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Preface to the sixth edition

We are proud that this book now appears in its sixth edition; it exists also in six translations,
the most recent being the Japanese (2003) and the Chinese (2008). This new edition is updated
and expanded.

The changes from the fifth edition have been guided by developments in knowledge as well as
by reviews and comments of teachers, students, and designers who have been using the earlier
editions. There are added chapters and sections, an additional appendix, revisions to existing
chapters, and more examples and problems. The answers to all problems are given at the end
of the book. Throughout the book, great attention is given to the analysis of three-dimensional
spatial structures.

The book starts with a chapter on structural analysis modeling by idealizing a structure as a
beam, a plane or a space frame, and a plane or a space truss, a plane grid, or as an assemblage of
finite elements. There are new sections on the strut-and-tie models for the analysis of reinforced
structures after cracking. There is a discussion of the suitability of these models, forces, and
deformations, sketching deflected shapes, and bending moment diagrams, and a comparison of
internal forces and deflections in beams, arches and trusses.

The chapter on modeling is followed by a chapter on the analysis of statically determinate
structures, intended to provide a better preparation for students. To encourage early use of
computers, five of the computer programs described in Appendix L, available from a web site,
are mentioned in Chapter 1. These are for the linear analysis of plane and space trusses, plane and
space frames, and plane grids. Simple matrix algebra programs, which can perform frequently
needed matrix operations, can also be downloaded from the web site. The web site address is:

http://www.routledge.com/books/Structural-Analysis-isbn9780415774338

In Chapters 3 to 6 we introduce two distinct general approaches of analysis: the force method
and the displacement method. Both methods involve the solution of linear simultaneous equa-
tions relating forces to displacements. The emphasis in these four chapters is on the basic ideas
in the two methods, without obscuring the procedure by the details of derivation of the coef-
ficients needed to form the equations. Instead, use is made of Appendices B, C, and D, which
give, respectively, displacements due to applied unit forces, forces corresponding to unit displace-
ments, and fixed-end forces in straight members due to various loadings. The consideration of
the details of the methods of displacement calculation is thus delayed to Chapters 7 to 10,
by which time the need for this material in the analysis of statically indeterminate structures is
clear. This sequence of presentation of material is particularly suitable when the reader is already
acquainted with some of the methods for calculating the deflection of beams. If, however, it is
thought preferable first to deal with methods of calculation of displacements, Chapters 7 to 10
should be studied before Chapters 4 to 6; this will not disturb the continuity.

The material presented is both elementary and advanced, covering the whole field of structural
analysis. The classical and modern methods of structural analysis are combined in a unified
presentation, but some of the techniques not widely used in modern practice have been omitted.

http://www.routledge.com/books/Structural-Analysis-isbn9780415774338
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However, the classical methods of column analogy and moment distribution, suitable for hand
calculations, continue to be useful for preliminary calculation and for checking computer results;
these are presented in Chapter 11. To provide space for new topics needed in modern practice,
the coverage of the two methods is shorter compared to the fifth edition. The no-shear moment
distribution technique, suitable for frames having many joint translations, has been removed
because computers are now commonly employed for such frames.

The methods for obtaining the influence lines for beams, frames, grids and trusses are com-
bined in Chapter 12, which is shorter than the sum of the two chapters in the fifth edition. In
Chapter 13, the effects of axial forces on the stiffness characteristics of members of framed struc-
tures are discussed and applied in the determination of the critical buckling loads of continuous
frames.

Chapter 14 deals with the analysis of shear walls, commonly used in modern buildings. The
chapter summarizes the present knowledge, states the simplifying assumptions usually involved,
and presents a method of analysis that can be applied in most practical cases.

The provision of outriggers is an effective means of reducing the drift and the bending moments
due to lateral loads in high-rise buildings. The analysis of outrigger-braced buildings and the
location of the outriggers for optimum effectiveness are discussed in new sections in Chapter 14.
The analysis is demonstrated in a solved example of a 50-storey building.

The finite-difference method and, to an even larger extent, the finite-element method are
powerful tools, which involve a large amount of computation. Chapter 15 deals with the use
of finite differences in the analysis of structures composed of beam elements and extends the
procedure to axisymmetrical shells of revolution. The finite-difference method is also used in
the analysis of plates. Chapters 16 and 17 are concerned with two- and three-dimensional finite
elements. Chapters 21, 22, 16, and 17 can be used, in that order, in a graduate course on the
fundamentals of the finite-element method.

Modern design of structures is based on both the elastic and plastic analyses. The plastic
analysis cannot replace the elastic analysis but supplements it by giving useful information about
the collapse load and the mode of collapse. Chapters 18 and 19 deal with the plastic analysis of
framed structures and slabs respectively.

An introduction to structural dynamics is presented in Chapter 20. This is a study of the
response of structures to dynamic loading produced by machinery, gusts of wind, blast, or
earthquakes. First, free and forced vibrations of a system with one degree of freedom are
discussed. This is then extended to multi-degree-of-freedom systems. Several new sections discuss
the dynamic analysis of structures subjected to earthquakes.

Some structures, such as cable nets and fabrics, trusses, and frames with slender members,
may have large deformations, so that it is necessary to consider equilibrium in the real deformed
configurations. This requires the geometric nonlinear analysis treated in Chapter 23, in which
the Newton-Raphson’s iterative technique is employed. The same chapter also introduces the
material-nonlinearity analysis, in which the stress–strain relation of the material used in the
structure is nonlinear.

Chapter 24, based on the probability theory, is new in this edition. This chapter represents
a practical introductory tool for the reliability analysis of structures. The objective is to
provide a measure for the reliability or the probability of satisfactory performance of new or
existing structures. The most important probability aspects used in Chapter 24 are presented in
Appendix M; previous knowledge of probability and statistics is not required. Chapter 24 and
Appendix M were written in collaboration with Professor Andrzej S. Nowak of the University of
Nebraska, Lincoln, USA. Professor Marc Maes was the first to include reliability of structures in
an undergraduate course on structural analysis at the University of Calgary, Canada; the authors
are grateful to him for making his lecture notes available.

The techniques of analysis, which are introduced, are illustrated by many solved examples
and a large number of problems at the ends of chapters, with answers given at the end of the
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book. In this edition, with new solved examples and problems added, there are more than 140
worked examples and more than 400 problems with answers.

No specific system of units is used in most of the examples and problems. However, there
is a small number of examples and problems where it was thought advantageous to use actual
dimensions of the structure and to specify the magnitude of forces. These problems are set in
the so-called Imperial or British units (still common in the USA) as well as in the SI units. Each
problem in which Imperial units are used is followed by a version of the same problem in SI units,
so that the reader may choose the system of units he or she prefers.

Data frequently used are presented in the appendices, with Appendix A offering a review
of matrix operations usually needed in structural analysis. Matrix notation is extensively used
in this book because this makes it possible to present equations in a compact form, helping
the reader to concentrate on the overall operations without being distracted by algebraic or
arithmetical details.

Several computer programs are briefly described in Appendix L. These include the computer
programs available from the web site mentioned above and four nonlinear analysis programs.
An order form at the end of the book can be used to obtain the nonlinear analysis programs. The
computer programs can be employed in structural engineering practice and also to aid the study
of structural analysis. However, understanding the book does not depend upon the availability
of these programs.

The text has been developed by the first and principal author in teaching, over a number
of years, undergraduate and graduate courses at the University of Calgary, Canada. The third
author, who joined in the fifth edition, has also been teaching the subject at Calgary. Teaching
and understanding the needs of the students have helped in preparing a better edition, believed
to be easier to study.

Chapters 1 to 13, 18, and 19 contain basic material which should be covered in the first
courses. From the remainder of the book, a suitable choice can be made to form a more advanced
course. The contents have been selected to make the book suitable not only for the student but
also for the practicing engineer who wishes to obtain guidance on the most convenient methods
of analysis for a variety of types of structures.

Dr. Ramez Gayed, research associate at the University of Calgary, has checked the new
material, the solution of the examples, and some of the answers of the problems, and provided
the figures for the sixth edition.

Calgary, Alberta, Canada A. Ghali
London, England A. M. Neville

Calgary, Alberta, Canada T. G. Brown
April 2008



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notation

The following is a list of symbols which are common in the various chapters of the text; other
symbols are used in individual chapters. All symbols are defined in the text when they first
appear.

A Any action, which may be a reaction or a stress resultant. A stress
resultant at a section of a framed structure is an internal force: bending
moment, shearing force or axial force.

a Cross-sectional area.
Di or Dij Displacement (rotational or translational) at coordinate i. When a

second subscript j is provided it indicates the coordinate at which the
force causing the displacement acts.

E Modulus of elasticity.
EI Flexural rigidity.
F A generalized force: a couple or a concentrated load.
FEM Fixed-end moment.
fij Element of flexibility matrix.
G Modulus of elasticity in shear.
I Moment of inertia or second moment of area.
i, j, k, m, n, p, r Integers.
J Torsion constant (length4), equal to the polar moment of inertia for a

circular cross section.
l Length.
M Bending moment at a section, e.g. Mn = bending moment at sections. In

beams and grids, a bending moment is positive when it causes tension in
bottom fibers.

MAB Moment at end A of member AB. In plane structures, an end-moment is
positive when clockwise. In general, an end-moment is positive when it
can be represented by a vector in the positive direction of the axes x, y,
or z.

N Axial force at a section or in a member of a truss.
P, Q Concentrated loads.
q Load intensity.
R Reaction.
Sij Element of stiffness matrix.
s Used as a subscript, indicates a statically determinate action.
T Twisting moment at a section.
u Used as a subscript, indicates the effect of unit forces or unit

displacements.
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V Shearing force at a section.
W Work of the external applied forces.
ε Strain.
η Influence ordinate.
ν Poisson’s ratio.
σ Stress.
τ Shearing stress.
{ } Braces indicate a vector, i.e. a matrix of one column. To save space, the elements

of a vector are sometimes listed in a row between two braces.
[ ] Brackets indicate a rectangular or square matrix.
[T]Tn×m Superscript T indicates matrix transpose. n × m indicates the order of the

matrix which is to be transposed resulting in an m × n matrix.
−→→ Double-headed arrow indicates a couple or a rotation: its direction is that of the

rotation of a right-hand screw progressing in the direction of the arrow.
−→ Single-headed arrow indicates a load or a translational displacement.
z → x Axes: the positive direction of the z axis points away from the reader.↓
y



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The SI system of units of measurement

Length meter m
millimeter = 10−3 m mm

Area square meter m2

square millimeter = 10−6 m2 mm2

Volume cubic meter m3

Frequency hertz = 1 cycle per second Hz
Mass kilogram kg
Density kilogram per cubic meter kg/m3

Force newton N
= a force which applied to a mass of one kilogram
gives it an acceleration of one meter per second, i.e.
1N = 1kgm/s2

Stress newton per square meter N/m2

newton per square millimeter N/mm2

Temperature interval degree Celsius deg C; ◦C
Nomenclature for multiplication factors

109 giga G
106 mega M
103 kilo k
10−3 milli m
10−6 micro μ

10−9 nano n



http://www.taylorandfrancis.com


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1

Structural analysis modeling

1.1 Introduction

This book may be used by readers familiar with basic structural analysis and also by those with
no previous knowledge beyond elementary mechanics. It is mainly for the benefit of people in
the second category that Chapter 1 is included. It will present a general picture of the analysis
but, inevitably, it will use some concepts that are fully explained only in later chapters. Readers
may therefore find it useful, after studying Chapter 2 and possibly even Chapter 3, to reread
Chapter 1.

The purpose of structures, other than aircraft, ships and floating structures, is to transfer
applied loads to the ground. The structures themselves may be constructed specifically to carry
loads (for example, floors or bridges) or their main purpose may be to give protection from the
weather (for instance, walls or roofs). Even in this case, there are loads (such as self-weight of
the roofs and also wind forces acting on them) that need to be transferred to the ground.

Before a structure can be designed in a rational manner, it is essential to establish the loads
on various parts of the structure. These loads will determine the stresses and their resultants
(internal forces) at a given section of a structural element. These stresses or internal forces
have to be within desired limits in order to ensure safety and to avoid excessive deformations.
To determine the stresses (forces/unit area), the geometrical and material properties must be
known. These properties influence the self-weight of the structure, which may be more or less
than originally assumed. Hence, iteration in analysis may be required during the design process.
However, consideration of this is a matter for a book on design.

The usual procedure is to idealize the structure by one-, two-, or three-dimensional elements.
The lower the number of dimensions considered, the simpler the analysis. Thus, beams and
columns, as well as members of trusses and frames, are considered as one-dimensional; in other
words, they are represented by straight lines. The same applies to strips of plates and slabs.
One-dimensional analysis can also be used for some curvilinear structures, such as arches or
cables, and also certain shells. Idealization of structures by an assemblage of finite elements,
considered in Chapter 17, is sometimes necessary.

Idealization is applied not only to members and elements but also to their connections to
supports. We assume the structural connection to the supports to be free to rotate, and then
treat the supports as hinges, or to be fully restrained, that is, built-in or encastré. In reality,
perfect hinges rarely exist, if only because of friction and also because non-structural members
such as partitions restrain free rotation. At the other extreme, a fully built-in condition does not
recognize imperfections in construction or loosening owing to temperature cycling.

Once the analysis has been completed, members and their connections are designed: the
designer must be fully conscious of the difference between the idealized structure and the actual
outcome of construction.

The structural idealization transforms the structural analysis problem into a mathematical
problem that can be solved by computer or by hand, using a calculator. The model is analyzed
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for the effects of loads and applied deformations, including the self-weight of the structure,
superimposed stationary loads or machinery, live loads such as rain or snow, moving loads,
dynamic forces caused by wind or earthquake, and the effects of temperature as well as volu-
metric change of the material (e.g. shrinkage of concrete). This chapter explains the type of
results that can be obtained by the different types of models.

Other topics discussed in this introductory chapter are: transmission (load path) of forces to
the supports and the resulting stresses and deformations; axial forces in truss members; bending
moments and shear forces in beams; axial and shear forces, and bending moments in frames;
arches; the role of ties in arches; sketching of deflected shapes and bending moment diagrams;
and hand checks on computer results.

1.2 Types of structures

Structures come in all shapes and sizes, but their primary function is to carry loads. The form
of the structure, and the shape and size of its members are usually selected to suit this load-
carrying function, but the structural forces can also be dictated by the function of the system of
which the structure is part. In some cases, the form of the structure is dictated by architectural
considerations.

The simplest structural form, the beam, is used to bridge a gap. The function of the bridge
in Figure 1.1 is to allow traffic and people to cross the river: the load-carrying function is
accomplished by transferring the weight applied to the bridge deck to its supports.

A similar function is provided by the arch, one of the oldest structural forms. Roman arches
(Figure 1.2a) have existed for some 2000 years and are still in use today. In addition to bridges,
the arch is also used in buildings to support roofs. Arches have developed because of confidence
in the compressive strength of the material being used, and this material, stone, is plentiful.
An arch made of stone remains standing, despite there be no cementing material between the
arch blocks, because the main internal forces are compressive. However, this has some serious
implications, as we shall see below. The arch allows longer spans than beams with less material:
today, some very elegant arch bridges are built in concrete (Figure 1.2b) or in steel.

The third, simple form of structural type, is the cable. The cable relies on the tensile capacity
of the material (as opposed to the arch, which uses the compressive capacity of the material)
and hence its early use was in areas where natural rope-making materials are plentiful. Some
of the earliest uses of cables are in South America where local people used cables to bridge
gorges.

Figure 1.1 Highway bridge.
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(a)

(b)

Figure 1.2 Arch bridges. (a) Stone blocks. (b) Concrete.

Subsequent developments of the chain, the wire and the strand, permit bridges to span
great lengths with elegant structures; today, the world’s longest bridges are cable supported
(Figures 1.3a, b and c).

The shapes of the arch and suspended cable structures show some significant similarities, the
one being the mirror-image of the other. Cable systems are also used to support roofs, particularly
long-span roofs where the self-weight is the most significant load. In both arches and cables,
gravity loads induce inclined reactions at the supports (Figures 1.4a and b). The arch reactions
produce compressive forces in the direction (or close to the direction) of the arch axis at the ends.
The foundation of the arch receives inclined outward forces equal and opposite to the reactions.
Thus, the foundations at the two ends are pushed outwards and downwards; the subgrade must
be capable of resisting the horizontal thrust and therefore has to be rock or a concrete block.
A tie connecting the two ends of an arch, as in Example 1.1, Figure 1.25d, can eliminate the
horizontal forces on the supports. Thus, an arch with a tie subjected to gravity load has only
vertical reactions. Figures 1.5a and b show arch bridges with ties, carrying respectively a steel
water pipe and a roadway. The weights of the pipe and its contents, the roadway deck and its
traffic, hang from the arches by cables. The roadway deck can serve as a tie. Thus, due to gravity
loads, the structures have vertical reactions.

The cable in Figure 1.4a, carrying a downward load, is pulled upward in an inclined direction
of the tangent at the two ends. Again, the arrows in the figure show the directions of the reactions
necessary for equilibrium of the structure. Further discussion on cables and arches is presented
in Section 1.2.1.
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(a)

(c)

(b)

Figure 1.3 Use of cables. (a) Suspension bridge. (b) and (c) Two types of cable-stayed bridges.

The introduction of the railroad, with its associated heavy loads, has resulted in the need
for a different type of structure to span long distances – hence, the development of the truss
(Figure 1.6a). In addition to carrying heavy loads, trusses can also be used to span long dis-
tances effectively, and are therefore also used to support long-span roofs; wood roof trusses
are extensively used in housing. Trusses consist of straight members. Ideally, the members
are pin-connected, so that they carry either compressive or tensile forces, depending on the
truss configuration and the nature of the loading. In modern trusses, the members are usually
nearly-rigidly connected (although assumed pinned in analysis).
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Figure 1.4 Structures carrying gravity loads. (a) Cable – tensile internal force. (b) Arch – compressive
internal force. (c) Funicular shape of a cable carrying two concentrated downward loads.

If the members are connected by rigid joints, then the structure is a frame – another very
common form of structural system frequently used in high-rise buildings. Similar to trusses,
frames come in many different configurations, in two or three dimensions. Figures 1.7a and b
show a typical rigid joint connecting two members before and after loading. Because of the rigid
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(a)

(b)

Figure 1.5 Arches with ties. (a) Bridge carrying a steel pipe. (b) Bridge carrying traffic load.

connection, the angle between the two members remains unchanged, when the joint translates
and rotates, as the structure deforms under load.

One other category of structures is plates and shells whose one common attribute is that their
thickness is small in comparison to their other dimensions. An example of a plate is a concrete
slab, monolithic with supporting columns, which is widely used in office and apartment build-
ings, and in parking structures. Cylindrical shells are plates curved in one direction. Examples
are: storage tanks, silos and pipes. As with arches, the main internal forces in a shell are in the
plane of the shell, as opposed to shear force or bending moment.

Axisymmetrical domes, generated by the rotation of a circular or parabolic arc, carrying
uniform gravity loads, are mainly subjected to membrane compressive forces in the middle sur-
face of the shell. This is the case when the rim is continuously supported such that the vertical
and the radial displacements are prevented; however, the rotation can be free or restrained.
Again, similar to an arch or a cable, the reaction at the outer rim of a dome is in the dir-
ection or close to the direction of the tangent to the middle surface (Figure 1.8a). A means
must be provided to resist the radial horizontal component of the reaction at the lower rim of
the dome; most commonly this is done by means of a circular ring subjected to hoop tension
(Figure 1.8b).

In Figure 1.8c, the dome is isolated from the ring beam to show the internal force at the
connection of the dome to the rim. A membrane force N per unit length is shown in the meridian
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Transverse
beams

Wood planks or
other deck material

Stringers

Top view – detail A

(a)

(b)

See
detail A

Figure 1.6 Truss supporting a bridge deck. (a) Pictorial view. (b) Plane truss idealization.

(b)

x
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(down)
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θ

θ Tangent

Tangent

v

See detail
in part (b)

(a)

Figure 1.7 Definition of a rigid joint: example joint of a plane frame. (a) Portal frame. (b) Detail of
joint before and after deformation.

direction at the rim of the dome (Figure 1.8a). The horizontal component per unit length,
(N cos θ ), acts in the radial direction on the ring beam (Figure 1.8c) and produces a tensile hoop
force = rN cos θ , where r is the radius of the ring and θ is the angle between the meridional
tangent at the edge of the dome and the horizontal. The reaction of the structure (the dome
with its ring beam) is vertical and of magnitude (N sin θ =qr/2) per unit length of the periphery.
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q per unit area(a)

(b)

(c)

N is internal membrane
force/unit length of rim

R is reaction per unit
length of the periphery

Tensile hoop force
in ring = r N cos θ

Support reaction
per unit length
= N sin θ

R

r RR

R

N N
N cos θ

N sin θ 

NN

θ

Figure 1.8 Axisymmetrical concrete dome subjected to uniform downward load. (a) Reaction when
the dome is hinged or totally fixed at the rim. (b) Dome with a ring beam. (c) The ring beam
separated to show internal force components and reaction.

In addition to the membrane force N, the dome is commonly subjected to shear forces and
bending moments in the vicinity of the rim (much smaller than would exist in a plate covering
the same area). The shear and moment are not shown for simplicity of presentation.

Arches, cables and shells represent a more effective use of construction materials than beams.
This is because the main internal forces in arches, cables and shells are axial or membrane
forces, as opposed to shear force and bending moment. For this reason, cables, arches or shells
are commonly used when it is necessary to enclose large areas without intermediate columns, as
in stadiums and sports arenas. Examples are shown in Figures 1.9a and b. The comparisons in
Section 1.12 show that to cover the same span and carry the same load, a beam needs to have
much larger cross section than arches of the same material.

1.2.1 Cables and arches

A cable can carry loads, with the internal force axial tension, by taking the shape of a curve
or a polygon (funicular shape), whose geometry depends upon the load distribution. A cable
carrying a uniform gravity load of intensity q/unit length of horizontal projection (Figure 1.4a)
takes the shape of a second degree parabola, whose equation is:

h(x) = hC

[
4x(l − x)

l2

]
(1.1)

where h is the absolute value of the distance between the horizontal and the cable (or arch), hC

is the value of h at mid-span.
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(a)

(b)

Figure 1.9 Shell structures. (a) The “Saddle dome’’, Olympic ice stadium, Calgary, Canada. Hyperbolic
paraboloid shell consisting of precast concrete elements carried on a cable network (see
Prob. 24.9). (b) Sapporo Dome, Japan. Steel roof with stainless steel covering 53000 m2,
housing a natural turf soccer field that can be hovered and wheeled in and out of the
stadium.

This can be shown by considering the equilibrium of an elemental segment dx as shown. Sum
of the horizontal components or the vertical components of the forces on the segments is zero.
Thus, the absolute value, H of the horizontal component of the tensile force at any section of
the cable is constant; for the vertical components of the tensile forces N1 and N2 on either side
of the segment we can write:

qdx + H
[

dh
dx

+ d2h
dx2 dx

]
= H

(
dh
dx

)
(1.2)

d2h
dx2 = − q

H
(1.3)

Double integration and setting h = 0 at x = 0 and x = l; and setting h = hc at x = l/2 gives
Eq. 1.1 and the horizontal component of the tension at any section:

H = ql2

8hC
(1.4)
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When the load intensity is q̄ per unit length of the cable (e.g. the self-weight), the funicu-
lar follows the equation of a catenary (differing slightly from a parabola). With concentrated
gravity loads, the cable has a polygonal shape. Figure 1.4c shows the funicular polygon of two
concentrated loads 2P and P at third points. Two force triangles at B and C are drawn to graph-
ically give the tensions NAB, NBC and NCD. From the geometry of these figures, we show below
that the ratio of (hC/hB)= 4/5, and that this ratio depends upon the magnitudes of the applied
forces. We can also show that when the cable is subjected to equally-spaced concentrated loads,
each equal to P, the funicular polygon is composed of straight segments connecting points on a
parabola (see Prob. 1.9).

In the simplified analysis presented here, we assume that the total length of the cable is the
same, before and after the loading, and is equal to the sum of the lengths of AB, BC and CD,
and after loading, the applied forces 2P and P are situated at third points of the span. Thus, hB

and hC are the unknowns that define the funicular shape in Figure 1.4c.
By considering that for equilibrium the sum of the horizontal components of the forces at B is

equal to zero, and doing the same at C, we conclude that the absolute value, H of the horizontal
component is the same in all segments of the cable; thus, the vertical components are equal to
H multiplied by the slope of the segments. The sum of the vertical components of the forces at
B or at C is equal to zero. This gives:

2P − H
(

3hB

l

)
− H

[
3(hB − hC)

l

]
= 0

P + H
(

3(hB − hC)

l

)
− H

[
3hC

l

]
= 0 (1.5)

Solution for H and hC in terms of hB gives:

hC = 4
5

hB and H = Pl
1.8hB

(1.6)

The value of hB can be determined by equating the sum of the lengths of the cable segments to
the total initial length.

Figure 1.4b shows a parabolic arch (mirror image of the cable in Figure 1.4a) subjected to
uniform load q/unit length of horizontal projection. The triangle of the three forces on a segment
dx is shown, from which we see that the arch is subjected to axial compression. The horizontal
component of the axial compression at any section has a constant absolute value H, given by
Eq. 1.4.

Unlike the cable, the arch does not change shape when the distribution of load is varied.
Any load other than that shown in Figure 1.4b produces axial force, shear force and bending
moment. The most efficient use of material is achieved by avoiding the shear force and the
bending moment. Thus, in design of an arch we select its profile such that the major load
(usually the dead load) does not produce shear or bending.

It should be mentioned that in the above discussion, we have not considered the shortening of
the arch due to axial compression. This shortening has the effect of producing shear and bending
of small magnitudes in the arch in Figure 1.4b.

Cables intended to carry gravity loads are frequently prestressed (stretched between two fixed
points). Due to the initial tension combined with the self-weight, a cable will have a sag depending
upon the magnitudes of the initial tension and the weight. Subsequent application of a down-
ward concentrated load at any position produces displacements u and ν at the point of load
application, where u and ν are translations in the horizontal and vertical directions respectively.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Structural analysis modeling 11

Calculations of these displacements and the associated changes in tension, and in cable lengths,
are discussed in Chapter 24.

1.3 Load path

As indicated in the previous section, the primary function of any structure is the transfer of
loads, the final support being provided by the ground. Loads are generally categorized as dead
or live. Dead loads are fixed or permanent loads – loads that do not vary throughout the life
of the structure. Very often, the majority of the dead load derives from the self-weight of the
structure. In long-span bridges, the dead load constitutes the larger portion of the total gravity
load on the structure. Live loads and other transient loads represent the effects of occupancy or
use, traffic weight, environment, earthquakes, and support settlement.

One of the objectives of the analysis of a structure is to determine the internal forces in its
various elements. These internal forces result from the transfer of the loads from their points of
application to the foundations. Understanding load paths is important for two reasons: providing
a basis for the idealization of the structure for analysis purposes, as well as understanding the
results of the analysis. Virtually all civil engineering structures involve the transfer of loads,
applied to the structure, to the foundations, or some form of support.

A given structure may have different load paths for different applied loads. As an example, con-
sider the water tank supported by a tower that consists of four vertical trusses (Figure 1.10). The
weight of the tank and its contents is carried by the columns on the four corners (Figure 1.10b),
the arrows illustrating the transfer of the weight by compression in the four columns. However,
the wind load on the tank (Figure 1.10b) causes a horizontal force that must be transferred to
the supports (equally) by the two vertical trusses that are parallel to the wind direction. This
produces forces in the diagonal members, and also increases or decreases the axial forces in the
columns. The other two trusses (at right angles) will not contribute simultaneously to this load
path, but would become load paths if the wind direction changed 90◦.

Figure 1.11a represents a plane-frame idealization of a cable-stayed bridge. The frame is
composed of beam AB, rigidly connected to towers CD and EF. The beam is stayed by cables
that make it possible to span a greater distance. Figure 1.11c shows the deflected shape of the
frame due to traffic load on the main span. A typical cable is isolated in Figure 1.11c as a free
body; the arrows shown represent the forces exerted by the beam or the tower on the cable.
The cables are commonly pretensioned in construction; the arrows represent an increase in the
tension force due to the traffic load. Figure 1.11c shows the deflected shape due to traffic load
on the left exterior span.

Understanding load paths allows a considerable simplification in the subsequent analyses. It
is also an important component in the determination of the forces to be applied to a structure
being analyzed.

Consider the example of a bridge deck supported by two parallel trusses (Figures 1.6a and b).
The deck is supported on a series of transverse beams and longitudinal beams (stringers) that
eventually transfer the weight of the traffic to the trusses. Here, we want to examine how
that transfer occurs, and what it means for the various components of the bridge deck. These
components can then be analyzed and designed accordingly.

In a timber bridge deck, the deck beams are only capable of transferring the wheel loads along
their lengths to the supports provided by the stringers. The loading on the stringers will come
from their self-weight, the weight of the deck, and the wheel loads transferred to it. Each stringer
is only supported by the two adjacent floor beams, and can therefore only transfer the load to
these floor beams. These are then supported at the joints on the lower chord of the trusses.
We have selected here a system with a clear load path. The transfer of the load of the deck to
the truss will be less obvious if the wooden deck and stringers are replaced by a concrete slab.
The self-weight of the slab and the wheel loads are transferred in two directions to the trusses
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Foundation

(a) The trusses in the two far faces of the
     tank are not shown for clarity

(b) Typical truss in the two sides
     parallel to wind direction

Weight of
tank and
contents = W

H =
Wind force

Typical
corner
column

W/4

W/4

H/2

l

l/4

R1 R2

R3

R3ED

C

B

A

F

l

l

l

G

H

Figure 1.10 Load path example. (a) Water tower. (b) Load paths for gravity force and for wind force.

and the transverse beams (two-way slab action). However, this difference in load path is often
ignored in an analysis of the truss.

Understanding the load path is essential in design. As we have seen in the preceding section, the
downward load on the arch in Figure 1.4b is transferred as two inclined forces to the supports.
The foundation must be capable of resisting the gravity load on the structure and the outward
thrust (horizontal component of the reactions in reversed directions). Similarly, the path of the
gravity load on the dome in Figure 1.8b induces a horizontal outward thrust and a downward
force in the ring beam. The horizontal thrust is resisted by the hoop force in the ring beam, and
the structure needs only a vertical reaction component.

Some assessment of the load path is possible without a detailed analysis. One example of this
is how lateral loads are resisted in multistorey buildings (Figure 1.12). These buildings can be
erected as rigid frames, typically with columns and beams, in steel or concrete, connected in
a regular array represented by the skeleton shown in Figure 1.12a. The walls, which may be
connected to the columns and/or the floors, are treated as non-structural elements. The beams
carry a concrete slab or steel decking covered with concrete; with both systems, the floor can be
considered rigid when subjected to loads in its plane (in-plane forces). Thus, the horizontal wind
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A

D

C E

B

F

1

1

Elevation

(a)

(b)

(c) Typical free-body
diagram of a cable
in tension

Section
1–1

Plane of
cables

Closed
box

bars

Tower

Figure 1.11 Behavior of a cable-stayed bridge. (a) and (b) Elevation of plane frame idealization and
bridge cross section. (c) Deflected shape and forces in cables due to traffic load on interior
or exterior span.

load on the building will cause the floors to move horizontally as rigid bodies, causing all the
columns at each floor level to deflect equally. If the columns and beams in each two-dimensional
frame on grid lines A to D have the same dimensions, then all the frames will have the same
stiffness and any lateral wind load will be distributed equally (one quarter) to each frame. The
plane frame idealization of one frame shown in Figure 1.12b is all that is required for analysis.

If, however, the frames are different, then the wind load resisted by each frame will depend
on its stiffness. For example, consider the same structure with the two outer frames A and D,
containing shear walls (Figure 1.12c). Because plane frames A and D are much stiffer than plane
frames B and C, the stiffer frames will tend to “attract’’ or resist the major part of the wind load
on the structure (See Chapter 14).

Analysis of the plane frame shown in Figure 1.12b will give the internal forces in all the
members and the support reactions. These are the forces exerted by the foundations on the
column bases. Typically, at supports built-in (encastré) to the foundation, there will be ver-
tical, horizontal and moment reactions (Figure 1.12b). The horizontal reactions must add up to
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Grid lines
A

B
C

D

Wind load
W

For clarity, frames in the vertical planes through
grid lines A, B, C, F, G, H and I are not shown.

Typical frame on grid lines
A, B, C or D

up or
down

Shear wall

Frame on grid line
A or D

Reaction components
of a typical support

Forces
sum to
W/4

E

(a)

(b) (c)

F G H I E F G H I

E F G H I

Figure 1.12 Idealization of a building for analysis of the effects of wind load. (a) Space frame. (b) Plane
frame idealization. (c) Plane frame containing shear wall.

W/4, the wind load applied to this frame in the case considered. Also, the sum of the moments
of the applied forces and the reactions about any point must be zero.

However, the individual vertical reactions will not be zero: the vertical reactions at E and I
will be downward and upward respectively. We conclude from this discussion that considering
the load path helps to decide on the structural analysis model that can be used as an idealization
of the actual structure, the type of results that the analysis should give, and the requirements
that the answers must satisfy. Structural idealization is further discussed in Section 1.5.

1.4 Deflected shape

As we have noted in the previous section, deflections can play an important part in understanding
load paths. Moreover, understanding deflected shapes also aids in the interpretation of the results
of our analyses. In the very simplest case, if we walk across a simply-supported wooden plank
(Figure 1.13a), our weight will cause the plank to deflect noticeably. What is perhaps less obvious
is that the ends of the plank rotate – because of the simple supports at the ends, which provide
no restraint to rotation. A simply-supported beam usually has one hinged support and one roller
support. The roller support allows horizontal translation caused by the thermal expansion or
contraction of the beam.

If we now extend the beam to become a two-span continuous beam, ABC (Figure 1.13b), then
the deflected shape will change. The downward (positive) deflection that we feel under our feet
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(c)

(a) (b)

A

A

l/2 l/2

Wl/4
Wl/4

A
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D

B

B B

Bending moment 

Bending moment diagrams

Deflected shape

Point of 
inflection

Beam risesWeight
=  W

Weight
=  W

l

l

A'
B'A B

Points of 
inflection

Figure 1.13 Deflected shapes and bending moment diagrams. (a) Simple beam. (b) Continuous beam.
(c) Plane frame.

is accompanied by a negative deflection (rise) in the adjacent span. There will be a downward
reaction at A; so there must be some way of holding down the plank at A, or it will lift off the
support. The deflected shape has concave and convex parts; the point of inflection at which the
curvature changes sign corresponds to a point of zero bending moment. This is further discussed
in Sections 1.10 and 1.11.1.

Under the action of a horizontal load, the frame in Figure 1.13c will obviously deflect to the
right. The joints at A and B will also rotate as they translate sideways. Because the joint is rigid,
the angle between the column and beam remains a right angle and, therefore, the entire joint
must rotate. The beam and the columns must deflect with double curvature – the point between
the two curves in each member is a point of inflection. This point corresponds to a point of
zero bending moment. Deflected shapes are drawn throughout this book because they aid in the
understanding of how a given structure behaves.

It is important to recognize that the displacements experienced by structures are small when
compared to the dimensions of the structure, and we therefore exaggerate them when drawing
them. The deflected shape and the original shape of the structure are drawn on the same figure,
with the deflections drawn to a larger scale than the structure. Design guidelines suggest that
the maximum deflection of a simple beam should not exceed (span/300). The public would not
thank us for beams that deflect more than this. More discussion and examples of deflected shapes
are presented in Section 1.10.

1.5 Structural idealization

Structural idealization is the process in which an actual structure is represented by a simpler
model that can be analyzed. The model consists of elements whose force/displacement rela-
tionship is known, or can be generated, that are connected at joints (nodes). For the analysis
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of framed structures, the elements are one-dimensional bars, oriented in one-, two-, or three-
dimensional space. The joints can be rigid or hinged. For plates, membranes, shells and massive
structures (such as gravity dams), the elements are termed finite elements and may be one-, two-,
or three-dimensional, connected by nodes at the corners and/or at sides (Figure 16.1). In any
structural idealization, the loads must also be modeled, as must be the supports.

For analysis purposes, we draw the model as a free body and show by arrows a system of
forces in equilibrium. The system consists of the externally applied loads and the reactions.
Internal forces at a section can be shown and represented by pairs of opposite arrows; each pair
consists of forces of equal magnitude and opposite direction. See, as an example, Figure 1.10b.

Loads on the structural model produce translations and rotations of the nodes: these are
referred to as displacements. From these displacements, the internal forces and the support
reactions can be determined; this information can then be used in the design of the structure.

1.6 Framed structures

All structures are three-dimensional. However, for analysis purposes, we model many types of
structures as one-, two-, or three-dimensional skeletons composed of bars. Thus, an idealized
framed structure can be one-dimensional (a beam), two-dimensional (a plane frame or truss),
or three-dimensional (a space frame or truss, or a grid). The skeleton usually represents the
centroidal axes of the members; the reason for use of centroidal axis is given in Section 1.11.
The six types of structures are defined below.

Beam: The idealized structure is a straight line (the centroidal axis). A simple beam covers a
single span and has a hinged and a roller support. Commonly, a continuous beam covers more
than one span and has one support hinged or one end support built-in (encastré) and the remain-
ing supports are rollers. A straight line can be used to model beams, slabs, and composite
beam/slabs. Bridge superstructures are often modeled as straight lines, regardless of the shape

A B

Centroidal
axis

(a)

(b) Rectangular

O O

O O

OO
O

O

(f) Composite beam (g) Box girder (h) Structural steel

(c) I-Beam (d) T-Beam (e) Slab

Unit width

Figure 1.14 Beam idealization. (a) Interior span of a continuous beam. (b) to (h) Possible cross sections.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Structural analysis modeling 17

of their cross sections. Figure 1.14a illustrates beam AB that can be an idealization of structures
having, as examples, any of the cross sections in Figures 1.14b to h. For each cross section,
the centroidal principal axes are shown. All the applied loads, the reactions and the deflected
axis of the beam are in one plane through a centroidal principal axis. A structure for which
the loads are not applied through the centroidal principal axes must be idealized as a spatial
structure.

Plane frame: A plane frame consists of members, connected by rigid joints. Again, the cross
section of all members has a centroidal principal axis lying in one plane; all applied loads and
reactions are in the same plane. Simple and continuous beams are special cases of plane frames.
Thus, the computer program PLANEF (Appendix L) applies to plane frames and beams. Plane
frames are widely used as idealizations of structures such as industrial buildings, multistorey
buildings, and bridges. Figures 1.11a, b and c show a cable-stayed bridge and its idealization as
a plane frame. Figures 1.12a, b and c show a multistorey building and its idealization as a plane
frame for analysis of the effects of wind loads. Figure 1.15 shows a concrete bridge and a plane
frame idealization.

Plane truss: A plane truss is similar to a plane frame but all joints are assumed pin-connected,
and the loads are usually applied at the joints (still in the plane of the truss). Figures 1.6b and
12.20 are examples of plane truss idealizations of bridges; Figure 1.10b of a tower; and Figure 7.7
of a roof truss. Often, we do not draw circles at the joints (e.g. Figure 12.20), but the assump-
tion that the members are pin-connected is implied. Note the triangulated nature of trusses –
a requirement for their stability. The two assumptions of pin connections and forces applied at
joints mean that truss members are subjected only to axial forces, without shear force or bending
moment.

Space frame: Members and loads are now spatial (in three dimensions) with members connec-
ted by rigid joints. Most tall buildings are space frames – certainly if constructed in reinforced
concrete or steel. However, much simpler structures often have to be modeled as space frames,

Figure 1.15 Plane frame idealization of a concrete bridge.
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Figure 1.16 Space frame lacking symmetry, when analyzed for the effects of wind load in directions of
the shown grid lines.

particularly if the loads are out-of-plane, or the members or the structures lack symmetry. As
an example, the box-girder of Figure 1.14g must be idealized as a space frame if the bridge
is curved. The same box-girder bridge, even when straight, must be idealized as a space frame
when being analyzed for horizontal wind loads, or for load of traffic on a side lane. The building
in Figure 1.16, which is of the same type as that shown in Figure 1.12a, should be modeled as
a space frame because of the lack of symmetry, when the analysis is for the effect of wind load
in the direction of the shown grid lines.

Space Truss: This is like a plane truss, but with members and loads in three dimensions. All
joints are pin-connected. Space trusses are most commonly used in long-span roofs.

Grid: A grid is really a special case of a space frame, except that all the members are in one
plane and the loads are applied perpendicular to that plane. Figure 1.17a shows the top view
and sectional elevation of a concrete bridge deck having three simply-supported main girders
monolithically connected to three intermediate cross-girders. Traffic load will be transmitted to
the supports of all three main girders. The internal forces in all members can be determined
using the grid model of Figure 1.17b.

1.6.1 Computer programs

Appendix L includes descriptions of computer programs that can be used as companion to this
book. These include programs PLANEF, PLANET, SPACEF, SPACET and PLANEG for analysis
of plane frames, plane trusses, space frames, space trusses and plane grids respectively. The five
programs are available from a web site, whose address is given in the appendix. Use of these
programs is encouraged at an early stage of study.
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Sectional elevation

Top view

(a)

(b)

Figure 1.17 Idealization of a bridge deck as a grid. (a) Plan and sectional elevation of concrete bridge
deck. (b) Grid idealization.

1.7 Non-framed or continuous structures

Continuous systems, such as walls, slabs, shells and massive structures can be modeled using
finite elements (Figure 16.1). It is also possible to model the shear walls of Figure 1.12c as part
of a plane frame model (Chapter 14). We have seen how a strip or unit width of a one-way
slab can be modeled as a beam (Figure 1.14e). Bending moments and shear forces in two-way
slabs can also be obtained using a plane grid model. Solid slabs and their supporting columns
are sometimes modeled as plane frames.

Another type of modeling is used in Chapter 15 for the analysis of beams, circular cylindrical
shells, plates subjected to in-plane forces and plates in bending. This is through approximations
to the governing differential equations of equilibrium by finite differences.

1.8 Connections and support conditions

Much of the process of developing an appropriate representation of the actual structure relates to
the connections between members of the structure, and between the structure and its supports or
foundations. Like all of the process of structural modeling, this involves some approximations:
the actual connections are seldom as we model them.
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(a)
(b)

(c)

Welding

Figure 1.18 Connections. (a) Rigid connection of a corner column with slab and edge beams in a
concrete building. (b) Rigid connection of steel column to beam. (c) Pin-connected truss
members.

Most connections between frame members are modeled as rigid (Figure 1.7), implying no
relative rotation between the ends of members connected at a joint, or as pinned, implying
complete freedom of rotation between members connected at a joint. These represent the
two extremes of connections; in fact, most connections fall somewhere between these two
extremes.

Figures 1.18a and b show two rigid connections, in concrete and in steel construction respect-
ively. Figure 1.18c is a photograph of a pinned connection in an old steel truss. A rigid joint
transfers moment between the members connected to the joint, while the pinned joint does not
do so. In trusses, we assume in the analysis that the members are pin-connected although in mod-
ern practice most are constructed as rigid connections. With rigid joints, the members will be
subjected mainly to axial forces; but, in addition, there are bending moments that are frequently
ignored. The stress in the cross section of members is no longer uniform. To consider that the
members are rigidly connected at the joints, a plane truss or a space truss must be analyzed as
a plane frame or a space frame respectively. This will commonly require use of a computer. The
answers of Prob. 1.14 show a comparison of the results of analyses of a plane truss and a plane
frame having the same configuration.

Connections to foundations, or supports, must also be modeled in structural analysis. The
three common forms of supports for beams and plane frames are illustrated in Figure 1.19,
with the associated reaction components; the hinge and roller supports (Figures 1.19c and d)
are also used for plane trusses. A hinged support is sometimes shown as a pin-connection to a
rigid surface (Figure 1.19c). Figure 1.19a shows the displacement components at a typical joint,
and Figures 1.19b to d indicate the displacement components that are prevented, and those
that are free, at the support. The roller support (Figure 1.19d) is used when the structure must
accommodate axial expansion or contraction, usually due to thermal effects, but also due to
creep, shrinkage and prestressing effects.

In many cases, the actual form of support is different from the idealizations shown in
Figure 1.19. For example, short-span beams and trusses in buildings are often provided with no
specific support system at their ends. The absence of specific means of restraining end rotations
or axial displacements justifies their analysis as simply-supported ends.

Special supports (bearings) to ensure that translation or rotation can freely occur as assumed
in the analysis are commonly provided for longer spans (Figure 1.19e). A wide variety of bridge
bearings, which vary in complexity depending on the magnitude of the reactions and the allowed
displacements, is commercially available.
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Figure 1.19 Idealized supports for beams and plane frames. (a) Displacement components at a typical
joint. (b) Totally fixed (encastré). (c) Hinged (two alternatives). (d) Roller. (e) Hinged
bridge bearing.

1.9 Loads and load idealization

Several causes of stresses and deformations need to be considered in structural analysis. Gravity
load is the main cause. Examples of gravity loads are the weight of the structure, of non-structural
elements such as floor covering and partitions, of occupants, furniture, equipment, as well as
traffic and snow. Pressure of liquids, earth, granular materials and wind is another type of load.
Prestressing produces forces on concrete structures (see Appendix K).

We can idealize loads as a set of concentrated loads. The arrows shown on the truss nodes
in Figure 1.6b can represent the self-weight of the members and the weight of the deck and the
traffic load it carries. Alternatively, the analysis may consider load distribution over length or
over an area or a volume and defined by the load intensity (force/unit length or force/unit area
or force/ unit volume).

In many cases the deformations due to temperature variation cannot occur freely, causing
stresses, internal forces and reactions. This is briefly discussed in Section 1.9.1.

If one of the supports of a simple beam (Figure 1.20a) settles downward, the beam rotates as
a rigid body and no stress is developed. But if the beam is continuous over two or more spans,
a support settlement produces internal forces and reactions (Appendix E). Figure E-1 shows the
deflected shape, the reactions and bending moments over the supports due to settlement of an
interior support of a beam continuous over three spans.
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Figure 1.20 Deformation of a simple beam due to temperature change. (a) Deflected shape. (b) Cross
section and variation in a rise of temperature over its height. (c) Free change in shape of
a segment of unit length. (d) Effect of the temperature rise in part (b) on the beam with
ends encastré.

For some materials, such as concrete, a stress increment introduced and sustained thereafter
produces not only an immediate strain but also an additional strain developing gradually with
time. This additional strain is creep. Similar to thermal expansion or contraction, when creep is
restrained, stresses and internal forces develop. Analysis of the effects of creep, shrinkage and
temperature including the effect of cracking is discussed elsewhere.1

Ground motion in an earthquake produces dynamic motion of the structure causing significant
inertial forces. Analysis of the internal forces can be done by a dynamic computer analysis of
the idealized structure, subjected to a recorded ground motion. In lieu of the dynamic analysis,
codes allow a static analysis using equivalent lateral forces, commonly applied at floor levels.
Because these forces represent inertial effect, their values are proportional to the mass of the
structure commonly lumped at each floor level.

1.9.1 Thermal effects

Thermal expansion or contraction produces deformation, but no stress, when it can occur freely,
without restraint. This is the case of the simple beam in Figure 1.20a, subjected to temperature

1 See Ghali, A., Favre, R. and Elbadry, M., Concrete Structures: Stresses and Deformations, 3rd ed., Spon
Press, London, 2002, 608pp.
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rise varying linearly between Ttop at top fiber and Tbot at bottom fiber (Figure 1.20b). When
Ttop = Tbot = T, the beam elongates and the roller at B moves outward a distance equal to αTl;
where α is coefficient of thermal expansion and l is beam length. When Ttop �= Tbot the beam
will have constant free curvature:

ψfree = α(Tbot − Ttop)

h
(1.7)

Figure 1.20c shows the change in shape of a segment of unit length (with Ttop > Tbot). The
two sections at the limits of this length rotate relative to each other, and the angle ψfree is equal
to the curvature

ψfree = −d2y
dx2 (1.8)

where y is the deflection (positive when downward); x is the distance between the left-hand end
of the beam and any section. In the case considered, the beam deflects upwards as shown in
Figure 1.20a; the end rotations and the deflection at mid-span given in the figure can be checked
by integration of Eq. 1.8. The negative sign in Eq. 1.8 results from the directions chosen for the
axes and the common convention that sagging is associated with positive curvature.

When a beam continuous over two spans is subjected to the same rise of temperature as presen-
ted in Figure 1.20b, the upward deflection cannot occur freely; a downward reaction develops
at the intermediate support and the deflected shape of the beam is as shown in Figure 4.2c.

Restraint of thermal expansion can develop relatively high stresses. A uniform change in
temperature of T degrees in a beam with ends encastré develops a stress

σ = −αET (1.9)

where E is modulus of elasticity. For a concrete beam with E = 40GPa (5.8 × 106 psi), α =
10 × 10−6 per degree centigrade (6 × 10−6 per degree Fahrenheit), T = −15◦ C (−27◦ F), with
the minus sign indicating temperature drop, the stress is σ = 6MPa (940 psi). This tensile stress
can cause the concrete to crack; the restraint is then partially or fully removed and the thermal
stress drops. Analysis of the effect of temperature accounting for cracking requires nonlinear
analysis. Linear analysis of the effect of temperature is treated in Chapters 4 and 5. Shrinkage
or swelling can be treated in the same way as thermal contraction or expansion respectively.

We conclude the discussion on the effects of temperature and shrinkage (similar to settlement
of supports) by stating that these produce stresses and internal forces only in statically indeterm-
inate structures, such as continuous beams; no stresses or internal forces develop in statically
determinate structures, such as simple beams.

The topic of statical indeterminacy is discussed in more detail in Section 3.2. We should also
mention that a temperature rise that varies nonlinearly over the depth of section of the simple
beam in Figure 1.20a produces self-equilibrating stress; this means that the resultant of this stress
(the internal force) is nil (Section 6.9).

1.10 Stresses and deformations

Structures deform under the action of forces. The column of Figure 1.21a is acted on by forces P
and Q as shown. Figure 1.21b shows the deflected shape of the column. The applied forces cause
internal forces that are stress resultants. The resultants of stresses at any section are bending
moment, M, shear force, V and axial force, N. To show these internal forces, the structure must
be cut (Figure 1.21c). Now we have two free body diagrams, with the internal forces shown at
the location of the cut. Note that we must show the internal forces on both sides of the cut as
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(a) (b)

(c)

(d) (e)
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R3 = Ql

R2 = Ql

N = –Q M = Px v

A u

x

Px

θ
V = P

PlR1 = P

l

Figure 1.21 Deflected shape and internal forces in a column. (a) Elevation and cross section. (b) Deflec-
ted shape. (c) Cut to show internal force at a section. (d) Displacement components at the
tip. (e) Bending moment diagram.

pairs of arrows in opposite directions. Applying equilibrium equations to the upper free body
diagram (part AC), we get:

N = −Q; V = P; M = Px (1.10)

The same answers can be obtained by considering equilibrium of part DB. The sign convention
for the internal forces and their calculation is discussed in detail in Section 2.3. The above
equations tell us that N and V are constant throughout the height of the column, but M varies
linearly from top to bottom (Figure 1.21e). These internal forces are resultants of stresses that
produce strains. Each strain results in a form of deformation – in this case, axial, shear, and
bending (flexural). Generally, the first two are small in comparison to the flexural deformation.
For example, if the column is made of timber, 0.1 m (4 in.) square, and 3 m (10 ft) long, and the
two forces, P and Q, are each 1.00 kN (225 lb), then the displacement components at the top of
the column are (Figure 1.21d):

u = 0.11m (4.3 in.); ν = 30 × 10−6 m (0.0012 in.); θ = 0.054rad

These values are calculated by virtual work (Chapter 8) assuming the modulus of elasticity,
E=10GPa (1.145×106 psi) and the shear modulus, G=4GPa (0.6×106 psi). The displacement
component ν is the axial shortening of the column due to the axial force, N; u is the sidesway
at the top due to the shear force, V, and to the moment, M (the latter is generally much larger
than the former, in this case by a ratio of 1200 to 1); and θ is the angular rotation due to the
moment. A knowledge of deflections and the deflected shape aids us to understand the behavior
of the structure.

When we sketch deflected shapes, we generally consider only the bending deformation and, as
mentioned in Section 1.4, we show the deflections on a larger scale than the structure itself. Thus,
we show the deflected position A′ of the tip of the column at its original height A, indicating
that the change in length of the column is ignored (Figure 1.21b). For the same reason, we show
in the deflected shape in Figure 1.13c A and A′ at the same level, and likewise for B and B′.
Also, because we ignore the change of length of member AB, the distance AA

′
is shown the
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same as BB
′
. For the same reason, the length of member AB in Figure 1.21 does not change

and A moves on an arc of a circle to A′. But, because the deflections are small compared to the
member lengths, the displacement AA

′
is shown perpendicular to AB; in other words, the arc

of circle is shown as a straight line AA
′

perpendicular to the original direction of AB. This is
explained again in Section 7.2. When drawing the deflected shape of the frame in Prob. 1.1c,
the movement of node B should be shown perpendicular to AB (downward) and the movement
of C perpendicular to CD (upward).

We often draw diagrams showing the variations of M and V over the length. These are termed
bending moment and shear force diagrams. The sign convention for the bending moment dia-
gram is important. Bending or flexure produces tension on one face of the cross section, and
compression on the other. Examining the deflected shape of Figure 1.21b, it is not difficult to
imagine the tension on the left-hand side of the column, and, therefore, the bending moment dia-
gram is drawn on that (tension) side (Figure 1.21e). The axial force N and the bending moment
M produce a normal stress, tensile or compressive. Calculation of normal stresses is discussed
in the following section.

1.11 Normal stress

Figures 1.22a and b represent the elevation and cross section of a column subjected at the
top section to a distributed load of intensity p/unit area. The resultant of the load has the
components

N =
∫

pda Mx =
∫

py da My =
∫

pxda (1.11)

where N is normal force at the centroid of the the cross-sectional area; Mx and My are moments
about the centroidal axes x and y respectively. The positive-sign convention for N, Mx, and My is
shown in Figure 1.22; the reference point O is chosen at the centroid of the cross section. In the
deformed configuration, each cross section, originally plane, remains plane and normal to the
longitudinal centroidal axis of the member. This assumption, attributed to Bernoulli (17th–18th
century), is confirmed by experimental measurements. The stress and the strain are considered
positive for tension and elongation respectively.

(a)

(b)

(c)

σ

p/unit area

N
Tensile

Mx O

da

My

y

x

y

x

γy = ∂σ/∂x = E ψy 

σO

Figure 1.22 Normal stress distribution in a column cross section. Positive sign convention.
(a) Elevation. (b) Cross section. (c) Stress variation along the x axis.
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It can be assumed that any section away from the top remains plane after deformation. Thus,
considering a linearly elastic material with a modulus of elasticity E, the strain � and the stress
� at any point can be expressed as

�= �O + ψxy + ψyx � =�O + �xy + �yx (1.12)

where �O is the strain at the centroid O; �x =∂�/∂y is the curvature about the x axis; �y =∂�/∂x
is the curvature about the y axis; �O =E�O is the stress at O; �x =E�x =∂�/∂y; �y =E�y =∂�/∂x
(Figure 1.22c). Tensile stress is considered positive.

The stress resultants are

N =
∫
� da Mx =

∫
� y da My =

∫
� xda (1.13)

Substitution of Eq. 1.12 in Eq. 1.13 and solution of the resulting equations gives the parameters
�O, �x, and �y:

�o = N
a

�x = MxIy − MyIxy

IxIy − Ixy
2 �y = MyIx − MxIxy

Ix Iy − Ixy
2 (1.14)

Thus, the stress at any point (x, y) is

� = N
a

+
(

MxIy − MyIxy

IxIy − Ixy
2

)
y +

(
MyIx − MxIxy

IxIy − Ixy
2

)
x (1.15)

where a = ∫
da is the area of the cross section; Ix = ∫

y2 da is the second moment of area about
the x axis; Iy = ∫

x2 da is the second moment of area about the y axis; and Ixy = ∫
xy da is

the product of inertia. When x and y are centroidal principal axes, Ixy = 0 and Eq. 1.15 simply
becomes

� = N
a

+ Mx

Ix
y + My

Iy
x (1.16)

The derivation of Eq. 1.14 will involve the first moments of area about the x and y axes,
Bx = ∫ y da and By = ∫ x da; however, both terms vanish because the axes x and y are chosen to
pass through the centroid O.

1.11.1 Normal stresses in plane frames and beams

A plane frame is a structure whose members have their centroidal axes in one plane; the cross
sections of all members have a centroidal principal axis in this plane, in which all the forces and
the reactions lie. Figures 1.23a and b show a segment of unit length and the cross section of a
plane frame. A reference point O is chosen arbitrarily on a centroidal principal axis of the cross
section (in this case, a vertical axis of symmetry). The general case in Figure 1.22b becomes the
same as the case in Figure 1.23c when My is absent and M is used to mean Mx; the equations in
Section 1.11 apply when O is chosen at the centroid of the section and My, �y, �y, and Ixy are
set equal to zero. Because the case in Figure 1.23b is of frequent occurrence, we derive below
equations for the distributions of strain �, stress � and the curvature corresponding to the stress
resultants N and M (the internal axial force and bending moment), with the reference point
O not necessarily the centroid of the section. The positive sign conventions for N, M, and the
coordinate y of any fiber are indicated in Figure 1.23b.
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Unit length

(a) Elevation

(c) Strain

Centroid

Tension

(e)

(d) Stress

Neutral
axis

Curvature =

= =

=

dε
dy

dσ
εo σo

σ

ψ γ

y

dy

M y
I

O O

O

(b) Cross section

M
M

N

M
y

yN
(Tensile)

Reference
point

+

–

Figure 1.23 Normal stress and strain in a cross section of a beam. (a) Elevation of a segment of unit
length. Positive sign convention of N and M. (b) Cross section. (c) Strain diagram. (d)
Stress diagram. (e) Stress in a section subjected to M without N.

The two sections of the segment in Figure 1.23a are represented by vertical dashed lines before
deformation; after deformation, the sections are represented by the rotated solid straight lines.
The variations of the strain � and the stress � over the depth of the section shown in Figures 1.23c
and d are expressed as:

�= �O +�y � =�O + �y (1.17)

where �O and �O are, respectively, the strain and the stress at the reference point O; �= d�/dy
and �= d�/dy are the slopes of the strain and the stress diagrams. Here, the symbols � and �
stand for �x and �x in Section 1.11; �, of unit length−1, is the curvature in the vertical plane.

The resultants N and M of the stress � can be expressed by integration over the area of the
section:

N =
∫

� da M =
∫

� y da (1.18)
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Substitution of Eq. 1.17 in Eq. 1.18 gives:

N =�Oa + �B M =�OB + �I (1.19)

where

a =
∫

da B =
∫

y da I =
∫

y2 da (1.20)

a, B, and I are the area and its first and second moment about a horizontal axis through the
reference point O. Solution of Eq. 1.19 and substitution of Eq. 1.17 gives the parameters �O

and �, �O, and � that define the stress and the strain diagrams:

�o = IN − BM
aI − B2 �= −BN + aM

aI − B2 (1.21)

�o = IN − BM
E(aI − B2)

�= −BN + aM
E(aI − B2)

(1.22)

When O is at the centroid of the cross section, B = 0 and Eqs. 1.21 to 1.24 simplify to:

σo = N
a

;γ = M
I

(1.23)

εo = N
Ea

;ψ = M
EI

(1.24)

Substitution of Eq. 1.22 in Eq. 1.17 gives the stress at any fiber whose coordinate is y with
respect to an axis through the centroid:

σ = N
a

+ My
I

(1.25)

When a section is subjected to bending moment, without a normal force (Figure 1.23e), the
normal stress at any fiber is:

σ = My
I

(1.26)

with y measured downward from the centroidal axis and I is second moment of area about
the same axis. The normal stress is tensile and compressive at the fibers below and above the
centroid respectively. Thus, the neutral axis is a centroidal axis, only when N is zero. The bottom
fiber is subjected to tension when M is positive; but when M is negative the tension side is at the
top fiber.

We note that Eqs. 1.23 to 1.26 apply only with the reference axis through O being at
the centroid. We recall that framed structures are analyzed as a skeleton representing the
centroidal axes of the members (Section 1.6); this is to make possible use of the simpler
Eqs. 1.23 and 1.24 in lieu of Eqs. 1.21 to 1.22, which must be used when O is not at the
centroid.

1.11.2 Examples of deflected shapes and bending moment diagrams

The curvature ψ is the change in slope of the deflected shape per unit length. From Eq. 1.24,
it is seen that the curvature ψ is proportional to the bending moment M. Figure 1.24a shows
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+
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–
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Figure 1.24 Curvature, deflection and bending moment diagrams for beams. (a) Curvature and stress
due to bending moment. (b) to (e) Examples of deflected shapes and bending moment
diagrams.

segments of unit length subjected to positive and negative bending moments. The corresponding
stress distributions are shown in the same figures, from which it is seen that positive M produces
a concave curvature and tension at bottom fiber; negative M produces a convex curvature and
tension at top fiber.

Figure 1.24b shows the deflected shape and bending moment diagram for a beam. Without
calculation, we can sketch the deflected shape by intuition. The bending moment diagram can
then be drawn by following simple rules: at a free end, at an end supported by a hinged support
or roller and at an intermediate hinge, the bending moment is zero. The bending moment is also
zero at points of inflection, where the curvature changes from concave to convex. The bending
moment diagram is a straight line for any straight member not subjected to distributed load;
see parts AC, CB and BD in Figure 1.24b and parts BC and CD in Figure 1.24e. The bending
moment graph is a second degree parabola for a part of a member carrying a uniform transverse
load; see part AB in Figure 1.24e.



30 Structural analysis modeling

Throughout this book, we plot the ordinates of the bending moment diagram in a direction
perpendicular to the axis of the member and on the tension side. The hatching of the M-diagram
indicates the direction in which the ordinates are plotted. We can now verify that the M-diagram
in Figures 1.13a to c and 1.24b to e follow these rules.

We recall that in drawing the deflected shapes, we show only the bending deformation. Thus,
the members do not change in length. Because neither the columns nor the beam in Figure 1.24d,
BC, change length, joints B and C must remain at the same height and at the same horizontal
location (because of symmetry) and therefore only rotate. The deflected shape in Figure 1.24e
is discontinuous at the intermediate hinge B; thus, the slopes just to the left and just to the right
of the hinge are different.

Some of the ordinates that define the M-diagrams in Figures 1.13 and 1.24 are statically
indeterminate and thus require calculations. These are not given in the figures, only the statically
determinate values, such as Wl/4 and ql2/8 being shown; these represent the bending moment of
a simply-supported member of length l, carrying a transverse concentrated load W at its middle
or a uniformly distributed load of intensity q/unit length.

1.11.3 Deflected shapes and bending moment diagrams due to
temperature variation

The simple beam in Figure 1.20a subjected to temperature rise that varies linearly over its depth
deflects freely as shown in the figure. A constant curvature (concave), ψfree given by Eq. 1.7
occurs, with the bending moment equal to zero at all sections. When Ttop > Tbot , Eq. 1.7 gives
negative curvature (convex, Figure 1.20a). The simple beam is a statically determinate structure
in which the thermal expansion or contraction is unrestrained. The same temperature rise in
a beam with ends encastré produces reactions and a constant bending moment M = −EIψfree
(Figure 1.20d). This bending moment is positive, producing tension at bottom, and compression
at top fibers. The corresponding curvature (Eq. 1.26) is: ψ = M/(EI) = −ψfree. Thus, the net
curvature is zero and the beam does not deflect. The beam with totally fixed ends is a statically
indeterminate structure in which the thermal expansion or contraction is restrained.

We conclude from this discussion that the deflected shape due to temperature variation in
a statically indeterminate structure is the sum of the free deflection, in which the thermal
expansion or contraction is not restrained and the deflection due to restraining forces. The
deflected shape of the continuous beam in Figure 4.2c is the sum of the free deflected shape
in Figure 4.2b and the deflection of simple beam AC subjected to downward force at B. The
net deflected shape due to temperature cannot be used to draw the bending moment diagram;
thus, the points of inflection in the deflected shape in Figure 4.2c are not points of zero bending
moment.

1.12 Comparisons: beams, arches and trusses

The examples presented below compare the behaviour of different types of plane structures that
carry the same load and cover the same span (Figure 1.25). The structures considered are: a
simple beam, arches with and without ties and with different support conditions and a simply-
supported truss. The discussion will show that we can use a lighter structure by avoiding or
reducing bending moments.

Example 1.1: Load path comparisons: beam, arch and truss
Each of the five structures shown in Figures 1.25a to e carries a uniformly distributed
load of total value 480 kN (108 × 103 lb). This load is idealized as a set of equally spaced
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hc =
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Figure 1.25 Structures covering same span and carrying same load (Example 1.1). (a) Simple beam.
(b) Simply-supported arch. (c) Two-hinged arch. (d) Simply-supported arch with a tie. (e)
Truss.

concentrated forces as shown. The five structures transmit the same loads to the supports,
but produce different internal forces and different reactions. The objective of this example
is to study these differences.

The simple beam in Figure 1.25a, the simply-supported arch in Figure 1.25b, and the truss
in Figure 1.25e are statically determinate structures. But, the two arches in Figures 1.25c
and d are statically indeterminate to the first degree. Chapters 2 and 3 discuss the topic of
statical indeterminacy and explain the analysis of determinate and indeterminate structures.
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Here, we give and compare some significant results of the analysis, with the objective of
understanding the differences in the load paths, the internal forces, and the deformations in
the structural systems. Some details of the analyses are presented in Examples 2.11 and 4.5.

The analyses can be performed by the use of computer programs PLANEF (for structures
in Figures 1.25a to d) and PLANET (for the structure in Figure 1.25e); see Appendix L.
Use of the programs early in the study of this book is an encouraged option. Simple data
preparation (with explanation included in the appendix) is required for the use of the
computer programs.

The simple beam (Figure 1.25a) has a concrete rectangular section of height 1.2 m and
width 0.4 m (47 × 16 in.2). The arches in Figures 1.25b, c and d have a constant square
cross section of side 0.4 m (16 in.). The truss (Figure 1.25e) has steel members of cross-
sectional area 2 × 10−3 m2 (3.1 in.2). The moduli of elasticity of concrete and steel are 40
and 200 GPa respectively (5.8×106 and 29×106 psi). The analysis results discussed below
are for:

1. The mid-span deflections at node C in the five structures.
2. The horizontal displacement of the roller support A in the simply-supported arch in

Figure 1.25b.
3. The bending moment diagrams for the left-hand half of the simple beam and for the

arches (Figures 1.26a to d).
4. The forces in the members of the truss (Figure 1.26e; Figures 1.26a to e show also

reactions).

Table 1.1 gives the values of the bending moments at C, the horizontal displacement at
A and the vertical deflection at C.

Discussion of results

1. The mid-span bending moment and the deflection at C in the simple beam are
1440 kN-m (1050 × 103 lb-ft) and 0.037 m (1.5 in.) respectively. In the simply-supported
arch, the bending moment at mid-span is also equal to 1440 kN-m (1050×103 lb-ft). In the
same arch, the roller A moves outwards 0.851 m (33.5 in.) and the deflection at C is 1.02 m
(40.2 in.). These displacements are too high to be acceptable, indicating that a reduction
of the cross section, from 0.4 × 1.2m2 in the beam to 0.4 × 0.4m2 in the arch (16 × 47 to
16 × 16 in.2), is not feasible by only changing the beam to an arch.

2. When the horizontal displacement at A is prevented, by changing the roller to a hinge
(Figure 1.26c), the bending moment at C is reduced to almost zero, 2.5 kN-m (1.5 × 103

lb-ft) and the deflection at C to 0.002 m (0.08 in.). At the same time, axial compressive forces
are produced in the members of the arch. In addition to the vertical reaction components,
the two-hinged arch has horizontal reaction components pointing inwards.

3. The reductions in deflection and in bending moments achieved by replacing the roller at
A by a hinge can be partly achieved by a tie connecting the two supports. The amounts
of the reduction depend upon the cross-sectional area and the modulus of elasticity of the
tie. With the given data, the horizontal displacement at A is 0.021 m (0.83 in.) outwards;
the bending moment at C is 38 kN-m (28 × 103 lb-ft) and the deflection at C is 0.027 m
(1.1 in.).

4. The forces in the top and bottom chords of the truss are compressive and tensile respectively,
with absolute values approximately equal to the bending moment values in the simple beam
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M-diagram (kN-m)

M-diagram (kN-m)

M-diagram (kN-m)

M-diagram (kN-m)

Tensile force in tie = 351 kN

Forces in member (kN):
Positive means tenstion.
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Figure 1.26 Reactions and internal forces in the structures of Figure 1.24. Total load = 480 kN; span
= 24 m. (a) Simple beam. (b) Simply-supported arch. (c) Two-hinged arch. (d) Simply-
supported arch with a tie. (e) Truss.

(Figure 1.26a) divided by the height of the truss. The absolute value of the force in any
vertical member of the truss is almost the same as the absolute value of the shear at the
corresponding section of the simple beam.

5. The deflection at C in the truss is also small, 0.043 m (1.7 in.), compared to the structures
in Figures 1.25a and b. This is so because of the absence of bending moment, which is
generally the largest contributor to deflections in structures.
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Table 1.1 Bending Moments, Horizontal Displacements at A and Vertical Deflections at C in the Structures
in Figure 1.24.

System Figure Bending
moment at C
kN-m (lb-ft)

Horizontal
displacement at
A m (in.)

Vertical
deflection at C
m (in.)

Concrete simple beam 1.24a 1440 (1050 × 103) 0 0.037 (1.5)

Concrete simply-supported
arch

1.24b 1440 (1050 × 103) 0.851 (33.5) 1.02 (40.2)

Concrete two-hinged arch 1.24c 2.5 (1.5 × 103) 0 0.002 (0.08)

Concrete simply-supported
arch with a tie

1.24d 38 (28 × 103) 0.021 (0.83) 0.027 (1.1)

Steel truss 1.24e – 0.010 (0.41) 0.043 (1.7)

6. In Figure 1.25, a uniformly distributed load q = 20 kN-m (1385 lb-ft) is idealized as a
system of concentrated loads. To show that this idealization is satisfactory, we compare the
deflection and the bending moment at C and the shearing force at a section just to the right
of A in the simple beam (Figure 1.25a) when subjected to the actual distributed load or to
the idealized concentrated loads:

For the uniform load:

DC = 0.037 m (1.5 in.); MC = 1440kN-m (1050 × 103 lb-ft);

VAr = 240kN (54 × 103 lb)

For the concentrated load:

DC = 0.037 m (1.5 in.); MC = 1440kN-m (1050 × 103 lb-ft);

VAr = 200kN(45 × 103 lb)

We can see that the differences in results between the actual and the idealized loads are small and
would vanish as the spacing between the concentrated forces is reduced to zero. In the values
given above, there is no difference in Mc, and the difference in Dc does not appear with two
significant figures.

Example 1.2: Three-hinged, two-hinged, and totally fixed arches
Figure 1.24c and Example 1.1 contain data for a two-hinged arch. The reaction components
for this arch are given in Figure 1.26c. Figure 1.27a shows the corresponding results for the
same arch but with an intermediate hinge inserted at C; similarly, Figure 1.27c represents
the case for the same arch but with the hinged ends becoming encastré (totally fixed, i.e.
translation and rotations are prevented). The values given in Figure 1.27 are in terms of
load intensity q, span length l and the height of the arch at mid-span, hC = l/6.

The three-hinged arch in Figure 1.27a is statically determinate; this is discussed in
Chapter 2, Example 2.11. Here, we discuss the results of the analysis shown in the figure.
The bending moment at any section is equal to the sum of the moments of the forces
situated to the left-hand side of the section about that section. Thus, the bending moments
at A, D, E and C are:
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Figure 1.27 Arches with and without an intermediate hinge. Total load =ql (a) The arch in Figure 1.25c
with an intermediate hinge introduced at C. (b) Two-hinged arch. (c) Arch with ends
encastré.
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All the calculated M-values are zero and the only internal force in the arch members is
an axial force. This can be verified by the graphical construction shown on the right-hand
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Figure 1.28 Alternative three-hinged arches with zero M, due to a total load ql.

side of Figure 1.27a. This is a force polygon in which Oa[= ql2/(8hC)] represents the
horizontal reaction. ad is the resultant of the vertical forces to the left of D; ac those to the
left of E, and ab those to the left of C. The vectors Od, Oc and Ob represent the resultant
forces in segments AD, DE and EC respectively. It can be verified that the slopes of the
three force resultants are equal to the slopes of the corresponding arch segments. Thus, we
conclude that this arch is subjected only to axial compression, with the shear force V, and
the bending moment M equal to zero at all sections.

In fact, in setting this example the geometry of the arch axis is chosen such that V and M
are zero. This can be achieved by having the nodes of the arch situated on a second-degree
parabola, whose equation is:

h(x) = 4x(l − x)

l2 hC (1.27)
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where h(x) is the height at any section; x is the horizontal distance between A and any node;
hC is the height of the parabola at mid-span. We can verify that each of the three-hinged
arches in Figure 1.28, carrying a total load = ql, has a geometry that satisfies Eq. 1.27 and
has V and M equal to zero at all sections. For all the arches, the horizontal components of
the reactions are inward and equal to ql2/(8hc).

Elimination of the intermediate hinge at C (Figure 1.25c) results in a small change in
the horizontal components of the reactions at the ends, and V and M become nonzero.
However, the values of V and M in a two-hinged arch are small compared to the values in
a simply-supported beam carrying the same load (compare the ordinates of M-diagrams in
Figure 1.27b with ql2/8).

Similarly, elimination of the hinge at C, combined with making the ends at A and B
encastré, changes slightly the horizontal reaction component and produces moment com-
ponents of the support reactions (Figure 1.27c). Again, we can see that the ordinates of the
M-diagram in Figure 1.27c are small compared to the ordinates for the simply-supported
beam (Figure 1.26a). The values given in Figures 1.27b and c are calculated using the same
values of E, l, hC, q and cross-sectional area as in Example 1.1.

From the above discussion, we can see that arches in which the horizontal reactions
at the supports are prevented (or restrained) can transfer loads to the supports, devel-
oping small or zero bending moments. For this reason, arches are used to cover large
spans, requiring smaller cross sections than beams. The geometry of the axis of a three-
hinged arch can be selected such that V and M are zero. With the same geometry of
the axis, the intermediate hinge can be eliminated (to simplify the construction), res-
ulting in small bending and shear (much smaller than in a beam of the same span and
load).

The arches considered in this example are subjected to a uniform gravity load. We have
seen that the geometry of the arch axis can be selected such that the values of the shear-
ing force and bending moment are small or zero due to the uniform load, which can be
the major load on the structure. However, other load cases, such as wind pressure on
one half of the arch combined with suction on the other half, and non-uniform grav-
ity loads produce bending moments and shear forces that may have to be considered in
design.

1.13 Strut-and-tie models in reinforced concrete design

Steel bars in concrete resist tensile stresses after cracking while compressive stresses continue
to be resisted by concrete. Strut-and-tie models are plane (or occasionally space) trusses whose
members resist resultants of compressive and tensile stresses. Figure 1.29a is a strut-and-tie
model (a plane truss) idealizing a cracked simple beam, carrying uniformly distributed load, and
having rectangular cross section reinforced with longitudinal bars and stirrups (Figure 1.29b).
At a typical section n, the stress resultants in the beam are a shearing force V and a bending
moment M (Figure 1.29c). The strain and the stress distributions normal to the section are shown
in Figure 1.29d. The top horizontal member IJ of the truss carries a compressive force whose
absolute value = M/yCT , where yCT is the distance between the resultants of compressive and
tensile stresses; M is the bending moment at C or I. The vertical member IC carries a tensile force
equal to the shearing force V. The layout of a strut-and-tie model applies only for a specified
load. A member in which the force is known to be zero is often not drawn (e.g. no member is
shown connecting nodes G and H in Figure 1.29a); the struts and the ties are shown as dashed
and continuous lines respectively.
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Figure 1.29 Strut-and-tie models for the idealization of a cracked simply-supported beam. (a) Plane
truss idealization of the beam with rectangular cross section. Also elevation of a space
truss idealization of the beam with T-cross section. (b) Rectangular cross section of beam.
(c) Internal forces at section n. (d) Strain and stress distribution at n. (e) Cross section of
spatial truss idealization of a T-beam. (f) Top view of spatial truss.

