account that
requires a password for each user who needs to access your data-
base. For most Web sites, it’s impossible to predict how many visitors

The user
account
associated
with the Web
server

needs to have read per-
missions on the include
fi les for the include()
family of functions to
work.

652

A P P E N D I X D

might need to use a Web application to access a database. Th erefore,
instead of creating a separate database account for each visitor, you
only need to create a single account that a PHP script uses to access
the database for a user by proxy. A proxy performs a request for
another person. In general, you should create a separate account for
each Web application that needs to access a database. You then use
PHP code, as in the following example, to access the database for the
user by proxy:
$DBConnect = @new mysqli("host", "proxy_user", "password");
 if ($DBConnect->connect_errno())
 echo "<p>Unable to connect to the database server.</p>"
 . "<p>Error code " . $DBConnect->connect_errno()
 . ": " . $DBConnect->connect_error() . "</p>";
 else
...

Changing Settings in php.ini
Confi guration settings for PHP are stored in the php.ini fi le on the
Web server. Th e default settings attempt to balance security require-
ments against convenience. To secure your Web site, check the fol-
lowing settings. If you are running your own Web server, you might
be able to edit the php.ini fi le directly. Otherwise, you might need to
contact the system administrator for your Web server and ask to have
the settings modifi ed.

Handling Magic Quotes
Because the data that a user submits to a PHP script might contain
single or double quotes, you should also use escape sequences for any
user data your script receives, especially before you write it to a text
fi le, database, or other data source. Older versions of PHP include a
feature called magic quotes, which automatically adds a backslash (\)
to any single quote ('), double quote ("), or NULL character contained
in data that a user submits to a PHP script.

By default, the magic_quotes_gpc directive is the only magic quote
directive enabled in your php.ini confi guration fi le when you install
PHP. Magic quotes are unpopular with programmers because it’s easy
to forget that they are enabled. A better approach is to disable magic
quotes in your php.ini confi guration fi le and instead manually escape
text strings with the addslashes() function. Th is function accepts a
single argument representing the text string you want to escape and
returns a string containing the escaped string. If you want to display
an escaped text string that contains escape characters, you can use
the stripslashes() function to remove the slashes that were added
with the addslashes() function.

Magic quotes
and their
associated
functions and
directives are

deprecated as of PHP
5.3.0 and are removed
as of PHP 6.

653

A P P E N D I X D

If a script you are writing might be run on multiple Web servers and you
cannot be sure whether magic quotes will be enabled, you can use the
get_magic_quotes_gpc() function to determine whether magic
quotes have been applied to data from the Web form already. The following
example from the php.net Web site shows how to use the
get_magic_quotes_gpc() function:

if (!get_magic_quotes_gpc()) {
 $lastname = addslashes($_POST['lastname']);
}
else {
 $lastname = $_POST['lastname'];
}

Disabling the register_globals Directive
Before PHP version 4.2.0, client, server, and environment infor-
mation was automatically available as global variables that you
could access directly in your scripts. For example, instead of using
$_SERVER["SERVER_SOFTWARE"] to obtain information about your
server software, you could simply use $SERVER_SOFTWARE. Similarly,
a fi eld named “email” in a submitted form could be accessed with
$email instead of $_GET["email"]. However, making such informa-
tion automatically available exposes security issues that an unscru-
pulous hacker can exploit. You can still use the old global variables
by fi nding the register_globals directive in your php.ini confi gu-
ration fi le and changing its value to “on.” However, for your code to
be secure, the PHP Group strongly recommends that you leave the
register_globals directive turned off and instead use autoglobal
arrays, such as $_GET and $_POST, to access client, server, and envi-
ronment information in your scripts.

Reporting Errors
Th e php.ini confi guration fi le contains two directives,
display_errors and display_startup_errors, that determine
whether error messages are displayed in a Web browser. Th e
display_errors directive displays script error messages, whereas the
display_startup_errors directive displays errors that occur when
PHP starts. By default, the display_errors directive is assigned a
value of “On” and the display_startup_errors directive is assigned
a value of “Off .” Although displaying error messages is useful when
you develop PHP scripts, the PHP Group strongly recommends that
you turn off the feature for scripts that run in production environ-
ments and save any errors in a log fi le instead. Hackers can use any
displayed error messages to identify potential weaknesses in your
Web site. Th e PHP Group also recommends that you only turn on the
display_startup_errors directive when debugging a script.

654

A P P E N D I X D

 A P P E N D I X E
Error Handling
and Debugging

Regardless of their experience, knowledge, and ability, all program-
mers introduce errors into their programs. Th us, they must devote
part of their programming education to mastering the art of debug-
ging. As you learned at the beginning of this book, debugging is the
act of tracing and resolving errors in a program. Debugging is an
essential skill for any programmer, regardless of the programming
language.

Determining the Error Type
Th ree basic types of errors can occur in a program: syntax errors,
run-time errors, and logic errors.

Syntax Errors
Syntax errors, or parse errors, occur when the PHP scripting
engine fails to recognize code. Syntax errors can be caused by incor-
rect use of PHP code, misspelled words, or references to objects,
methods, and variables that do not exist. For example, if a program-
mer omits a method’s closing parenthesis, the scripting engine
generates a syntax error. As another example, the statement ehco
"<p>Hello World!</p>"; causes a syntax error because echo is
misspelled. Similarly, the following statements cause a syntax error
because the $Hello variable is incorrectly typed with a lowercase ‘h’.
(Remember that identifi ers in PHP are case sensitive.)

$Hello = "<p>Hello World!</p>\n";
echo $hello;

Run-Time Errors
A run-time error occurs when the PHP scripting engine encounters
code it cannot execute while the rest of the program is executing.
Run-time errors diff er from syntax errors in that they do not neces-
sarily represent PHP language errors. For example, consider the state-
ment customFunction();, which calls a custom PHP function named
customFunction(). Th is statement does not generate a syntax error
because it is legal (and usually necessary) to create and then call cus-
tom functions in a PHP program. However, if your program includes
the call statement but does not include code that creates the function
in the fi rst place, your program generates a run-time error. Th e error
occurs when the scripting engine attempts to call the function but
cannot fi nd it.

Th e following code shows another example of a run-time error. In
this example, an echo statement attempts to display the contents of a
variable named $MessageVar, which is set by calling the user-defi ned
function GetMessageString(). Because the function is not declared
anywhere in the document, a run-time error occurs.
<?php
$MessageVar = GetMessageString();
echo $MessageVar;
?>

When investigating a run-time error, keep in mind that the culprit
might actually be a syntax error. Because syntax errors do not occur
until the scripting engine attempts to execute the code, they often
manifest as run-time errors. For example, suppose your code includes
a function that contains a statement with a syntax error. Th is syntax
error will not be caught until the function executes at run time.

Logic Errors
A logic error is a fl aw in a program’s design that prevents the pro-
gram from running as you anticipate. In this context, “logic” refers to
the execution of program statements and procedures in the correct
order to produce the desired results.

One common logic error is the creation of an infi nite loop, in which a
loop statement never ends because its conditional expression is never
updated or is never FALSE. For example, the following code creates an
infi nite loop because the third argument in the for statement’s paren-
theses never changes the value of the $Count variable:

Syntax
errors in
compiled
languages,
such as

C++, are also called
compile-time errors
because they are usually
discovered when a pro-
gram is compiled.
Because PHP is an inter-
preted language, syntax
errors are not discovered
until a program executes.

656

 A P P E N D I X E

for ($Count = 10; $Count >= 0; $Count) {
 if ($Count == 0)
 echo "<p>We have liftoff!</p>\n";
 else
 echo "<p>Liftoff in $Count seconds.</p>\n";
}

Because the $Count variable is never updated in the preceding exam-
ple, it continues to have a value of 10 through each iteration of the
loop, and “Liftoff in 10 seconds” is repeatedly displayed in a browser
window. To correct this logic error, you add a decrement operator to
the third argument in the for statement’s constructor, as follows:
for ($Count = 10; $Count >= 0; --$Count) {
 if ($Count == 0)
 echo "<p>We have liftoff!</p>\n";
 else
 echo "<p>Liftoff in $Count seconds.</p>\n";
}

Handling and Reporting Errors
Th e fi rst line of defense in locating PHP program bugs are the error
messages you receive when the PHP scripting engine encounters an
error. PHP generates four basic types of errors: parse errors, fatal
errors, notices, and warnings. Parse errors are syntax errors, whereas
the other three types are run-time errors.

Parse error messages occur when a PHP script contains a syntax
error that prevents your script from running. For example, the fol-
lowing code raises a parse error because the for() statement is miss-
ing its opening brace ({). Figure E-1 shows the resulting parse error
message in a Web browser.
<?php
for ($Count = 10; $Count >= 0; --$Count)
 if ($Count == 0)
 echo "<p>We have liftoff!</p>\n";
 else
 echo "<p>Liftoff in $Count seconds.</p>\n";
}
?>

657

 A P P E N D I X E

Figure E-1 A parse error message

Two important pieces of information are displayed with a parse error:
the line number in the document where the error occurred and a
description of the error. Note that the line number in an error mes-
sage is counted from the start of the document, not just from the start
of a script section.

Keep in mind that error messages only indicate the general location
of an error in a program, not the exact nature of an error. You cannot
assume that the line specifi ed by an error message is the actual prob-
lem. Th e parse error message in Figure E-1 indicates that the error
occurred on line 15, because the PHP scripting engine searches to the
end of the script for the for() statement’s opening brace. However,
the real problem is that the opening brace should be the fi rst charac-
ter following the closing parenthesis in the for() statement’s condi-
tional expression.

Fatal error messages are raised when a script contains a run-time
error that prevents it from executing. A typical fatal error message
occurs when a script attempts to call a function that does not exist.

Warning messages are raised for run-time errors that do not prevent
a script from executing. For example, a warning message occurs when
you attempt to divide a number by 0, or if you pass the wrong num-
ber of arguments to a function.

Notice messages are raised for potential run-time errors that do not
prevent a script from executing. Notices are less severe than warnings
and are typically raised when a script attempts to use an undeclared
variable.

Warning and
notice mes-
sages may
be sup-
pressed in

your PHP confi guration.
The next section explains
how to enable them to
help you debug your
code.

658

 A P P E N D I X E

Confi guring the Way PHP
Displays Errors
Th e php.ini confi guration fi le contains various directives that control
how the PHP scripting engine handles errors. PHP also includes vari-
ous functions that you can use to control error handling at run time.

Displaying Errors in the Web Browser
Th e php.ini confi guration fi le contains two directives, print_errors
and print_startup_errors, which determine whether error mes-
sages are displayed in a Web browser. Th e print_errors directive
displays script error messages, whereas the print_startup_errors
directive displays errors that occur when PHP fi rst starts. By
default, the print_errors directive is assigned a value of “On,” and
the print_startup_errors directive is assigned a value of “Off .”
Although displaying error messages is useful when you develop PHP
scripts, the PHP Group strongly recommends that you turn this fea-
ture off for scripts that run in production environments, and instead
save any errors in a log fi le. Hackers can use any displayed error mes-
sages to identify potential weaknesses in your Web site, so the PHP
Group also recommends that you only turn on the print_startup_
errors directive when debugging a script.

Setting the Error Reporting Level
Th e error_reporting directive in the php.ini confi guration fi le deter-
mines which types of error messages PHP should generate. Setting
the error reporting level can be useful in helping you debug your
scripts. However, keep in mind that changing the error messages
generated by PHP does not prevent errors from occurring; it only
prevents the error messages from being displayed in the Web browser
or written to a log fi le.

By default, the error_reporting directive is assigned a value of
E_ALL, which displays all errors, warnings, and notices in the Web
browser. You can also assign the directive the error levels listed in
Table E-1. Note that each error level can be set using either the con-
stant or integer listed in the table.

One piece of
information
that is avail-
able to hack-
ers is shown

in Figure E-1. The error
message shows the loca-
tion of the fi le in the serv-
er’s directory structure
and exposes the underly-
ing directory structure to
visitors.

659

 A P P E N D I X E

Constant Integer Description

0 Turns off all error reporting

E_ERROR 1 Reports fatal run-time errors

E_WARNING 2 Reports run-time warnings

E_PARSE 4 Reports syntax errors

E_NOTICE 8 Reports run-time notices

E_CORE_ERROR 16 Reports fatal errors that occur when PHP fi rst starts

E_COMPILE_WARNING 32 Reports warnings generated by the Zend Scripting Engine

E_COMPILE_ERROR 64 Reports errors generated by the Zend Scripting Engine

E_USER_ERROR 256 Reports user-generated error messages

E_USER_WARNING 512 Reports user-generated warnings

E_USER_NOTICE 1024 Reports user-generated notices

E_ALL 2047 Reports errors, warnings, and notices, with the exception
of E_STRICT notices

E_STRICT 2048 Reports strict notices, which are code recommendations
that ensure compatibility with PHP 5

Table E-1 Error reporting levels

To generate a combination of error levels, separate the levels assigned
to the error_reporting directive with the bitwise Or operator (|). For
example, the following statement specifi es that PHP will only report
fatal and parse errors:
error_reporting = E_ERROR | E_PARSE

To specify that the E_ALL error should exclude certain types of mes-
sages, separate the levels with bitwise And (&) and Not operators (~).
Th e following statement specifi es that PHP should report all errors
except run-time notices:
error_reporting = E_ALL &~ E_NOTICE

Instead of modifying the values assigned to the error_reporting
directive in the php.ini confi guration fi le, you can use the error_
reporting() function to specify the messages to report in a particu-
lar script. Use the same bitwise operators to separate reporting levels
that you pass to the error_reporting() function. Th e following
statement uses the error_reporting() function so that PHP only
reports fatal and parse errors:
error_reporting(E_ERROR | E_PARSE);

Th e following statement uses the error_reporting() function to
specify that PHP should report all errors except run-time notices:
error_reporting(E_ALL &~ E_NOTICE);

The bitwise
Xor operator
(^) can be
used in place
of the &~.

660

 A P P E N D I X E

To disable error messages for a particular script, place the error_
reporting() function at the beginning of a script section and pass to
it a value of 0, as follows:
error_reporting(0);

Logging Errors to a File
Remember that for security reasons, you should disable the display of
error messages for any scripts that run in a production environment.
Unless you work for a large company with separate development
and production systems, you will probably use the same server to
execute scripts in development and to execute scripts in production.
In this situation, it’s not feasible to use your php.ini confi guration fi le
to enable and disable the print_errors and print_startup_errors
directives each time you want to work on a script. A better choice is
to log all errors to a text fi le.

PHP logs errors to a text fi le according to the error reporting level
assigned to the error_reporting directive in the php.ini confi gura-
tion fi le, or the level that you set for an individual script with the
error_reporting() function. Th e php.ini confi guration fi le includes
several parameters for handling error logging, including the log_
errors and error_log directives. Th e log_errors directive deter-
mines whether PHP logs errors to a fi le; it is assigned a default value
of “Off .” Th e error_log directive identifi es the text fi le where PHP
will log errors. You can assign either a path and fi lename or syslog
to the error_log directive. On UNIX and Linux systems, a value of
syslog specifi es that PHP should use the syslog protocol to forward
the message to the system log fi le. On Windows systems, a value of
syslog forwards messages to the Event Log service.

Using Basic Debugging Techniques
Although error messages are valuable because they point out prob-
lems with your scripts, they cannot always help you identify the
source of a problem. Th is section discusses basic debugging tech-
niques that can help you locate problems in your PHP scripts.

Tracing Errors with echo Statements
When you cannot locate a bug in your program by using error mes-
sages or examining your code, or if you suspect a logic error (which
would not generate an error message), you must trace your code.
Tracing is the examination of individual statements in an executing

The E_ALL
level does not
include the
E_STRICT
level. The

E_STRICT level always
needs to be explicitly
included.

661

 A P P E N D I X E

program. Th e echo statement provides one of the most useful ways
to trace PHP code. You place an echo statement at diff erent points in
your program and use it to display the contents of a variable or the
value returned from a function. An echo statement is especially useful
when you want to trace a bug in your program by analyzing a list of
values. Using this technique, you can monitor values as they change
during program execution. To trace the problem, you can place an
echo statement at the point in the program where you think the error
might be located.

If your program has multiple functions and functions calling func-
tions, it is often useful to insert echo statements that display
Entering function() and Leaving function() at the beginning
and end of each function, respectively. For functions that take input
parameters, it may help to display the values of the parameters in the
Entering function() string. For functions that return a value, it may
be helpful to display the return value, as in Leaving function(),
returning X. Th is will allow you to see when each function is called,
what values are passed, when each function returns, and what values
are returned.

When the main script or a function contains a long series of state-
ments, and you know that one of the statements is failing, you might
be able to fi nd the culprit by adding an echo statement that displays
a simple sequence count between each statement, as in the following
code segment:
...
CustomFunctionA();
echo "<p>Step 5</p>\n";
CustomFunctionB();
echo "<p>Step 6</p>\n";
CustomFunctionC();
...

If the Web browser displays “Step 5” but does not display “Step 6”,
then you know that CustomFunctionB() is causing the script to fail.

Using Comments to Locate Bugs
Another method of locating bugs in a PHP program is to transform
lines that might be causing problems into comments. In other words,
you can “comment out” problematic lines. Th is technique helps you
isolate the statement that is causing the error. In some cases, you
can comment out individual lines that might be causing an error, or
you can comment out all lines except the ones that you know work.
When you fi rst receive an error message, start by commenting out
only the statement specifi ed by the line number in the error message.

If you place
echo state-
ments in a
program to
trace a prob-

lem, place them at a dif-
ferent level of indentation
than other statements to
distinguish them from the
actual program.

For arrays,
you can
use the
print_r()
function or the

var_dump() function in
place of the echo
statement.

662

 A P P E N D I X E

Save the script, and then open it again in your Web browser to see if
you receive another error. If you receive additional error messages,
comment out those statements as well. After you eliminate the error
messages, examine the statements you’ve commented out to fi nd the
cause of the bug.

Often, you will see the error immediately and not need to comment
out code or use any other tracing technique. However, after you stare
at the same code for a long time, simple spelling errors are not always
easy to spot. Commenting out lines that you know are causing trouble
is a good technique for isolating and correcting even the simplest bugs.

Analyzing Logic
At times, errors in PHP code stem from logic problems that are dif-
fi cult to spot using tracing techniques. When you suspect that your
code contains logic errors, you must analyze each statement for
errors. For example, the following code contains a logic fl aw that
 prevents it from functioning correctly:
if (!isset($_POST['fi rstName']))
 echo "<p>You must enter your fi rst name!</p>\n";
 exit();
echo "<p>Welcome to my Web site, " .
 $_POST['fi rstName'] . "!</p>\n";

If you were to execute the preceding code, you would never
see the last echo statement, even if a value were assigned to the
$_POST['fi rstName'] variable. If you examine the if statement more
closely, you will see that it ends after it executes the echo statement.
Th e exit() statement following the variable declaration is not part
of the if structure, because the if statement does not include a
set of braces to enclose the lines it executes when the conditional
evaluation returns true. For this reason, the exit() statement
always executes, even when the user correctly assigns a value to the
$_POST['fi rstName'] variable. For the code to execute properly, the
if statement must include braces as follows:
if (!isset($_POST['fi rstName'])) {
 echo "<p>You must enter your fi rst name!</p>\n";
 exit();
}
echo "<p>Welcome to my Web site, " .
 $_POST['fi rstName'] . "!</p>\n";

Th e following for statement shows another example of an easily
overlooked logic error:
for ($Count = 1; $Count < 6; ++$Count);
 echo "$Count
\n";

Do not com-
ment out
statements
that span
multiple
lines or

statements on a line that
contains an opening or
closing brace. This intro-
duces further parsing
errors into your code.

The cause of
an error in a
particular
statement is
often the

result of an error in a
preceding line of code.

663

 A P P E N D I X E

Th e preceding code should display the numbers 1 through 5 on
the screen. However, the line for ($Count = 1; $Count < 6;
++$Count); contains an ending semicolon, which marks the end of
the for loop. Th e loop executes fi ve times and changes the value of
count to 6, but does nothing else because there are no statements
before its ending semicolon. Th e line echo "$Count
\n"; is a
separate statement that executes only once, displaying the number 6
on the screen. Th e code is syntactically correct, but does not function
as you anticipated. As you can see from these examples, it is easy to
overlook very minor logic errors in your code.

Formatting Code
It is much easier to review your code and analyze your logic by ensur-
ing that your code is properly formatted. By indenting your code
properly and using standard formatting for nested code blocks, you
can often locate a missing closing brace or a scope issue.

Commenting Code
Sometimes it is diffi cult to tell what a particular section of code is
supposed to do. By commenting those sections with a description
of the intended function, you can avoid trying to fi gure out what the
code is supposed to do and concentrate on verifying that the code
will accomplish what you intended. Comments also assist in marking
context switches, in which your script stops doing one task and starts
another.