If the simple beam considered above has a T-section (Figure 1.29e) and is subjected to the same
loading, it can be idealized as a space truss, the elevation and top views of which are shown
in Figures 1.29e and f respectively. Again, this space truss can become unstable with different
loading; e.g. a vertical load at any of nodes N, O, P, Q, R, or S would cause partial collapse.

1.13.1 B- and D-regions

The design of a reinforced concrete member whose length is large compared to its cross-sectional
dimensions is commonly based on Bernoulli’s assumption: a plane section before deformation
remains plane. The assumption permits the linear strain distribution shown in Figures 1.23c and
1.29d; also, for materials obeying Hooke’s law (Eq. 1.11), it permits the linear stress distribution
(Eq. 1.12) and the derivation of the remaining equations of Section 1.11. The validity of the
assumption for members of any material is proven experimentally at all load levels for their major
parts, referred to as B-regions, where B stands for “Bernoulli’’. The assumption is not valid at
D-regions, where D stands for “disturbance’’ or “discontinuity’’ regions, e.g. at concentrated
loads or reactions, at sudden changes of cross sections, and at openings. The major use of the
strut-and-tie models is in the design and the detailing of the reinforcement in the D-regions. The
design of the B-regions is mainly done by code equations (some of which are based on truss
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idealization), without the need to analyze strut-and-tie models. Figure 1.30 shows examples of
strut-and-tie models for D-regions representing: (a) and (b) a wall subjected, respectively, to a
uniform load and to a concentrated load; (c) a member end with anchorage of a prestressing
tendon; (d) a connection of a column and a beam; (e) a tall wall supporting an eccentric load;
(f) a beam with a sudden change in depth adjacent to a support; (g) a corbel; and (h) a pile cap
(spatial model).

In each application, the strut-and-tie model is an isolated part of a structure subjected, at
its boundaries, to a self-equilibrated set of forces of known magnitudes and distributions. The
models in Figure 1.30 are statically determinate; the forces in the members can be determined
without the need of knowing the Ea values (the axial rigidities) of the members. The analysis
gives the forces in the ties and hence determines the cross-sectional area of the steel bars for a
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Figure 1.30 Strut-and-tie model applications for: (a) and (b) wall carrying uniform or concentrated
load; (c) anchorage of a prestressing tendon; (d) connection of a column with a beam;
(e) tall wall supporting a column; (f) sudden change in depth of a beam adjacent to its
support; (g) corbel; (h) spatial strut-and-tie model for a pile cap.
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specified stress. The struts and ties meet at nodes, whose sizes must satisfy empirical rules to
ensure that the forces of the struts and the ties do not produce crushing of concrete or failure of
the anchorage of the ties.

Example 1.3: Strut-and-tie model for a wall supporting an eccentric load
The wall in Figure 1.30e, of thickness b, is subjected to the eccentric load P at its top. Find
the forces in the members of the strut-and-tie model shown.

The strain and stress distributions at section AB can be assumed linear, because the section
is far from the D-region. Equation 1.25 gives the stress distribution shown in Figure 1.30e,
which is statically equivalent to the four vertical forces shown at AB. It can be verified that
the forces shown on the figure maintain equilibrium of each node.

It is noted that the truss is stable only with the set of forces considered. The trapezoidal
part CDEF is a mechanism that can be made stable by adding a member EC (or DF);
the force in the added member would be nil and the pattern of member forces would be
unchanged. The distribution of stress at section AB helps in the layout of the members
of the strut-and-tie model. Determination of the stress distribution is not needed in this
example because the layout of the strut-and-tie model is given.

1.13.2 Statically indeterminate strut-and-tie models

Analysis of a strut-and-tie model gives a system of forces in equilibrium, without consideration
of compatibility. The forces are used in a plastic design that predicts the ultimate strength of the
structure and verifies that it is not exceeded by the factored load. With statically determinate
models (e.g. the models in Figure 1.30) the members are drawn as centerlines; the axial rigidity,
Ea of the members is not needed in the analyses of the forces that they resist. The value of Ea for
each member has to be assumed when the analysis is for a statically indeterminate strut-and-tie
model. It is also possible to analyze and superimpose the member forces of two or more statically
determinate models to represent an indeterminate model. Each determinate model carries a part
of the applied loads.

The indeterminate truss in Figure 1.31a can be treated as a combination of two determinate
trusses, one composed of members A and B (Figure 1.31b) and the other composed of members
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Figure 1.31 Statically indeterminate strut-and-tie model, (a) treated as a combination of two determ-
inate trusses (b) and (c).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Structural analysis modeling 41

A and C (Figure 1.31c). If we assume that the first and the second trusses carry 0.4P and 0.6P
respectively, the forces in the members in the first truss will be NA = 0.8P; NB =−0.89P; in the
second truss, NA =0.6P; NC =−0.85P. Superposition of forces gives: NA =1.4P; NB =−0.89P;
NC = −0.85P (Figure 1.31a). The solution in Figure 1.31a satisfies equilibrium but does not
satisfy the compatibility required in elastic analysis of structures; the loaded node in the trusses
in Figures 1.31b and c exhibits non-compatible translations.

The statically indeterminate spatial strut-and-tie model shown in elevation and top view in
Figures 1.29e and f respectively can be analyzed by summing up the statically determinate forces
in the spatial model in absence of members HI, IJ, JK and KL to the forces in a plane model
composed only of the members shown in Figure 1.29a; the applied load has to be partitioned
on the two models (see Prob. 1.16).

Plastic analysis of strength of elastic-perfectly plastic materials is permissible without consid-
ering compatibility. However, because plastic deformation of concrete is limited, strut-and-tie
models that excessively deviate from elastic stress distribution may give overestimation of the
strength.

Elastic finite-element analysis (Chapter 16) of a D-region can indicate the directions of prin-
cipal compressive and principal tensile stresses. These should be the approximate directions
of the struts and the ties respectively, in the strut-and-tie models. However, an elastic analysis
may be needed only in exceptional cases. The layout of the struts and ties for D-regions of fre-
quent occurrence (e.g. the models in Figure 1.30) and guides on the choice of the models and
reinforcement details are available.2

1.14 Structural design

Structural analysis gives the deformations, the internal forces, and the reactions that are needed
in structural design. The loads that we consider are the probable load specified by codes or
assumed by the designer. The members, their connections, and their supports are then designed
following code requirements specifying minimum strength or maximum allowable deformations;
these components must have a resistance (strength) that exceeds the load effect. Because of the
variability of material strength or the differences between the actual dimensions from those
specified by the designer, strength-reduction factors (also called “resistance factors’’) less than
1.0 apply to the computed strength. The loads that the structure must carry are also variables.
Thus, load factors greater than 1.0 are applied to the expected loads. Codes specify values of the
strength reduction and the load factors to account for some of the uncertainties; the difference
between a factor and 1.0 depends upon the probable variance of the actual values from the
design values. The calculations that we use for member resistance and for structural analysis are
based on simplifying assumptions that are uncertain.

Thus, because of the uncertainties, it is not possible to achieve zero probability of failure. In
design codes, the resistance and the load factors are based on statistical models that assume that
the chance of a combination of understrength and overload that produces collapse, or failure
that the structure performs as required, is at the predicted target level.

The structural safety, the ability to perform as required, can be measured by the reliability
analysis and the reliability index, as discussed in Chapter 24.

2 Schlaich, J., Schäefer, K. and Jennewein, M., “Toward a Consistent Design of Structural Concrete,’’
J. Prestressed Concrete Inst., 32(3) (May–June 1987), pp. 74–150.
Schlaich. J. and Schäefer, K., “Design and Detailing of Structural Concrete Using Strut-and-Tie Models,’’
Struct. Engineer, 69(6) (March 1991), 13pp.
MacGregor, J. G. and Wight, J. K., Reinforced Concrete: Mechanics and Design, 4th ed., Prentice Hall,
Upper Saddle River, New Jersey, 2005, 1132pp.
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1.15 General

In presenting some of the concepts, it has been necessary to discuss above, without much detail,
some of the subjects covered in the following chapters. These include static indeterminacy of
structures and calculation of the reactions and internal forces in statically determinate structures.
Chapter 2 deals with the analysis of statically determinate structures. After studying Chapter 2,
it may be beneficial to review parts of Chapter 1 and attempt some of its problems, if not done
so earlier.

Problems

1.1 Sketch the deflected shape and the bending moment diagram for the structures shown. In
the answers at the back of the book, the axial and shear deformations are ignored and
the second moment of area, I is considered constant for each structure; the rotations and
member end moments are considered positive when clockwise; u and ν are translations
horizontal to the right and downward respectively.
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1.2 Apply the requirements of Prob. 1.1 to the frame in Figure 1.13c subjected to a downward
settlement δ of support D, with no load applied.

1.3 A rectangular section of width b and height h is subjected to a normal tensile force, N,
at the middle of the top side. Find the stress distribution by the use of Eq. 1.13, with the
reference point at the top fiber. Verify the answer by changing the reference point to the
centroid.

1.4 Find the forces in the members of the water tower shown in Figure 1.10b due to a wind
load H.

1.5 For the beam in Figure 1.20a verify that the deflection at mid-span is y =ψfreel2/8 and the
rotations at A and B are equal to (dy/dx)A =ψfreel/2=−(dy/dx)B; where ψfree is given by
Eq. 1.7.

1.6 For the continuous beam in Figure 4.2, what is the interior support reaction due to tem-
perature gradient as shown. Express the answer in terms of the curvature ψfree given by
Eq. 1.7. Assume that the total length of the beam is 2l, the intermediate support is at the
middle, and EI = constant.
Hint: The reaction is the force R that will eliminate the deflection at the intermediate
support; Appendix B gives the deflection due to R.

1.7 Select the dimensions h1 and h2 such that the three-hinged arch shown has no bending
moment or shear force at all sections.

A

D

l/3 l/3 l/3

h1
hC

hC = l
3h2

P
C E

2P

B

Prob. 1.7

1.8 Consider the parabolic three-hinged arch in Figure 1.27a subjected to a concentrated down-
ward load P at x= l/4. Calculate the bending moment at this section and the shearing force
just to the right and just to the left of the same section. Also, determine the bending moment
value at x = 3l/4 and sketch the bending moment diagram.

1.9 The figure shows a cable carrying equally spaced downward loads, P. Verify that the cable
takes the shape of a funicular polygon with hD/hC = 0.75. What are the horizontal and
vertical components of the tensile force in each straight part of the cable?

1.10 Show that when the number of equal forces applied on the cable in Prob. 1.9 is n, spaced
equally at l/(n+1), the cable will have the shape of a funicular polygon joining points on a
parabola (Eq. 1.1). Show that, in any straight part of the cable, the horizontal component
of the tension in the cable will be equal to Pl(n + 1)/(8hC); where hC is the depth of the
parabola at the center.

1.11 Control of drift of a portal frame: Use the computer program PLANEF (Appendix L) to
compare the horizontal displacement at B and the moments at the ends of member AB
in the portal frame in (a), without bracing and with bracing as shown in (b) and (c).
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l/4
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Prob. 1.9

All members have hollow square sections; the section properties for members AB, BC
and CD are indicated in (d); the properties of the bracing members are indicated in (e).
Enter l =1, P =1 and E=1; give the displacement in terms of Pl3/(EI)AB and the bending
moment in terms of Pl. Alternatively, use SI or Imperial units as indicated in Probs. 1.12
or 1.13 respectively.
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l
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A D
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P B C
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0.75 l

l

Wall thickness =

(d) Cross section of
      AB, BC & CD

(e) Cross section of
      bracing members

a = 250 × 10–6 l2

I = 104 × 10–9 l4
a = 250 × 10–6 l2

I = 13 × 10–9 l4

800
l

l/20

l/20
l/40

l/40

Wall thickness =
800

l

Prob. 1.11 to 14

1.12 SI units. Solve Prob. 1.11 with l = 8m, P = 36 × 103 N and E = 200GPa.
1.13 Imperial units. Solve Prob. 1.11 with l = 320 in., P = 8000 lb and E = 30 × 106 lb/in.2.
1.14 Use the computer program PLANET to find the horizontal displacement at B and the

axial forces in the members treating the structure of Prob. 1.11 part (b) as a plane truss.
Compare with the following results obtained by treating the structure as a plane frame:
Horizontal deflection at B = 0.968 × 10−3Pl3/(EI)AB; {NAB,NBC,NCD,NAC,NBD} =
P{0.411,−0.447,−0.334,0.542,−0.671}.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Structural analysis modeling 45

1.15 Find the forces in the spatial strut-and-tie model shown in elevation in Figure 1.29a and
in top view in Figure 1.29f. Omit or assume to be zero forces in the members HI, IJ, JK,
and KL.

1.16 Find the forces in the statically indeterminate spatial strut-and-tie model shown in elevation
in Figure 1.29a and in top view in Figure 1.29f. Solve the problem by the superposition of
the forces in the statically determinate space truss of Prob. 1.15 carrying 50 percent of the
load and a statically determinate plane truss shown in Figure 1.29a carrying the remainder
of the load.



Chapter 2

Statically determinate structures

2.1 Introduction

A large part of this book is devoted to the modern methods of analysis of framed struc-
tures, that is, structures consisting of members which are long in comparison to their cross
section. Typical framed structures are beams, grids, plane and space frames or trusses (see
Figure 2.1). Other structures, such as walls and slabs, are considered in Chapters 15, 16, 17
and 19.

In all cases, we deal with structures in which displacements – translation or rotation of any
section – vary linearly with the applied forces. In other words, any increment in displacement
is proportional to the force causing it. All deformations are assumed to be small, so that the
resulting displacements do not significantly affect the geometry of the structure and hence do
not alter the forces in the members. Under such conditions, stresses, strains, and displacements
due to different actions can be added using the principle of superposition; this topic is dealt
with in Section 3.6. The majority of actual structures are designed so as to undergo only small
deformations and they deform linearly. This is the case with metal structures; the material obeys
Hooke’s law; concrete structures are also usually assumed to deform linearly. We are referring, of
course, to behavior under working loads, that is, to elastic analysis; plastic analysis is considered
in Chapters 18 and 19.

It is, however, possible for a straight structural member made of a material obeying Hooke’s
law to deform nonlinearly when the member is subjected to a lateral load and to a large axial
force. This topic is dealt with in Chapters 13 and 24. Chapter 24 also discusses nonlinear analysis
when the material does not obey Hooke’s law.

Although statical indeterminacy will be dealt with extensively in the succeeding chapters, it is
important at this stage to recognize the fundamental difference between statically determinate
and indeterminate (hyperstatic) structures, in that the forces in the latter cannot be found from
the equations of static equilibrium alone: a knowledge of some geometric conditions under load
is also required.

The analysis of statically indeterminate structures generally requires the solution of linear
simultaneous equations. The number of equations depends on the method of analysis. Some
methods avoid simultaneous equations by using iterative or successive correction techniques in
order to reduce the amount of computation, and are suitable when the calculations are made by
hand or by a hand-held or small desk calculator.

For large and complicated structures hand computation is often impracticable, and a com-
puter has to be used. Its advent has shifted the emphasis from easy problem solution to efficient
problem formulation: using matrices and matrix algebra, a large quantity of information can be
organized and manipulated in a compact form. For this reason, in many cases, equations in this
book are written in matrix form. Review of chosen matrix operations is presented in Appendix A.
In the text, the basic computer methods are discussed but details of programming are not
given.
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(a) (b)

(d)
(c)

(f)

(h)

(e)

(g)

Figure 2.1 Examples of framed structures. (a) Continuous beam. (b) and (c) Plane trusses. (d) and
(e) Plane frames. (f) Space frame. (g) Space truss. (h) Horizontal grid subjected to vertical
loads.

We should emphasize that the hand methods of solution must not be neglected. They are of
value not only when a computer is not available but also for preliminary calculations and for
checking of computer results.

The remaining sections of this chapter are concerned with the analysis of statically determinate
structures.
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2.2 Equilibrium of a body

Figure 2.2a represents a body subjected to forces F1, F2, . . ., Fn in space. The word force in
this context means either an action of a concentrated load or a couple (a moment); in the latter
case the moment is represented by a double-headed arrow.1 A typical force Fi acting at point
(xi, yi, zi) is shown in Figure 2.2b using a right-handed system2 of orthogonal axes x, y, and z.
Components of Fi in the direction of the force axes are

Fix = Fiλix Fiy = Fiλiy Fiz = Fiλiz (2.1)

where Fi is force magnitude; λix, λiy, and λiz are called direction cosines of the force Fi; they are
equal to the cosine of the angles α, β and γ between the force and the positive x, y and z directions
respectively. Note that the components Fix, Fiy and Fiz do not depend upon the position of the
point of application of Fi. If the length of iD equal to the magnitude of Fi, projections of iD on
the x, y and z directions represent the magnitudes of the components Fix, Fiy, and Fiz.

The moment of a concentrated load Fi about axes x, y, and z (Figure 2.2b) is equal to the sum
of moments of the components Fix, Fiy and Fiz; thus

Mix = Fizyi − Fiyzi Miy = Fixzi − Fizxi Miz = Fiyxi − Fixyi (2.2)

Note that a component in the direction of one of the axes, say x, produces no moment
about that axis (x axis). The positive sign convention for moments used in Eq. 2.2 is shown
in Figure 2.2b. Naturally, Eq. 2.2 applies only when Fi represents a concentrated load, not a

y

z

(a) (b)

F1

Fn

F2
My

Mz

Mx

Fix

A

Fiy

Fi

Fiz
C

D

I(xi, yi, zi)

x
z

B β α
γ

O
y

F...

x

Figure 2.2 Force system and force components. (a) Body subjected to forces in space. (b) Components
of a typical force and positive sign convention for Mx, My and Mz.

1 All through this text, a couple (or rotation) is indicated in planar structures by an arrow in the form of
an arc of a circle (see, for example, Figures 3.1 and 3.3). In three-dimensional structures, a couple (or
rotation) is indicated by a double-headed arrow. The direction of the couple is that of the rotation of a right-
hand screw progressing in the direction of the arrow. This convention should be well understood at this
stage.

2 In a right-handed system, directions of orthogonal axes x and y can be chosen arbitrarily, but the direction
of the z axis will be that of the advance of a right-handed screw turned through the angle from x axis to
y axis. A right-handed system of axes is used throughout this text, for example, see Figures 2.2a and 2.3a.
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moment. When Fi represents a moment (e.g. F2 in Figure 2.2a), Eq. 2.1 can be used to determine
three moment components to be represented by double-headed arrows in the x, y, and z directions
(not shown in figure).

The resultant of a system of forces in space has six components, determined by summing the
components of individual forces, e.g.

Fx resultant =
n∑

i=1

Fix Mx resultant =
n∑

i=1

Mix (2.3)

For a body in equilibrium, components of the resultant in the x, y, and z directions must
vanish, so that the following equations apply:

�Fx = 0 �Fy = 0 �Fz = 0
�Mx = 0 �My = 0 �Mz = 0

}
(2.4)

The summation in these equations is for all the components of the forces and of the moments
about each of the three axes. Thus, for a body subjected to forces in three dimensions, six
equations of static equilibrium can be written. When all the forces acting on the free body are
in one plane, only three of the six equations of statics are meaningful. For instance, when the
forces act in the x-y plane, these equations are

�Fx = 0 �Fy = 0 �Mz = 0 (2.5)

When a structure in equilibrium is composed of several members, the equations of statics
must be satisfied when applied on the structure as a whole. Each member, joint or portion of
the structure is also in equilibrium and the equations of statics must also be satisfied.

The equilibrium Eqs. 2.4 and 2.5 can be used to determine reaction components or internal
forces, provided that the number of unknowns does not exceed the number of equations. In
trusses with pin-connected members and forces applied only at the joints, the members are sub-
jected to axial forces only; thus, for a truss joint, equations expressing equilibrium of moments
included in Eqs. 2.4 and 2.5 are trivial, but they can be applied to a truss part to determine
member forces (see Example 2.5).

Example 2.1: Reactions for a spatial body: a cantilever
The prismatic cantilever in Figure 2.3a is subjected, in the plane of cross section at the end,
to forces F1 =P, F2 =2Pb, as shown. Determine components at O of the resultant reaction
at the fixed end; point O is center of the cross section.

Assume positive directions of reaction components the same as those of x, y, and z axes.
Coordinates of point of application of F1 are (3b, 0.5b, −0.75b). Direction cosines of
F1 are

{λ1x,λ1y,λ1z} = {0,0.5,0.866}

Application of Eqs. 2.1 and 2.2 gives

{F1x,F1y, F1z} = P{0,0.5,0.866}⎧⎨
⎩

M1x

M1y

M1z

⎫⎬
⎭= Pb

⎧⎨
⎩

0.866 × 0.5 − 0.5 × (−0.75)

−0.866 × 3
0.5 × 3

⎫⎬
⎭= Pb

⎧⎨
⎩

0.808
−2.598

1.500

⎫⎬
⎭
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Figure 2.3 Examples 2.1 to 2.5 of uses of equilibrium equations. (a) Space cantilever. (b) Joint of space
truss. (c) Plane frame. (d) Joint of a plane frame. (e) Plane truss. (f) Part of plane truss.
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The applied moment F2 has only one component: M2y =−2Pb. The equilibrium Eqs. 2.4
give components of the reaction at O:

{Fox, Foy, Foz} = P{0,−0.5,−0.866}
{Mox, Moy, Moz} = Pb{−0.808,4.598,−1.5}

Note that the reactions would not change if the double-headed arrow, representing the
moment F2 in Figure 2.3a, is moved to another position without change in direction.

Example 2.2: Equilibrium of a node of a space truss
Figure 2.3b represents the top view and elevation of joint O connecting five members in a
space truss. The joint is subjected to a downward force 2P as shown. Assuming that the
forces in members 4 and 5 are F4 =2P, F5 =−P, what are the forces in the other members?

An axial force in a member is considered positive when tensile. In Figure 2.3b the forces
in the five members are shown in positive directions (pointing away from the joint). The
arrows thus represent the effect of members on the joint. Magnitudes and direction cosines
of the forces at the joint are

Force number 1 2 3 4 5 External force

Force magnitude F1 F2 F3 2P −P 2P

λx 0
3√
38

−3√
38

−1 1 0

λy
−3√
34

2√
38

2√
38

0 0 0

λz
5√
34

5√
38

5√
38

0 0 1

Direction cosines for any force, say F3, are equal to the length of projections on x,
y, and z directions of an arrow pointing from O to D divided by the length OD. The
appropriate sign must be noted; for example, λx for F3 is negative because moving from O
to D represents an advance in the negative x direction.

Only three equations of equilibrium can be written for joint O

�Fx = 0 �Fy = 0 �Fz = 0

Substitution in Eq. 2.1 of the values in the table above gives

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
3√
38

− 3√
38

− 3√
34

2√
38

2√
38

5√
34

5√
38

5√
38

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎨
⎩

F1

F2

F3

⎫⎬
⎭= P

⎡
⎣ 3

0
−2

⎤
⎦
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The right-hand side of this equation is equal to minus the sum of the components of the
externally applied force at O and the components of the known member forces F4 and F5.
The solution is

{F1,F2,F3} = P{−0.9330,2.3425,−3.8219}

The member forces or the reactions obtained from any source can be verified by
considering joint equilibrium, as done above. As an example, we verify below the
equilibrium of node D of the space truss in Prob. 2.2. Given: forces in members DA and
DB are: {NDA, NDB} = {−4.70,−3.14}P; reaction components at D are: {Rx,Ry,Rz}D =
{−1.78,0.61,−7.39}P.

⎡
⎣
⎧⎨
⎩
λx
λy
λz

⎫⎬
⎭

DA

⎧⎨
⎩
λx
λy
λz

⎫⎬
⎭

DB

⎤
⎦{NDA

NDB

}
= −

⎧⎨
⎩

Rx
Ry
Rz

⎫⎬
⎭

D

;
1

2.121

⎡
⎣−0.683 −0.183
−0.183 0.683
−2.000 −2.000

⎤
⎦{−4.70

−3.14

}
P

= −
⎧⎨
⎩
−1.78

0.61
−7.39

⎫⎬
⎭P

Example 2.3: Reactions for a plane frame
Determine the reaction components for the plane frame shown in Figure 2.3c.

Select x, y and z axes as shown and apply Eqs. 2.5:

�Fx = 0 R1 + 2P = 0

�Mz = 0 − R1b + R2(5b) − P(5b) − 4P(2b) + 2P(b) = 0

�Fy = 0 − R2 − R3 + P + 4P = 0

The first of the above three equations gives the value of R1, which, when substituted in
the second equation, allows R2 to be determined. Substitution of R2 in the third equation
gives R3. The answers are: R1 = −2P; R2 = 1.8P; R3 = 3.2P.

It is good practice to check the answers before using them in design or in further analysis.
In this problem, we can verify that �Mz =0 with the z axis at a different point, e.g. point A.
Note that this does not give a fourth equation which could be used to determine a fourth
unknown; this is so because the fourth equation can be derived from the above three.

Example 2.4: Equilibrium of a joint of a plane frame
Figure 2.3d represents a free body diagram of a joint of a plane frame (e.g. joint C of the
frame in Figure 2.3c). The arrows represent the forces exerted by the members on the joint.
The forces at sections just to the left and just below the joint C are given. Use equilibrium
equations to determine unknown internal forces N, V , and M representing normal force,
shearing force and bending moment at the section just to the right of C. (Diagrams plotting
variation of N, V , and M over the length of members of plane frames are discussed in
Section 2.3, but here we determine internal forces in only one section.)
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Equilibrium Eqs. 2.5 apply:

�Fx = 0 N + 0.716P
(

1√
5

)
+ 2.594P

(−2√
5

)
= 0

�Fy = 0 V + P + 2.594P
(−1√

5

)
+ 0.716P

(−2√
5

)
= 0

�Mz = 0 − M + 5.8Pb − Pb = 0

This gives N = 2P; V = 0.8P; M = 4.8Pb.

Example 2.5: Forces in members of a plane truss
Find the forces in members 1, 2 and 3 of the plane truss shown in Figure 2.3e by application
of equilibrium Eqs. 2.5 to one part of the structure to the right or to the left of section n−n.

First, we determine the reactions by equilibrium Eqs. 2.5 applied to all external forces
including the reactions: �Fx = 0 gives R2 = 2P; �Mz = 0 gives R3 = 5P; �Fy = 0 gives
R1 = 5P.

The part of the structure situated to the left of section n − n is represented as a free body
in equilibrium in Figure 2.3f. The forces N1, N2 and N3 in the cut members, shown in their
positive directions, are in equilibrium with the remaining forces in the figure. The unknown
member forces N1, N2, and N3 are determined by the equilibrium Eqs. 2.5:

�Mz = 0 − N3c + 5P(2c) + 2Pc − 4Pc = 0; thus N3 = 8P

�Fy = 0 N2 cos θ − 5P + 4P = 0; thus N2 = √
2P

�Fx = 0 N1 + N2 sin θ + N3 − 2P + 2P = 0; thus N1 = −9P

We may wish to verify that the same results will be reached by considering equilibrium
of the part of the structure situated to the right of section n − n.

2.3 Internal forces: sign convention and diagrams

As mentioned earlier, the purpose of structural analysis is to determine the reactions at the
supports and the internal forces (the stress resultants) at any section. In beams and plane frames
in which all the forces on the structure lie in one plane, the resultant of stresses at any section
has generally three components: an axial force N, a shearing force V , and a bending moment M.
The positive directions of N, V , and M are shown in Figure 2.4c, which represents an element
(DE) between two closely spaced sections of the horizontal beam in Figure 2.4a. A positive axial
force N produces tension; a positive shearing force tends to push the left face of the element
upwards and the right face downwards; a positive bending moment produces tensile stresses at
the bottom face and bends the element in a concave shape.

In Figure 2.4b, each of the three parts AD, DE, and EC is shown as a free body subjected to
a set of forces in equilibrium. To determine the internal forces at any section F (Figure 2.4a) it
is sufficient to consider only the equilibrium of the forces on AD; thus N, V , and M at F are the
three forces in equilibrium with R1 and R2. The same internal forces are the statical equivalents
of P1, P2, P3, and R3. Thus, at any section F the values of N, V , and M are, respectively, equal to
the sums of the horizontal and vertical components and of the moments of the forces situated
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Figure 2.4 Sign convention for internal forces in plane frames and beams. (a) Beam. (b) Free-body
diagrams. (c) Positive N, V and M. (d) Axial force, shearing force and bending moment
diagrams.

to the left of F. The values of N, V , and M are positive when they are in the directions shown at
end E of part EC in Figure 2.4b. The internal forces at section F can also be considered as the
statical equivalents of the forces situated to the right of F; in that case the positive directions of
N, V , and M will be as shown at end D of part AD.

The variations in N, V , and M over the length of the member are presented graphically by the
axial force, shearing force and bending moment diagrams, respectively, in Figure 2.4d. Positive
N and V are plotted upwards, while positive M is plotted downwards. Throughout this book,
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the bending moment ordinates are plotted on the tension face, that is, the face where the stresses
due to M are tensile. If the structure is of reinforced concrete, the reinforcement to resist bending
is required near the tension face. Thus, the bending moment diagram indicates to the designer
where the reinforcement is required; this is near the bottom face for part AH and near the top
face for the remainder of the length (Figure 2.4d). With this convention, it is not necessary to
indicate a sign for the ordinates of the bending moment diagram.

Calculation of the values of the internal forces at any section F in the beam of Figure 2.4a
requires knowledge of the forces situated to the left or to the right of section F. Thus, when
reactions are included, they must be first determined. The values of the reactions and the internal-
forces ordinates indicated in Figures 2.4a and d may now be checked.

In the above discussion we considered a horizontal beam. If the member is vertical, as, for
example, the column of a frame, the signs of shear and bending will differ when the member is
looked at from the left or the right. However, this has no effect on the sign of the axial force
or on the significance of the bending moment diagram when the ordinates are plotted on the
tension side without indication of a sign. On the other hand, the signs of a shearing force diagram
will have no meaning unless we indicate in which direction the member is viewed. This will be
discussed further in connection with the frame in Figure 2.5.

Examples of shearing force and bending moment diagrams for a three-hinged plane frame are
shown in Figure 2.5. The three equilibrium equations (Eq. 2.5) together with the condition that
the bending moment vanishes at the hinge C may be used to determine the reactions. The values
indicated for the reactions and the V and M diagrams may now be checked. When determining
the signs for the shearing force diagram the nonhorizontal members are viewed with the dashed
lines in Figure 2.5 at the bottom face. (See also Figures 2.8, 2.3c and 2.9.)

The ordinates of the shearing force diagram for member BC (Figure 2.5b) may be checked as
follows:

VBr = R1 cos θ − R2 sin θ

VCl = [R1 − q(2b)] cos θ − R2 sin θ

where the subscripts r and l refer, respectively, to sections just to the right of B and just to the
left of C; θ is the angle defined in Figure 2.5a.

To draw diagrams of internal forces in frames with straight members, it is necessary only to
plot the ordinates at member ends and at the sections where external forces are applied, and then
to join these ordinates by straight lines. When a part (or the whole) of the length of a member
is covered by a uniform load, the ordinates of the bending moment diagram at the two ends
of the part are to be joined by a second-degree parabola (see Figure 2.5c). The ordinate of the
parabola at the mid-point is (qc2/8), measured from the straight line joining the ordinates at the
ends; q is the load intensity and c is the length of the part considered. A graphical procedure for
plotting a second-degree parabola is included in Appendix F.

It is good practice to plot the ordinates perpendicular to the members and to indicate the
values calculated and used to plot the diagram.

The internal forces at any section of a member of a framed structure can be easily determined
if the end-forces are known. In Figures 3.8a and b, typical members of plane and space frames
are shown. The forces shown acting on each member, being the external applied force(s) and
the member end-forces, represent a system in equilibrium. Thus, the member may be treated as
a separate structure. The internal forces at any section are the statical equivalents of the forces
situated to its left or right.

In a space frame, the internal forces generally have six components: a force and a moment in
the direction of x∗, y∗, and z∗ axes, where x∗ is the centroidal axis of the member and y∗ and z∗
are centroidal principal axes of the cross section (Figure 22.2).

Computer programs for the analysis of framed structures usually give the member end-forces
(Figures 3.8a and b) rather than the stress resultants at various sections. The sign convention for
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Figure 2.5 A three-hinged plane frame. (a) Dimensions and loading. (b) Shearing force diagram. (c)
Bending moment diagram.

the end-forces usually relates to the member local axes, in the direction of the member centroidal
axis and centroidal principal axes of the cross section. It is important at this stage to note that the
stress resultants at the member ends may have the same magnitude as the member end-forces,
but different signs, because of the difference in sign conventions. For example, at the left end
of a typical member of a plane frame (Figure 3.8a), the axial force, the shearing force and the
bending moment are: N = −F1; V = −F2; M = F3. The stress resultants at the right end are:
N = F4; V = F5; M = −F6. Here the member is viewed in a horizontal position and the positive
directions of N, V and M are as indicated in Figure 2.4c.

2.4 Verification of internal forces

In this section, we discuss ways of checking the calculations involved in the determination of
internal forces in beams and plane frames. For this purpose, we consider the internal forces of
the beam in Figure 2.4a. The values of V , N and M at section F can be calculated from the forces
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situated to the left of F; the positive directions of the internal forces in this case are shown at
E in Figure 2.4b. The same values of V , N and M at section F can also be calculated form the
forces situated to the right of F; but in this case, the positive directions of the internal forces
would be as shown at D in Figure 2.4b. This alternative calculation is a means of checking the
values of the internal forces.

The arrows at D and E in Figure 2.4b are in opposite directions; thus, the values of N, M
and V calculated by the two alternatives described above must be equal. This is so because the
forces situated to the left of F, combined with the forces situated to the right of F, represent a
system in equilibrium, satisfying Eqs. 2.5. When the values of N, M and V calculated by the
two alternatives are not equal, the forces on the structure are not in equilibrium; one or more
of the forces on the structure (e.g. the reaction components) can be erroneous.

The following relationships can also be employed to verify the calculated values of V and M
at any section of a member:

dV
dx

= −q (2.6)

dM
dx

= V (2.7)

where x is the distance measured along the axis of the member (in direction AB); q is the intensity
of distributed transverse load acting in the direction of the y axis. For a plane frame, the z axis is
perpendicular to the plane of the frame, pointing away from the reader. The three axes x, y and
z form a right-handed system (see footnote 2 of this chapter). Thus, for the beam in Figure 2.4a,
if the x axis is considered in the direction AB, then the y axis will be vertical downward. For this
beam, the slope of the shearing force diagram (dV/dx) is zero at all sections because the beam is
subjected to concentrated loads only (q = 0). For the same beam, the bending moment diagram
is composed of three straight lines, whose slope (dM/dx) can be verified to be equal to the three
shearing force values shown in Figure 2.4d.

As a second example, we will use Eqs. 2.6 and 2.7 to verify the V and M-diagrams for member
BC of the frame in Figure 2.5. We consider the x axis in the direction BC; thus, the y axis is in
the perpendicular direction to BC, pointing towards the bottom of the page. The component of
the distributed load in the y direction has an intensity equal to:

qtransverse = q cos2 θ (2.8)

This equation can be verified by considering that the resultant of the load on BC is a downward
force equal to 2bq, and the component of the resultant in the y direction is 2bq cos θ . Division of
this value by the length of BC (=2b/ cos θ) gives Eq. 2.8. Thus, for member BC, qtransverse =0.94q
and we can verify that this is equal to minus the slope of the V-diagram:

qtransverse = 0.94q = −
[

(−0.65) − 1.29
2b/ cos θ

]
qb

Figure 2.5c shows tangents at the ends of the parabolic bending moment diagram of member
BC. The slopes of the two tangents are:

(
dM
dx

)
B

=
[

0.67 − (−0.67)

b/ cos θ

]
qb2 = 1.29 qb;

(
dM
dx

)
C

=
[

0 − 0.67
b/ cos θ

]
qb2 = −0.65 qb

As expected (by Eq. 2.7), the two slope values are equal to the shearing force values at B and C
(Figure 2.5b). Equation 2.7 also indicates that where V = 0, the bending moment diagram has
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zero slope and the value of M is either a minimum or a maximum (e.g. the point of zero shear
on member BC in Figure 2.5). Under a concentrated force, the shearing force diagram has a
sudden change in value and Eq. 2.7 indicates that the M-diagram has a sudden change in slope.

Example 2.6: Member of a plane frame: V and M-diagrams
Figure 2.6a represents a free-body diagram of a member of a plane frame. Three of the mem-
ber end forces are given: F1 = 0.2ql; F3 =−0.06 ql2; F6 = 0.12 ql2. What is the magnitude
of the remaining three end forces necessary for equilibrium? Draw the V and M-diagrams.

The three equilibrium Eqs. 2.5 are applied, by considering the sum of the forces in
horizontal direction, the sum of the moments of forces about B, and the sum of the forces
in vertical direction:

F1 + F4 = 0

− F2l + F3 + F6 − ql2

2
= 0

F2 + F5 + ql = 0

Substitution of the known values and solution gives:

F2 = −0.44 ql; F4 = −0.2ql;F5 = −0.56ql

The values of F3 and F6 give the bending moment ordinates at A and B, and their signs
indicate that the tension face of the member is at the top fiber at both ends. The M-diagram
in Figure 2.6b is drawn by joining the end ordinates by a straight line and “hanging down’’
the bending moment of a simple beam carrying the transverse load (a parabola).

The forces F2 and F5 give the ordinates of the V-diagram at the two ends. Joining the
two ordinates by a straight line gives the V-diagram shown in Figure 2.6c.

(a) (b)

(c)

+

–

Multiplier: ql2/1000

60
120

125F1 = 0.2 ql

F2 = – 0.44 ql

q per unit length

– 0.06 ql2

0.44 ql

–0.56 ql

0.56 ql

–0.12 ql2
F3 = F5 = F6 =

F4 = –0.2 ql

l
A B

Figure 2.6 Shearing force and bending moment diagrams of a member of a plane frame, Example 2.6.
(a) Free-body diagram. (b) M-diagram. (c) Shearing force diagram.
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(a)

M M

V V V

M

(b) (c)

0.5 l

62.5

31.3

125

375

30
–

––

+ +

30

q per unit length q per unit length

0.5 l

30 30

95

405

62.5

31.3

60 60

l 0.5 l 0.5 l

–0.03 ql2 –0.03 ql20.06 ql2 0.06 ql2

Figure 2.7 Simple beams of Example 2.7. (a) Beam subjected to transverse load. (b) Beam subjected to
end moments. (c) Beam subjected to a combination of the loadings in (a) and (b). Multiplier
for the M-diagrams: ql2/1000. Multiplier for the V-diagrams: ql/1000.

Example 2.7: Simple beams: verification of V and M-diagrams
The simple beams in Figures 2.7a and b are subjected to a transverse distributed load and
to end moments respectively. The simple beam in Figure 2.7c is subjected to a combination
of the two loadings. Draw the V and M-diagrams for the three beams.

The values of the ordinates may be calculated by the reader and compared with the
values given in Figure 2.7. Also, it may be verified that the ordinates satisfy the relationships
between q, V and M, Eqs. 2.6 and 2.7. It can also be noted that the ordinates of the V and
M-diagrams in part (c) of the figure are equal to the sum of the corresponding ordinates
in parts (a) and (b). Thus, the diagrams in part (c) can be derived alternatively by the
superposition of the diagrams in parts (a) and (b).

Example 2.8: A cantilever plane frame
Determine the bending moment, the shearing force and the axial force diagrams for the
cantilever frame in Figure 2.8.

To find the internal forces at any section of a cantilever, consider the forces situated
between that section and the free end. In this way, the reactions are not involved. The
ordinates of the M, V and N-diagrams in Figure 2.8 may be verified by the reader. We show
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P

P

A

α

B

 P/2

0.671 P
0.894 P

3Pc/2

3Pc/2

P/2

Pc/2

+ –

– –

 2c

 2c

 c

C

V N

M

Figure 2.8 Cantilever frame of Example 2.8: bending moment, shearing force and axial force diagrams.

below the calculation of the shearing force and the axial force only for a section anywhere
in member AB.

V = (P/2) sinα − P cosα = −0.671P

N = −(P/2) cosα − P sinα = −0.894P

Example 2.9: A simply-supported plane frame
Determine the bending moment and the shearing force diagrams for the frame in
Figure 2.3c. What are the axial forces in the members?

The M and V-diagrams are shown in Figure 2.9. The reader may wish to verify the
ordinates given in this figure. See also Example 2.4. The axial forces in the members are:

NAC = −R1 sinα − R2 cosα = −(−2P)
1√
5

− 1.8P
(

2√
5

)
= −0.716P

NCE = −R1 = −(−2P) = 2P

NEF = −R3 = −3.2P; NBC = 0
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M V

Pb

4.8 Pb

0.8 P

3.2 P

2.
59

 P

5.8 Pb

= 4 Pb
4P(4b)

4

D E

F

P

B

C D –
–

+

E

F

A

B

A

C

Figure 2.9 Bending moment and shearing force diagrams for the frame in Figure 2.3c.

Example 2.10: M-diagrams determined without calculation of reactions
Draw the M-diagrams and sketch the deflected shapes for the beams shown in
Figure 2.10.

The ordinates of the bending moment diagrams shown in Figure 2.10 require simple cal-
culations as indicated. Note that the calculation of the reactions is not needed to determine
the M-diagrams. The sketched deflected shapes show concave and convex parts of the
beam. The points of inflection at which the curvature changes sign correspond to points of
zero bending moment.

q per unit length

0.25 l 0.5 l 0.5 l

P

0.25 l

ql2/8 Pl/4Tangent

M-diagrams

Point of
inflection

Deflected shapes

= ql2/32

l

lq

2 4
( )

2

Figure 2.10 Bending moments and deflected shapes for beams of Example 2.10.
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Example 2.11: Three-hinged arches
Figures 1.27b and a show, respectively, a polygonal and a parabolic three-hinged arch
carrying the same total downward load, ql. Verify that the reactions are the same for both
arches. In Example 1.2, it is shown that the shear force V and the bending moment M are
zero at all sections of the polygonal arch. Verify that this is also true for the parabolic arch.

Reactions for any of the two arches:
Sum of the moments of all the forces on the structure about B is zero. This gives R2 =ql/2.

The same answer is expected from symmetry; R2 is equal to half the total gravity load on the
structure. The reaction R1 can be determined from the condition that the bending moment
MC is zero at the hinge. Thus, sum of moments of the forces situated to the left of C is zero
about C. For the structure in Figure 1.27b,

(
ql
2

− ql
8

)
l
2

− ql
4

(
l
4

)
− R1hC = 0

R1 = 0.75ql

Similarly for the arch in Figure 1.27a,

(
ql
2

)
l
2

− ql
2

(
l
4

)
− R1hC = 0

R1 = 0.75ql

Internal forces in parabolic arch:
The resultant of the forces situated to the left of any section at a horizontal distance x

from A has a vertical upward component = q
(

l
2

− x
)

and a horizontal component =R1 =
0.75ql. The angle between the resultant and the x axis is tan−1

[
q
(

l
2 − x

)
/(0.75 ql)

]
=

tan−1
(

2
3

− 4x
3l

)
. The slope of the arch at the same section is (Eq. 1.1):

dh
dx

= 4hC

l2 (l − 2x) = 4(l/6)

l2 (l − 2x) = 2
3

− 4x
3l

Thus, the resultant is in the direction of the tangent to the arch, indicating zero shear.
The bending moment at any section of the arch, at a horizontal distance x from A is:

M(x) = ql
2

x − qx
x
2

− R1h(x)

Substituting for h(x) by Eq. 1.1 and R1 = ql2/8hC gives M(x) = 0. Thus, the shear
force and the bending moment are zero at all sections; the only internal force is axial
of magnitude:

N = −
[
(0.75 ql)2 + q

(
l
2

− x
)2
]1/2

The minus sign indicates a compressive axial force.
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2.5 Effect of moving loads

In design of structures it is necessary to know the internal forces due to the permanent and the
transient service loads. These are referred to as dead and live loads respectively. Examples of live
loads are the weight of snow on a roof, the weight of furniture and of occupants on a floor, and
the wheel loads of a truck on a bridge or of a traveling crane on a crane beam. In analysis, the
live load is usually represented by a uniformly distributed load or a series of concentrated forces.

Naturally, in design, we are concerned with the maximum values of the internal forces at
various sections. Thus, for the maximum value of an action at any section, the live load must be
placed on the structure in a position such that the maximum occurs. In many cases, the position
of the load which produces a maximum is obvious. In other cases the use of influence lines,
discussed in Section 2.6 and in Chapters 12 and 13, can help in determining the position of the
moving load which results in the maximum value of the action considered.

We shall now consider the effects of moving loads on simple beams; the effects of moving
loads on continuous beams are discussed in Section 4.8.

2.5.1 Single load

Consider the effect of a single concentrated downward force P moving on a simple beam shown
in Figure 2.11a. At any section n, the bending moment is maximum positive when P is directly
above n. The shear at n is maximum positive when P is just to the right of n, and is maximum
negative when P is just to the left of n. The maximum values of bending and shear due to a
single concentrated load on a simple beam may be expressed as

Mn max+ = P
x(l − x)

l
(2.9)

Vn max+ = P
l − x

l
; Vn max− = −P

x
l

(2.10)

The expression maximum negative value is commonly used in structural design and is used here
to mean a minimum value in the mathematical sense.

The bending moment and shearing force diagrams when P is at n are shown in Figure 2.11b.
If the load changes position, similar diagrams can be plotted and an envelope of the maximum
ordinates can be constructed (Figure 2.11c). The envelope for the maximum positive moment in
the case considered is a second-degree parabola (Eq. 2.9); for shear, the envelopes for maximum
positive and negative ordinates are straight lines (Eq. 2.10). The ordinates of such diagrams,
which will be referred to as maximum bending moment and maximum shearing force diagrams,
indicate in design the maximum internal forces that any section must resist.

2.5.2 Uniform load

Figure 2.11d shows the maximum bending moment and shearing force diagrams due to a uniform
load q per unit length. The load is placed over the full length of the beam or its part so as to
produce the maximum effect. At any section n, the maximum bending moment occurs when q
covers the full length; however, the maximum positive or negative shear occurs when q covers
only the part to the right or to the left of n respectively. The maximum values of bending and
shear due to a uniform load on a simple beam are

Mn max+ = q
x(l − x)

2
(2.11)

Vn max+ = q
(l − x)2

2l
; Vn max− = −q

x2

2l
(2.12)
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(a)

(c)A B

Moving
load P

Px (l – x)/L

Px/l

ql2/8

ql
2

+

–

+

+
–

–

Mmax+

Vmax –

Vmax+

Vmax –

Vmax+

Mmax+

P (l – x)/l

x

n

P

n

M

V

l

(b)

(d)

Pl

P

P

4

ql
2

Figure 2.11 Effect of moving loads on a simple beam. (a) Single concentrated load P. (b) Bending
moment and shearing force diagrams when P is directly above any section n. (c) Envelopes
of the M and V-diagrams in (b): Mmax+, Vmax+ and Vmax− due to P. (d) Diagrams for
maximum bending moment and shearing force due to uniform load q per unit length.

It can be seen that the maximum bending moment and shearing force diagrams are second-degree
parabolas.

2.5.3 Two concentrated loads

Consider the effects of two concentrated loads P1 and P2, with P1 � P2, moving on a simple
beam (Figure 2.12a). At any section n, the maximum bending moment occurs when P1 or P2 is
directly upon the section (Figure 2.12b or c), producing

Mn max+ = x(l − x)

l

(
P1 + P2

l − x − s
l − x

)
with 0 � x � (l − s) (2.13)

or

Mn max+ = x(l − x)

l

(
P2 + P1

x − s
x

)
with s � x � l (2.14)

where s is the spacing between the loads and l is the span.
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s

s

Eq.
2.19

Eq.
2.18

Eq. 2.13 Eq. 2.14

2
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DA

P1

x

x

x

s

P1

P1 P2

l

P2

P2

P2P1≥

lP2/(P1 + P2)s ≤

2

q = 2 (P1 + P2 )/l

s(P1 + P2)

l2

q
–

lAC = lP1/(P1 + P2)

MC = lAC lCB

P1 P2

n

n

C

n

B

BA

A

(b)

(c)

(d)

(e)

(f)

(a)

A

B

B

lAC

qlAC
2

8

Eq. 2.17

+

–

qlCB
2

8

Eq. 2.16

⎡
⎣

⎡
⎣

2

lAC

Figure 2.12 Effect of two concentrated moving loads P1 and P2 with P1 � P2. (a) A simple beam. (b),
(c) and (d) Load positions for maximum bending moment or shear at any section n. (e)
Maximum bending moment diagram when s� lP2/(P1 +P2). (f) Maximum shearing force
diagram.

A third load position to be considered is shown in Figure 2.12d, with P2 falling outside the
beam; the corresponding bending moment at n is

Mn max+ = P1
x(l − x)

l
with (l − s) � x � l (2.15)
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The diagram for the maximum bending moment for any part of the beam is a second-degree
parabola represented by one of the above three equations, whichever has the largest ordinate.
It can be shown that Eq. 2.15 governs in the central part of the beam only when s > lP2/(P1 +
P2). The maximum bending moment diagram in this case is composed of three parabolic parts
(see Prob. 2.7). The maximum bending moment diagram when s � lP2/(P1 + P2) is shown in
Figure 2.12e, which indicates the span portions to which Eqs. 2.13 and 2.14 apply. The case
when s> lP2/(P1 +P2) is discussed in Prob. 2.7. In that problem it is indicated that the diagram
for the maximum bending moment due to specific moving load systems on a simple beam is the
same as the bending moment diagram due to virtual (unreal) stationary load systems.

The loads in the positions shown in Figures 2.12b and c produce maximum positive and
negative values of shear at section n. These are given by

Vn max+ = P1
l − x

l
+ P2

l − x − s
l

with 0 � x � (1 − s) (2.16)

Vn max− = −
(

P1
x − s

l
+ P2

x
l

)
with s � x � l (2.17)

The maximum shear may also be produced by P1 or P2 alone, placed just to the left or just to
the right of n, giving (Figure 2.12d)

Vn max+ = P1
l − x

l
with (l − s) � x � l (2.18)

Vn max− = −P2
x
l

with 0 � x � s (2.19)

where x is the distance between support A and P1 or P2.
The maximum shearing force diagram for any part of the beam is a straight line represented

by one of the above four equations, whichever has the largest ordinate (Figure 2.12).
The maximum bending moment and shearing force diagrams shown in Figure 2.12 are for

the two forces P1 and P2, with the larger force P1 to the left of P2. If the forces can also be
placed on the beam in a reversed order, with P1 on the right-hand side of P2, the larger of the
two ordinates at any two sections symmetrically placed with respect to the center line must be
considered as the maximum ordinate. Thus, assuming that the ordinates in Figure 2.12 are larger
for the left-hand half of the beam AD compared with their counterparts in the other half, the
maximum bending moment diagram should be a curve as at present shown for AD completed
by its mirror image for DB.

Example 2.12: Maximum bending moment diagram
Find the maximum bending moment diagrams for a simple beam of span l, subjected to
two moving loads P1 = P and P2 = 0.8P, spaced at a distance (a) s = 0.3l and (b) s = 0.6l.

Assume that P1 is on the left-hand side of P2 and that this order is nonreversible. Repeat
case (a) assuming that the order of loads can be reversed.

The maximum bending moment ordinates in case (a) are calculated directly, using the
equations in Figure 2.12e because s < lP2/(P1 + P2) = l(0.8/1.8) = 0.44l. The resulting
diagram is shown in Figure 2.13a.

For case (b), we plot three parabolas corresponding to Eqs. 2.13 to 2.15 and use for any
part of the beam the curve with the largest ordinate (Figure 2.13b).

With reversible loads in case (a), the maximum bending moment diagram is the curve
AD and its mirror image shown dotted in Figure 2.13a. The ordinate at D is 0.330Pl.
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l

l

(a)

(b)

A

A

A C D B

C

D
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311

139

72
240 188

28

31

Multiplier:
Pl/1000

Multiplier:
Pl/1000

B

B

PP1=

PP1= 0.8 PP2 =

0.8 PP2=
s = 0.3l

0.6 ls =

0.4l 0.35l 0.25l

5
9

l

Eq.
2.13

Eq.
2.15

Eq.
2.14

Figure 2.13 Maximum bending moment diagrams due to two moving concentrated loads.
Example 2.12. (a) s = 0.3 l. (b) s = 0.6 l.

2.5.4 Group of concentrated loads

The maximum bending moment at any section n due to a system of concentrated moving loads
on a simple beam (Figure 2.14a) occurs when one of the loads is at n; by trial and error we can
find which load should be at n to cause Mnmax+. The maximum positive shear at n occurs when
P1 is just to the right of n (Figure 2.14b). The maximum negative shear at n occurs when the
last load Pm is just to the left of n (Figure 2.14c). It is possible, when the first (or last) load is
relatively small, that the maximum shear occurs when another load is situated just to the left
or to the right of n. Again, by trial and error we can find which load position produces the
maximum effect at the section considered.

2.5.5 Absolute maximum effect

In the above we considered the position of moving loads to produce the maximum bending
moment or shearing force at a specified section. In design, we also need to know the location and
magnitude of the largest ordinate of the diagram of maximum bending moment or maximum
shear. The section at which the maximum effect occurs is often identified by inspection. For
example, in a simple beam, the absolute maximum shear occurs at the supports. The absolute
maximum bending moment is at mid-span due to a single or uniform live load.
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Figure 2.14 Effect of a system of moving loads on a simple beam. (a) Position of load for Mnmax+. (b)
Position of load for Vnmax+. (c) Position of load for Vnmax−. (d) Position of load to produce
largest bending moment directly beneath P3.

For a series of concentrated loads, the absolute maximum must occur directly beneath one of
the loads, but it is not obvious which one. This is often determined by trial and error; usually,
the absolute maximum bending moment occurs below one of the forces close to the resultant.

Assume that, in Figure 2.14a, the absolute maximum moment occurs under load P3. It is
necessary to determine the variable x defining the position of the load system for which the
bending moment Mn below P3 is maximum. The value of Mn may be expressed as

Mn = RA(x) − P1(s1 + s2) − P2s2 (2.20)

and

RA = l − x − c
l

�P (2.21)

where c is the distance between the resultant of the system and P3, and RA is the reaction at A.
The maximum value of M occurs when (dMn/dx) = 0. Substitution of Eq. 2.21 in Eq. 2.20

and differentiation give
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dMn

dx
= �P

l
(l − 2x − c) = 0

whence

x = l
2

− c
2

(2.22)

Thus, the absolute maximum bending moment due to a system of concentrated loads on a simple
beam occurs under one of the loads. The concentrated loads are to be placed such that the center
of the span is mid-way between the resultant and that particular load (Figure 2.14d).

It should be noted that the above rule is derived on the assumption that all the forces are
situated on the span. It is possible that the absolute maximum occurs when one or more of the
forces are situated outside the beam. In this case the rule of the preceding paragraph may be
applied using the resultant of only those forces which are located on the span. As an example
of this condition, consider the beam in Figure 2.13b: the absolute maximum is at the center line
and its value is 0.25Pl, occurring when P1 is at mid-span and P2 is outside the beam.

In design of cross sections of members it is often necessary to consider the interaction of two
or more internal forces. For example, in the design of reinforced concrete beams for shear, we
consider at any section the value of the maximum shearing force combined with the correspond-
ing bending moment resulting from the same loading. The value of the moment to be used in
this case will obviously be smaller than the ordinate of the maximum bending moment diagram.

In practice, with the wide use of computers, structural designers identify a number of loading
cases representing the permanent loads, combined with the moving loads in the positions which
are likely to produce maximum bending moment, axial force, shearing force or torsion at selec-
ted, critical sections. The designer also specifies the possible combinations of loading cases and
the desired multipliers (load factors) of the individual cases. The computer can then be used to
scan the internal forces due to the load combinations and give for each section the maximum
positive and negative values of one of the internal forces and the values of the other internal
forces occurring for the same loading. These are the values to be used in the design of sections.

Example 2.13: Simple beam with two moving loads
Find the absolute maximum bending moment in a simple beam subjected to two concen-
trated moving loads shown in Figure 2.13a. What is the shearing force at the section of
absolute maximum moment when the maximum occurs?

The resultant is of magnitude 1.8P, situated at a distance c = 0.133l from P1. Thus, the
absolute maximum moment occurs at a section at a distance c/2 = 0.067l to the left of the
center line. When P1 is directly above this section, the reaction RA =0.78P and the bending
moment at the same section is the absolute maximum:

Mabsmax = 0.78P(0.433l) = 0.338Pl

The corresponding shearing force to the left of P1 is RA = 0.78P.

2.6 Influence lines for simple beams and trusses

The subject of influence lines is treated in detail in Chapters 12 and 13. In this section we
introduce only briefly the derivation of influence lines for shearing force and bending moment
at a section of a simple beam and for the axial force in a member of a simply-supported truss.
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Figure 2.15 Influence lines for simply-supported structures. (a) Beam. (b) Truss.

The influence line for any of these actions is a plot of the value of the action at a given cross
section as a unit load traverses the span.

Figure 2.15a shows the influence lines for the shear Vn and the bending moment Mn at any
section n of a simple beam. The ordinate η at any section, at a distance x from the left-hand
support, is equal to the value of Vn and Mn when the unit load is placed directly above the
ordinate. Positive ordinates are plotted downwards.

The most effective method for obtaining an influence line uses Müller-Breslau’s principle
discussed in Section 12.3. It is based on energy theorems discussed in later chapters. We can also
derive the influence lines for the structures considered here using simple statics. For this purpose,
consider the influence line for the reaction RA. When the unit load is at a distance x from support
A, the reaction is RA = (l − x)/l. Thus, we can express the ordinate of the influence line of RA as

ηRA = (l − x)/l

Similarly, the ordinate of the influence line of RB is

ηRB = x/l
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Thus, the influence lines of the reactions are straight lines as shown in Figure 2.15a. The shear
at n is equal to RA when the unit load is at any section between B and n. We can therefore use
the part from B to n of the influence line for RA to represent the influence line for Vn. Similarly,
Vn = −RB when the unit load is in any position between n and A. Thus, between n and A, the
influence line for Vn is the same as the influence line for RB with reversed sign.

When the unit load is between B and n, the bending moment is Mn = RAb; when the load is
between n and A, Mn =RBc. Thus, the ordinates of the influence lines for RA and RB, multiplied
respectively by b and c, can be used to construct the appropriate parts of the influence line for Mn.

Consider the effect of a unit load moving on the bottom chord of a simply-supported truss
(Figure 2.15b). The influence lines for the forces in members 1, 2 and 3 are shown. These
are constructed from the influence lines for the reactions RA and RB, which are the same as
for the beam in Figure 2.15a. Separating the truss into two parts by a vertical section and
considering the equilibrium of each part, we can write the following equations. When the unit
load is between B and D,

N1 = RA(b/h) N2 = RA(sin θ)−1 N3 = RA(−2b/h)

When the unit load is between C and A,

N1 = RB(3b/h) N2 = RB(− sin θ)−1 N3 = RB(−2b/h)

Again, the ordinates of the influence line for RA or RB multiplied by the quantities in brackets
in the above equations give the ordinates of the influence lines for N1, N2, and N3 over the
length BD or CA. The influence lines between C and D are simply the straight lines joining the
ordinates at C and D. This is justified because we are assuming, as usual, that the members are
pin-connected and any external load is applied only at the joints. A unit moving load, when
situated between two nodes such as C and D, is replaced by two statically equivalent downward
forces at C and D; that is, the unit load is partitioned between C and D in inverse proportion
to the distances from the load to C and D (see Section 12.4).

The use of influence lines to determine the effects of a series of concentrated loads is explained
by the following example (see also Section 12.3).

Example 2.14: Maximum values of M and V using influence lines
Find the maximum bending moment and shearing force values at section n for the beam
in Figure 2.16a due to the given system of three moving forces, representing the axle loads
of a truck.

In Figure 2.15, we have seen how to find the influence line for the bending moment and
the shear force at any section of a simple beam. The influence line for Mn is shown in
Figure 2.16b. The bending moment Mn due to the loads in any position is given by

Mn =
3∑

i=1

Piηi

where ηi is the influence-line ordinate directly beneath Pi. The maximum value of Mn is
obtained by trial so that the sum of the products of the value of the individual axle load
and the influence ordinate below it is as large as possible. A first trial of the truck position
is shown in Figure 2.16b; the corresponding value of Mn is

(Mn)trial 1 = Wl[0.2(0.12) + 0.8(0.24) + 0.8(0.16)] = 0.344Wl
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Figure 2.16 Use of influence lines to determine the effects of a moving system of loads, Example 2.14.

In a second trial we place the loads in a reversed order, with P3 at n and the other two
loads to the right; this gives (Mn)trial 2 =0.336Wl. In a third trial we place P2 at n, with P3

at its left, giving (Mn)trial 3 = 0.320Wl. The largest value is obtained in trial 1 and hence
Mmax+ = 0.344Wl.

The influence line for Vn is shown in Figures 2.16c, d and e, which indicate one trial
load position for the maximum positive shearing force and another trial load position for
the maximum negative shearing force. These trials give

Vn max+ = W[0.8(0.6) + 0.8(0.4) + 0.2(0.2)] = 0.84W

Vn max− = W[0.2(0) + 0.8(−0.2) + 0.8(−0.4)] = −0.48W

It is clear in this case that no other trials would give larger values of Vn. Hence, we consider
that the above are the maximum shear values.
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We should note that influence lines give the maximum value of an action at a specified
section but do not give absolute maximum values. However, if the above analysis is per-
formed at a number of sections, a plot of the values obtained gives the maximum diagram
and hence the absolute maximum ordinate can be seen.

2.7 General

For statically determinate structures, the equilibrium equations are sufficient to determine
the reactions and the internal forces. Indeed, this is why the structures are called statically
determinate. Additional equations, considering deformations, are necessary in the analysis of
statically indeterminate structures. For all structures, the equilibrium equations apply to the
structure as a whole, to an isolated part, and to individual joints. The application of these
equations will give unknown components of reactions and internal forces when the number of
unknowns does not exceed the number of equilibrium equations.

Problems

2.1 Find member forces and reaction components in x and y or in x, y and z directions for the
statically determinate trusses shown.
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2.2 The space truss shown is composed of three horizontal members AB, BC, and CA and six
inclined members connecting A, B and C to the support nodes E, F, and D. The structure
is subjected to forces {Fx,Fy,Fz}=P{1,0,3} at each of joints A, B, and C. Write down nine
equilibrium equations from which the reaction components in x, y, and z directions can
be determined. Verify the equations by substituting the answers given below. Also verify
equilibrium of one of joints A, B, or C using the member forces given in the answers.

Table 2.1 Reactions in Terms of P:

Rx Ry Rz

At D −1.7835 0.6071 −7.3923
At E −0.7321 −0.7500 −3.0000
At F −0.4845 0.1430 1.3923

Table 2.2 Forces in members in Terms of P:

Member Force Member Force

AB 1.1585 BE −0.0381
BC 0.1585 CE −3.1439
CA −0.8415 CF −0.0381
AD −4.6968 AF 1.5148
BD −3.1439

b(1 + √3)/4

b(1 + √3)

b/2
F
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B
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F E D

Elevation

Top view

x

z

y
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B

E

x
z

c
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4

2b

Prob. 2.2

2.3 A bridge deck is schematically presented as a solid prism supported on bearings at A,
B, C, and D. The bearings can provide only seven reaction components in the x, y, and

Pz = 10P
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z directions as shown. Given R2 = −2.5P, determine the remaining reactions due to the
external applied forces shown at E.

2.4 Obtain the shearing force and bending moment diagrams for the statically determinate
beams and frames shown.
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Prob. 2.4 (Continued)

2.5 For a simple beam of span l, determine the maximum bending moment and its location
due to the following moving loads:

(a) Two forces P1 = P2 = W , spaced at s = 0.2l.
(b) Three forces P1 = W , P2 = W , P3 = W/2, spaced at s = 0.2/between P1 and P2 and

between P2 and P3.
(c) Two forces P1 = P2 = W , spaced at s = 0.55l.

2.6 For the simple beam and the truck axle loads specified in Example 2.13
(Figure 2.16), determine the maximum bending moment and shearing force and their
locations.

2.7 Verify that, for each of the simple beams shown, the maximum bending moment diagram
due to the moving load system in (a) is the same as the bending moment diagram due to
the virtual (unreal) stationary load system in (b).
Hint. For any section n, place the moving load in the position which produces maximum
moment and verify that Mn due to the moving load is the same as that due to the stationary
load. The derivation of the virtual stationary load system is given in Wechsler, M. B.,
“Moment Determination for Moving Load Systems,’’ Journal of Structural Engineering,
American Society of Civil Engineers, 111 (6) (June 1985), pp. 1401–1406.

2.8 Assuming that in Example 2.11 the simple beam is extended by an overhanging part of
length 0.35l at each end, and assuming that the order of the two loads can be reversed,
find the maximum bending moments.

2.9 A simple beam of span l has an overhang of length 0.35l at each end; the total length of
the beam is thus 1.7l. Obtain the influence lines for M and V at a section n within the
span at 0.25l from the left-hand support. Use the influence line to find Mn max+, Mn max−
and Vn max+ due to: (a) two moving loads P1 = P and P2 = 0.8P, separated by a distance
s = 0.3l, assuming that the order of the loads can be reversed; and (b) a uniform moving
load of q per unit length (use Eq. 12.3).

2.10 Find the maximum positive and negative bending moment values for the beam in Prob. 2.4a
due to a moving pair of concentrated gravity loads, P and 0.8P, spaced at a distance 0.3l,
combined with the self-weight of the beam, q = P/(2l) per unit length. Assume that the
moving loads can be placed on the beam: (a) with P on the left-hand side of 0.8P, or (b)
with P on the right-hand side of 0.8P.
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Prob. 2.7

2.11 The beam in Prob. 2.4i, without the loads shown, is subjected to two moving loads
P1 = P and P2 = 0.8P spaced at a distance s = 0.3l, with P1 on the left-hand side of P2.
Find:

(a) The maximum positive and the maximum negative bending moment diagrams for
part DC.

(b) The influence line of the bending moment at section n at a distance (17/30)l from C.

Use the influence line to check the ordinates at n of the diagrams determined in (a).
2.12 A prismatic reinforced concrete cantilever subjected to an externally applied twisting

couple T is shown in cross section in (a). The structure is idealized as a space truss shown
in pictorial view in (b) (strut-and-tie model, see Section 1.13). For clarity, the members in
the bottom horizontal plane of the truss, not shown in (b), are shown in top view in (c);
similarly, the members in the vertical far side of the truss, not shown in (b), are shown in
elevation in (d). The applied couple T is represented by component forces, each = T/(2l)
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Prob. 2.12

at nodes A, B, C, and D as shown in (a). Find the forces in the members and the reaction
components at I, J, K, and L. The answer will show that the members in the x direction
are tensile and resisted by the longitudinal reinforcing bars; the transverse members in the
y and z directions are also tensile and resisted by the legs of the stirrups; the diagonal
members are in compression and resisted by concrete.



Chapter 3

Introduction to the analysis of
statically indeterminate structures

3.1 Introduction

This chapter develops concepts which are necessary for the two general methods of analysis
of structures: the force method and the displacement method (considered in Chapters 4 and 5
respectively).

3.2 Statical indeterminacy

The analysis of a structure is usually carried out to determine the reactions at the supports and
the internal stress resultants. As mentioned earlier, if these can be determined entirely from the
equations of statics alone, then the structure is statically determinate. This book deals mainly
with statically indeterminate structures, in which there are more unknown forces than equations.
The majority of structures in practice are statically indeterminate.

The indeterminacy of a structure may either be external, internal, or both. A structure is
said to be externally indeterminate if the number of reaction components exceeds the number of
equations of equilibrium. Thus, a space structure is in general externally statically indeterminate
when the number of reaction components is more than six. The corresponding number in a
plane structure is three. The structures in Figures 2.1a, c, e, f, g and h are examples of external
indeterminacy. Each of the beams of Figures 3.1a and b has four reaction components. Since
there are only three equations of static equilibrium, there is one unknown force in excess of
those that can be found by statics, and the beams are externally statically indeterminate. We
define the degree of indeterminacy as the number of unknown forces in excess of the equations
of statics. Thus, the beams of Figures 3.1a and b are indeterminate to the first degree.

Some structures are built so that the stress resultant at a certain section is known to be zero.
This provides an additional equation of static equilibrium and allows the determination of an
additional reaction component. For instance, the three-hinged frame of Figure 3.1c has four
reaction components, but the bending moment at the central hinge must vanish. This condition,
together with the three equations of equilibrium applied to the structure as a free body, is
sufficient to determine the four reaction components. Thus, the frame is statically determinate.
The continuous beam of Figure 3.1d has five reaction components and one internal hinge. Four
equilibrium equations can therefore be written so that the beam is externally indeterminate to
the first degree.

Let us now consider structures which are externally statically determinate but internally
indeterminate. For instance, in the truss1 of Figure 3.2a, the forces in the members cannot
be determined by the equations of statics alone. If one of the two diagonal members is removed
(or cut) the forces in the members can be calculated from equations of statics. Hence, the truss is

1 A truss is pin-jointed; a frame is rigid-jointed.
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Figure 3.1 (a), (b) and (d) Externally statically indeterminate structures. (c) Statically determinate
three-hinged frame.
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Figure 3.2 Internally statically indeterminate structures.
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internally indeterminate to the first degree, although it is externally determinate. The frame in
Figure 3.2b is internally indeterminate to the third degree: it becomes determinate if a cut is made
in one of the members (Figure 3.2c). The cut represents the removal or release of three stress
resultants: axial force, shearing force, and bending moment. The number of releases necessary to
make a structure statically determinate represents the degree of indeterminacy. The same frame
becomes determinate if the releases are made by introducing three hinges as in Figure 3.2d, thus
removing the bending moment at three sections.

Structures can be statically indeterminate both internally and externally. The frame of
Figure 3.3a is externally indeterminate to the first degree, but the stress resultants cannot be
determined by statics even if the reactions are assumed to have been found previously. They can,
however, be determined by statics if the frame is cut at two sections, as shown in Figure 3.3b,
thus providing six releases. It follows that the frame is internally indeterminate to the sixth
degree, and the total degree of indeterminacy is seven.

The space frame of Figure 3.4 has six reaction components at each support: three components
X, Y, and Z and three couples Mx, My, and Mz. To avoid crowding the figure, the six components
are shown at one of the four supports only. The moment vectors are indicated by double-headed
arrows.2 Thus, the number of reaction components of the structure is 24, while the equations of

(a)

R1

R2 R3 R4

(b)

R1

R2 R3 R4

Figure 3.3 Frame that is statically indeterminate both externally and internally.

My

Mz

Mx
Y

Z

z

y

x

X

Figure 3.4 Rigid-jointed space frame.

2 All through this text, a moment or a rotation is indicated either by an arrow in the form of an arc of a
circle (planar structures) or by a double-headed arrow (space structures): see footnote 1 in Chapter 2.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Introduction to the analysis of statically indeterminate structures 83

equilibrium that can be written are six in number (cf. Eq. 2.4). The frame is therefore externally
indeterminate to the 18th degree. If the reactions are known, the stress resultants in the four
columns can be determined by statics but the beams forming a closed frame cannot be analyzed
by statics alone. Cutting one of the beams at one section makes it possible to determine the stress
resultants in all the beams. The number of releases in this case is six: axial force, shear in two
orthogonal directions, bending moment about two axes and twisting moment. The structure is
thus internally indeterminate to the sixth degree, and the total degree of indeterminacy is 24.

The members of the horizontal grid of Figure 3.5a are assumed to be rigidly connected (as
shown in Figure 3.5b) and to be subjected to vertical loads only. Thus, both the reaction com-
ponents X, Z, and My and the stress resultants X, Z and My, vanish for all members of the
grid. Hence, the number of equilibrium equations which can be used is three only. The reaction
components at each support are Y, Mx, and Mz, so that the number of reaction components
for the whole structure is 8 × 3 = 24. Thus, it is externally statically indeterminate to the 21st
degree.

If the reactions are known, the stress resultants in the beams of the grid can be determined
by statics alone except for the central part ABCD, which is internally statically indeterminate.
Cutting any of the four beams of this part (ABCD) in one location produces three releases and
makes it possible for the stress resultants to be determined by the equations of statics alone. Thus,
the structure is internally indeterminate to the third degree, and the total degree of indeterminacy
is 24.

If the members forming the grid are not subjected to torsion – which is the case if the beams
of the grid in one direction cross over the beams in the other direction with hinged connections
(Figure 3.5c) or when the torsional rigidity of the section is negligible compared with its bend-
ing stiffness – the twisting moment component (Mz in Figure 3.5a) vanishes and the structure

y

x

A

(a)

(b) (c)

Mz

Mx

Y

D

CB

z

Figure 3.5 Statical indeterminacy of a grid. (a) Grid. (b) Rigid connection of beams. (c) Hinged
connection of beams.
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becomes indeterminate to the 12th degree. The grid needs at least four simple supports for sta-
bility and becomes statically determinate if the fixed supports are removed and only four hinged
supports are provided. Each hinged support has one reaction component in the y direction. Since
the number of reaction components in the original grid is 16, it is externally indeterminate to
the 12th degree. This number is equal to the number of reaction components minus the four
reaction components in the y direction mentioned above. There is no internal indeterminacy
and, once the reactions have been determined, the internal forces in all the beams of the grid
can be found by simple statics.

3.3 Expressions for degree of indeterminacy

In Section 3.2 we found the degree of indeterminacy of various structures by inspection or
from the number of releases necessary to render the structure statically determinate. For certain
structures, especially those with a great many members, such an approach is difficult, and the
use of a formal procedure is preferable.

Let us therefore consider a plane truss with three reaction components, m members and j
hinged (pinned) joints (including the supports, which are also hinged). The unknown forces are
the three reaction components and the force in each member – that is, 3+m. Now, at each joint
two equations of equilibrium can be written:

�Fx = 0 �Fy = 0 (3.1)

the summation being for the components of all the external and internal forces meeting at the
joint. Thus, the total number of equations is 2j.

For statical determinacy, the number of equations of statics is the same as the number of
unknowns, that is,

2j = m + 3 (3.2)

Providing the structure is stable, some interchange between the number of members and the
number of reaction components r is possible, so that for overall determinacy the condition

2j = m + r (3.3)

has to be satisfied. The degree of indeterminacy is then

i = (m + r) − 2j (3.4)

For the truss shown in Figure 3.6, r = 4, m = 18, and j = 10. Hence, i = 2.
In the case of a pin-jointed space frame, three equations of equilibrium can be written, viz.

�Fx = 0 �Fy = 0 �Fz = 0 (3.5)

the summation again being for all the internal and external forces meeting at the joint. The total
number of equations is 3j, and the condition of determinacy is

3j = m + r (3.6)

The degree of indeterminacy is

i = (m + r) − 3j (3.7)
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R1 R2 R4

R3

Figure 3.6 Statically indeterminate plane truss.
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Figure 3.7 Space trusses. (a) and (b) Statically determinate. (c) Statically indeterminate.

The use of these expressions can be illustrated with reference to Figure 3.7. For the truss of
Figure 3.7a, j = 4, m = 3, and r = 9, there being three reaction components at each support.
Thus, Eq. 3.6 is satisfied and the truss is statically determinate.

In the truss of Figure 3.7b, j = 10, m = 15, and r = 15. Hence, again Eq. 3.6 is satisfied.
However, for the truss of Figure 3.7c, j = 8, m = 13, and r = 12, so that from Eq. 3.7, i = 1.

Removal of member AC would render the truss determinate.
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(a)
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Figure 3.8 End-forces in a member of a rigid-jointed frame. (a) Plane frame. (b) Space frame.

Expressions similar to those of Eqs. 3.4 and 3.7 can be established for frames with rigid joints.
At a rigid joint of a plane frame, two resolution equations and one moment equation can be
written. The stress resultants in any member of a plane frame (Figure 3.8a) can be determined
if any three of the six end-forces F1, F2, . . ., F6 are known, so that each member represents three
unknown internal forces. The total number of unknowns is equal to the sum of the number of
unknown reaction components r and of the unknown internal forces. Thus, a rigid-jointed plane
frame is statically determinate if

3j = 3m + r (3.8)

and the degree of indeterminacy is

i = (3m + r) − 3j (3.9)

In these equations j is the total number of rigid joints including the supports and m is the number
of members.