Examining Your Code
When you use an editor like Notepad++, the editor automatically col-
or-codes your source code based on the fi le extension. Th is helps you
track down many types of syntax errors. For example, if the code after
a block comment is the same color as the block comment, you prob-
ably did not include the closing */ for the block comment. Another
common error is accidentally mixing opening and closing quotation
marks, such as using a single quotation mark at the beginning of a
string and a double quotation mark at the end of the string. When
this error occurs, the text will appear in the color used to highlight
strings until another single quotation mark occurs.

Examining the Script Output
Th e purpose of a PHP script is to generate XHTML code that is inter-
preted and displayed by a Web browser. When debugging, it is usually
better to see the actual XHTML code generated by the PHP script

664

 A P P E N D I X E

rather than the Web browser’s formatted display. Often you can see
problems in the source code that you cannot see in the browser win-
dow itself, such as empty <p> tags, missing attributes or values, and
fi elds with incorrect values. Most Web browsers allow you to view the
underlying XHTML code for a Web page.

For example, assume you were attempting to use the
$_SERVER['SCRIPT_NAME'] autoglobal as the value of the action
attribute of a <form> tag, but typed $_SERVER['SCIPT_NAME']
instead. By looking at the source code, you could see that the value of
the action attribute of the <form> tag was empty. Th is would indicate
the source of the error.

Combining Debugging Techniques
As you can see from the preceding examples, no single technique will
fi nd all errors. It is often more effi cient to track down a bug by com-
bining debugging techniques. For example, consider the following
code, which should display the Canadian territories and capitals:
$TerritorialCapitals = array(
 array("Territory" => "Nunavut",
 "Capital" => "Iqaluit"),
 array("Territory" =>
 "Northwest Territories",
 "Capital" => "Yellowknife"),
 array("Territory" =>
 "Yukon Territory",
 "capital" => "Whitehorse"));
$TerritoryCount=count($TerritorialCapitals);
for ($i=1;$i<=$TerritoryCount;++$i) {
 echo "<p>" . $TerritorialCapitals[$i]["Capital"] .
 " is the capital of " .
 $TerritorialCapitals[$i]["Territory"] .
 "</p>";
}

As Figure E-2 shows, this code has some problems. Th e fi rst territory,
Nunavut, is not displayed anywhere on the list. Whitehorse is not
displayed as the capital of the Yukon Territory, and one line displays
neither a capital nor a territory. Several techniques can help to isolate
the cause of these problems.

To view the
source code
for a Web
page in
Mozilla

Firefox 3, you select View
from the menu bar and
then select Page Source.
In Apple Safari 4, you
select View from the
menu bar and then select
View Source. In Microsoft
Internet Explorer 7, you
click the Page button and
then select View Source
from the pop-up menu.
Most Windows browsers
also allow you to view the
source code by right-
clicking the page and
selecting View Source
from the pop-up menu.

In Chapter 3,
you learned
how to use
the \n escape
sequence to

insert a line break at the
end of the string. This
approach is useful when
you look at the script
output in your Web
browser. Without using
\n escape sequences to
format the XHTML source
code, the code will
appear on a single line,
which makes it diffi cult to
follow.

665

 A P P E N D I X E

Figure E-2 Web page for a PHP script that is not working correctly

First, examine the code. It is already properly formatted, so you can
tell that the structure of the code blocks and the array declaration are
correct.

Next, examine the script output shown in Figure E-3. As you can see,
the entire body of the Web page source code is on a single line, which
makes it diffi cult to read through the XHTML code. To help with
debugging, place a \n after the closing </p> tag.

Figure E-3 Unformatted output of a PHP script that is not working correctly

Next, you can use echo statements to verify that variables are
being set correctly. Add the following code immediately after the
$TerritorialCapitals[] array declaration to verify the contents.
Th e print_r() function will display the contents of the array, and
using the <pre> tag will ensure that the array is displayed correctly on
the Web page.

666

 A P P E N D I X E

// DEBUG: Verifying $TerritorialCapitals
echo "<pre>\n";
echo "\$TerritorialCapitals => ";
print_r($TerritorialCapitals);
echo "</pre>\n";
// DEBUG: End verifying $TerritorialCapitals

Th ere are three lines of output in Figure E-2, so the $TerritoryCount
variable is probably set correctly. However, you can add the following
line of code after the declaration of $TerritoryCount to verify the
value:
// DEBUG: Verifying $TerritoryCount
echo "<p>\$TerritoryCount = " .
 $TerritoryCount . "</p>\n";

As with $TerritoryCount, it appears that the for loop is work-
ing correctly because there are three lines of output in Figure E-2.
However, you can add the following line of code to the beginning of
the for loop code block to verify the value of $i:
 // DEBUG: Verifying $i
 echo "<p>In for loop: \$i = " .
 $i . "</p>\n";

Notice that all of the code added for debugging purposes is com-
mented, and that each comment has the text “DEBUG:” before the
description, which makes it easier to fi nd and remove all of the
debugging code once the script is working correctly. Also notice that
the debugging code for the $TerritorialCapitals[] array consists
of multiple statements. As a result, a comment marks both the begin-
ning and end of the debugging code, which helps ensure that all of the
debugging code is removed.

As a fi nal step, you can add the following code to the beginning of
the script to enable all possible error and warning messages. Th e PHP
scripting engine is very good at locating syntax and run-time errors,
so you should use it whenever possible. Sometimes, the PHP script-
ing engine can even help locate logic errors.
// DEBUG: Show all warnings
error_reporting(E_ALL | E_STRICT);

When you fi nish, your code should look like the following:
// DEBUG: Show all warnings
error_reporting(E_ALL | E_STRICT);
$TerritorialCapitals = array(
 array("Territory" => "Nunavut",
 "Capital" => "Iqaluit"),
 array("Territory" =>
 "Northwest Territories",
 "Capital" => "Yellowknife"),

667

 A P P E N D I X E

 array("Territory" =>
 "Yukon Territory",
 "capital" => "Whitehorse"));
// DEBUG: Verifying $TerritorialCapitals
echo "<pre>\n";
echo "\$TerritorialCapitals => ";
print_r($TerritorialCapitals);
echo "</pre>\n";
// DEBUG: End verifying $TerritorialCapitals
$TerritoryCount=count($TerritorialCapitals);
// DEBUG: Verifying $TerritoryCount
echo "<p>\$TerritoryCount = " .
 $TerritoryCount . "</p>\n";
for ($i=1;$i<=$TerritoryCount;++$i) {
 // DEBUG: Verifying $i
 echo "<p>In for loop: \$i = " .
 $i . "</p>\n";
 echo "<p>" . $TerritorialCapitals[$i]["Capital"] .
 " is the capital of " .
 $TerritorialCapitals[$i]["Territory"] .
 "</p>\n";
}

When you run the script this time, much more information is avail-
able to you. First, examine the XHTML source code, as shown in
Figure E-4. Although the debugging has created extra code, you
should be able to fi nd the lines that display the names of the territo-
ries and capitals. Review those lines to see what data is actually miss-
ing. Th is is important because Web browsers often do not display data
that is embedded in malformed tags. Without looking at the source
code, you cannot tell if the data is actually missing or just hidden.

Figure E-4 Source code for a PHP script with debugging statements

Now that you’ve confi rmed that the data is actually miss-
ing, you can review the debugging information available on the

668

 A P P E N D I X E

page itself, as shown in Figure E-5. At the top of the page, the
$TerritorialCapitals[] array is populated as expected. Th e next
message indicates that the $TerritoryCount variable is set to 3.

Figure E-5 Web page for a PHP script with debugging statements

669

 A P P E N D I X E

In the next line, you can see that $i is set to 1 and that Yellowknife is
displayed as the capital of the Northwest Territories. Th e array output
at the beginning of the page shows that the array index for the ele-
ment with "Northwest Territories" and "Yellowknife" is indeed
1. Th e array index for "Nunavut" and "Iqaluit" is 0. So, to display
Nunavut, you need to adjust the starting value of $i to 0.

Next, you see that $i gets incremented to 2, which is expected.
After that, the PHP scripting engine displays a notice that the index
Capital is undefi ned. By looking at the array output, you can see that
for $TerritorialCapitals[2], the index of the nested array element
is "capital" with a lowercase ‘c’. Change this to an uppercase ‘C’.

After displaying the line with the missing capital, you see that $i is set
to 3, followed by two warning messages about an undefi ned off set of
3. Look at the lines identifi ed by the message, and note that these two
lines display the values of the $TerritorialCapitals[] array. Again,
look back to the array output, and note that the last array element is
2, not 3. To fi x this, you need to change the comparison in the for
loop from $i<=$TerritoryCount to $i<$TerritoryCount.

After making the three changes to the code and removing all of the
debugging statements, run the script again. You will see the expected
results, as shown in Figure E-6. By using a combination of debugging
techniques, you found and fi xed all of the errors much faster and
more easily than if you had applied a single technique.

Figure E-6 Output from a PHP script with the errors fi xed

670

 A P P E N D I X E

A P P E N D I X F
Connecting to SQL
Server and Oracle
Databases
Working with Different Databases
In Chapter 8, you learned how to use the mysql package in PHP
to interact with a MySQL database. PHP also provides packages
to connect with most other databases, including dBase, Informix,
PostgreSQL, SQLite, and Sybase. Th e two most popular database
management systems (DBMSs) are Microsoft SQL Server and Oracle.
Each DBMS operates diff erently, and the packages used to access
those systems are diff erent as well. Some of the key diff erences are
highlighted in the following sections.

Working with SQL Server
Th e mssql package provides the functions to connect to and work
with a Microsoft SQL Server database. Many of the functions are
similar to packages you have already used to communicate with a
MySQL database. Table F-1 lists all of the mysql_* functions covered
in Chapter 8, along with the equivalent mssql_* functions, where
available. Th e fi nal column highlights the diff erences, if any, between
the MySQL function and the SQL Server function.

For mysql package functions that do not have equivalents in the
mssql package, you can usually achieve the same or similar results
through a direct database query using the mssql_query() function.
You only have to know the appropriate T-SQL syntax.

As you can tell from the functions in Table F-1, the mssql package
is very similar to the mysql package you learned about in Chapter 8.

T-SQL, which
is short for
Transact-
SQL, is the
SQL Server

version of SQL.