If a rigid joint within the frame is replaced by a hinge, the number of equilibrium equations is
reduced by one but the bending moments at the ends of the members meeting at the joint vanish,
so that the number of unknowns is reduced by the number of members meeting at the hinge.
This modification has to be observed when applying Eqs. 3.8 and 3.9 to plane frames with mixed
type joints. We should note that at a rigid joint where more than two members meet and one of
the members is connected to the joint by a hinge, the number of unknowns is reduced by one,
without a reduction in the number of equilibrium equations. For example, we can verify that
the frame of Prob. 3.5 is four times statically indeterminate, and the degree of indeterminacy
becomes three if a hinge is inserted at the left end of member CF (just to the right of C).
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As an example of rigid-jointed plane frame, let us consider the frame of Figure 3.3a: j = 6,
m = 7, and r = 4. From Eq. 3.9 the degree of indeterminacy i = (3 × 7 + 4) − 3 × 6 = 7, which
is the same result as that obtained in Section 3.2. For the frame of Figure 3.1c, j = 5, m = 4,
and r = 4. However, one of the internal joints is a hinge, so that the number of unknowns
is (3m + r − 2) = 14 and the number of equilibrium equations is (3j − 1) = 14. The frame is
therefore statically determinate, as found before.

At a rigid joint of a space frame, three resolution and three moment equations can be written.
The stress resultants in any members can be determined if any six of the twelve end-forces shown
in Figure 3.8b are known, so that each member represents six unknown forces. A space frame
is statically determinate if

6j = 6m + r (3.10)

and the degree of indeterminacy is

i = (6m + r) − 6j (3.11)

Applying Eq. 3.11 to the frame of Figure 3.4, we have m=8, r=24, and j =8. From Eq. 3.11,
i = 24, which is, of course, the same as the result obtained in Section 3.2.

Consider a grid with rigid connections (Figures 3.5a and b). Three equations of equilibrium can
be written at any joint (�Fy =0; �Mx =0; �Mz =0). Member end-forces are three, representing
a shearing force in the y direction, a twisting moment, and a bending moment. The internal forces
at any section can be determined when three of the six member end-forces are known; thus, each
member represents three unknown forces. A grid with rigid joints is statically determinate when

3j = 3m + r (3.12)

when this condition is not satisfied, the degree of indeterminacy is

i = (3m + r) − 3j (3.13)

When the connections of grid members are hinged as shown in Figure 3.5c, the members are
not subjected to torsion and the degree of indeterminacy is

i = (2m + r) − (3j + 2j) (3.14)

Although torsion is absent, three equations of equilibrium can be applied at a joint connecting
two or more members running in different directions, e.g. joints A, B, C, and D in Figure 3.5a
when the connections are of the type shown in Figure 3.5c. The three equations are: sum of
the end-forces in the y direction equals zero and sum of the components of the end moments
in x and z directions equals zero. The symbol j in Eq. 3.14 represents the number of joints for
which three equations can be written. But only two equilibrium equations (one resolution and
one moment equation) can be written for a joint connected to one member (e.g. at the supports
in Figure 3.5a) or to two members running in the same direction. The symbol j̄ in Eq. 3.14
represents the number of joints of this type.

We can apply Eq. 3.13 or 3.14 to verify that for the grid in Figure 3.5a, i=24 or 12 respectively
when the connections are rigid or hinged (Figure 3.5b or c).

For each type of framed structure, the relation between the numbers of joints, members, and
reaction components must apply when the structure is statically determinate (e.g. Eq. 3.3 or
3.6). However, this does not imply that when the appropriate equation is satisfied the structure
is stable. For example, in Figure 3.7b, removal of the member connecting nodes 5 and 10 and
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addition of a member connecting nodes 5 and 4 will result in an unstable structure even though
it satisfies Eq. 3.6.

3.4 General methods of analysis of statically indeterminate
structures

The objective of the analysis of structures is to determine the external forces (reaction com-
ponents) and the internal forces (stress resultants). The forces must satisfy the conditions of
equilibrium and produce deformations compatible with the continuity of the structure and the
support conditions. As we have already seen, the equilibrium equations are not sufficient to
determine the unknown forces in a statically indeterminate structure, and have to be supplemen-
ted by simple geometrical relations between the deformations of the structure. These relations
ensure the compatibility of the deformations with the geometry of the structure and are called
geometry conditions or compatibility conditions. An example of such conditions is that at an
intermediate support of a continuous beam there can be no deflection and the rotation is the
same on both sides of the support.

Two general methods of approach can be used. The first is the force or flexibility method,
in which sufficient releases are provided to render the structure statically determinate. The
released structure undergoes inconsistent deformations, and the inconsistency in geometry is
then corrected by the application of additional forces.

The second approach is the displacement or stiffness method. In this method, restraints are
added to prevent movement of the joints, and the forces required to produce the restraint are
determined. Displacements are then allowed to take place at the joints until the fictitious restrain-
ing forces have vanished. With the joint displacements known, the forces on the structure are
determined by superposition of the effects of the separate displacements.

Either the force or the displacement method can be used to analyze any structure. Since, in
the force method, the solution is carried out for the forces necessary to restore consistency in
geometry, the analysis generally involves the solution of a number of simultaneous equations
equal to the number of unknown forces, that is, the number of releases required to render the
structure statically determinate. The unknowns in the displacement method are the possible joint
translations and rotations. The number of the restraining forces to be added to the structure
equals the number of possible joint displacements. This represents another type of indeterminacy,
which may be referred to as kinematic indeterminacy, and is discussed in the next section. The
force and displacement methods themselves are considered in more detail in Chapters 4 and 5.

3.5 Kinematic indeterminacy

When a structure composed of several members is subjected to loads, the joints undergo dis-
placements in the form of rotation and translation. In the displacement method of analysis it is
the rotation and translation of the joints that are the unknown quantities.

At a support, one or more of the displacement components are known. For instance, the
continuous beam in Figure 3.9 is fixed at C and has roller supports at A and B. The fixity at C
prevents any displacement at this end while the roller supports at A and B prevent translation

A B C

D2

D1

Figure 3.9 Kinematic indeterminacy of a continuous beam.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Introduction to the analysis of statically indeterminate structures 89

in the vertical direction but allow rotation. We should note that roller supports are assumed to
be capable of resisting both downward and upward forces.

If we assume that the axial stiffness of the beam is so large that the change in its length due to
axial forces can be ignored, there will be no horizontal displacements at A or at B. Therefore, the
only unknown displacements at the joints are the rotations D1 and D2 at A and B respectively
(Figure 3.9). The displacements D1 and D2 are independent of one another, as either can be
given an arbitrary value by the introduction of appropriate forces.

A system of joint displacements is called independent if each displacement can be varied
arbitrarily and independently of all the others. In the structure in Figure 3.9, for example,
the rotations D1 and D2 are independent, because any of the two, say, D1 can be varied while
maintaining D2 unchanged. This can be achieved by applying a couple of appropriate magnitude
at A, while preventing the rotation at B by another couple. The number of the independent joint
displacements in a structure is called the degree of kinematic indeterminacy or the number of
degrees of freedom. This number is a sum of the degrees of freedom in rotation and in translation.
The latter is sometimes called freedom in sidesway.

As an example of the determination of the number of degrees of freedom, let us consider the
plane frame ABCD of Figure 3.10a. The joints A and D are fixed, and the joints B and C each
have three components of displacement D1, D2, . . . , D6, as indicated in the figure. However, if the
change in length of the members due to axial forces is ignored, the six displacements are not inde-
pendent as the translation of the joints B and C is in a direction perpendicular to the original dir-
ection of the member. If an arbitrary value is assigned to any one of the translation displacements
D1, D2, D4, or D5, the value of the other three is determined from geometrical relations.
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Figure 3.10 (a) Kinematic indeterminacy of a rigid-jointed plane frame. (b) and (c) Displacement
diagrams.
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For example, if D1 is assigned a certain value, D2 is equal to (D1 cot θ1) to satisfy the condition
that the resultant translation at B is perpendicular to AB. Once the position B′ (joint B after
displacement) is defined, the displaced position C′ is defined, since it can have only one location
if the lengths BC and CD are to remain unchanged. The joint displacement diagram is shown
in Figure 3.10b, in which the displacements D2, D4, and D5 are determined graphically from a
given value of D1. In this figure, BB′ is perpendicular to AB, BCEB′ is a parallelogram, and EC′
and CC′ are perpendicular to BC and CD respectively.

From the above discussion, it can be seen that the translation of the joints in the frame
considered represents one unknown, or one degree of freedom.

We should note that the translations of the joints are very small compared with the length of
the members. For this reason, the translation of the joints is assumed to be along a straight line
perpendicular to the original direction of the member rather than along an arc of a circle. The
triangle CC′ E is drawn to a larger scale in Figure 3.10c, from which the displacements D2, D4,
and D5 can be determined. The same displacements can be expressed in terms of D1 by simple
geometrical relations.

Now, the rotations of the joints at B and C are independent of one another. Thus, the frame
of Figure 3.10a has one degree of freedom in sidesway and two degrees of freedom in rotation,
so that the degree of kinematic indeterminacy for the frame is three. If the axial deformations
are not neglected, the four translational displacements are independent and the total degree of
kinematic indeterminacy is six.

The plane frame of Figure 3.11 is another example of a kinematically indeterminate structure.
If the axial deformation is neglected, the degree of kinematic indeterminacy is two, the unknown
joint displacements being rotations at A and at B.

We must emphasize that the kinematic indeterminacy and the statical indeterminacy must not
be confused with one another. For instance, the frame of Figure 3.11 has seven reaction compon-
ents and is statically indeterminate to the fourth degree. If the fixed support at D is replaced by
a hinge, the degree of statical indeterminacy will be reduced by one, but at the same time rota-
tion at D becomes possible, thus increasing the kinematic indeterminacy by one. In general, the
introduction of a release decreases the degree of statical indeterminacy and increases the degree
of kinematic indeterminacy. For this reason, the higher the degree of statical indeterminacy, the
more suitable the displacement method for analysis of the structure.

In a pin-jointed truss with all the forces acting at the joints, the members are subjected to an
axial load only (without bending moment or shear) and therefore remain straight. The deformed
shape of a plane truss is completely defined if the components of the translation in two ortho-
gonal directions are determined for each joint, and each joint – other than a support – has two
degrees of freedom.

Thus, the plane structure of Figure 3.12 is kinematically indeterminate to the second degree,
as only joint A can have a displacement that can be defined by components in two orthogonal
directions. From Eq. 3.4, the degree of statical indeterminacy is three. The addition to the system

A C
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Figure 3.11 Kinematic indeterminacy of a rigid-jointed plane frame.
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D1

D2
P

A

Figure 3.12 Kinematic indeterminacy of a plane truss.

of an extra bar pinned at A at one end and at a support at the other would not change the degree
of kinematic indeterminacy, but would increase the degree of statical indeterminacy by one.

In a pin-jointed space truss loaded at the joints only, the translation of the joints can take place
in any direction and can therefore be defined by components in three orthogonal directions, so
that each joint – other than a support – has three degrees of freedom. It can be easily shown
that the degree of kinematic indeterminacy of the truss of Figure 3.7a is 3, that of the truss of
Figure 3.7b is 15 and that of the truss in Figure 3.7c is 12.

Each joint of a rigid-jointed space frame can in general have six displacement components:
three translations in three orthogonal directions, and three rotations, which can be represented
by vectors in each of the three orthogonal directions (double-headed arrows).

Let us consider the frame of Figure 3.13. It has eight joints, of which four are fixed in space.
Each of the joints A, B, C, and D can have six displacements such as those shown at A. The
degree of kinematic indeterminacy of the frame is therefore 4 × 6 = 24.

If the axial deformations are neglected, the lengths of the four columns remain unchanged
so that the component D3 of the translation in the vertical direction vanishes, thus reducing
the unknown displacements by four. Also, since the lengths of the horizontal members do not
change, the horizontal translations in the x direction of joints A and D are equal; the same
applies to the joints B and C. Similarly, the translations in the y direction of joints A and B are
equal; again, the same is the case for joints C and D. All this reduces the unknown displacements
by four. Therefore, the degree of kinematic indeterminacy of the frame of Figure 3.13, without
axial deformation, is 16.

If a rigid-jointed grid is subjected to loads in the perpendicular direction to the plane of
the grid only, each joint can have three displacement components: translation perpendicular to
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Figure 3.13 Kinematic indeterminacy of a rigid-jointed space frame.
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Figure 3.14 Kinematic indeterminacy of a rigid-jointed grid loaded in a direction normal to its plane.

the plane of the grid and rotation about two orthogonal axes in the plane of the grid. Thus,
the grid of Figure 3.14 is kinematically indeterminate to the sixth degree. The degree of statical
indeterminacy of this grid is 15.

If the beams of a grid in one direction are hinged to the beams in the perpendicular direction
in the manner shown in Figure 3.5c, the beams will not be subjected to torsion. Hence, the
degree of statical indeterminacy of the grid of Figure 3.14 with hinged connections is eight. On
the other hand, the degree of kinematic indeterminacy remains unchanged.

3.6 Principle of superposition

In Section 2.1, we mentioned that when deformations in a structure are proportional to the
applied loads the principle of superposition holds. This principle states that the displacement
due to a number of forces acting simultaneously is equal to the sum of the displacements due to
each force acting separately.

In the analysis of structures it is convenient to use a notation in which a force Fj causes at a
point i a displacement Dij. Thus, the first subscript of a displacement describes the position and
direction of the displacement, and the second subscript the position and direction of the force
causing the displacement. Each subscript refers to a coordinate which represents the location
and direction of a force or of a displacement. The coordinates are usually indicated by arrows
on the diagram of the structure.

This approach is illustrated in Figure 3.15a. If the relation between the force applied and the
resultant displacement is linear, we can write

Di1 = fi1F1 (3.15)

where fi1 is the displacement at coordinate i due to a unit force at the location and direction of
F1 (coordinate 1).

If a second force F2 is applied causing a displacement Di2 at i (Figure 3.15b)

Di2 = fi2F2 (3.16)

where fi2 is the displacement at i due to a unit force at coordinate 2.
If several forces F1, F2, . . . ,Fn act simultaneously (Fig 3.15c) the total displacement at i is

Di = fi1F1 + fi2F2 + · · · + finFn (3.17)

Clearly, the total displacement does not depend on the order of the application of the loads.
This, of course, does not hold if the stress–strain relation of the material is nonlinear.
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(c)

Figure 3.15 Superposition of displacements and forces.

A structure made of material obeying Hooke’s law may behave nonlinearly if large changes
in the geometry are caused by the applied loads (See Chapter 24). Consider the slender strut
in Figure 3.16a subjected to an axial force F1, not large enough to cause buckling. The strut
will, therefore, remain straight, and the lateral displacement at any point A is DA = 0. Now, if
the strut is subjected to a lateral load F2 acting alone, there will be a lateral deflection DA at
points A (Figure 3.16b). If both F1 and F2 act (Figure 3.16c), the strut will be subjected to an
additional bending moment equal to F1 multiplied by the deflection at the given section. This
additional bending causes additional deflections and the deflection D′

A at A will, in this case, be
greater than DA.

(a) (b) (c)

DA

F2

F1

F2

F1

AAA D′A > DADA = 0

Figure 3.16 Structure to which superposition does not apply.
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No such bending moment exists, of course, when the loads F1 and F2 act separately, so that the
combined effect of F1 and F2 is not equal to the sum of their separate effects, and the principle
of superposition does not hold.

When a structure behaves linearly, the principle of superposition holds for forces as well as
for displacements. Thus, the internal stress resultants at any section or the reaction components
of the structure in Figure 3.15c can be determined by adding the effects of the forces F1, F2, . . .,
Fn when each acts separately.

Let the symbol Ai indicate a general action which may be a reaction, bending moment, shear,
or thrust at any section due to the combined effect of all the forces. A general superposition
equation of forces can then be written:

Ai = Aui1F1 + Aui2F2 + · · · + AuinFn (3.18)

where Aui1 is the magnitude of the action Ai when a unit force is applied alone at coordinate 1.
Similarly, Aui2, . . . ,Auin are the values of the action Ai when a unit force acts separately at each
of the coordinates 2, . . . ,n.

Equation 3.18 can be written in matrix form:

Ai = [Aui]1×n{F}n×1 (3.19)

We should note that the superposition of forces of Eq. 3.18 holds good for statically determ-
inate structures regardless of the shape of the stress–strain relation of the material, provided
only that the loads do not cause a distortion large enough to change appreciably the geometry
of the structure. In such structures, any action can be determined by equations of statics alone
without considering displacements. On the other hand, in statically indeterminate structures the
superposition of forces is valid only if Hooke’s law is obeyed because the internal forces depend
on the deformation of the members.

3.7 General

The majority of modern structures are statically indeterminate, and with the flexibility method it
is necessary to establish for a given structure the degree of indeterminacy, which may be external,
internal, or both. In simple cases the degree of indeterminacy can be found by simple inspection,
but in more complex or multispan and multibay structures it is preferable to establish the degree
of indeterminacy with the aid of expressions involving the number of joints, members, and
reaction components. These expressions are available for plane and space trusses (pin-jointed)
and frames (rigid-jointed).

Two general methods of analysis of structures are available. One is the force (or flexibility)
method, in which releases are introduced to render the structure statically determinate; the
resulting displacements are computed and the inconsistencies in displacements are corrected by
the application of additional forces in the direction of the releases. Hence, a set of compatibility
equations is obtained: its solution gives the unknown forces.

In the other method – the displacement (or stiffness) method – restraints at joints are
introduced. The restraining forces required to prevent joint displacements are calculated. Dis-
placements are then allowed to take place in the direction of the restraints until the restraints
have vanished; hence, a set of equilibrium equations is obtained: its solution gives the unknown
displacements. The internal forces on the structure are then determined by superposition of the
effects of these displacements and those of the applied loading with the displacements restrained.

The number of restraints in the stiffness method is equal to the number of possible inde-
pendent joint displacements, which therefore has to be determined prior to the analysis. The
number of independent displacements is the degree of kinematic indeterminacy, which has to be
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distinguished from the degree of statical indeterminacy. The displacements can be in the form
of rotation or translation.

The analysis of structures by the force or the displacement method involves the use of the
principle of superposition, which allows a simple addition of displacements (or actions) due to
the individual loads (or displacements). This principle can, however, be applied only if Hooke’s
law is obeyed by the material of which a statically indeterminate structure is made. In all cases,
the displacements must be small compared with the dimensions of the members so that no gross
distortion of geometry of the structure takes place.

Problems

3.1 to 3.6 What is the degree of statical indeterminacy of the structure shown below? Introduce
sufficient releases to render each structure statically determinate.

A B C

Prob. 3.1

A B
E F

C D

Prob. 3.2

A C

B

Prob. 3.3

A B CE D

Prob. 3.4

D E

F

B

C

A

Prob. 3.5

A

D E F

BI J
C

G H

Prob. 3.6
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3.7 The bars AB, BC, and CD are rigidly connected and lie in a horizontal plane. They are
subjected to vertical loading. What is the degree of statical in determinacy?

A

B

C

D

Prob. 3.7

3.8 The horizontal grid shown in the figure is subjected to vertical loads only. What is the
degree of statical indeterminacy?

(a) assuming rigid connections at the joints.
(b) assuming connections of the type shown in Figure 3.5c, i.e. a torsionless grid.

Introduce sufficient releases in each case to render the structure statically determinate.

A B
G

C D
H

E F
I

Prob. 3.8

3.9 The figure shows a pictorial view of a space truss pin-jointed to a vertical wall at A, B,
C, and D. Determine the degree of statical indeterminacy. Introduce sufficient releases to
make the structure statically determinate.

3.10 Determine the degree of kinematic indeterminacy of the beam of Prob. 3.1 and indicate a
coordinate system of joint displacements. What is the degree of kinematic indeterminacy
if the axial deformation is ignored?

3.11 Apply the questions of Prob. 3.10 to the frame of Prob. 3.5.
3.12 What is the degree of kinematic indeterminacy of the rigid-connected grid of Prob. 3.8?
3.13 Introduce sufficient releases to render the structure in the figure statically determinate and

draw the corresponding bending moment diagram. Draw the bending moment diagram
for another alternative released structure.

3.14 The figure shows a space truss which has two planes of symmetry: xz and yz. The members
are four horizontals, four verticals plus two diagonals in each of five orthogonal planes.
Figure (a) is the elevation of one of the four identical sides of the truss. Introduce sufficient
releases to make the structure statically determinate, and find the forces in the members
of the released structure due to two equal forces P at the top node A.

3.15 (a) Introduce sufficient releases to make the frame shown statically determinate. Indicate
the releases by a set of coordinates.
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P1

I

J

G

C

B

A

D

F

E

H

P2

Prob. 3.9

P
B

A D

1.5b

C

b

Prob. 3.13

H G

E F

(c) Section 1–1

D

l

1 1

C

P A

D C

P

B

z
x

yH
(a) Elevation (b) Top view

l l

G

Prob. 3.14

(b) Introduce a hinge at the middle of each member and draw the bending moment dia-
gram for the frame due to two horizontal forces, each equal to P, at E and C. Show
by a sketch the magnitude and direction of the reaction components at A.
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EP

l

l

l

F

D

B

CP

A

Prob. 3.15

3.16 Verify that the space truss shown is once statically indeterminate. Find the forces in
the members and the reaction components with the structure released by the cutting of
member BC.

x

y

P

z
1

2

3

4

5

6

9

10

8

7

3

1 2

P

x

y

l

(a) Pictorial view

10

9

5 6

3

l

x

y

P

z
11

22

33

44

55

66

A

99

1010

88

77

C

B

D

E

F

33

11 22

x

y

z (down)

l

0.866 l

A

CB

(a) Pictorial view

1010

99

55 66

33

l

CB

FE

(c) Elevation of members: 3, 5, 6, 9 and 10

(b) Top view of members: 1, 2 and 3

Prob. 3.16



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4

Force method of analysis

4.1 Introduction

As mentioned in Section 3.4, this is one of the basic methods of analysis of structures. It is
proposed to outline the procedure in this chapter, and then in Chapter 6 to compare the force
and the displacement methods.

4.2 Description of method

The force method involves five steps. They are briefly mentioned here; but they are explained
further in examples and in sections below.

1. First of all, the degree of statical indeterminacy is determined. A number of releases equal
to the degree of indeterminacy is now introduced, each release being made by the removal
of an external or an internal force. The releases must be chosen so that the remaining
structure is stable and statically determinate. However, we will learn that in some cases the
number of releases can be less than the degree of indeterminacy, provided the remaining
statically indeterminate structure is so simple that it can be readily analyzed. In all cases,
the released forces, which are also called redundant forces, should be carefully chosen so
that the released structure is easy to analyze.

2. Application of the given loads on the released structure will produce displacements that
are inconsistent with the actual structure, such as a rotation or a translation at a sup-
port where this displacement must be zero. In the second step these inconsistencies or
“errors’’ in the released structure are determined. In other words, we calculate the mag-
nitude of the “errors’’ in the displacements corresponding to the redundant forces. These
displacements may be due to external applied loads, settlement of supports, or temperature
variation.

3. The third step consists of a determination of the displacements in the released structure due
to unit values of the redundants (cf. Figures 4.1d and e). These displacements are required
at the same location and in the same direction as the error in displacements determined in
step 2.

4. The values of the redundant forces necessary to eliminate the errors in the displace-
ments are now determined. This requires the writing of super position equations in which
the effects of the separate redundants are added to the displacements of the released
structure.

5. Hence, we find the forces on the original indeterminate structure: they are the sum of the
correction forces (redundants) and forces on the released structure.

This brief description of the application of the force method will now be illustrated by
examples.
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(a)
q per unit length

A

A C

B C

l l

(c)

D1

F1, D1

f11
f21

F2, D2

f12

f22

D2

ql ql

ql

(e)

(d)

(f)
1

(b)

1

7
8

14
ql2

Figure 4.1 Continuous beam considered in Example 4.1. (a) Statically indeterminate beam. (b)
Coordinate system. (c) External load on released structure. (d) F1 = 1. (e) F2 = 1. (f)
Redundants.

Example 4.1: Structure with degree of indeterminacy = 2
Figure 4.1a shows a beam ABC fixed at C, resting on roller supports at A and B, and
carrying a uniform load of q per unit length. The beam has a constant flexural rigidity EI.
Find the reactions of the beam.

Coordinate system

Step 1 The structure is statically indeterminate to the second degree, so that two redundant
forces have to be removed. Several choices are possible, e.g. the moment and the vertical reaction
at C, or the vertical reactions at A and B. For the purposes of this example, we shall remove the
vertical reaction at B and the moment at C. The released structure is then a simple beam AC
with redundant forces and displacements as shown in Figure 4.1b. The location and direction
of the various redundants and displacements are referred to as a coordinate system.

The positive directions of the redundants F1 and F2 are chosen arbitrarily but the positive
directions of the displacements at the same location must always accord with those of the
redundants. The arrows in Figure 4.1b indicate the chosen positive directions in the present case
and, since the arrows indicate forces as well as displacements, it is convenient in a general case
to label the coordinates by numerals 1, 2, . . . , n.

Step 2 Following this system, Figure 4.1c shows the displacements at B and C as D1 and D2

respectively. In fact, as shown in Figure 4.1a, the actual displacements at those points are zero,
so that D1 and D2 represent the inconsistencies in deformation.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Force method of analysis 101

The magnitude of D1 and D2 can be calculated from the behavior of the simply-supported
beam of Figure 4.1c. For the present purposes, we can use Eqs. B.1 and B.3, Appendix B. Thus,

D1 = − 5ql4

24EI
and D2 = − ql3

3EI

The negative signs show that the displacements are in directions opposite to the positive
directions chosen in Figure 4.1b.

It is good practice to show the selected coordinate system in a separate figure, such as
Figure 4.1b, rather than adding arrows to Figure 4.1a. The arbitrary directions selected for the
arrows establish the force and displacement sign convention which must be adhered to through-
out the analysis. Note that when the release is for an internal force, it must be represented in the
coordinate system by a pair of arrows in opposite directions (Figure 4.7) and the corresponding
displacement will be the relative translation or relative rotation of the two sections on either
side of the coordinate.

Step 3 The displacements due to unit values of the redundants are shown in Figures 4.1d and e.
These displacements are as follows (Eqs. B.7–9 and B.12, Appendix B):

f11 = l3

6EI
f12 = l2

4EI

f21 = l2

4EI
f22 = 2l

3EI

The general coefficient fij represents the displacement at the coordinate i due to a unit
redundant at the coordinate j.

Geometry relations (compatibility equations)

Step 4 The geometry relations express the fact that the final vertical translation at B and the
rotation at C vanish. The final displacements are the result of the superposition of the effect
of the external loading and of the redundants on the released structure. Thus, the geometry
relations can be expressed as

D1 + f11F1 + f12F2 = 0
D2 + f21F1 + f22F2 = 0

}
(4.1)

A more general form of Eq. 4.1 is

D1 + f11F1 + f12F2 = �1

D2 + f21F1 + f22F2 = �2

}
(4.2)

where �1 and �2 are prescribed displacements at coordinates 1 and 2 in the actual structure. If,
in the example considered, the analysis is required for the combined effects of the given load q
and a downward settlement δB of support B (Figure 4.1a), we must substitute �1 =−δB,�2 =0;
see Example 4.3, case (2).
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Flexibility matrix

The relations of Eq. 4.2 can be written in matrix form:

[f ]{F} = {� − D} (4.3)

where

{D} =
{

D1

D2

}
[f ] =

[
f11 f12

f21 f22

]
and {F} =

{
F1

F2

}

(The necessary elements of the matrix algebra are given in Appendix A.)
The column vector {�−D} depends on the external loading. The elements of the matrix [f ] are

displacements due to the unit values of the redundants. Therefore, [f ] depends on the properties
of the structure, and represents the flexibility of the released structure. For this reason, [f ] is
called the flexibility matrix and its elements are called flexibility coefficients.

We should note that the elements of a flexibility matrix are not necessarily dimensionally
homogeneous as they represent either a translation or a rotation due to a unit load or to a
couple. In the above example, f11 is a translation due to a unit concentrated load; thus, f11 has
units (length/force) (e.g. m/N or in./kip). The coefficient f22 is a rotation in radians due to a
unit couple; thus, its units are (force length)−1. Both f12 and f21 are in (force)−1 because f12 is a
translation due to a unit couple, and f21 is a rotation due to a unit load.

The elements of the vector {F} are the redundants which can be obtained by solving Eq. 4.3;
thus,

{F} = [f ]−1{� − D} (4.4)

In the example considered, the order of the matrices {F}, [f ], and {D} is 2 × 1, 2 × 2, 2 × 1. In
general, if the number of releases is n, the order will be n×1, n×n, n×1 respectively. We should
note that [f ] is a square symmetrical matrix. The generality of this property of the flexibility
matrix will be proved in Section 6.6.

In the example considered, the flexibility matrix and its inverse are

[f ] =

⎡
⎢⎢⎢⎣

l3

6EI
l2

4EI

l2

4EI
2l

3EI

⎤
⎥⎥⎥⎦ (4.5)

and

[f ]−1 = 12EI
7l3

[
8 −3l

−3l 2l2

]
(4.6)

The displacement vector is

{� − D} = ql3

24EI

{
5l
8

}

Substituting in Eq. 4.4, or solving Eq. 4.3, we obtain

{F} = ql
14

{
16
l

}



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Force method of analysis 103

Therefore, the redundants are

F1 = 8
7

ql and F2 = ql2

14

The positive sign indicates that the redundants act in the positive directions chosen in Figure 4.1b.
It is important to note that the flexibility matrix is dependent on the choice of redundants:

with different redundants, the same structure would result in a different flexibility matrix.

Step 5 The final forces acting on the structure are shown in Figure 4.1f, and any stress resultants
in the structure can be determined by the ordinary methods of statics.

The reactions and the internal forces can also be determined by the superposition of the effect
of the external loads on the released structure and the effect of the redundants. This can be
expressed by the superposition equation

Ai = Asi + (Aui1F1 + Aui2F2 + · · · + AuinFn) (4.7)

where

Ai = any action i, that is, reaction at a support, shearing force, axial force, twisting
moment, or bending moment at a section in the actual structure

Asi = same action as Ai but in the released structure subjected to the external loads
Aui1,Aui2, . . . , Auin = corresponding action due to a unit force acting alone on the released

structure at the coordinate 1, 2, . . . , n, respectively
F1,F2, . . . ,Fn = redundants acting on the released structure

From Eq. 3.18, the term in parentheses in Eq. 4.7 represents the action of all the redundants
applied simultaneously to the released structure.

Generally, several reactions and internal forces are required. These can be obtained by equa-
tions similar to Eq. 4.7. If the number of actions is m, the system of equations needed can be
put in the matrix form

{A}m×1 = {As}m×1 + [Au]m×n{F}n×1 (4.8)

The order of each matrix is indicated in Eq. 4.8 but it may be helpful to write, on this occasion,
the matrices in full. Thus,

{A} =

⎧⎪⎪⎨
⎪⎪⎩

A1

A2

. . .

Am

⎫⎪⎪⎬
⎪⎪⎭ {As} =

⎧⎪⎪⎨
⎪⎪⎩

As1

As2

. . .

Asm

⎫⎪⎪⎬
⎪⎪⎭ [Au] =

⎡
⎢⎢⎣

Au11 Au12 . . . Au1n

Au21 Au22 . . . Au2n

. . . . . . . . . . . .

Aum1 Aum2 . . . Aumn

⎤
⎥⎥⎦

4.3 Released structure and coordinate system

In the first step of the force method, it is necessary to draw a figure showing the released structure
and a system of numbered arrows. The arrows indicate the locations and the positive directions of
the statically indeterminate forces removed from the structure. The removed forces (the releases)
can be external, such as the reaction components. As an example, see Figure 4.1b which indicates
the removal of reaction components represented by arrows (coordinates) 1 and 2. The release
can also be achieved by the removal of internal forces, e.g. by cutting a member or by introducing
a hinge.
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When the released force is external, it is to be represented by a single arrow. But, when the
released force is internal, e.g. an axial force, a shearing force or a bending moment, it must be
represented by a pair of arrows pointing in opposite directions. Each pair represents a coordinate
and thus bears one number (e.g. Figure 4.4b).

The remaining steps of the force method involve the calculation and the use of forces and
displacements at the coordinates defined in the first step. Thus, it is impossible to follow or check
the calculated forces or displacements (particularly their signs) when the coordinate system is not
defined. For this reason, we recommend that the released structure and the coordinate system
be represented by a figure that does not show the external applied forces. It should only show
a released structure and a set of numbered single arrows, when the released forces are external,
or pairs of arrows, when the released forces are internal.

4.3.1 Use of coordinate represented by a single arrow or a pair of arrows

A coordinate indicates the location and the direction of a force or a displacement. A single arrow
represents an external force (e.g. a reaction component) or a displacement in the direction of
the arrow. The force can be a concentrated load or a couple; the displacement will then be a
translation or a rotation respectively. Coordinates 1 and 2 in Figure 4.1b represent a vertical
reaction at B and a couple (a moment) component of the reaction at C; the same coordinates
also represent a vertical translation at B and a rotation at C. The directions of the arrows are
arbitrarily chosen; but the choice sets the sign convention that must be followed throughout the
analysis.

In Prob. 4.1a, the continuous beam in Figure 4.1a is released by the insertion of a hinge at
B and the replacement of the totally fixed support at C by a hinged support. The hinge at B
releases an internal force (a bending moment), that must be represented by a pair of opposite
arrows, jointly denoted coordinate 1; the release of the reaction component at C (a couple) is
represented by a single arrow, coordinate 2. The pair of arrows, coordinate 1, represents also
the relative rotation (the angular discontinuity) of the two member ends connected by the hinge
inserted at B. Coordinate 2 represents also the rotation of the beam end C.

4.4 Analysis for environmental effects

The force method can be used to analyze a statically indeterminate structure subjected to effects
other than applied loads. An example of such an effect which causes internal stresses is the
movement of a support. This may be due to the settlement of foundations or to a differential
temperature movement of supporting piers.

Internal forces are also developed in any structure if the free movement of a joint is prevented.
For example, the temperature change of a beam with two fixed ends develops an axial force.
Stresses in a structure may also be caused by a differential change in temperature.

As an example, let us consider the continuous beam ABC of Figure 4.2a when subjected to a
rise in temperature varying linearly between the top and bottom faces. If support B is removed,
the beam becomes statically determinate, and the rise in temperature causes it to deflect upward
(Figure 4.2b). If the beam is to remain attached to the support at B, a downward force F1 will
develop so as to correct for the error in displacement, D1. The deflected shape of the beam axis
is then as shown in Figure 4.2c.

If a member of a truss is manufactured shorter or longer than its theoretical length and then
forced to fit during erection, stresses will develop in the truss. This lack of fit has a similar
effect to a change in temperature of the member in question. The effect of shrinkage of concrete
members on drying is also similar to the effect of a drop in temperature.

Another cause of internal forces in statically indeterminate structures is the prestrain induced
in prestressed concrete members. This may be illustrated by reference to Figure 4.3a, which
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A
B C

Centroidal axis
h

ll/2l/2 Temperature
gradient

(a)

(c)

(b)

(d)

Ttop

Asi

Ai

D1

F1

Tbot 1

B 1.5 ψ EI/l

Curvature: ψfree = (Tbot – Ttop)/h

CAi

Figure 4.2 Effect of a differential rise in temperature across a continuous beam. (a) Continuous beam
subjected to temperature rise. (b) Deflected shape of statically determinate structure. (c)
Deflected shape of the statically indeterminate structure in (a). (d) Bending moment diagram.

DB

FB

(a)

(b)

(c)

A B

Anchorage

Tensioned cable in
a duct

Figure 4.3 Effect of prestrain in a beam.

shows a statically determinate concrete beam of rectangular cross section. A cable is inserted
through a duct in the lower part of the cross section. The cable is then tensioned and anchored
at the ends. This produces compression in the lower part of the cross section and causes the
beam to deflect upward (Figure 4.3b). If the beam is statically indeterminate, for example, if the
end B is fixed, the rotation at this end cannot take place freely and a couple will develop at B
so as to cause the rotation DB to vanish (Figure 4.3c).

In all these cases, Eq. 4.4 can be applied to calculate the redundant forces, the elements of the
matrix {D} being the errors in the displacement of the released structure due to the given effect,
or to the various effects combined. The effects of temperature, shrinkage, creep, and prestressing
are discussed in more detail in Sections 6.9 to 6.11.

We should note that the matrix {�} includes the prescribed displacement of the support if
this displacement corresponds to one of the coordinates. Otherwise, the effect of the support
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movement on the displacement of the released structure at a coordinate should be included in
the calculation of the displacement {D}. This is further explained in Example 4.4, case (1).

4.4.1 Deflected shapes due to environmental effects

The superposition Eq. 4.7 can give the displacement Ai at coordinate i on a statically inde-
terminate structure due to an environmental effect: temperature, shrinkage, creep, movement of
supports, lack of fit, or prestressing. For this application of Eq. 4.7, Ai is the required displace-
ment, and Asi is the displacement at i of a released statically determinate structure subjected to
the environmental effect. The last term in the right-hand side of Eq. 4.7 sums up the displace-
ments at i due to the redundants {F}. We recognize that in a statically determinate structure an
environmental effect produces strains and displacements without stresses, internal forces (stress
resultants) or reactions.

We refer again to the continuous beam in Figure 4.2a subjected to a rise in temperature, the
distribution of which over the depth h is linear as shown in the figure; the deflection Ai of
the centroidal axis of the beam is equal to Asi of the released structure in Figure 4.2b plus the
deflection at i due to the redundant F1. Note that the released structure deflects while its internal
forces and reactions are nil; the bending moment diagram, Figure 4.2d, is not directly related,
by Eq. 1.24, to the curvature of the deflected shape in Figure 4.2c; e.g. the points of inflection
on both sides of support B do not correspond to points of zero moments.

Example 4.2: Deflection of a continuous beam due to temperature variation
Find the deflection Ai at coordinate i of the continuous beam in Figure 4.2a subjected
to a rise in temperature that varies linearly over the depth h from Ttop to Tbot at top and
bottom respectively, with Ttop >Tbot . Assume that EI = constant and consider only bending
deformation.

A released structure obtained by the removal of the reaction component at coordinate 1
is shown in Figure 4.2b. The rise of temperature produces constant curvature in the released
structure given by Eq. 1.7:

�free =�(Tbot − Ttop)/h

where � is coefficient of thermal expansion. The deflections at B and at i are (Eqs. B.39
and B.40):

D1 =�free(2l)2/8 = 0.5�freel
2

Asi =�free(0.5l)(1.5l)/2 = 0.375�freel
2

Displacements due to F1 = 1 are (Eqs. B.8 and B.5):

f11 = (2l)3/(48EI) = l3/(6EI)

Au1i = l(0.5l)
6(2l)EI

[2l(2l) − l2 − (0.5l)2] = 0.1146l3/(EI)

Equation 4.4 gives the redundant:

F1 = −f −1
11 D1 = −6EI

l3 (0.5�free l2) = −3EI
l

�free
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The deflection at i is (Eq. 4.7):

Ai = Asi + Au1i F1

Ai = 0.375�free l2 + 0.1146
l3

EI

(
−3EI

l
�free

)
= 31.2 × 10−3�free l2

Because Ttop > Tbot , �free is negative and the deflection at i is upward.

4.5 Analysis for different loadings

When using Eq. 4.3 to find the redundants in a given structure under a number of different
loadings, the calculation of the flexibility matrix (and its inverse) need not be repeated. When
the number of loadings is p the solution can be combined into one matrix equation

[F]n×p = [f ]−1
n×n [� − D]n×p (4.9)

where each column of [F] and [D] corresponds to one loading.
The reactions or the stress resultants in the original structure can be determined from equations

similar to Eq. 4.8, viz.

[A]m×p = [As]m×p + [Au]m×n[F]n×p (4.10)

4.6 Five steps of force method

The analysis by the force method involves five steps which are summarized as follows:

Step 1 Introduce releases and define a system of coordinates. Also define [A]m×p, the required
actions, and define their sign convention (if necessary).

Step 2 Due to the loadings on the released structure, determine [D]n×p, and [As]m×p. Also fill-in
the prescribed displacements [�]n×p.

Step 3 Apply unit values of the redundants one by one on the released structure and generate
[f ]n×n and [Au]m×n.

Step 4 Solve the geometry equations:

[f ]n×n[F]n×p = [� − D]n×p (4.11)

This gives the redundants [F]n×p.

Step 5 Calculate the required actions by superposition:

[A]m×p = [As]m×p + [Au]m×n[F]n×p (4.12)

At the completion of step 3, all the matrices necessary for the analysis have been generated.
The last two steps involve merely matrix algebra. Step 5 may be eliminated when no action
besides the redundants is required, or when the superposition can be done by inspection after
determination of the redundants (see Example 4.5). When this is the case, the matrices [A], [As],
and [Au] are not required.
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For quick reference, the symbols used in this section are defined again as follows:

n, p, m = number of redundants, number of loading cases, and number of actions required
[A] = the required actions (the answers to the problem)
[As] = values of the actions due to the loadings on the released structure
[Au] = values of the actions in the released structure due to unit forces applied separately at

each coordinate
[D] = displacements of the released structure at the coordinates due to the loadings; these

displacements represent incompatibilities to be eliminated by the redundants
[�] = prescribed displacements at the coordinates in the actual structure; these represent

imposed displacements to be maintained
[f ] = flexibility matrix.

Example 4.3: A stayed cantilever
Figure 4.4a shows a cantilever stayed by a link member AC. Determine the reaction com-
ponents {R1, R2} at B due to the combined effect of the uniform load shown and a drop of
temperature T degrees in AC only. Assume that:

aAC = 30IAB/l2; αT = (ql3/EIAB)/40

where aAC and IAB are the cross-sectional area and second moment of area of AC and
AB respectively; α is coefficient of thermal expansion (degree−1) for AC; E is modulus of
elasticity of the structure.

Step 1 Figure 4.4b shows the structure released by cutting AC. The arbitrarily chosen directions
of the arrows representing coordinate 1 indicate that F1 is positive when the force in AC is tensile.
The same arrows also indicate that D1 is positive when the gap at the cut section closes.

The required actions are:

{A} =
{

R1

R2

}

Temperature
drop T degrees
 in AC

C

A
B

A

C

B

(a) (b)

l

l R1

R2

q per unit length

cut 1

detail at
cut section

Gap

Figure 4.4 A stayed cantilever: Example 4.2. (a) Actual structure. (b) Released structure and coordinate
system.
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Step 2 Application of the load and the temperature change to the released structure produces
the following displacement and reactions:

D1 = −
(

ql4

8EI

)
AB

− (αTl)AC = −0.15
ql4

EIAB

{As} =
{

ql
ql2/2

}

The load q produces a downward deflection at A (given by Eq. B.27 Appendix B) and opens the
gap at the cut section by the same amount. Also, the drop in temperature in AC opens the gap
at the cut section. Thus, the two terms in the above equation for D1 are negative.

Step 3 Application of two equal and opposite unit forces F1 causes the following displacement
and actions in the released structure:

f11 =
(

l3

3EI

)
AB

+
(

l
Ea

)
AC

= 11
30

l3

EIAB

[Au] =
[−1
−l

]

The first term in the above equation for f11 is given by Eq. B.19.

Step 4 In this example the compatibility Eq. 4.11 expresses the fact that the actual structure
has no gap; thus,

f11F1 = �1 − D1

with �1 = 0.
The solution gives the force necessary to eliminate the gap:

F1 = f −1
11 (�1 − D1)

F1 =
(

11
30

l3

EIAB

)−1 [
0 −

(
−0.15

ql4

EIAB

)]
= 0.409ql

Step 5 The superposition Eq. 4.12 gives the required reaction components:

{A} = {As} + [Au]F1

{A} =
{

ql
ql2/2

}
+
[−1
−l

]
0.409ql =

{
0.591ql
0.091ql2

}

Example 4.4: A beam with a spring support
Solve Example 4.3, replacing the link member AC in Figure 4.4a by a spring support
below A, of stiffness K = 30(EI)AB/l3, where K is the magnitude of the force per unit
shortening of the spring. Assume that the spring can produce only a vertical force at the
tip A of the cantilever. The loading is q/unit length on AB, as in Example 4.2, combined
with a rise in temperature of the spring that would cause it to expand, if it were free, by
[ql4/(EI)AB]/40.
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Step 1 Release the structure by separating the spring from the cantilever, creating a gap
and coordinate 1, represented by a pair of arrows pointing upward on the cantilever and
downward on the spring.

Step 2 The displacement D1 due to the load on AB and the temperature rise of the spring is:

D1 = − q l4

8(E I)AB
− q l4

40(EI)AB

The first term on the right-hand side is given by Eq. B.27; the second term is the given expan-
sion of the spring. Both terms are negative because they are translations in the opposite
direction of coordinate 1.

Step 3 A pair of forces F1 = 1 produces relative translations (widening the gap):

f11 = l3

3(E I)AB
+ 1

K
= l3

3(EI)AB
+ l3

30(EI)AB
= 11 l3

30(EI)AB

Steps 4 and 5 The same as in Example 4.3.

Example 4.5: Simply-supported arch with a tie
Figure 4.5a represents a concrete arch with a steel tie. Determine the bending moments
at C, D and E due to: (1) the loads shown; (2) the loads shown combined with a rise of
temperature, T = 30 ◦C only in the tie AB. Consider only the bending deformation of the
arch and the axial deformation of the tie. Given data:

For arch AEB: a = 0.16m2; I = 2.133 × 10−3 m4;E = 40GPa

For tie AB: a = 2000mm2;E = 200GPa;α = 10 × 10−6 per degree Celsius

(a)

(b)

40

80

80 80

80

40

80 kN

A

A

C

D E

B1

B

C

D E

Concrete
arch

Steel tie

6 @ 4 = 24 m

2.
 2

22

3.
 5

56

4.
 0

00

Figure 4.5 Arch with a tie of Example 4.3. (a) Actual structure. (b) Released structure and coordinate
system.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Force method of analysis 111

where a and I are area and second moment of area of a cross section; E is modulus of
elasticity and α is coefficient of thermal expansion.

We follow below the five steps of the force method. The displacements required in Steps
2 and 3 are presented without calculation. Their values can be verified using virtual work,
as discussed in Section 8.2 and Example 8.11. We concentrate on understanding the steps
of the force method, leaving out the details of displacement calculation. The units used
below are N and m.

Step 1 The structure is released by cutting the tie. Since the release is an internal force, it must
be represented by a pair of arrows, constituting coordinate 1 (Figure 4.5b). With the directions
of the arrows arbitrarily chosen in Figure 4.5b, F1 and D1 are considered positive when the force
in the tie is tensile and when the gap at the cut section closes. The required actions are:

[A] =
⎡
⎣
⎧⎨
⎩

MC

MD

ME

⎫⎬
⎭

Case 1

⎧⎨
⎩

MC

MD

ME

⎫⎬
⎭

Case 2

⎤
⎦ (a)

We consider that positive M produces tension at the inner face of the arch.

Step 2 The following displacements and actions (bending moments) occur when the released
structure is subjected to the loading cases (1) and (2):

[D1 Case 1 D1 Case 2] = [−0.85109 − 0.84389] m (b)

[As] = [{As}Case 1 {As}Case 2] = 103

⎡
⎣ 800 800

1280 1280
1440 1440

⎤
⎦N-m (c)

We note that with the tie cut, the bending moment values, with or without temperature change,
are the same as the values for a simple beam having the same span and carrying the same vertical
loads. The downward forces on the arch cause the roller at A to move outwards and the gap
at the cut section to open a distance = 0.85109 m. The thermal expansion of the tie reduces the
opening of the gap by the value (αTl)tie = 10 × 10−6 (30) (24) = 7.2 × 10−3 m, where ltie is the
length of the tie.

Step 3 Opposite unit forces (1 N) at coordinate 1 produce bending moments at C, D and E
equal to {−2.222,−3.556,−4.000} N-m; these values are the elements of [Au]. The same unit
forces close the gap at the cut section by a distance equal to:

[f11] = [2.4242 × 10−6] m/N (d)

This is equal to the sum of an inward movement of the roller at A equal to 2.3642 × 10−6

and an elongation of the tie = (l/aE)tie = 24/[2000 × 10−6(200 × 109)] = 0.0600 × 10−6.

[Au] =
⎡
⎣−2.222

−3.556
−4.000

⎤
⎦N-m/N (e)
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In calculating the displacements in Steps 2 and 3, the deformations due to shear and axial
forces in the arch are ignored because their effect in this type of structure is small. Calculation
of the contribution of any internal force in a framed structure can be done by virtual work
(Section 8.2 and Example 8.11).

Step 4 The compatibility Eq. 4.11 and its solution in this example are:

[f11][(F1)Case 1 (F1)Case 2] = [(�1 − D1)Case 1 (�1 − D1)Case 2]
[(F1)Case 1 (F1)Case 2] = [f11]−1[(�1 − D1)Case 1 (�1 − D1)Case 2]
[F] = [2.4242 × 10−6]−1[(0 − (−0.85109)) (0 − (−0.84389))]
[F] = [351.08 348.11]103 N (f)

In the two loading cases �1 = 0, because no displacement is prescribed at coordinate 1.

Step 5 The superposition Eq. 4.12 gives the required values of bending moments in the two
loading cases:

[A] = [As] + [Au][F]

Substitution of Eqs. (a), (c), (e) and (f) gives:

[A] =
⎡
⎣
⎧⎨
⎩

MC

MD

ME

⎫⎬
⎭

Case 1

⎧⎨
⎩

MC

MD

ME

⎫⎬
⎭

Case 2

⎤
⎦=

⎧⎨
⎩

19.9 26.5
31.6 42.1
35.7 47.6

⎤
⎦103 N-m

These bending moments are much smaller than the moments in a simple beam of the same span
carrying the same downward forces. This example shows an advantage of an arch with a tie,
that is, covering large spans without developing large bending moments.

Example 4.6: Continuous beam: support settlement and temperature change
Find the bending moments MB and MC and the reaction RA for the continuous beam of
Example 4.1 (Figure 4.1) due to the separate effect of: (1) a downward settlement δA of
support A; (2) a downward settlement δB of support B; (3) a rise of temperature varying
linearly over the depth h, from Tt to Tb in top and bottom fibers respectively.

Step 1 We choose the releases and the coordinate system as in Example 4.1, Figure 4.1b. The
required actions are

[A] =
[{

MB

RA

}
1

{
MB

RA

}
2

{
MB

RA

}
3

]

Bending moment is considered positive when it produces tensile stress in the bottom fiber.
Upward reaction RA is positive. The required action MC does not need to be included in [A]
because MC =−F2 and the values of the redundants {F} will be calculated in Step 4. The subscripts
1, 2, and 3 in the above equation refer to the three load cases.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Force method of analysis 113

2l 2l

2l

A

C

(a) (b)

(c)

δA
δAD2 = –

2δA

αTt

D1 = –
8

D1 = –

Tt

Tb

ψ(2l)2
ψ(2l)

2
D2 = –

h

Temperature
rise

x z

y

Centroid

αTt

Strain

tan–1ψ

ψ = curvature
  = dε/dy

Figure 4.6 Released structure in Example 4.4. (a) Settlement δA at support A. (b) Rise of temperature
varying linearly over the depth h. (c) Strain due to temperature rise.

Step 2 The released structure is depicted in Figures 4.6a and b for cases (1) and (3) respectively.
The displacement vectors {�} and {D} in the three cases are

[�] =
[
0 −δB 0
0 0 0

]
; [D] =

[−δA/2 0 −ψ(2l)2/8
−δA/(2l) 0 −ψ(2l)/2

]

Here ψ is thermal curvature in the released structure (slope of the strain diagram, Figure 4.6c):

ψ = α(Tb − Tt)/h (4.13)

where α is the thermal expansion coefficient (degree−1); see Eqs. B.39 and B.41 for values of
{D} in case (3).

Note that in case (1), {�} = {0} because the actual structure has zero displacements at
coordinates 1 and 2; however, the released structure has displacements to be eliminated at the
coordinates: {D} = {−δA/2,−δA/2l}.

The values of the actions in the released structure are zero in all three cases:

[As] = [0]2×3

Step 3 Unit forces applied at the coordinates are represented in Figures 4.1d and e. The flexibility
matrix [f ] and its inverse, determined in Example 4.1, apply (Eqs. 4.5 and 4.6). Values of the
actions due to F1 = 1 or F2 = 1 are

[Au] =
[−0.5l −0.5
−0.5 −1/(2l)

]



114 Force method of analysis

Step 4 Substitution in the geometry Eq. 4.11 gives

1
EI

[
l3/6 l2/4
l2/4 2l/3

]
[F] =

[
δA/2 −δB ψ l2/2
δA/(2l) 0 ψ l

]

The solution is

[F] = 12EI
7l3

[
2.5δA −8δB ψ l2

−0.5lδA 3lδB 0.5ψ l3

]

Step 5 Substitution in the superposition Eq. 4.12 gives

[A] = 12
7

EI
[−δA/l2 2.5δB/l2 −0.75ψ

−δA/l3 2.5δB/l3 −0.75ψ/l

]

The elements of [A] are the required values of MB and RA in the three cases; reversal of sign
of F2 gives the corresponding values of MC:

[MC] = 12EI
7l3 [0.5lδA − 3lδB − 0.5ψ l3]

We should note that RA, MB, and MC are proportional to the value of the product EI. In
general, the reactions and the internal forces caused by support settlements or temperature
variation of statically indeterminate structures are proportional to the value of EI employed in
linear analysis.

Design of concrete structures commonly allows cracking to take place, resulting in a sub-
stantial reduction in the moment of inertia, I (the second moment of area) at the cracked
sections. Ignoring cracking can greatly overestimate the effects of support movements and of
temperature.1 Also, using a modulus of elasticity E, based on the relation between stress and
instantaneous strain, will overestimate the effects of settlement and temperature. This is because
such an approach ignores creep, that is, the strain which develops gradually with time (months
or years) under sustained stress.

Example 4.7: Release of a continuous beam as a series of simple beams
Analyze the continuous beam of Figure 4.7a for (a) a uniformly distributed load of intensity
q on all spans; (b) a unit downward movement of support A; (c) a unit downward movement
of support B. The beam has a constant flexural rigidity EI.

A statically determinate released structure can be obtained by introducing a hinge
over each interior support, that is, by the removal of two equal and opposite forces
(moments) acting on either side of the support, so that the released structure is a series
of simply-supported beams (Figure 4.7b). The released bending moments are sometimes
called connecting moments.

The inconsistencies in displacements of the released structure are the relative rotations
of the three pairs of adjacent beam ends, that is, the angles between the tangent to the axis

1 Accounting for the effects of cracking and creep is studied in: Ghali, A., Favre, R. and Elbadry, M.,
Concrete Structures: Stresses and Deformations, 3rd ed., E & FN Spon, London and New York, 2002;
Chapters 16.20 of Neville, A. M., Dilger, W. H. and Brooks, J. J., Creep of Plain and Structural Concrete,
Longman, London and New York, 1983, pp. 246–349.
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(a)

(b)

(c)

q per unit length

A B C D E

l l l l

1 2 3

D1

D1

D2
D3

(d)

1

D1

f11 f21

f12

f31 = 0

f13 = 0

D2

(e)

1

(f)

(g)

1

f22 f32

1

f23

(h)
f33

1

Figure 4.7 Analysis of a continuous beam by the force method (Example 4.5).

of one deflected beam and the corresponding tangent to an adjacent beam (Figure 4.7c).
The positive directions of the redundants and therefore of the displacements are shown in
Figure 4.7b. These are chosen so that a connecting moment is positive if it produces tension
in the fibers at the bottom face of a beam.
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The superposition involved in Step 5 can be done by inspection or by relatively simple
calculations. Thus, the matrices [A], [As], and [Au] are not required. Step 1 is done in
Figure 4.7b, while Steps 2, 3, and 4 are done below.

The solution of the three cases can be obtained by Eq. 4.9. In case (a), the errors in
geometry of the released structure can be obtained from Eq. B.3, Appendix B. In cases (b)
and (c), the movements of the supports do not correspond to the redundants. Therefore, the
relative rotations at B, C, and D resulting from the downward movement of the supports of
the released structure are included in the matrix [D], and matrix [�] is a null matrix. These
rotations are easily determined from the geometry of the released structure in Figures 4.7d
and e. The inconsistency in the displacements for all three cases can be included in a matrix
with one column per case:

[� − D] = −[D] = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ql3

12EI
1
l

−2
l

ql3

12EI
0

1
l

ql3

12EI
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(All the relative rotations are positive except D1 in case (c), see Figure 4.7e.)
Now, the flexibility influence coefficients of the released structure are the relative rota-

tions of the beam ends caused by the application of a pair of equal and opposite unit
moments. Separately, apply at each of the redundants at B, C, and D a pair of equal and
opposite unit couples. The rotations at the ends of a simple beam due to a couple applied
at one end can be found by Eqs. B.9 and B.10, Appendix B. The displacements due to the
unit value of each of the redundants, shown in Figures 4.7f, g, and h respectively, form the
three columns of the flexibility matrix. It can be seen from these figures that all the relative
rotations are positive. The flexibility matrix and its inverse are thus

[f ] = 1
6EI

⎡
⎣4 1 0

1 4 1
0 1 4

⎤
⎦ ; [f ]−1 = 3EI

28l

⎡
⎣ 15 −4 1

−4 16 −4
1 −4 15

⎤
⎦

Substituting in Eq. 4.9,

[F] = −3EI
28l

⎡
⎣ 15 −4 1

−4 16 −4
1 −4 15

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ql3

12EI
1
l

−2
l

ql3

12EI
0

1
l

ql3

12EI
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Figure 4.8 Bending moment and shearing force diagrams for the continuous beam of Example 4.5:
(a) Uniform load q per unit length. (b) Displacement of support A. (c) Displacement of
support B.
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whence

[F] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 3
28

ql2 −45
28

EI
l2

51
14

EI
l2

−ql2

14
3
7

EI
l2 −18

7
EI
l2

− 3
28

ql2 − 3
28

EI
l2

9
14

EI
l2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The columns in this matrix correspond to cases (a), (b), and (c) and the three elements
in each column are the bending moments at B, C, and D. Having found the values of the
redundants, the bending moment and shearing force at any section can be obtained by
simple statics. The reactions, and the bending moment2 and shearing force diagrams for
the three cases, are shown in Figure 4.8.

4.7 Equation of three moments

The analysis of continuous beams subjected to transverse loading and to support settlement
is very common in structural design, and it is useful to simplify the general force method
approach to this particular case. The resulting expression is known as the equation of three
moments. We may note that historically this equation, developed by Clapeyron, precedes the
matrix formulation of the force method.

Figure 4.9a represents two typical interior spans of a continuous beam. Let the spans to the left
and to the right of an interior support i have, respectively, lengths ll and lr and flexural rigidities
EIl and EIr, assumed to be constant within each span. The supports i −1, i, and i +1 are assumed
to have settled in the direction of the applied loading by δi−1, δi, and δi+1 respectively.

A statically determinate released structure can be obtained by introducing a hinge in the beam
at each support (Figure 4.9), so that each span deforms as a simple beam, as in Example 4.5.
The same sign convention as in that example will be used, as shown in Figure 4.9d.

As before, the inconsistencies in the displacements of the released structure are the relative
rotations of adjacent beam ends, that is, with reference to Figures 4.9b and c,

Di = αi + γi (4.14)

We should note that Di is due both to the transverse loading and to the settlement of supports.
In an actual continuous beam, the redundants {F} are the connecting moments {M}, which

must be of such magnitude that the angular discontinuities vanish. A superposition equation to
satisfy the continuity condition at i can be written in the form

Di + fi, i−1Fi−1 + fiiFi + fi, i+1Fi+1 = 0 (4.15)

where the terms f represent the flexibility coefficients of the released structure.
At this stage, we should consider the behavior of a beam hinged at each end and subjec-

ted to a unit moment at one end. Figure 4.10a shows such a beam and Figure 4.10b gives

2 Throughout this text an ordinate representing a bending moment is plotted on the side of the beam on
which it produces tension.
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(a)

(b)

(c)

(d)

i – 1 i i +1

ll lr

αi

δi –1

Fi –1 = Mi –1 Fi +1 = Mi +1
Fi  = Mi

δi +1

δi γi

Figure 4.9 Analysis of a continuous beam by the equation of three moments. (a) Continuous beam.
(b) Deflection of released structure due to transverse loading. (c) Deflection of released
structure due to support settlement. (d) Positive direction of redundants.

A B1

1

(a)

(b)

(c)

Length l
Flexural rigidity EI

l
3EI

l
6EI

Figure 4.10 Angular displacements in a beam with hinged ends. (a) Beam. (b) Bending moment
diagram. (c) Deflection.
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the resulting bending moment diagram. Figure 4.10c shows the deflected shape: the angular
displacements are l/3EI and l/6EI at A and B respectively (see Appendix B). Applying these
results to the released structure of Figure 4.9d, it can be seen that the flexibility coefficients
are

fi,i−1 = ll
6EIl

; fii = ll
3EIl

+ lr
3EIr

; fi,i+1 = lr
6EIr

With these values, and using the fact that {F} = {M}, Eq. 4.15 yields

Mi−1
ll

EIl
+ 2Mi

[
ll

EIl
+ lr

EIr

]
+ Mi+1

lr
EIr

= −6Di (4.16)

where l and r refer to the spans respectively to the left and right of i.
This is known as the equation of three moments. It relates the angular discontinuity

at a support i to the connecting moments at this support and at a support on each side
of i. The equation is valid only for continuous beams of constant flexural rigidity within
each span.

For a continuous beam of constant flexural rigidity EI throughout, the equation of three
moments simplifies to

Mi−1ll + 2Mi(ll + lr) + Mi+1 lr = −6EIDi (4.17)

Similar equations can be written for each support at which the bending moment is not known,
thus forming a system of simultaneous equations, the solution of which gives the unknown
moments. These equations can, in fact, be written in the general matrix form of Eq. 4.3. We
can note that the particular released structure chosen has the advantage that each row of the
flexibility matrix has only three nonzero elements. Also, we note that �i = 0 because the actual
structure has no displacement (angular discontinuity) at coordinate i.

The displacement Di in the equation of three moments can be calculated from Eq. 4.14, with
the angle γi determined from the geometry of Figure 4.9c:

γi = (δi−1 − δi)/ll + (δi+1 − δi)/lr (4.18)

and the angle αi calculated by the method of elastic weights (see Section 10.4):

αi = ril + rir (4.19)

where ril and rir are the reactions of the beams to the left and right of the support i loaded by the
simple-beam bending moment due to lateral loading divided by the appropriate EI. For many
of the practical cases the value of αi can also be determined directly from Appendix B.

Example 4.8: The beam of Example 4.7 analyzed by equation of three moments
Use the equation of three moments to determine the connecting moments for the continuous
beam of Example 4.7 in each of its three loading cases.
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Table 4.1 Displacements DB, DC and DD (Angular Discontinuities) for use in the Three-moment Equations
in the Three Cases of Loading of Example 4.6

Support Case 1 Case 2 Case 3

α γ D α γ D α γ D

B
2ql3

24EI
0

ql3

12EI
0

1
l

1
l

0 −2
l

−2
l

C
2ql3

24EI
0

ql3

12EI
0 0 0 0

1
l

1
l

D
2ql3

24EI
0

ql3

12EI
0 0 0 0 0 0

At the end supports, MA = ME = 0. The three-moment Eq. 4.17 needs to be applied at B, C
and D:

2MB(l + l) + MCl = −6EIDB

MBl + 2MC(l + l) + MDl = −6EIDC

MCl + 2MD(l + l) = −6EIDD

The displacements DB, DC and DD in the three cases of loading are determined in Table 4.1
using Eqs. 4.14, 4.18 and 4.19. Appendix B may also be used to give the angles α instead of
Eq. 4.19. The three-moment equations and their solutions for the three loading cases can be
presented in matrix form:

⎡
⎣4 1 0

1 4 1
0 1 4

⎤
⎦
⎡
⎣
⎧⎨
⎩

MB

MC

MD

⎫⎬
⎭

Case 1

⎧⎨
⎩

MB

MC

MD

⎫⎬
⎭

Case 2

⎧⎨
⎩

MB

MC

MD

⎫⎬
⎭

Case 3

⎤
⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ql2

2
−6EI

l2 −12EI
l2

−ql2

2
0 −6EI

l2

−ql2

2
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣
⎧⎨
⎩

MB

MC

MD

⎫⎬
⎭

Case 1

⎧⎨
⎩

MB

MC

MD

⎫⎬
⎭

Case 2

⎧⎨
⎩

MB

MC

MD

⎫⎬
⎭

Case 3

⎤
⎦=

⎡
⎢⎢⎣

−3ql2/28 −45EI/(28l2) 51EI/(14l2)

−ql2/14 3EI/(7l2) −18EI/(7l2)

−3ql2/28 −3EI/(28l2) 9EI/(14l2)

⎤
⎥⎥⎦

Example 4.9: Continuous beam with overhanging end
Obtain the bending moment diagrams for the beam in Figure 4.11a due to: (a) the given
vertical loads; (b) vertical settlement of b/100 and b/200 at supports B and C respectively.
The beam has a constant flexural rigidity EI.

The equation of three moments has to be applied at supports A and B to find the two unknown
bending moments M1 at A and M2 at B, while the bending moment at C is known from simple
statics. When applying the equation at the built-in end A, the beam may be considered to extend
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2.02

A
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M2
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Multiplier:
10–3 EI/b
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M2 =
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A B C D

312.5

(b)

Multiplier:
qb2/100

M1 = –268. 6

M2 = –87. 9
50
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312.5

(b)

Multiplier:
qb2/100

Figure 4.11 Continuous beam with sinking supports considered in Example 4.9. (a) Beam properties
and loading. (b) Bending moment diagram due to vertical loading. (c) Bending moment
diagram due to settlement of b/100 at support B and b/200 at support C. (d) Deflected
shape due to the support settlement (Example 4.10).

over an imaginary span to the left of A, either of infinitely small length or of infinitely large
flexural rigidity.

We find {D} from Eq. 4.14, noting that for case (a), {γ } = {0}, while for case (b), {α} = {0}.
Hence, with the aid of Eq. B.3, Appendix B, it can be shown that for case (a)

{D}a =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

5.208
qb3

EI

5.208
qb3

EI

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

For case (b), calculating γ from Eq. 4.18, we obtain

{D}b =
{ +0.00200

−0.00325

}
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Using Eq. 4.17, we find for case (a)

b
EI

(10M1 + 5M2) = −6 × 5.208
qb3

EI

b
EI

(5M1 + 18M2 − 4
qb2

2
) = −6 × 5.208

qb3

EI

and for case (b)

b
EI

(10M1 + 5M2) = −6 × 0.00200

b
EI

(5M1 + 18M2) = +6 × 0.00325

The two systems of equations can be combined in a matrix equation:

b
EI

[
10 5
5 18

]
[M] =

⎡
⎢⎢⎢⎣

−31.25
qb3

EI
−0.0120

−29.25
qb3

EI
0.0195

⎤
⎥⎥⎥⎦

The same equation can be obtained following the more general procedure of the force method,
with the released structure formed by introducing hinges at A and B. The square matrix on the
left-hand side of the equation represents then the flexibility matrix of the released structure.

Solving for [M], we find

[M] =

⎡
⎢⎢⎣

−2.686qb2 −0.00202
EI
b

−0.879qb2 0.00165
EI
b

⎤
⎥⎥⎦

The bending moment diagrams for the two cases are plotted in Figures 4.11b and c.

Example 4.10: Deflection of a continuous beam due to support settlements
Sketch the deflected shape and calculate the deflections at E and F of the continuous beam
of Example 4.9, case (b) (Figure 4.11a).

The bending moment diagram determined in Example 4.9 is shown in Figure 4.11c. Let
{A1,A2} = {deflection at E, deflection at F}; downward deflection is considered positive.
Apply Eq. 4.10:

{A} = {As} + [Au]{F} (a)

where {As} represents the deflections of a released structure, having a hinge at each of A
and B, with settlements b/100 and b/200 at supports B and C respectively; this structure
has the shape of two straight segments: AB and BC, extended to D.

{As} =
{

0.0050b
0.0075b

}
(b)
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The redundants {F}, the connecting moments at A and B determined in Example 4.9 are:

{F} = 10−3 E I
b

{−2.02
1.65

}
(c)

The positive directions of the connecting moments are defined in Figure 4.9d. The
deflections at E and F due to unit values of the redundants are (Eq. B.12):

[Au] = b2

E I

[
(5)2/16 (5)2/16

0 (4)2/16

]
(d)

Substitution of Eqs. (b), (c) and (d) in Eq. (a) gives:

{A} = 10−3b
{

5.0
7.5

}
+ 10−3 b

[
1.5625 1.5625

0 1.0000

]{−2.02
1.65

}
= 10−3 b

{
4.422
9.150

}

The deflected shape of the beam is shown in Figure 4.11d.

4.8 Moving loads on continuous beams and frames

The live load on continuous beams and frames is often represented in design by a uniformly
distributed load which may occupy any part of the structure so as to produce the maximum
value of an internal force at a section or the maximum reaction at a support. We shall now
discuss which parts of a continuous beam should be covered by the live load to produce these
maxima.

Figures 4.12a and b show the deflected shapes, reactions, and bending moment and shearing
force diagrams for a continuous beam due to a uniform live load covering one span only. It can
be seen that the deflection is largest in the loaded span and reverses sign, with much smaller
values, in adjacent spans. The two reactions at either end of the loaded span are upward; the
reactions on either side of the loaded span are reversed in direction and have much smaller
magnitude. The values given in the figures are for the case of equal spans l and load p per unit
length; EI is constant.

In a loaded span, the bending moment is positive in the central part and negative at the
supports. In the adjacent spans, the bending moment is negative over the major part of the
length. The points of inflection on the deflected shapes correspond to the points O1 and O2

where the bending moment is zero. These points are closer to the supports C and D in case (a)
and (b) respectively, than one-third of their respective spans. This is so because a couple applied
at a supported end of a beam produces a straight-line bending moment diagram which reverses
sign at one-third of the span from the far end when that end is totally fixed. When the far end is
hinged (or simply-supported) the bending moment has the same sign over the whole span. The
behavior of the unloaded spans BC and CD in Figure 4.12a and of span CD in Figure 4.12b lies
between these two extremes.

The maximum absolute value of shear occurs at a section near the supports of the loaded span.
Smaller values of shear of constant magnitude occur in the unloaded spans, with sign reversals
as indicated.

In Figures 4.12a and b, we have loaded spans AB and BC. From these two figures, and perhaps
two more figures corresponding to the uniform load on each of the remaining two spans, we can
decide which load patterns produce the maximum values of the deflections, reactions, or internal
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+
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– –
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+

+
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+ 67

49
505

13

1 2 3 4

A B C D E

1

2

3

4

5

6

(Mmax +)1, 3 , (Mmax –) 2,4

(Mmax –)1, 3 , (Mmax +) 2,4

MB max – , RB max +

MC max – , RC max +

MD max – , RD max +

V1 max +

RA max + , RE max –

RA max – , RE max +

VBl max – , VBr max +

VCl max – , VCr max +

VDl max – , VDr max +

Figure 4.12 Effect of uniform live load on continuous beams. (a) and (b) Deflection, bending moment
and shearing force diagrams due to load p per unit length covering one span. The values
given are for equal spans l; the multipliers are 10−3 pl for reactions and shears, and 10−3 pl2

for moments. (c) Load patterns to produce maximum actions.

forces at any section. Figure 4.12c shows typical load patterns which produce maximum values
of various actions.

It can be seen from this figure that maximum deflection and maximum positive bending
moment at a section near the middle of a span occur when the load covers this span as well as
alternate spans on either side. The maximum negative bending moment, the maximum positive
reaction, and the maximum absolute value of shear near a support occur when the load covers
the two adjacent spans and alternate spans thereafter. The loading cases (3), (4), and (5) in
Figure 4.12c refer to sections just to the left or right of a support, the subscripts l and r denoting
left and right respectively.

Partial loading of a span may produce maximum shear at a section as in case (6) in Figure 4.12c.
Also, partial loading may produce maximum bending moments at sections near the interior
supports (closer than one-third of the span) but not at the supports. However, in practice, partial
span loading is seldom considered when the maximum bending moment values are calculated.

The effect of live load patterns needs to be combined with the effect of the dead load (perman-
ent load) in order to obtain the maximum actions to be used in design. For example, if the beam
in Figure 4.12c is designed for uniform dead and live loads of intensities q and p respectively,
we can obtain the maximum bending moment diagram by considering q on all spans combined
with p according to the loading cases (1) to (5) in Figure 4.12c. The maximum bending moment
diagram due to dead and live loads combined is shown in Figure 4.13 for a continuous beam of



126 Force method of analysis

A B C D E

Live load p per unit length covering any part
Dead load on all spans, q per unit length; q = p

227

170 170
116116

227
180

+ +

–––

Equal spacings, l/2

Multiplier : 10–3 ql2

Figure 4.13 Maximum bending moment diagram for a continuous beam due to dead and live loads.

four equal spans l, with q = p. The diagram is obtained by plotting on one graph the bending
moment due to q combined with p in cases (1) to (5) in Figure 4.12c and using for any part
of the beam the curve with the highest absolute values. Additional load cases which produce a
maximum positive bending moment due to p may need to be considered when p is large com-
pared with q. For example, MBmax+ occurs when p covers CD only, and MC max+ occurs when
AB and DE are covered.

In practice, the live load may be ignored on spans far away from the section at which the
maximum action is required. For example, the maximum negative moment and the maximum
positive reaction at support B may be assumed to occur when the live load covers only the
adjacent spans AB and BC, without loading on DE (see case (3), Figure 4.12). This approach
may be acceptable because of the small effect of the ignored load, or on the grounds of a low
probability of occurrence of the alternate load pattern with the full value of live load.

The alternate load patterns discussed above are typical for continuous beams and are
frequently used in structural design. Similar patterns for continuous frames are shown in
Figure 4.14. The two loading cases represented produce maximum positive and negative val-
ues of the bending moments in the horizontal beams or the end-moments in the columns. As
followed throughout this book, the bending moment in beams is considered positive when it
produces tension at the bottom face; a clockwise member end-moment is positive.

A sketch of the deflected shape may help to determine whether or not a span should be
considered loaded so as to produce a maximum effect. A span should be loaded if this results
in accentuating the deflected shape in all members. However, in some cases the deflected shape
is not simple to predict in all parts of the frame, particularly when sidesway occurs. Use of
influence lines (see Chapters 12 and 13) helps in determining the load position for maximum
effect, particularly when the live load is composed of concentrated loads.

Example 4.11: Two-span continuous beam
A continuous beam of two equal spans l and constant EI is subjected to a uniform dead
load q per unit length over the whole length, combined with a uniform live load of intensity
p = 0.6q. Determine the maximum bending moment diagram. What are the values of the



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Force method of analysis 127

2

1

4

3

F
C

B

A D

F
C

B
E

A D

E

1

(Mmax +)2, 3

(Mmax –)1, 4

(Mmax +)CB, ED

(Mmax –)FE

(Mmax –)1

Figure 4.14 Examples of live load patterns to produce maximum bending moments in beams or end-
moments in columns of plane frames.

maximum positive shearing force at the left-hand end A and at a section just to the right of
the central support B (Figure 4.15)? What is the maximum positive value of the reaction
RB at B?

The bending moment values are MA =MC =0. Application of the three-moment Eq. 4.17
at B gives for the two loading cases in Figures 4.15a and b:

In case a : 2MB(l + l) = −6EI
(

1.6ql3

24EI
+ ql3

24EI

)

In case b : 2MB(l + l) = −6EI
[
2
(

1.6ql3

24EI

)]

(MB)Case a = −0.1625ql2; (MB)Case b = −0.2ql2

The bending moment diagrams for the two cases, as well as for a case represented by a
mirror image of Figure 4.15a, are plotted for span AB in Figure 4.15c. The curves with the
highest absolute values – shown with solid lines – represent the maximum bending moment
diagram. A mirror image of Figure 4.15c gives the maximum bending moment diagram for
span BC.

The maximum positive shear VA occurs in case (a) and its value is:

VAmax+ = 1.6ql/2 − 0.1625ql2/l = 0.6375ql
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200

162.5

Symmetry
axis

B

200

200

125
A

(c)

(a) (b)

Multiplier:
ql2

1000

1.6 q

q

A B

l l

C

1.6 q

A B

l l

C

Figure 4.15 Continuous beam of Example 4.8. (a) and (b) Cases of loading that need to be analyzed.
(c) Maximum bending moment diagram.

Case of loading (b) produces the maximum positive shear just to the right of B and the
maximum positive reaction at B:

VBrmax+ = 1.6ql/2 + 0.2ql2/l = 1.0ql

RBmax+ = 2(1.6ql)/2 + 2(0.2ql2)/l = 2.0ql

4.9 General

The force (or flexibility) method of analysis can be applied to any structure subjected to loading
or environmental effects. The solution of the compatibility equations directly yields the unknown
forces. The number of equations involved is equal to the number of redundants. The force method
is not well suited to computer use in the case of highly redundant structures, as will be discussed
further in Section 6.3.
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Problems

The following are problems on the application of the force method of analysis. At this stage,
use can be made of Appendix B to determine the displacements required in the analysis, with
attention directed to the procedure of the force method, rather than to the methods of computa-
tion of displacements. These will be treated in subsequent chapters. Additional problems on the
application of the force method can be found at the end of Chapter 8, which require calculation
of displacements by method of virtual work.

4.1 Write the flexibility matrix corresponding to coordinates 1 and 2 for the structures shown
below.

A

(a) (b)1 2

21
Constant EI Constant EI

B C

l l

A B C

l l

Prob. 4.1

4.2 Use the flexibility matrices derived in Prob. 4.1 to find two sets of redundant forces in two
alternative solutions for the continuous beam of Example 4.1.

4.3 Use the force method to find the bending moment at the intermediate supports of the
continuous beam shown in the figure.

A Constant EI

q per unit length
B C D

0.8 l l 0.8 l

Prob. 4.3

4.4 Obtain the bending moment diagram for the beam of Prob. 4.3 on the assumption that
support B settles vertically a distance l/1200. (No distributed load acts in this case.)

4.5 Use the force method to find the bending moments at the supports of a continuous beam
on elastic (spring) supports. The beam has a constant flexural rigidity EI, and the stiffness
of the elastic supports is K = 20EI/l3.

l l l

A B q C D

Prob. 4.5

4.6 Use the force method to find the forces in the three springs A, B, and C in the system shown.
The beams DE and FG have a constant flexural rigidity EI, and the springs have the same
stiffness, 100 EI/l3. (a)What are the values of the vertical reactions at D, E, F, and G?
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(b) If the springs A, B and C are replaced by rigid link members, what will be the forces in
the links and the reactions?

l/4 l/4 l/4 l/4

A B C
G

P

D E

F

Prob. 4.6

4.7 Find the forces in the springs A and B of the system shown. Assume that the mast EF is
rigid, the bars GC and HD have a constant flexural rigidity EI, and the stiffness of the
springs A and B is EI/l3. Note that in the displaced position of the mast EF, the vertical
force P tends to rotate the mast about the hinge E. Hint: In this problem the displacement
of the mast alters the forces acting on it; therefore, the principle of superposition cannot be
applied (see Section 3.6). However, if the vertical force P is assumed to be always acting,
the superposition of the effects of two transverse loadings on the mast can be made.
This idea is further discussed in Chapter 14. For the analysis by the force method, the
flexibility is determined for a released structure which has the vertical load P acting, and
the inconsistency in displacement of this structure caused by the load Q is also calculated
with the load P present.

2 l

l

A

F

B

Rigid mast

Q = EI/600l2

P = EI/6l2

HG

C E D

Prob. 4.7

4.8 Imperial units. A steel beam AB is supported by two steel cables at C and D. Using the force
method, find the tension in the cables and the bending moment at D due to a load P = 5k
and a drop of temperature of 40◦ Fahrenheit in the two cables. For the beam I = 40 in.4,
for the cables a = 0.15 in.2; the modulus of elasticity for both is E = 30 × 103 ksi, and the
coefficient of thermal expansion for steel is 6.5 × 10−6 per degree Fahrenheit.
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10 ft
or 3 m

A C D B

10 ft
or 3 m

10 ft or 3 m
5 ft or 1.5 m

20 ft
or 6 m

P = 5 k or 25 kN

Prob. 4.8 (imperial units) or Prob. 4.9 (SI units)

4.9 SI units. A steel beam AB is supported by two steel cables at C and D. Using the force
method, find the tension in the cables and the bending moment at D due to a load P=25 kN
and a drop of temperature of 20 degrees Celsius in the two cables. For the beam I = 16 ×
106 mm4, for the cables a=100mm2; the modulus of elasticity for both is E=200GN/m2,
and the coefficient of thermal expansion for steel is 1 × 10−5 per degree Celsius.

4.10 Using the equation of three moments, find the bending moment diagram for the beam
shown.

0.8 l
0.2 l

l

A
Constant EI

CD

q per unit length

B

Prob. 4.10

4.11 Using the equation of three moments, obtain the bending moment and shearing force
diagrams for the continuous beam shown.

l 1.4l l

l/2
2ql
5

A
Constant EI

C E

D
q per unit length

B

Prob. 4.11

4.12 For the beam in Figure 4.1a, but without the uniform load, find the reactions at the
supports and the bending moment diagram due to a rise in temperature varying linearly
over the beam depth h. The temperature rise in degrees at top and bottom fibers is Tt and
Tb respectively. The coefficient of thermal expansion is α per degree.

4.13 For the beam shown, obtain the bending moment and shearing force diagrams.

AD
Constant EI

q per unit length

B E F C

ql
2

l l
3

l
3

l
3

l
3

ql
2

Prob. 4.13



132 Force method of analysis

4.14 The reinforced concrete bridge ABC shown in the figure is constructed in two stages. In
stage 1, part AD is cast and its forms are removed. In stage 2, part DC is cast and its forms
are removed; a monolithic continuous beam is obtained. Obtain the bending moment
diagrams and the reactions due to the structure self-weight, q per unit length, immediately
at the end of stages 1 and 2.
Hint: At the end of stage 1, we have a simple beam with an overhang, carrying a uniform
load. In stage 2, we added a load q per unit length over DC in a continuous beam. Super-
position gives the desired answers for the end of stage 2. Creep of concrete tends gradually
to make the structure behave as if it were constructed in one stage (see the references
mentioned in footnote 1 of Chapter 4).

l

A B D

A B

Stage 1

Stage 2D C

l
5

l

Prob. 4.14

4.15 A continuous beam of four equal spans l and constant EI is subjected to a uniform dead
load q per unit length over the whole length, combined with a uniform live load of intensity
p=q. Determine the maximum bending moment values over the supports and at the centers
of spans. The answers to this problem are given in Figure 4.13.

4.16 A continuous beam of three equal spans l and constant EI is subjected to a uniform dead
load q per unit length over the whole length, combined with a uniform live load of intensity
p = q. Determine:

(a) The maximum bending moments at the interior supports and mid-spans.
(b) Diagram of maximum bending moment.
(c) Maximum reaction at an interior support.
(d) Absolute maximum shearing force and its location.

4.17 For the beam of Prob. 4.13, find the reactions, and the bending moment and shearing
force diagrams due to a unit downward settlement of support B. (The main answers for
this problem are included in Table E-3, Appendix E. Note that the presence of the overhang
DA has no effect.)

4.18 For the continuous beam shown, determine: (a) the bending moment diagram, (b) the
reaction at B and (c) the deflection at the center of BC.

A

q per unit length
0.3 ql0.3 ql

El =
constant

0.3 ql

B C D

l/3 l/3

l

l/3 l/3 2 l/3l

l

Prob. 4.18
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4.19 For the continuous beam shown, determine the bending moment diagram, the reaction
at B and the deflection at D due to the given loads. What is the reaction at B due to the
downward settlement δ at support B?

q per unit lengthEI =
constant

b b

qbqb

b 4b

2b 2b

D C
A B

Prob. 4.19

4.20 Consider the beam in Figure 4.11. Due to uniform load q/unit length covering the whole
length, combined with a uniform live load p = q per unit length, find: MBmax−, MEmax+
and RC max+. E is at the middle of AB; EI is constant.

4.21 The beam of Prob. 4.10 is subjected to a rise of temperature that varies linearly over the
depth h from Ttop to Tbot at the top and bottom respectively. Sketch the deflected shape
assuming that Ttop > Tbot . Calculate the deflections at the middle of AD, at D, and at the
middle of BC. Consider only bending deformation; EI is constant and the coefficient of
thermal expansion is � per degree.

4.22 Find the bending moment diagram for the frame shown. Assume (Ea)Tie BD = 130EI/l2,
where EI is the flexural rigidity of ABCDE. Use the force method cutting the tie BD to
release the structure.
Hint: Calculation of the displacements in steps 2 and 3 of the force method has not
been covered in earlier chapters. The problem can be solved using given information:
the load applied on the released structure would move B and D away from each other a
distance = 0.1258ql4/(EI). Two unit horizontal forces each = F1 = 1 applied inwards at
each of B and D of the released structure would move the joints closer to each other by
a distance = 0.1569l3/(EI).

l l

l

0.5l

q /unit length of horizontal projection

Tie

l l

l

0.5 l
B

A

C

D

E

Tie

Prob. 4.22

4.23 The continuous beam of Prob. 4.11 is subjected to a uniform dead load of q per unit length
combined with a uniform live load of intensity p = 0.75q. Determine:

(a) Diagram of maximum bending moment.
(b) Maximum reaction at B.
(c) Absolute maximum shearing force.
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4.24 Use the force method to verify the equations relevant to any of the beams shown in
Appendix C.

4.25 Use the force method to verify the equations relevant to any of the members shown in
Appendix D.

4.26 Use the equation of three moments to verify the values given in Tables E.1, E.2 or E.3 for
any number of spans considered in Appendix E.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5

Displacement method of analysis

5.1 Introduction

The mathematical formulation of the displacement method and force method is similar, but from
the point of view of economy of effort one or the other method may be preferable. This will be
considered in detail in Section 6.3.

The displacement method can be applied to statically determinate or indeterminate struc-
tures, but it is more useful in the latter, particularly when the degree of statical indeterminacy
is high.

5.2 Description of method

The displacement method involves five steps:

1. First of all, the degree of kinematic indeterminacy has to be found. A coordinate system is
then established to identify the location and direction of the joint displacements. Restraining
forces equal in number to the degree of kinematic indeterminacy are introduced at the
coordinates to prevent the displacement of the joints. In some cases, the number of restraints
introduced may be smaller than the degree of kinematic indeterminacy, provided that the
analysis of the resulting structure is a standard one and is therefore known. (See remarks
following Example 5.2.)

We should note that, unlike the force method, the above procedure requires no choice to
be made with respect to the restraining forces. This fact favors the use of the displacement
method in general computer programs for the analysis of a structure.

2. The restraining forces are now determined as a sum of the fixed-end forces for the members
meeting at a joint. For most practical cases, the fixed-end forces can be calculated with the
aid of standard tables (Appendices C and D). An external force at a coordinate is restrained
simply by an equal and opposite force that must be added to the sum of the fixed-end forces.

We should remember that the restraining forces are those required to prevent the displace-
ment at the coordinates due to all effects, such as external loads, temperature variation, or
prestrain. These effects may be considered separately or may be combined.

If the analysis is to be performed for the effect of movement of one of the joints in the
structure, for example, the settlement of a support, the forces at the coordinates required
to hold the joint in the displaced position are included in the restraining forces.

The internal forces in the members are also determined at the required locations with the
joints in the restrained position.

3. The structure is now assumed to be deformed in such a way that a displacement at one
of the coordinates equals unity and all the other displacements are zero, and the forces
required to hold the structure in this configuration are determined. These forces are applied
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at the coordinates representing the degrees of freedom. The internal forces at the required
locations corresponding to this configuration are determined.

The process is repeated for a unit value of displacement at each of the coordinates
separately.

4. The values of the displacements necessary to eliminate the restraining forces introduced in
(2) are determined. This requires superposition equations in which the effects of separate
displacements on the restraining forces are added.

5. Finally, the forces on the original structure are obtained by adding the forces on the
restrained structure to the forces caused by the joint displacements determined in (4).

The use of the above procedure is best explained with reference to some specific cases.

Example 5.1: Plane truss
The plane truss in Figure 5.1a consists of m pin-jointed members meeting at joint A. Find
the forces in the members due to the combined effect of: (1) an external load P applied
at A; (2) a rise of temperature T degrees of the kth bar alone.

The degree of kinematic indeterminacy of the structure is two (n = 2), because displacement
can occur only at joint A, which can undergo a translation with components D1 and D2 in the
x and y directions. The positive directions for the displacement components, as well as for the
restraining forces, are arbitrarily chosen, as indicated in Figure 5.1b. Here, a coordinate system is
represented by arrows defining the locations and the positive directions of displacements {D}n×1

and forces {F}n×1. In this first step of the displacement method, we also define the required
actions, {A}m×1; in this example, the elements of {A} are the forces in the truss members due to
the specified loading.

The joint displacements are artificially prevented by introducing at A a force equal and oppos-
ite to P plus a force (EaαT)k in the direction of the kth member. Here, E, a and α are, respectively,
modulus of elasticity, cross-sectional area, and coefficient of thermal expansion of the kth bar.
Components of the restraining forces in the directions of the coordinates are

F1 = −P cosβ + (EaαT cos θ)k

F2 = −P sinβ + (EaαT sin θ)k

where θk is the angle between the positive x direction and the kth bar. With the displacements at
A prevented, the change in length of any member is zero; thus, the axial force is zero, with the
exception of the kth bar. Because the thermal expansion is prevented, an axial force is developed
in the kth bar; this is equal to −(EaαT)k, with the minus sign indicating compression. Denoting
by {Ar} the axial forces in the bars in the restrained condition, we have

{Ar} = {0,0, . . . ,−(EaαT)k, . . . , 0}

All elements of the vector {Ar} are zero except the kth. In this second step, we have determined
the forces {F} necessary to prevent the displacements at the coordinates when the loading is
applied; we have also determined the actions {Ar} due to the loading while the displacements
are artificially prevented.

Figure 5.1c shows the forces required to hold the structure in a deformed position such that
D1 = 1 and D2 = 0. Now, from Figure 5.1d, a unit horizontal displacement of A causes a
shortening of any bar i by a distance cos θi and produces a compressive force of (aiEi/li) cos θi.
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(a) (b)

(c)

(e) (f)

(d)

P

A

AA

A

S11

S22

S12
D2 = 1

S21

D1 = 1

cos θ i

A′
A′

A′

A′

A

1

1

1

2

2

x x

x
x

x x

y y

yy

y y

m

k

β

θi

θi

θi

i

i

sin θi

i

1

Figure 5.1 Analysis of a plane truss by the displacement method – Example 5.1. (a) Plane truss. (b)
Coordinate system. (c) D1 = 1 and D2 = 0. (d) Change in length in the ith member due to
D1 = 1. (e) D1 = 0 and D2 = 1. (f) Change in length in the ith member due to D2 = 1.

Therefore, to hold joint A in the displaced position, forces (aiEi/li) cos2 θi and (aiEi/li) cos θi sin θi

have to be applied in directions 1 and 2 respectively. The forces required to hold all the bars in
the displaced position are

S11 =
m∑

i=1

(
aE
l

cos2 θ

)
i
; S21 =

m∑
i=1

(
aE
l

cos θ sin θ

)
i
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By a similar argument, the forces required to hold the joint A in the displaced position such
that D1 = 0 and D2 = 1 (Figures 5.1e and f) are

S12 =
m∑

i=1

(
aE
l

sin θ cos θ

)
i
; S22 =

m∑
i=1

(
aE
l

sin2 θ

)
i

The first subscript of S in the above equations indicates the coordinate of the restraining force,
and the second subscript the component of the displacement which has a unit value.

In the actual structure, joint A undergoes translations D1 and D2 and there are no restraining
forces. Therefore, the superposition of the fictitious restraints and of the effects of the actual
displacements must be equal to zero. Thus, we obtain statical relations which express the fact
that the restraining forces vanish when the displacements D1 and D2 take place. These statical
relations can be expressed as

and
F1 + S11D1 + S12D2 = 0

F2 + S21D1 + S22D2 = 0

}
(5.1)

Stiffness matrix

The statical relations of Eq. 5.1 can be written in matrix form

or
{F}n×1 + [S]n×n {D}n×1 ={0}
[S]n×n {D}n×1 ={−F}n×1

(5.2)

(This equation may be compared with Eq. 4.3 for the geometry relations in the force method of
analysis.)

The column vector {F} depends on the loading on the structure. The elements of the matrix
[S] are forces corresponding to unit values of displacements. Therefore, [S] depends on the
properties of the structure, and represents its stiffness. For this reason, [S] is called the stiffness
matrix and its elements are called stiffness coefficients. The elements of the vector {D} are the
unknown displacements and can be determined by solving Eq. 5.2, that is,

{D} = [S]−1 {−F} (5.3)

In a general case, if the number of restraints introduced in the structure is n, the order of the
matrices {D}, [S], and {F} is n × 1,n × n, and n × 1 respectively. The stiffness matrix [S] is thus a
square symmetrical matrix. This can be seen in the above example by comparing the equations
for S21 and S12 but a formal proof will be given in Section 6.6.

In the third step of the displacement method, we determine [S]n×n and [Au]m×n. To generate
any column, j, of the two matrices, we introduce a unit displacement Dj = 1 at coordinate j,
while the displacements are prevented at the remaining coordinates. The forces necessary at the
n coordinates to hold the structure in this deformed configuration form the jth column of [S];
the corresponding m actions form the jth column of [Au]. In the fourth step of the displacement
method, we solve the statical Eq. 5.2 (also called equilibrium equation). This gives the actual
displacements {D}n×1 at the coordinates.

The final force in any member i can be determined by superposition of the restrained condition
and of the effect of the joint displacements.

Ai = Ari + (Aui1D1 + Aui2D2 + · · · + AuinDn) (5.4)
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The superposition equation for all the members in matrix form is

{A}m×1 = {Ar}m×1 + [Au]m×n {D}n×1

where the elements of {A} are the final forces in the bars, the elements of {Ar} are the bar
forces in the restrained condition, and the elements of [Au] are the bar forces corresponding to
unit displacements. Specifically, the elements of column j of [Au] are the forces in the members
corresponding to a displacement Dj = 1 while all the other displacements are zero.

Since the above equation will be used in the analysis of a variety of structures, it is useful to
write it in a general form

{A} = {Ar} + [Au] {D} (5.5)

where the elements of {A} are the final forces in the members, the elements of {Ar} are the
forces in members in the restrained condition, and the elements of [Au] are the forces in mem-
bers corresponding to unit displacements. The fifth step of the displacement method gives the
required action {A} by substituting in Eq. 5.5 matrices {Ar}, [Au] and {D} determined in steps
2, 3 and 4.

In the truss of Example 5.1, with axial tension in a member considered positive, it can be seen
that

[Au] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1E1

l1
cos θ1 −a1E1

l1
sin θ1

−a2E2

l2
cos θ2 −a2E2

l2
sin θ2

· · · · · ·
−amEm

lm
cos θm −amEm

lm
sin θm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In a frame with rigid joints, we may want to find the stress resultants in any section or the
reactions at the supports. For this reason, we consider the notation A in the general Eq. 5.5 to
represent any action, which may be shearing force, bending moment, twisting moment, or axial
force at a section or a reaction at a support.

5.3 Degrees of freedom and coordinate system

In the first step of the displacement method, the number n of the independent joint displacements
(the number of degrees of freedom, Section 3.5) is determined. A system of n coordinates is
defined. A coordinate is an arrow representing the location and the positive direction of a
displacement D or a force F. The coordinate system is indicated in a figure showing the actual
structure with n arrows at the joint.

The remaining steps of the displacement method involve generating and use of matrices:
{F}, {D} and [S]. The elements of these matrices are either forces or displacements at the coordin-
ates. Thus, it is impossible to follow or check the calculations, particularly the signs of the
parameters, when the coordinate system is not clearly defined. For this reason, it is recommen-
ded that the coordinate system be shown in a figure depicting only n numbered arrows; the
forces applied on the structure should not be shown in this figure.
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Example 5.2: Plane frame
The plane frame in Figure 5.2a consists of rigidly connected members of constant flexural
rigidity EI. Obtain the bending moment diagram for the frame due to concentrated loads P
at E and F, and a couple Pl at joint B. The change in length of the members can be neglected.

The degree of kinematic indeterminacy is three because there are three possible joint
displacements, as shown in Figure 5.2b, which shows also the chosen coordinate system.
The restraining forces, which are equal to the sum of the end-forces at the joints, are
calculated with the aid of Appendix C (Eqs. C.1 and C.2). As always, they are considered
positive when their direction accords with that of the coordinates.

B

A

B

A

C
F1

F2

B
D

2 5

6E

1

1

2 3

l/2

l/2

l

l/2

l/2 l/2
3 4

C

D

P

P

–Pl

–P/2

–Pl/8 Pl/8

Pl/8

S22

B

A

D2 = 1

D1 = 0, D3 = 0 D1 = 0, D2 = 0

D3 = 1

D2 = 0, D3 = 0

C

D

8EI=
l

B

A

D

C

Pl

F

(a)

(d) (e)

(f) (g)

(h)

0.61

0.25

0.09

0.39
0.27

0.25

0.33

0.33

Multiplier: Pl

(b) (c)

S32
2EI=
l

S21

B

A

C

D

= –6EI

D1 = 1l2

S31= – 6EI
(l/2)2

l/2

= – 24EI
l2

S32

B

A

D

C

2EI=
l

S13=

S33
4EI=
l

4EI+

S11
12EI=

l3
12EI+
(l/2)3

108EI=
l3

S12
6EI=
l2

12EI=
l

6EI– –
(l/2)2

24EI=
l2–

Figure 5.2 Plane frame analyzed in Example 5.2.
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To illustrate the relation between the end-forces and the restraining forces, joint B is
separated from the members connected to it in Figure 5.2c. The forces acting on the end
of the members in the direction of the coordinate system are indicated by full-line arrows.
Equal and opposite forces act on the joint, and these are shown by dotted-line arrows.
For equilibrium of the joint, forces F1 and F2 should be applied in a direction opposite
to the dotted arrows. Therefore, to obtain the restraining forces, it is sufficient to add the
end-forces at each joint as indicated in Figure 5.2d, and it is not necessary to consider the
forces as in Figure 5.2c.

The external applied couple acting at B requires an equal and opposite restraining force.
Therefore,

{F} =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−P
2(

Pl
8

− Pl
8

− Pl
)

Pl
8

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

= P

⎧⎨
⎩

−0.5
−l

0.125l

⎫⎬
⎭ (a)

To draw the bending moment diagram, the values of the moments at the ends of all
the members are required, it being assumed that an end-moment is positive if it acts in a
clockwise direction. We define the required actions as the member end-moments:

{A} = {MAB, MBA,MBC,MCB,MCD,MDC}

Throughout this book, a clockwise end-moment for a member of a plane frame is con-
sidered positive. The two clockwise end-moments shown in Figure 3.8a are positive. At
the left-hand end of the member, the clockwise moment produces tension at the bottom
face; but at the right-hand end, the clockwise moment produces tension at the top face.
The member ends 1, 2, . . . , 6 are identified in Figure 5.2a. Thus, the values of the six
end-moments corresponding to the restrained condition are

{Ar} = Pl
8

{−1, 1,−1,1,0,0}

Now, the elements of the stiffness matrix are the forces necessary at the location in
the direction of the coordinates to hold the structure in the deformed shape illustrated in
Figures 5.2e, f, and g. These forces are equal to the sum of the end-forces, which are taken
from Appendix D (Eqs. D.1 to D.5). We should note that the translation of joint B must
be accompanied by an equal translation of joint C in order that the length BC remains
unchanged. The stiffness matrix is

[S] = EI
l

⎡
⎢⎢⎢⎢⎢⎢⎣

108
12 −6

l
−24

l

−6
l

8 2

−24
l

2 12

⎤
⎥⎥⎥⎥⎥⎥⎦

(b)
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To write the matrix of end-moments due to the unit displacements, we put the values
at the beam ends 1, 2, . . . , 6 in the first, second, and third column, respectively, for the
displacements shown in Figures 5.2e, f, and g. Thus,

[Au] = EI
l

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−6
l

2 0

−6
l

4 0

0 4 2

0 2 4

−24
l

0 8

−24
l

0 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(c)

The deflected shapes of the members in Figures 5.2e, f and g and the corresponding end-
moments are presented in Appendix D, which is used to determine the elements of [Au].
For example, with D3 = 1, member BC in Figure 5.2g has the same deflected shape as in
the second figure of Appendix D. Thus, the end-moments 2EI/l and 4EI/l taken from this
figure are equal to elements Au33 and Au43 respectively.

Substituting Eqs. (a) and (b) into Eq. 5.3 and solving for {D}, we obtain

{D} = Pl2

EI

⎧⎨
⎩

0.0087l
0.1355

−0.0156

⎫⎬
⎭ (d)

The final end-moments are calculated by Eq. 5.5:

{A} = Pl

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−0.125
0.125

−0.125
0.125
0
0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

+ EI
l

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−6
l

2 0

−6
l

4 0

0 4 2
0 2 4

−24
l

0 8

−24
l

0 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Pl2

EI

⎧⎨
⎩

0.0087l
0.1355

−0.0156

⎫⎬
⎭= Pl

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.09
0.61
0.39
0.33

−0.33
−0.27

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(e)

The bending moment diagram is plotted in Figure 5.2h, the ordinate appearing on the
side of the tensile fiber.

The application of the preceding procedure to a frame with inclined members is illustrated
in Example 5.3.
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Remarks

(1) If, in the above example, the fixed end A is replaced by a hinge, the kinematic indeterm-
inacy is increased by the rotation at A. Nevertheless, the structure can be analyzed using
only the three coordinates in Figure 5.2 because the end-forces for a member hinged
at one end and fully fixed at the other are readily available (Appendices C and D).

As an exercise, we can verify the following matrices for analyzing the frame in
Figure 5.2, with support A changed to a hinge

{F} = (P/16){−11, −15l, 2l}; {Ar} = (Pl/16){0,3,−2,2,0,0}

[S] = EI
l

⎡
⎢⎢⎣

99/l2 sym.

−3/l 7

−24/l 2 12

⎤
⎥⎥⎦

[Au]T = EI
l

⎡
⎢⎢⎣

0 −3/l 0 0 −24/l −24/l

0 3 4 2 0 0

0 0 2 4 8 4

⎤
⎥⎥⎦

{D} = Pl2

EI
{0.0058l, 0.1429, −0.0227}

{A} = Pl{0, 0.60, 0.40, 0.32, −0.32, −0.23}

(2) When a computer is used for the analysis of a plane frame, axial deformations are
commonly not ignored and the unknown displacements are two translations and a
rotation at a general joint. Three forces are usually determined at each member end
(Figure 22.2). These can be used to give the axial force, the shearing force, and the
bending moment at any section. The superposition Eq. 5.5 is applied separately to
give six end-forces for each member, using the six displacements at its ends. This is
discussed in detail in Chapter 22 for all types of framed structures.

5.4 Analysis for different loadings

We have already made it clear that the stiffness matrix (and its inverse) are properties of a
structure and do not depend on the system of the load applied. Therefore, if a number of
different loadings are to be considered, Eq. 5.2 can be used for all of them. If the number of
cases of loading is p and the number of degrees of freedom is n, the solution can be combined
into one matrix equation:

[D]n×p = [S]−1
n×n [−F]n×p (5.6)

with each column of [D] and [−F] corresponding to one loading.
The third step of the displacement method involves generation of [Au]m×n in addition to

[S]n×n. The elements of any column of [Au] are values of the required m actions when a unit
displacement is introduced at one coordinate, while the displacements are prevented at the
remaining coordinates. Thus, similar to [S], the elements of [Au] do not depend on the applied
load. Therefore, the same matrix [Au] can be used for all loading cases. With p loading cases, the
superposition Eq. 5.5 applies with the sizes of matrices: [A]m×p, [Ar]m×p, [Au]m×n and [D]n×p.
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5.5 Analysis for environmental effects

In Section 4.4 we used the force method to analyze the separate or combined effects of temper-
ature change, lack of fit, shrinkage, or prestrain. We shall now show how the displacement
method can be used for the same purpose. Equation 5.3 is directly applicable but in this
case {F} represents the forces necessary to prevent the joint displacements due to the given
effects.

When the analysis is carried out for the effect of movement of support, Eq. 5.3 can also
be applied, provided the movement of the support does not correspond with one of the
unknown displacements forming the kinematic indeterminacy. When the movement of the sup-
port does so correspond, a modification of Eq. 5.3 is necessary. This is explained with reference
to Example 5.5.

5.6 Five steps of displacement method

The analysis by the displacement method involves five steps which are summarized as
follows:

Step 1 Define a system of coordinates representing the joint displacements to be found. Also,
define [A]m×p, the required actions as well as their sign convention (if necessary).

Step 2 With the loadings applied, calculate the restraining forces [F]n×p and [Ar]m×p.

Step 3 Introduce unit displacements at the coordinates, one by one, and generate [S]n×n

and [Au]m×n.

Step 4 Solve the equilibrium equations:

[S]n×n [D]n×p = −[F]n×p (5.7)

This gives the displacements [D].

Step 5 Calculate the required actions by superposition:

[A]m×p = [Ar]m×p + [Au]m×n [D]n×p (5.8)

In a manner similar to the force method (Section 4.6), when Step 3 above is completed all the
matrices necessary for the analysis have been generated. The last two steps involve merely matrix
algebra.

For quick reference, the symbols used in this section are defined again as follows:

n, p, m = number of degrees of freedom, number of loading cases and number
of actions required

[A] = required actions (the answers to the problem)
[Ar] = values of the actions due to loadings on the structure while the

displacements are prevented
[Au] = values of the actions due to unit displacements introduced separately

at each coordinate
[F] = forces at the coordinates necessary to prevent the displacements due to

the loadings
[S] = stiffness matrix
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Example 5.3: Plane frame with inclined member
Obtain the bending moment diagrams for the plane frame in Figure 5.3a due to the separate
effects of: (1) the loads shown; (2) a downward settlement δD at support D. Consider EI =
constant and neglect the change in length of members.

Total
distributed
load P

(a) (b)

(c)

(d) (e)

(f)

0.030
0.125

0.309
0.740

0.644
0.172

0.683

0.815

0.569

0.609

1.070

0.609

0.683

Multiplier: Pl

Multiplier:(g)

F1 = –0.417Pl F2 = 0.6Pl
F3

δD

δD
MBC = MCB =

MBC
MCB C

F3 = –2.625P

B C

D D
A

B

A

1 2
3

l/2 l/2
4P

B C

D A

B C

DA

P

Pl

2P
2P

12

0.8l

0.4l

0.6l l

0.4l

–Pl
2

Pl
2

P
2

B

2.5

1.5

0.625
0.375

2.125P

0.5P

P P

B

C
4P

P
2

P
8

(0.8l)

EI
l2

δD

–6EI
l2

δD

Figure 5.3 Frame analyzed in Example 5.3. (a) Frame dimensions and loading. (b) Coordinate system.
(c) Fixed-end forces in case (1). (d) Restraining forces {F} in case (1). (e) Member-end
moments with the displacements restrained at the coordinates in case (2). (f) Bending
moment diagram in case (1). (g) Bending moment diagram in case (2).
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Step 1 Figure 5.3b defines a coordinate system corresponding to three independent
joint displacements (the kinematic indeterminacy; see Section 3.5). The required bend-
ing moment diagrams can be drawn from the member-end moments (considered positive
when clockwise):

[A] =

⎡
⎢⎢⎣
⎧⎪⎪⎨
⎪⎪⎩

MAB

MBC

MCD

MDC

⎫⎪⎪⎬
⎪⎪⎭

1

⎧⎪⎪⎨
⎪⎪⎩

MAB

MBC

MCD

MDC

⎫⎪⎪⎬
⎪⎪⎭

2

⎤
⎥⎥⎦ (a)

MBA = −MBC and MCB = −MCD; thus MBA and MCB need not be included in [A].

Step 2 The fixed-end forces for the members are found from Appendices C and D (Eqs. C.1,
C.2, C.7, C.8, D.1 and D.2) and are shown in Figures 5.3c and e. The restraining couples
F1 and F2 are obtained directly by adding the fixed-end moments. For the calculation
of F3, the shearing forces meeting at joints B and C are resolved into components along the
member axes, and F3 is obtained by adding the components in the direction of coordinate
3 (Figure 5.3d). An alternative method for calculating F3 using a work equation will be
explained below. Now, we write the restraining forces:

[F] =
⎡
⎢⎣

−0.417Pl −6(EI/l2)δD

0.6Pl −6(EI/l2)δD

−2.625P −9(EI/l2)δD

⎤
⎥⎦ (b)

The value of F3 in case (1) is equal to minus the sum of the horizontal components
0.625P, 1.5P and 0.5P shown at B and C in Figure 5.3c. If a similar figure is drawn for
case (2), the shearing force at end B of member BC will be an upward force equal to
(12EIδD/l3). This force can be substituted by a component equal to (15EIδD/l3) along
AB and a component equal to (−9EIδD/l3) in the direction of coordinate 3. The latter
component is equal to F3 in case (2).

The member-end moments when the displacements at the coordinates are prevented
(Figure 5.4a and Figure 5.3e) are

[Ar] =

⎡
⎢⎢⎢⎣

−0.0833Pl 0

−0.5Pl −6(EI/l2)δD

0.1Pl 0

−0.1Pl 0

⎤
⎥⎥⎥⎦ (c)

MBC MCB F3

MDC

MCD
0.75

1 1

0.625

0.5

0.375

1.25=θAB
l

(a) (b)

P

C

D

MBA

MAB

A D

B
C

A

B

P

4P
0.75= –θBC

l

1.25=θCD
l

Figure 5.4 Calculation of restraining force F3 in Example 5.3 using work equation. (a) Fixed-end
moments shown as external forces on a mechanism, case (1). (b) Virtual displacement of
the mechanism in (a).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Displacement method of analysis 147

The work equation which can give F3-values in Eq. b will be applied to a mechanism
(Figure 5.4b), in which hinges are introduced at the joints. The members of the mechanism
are subjected to the same external forces as in Figure 5.4a, in which the end-moments
are represented as external applied forces. The forces in Figure 5.4a, including F3 and the
reactions (not shown) at A and D, constitute a system in equilibrium. Introducing a unit
virtual (fictitious) displacement at coordinate 3 (Figure 5.4b) will cause members of the
mechanism to rotate and translate, without deformation, as shown in Figure 5.4b. No
work is required for the virtual displacement; thus, the sum of the forces (concentrated
loads or couples) in Figure 5.4a multiplied by the corresponding virtual displacements in
Figure 5.4b is equal to zero:

θAB(MAB + MBA) + θBC(MBC + MCB) + θCD(MCD + MDC)

+F3 × 1 + [P(0.625) + 4P(0.375) + P(0.5)] = 0 (5.9)

The values of member-end moments are (Appendix C, Eqs. C.1 and C.7): MAB =−MBA =
−Pl/12;MBC =−MCB =−Pl/2;MCD =−MDC =Pl/10; θAB =1.25/l; θBC =−0.75/l; θCD =
1.25/l; substitution in Eq. 5.9 gives F3 = −2.625P. Similarly, the sum of the forces in
Figure 5.3e multiplied by the displacement in Figure 5.4b is equal to zero; for case (2) this
gives F3 = −9EIδD/l3.

Step 3 Separate displacements D1 = 1, D2 = 1, and D3 = 1 produce the member-end
moments shown in Figures 5.5a, b, and c respectively (Appendix D, Eqs. D.1 to D.5).
Summing up the member-end moments at joints B and C gives the elements of the first two
rows of the stiffness matrix [S], given below. Work equations summing the product of the

MBC

MBC

MAB

MBC

MBA

MCB

MAB = ; MBA = 
2EI

l

MCD

MCD

MDC

MDC

MCB

MCB

S31

S32

S33

C

C

D

D

D

C

MBA

MAB

A

A

A

B

B

D1 = 1

D2 = 1

D3 = 1
1

0.75

1

4EI
l

MBC = ; MCB = 
4EI

l
2EI

l

MBC = ; MCB = 
2EI

l
4EI

l

MCD = ; MDC = 
5EI

l

EI
l2

2.5EI
l

MCD = MDC = 0

MAB = MBA = 0

MAB = MBA = –7.5

EI
l2

MBC = MCB = 4.5

EI
l2

MCD = MDC = –9.375

Figure 5.5 Generation of stiffness matrix for the frame of Example 5.3 (Figure 5.3b). (a), (b) and (c)
Member-end moments represented as external forces on a mechanism when D1 =1,D2 =1,
and D3 = 1, respectively.
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forces in each of Figures 5.5a, b, and c multiplied by the displacements in Figure 5.4b give
S31,S32, and S33. The work equation will be the same as Eq. 5.9, but without the last term
in square brackets; the values of the member-end moments are given in Figures 5.5a, b,
and c. The same figures are also used to generate [Au]:

[S] = EI

⎡
⎣ 8/l 2/l −3/l2

2/l 9/l −4.875/l2

−3/l2 −4.875/l2 48.938/l3

⎤
⎦ (d)

[Au] =

⎡
⎢⎢⎣

2EI/l 0 −7.5EI/l2

4EI/l 2EI/l 4.5EI/l2

0 5EI/l −9.375EI/l2

0 2.5EI/l −9.375EI/l2

⎤
⎥⎥⎦ (e)

Step 4 Substitution of [S] and [F] in Eq. 5.7 and solution or inversion of [S] and substitution
in Eq. 5.6 give

[D] = 10−3

EI

⎡
⎣ 133.75l −26.72l 5.54l2

−26.72l 122.79l 10.59l2

5.54l2 10.59l2 21.83l3

⎤
⎦
⎡
⎢⎢⎢⎢⎢⎢⎣

0.417Pl
6EI
l2 δD

−0.6Pl
6EI
l2 δD

2.625P
9EI
l3 δD

⎤
⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎣ 0.0863Pl2/EI 0.6920δD/l

−0.0570Pl2/EI 0.6717δD/l
0.0532Pl2/EI 0.2932δD

⎤
⎦ (f)

A calculator may be used to invert [S] considering only the numerial values; the symbols
for any element of [S]−1 are the inverse symbols in corresponding elements of [S].

Step 5 Substituting [Ar], [Au], and [D] in Eq. 5.8 gives

[A] =

⎡
⎢⎢⎣

−0.309Pl −0.815EIδD/l2

−0.030Pl −0.569EIδD/l2

−0.683Pl 0.609EIδD/l2

−0.740Pl −1.070EIδD/l2

⎤
⎥⎥⎦

The elements of [A] are the member-end moments used to plot the bending moment
diagrams for load cases (1) and (2), Figures 5.3f and g.

Example 5.4: A grid
Find the three reaction components (vertical force, bending and twisting couples) at end A
of the horizontal grid shown in Figure 5.6a due to a uniform vertical load of intensity q
acting on AC. All bars of the grid have the same cross section with the ratio of torsional
and flexural rigidities GJ/EI = 0.5.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Displacement method of analysis 149

z(a)

(b)
Reaction components at A

A3 z

x
y

A1

A2

A

E

C

21

3

B

D

y x

A C

l/3

l/3

2
3

B

E

D

l

2
3 l

Downward load q per unit length

Figure 5.6 Grid analyzed in Example 5.4. (a) Grid plan. (b) Pictorial view showing chosen coordinates
1, 2, and 3 and positive directions of the reaction components at A.

Step 1 There are three independent joint displacements represented by the three coordin-
ates in Figure 5.6b. The required actions and their positive directions are defined in the
same figure.

Step 2 The restraining forces at the three coordinates are (using Appendix C, Eqs. C.7
and C.8)

{F} =
⎧⎨
⎩

(−ql/2)AE − (ql/2)EC

0
(ql2/12)AE − (ql2/12)EC

⎫⎬
⎭= q

⎧⎨
⎩

−l/2
0

l2/36

⎫⎬
⎭
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The reaction components at A while the displacements are prevented at the coordinates
are

{Ar} = {(−ql/2)AE, 0, (−ql2/12)AE} = q{−l/3, 0, −l2/27}

Step 3 The stiffness matrix is (using Appendix D, Eqs. D.1 to D.5, D.10 and D.11)

[S] = EI

⎡
⎣ 729/l3 symmetrical

−40.5/l2 20.25EI/l
40.5/l2 0 20.25EI/l

⎤
⎦

The nonzero elements of this matrix are determined as follows: S11 = �(12EI/l3),
with the summation performed for the four members meeting at E (Figure 5.6b). S21 =
(6EI/l2)ED − (6EI/l2)EB.

Similarly, S31 = (6EI/l2)EC − (6EI/l2)EA. The angular displacement D2 = 1 bends and
twists beams BD and AC respectively;

S22 = (4EI/l)EB + 4(EI/l)ED + (GJ/l)EC + (GJ/l)EA

Because of symmetry of the structure, S33 is the same as S22.
Values of the reactions at A due to separate unit displacements are

[Au] =
⎡
⎢⎣

(−12EI/l3)AE 0 (6EI/l2)AE

0 (−GJ/l)AE 0
(−6EI/l2)AE 0 (2EI/l)AE

⎤
⎥⎦

= EI

⎡
⎢⎣

−40.5/l3 0 13.5/l2

0 −0.75/l 0
−13.5/l2 0 3/l

⎤
⎥⎦

Step 4 Substitution of [S] and {F} in Eq. 5.7 and solution gives

{D} = 10−3q
EI

{0.9798l4, 1.960l3, −3.331l3}

Step 5 Substitution of [Ar], [Au], and {D} in Eq. 5.8 gives the required reaction
components:

{A} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−ql
3

0

−ql2

27

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+ 10−3q

⎡
⎢⎢⎢⎢⎣

−40.5
l3 0

13.5
l2

0
−0.75

l
0

−13.5
l2 0

3
l

⎤
⎥⎥⎥⎥⎦
⎧⎪⎨
⎪⎩

0.9798l4

1.960l3

−3.331l3

⎫⎪⎬
⎪⎭

=

⎧⎪⎨
⎪⎩

−0.4180ql

−1.470(10−3 ql2)

−60.26(10−3 ql2)

⎫⎪⎬
⎪⎭



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Displacement method of analysis 151

5.7 Analysis of effects of displacements at the coordinates

Consider a structure whose degree of kinematic indeterminacy is n, corresponding to a system of
n coordinates. Our objective is to analyze the structure for the effect of forced displacements of
prescribed values {�}m×1 at the first m coordinates (with m<n). The structure will be subjected
to unknown forces {F∗}m×1 at the coordinates 1 to m. It is assumed that no external forces are
applied on the members.

We write the stiffness matrix so that the coordinates corresponding to the known displace-
ments occur in the first m rows and columns, thus

[S] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S11 S12 . . . S1m S1(m+1) . . . S1n

S21 S22 . . . . . . . . .

. . . . . . . . .

Sm1 Sm2 . . . Smm Sm(m+1) . . . Smn
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
S(m+1)l . . . . . . . . .

. . . . . . . . .

Sn1 Sn2 . . . . . . Smn

--
--

--
--

--
--

--
--

--
--

--
--

--
- ⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.10)

This matrix can be partitioned along the dashed lines shown above and can therefore be written
in the form

[S] =
[ [S11] [S12]

[S21] [S22]

]
(5.11)

where [Sij] are the partitional matrices or submatrices. By inspection of Eq. 5.10, the order of
submatrices is [S11]m×m, [S12]m×(n−m), [S21](n−m)×m, [S22](n−m)×(n−m).

To produce the displacements �1,�2, . . . ,�m, external forces F∗
1,F∗

2, . . . ,F∗
m must be applied

at the coordinates 1 to m with no forces applied at the remaining coordinates, thus allow-
ing displacements Dm+1,Dm+2, . . . ,Dn to occur. The forces and the displacements can be
related by

[ [S11] [S12]
[S21] [S22]

]{ {D∗}
{D}

}
=
{ {F∗}

{0}

}
(5.12)

where {D∗} = {�}, that is, the prescribed displacements; {D}m−n×1 is the vector of unknown
displacements at the coordinates m + 1,m + 2, . . . ,n; and {F∗}m×1 is the vector of unknown
forces at the first m coordinates.

From the second row of the above matrix equation, we find

{D} = −[S22]−1 [S21] {D∗} (5.13)

With the displacements at all the n coordinates known, the stress resultants at any section can
be determined by the equation

{A} = [Au] {D} (5.14)
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where {A} is any action, and [Au] is the same action corresponding to a unit displacement at
the given coordinate only. This equation is the same as Eq. 5.5 with {Ar}= {0}, since the actions
required are due to the effect of the displacements {D} only.

If the forces {F∗} are required, they can be obtained from the first row of Eq. 5.12 and Eq. 5.13,
as follows:

{F∗} = [[S11] − [S12][S22]−1[S21]]{D∗} (5.15)

Equation 5.15 can be rewritten in the form

{F∗} = [S∗]{D∗} (5.16)

where [S∗] is a condensed stiffness matrix of the structure corresponding to the first m
coordinates, with the remaining coordinates omitted. The condensed stiffness matrix is

[S∗] = [S11] − [S12][S22]−1[S21] (5.17)

Example 5.5: A plane frame: condensation of stiffness matrix
Determine the force required at coordinate 1∗ to produce a displacement D∗

1 = � for the
frame in Figure 5.7a. What are the corresponding rotations at joints B and C? Ignore the
change in length of members and consider EI = constant.

In Example 5.3, we derived the stiffness matrix for the same frame corresponding to
the coordinate system in Figure 5.3b. The numbering of the coordinates is changed in
Figure 5.7b so that the coordinate with prescribed displacement is counted first; the stiffness
matrix corresponding to the coordinates in Figure 5.7b is

[S] = EI

⎡
⎢⎢⎢⎢⎣

48.938/l3 −4.875/l2 −3/l2

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

− 4.875/l2 9/l 2/l
−3/l2 2/l 8/l

--
--

--
--

--
--

-- ⎤
⎥⎥⎥⎥⎦ (a)

This is the same as [S] derived in Example 5.3, after interchanging rows 1 and 3, followed
by interchanging columns 1 and 3.

A D

C

0.6l l 3(b)(a) 2

0.8l

B

A D

CB
1*

1

Figure 5.7 Plane frame analyzed in Example 5.5. (a) Single-coordinate system. (b) Three-coordinate
system.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Displacement method of analysis 153

The stiffness corresponding to the single coordinate in Figure 5.7a (Eq. 5.17) is

[S∗] =
[

48.938EI
l3

]
−
[
−4.875EI

l2 − 3EI
l2

]⎡⎢⎢⎣
9EI

l
2EI

l
2EI

l
8EI

l

⎤
⎥⎥⎦

−1⎡
⎢⎢⎣

−4.875EI
l2

−3EI
l2

⎤
⎥⎥⎦

= [45.81EI/l3] (b)

Substituting [S∗] and {D∗}= {�} in Eq. 5.16 gives the force F∗
1 necessary to produce the

displacement D∗
1 = � (Figure 5.7a):

[F∗] = [45.811(EI/l3)�] (c)

The corresponding rotations at C and B are respectively equal to D1 and D2, determined
by Eq. 5.13:

{D} = −

⎡
⎢⎢⎣

9EI
l

2EI
l

2EI
l

8EI
l

⎤
⎥⎥⎦

−1⎡
⎢⎢⎣

−4.875EI
l2

−3EI
l2

⎤
⎥⎥⎦ {�} =

⎧⎪⎪⎨
⎪⎪⎩

0.485
�

l

0.254
�

l

⎫⎪⎪⎬
⎪⎪⎭

5.8 General

The displacement (or stiffness) method of analysis can be applied to any structure but the largest
economy of effort arises when the order of statical indeterminacy is high. The procedure is
standardized and can be applied without difficulty to trusses, frames, grids, and other structures
subjected to external loading or to prescribed deformation, e.g. settlement of supports or tem-
perature change. The displacement method is extremely well suited to computer solutions (see
Chapters 22 and 23).

Problems

5.1 Use the displacement method to find the forces in the members of the truss shown. Assume
the value l/aE to be the same for all members.

E

P A

B

CD

30°
30°

30°30°

P

Prob. 5.1
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5.2 A rigid mast AB is hinged at A, free at B and is pin-jointed to n bars of which a typical one
is shown. Using the displacement method, find the force A in the ith bar if l/aE= constant
for each bar. Assume that the mast and all the bars are in one plane.

H

ith bar

A

θi

B
P

xi

Prob. 5.2

5.3 Solve Prob. 4.7 by the displacement method.
5.4 For the truss shown in the figure, write the stiffness matrix corresponding to the four

coordinates indicated. Assume a and E to be the same for all members.

3

4

2

1

b

bb

Prob. 5.4

5.5 Find the forces in the members of the truss of Prob. 5.4 due to F1 = −P at coordinate 1.
5.6 Member AB represents a chimney fixed at B and stayed by prestressed cables AC and AD.

Find the bending moment at B and the changes in the cable forces due to a horizontal
force P at A. Assume that AB, AC and AD are in the same plane and that the cables
continue to be in tension after application of P. Consider that: (Ea)cable = 10(EI/l2)AB.
Only bending deformation of AB and axial deformation of the cables need to be
considered.
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A P

D, F and HB

l

l
Elevation

l

C, E and G

E

A

PC

G H

D

l/2

l/2

Top
view

F

Prob. 5.6 and 5.7

5.7 Solve Prob. 5.6 with cables AC and AD replaced by four cables joining A to each of E, F,
G and H. Consider that (Ea)cable is the same as in Prob. 5.6.

5.8 Neglecting axial deformations, find the end-moments MBC and MCF for the frame shown.
Consider an end-moment to be positive when it acts in a clockwise direction on the member
end.

Constant EI

A

P

l/2 l l

B C

E F

D

l

l/2

Prob. 5.8

5.9 Solve Prob. 5.8 if support E moves downward a distance � and the load P is not acting.
5.10 Write the stiffness matrix corresponding to the coordinates 1 and 2 of the frame in the

figure. What are the values of the end-moments MBC and MCB due to uniform load
q per unit length on BC and what are the reaction components at A? Neglect axial
deformations.
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2

C

A

B
D

l

E

Constant EI

l

1

l 0.75l

Prob. 5.10

5.11 Imperial units. Find the end-moments MBC and MCB in the frame of Prob. 5.10 due
to a rise in temperature of 40◦ Fahrenheit in part BD only. Assume the coefficient of
thermal expansion to be α =6.5×10−6 per degree Fahrenheit, and take EI =104k ft2. The
load q is not acting in this case. The members are assumed to have infinite axial rigidity;
l = 20 ft.

5.12 SI units. Find the end-moments MBC and MCB in the frame of Prob. 5.11 due to
a rise in temperature of 20 ◦C in part BD only. Assume the coefficient of thermal
expansion to be α = 1 × 10−5 per degree Celsius, take EI = 4000kN m2 and l = 6m.
The members are assumed to have infinite axial rigidity. The load q is not acting in
this case.

5.13 For the frame in the figure, write the first three columns of the stiffness matrix corres-
ponding to the six coordinates indicated. The moment of inertia and the area of the cross
section are shown alongside the members.

3

1

2

B

A D

CI1, a1

l1

I2, a2
I2, a2

l2

5

4

6

Prob. 5.13

5.14 Write the stiffness matrix for the frame of Prob. 5.13, neglecting the axial deformations.
Number the coordinates in the following order: clockwise rotation at B, clockwise rotation
at C, horizontal translation to the right at C.

5.15 Using the results of Prob. 5.14, obtain the bending moment diagram for the frame due to
a horizontal load P to the right at B and a downward vertical load 4P at the middle of BC.
Take l1 = 2l2 and I1 = 4I2.

5.16 Use the displacement method to find the bending moment and shearing force diagrams for
the frame in the figure. Neglect axial deformations.
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E
P

P

F

B C

D

Constant EI

A

l/2

l/2 l/2

l/2l/2

l/2

l/4

Prob. 5.16

5.17 For the grid shown in plan in the figure, calculate the displacements corresponding to the
three degrees of freedom at joint B. Assume GJ/EI =0.8 for AB and BC. Draw the bending
moment diagram for BC.

l

z

y x

A

B

Vertical load P

C

l/2

l/2

Prob. 5.17

5.18 Considering three degrees of freedom: a downward deflection, and rotations represented
by vectors in the x and z directions at each of the joints I, J, K, and L of the grid in the figure,

C D
z

y x

B

A
K

H
l l l

G

I J
E

F
L

l

l

l

Prob. 5.18
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write the first three columns of the corresponding stiffness matrix. Number the twelve
coordinates in the order in which they are mentioned above, that is, the first three at
I followed by three at J, and so on. Take GJ/EI = 0.5 for all members.

5.19 Solve Prob. 4.5 by the displacement method. Consider the vertical deflections at B and C
as the unknown displacements and use Appendix E.

5.20 Neglecting torsion, find the bending moment in girders BE and AF of the grid of Prob. 5.18
subjected to a vertical load P at joint I. Consider the vertical deflections at the joints as the
unknown displacements and use Appendix E.

5.21 A horizontal grid is composed of n members meeting at one joint A of which a typical
member i is shown in the figure. Write the stiffness matrix corresponding to the coordinates
1, 2, and 3 indicated, with coordinate 1 representing a downward deflection, and 2 and 3
being rotations. The length of the ith member, its torsional rigidity, and its flexural rigidity
in the vertical plane through its axis are li,GJi, and EIi respectively. Hint: The stiffness
matrix of the grid can be obtained by the summation of the stiffness matrices of individual
members. To obtain the first column of the stiffness matrix of the ith member, a unit down-
ward displacement is introduced and the end-forces are taken from Appendix D. These
forces are resolved into components at the three coordinates. For the second and third
columns, a unit rotation at coordinate 2 and 3 is resolved into two rotations represented
by vectors along and normal to the beam axis and the corresponding end-forces are taken
from Appendix D. These forces are then resolved into components at the coordinates to
obtain elements of the stiffness matrix.

z

3

2

αi

ith mem
ber

1

y x

Prob. 5.21

5.22 Figure E-1, Appendix E shows a prismatic continuous beam of three equal spans l with
a unit settlement at one of the interior supports. Using the displacement method, verify
the bending moments and the reactions given in the figure. Two coordinates only need be
used, representing the rotation at each of the interior supports.

5.23 Solve Example 5.2 with the supports at A and D changed to hinges (Figure 5.2a).
5.24 Solve Example 5.3 with the support at A changed to a hinge (Figure 5.3a). Consider case

(1) loading only.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6

Use of force and displacement
methods

6.1 Introduction

The preceding two chapters outlined two basic methods of analysis, and obviously either can be
used to analyze any structure. It is worthwhile, however, to see clearly the advantages of each
method so as to choose the one more economical in terms of effort in any particular case.

6.2 Relation between flexibility and stiffness matrices

Consider a system of n coordinates defined on a structure to which the principle of superposition
applies (see Section 3.6). In the preceding chapters, we have defined the flexibility matrix, [f ]
and its elements, the flexibility coefficients. We have also defined the stiffness matrix, [S] and
its elements, the stiffness coefficients. A typical flexibility coefficient, fij is the displacement at
coordinate i due to a force Fj = 1 at coordinate j, with no forces applied at the remaining
coordinates. A typical stiffness coefficient, Sij is the force at coordinate i when the structure
is deformed such that Dj = 1, while the displacements are zero at the remaining coordinates.
We will show below that the flexibility and the stiffness matrices, corresponding to the same
coordinate system, are related:

[S] = [f ]−1 (6.1)

[f ] = [S]−1 (6.2)

Equations 6.1 to 6.5 apply with any number of coordinates. For simplicity of presentation, we
consider a system of two coordinates (n = 2) shown in Figure 6.1a. The displacements {D1,D2}
can be expressed as the sum of the displacements due to each of forces F1 and F2 acting separately
(see the superposition Eq. 3.17):

D1 = f11F1 + f12F2

D2 = f21F1 + f22F2

These equations can be put in matrix form:

{D} = [f ]{F} (6.3)

The forces {F} can be expressed in terms of the displacements by solving Eq. 6.3:

{F} = [f ]−1{D} (6.4)
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(a)

(c)

1

1
1

F21 = S21 F12 = S12

F22 = S22

F11 = S11

2

(b)

l

Figure 6.1 A structure with two coordinates, Example 6.1. (a) Coordinate system. (b) Forces holding
the structure in a deformed configuration with D1 =1, while D2 =0. (c) Forces holding the
structure in a deformed configuration with D1 = 0, while D2 = 1.

Consider the structure in two deformed configurations: D1 = 1 while D2 = 0 (Figure 6.1b),
and D1 = 0 while D2 = 1 (Figure 6.1c).

Application of Eq. 6.4 gives:

[
F11 F12

F21 F22

]
= [f ]−1

[
1 0
0 1

]

The elements of the matrix on the left-hand side of this equation are in fact the stiffness
coefficients, as defined above. The last matrix on the right-hand side of the equation is a unit
matrix (identity matrix defined in Section A.2). Thus, the equation can be written in the same
form as Eq. 6.1. Inversion of both sides of Eq. 6.1 gives Eq. 6.2. Substitution of Eq. 6.1 in Eq. 6.4
gives:

{F} = [S]{D} (6.5)

Equations 6.1 and 6.2 show that the stiffness matrix is the inverse of the flexibility matrix,
and vice versa, provided the same coordinate system of forces and displacements is used in the
formation of the two matrices.

We may recall that in the force method of analysis, releases are introduced to render the
structure statically determinate. The coordinate system represents the location and direction
of these released forces. Now, in the displacement method of analysis, restraining forces are
added to prevent joint displacements. The coordinate system in this case represents the location
and direction of the unknown displacements. It follows that the two coordinate systems cannot
be the same for the same structure. Therefore, the inverse of the flexibility matrix used in the
force method is a matrix, whose elements are stiffness coefficients, but not those used in the
displacement method of analysis. Furthermore, we note that the flexibility matrix determined
in the force method is that of a released structure, whereas in the displacement method we use
the stiffness matrix of the actual structure.

Equation 6.3 must not be confused with the equation: [f ]{F}= {−D} used in the force method
of analysis, where we apply unknown redundants {F} of such a magnitude as will produce
displacements {−D} to correct for inconsistencies {D} of the released structure.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Use of force and displacement methods 161

Similarly, Eq. 6.5 must not be confused with the equation: [S]{D}= {−F} used in the displace-
ment method of analysis, where we seek unknown displacements {D} of such a magnitude as
will eliminate the artificial restraining forces {F}.

Example 6.1: Generation of stiffness matrix of a prismatic member
Assume that the cantilever shown in Figure 6.1a has a constant flexural rigidity EI and use
Appendix B to generate the flexibility matrix [f ] corresponding to the indicated coordinate
system. Invert [f ] to obtain the stiffness matrix [S]. The elements of [S] may be compared
with the member-end forces given in Appendix D (Eqs. D.1 to D.5).

Due to F1 = 1, Appendix B gives the displacements at coordinates 1 and 2; these are
respectively equal to f11 and f21. Similarly, due to F2 = 1, the appendix gives f12 and f22.

[f ] =

⎡
⎢⎢⎣

l3

3EI
l2

2EI
l2

2EI
l

EI

⎤
⎥⎥⎦

[S] = [f ]−1 =
⎡
⎢⎣

12EI
l3

6EI
l2

6EI
l2

4EI
l

⎤
⎥⎦

6.3 Choice of force or displacement method

In the force method, the choice of the released structure may affect the amount of calculation.
For example, in the analysis of a continuous beam, the introduction of hinges above intermediate
supports produces a released structure consisting of a series of simple beams (see Example 4.5), so
that the application of a unit value of the redundants has a local effect on the two adjacent spans
only. In structures other than continuous beams, it may not be possible to find a released structure
for which the redundants have a local effect only, and usually a redundant acting separately
produces displacements at all the coordinates.

In the displacement method, generally all joint displacements are prevented regardless of the
choice of the unknown displacements. Generation of the stiffness matrix is usually not difficult
because of the localized effect discussed earlier. A displacement of a joint affects only the members
meeting at the given joint. These two properties generally make the displacement method easy
to formulate, and it is for these two reasons that the displacement method is more suitable for
computer programming.

When the analysis is performed by hand, it is important to reduce the number of simultaneous
equations to be solved, and thus the choice of the force or displacement method may depend
on which is smaller: the degree of static or kinematic indeterminacy. No general rule can be
established, so that, when a structure is statically as well as kinematically indeterminate to a low
degree, either method may involve about the same amount of computation.

When the computation is done by hand, it is possible in the displacement method to reduce the
number of simultaneous equations by preventing only some of the joint displacements, provided
that the resulting structure can be readily analyzed. This is illustrated in Example 6.2.
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Example 6.2: Reactions due to unit settlement of a support of a continuous beam
Generate the flexibility matrix [f ] for the beam and the coordinate system indicated in
Figure 6.2a. Invert [f ] to obtain the stiffness matrix [S]. The elements of [S] may be com-
pared with minus the values of the reactions due to a settlement of a support in a continuous
beam (Figure 6.2c); see Table E.1 of Appendix E.

To write the flexibility matrix, we obtain displacements such as those shown in Figure 6.2b
(for the first column of the matrix), their values being taken from Appendix B. Thus,

[f ] = l3

12EI

⎡
⎣ 9 11 7

11 16 11
7 11 9

⎤
⎦

To generate directly the stiffness matrix requires the analysis of a statically indeterminate
structure for each column of [S]. For example, the elements of the first column of [S] are the
forces necessary to hold the structure in the deformed shape illustrated in Figure 6.2c, and this
requires the solution of a structure statically indeterminate to the third degree. This exercise
is left to the reader; its solution will provide a check on the stiffness matrix1 obtained by the
inversion of the flexibility matrix.

(a)

1 2 3

EI = constant

l l l l

F1 = 1

f11
f21 f31

S11

S21 S31

(b)

(c)
1

Figure 6.2 Deflected configuration to generate the first column of [f ] and [S] in Example 6.2.

1 The elements of the stiffness matrix corresponding to the coordinates chosen in this example can be used
in the analysis of continuous beams with equal spans on elastic supports or for the analysis of grids with
hinged connections (torsionless grids). These elements are equal to minus the reactions at the supports
caused by the vertical translation of one support only. Appendix E gives the values of the reactions and
bending moments at the supports for continuous beams of 2 to 5 equal spans.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Use of force and displacement methods 163

[S] = [f ]−1 = EI
l3

⎡
⎣ 9.857 −9.429 3.857

−9.429 13.714 −9.429
3.857 −9.429 9.857

⎤
⎦

Example 6.3: Analysis of a grid ignoring torsion
The grid in Figure 6.3a is formed by four simply-supported main girders (m) and one
cross-girder (c) of a bridge deck, with a flexural rigidity in the ratio EIm : EIc = 3 : 1. The
torsional rigidity is neglected. Find the bending moment diagram for a cross-girder due to
a concentrated vertical load P acting at joint 1.

There are three degrees of freedom at any joint of the grid: vertical translation, and rotation
about two perpendicular axes in the plane of the grid. However, if the vertical translation of the
joints is prevented, while the rotations are allowed, the grid becomes a system of continuous
beams, and, using Appendix E, we can analyze the effect of downward movement of one joint
without the necessity of knowing the rotations.

Let the coordinate system be the four vertical deflections at 1, 2, 3, and 4, considered positive
downward. The stiffness matrix can be generated by using the tabulated values of the reactions
in Appendix E for the case of two equal spans for the main girders, and three equal spans for
the cross-girder. The elements of the first row of the stiffness matrix of the grid are calculated
as follows. The required actions are the bending moments in the cross girders at 2 and 3.

{A} = {M2, M3}

The displacements D1 =1 and D2 =D3 =D4 =0 deform the main girder A and the cross-girder,
but girders B, C, and D are not deflected. The rotations at the joints are allowed to take place
freely. Then, adding the vertical forces required to hold the girder A and the cross-girder in this
deflected shape, we obtain

(a)

(b)

1

2

3

4

4 3 2

0.243 Pb
0.146 Pb

1

Cross-girder

3b

b

3b

l = 6b

Main
girders

A
EIm

P

EIc

B

C

D

b

b

Figure 6.3 Grid considered in Example 6.3.
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S11 = 6.0
EIm

(3b)3 + 1.6
EIc

b3 = 2.267
EIc

b3

S21 = −3.6
EIc

b3 ; S31 = 2.4
EIc

b3 ; S41 = −0.4
EIc

b3

The elements of other columns of the stiffness matrix are determined in a similar way, so that
finally

[S] = EIc

b3

⎡
⎢⎢⎣

2.267 −3.600 2.400 −0.400
−3.600 10.267 −8.400 2.400

2.400 −8.400 10.267 −3.600
−0.400 2.400 −3.600 2.267

⎤
⎥⎥⎦

With the load P at coordinate 1, we need only an equal and opposite force at this coordinate to
prevent the joint displacements. Thus, {F}= {−P, 0, 0, 0}. Substituting in Eq. 5.2: [S]{D}=−{F}
and solving for the displacements, we find

{D} = Pb3

EIc

⎧⎪⎪⎨
⎪⎪⎩

1.133
0.511
0.076

−0.221

⎫⎪⎪⎬
⎪⎪⎭

The bending moment in the cross-girder is zero at the ends 1 and 4, so that only moments at
2 and 3 have to be determined. Considering the bending moment positive if it causes tension in
the bottom fiber, we find the moment from Eq. 5.5. In the present case, the bending moment in
the restrained structure {Ar} = {0} because the load P is applied at a coordinate.

The elements of [Au] are obtained from Appendix E. We find

[Au] = EIc

b2

[−1.6 3.6 −2.4 0.4
0.4 −2.4 3.6 −1.6

]

and

{A} = EIc

b2

[−1.6 3.6 −2.4 0.4
0.4 −2.4 3.6 −1.6

]
Pb3

EIc

⎧⎪⎪⎨
⎪⎪⎩

1.133
0.511
0.076

−0.221

⎫⎪⎪⎬
⎪⎪⎭= Pb

{−0.243
−0.146

}

Hence, the bending moment diagram for the cross-girder is as shown in Figure 6.3b.

6.4 Stiffness matrix for a prismatic member of space
and plane frames

In the examples in this chapter and in Chapter 5, we have seen that the elements of the stiffness
matrix of a structure are obtained by adding the forces at the ends of the members which meet
at a joint. These end-forces are elements of the stiffness matrix for individual members and are
derived by the use of Appendix D. In this section, the stiffness matrix for a prismatic member
is generated because it is often needed in the analysis of framed structures. We consider 12
coordinates at the ends, representing translations and rotations about three rectangular axes x,
y, and z (Figure 6.4a), with the y and z axes chosen to coincide with the principal axes of the
cross section. The beam is assumed to be of length l and cross-sectional area a, and to have
second moments of area Iz and Iy about the z and y axes respectively; the modulus of elasticity
of the material is E, and the torsional rigidity GJ.
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(a)

5
2

3

3

2 4

1 3

6

4

52 1

11
8 9

7 10

126

1 4
y

x

z

y

y

x

x

z

z

(b)

(c)

Figure 6.4 Coordinate systems corresponding to stiffness matrices: (a) Eq. 6.6, (b) Eq. 6.7, and (c)
Eq. 6.8.

If we neglect shear deformations and warping caused by twisting, all the elements of the
stiffness matrix can be taken from Appendix D. The elements in any column j are equal to the
forces at the coordinates produced by a displacement Dj = 1 at coordinate j only. The resulting
stiffness matrix is given below:

[S]=

1

2

3

4

5

6

7

8

9

10

11

12

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8 9 10 11 12

Ea
l

12EIz

l3

12EIy

l3

Symmetrical
elements not
shown are zero

GJ
l

−6EIy

l2

4EIy

l
6EIz

l2

4EIz

l
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

−Ea
l

Ea
l

−12EIz

l3
−6EIz

l2

12EIz

l3

−12EIy

l3

6EIy

l2

12EIy

l3

−GJ
l

GJ
l

−6EIy

l2

2EIy

l
6EIy

l2

4EIy

l
6EIz

l2

2EIz

l
−6EIz

l2

4EIz

l

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

- ⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.6)
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For two-dimensional problems of a frame in the x-y plane, the stiffness matrix needs to be
considered for six coordinates only: 1, 2, 6, 7, 8, and 12 (Figure 6.4a). Deletion of the columns
and rows numbered 3, 4, 5, 9, 10, and 11 from the matrix in Eq. 6.6 results in the following
stiffness matrix of a prismatic member corresponding to the six coordinates in Figure 6.4b to
be used in the analysis of plane frames:

[S] =

1

2

3

4

5

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6

Ea
l

12EI
l3

Symmetrical
elements not
shown are zero

6EI
l2

4EI
l

−Ea
l

Ea
l

−12EI
l3 −6EI

l2

12EI
l3

6EI
l2

2EI
l

−6EI
l2

4EI
l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.7)

where I = Iz.
If, in a plane frame, the axial deformations are ignored, the coordinates 1 and 4 in Figure 6.4b

need not be considered, and the stiffness matrix of a prismatic member corresponding to the
four coordinates in Figure 6.4c becomes

[S] =

1

2

3

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4

12EI
l3 Symmetrical

6EI
l2

4EI
l

−12EI
l3 −6EI

l2

12EI
l3

6EI
l2

2EI
l

−6EI
l2

4EI
l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.8)

The stiffness matrix for members in which the shear deformations are not ignored is derived
in Section 15.2. The presence of a high axial force in a deflected member causes an additional
bending moment, and if this effect is to be taken into account, the above stiffness matrices must
be modified. This is discussed in Chapter 13.

The stiffness matrices derived above correspond to coordinates which coincide with the beam
axis or with the principal axes of its cross section. However, in the analysis of structures com-
posed of a number of members running in arbitrary directions, the coordinates may be taken
parallel to a set of global axes and thus the coordinates may not coincide with the principal
axes of a given member. In such a case, the stiffness matrices given above (corresponding to
the coordinates coinciding with the principal axes of the members) will have to be transformed
to stiffness matrices corresponding to another set of coordinates by the use of transformation
matrices formed by geometrical relations between the two sets of coordinates. This will be further
discussed in Section 9.4.
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6.5 Condensation of stiffness matrices

We recall that a stiffness matrix relates displacements {D} at a number of coordinates to the
forces {F} applied at the same coordinates by the equation:

[S]{D} = {F} (6.9)

If the displacement at a number of coordinates is prevented by the introduction of supports,
and the matrices in the above equations are arranged in such a way that the equations corres-
ponding to these coordinates appear at the end, we can write Eq. 6.9 in the partitioned form:

[[S11] [S12]
[S21] [S22]

]{{D1}
{D2}

}
=
{{F1}

{F2}

}
(6.10)

where {D2} = {0} represents the prevented displacements. From this equation, we write

[S11]{D1} = {F1} (6.11)

and

[S21]{D1} = {F2} (6.12)

It is apparent from Eq. 6.11 that, if a support is introduced at a number of coordinates, the
stiffness matrix of the resulting structure can be obtained simply by deleting the columns and
the rows corresponding to these coordinates, resulting in a matrix of a lower order. If the dis-
placements {D1} are known, Eq. 6.12 can be used to calculate the reactions at the supports
preventing the displacements {D2}.

As a simple example, consider the beam in Figure 6.4c and assume that the vertical displace-
ments at coordinates 1 and 3 are prevented, as in the case of a simple beam; the stiffness matrix
corresponding to the remaining two coordinates (2 and 4) is obtained by deletion of columns
and rows numbered 1 and 3 in the matrix Eq. 6.8:

[S∗] =

⎡
⎢⎢⎣

4EI
l

symmetrical

2EI
l

4EI
l

⎤
⎥⎥⎦ (6.13)

The vertical reactions {F1,F3} at coordinates 1 and 3 can be calculated from Eq. 6.12 by
rearrangement of the elements in Eq. 6.8 as described for Eq. 6.10. Thus,

⎡
⎢⎢⎣

6EI
l2

6EI
l2

−6EI
l2 −6EI

l2

⎤
⎥⎥⎦
{

D2

D4

}
=
{

F1

F3

}
(6.14)

where the subscripts of D and F refer to the coordinates in Figure 6.4c.
If the forces are known to be zero at some of the coordinates, that is, the displacements

at these coordinates can take place freely, the stiffness matrix corresponding to the remaining
coordinates can be derived from the partitioned matrix Eq. 6.10. In this case, we consider that
the equations below the horizontal dashed line relate forces {F2}, assumed to be zero, to the
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displacements {D2} �= {0} at the corresponding coordinates. Substituting {F2} = {0} in Eq. 6.10,
we write

[S11]{D1} + [S12]{D2} = {F1}
and

[S21]{D1} + [S22]{D2} = {0}

⎫⎬
⎭ (6.15)

Using the second equation to eliminate {D2} from the first, we obtain

[[S11] − [S12][S22]−1[S21]]{D1} = {F1} (6.16)

which is the same as Eq. 5.15. Equation 6.16 can be written in the form

[S∗]{D1} = {F1} (6.17)

where [S∗] is a condensed stiffness matrix relating forces {F1} to displacements {D1}, and is
given by

[S∗] = [S11] − [S12][S22]−1[S21] (6.18)

The condensed stiffness matrix [S∗] corresponds to a reduced system of coordinates 1∗, 2∗, . . . ,
eliminating the coordinates corresponding to the second row of the partitioned matrix Eq. 6.10.
Using the symbols {F∗} ≡ {F1} and {D∗} ≡ {D1}, Eq. 6.17 becomes [S∗]{D∗} = {F∗}, which is the
same as Eq. 5.16. Similarly, Eq. 6.18 is the same as Eq. 5.17.

The stiffness matrix of a structure composed of a number of members is usually derived from
the stiffness matrix of the individual members, and relates the forces at all the degrees of freedom
to the corresponding displacements. In many cases, however, the external forces on the actual
structure are limited to a small number of coordinates, and it may therefore be useful to derive
a matrix of a lower order [S∗] corresponding to these coordinates only, using Eq. 6.18. A simple
example of the application of Eq. 6.18 is given as a problem on matrix algebra in Prob. A.7 of
Appendix A.

Example 6.4: End-rotational stiffness of a simple beam
With the displacements at coordinates 1 and 3 prevented for the beam in Figure 6.4c, as in
a simple beam, what is the moment necessary to produce a unit rotation at coordinate 4,
while the rotation is free to occur at coordinate 2? See the fourth figure in Appendix D
(Eq. D.8).

Consider the beam in Figure 6.4c with simple supports at the ends. Define new coordin-
ates 1 and 2 (not shown) in the same direction and locations as coordinates 2 and 4
respectively. The stiffness matrix for the new system is given in Eq. 6.13. We now condense
this stiffness matrix (using Eq. 6.18) to obtain a 1 × 1 stiffness matrix corresponding to a
single coordinate:

S11 = 4EI
l

− 2EI
l

(
4EI

l

)−1(2EI
l

)
= 3EI

l

S11 is the end-rotational stiffness of a simple beam; it is equal to the moment necessary to
introduce a unit rotation at one end while the rotation at the other end is free to occur.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Use of force and displacement methods 169

6.6 Properties of flexibility and stiffness matrices

Consider a force Fi applied gradually to a structure, so that the kinetic energy of the mass of
the structure is zero. Let the resulting displacement at the location and in the direction of Fi be
Di. If the structure is elastic the force-displacement curve follows the same path on loading and
unloading, as shown in Figure 6.5a.

Assume now that at some stage of loading, the force Fi is increased by �Fi, and the
corresponding increase in the displacement Di is �Di. The work done by this load increment is

�W � Fi�Di

This is shown as the hatched rectangle in Figure 6.5a. If the increments are sufficiently small, it
can be seen that the total external work done by Fi during the displacement Di is the area below
the curve between 0 and Di.