MySQL function from the
mysql package

Equivalent SQL Server
function from the mssql
package

Special notes and
differences

mysql_affected_rows() mssql_rows_affected() Same

mysql_change_user() N/A No equivalent

mysql_close() mssql_close() Same

mysql_connect() mssql_connect() Same

mysql_create_db() N/A No equivalent

mysql_drop_db() N/A No equivalent

mysql_data_seek() mssql_data_seek() Same

mysql_errno() N/A No equivalent

mysql_error() mssql_get_last_message() Function takes no
parameters

mysql_fetch_array() mssql_fetch_array() Same

mysql_fetch_assoc() mssql_fetch_assoc() Same

mysql_fetch_lengths() N/A No equivalent

mysql_fetch_row() mssql_fetch_row() Same

mysql_free_result() mssql_free_result() Same

mysql_get_client_info() N/A No equivalent

mysql_get_client_version() N/A No equivalent

mysql_get_host_info() N/A No equivalent

mysql_get_proto_info() N/A No equivalent

mysql_query() mssql_query() Same

mysql_get_server_info() N/A No equivalent

mysql_info() mssql_rows_affected() Query result is required,
not an optional connection

mysql_insert_id() N/A No equivalent

mysql_num_fi elds() mssql_num_fi elds() Same

mysql_num_rows() mssql_num_rows() Same

mysql_select_db() mssql_select_db() Same

Table F-1 mssql package equivalents of mysql package functions

672

A P P E N D I X F

Th e following example shows how to query the company_cars
table in the vehicle_fl eet database if the database were in SQL
Server instead of MySQL. All of the functions are the same as the
ones used in Chapter 8, except that the prefi x is mssql_ instead
of mysql_, and the mysql_error() function is replaced with the
mssql_get_last_message() function. You would replace host, user,
and password with the host name, user name, and password needed
for the SQL server on your system.
$DBName = "vehicle_fl eet";
$DBConnect = @mssql_connect(host,
 user, password);
if ($DBConnect === FALSE)
 echo "<p>Connection error: " .
 mssql_get_last_message() . "</p>\n";
else {
 if (@mssql_select_db($DBName, $DBConnect)
 === FALSE) {
 echo "<p>Could not select the \"" .
 $DBName . "\" database: " .
 mssql_get_last_message() .
 "</p>\n";
 mssql_close($DBConnect);
 $DBConnect = FALSE;
 }
}
if ($DBConnect !== FALSE) {
 $SQLstring = "SELECT * FROM company_cars";
 $QueryResult = @mssql_query($SQLstring, $DBConnect);
 if ($QueryResult === FALSE)
 echo "<p>Unable to execute the query.</p>\n" .
 "<p>Error: " . mssql_get_last_message() .
 "</p>\n";
 else {
 $numRows = mssql_num_rows($result);
 echo "<h1>" . $numRows . " Car" .
 ($numRows == 1 ? "" : "s") .
 " Found</h1>\n";
 if ($numRows>0) {
 echo "<table>\n";
 echo " <tr><th>License</th>";
 echo "<th>Make</th>";
 echo "<th>Model</th>";
 echo "<th>Mileage</th>";
 echo "<th>Year</th></tr>\n";
 while ($Row =
 mssql_fetch_row($QueryResult)) {
 echo " <tr><td>{$Row[0]}</td>";
 echo "<td>{$Row[1]}</td>";
 echo "<td>{$Row[2]}</td>";
 echo "<td>{$Row[3]}</td>";
 echo "<td>{$Row[4]}</td></tr>\n";
 }

673

A P P E N D I X F

 echo "</table>\n";
 mssql_free_result($QueryResult);
 }
 }
 mssql_close($DBConnect);
 $DBConnect = FALSE;
}

One common problem when retrieving data from an SQL Server
database in PHP is Unicode. Unicode is a standard for encoding text
characters on a computer, similar to ASCII. Unicode contains many
more characters than ASCII, and often uses more than one byte per
character. PHP and MySQL do not support Unicode, but SQL Server
does.

To support Unicode, SQL Server has three data types not found
in MySQL. Th e NCHAR type is the Unicode equivalent of the
CHAR type, the NTEXT type is the Unicode equivalent of the
TEXT type, and the NVARCHAR type is the Unicode equiva-
lent of the VARCHAR type. Fields defi ned as NCHAR, NTEXT,
and NVARCHAR in SQL Server cannot be used directly in PHP.
Fortunately, SQL Server provides the T-SQL CONVERT() function.

For example, assume that the country column of an addresses table
is defi ned as an NVARCHAR(50). If it were a regular VARCHAR(50), you
could use the following code for the query string:
$query = "SELECT country FROM addresses";

However, because it is an NVARCHAR(50), you would use the following
code for the query string:
$query = "SELECT CONVERT(VARCHAR(50),country) AS country
FROM addresses";

Working with Oracle
PHP provides the OCI8 package for accessing an Oracle database. As
with the mssql package, there are diff erences between the functions
in the OCI8 package and the mysql package. Table F-2 shows the
OCI8 equivalents of the mysql_* functions covered in Chapter 8.

674

A P P E N D I X F

MySQL function from the
mysql package

Equivalent Oracle function
from the OCI8 package

Special notes and
differences

mysql_affected_rows() oci_num_rows() Same

mysql_change_user() N/A No equivalent

mysql_close() oci_close() Connection is required

mysql_connect() oci_connect() Host name comes after user
name and password

mysql_create_db() N/A No equivalent

mysql_drop_db() N/A No equivalent

mysql_data_seek() N/A No equivalent

mysql_errno() oci_error() Returns the error code and
message in an associative
array

mysql_error() oci_error() Returns the error code and
message in an associative
array

mysql_fetch_array() oci_fetch_array() Same

mysql_fetch_assoc() oci_fetch_assoc() Same

mysql_fetch_lengths() N/A No equivalent

mysql_fetch_row() oci_fetch_row() Same

mysql_free_result() oci_cancel() Same

mysql_get_client_info() N/A No equivalent

mysql_get_client_version() N/A No equivalent

mysql_get_host_info() N/A No equivalent

mysql_get_proto_info() N/A No equivalent

mysql_query() oci_parse() and
oci_execute()

See below

mysql_get_server_info() oci_server_version() Same

mysql_info() oci_num_rows() Query result is required, not
an optional connection

mysql_insert_id() N/A No equivalent

mysql_num_fi elds() oci_num_fi elds() Same

mysql_num_rows() oci_num_rows() Same

mysql_select_db() N/A No equivalent

Table F-2 OCI8 package equivalents of mysql package functions

675

A P P E N D I X F

One of the most important diff erences between the mysql package
and the OCI8 package is that OCI8 uses two functions, oci_parse()
and oci_execute(), in place of the single mysql_query() function.
Th e oci_parse() function prepares the query in the Oracle database
and returns a handler to the statement. Th e statement handler is
then passed to the oci_execute() function, where it is validated and
executed. If successful, the oci_execute() function returns TRUE and
the resultset can be retrieved using the parsed query, as shown later
in this section.

Another important diff erence when working with Oracle is that it
does not normally allow the database (or schema, in Oracle terminol-
ogy) to be changed. To access a table in another schema, you precede
the table name with the schema name and a period. In Oracle syntax,
you would enter the following code to select all of the records in the
company_cars table of the vehicle_fl eet schema:
SELECT * FROM vehicle_fl eet.company_cars;

Th e following example shows how you would query the
company_cars table in the vehicle_fl eet schema if the schema were
in Oracle. Because the OCI8 package is signifi cantly diff erent from
either the mssql or mysql package, portions of the code are diff er-
ent. However, notice that the same steps are performed, and in the
same sequence. Th e only diff erence is in how the steps are performed.
Again, you would replace host, user, and password with the host
name, user name, and password needed for the Oracle server on your
system.
$DBName = "vehicle_fl eet";
// The host is last for Oracle
$DBConnect = @oci_connect(user,
 password, host);
if ($DBConnect === FALSE)
 echo "<p>Connection error: " .
 oci_error() . "</p>\n";
else {
 // Precede the table name with
 // the schema (database) name
 $SQLstring = "SELECT * FROM $DBName.company_cars";
 $Query = @oci_parse($SQLstring, $DBConnect);
 if ($Query === FALSE)
 echo "<p>Unable to parse the query.</p>\n" .
 "<p>Error: " . mssql_get_last_message() .
 "</p>\n";
 else {
 if (@oci_execute($Query) === FALSE)
 echo "<p>Unable to execute the query.</p>\n" .
 "<p>Error: " . oci_get_last_message() .
 "</p>\n";

The OCI8
package
divides
query execu-
tion into two

parts to simplify data
binding, which is a more
effi cient, though more
complex, way of sending
data to and retrieving
data from the database.

676

A P P E N D I X F

 else {
 $numRows = oci_num_rows($Query);
 echo "<h1>" . $numRows . " Car" .
 ($numRows == 1 ? "" : "s") .
 " Found</h1>\n";
 if ($numRows>0) {
 echo "<table>\n";
 echo " <tr><th>License</th>";
 echo "<th>Make</th>";
 echo "<th>Model</th>";
 echo "<th>Mileage</th>";
 echo "<th>Year</th></tr>\n";
 while ($Row =
 oci_fetch_row($Query)) {
 echo " <tr><td>{$Row[0]}</td>";
 echo "<td>{$Row[1]}</td>";
 echo "<td>{$Row[2]}</td>";
 echo "<td>{$Row[3]}</td>";
 echo "<td>{$Row[4]}</td></tr>\n";
 }
 echo "</table>\n";
 oci_free_statement($Query);
 }
 }
 }
 oci_close($DBConnect);
 $DBConnect = FALSE;
}

As with SQL Server, the functions listed as having no OCI8 equiva-
lent can still be performed by a query to the database. Th e version of
SQL used in Oracle is called PL/SQL, or Procedural Language/SQL.