When the material in the structure obeys Hooke’s law, the curve in Figure 6.5a is replaced by
a straight line (Figure 6.5b), and the work done by the force Fi becomes

W = 1
2

FiDi

If the structure is subjected to a system of forces F1, F2, . . . , Fn, increased gradually from zero
to their final value, causing displacements D1, D2, . . . , Dn at the location and in the direction
of the forces, then the total external work is

W = 1
2

(F1D1 + F2D2 + · · · + FnDn) = 1
2

n∑
i=1

FiDi (6.19)

This equation can be written in the form

[W]1×1 = 1
2

{F}T
n×1{D}n×1 (6.20)

where {F}T is the transpose of the column vector {F} representing the forces.
Work done is a scalar quantity whose dimensions are (force × length).
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Figure 6.5 Force-displacement relations.
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The displacements and the forces are related by Eq. 6.3. Substituting in Eq. 6.20,

[W]1×1 = 1
2

{F}T
n×1[f ]n×n{F}n×1 (6.21)

Taking the transpose of both sides does not change the left-hand side of the equation. The
right-hand side becomes the product of the transpose of the matrices on this side but in reverse
order. Therefore,

[W]1×1 = 1
2

{F}T
n×1[f ]Tn×n{F}n×1 (6.22)

From Eqs. 6.21 and 6.22, it follows that the flexibility matrix and its transpose are equal, that is,

[f ]T = [f ] (6.23)

This means that for a general element of the flexibility matrix

fij = fji (6.24)

and is known as Maxwell’s reciprocal relation. In other words, the flexibility matrix is a sym-
metrical matrix. This property is useful in forming the flexibility matrix because some of the
coefficients need not be calculated or, if they are, a check is obtained. The property of symmetry
can also be used to save a part of the computational effort required for matrix inversion or for
a solution of equations.

Equation 6.1 tells us that the stiffness matrix is the inverse of the flexibility matrix. Since the
inverse of a symmetrical matrix is also symmetrical, the stiffness matrix [S] is a symmetrical
matrix. Thus, for a general stiffness coefficient

Sij = Sji (6.25)

This property can be used in the same way as in the case of the flexibility matrix.
Another important property of the flexibility and the stiffness matrices is that the elements

on the main diagonal, fii or Sii must be positive as demonstrated below. The element fii is the
deflection at coordinate i due to a unit force at i. Obviously, the force and the displacement
must be in the same direction: fii is therefore positive. The element Sii is the force required at
coordinate i to cause a unit displacement at i. Here again, the force and the displacement must
be in the same direction so that the stiffness coefficient Sii is positive.

We should note, however, that in unstable structures, for example, a strut subjected to an axial
force reaching the buckling load, the stiffness coefficient Sii can be negative. This is discussed
further in Chapter 13.

Let us now revert to Eq. 6.21, which expresses the external work in terms of the force vector
and the flexibility matrix. If we substitute the force vector from Eq. 6.9 in Eq. 6.20, the work
can also be expressed in terms of the displacement vector and the stiffness matrix, thus

W = 1
2

{F}T [f ]{F} (6.26)

or

W = 1
2

{D}T [S]{D} (6.27)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Use of force and displacement methods 171

The quantity on the right-hand side of these equations is referred to as the quadratic form in
variable F or D. A quadratic form is said to be positive definite if it assumes positive values for any
nonzero vector of the variable, and moreover is zero only when the vector of the variables is zero
({F} or {D} = {0}). It can also be proved that the determinant of a positive definite symmetrical
matrix is greater than zero.

From the above discussion, we can see that the quadratic forms in Eqs. 6.26 and 6.27 rep-
resent the external work of a system of forces producing a system of displacements, and this
quantity must be positive in a stable structure. Physically, this means that work is required
to produce any set of displacements {D} by the application of a set of forces {F}. Thus, the
quadratic forms

( 1
2

) {F}T [f ]{F} and
( 1

2

) {D}T [S]{D} are positive definite and the matrices [f ]
and [S] are said to be positive definite matrices. It follows therefore that, for a stable struc-
ture, the stiffness and flexibility matrices must be positive definite and the systems of linear
equations

[S]{D} = {F}

and

[f ]{F} = {D}

are positive definite. Further, since the determinants |S| or |f | must be greater than zero, for any
nonzero vector on the right-hand side of the equations, each system has a single unique solution,
i.e. there is only one set of Di or Fi values which satisfies the first and second sets of equations
respectively.

The stiffness matrix of a free (unsupported) structure can be readily generated, as, for example,
Eqs. 6.6 to 6.8 for the beams in Figure 6.4. However, such a matrix is singular and cannot
be inverted. Thus, no flexibility matrix can be found unless sufficient restraining forces are
introduced for equilibrium.

The criterion of nonsingularity of stiffness matrices for stable structures can be used for the
determination of buckling loads, as will be discussed in Chapter 13. We shall see that the stiffness
of members of a frame is affected by the presence of high axial forces and the frame is stable
only if its stiffness matrix is positive definite and thus its determinant is greater than zero. If the
determinant is put equal to zero, a condition is obtained from which the buckling load can be
calculated.

If a symmetrical matrix is positive definite, the determinants of all its minors are also positive.
This has a physical significance relevant to the stiffness matrix of a stable structure. If the
displacement Di is prevented at a coordinate i, for example, by introduction of a support, the
stiffness matrix of the resulting structure can be obtained simply by deletion of ith row and
column from the stiffness matrix of the original structure. Addition of a support to a stable
structure results in a structure which is also stable and thus the determinant of its stiffness
matrix is positive. This determinant is that of a minor of the original stiffness matrix.

6.7 Analysis of symmetrical structures by force method

In practice, many structures have one or more axes or planes of symmetry, which divide the
structure into identical parts. If, in addition, the forces applied to the structure are symmetrical,
the reactions and internal forces are also symmetrical. This symmetry can be used to reduce
the number of unknown redundants or displacements when the analysis is by the force or the
displacement method. The analysis by the force method of several symmetrical structures is
discussed below.
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Figure 6.6 Examples of releases for analysis by the force method of symmetrical continuous beams
and frames subjected to symmetrical loading.

When the structure to be analyzed is symmetrical and symmetrically loaded, it is logical to
select the releases so that the released structure is also symmetrical. In Figures 6.6a to d, releases
are suggested for a number of plane structures with a vertical axis of symmetry. Equal redundants
on opposite sides of the axis of symmetry are given the same number; see, for example, the
coordinates at A and D in Figures 6.6a and b. Coordinate 1 in these figures represents the



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Use of force and displacement methods 173

redundant force or the displacement at A (and at D). The flexibility coefficients f11 and f21

represent, respectively, displacements at coordinate 1 (at A and at D) and at coordinate 2 due
to unit forces applied simultaneously at A and at D. The flexibility matrices for the two released
structures in Figures 6.6a and b are (Appendix B)

[f ]Figure6.6a =

⎡
⎢⎢⎢⎣
(

l
3EI

)
AB

(
l

6EI

)
AB(

l
6EI

)
AB

(
l

3EI

)
AB

+
(

l
2EI

)
BC

⎤
⎥⎥⎥⎦

[f ]Figure6.6b =

⎡
⎢⎢⎢⎣
(

l
3EI

)
BA

+
(

l
3EI

)
AC

(
l

6EI

)
AC

2
(

l
6EI

)
AC

2
(

l
3EI

)
AC

⎤
⎥⎥⎥⎦

In the released structure in Figure 6.6b, there are two coordinates with the number 1 but only
one coordinate with the number 2. This causes f21 to be equal to 2f12 and thus the flexibility
matrix is not symmetrical. However, symmetry of the geometry equations [f ]{F} = −{D} may
be restored by division of the second row by 2.

The released structure in Figure 6.6a has a roller support at A and a hinge support at D, but
this does not disturb the symmetry because under symmetrical loading the horizontal reaction
at D must be zero.

Because of symmetry, the slope of the deflected shape of the beam at C in Figure 6.6b
must be horizontal. Thus, no rotation or deflection can occur at C; hence, the analysis can
be done for half the beam only, say BAC, with end C encastré. However, this cannot be done
for the beam in Figure 6.6a because, at the center line, the rotation is zero but the deflection
is not.

The frame in Figure 6.6c may be released by cutting BC at its middle, thus separating the
structure into two identical cantilevers. Cutting a member of a plane frame generally releases
an axial force, a shearing force, and a bending moment. Moreover, because of symmetry, the
shear at the middle of BC must be zero; hence, the analysis needs to determine two unknown
redundants instead of three. The same frame may also be released by changing A into a hinge
and D into a roller. This does not disturb the symmetry of forces because, when symmetrical
loads are applied on the released structure, the horizontal reaction at A is zero and any force
introduced at coordinate 1 must produce a symmetrical force at A.

The frame in Figure 6.6d is released by removal of the roller supports at A and E and by
cutting the frame at C. Because of symmetry, only two components represent the internal forces
at C, with the vertical component being zero. It may be noted that the released structure will
again have the flexibility coefficient f21 equal to 2f12.

Figure 6.6e represents a typical span of a continuous beam having many spans of the same
length and the same loading. One span only needs to be analyzed, using the released structure as
a simple beam with one unknown redundant representing the connecting moments which must
be equal and opposite at the two ends. Here, the displacement D1 and the flexibility coefficient
f11 represent relative rotations of the two ends of the simple beam AB.

The frame in Figure 6.6f has an infinite number of identical bays. The analysis may be done for
one bay, using the released structure and the three unknown redundants as shown. Here again,
the displacements and the flexibility coefficients represent relative translations and rotations of
A and C in the released structure.
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6.8 Analysis of symmetrical structures by displacement
method

Advantage can be taken of symmetry to reduce the number of unknown displacement com-
ponents when the analysis is done by the displacement method. Because of symmetry, the
displacement magnitude at a coordinate is zero or is equal to the value at one (or more) coordin-
ate(s). For a zero displacement, the coordinate may be omitted; any two coordinates where the
displacement magnitudes are equal may be given the same number. Figure 6.7 shows examples of
coordinate systems which may be used in the analysis by the displacement method of symmetrical
structures subjected to symmetrical loading.
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Figure 6.7 Examples of degrees of freedom for analysis and the displacement method of symmetrical
plane frames and grids subjected to symmetrical loading.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Use of force and displacement methods 175

Figures 6.7a to d represent plane frames in which axial deformations are ignored. In
Figure 6.7a the rotations at B and C are equal and are therefore given the same coordinate
number, 1. Because sidesway cannot occur under a symmetrical load, the corresponding coordin-
ate is omitted. In Figure 6.7b the rotations at B and F are equal, while the rotation at D and
the sidesway are zero; hence, this frame has only one unknown displacement component. No
coordinate systems are shown for the structures in Figures 6.7c and d, because the displacement
components are zero at all nodes. Thus, no analysis is needed; the member end-forces are readily
available from Appendix C.

The beam over spring supports in Figure 6.7e has only two unknown displacement com-
ponents representing the vertical translation at the top of the springs. Because of symmetry,
no rotation occurs at B. Also, no coordinates are shown for the rotations at A and C because
the end-forces are readily available for a member with one end hinged and the other fixed
(Appendix D, Eqs. D.8 and D.9). The stiffness matrix for the structure (assuming equal spans l
and EI = constant) is

[S] =

⎡
⎢⎢⎣

3EI
l3 + K −3EI

l3

−2
(

3EI
l3

)
2
(

3EI
l3

)
+ K

⎤
⎥⎥⎦

where K is the spring stiffness (assumed the same for the three springs). The element S11 rep-
resents the force at coordinate 1 (at A and C) when unit downward displacement is introduced
simultaneously at A and at C; S21 is the corresponding force at 2. We should note that S21 =2S12

so that the stiffness matrix is not symmetrical. This is so because the system has two coordinates
numbered 1 but only one coordinate numbered 2. The symmetry of the equilibrium equations,
[S]{D} = −{F}, can be restored by division of the second row by 2.

If axial deformations are considered, additional coordinates must be used. In Figure 6.7a, a
horizontal and a vertical arrow will have to be added at B and at C. Because of symmetry, each of
the two corresponding arrows takes the same number, bringing the number of unknown displace-
ments to three. Each of the frames in Figures 6.7c and d will have one unknown displacement:
a vertical translation at B.

The horizontal grids shown in Figures 6.7f and g have one or more vertical planes of symmetry.
The coordinate systems shown may be used for the analysis of the effects of symmetrical loads.

Each of the structures in Figures 6.7a to g may be analyzed by considering only one-half (or
one-quarter) of the structure through separating it at the axis or plane of symmetry. The members
situated on the axis or plane of symmetry for the part analyzed should have properties such as a,
I, J, or K equal to half the values in the actual structure. The same coordinate systems shown on
one-half (or one-quarter) of the structure may be used. An exception is the frame in Figure 6.7a:
separation at E will result in a new node at which the vertical translation is unknown, requiring
an additional coordinate.

When the analysis of small structures is done by hand or by a calculator, with the matrices
generated by the analyst, consideration of one-half or one-quarter of the structure may represent
no advantage. However, in large structures with many members and nodes, the analysis is usually
performed entirely by computer, considering as small a part of the structure as possible and taking
full advantage of symmetry. This is further discussed in Sections 22.4 to 22.6.

The structure shown in Figure 6.6f, representing a typical bay of a frame with an infinite
number of bays, may be analyzed by the displacement method, using three degrees of freedom
at each of A, B, and C: a translation in the horizontal and vertical directions, and a rotation. The
corresponding three displacements at A and C have the same magnitude and direction; hence,
there are only six unknown displacements.
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Example 6.5: Single-bay symmetrical plane frame
For the frame shown in Figure 6.8a find the bending moment diagram and the reactions R1

and R2 at support A. Ignore axial deformations and consider only bending deformations.
We apply the five steps of the displacement method (Section 5.6):

Step 1 Because axial deformations are ignored, only rotations can occur at B and C.
A system with a single coordinate is defined in Figure 6.8b. The rotation at A and D will be
allowed to occur freely in the analysis steps; thus, no coordinate to represent the rotations
is needed. Also, the overhangs EB and FC produce statically determinate forces at B and C.
Thus, by taking these forces into account, the analysis can be done for a frame without the
cantilevers. The end-moment MBE =q l

2 (0.4l)=0.2ql2. We define the unknown actions as:

{A} = {MBA, MBC}

The values of the three end-moments will be sufficient to draw the bending moment diagram
for the left-hand half of the frame. From symmetry, the reaction R1 = 1.5ql (half the total
downward load). The reaction R2 will be calculated by statics from MBA.

Step 2 {F} = {0.2ql2 − q(2l)2/12} = {−0.1333 ql2}
The first term is the moment to prevent the rotation due to the load on the cantilever.

The second term is the fixed-end moment for BC (Appendix C).

{Ar} = {0,−q(2l)2/12} = {0,−0.333ql2}
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Figure 6.8 Symmetrical plane frame of Example 6.5 (a) Frame dimensions and loading. (b) Coordinate
system. (c) Deflected shape with D1 = 1. (d) Bending moment diagram.
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Step 3 [S] =
[(

3EI
l

)
BA

+
(

2EI
l

)
BC

]
=
[(

3
1.077l

+ 2
2l

)
EI
]

=
[
3.785

EI
l

]

[Au] =
[
(3EI/l)BA

(2EI/l)BC

]
=
[
2.785EI/l
1.0EI/l

]

With D1 = 1, the deflected shape of the frame will be as shown in Figure 6.8c; the terms
(3EI/l)BA and (2EI/l)BC in the above calculations are taken from Appendix D. (See the
fourth and the last figures in the appendix.)

Step 4 {D} = [S]−1{−F} = [3.785EI/l]−1{0.1333 ql2} =
{

35.22 × 10−3 ql3

EI

}

Step 5 {A} = {Ar} + [Au]{D} =
{

0
−0.333ql2

}
+
[
2.785EI/l

1.0EI/l

]{
35.22 × 10−3 ql3

EI

}

{A} =
{

98
−298

}
ql2

1000

These are the values of the end-moments used to draw the bending moment diagram in
Figure 6.8d. The reaction R2 is given by:

MBA = −R1(0.4l) + R2l

Substitution of MBA = 0.098ql2 and R1 = 1.5ql gives R2 = 0.698 ql.

Example 6.6: A horizontal grid subjected to gravity load
Figure 6.9a shows a horizontal grid subjected to a uniformly distributed gravity load q per
unit length on AB. Find the bending moment diagram for member AB. All members have
the same cross section, with GJ/EI = 0.8.

We apply the five steps of the displacement method (Section 5.6):

Step 1 Three coordinates define the symmetrical displacement components at A and B
(Figure 6.9b). To draw the bending moment diagram for AB, we need the value of MA

(or MB). We consider the bending moment to be positive when it produces tension at the
bottom face of the member. Thus, we define the required action:

{A} = {MA}

Step 2 {F} =

⎧⎪⎨
⎪⎩

−ql/2

0

−ql2/12

⎫⎪⎬
⎪⎭ ; {Ar} =

{
−ql2

12

}

The elements of these vectors are fixed-end forces taken from Appendix C (Eqs. C.7
and C.8).
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Figure 6.9 Symmetrical horizontal grid of Example 6.6. (a) Top view. (b) Coordinate system. (c)
Bending moment diagram for member AB.

Step 3

[S] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
12EI

l3

)
AC

Symmetrical

−
(

6EI
l2

)
AC

(
4EI

l

)
AC

0 0
(

2EI
l

)
AB

+
(

GJ
l

)
AC

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[Au] =
[

0 0
(

2EI
l

)
AB

]

For the elements of the first columns of [S] and [Au] a unit downward deflection, D1 =1
is introduced at each of A and B. Members AC and BD take the deflected shape shown
in the first figure of Appendix D (Eqs. D.1 and D.2), while AB will translate downward
as a rigid body (without deformation or end forces). With D2 = 1, members AC and BD
will take the deflected shape shown in the second figure of Appendix D (Eqs. D.3 and
D.4), while again, member AB will rotate as a rigid body. For the third columns of [S] and
[Au], rotations D3 = 1 are introduced at A and B, causing AB to deflect as shown in the
last figure in Appendix D (Eq. D.11); members AC and BD are twisted without bending.
The member end-forces given in Appendix D can be used to determine the elements of [S]
and [Au].
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Step 4 {D} = [S]−1{−F}
Substituting [S] and {F} determined above and performing the matrix inversion and
multiplication gives:

{D} = ql3

1000EI
{20.8l, 62.5, 23.2}

Step 5 {A} = {Ar} + [Au]{D}
Substitution of the matrices determined in Steps 2, 3 and 4 gives:

{A} = −0.037ql2

The bending moment diagram for AB is shown in Figure 6.9c.

6.9 Effect of nonlinear temperature variation

Analysis of changes in stresses and internal forces in structures due to a variation in temperature
or due to shrinkage or creep can be done in the same way. The distribution of temperature over
the cross section of members is generally nonlinear, as shown in Figure 6.10b for a bridge girder
(Figure 6.10a) exposed to the radiation of the sun. In a cross section composed of different
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(d) (e)

(f) (g)

(b) (c)

Centroid

b

O

y
T
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strain

Free strain
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Δσ

Eq. 6.29

Eq. 6.35

Eq. 6.36

+

–

1 2
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F3 F6
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3

Centroidal
axis
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{D} given by Eqs. 6.39 and 6.40

A B

Figure 6.10 Analysis of the effects of nonlinear temperature variation. (a) Cross section of a member.
(b) Distribution of temperature rise. (c) Strain distribution. (d) Stresses σr and �σ . (e)
Self-equilibrating stresses. (f) Displacements due to a temperature rise in a simple beam.
(g) Fixed-end forces due to a temperature rise.
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materials such as concrete and steel, the components tend to contract or expand differently
because of shrinkage and creep. However, contraction and expansion cannot occur freely and
changes in stresses occur. In the following, we consider the effect of temperature rise varying
nonlinearly over the cross section of members of a framed structure. The temperature rise is
assumed constant over the length of individual members.

In a statically determinate frame, no stresses are produced when the temperature variation is
linear; in this case the thermal expansion occurs freely, without restraint. This results in changes
in length or in curvature of the members, but produces no changes in the reactions or in the
internal forces. However, when the temperature variation is nonlinear, each fiber, being attached
to adjacent fibers, is not free to undergo the full expansion, and this induces stresses. These
stresses must be self-equilibrating in an individual cross section as long as the structure is static-
ally determinate. The self-equilibrating stresses caused by nonlinear temperature (or shrinkage)
variation over the cross section of a statically determinate frame are sometimes referred to as
the eigenstresses.

If the structure is statically indeterminate, the elongations and the rotations at the member ends
may be restrained or prevented. This results in changes in the reactions and in the internal forces
which can be determined by an analysis using the force or the displacement method. We should
note that the reactions produced by temperature must represent a set of forces in equilibrium.

Let us now analyze the self-equilibrating stresses in a statically determinate member,
e.g. a simple beam of homogeneous material, subjected to a nonlinear rise in temperature
(Figure 6.10a). The hypothetical strain which would occur in each fiber if it were free to expand is

εf =�T (6.28)

where α is the coefficient of thermal expansion and T = T(y) is the temperature rise in any fiber
at a distance y below the centroid O. If the expansion is artificially prevented, the stress in the
restrained condition will be

σr = −Eεf (6.29)

where E is the modulus of elasticity. Tensile stress and the corresponding strain are considered
positive.

The resultant of �r may be represented by a normal force N at O and a moment M about the
horizontal axis at O, given by

N =
∫

σr da (6.30)

M =
∫

σr y da (6.31)

N is considered positive when tensile, and M is positive when it produces tension in the bottom
fiber; the corresponding curvature ψ is positive.

To eliminate the artificial restraint, apply N and M in opposite directions, resulting in the
following changes in strain at O and in curvature:

εo = − N
Ea

(6.32)

ψ = − M
EI

(6.33)
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where a and I are the area of the cross section and its second moment about a horizontal axis
through O respectively. The corresponding strain and stress at any fiber are

ε = εo + yψ (6.34)

�σ = E(εo + yψ) (6.35)

The addition of σr to �σ gives the self-equilibrating stress due to temperature:

σs = E(−αT + εo + yψ) (6.36)

The stress �s must have a zero resultant because its components σr and �� have equal and
opposite resultants. The distribution of the self-equilibrating stress is shown in Figure 6.10e; the
ordinates of this graph are equal to the ordinates between the curve �r and the straight line ��
in Figure 6.10d.

The changes in axial strain and curvature due to temperature are derived from Eqs. 6.28
to 6.33:

εo = α

a

∫
Tb dy (6.37)

ψ = α

I

∫
Tby dy (6.38)

where b = b(y) is the width of the section. The actual strain distribution over the depth of
the section is presented in Figure 6.10c by a dashed line defined by the values εo and ψ . The
two values may be used to calculate the displacements at the coordinates in Figure 6.10f (see
Appendix B):

D1 = −D2 = ψ
l
2

(6.39)

D3 = εol (6.40)

When using Eq. 6.39 we should note that, according to the sign convention adopted, ψ in
Figure 6.10c is negative.

If the structure is statically indeterminate, the displacements {D}, such as those given above,
may be used in the force method for the analysis of statically indeterminate reactions and internal
forces.

When the analysis is by the displacement method, the values εo and ψ (Eqs. 6.37 and 6.38)
can be used to determine the internal forces in a member in the restrained condition and the
corresponding member end-forces (Figure 6.10g):

N = −Eaεo (6.41)

M = −EIψ (6.42)

{F} = E{aεo0,−Iψ ,−aεo, 0, Iψ} (6.43)

In the special case when the rise in temperature varies linearly from Ttop to Tbot at top and
bottom fibers in a member of constant cross section, the fixed-end forces (Figure 6.10g) may be
calculated by Eq. 6.43, with εo = αTo and ψ = α(Tbot − Ttop)/h; here, To is the temperature at
the cross-section centroid and h is the section depth.
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The forces F1 and F3 are along the centroidal axis, and the other forces are along centroidal
principal axes of the member cross section. The six forces are self-equilibrating. The restraining
forces at the ends of individual members meeting at a joint should be transformed in the directions
of the global axes and summed to give the external restraining forces which will artificially pre-
vent the joint displacements of the structure. (The assemblage of end-forces is discussed further
in Section 22.9.) In the restrained condition, the stress in any fiber may be calculated by Eq. 6.29.

When the temperature rise varies from section to section or when the member has a variable
cross section, εo and ψ will vary over the length of the member. Equations 6.41 and 6.42 may
be applied at any section to give the variables N and M in the restrained condition; the member
forces are given by

{F} = E{{aεo, 0,−Iψ}A, {−aεo, 0, Iψ}B} (6.44)

The subscripts A and B refer to the member ends (Figure 6.10g). For equilibrium, a distributed
axial load p and a transverse load q must exist. The load intensities (force per length) are given by

p = E
d(aεo)

dx
(6.45)

q = E
d2(Iψ)

dx2 (6.46)

Positive p is in the direction A to B, and positive q is downwards; x is the distance from A to
any section. Equations 6.45 and 6.46 can be derived by considering the equilibrium of a small
length of the beam separated by two sections dx apart.

The restraining forces given by Eqs. 6.44 to 6.46 represent a system in equilibrium. The dis-
placements due to temperature can be analyzed by considering the effect of these restraining
forces applied in reversed directions. In the restrained condition, the displacement at all sections
is zero and the internal forces are given by Eqs. 6.41 and 6.42. These internal forces must be super-
imposed on the internal forces resulting from the application of the reversed self-equilibrating
restraining forces in order to give the total internal forces due to temperature.

The self-equilibrating stresses and the statically indeterminate forces caused by temperature
change are proportional to the modulus of elasticity, E. Some materials, such as concrete, exhibit
creep (increase in strain), when subjected to sustained stress. The thermal effects will be overes-
timated when the value of E used in the analysis is based on the relation of stress to instantaneous
strain, ignoring creep (see Section 6.10).

Inevitable cracking of reinforced concrete members reduces the effective values of a and I. If
cracking is ignored in the values of a and I used in analysis of thermal effects, the results can be
greatly overestimated.2

Example 6.7: Thermal stresses in a continuous beam
The continuous concrete beam in Figure 6.11a is subjected to a rise of temperature which
is constant over the beam length but varies over the depth as follows:

T = To + 4.21Ttop

(
7
16

− y
h

)5

for − 5h
16

� y � 7h
16

T = To for
7h
16

� y � 11h
16

2 See footnote 1, Chapter 4.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Use of force and displacement methods 183

13.125 h 16.875 h 13.125 h

h

A B C D

A B

1 1

C D
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(b)
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(c)

(d)

1.75 h
h/8

h/4

7 hh
8

5 h/16

Centroid
y Fifth-degree

parabola

2. 64 MPa
(0. 383 ksi)

2. 15 MPa
(0. 312 ksi)

5. 64 MPa
(0. 818 ksi)

3. 49 MPa
(0. 506 ksi)

2. 16 MPa
(0. 313 ksi)+

+ +
–

– ––
2. 16 MPa
(0. 313 ksi)

5. 20 MPa
(0. 756 ksi)

2. 56 MPa
(0. 371 ksi)

Ttop

T = 0

3 h
4

h
4

Figure 6.11 Stresses due to a temperature rise in a continuous beam, Example 6.7. (a) Beam elevation.
(b) Beam cross section. (c) Temperature rise. (d) Released structure and coordinate system.
(e) Self-equilibrating stresses. (f) Continuity stresses. (g) Total stresses.

where T is the temperature rise in degrees, Ttop is the temperature rise in the top fiber,
and T0 = constant. The beam has a cross section as shown in Figure 6.11b, with an area
a = 0.4375h2 and the second moment of area about the centroidal axis is I = 0.0416h4.
Find the stress distribution due to the temperature rise in the section at support B.

Consider h=1.6 m(63in.),E=30GPa (4350 ksi), α=1×10−5 per degree Celsius (5/9)×
10−5 per degree Fahrenheit) and Ttop = 25◦ Celsius (45◦ Fahrenheit).

The above equations represent the temperature distribution which can occur in a bridge
girder on a hot summer’s day. When the temperature rise is constant, the length of the beam
will increase freely, without inducing any stress or deflection. Hence, to solve the problem,
we may put To = 0; the temperature rise will then vary as shown in Figure 6.11c.

Application of Eqs. 6.28 and 6.29 gives the artificial stress which would prevent thermal
expansion:

σr = −4.21EαTtop

(
7
16

− y
h

)5

for − 5
16

≤ y
h

≤ 7
16

This equation applies for the upper three-quarters of the beam depth, while σr = 0 for the
remainder.
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If the structure were statically determinate, the axial strain and the curvature at any
section would be (Eqs. 6.37 and 6.38)

εo = α

0.437h2

[
1.75h

∫ −3h/16

−5h/16
4.21Ttop

(
7
16

− y
h

)5

dy

+0.25h
∫ 7h/16

−3h/16
4.21Ttop

(
7
16

− y
h

)5

dy

]
= 0.356α Ttop

ψ = α

0.0416h4

[
1.75h

∫ −3h/16

−5h/16
4.21Ttop

(
7
16

− y
h

)5

y dy

+0.25h
∫ 7h/16

−3h/16
4.21Ttop

(
7
16

− y
h

)5

y dy

]
= −0.931α Ttoph−1

The self-equilibrating stresses (Eq. 6.36) are

σs = EαTtop

[
−4.21

(
7
16

− y
h

)5

+ 0.356 − 0.931
y
h

]
for − 5h

16
� y � 7h

16

σs = EαTtop

(
0.356 − 0.931

y
h

)
for

7h
16

� y � 11h
16

Substitution of E,α,T, and the y values at the top fiber, the centroid, and at the bottom
fiber gives the values of the self-equilibrating stresses shown in Figure 6.11e. This stress
diagram is valid for all sections.

Because the structure is statically indeterminate, the temperature rise produces reactions,
internal forces, and stresses. The stresses due to the indeterminate forces are referred to
as continuity stresses. We apply the five steps of the force method (see Section 4.6) to
determine the continuity stresses:

Step 1 A released structure and a coordinate system are selected in Figure 6.11d, taking
advantage of symmetry (see Section 6.7). The required action is A = σ , the stress at any
fiber of the cross section at B.

Step 2 The displacement of the released structure is the relative rotation of the beam ends
at B (or at C). Using Eq. 6.39 or Appendix B,

D1 = ψ lAB

2
+ ψ lBC

2
= −0.931

2
α Ttop(13.125 + 16.875) = −13.97αTtop

The value of the required action in the released structure is the self-equilibrating stress in
Figure 6.11e; hence,

As = σs
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Step 3 Applying F1 = 1 at the coordinates in Figure 6.11d gives the flexibility (see
Appendix B)

f11 =
(

l
3EI

)
AB

+
(

l
2EI

)
BC

= 1
E(0.0416h4)

(
13.125h

3
+ 16.875h

2

)
= 308

Eh3

In this problem, Au is the stress at any fiber of the cross section at B due to F1 = 1, that is,
the stress due to unit bending moment:

Au = y
I

= y
0.0416h4 = 24

y
h4

Step 4 The redundant (the connecting moment at B or C) is

F1 = −f −1
11 D1 = −

(
308
Eh3

)−1

(−13.97αTtop) = 0.0454αTtopEh3

Step 5 The stress at any fiber is obtained by the superposition equation:

A = As + AuF1

Substitution gives

σ = σs + 1.09αTtopEy/h

The second term in this equation represents the continuity stress plotted in Figure 6.11f. The
total stress at section B is plotted in Figure 6.11g, which is a superposition of Figures 6.11e
and f.

Example 6.8: Thermal stresses in a portal frame
Member BC of the frame in Figure 6.12a is subjected to a rise of temperature which is
constant over the beam length but varies over its depth following a fifth-degree parabola,
as shown in Figure 6.11c. The cross section of member BC of the frame is the same as
in Figure 6.11b. Assuming that the columns AB and CD have a rectangular cross section
(Figure 6.12c) and that the rise of temperature is limited to member BC, find the corres-
ponding stress distribution at any cross section of this member. Consider bending and axial
deformations. Other data needed for the solution are the same as in Example 6.7.

The five steps of the displacement method (Section 5.6) are followed:

Step 1 A coordinate system is defined in Figure 6.12c. Taking advantage of symmetry, the
number of unknown joint displacements is three. The stress distribution is the same at any
section of BC and the stress at any fiber is the action required; thus, A = σ .

Step 2 The values εo = 0.356αTtop and ψ = −0.931αTtoph−1 determined in Example 6.7
apply here to member BC. The first three elements of the vector in Eq. 6.43 are the restrain-
ing forces at the left-hand end of BC. Because AB and CD are not subjected to temperature
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h

15 h

15 h

h/4

3. 17 MPa
(0. 460 ksi)

2. 23 MPa
(0. 323 ksi)

0. 722 MPa
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Section 1–1 +
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–
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3

1
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2

Figure 6.12 Analysis of stresses due to a temperature rise by the displacement method, Example 6.8. (a)
Plane frame with a cross section of member BC and a temperature rise as in Figures 6.11b
and c. (b) Cross section of columns AB and CD. (c) Coordinate system. (d) Stress
distribution at any cross section of BC.

change, no restraining forces need to be determined for these two members. The restraining
forces at the three coordinates at B or C are

{F} = E

⎧⎪⎨
⎪⎩

0.4375h2(0.356αTtop)

0

−0.0416h4(−0.931αTtoph−1)

⎫⎪⎬
⎪⎭= EαTtoph2

⎧⎪⎨
⎪⎩

0.156

0

0.0387h

⎫⎪⎬
⎪⎭

The stress at any fiber of member BC with the joint displacement prevented is the same as
determined in Example 6.7. Thus,

Ar = σr = −4.21EαTtop

(
7
16

− y
h

)5

for − 5h
16

≤ y ≤ 7h
16

Ar = 0 for remainder for depth

Step 3 The stiffness matrix of the structure (using Appendix D) is

[S] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(
12EI

l3

)
AB

+
(

2
Ea
l

)
BC

symmetrical

0
(

Ea
l

)
AB

−
(

6EI
l2

)
AB

0
(

4EI
l

)
AB

+
(

2EI
l

)
BC

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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Substitute: for AB, l = 4h, a = 0.125h2, and I = 2.60 × 10−3h4; for BC, l = 15h, a =
0.4375h2, and I = 0.0416h4.

Hence,

[S] = E

⎡
⎢⎣

58.82 × 10−3h symmetrical

0 31.25 × 10−3h

−975.0 × 10−6h2 0 8.147 × 10−3h3

⎤
⎥⎦

The stress at any fiber due to unit displacements at the coordinates is

[Au] = E
[
−
(

2
l

)
BC

0
(

2I
l

)
BC

y
IBC

]

[Au] = E
[
− 2

25h
0

2y
15h

]

Step 4 Substitution for [S] and {F} and solution of the equilibrium equation [S]{D}=−{F}
gives

{D} = αTtop

⎧⎨
⎩

−2.736h
0

−5.078

⎫⎬
⎭

Step 5 By superposition, the stress at any fiber is

A = Ar + [Au]{D}

Substitution for Ar, [Au], and {D} gives

σ = σr + EαTtop

(
0.365 − 0.677

y
h

)
σ = EαTtop

[
−4.21

(
7
16

− y
h

)5

+ 0.365 − 0.677
y
h

]
for − 5h

16
� y � 7h

16

σ = EαTtop

(
0.365 − 0.677

y
h

)
for

7h
16

� y
11h
16

Substituting for y the values −5h/16, 0, and 11h/16 and using the values of E, α, and Ttop

from the data for Example 6.7 gives the stress values indicated in Figure 6.12d.

6.10 Effect of shrinkage and creep

The phenomena of shrinkage and creep occur in various materials, but in the following discussion
we shall refer mainly to concrete because it is so widely used in structures.

Shrinkage of concrete is a reduction in volume associated with drying in air. As with a temper-
ature drop, if the change in volume is restrained by the difference in shrinkage of various parts
of the structure or by the supports or by the reinforcing steel, stresses develop.

If we imagine a material which shrinks without creep, the analysis for the effect of shrinkage
can be performed using the equations of Section 6.9, but replacing the term αT by εf , where εf
is the free (unrestrained) shrinkage. The effect of swelling can be treated in the same manner as
shrinkage but with a reversed sign. Swelling occurs in concrete under water.
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The strain which occurs during the application of stress, or within a few seconds thereafter,
may be referred to as the instantaneous strain. For some materials, the strain continues to
increase gradually when the stress is sustained without a change in magnitude. The increase in
strain with time, under a sustained stress, is referred to as creep. For concrete, creep is two to
four times larger than the instantaneous strain, depending upon the composition of concrete,
the ambient humidity and temperature, the size of the element considered, the age of concrete
when the stress is applied, and the length of the period during which the stress is sustained.

If creep is assumed to be equal to the instantaneous strain multiplied by a constant coefficient,
creep will have no effect on the internal forces or stresses in a structure made of a homogeneous
material. Creep will cause larger displacements, which can be accounted for by the use of a
reduced (effective) E, but this has no effect on the reactions even when the structure is statically
indeterminate.

When a concrete structure is constructed and loaded in stages, or when member cross sections
contain reinforcement, or when the section is composed of a concrete part connected to struc-
tural steel, the creep which is different in various components cannot occur freely. Similarly to
temperature expansion, restrained creep induces stresses. In statically determinate structures,
creep changes the distribution of stresses within a section without changing the reactions or the
stress resultants. This is not so in statically indeterminate structures, where creep influences also
the reactions and the internal forces.

In concrete structures, shrinkage and creep occur simultaneously. The stress changes caused
by these two phenomena develop gradually over long periods, and with these changes there is
associated additional creep. Hence, the analysis must account also for the creep effect of the
stress which is gradually introduced. Analysis of the time-dependent stresses and deformations
in reinforced and prestressed concrete structures is treated in more detail in books devoted to
this subject.3

When a change in temperature in a concrete structure develops gradually over a period of
time (hours or days), the resulting stresses are reduced by creep which occurs during the same
period. Ignoring creep overestimates the effects of temperature variations.

6.11 Effect of prestressing

In Section 4.4, we discussed the effect of prestressing a concrete beam by a cable inserted through
a duct and then anchored at the ends. This method is referred to as post-tensioning. In this
section, we shall discuss the effects of a post-tensioned tendon which has a nonlinear profile.
For simplicity of presentation, we ignore the friction which commonly exists between the tendon
and the inner wall of the duct; thus, we assume that the tensile force in the tendon is constant
over its length. Let P represent the absolute value of the force in the tendon.

A straight tendon as in Figure 4.3a produces two inward horizontal forces on the end sections,
each equal to P. The two forces represent a system in equilibrium, and the reactions in the
statically determinate beam are zero. The internal forces at any section are an axial force −P and a
bending moment −Pe. The sign convention used here is indicated in Figure 2.4c. The eccentricity
e is measured downward from the centroidal axis. The ordinates between the centroidal axis
and the tendon profile represent the bending moment diagram with a multiplier −P.

Usually, the tendon profile is selected so that the prestressing partly counteracts the effects
of forces which the structure has to carry. Whenever a tendon changes direction, a transverse
force is exerted by the tendon on the member. The tendon shown in Figure 6.13a produces, at
the end anchorages, two inward forces of magnitude P along the tangents to the tendon profile.

3 See footnote 1, Chapter 4.
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Centroidal axis(a)

(b) (c)

Prestressed tendon
in a duct

P P

P

PP

P
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PΔ θ

PΔ θ

Δ θ
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θ

Figure 6.13 Forces due to prestressing in a statically determinate beam. (a) Representation of prestress-
ing by a system of forces in equilibrium. (b) and (c) Free-body diagrams showing the stress
resultant at section D.

In addition, an upward force is produced at point C. Thus, the profile in Figure 6.13a may be
used in a simple beam carrying a large downward concentrated load.

The three forces shown in Figure 6.13a represent a set of forces in equilibrium. In most
practical cases, the angle θ between the centroidal axis and the tangent to the tendon is small,
so that we need to consider only the axial component of the prestressing force, P, and the
perpendicular component, Pθ . It follows that the force at C is equal to P�θ , where �θ is the
absolute value of the change in slope.

A parabolic tendon produces a uniform transverse load and is thus suitable to counteract
the effect of the self-weight and other distributed gravity loads. Appendix K gives the mag-
nitude and direction of the forces produced by tendons having profiles commonly used in
practice. The forces shown represent the effect of the prestressing tendon on the other com-
ponents of the member. The forces produced by a prestressed tendon must constitute a system in
equilibrium.

Prestressing of a statically determinate structure produces no reactions. It can be shown that
the resultant of the internal forces at any section is a force P along the tangent of the tendon
profile. This can be seen in Figure 6.13b, where the beam is separated into two parts in order to
show the internal forces at an arbitrary section D. The ordinate e between the centroidal axis
and the tendon profile represents the bending moment ordinate with a multiplier −P. The axial
force is −P and the shear is −Pθ .

The internal forces, determined as outlined in the preceding paragraph, are referred to as
primary forces. Prestressing of statically indeterminate structures produces reactions and hence
induces additional internal forces referred to as secondary forces. The reactions also represent
a system of forces in equilibrium. When the structure is statically determinate, the force in
the prestressed steel at any section is equal and opposite to the resultant of stresses in other
components of the section, and thus the total stress resultant on the whole section is zero. This
is not so in a statically indeterminate structure.

In the analysis of the effects of prestressing it is not necessary to separate the primary and
secondary effects. The total effect of prestressing may be directly determined by representing
the prestressing by a system of external applied self-equilibrating forces (see Appendix K). The
analysis is then performed in the usual way by either the force or the displacement method.
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Example 6.9: Post-tensioning of a continuous beam
Find the reactions and the bending moment diagram due to prestressing for the continuous
beam shown in Figure 6.14a. The prestressing tendon profile for each span of the beam
is composed of two second-degree parabolas, ACD and DB, with a common tangent at
D (Figure 6.14b). The parabolas have horizontal tangents at B and C. Assume a constant
prestressing force P.

The profile shown in Figure 6.14b is often used in practice for the end span of a continu-
ous beam. The condition that the two parabolas have a common tangent at D is required
to avoid a sudden change in slope, which would produce an undesired concentrated trans-
verse force at D. In design, the geometry of the profile can be obtained by choosing α, cA,
and cB arbitrarily and determining β and cD so that

β = γ
cD

cB − cD
and cD = cA

β2

α2

l l 1

αl = 0.39l βl = 0.51l γl =
0.1l

h
2

h
2

Ph

P E

l

0.14 h

1.85

4.73 Ph/l2

0.32

A C

D B

0
24  Ph/l2

F
P

0.14 h

0.36 Ph

Centroidal axis

Two parabolas:
ACD and DB

Symmetry axis

Symmetry axis

Symmetry axis

0.10

0.46
0.33

(a) (d)

(b)

(c)

(e)

E

E

A

C

D B

F

F
h

G E F G

cD = 0.60 hcA =
0.60 h

cB = 0.72 h

Figure 6.14 Effect of prestressing on a continuous beam, Example 6.9. (a) Beam elevation. (b) Prestress-
ing tendon profile in one-half of the structure. (c) Self-equilibrating forces produced by
prestressing. (d) Released structure and coordinate system. (e) Bending moment diagram.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Use of force and displacement methods 191

These two geometrical relations ensure that the slope of the tangents to the two parabolas
at D is the same and that ACD is one parabola with a horizontal tangent at C. Solution of
the two equations for the unknowns β and cD may be obtained by trial and error, noting
that α + β + γ = 1 (Newton-Raphson’s technique).

The forces produced by the tendon are calculated by the equations of Appendix K and
are shown in Figure 6.14c for the left-hand half of the beam.

The five steps of the force method (Section 4.6) are applied to determine the statically
indeterminate reactions:

Step 1 The released structure and the coordinate system are shown in Figure 6.14d. The
actions required are

{A} = {RE, RF , RG}

A positive reaction is upwards.

Step 2 The forces in Figure 6.14c when applied on the released structure give the following
displacement (Appendix B):

D1 = 2
Phl

24EI
{24(0.1)2[4 − 4(0.1) + (0.1)2]

− 4.73(0.9)2[2 − (0.9)2]} + 2(0.36Ph)
l

3EI
= −0.068

Phl
EI

The applied forces are self-equilibrating and hence produce zero reactions in the released
structure; thus,

{As} = {0}

Step 3 The flexibility coefficient (Appendix B) is

f11 = 2l
3EI

A unit redundant, F1 = 1, produces the following reactions:

[Au] = 1
l

⎡
⎢⎣

1

−2

1

⎤
⎥⎦

Step 4

f11F1 = −D1

F1 = −
(

2l
3EI

)−1(
−0.068

Phl
EI

)
= 0.102 Ph
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Step 5 Superposition gives the required reactions:

{A} = {As} + [Au]{F}⎧⎨
⎩

RE

RF

RG

⎫⎬
⎭= {0} + 0.102Ph

l

⎧⎨
⎩

1
−2

1

⎫⎬
⎭= Ph

l

⎧⎨
⎩

0.102
−0.203

0.102

⎫⎬
⎭

The bending moment diagram is plotted in Figure 6.14e. Its ordinate at any section of span
EF may be expressed as

M = −Pe + 0.102
Phx

l

where x is the horizontal distance from E to the section and e is the vertical distance
from the centroidal axis to the tendon profile; e is positive where the tendon is below
the centroid. Following the convention used throughout this book, the bending moment
ordinates are plotted on the tension side of the beam. The dashed line in Figure 6.14e is the
statically indeterminate bending moment due to prestressing, called the secondary bending
moment.

6.12 General

The stiffness and flexibility matrices are related by the fact that one is the inverse of the other,
provided the same coordinate system of forces and displacements is used in their formation.
However, because the coordinate systems chosen in the displacement and force methods of
analysis are not the same, the relation is not valid between the stiffness and flexibility matrices
involved in the analyses.

The choice of the method of analysis depends on the problem in hand and also on whether
a computer is to be used. The displacement method is generally more suitable for computer
programming.

Stiffness matrices for a prismatic member in a three- and two-dimensional frame, given in
this chapter, are of value in standardizing the operations. Some other properties discussed
are also of use in various respects, including the calculations of buckling loads, considered in
Chapter 14.

Problems

6.1 Ignoring torsion, find by the use of Appendix E the stiffness matrix for the horizontal grid
in Prob. 5.18 corresponding to four downward coordinates at I, J, K, and L in this order.
Use this matrix to find the deflection at the coordinates due to downward equal forces P
at I and J. Take advantage of the symmetry of the structure and of the loading. Draw the
bending moment diagram for beam DG.

6.2 Write the stiffness matrix corresponding to the four downward coordinates at A, B, C, and
D in the horizontal grid shown in the figure. Ignore torsion and make use of Appendix E
(cf. Prob. 6.5). Find the bending moment in beams AD and BF due to a pair of equal
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downward loads P at B and C. Take advantage of the symmetry of the structure and of
the loading to reduce the number of equations to be solved.

l

l

l

2l

H

G

F

E A

B

P

C

D

El

El

El

4El

4El

4El

4El

Prob. 6.2

6.3 The figure shows three coordinate systems for a beam of constant flexural rigidity EI. Write
the stiffness matrix corresponding to the four coordinates in (a). Condense this stiffness
matrix to obtain the stiffness matrices corresponding to the three coordinates in (b) and
to the two coordinates in (c).

l l l

(a) 2

2

2

Constant El

4

1

1

1

3

3

(b)

(c)

Prob. 6.3

6.4 Apply the requirements of Prob. 6.3 to the member shown in the figure.
6.5 The figure represents a beam on three spring supports of stiffness K1 = K2 = K3 = EI/l3.

Using Appendix E, derive the stiffness matrix corresponding to the three coordinates in
the figure. Use this matrix to find the deflection at the three coordinates due to loads
{F} = {3P, P, 0}.

6.6 If the stiffness of any two of the spring supports in Prob. 6.5 is made equal to zero, the
stiffness matrix becomes singular. Verify this and explain why.
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l

l

Constant EI

(a)

2

1 1 1

3

4 3

2

2

(b) (c)

Prob. 6.4

l

1

Spring
stiffness

Constant flexural rigidity EI

2 3

K2K1 K3

l

Prob. 6.5

6.7 Neglecting axial deformations and using Appendix D, write the stiffness matrix for the
frame in the figure corresponding to the four coordinates in (a). Condense this matrix to
find the 2 × 2 stiffness matrix corresponding to the coordinates in (b).

l

l

3l
4

2*

1*
2

Constant EI

(a) (b)

1

3

4

Prob. 6.7

6.8 In Prob. 5.14 we derived the stiffness matrix [S]3×3 for a portal frame. Use this stiffness
matrix to derive the stiffness coefficient S∗

11 corresponding to the one-coordinate system
shown in the figure. Express the answer in terms of the elements Sij of the matrix [S].

6.9 What is the value of the force P which makes the structure in Prob. 4.7 unstable? Hint: Write
the stiffness matrix in terms of P; then find the value of P which makes the determinant
vanish.
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l2

D C

BA

1*

l1

EI2

EI1

EI2

Prob. 6.8

6.10 Find the smallest value of P (in terms of Kl) which will make the system in the figure
unstable. The bars AB, BC, and CD are rigid. See hints to Probs. 4.7 and 6.9.

l

l

l

P

A

B

C

D

Spring
stiffness = K

Prob. 6.10

6.11 Find the bending moment and shearing force diagrams for the beam in Figure 6.6a due to
a concentrated downward force P at E, the middle of BC. Assume all spans have the same
length l, and EI = constant.

6.12 Find the bending moments at A, C, and D in the beam of Figure 6.6b due to a uniform
load q per unit length over the whole length, taking advantage of symmetry. The answers
to this problem are given in Figure 4.8.

6.13 Figure 6.6e represents a typical span of a continuous beam having an infinite number of
spans. Obtain the bending moment and shearing force diagrams and the reactions. Assume
the lengths of members are AB = l, AC = l/3, CB = 2l/3, and EI = constant.

6.14 Solve Prob. 6.13 assuming that the load shown is applied only on alternate spans.
6.15 Solve Prob. 6.13 assuming that alternate spans are subjected to uniform load q per unit

length, while the remaining spans have no load.
6.16 Obtain the bending moment diagram and the reaction components at A for the frame

of Figure 6.7a due to a uniform downward load q per unit length on BC. Assume the
lengths of members are AB = b and BC = 1.5b, with EI constant. Consider bending
deformations only.
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6.17 Obtain the bending moment diagram and the reaction components at A and C for the
frame in Figure 6.7b due to a uniform downward load q per unit length on BF. Consider
bending deformations only. Assume that all members have the same length l, and EI =
constant.

6.18 Obtain the bending moment and shearing force diagrams for member AB of the frame in
Figure 6.7d, ignoring axial deformations. The frame is subjected to a uniform downward
load covering ABC of total magnitude 2ql, where 2l is the length AC. Assume that the
inclination of AB to the horizontal is θ .

6.19 The horizontal grid in Figure 6.7f is subjected to a downward concentrated load P at C.
Write the equations of equilibrium at the five coordinates shown. Use the values of {D}
given in the Answers to check the equations. Consider that all members have the same
length l and the same cross section, with GJ/EI = 0.5.

6.20 The horizontal grid in Figure 6.7g is subjected to a uniform downward load q per unit
length on DF only. Write the equations of equilibrium at the three coordinates shown.
Use the values of {D} given in the Answers to check the equations. Consider that all
members have the same cross section, with GJ/EI = 0.5. Assume the lengths of members
are: AB = BC = l, BE = EH = l/2.

6.21 A simple beam of length l and rectangular cross section of width b and depth d is subjected
to a rise of temperature which is constant over the length of the beam but varies over the
depth of the section. The temperature rise at the top is T and varies linearly to zero at mid-
depth; the rise of temperature is zero for the lower half of the section. Determine the stress
distribution at any section, the change in length of the centroidal axis and the deflection
at mid-span. Modulus of elasticity is E and coefficient of thermal expansion is α.

6.22 If the beam of Prob. 6.21 is continuous over two spans, each of length l, with one support
hinged and the other two on rollers, obtain the bending moment diagrams, the reactions,
and the stress distribution at the central support due to the same rise of temperature.

6.23 Member BC of the frame in Figure 6.7a is subjected to a rise of temperature which is
constant over the length of the beam but varies linearly over the depth d, from T at the top
to zero at the bottom. Obtain the bending moment diagram and the reaction components
at A. Ignore deformations due to axial and shear forces. Assume the lengths of members
are AB = 10d and BC = 15d, and all members have a constant rectangular cross section.
The second moment of area is I, and the coefficient of thermal expansion is α.
Hint: Because of symmetry and because the deformation due to the axial force is ignored,
the translation of B and C is horizontal outward, each with a magnitude of αT(15d)/4
(half the elongation of the centroidal axis BC). Thus, the structure has only one unknown
joint displacement: the rotation at B or C.

6.24 Find the bending moment diagram, the reactions, and the deflection at the middle of span
AB due to prestressing of the continuous beam shown. Assume the prestressing force P

7 b

A B C D

GFE

9 b 7 b

3.5 b 3.5 b

0.15 h
(b)

(a)

0.4 h

0.3 h

0.4 h

0.4 h 0.3 h 0.15 h

4.5 b 4.5 b 3.5 b 3.5 b

h

Prob. 6.24
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is constant and the tendon profile is a second-degree parabola in each span. Draw the
shearing force diagram.

6.25 Solve Prob. 6.24 assuming that the tendon has a profile composed of straight lines with
the eccentricities:

{eA, eE, eB, eF , eC, eG, eD} = h {0,0.3,−0.4,0.4,−0.4,0.3,0}

6.26 Determine the stress distribution at a cross section over the interior support of a continuous
beam of two equal spans. The beam has a rectangular cross section subjected to a rise
of temperature, T, varying over the height of the section, h, according to the equation:
T = Ttop(0.5 − μ)5, where Ttop is the temperature rise at the top fiber; μ = y/h, with y
being the distance measured downward from the centroid to any fiber. Give the answer
in terms of E,α,Ttop and μ, where E and α are the modulus of elasticity and the thermal
expansion coefficient of the material. What is the value of stress at the extreme tension
fiber? Using SI units, assume E=30GPa,α =10−5 per degree Celsius and Ttop =30 degrees
Celsius; or using Imperial units, assume E = 4300ksi; α = 0.6 × 10−5; Ttop = 50 degrees
Fahrenheit. The answers will show that the stress is high enough to reach or exceed the
tensile strength of concrete; thus, cracking could occur.

6.27 Find the bending moment diagram and the force in the tie in the frame of Prob. 4.22,
replacing the hinge at C by a rigid joint. Use the displacement method and take advantage
of symmetry. Assume that the tie is rigid. Consider only bending deformation.

6.28 Solve Prob. 6.27, assuming (Ea)Tie =130EI/l2; where EI is the flexural rigidity of ABCDE.
6.29 For the space truss shown, find the forces in the members and the reaction components

due to an external force at O having the components {Px,Py,Pz} = P{1.0,2.0,3.0}.
Hint. Although the truss is statically indeterminate, it can be analyzed using the equations
of equilibrium by taking advantage of symmetry; e.g. Px produces tensile forces in OA and
OD and compressive forces in OB and OC having equal absolute value. As an exercise,
check the forces in the members using the displacement method.

O

l l

Top view

Elevation

x

z

l l

ll

ll
x

z (down)
O

A

D

B

C

A, D B, C

2l2l

l l
Elevation

x

z

y

z

Prob. 6.29



Chapter 7

Strain energy and virtual work

7.1 Introduction

We have already seen that the knowledge of the magnitude of displacements in a structure is
necessary in the analysis of statically indeterminate structures, and in the preceding two chapters
we used, for the purpose, either the displacements due to forces or the forces induced by imposed
displacements. Displacements are, of course, also of interest in design, and, in fact, in some cases
the consideration of deflections under design loads may be the controlling factor in proportioning
of members.

Calculation of displacements of structures made of materials obeying Hooke’s law requires
the knowledge of the modulus of elasticity in tension and compression (usually identical) E, and
of the shear modulus G. When the stress–strain relation is nonlinear, it is necessary to develop
an expression relating forces and deformations, in terms of stress and strain, axial load and
extension, or moment and curvature. In this book, we deal mainly with linear structures as
these are most common.

When the displacements are required solely for the solution of statically indeterminate linear
structures, we need to know only the relative values of Ea, EI, and GJ at all cross sections and
for all members of the structures, where a is the area of the cross section, I its second moment
of area, and J a torsional constant, with a dimension (length)4, equal to the polar moment of
inertia in the case of a solid or a hollow circular bar. (For other cross sections, see Appendix G.)

If the actual values of the displacements are required or if the structure is to be analyzed for
the effect of settlement of supports or for a temperature variation, it becomes necessary to know
the values of E or G, or both. For some materials, such as metals, these moduli have standard
values, given in a handbook or guaranteed by the manufacturer to vary within fixed limits. In
the case of concrete,1 the elastic properties are a function of many variables in the material itself
and in its ambient conditions; in reinforced concrete, the amount and type of reinforcement
also affect the apparent overall cross-section properties. When cracking occurs, the rigidity of
a reinforced concrete member is greatly reduced.2 It is obvious that, under such circumstances,
the accuracy of the structural analysis depends on the reliability of the assumed values of E, G,
and cross-section properties.

Several methods are available for the determination of displacements, of which the most
versatile is the method of virtual work. It is particularly suitable when the displacements at

1 See, for example, Neville, A.M., Properties of Concrete, 4th ed., Longman, London, and John Wiley,
New York, 1996.

2 See Ghali, A., Favre, R. and Elbadry, M., Concrete Structures: Stresses and Deformations, 3rd ed., Spon
Press, London, 2002.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Strain energy and virtual work 199

only a few locations are required. However, when the complete deformed shape of a structure
is required,3 other methods discussed in Chapter 10 are more advantageous to use.

7.2 Geometry of displacements

In most cases, we deal with structures in which the deflections are small compared with the
length of the members and the angular rotations result in small translation of the joints. This
assumption is essential for much of what follows, but for clarity the displacements will be
sketched to a much larger scale than the structure itself. Thus, the distortion in the geometry of
the deformed structure will be exaggerated.

Consider the frame ABC of Figure 7.1a, in which the members are connected at B by a rigid
joint. This means that the angle ABC between the tangents to BA and BC at B is unaffected
by loading, even though the position, direction, and shape of the members AB and BC change.
The assumption that the displacements are small leads to a simplification in the calculation of
the magnitude of translation of the joints. For example, suppose that we want to determine
the displaced location of joints B and C in the frame of Figure 7.1a caused by an angular
displacement of θ radians at A in the plane of the frame. Joint B will move through an arc BB1

of length l1θ , where l1 is the length of AB. Since q and BB1 are small, the arc BB1 can be replaced
by BB2, perpendicular to AB and of the same length as BB1. Thus, while member AB undergoes
a rotation only, member BC undergoes a translation and a rotation. The translation means that
C moves to C1, such that CC1 = BB2 = l1θ . The rotation – which must be equal to θ since the
angle ABC is unchanged – causes a further translation C1C2 = l2θ , where l2 is the length of BC.

The total displacement of joint C can also be determined directly by drawing CC2 perpen-
dicular to the line joining A and C, with a length CC2 = l3θ (see Figure 7.1b). In other words,
the rotation at A is considered to cause a rotation of the whole frame as a rigid body. This is
correct if the members of the frame are not subjected to bending deformation, but, even if they
are and the axes of members assume a deflected shape, the translation of joints B and C due to
the rotation θ at A alone can still be determined in the same manner.

It is often convenient to express the displacements in terms of components in the direction of
rectangular axes. From Figure 7.1b we can see that the horizontal and vertical components of
the displacement CC2 are

D1 = l4θ and D2 = l5θ

where l4 and l5 are as defined in the figure. The two equations may be rewritten:

Dx = −yθ ; Dy = xθ (7.1)

where Dx and Dy are displacement components in the positive x and y directions respectively;
x and y are coordinates of orthogonal axes with origin at the rotation center, A; θ is rotation in
the clockwise direction (Figure 7.1b).

As stated before, this type of calculation of displacements caused by a rotation θ at A is valid
for a small θ only. In the presence of axial forces, the contribution of the rotation θ at A to the
displacement of C can still be determined by the expressions given above with l4 and l5 equal to
the original lengths.

From the above discussion we conclude that in a plane frame, a small angular rotation θ at
a section causes a relative displacement at any other section equal to lθ , where l is the original

3 In Chapter 12 it will be shown that the deflected shape caused by a specific loading represents an influence
line for the structure.
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(a)

(b)

l2

l1

C1

C2

l2θ

l3θ

D1 = l4θ

D2 = l5θ
C2

C

C

l4

A
x

y

l3

l5

l1θ

θ

θ
θ

θ
θ

θ

B2

B1

B

A

B

Figure 7.1 Displacements caused by rotation through a small angle.

length of the line joining the centers of the two sections considered. This displacement is a
translation in a direction perpendicular to the line joining the two points.

Because the displacements are small, they can be assumed not to cause gross distortions of
the geometry of the structure so that the equilibrium equations can be based on the original
directions and relative position of the external forces and of the members. This is a reasonable
assumption in the majority of structures but, in some cases, the distorted structure is appreciably
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changed in geometry so that the equilibrium conditions based on the original geometry of the
structure no longer hold. As a result, the structure behaves nonlinearly even if the stress–strain
relation of the material is linear. This means that equal increments of external load will not
always produce equal increments of displacement: any additional displacement depends upon
the total load already acting. (See Chapter 24).

7.3 Strain energy

In Section 6.6 we derived an expression for the work done on a structure subjected to a system
of loads {F}. This work will be completely stored in the elastic structure in the form of strain
energy, provided that no work is lost in the form of kinetic energy causing vibration of the
structure, or of heat energy causing a rise in its temperature. In other words, the load must be
applied gradually, and the stresses must not exceed the elastic limit of the material. When the
structure is gradually unloaded, the internal energy is recovered, causing the structure to regain
its original shape. Therefore, the external work W and the internal energy U are equal to one
another:

W = U (7.2)

This relation can be used to calculate deflections or forces, but we must first consider the method
of calculating the internal strain energy.

Consider a small element of a linear elastic structure in the form of a prism of cross-sectional
area da and length dl. The area da can be subjected to either a normal stress σ (Figure 7.2a), or
to a shear stress τ (Figure 7.2b). Assume that the left-hand end B of the element is fixed while
the right-hand end C is free. The displacement of C under the two types of stress is then

�1 = σ

E
dl and �2 = τ

G
dl

where E is the modulus of elasticity in tension or compression, and G is the modulus of elasticity
in shear. When the forces σ da and τ da, which cause the above displacements, are applied
gradually, the energy stored in the two elements is

dU1 = 1
2

(σ da)�1 = 1
2

σ 2

E
dl da

dU2 = 1
2

(τ da)�2 = 1
2

τ2

G
dl da

(a) (b)
B

C
N = σda

da

V = τ da

B

Δ1 = ε dl = 

ε = 

dl
E
σ

Δ2 = ε dl = dl
G
τ

G C

τ

dl dl

Figure 7.2 Deformation of an element due to (a) normal stress, and (b) shearing stress.
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Using ε as a general symbol for strain, the above equations can be put in the general form

dU = 1
2

σε dv (7.3)

where dv = dl da = volume of the element, and σ represents a generalized stress, that is, either
a normal or a shearing stress.

The strain ε in Eq. 7.3 is either due to a normal stress and has magnitude ε = σ/E, or due to
a shearing stress, in which case ε = τ/G. But G and E are related by

G = E
2(1 + v)

(7.4)

where v is Poisson’s ratio, so that the strain due to the shearing stress can be written ε =
2(τ/E)(1 + v).

The increase in strain energy in any elastic element of volume dv due to a change in strain
from ε = 0 to ε = εf is

dU = dv
∫ εf

0
σ dε (7.5)

where the integral
∫ εf

0 σ dε is called the strain energy density and is equal to the area under
the stress–strain curve for the material (Figure 7.3a). If the material obeys Hooke’s law, the
stress–strain curve is a straight line (Figure 7.3b), and the strain energy density is ( 1

2 )σf εf .
Any structure can be considered to consist of small elements of the type shown in Figure 7.4

subjected to normal stresses σx, σy, σz and to shearing stresses τxy, τxz, and τyz, with resulting
strains εx, εy, εz, γxy, γxz and γyz, where the subscripts x, y, and z refer to rectangular cartesian
coordinate axes. The total strain energy in a linear structure is then

U = 1
2

6∑
m=1

∫
v
σmεmdv (7.6)

(a)

Strain energy density = ∫ 
εf

Stress
σ

Strain ε Strain ε

Stress
σ

0

Area
= σdε

A

σdε  = area below 0A

εf εf

σf

dε

0 Strain energy density = 
1
2

(b)

σf εf

Figure 7.3 Stress–strain relations: (a) nonlinear, and (b) linear.
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y

x

σz

σy

σx

τz x

τz y

τy z

τy x
τx y

z

τx z

Figure 7.4 Stress components on an element (stresses on the hidden faces act in the opposite directions).

where m refers to the type of stress and to the corresponding strain. This means that the
integration has to be carried out over the volume of the structure for each type of stress separately.

In the case of a nonlinear structure, the strain energy equation corresponding to Eq. 7.6 is
obtained by integration of Eq. 7.5 for the six stress and strain components:

U =
6∑

m=1

∫
v

∫ εfm

0
σm dεm dv (7.7)

where εfm is the final value of each strain component.
The expression εfm = (σ/E) for a linear material applies when the stress is applied normal to

one plane only. In the more general case, when six types of stress act (Figure 7.4), the stress–
strain relation for a homogeneous and isotropic material obeying Hooke’s law can be written in
matrix form:

{ε} = [e]{σ } (7.8)

where {ε} is a column vector of the six types of strain, that is,

{ε} = {εx, εy, εz,γxy,γxz,γyz} (7.9)

{σ } is the stress vector, that is,

{σ } = {σx,σy,σz, τxy, τxz, τyz} (7.10)

and [e] is a square symmetrical matrix representing the flexibility of the element:

[e] = 1
E

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −v −v 0 0 0
−v 1 −v 0 0 0
−v −v 1 0 0 0
0 0 0 2(1 + v) 0 0
0 0 0 0 2(1 + v) 0
0 0 0 0 0 2(1 + v)

⎤
⎥⎥⎥⎥⎥⎥⎦

(7.11)
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Equation 7.8 does no more than write in a succinct form the well-known equations of elasticity.
For instance, the first equation represented by Eq. 7.8 is

εx = σx

E
− v(σy + σz)

E

Likewise, the fourth equation is

γxy = τxy
2(1 + v)

E

Inversion of Eq. 7.8 enables us to express stress in terms of strain thus:

{σ } = [d]{ε} (7.12)

where [d] = [e]−1 is a square symmetrical matrix representing the rigidity of the element. The
matrix [d] is referred to as the elasticity matrix; for a three-dimensional isotropic solid

[d] = E
(1 + v)(1 − 2v)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 − v) v v 0 0 0
v (1 − v) v 0 0 0
v v (1 − v) 0 0 0

0 0 0
(1 − 2v)

2
0 0

0 0 0 0
(1 − 2v)

2
0

0 0 0 0 0
(1 − 2v)

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7.13)

Using the notation of Eqs. 7.9 and 7.10, Eq. 7.6 can be written in the form

U = 1
2

∫
v
{σ }T {ε}dv (7.14)

or

U = 1
2

∫
v
{ε}T {σ }dv (7.15)

Substituting Eq. 7.8 or Eq. 7.12 into Eqs. 7.14 and 7.15, we obtain respectively

U = 1
2

∫
v
{σ }T [e]{σ }dv (7.16)

and

U = 1
2

∫
v
{ε}T [d]{ε}dv (7.17)

These equations are general for a linear elastic structure of any type. However, in framed struc-
tures the strain energy due to different types of stress resultants is best determined separately –
in the manner discussed below.
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7.3.1 Strain energy due to axial force

Consider a segment dl of a member of cross-sectional area a and length l subjected to an axial
force N (Figure 7.5a). The normal stress is σ =N/a, the strain is ε =N/Ea, and there is no shear.
From Eq. 7.3, the total strain energy is

U = 1
2

∫
l

N2

Ea
dl (7.18)

For a prismatic member this becomes

U = 1
2

N2l
Ea

(7.19)

(a)

Centroidal axis

Centroid

0

b
da

y

dl

Edl = dl

dl = dx

dl

dl

da
r

T

V
da

d

b

x

M

–dθ = 
d2y

–dx2
dl = dl = ψdl

y

N
Ea

N

(b)

(c)

Shearing–stress
distribution

(d)

y

y2

yτ

τ = 

y
z

M

EI

Vdl
Gar

V ( )2I
d2

4
–

Tdl
GJ

γ

Figure 7.5 Deformation of a segment of a member due to internal forces. (a) Axial force. (b) Bending
moment. (c) Shearing force. (d) Twisting moment.
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7.3.2 Strain energy due to bending moment

Consider a segment dl subjected to a bending moment M about the z axis – one of the principal
axes of the cross section (Figure 7.5b). The normal stress on an element da at a distance ȳ from
the z axis is σ =Mȳ/I where I is the second moment of area about the z axis. The corresponding
strain is ε = σ/E = Mȳ/EI. From Eq 7.3, the strain energy of the element is

dU = 1
2

M2ȳ2

EI2 dv = 1
2

M2ȳ2

EI2 dadl

Integrating over the cross section of the segment dl, we find the strain energy to be

�U = 1
2

M2

EI2 dl
∫

a
ȳ2 da

The integral in the above equation is equal to I, so that

�U = 1
2

M2

EI
dl (7.20)

Hence, for the whole structure the strain energy due to bending is

U = 1
2

∫
M2dl

EI
(7.21)

the integration being carried out over the entire length of each member of the structure.
Referring to Figure 7.5b, we can see that the two sections limiting the segment dl rotate

relative to one another by an angle −dθ = −(d2y/dx2) dl where y is the downward deflection.
The external work done by a couple M moving through −dθ is

�W = −1
2

M dθ (7.22)

The minus sign is included in this equation because a positive bending moment M (causing
tensile stress at bottom fibers) produces a decrease of the slope θ = dy/dx of the deflected axis
of the beam. The difference in slope of the tangent of the deflected beam axis at the right-hand
and left-hand ends of the segment dx is −dθ = −(d2y/dx2)dl = ψdl; where ψ is the curvature.

Since the internal and external work on the segment are equal to one another, that is, �W =
�U, we find from Eqs. 7.20 and 7.22

dθ = − M
EI

dl (7.23)

Substituting in Eq. 7.21, the strain energy due to bending for the whole structure can also be
given in the form

U = −1
2

∫
M dθ (7.24)
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7.3.3 Strain energy due to shear

Consider the segment dl of Figure 7.5c, subjected to a shearing force V. If the shearing stress
induced is τ , the shearing strain ε in an element of area da is given by τ/G. Then the strain
energy for the segment dl is (from Eq. 7.3)

�U = 1
2

∫
τ2

G
dl da (7.25)

The integration is carried out over the whole cross section.
For any cross section (Figure 7.5c), the shearing stress at any fiber at a distance ȳ below the

centroidal principal axis z is

τ = VQ
Ib

(7.26)

where I is the second moment of area of cross section about the z axis, b is the width of the
cross section at the fiber considered, and Q is the first moment about the z axis of the area of
the part of the section below the fiber considered.

Substituting Eq. 7.26 into Eq. 7.25 and noting that da = b dȳ, we obtain

�U = 1
2

V2

Gar
dl (7.27)

where

ar = I2
(∫

Q2

b2
da
)−1

(7.28)

From Eq. 7.27 we can write the strain energy due to shear for the whole structure as

U = 1
2

∫
V2

Gar
dl (7.29)

where the integration is carried out over the entire length of each member of the structure.
The term ar in units (length)2, is called the reduced cross-sectional area. It can be expressed as

ar = a/β, where a is the actual area and β is a coefficient greater than 1.0, depending upon the
geometrical shape of the cross section.4 Values of β are 1.2 and 10/9 for rectangular and circular
cross sections respectively. For a rolled steel I section, ar � area of the web. For a thin-walled
hollow circular cross section, ar � a/2. For a thin-walled hollow rectangular section subjected
to vertical shearing force, ar � area of the two vertical sides of the section.

We may wish to verify the value of ar for a rectangular section of width b and depth d
(Figure 7.5c). The value of Q at any fiber is

Q = b
2

(
d2

4
− ȳ2

)
(7.30)

The shearing stress distribution is parabolic (Figure 7.5c). Substituting this equation in Eq. 7.28,
with I = bd3/12 and da = b dȳ, and evaluating the integral between ȳ = −d/2 and d/2, gives
ar = 5bd/6 = a/1.2.

4 See Timoshenko, S. P. and Gere, J. M., Mechanics of Materials, Van Nostrand, New York, 1972, 372pp.
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7.3.4 Strain energy due to torsion

Figure 7.5d shows a segment dl of a circular bar subjected to a twisting moment T. The shearing
stress at any point distance r from the center is τ = (Tr/J), where J is the polar moment of inertia.
The corresponding strain is ε = (τ/G). From Eq. 7.3, the strain energy in the segment dl is

�U = 1
2

∫
T2r2

GJ2 dadl = 1
2

T2dl
GJ2

∫
r2 da

The integral
∫

r2 da= J is the polar moment of inertia. Therefore, �U = ( 1
2 )(T2 dl/GJ). Thus,

for the whole structure the strain energy due to torsion is

U = 1
2

∫
T2dl
GJ

(7.31)

This equation can be used for members with cross sections other than circular, but in this
case J is a torsion constant [in units (length)4] which depends on the shape of the cross section.5

Expressions for J for some structural sections are given in Appendix G.

7.3.5 Total strain energy

In a structure in which all the four types of internal forces discussed above are present, the values
of energy obtained by Eqs. 7.18, 7.21, 7.29, and 7.31 are added to give the total strain energy

U = 1
2

∫
N2 dl

Ea
+ 1

2

∫
M2 dl

EI
+ 1

2

∫
V2 dl
Gar

+ 1
2

∫
T2 dl
GJ

(7.32)

The integration is carried out along the whole length of each member of the structure. We should
note that each integral involves a product of an internal force N, M, V, or T acting on a segment
dl and of the relative displacement of the cross section at the two ends of the segment. These
displacements are Ndl/(Ea), Mdl/(EI), Vdl/(Gar), and Tdl/(GJ) (see Figure 7.5).

7.4 Complementary energy and complementary work

The concept of complementary energy is general and, like strain energy, can be applied to any
type of structure. Here, complementary energy will be considered first with reference to a bar
of a pin-jointed truss subjected to an axial force. Assume that the bar undergoes an extension
e due to an axial tension N, and an extension et due to other environmental changes such
as temperature, shrinkage, etc. Let � = et + e. Assume further a relation between the tension
N and the extension � as shown in Figure 7.6. Then, for a gradually applied force reaching
a final value Nf and causing a final extension ef , so that �f = et + ef , the strain energy is

U = ∫ ef
0 N de, which is equal to the area shaded horizontally in Figure 7.6.

We can now define the complementary energy as

U∗ =
∫ Nf

0
�dN (7.33)

5 For the theory of torsion of noncircular sections, see Timoshenko, S. P., Strength of Materials, Part II,
3rd ed., Van Nostrand, New York, 1956.
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N

Nf

Δ
eet

ef

dU
de

de = Nde

dU*

dN
dN = (et + e) dN

Area = U*

Area = U

dN
A

Figure 7.6 Force-extension relation.

or

U∗ = Nf et +
∫ Nf

0
e dN (7.34)

which is the area shaded vertically in Figure 7.6. The complementary energy has no physical
meaning and the concept is used only because of its convenience in structural analysis.

From Figure 7.6 it is apparent that the sum of complementary energy and strain energy is
equal to the area of the rectangle Nf (et + ef ) = U + U∗.

From the same figure, it can also be seen that if the extension is increased from e to (e + de),
U increases by an amount N de, so that

dU
de

= N (7.35)

The corresponding derivative of U∗ with respect to N is equal to the extension �, that is,

dU∗

dN
= et + e = � (7.36)

If a stress–strain (σ − ε) diagram similar to Figure 7.6 is drawn, the area to the left of the
curve is the complementary energy density. The complementary energy can be expressed for any
structure in terms of σ and ε:

U∗ =
6∑

m=1

∫
vol

∫ σfm

0
εmdσm dv (7.37)

where m refers to the six types of stress and strain defined in Eqs. 7.9 and 7.10.
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If a force-displacement (F-D) diagram (similar to the force-extension diagram of Figure 7.6)
is drawn, the area to the left of the curve is defined as complementary work W∗. Thus,

W∗ =
∫ Ff

0
D dF (7.38)

where Ff is the final value of the force, F, and D = dt + d is the total displacement, d is the
displacement caused by the force F, and dt is the displacement due to environmental effects such
as temperature, shrinkage, etc.

If a set of forces F1, F2, . . ., Fn is gradually applied to a structure and the total displacements
at the location and direction of these forces caused by the forces and other environmental effects
are D1, D2, . . . , Dn then the complementary work is

W∗ =
n∑

i=1

∫ Fif

0
Di dFi (7.39)

where Fif is the final value of Fi.
If only one final value of the forces increases from Fj to (Fj + ∂Fj), W∗ increases by an amount

Dj ∂Fj, so that

∂W∗

∂Fj
= Dj (7.40)

where Dj is the final value of the displacement at the location and in the direction of the jth force.
Here, and in the presentation below, the subscript f indicating a final value will be omitted. All
symbols, such as N, F and D will mean final value of force or displacement.