677

A P P E N D I X F

Special Characters
\ (backslash), 128–131, 196, 197, 653
~ (tilde), 302
<> (angle brackets), 51, 58, 62, 317, 318
(curly braces), 84
! (exclamation point), 51, 55, 62
“ (double quotation mark), 634, 641
(pound symbol), 21
$ (dollar sign), 23
% (percent sign), 42, 49, 62, 641
& (ampersand), 55, 62, 192
’ (single quotation mark), 634, 641
* (asterisk), 21, 42, 49, 62, 164, 634
+ (plus sign), 42, 44–48, 49, 61, 62, 164, 645
- (minus sign), 42, 44–48, 49, 61, 62, 645,

646
/ (forward slash), 21, 42, 49, 62, 161, 248
= (equal sign), 49, 51, 58, 127, 192, 317, 318
? (question mark), 58, 62, 164, 192
@ (at sign), 58, 61, 452
[] (square brackets), 58, 61
` (backtick), 396
| (pipe), 62
, (comma), 58, 62
. (dot), 62, 126–127, 162
: (colon), 58

A
access specifi ers, 580–582
accessing MySQL with PHP, 446–483

adding, deleting, and updating records,
464–469

connecting to MySQL. See connecting to
MySQL with PHP

creating databases, 453–455
deleting databases, 458
retrieving records. See retrieving records
returning information on aff ected records,

469–473
selecting databases, 455–458
tables, 459–463

accessor functions, 588–594
action attributes, 192
actual parameters, 11
addition operator (+), 42
addslashes() function, 197
advanced escaping from XHTML, 204
aggregate functions, 418–420
aliases, MySQL, 395
alignment, formatting, 646
All-in-One forms, 209–212

processing, 210
redisplaying, 210–212
validating, 209

American Standard Code for Information
Interchange (ASCII), 154

ampersand (&)
logical And operator, 62
logical Not operator, 55
separating form data and URL tokens,

192
analyzing logic, 663–664
anchors, 163
AND operator, 55, 62
angle brackets (<>)

array operator, 317, 318
comparison operators, 51, 62
special operator, 58

Index

ASP-style script delimiters, 9–10
assignment operators, 48–51

compound, 48
associative arrays, 189

declaring and initializing, 316–322
retrieving records into, 477–478
two-dimensional, 355–356
uses, 318

associativity of operators, 61–63
asterisk (*)

compound multiplication assignment
operator, 49, 62

CSS comments, 634
multiplication operator, 42, 62
PHP comments, 21
quantifi er, 164

at sign (@)
error control operator, 452
special operator, 58

attributes
deprecated, 625–626
nested tags, 629
OOP, 557
values, 629

autoglobals, 189–191
AVG() function, 418

B
backslash (\)

escape character, 128, 129
escape sequences, 128–131
magic quotes, 196, 197, 653

backtick (‘), MySQL identifi ers, 396
binary fi les, 234
binary operators, 41

arithmetic, 42–44
block comments, 21
(bool) operator, 58
Boolean operands, 54
(boolean) operator, 58
Boolean values, 33
break statement, 93–94
bugs. See debugging; error(s)

C
call(s), 10
calling functions, 77–78

Apple Safari, viewing source code, 665
arguments, 11

passing, 11
arithmetic operators, 41–48

binary, 42–44
unary, 44–48

array(s), 33–39, 298–366
associative. See associative arrays
combining, 343–348
comparing, 348–350
converting between strings and arrays,

151–153
elements. See elements, arrays
indexed. See indexed arrays
iterating through, 323–327
multidimensional. See multidimensional

arrays
primary, 343
returning a portion of an array,

334–335
secondary, 344
sorting, 336–343
using in Web forms, 359–364

array() construct, 308, 310, 317, 318
(array) operator, 58, 61
array operator (=>), 317, 318
array_combine() function, 347–348
array_diff() function, 348–349
array_intersect() function, 348,

349–350
array_key_exists() function,

333–334
array_merge() function, 346–347
array_multisort() function, 336
array_pop() function, 309
array_push() function, 309
array_search() function, 328
array_shift() function, 304–305
array_slice() function, 334–335
array_splice() function, 310–311 312
array_unique() function, 314–315
array_unshift() function, 304
array_values() function, 313, 319, 329
arsort() function, 336, 337, 342
ASCII (American Standard Code for

Information Interchange), 154
asort() function, 336, 337, 341

680

I N D E X

columns, database tables
adding, 406
modifying types, 406–407
renaming, 407

combining arrays, 343–348
comma (,), special operator, 58
command blocks, 84–85
comments

code, 664
CSS, 634
locating bugs using, 662–663
PHP scripts, 20–22

comparing arrays, 348–350
comparing strings, 154–159

determining if words are pronounced
similarly, 159

determining similarity of two strings, 158
string comparison functions, 156–158

comparison operators, 51–52, 53–55
compile-time errors, 656
complex string syntax, 132–133
components, OOP, 557
composite data type, 30
compound assignment operators, 48
compound (composite) key, 383
concatenation assignment operator (.=),

126–127
concatenation operator (.), 126–127
conditional operators, 52–55
connecting to MySQL with PHP,

448–452
determining which MySQL package to use,

448
error control operator, 452
opening and closing MySQL connections,

448–451
reporting MySQL errors, 451–452

constants, 28–29
predefi ned, 29

construct() function, 585–587
constructor functions, 585–587
context switches, 664
conversion specifi cations, 641–642
cookie(s)

creating, 518–519
deleting, 529
domain argument, 525–526

Cascading Style Sheets (CSSs), 631–635
comments, 634
formatting document display, 631–635
style specifi city, 635
validating styles, 635

case, strings, modifying, 135–138
case label, 92, 93
case sensitivity, 20
casting, 59–61
character(s)

counting instrings, 134–135
escape, 128, 129
matching in regular expressions,

162–164
replacing, 144–147
special. See special characters

character classes, 166–169
chdir() function, 238
child table, 382
chmod() function, 236–237
chr() function, 154
chroot() function, 238
class(es)

custom. See custom PHP classes
OOP, 560–563

class constructors, 563–564
class defi nitions, 575–576
class members, 573
closedir() function, 238
closing

fi le streams, 270
MySQL connections, 448–451
MySQL database objects, 566

closing delimiters, regular expressions, 161
closing tags, XHTML, 628
code declaration blocks, 3–22

ASP-style script delimiters, 9–10
case sensitivity, 20
displaying script results, 12–16
functions, 10–12
multiple, 17–20
<script> element, 6–7
short PHP script delimiters, 8–9
standard PHP script delimiters, 3–6

colon (:)
conditional operators, 62
special operator, 58

681

 I N D E X

fl at-fi le, 382
MySQL. See accessing MySQL with PHP;

MySQL
MySQL database objects. See MySQL

database objects
phpMyAdmin, 431–432
records. See records, databases
relational, 382
schemas, 388
selecting, 400–401, 455–458
SQL. See MySQL; Structured Query

Language (SQL)
table relationships, 382–388
tables. See table(s)

database connections as objects, 565–573
database management systems (DBMSs),

388–390
fl at-fi le, 389
relational, 389

debugging, 661–670
analyzing logic, 663–664
combining techniques, 665–670
examining script output, 664–665
locating bugs using comments, 662–663
tracing errors with echo statements,

661–662
decimal numbers, specifying precision,

643–644
decision making, 83–95
if...else statements, 87–89
if statements, 84–87
nested if and if...else statements,

89–92
switch statements, 92–95

declaring
associative arrays, 316–322
data members. See declaring data members
indexed arrays, 34–36
variables, 23

declaring data members, 578–583
access specifi ers, 580–582
information hiding, 579–580
serializing objects, 582–583

decoding strings, 138–139
decrement operator (--), 44–48
defensive coding. See secure coding
defi ne() function, 28
DELETE statement, 427

cookie(s) (continued)
expires argument, 521–525
name and value arguments, 519–521
path argument, 525
persistent, 518
reading, 526–529
saving state information, 517–529
secure argument, 526
temporary, 518

$_COOKIE[] PHP autoglobal array,
526–529

copy() function, 278–280
copying fi les, 278–280
count_chars() function, 135
counters, 96–99

naming, 96
COUNT() function, 418
CREATE TABLE statement, 460–463
CSSs. See Cascading Style Sheets (CSSs)
curly braces (), command blocks, 84
current() function, 323, 324
custom PHP classes, 573–577

creating class defi nitions, 575–576
storing in external fi les, 576–577

D
data, OOP, 557
data binding, 676
data manipulation languages (DMLs), 389
data members, 573

declaring, 578–583
data structures, 573
data types, 30–40

arrays, 33–39
Boolean values, 33
fi elds, specifying, 402–404
numeric, 31–32
primitive, 30
reference (composite), 30
“resource,” 30

database(s), 381–391
accessing through proxy user, 652–653
creating, 399–400
database management systems,

388–390
defi nition, 381
deleting, 401–402
fi elds, 381

682

I N D E X

(double) operator, 58, 61
double quotation mark (”)

conversion, 138
format control strings, 641
values in style defi nitions, 634

downloading fi les, 252–256
DROP TABLE statement, 463
dynamic content, displaying, 212–217
dynamic typing, 31

E
each() function, 323
echo statement, 13

tracing errors, 661–662
elements, arrays, 299–316

accessing, 35–39
accessing element information, 35–39
adding and removing from beginning of

array, 304–308
adding and removing from end of array,

308–310
adding and removing within array, 310–314
duplicate, removing, 314–316
modifying, 39

elements, XHTML, deprecated, 625–626
e-mailing Web forms, 206–207
embedded languages, 2
empty() function, 650
encapsulation, 559–560
encoding strings, 138–139
end() function, 323, 325
environmental variables, 190
equal operator (==), 51, 52
equal sign (=)

array operator, 317, 318
assignment operators, 49
comparison operators, 51, 52, 62
concatenation assignment operator,

126–127
separating from data and URL tokens,

192
special operator, 58

error(s)
debugging. See debugging
determining type, 655–657
displaying in Web browser, 659
handling, 201–203, 657–658
logging to a fi le, 661

deleting
array elements. See elements, arrays
cookies, 529
database records, 427, 465–466
database tables, 407, 408
databases, 401–402, 458
directories, 282
fi les, 281
MySQL tables, 463
sessions, 536–537

delimiters, 147
PHP scripts. See PHP script delimiters
regular expressions, 161

deprecated elements and attributes,
625–626

destruct() function, 587–588
destructor functions, 587–588
die() function, 451
directories, 238–246

creating, 241–242
obtaining fi le and directory information,

242–246
reading, 238–241
removing, 282
renaming, 280–281

directory pointers, 238
disabling register_globals directive,

653
displaying. See also viewing

dynamic content, 212–217
errors in Web browser, 659
redisplaying Web forms, 203–205
script results, 12–16
status messages for users, 207–208
variables, 24–25

division operator (/), 42
DMLs (data manipulation languages), 389
do...while statements, 100–103
DOCTYPE declarations, 625–626
dollar sign ($), variable identifi ers, 23
domain argument, cookies, 525–526
dot (.)