Similarly to Eq. 7.2, the complementary work and complementary energy are equal:

W∗ = U∗ (7.41)

The forces {F} and the displacements {D} considered above may be referred to as real forces and
real displacements. If, before application of the real forces, the structure has been subjected, at
any coordinate j, to a virtual force Qj, it would cause additional virtual complementary work of
QjDj, where Dj is real displacement at coordinate j due to the {F} system. No integral is required
for the virtual complementary work, because Qj acts at its full value along the displacement Dj.
The concept of virtual work will be further discussed in the following section.

Below, we will use Eq. 7.40 to give the displacement Dj at any coordinate for a linear or
nonlinear truss composed of m members, assuming that the elongations {�} are known for all
members. The cause of the elongations can be external applied forces combined with temperature
variation, shrinkage, etc.

If a force ∂Fj is added to the system, W∗ and U∗ will increase such that (Eq. 7.41)

∂W∗

∂Fj
= ∂U∗

∂Fj
(7.42)

The complementary energy U∗ for the truss is equal to the sum of the values of the
complementary energy U∗

i for individual members (each given by Eq. 7.33). Thus, we can write:

∂U∗

∂Fj
=

m∑
i=1

∂U∗

∂Ni

∂Ni

∂Fj
(7.43)
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Substitution of Eqs. 7.36 and 7.40 in 7.42 gives

Dj =
m∑

i=1

∂Ni

∂Fj
�i (7.44)

Define the symbol Nuij as equal to (∂Ni/∂Fj) and rewrite Eq. 7.44:

Dj =
m∑

i=1

Nuij �i (7.45)

Nuij is the force in any member i due to unit virtual force at coordinate j. Equation 7.45 is
the unit load theory applied to a truss (see Eq. 7.47). The theory is presented in a general form
in Section 7.6. When the truss is linearly elastic and the axial forces {N} are caused only by
external loads (without temperature or shrinkage etc.), �i = (Nl/Ea)i and Eq. 7.45 becomes:

Dj =
m∑

i=1

Nuij

(
Nl
Ea

)
i

(7.45a)

where l, E and a are the length, the modulus of elasticity and the cross-sectional area of member
respectively.

7.5 Principle of virtual work

This principle relates a system of forces in equilibrium to a compatible system of displacements
in a linear or nonlinear structure. The name of the principle is derived from the fact that a
fictitious (virtual) system of forces in equilibrium or of small virtual displacements is applied to
the structure and related to the actual displacements or actual forces respectively. Any system of
virtual forces or displacements can be used, but it is necessary that the condition of equilibrium
of the virtual forces or of compatibility of the virtual displacements be satisfied. This means that
the virtual displacements can be any geometrically possible infinitesimal displacements: they
must be continuous within the structure boundary and must satisfy the boundary conditions.
With an appropriate choice of virtual forces or displacements, the principle of virtual work can
be used to compute displacements or forces.

Let us consider a structure deformed by the effect of external applied forces and of environ-
mental causes such as temperature variation or shrinkage. Let the actual total strain at any point
be ε, and the corresponding (actual) displacements at n chosen coordinates be D1, D2 . . . , Dn.
Suppose now that before these actual loads and deformations have been introduced, the structure
was subjected to a system of virtual forces F1, F2, . . . , Fn at the coordinates 1, 2, . . . , n causing
a stress σ at any point. The system of virtual forces is in equilibrium but it need not correspond
to the actual displacements {D}. The principle of virtual work states that the product of the
actual displacements and the corresponding virtual forces (which is the virtual complementary
work) is equal to the product of the actual internal displacements and the corresponding virtual
internal forces (which is the virtual complementary energy). Thus,

Virtual complementary work = Virtual complementary energy

This can be expressed in a general form

n∑
i=1

FiDi =
∫

v
{σ }T {ε}dv (7.46)
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where σ is a stress corresponding to virtual forces F, and ε is a real strain compatible with
the real displacements {D}. The integration is carried out over the volume of the structure
and the summation is for all the virtual forces {F}. Equation 7.46 states that the values of the
complementary work of the virtual external forces and of the complementary energy of the
virtual internal forces while moving along the real displacements are equal. In other words,

n∑
i=1

(
virtual force

at i

)(
actual displacement

at i

)

=
∫

v

(
virtual internal

forces

)(
actual internal
displacements

)
dv

The principle of virtual work in this form is used in Section 7.6 to calculate the displacement
at any coordinate from the strains due to known actual internal forces. The principle can also
be used to determine the external force at a coordinate from the internal forces. In the latter
case, the structure is assumed to acquire virtual displacements {D} compatible with virtual strain
pattern ε at any point. The product of the actual external forces {F} and the virtual displacements
{D} is equal to the product of the actual internal forces and the virtual internal displacements
compatible with {D}. This relation can be written

Virtual work = Virtual strain energy

which is also expressed by Eq. 7.46:

n∑
i=1

FiDi =
∫

v
{σ }T {ε} dv

but with σ being the actual stress corresponding to the actual forces {F} and ε being the virtual
strain compatible with the virtual displacements {D}. In this case, Eq. 7.46 states that the external
and internal virtual work of the real forces while moving along the virtual displacements is the
same. The same equation can be written in words as follows:

n∑
i=1

(
real force

at i

)(
virtual displacement

at i

)

=
∫

v

(
real internal

forces

)(
virtual internal
displacements

)
dv

When the principle of virtual work is used for the calculation of a displacement (or a force)
the virtual loads (or the virtual displacements) are chosen in such a manner that the right-hand
side of Eq. 7.46 directly gives the desired quantity. This is achieved by the so-called unit-load
theorem or unit-displacement theorem for the calculation of displacement and force respectively.

Equation 5.9 is application of Eq. 7.46 for the real forces and the virtual displacements in
Figures 5.4a and b respectively. In this application, the right-hand side of Eq. 7.46 is zero, because
the virtual strain is zero; in Figure 5.4b the members rotate or/and translate as rigid bodies.

7.6 Unit-load and unit-displacement theorems

When the principle of virtual work is used to calculate the displacement Dj at a coordinate j,
the system of virtual forces {F} is chosen so as to consist only of a unit force at the coordinate j.
Equation 7.46 becomes
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1 × Dj =
∫

v
{σuj}T {ε}dv

or

Dj =
∫

v
{σuj}T {ε}dv (7.47)

where σuj is the virtual stress corresponding to a unit virtual force at j, and ε is the real strain
due to the actual loading. This equation is known as the unit-load theorem, and is the general
form (not limited by linearity) of Eq. 8.4 developed later for linear elastic framed structures.

We should observe that the principle of virtual work as used in the unit-load theorem
achieves a transformation of an actual geometrical problem into a fictitious equilibrium problem.
Advantages of this will be considered with reference to examples in Section 7.7.

The principle of virtual work can also be used to determine the force at a coordinate j if
the distribution of the real stresses or of the internal forces is known. The structure is assumed
to acquire a virtual displacement Dj at the coordinate j, but the displacement at the points of
application of all the other forces remains unaltered. The corresponding compatible internal
displacements are now determined. The external and internal virtual work of the real forces
while moving along the virtual displacements is the same, that is, we can write from Eq. 7.46:

Fj × Dj =
∫

v
{σ }T {ε}dv (7.48)

Thus, {σ } are the actual stress components due to the system of real loads, and {ε} are the virtual
strain components compatible with the configuration of the virtual displacements.

In a linear elastic structure, the strain component ε at any point is proportional to the
magnitude of displacement at j, so that

ε = εuj Dj (7.49)

where εuj is the strain compatible with a unit displacement at j, there being no other displacement
at the points of application of other forces. Equation 7.48 becomes

Fj =
∫

v
{σ }T {εuj}dv (7.50)

This equation is known as the unit-displacement theorem.
The unit-displacement theorem is valid for linear elastic structures only, owing to the limitation

of Eq. 7.49. No such limitation is imposed on the unit-load theorem because it is always possible
to find a statically determinate virtual system of forces in equilibrium which results in linear
relations between virtual external and internal forces, even though the material does not obey
Hooke’s law.

The unit-displacement theorem is the basis of calculation of the stiffness properties of struc-
tural elements used in the finite element method of analysis (see Chapter 17), where a continuous
structure (e.g. a plate or a three-dimensional body) is idealized into elements with fictitious
boundaries (e.g. triangles or tetrahedra). In one of the procedures used to obtain the stiffness
of an element, a stress or displacement distribution within the element is assumed. The unit-
displacement theorem is then used to determine the forces corresponding to a unit displacement
at specified coordinates on the element.
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Although the unit-displacement theorem is valid strictly only for linear elastic structures, it
is used in nonlinear finite-element analysis, which usually involves a series of linear analyses,
resulting in errors corrected by iterations.

7.7 Virtual-work transformations

From the preceding discussion it can be seen that the principle of virtual work can be used
to transform an actual geometrical problem into a fictitious equilibrium problem or an actual
equilibrium problem into a fictitious geometrical problem.

The first type of transformation can be considered by reference to the plane truss in Figure 7.7
composed of m pin-jointed members, subjected to external applied forces {P} and to a change
in temperature of T degrees in some of the members; we want to find the displacement at a
coordinate j. By equations of statics, the force in any member Ni can be determined and the
total extension can be calculated: �i = αTili + Nili/(Eai), where α is coefficient of thermal
expansion, and li and ai are respectively the length and cross-sectional area of the member.

Once the elongation of all the members is determined, the displacements of the joints can
be found from consideration of geometry alone, for instance graphically, but this procedure is
laborious and, of course, not suitable for computer work. By the unit-load theorem it is possible
to transform the actual geometrical problem into a fictitious equilibrium problem, which is easier
to solve. The procedure is to apply a unit virtual load at j, causing virtual internal forces Nuij in
any member i. The virtual work Eq. 7.47 can be applied in this case in the form

Dj =
m∑

i=1

Nuij �i (7.51)

or in matrix form

Dj = {Nu}T
j {�} (7.52)

where {Nu}j = {Nu1j, Nu2j, . . . , Numj} and {�} = {�1,�2, . . . ,�m}. Equation 7.51 is the same as
Eq. 7.45, for which the proof is included in Section 7.4.

As the second type of transformation, let us consider the bridge structure shown in Figure 7.8a,
in which it is required to determine the variation in a reaction component Aj, e.g. the horizontal
reaction at E when a moving vertical force P crosses the deck from F to G. We apply a unit virtual

P1

Dj

Unit
virtual
load

Pnj

P2

Figure 7.7 Application of the unit-load theorem to determine displacement at coordinate j of a plane
truss.
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(a)

(b)

(c)

(d)

Moving
load

B

B′

C′

D′

G′
C′

1.25

E′
1

1Unit
displacement

A

F

B

ηi

C

1.25

D

G

E

H C

CH

F′

A
4b 4bbb b b

F
P

C D
G

E

Aj

i

2b

Figure 7.8 Application of the principle of virtual work. (a) Statically determinate frame. (b) Virtual
displacements. (c) Displacement diagram for joint C. (d) Influence line for Aj.

displacement at the coordinate j and draw the corresponding shape of the frame, as shown in
Figure 7.8b. (In constructing this figure we should note that the movement of C to C′ takes place
along the perpendicular to AC: a displacement diagram for joint C is shown in Figure 7.8c.) It
is obvious that, in this statically determinate structure, the members of the frame will move to
their new positions as rigid bodies without strain. The vertical displacement of FG is replotted
to a larger scale in Figure 7.8d.

Consider now the unit vertical force P in any position i (Figure 7.8a) in equilibrium with the
reaction components at A and E, including Aj. Applying the principle of virtual work (Eq. 7.46)
to the real system of forces in Figure 7.8a and the virtual displacements in Figure 7.8b, we obtain

Aj × 1 − Pηi = 0 (7.53)

where ηi is the displacement at i.
This equation can be easily checked by noting that only Aj and P do work because the displace-

ments along all the other reactions are zero. The right-hand side of the equation is zero because
no strain is induced by the virtual displacement. Specifically, the right-hand side of Eq. 7.53 is∫

v{σ }T {εuj} dv, where {εuj} is the strain corresponding to a unit virtual displacement at j, and
{σ } is the stress in the actual structure due to real loading, that is, due to the load P acting at i.
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This integral is zero even if the structure is statically indeterminate, e.g. if the hinges at A and C
are replaced by rigid joints.

The condition that the displacement Dj of the actual structure is zero can be written with the
aid of the unit-load theorem (Eq. 7.47):

Dj =
∫

v
{σuj}T {ε} dv = 0

where {σuj} is the stress due to a unit force at j and {ε} is the strain in the actual structure due
to the load P. But in a linear elastic structure, the stress and strain components σuj and εuj are
proportional to one another at all points of the structure. Therefore, the integral

∫
v{σ }T {εuj} dv

vanishes also in the case of a statically indeterminate structure.
From Eq. 7.53, Aj =Pηi, it follows that the coordinate ηi at any point i is equal to the value of

the reaction component Aj due to a unit vertical load at i. The plot of ηi is called the influence line
of the reaction component Aj. The frame dimensions and the values of Aj are given in Figure 7.8
so that the result can be checked by considerations of statics.

Further applications of the principle of virtual work in transformation of an actual equilibrium
problem to a fictitious geometrical problem will be made in the derivation of influence lines
(Chapter 12) and in the analysis of the collapse mechanism of frames and slabs (Chapters 18
and 19).

Example 7.1: Transformation of a geometry problem
Find the downward displacement at D (at coordinate 1) for the truss shown in Figure 7.9a
due to a drop of temperature T degrees in members AB and BC only. Assume αT = 0.003,
where α is coefficient of thermal expansion. Use the unit-load theorem, then check the
answer by geometry.

In a statically determinate truss, a change in temperature produces elongation or short-
ening of members, but induces no forces. Thus, only members AB and BC change length
by the amounts

�AB = �BC = −αT(
√

2 l)

A unit force introduced at coordinate 1 produces the axial forces {Nu1} given in Figure 7.9b;
in AB and BC, the axial forces are:

NuAB1 = NuBC1 = −1/
√

2

The deflection at coordinate 1 (Eq. 7.51)

D1 =
∑

Nui1 �i

D1 = 2
(

− 1√
2

)
(−α T

√
2 l) = 2α Tl = 0.0060 l

The deflected shape of the truss is shown in Figure 7.9c. The length of members AD
or BD = l (unchanged), while the length of AB is changed to (0.997

√
2 l). The angle

ADB = 2sin−1[AB/(2 AD)] = [(π/2) − 0.0060]. Thus, AD or DC makes an angle 0.0060
with the horizontal and the deflection D1 is equal to the vertical distance between D and
line AC = l sin 0.0060 = 0.0060l.
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(a)

B

l

l

l

D

1

A C

(c)(b)

A D

F1 = 1

C A D

D1l

C

B

l

B

1/2

1

1/2

–1
/ √

2
0.9

97
 l √

2

–1/ √2

Figure 7.9 Deflection of a plane truss due to drop of temperature of members AB and BC, Example
7.1 (a) Truss dimensions. (b) Axial forces {Nu1} due to F1 = 1. (c) Deflected shape of the
truss.

7.8 Castigliano’s theorems

Castigliano published in 1879 a book on the analyses of statically indeterminate structures,
including two well-known theorems, presented briefly in Sections 7.8.1 and 7.8.2. The theor-
ems are not used beyond these two sections because what they can achieve can be done more
conveniently by the unit-load or the unit-displacement theorem or by the force or the displace-
ment method as presented in other sections of this book. Both Castigliano’s theorems are for
linear elastic structures and deformations caused by external forces only.

7.8.1 Castigliano’s first theorem

Castigliano’s first theorem states that if, in any structure with independent displacements
{D1,D2, . . . , Dn} corresponding to external applied forces {F1,F2, . . . ,Fn} along their lines of
action, the strain energy U is expressed in terms of the displacements D, then n equilibrium
equations can be written in the form

∂U
∂Dj

= Fj (7.54)

The theorem is proved by virtual work, as follows. Let the structure acquire a virtual dis-
placement δDj at j, while all the other displacements remain zero and environmental conditions
are unchanged. The only force which does work is Fj, so that the work done during this virtual
displacement is

δW = Fj δDj
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D2, F2

y

D1, F1
x

θi

A

m

i

2

1

Figure 7.10 Plane truss considered in the derivation of Castigliano’s first theorem.

This is equal to the gain in the strain energy of the structure

δU = Fj δDj (7.55)

In the limit, when δDj → 0, Eq. 7.55 gives Eq. 7.54.
Castigliano’s theorem, Part I is applicable to both linear and nonlinear elastic structures.

Referring to the truss of Figure 7.10 which has m members and two unknown displacements
D1 and D2 at joint A, we can express the extension of any member i in terms of D1 and D2 as

�i = −(D1 cos θi + D2 sin θi) (7.56)

where θi is the angle of the ith member with the horizontal. Assuming that the material obeys
Hooke’s law, the force in the member is

Ni = aiEi

li
�i (7.57)

where ai is the cross-sectional area of the member and li its length. The strain energy of the
structure is

U = 1
2

m∑
i=1

Ni �i = 1
2

m∑
i=1

ai Ei

li
�2

i (7.58)

Substituting Eqs. 7.56 and 7.57 into Eq. 7.58,

U = 1
2

m∑
i=1

aiEi

li
(D1 cos θi + D2 sin θi)

2

whence

∂U
∂D1

=
m∑

i=1

aiEi

li
cos θi(D1 cos θi + D2 sin θi) (7.59)
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Applying Eq. 7.54, we obtain:

F1 =
(

m∑
i=1

aiEi

li
cos2 θi

)
D1 +

(
m∑

i=1

ai Ei

li
cos θi sin θi

)
D2 (7.60)

and

F2 =
(

m∑
i=1

aiEi

li
cos θi sin θi

)
D1 +

(
m∑

i=1

ai Ei

li
sin2 θi

)
D2 (7.61)

The last two equations express the fact that the sum of the horizontal components of the bar
forces at joint A is equal to the external force F1; the same applies to the vertical components
and to F2. In Section 5.2, the same problem was treated by the displacement method of analysis,
and it can be easily seen that Eqs. 7.60 and 7.61 are identical with the statical relations used
in that method to find the unknown displacements. We should also recognize that the terms in
brackets in Eqs. 7.60 and 7.61 are the stiffness coefficients of the structure.

The stiffness coefficients Sjr can, in general, be obtained by taking the partial derivative with
respect to any displacement in Eq. 7.54. Thus,

∂2U
∂Dr∂Dj

= ∂Fj

∂Dr
(7.62)

In a linear structure, ∂Fj/∂Dr is the force at j due to a unit displacement at r. Therefore,

Sjr = ∂2 U
∂Dj∂Dr

(7.63)

For example, the stiffness coefficient S11 for the structure of Figure 7.10 can be obtained by
taking the partial derivative of Eq. 7.59

S11 = ∂2U

∂ D2
1

=
m∑

i=1

ai Ei

li
cos2 θi (7.64)

which is the same as the value obtained in Section 5.2.

7.8.2 Castigliano’s second theorem

When the deformations of a linear elastic structure are caused by external forces only, without
temperature or shrinkage etc., the complementary energy U∗ is equal to the strain energy U
(Figure 7.6) and the following equations apply:

∂U∗

∂Fj
= ∂U

∂Fj
(7.65)

Dj = ∂U
∂Fj

(7.66)
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Dj =
m∑

i=1

Nuij �i (7.67)

Dj =
m∑

i=1

Nuij

(
Nl
Ea

)
i

(7.68)

Equation 7.66, obtained by substitution of Eqs. 7.65 and 7.42 in 7.40, gives the displacement
at coordinate j subjected to forces F1, F2, . . ., Fn. For this purpose, U has to be expressed in terms
of the forces {F}. Equation 7.66 is known as Castigliano’s second theorem; its use is equivalent
to the unit-load theory. Equations 7.67 and 7.68 are applications of Eq. 7.66 to a truss; here, N,
l, E and a are the axial force, the length, the modulus of elasticity and the cross-sectional area
of a typical ith member; m is the number of members; �i = (Nl/Ea)i is the elongation of the
member; Nuij is the force in the member due to Fj = 1; that is,

Nuij = ∂Ni

∂Fj
(7.69)

Equation 7.68 can be derived from Eq. 7.66, with U expressed as the sum of the strain energy
of individual members (Eq. 7.19):

U = 1
2

m∑
i=1

(
N2 l
a E

)
i

(7.70)

Figure 7.11 shows a structure subjected to external applied loads, together with statically
indeterminate redundants F1, F2, . . . , Fn; the effects of temperature, shrinkage, etc. are not
considered. The redundant forces {F} are of the magnitudes that result in Dj =0 for j =1,2 . . . ,n.
Expressing Dj by Eq. 7.66 gives Castigliano’s equations of compatibility:

∂U
∂Fj

= 0 for j = 1, 2, . . . . . . ,n (7.71)

where U is the strain energy due to the external applied load and the redundants.
Equation 7.71 indicates that the strain energy has a stationary value and this value, as will

be proved below, is a minimum. This is referred to as the principle of least work, which may

F1 F2

F3 Fj Fn

Figure 7.11 Statically indeterminate truss used in derivation of Castigliano’s compatibility equations
and principle of least work.
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be stated as follows: in a linear statically indeterminate structure, the redundants, caused by
externally applied forces, are of such a magnitude that the internal strain energy is minimum.

To show that the value of U is a minimum, we differentiate Eq. 7.70 with respect to a redundant
Fj and another time with respect to redundant Fr.

∂U
∂Fi

=
m∑

i=1

∂Ni

∂Fj

(
Nl
aE

)
i

(7.72)

Substitution of Eq. 7.69 in 7.72 gives:

∂U
∂Fi

=
m∑

i=1

Nuij

(
Nl
aE

)
i

(7.73)

∂2U
∂Fj ∂Fr

=
m∑

i=1

Nuij Nuir

(
l

aE

)
i

(7.74)

The term on the right-hand side of this equation is the flexibility coefficient

fjr =
m∑

i=1

Nuij Nuir

(
l

Ea

)
i

(7.75)

By setting r = j, Eq. 7.75 gives element fjj on the diagonal of the flexibility matrix, which is a
positive value. Thus,

∂2U

∂F2
j

=
m∑

i=1

N2
uij

(
l

Ea

)
i
= fjj (7.76)

This proves that U has a minimum value because the second derivative is positive.

7.9 General

The concept of strain energy is important in structural analysis, and it is useful to express the
strain energy due to any type of stress in a general form amenable to matrix treatment. It is
possible then to consider at the same time components of strain energy due to axial force,
bending moment, shear, and torsion.

Complementary energy has no physical meaning, but it is of value in helping to understand
some of the energy equations. The same applies to the analogous concept of complementary
work.

The principle of virtual work relates a system of forces in equilibrium to a compatible system
of displacements in any structure, linear or nonlinear. In analysis, we apply virtual forces or
virtual displacements and use the equality of the complementary work of virtual external forces
and the complementary energy of the virtual internal forces moving along the real displace-
ments. Alternatively, we utilize the equality of external and internal virtual work of the real
forces moving along the virtual displacements. Unit-load and unit-displacement theorems offer
a convenient formulation. It should be noted that the latter theorem is applicable only to linear
structures.
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We should note that the principle of virtual work makes it possible to transform an actual
geometrical problem into a fictitious equilibrium problem or an actual equilibrium problem
into a fictitious geometrical problem, and there exist circumstances when either transformation
is desirable. Chapter 8 discusses further the applications of virtual work for calculation of
displacements. The problems at the end of Chapter 8 are related to the material presented in
both Chapters 7 and 8.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 8

Determination of displacements by
virtual work

8.1 Introduction

In Chapter 7, we adopted the principle of virtual work and used it (in Section 7.6) to derive
the unit-load theorem, which is applicable to linear or nonlinear structures of any shape. In this
chapter and in the succeeding one, we shall consider the method of virtual work further, first
with reference to trusses and later to beams and frames. The present chapter will also deal with
evaluation of integrals for calculation of displacements by the method of virtual work.

To begin with, we shall use the unit-load theorem to calculate displacements due to external
applied loading on linear framed structures and we shall also present the theory for this particular
application.

8.2 Calculation of displacement by virtual work

Consider the linear elastic structure shown in Figure 8.1 subjected to a system of forces F1,
F2, . . . , Fn, causing the stress resultants N, M, V, and T at any section. The magnitude of external
and internal work is the same, so that from Eq. 7.2 and 7.32,

1
2

n∑
i=1

FiDi = 1
2

∫
N2 dl

Ea
+ 1

2

∫
M2 dl

EI
+ 1

2

∫
V2 dl
Gar

+ 1
2

∫
T2 dl
GJ

(8.1)

where Di is the displacement at the location and in the direction of Fi, and N, M, V, and T are
the stress resultants at any section due to the {F} system.

Suppose that at the time when the forces {F} are applied to the structure, there is already a
virtual force Qj acting at the location and in the direction of a coordinate j (Figure 8.1). This

F2

j coordinateF1 Qi

Fn

Figure 8.1 Linear elastic structure used to illustrate the calculation of displacement by virtual work.
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force induces at any section internal forces NQj, MQj, VQj, and TQj. The magnitude of internal
and external work during the application of the {F} system of loads is again the same, so that

1
2

n∑
i=1

FiDi + QjDj =1
2

[∫
N2

Ea
dl +

∫
M2

EI
dl +

∫
V2

Gar
dl +

∫
T2

GJ
dl
]

(8.2)

+
[∫

NQjN
Ea

dl +
∫

MQjM
EI

dl +
∫

VQjV
Gar

dl +
∫

TQjT
GJ

dl
]

where Dj is the displacement at j due to the {F} system in the direction of the virtual force Qj.
The second term on each side of Eq. 8.2 represents the work due to the force Qj while moving
along the displacement by the {F} system. As explained in Section 7.4, the coefficient 1/2 does
not appear in these terms because the load Qj and the corresponding internal forces act at their
full value along the entire displacement by the {F} system.

Subtracting Eq. 8.1 from Eq. 8.2, we find

QjDj =
∫

NQjN
aE

dl +
∫

MQjM
EI

dl +
∫

VQjV
Gar

dl +
∫

TQjT
GJ

dl (8.3)

To determine the deflection at any location and in any direction due to the {F} system, we
divide Eq. 8.3 by Qj. Hence, the displacement at j is

Dj =
∫

NujN
Ea

dl +
∫

MujM
EI

dl +
∫

VujV
Gar

dl +
∫

TujT
GJ

dl (8.4)

where

Nuj = NQj

Qj
; Muj = MQj

Qj
; Vuj = VQj

Qj
; and Tuj = TQj

Qj

These are the values of the internal forces at any section due to a unit virtual force (Qj = 1)
applied at the coordinate j where the displacement is required.

Referring back to Eq. 7.47, we can see that Eq. 8.4 is, in fact, a particular case of the unit-load
theorem applicable to linear framed structures, subjected to external loads only (that is, with
no environmental effects). The only internal force in a truss member is an axial force, which
is constant at all its sections. Thus, Eq. 8.4 becomes the same as Eq. 7.45a, by replacing the
first integral by a summation and dropping the remaining integrals. Hence, the displacement at
coordinate j in a truss (Eq. 7.45a repeated)

Dj = � Nuj
Nl
Ea

where the summation is for all members of the truss; l, E and a are length, modulus of elasticity
and cross-sectional area of a typical member.

In order to use Eq. 8.4 for the determination of the displacement at any section, the internal
forces at all sections of the structure must be determined due to: (i) the actual loads, and (ii)
a unit virtual force. The latter is a fictitious force or a dummy load introduced solely for the
purpose of the analysis. Specifically, if the required displacement is a translation, the fictitious
load is a concentrated unit force acting at the point and in the direction of the required deflection.
If the required displacement is a rotation, the unit force is a couple acting in the same direction
and at the same location as the rotation. If the relative translation of two points is to be found,
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two unit loads are applied in opposite directions at the given points along the line joining them.
Similarly, if a relative rotation is required, two unit couples are applied in opposite directions at
the two points.

The internal forces Nuj, Muj, Vuj, and Tuj are forces per unit virtual force. If the displacement
to be calculated is a translation, and the Newton, meter system is used, then Nuj, Muj, Vuj, and
Tuj have respectively, the dimensions: N/N, N m/N, N/N and N m/N. When the virtual force
is a couple, Nuj, Muj, Vuj, and Tuj have, respectively, the dimensions: N/N m, N m/N m, N/N
m, N m/N m. A check on the units in Eq. 8.4, when used to determine translation or rotation,
should easily verify the above statements.

Each of the four terms on the right-hand side of Eq. 8.4 represents the contribution of one
type of internal forces to the displacement Dj. In the majority of practical cases, not all the
four types of the internal forces are present, so that some of the j terms in Eq. 8.4 may not be
required. Furthermore, some of the terms may contribute very little compared to the others and
may therefore be neglected. For example, in frames in which members are subjected to lateral
loads, the effect of axial forces and shear is very small compared to bending. This is, however, not
the case in members with a high depth-to-length ratio or with a certain shape of cross sections,
when the displacement due to shear represents a significant percentage of the total. This will be
illustrated in Example 8.4.

The internal forces at a section of a space frame are generally composed of six components:
N,Vy∗ ,Vz∗ ,My∗ , Mz∗ , and T, shown in Figure 8.2 in the directions of local orthogonal axes x∗,y∗,
and z∗ of a typical member. The x∗ axis is normal to the cross section through the centroid; y∗
and z∗ are centroidal principal axes in the plane of the section.

When Eq. 8.4 is applied to a space frame, the second term, representing the contribution of
bending deformation, is to be replaced by two terms:

∫
(Muj M/EI)y∗ and

∫
(Muj M/EI)z∗

x*

Centroid

Principal
axis

Principal
axis

T

N

Vz*

Mz*

z*

y*

Vy*

My*

Figure 8.2 Internal forces in a section in a member of a space frame: a normal force N, two shearing
forces Vy∗ and Vv∗ , two bending moments My∗ and Mz∗ , and a twisting moment T.
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The subscripts y∗ or z∗ indicate that the M and I values inside the brackets are about the principal
axis y∗ or z∗ respectively. Similarly, the third term in Eq. 8.4, representing the contribution of
shear deformation, is to be replaced by two terms:∫

(Vuj V/Gar)y∗ and
∫

(Vuj V/Gar)z∗

In Eq. 8.4, the terms (N/Ea)=∈o and (M/EI)=ψ , represent respectively the centroidal normal
strain and the curvature due to N and M on a cross section (Figure 7.5). When Dj is required
for the combined effects of N and M together with thermal expansion, the terms (N/Ea) and
(M/EI) are to be replaced, respectively, by [(N/Ea)+∈OT ] and [(M/EI)+ψT ], where ∈OT and
ψT are the centroidal strain and curvature due to thermal expansion (Eqs. 6.37 and 6.38). When
the structure is statically indeterminate, N and M must include the statically indeterminate axial
force and moment due to temperature (Section 6.9).

8.3 Displacements required in the force method

The five steps in the analysis of statically indeterminate structures by the force method
(Section 4.6) include calculation of displacements of the released structure due to the specified
loads (step 2) and displacements of the released structure due to unit values of the redundant
forces (flexibility coefficients, step 3). Virtual work can be used to determine these displacements.

Consider the linear analysis of a statically indeterminate framed structure by the force method
(Section 4.6). When the number of the statically indeterminate forces is n, the displacements
{D}n×1 can be determined by Eq. 8.4, with j = 1,2, . . . ,n;Nuj,Muj,Vuj, and Tuj are internal
forces in the released structure due to a force Fj = 1; N, M, V, and T are internal forces in the
released structure subjected to the specified loads. When thermal effects are included, the terms
(N/Ea) and (M/EI) in Eq. 8.4 are to be replaced by [(N/Ea)+ ∈OT ] and [(M/EI) + ψT ] where
∈OT and ψT are thermal centroidal strain and curvature at a section of the released structure
(Eqs. 6.37 and 6.38).

Any coefficient, fij, required to generate the flexibility matrix [f ]n×n, can be determined by
application of Eq. 8.4. In this application, fij is the displacement at coordinate i due to a real
load Fj = 1 on the released structure; the corresponding internal forces at any section are Nuj,
Muj, Vuj, and Tuj. Apply a unit virtual load, Fi = 1 at coordinate i on the released structure,
producing at any section the internal forces Nui, Mui, Vui, and Tui. Application of Eq. 8.4 gives
the flexibility coefficient

fij =
∫

Nui Nuj

Ea
dl +

∫
Mui Muj

EI
dl +

∫
Vui Vuj

Gar
dl +

∫
Tui Tuj

GJ
dl (8.5)

For a plane or a space truss, the flexibility coefficient

fij = �Nui Nuj
l

Ea
(8.6)

where the summation is for all members of the truss; l, E and a are, respectively, the length, the
modulus of elasticity and the cross-sectional area of a typical member.

8.4 Displacement of statically indeterminate structures

As shown in Chapter 7, the principle of virtual work is applicable to any structure, whether
determinate or indeterminate. However, in the latter case, the internal forces induced by the real
loading in all parts of the structure must be known. This requires the solution of the statically
indeterminate structure by any of the methods discussed in Chapters 4 and 5.
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Furthermore, we require the internal forces Nuj, Muj, Vuj, and Tuj due to a unit virtual load
applied at j. These forces can be determined for any released structure satisfying the require-
ment of equilibrium with the unit virtual load at j. Thus, it is generally sufficient to determine
the internal forces due to a unit virtual load at j acting on a released stable statically determin-
ate structure obtained by the removal of arbitrarily chosen redundants. This is so because the
principle of virtual work relates a compatible system of deformations of the actual structure to a
virtual system of forces in equilibrium which need not correspond to the actual system of forces
(see Section 7.5).

As an example, we can apply the above procedure to the frame of Figure 8.3a in order to
find the horizontal displacement at C, D4. Bending deformations only need be considered. The
frame has a constant flexural rigidity EI.

The bending moment diagram was obtained in Example 5.2 and is shown again in Figure 8.3b.
A unit virtual load is now applied at coordinate 4 to a statically determinate system obtained

by cutting the frame just to the left of C (thus forming two cantilevers), Figure 8.3c. The bending
moment diagram for Mu4 is shown in Figure 8.3d.
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Figure 8.3 Displacement of a statically indeterminate plane frame by virtual work.
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Applying Eq. 8.4 and considering bending only,

D4 =
∫

Mu4M
EI

dl (a)

This integral needs to be evaluated for the part CD only because Mu4 is zero in the remainder
of the frame. Using Appendix H, we find

D4 = 1
EI

[
l
2

(l/2)

6
(2 × 0.271Pl − 0.334Pl)

]
= 0.0087

Pl3

EI

Suppose now that we want to find the vertical deflection at F, denoted by D5. We assume that
the virtual unit load acts on the three-hinged frame of Figure 8.3e. The corresponding bending
moment diagram Mu5 is shown in Figure 8.3f. By the same argument as used for D4, we obtain

D5 =
∫

Mu5M
EI

dl (b)

The integral has to be evaluated for the part BC only because Mu5 is zero elsewhere. Using
the table in Appendix H, we find

D5 = 0.0240
Pl3

EI

It may be instructive to calculate D4 and D5 using some other choice of the virtual system of
forces.

Application of the unit load on a released structure, instead of the actual structure, does not
change the results, but greatly simplifies the calculations. To prove this, assume that F5 = 1 is
applied on the actual structure to obtain (Mu5)alternative to replace (Mu5)s when Eq. (b) is used to
calculate D5 where (Mu5)s is the statically determinate bending moment depicted in Figure 8.3f
and used in the above calculation. We will show that

D5 =
∫

(Mu5)s
M
EI

dl (c)

or

D5 =
∫

(Mu5)alternative
M
EI

dl (d)

Any ordinate of the diagram of (Mu5)alternative (not shown) may be expressed as:

(Mu5)alternative = (Mu5)s + F6Mu6 + F7Mu7 + F8Mu8 (e)

where F6, F7 and F8 are, respectively, the ordinates of (Mu5)alternative at B, C and D;
Mu6, Mu7 or Mu8 is the value of the bending moment at any section due to a pair of opposite unit
couples applied on the released structure (Figure 8.3e) at B, C or D respectively. Substitution of
Eq. (e) in Eq. (d) gives:

D5 =
∫

(Mu5)s
M
EI

dl + F6

∫
Mu6

M
EI

dl + F7

∫
Mu7

M
EI

dl + F8

∫
Mu8

M
EI

dl (f )
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Any of the last three integrals in this equation is zero because it represents the relative rotation
of the two sections adjacent to B, C or D in the actual structure (subjected to M in Figure 8.3b).
Since the actual structure is continuous at these locations, the relative rotations are zero. Thus,
calculations of D5 by Eq. (c) or Eq. (d) must give the same result.

8.5 Evaluation of integrals for calculation of displacement by
method of virtual work

In the preceding section we have seen that integrals of the type

∫
MujM

EI
dl

often occur in the equations of virtual work. We shall consider here how this particular integral
can be evaluated but other integrals of this type can, of course, be treated in a similar manner.

If a structure consists of m members, the integral can be replaced by a summation

∫
MujM

EI
dl =

∑
members

∫
l
Muj

M
EI

dl (8.7)

so that the problem really lies in the evaluation of the integral for one member.
Let us consider, therefore, a straight member AB of length l and of variable cross section,

subjected to bending (Figure 8.4a). Figure 8.4b shows the bending moment diagram due to an
arbitrary loading. If we divide each ordinate of this diagram by the value of EI at the given
section, we obtain the M/(EI) diagram shown in Figure 8.4c.

Since the member AB is straight, the plot of the bending moment, Muj between A and B due to
a unit virtual force applied at any coordinate j (not located between A and B) must be a straight
line (Figure 8.4d). Let the ordinates of this diagram at A and B be MuAj and MuBj respectively.
The ordinate at any section distance x from A is then

l

x

x
x

x–x–

(a)

A B

dx
M
EI

dx

M

Muj

M/(EI) diagram

Muj
MuAj

MuBj

Centroid

(b)

(d)

(c)

Figure 8.4 Evaluation of integral
∫

l Muj(M/EI)dl. (a) Member AB. (b) Bending moment diagram due
to any real loading. (c) M/(EI) diagram. (d) Bending moment diagram due to a unit virtual
load.
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Muj = MuAj + (MuBj − MuAj)
x
l

(8.8)

Substituting this value of Muj in the integral, we obtain

∫
l
Muj

M
EI

dl = MuAj

∫ l

0

M
EI

dx +
(

MuBj − MuAj

l

)∫ l

0

M
EI

xdx (8.9)

Let us denote the area of the M/(El) diagram by aM = ∫ l
0(M/EI)dx. If x is the distance of the

centroid of the M/(El) diagram from the left-hand end A, then the first moment of the area aM

about A is
∫ l

0(M/EI)xdx = aMx.
Substituting for the integrals in Eq. 8.9,

∫
l

MujM
EI

dl = aM

[
MuAj + (MuBj − MuAj)

x
l

]

The term in square brackets in this equation is equal to the ordinate Muj of the Muj diagram
(Figure 8.4d) at the section through the centroid of the M/(EI) diagram. Therefore,

∫
l

MujM
EI

dl = aMMuj (8.10)

By parallel argument, the other integrals of similar type (see, for instance, Eq. 8.4) can be
evaluated thus:

∫ l

0

VujV
Gar

dx = avVuj (8.11)

∫ l

0

TujT
GJ

dx = aTTuj (8.12)

∫ l

0

NujN
Ea

dx = aNNuj (8.13)

The notation used on the right-hand side of Eqs. 8.10 to 8.13 can be summarized as follows:

aM, aV , aT , and aN are the areas of the M/(EI), V/(Gar), T/(GJ), and N/(Ea) diagrams
respectively

Muj,Vuj,Tuj, and Nuj are the values respectively of Muj,Vuj,Tuj, and Nuj at the centroid
of each of the areas a considered above

The areas and the location of the centroid for some geometrical figures frequently needed
for the application of Eqs. 8.10 to 8.13 are listed in Appendix F. For members with a constant
EI, the values of the integral

∫
MuM dl for geometrical figures which commonly form bending

moment diagrams are given in Appendix H.
We should note that the value of the integral does not depend on the sign convention used for

the internal forces, provided that the same convention is used for the forces due to the real and
virtual loadings.

In the majority of cases, the plots of Muj,Vuj,Tuj, and Nuj are straight lines or can be divided
into parts such that the plot of the ordinate is one straight line; under these circumstances,
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Eqs. 8.10 to 8.13 can be applied. However, in structures with curved members, these plots
are not rectilinear, but it is possible to approximate a curved member by a number of straight
parts over which the diagram of the internal forces due to virtual loading can be considered
straight.

8.5.1 Definite integral of product of two functions

Equations 8.10 to 8.13 may be presented in one general mathematical equation that evaluates
the integral of the product of two functions, y1(x) and y2(x) in the range between x1 and x2

(Figure 8.5a). The first function, y1 is an arbitrary function while the second function, y2 is one
straight line between x1 and x2.

x2∫
x1

y1y2 dx = ay1y2 (8.14)

(a)

(c)

x1

y1 y1

y2 y2

A1

Au1 Au2

A2
EI = 

y2

x2 x1 x2

x1 x2x1 x2
x

x

Centroid a

l

b

d
c

x

x

(b)

l

 Constant
over l

Figure 8.5 Evaluation of the integral of the product of two functions y1(x) and y2(x). (a) General case:
y1 is arbitary function and y2 is one straight line between x1 and x2. (b) Special case: each
of y1 and y2 is a straight line between x1 and x2. (c) Positive end moments for a member of
a plane frame.
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where ay1 is the area of the graph of y1 between x1 and x2; y2 is the ordinate of y2 opposite
to the centroid of ay1. In the special case when each of the two functions is one straight line
between x1 and x2 (Figure 8.5b), the value of the integral is

x2∫
x1

y1 y2 dx = l
6

(2ac + 2bd + ad + bc) (8.15)

where l = x2 − x1; a to d are ordinates defined in Figure 8.5b.

8.5.2 Displacements in plane frames in terms of member end moments

Application of the unit-load theorem to calculate the displacement at a coordinate in a plane
frame, accounting for bending deformations only, involves evaluation of the integral

D =
∫

MMu

EI
dl (8.16)

When the members are straight prismatic and both M and Mu vary linearly over the length
of each member (e.g. when equivalent joint loads are used, Section 8.7), D can be expressed as
the sum of contributions of individual members

D =
∑(

1
EI

∫
M Mu dl

)
member

(8.17)

(
1
EI

∫
M Mu dl

)
member

=
[

l
6EI

(2A1Au1 + 2A2Au2 − A1Au2 − A2Au1)

]
member

(8.18)

The sum in Eq. 8.17 is for all members; l and EI are the length and the flexural rigidity of a typical
member, respectively; A1 and A2 are member end moments due to the actual load; Au1 and Au2

are member end moments due to the unit virtual load. Throughout this book, a clockwise end
moment for a member of a plane frame is considered positive (Figure 8.5c). Equation 8.18 is
derived by Eq. 8.15 substituting A1,−A2,Au1 and −Au2 for a, b, c and d respectively. Note that
a clockwise end moment produces positive bending moment at the left-hand end of the member,
but produces negative bending moment at the right-hand end.

8.6 Truss deflection

In a plane or space truss composed of m pin-jointed members, with loads applied solely at joints,
the only internal forces present are axial, so that Eq. 8.4 can be written

Dj =
m∑

i=1

∫
l

NujNi

Ea
dl (8.19)

Generally, the cross section of any member is constant along its length. Equation 8.19 can
therefore be written

Dj =
m∑

i=1

NuijNi

Eiai
li (8.20)
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where m is the number of members, Nuij is the axial force in member i due to a virtual unit load
at j, and Nili/(Eiai) is the change in length of a member caused by the real loads, assuming that
the material obeys Hooke’s law.

Equation 8.20 can also be written in the form

Dj =
m∑

i=1

Nuij �i (8.21)

where �i is the real change in length of the ith member. This form is used when the deflection
due to causes other than applied loading is required, for example, in the case of a change in
temperature of some members.

When the material obeys Hooke’s law,

�i = �ij +
(

Nl
aE

)
i

(8.22)

where �i is the free (unrestrained) elongation of the member due to temperature; Ni is the
axial force in the member due to all effects (including the effect of temperature when the truss is
statically indeterminate). The unrestrained elongation of the member due to a rise of temperature
T degrees is

�it = αTli (8.23)

where li is the length of the member and α is the coefficient of thermal expansion. Equations 8.20
and 8.21 are the same as Eqs. 8.5 and 7.51 respectively. Equation 8.21 is valid for linear and
nonlinear trusses.

Example 8.1: Plane truss
The plane truss of Figure 8.6a is subjected to two equal loads P at E and D. The cross-
sectional area of the members labeled 1, 2, 3, 4, and 5 is a, and that of members 6 and 7 is
1.25a. Determine the horizontal displacement D1, at joint C, and the relative movement,
D2, of joints B and E.

The internal forces in the members due to the actual loading are calculated by simple
statics and are given in Figure 8.6b.

The internal forces due to a unit virtual load at the coordinates D1 and D2 are then
determined (Figures 8.6c and d). The values obtained can be checked by considering the
equilibrium of the joints.

We have taken axial forces as positive when tensile, which is the common practice.
However, the final result is not affected by the sign convention used.

The displacements D1 and D2 are calculated by Eq. 8.20. It is convenient to use a tabular
form, as shown in Table 8.1. The table is self-explanatory, the displacement D1 or D2 being
equal to the sum of the appropriate column of NuNl/(Ea). Thus, D1 =−2.334 Pl/(Ea) and
D2 = −0.341Pl/(Ea).

The negative sign of D1 indicates that the displacement is in a direction opposite to the
direction of the virtual load in Figure 8.6c. This means that the horizontal translation of
joint C is to the right. Likewise, the negative sign of D2 means that the relative movement
of B and E is opposite to the directions of the virtual forces assumed, that is, separation.



234 Determination of displacements by virtual work

l

E
P D

P
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l

0.75l
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–P PP
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–0
.208P –1.458P

1.167P1.167P

0
0

0.125P
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0
00 0

0

0

1
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1
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–0.8

–0.8
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–1

0.875P

(b)

(c)

(d)

Figure 8.6 Plane truss considered in Examples 8.1 and 8.2.

Example 8.2: Deflection due to temperature: statically determinate truss
For the same truss of Figure 8.6a, find the displacement D2 due to a rise in temperature
of members 5 and 6 by 30 degrees. (The loads P are not acting in this case.) Assume the
coefficient of thermal expansion α = 0.6 × 10−5 per degree.
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Table 8.1 Example 8.1: Calculation of Displacements D1 and D2.

Member Properties of member Actual loading Calculation of D1 Calculation of D2

Length l Area of cross
section a

l
Ea

N
Nu NuNl

Ea
Nu NuNl

Ea

1 1 1 1 1.167 −1 –1.167 –0.8 –0.933
2 1 1 1 1.167 −1 –1.167 0 0
3 0.75 1 0.75 0 0 0 –0.6 0
4 0.75 1 0.75 0 0 0 –0.6 0
5 1 1 1 –1 0 0 –0.8 +0.800
6 1.25 1.25 1 –1.458 0 0 0 0
7 1.25 1.25 1 –0.208 0 0 1 –0.208

Multiplier l a l/(Ea) P – Pl/(Ea) – Pl/(Ea)

–2.334 –0.341

A unit virtual force is applied in the same manner as in Figure 8.6d, so that the forces in
the members, indicated on the figure, can be used again.

The real change in length occurs in two members only, so that from Eq. 8.23:

�5 = 0.6 × 10−5 × 30 × l = 18 × 10−5l

and

�6 = 0.6 × 10−5 × 30 × 1.25l = 22.5 × 10−5l

Applying Eq. 8.21 with the summation carried out for members 5 and 6 only

D2 =
∑
i=5,6

Nui2 �i

or

D2 = −0.8(18 × 10−5l) + 0 × (22.5 × 10−5l) = −14.4 × 10−5l

It is clear that the same method of calculation can be used if �i is due to any other cause,
for example, lack of fit (see Section 4.4).

8.7 Equivalent joint loading

In the analysis of structures by the force method we have to know the displacements at a number
of coordinates usually chosen at the joints due to several loading arrangements. This requires
that the loads be applied at joints only, but any loads acting between joints can be replaced
by equivalent loads acting at the joints. The equivalent loads are chosen so that the resulting
displacements at the joints are the same as the displacements due to the actual loading. The
displacements at points other than the joints will not necessarily be equal to the displacements
due to the actual loading.
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Consider the beam in Figure 8.7a for which the displacements at the coordinates 1 and 2 at B
(Figure 8.7b) are required. We consider B as a joint between members AB and BC. In Figure 8.7c,
the displacements at joints B and C are restrained and the fixed-end forces due to the actual
loading on the restrained members are determined. The formulas in Appendix C may be used
for this purpose. The fixed-end forces at each joint are then totaled and reversed on the actual
structure, as in Figure 8.7d. These reversed forces are statically equivalent to the actual loading
on the structure and produce the same displacement at the coordinates 1 and 2 as the actual
loading. The rotation at C is also equal to the rotation due to the actual loading, but this is not
true for the displacements at the other joints A and D. This statement can be proved as follows.

The displacements at 1 and 2 and the rotation at C can be obtained by superposition of the
displacements due to the loadings under the conditions shown in Figures 8.7c and d. However,
the forces in Figure 8.7c produce no displacements at the restrained joints B and C. Removal of
the three restraining forces is equivalent to the application of the forces in Figure 8.7d, and it
follows that due to these forces the structure will undergo displacements at joints B and C equal
to the displacements due to the actual loading.

From the above, we can see that restraints have to be introduced only at the coordinates
where the deflection is required. Sometimes, additional restraints may be introduced at other
convenient locations (such as C in the structure considered above) in order to facilitate the
calculation of the fixed-end forces on the structure.

It is apparent that the use of the equivalent joint loading results in the same reactions at
supports as the actual loading. The internal forces at the ends of the members caused by the
equivalent joint loading, when added to the fixed-end forces caused by the actual loading, give
the end-forces in the actual condition.

(b)
2

1

(c)

(a)

B
A C D

(d)
F3

F1

F2

Figure 8.7 Equivalent joint loading. (a) Beam. (b) Coordinate system. (c) Restrained condition. (d)
Restraining forces reversed on actual structure.
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The advantage of the use of equivalent loads concentrated at the joints instead of the actual
loading is that the diagrams of the stress resultants become straight lines. As a result, the evalu-
ation of the integrals of the type involved in Eq. 8.4 can be done by Eq. 8.15. This is illustrated
in Example 8.5.

8.8 Deflection of beams and frames

The main internal forces in beams and frames are bending moments and shearing forces. Axial
forces and twisting moments are either absent or they make little contribution to the lateral
deflections and rotations. For this reason, in most cases, the terms in Eq. 8.4 representing the
contribution of the axial force and torsion can be omitted when lateral deflections or rotations
are calculated. It follows that the displacement in beams subjected to bending moment and shear
is given by

Dj =
∫

MujM
EI

dl +
∫

VujV
Gar

dl (8.24)

Furthermore, the cross section of beams generally used in practice is such that contribution
of shear to deflection is small and can be neglected. Thus, the deflection is given by

Dj =
∫

MujM
EI

dl (8.25)

From Eq. 7.23 the change in slope of the deflected axis of a beam along an element of length dl
is dθ = −(M/EI) dl. Substituting in Eq. 8.25,

Dj = −
∫

Mujdθ or Dj =
∫

Muj ψ dl (8.26)

where ψ = M/EI = the curvature.
The angle θ = dy/dx and dθ/dx = d2y/dx2, where y is the deflection. With the positive direc-

tions of x and y defined in Figure 7.5b, the angle change and the bending moment indicated in
Figure 7.5b are negative and positive respectively.

Equation 8.26 can be used when we want to find displacements due to causes other than
external loading, for instance, a temperature differential between the top and bottom surfaces
of a beam. The use of Eq. 8.26 will be illustrated by Example 8.6.

Example 8.3: Simply-supported beam with overhanging end
Figure 8.8a shows a beam ABC with an overhanging end. Find the vertical deflection D1

at C and the angular rotation D2 at A. The beam has a constant flexural rigidity EI. Only
the deformation caused by bending is required.

The bending moment diagram is shown in Figure 8.8c with the ordinates plotted on the
tension side of the beam. Figures 8.8e and f show the bending moments due to a unit force
at the coordinates 1 and 2 respectively. Because the second moment of area of the beam is
constant, the calculation of the areas and the location of the centroid can be carried out
for the M diagram instead of the M/(EI) diagram, the resulting values being divided by
EI. The M diagram is divided into parts for which the areas and the centroids are easily
determined, with the additional provision that the Muj diagram corresponding to each part
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3 q per unit length
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25 qb

24b 6b

(a) (b)

(c)

(d)
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         qb2

Multiplier  :

Multipliers
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+

4.5b
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aM3 = –2448

aM2 = –450aM4 = 3456

20416 b

–

+
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216
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For ordinates: qb2/EI
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1
+

1/2 1/3

216

Figure 8.8 Beam analyzed in Example 8.3. (a) Beam. (b) Coordinate system. (c) M diagram. (d) Areas
and centroids of M/EI diagram. (e) Mu1 diagram. (f) Mu2 diagram.

is a straight line. These areas and their centroids are shown in Figure 8.8d (see Appendix F).
Note that the area of a positive bending moment diagram is given a positive sign, and that
only the location of the centroid along the beam need be determined.

As a next step, we require the ordinates of the Muj diagrams corresponding to the centroid
of each area (see Figures 8.8e and f).

The displacements D1 and D2 are given by Eq. 8.8 but the integral can be evaluated with
the help of Eq. 8.10 for the different parts of the M diagram.

Thus,

Dj =
∑

aMMuj
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where Muj denotes the ordinate at the centroid of the bending moment M-diagram. Hence,

D1 = qb4

EI
(108 × 4.5 + 450 × 4 + 2,448 × 4 − 3,456 × 3) = 1,710

EI
qb4

and

D2 = qb3

EI

(
−2,448 × 1

3
+ 3,456 × 1

2

)
= 912

EI
qb3

The positive sign of D1 and D2 indicates that the vertical deflection at C and the rotation
at A are in the directions indicated by the coordinates in Figure 8.8b.

Example 8.4: Deflection due to shear in deep and shallow beams
Find the ratio of the contribution of shear to the contribution of bending moment in
the total deflection at the center of a steel beam of I cross section, carrying a uniformly
distributed load over a simple span (Figure 8.9a). Other conditions of the problem are: the
second moment of area = I; ar � aw = area of web; G/E = 0.4; span = l; and intensity of
loading = q per unit length.

(a)

(b)

(c)

(d) (f)

(e)

q per unit length

l

l/2 l/2

1

+

aM1 = ql3

ql2

24EI
aM2 = ql3

24EI

av1 = 
ql2

8Gar av2 = 
ql2

8Gar

8

5
32

ql
2

ql
2

3l
16

3l
16

+

+

–

–
l 5

32
l

1
2

1
2

l/4

Figure 8.9 Beam considered in Example 8.4. (a) Beam. (b) Coordinate system. (c) M diagram. (d) Mu1

diagram. (e) V diagram. (f) Vu1 diagram.
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Figures 8.9c and e show the bending moment and shearing force diagrams due to the real
loading. A unit virtual load is applied at coordinate 1 (Figure 8.9b) where the deflection is
required. The corresponding plots of the bending moment Mu1 and the shearing force Vu1

are shown in Figures 8.9d and f.
The M and V diagrams are now divided into two parts such that the correspond-

ing portions of the Mu1 and Vu1 diagrams are straight lines. The ordinates Mu1 and
Vu1 corresponding to the centroids of the two parts of the M and V diagrams are then
determined.

The total deflection at the center is

D1 =
∫

Mu1M dl
EI

+
∫

Vu1V dl
Gar

(8.27)

Of this, the deflection due to bending is

∫
Mu1M dl

EI
=
∑

aMMu1 = 2
(

ql3

24EI

)(
5l
32

)
= 5

384
ql4

EI

and the deflection due to shear is

∫
Vu1V dl

Gar
=
∑

aVVu1 = 2
(

ql2

8Gar

)(
1
2

)
= ql2

8Gar

Hence,

Deflection due to shear
Deflection due to bending

= 9.6
(

E
G

)(
I

l2ar

)
(8.28)

This equation is valid for simply-supported beams of any cross section subjected to a
uniform load. In our case, substituting G = 0.4E and ar = aw, we find for a steel beam of I
section

Deflection due to shear
Deflection due to bending

= 24
I

l2aw
= c

(
h
l

)2

(8.29)

where h is the height of the I section, and

c = 24I
awh2 (8.30)

We can see that the value of c depends on the proportions of the section. For rolled steel
sections, commonly used in beams, c varies between 7 and 20.

We may note that the depth/span ratio h/l in the majority of practical I-beams lies
between 1/10 and 1/20. For uniformly loaded simple beams of rectangular cross section,
with G/E = 0.4 and a depth/span ratio h/l = 1/5, 1/10, and 1/15, the magnitude of shear
deflection represents, respectively, 9.6, 2.4, and 1.07 percent of the deflection due to bend-
ing. In plate girders the deflections due to shear can be as high as 15 to 25 percent of the
deflection due to bending.
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Example 8.5: Deflection calculation using equivalent joint loading
Consider a uniformly loaded simply-supported beam AB, shown in Figure 8.10a. In
Example 8.4 we found the deflection at the center using the actual loading. In this example
the equivalent joint loading will be used to determine the deflection at the center and the
rotation at a support. The deflection due to shear is neglected.

The coordinate system for the required displacements is shown in Figure 8.10b, and
Figure 8.10c gives the fixed-end forces due to the actual loading on the restrained beam.
The resultants of these forces are reversed and applied to the actual structure, as shown
in Figure 8.10d. The bending moment diagram due to the reversed loading is given in
Figure 8.10e, and the bending moment diagrams due to a unit force at coordinates 1 and
2 are plotted in Figures 8.10f and g.

The displacements D1 and D2 can then be calculated from Eq. 8.10 or 8.15 or using the
data of Appendix H. Thus,

D1 =
∫

Mu1M dl
EI

= 2
(

ql3

96EI
× l

8
+ ql3

32EI
× l

6

)
= 5ql4

384EI

(a) q per unit length

l

(b)
12

(c)

ql2

48
ql2

48

ql2

48
ql2

48

ql
4

ql
4

–

(d)
ql2

48

ql
2 ql2

48
–

(f)

Multiplier: l

1
4

1
6

1
8

(e)

1
8

1
48

Multiplier: ql2 am1
am1 =

am2

ql3

96EI

am2 =
ql3

32EI

(g)

1
2

1

Figure 8.10 Beam considered in Example 8.9. (a) Beam loading. (b) Coordinate system. (c) Restraint
conditions. (d) Restraining forces reversed on actual structure. (e) M diagram. (f) Mu1

diagram. (g) Mu2 diagram.
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and

D2 =
∫

Mu2M dl
EI

= 2
(

ql3

96EI
+ ql3

32EI

)
1
2

= ql3

24EI

These values are, of course, the same as the values listed in Appendix B.

Example 8.6: Deflection due to temperature gradient
Find the deflection at the center of a simply-supported beam of length l and depth h
(Figure 8.11a) caused by a rise in temperature which varies linearly between the top and
bottom of the beam (Figure 8.11c). The coefficient of thermal expansion is α per degree.

Consider an element ABCD of length dl, shown in Figure 8.11c. It is convenient to
assume AB to be fixed in position. The rise of temperature will then cause a displacement
of CD to C′D′. The angular rotation of CD with respect to AB is

(a)

(b)

(c)

(d)

l

h

x

y

1

Top

Bottom
Rise of
temperature

t

dl

h

B C

A
D

D′

C′

dθ =
α t dl

α t dl

h

l/4 +

Figure 8.11 Beam considered in Example 8.10. (a) Beam. (b) Coordinate system. (c) Deformation of
an element of length dl. (d) M1

u diagram.
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dθ = αt dl
h

(8.31)

Figure 8.11d shows the plot of the bending moment Mu1 due to a unit virtual load at
coordinate 1 (Figure 8.11b), corresponding to the vertical deflection at the center of the
span.

Substituting Eq. 8.31 in Eq. 8.26,

D1 = −αt
h

∫
Mu1 dl

The integral
∫

Mu1 dl is the area under the Mu1, diagram, that is,

∫
Mu1 dl = l2

8

whence

D1 = αtl2

8h

The minus sign indicates that the deflection is in a direction opposite to the coordinate 1,
that is, upward (as expected).

Example 8.7: Effect of twisting combined with bending
The tube ABC shown in Figure 8.12a is cantilevered with AB and BC in a horizontal plane.
A vertical load is applied at the free end C. Find the vertical deflection at C due to bending
and torsion. The tube has a constant cross section. Take G = 0.4E and note that J = 2I.

The M and T diagrams corresponding to the real loadings are shown in Figures 8.11c
and d, in which the areas and the location of their centroids are indicated. A unit virtual load
is applied at coordinate 1, that is, vertically at C, where the deflection is required. The Mu1

and Tu1 diagrams corresponding to the virtual loading are shown in Figures 8.12e and f.
Applying Eq. 8.4, but including the bending and twisting moment terms only, we have

D1 =
∫

Mu1M
EI

dl +
∫

Tu1T
GJ

dl

Evaluating the integrals for the parts AB and BC by the use of Eq. 8.10 and 8.12 and
then summing, we obtain

D1 =
∑

aMMu1 +
∑

aTTu1

=
(

−4.5Pb2

EI

)
(−2b) +

(
−0.5Pb2

EI

)(
−2b

3

)
+
(

−3.0Pb2

GJ

)
(−b)

or

D1 = 9.33
Pb3

EI
+ 3.00Pb3

GJ
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C

A

A B B C A B B C

P

B

A

B
C

A

b

(a)

(c)

(d)

(e)

(f)

3b

2b
2b/3

Top view

Front view

Vertical load
P

C, B

(b)

1

–

3Pb

Pb
Pb

aM1 = –4.5 Pb2/EI aM2 = –0.5 Pb2/EI aT1 = –3.0 Pb2/GJ

T = 0

B C

Tu1= 0

3b

– 2b
b b

bA B
–

2b/3
–

Figure 8.12 Tube considered in Example 8.11. (a) Tube. (b) Coordinate system. (c) M diagram. (d) T
diagram. (e) Mu1 diagram. (f) Tu1 diagram.

Now,

GJ = 0.8EI

Substituting,

D1 = 13.08
Pb3

EI

Example 8.8: Plane frame: displacements due to bending, axial and shear
deformations
The rigid frame of Figure 8.13a is made of a steel I section which has the following
properties: a=134×10−6l2, ar =aweb =65×10−6l2, and I =53×10−9l4. Also, G=0.4E.

Determine the contribution of bending, axial force, and shear deformations to the
displacement at the three coordinates in Figure 8.13b.

First, we replace the actual forces by equivalent loads at the joints A, B, C, and D. To
do this, the joints are restrained (Figure 8.13c), and the fixed-end forces are determined by
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2 3

1

4 5

6

B C

B

A

C

D

Pl
P

E

A

P
D

(a)

(b)

1 to 6 are member ends

l/2 l/2

l/2

l/2 l/2
l

1

2

3

P
B

B

E

C

D

A

B C

D

A

P

C

(c)

(d)

Pl
8

Pl
8

Pl
8

–

Pl
8

P
Pl P/2

P/2

2
–

Pl
8

–

P
2

–

P
2

–

P
2

–

P
2

–

2

1

3

Figure 8.13 Frame considered in Example 8.8. (a) Frame geometry and loading. (b) Coordinate system.
(c) Fixed-end forces. (d) Equivalent joint loading.

the use of the formulas in Appendix C. These forces are reversed and added to the actual
forces acting at the joints (only the couple Pl, in this example) to obtain the equivalent
joint loading shown in Figure 8.13d. We then proceed to find the displacements due to the
equivalent loading.

The contribution of the three types of deformation is now determined by Eqs. 8.10, 8.11
and 8.13. We will work with the equivalent joint loading; alternatively, the actual loads
can, of course, be used.

(a) BENDING DEFORMATION. Figure 8.14 shows diagrams for the bending moment Ms

due to the equivalent joint loads, and the bending moments Mu1, Mu2 and Mu3 due to unit
load applied separately at the coordinates. We use Eq. 8.10:

Dj =
∫

Muj
Ms

EI
dl with j = 1, 2, 3
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B

D

C

A

D

B C

A

–

–

0.375

0.125
1.375

1.875

+

Ms

+

1

1 1

1

1

1

1

1

1B

A

B

A

C

D

C

D

Mu1

Mu2 Mu3

F1 = 1

F2 = 1
F3 = 1

0.5

0.5

0.5

0.5

0.5+

–

+

+

–

–

–

Figure 8.14 Analysis of the frame in Figure 5.2a by the force method. Ms is the bending moment of
the released structure due to the equivalent joint loading in Figure 8.13d; Mu1, Mu2 or Mu3

is bending moment due to unit load at coordinate 1, 2 or 3.

We evaluate the integrals by applying Eq. 8.15 to members AB, BC and CD:

D1 = Pl3

EI

[
1
6

(−2 × 1.875 × 1 − 2 × 1.375 − 1.375 × 1 − 1.875 × 1)

+1
6

(−2 × 0.375 × 1 + 0.125 × 1)

]
= −1.729

Pl3

EI
= −32.63 × 106 P

El

D2 = Pl3

EI

⎡
⎢⎢⎣

1
6

(2 × 1.875 × 0.5 − 2 × 1.375 × 0.5 + 1.375 × 0.5 − 1.875 × 0.5)

+1
6

(−2 × 0.375 × 0.5 + 2 × 0.125 × 0.5 − 0.375 × 0.5 + 0.125 × 0.5)

⎤
⎥⎥⎦

= −20.83 × 10−3 Pl3

EI
= −393.1 × 103 P

El

D3 = 1.75
Pl2

EI
= 33.02 × 106 P

El2

Because Mu3 is constant, the integral for D3 is simply equal to minus the area of Ms divided
by EI.

(b) DEFORMATION DUE TO AXIAL FORCES. The axial forces in the members due to the
equivalent joint loading are equal to −P for AB and zero for the other members. A unit
load F1 = 1 produces an axial force equal to +1 in AB and zero in other members. Thus,
Eq. 8.13 gives



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Determination of displacements by virtual work 247

D1 = − Pl
Ea

= −7.463 × 103 P
El

D2 = 0

D3 = 0

(c) SHEAR DEFORMATION. The shearing forces in the members due to the equivalent joint
loading are equal to P/2 in each of AB and BC and equal to zero in CD. F1 = 1 produces
shearing force equal to −1 in BC and zero in the other members. F2 = 1 produces shearing
force equal to +1 in AB, zero in BC, and −1 in DC; F3 = 1 produces no shear. Application
of Eq. 8.11 gives:

D1 = −0.5
Pl

Gar
= −19.23 × 103 P

El

D2 = 0.5
Pl

Gar
= 19.23 × 103 P

El

D3 = 0

A comparison of the contributions to the displacement made by the three types of deform-
ation shows that, in the present example, the displacement caused by bending is much
greater than that due to the axial forces and shear. This is true in most practical cases and,
for this reason, the displacements caused by the axial and shear deformations are often
neglected.

Example 8.9: Plane frame: flexibility matrix by unit-load theorem
Determine the flexibility matrix of the frame of Example 8.8 corresponding to the three
coordinates in Figure 8.13b. Consider the bending deformation only.

In Example 5.2, we have used the displacement method to analyze a frame, which is
the same as the frame in Figure 8.13a, but with end D totally fixed (Figure 5.2a). The
calculations in Example 8.8 and the present example complete Steps 1 to 3 to solve the
same problem by the force method (see Section 4.6). Solve the geometry (compatibility)
Eq. 4.11 to obtain the forces {F}, the reaction components at D, that will eliminate the
displacements at the three coordinates.

When only bending deformation is considered, the elements of the flexibility matrix are
given by Eq. 8.5 as:

fij =
∫

MujMuj

EI
dl (8.32)

The bending moment diagrams due to unit forces at the coordinates are shown in
Figures 8.14b, c and d. We apply Eq. 8.32 to generate the elements of the lower triangle of a
3×3 flexibility matrix, evaluating the integrals by either Eq. 8.10, Eq. 8.15 or Appendix H.
This gives:

[f ] = l
EI

⎡
⎣(4/3)l2 0.25l2 −1.5l

0.25l2 0.375l2 −0.625l
−1.5l −0.625l 2.5

⎤
⎦
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We show below, as an example, the calculation of f22 using Mu2 (Figure 8.14), Eq. 8.15
for member AB and Eq. 8.10 for BC and CD:

f22 = l3

EI

[
1
6

(2 × 0.5 × 0.5 + 2 × 0.5 × 0.5 − 2 × 0.5 × 0.5) + 0.5 × 0.5 + 1
6

×0.5 × 0.5] = 0.375
l3

EI

Application of the geometry Eq. 4.11 and its solution gives (using the values of {D}
determined in Example 8.8):

[f ]{F} = −{D}

l
EI

⎡
⎣(4/3)l2 0.25l2 −1.5l

0.25l2 0.375l2 −0.625l
−1.5l −0.625l 2.5

⎤
⎦ {F} = −

⎧⎨
⎩

−1.729l
−20.83 × 10−3l

1.75

⎫⎬
⎭ Pl2

EI

{F} = P {1.219,−1.208,−0.2708L}

We may now wish to use these reaction components to verify the ordinates of the bending
moment diagram determined by the displacement method in Example 5.2 (Figure 5.2h).
Note that for this purpose the actual loads, not the equivalent joint loads, must be used.

Example 8.10: Plane truss: analysis by the force method
Find the forces in the members of the truss shown in Figure 8.15a due to: (i) the force
P, and (ii) a rise of temperature T degrees in all members. The modulus of elasticity E,
the cross-sectional area a, and the thermal expansion coefficient α are the same for all
members.

We follow the five steps of the force method (Section 4.6). In Step 1, the structure is
released by cutting a member; the two arrows in Figure 8.15b define a system of one
coordinate. In Step 2, we calculate the displacement D1 at the coordinate for each load
case using Eq. 8.20 or 8.21.

(D1)Case i =
∑(

Nu1Ns

Ea
l
)

i

= 1
Ea

[
P
√

2(1)l
√

2 − P
(

− 1√
2

)
l
]

= 2.707
Pl
Ea

(D1)Case ii =
∑

(Nu1 �t)i with �ti = α T li

= α T
[
3
(

− 1√
2

)
l + 2(1)

√
2 l
]

= 0.7071 α T l
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P

–P

P

P

l

l

(a)

(d) (e) (f)

(b) (c)

1

0

0

0

{Ns}

{Nu1} {N}case i

F1 = 1

2

2–1/

2
–1

/

2
–1

/

1 1

0.
44

2 
P

0.
78

9 
P–0.625 P

–0
.5

58
 P

0.442 P

{N}case ii

0.
11

6E
aα

T

–0
.1

63
–0.163

0.
11

6E
aα

T

0.116EaαT

Eaα
T

EaαT

Figure 8.15 Analysis of a plane truss by force method, Example 8.10. (a) Dimensions and applied load.
(b) Released structure and coordinate system. (c) Forces in members due to the given load
on the released stucture. (d) Forces in members due to F1 = 1 on the released structure.
(e) and (f) Axial forces in the actual structure in cases i and ii respectively.

The subscript i refers to any member and the summations are for all members.
In Step 3 we determine the flexibility matrix [f ]1×1 (Eq. 8.6):

f11 =
∑(

N2
u1

l
Ea

)
i

= 1
Ea

[
3
(

− 1√
2

)2

l + 2(1)2 l
√

2

]
= 4.328

l
Ea

In Step 4 we solve the geometry (compatibility) equation (see Eq. 4.11)

[F1Case i F1Case ii] = [f11]−1[−D1Case i − D1Case ii]

[F1Case i F1Case ii] =
[
4.328

l
Ea

]−1 [
−2.707

Pl
Ea

− 0.7071 α T l
]

= [−0.628P − 0.163Ea α T]

Step 5 is done by inspection. Superposition of {Ns} and (−0.625P){Nu1} (Figures 8.15c
and d) gives the forces in the actual structure in case i (Figure 8.14e). For case ii,
the forces in the actual structure are simply equal to (−0.163 E a α T){Nu1} (see
Figure 8.15f).
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Example 8.11: Arch with a tie: calculation of displacements needed
in force method
Verify the values of D1 and f11 used in Example 4.5 (Eqs. b and d).

The loads in Figure 4.5a, applied on the released structure in Figure 4.5b, produce zero
axial force in the tie AB and induce bending moments that vary linearly over the arch
segments; the bending moment ordinates in the left-hand half of the arch are:

{MsA,MsC, MsD,MsE} = {0,800,1280,1440}kN-m

(Ns)AB = 0

Equal and opposite forces F1 = 1 on the released structure in Figure 4.5b give:

{Mu1A,Mu1C, Mu1D,Mu1E} = {0,−2.222,−3.556,−4.000}N-m/N

(Nu1)AB = 0

The lengths of the segments of the left-hand half of the arch are:

{lAC, lCD, lDE} = {4.575,4.217,4.025}m

Considering only bending deformation of the arch and axial deformation of the tie,

D1Case 1 =
∫

Arch

Mu1 Ms

EI
dl +

(
Nu1 Ns l

Ea

)
Tie

Because Ns = 0, the second term is nil. The integral in the first term is equal to two times
the sum of its values for segments AC, CD and DE; e.g. for CD, Eq. 8.15 gives:

D∫
C

Mu1 Ms

EI
dl = 103

EI

[
4.217

6
(−2 × 2.222 × 800 − 2 × 3.556 × 1280 − 2.222

×1280 − 3.556 × 800)]

= −0.15111m

D1 Case 1 = 2(−0.03177 − 0.15111 − 0.24267) = −0.85109m

The minus sign means widening the gap at the cut section in the tie. A rise in temperature
of T = 30◦ reduces the gap by (�Tl)AB. Thus, the loads in Figure 4.5a combined with the
rise in temperature of the tie give:

D1 Case 2 = −0.85109 + 10 × 10−6(30)24 = −0.84389m
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Equal and opposite forces F1 = 1 produce at coordinate 1 (Figure 4.5b) the displacement:

f11 =
∫

Arch

Mu1
2

E I
dl +

(
Nu1

2 l
Ea

)
Tie

= 2
85.32 × 106 (7.529 + 35.822 + 57.516) + 1 × 24.0(

2000 × 10−6
) (

200 × 109
)

= 2.4242 × 10−6 m/N

Evaluation of
∫

Mu1
2 dl over the segments AC, CD and DE is determined by Eq. 8.15,

giving 7.529, 35.822, and 57.516m3; the value of (EI)Arch = 85.32 × 106 N-m2.

8.9 General

The method of virtual work is general. It can be used for the calculation of the displacements
in plane and space structures, statically determinate or indeterminate. However, in all cases the
structure must first be analyzed and the stress resultants have to be determined. The basis of the
method is the principle of virtual work relating a system of forces in equilibrium to a compatible
system of displacements.

Calculation of displacement by virtual work involves the determination of the internal forces
due to the actual loading and due to a unit load applied at each point where the displacement is
required. In the general case of application of the method of virtual work, four types of stress
resultants, axial force, bending moment, shear and torsion, contribute to the displacements.
In pin-jointed trusses, the axial forces are the only contributors. The virtual work expressions
involve integrals of a product of two functions; the integral can be conveniently evaluated by
taking advantage of the fact that one of the two functions is generally linear.

To use the method of virtual work in frames, where loads are frequently applied at any point
in the member, it is convenient to replace the actual loading by equivalent joint loading which
induces the same displacements at the joints whose displacement is required as the real loading.

The procedure for the determination of deflection of beams and frames is straightforward. In
frames, the displacements are mainly caused by the bending moments, and the other internal
forces are often neglected. In some cases, for instance, in plate girders, it may, nevertheless, be
prudent to verify that this is justified.

The examples in this chapter are limited to structures with straight members of constant cross
section. The method of virtual work can, however, be applied also to structures with curved
members and a variable cross section. One way of doing this is by approximating the actual
structure to a structure composed of straight segments of constant cross section.

It is worth noting that the method of virtual work can take account of all four types of internal
forces while the other methods discussed in Chapter 10 account for only one or the other type
of stress resultant.

Problems

8.1 Using the method of virtual work, find D1, the vertical deflection of joint H, and D2, the
relative translation in the direction of OB of joints O and B of the truss shown in the
figure. The changes in length of the bars (in. or cm) are indicated in the figure.
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0.16

l l l

l

A

C

0

O

G H
B

FE

0.20
0.20

0.
20

– 
0.

10

– 0.10 – 0.10 0

– 0.10

– 
0.

05

– 
0.

05

0.16

Prob. 8.1

8.2 Find the displacement at coordinate 1 which represents the relative translation of joints
C and B of the truss in the figure. Assume l/(Ea) = B to be constant for all members. If a
member CB is added with the same l/(Ea) value as the other members, what are the forces
in the members caused by the same loading?

b

b

C

A B

D P

1

1

Prob. 8.2

8.3 Find the displacement along the line of action of the force P for the space truss shown in
the figure. The value of Ea is the same for all members.

120°

A
P

CBD

h

A
P

b = h/2

b/2

CD

B

ElevationPlan

30° 30°

Prob. 8.3

8.4 For the plane truss shown in the figure, find: (a) the vertical deflection at E due to the given
loads, (b) the camber at E in the unloaded truss if member EF is shortened by b/2000,
and (c) the forces in all members if a member is added between C and F and the truss is
subjected to the given loads. Consider Ea = constant for all members.
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1.5 P

C

A

D

B

P

FE

b b b

3b / 4

Prob. 8.4

8.5 Imperial units. For the plane truss shown in the figure, find: (a) the deflection at C due
to the load P, (b) the vertical deflection at C in the unloaded truss if members DE and
EC are each shortened by 1/8 in., and (c) the forces in all members if a member of cross-
sectional area of 4 in.2 is added between B and D and the truss is subjected to the load P.
Assume E = 30,000 ksi and the cross-sectional area of the members as indicated in the
figure.

10 ft
or 3 m

Values in
brackets are
cross-sectional
areas in mm2

7.5 ft
or 2.25 m

7.5 ft
or 2.25 m

4 in2

(2400)

5 in2

(3000)
5 in2

(3000)
P = 20 k or 100 kN

4 in 2 (2400)

8 
in

2
(4

80
0)

2 
in

2

(1
20

0)

E

C
B

A

D

Prob. 8.5 (Imperial units) or prob. 8.6 (SI units)

8.6 SI units. For the plane truss shown in the figure, find: (a) the deflection at C due to the
load P, (b) the vertical deflection at C in the unloaded truss if members DE and EC are
each shortened by 3 mm, and (c) the forces in all members if a member of cross-sectional
area of 2400 mm2 is added between B and D and the truss is subjected to the load P.
Assume E = 200GN/m2 and the cross-sectional area of the members as indicated in the
figure.

8.7 Find the forces in all members of the truss shown in the figure. Assume l/Ea to be the same
for all members.

8.8 Determine the displacements D1, D2, and D3 in directions x, y, and z respectively, at node
A of the space truss in Prob. 2.2. Assume Ea = constant for all members.

8.9 The statically indeterminate space truss in Prob. 3.14 is released by cutting members AC,
BD, AH, BE, CF, and DG. Find the displacements D1 and D2 in the x and y directions
respectively, at node A. Also determine the flexibility coefficient f33 of the released structure,
with coordinate 3 representing the axial force or the relative displacement at the cut section
in member AC. Assume all members have the same value of Ea.



254 Determination of displacements by virtual work

l

l

l

D
C

B

A F

E
P

P

Prob. 8.7

8.10 Find the forces in the plane truss shown due to the combined effect of the force P and a
drop of temperature T degrees of ABC only. Assume Ea = constant for all members and
αT = P/(aE), where α = coefficient of thermal expansion. Give the answers only for the
six members numbered 1 to 6 in the figure.

l

ll

5
l

1

3
4

2

6

E P
FD

A B C

Prob. 8.10

8.11 For the space truss of Prob. 3.16, determine the forces in the members and the displacement
at node A in the y direction due to a horizontal force P at the same location. Assume
a= constant for all members.

8.12 Find the fixed-end moments in the beam shown.

q

l/4 3l/4

A B

Prob. 8.12
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8.13 Find the fixed-end moments in the beam shown.

q/unit length

Tangent

h

Width of beam = constant

Parabola

2h

l

Prob. 8.13

8.14 Find the flexibility matrix corresponding to the coordinates 1 and 2 of the beam shown in
the figure. Consider only bending deformation. Apply Eq. 8.32 evaluting the integral by
Eq. 8.15 and verifying the answer by Eq. 8.18.

Flexural
rigidity 2EI

l/2

A C B 21
EI

l/2

Prob. 8.14

8.15 Assuming that the displacement of the beam AB is prevented at any two of the coordinates
shown, find the flexibility matrix corresponding to the other two. Consider both the bend-
ing and shear deformations. Use this matrix to derive the stiffness matrix corresponding
to the four coordinates. Solution of this problem is included in Section 14.2.

A B
Beam properties
are ar, I, G and E

2 4

3
1

l

Prob. 8.15

8.16 Find the bending moment diagram for the tied arch shown, considering only the bending
deformation in the arch and only the axial deformation in the tie. What is the force in the
tie? Ea for tie = (43/b2) EI for arch.

P

B

b b b b

C

Tie

D

EA

P
P

0.6b
0.8b

Prob. 8.16
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8.17 Imperial units. Using the force method, find the tension in the tie and the horizontal
reaction component at A for the frame of Prob. 4.22, with the hinge at C replaced by a
rigid joint; draw the bending moment diagram. Consider only the bending deformation
in the frame ABCDE and only the axial deformation in the tie BD. E = 30,000 ksi, I for
ABCDE = 8000 in.4, area of tie = 8 in.2, l = 30 ft, q = 1kip/ft.

8.18 SI units. Using the force method, find the tension in the tie and the horizontal reaction
component at A for the frame of Prob. 4.22 with the hinge at C replaced by a rigid joint;
draw the bending moment diagram. Consider only the bending deformation in the frame
ABCDE and only the axial deformation in the tie BD. E = 200GN/m2, I for ABCDE =
3.1 × 109 mm4, area of tie = 5000mm2, l = 9m, q = 1kN/m.

Constant EI

D

l/2 l

l

A

P = 1

CB

Prob. 8.19

8.19 Considering the deformations due to bending only, find the vertical deflection at A for the
frame shown in the figure.

8.20 Solve Prob. 8.19 replacing the roller support at C by a hinge.
8.21 Find the vertical deflection at D and the angular rotation at A for the beam in the figure.

Consider bending deformation only.

A

P

D

B C
Constant EI

l/2 l/2 l

Prob. 8.21

8.22 What is the relative translation along EC of points E and C in the frame of Example 5.2?
8.23 Imperial units. Considering the tension F1 and F2 in the cables at C and D in Prob. 4.8 as

redundants, find the flexibility matrix of the released structure. Consider only the bending
deformation in AB and only the axial deformation in the cables.

8.24 SI units. Solve Prob. 8.23 by referring to Prob. 4.9 (instead of 4.8).
8.25 Considering only bending deformation, find the displacements at the three coordinates

indicated in Figure 8.12b due to the loads shown in Figure 8.12a. Use the actual loading
and verify that the same answers are obtained as with the equivalent joint loading in
Example 8.8.
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8.26 Show that the deflection at the center of a straight member with respect to its ends is
given by

ycenter = (ψ1 + 10ψ2 + ψ3)l2/96

where ψ1 and ψ3 are the curvatures at the two ends; l is the distance between the two ends;
and ψ2 is the curvature at the middle. The variation of ψ is assumed to be a second-degree
parabola.

This is a geometric relation which can be derived by integration of the equation ψ =
−d2y/dx2, where y is the deflection and x is the distance along the member, measured from
the left end. The equation can be derived more easily by the method of elastic weights,
using equivalent concentrated loading (Figure 10.11).

In practice, the expression derived can be used for continuous or simple beams having
a constant or a variable cross section when the parabolic variation of ψ is acceptable.

8.27 The figure represents a pole serving as support of two cables subjected to a tensile force P.
Determine the translations D1, D2, and D3 at E in the positive directions of x, y, and z
axes, assuming: (a) both cables are supported, and (b) only the cable at E is supported.
Consider deformations due to bending moment and twisting moment and assume the cross
section is constant hollow circular, with EI = 1.3GJ.

B

Elevation

Cable

Top view 1–1

Cable

z (down)

0.2l 0.2l

0.1l

A

tan–1
 0.05 tan–1 0.05P

P

P A E P

x

y

x
C D

B C D

11

E

F

z

y

l

Prob. 8.27

8.28 Find the bending moment diagram for the beam shown due to a uniform load q/unit length
over the whole length. The beam has a varying EI value as shown. What is the vertical
reaction at A?

Relative
flexural
rigidities

0.4l

2EI EI

A D B C

0.8l 0.4l

Prob. 8.28

8.29 Find the reaction components at B considering only bending deformation of AB and axial
deformation of CD. Consider (Ea)CD = 20 (EI)AB/l2. What is the deflection at A?
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q per unit
length

Tie

D

BA

C

0.75l

0.4l l

Prob. 8.29

8.30 The figure shows a top view of a curved member of a horizontal grid. Determine the fixed-
end forces due to the self-weight of the member, q/unit length. Angle θ =1 radian. Assume
constant cross section, with GJ/EI =0.8. Give the answer as components in the directions
of the coordinates shown. Consider only deformations due to bending and torsion. Hint:
The only statically indeterminate force at the central section is a bending moment; the
torsional moment and the shearing force are zero because of symmetry.

2*

5*

6*

r

θ

3*

1*

(down)

4*

(down)

Prob. 8.30

8.31 Find the bending moment diagram for the frame in Figure 6.6d due to a uniform downward
load on ABCDE of intensity q/unit length of horizontal projection. Consider only bending
deformation assuming EI = constant and member lengths: {AB,BF,BC}= l{1.0,1.0,

√
2}.

The frame is symmetrical about a vertical line through C. The distance between F and
G = 2l.

8.32 The figure represents half a symmetrical and symmetrically loaded three-span cable-stayed
bridge. Find the changes in the cable forces and the bending moment diagram for AC and
BD due to a uniform load q/unit length, covering the whole central span. Consider only
axial deformation in the cables and bending deformation in AC and BD. Assume that the
initial tension in the cable is sufficient to remain stretched under the effect of all subsequent
loading. Ignore the effect of the initial tension on cable stiffness. Consider EI = constant
for AC and BD and (Ea)cable = 2000EI/l2.
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D

l/4

q/unit length
B

E
C

Symmetrical

A

Cab
le

Cable

l/3 l/3 l/6
l/2

Prob. 8.32

8.33 The figure represents a chimney ABC stayed by four cables BD, BE, BF and BG. Find the
reaction components at A due to a force P in the x direction at C. What is the displacement
in the x direction at C? Assume that the cables have sufficient initial tension to remain
stretched after deformation; ignore the effect of the initial tension on cable stiffness and
the self-weight of the cables. Consider only bending deformation of the chimney and axial
deformation of the cables; assume (Ea)cable = (20/l2) (EI)chimney. The effect of the initial
tension (ignored here) on the tension stiffness is discussed in Chapter 24.

z(down) Elevation

Top
view

G D

C P
x

B

l–
2

l–
2

A

z

F, G D, E

l/4

l/4

l/4 l/4

ll
4 4

EF y

x

Prob. 8.33

8.34 For the frame in Figure 7.8, find the influence lines for the bending moment and the shearing
force at a section just to the right of B.

8.35 Find the bending moment diagram of Prob. 4.22 due to uniform load q per unit length of
horizontal projection on BC only.

8.36 Find the forces in the members of the plane truss shown. All members have the same axial
rigidity Ea except member AB, whose axial rigidity is Ea/2.

l l l l

P/2

C

B

GJH
I

D

E

F

l l l l

l/3

l/3

l/3 P/2 P/2P/2

PP PP

PP

C
A B

GJH
I

D

E

F

Prob. 8.36

8.37 Use virtual work to verify any number of the equations in Appendix B.



Chapter 9

Further energy theorems

9.1 Introduction

In Chapter 7 the concepts of strain energy and complementary energy were considered, mainly
for the purpose of developing the principle of virtual work. There are several other energy
theorems of interest in structural analysis, and these will now be discussed.

9.2 Betti’s and Maxwell’s theorems

Consider any structure, such as that shown in Figure 9.1a, with a series of coordinates 1,
2, . . . , n,n+1,n+2, . . . ,m defined. The F system of forces F1,F2, . . . ,Fn acts at coordinates 1 to n
(Figure 9.1b), and the Q system of forces Qn+1,Qn+2, . . . ,Qm acts at the coordinates n + 1 to
m (Figure 9.1c). Let the displacements caused by the F system alone be {D1F ,D2F , . . . ,DmF} and
the displacements due to the Q system alone be {D1Q,D2Q . . . ,DmQ}.

Suppose that the F system alone is applied to the structure. The internal work and the external
work are equal so that (see Eqs. 6.19 and 7.14)

1
2

n∑
i=1

FiDiF = 1
2

∫
v
{σ }T

F {ε}Fdv (9.1)

where {σ }F and {ε}F are the stress and strain caused by the F system.
Imagine now that when the F system is being applied to the structure, the Q system is already

acting, causing stresses σQ at any point. The external and internal work during the application
of the F system are again equal, so that

1
2

n∑
i=1

FiDiF +
m∑

i=n+1

QiDiF = 1
2

∫
v
{σ }T

F {ε}Fdv +
∫

v
{σ }T

Q{ε}Fdv (9.2)

The second term on each side of this equation is the work due to the Q system while moving
along the displacement by the F system. From Eqs. 9.1 and 9.2,

m∑
i=n+1

QiDiF =
∫

v
{σ }T

Q{ε}Fdv (9.3)

Equations 9.1 and 9.3 may be considered to be applications of the virtual work Eq. 7.46.
Alternatively, the above may be considered as a proof of the same virtual work equation.
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(a) n + 1

n + 2

Qn + 1

Qn + 2

Qm

(b)

(c)

m

n

F1

F2

Fn

1

2

Figure 9.1 Betti’s theorem. (a) Coordinate system: 1,2, . . . ,n,n + 1, . . . ,m. (b) F system
of forces: F1,F2, . . . ,Fn; acting at coordinate: 1, 2, . . . ,n; causing displacements:
D1F ,D2F , . . . ,DmF . (c) Q system of forces: Qn+1,Qn+2, . . . ,Qm; acting at coordinates:
n + 1,n + 2, . . .m: causing displacements: D1Q, D2Q, . . . ,DmQ.

Now, if we assume that the F system is applied first, causing stresses {σ }F , and the Q system
is added subsequently, causing additional stresses {σ }Q and strains {ε}Q, a similar equation is
obtained:

n∑
i=1

FiDiQ =
∫

v
{σ }T

F {ε}Qdv (9.4)

If the material of the structure obeys Hooke’s law, {ε}Q =[e] {σ }Q and {ε}F =[e] {σ }F ; where
[e] is constant (see Eqs. 7.8 and 7.11). Therefore, substituting for {ε} in Eqs. 9.3 and 9.4, we
find that the right-hand sides of the two equations are equal. Hence,

n∑
i=1

FiDiQ =
m∑

i=n+1

QiDiF (9.5)

This equation is known as Betti’s theorem, which can be expressed as follows. The sum of the
products of the forces of the F system and the displacements at the corresponding coordinates
caused by the Q system is equal to the sum of the products of the forces of the Q system and
the displacements at the corresponding coordinates caused by the F system. We must remember
that the theorem is valid only for linear elastic structures.

We shall now consider Maxwell’s theorem, which is a special case of the more general Betti’s
theorem. Assume that there is only one force Fi = 1 in the F system acting at coordinate i, and
one force Qj = 1 in the Q system acting at j. Applying Eq. 9.5, we find

DiQ = DjF (9.6)
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Equation 9.6 can be written in the form

fij = fji (9.7)

where fij is the displacement at i due to a unit force at j, and fji is the displacement at j due
to a unit force at i. Equation 9.7 is called Maxwell’s reciprocal theorem, which can be stated
as follows. In a linear elastic structure, the displacement at coordinate i due to a unit force at
coordinate j is equal to the displacement at j due to a unit force acting at i.

The displacements in Eq. 9.7 are the flexibility coefficients. For a structure in which m coordin-
ates are indicated, the flexibility coefficients, when arranged in a matrix of the order m×m, give
the flexibility matrix of the structure. This matrix must be symmetrical, by virtue of Eq. 9.7;
hence the word “reciprocal’’ in the theorem. The property of symmetry of the flexibility matrix
was proved in another way in Section 6.6.

9.3 Application of Betti’s theorem to transformation of forces
and displacements

Betti’s theorem can be used to transform the actual forces on a structure to equivalent forces at
the coordinates.

Consider the structure of Figure 9.2a in which only the bending deformation need be taken into
account. The degree of kinematic indeterminacy of the frame is three, as shown in Figure 9.2b
(we recall that this represents the number of independent joint displacements). If the flexibility
matrix for the frame is known, the independent displacements {D} due to external applied forces
{F} can be determined by the equation {D}= [f ] {F} (Eq. 6.3), provided both the forces and the
displacements are at the same three coordinates.

If the frame is subjected to an arbitrary system of forces (Figure 9.2c), they first have to be
replaced by equivalent forces at the joints, as discussed in Section 8.7. The fixed-end forces
are shown in Figure 9.2d; they are added at each joint and reversed to obtain the equivalent
forces {F∗} indicated in Figure 9.2e. The forces {F∗} act at the coordinates {D∗} which are not
independent. The displacements {D∗} are related to the displacement {D} by the geometry of the
deformed shape of the frame. These relations can be written as

{D∗} = [C] {D} (9.8)

where [C] is determined from the geometry of the frame.
For the frame shown in Figure 9.2a, we have

{D∗}6×1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1
0 0 0.75
1 0 0
0 0 1
0 0 0
0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

6×3

{D}3×1 (9.9)

The elements in each column of [C] are the values of the displacements at the D∗ coordinates
corresponding to a unit displacement at one of the D coordinates. The first two columns are
obvious; the elements in the third column can be obtained with the aid of the displacement
diagram in Figure 9.2f. (The necessary principles of geometry are discussed in Sections 3.5
and 7.2.)
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(a)
B C

D

EI = const.

A

P P P

D2*  = 

0. 75

D4*  = D 1*  = 1
D3 =1

4P
4P

0.083 Pl
–0.5 Pl

0.5 Pl
0.1 Pl

–2P –2P

PP

l/ 2

l

0.4 l

0.4 l

l/ 2

(c)
(d)

2

(f)(e)

1*

3*

2*
1.25

{F}, {D}

{F*}, {D*}

5* 6*

4*

(b) 1 2

3

P
2–

0.8l

0.6l

Figure 9.2 Transformation of forces and displacements.

Applying Betti’s theorem (Eq. 9.5) to the two systems of forces in Figures 9.2b and e, we find

3∑
i=1

FiDi =
6∑

j=1

F∗
j D∗

j

The second subscript of D and D∗ (which indicates the cause of the displacements) is omitted
since the F and F∗ forces are known to cause the same joint displacements. The matrix form of
this equation is

{F}T {D} = {F∗}T {D∗} (9.10)

Substituting for {D∗} from Eq. 9.8, and taking the transpose of both sides of Eq. 9.10, we
obtain

{D}T {F} = {D}T [C]T {F∗}

whence the equation for the transformation of forces is

{F} = [C]T {F∗} (9.11)
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Equation 9.11 shows that if displacements {D} are transformed to displacements {D∗} using
a transformation matrix [C] (Eq. 9.8), then [C]T can be used to transform forces {F∗} to forces
{F}. The elements in the jth column of [C] in Eq. 9.8 are the displacements at the D∗ coordin-
ates corresponding to a displacement Dj =1 while the displacements are zero at the other D
coordinates. It is therefore apparent that [C] cannot be formed unless the displacements {D} are
independent of one another (see Section 3.5).

As an example of the use of Eqs. 9.8 and 9.11, consider the frame in Figure 9.3a. In a general
case, when axial deformations are included, the frame has three degrees of freedom as shown
in the figure by the coordinates referring to displacements {D} or forces {F}. The displacements
{D} can be transformed to displacements {D∗} along principal axes of the member cross sections
by use of Eq. 9.8. The transformation matrix [C] in this case is

[C] =
[ [t]1

[t]2
]

where

[t]i =
⎡
⎣ cosαi sinαi 0

− sinαi cosαi 0
0 0 1

⎤
⎦

and i refers to the number of the member. This type of transformation will be used in Chapter 21
for forces or displacements from coordinates along the principal axes of the member cross section
to coordinates parallel to a common set of axes for the whole structure, referred to as global or
general axes.

If we now apply Eq. 9.11, we transform forces at the ends of members {F∗} to forces at the D
coordinates, as follows:

{F} =
⎡
⎣ cosα1 − sinα1 0 cosα2 − sinα2 0

sinα1 cosα1 0 sinα2 cosα2 0
0 0 1 0 0 1

⎤
⎦ {F∗}

The elements of the jth column of the rectangular matrix in this equation can be checked using
the fact that they are the components of a force F∗

j = 1 at the coordinates in Figure 9.3a.

2

2

xz

y

3

(a) (b)

3*

1*

6*
2*

5*
4*

1

1
Member

Member

{D*}, {F*}{D}, {F}

α1

α2

Figure 9.3 Transformation of forces and displacements from coordinates along principal axes of
member cross sections to coordinates parallel to general axes.
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In some cases, forces {F} at global coordinates can be easily related to member end-forces {F∗}
at member coordinates by

{F∗} = [B] {F} (9.12)

Using Betti’s theorem, the corresponding displacements can be transformed by the equation

{D} = [B]T {D∗} (9.13)

For application of Eqs. 9.12 and 9.13, consider the global and member coordinates indicated
on the statically determinate frame in Figures 9.4a and b. By simple statics, the transformation
of forces in Eq. 9.12 can be made by

{F∗} =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cosα1 sinα1 0
− sinα1 cosα1 0

−l2 sinα2 l2 cosα2 1

− cosα2 − sinα2 0
sinα2 − cosα2 0

l2 sinα2 −l2 cosα2 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

{F} (9.14)

The 6×3 matrix in this equation stands for [B] in Eq. 9.12. The elements in any column i of the
matrix are equal to the member end-forces at 1∗ to 6∗ due to F =1, with i =1,2 or 3 (Figure 9.4),
and using Eq. 9.13, we write

{D}=
⎡
⎣ cosα1 − sinα1 −l2 sinα2 − cosα2 sinα2 l2 sinα2

sinα1 cosα1 l2 cosα2 − sinα2 − cosα2 −l2 cosα2

0 0 1 0 0 −1

⎤
⎦ {D∗}

(9.15)

We can now check that the elements in the jth column of the rectangular matrix in this equation
are the displacements {D} corresponding to D∗

j = 1 with D∗
i = 0 when i �= j.

x

l1

l2

z

y

(a) (b)

3*

1*

6*

32

1

5*

2*

4*

{D*}, {F*}{D}, {F}

α1

α2

Figure 9.4 Transformation of forces and displacements using Eqs. 9.14 and 9.15.



266 Further energy theorems

We note that the elements in any column of matrix [B] in Eq. 9.14 are member end-forces
caused by a unit load at one of the D coordinates in Figure 9.4a (see Prob. 9.2).

Example 9.1: Plane frame in which axial deformation is ignored
Use Eq. 9.11 to determine the restraining forces at the three coordinates in Figure 9.2b
corresponding to the external loading in Example 5.3 (see Figure 9.2c).

The components of the fixed-end forces (Figure 9.2d) along the coordinates 1,2, . . . , 6
in Figure 9.2e are

{F∗} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−0.4 P
−2.3 P
−0.417 Pl
−0.5 P
−2.0 P

0.6 Pl

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

The first three elements of this vector are resultants of the internal forces at end B of
members AB and BC. The remaining three elements of the vector can be calculated in a
similar way.

Substituting for [C]T from Eq. 9.9 in Eq. 9.11, we obtain

{F} =
⎡
⎣ 0 0 1 0 0 0

0 0 0 0 0 1
1 0.75 0 1 0 0

⎤
⎦ P

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−0.4
−2.3
−0.417l
−0.5
−2.0

0.6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= P

⎧⎨
⎩

−0.417l
0.60l

−2.625

⎫⎬
⎭

which is identical with the forces calculated by resolving along the axes of the members in
Example 5.3.

9.4 Transformation of stiffness and flexibility matrices

Consider a coordinate system on a linear structure defining the location and direction of forces
{F} and displacements {D}, and let the corresponding stiffness matrix be [S] and the flexibility
matrix [f ]. Another system of coordinates is defined for the same structure referring to forces
{F∗} and displacements {D∗}, with the stiffness and flexibility matrices [S∗] and [f ∗] respectively.
If the displacements or forces at the two systems of coordinates are related by

{D} = [H] {D∗}

or

{F∗} = [H]T {F}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(9.16)

then the stiffness matrix [S] can be transferred to [S∗] by the equation

[S∗] = [H]T [S] [H] (9.17)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Further energy theorems 267

Also, when the forces at the two coordinate systems are related:

{F} = [L] {F∗}

or

{D∗} = [L]T {D}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(9.18)

the flexibility matrix [f ∗] can be derived from [f ] by

[f ∗] = [L]T [f ] [L] (9.19)

We should note that the transformation matrices [H] or [L]T are formed by geometrical
relations of the displacements {D} and {D∗}, and it follows that these relations are valid regardless
of the forces applied at the coordinates. The two systems of forces {F} and {F∗} are equivalent
to each other, which means that the forces {F} produce displacements {D} and {D∗} of the same
magnitude as would be caused by the forces {F∗}. Also, the systems {F} and {F∗} do the same
work to produce the displacement {D} or {D∗}.

For the proof of Eq. 9.17, we assume that the structure is subjected to forces {F} and we
express the work done by these forces by Eq. 6.27, viz.

W = 1
2

[D]T [S] {D} (9.20)

Substituting for {D} from Eq. 9.16, we obtain

W = 1
2

{D∗}T [H]T [S] [H] {D∗}

Now, if we assume the structure to be subjected to forces {F∗} and apply Eq. 6.27 again, we
obtain

W = 1
2

{D∗}T [S∗] {D∗}

A comparison of the two expressions for W gives the relation between the matrices [S∗] and [S],
that is, Eq. 9.17.

If the work is expressed in terms of the forces and flexibility (Eq. 6.26), the proof of Eq. 9.19
is established.

For an application of Eqs. 9.17 and 9.19, consider the cantilever in Figure 9.5 with the part
AB rigid and BC of flexural rigidity EI. Two coordinate systems are defined in Figures 9.5a
and b. The stiffness matrix corresponding to the coordinates in Figure 9.5a is (see Appendix D)

[S] =

⎡
⎢⎢⎢⎣

12EI
c3

6EI
c2

6EI
c2

4EI
c

⎤
⎥⎥⎥⎦
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(a)

Rigid RigidEI EIB

B CA
A

C

1 1*

2*
2

(b)
b c b c

Figure 9.5 Cantilever used to illustrate the application of Eqs. 9.17 and 9.19. (a) Coordinate sys-
tem referring to displacements {D} and forces {F}. (b) Coordinate system referring to
displacements {D∗} and forces {F∗}.

From geometrical relations between the displacements at the two coordinates, the transformation
matrix [H] in Eq. 9.16 is

[H] =
[

1 b
0 1

]

and the application of Eq. 9.17 gives

[S∗] = EI

⎡
⎢⎢⎢⎣

12
c3 symmetrical

12b
c3 + 6

c2

4
c

+ 12b2

c3 + 12b
c2

⎤
⎥⎥⎥⎦

For the application of Eq. 9.19, we first use geometrical relations to generate the transform-
ation matrix [L]T defined in Eq. 9.18:

[L]T =
[

1 −b
0 1

]

and

[f ] =

⎡
⎢⎢⎢⎣

c3

3EI
− c2

2EI

− c2

2EI
c

EI

⎤
⎥⎥⎥⎦

Substituting in Eq. 9.19 gives

[f ∗] = 1
EI

⎡
⎢⎢⎣

c3

3
+ bc2 + b2c symmetrical

−(c2 + bc) c

⎤
⎥⎥⎦

This matrix can be derived by calculation of the displacements {D∗} due to unit values of the
forces F∗

1 and F∗
2, which should, of course, give the same result.

We recall that for the validity of Eqs. 9.17 and 9.19, the geometrical relations between {D}
and {D∗} in Eqs. 9.16 and 9.18 must be true for all values of the forces {F} and {F∗}, and it can
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be easily seen that this is satisfied in the above example. If, however, the member AB is flexible,
the geometrical relations do not hold when forces {F∗} are applied and the transformation of
stiffness and flexibility matrices cannot be made.

9.5 Stiffness matrix of assembled structure

The stiffness matrix [S] of a structure formed by the assemblage of members can be obtained
from the stiffness matrices of its members.

Consider the structure shown in Figure 9.6a and the coordinate system in Figure 9.6b. The
external work, which is also equal to the strain energy of the structure, is W =U = 1

2 {D}T [S] {D},
where [S] is the stiffness matrix of the structure corresponding to the coordinates in
Figure 9.6b.

The same strain energy is obtained from the sum of the values of strain energy of the individual
members. This sum is equal to the work done by the member end-forces {F∗} undergoing the
displacements {D∗} at the coordinates in Figure 9.6c. Thus,

U = 1
2

{D∗}T [Sm] {D∗} (9.21)

where [Sm] is the stiffness matrix of the unassembled structure

[Sm] =
⎡
⎣ [Sm]1

[. . .]
[Sk]

⎤
⎦

[Sm]i is the stiffness matrix of the ith member corresponding to the {D∗} coordinates at its ends,
and k is the number of members.

The displacements {D∗} and {D} are related by geometry so that {D∗}= [C] {D}; substituting
this equation into Eq. 9.21, we obtain

EI = const.

(a) (b)

(c)

0.8l

1 2

3

2* 4*

1*

3* 5*

6*

7*

l

{F*}, {D*}

{F }, {D}0.6l

Figure 9.6 Frame considered in Example 9.2.
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U = 1
2

{D}T [C]T [Sm] [C] {D} (9.22)

From a comparison of Eqs. 9.20 and 9.22, it can be seen that

[S]n×n = [C]Tp×n [Sm]p×p [C]p×n (9.23)

where n is the number of displacements {D}, and p is the number of displacements {D∗}.
Many of the elements of the matrices in this equation are zero. For this reason, it may be more

convenient for computer programming to use Eq. 9.23 in the form

[S] =
k∑
i

[C]Ti [Sm]i [C]i (9.24)

where [C]i is the matrix relating the coordinates {D∗} at the ends of the ith member to the
structure coordinates {D}.

The member coordinates D∗ are usually chosen along the principal axes of the member cross
section at its two ends; thus, the member stiffness [Sm] is normally readily available (see, for
example, Eqs. 6.6, 6.7, and 6.8).

Example 9.2: Plane frame with inclined member
Find the stiffness matrix of the frame shown in Figure 9.6a using Eq. 9.24. (The stiffness
matrix of the same frame was derived by a different procedure in Example 5.3.)

From geometry of the frame, [C] is determined as in Section 9.3:

[C] =
⎡
⎣ [C]1

[C]2
[C]3

⎤
⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1.25
1 0 0
– – – –

0 0 0.75
1 0 0
0 0 0
0 1 0
– – – –

0 0 −1
0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Then,

[Sm] =
⎡
⎣ [Sm]1

[Sm]2
[Sm]3

⎤
⎦

where

[Sm]1 =

⎡
⎢⎢⎢⎣

12EI
l3 symmetrical

−6EI
l2

4EI
l

⎤
⎥⎥⎥⎦
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[Sm]2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12EI
l3 symmetrical

6EI
l2

4EI
l

−12EI
l3 −6EI

l2

12EI
l3

6EI
l2

2EI
l

−6EI
l2

4EI
l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

[Sm]3 =

⎡
⎢⎢⎢⎣

12EI
(0.8l)3 symmetrical

6EI
(0.8l)2

4EI
0.8l

⎤
⎥⎥⎥⎦

Applying Eq. 9.24,

[S] =
3∑

i=1

[C]Ti [Sm]i[C]i = EI

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

8
l

symmetrical

2
l

9
l

−3
l2 −4.875

l2

48.938
l3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

9.6 Potential energy

Consider an elastic structure subjected to force {F} at n independent coordinates causing dis-
placements {D} at the same coordinates. If we assume the potential energy of the forces in
the initial configuration to be zero, the potential energy of the external forces in the deformed
configuration is defined as

V = −
n∑

i=1

FiDi (9.25)

The sum of the potential energy of the external forces V and the strain energy U is called the
total potential energy:

� = V + U (9.26)

Substituting Eqs. 9.25 and 7.7 in the above equation, we obtain

� = −
n∑

i=1

FiDi +
6∑

m=1

∫
v

∫ εfm

o
σmdεmdv (9.27)
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where σm and εm are the values of the six stress and strain components as the forces increase
from {0} to their final values {F}, and εfm is the final value of a strain component (see Section 7.3).

Now, let the structure acquire a configuration slightly different from the equilibrium position
with the compatibility maintained at the supports, and let the corresponding change in {D} be
the small virtual displacements {D} and the corresponding change in strain components at any
point be the virtual strain vector {ε}. The change in the total potential energy is

�� = −
n∑

i=1

FiDi +
∫

v
{σ }T {ε}dv (9.28)

where {σ } are the final values of stress components.
By the principle of virtual work (Eq. 7.46), we have

n∑
i=1

FiDi =
∫

v
{σ }T {ε}dv (9.29)

and we conclude that the right-hand side of Eq. 9.28 is zero. Hence, there is no change in
potential energy when the structure is given a compatible virtual small displacement from the
equilibrium position.

This conclusion can serve a useful purpose when the actual deformed shape of the structure
is not known. The actual displacement at any point (and hence the strain) is expressed by an
assumed displacement function in terms of the unknown displacements {D}. The structure is
then given a small virtual displacement ∂Di at coordinate i, without change of the displacement
at the other coordinates. Since the corresponding change in the total potential energy is zero,
we can write

∂�

∂Di
= 0 (9.30)

By substituting i = 1,2, . . . ,n a system of simultaneous equations can be written from which
the displacements {D} can be calculated. Equation 9.30 is, in fact, an equilibrium equation
identical with Castigliano’s Eq. 7.54. In other words, the use of potential energy concept leads
to the same equations as Castigliano’s theorem, Part I; the two approaches differ only in form.

Equation 9.30 is the principle of stationary potential energy and may be stated as follows.
Of all deformed configurations compatible with support conditions, the one which satisfies
equilibrium conditions corresponds to a stationary potential energy. It should be noted that this
theorem is valid for linear and nonlinear structures.

It can be proved that the stationary value of the potential energy is minimum for stable
structures and is maximum if the structure is unstable, and the principle can therefore be used
for the derivation of critical loads.1

In the special case of a linear structure, the principle of stationary potential energy, Eq. 9.30,
Castigliano’s first theorem (Eq. 7.54) and the unit-displacement theorem (Eq. 7.50) all lead to
the same equilibrium equation. We prove this by differentiating Eqs. 7.14 or 7.17 for the strain
energy of a linear structure with respect to the final value Dj of the displacement at j; we obtain

∂U
∂Dj

=
∫

ν

{σ }T ∂

∂Dj
{ε}dv (9.31)

1 Hoff, N. J., The Analysis of Structures, Wiley, New York, 1956. See also, Timoshenko, S. P. and Gere, J. M.,
Theory of Elastic Stability 2nd ed., McGraw-Hill, New York, 1961, Section 2.8.
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where {ε} are the final strain components. From the condition of linearity, we have

∂

∂Dj
{ε} = {εuj} (9.32)

where {εuj} is the strain component at any point corresponding to a unit virtual displacement
at j. Substitution of Eq. 9.32 in Eq. 9.31 and the result in Eq. 7.54 gives Eq. 7.50.

9.7 General

The energy principles are based on the law of conservation of energy which requires that the
work done by external forces on an elastic structure be stored in the form of strain energy which
is completely recovered when the load is removed. Betti’s law derived from this law, applied to
linear structures, serves a useful purpose in transformation of information given in one form
into another. The equations derived in Sections 9.3, 9.4, and 9.5 are examples of transformation
equations which are useful in structural analysis.

The energy theorems presented in the remaining sections lead, in the case of linear structures, to
equations which were derived in a different manner in earlier chapters. For example, Castigliano’s
Eq. 7.54 and the principle of stationary potential energy, Eq. 9.30, are the same as the equilibrium
equations used in the displacement method. It is therefore apparent that the energy principles are
not merely methods of calculation of displacements but they can form the basis for derivation
of equations satisfying the requirements of equilibrium and compatibility.

Some of the energy equations derived are valid both for linear and nonlinear structures, and
this was pointed out in each case. The analysis of nonlinear structures leads to some mathematical
difficulties owing to the form of the stress–strain relation.

Problems

9.1 From considerations of statical equilibrium derive the matrix [B] in the equation {F∗} =
[B] {F} relating the forces in (a) of the figure to the corresponding member end-forces in
(b). Then write: {D}= [B]T {D∗} and check by geometry columns 6, 9, 10, and 11 of [B]T .

(a) (b)
0.8l

1

3
2

A

B

C A
1*

3*

2*

5*

4* 9*

6*

8*

7*

12*

11*
10*

C

B
0.8l

0.6l 0.6l

0.8l 0.8l

Prob. 9.1 (a) Forces {F} and displacements {D}. (b) Member end-forces {F∗} and displacements {D∗}.

9.2 Solve Prob. 9.1 considering the coordinates 3∗, 6∗, 9∗, and 12∗ only. Then, neglecting shear
and axial deformation, derive the flexibility matrix corresponding to the coordinates in
Figure (a) using Eq. 8.32 and evaluating the integrals by Eq. 8.18.

9.3 Following the procedure used in Prob. 9.2, derive the flexibility matrix of the structure
shown in the figure corresponding to the coordinates indicated. Ignore axial and shear
deformations and assume EI constant.
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0.8l

0.6l1

2

3

0.8l

Prob. 9.3

9.4 Apply the requirements of Prob. 9.3 to the structure in the figure. Coordinates 1, 2, and
3 represent relative displacements of the two sides of a cut section at the top of the left
column.

3

1

32
1

2

l

l

l/2

Prob. 9.4

9.5 Write the transformation matrix [C] in the equation {D∗} = [C] {D}, then use Eq. 9.24
to derive the stiffness matrix corresponding to the D coordinates indicated in the figure.
Consider only the bending deformation and assume EI constant.

C

C

D

B

A

B

A

D

l/2

3

1 2

30°

2*

1*3*

4* 6*
8*

7*
5*

30°

{D}, {F }

{D*}, {F*}

l/2

l/2

Prob. 9.5
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9.6 If the structure in Prob. 9.5 is subjected to a uniform load q per unit length of horizontal
projection, use Eq. 9.11 to derive the restraining forces {F} necessary to prevent joint
displacements.

9.7 Use Eq. 9.24 to solve Prob. 5.21.
9.8 The grid shown in the figure is composed of similar members of length l, flexural rigidity

EI, and torsional rigidity GJ. Give the matrices required to derive the stiffness matrix of
the grid using Eq. 9.24. Number the members in the order shown in the figure below and
take the coordinates for member 3 to be the same as the structure coordinates indicated
in the figure. Number the member coordinates for other members in the same order as for
member 3.

α2

α1

α5

α4

2 3
3

6

4
5

5

4

21

z

y
x

1

Prob. 9.8

9.9 Transform the stiffness matrix [S] for a beam AB corresponding to the coordinates shown
in (a) in the figure to a stiffness matrix [S∗] corresponding to the coordinates shown in
(b). The beam is prismatic of flexural rigidity EI and cross-sectional area a. Neglect shear
deformations. In part (b) of the figure, AC and AD are rigid arms.

l l

D

C

A BBA

(a) (b)

1

3
2

1*

3*

2*

b/2

b/2

Prob. 9.9 (a) Coordinates representing {D} and {F}. (b) Coordinates representing {D∗} and {F∗}.

9.10 Use Eq. 9.19 to transform the flexibility matrix [f ] to [f ∗] in Prob. 9.9.
9.11 Write the stiffness matrix [S] corresponding to the coordinate shown in (a), then use

Eq. 9.17 to transform this matrix to a stiffness matrix [S∗] corresponding to the coordinates
in (b). Consider only bending deformation and take the beam flexural rigidity as EI.
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l l

l l

(a)

(b)

1 3

4

2

2*3*

4*

1*

b/2

b/2

b/2
b/2

Prob. 9.11 (a) Coordinates for {D} and {F}. (b) Coordinates for {D∗} and {F∗}.

9.12 Use Castigliano’s first theorem to find the force F1 in terms of the displacement D1 in the
beam in the figure. Assume the following approximate equation for the deflection:

y = −D1

2
sin

πx
l

l/2

F1, D1

F1

x

y

A B
l/2

D1/2

D1/2

Original
beam

Deflected
beam

Constant EI

Prob. 9.12

9.13 Solve Prob. 9.12 using the principle of stationary potential energy and assuming that
the beam is subjected at its two ends to two axial compressive forces P = 4EI/l2 and
that the horizontal movement of end A is allowed to take place freely. Assume the same
approximate equation for the elastic line as in Prob. 9.12. Hint: The difference between
the length of an element ds of the curved beam axis and its projection dx on the x axis is

ds − dx = dx

√
1 +

(
dy
dx

)2

− dx � 1
2

(
dy
dx

)2

dx

and the horizontal displacement of A is

D2 = 1
2

∫ l/2

−l/2

[
dy
dx

]2

dx

9.14 Solve Prob. 5.1 using Castigliano’s theorem, Part I.
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9.15 Solve Prob. 5.1 assuming that the stress and strain in an axial direction for any of the
members are related by the equation σ =C[ε − (ε3/10)] where c is a constant. All members
have the same length l and the same cross-sectional area a.

9.16 Figures a and b represent a typical member of a space truss. One end is supported, and a
coordinate system 1∗ or 1,2, and 3 is defined at the other end. Write a geometry relation
{D} = [t]{D∗} between the displacements at the two coordinate systems; express [t] in
terms of λx∗x,λx∗y, and λx∗z, representing, respectively, the cosine of the angles between
the local axis x∗ and the global directions x, y, and z. Use [t] to derive the member stiffness
matrix [Sm] corresponding to the coordinates in global directions (Figure b). Employ the
derived stiffness matrix to determine the member forces in the space truss in Figure c by the
displacement method. The structure is subjected to a force at A having the components:
{Fx,Fy, Fz} = P{2.0,2.0,4.0}. Assume Ea = constant.

3l/2

l/2

l/2

l l

y
z

x

x

z
y

E

A

A

D, E B, C

y

x

x

z

z (down)

D

Top
view

Elevation

C

B

2
3

1

1*

x*

(a)

(b) (c)

Prob. 9.16



Chapter 10

Displacement of elastic structures
by special methods

10.1 Introduction

The calculation of displacements in elastic structures by the method of virtual work (considered
in Chapter 8) represents probably the most general approach to the problem. However, in some
cases, it may be convenient to apply other, more specialized, methods. Those among them which
are most frequently used in practice will be developed in the present chapter.

10.2 Differential equation for deflection of a beam in bending

In Chapter 8 we saw that in the majority of cases the deflection of a beam is primarily due
to bending. Thus, it is not unreasonable to ignore the contribution of shear to deflection and
to obtain the elastic deflection of a beam by solving the differential equation of the deflected
shape (also referred to as elastic line). In this section we shall derive the appropriate differential
equations, and in subsequent sections deal with their solution.

Let us consider the beam of Figure 10.1a subjected to arbitrary lateral and axial loads.
Making the usual assumptions in the theory of bending, that plane transverse sections remain

plane, and that the material obeys Hooke’s law, we can show that (see Eq. 7.23)

M = −EI
d2y
dx2 (10.1)

where y is the deflection and M is the bending moment at any section x (see Figure 10.1b);
EI is the flexural rigidity, which may vary with x. The positive direction of y is indicated in
Figure 10.1b and the bending moment is considered positive if it causes tensile stress at the
bottom face of the beam.

An element of the beam of length dx is in equilibrium in a deflected position under the forces
shown in Figure 10.1c. Summing the forces in the x and y directions, we obtain

dN
dx

= −p

and

q = −dV
dx

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(10.2)

where N is the thrust, V is the shear, and p and q are the intensity, respectively, of the axial
and lateral distributed load. The positive directions of q, p, y, M, V, and N are as indicated in
Figure 10.1c.
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(a)

(b)

Distributed axial
force of intensity p

q

y

x

(c) M

N

q dx

p dx

dx

V

M+
dx

dxdM

N+
dx

dxdN

V+
dx

dxdV

Figure 10.1 Deflection of a beam subjected to lateral and axial load. (a) Beam and loading. (b) Positive
direction of deflection. (c) Positive directions of external and internal forces.

Taking moments about the right-hand edge of the element,

Vdx − N
dy
dx

dx − dM
dx

dx = 0 (10.3)

whence

dV
dx

− d
dx

(
N

dy
dx

)
− d2M

dx2 = 0 (10.3a)

Substituting Eq. 10.2, we obtain the differential equation of the elastic line

d2

dx2

(
EI

d2y
dx2

)
− d

dx

(
N

dy
dx

)
= q (10.4)

In the absence of axial forces (i.e. when N = 0), Eq. 10.4 becomes

d2

dx2

(
EI

d2y
dx2

)
= q (10.5)

If, in addition, the beam has a constant flexural rigidity EI, the differential equation of the
elastic line is

d4y
dx4 = q

EI
(10.6)
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In a beam-column subjected to axial compressive forces P at the ends, p = 0 and N = −P,
whence Eq. 10.4 becomes

d2

dx2

(
EI

d2y
dx2

)
+ P

d2y
dx2 = q (10.7)

All the equations developed in this section can be applied with a slight modification to a beam
on an elastic foundation, that is, to a beam which, in addition to the forces already mentioned,
receives transverse reaction forces proportional at every point to the deflection of the beam. (As
example, see Figures 10.17a and b.) Let the intensity of the distributed reaction be

q = −ky

where k is the foundation modulus with dimensions of force per (length)2. The modulus repres-
ents the intensity of the reaction produced by the foundation on a unit length of the beam due to
unit deflection. The positive direction of reaction q is downward. We can therefore use Eqs. 10.1
to 10.7 for a beam on an elastic foundation if the term q is replaced by the resultant lateral load
of intensity q∗ = (q + q ) = (q − ky). For example, Eq. 10.5 gives the differential equation of a
beam with a variable EI on elastic foundation, subjected to lateral load q with no axial forces, as

d2

dx2

[
EI

d2y
dx2

]
= q − ky (10.5a)

The differential Eqs. 10.1, 10.4, 10.5, 10.6, and 10.7 have to be solved to yield the lateral
deflection y. Direct integration is possible only in a limited number of cases, considered in
standard books on strength of materials. In other cases, a solution of the differential equations
by other means is necessary. In the following sections, we consider the method of elastic weights,
the numerical method of finite differences, and solutions by series.

10.3 Moment–area theorems

The well-known Eq. 10.1 relates the deflection y to the bending moment M. Hence, we can
relate the slope of the elastic line and its deflection to the area of the bending moment diagram
and obtain two theorems.

(i) The difference in slope between any two points on the elastic curve is numerically equal to
the area of the M/(EI) diagram between these two points. This can be proved by integrating
d2y/dx2 between any two points A and B in Figure 10.2a. From Eq. 10.1,

d2y
dx2 = dθ

dx
= − M

EI

Integrating,

∫ B

A
dθ = −

∫ B

A

M
EI

dx

whence

θB − θA = −wAB (10.8)

where θ = dy/dx is the slope of the elastic line, and wAB is the area of the M/(EI) diagram
between A and B.
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(a)

M
EI

A

Ax

x

yA

y

dx
c

p

dθ 

n
c dθ 

w

yB yB yA–

x

y

A

B

B

B

Centroid

Positive rotation

(b)

(c)

AB AB

AB

θA – θB = wAB

θA 

θ 

θA 

θB

θB 

xAB

Figure 10.2 Slope, deflection, and moment–area relations. (a) M/(EI) diagram. (b) Slope/moment–area
relation. (c) Deflection/moment–area relation.

(ii) The deflection of B from the tangent to the elastic line at A (distance np in Figure 10.2c) is
numerically equal to the moment of wAB about B. From Figure 10.2c, we can see that

np =
∫ B

A
cdθ =

∫ B

A
c
[

M
EI

]
dx = wABxAB (10.9)

where c is the distance of an element dx from B, and xAB is the distance of the centroid
of wAB from B. Note that the moment of wAB is taken about the point where deflection is
required.

The difference between the deflection at B and A is

yB − yA = θAAB − wABxAB (10.10)

According to the sign convention assumed in Eq. 10.2, the angle θ is positive if the deflection
causes a rotation of the tangent to the beam in a clockwise direction. Thus, the rotations θA

and θB as indicated in Figure 10.2b are positive. The area wAB is positive for a positive bending
moment.

Equations 10.8 and 10.10 can be used to calculate deflections in plane frames as shown by
the following example.
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Example 10.1: Plane frame: displacements at a joint
Determine the displacements D1,D2, and D3 at the coordinates 1, 2, and 3 indicated on
the frame in Figure 10.3a. The flexural rigidity of the frame, EI, is constant and only the
deformations due to bending need be considered.

The bending moment diagram is drawn in Figure 10.3b. To conform to our sign con-
vention when applying Eqs. 10.8 and 10.10, each member is looked at from inside of the
frame as shown by the arrows in Figure 10.3b. The deflection y represents the translation
perpendicular to the member considered.

(a)

(b)

(c)

= –

2

Constant EI

3

1

B

A

C

D P
b

3b

2b

Pb

B

A

D

–

+

––
CPb

2Pb

D3

D

C
B

A

=D1

wAB2

–wCD

xAB2

–xCD

Pb

Pb

= –3 Pb2/2EI

= –P b2/2 EI

–wAB1
= 3 Pb2/EI

4.5 Pb3/EI

1.5 Pb2

EI

4.5 Pb3/EI

–xAB1 = 2 b

– w
B

C= 
–2

P
b2 /

E
I

= 2 b
3

= b

– x B
C
= 

b

=D2
5.33 Pb3

EI

0.5 Pb2
Pb3

EI
EI

Pb3

EI

Figure 10.3 Deflection of the plane frame of Example 10.1 by moment–area method.
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The deflection and rotation at the fixed end A are zero. Applying Eqs. 10.8 and 10.10
to AB, we obtain

θB = −wAB = −1.5Pb2

EI

and

yB = −wABxAB = −4.5Pb3

EI

(The product wABxAB can be determined by adding algebraically the moments of the two
triangles with areas wAB1 and wAB2.)

Similarly, applying the same equations to beam BC with θB as calculated above and the
vertical deflection yB = 0, we obtain

θC = θB − wBC = −1.5Pb2

EI
+ 2Pb2

EI
= 0.5Pb2

EI

and

yC = θBBC − wBCxBC = −Pb3

EI

Finally, we apply Eq. 10.10 to CD, with the horizontal deflection yc = 4.5Pb3/EI,
numerically equal to the horizontal translation of B, calculated earlier; hence,

yD = yC + θCCD − wCDxCD = Pb3

EI

[
4.5 + 0.5 × 1.0 + 0.5 × 2

3

]
= 5.33Pb3

EI

The deflected shape of the frame is sketched in Figure 10.3c, from which it can be seen
that the required displacements are

D1 = Pb3

EI
; D2 = 5.33Pb3

EI
; D3 = −1.5Pb2

EI

10.4 Method of elastic weights

The method of elastic weights is essentially equivalent to the moment–area method applied for
a beam. The procedure is to calculate the rotation and the deflection respectively as the shearing
force and the bending moment in a conjugate beam subjected to a load of intensity numerically
equal to M/(EI) for the actual beam. This load is referred to as elastic weight or, less aptly, as
elastic load.

The conjugate beam is of the same length as the actual beam, but the conditions of support are
changed, as discussed below. The M/(EI) diagram of the actual beam is treated as the load on the
conjugate beam, as shown in Figure 10.4. Positive moment is taken as a positive (downward)
load. From the moment–area equations (Eqs. 10.8 and 10.9) it can be shown that at any point
in the beam, the shear V and moment M in the conjugate beam are equal, respectively, to the
rotation θ and deflection y at the corresponding point in the actual beam.
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M

A B

(b)
(a)

rA rB

Load on actual beam Elastic load on conjugate beam

EI

Figure 10.4 Load on actual and conjugate beams.

Actual beam Conjugate beam

Simple support
(hinge or roller)

Simple support
(no change)

Free end

Free endFixed end

Fixed end

Intermediate support

Intermediate supportIntermediate hinge

Intermediate hinge

Figure 10.5 Type of support of actual and conjugate beams.

The changes in the type of support between the actual and the conjugate beam are shown in
Figure 10.5. These changes are necessary to satisfy the known characteristics of the elastic line of
the actual beam. For instance, at a fixed end of the actual beam, the slope and the deflection are
zero: this corresponds to no shear and no bending moment in the conjugate beam. Therefore,
the corresponding end of the conjugate beam must be free and unsupported.

With the changes in type of support of Figure 10.5, statically determinate beams have corres-
ponding conjugate beams which are also statically determinate. Statically indeterminate beams
appear to have unstable conjugate beams. However, such conjugate beams turn out to be in
equilibrium with the particular elastic loading corresponding to the M/(EI) diagram. This is
illustrated in Example 10.4.

The method of elastic weights can be applied also to arches and portals. The procedure is to
divide the axis of the structure into elements of length ds. The relative rotation of the sections
at the two ends of the element is then M ds/(EI). This quantity is considered as an elastic weight
acting on a conjugate simply-supported horizontal beam of the same span as the arch (see, for
instance, Prob. 10.6). The bending moment on the conjugate beam is then equal to the vertical
deflection of the arch.

Example 10.2: Parity of use of moment–area theorems and method of elastic
weights
Use the moment–area–deflection relations of Eqs. 10.8 and 10.10 to show that for a simple
beam, such as the beam shown in Figure 10.6a, the slopes θA and θB at the ends and the
deflection yC at C are equal, respectively, to the shear and the bending of a conjugate simple
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(a)

A

EI = constant

l/2 l/2

l/6

q per unit length
B A C B

C

x

y

(b)

wAC

xAC

ql3

64 EI

ql3

64 EI

ql2

16
ql3

96 EI

9 ql3
rB =

384 EI

7 ql3
rA =

384 EI

=

wAB

θA θByC

ql3

24 EI
=

xAB
7l
16

=

=

Figure 10.6 Calculations of end rotations and deflections in a simple beam. Example 10.2. (a) Beam
dimensions and deflected shape. (b) Bending moment diagram, elastic weights and elastic
reactions.

beam carrying the elastic weights shown in Figure 10.6b. Determine θA and θB and yC for
the beam shown in Figure 10.6a.

Application of Eqs. 10.8 and 10.10 to the bending moment diagrams between A and B
and between A and C in Figure 10.6b gives:

θB − θA = −wAB (a)

yB − yA = θAAB − wABxAB (b)

yC − yA = θAAC − wACxAB (c)

Substitute yA = yB = 0 in the above equations and compare the resulting equations with
the shearing force and the bending moment due to the elastic weight:

θA = wABxAB/AB = rA = shearing force at A

θB = −(wAB − θA) = −rB = shearing force at B

yC = rAAC − wACxAC = bending moment at C

For the beam considered, we can see that:

θA = rA = ql3

24EI
(7/16)l

l
= 7 ql3

384EI
; θB = −

(
ql3

24 EI
− 7 ql3

384 EI

)
= −rB = − 9ql3

384 EI

yC = 7 ql3

384EI

(
l
2

)
− ql3

64EI

(
l
6

)
= 5

768
ql4

EI
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P 3P
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B D C

D

b b
EI = constant

4b

(a)

(b)
Multipliers:
Pb for moments
Pb2/EI for elastic
weights

Multiplier:
Pb3/EI

(c)

3

0.5
(5/3) b

2 b/3

(4/3) b
rB = 2.25 rC = 7.25

yB = 3.50

θB = 2.25/b

yD = 11.83

C

8 4
4

A

2

2 +

–

2b

D C

Figure 10.7 Deflection of the beam of Example 10.3 by method of elastic weights. (a) Actual beam.
(b) Conjugate beam. (c) Elastic line.

Example 10.3: Beam with intermediate hinge
For the statically determinate beam of Figure 10.7a, find the deflections at B and D and
the change in slope between the left- and right-hand sides of the hinge B. The beam has a
constant value of EI.

The conjugate beam and the elastic weights on it are shown in Figure 10.7b. The elastic
weights are obtained as areas of the different parts of the M/(EI) diagram on the real beam,
and they act at the respective centroids of each part. The elastic reactions for these elastic
loads are calculated in the usual way:

rB = 2.25Pb2

EI
↑ and rC = 7.25Pb2

EI
↑

The sudden change θB in the slope of the elastic line at the hinge B in the actual beam is
equal to the change in shear at the support B of the conjugate beam, which in turn is equal
to the elastic reaction rB. Therefore, the change in slope at B is θB =2.25Pb2/(EI) (radians)
in the clockwise direction because rB causes a sudden increase in shear.

The bending moments of the conjugate beam at B and D represent the deflections at
these points:

yB = Pb2

EI

(
2 × 4

3
b + 0.5 × 5

3
b
)

= 3.5
Pb3

EI
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and

yD = Pb2

EI

(
7.25 × 2b − 4 × 2b

3

)
= 11.83

Pb3

EI

The elastic line is sketched in Figure 10.7c.

Example 10.4: Beam with ends encastré
Find the deflection at B in the statically indeterminate beam with constant EI, shown in
Figure 10.8a.

The conjugate beam is shown in Figure 10.8b, in which the encastré ends of the actual
beam are changed to free ends. The conjugate beam has therefore no supports, but it can
be easily checked that the beam is in equilibrium under the elastic weights corresponding
to the bending moment on the actual beam.

The elastic loading to the left of point B is equivalent to the components shown in
Figure 10.8c. This can be verified by noting that, at any section, the sum of the ordinates
of the two diagrams in part (c) of the figure is the same as the corresponding ordinate in
part (b). The deflection yB is equal to the moment of these components about B:

yB = 1
EI

[
Pc2b2

2l2

2c
3

+ Pc2b
2l3 (c2 + b2)

c
3

− Pc2b
2l

c
3

]

With (c + b) = l, this equation reduces to yB = Pc3b3/(3EIl3).

10.4.1 Equivalent concentrated loading

The calculation of reactions and bending moments in a beam due to an irregular loading can
be simplified by the use of equivalent concentrated loads. This is particularly useful in the
application of the method of elastic weights.

(a)

(b) (c)

+

–c b
l

P

B
A

A
B

C

A

A

B
Multiplier: 1

EI

B

c/3

C
2c/3

Pcb2

l2

Pcb2

l2

Pc2b

l2
Pcb
l

Pcb

l

Pcb
(c2

 + b2)
l3

Pc2b
(c2

 + b2)
2 l3

Pc2b2

2 l2

Pc2b
2 l

Multiplier: 1
EI

Figure 10.8 Deflection of the statically indeterminate beam of Example 10.4 by method of elastic
weights. (a) Actual beam. (b) Conjugate beam. (c) Elastic weights.
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i – 1
λl λ r

i i + 1

i – 1 i i + 1

Mi – 1 Mi + 1
Mi

x1

q q

dx1dx2

Qi

x2

Bending-moment
diagram for
distributed loading

(a)

(b)

(c)

Bending-moment
diagram for equivalent
concentrated loading

Reaction
Equal

Figure 10.9 Bending moment using equivalent concentrated loading. (a) Distributed load. (b) Equival-
ent concentrated load at i. (c) Loadings (a) and (b) give the same bending moment at the
nodes.

Figure 10.9a shows any three points i −1, i, and i +1 in a beam subjected to irregular loading.
These points will be referred to as nodes. The concentrated load Qi equivalent to this loading is
equal and opposite to the sum of the reactions at i of two simply-supported beams between i−1, i,
and i +1, carrying the same load as that on the actual beam between the nodes considered. Thus,

Qi = 1
λl

∫ λl

0
x1qdx1 + 1

λr

∫ λr

0
x2qdx2 (10.11)

where λl and λr are the distances from i to the nodes i − 1 and i + 1 respectively, x1 and x2 are
the distances indicated in Figure 10.9b, and q is the (variable) load intensity.

It can be proved that any statically determinate structure has the same reactions and bending
moments at the node points, regardless of whether the structure is loaded by a distributed load
or by an equivalent concentrated load calculated by Eq. 10.11. However, the bending moment
between the nodes is altered, as shown in Figure 10.9c.

The equivalent concentrated loads (from Eq. 10.11) for straight-line and second-degree para-
bolic distribution are given in Figure 10.10. The formulas for the parabolic variation can be
used for other curves, because any continuous curve can be closely approximated by a series of
small parabolic segments.

Figure 10.11 shows the shearing force and the bending moment diagrams for a beam in the
vicinity of a general node i where a concentrated load Qi acts. The beam may be subjected to
loads at other nodes, but there must be no loading between the nodes. From simple statics, the
shear between the nodes is related to the bending moment at the nodes as follows:

V
i− 1

2
= (Mi − Mi−1)/λl
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Figure 10.10 Equivalent concentrated loading for straight-line and second-degree parabolic distribu-
tion of load.
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Qi
Qi

Shearing force diagram

Bending moment diagram

Loading

ii – 1

Mi – 1

Mi +1

Vi +1/2
Vi –1/2

Mi 

i + 1
λl λr

Figure 10.11 Bending moment diagram under the action of a concentrated load at nodes.

and

Vi+ 1
2

= (Mi+1 − Mi)/λr

where V
i− 1

2
and Vi+ 1

2
are the shear in the intervals λl and λr respectively, and

Qi = Vi− 1
2

− Vi+ 1
2

Substituting the first two of these equations into the last one, we find

−Mi−1

λl
+ Mi

(
1
λl

+ 1
λr

)
− Mi+1

λr
= Qi (10.12)

When λl = λr = λ, Eq. 10.12 becomes

1
λ

(−Mi−1 + 2Mi − Mi+1) = Qi (10.13)

If Eq. 10.12 or 10.13 is applied at several nodes in a beam, a system of simultaneous equations
can be written, the solution of which gives the values of M.

When the deflection is calculated as the bending moment of elastic weights, we change Qi to
wi and M to y in Eqs. 10.12 and 10.13, where wi is the equivalent concentrated elastic weight
and y is the deflection. Thus,

−yi−1

λl
+ yi

(
1
λl

+ 1
λr

)
− yi+1

λr
= wi (10.14)

and when λl = λr = λ,

wi = 1
λ

(−yi−1 + 2yi − yi+1) (10.15)
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The equivalent concentrated elastic loading is given by Eq. 10.11:

wi = 1
λl

∫ λl

0
x1

M
EI

dx1 + 1
λr

∫ λr

0
x2

M
EI

dx2 (10.16)

Example 10.5: Simple beam with variable I
Find the deflection at C and the rotations at A and B for the beam of Figure 10.12. The
variation in the second moment of area of the beam is as shown.

The elastic loading is shown in Figure 10.12b with the equivalent concentrated loads,
calculated by the formulas in Figure 10.9. Applying Eq. 10.14 at C, with A, B, and C as
nodes i − 1, i, and i + 1, and yA = yB = 0, we obtain

−0 + yc

[
1

(l/3)
+ 1

(2l/3)

]
− 0 = 23M0l

54EI0

whence

yc = 23M0l2

243EI0

The values of the slope at A and B are numerically equal to the elastic reactions rA and
rB; thus,

θA = rA = wA + 2
3

wC = 35M0l
81EI0

θB = −rB = −wC

3
− wB = − 47M0l

162EI0

A

(a)

(b)

C

Equivalent
elastic
weights

I0

M0

M0

M0

I0/2

B

Multiplier = 1
EI0

l
3

2
3

M0
4
3

2l
3

4 M0I

27EI0
=wA

23 M0I

54 EI0

=wC
4 M0I

27 EI0

=wB

Figure 10.12 Deflection of the beam of Example 10.5 using equivalent concentrated elastic loading.
(a) Actual loading. (b) Elastic loading.
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Example 10.6: End rotations and transverse deflection of a member in terms of
curvature at equally-spaced sections
Express the displacements D1, D2 and D3 in the simple beam in Figure 10.13a in terms of
the curvatures [ψ] at equally-spaced sections. (a) Use three sections (Figure 10.13b) and
assume parabolic variation between the sections. (b) Use seven sections (Figure 10.13c)
and assume linear variation between each adjacent two. Equations 10.21 to 10.23 and
Eqs. 10.28 to 10.30 to be derived below are not limited to simple beams. They apply to
any straight member of a plane frame. Figure 10.13d represents the deflected shape A′B′
of a typical straight member AB of a plane frame. Here, the displacements D1,D2 and D3

represent rotations and transverse deflection measured from the chord joining A′ and B′.
The expressions relating the displacements to the curvatures are geometry relations that
apply to prismatic or nonprismatic members. The equations are ‘exact’ when the variation
of the curvature is as assumed in the derivation. When used in other cases, the error depends
on how much the actual value of ψ differs from the assumed (see Example 10.7).

The curvature ψ can be treated as intensity of elastic weight (same as M/EI) and replace
the distributed elastic weight by equivalent concentrated elastic weights (Figure 10.10).
With ψ varying parabolically over Sections 1, 2 and 3 in Figure 10.13b,

⎧⎨
⎩

w1

w2

w3

⎫⎬
⎭= l

48

⎡
⎣ 7 6 −1

2 20 2
−1 6 7

⎤
⎦
⎧⎨
⎩

ψ1

ψ2

ψ3

⎫⎬
⎭ (10.17)

l/2 l/2
2

3

2 31

1 2

A

D1

D3

D2

B

B′

A′

3 4 5 6 7

1

(a)

(b)

(c)

(d)

Figure 10.13 Derivation of expressions relating end rotations and deflection of a member of a plane
frame in terms of the curvature at equally-spaced sections, Example 10.6. (a) Coordinate
system. (b) Three sections. (c) Seven sections. (d) Deflected mirror.
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The first column of the 3 × 3 matrix contains the equivalent concentrated loads when
ψ1 = 1 while ψ2 and ψ3 are equal to zero; the other two columns are derived in a similar
way. The rotations D1 and D2 are equal to the shearing forces at the ends, and the deflection
D3 is the bending moment due to the equivalent concentrated elastic weights; thus,

D1 = [1 1/2 0]{w} (10.18)

D2 = −[0 1/2 1]{w} (10.19)

D3 = l[0 1/4 0]{w} (10.20)

Substitution of Eq. 10.17 in Eqs. 10.18 to 10.20 gives expressions for the end rotations
and the mid-length deflection for a straight member of a plane frame in terms of the
curvatures at three equally-spaced sections, assuming parabolic variation (Figure 10.13b):

D1 = l
6

[1 2 0]{ψ} (10.21)

D2 = − l
6

[0 2 1]{ψ} (10.22)

D3 = l2

96
[1 10 1]{ψ (10.23)

With ψ varying linearly between each two adjacent sections and a total of seven sections,
the equivalent concentrated elastic weights (see Figure 10.10a) are:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1

w2

w3

w4

w5

w6

w7

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

= l
36

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 0 0 0 0
1 4 1 0 0 0 0
0 1 4 1 0 0 0
0 0 1 4 1 0 0
0 0 0 1 4 1 0
0 0 0 0 1 4 1
0 0 0 0 0 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

ψ7

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10.24)

The end rotations and the mid-length deflection are (same as shear forces and bending
moment):

D1 = (1/12)[12 10 8 6 4 2 0]{w} (10.25)

D2 = (−1/12)[0 2 4 6 8 10 12]{w} (10.26)

D3 = (l/12)[0 1 2 3 2 1 0]{w} (10.27)

Substitution of Eq. 10.24 in each of Eqs. 10.25 to 10.27 gives expressions for the end
rotations and the deflection at mid-length of a straight member in terms of the curvatures
at seven equally-spaced sections, assuming linear variation between each adjacent two
(Figure 10.13c):

D1 = (l/432)[34 60 48 36 24 12 2]{ψ} (10.28)

D2 = (−l/432)[2 12 24 36 48 60 34]{ψ} (10.29)

D3 = (l2/432)[1 6 12 16 12 6 1]{ψ} (10.30)
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In a similar way we can derive the equations given below for use when the number of
equally-spaced sections is five, instead of the seven sections shown in Figure 10.13:

With five sections:

D1 = (l/192)[22 36 24 12 2]{ψ} (10.28a)

D2 = (−l/192)[2 12 24 36 22]{ψ} (10.29a)

D3 = (l2/192)[1 6 10 6 1]{ψ} (10.30a)

With nine sections:

D1 = (l/768)[46 84 72 60 48 36 24 12 2]{ψ} (10.28b)

D2 = (−l/768)[2 12 24 36 48 60 72 84 46]{ψ} (10.29b)

D3 = (l2/768)[1 6 12 18 22 18 12 6 1]{ψ} (10.30b)

Example 10.7: Bridge girder with variable cross section
Figure 10.14 shows the elevation, the cross section and the bending moment diagram, due
to a uniform load q/unit length, on an interior span of a continuous footbridge. Using the
curvatures at seven equally-spaced sections (Figure 10.13c and Eqs. 10.28 to 10.30), find
the end rotations D1 and D2 and the mid-span deflection D3.

The values of the bending moment M, the second moment of area I and the curvature ψ

(= M/EI, with E being modulus of elasticity) are:

Section M I ψ

1 and 7 −100.0 266.7 −375.0
2 and 6 −30.5 94.8 −322.5
3 and 5 11.1 38.6 287.5
4 25.0 26.4 947.0
Multiplier ql2/1000 10−9 l4 103 q/El2

Bending
moment

M

Elevation

Parabola

Not to
scale

Cross section

4l/1000

l/100

l/50

25

100 –100

l

l/20

l/10

l/20

+

– –

Multiplier: ql2/1000

l/50
to

l/20

Figure 10.14 Interior span of a continuous footbridge subjected to uniform distributed load,
Example 10.7.
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The end rotations D1 and D2 and the mid-span deflection D3 are (Eqs. 10.25 to 10.27):

D1 = −D2 = l
432

[34 60 48 36 24 12 2]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−375.0
−322.5

287.5
947.0
287.5

−322.5
−375.0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

103 q
El2 = 41.8 × 103 q

El

D3 = l2

432
[2(−375.0) + 12(−322.5) + 24(287.5) + 16(947.0)]103 q

El2 = 40.4 × 103 q
E

Using 21 equally-spaced sections instead of seven gives the more accurate answers:

D1 = −D2 = 40.9 × 103 q/(El); D3 = 42.9 × 103 q/E

10.5 Method of finite differences

A numerical solution of the differential equation for deflection can be obtained by finite dif-
ferences. If the bending moment is known, the second derivative in Eq. 10.1 can be put in
finite-difference form in terms of the unknown deflections at three consecutive points (nodes),
usually equally spaced along the beam. Hence, we obtain a finite-difference equation relating the
deflection at node points to the bending moment. When the finite-difference equation is applied
at all the nodes where the deflection is not known, a set of simultaneous equations is obtained,
the solution of which gives the deflections.

A more useful application of the method of finite differences is in cases when the bending
moment is not easy to determine; a solution is then first obtained for the differential equations
relating the deflection to the external loading (Eqs. 10.4 to 10.7), and the stress resultants and
reactions are found from the deflections by differentiation. Thus, a complete structural analysis
can be carried out by finite differences. This method has a wide field of application, and for this
reason it is treated in detail in Chapter 15.

In this section, the discussion is limited to the solution of Eq. 10.1 to obtain the deflection
when the bending moment is known.

Consider a simple beam of variable flexural rigidity EI shown in Figure 10.15a. The differential
equation governing the deflection is given by Eq. 10.1:

M = −EI
d2y
dx2 (10.31)

Consider three equally-spaced points i −1, i, i +1 where the deflection is yi−1, yi, yi+1 respect-
ively (Figure 10.12b). It can be easily shown1 that the second derivative of the deflection at i can
be approximated by

d2y
dx2 � 1

λ2 (yi−1 − 2yi + yi+1 (10.32)

1 See Section 16.2.
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λ λ

i – 1 i i + 1

l
4

l
4

l
4

l
4

Load = q per unit length(a)

(b)

(c)

Multiplier = EIA

Multiplier = ql2/8EIA

Multiplier = ql2/80.75

1.00

0.75

1.0

Variation
in EI

M
EI

1.5

1 2 3

2.0 2.5 3.0

BA

0.5 0.5
0.3

M

Figure 10.15 Calculation of deflections by finite differences.

The finite-difference form of Eq. 10.31 applied at node i is

1
λ

(−yi−1 + 2yi − yi+1 �
(

M
EI

)
i
λ (10.33)

where (M/EI)i is the value of the bending moment divided by the flexural rigidity at point i.
This equation is approximate, and does not take into account the manner in which M/(El) varies
between the nodes.

It may be useful to compare Eq. 10.33 with Eq. 10.15, in which the elastic concentrated
weight wi replaces the right-hand side of Eq. 10.33. The latter equation is approximate
and its accuracy is increased if the number of nodes along the span is increased. However,
for most practical cases, Eq. 10.33 gives sufficient accuracy even with a small number of
divisions.

To compare the two expressions let us consider the beam of Figure 10.15a. The values of
M/(EI) at three nodes in the beam are indicated in Figure 10.15c. Applying Eq. 10.33 at nodes
1, 2, and 3, with the deflection at the supports yA = yB = 0, gives

1
(l/4)

⎡
⎣ 2 −1 0

−1 2 −1
0 −1 2

⎤
⎦
⎧⎨
⎩

y1

y2

y3

⎫⎬
⎭� ql3

32EIA

⎧⎨
⎩

0.5
0.5
0.3

⎫⎬
⎭
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The solution of these equations is

y1 = 2.10
(

ql4

384EIA

)
y2 = 2.70

(
ql4

384EIA

)
and y3 = 1.8

(
ql4

384EIA

)

Now, using Eq. 10.15 with the elastic weights wi calculated by the expression

wi = λ

12

[(
M
EI

)
i−1

+ 10
(

M
EI

)
i
+
(

M
EI

)
i+1

]

(see Figure 10.10), we obtain

1
(l/4)

⎡
⎣ 2 −1 0

−1 2 −1
0 −1 2

⎤
⎦
⎧⎨
⎩

y1

y2

y3

⎫⎬
⎭= ql3

384EIA

⎧⎨
⎩

5.5
5.8
3.5

⎫⎬
⎭

whence

y1 = 1.975
(

ql4

384EIA

)
y2 = 2.575

(
ql4

384EIA

)
and y3 = 1.725

(
ql4

384EIA

)

10.6 Representation of deflections by Fourier series

The equation of the deflected line of a simply-supported beam under any loading can be expressed
in the form of a trigonometric series

y =
∞∑

n=1

an sin
nπx

l
(10.34)

If the loading is represented as a Fourier series,

q =
∞∑

n=1

bn sin
nπx

l
(10.35)

where

bn = 2
l

∫ 1

0
q(x) sin

nπx
l

dx (10.36)

it can be seen that Eq. 10.34 is a solution of the differential equation q=EI(d4y/dx4), provided
that

an = l4

n4π4EI
bn (10.37)

Equation 10.34 satisfies the end conditions of zero deflection (y = 0 at x = 0, l) and of zero
moment (−EI(d2y/dx2) = 0 at x = 0, l).
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y

q0

Constant EI
x

l

Figure 10.16 Representation of elastic line of the simple beam of Example 10.8 by a Fourier series.

Example 10.8: Triangular load on a simple beam
Find the deflection of the beam in Figure 10.16.

The intensity of load at any point distant x from the left-hand end is q(x)= q0x/l. From
Eq. 10.36.

bn = 2q0

l2

∫ l

0
x sin

nπx
l

dx = −2q0

nπ
cosnπ

But cos nπ = −1 when n = 1,3,5, . . ., and cos nπ = 1 for n = 2,4,6, . . . Therefore,

bn = (−1)n+1 2q0

πn

and from Eq. 10.37,

an = (−1)n+1 2q0l4

π5π5EI

Substituting in Eq. 10.34, we obtain the deflection

y = 2q0l4

π5EI

∞∑
n=1

(−1)n+1

n5 sin
nπx

l

Using three terms of the series, we find for the mid-span y(x=l/2) = 0.00652q0l4/(EI),
which agrees with the exact solution to two significant places. If only one term of the series
is used, we have y(x=l/2) = 0.00654q0l4/(EI). This does not differ greatly from the exact
solution, and, indeed, in many cases sufficient accuracy is obtained by using only one term
of the series.