compound string assignment operator, 62
concatenation assignment operator,

126–127
concatenation operator, 62, 126–127
matching characters, 162

double(s), 60

683

 I N D E X

downloading, 252–256
include, 109–111
locking, 272–274
moving, 278–280
obtaining fi le information, 242–246
reading, 262–266
removing, 281–282
renaming, 280–281
selecting, 247
text, 234
uploading. See uploading fi les
writing, 257–262

fi le permissions, 236–237
changing, 236–237
checking, 237

fi le pointers, 268–269
fi le streams, 267–277

closing, 270
input, 267
locking fi les, 272–274
opening, 267–269
output, 267
reading data incrementally, 275–277
writing data incrementally, 270–272

fi le types, 234–236
fi leatime() function, 244
fi lectime() function, 244
fi le_exists() function, 243
fi le_get_contents() function, 262–264
fi lemtime() function, 244
fi lename extensions

external fi les, 651, 652
PHP scripts, 3

fi leowner() function, 244
fi leperms() function, 237
fi le_put_contents() function, 257–258,

270–271
$_FILES [] autoglobal array, 248
fi lesize() function, 244
fi letype() function, 244
fi ltering query results, 423–425
Firefox, viewing source code, 665
fl at-fi le database(s), 382
fl at-fi le database management systems, 389
fl oating-point numbers, 31
fl ock() function, 272–274
fl ow control. See decision making
fopen() function, 268–269, 275–276

error(s) (continued)
logic, 656–657
multiple, handling, 201–203
MySQL, handling, 568–570
MySQL, suppressing with error control

operator, 452
reporting. See reporting errors
run-time, 656
syntax (parse), 655–656

error control operator (2), 452
error_reporting directive, 659–661
escape characters, 128, 129
escape sequences, 128–131

platforms, 234–236
exclamation point (!)

comparison operators, 51
equality operator, 62
logical Not operator, 55, 62

exit() function, 451
expires argument, cookies, 521–525
exponential notation, 31
exporting database tables, phpMyAdmin,

432–433
expressions, 40–63

arithmetic operators, 41–48
assignment operators, 48–51
comparison operators, 51–52, 53–55
conditional operators, 52–55
logical operators, 54–58
operator precedence, 61–63
special operators, 58
type casting, 59–61

external style(s), specifi city, 635
external style sheets, 634–635

F
fatal error messages, 658
fclose() function, 270, 276, 277
feof() function, 275–276
fgetc() function, 275
fgetcsv() function, 275
fgets() function, 275–276, 277
fgetss() function, 275
fi elds, 381

specifying data types, 402–404
fi le(s)

binary, 234
copying, 278–280

684

I N D E X

function members, 573
fwrite() function, 271

G
garbage collection, 578
getcwd() function, 238
getenv() function, 190
get_magic_quotes_gpc() function, 653
global keyword, 82–83
global variables, 82–83
granting privileges, 409–411
greater than operator (>), 51
greater than or equal to operator (>=), 51
GROUP_CONCAT() function, 418, 419

H
handles, 238–239
header(s), 252–253
header() function, 253
hidden form fi elds, saving state information,

506–515

I
if...else statements, 87–89
if statements, 84–87

nested, 89–92
importing database tables, phpMyAdmin,

432–433
in_array() function, 328–329
include fi les, 109–111
include() function, 651, 652
include statements, 109–111
increment operator (++), 44–48
index(es)

arrays, 34
database tables, 383

indexed arrays
declaring and initializing, 34–36
retrieving records into, 474–477
two-dimensional, 351–355

infi nite loops, 99
information hiding, 579–580
inheritance, 561
ini_get() function, 18
initializing

associative arrays, 316–322
indexed arrays, 34–36
variables, 23–24

for() statement, 658
for statements, 103–105
foreach statements, 105–109
foreign key, 383
form(s). See All-in-One forms; Web forms
form data, 199–208

determining if form variables contain
values, 199

displaying status messages for users,
207–208

e-mailing Web forms, 206–207
handling multiple errors, 201–203
processing, 194–198
redisplaying Web forms, 203–205
validating entered data, 199–201

form handlers, 194
form image buttons, 214
format control strings, 641
formatting

code, 664
document display, CSS, 631–635
numbers, 645–646
strings. See formatting strings

formatting strings, 641–647
alignment, 646
formatting numbers, 645–646
padding, 644–645
specifying decimal number precision,

643–644
specifying types, 642–643

forward slash (/)
comments, 21
compound division assignment operator,

49, 62
delimiter, 161
division operator, 42, 62
MIME fi les, 248

fread() function, 275–276
function(s), 10–12, 75. See also specifi c

function names
arguments (actual parameters), 11
calling, 77–78
calls, 10
defi ning, 75–76
returning values, 78–81

function calls, 10
function defi nitions, 75

formal parameters, 75–76

685

 I N D E X

less than or equal to operator (>+), 51
Levenshtein, Vladimir, 158
Levenshtein distance, 158
levenshtein() function, 158
line comments, 21
linked style sheets, 634–635
literal(s), 40
literal strings, 14
LOAD DATA statement, 414–415
local variables, 82
locking fi les, 272–274
logging errors to a fi le, 661
logging in to phpMyAdmin, 428–431
logic, analyzing, 663–664
logic errors, 656–657
logical And operator (&&), 55
logical exclusive Or operator (XOR), 55
logical Not operator (!), 55
logical operators, 54–58
logical Or operator (||), 55
loop statements, 95–109
do...while statements, 100–103
foreach statements, 105–109
for statements, 103–105
while statements, 96–100

loosely typed programming languages, 31
lowercase markup tags, XHTML, 628

M
magic quotes, 196–198, 653–654
mail() function, 206, 207
maintaining state, 497
many-to-many relationships, 386–388
matching characters in regular expressions,

162–164
MAX() function, 418
md5() function, 138–139
member functions, 573, 584–599

cleaning up with destructor functions,
587–588

initializing with constructor functions,
585–587

serialization functions, 594–599
$this reference, 585
writing accessor and mutator functions,

588–594
member selection notation, 564
member variables, 573

inline styles, 632
specifi city, 635

input streams, 267
INSERT INTO statement, 412–414
installing

Notepad++, 622–625
Portable Apps Suite, 620–622
text editors, 620–625
xAMP, 636–638

instance(s), 560
instanceof operator, 58, 62
instantiation, 560

MySQL database objects, 566–568
(int) operator, 58, 61
integer(s), 31
(integer) operator, 58
interfaces, 559–560
internal array pointer, 323
internal style(s), 632–634
internal style sheets, specifi city, 635
Internet Explorer, viewing source code,

665
is_dir() function, 243
is_executable() function, 243
is_fi le() function, 243
is_link() function, 243
is_readable() function, 243
isset() function, 209, 650
is_writable() function, 243
is_writeable() function, 243
iterating through arrays, 323–327
iterations, 96

J
junction tables, 387

K
key(s), arrays, determining if a key exists,

333–334
key() function, 323, 324
keywords. See also specifi c keywords

SQL, 391
krsort() function, 336, 342
ksort() function, 336, 337, 342

L
LAMP, 636
less than operator (>), 51

686

I N D E X

MySQL tables, 459–463
creating, 460–463
deleting, 463

mysql_affected_rows() function, 470–471
mysql_change_user() function, 449
mysql_create_db() function, 453–454
mysql_data_seek() function, 474
mysql_drop_db() function, 458
mysql_errno() function, 451–452
mysql_error() function, 451–452
mysql_fetch_array() function, 474
mysql_fetch_assoc() function, 474,

477–478
mysql_fetch_lengths() function, 474
mysql_fetch_row() function, 474–476
mysql_free_result() function, 479
mysql_get_client_info() function, 449
mysql_get_client_version() function,

449
mysql_get_host_info() function, 449
mysql_get_proto_info() function, 449
mysql_get_server_info() function, 449
mysqli_connect_errno() function, 452
mysqli_connect_error() function, 452
mysql_info() function, 471–473
mysql_num_fi elds() function, 480–481
mysql_num_rows() function, 460
mysql_query() function, 459–460, 464, 473,

479
mysql_select_db() function, 455–457
mysquli package, 448

N
name argument, cookies, 519–521
naming. See also renaming

counters, 96
fi les, 3, 651, 652
variables, 23

natcasesort() function, 336, 337
natsort() function, 336, 337
navigating within Web page templates, 214
nested decision-making structures, 89–92
nested tags, XHTML, 628–629

attributes, 629
new clone, associativity, 61
next() function, 323, 325
normalization, 384
not equal operator (!= or <>), 51

metacharacters, 162
metaphone() function, 159
method(s), OOP, 557, 582
method attributes, 192–194
Microsoft Internet Explorer, viewing source

code, 665
microtime() function, 258
MIME (Multipurpose Internet Mail

Extensions), 248
minus sign (-)

addition operator, 62
compound subtraction assignment

operator, 49, 62
conversion specifi cations, 645, 646
decrement operator, 44–48, 61
subtraction operator, 42

mkdir() function, 241–242
modifying variables, 25–27
modulus (%), 42
moving fi les, 278–280
Mozilla Firefox, viewing source code, 665
multidimensional arrays, 350–359

with more than two dimensions, 357–359
with single statement, 356–357
two-dimensional, associative, 355–356
two-dimensional, indexed, 351–355

multiple code declaration blocks, 17–20
multiplication operator (*), 42
Multipurpose Internet Mail Extensions

(MIME), 248
mutator functions, 588–594
MySQL, 389, 391, 392–402, 399–402

accessing with PHP. See accessing MySQL
with PHP; connecting to MySQL
with PHP; retrieving records

commands, 394–395, 396–398
creating databases, 399–400
deleting databases, 401–402
identifi ers, 395–396
logging in, 392–394
MySQL Monitor, 392, 394–395
selecting databases, 400–401
user privileges, 408–412

MySQL database objects
closing, 566
errors, handling, 568–570
executing SQL statements, 570–573
instantiating, 566–568

687

 I N D E X

operands, 40
operator(s), 40–41

arithmetic, 41–48
assignment, 48–51
associativity, 61–63
binary, 41, 42–44
comparison, 51–52, 53–55
conditional, 52–55
logical, 54–58
postfi x, 44–48
prefi x, 44–48
special, 58
unary, 41, 44–48

operator precedence, 61–63
OR operator, 55, 62
Oracle, 674–677
ord() function, 154
order by keyword, 421
output steams, 267

P
padding, specifying, 644–645
parameters (formal parameters), 75–76

passing by reference, 80–81
passing by value, 80

parent table, 382
parse error(s), 655–656
parse error messages, 657–658
parsing strings, 141
passing arguments, 11
path argument, cookies, 525
pattern modifi ers, 169–170
PCRE. See Perl Compatible Regular

Expressions (PCRE)
percent sign (%)

compound modulus assignment operator,
49

conversion specifi cations, 641
modulus, 42

period (.). See dot (.)
Perl Compatible Regular Expressions (PCRE)

delimiters, 160
escape sequences, 168
quantifi ers, 164

persistent cookies, 518
PHP

object-oriented. See object-oriented PHP
ODBC, 447

notation
avoiding pitfalls, 40
exponential, 31
member selection, 564
scientifi c, 31

Notepad++, installing, 622–625
notice messages, 658
NULL value, 30
number(s)

decimal, specifying precision, 643–644
formatting, 645–646

number_format() function, 645–646
numeric data, validating, 199–200
numeric data type, 31–32

O
object(s), 557

database connections as objects, 565–573
MySQL database objects. See MySQL

database objects
using in PHP scripts, 563–578

(object) operator, 58, 61
object-oriented PHP

declaring data members, 578–583
member functions. See member functions
objects, 563–578

object-oriented programming (OOP),
557–563

classes, 560–563
encapsulation, 559–560
PHP. See object-oriented PHP

observer functions, 588–594
ODBC (Open Database Connectivity), 390,

447
one-to-many relationships, 384–386
one-to-one relationships, 383–384
one-way hashes, 138–139
OOP. See object-oriented PHP; object-

oriented programming (OOP)
Open Database Connectivity (ODBC), 390,

447
opendir() function, 238
opening

fi le streams, 267–269
MySQL connections, 448–451

opening delimiters, regular expressions,
161

opening tags, XHTML, 628

688

I N D E X

print_startup_errors directive, 659
private access specifi er, 580
privileges, MySQL, 408–412

defi nition, 408
granting, 409–411
revoking, 411–412

processing
All-in-One forms, 210
form data, 194–198

programming language(s)
loosely typed, 31
strongly typed, 31

programming language constructs, 13
pronunciation, determining if two words are

pronounced similarly, 159
properties, OOP, 557
protected access specifi er, 580
proxy user, accessing databases, 652–653
public access specifi er, 580

Q
quantifi ers, 164–165
queries, 389

accessing query result information,
479–481

closing query results, 479
retrieving records, 473–481
SQL. See MySQL; structured query

language (SQL)
query results, closing, 479
query strings, saving state information,

515–517
question mark (?)

conditional operators, 62
quantifi er, 164
separating form data and URL tokens, 192
special operator, 58

R
RDBMSs (relational database management

systems), 389
readdir() function, 238
readfi le() function, 254
reading

cookies, 526–529
data, incrementally, 275–277
directories, 238–241
entire fi les, 262–266

PHP script(s), 2–3
code declaration blocks. See code

declaration blocks
comments, 20–22
cookie interference, 521
delimiters. See PHP script delimiters
displaying results, 12–16
fi lename extensions, 3
statements, 3–4

PHP script delimiters, 3–5
ASP-style, 9–10

phpinfo() function, 190, 196, 448
php.ini fi le, 530

changing settings in, 653
phpMyAdmin, 428–433

databases, 431–432
logging in, 428–431
tables, 432–433

phpversion() function, 18
pipe (|), logical Or operator, 55, 62
plus sign (+)

addition operator, 42, 62
compound addition assignment operator,

49, 62
conversion specifi cations, 645
increment operator, 44–48, 61
quantifi er, 164

Portable Apps Suite, installing, 620–622
postfi x operators, 44–48
PostgreSQL, 389
pound symbol (#), comments, 21
predefi ned constants, 29
prefi x operators, 44–48
preg_grep() function, 160
preg_match() function, 160
preg_quote() function, 160
preg_replace() function, 160
preg_split() function, 160
prev() function, 323
primary array, 343
primary key, 383
primary table, 382
primitive data type, 30
print() function, 564
print statement, 13
print_errors directive, 659
printf() function. See formatting strings
print_r() function, 662

689

 I N D E X

reset() function, 323, 325
“resource” data type, 30
result pointers, 459–460
resultsets, 459–460
retrieving records, 415–418, 473–481

accessing query result information,
479–481

into associative array, 477–478
closing query results, 479
into indexed array, 474–477
working with query results, 473–478

retrieving submitted data, 194–198
return statements, 78–81
revoking privileges, 411–412
rewinddir() function, 238
rmdir() function, 282
rsort() function, 337, 338–339, 342, 343
run-time errors, 656

S
saving state information. See state

information
scandir() function, 238
schemas, databases, 388
scientifi c notation, 31
scope, variables, 82–83
script(s). See PHP script(s)
<script> element, 6–7
script output, examining, 664–665
secondary arrays, 344
secure argument, cookies, 526
secure coding, 648–654

accessing databases through proxy users,
652–653

avoiding $_REQUEST[] autoglobal array,
650

changing settings in php.ini, 653–654
storing code in external fi les, 651–652
validating submitted form data,

649–650
validating user identities using sessions,

650–651
SELECT statement, 415–418, 419–425
select_db() function, 566
selecting

databases, 400–401, 455–458
fi les, 247

records, databases, 381, 412–427
adding, 412–415
adding to MySQL databases,

464–465
aggregate functions, 418–420
deleting, 427, 465–466
fi ltering query results, 423–425
retrieving, 415–418
sorting query results, 421–423
updating, 425–426, 465

redisplaying All-in-One forms, 210–212
reference, passing parameters by, 80–81
reference data type, 30
register_globals directive, disabling,

 653
regular expressions, 160–170

defi ning character classes, 166–169
matching characters, 162–163
matching characters at beginning and end

of a string, 163
matching multiple pattern choices, 169
matching special characters, 163–164
pattern modifi ers, 169–170
specifying quantity, 164–165
specifying subexpressions, 165–166
writing regular expression patterns,

161–162
related table, 382
relational database(s), 382
relational database management systems

(RDBMSs), 389
removing. See deleting
rename() function, 280–281, 282
renaming

columns in database tables, 407
database tables, 407
directories, 280–281
fi les, 280–281

repeating code. See loop statements
reporting errors, 653, 657–658

MySQL, 451–452
setting error reporting level, 659–661

$_REQUEST[] autoglobal array, avoiding,
650

require() function, 651
require statements, 109–111
require_once() function, 651

690

I N D E X

saving using hidden forms, 506–515
saving using query strings, 515–517
saving using sessions, 530–537

statefulness, 497
statelessness, 497
statements, 3–4. See also specifi c statement

names
loop. See loop statements

static typing, 31
status messages, displaying for users, 207–208
STDDEV() function, 418
STDDEV_POP() function, 418
STDDEV_SAMP() function, 418
STD() function, 418
stick forms, 203
storing

classes in external fi les, 576–577
code in external fi les, 651–652
uploaded fi les, 249–252

strcasecmp() function, 156, 157–158
strchr() function, 142
strcmp() function, 156–157
stream(s), 267. See also fi le streams
stream_get_line() function, 275
strict equal operator (===), 51
strict not equal operator (!==), 51
string(s), 124–172

comparing. See comparing strings
constructing, 125–133
converting between strings and arrays,

151–153
counting characters and words,

134–135
dividing into smaller pieces,

147–151
encoding and decoding, 138–139
escape characters and sequences,

128–131
formatting. See formatting strings
modifying case, 135–138
parsing, 141
regular expressions. See regular

expressions
returning portions, 139
string operators, 126–128
strrev() function, 139
str_shuffl e() function, 139

member selection notation, 564
serialization, 582–583
serialization functions, 594–599
serialize() function, 594
session(s)

deleting, 536–537
saving state information, 530–537
starting, 531–532
validating user identities, 650–651
working with session variables, 532–536

session IDs, 531
session variables, 532–536
setcookie() function, 519, 520, 522
settype() function, 59
short PHP script delimiters, 8–9
SHOW TABLES LIKE command, 461
shuffl e() function, 343
similar_text() function, 158
simple key, 383
simple string syntax, 131
single quotation mark (’)

conversion, 138
format control strings, 641
values in style defi nitions, 634

__sleep() function, 594–595
sleep() method, 582
sort() function, 337, 338–342
sorting

arrays, 336–343
query results, 421–423

soundex() function, 159
source code, viewing, 665
special characters

matching, 163–164
Web forms, handling, 196–198

special operators, 58
sprintf() function. See formatting strings
spyware, 530
SQL. See MySQL; structured query language

(SQL)
SQL Server, 671–674
square brackets ([])

array elements operator, 61
special operator, 58

starting sessions, 531–532
state information, 496–539

saving using cookies, 517–529

691

 I N D E X

creating, 404–406
deleting, 408
MySQL tables. See MySQL tables
phpMyAdmin, 432–433
removing, 407
renaming, 407
specifying fi eld data types, 402–404
table relationships, 382–388

table relationships, databases, 382–388
tags, XHTML, 628–629
temporary cookies, 518
text editors, installing, 620–625
text fi les, 234
text hyperlinks, 214
$this reference, 585
tilde (˜), separator string, 302
tokens, 147–151
tracing errors with echo statements,

661–662
transformer functions, 588–594
trim() function, 139
two-dimensional arrays

associative, 355–356
indexed, 352–355

two-part forms, 209
type casting, 59–61
type specifi ers, 642–643

U
uaksort() function, 337
ucfi rst() function, 136, 137
ucwords() function, 136, 137
uksort() function, 337
UML (Unifi ed Modeling Language),

558
unary operators, 41

arithmetic, 44–48
Unicode, 674
Unifi ed Modeling Language (UML),

558
unlink() function, 281–282
unset() function, 313
UPDATE statement, 425–426
updating database records, 425–426, 465
uploading fi les, 247–252

retrieving fi le information, 248
selecting fi les, 247

string(s), 124–172 (continued)
substr() function, 139
substrings. See substrings
syntax, 131–133
trim() function, 139

string data, validating, 200–201
(string) operator, 58, 61
string operators, 126–128
stripslashes() function, 197
str_ireplace() function, replacing
strongly typed programming languages, 31
strpos() function, 142
strrchr() function, 142–143
str_replace() function, replacing
strrev() function, 140
strtok() function, 147–151
strtolower() function, 135–136
strtoupper() function, 135, 136
structured query language (SQL), 389,

390–391
keywords, 391
MySQL. See MySQL

style(s), CSS, 631–635
external, 635
inline, 632, 635
internal, 632–634, 635

style sheets
external (linked), 634–635
internal, 635

subexpressions, specifying, 165–166
subpatterns, specifying, 165–166
substr() function, 139
substrings, 141–147

fi nding and extracting, 141–144
replacing, 144–147

subtraction operator (-), 42
SUM() function, 418
superglobals, 189–191
switch statements, 92–95

nested, 89–92
symbolic links, 243
syntax errors, 655–656

T
table(s), 402–408

altering, 406–407
columns. See columns, database tabless

692

I N D E X

WAMP
accessing WampServer online,

639
installing, 636–638
installing directory structure for student

fi les, 640
testing installation, 638–639
WampServer menu, 639

warning messages, 658
W3C (World Wide Web Consortium),

625
Web browser, displaying errors, 659
Web forms

All-in-One. See All-in-One forms
arrays, 359–364
data. See form data
e-mailing, 206–207
two-part, 209
XHTML, 191–194

Web page templates, 212–213
navigating within, 214

Web servers, confi guring, 636–640
WHERE keyword, 423
while statements, 96–100
words

counting instrings, 134–135
determining of two words are pronounced

similarly, 159
World Wide Web Consortium (W3C),

625
write permission, precautions, 259
writing

data, incrementally, 270–272
entire fi les, 257–262

X
xAMP

installing, 636–638
testing installation, 638–639

XHTML, 620–635
advanced escaping from, 204
CSSs, 631–635
DOCTYPE declarations, 625–626
document structure, 627
installing editors, 620–625
lowercase markup tags, 628
nested tags, 628–629

storing uploaded fi les, 249–252
URL tokens, 192–193
user privileges. See privileges, MySQL
usort() function, 337

V
validation

All-in-One forms, 209
CSS styles, 635
data entered in forms, 199–201
submitted form data, 649–650
user identities, using sessions,

650–651
XHTML documents, 629–631

value(s)
attributes, 629
determining if a value exists,

328–333
determining if form variables contain,

199
passing parameters by, 80
returning, 78–81

value argument, cookies, 519–521
var keyword, 580
var_dump() function, 662
variables, 22–27

declaring, 23
determining if form variables contain

values, 199
displaying, 24–25
environmental, 190
global, 82–83
initializing, 23–24
local, 82
modifying, 25–27
naming, 23
scope, 82–83
session, 532–536

VARIANCE() function, 418, 419
VAR_POP() function, 418
VAR_SAMP() function, 418
viewing. See also displaying

source code, 665

W
__wakeup() function, 595
wakeup() method, 582

693

 I N D E X

method attributes, 192–194
XOR operator, 55, 62

Z
zend_version function, 18

XHTML, 620–635 (continued)
opening and closing tags, 628
Web forms, 191–194
well-formed documents, 627–631

XHTML Web forms, 191–194
action attributes, 192

694

I N D E X

	Front Cover
	Title Page
	Copyright
	Contents
	Preface
	CHAPTER 1 Getting Started with PHP
	Creating Basic PHP Scripts
	Creating PHP Code Blocks
	Standard PHP Script Delimiters
	The <script> Element
	Short PHP Script Delimiters
	ASP-Style Script Delimiters
	Understanding Functions
	Displaying Script Results
	Creating Multiple Code Declaration Blocks
	Case Sensitivity in PHP
	Adding Comments to a PHP Script

	Using Variables and Constants
	Naming Variables
	Declaring and Initializing Variables
	Displaying Variables
	Modifying Variables
	Defining Constants

	Working with Data Types
	Numeric Data Types
	Boolean Values
	Arrays
	Avoiding Assignment Notation Pitfalls

	Building Expressions
	Arithmetic Operators
	Assignment Operators
	Comparison and Conditional Operators.
	Logical Operators
	Special Operators
	Type Casting
	Understanding Operator Precedence

	Summing Up
	Comprehension Check
	Reinforcement Exercises
	Discovery Projects

	CHAPTER 2 Functions and Control Structures
	Working with Functions
	Defining Functions
	Calling Functions.
	Returning Values

	Understanding Variable Scope
	The global Keyword

	Making Decisions
	if Statements
	if . . . else Statements
	Nested if and if . . . else Statements
	switch Statements

	Repeating Code
	while Statements.
	do . . . while Statements
	for Statements
	foreach Statements

	Including Files
	Summing Up
	Comprehension Check
	Reinforcement Exercises
	Discovery Projects

	CHAPTER 3 Manipulating Strings
	Constructing Text Strings
	Working with String Operators
	Adding Escape Characters and Sequences
	Simple and Complex String Syntax

	Working with a Single String
	Counting Characters and Words in a String
	Modifying the Case of a String
	Encoding and Decoding a String
	Other Ways to Manipulate a String

	Working with Multiple Strings
	Finding and Extracting Characters and Substrings
	Replacing Characters and Substrings
	Dividing Strings into Smaller Pieces
	Converting between Strings and Arrays

	Comparing Strings
	String Comparison Functions
	Determining the Similarity of Two Strings
	Determining if Words Are Pronounced Similarly

	Working with Regular Expressions
	Writing Regular Expression Patterns
	Matching Any Character
	Matching Characters at the Beginning or End of a String
	Matching Special Characters
	Specifying Quantity
	Specifying Subexpressions
	Defining Character Classes
	Matching Multiple Pattern Choices
	Pattern Modifiers

	Summing Up
	Comprehension Check
	Reinforcement Exercises
	Discovery Projects

	CHAPTER 4 Handling User Input
	Using Autoglobals
	Building XHTML Web Forms
	Adding an action Attribute
	Adding a method Attribute

	Processing Form Data
	Retrieving Submitted Data

	Handling Submitted Form Data
	Determining if Form Variables Contain Values
	Validating Entered Data
	Handling Multiple Errors
	Redisplaying the Web Form
	Using the Submitted Data

	Creating an All-in-One Form
	Validating an All-in-One Form
	Processing the Web Form
	Redisplaying the Web Form

	Displaying Dynamic Content Based on a URL Token
	Using a Web Page Template
	Navigating within a Web Page Template
	Displaying the Dynamic Content

	Summing Up
	Comprehension Check
	Reinforcement Exercises
	Discovery Projects

	CHAPTER 5 Working with Files and Directories
	Understanding File Types and Permissions
	Understanding File Types
	Working with File Permissions

	Working with Directories
	Reading Directories
	Creating Directories
	Obtaining File and Directory Information

	Uploading and Downloading Files
	Uploading Files
	Downloading Files

	Reading and Writing Entire Files
	Writing an Entire File
	Reading an Entire File

	Opening and Closing File Streams
	Opening a File Stream
	Closing a File Stream.
	Writing Data Incrementally
	Locking Files
	Reading Data Incrementally

	Managing Files and Directories
	Copying and Moving Files
	Renaming Files and Directories
	Removing Files and Directories

	Summing Up
	Comprehension Check
	Reinforcement Exercises
	Discovery Projects

	CHAPTER 6 Manipulating Arrays
	Manipulating Elements
	Adding and Removing Elements from the Beginning of an Array
	Adding and Removing Elements from the End of an Array
	Adding and Removing Elements Within an Array
	Removing Duplicate Elements

	Declaring and Initializing Associative Arrays
	Iterating Through an Array
	Finding and Extracting Elements and Values
	Determining if a Value Exists
	Determining if a Key Exists
	Returning a Portion of an Array

	Manipulating Arrays
	Sorting Arrays
	Combining Arrays
	Comparing Arrays

	Understanding Multidimensional Arrays
	Creating Two-Dimensional Indexed Arrays
	Creating Two-Dimensional Associative Arrays
	Creating Multidimensional Arrays with a Single Statement
	Working with Additional Dimensions

	Using Arrays in Web Forms
	Summing Up
	Comprehension Check
	Reinforcement Exercises
	Discovery Projects

	CHAPTER 7 Working with Databases and MySQL
	Introduction to Databases
	Understanding Table Relationships
	Working with Database Management Systems
	Querying Databases with Structured Query Language (SQL)

	Getting Started with MySQL
	Logging in to MySQL
	Working with MySQL Monitor
	Understanding MySQL Identifiers
	Getting Help with MySQL Commands.

	Working with MySQL Databases
	Creating Databases
	Selecting a Database
	Deleting Databases

	Defining Database Tables
	Specifying Field Data Types
	Creating Tables
	Altering Tables
	Deleting Tables

	Modifying User Privileges
	Granting Privileges
	Revoking Privileges

	Working with Database Records
	Adding Records
	Retrieving Records
	Using Aggregate Functions
	Sorting Query Results
	Filtering Query Results
	Updating Records
	Deleting Records

	Working with phpMyAdmin
	Logging in to phpMyAdmin
	Working with Databases
	Working with Tables
	Exporting and Importing Tables

	Summing Up
	Comprehension Check
	Reinforcement Exercises
	Discovery Projects

	CHAPTER 8 Manipulating MySQL Databases with PHP
	Connecting to MySQL with PHP
	Determining which MySQL Package to Use
	Opening and Closing a MySQL Connection
	Reporting MySQL Errors
	Suppressing Errors with the Error Control Operator

	Working with MySQL Databases
	Creating a Database
	Selecting a Database
	Deleting a Database

	Working with Tables
	Using mysql_query()
	Creating and Deleting Tables

	Manipulating Records
	Adding, Deleting, and Updating Records
	Returning Information on Affected Records

	Retrieving Records
	Working with Query Results
	Closing Query Results
	Accessing Query Result Information

	Summing Up
	Comprehension Check
	Reinforcement Exercises
	Discovery Projects

	CHAPTER 9 Managing State Information
	Understanding State Information
	Using Hidden Form Fields to Save State Information
	Using Query Strings to Save State Information
	Using Cookies to Save State Information
	Creating Cookies
	The name and value Arguments
	The expires Argument
	The path Argument
	The domain Argument
	The secure Argument
	Reading Cookies
	Deleting Cookies.

	Using Sessions to Save State Information
	Starting a Session
	Working with Session Variables
	Deleting a Session

	Summing Up
	Comprehension Check
	Reinforcement Exercises
	Discovery Projects

	CHAPTER 10 Developing Object-Oriented PHP
	Introduction to Object-Oriented Programming
	Understanding Encapsulation
	Object-Oriented Programming and Classes

	Using Objects in PHP Script
	Working with Database Connections as Objects
	Defining Custom PHP Classes
	Collecting Garbage

	Declaring Data Members
	What Is Information Hiding?
	Using Access Specifiers
	Serializing Objects

	Working with Member Functions
	Using the $this Reference
	Initializing with Constructor Functions
	Cleaning Up with Destructor Functions
	Writing Accessor and Mutator Functions
	Serialization Functions

	Summing Up
	Comprehension Check
	Reinforcement Exercises
	Discovery Projects

	APPENDIX A Working with XHTML
	APPENDIX B Configuring a Personal Web Server
	APPENDIX C Formatting Strings
	APPENDIX D Secure Coding with PHP
	APPENDIX E Error Handling and Debugging
	APPENDIX F Connecting to SQL Server and Oracle Databases
	Index