10.7 Representation of deflections by series with
indeterminate parameters

In the preceding section, we used a series to approximate loadings, and hence obtained the
deflection function. Series may also be used to approximate the deflection function directly. Each
term of the series includes a parameter which can be determined by one of several numerical
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procedures.2 In this section, the Rayleigh–Ritz method is used to find the deflection of beams.
However, the principle of virtual work is employed instead of the minimization process of the
total potential energy.

Consider the beam AB shown in Figure 10.17a, subjected to lateral and axial forces and
resting on an elastic foundation. Let the deflection be expressed in the form

y = a1g1 + a2g2 + . . .+ angn (10.38)

where gi is any continuous function of x between A and B which satisfies the boundary conditions
(for instance, at a fixed end, y = 0 and dy/dx = 0). The equilibrium conditions at the ends (for
example, the condition that shear and bending moment at a free end are zero) are not necessarily
satisfied by the functions g (as shear and bending moment are derivatives of y and therefore a
function of a derivative of g).

(a)

(b)

A

A B

B
qF1

D1

x

F1
F2

D2

Fm

Dm

Fm

F2

Elastic foundation
modulus K

y

y

–q = Ky foundation reaction

(c)

A

dD1

dD2

a1

dy = virtual deflection

dDm

B

(d)

a2
a2

a3
a3 a3

Figure 10.17 Representation of deflections by series with indeterminate parameters.

2 See, for example, Crandall, S. H., Engineering Analysis, McGraw-Hill, New York, 1956, pp. 230–232.



300 Displacement of elastic structures by special methods

The values of the parameters a1, a2, . . . , an are determined by satisfying the energy criterion
as follows.

Under the applied forces, the beam is in equilibrium in a deflected shape shown in
Figure 10.17b. The displacements D1, D2, . . . ,Dm are the movements along the line of action
of the external forces F1, F2, . . . , Fm. The resultant lateral load is q∗ = q − ky, where ky is the
intensity of the foundation reaction. Let the beam acquire a small virtual deflection from the
equilibrium position. Assume that this virtual deflection varies in magnitude along the beam
according to the equation

dy = daigi (10.39)

where dai represents a small increase in the parameter ai, while the other parameters remain
unchanged. Thus, the virtual deflection dy varies along the beam in the same manner as the
function gi only. This is in contrast to the variation in y which depends on all the functions g1,
g2, . . ., gn. The virtual deflection causes the forces F1, F2, . . . , Fm to move along their lines of
action by amounts dD1, dD2, . . . , dDm, as shown in Figure 10.17c.

According to the principle of virtual work (see Section 7.5), if an elastic system in equilibrium
undergoes a small virtual displacement, the work done by the external forces while moving along
the virtual displacement is equal to the corresponding change in strain energy. The virtual work
of the external forces is

dW =
m∑

j=1

FjdDj +
∫ B

A
q∗(dy)dx

This equation may also be written in the form

dW = dai

⎛
⎝ m∑

j=1

Fj
∂Dj

∂ai
+
∫ B

A
q∗gi dx

⎞
⎠

where the partial derivative ∂Dj/∂ai represents the change in the displacement Dj corresponding
to a unit change in the parameter ai, causing a virtual deflection which varies along the beam
according to Eq. 10.39.

The two sections limiting an element of length dx of the beam will rotate relative to each other
during the virtual deflection by an angle

dθ = dai
d2gi

dx2 dx

The change in strain energy of this element is −Mdθ (see Section 7.3.2) and the total change
in strain energy due to bending is

dU = −dai

∫ B

A
M

d2gi

dx2 dx

The bending moment at any section is

M = −EI
d2y
dx2 = −EI

(
a1

d2g1

dx2 + a2
d2g2

dx2 + . . .+ a2
d2gn

dx2

)
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Substituting for moment in the strain-energy equation and equating the external and internal
work, we obtain

m∑
j=1

Fj
∂Dj

∂ai
+
∫ B

A
q∗gidx

=
∫ B

A
EI
(

a1
d2g1

dx2 + a2
d2g2

dx2 + . . .+ an
d2gn

dx2

)
d2gi

dx2 dx (10.40)

Equation 10.40 represents a system of equations corresponding to i = 1,2, . . . ,n, from which
the parameters a1, a2, . . . , an can be determined; thus, by Eq. 10.38, an approximate equation
to the elastic line is obtained.

The above procedure has been used extensively to treat buckling problems3 and, to some
extent, has also been applied to beams on elastic foundations.4 For a simply-supported beam,
the functions g are chosen as a sinusoidal curve along the beam length l

gn = sin
nπx

l
d2gn

dx2 = −n2π2

l2 sin
nπx

l

where n = 1, 2, 3, . . . These functions satisfy the boundary conditions of a simply-supported
beam.5 Thus, the deflection is represented by the series (see Eq. 10.34)

y =
∞∑

n=1

an sin
nπx

l
(10.41)

This means that the deflection curve may be obtained by summing the ordinates of sine
curves such as those shown in Figure 10.17d. The parameters a1,a2, . . . represent the maximum
ordinates of these sine curves.

With this choice, and with the assumption that EI is constant, the integrals of the cross-
products on the right-hand side of Eq. 10.40 vanish because

∫ l

0
sin

nπx
l

sin
rπx

l
dx =

⎧⎨
⎩

0 if n �= r
1
2

if n = r

Therefore, in the case of a prismatic beam, Eq. 10.25 becomes

m∑
j=1

Fj
∂Dj

∂an
+
∫ l

0
q∗gndx = anEI

∫ l

0

(
d2gn

dx2

)2

dx

This equation has only one unknown parameter, and its solution gives the value of an:

an = 2l3

n4π4EI

⎛
⎝ m∑

j=1

Fj
∂Dj

∂an
+
∫ l

0
q∗ sin

nπx
l

dx

⎞
⎠ (10.42)

3 Timoshenko, S. and Gere, J. M., Theory of Elastic Stability, 2nd ed., McGraw-Hill, New York, 1961.
4 Hetényi, M., Beams on Elastic Foundation, The University of Michigan Press, Ann Arbor, 1947.
5 The functions which satisfy other end conditions are discussed in some detail in Chapter 18 in conjunction

with the finite-strip method.
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Equations 10.41 and 10.42 can be used to express the deflection in a prismatic beam with
hinged ends, subjected to lateral and axial loads, such as the beam in Figure 10.17a. The same
equations can be used in the analysis of beams with two hinged ends and with intermediate
supports, the reactions at the intermediate supports being treated as any of the forces F. From
the condition that y = 0 at the supports (or y has a known value), we obtain an equation from
which the reaction can be determined. If the beam has intermediate spring supports (elastic
supports) of stiffness k, the deflection condition at these supports is given by the equation for
the reaction F = ky.

The above procedure is used in the following three examples for a beam loaded with a lateral
load only, for a beam with lateral and axial loads, and for a beam resting on an elastic foundation.

Example 10.9: Simple beam with a concentrated transverse load
Find the deflection of a simply-supported beam carrying one vertical load P (Figure 10.18a).
The beam is assumed to have a constant flexural rigidity EI.

Substituting in Eq. 10.42, q∗ = 0,F1 = P and ∂D1/∂an = sin(nπc/l), we obtain

an = 2Pl3

n4π4EI
sin

nπc
l

Substituting for an in Eq. 10.41, we find

y = 2Pl3

π4EI

∞∑
n=1

1
n4 sin

nπx
l

sin
nπc

l

P

P

A

(a)

(b)

(c)

Elastic foundation
modulus K

y

F1

F2

l

c

x

x

x

c

l

l

A

A

B

B

B

y

y

c

Figure 10.18 Beams considered in Examples 10.9, 10.10, and 10.11.
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Example 10.10: Simple beam with an axial compressive force and a transverse
concentrated load
Find the deflection of the beam in Figure 10.18b, carrying a vertical force F1 and an axial
compressive force F2.

The deflection of the beam causes the roller at B to move toward the hinge A. The
movement of B is equal to the difference between the length of the curve and the length of
the chord AB. The length ds corresponding to a horizontal element dx is

ds =
√

dx2 + dy2

Dividing both sides of this equation by dx and expanding the square root by the binomial
series, and retaining the first two terms only, we obtain

ds
dx

= 1 + 1
2

(
dy
dx

)2

Integrating both sides,

∫ l

0

ds
dx

dx =
∫ l

0
dx + 1

2

∫ l

0

(
dy
dx

)2

dx

whence the horizontal movement of B is

s − l = 1
2

∫ l

0

(
dy
dx

)2

dx

where s is the length of the curve AB.
For the beam considered, the deflection is expressed by Eq. 10.41 as

y =
∞∑

n=1

an sin
nπx

l

and

D2 = s − l = 1
2

∞∑
n=1

∫ l

0

(
an

nπ

l
cos

nπx
l

)2
dx =

∞∑
n=1

a2
nn2π2

4l

The partial derivative with respect to an is zero for all the terms in the above series except
for the term containing an; therefore,

∂D2

∂an
= ann2π2

2l

Substituting in Eq. 10.42, ∂D1/∂an = sin(nπc/l), ∂D2/∂an = ann2π2/(2l), and q∗ = 0,
and rearranging the terms, we obtain

an = 2F1l3 sin(nπc/l)
n2π4EI[n2 − F2l2/(π2EI)]
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Therefore, from Eq. 10.41 the deflection equation is

y = 2F1l3

π4EI

∞∑
n=1

sin(nπc/l) sin(nπx/l)
n2[n2 − F2l2/(π2EI)]

Example 10.11: Simple beam on elastic foundation with a transverse force
Find the deflection of a simple beam carrying a concentrated vertical load P and resting
on an elastic foundation of modulus k (Figure 10.18c). The beam has a constant flexural
rigidity EI.

The intensity of the resultant lateral load is

q∗ = −ky = −k
∞∑

n=1

an sin
nπx

l

Equation 10.42 gives

an = 2l3

n4π4EI

[
P sin

nπc
l

− k
∫ l

0

( ∞∑
r=1

ar sin
rπx

l
sin

nπx
l

)
dx

]

The integral on the right-hand side of this equation is zero when r �=n and is equal to anl/2
when r = n. Therefore,

an = 2Pl8

π4EI

(
sin(nπc/l)

n4 + kl4/(π4EI)

)

Substituting in Eq. 10.41,

y = 2Pl3

π4EI

∞∑
n=1

sin(nπc/l) sin(nπx/l)
n4 + kl4(π4EI)

.

10.8 General

Several methods can be used to find the deflection due to bending of beams. The moment–area
or the elastic-weight methods can be used when the variation of the bending moment along
the beam is known. Both these methods are based upon relations between the area under the
bending moment diagram and deflection. In the method of elastic weights, the calculation of
angular rotation and deflection is similar to the routine calculation of shear and bending moment,
except that the applied load and support conditions of the beam are generally altered.

The finite-difference method gives a numerical solution to the governing differential equations
relating the deflection to bending moment or the deflection to loading. The use of finite differences
is particularly advantageous when the bending moment is not known. From a numerical solution
of the differential equation relating the loading to the deflection, the unknown stress resultants
can be determined by differentiation. The details of this procedure can be found in Chapter 15.
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If the loading is represented by a Fourier series, a solution to the differential equation giving
the deflection can be obtained in the form of a trigonometric series. This can be applied to beams
with hinged ends.

The deflection can also be represented as a series including an indeterminate parameter in each
term. Several numerical methods can be used to determine the parameters which give a solution
that approximately satisfies the differential equation. In the method discussed in this chapter,
the parameters are chosen to satisfy the energy criterion. As in the case of the finite-difference
method, the bending moment need not be known and the stress resultants can be determined
from the deflection.

Problems

10.1 In Example 10.2 we use the moment–area–deflection relations of Eqs. 10.8 and 10.10
to prove that for a simple beam the slope and the deflection are equal, respectively, to
the shear and the bending moment of the elastic weights. Verify that the displacements
determined in the example for the beam in Figure 10.6 can also be calculated by the
unit-load theorem to obtain the same answers.

10.2 Use the moment–area–deflection relations Eqs. 10.8 and 10.10 to verify that for the beam
in Figures 10.7a and c the slope and the deflection at any section are equal, respectively,
to the shear and the bending moment of the elastic weights on the conjugate beam in
Figure 10.7b.

10.3 Imperial units. Determine the deflection and the angular rotation at C for the prismatic
beam shown in the figure. Assume I = 800 in.4 and E = 30 × 106 psi.

3 kip/ft

3 kip or 150 kN

20 ft
5 ft

or 50 kN/m

or 6 m
or 1.5 m

B
CA

Prob. 10.3 or 10.4

10.4 SI units. Determine the deflection and the angular rotation at C for the prismatic beam
shown in the figure. Assume I = 330 × 106 mm4 and E = 200GN/m2.

P

C I0

A BD

6P

b b2b

1.5 I0
b/2 b/2

Prob. 10.5

10.5 Compute the deflection at D and C for the beam shown.
10.6 Show that the vertical deflection due to bending of the arch AB in the figure is numerically

equal to the bending moment of the beam A′B′ loaded with the elastic loading M ds/(EI),
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where M is the bending moment in the arch, ds is the length of a typical element along
the arch axis, and EI is the flexural rigidity.

F

B

A

A′ E′ F′ B′

E
Centroid

Elastic loading on E′ F′= M ds/(EI)

M/(EI)

ds

Prob. 10.6

10.7 Using the method of elastic weights, find the deflections at C, D, and E in the arch shown
in the figure. Consider bending deformations only.

10.8 Obtain the stiffness matrix corresponding to the coordinates 1 and 2 of the beam shown.
Hint: Find the angular rotations due to unit moment at each end, and form a flexibility
matrix which, when inverted, gives the required stiffness matrix.

10.9 In Prob. 10.8 add coordinates 3 and 4 at B, representing downward translation and
clockwise notation respectively. Write the stiffness matrix corresponding to the four
coordinates. Use the condensation of stiffness matrix Eq. 5.17 to derive the 2×2 stiffness
matrix required in Prob. 10.8.

A

C

D
E

B H
H

Constant EI

l l l l

l/4

3l/4

Prob. 10.7

l
3

2l
3

1 2

2I0 I0

A B C

Prob. 10.8

10.10 Calculate the magnitude of two equal and opposite couples M necessary to produce
an angular discontinuity of one radian at point D in the prismatic beam shown. Find
the corresponding deflections at D and E. (These deflections are numerically equal to
influence coefficients of the bending moment at D, in a continous beam ABC, having no
hinge at D; see Section 12.3.)
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l l l l

A
E

B
D

C

M

Prob. 10.10

10.11 (a) Find the deflection at D in the continuous beam on unyielding supports shown in
the figure. The beam has a constant flexural rigidity EI.

(b) The bending moments at the supports in the above case are MA = −0.0711 qb2

and MB = −0.1938qb2. A vertical settlement at B and a rotation at A change these
moments to MA =0 and MB =−0.05 qb2. Find the amount of the settlement and the
rotation.

qb

B C D
A

q per unit length

0.4b
b 1.5b b/2

Prob. 10.11

10.12 Use the finite-difference method to calculate the deflection at nodes 1, 2, and 3 and the
angular rotation at end A in the beam shown. Give the answers in terms of EI0. To
calculate the rotation at node A, use the approximate relation

θi � (yi+1 − yi)/λ

P

A 1 2 3 B

Equal spacings

9I0

λ = l/4

7I0 5I0 3I0 I0
Variation in
moment of inertia

Prob. 10.12

10.13 Solve Prob. 10.12 representing the deflection by two terms of the series Eq. 10.34 and
assuming the variation in the second moment of area: I(x) = I0(9 − 8ζ ); where ζ = x/l,
with x being the distance from A to any point and l being the span length. Apply Eq. 10.40
to obtain two simultaneous equations, whose solution gives the indeterminate parameters
a1 and a2.
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10.14 Use the Rayleigh–Ritz procedure to determine the deflection of a simple beam of constant
EI, span l, loaded with a uniform transverse load of intensity q and an axial compressive
force P at the ends. Represent the deflection by the series.

y =
∞∑

n=1

an sin
nπx

l

10.15 Find the first three parameters in the series

y =
∞∑

n=1

an sin
nπx

l

which represents the deflection of the prismatic beam shown in the figure.

q per unit length

Spring
stiffness

P
P xπ2ΕΙ

2l2

l/2 l/2

=

K π2EI
l3

=

y

Prob. 10.15

10.16 Find the deflection of a prismatic beam on an elastic foundation symmetrically loaded by
two concentrated loads as shown in the figure. Represent the deflection

Elastic foundation modulus = K

P P

x

l

cc

y

Prob. 10.16

by the series

y =
∞∑

n=1

an

(
1 − cos

2nπx
l

)

10.17 Express the end rotations D1 and D2 and the mid-length deflection D3 of a straight
member of length l (Figure 10.13) in terms of the curvatures ψ at five equally-spaced
sections, assuming linear variation between each adjacent two (see Example 10.6). Use
the derived expressions to find alternative answers to Prob. 10.12.

10.18 Use method of elastic weights to verify the set of equations relevant to any number of the
beams shown in Appendix B.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 11

Applications of force and displacement
methods: column analogy and moment
distribution

11.1 Introduction

Applications of the force method and the displacement method have, in some cases, led to the
classical procedures known as column analogy and moment distribution. Column analogy can
be used in the analysis of a plane frame formed of one closed bent, and therefore statically
indeterminate to a degree not higher than three. The analysis is by the force method, with the
redundants chosen at a point called the elastic center, and involves calculations similar to those
for stresses in a column cross section subjected to combined bending moment and a normal
force. In this chapter the column analogy will be used only to determine the stiffness matrix of
nonprismatic straight bars and their bending moment, considering only bending deformations.
The use of column analogy to determine the bending moment in single-bay frames is omitted in
the sixth edition to provide space for new material.

In the moment-distribution method, for analysis of plane frames considering only bending
deformations, the joint displacements are first assumed restrained. The effect of joint dis-
placements is then introduced by successive iterations, which can be continued to any desired
precision. Thus, the moment distribution is also a displacement method of analysis. There is,
however, a fundamental difference: in moment distribution generally no equations are solved
to find the joint displacements; instead, these displacements are allowed to take place in suc-
cession, and their effect on the end-moments is introduced as a series of successive converging
corrections. This absence of the need to solve simultaneous equations has made the moment-
distribution method an extremely popular one, especially when the calculations are done by a
simple calculator.

The moment-distribution procedure yields bending moments, and it is the value of the
moments that are generally needed for design; thus, we avoid the procedure of first find-
ing the joint displacements and then calculating the moments. A further advantage of the
moment-distribution procedure is that it is easily remembered and easily applied.

Despite the use of computers, which can rapidly analyze frames with numerous joints and
members, it is useful to analyze such frames (or their isolated parts) by hand, using moment
distribution, in preliminary design or to check the computer results. Performing such a check is
of great importance.

11.2 Analogous column: definition

Figure 11.1a shows a member of variable cross section idealized as a straight bar having a variable
EI. Figure 11.1b, referred to as the cross section of the analogous column, has the shape of a
strip of varying width = 1/EI and length = l, the same as that of the member; where EI ≡ EI(x)

is the flexural rigidity at any point at a distance x from O, the centroid of the analogous column
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Flexural
rigidity

EI = variableA B

EI = variable EI = variable

A B BA

42

1 3 1

(c)

(a)

(b)

(d)

Elastic
center

= EI(x)

1/EI(x)

B

B

bd

A

A

l
l x

O

2

Figure 11.1 Derivation of the stiffness matrix of a nonprismatic member. (a) Nonprismatic member.
(b) Idealization as a straight bar and its analogous column. (c) and (d) Coordinate systems.

(the elastic center). Thus, the area, the first moment of area, and the second moment of area
about the centroidal y axis are, respectively,

a =
∫

dx
EI

; By =
∫

x
dx
EI

= 0; Iy =
∫

x2 dx
EI

(11.1)

11.3 Stiffness matrix of nonprismatic member

Figure 11.1c shows a system of four coordinates at ends A and B of the nonprismatic member
in Figure 11.1a. We will derive the corresponding stiffness matrix [S], using column analogy,
thus considering only bending deformation. For this purpose, we use virtual work to derive the
flexibility matrix [f̄ ] when end B is fixed (Figure 11.1d); see Eq. 8.5:

[f̄ ] =

⎡
⎢⎢⎢⎣

∫
M2

u1dx
EI

symmetrical

∫
Mu1Mu2dx

EI

∫
M2

u2dx
EI

⎤
⎥⎥⎥⎦ (11.2)

where

Mu1 = −(x + d) Mu2 = 1 (11.3)

with d being the distance between O and the left end A.
Mu1 and Mu2 are, respectively, equal to the bending moment at any section due to the separate

effect of F1 = 1 and F2 = 1. Substitution of Eq. 11.3 into Eq. 11.2 gives

[f̄ ] =

⎡
⎢⎢⎢⎣

∫
(x + d)2

EI
dx symmetrical

−
∫

(x + d)

EI
dx

∫
dx
EI

⎤
⎥⎥⎥⎦ (11.4)
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Substitution of Eq. 11.1 into Eq. 11.4 gives

[f̄ ] =
[

Iy + ad2 −ad
−ad a

]
(11.5)

Inversion of Eq. 11.5 gives the stiffness matrix for the nonprismatic member when end B is
fixed (Figure 11.1d):

[S̄] =
[

1/Iy d/Iy

d/Iy (1/a) + (d2/Iy)

]
(11.6)

The forces in any column j of the stiffness matrix [S] of the unsupported beam in Figure 11.1c
represent a system in equilibrium; thus,

S3j = −S1j and S4j = S1j(d + b) − S2j (for j = 1, 2, 3, 4) (11.7)

Elements S11 and S21 are the forces at end A when end B is fixed (Figure 11.1d); thus, S11 and
S21 are the same as S̄11 and S̄21. Similarly, S12 and S22 are the same as S̄12 and S̄22. Thus, using
the equilibrium Eq. 11.7 and remembering that the stiffness matrix is symmetrical, we obtain
the stiffness matrix of the nonprismatic member (Figure 11.1c):

[S] =

⎡
⎢⎢⎢⎣

1/Iy symmetrical

d/Iy (1/a) + (d2/Iy)

−1/Iy −d/Iy 1/Iy

b/Iy −(1/a) + (bd/Iy) −b/Iy (1/a) + (b2/Iy)

⎤
⎥⎥⎥⎦ (11.8)

In the special case when EI = constant, a = l/EI; Iy = l3/(12EI); d = b = l/2. Substitution of
these values in Eq. 11.8 gives the same stiffness matrix as Eq. 6.8.

11.3.1 End rotational stiffness and carryover moment

The elements of columns 2 and 4 of the stiffness matrix of the nonprismatic beam in Figure 11.1c
(Eq. 11.8) represent the end-forces when the beam is deflected as shown in Figures 11.2a and b
respectively. Thus, the stiffness matrix of a nonprismatic member, Figure 11.1c, may be rewritten
in the form

[S] =

⎡
⎢⎢⎢⎣

(SAB + SBA + 2t)/l2 (SAB + t)/l −(SAB + SBA + 2t)/l2 (SBA + t)/l

(SAB + t)/l SAB −(SAB + t)/l t

−(SAB + SBA + 2t)/l2 −(SAB + t)/l (SAB + SBA + 2t)/l2 −(SBA + t)/l

(SBA + t)/l t −(SBA + t)/l SBA

⎤
⎥⎥⎥⎦
(11.9)

This matrix can be generated by filling in the member end-forces in Figures 11.2a and b in
columns 2 and 4, completing rows 2 and 4 by considering symmetry of the matrix, then com-
pleting the remaining four elements by considering that the four forces in any column are in
equilibrium.

The member end-moment SAB(=S22), referred to as the rotational stiffness of end A of member
AB (Figure 11.2a), is the moment required to produce unit rotation of end A while end B is
fixed; the corresponding moment t at end B is referred to as the carryover moment. The ratio
CAB = t/SAB is referred to as the carryover factor from A to B.
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(a) (b)

A A BB

SAB SBA

SAB + t
1

1

–(
l

t t

) SAB + t(
l

l l

) SBA + t
–(

l ) SBA + t(
l )

Figure 11.2 Member end-forces produced by unit rotations at the ends of a nonprismatic member. (a)
and (b) Forces on columns 2 and 4, respectively, of the member in Figure 11.1c.

Similarly, with respect to Figure 11.2b, the rotational stiffness of end B of member AB, SBA, is
the moment at B required to produce unit rotation at B when end A is fixed; the corresponding
carryover moment at A is also equal to t. This can be seen by applying Betti’s theorem to the
forces and displacements in Figures 11.2a and b. The carryover factor from B to A is CBA = t/SBA.

From Eq. 11.8 and the above definition, it is seen that the end rotational stiffness, the carryover
moment, and the carryover factors for a nonprismatic beam are (Figure 11.1b)

SAB = 1
a

+ d2

Iy
SBA = 1

a
+ b2

Iy
t = −1

a
+ bd

Iy
(11.10)

CAB = −(1/a) + (bd/Iy)

(1/a) + (d2/Iy)
CBA = (−1/a) + (bd/Iy)

(1/a) + (b2/Iy)
(11.11)

In the special case of a prismatic member, the end rotational stiffness, the carryover moment,
and the carryover factor are

SAB = SBA = 4EI
l

t = 2EI
l

CAB = CBA = 1
2

(11.12)

The end rotational stiffnesses and the carryover factors will be used in the method of moment
distribution (Section 11.4). Substitution of Eq. 11.12 in 11.9 gives the stiffness matrix for a
prismatic member (Eq. 6.8). The introduction of simple supports at the ends of the nonprismatic
member in Figure 11.1c prevents the displacements at coordinates 1 and 3; the stiffness matrix
corresponding to the remaining coordinates (2 and 4, Figure 11.1c) will be given by Eq. 11.9
with the first and the third rows and columns removed; the resulting 2×2 matrix can be inverted
to give the flexibility matrix for a nonprismatic simple beam, corresponding to clockwise arrows
at its ends. (See Example 11.1)

Example 11.1: Nonprismatic member: end-rotational stiffness, carryover factors
and fixed-end moments
Determine SAB, SBA, t,CAB, and CBA for a nonprismatic member AB, having a flexural
rigidity EI = EI0(1 + ξ), where ξ = x̄/l, with x̄ being the distance from the left end; l is
member length; EI0 = constant. Also, determine the fixed-end moments due to a uniform
load q per unit length. Consider only bending deformation.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Applications of force and displacement methods 313

We may consider Figure 11.1a, with different variation of El, as representing the member
in this problem. The area of the analogous column is (Eq. 11.1)

a =
∫

dx̄
EI

= l
EI0

∫ 1

0

dξ

1 + ξ
= 0.6931

l
EI0

To find the centroid, O of the analogous column, take the first moment of area about
the end A. The distance between A and the centroid O is

d = 1
a

∫
x̄dx̄
EI

= l2

(0.6931l/EI0)

1
EI0

∫ 1

0

ξdξ

1 + ξ

Hence

d = 0.4427l b = l − d = 0.5573l

The distance between O and any point is: x = x̄ − 0.4427l. The second moment of area
of the analogous column, by Eq. 11.1, is

Iy =
∫

x2dx
EI

= l3

EI0

∫ 1

0

(ξ − 0.4427)2dξ

1 + ξ
= 0.0573

l3

EI0

The end rotational stiffnesses, the carryover moments, and the carryover factors
(Eqs. 11.10 and 11.11) are

SAB = EI0

l

(
1

0.6931
+ (0.4427)2

0.0573

)
= 4.863

EI0

l

SBA = EI0

l

(
1

0.6931
+ (0.5573)2

0.0573

)
= 6.863

EI0

l

t = EI0

l

(
− 1

0.6931
+ 0.4427(0.5573)

0.0573

)
= 2.863

EI0

l

CAB = 2.863
4.863

= 0.589 CBA = 2.863
6.863

= 0.417

To determine the fixed-end moments {MAB,MBA} due to uniform load, we use the force
method selecting a simple beam as a released structure. Clockwise arrows 1 and 2 at the
member ends represent the redundants:

{F1,F2} = {MAB,MBA}

The bending moment in the released structure due to load q/unit length, F1 =1 or F2 =1 is:

Ms = ql2

2
ξ(1 − ξ) Mu1 = 1 − ξ Mu2 = −ξ
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The displacements of the released structure (Eq. 8.4)

D1 =
l∫

0

MsMu1

EI
dx̄ D2 =

l∫
0

MsMu2

EI
dx̄

D1 = ql3

2EI0

1∫
0

ξ(1 − ξ)2

1 + ξ
dξ = 0.0304

ql3

EI0

D2 = − ql3

2EI0

1∫
0

ξ2(1 − ξ)

1 + ξ
dξ = −0.0265

ql3

EI0

The fixed-end moments (the redundants) are (Eqs. 4.9 and 6.1):

{
F1

F2

}
= −[f ]−1{D} = −[S]{D}

where [f] and [S] are the flexibility and stiffness matrices corresponding to the coordinates
1 and 2.{

MAB

MBA

}
= −

[
SAB t

t SBA

]
{D}

{
MAB

MBA

}
= EI0

l

[
4.863 2.863
2.863 6.863

]{ −0.0304
0.0265

}
ql3

EI0
=
{ −0.0720

0.0940

}
ql2

The integrals involved in this example are evaluated numerically, using a programmable
calculator.

11.4 Process of moment distribution

The moment-distribution method of analysis of framed structures was introduced by Hardy
Cross1 in 1932, and was extended by others to the cases of structures subjected to high axial
forces, and to axisymmetrical circular plates and shells of revolution.2 In this section we deal
mainly with plane frames supported in such a way that the only possible joint displacements are
rotations without translation. Plane frames with joint translations are dealt with in Section 11.8.

Consider the beam ABC of Figure 11.3a, encastré at A and C, and continuous over support B.
Let us assume first that the rotation of joint B is prevented by a restraining external couple acting
at B. Due to the lateral loads on the members AB and BC, with the end rotations prevented at
all ends, fixed-end moments (FEM) result at the ends A and B, and B and C.

Arbitrary values are assigned to these moments in Figure 11.3b, using the convention that
a positive sign indicates a clockwise end-moment. The restraining moment required to prevent

1 Hardy Cross, “Analysis of Continuous Frames by Distributing Fixed-End Moments.’’ Trans. ASCE. Paper
1793 (96) 1932.

2 See list of references: Gere, J. M., Moment Distribution, Van Nostrand, New York, 1963, pp. 247–268.
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A B

End AB BA BC CB

C

(a)

(b)

(c)

SBA : SBC  = 1:1.5

0.4 0.6DFs

FEM’s

Final moments

–80 +100

+20 +30 +15

–150 +180

+10

–70 120 –120 195

One cycle;
moment dis-
tribution and
carryover

Balancing moment = 50

A C

B
θB

θB

Figure 11.3 Analysis of a continuous beam by the moment-distribution method. (a) Beam. (b) Solution
by moment distribution. (c) Beam deflection after release of joint B.

the rotation of joint B is equal to the algebraic sum of the fixed-end moments of the members
meeting at B, that is −50.

So far, the procedure has been identical with the general displacement method considered in
Chapter 5. However, we now recognize that the joint B is, in fact, not restrained, and we allow it
to rotate by removing the restraining moment of −50. The same effect is achieved by applying to
the joint B an external couple M =+50 (Figure 11.3c), that is, a moment equal and opposite to
the algebraic sum of the fixed-end moments at the joint. This is known as the balancing moment.
Its application causes the ends of the members BA and BC meeting at B to rotate through the
same angle θB; hence, end-moments MBA and MBC develop. For equilibrium of the moments
acting on joint B,

M = MBA + MBC (11.13)

The end-moments MBA and MBC can be expressed in terms of the rotational stiffnesses of end
B of members AB and BC, viz. SBA and SBC, thus,

MBA = θBSBA and MBC = θBSBC (11.14)

From Eqs. 11.13 and 11.14, the end-moments can be expressed as a fraction of the balancing
moment
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MBA =
(

SBA

SBA + SBC

)
M

MBC =
(

SBC

SBA + SBC

)
M

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(11.15)

This means that the balancing moment is distributed to the ends of the members meeting at
the joint, the distributed moment in each member being proportional to its relative rotational
stiffness. The ratio of the distributed moment in a member to the balancing moment is called
the distribution factor (DF). It follows that the distribution factor for an end is equal to the
rotational stiffness of the end divided by the sum of the rotational stiffnesses of the ends meeting
at the joint, that is,

(DF)i = Si
n∑

j=1
Sj

(11.16)

where i refers to the near end of the member considered, and there are n members meeting at
the joint.

It is clear that to determine the DFs we can use relative values of the rotational end stiffnesses
rather than the actual values, so that Eq. 11.16 is valid also with S representing the relative
rotational end stiffness. It is also evident that the sum of all the DFs of the ends meeting at a
joint must be equal to unity.

Let the relative stiffnesses SBA and SBC for the beam in Figure 11.3a be 1 and 1.5. The DFs
are therefore: 1/(1 + 1.5)= 0.4 for end BA, and 1.5/(1 + 1.5) = 0.6 for end BC. The balancing
moment of +50 will be distributed as follows: 50 × 0.4 = 20 to BA, and 50 × 0.6 = 30 to BC.
The distributed moments are recorded in a table in Figure 11.3b.

The rotation of joint B produced in the previous step induces end-moments at the far fixed
ends A and C. These end-moments are referred to as carryover moments, their values being equal
to the appropriate distributed moment multiplied by the carryover factor (COF): CBA from B to
A, and CBC from B to C. The value of a carryover factor depends upon the variation in the cross
section of the member; for a prismatic member, COF = 1

2 . A method of calculating the COFs is
described in Section 11.3.1. When the far end of a member is pinned, the COF is, of course, zero.

The carryover moments in the beam considered are recorded in Figure 11.3b on the assumption
that CBA = CBC = 1

2 , that is, the cross section is taken to be constant within each span. The two
arrows in the table pointing away from joint B indicate that the rotation at B (or moment
distribution at B) causes the carryover moment of the value indicated at the head of the arrow.
The use of the arrows makes it easier to follow a proper sequence of operations and also facilitates
checking.

The process of moment distribution followed by carrying over is referred to as one cycle. In
the problem considered, no further cycles are required as there is no out-of-balance moment.
The final end-moments are obtained by adding the end-moments in the restrained condition
(FEMs) to the moments caused by the rotation of joint B in the cycle in Figure 11.3b. However,
if rotation can occur at more than one joint, further cycles of distribution and carryover have
to be performed, as shown in the following example.

Example 11.2: Plane frame: joint rotations without translations
Use the method of moment distribution to analyze the frame in Figure 11.4a. If the axial
deformations are ignored, the only possible joint displacements are rotations at B and C.
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(a)

K = 1.5 K = 1.5

K = 1 K = 0.75

B C E

DA

Figure 11.4 Analysis of the plane frame in Example 11.2 by moment distribution without joint
translation. (a) Plane frame without joint translation. (b) Moment distribution.

We assume the frame to have prismatic members so that the carryover factor in all cases is
1
2 . Then, the rotational end stiffness of any member is S = 4EI/l, where EI is the flexural
rigidity of the cross section and l the length of the member. It follows that the relative
rotational stiffnesses can be taken as K = I/l. The relative K values for all the members
are shown in Figure 11.4a. The applied load is assumed to be of such a magnitude as to
produce the FEMs given in Figure 11.4b.

The DFs are calculated by Eq. 11.16 and indicated in Figure 11.4b. The first cycle of
moment distribution and carryover is done by allowing joint B to rotate; joint C continues
to be restrained. This is done in the same way as in the previous example. In the second
cycle, joint C is allowed to rotate, joint B now being restrained. The balancing moment
for this cycle is equal to minus the algebraic sum of the FEMs at CB, CD, and CE plus the
carryover moment caused by the rotation of joint B in the previous cycle – that is − (285+
0 − 200 + 15)=−100. The second cycle is terminated by the carryover of moments to the
far ends of the three members meeting at C, as shown by arrows. It is evident that cycle 2
has induced an imbalance at joint B, that is, if joint B is now released, a further rotation
will occur. The effect of this release is followed through in the same way as in cycle 1,
but with the balancing moment equal to minus the moment carried over to BC from the
previous cycle.
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The carryover in the third cycle results in an unbalanced moment at joint C. In order
to remove the external constraint, joint C must be balanced again. The process is repeated
until the unbalanced moments at all the joints are so small as to be considered negligible.
The final moments are obtained by adding the FEMs to the end-moments produced by the
joint displacement allowed in all the cycles. Because we reach a final position of equilibrium
under the applied loading, the sum of the final end-moments at any joint must be zero. This
fact can be used as a check on the arithmetic in the distribution process.

It may be interesting to note that moment distribution can be carried out experimentally
on a model of a structure capable of being clamped at any joint.

In the preceding example, no distribution was carried out at the fixed ends A, D, and E
because the ends of the members at these points can be imagined to be attached to a body
of infinite rigidity. Thus, the DF for a built-in end of a frame is zero. We should also note
that the moments introduced at the ends AB and DC in each cycle are equal to the COFs
times the moment introduced respectively at ends BA and CD. It follows that the moments
at ends AB and DC need not be recorded during the distribution process, and the final
moments at these two ends can be calculated by

MAB = (FEM)AB + CBA[MBA − (FEM)BA] (11.17)

where MBA is the final moment at end BA. A similar equation can be written for the end DC.

11.5 Moment-distribution procedure for plane frames without
joint translation

We should recall that the process of moment distribution described in the previous section applies
solely to structures in which the only possible displacement at the joints is rotation. It may be
convenient to summarize the steps involved.

Step 1 Determine the internal joints which will rotate when the external load is applied to the
frame. Calculate the relative rotational stiffnesses of the ends of the members meeting at these
joints, as well as the carryover factors from the joints to the far ends of these members. Determine
the distribution factors by Eq. 11.16. The rotational stiffness of either end of a prismatic member
is 4EI/l and the COF from either end to the other is 1

2 . If one end of a prismatic member is hinged,
the rotational end stiffness of the other end is 3EI/l, and, of course, no moment is carried over
to the hinged end. In a frame with all members prismatic, the relative rotational end stiffness
can be taken as K = I/l, and when one end is hinged the rotational stiffness at the other end is
( 3

4 )K= ( 3
4 )I/l. The rotational end stiffnesses and the carryover factors for nonprismatic members

can be determined by column analogy, as shown in Section 11.3.1.

Step 2 With all joint rotations restrained, determine the fixed-end moments due to the lateral
loading on all the members.

Step 3 Select the joints to be released in the first cycle. It may be convenient to take these as
alternate internal joints. (For example, in the frame of Figure 11.5, we can release in the first
cycle either A, C, and E or D, B, and F.) Calculate the balancing moment at the selected joints;
this is equal to minus the algebraic sum of the fixed-end moments. If an external clockwise
couple acts at any joint, its value is simply added to the balancing moment.
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D E F

CBA

Figure 11.5 Plane frame without joint translation.

Step 4 Distribute the balancing moments to the ends of the members meeting at the released
joints. The distributed moment is equal to the DF multiplied by the balancing moment. The
distributed moments are then multiplied by the COFs to give the carryover moments at the far
ends. Thus, the first cycle is terminated.

Step 5 Release the remaining internal joints, while further rotation is prevented at the joints
released in the first cycle. The balancing moment at any joint is equal to minus the algebraic
sum of the FEMs and of the end-moments carried over in the first cycle. The balancing moments
are distributed and moments are carried over to the far ends in the same way as in Step 3. This
completes the second cycle.

Step 6 The joints released in Step 3 are released again, while the rotation of the other joints
is prevented. The balancing moment at a joint is equal to minus the algebraic sum of the end-
moments carried over to the ends meeting at the joint in the previous cycle.

Step 7 Repeat Step 6 several times, for the two sets of joints in turn until the balancing moments
become negligible.

Step 8 Sum the end-moments recorded in each of the steps 2 to 7 to obtain the final end-
moments. The reactions or stress resultants if required may then be calculated by simple
equations of statics.

If a frame has an overhanging part, its effect is replaced by a force and a couple acting at the
joint of the overhang with the rest of the structure. This is illustrated in the following example.

Example 11.3: Continuous beam
Obtain the bending moment diagram for the continuous beam of Figure 11.6a.

The effect of the cantilever AB on the rest of the beam is the same as that of a downward
force, qb and an anticlockwise couple of 0.6qb2 acting at B, as shown in Figure 11.6b. The
end B is thus free, and the distribution has to be carried out at joints C, D, and E. During
the distribution, joint B (Figure 11.6b) will be free to rotate so that B is considered to be
a hinge. No moment is therefore carried over from C to B, and the relative end-rotational
stiffness3 of CB is ( 3

4 )K = ( 3
4 )I/l. Since I is constant throughout, it may be taken as unity.

3 See Eq. 11.21.
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Figure 11.6 Analysis of the continuous beam in Example 11.3 by moment distribution. (a) Continuous beam. (b) Replacement of the actual load on overhang
by equivalent loading at B. (c) Moment distribution. (d) Bending moment diagram.
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The relative rotational stiffnesses of the ends at the three joints C, D, and E are recorded
in Figure 11.6c, together with the COFs and the DFs.

The FEMs for ends BC and CB are those of a beam hinged at B, fixed at C, and subjected
to a couple of −0.6qb2 at B. The other FEMs are calculated in the usual way.

The moment distribution is performed at joint D in one cycle, and at joints C and E
in the following cycle. The moments produced at ends CB, EF, and FE are not recorded;
the final moments at these ends are calculated from the values of the final moments at
the other end of the respective members. First, we write MCB = −MCD = −0.285qb2, and
MEF = −MED = −0.532qb2. Then, by an equation similar to Eq. 11.17,

MFE = (FEM)FE + CEF[MEF − (FEM)EF]

The FEMs at the two ends of member EF are zero and CEF = 1
2 ; therefore, MFE = ( 1

2 )MEF =
−0.266qb2.

The final bending moment diagram of the beam is shown in Figure 11.6d.

11.6 Adjusted end-rotational stiffnesses

The process of moment distribution can be made shorter in certain cases if adjusted end-
rotational stiffnesses are used instead of the usual stiffnesses. Expressions will be derived for
these adjusted end-rotational stiffnesses of nonprismatic members but, because of their frequent
use, values for prismatic members will also be given.

The end-rotational stiffness SAB was defined in Section 11.3.1 as the value of the moment
required at A to rotate the beam end A through a unit angle while the far end B is fixed.
Similarly, SBA is the end-moment to produce a unit rotation at B while end A is fixed. The
deflected shapes of the beam corresponding to these two conditions are shown in Figure 11.7a.
The moment t at the fixed end has the same value for the two deflected configurations. The rotated
ends in Figure 11.7a are sketched with a roller support but they can also be represented as in
Figures 11.2a and b. Both figures indicate the same conditions, that is, a unit rotation without
transverse translation of the end. The axial and shear deformations are ignored for the present
purposes. For a prismatic beam SAB = SBA = 4EI/l, and t = 2EI/l. For nonprismatic beams,
values of SAB and SBA and the carryover factors may be calculated by Eqs. 11.10 and 11.11.

The special cases which we shall now consider are: (a) when rotation is applied at one end
of a member whose far end is not fixed but hinged (Figure 11.7b); (b) when such a member is
subjected to symmetrical or antisymmetrical end-forces and rotations (Figures 11.7c and d). The
adjusted end-rotational stiffnesses in these cases will be denoted by S with a subscript indicating
the beam end and a superscript indicating the conditions at the far end as defined in Figure 11.7.

Let us express the adjusted end-rotational stiffnesses S�AB,S�AB and S�AB in terms of the stiffnesses
SAB,SBA, and t for the same beam.

The forces and displacements along the coordinates 1 and 2 in Figure 11.7a are related by

[S] {D} = {F} (11.18)

where

[S] =
[

SAB t
t SBA

]

and where {D} are the end-rotations and {F} the end-moments.
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Figure 11.7 End-rotational stiffnesses in special cases (Eqs. 11.18 to 11.25). (a) End-moments caused
by a unit rotation at one end while the other end is fixed. (b) End-moment caused by a
unit rotation at end A while end B is hinged. (c) End-moments caused by symmetrical unit
rotations at ends A and B. (d) End-moments caused by antisymmetrical unit rotations at
ends A and B. (e) End-moment at A caused by a unit rotation at A while B is fixed. The
translation of A is not prevented. (f) Coordinates for calculation of S�AB.

Putting D1 = 1 and F2 = 0 in Eq. 11.18 represents the conditions in Figure 11.7b. The force
F1 in this case will be equal to the adjusted stiffness S�AB. Thus,

[
SAB t
t SBA

]{
1
D2

}
=
{

S�AB
0

}
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Solving,

S�AB = SAB − t2

SBA
(11.19)

The same equation can be written in terms of the COFs, CAB = t/SAB and CBA = t/SBA, thus,

S�AB = SAB(1 − CABCBA) (11.20)

For a prismatic member, Eqs. 11.19 and 11.20 reduce to

S�AB = 3EI
l

(11.21)

Referring again to Eq. 11.18, and putting D1 = −D2 = 1 represents the conditions in
Figure 11.7c. The force F1 = −F2 is equal to the end-rotational stiffness S�AB. Thus,

[
SAB t

t SBA

]{
1

−1

}
=
{

S�AB

−S�AB

}

Solving either of the above equations, we obtain the end-rotational stiffness in case of
symmetry:

S�AB = SAB − t = SAB(1 − CAB) (11.22)

For a prismatic member, this reduces to

S�AB = 2EI
l

(11.23)

Similarly, if we put D1 = D2 = 1, Eq. 11.18 represents the conditions in Figure 11.7d. The
end-forces are F1 = F2 = S�AB, and the end-rotational stiffness in the antisymmetrical case is

S�AB = SAB + t = SAB(1 + CAB) (11.24)

For a prismatic member, this reduces to

S�AB = 6EI
l

(11.25)

11.7 Adjusted fixed-end moments

Figure 11.8a represents a beam with two fixed ends subjected to transverse loading. Let the
end-moments for this beam be MAB and MBA and let the vertical reactions be FA and FB. The
beam is assumed to be nonprismatic with end-rotational stiffnesses SAB and SAB, the carryover
moment t, and the carryover factors CAB and CBA. Let us now find the end-moments for a similar
beam subjected to the same transverse loading but with the support conditions of Figure 11.8b.
In this figure, the end A is hinged; thus, rotation at A is free to take place and there is only one
end-moment M�

BA to be determined.
To shorten the process of moment distribution, in some cases we can use the adjusted fixed-end

moment M�
BA together with the adjusted end-rotational stiffnesses. Consider first the beam in

Figure 11.8a with the end-displacements restrained; the end-moments are MAB and MBA. Now
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A

FA

B A B

FB

MAB
MBA MBA

(a) (b)

1
l

Figure 11.8 Adjusted fixed-end moments. (a) Two ends encastré. (b) Free rotation at A.

allow the end A to rotate by an amount such that a moment −MAB is developed at end A. The
corresponding moment developed at B is −CABMAB. Superposing the end-moments developed
by the rotation will give a zero moment at A, and this represents the condition of the beam in
Figure 11.8b. The adjusted FEM at B when end A is hinged is therefore

M�
BA = MBA − CABMAB (11.26)

where MAB and MBA are the FEMs of the same beam with the two ends encastré, and CAB is
the COF from A to B. For a prismatic beam, Eq. 11.26 becomes

M�
BA = MBA − MAB

2
(11.27)

Example 11.4: Plane frame symmetry and antisymmetry
Find the bending moment in the symmetrical frame shown in Figure 11.9a by replacing the
loading by equivalent symmetrical and antisymmetrical loadings.

Any load on a symmetrical structure can be replaced by the sum of a symmetrical and
an antisymmetrical loading, as indicated in Figures 11.9b and c. The same concept can be
used in computer analysis of large structures which exceeds the capacity of the available
computer; by virtue of the structural symmetry, while the loading is not symmetrical, it
is possible to find the solution by superposition of two or more analyses performed on a
repetitive part of the structure (see Section 22.3).

We shall now introduce this concept for a relatively simple frame, using the adjusted
stiffnesses and FEMs, although this does not achieve much saving in calculations.

With symmetry or antisymmetry of loading, the moment distribution need be done for
one-half of the frame only. Figures 11.9d and e deal with the symmetrical and antisym-
metrical cases respectively. The end-rotational stiffnesses for the members meeting at B are
calculated using Eqs. 11.21, 11.23, and 11.25, and we find for the symmetrical case

SBA : SBE : SBC = 3KBA : 4KBE : 2KBC

and for the antisymmetrical case

SBA : SBE : SBC = 3KBA : 4KBE : 6KBC

where K = I/l. In this frame, K is the same for all members. The DFs are calculated in the
usual way and are given in Figures 11.9d and e.

The FEM in end BA (for a beam with one end hinged) is obtained by the use of Appendix
C and Eq. 11.26; thus, (FEM)BA = 0.75 Pb for both cases.
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Figure 11.9 Analysis of frame in Example 11.4. (a) Frame properties and loading. (b) Symmetrical
loading. (c) Antisymmetrical loading. (d) Moment distribution for the symmetrical case.
(e) Moment distribution for the antisymmetrical case. (f) Summation of end-moments
calculated in parts (d) and (e). (g) Bending moment diagram for the frame in part (a).

The COF CBE =0.5. No moments are carried over from B to C or from B to A. Thus, only
one cycle of moment distribution is required at B, as shown in Figures 11.9d and e.

It is important to note that in the symmetrical case, the end-moments in the right-hand
half of the frame are equal in magnitude and opposite in sign to the end-moments in the
left-hand half, while in the antisymmetrical case they are equal and of the same sign in the
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two halves. The summation of the end-moments in the two cases is carried out in the table in
Figure 11.9f. This gives the end-moments of the frame in Figure 11.9a. The corresponding
bending moment diagram is shown in Figure 11.9g.

Example 11.5: Continuous beam with variable section
Obtain the bending moment diagram for the symmetrical nonprismatic beam shown in
Figure 11.10a. The end-rotational stiffnesses, the COFs and the fixed end-moments are
given below.

Member AB Member BC

End-rotational stiffness
SAB = 4.2

EI
lAB

SBC = SCB = 5.3
EI
lBC

SBA = 5.0
EI
lAB

Carryover factor
CAB = 0.57 CBC = CCB = 0.56

CBA = 0.48

Fixed-end moment due to a uniform load of
intensity q

MAB = −0.078ql2
AB MBC = −0.089ql2

BC

MBA = 0.095ql2
AB MCB = 0.089ql2

BC

The beam is symmetrical and symmetrically loaded. With adjusted stiffnesses and
FEMs for ends BA and BC, the moment distribution needs to be carried out at joint
B only.

The adjusted end-rotational stiffness for BA with end A hinged is given by Eq. 11.20; in
our case,

S�BA = SBA(1 − CABCBA)

or

S�BA = EI
6b

(5.0)(1 − 0.57 × 0.48) = 0.605
EI
b

The adjusted end-stiffness for the symmetrical member BC is (from Eq. 11.22)

S�BC = SBC(1 − CBC)

or

S�BC = EI
8b

(5.3)(1 − 0.56) = 0.292
EI
b

The distribution factors are

(DF)BA = 0.605
0.605 + 0.292

= 0.67
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Figure 11.10 Analysis of beam in Example 11.5. (a) Beam properties and loading. (b) Moment
distribution. (c) Bending moment diagram.

(DF)BC = 0.292
0.605 + 0.292

= 0.33

The adjusted FEM at B for member BA with end A hinged is (from Eq. 11.26)

M�
BA = MBA − CABMAB

or

M�
BA = ql2

AB(0.095 + 0.57 × 0.078) = 0.139ql2AB = 5.00qb2

The FEM at end BC is

MBC = −0.089ql2
BC = −5.70qb2

One cycle of moment distribution is required with no carryover. This is shown in
Figure 11.10b and the bending moment diagram is plotted in Figure 11.10c.
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11.8 General moment distribution procedure: plane frames
with joint translations

The procedure considered in this section is a displacement method of analysis of Chapter 5 with
moment distribution used to reduce the number of simultaneous equations involved.

In the general case, the degree of kinematic indeterminacy of a structure can be expressed as

k = m + n

where m is the number of unknown joint rotations and n is the number of unknown joint
translations. The number of joint translations, which is sometimes referred to as the number of
degrees of freedom in sidesway, represents the number of equations which must be solved, and
if n is much smaller than k, there will be a considerable reduction in computational effort.

Figure 11.11 shows several examples of plane frames with coordinates representing the
unknown joint translations indicated. In each case the degree of freedom of sidesway n and
the total number of unknown joint displacements k are indicated, assuming that the length of
all members remains unchanged after deformations. From a comparison of k and n, we can see
that the analysis by the method to be discussed involves the solution of a much smaller number
of simultaneous equations. This saving is, of course, not significant in a computer analysis.

1

2

1

2

1 2
1

1
1

n = 1
k = 3

n = 2
k = 6

n = 2
k = 6

n = 2
k = 5

n = 1
k = 3

n = 1
k = 5

1 2

n = 3
k = 8

n = 3
k = 11

3

3

1 2

n = degrees of freedom in sidesway
k = total degrees of freedom

Figure 11.11 Joint displacements of plane frames.
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The procedure is as follows.

Step 1 All the possible independent joint translations are first indicated by coordinates; their
number is, of course, equal to the number of degrees of freedom in sidesway, n. Restraining
forces {F}n×1 are then introduced along these coordinates to prevent the translation of all joints.

Step 2 The frame is analyzed by moment distribution without joint translation (as in the preced-
ing section), and the corresponding end-moments {Ar} are determined. These are the moments
on the ends of the members with the joints allowed to rotate but with translation restrained.
The n restraining forces {F} are then calculated by considering equilibrium of the members. This
usually involves no more than the simple equations of static equilibrium.

Step 3 A unit displacement D1 = 1 is introduced along the first of the n coordinates in the
unloaded frame, while the translation along all the other coordinates is prevented. Assuming
further that no joint rotations occur, the FEMs in the deformed members are calculated. With no
further joint translation allowed, the moment distribution is now carried out. The end-moments
obtained by the distribution correspond to a unit translational displacement along the coordinate
1, all the other joint translations being prevented, but joint rotations, of course, being allowed.
From these moments, the forces required along the n coordinates in this deformed configuration
are determined.

The process is repeated by allowing a unit value of translation to take place separately along
each of the n coordinates. The resulting forces along the coordinates are then arranged in a
matrix [S]n×n representing the stiffness matrix of the frame. The end-moments are arranged in
a matrix [Au] representing the end-moments caused by unit values of the translations.

Step 4 The loaded frame in the restrained state will have sidesway (D1,D2, . . . ,Dn}, which can
be determined from the equation

[S] {D} = −{F} (11.28)

Step 5 The end-moments in the actual structure are then calculated by a superposition equation

{A} = {Ar} + [Au] {D} (11.29)

It is obvious that in Step 3 we could have determined forces corresponding to an arbitrary
value of the translation instead of unity. This, of course, would lead to a matrix [S] which is not
the real stiffness matrix and a vector {D} which does not represent the real displacements, but
Eq. 11.29 would still give the actual end-moments in the frame.

Example 11.6: Continuous beam on spring supports
Find the end-moments in each span of the prismatic continuous beam in Figure 11.12a.
The beam is encastré at A and D and rests on elastic (spring) supports at B and C. The
stiffness of the elastic supports, that is, the force required to compress any of the springs
by a unit distance, is 2EI/l3.

The beam has two degrees of freedom of joint translation: vertical displacements at B
and at C. Let the positive direction of these displacements be indicated by coordinates 1
and 2 in Figure 11.12b.
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Figure 11.12 Beam considered in Example 11.6. (a) Beam properties and loading. (b) Coordin-
ate system. (c) Restraining forces (D1 = D2 = 0). (d) Calculation of the end-moments
corresponding to D1 = 1 and D2 = 0.

First, the beam is analyzed with the translation of B and C prevented. The end-moments
on ends 1, 2, . . ., 6 are

{Ar} = ql2{−0.078,0.094,−0.094,0.044,−0.044,−0.022}

These moments can be obtained by moment distribution or by other methods. The restrain-
ing forces {F} are equal to minus the reactions at B and C if these supports are rigid
(Figure 11.12c), that is,

F = −ql
{

1.066
0.516

}
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The FEMs due to D1 = 1 and D2 = 0, with no joint rotation allowed at B, are given
in Figure 11.12d. The moment-distribution cycles are performed in the usual way and
the end-moments are calculated. The forces S11 and S21 required to hold the beam in this
deformed configuration are calculated from the end-moments, considering the equilibrium
of each span as follows:

S11 =
(

2EI
l3

)
− EI

l3 [(−5.2 − 5.60) − (5.20 + 3.2)] = 21.2
EI
l3

and

S21 = −EI
l3 [(3.2 + 5.2) − (−3.2 − 1.6)] = −13.2

EI
l3

The term 2EI/l3 included in S11 is the force required at 1 to compress the spring at A by
a unit amount.

Because the structure is symmetrical, we can see that the forces S12 and S22 (at 1 and 2
respectively) corresponding to the displacements D1 = 0 and D2 = 1 are

S12 = −13.2
EI
l3

and

S22 = 21.2
EI
l3

The moments on the ends, 1, 2,. . ., 6 (see Figure 11.12a) due to the two deformed
configurations considered above can be arranged in a matrix:

[Au] = EI
l2

⎡
⎢⎢⎢⎢⎢⎢⎣

−5.6 1.6
−5.2 3.2

5.2 −3.2
3.2 −5.2

−3.2 5.2
−1.6 5.6

⎤
⎥⎥⎥⎥⎥⎥⎦

Applying Eq. 11.28,

EI
l3

[
21.2 −13.2

−13.2 21.2

]{
D1

D2

}
= ql

{
1.066
0.516

}

Hence,

{D} =
{

D1

D2

}
= ql4

EI

{
0.107
0.091

}

The final end-moments for the beam of Figure 11.12a are obtained from Eq. 11.29 by
substituting the values calculated. Hence, the final end-moments are
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{A} = ql2

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−0.533
−0.172

0.172
−0.086

0.086
0.360

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

In the present example, the end-moments due to a unit displacement at 1 or at 2 and the
forces corresponding to these displacements could have been taken directly from the tables
in Appendix E without the need for moment distribution. However, these tables apply only
to continuous beams with equal spans.

11.9 General

The end-rotational stiffnesses, the carryover moment, and the stiffness matrix can be conveni-
ently determined by the use of column analogy. It is to be noted that the method of column
analogy considers bending deformations only.

The moment distribution is used in this chapter for the analysis of plane frames considering
bending deformations only. Solution of simultaneous equations is avoided in structures not
involving translation of the joints. The amount of computation can be further reduced for
symmetrical frames subjected to symmetrical or antisymmetrical loading (and any loading can
be resolved into such components) by using adjusted end-rotational stiffnesses and FEMs.

For plane frames with joint translations, moment distribution is used to limit the number of
equations required in the displacement method to the number of unknown joint translations.

Problems

11.1 to 11.5
Considering bending deformations only, find the bending moment diagram and the
reactions (if any) for the plane frame shown. Hint: Where possible, take advantage

2 P

2 b 2 b

b

Constant EI

C

D

E

B

A

P

3 b

Prob. 11.1



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Constant EI

0.5 b

1.5 b

4 b

0.5 b

1.5 b

PP

B

A

C D
E

F

Prob. 11.2

Regular
hexagon
of side b,
constant EI

B F

EC

A G

P

P

D

H

b
2

bb
2

Prob. 11.3

q per
unit length

2 b

2 b 0.4 b 

B

A

I0

2I0

3I0

C

D

E

qb

b

Prob. 11.4
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HINT:  The statically
determinate parts
AC and GH must
not be included
in the analogous
column.

3 b/2 3 b/2

P

D

C G

BA

bb 3 b

2 b

4I0

4I0

I0 I0

E F

Prob. 11.5

of the symmetry of the structure or of both the structure and the loading. In the latter
case, cutting a section at an axis of symmetry gives a released structure with two unknown
internal forces, instead of three (the third one is known to be nil).

11.6 Find the forces at the ends A and B of the gable frame shown, subjected to a uniform
vertical load of intensity q per unit length of horizontal projection. The frame is assumed
to be encastré at A and B. Consider bending deformations only.

A B
Constant EI

1.2 b

1.6 b1.6 b

Prob. 11.6

11.7 and 11.8

Find the end-rotational stiffness SAB, SBA, and the carryover factors CAB and CBA for the
beam in the figure.

A B

2I0 I0

l
2

l
2

Prob. 11.7
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l
2

l
2

A B

h
2h

Parabola

EI varies as the cube of the depth

Tangent

Prob. 11.8

11.9 Find the fixed-end moments in the beam of Prob. 11.7 subjected to a uniform transverse
load q per unit length.

11.10 Find the fixed-end moments in the beam of Prob. 11.8 loaded by a concentrated transverse
force P at the center.

11.11 Find the bending moment diagram for the frame shown in the figure. Find the three
reaction components at A.

3l/4l

q/unit length 

Constant EI

B C E

DA

l

Prob. 11.11

11.12 Solve Prob. 11.11 with the end E supported on a roller which allows horizontal translation
instead of the hinged support shown in the figure.

11.13 Draw the bending moment diagram for the bridge frame in the figure due to a uniform
load of q per unit length on AD. The end-rotational stiffnesses, the carryover moment,
and the FEMs for the members of variable I are given below the figure.

A
Second
moment of area
at end = IA

B

E F

C
CL

D

l/3 0.6IA 0.6IA

2l/3 2l/3l

Prob. 11.13



336 Applications of force and displacement methods

The end-rotational stiffnesses and carryover moments are as follows:

Member AB : SAB = 5.4
EIA

lAB
,SBA = 14.6

EIA

lAB
, and tAB = 4.9

EIA

lAB

Member BC : SBC = SCB = 12.0
EIA

lBC
, and tBC = 8.3

EIA

lBC
The FEMs due to a uniform load of intensity w are:

MAB = −0.057wl2
AB,MBA = 0.103 wl2

AB

MCB = −MBC = 0.103 wl2
BC

11.14 For the bridge frame of Prob. 11.13, find the bending moment diagram due to a horizontal
force H to the left, along the axis of AD.

11.15 For the bridge frame of Prob. 11.13, find the bending moment diagram due to a unit
settlement at F. Give the ordinates of the bending moment diagram in terms of EIA.

11.16 The beam in the figure is subjected to a dead load and a live load of intensities q and 2q
per unit length respectively. Draw the curve of maximum moment.
Hint: Solve for the following four cases of loading:

(i) D.L. on AD with L.L. on AB
(ii) D.L. on AD with L.L. on AC
(iii) D.L. on AD with L.L. on BC
(iv) D.L. on AD with L.L. on CD.

Draw the four bending moment diagrams in one figure to the same scale. The curve which
has the maximum ordinates at any portion of the beam is the required curve.

A B C D

l/4

Constant EI

ll

Prob. 11.16

11.17 Find the bending moment diagram for the frame shown in the figure.

0.6 b1.6 b

1.2 b

A

1I 1I

2I C
B

q per unit length

E

D

Prob. 11.17

11.18 Imperial units. For the frame shown in the figure, considering bending deformations
only,



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Applications of force and displacement methods 337

(a) draw the bending moment diagram due to a distributed vertical load 1 k/ft of
horizontal projection.

(b) find the reactions due to a rise of temperature of 40◦ F with no loading on the frame.

EI = 2 × 106 ft2k

Coefficient of thermal expansion α = 0.6 × 10−5 per ◦F.

B

25 ft
or 7.5 m

25 ft
or 7.5 m

15 ft or 4.5 m

1 k/ft or 1 kN/m

20 ft or 6 mConstant EI

C

D

A E

Prob. 11.18 Imperial units or Prob. 11.19 SI units.

11.19 SI units. For the frame shown in the figure, considering bending deformations only,

(a) draw the bending moment diagram due to a distributed vertical load 1 kN/m of
horizontal projection.

(b) find the reactions due to a rise of temperature of 25◦ C with no loading on the frame.

EI = 800 MN m2

Coefficient of thermal expansion α = 1 × 10−5 per degree Celsius.
11.20 Imperial units. Find the bending moment at points A, B, C, and D of the frame shown

in the figure due to:

(a) a uniform shrinkage strain=0.0002
(b) vertical settlement of 1

2 in. at support A
(c) rotation of B in the clockwise direction by 0.20◦

Assume I = 4 ft4 and E = 2 × 106 psi.
Consider bending deformations only.

C

30 ft
or 9 m

30 ft
or 9 m

12 ft or 3.6 m

18 ft or 5.4 m

D

BA

E

Prob. 11.20 Imperial units or Prob. 11.21 SI units.
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11.21 SI units. Find the bending moment at points A, B, C, and D of the frame shown in the
figure due to:

(a) a uniform shrinkage strain=0.0002
(b) vertical settlement of 10 mm at support A
(c) rotation of B in the clockwise direction by 0.20◦

Assume I = 30 × 109 mm4 and E = 15GN/m2.
Consider bending deformations only.

11.22 Part (a) of the figure shows a bridge frame subjected to a horizontal force P at the deck
level. Assuming that the deck has an infinite rigidity,

(a) find the bending moment diagram in the piers.
(b) if hinges are introduced below the deck at the top of the piers BF and DH, as shown

in part (b), find the shearing force at the bottom of the three piers.

A B

F G H

F G H

I0

I = ∝

I = ∝

I0 I0 I0

I0 I0

C D PE

A B C D PE

2l/3

(a)

(b)

2l/3 2l/3

2l/3l

l l

l

l/2

l/2

Prob. 11.22

11.23 Find the bending moment diagram for the left-hand half of the frame shown, considering
bending deformations only. Hint: Because of symmetry, the rotation and the horizontal
displacement at D are zero. Also, because the change in length of member is ignored, no

ll l l

3 l4

l

A E

D G

FC

P P

B

Constant EI

H

Prob. 11.23
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vertical displacement occurs at D. Thus, we can analyze the part ABCD only, assuming
A and D to be totally fixed joints.

11.24 Apply the requirements of Prob. 11.23, considering that the frame has only one bay
ABCDE.

11.25 The figure shows one of the concrete frames supporting an elevated water tank. The wind
pressure causes the loads shown to act on the frame. Assuming that the tank elements
are of infinite rigidity compared to the rigidity of the horizontal bracing beams, find the
bending moment in the frame. Consider bending deformations only. Hint: Because of
symmetry of the structure, the bending moment and the vertical displacements are zero
at the middle of CF and BG. Analyze the left-hand half of the frame carrying P, P/4, P/4
at D, C and B respectively. The degrees of freedom can be a horizontal translation at each
of D, C and B and a rotation at each of C and B.

D

2I

2P

P/2

P/2

2I

2I 2I

2I 2I

C 0.8I

0.8IB

A H

G

F

E

b

b

b

1.2 b

Tank

Prob. 11.25

11.26 Find the bending moment diagram for the Vierendeel girder shown in the figure. Consider
bending deformations only. Use a computer program (e.g. PLANEF, Appendix L); verify
the results. Cut ends G and B of members FG and AB and verify that the internal forces at
the cut sections are statistical equivalents to the shearing force and the bending moment
in a simple beam AE carrying the same loads. Check the angular rotation at A and the
vertical deflection at C by virtual work, accepting the bending moments given by the
computer.

1.5 b 1.5 b 1.5 b

0.6 bConstant EI
F

A B

G

P P P

H

C

I J

D E

1.5 b

Prob. 11.26
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11.27 Find the bending moment diagram in the frame shown. Consider only bending deforma-
tion. This becomes a problem of a symmetrical frame with antisymmetrical loading by the
replacement of the force P at C by a force =P/2 at each of C and D; similarly, replace the
force 2P at B by a force =P at each of B and E. The mid-points of CD and BE are inflection
points of zero vertical displacement. Introduce a roller support at each of the two points
and analyze only the left-hand half of the structure by the force method, considering the
vertical forces at the roller supports as the statically indeterminate redundants.

P

2P

4I 4I

DI

I

B E

FA

I

I I

l
2–
3

l
2–
3

C

I l

2l

Prob. 11.27

11.28 Figure 11.7e and 11.7f represent a straight non-prismatic cantilever subjected at
coordinates 1∗ and 2∗ to F1∗ = S�AB and F2∗ = 0. Verify that for D∗

1 = 1, the adjusted
end-rotational stiffness, S�AB is:

S�AB = SABSBA − t2

SAB + SBA + 2t

where SAB, SBA and t are the end-rotational stiffnesses and the carry-over moment for
the same member (Fig. 11.7a). Verify that for a prismatic member, S�AB = EI/l.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 12

Influence lines

12.1 Introduction

The effect of live loads which can have different positions on a structure can be conveniently
analyzed and succinctly described in graphical form by the use of influence lines. An influence
line shows the value of any action due to a unit point load moving across the structure. For
example, the influence line for the bending moment at a section of a continuous beam shows
the variation in the bending moment at this section as a unit transverse load traverses the beam.

In this chapter we deal with the methods of obtaining influence lines for statically indetermin-
ate structures but, by way of introduction and review, influence lines for statically determinate
structures, introduced in Section 2.6, will be further discussed.

12.2 Concept and application of influence lines

A transverse concentrated load at a general position on a member of a structure causes vari-
ous actions. These actions, which may be a bending moment, shearing force, normal force, or
displacement at a section, or a reaction at a support, vary as the load moves across the structure.

If the values of any action A are plotted as ordinates at all the points of application of a unit
transverse load, we obtain the influence line of the action A. In this chapter, we use η to represent
the influence ordinate – which may also be referred to as influence coefficient – of any action
due to a unit moving concentrated load acting at right angles to the member over which the
load is moving. Our sign convention is to plot positive influence ordinates in the same direction
as the applied concentrated load. Thus, influence lines for gravity loads on horizontal members
are drawn positive downwards.

Let us now illustrate the use of influence lines in analysis. The value of any action A due to
a system of concentrated loads P1,P2, . . . , Pn (Figure 12.1a) can be obtained from the influence
ordinates by

A = η1P1 + η2P2 + · · · + ηnPn (12.1)

or

A =
n∑

i=1

ηiPi (12.1a)

The value of the actions due to a distributed transverse load of intensity p over a length BC
(Figure 12.1b) is

A =
∫ C

B
ηp dx
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η
η

(a)

(b)
Load intensity

Influence line
of action A

Influence line
of action A

B C

P

x

P1

η1 η2

ηn

P2 Pn

Figure 12.1 Determination of the value of an action due to loading using the influence line.

For a uniform load of intensity q,

A = q
∫ C

B
η dx (12.2)

The value of the integral in this equation is the area under the influence line between B and C.
The knowledge of the shape of an influence line indicates which part or parts of a structure

should be loaded to obtain maximum effects. In Figure 12.4, influence lines are sketched for a
plane frame, and in Figure 12.5 for a grid. The ordinates plotted on the column EB in Figure 12.4
represent the value of the action considered due to a horizontal load on the column. As always,
the value is positive if the load is applied in the direction of the positive ordinate. The ordinates
of the influence lines for the grid are vertical to represent the effect of a unit vertical load, as
shown in the pictorial view in Figure 12.5.

We can see that, for instance, in the case of shear at section n in the frame of Figure 12.4,
a maximum negative value occurs when a distributed load covers Bn as well as the span CD,
without a load on the remainder of the frame. Likewise, the bending moment at n3 in Figure 12.5
is maximum positive when loads cover the members CD and the central part of GI, without a
load on AB or EF.

12.3 Müller-Breslau’s principle

One of the most effective methods of obtaining influence lines is by the use of Müller-Breslau’s
principle, which states that the ordinates of the influence line for any action in a structure
are equal to those of the deflection curve obtained by releasing the restraint corresponding
to this action and introducing a corresponding unit displacement in the remaining structure.
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The principle is applicable to any structure, statically determinate or indeterminate, and can be
easily proved, using Betti’s theorem.

Consider a loaded beam in equilibrium, as in Figure 12.2a. Remove the support B and replace
its effect by the corresponding reaction RB, as shown in Figure 12.2b. If the structure is now
subjected to a downward load F at B such that the deflection at B equals unity, the beam will

(a)

A B
P1

P1

P1

η1

ηn

η2

η2

ηn

ηn

η1

η1
η2

RB

ME

VE

P2

P2

P2

Pn

Pn

Pn

C D

A B

B

E

A

C D

C D

B
E

F

A

A B

+

–

+

–

–
+

–

C DE

F

Parallel

Mechanism
introduced at E

1

E

F

A B

E

C D

C D

(b)

(c)

(d)

(e)

(f)

(g)

–

+

1

1

Figure 12.2 Influence line for a statically determinate beam. (a) Loaded beam in equilibrium. (b) Sup-
port B replaced by RB. (c) Influence line for RB. (d) Equilibrium maintained by forces ME

and VE. (e) Influence line for ME. (f) and (g) Influence line for VE and mechanism inserted
at E.
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assume the deflected form in Figure 12.2c. Because the original structure is statically determinate,
the release of one restraining force turns the structure into a mechanism, and, therefore, the
force F required to produce the displacements in Figure 12.2c is zero. However, the release
of one restraining force in a statically indeterminate structure leaves a stable structure so that
the value of the force F is generally not equal to zero.

Applying Betti’s theorem (Eq. 9.5) to the two systems of forces in Figures 12.2b and c, we
write

η1P1 + η2P2 + · · · + ηnPn − 1 × RB = F × 0

This equation expresses the fact that the external virtual work done by the system of forces
in Figure 12.2b during the displacement by the system in Figure 12.2c is the same as the
external virtual work done by the system in Figure 12.2c during the displacement by the sys-
tem in Figure 12.2b. This latter quantity must be zero because no deflection occurs at B in
Figure 12.2b.

The preceding equation can be written

RB =
n∑

i=1

ηiPi

Comparing this equation with Eq. 12.1a, we see that the deflection line in Figure 12.2c is the
influence line of the reaction RB. This shows that the influence line of the reaction RB can
be obtained by releasing its effect, that is, removing the support B, and introducing a unit
displacement at B in the downward direction, that is, opposite to the positive direction of the
reaction.

Using simple statics, we can readily check that the deflection ordinate at any point in
Figure 12.2c is, in fact, equal to the reaction RB if a unit load is applied at this point in the
beam of Figure 12.2a.

Let us now use Müller-Breslau’s principle in the case of the influence line of the bending
moment at any section E. We introduce a hinge at E, thus releasing the bending moment at
this section. We then apply two equal and opposite couples F to produce a unit relative rota-
tion of the beam ends at E (Figure 12.2e). In order to prove that the deflection line in this
case is the influence line of the bending moment at E, cut the beam in Figure 12.2a at section
E and introduce two pairs of equal and opposite forces ME and VE to maintain the equi-
librium (Figure 12.2d). Applying Betti’s theorem to the systems in Figures 12.2d and e, we
can write

η1P1 + η2P2 + · · · + ηnPn − 1 × ME = F × 0

or

ME =
n∑

i=1

ηiPi

This demonstrates that the deflection line in Figure 12.2e is the influence line for the bending
moment at E.

The influence line for shear at section E can be obtained by introducing a unit relative trans-
lation without relative rotation of the two beam ends at E (Figure 12.2g). This is achieved by
introducing at E a fictitious mechanism such as that shown in Figure 12.2f and then applying
two equal and opposite vertical forces F. With this mechanism the two ends at E remain parallel
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as shown in Figure 12.2g. Applying Betti’s theorem to the systems in Figures 12.2d and g, we
can write

η1P1 + η2P2 + · · · + ηnPn − 1 × VE = F × 0

or

VE =
n∑

i=1

ηiPi

which shows that the deflection line in Figure 12.2g is the influence line for the shear at E.
All the influence lines considered so far are composed of straight-line segments. This is the case

for any influence line in any statically determinate structure. Thus, one computed ordinate and
the known shape of the influence line are sufficient to draw it. This ordinate may be calculated
from considerations of statics, or from the geometry of the influence line.

All influence lines for statically indeterminate structures are composed of curves, and, there-
fore, several ordinates must be computed. In Figure 12.3, Müller-Breslau’s principle is used to
obtain the general shape of the influence lines for a reaction, bending moment, and shear at a

+1

+

––

+

–

+

–

–

A B

E

F

F

1

C D

A B

Influence line for RB

Influence line for ME

Influence line for VE

Parallel
tangents

C D

A

A B

F

F

1

E C D

B CE D

Figure 12.3 Influence lines for a continuous beam.
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A B C
n

E
Frame

Influence line for vertical reaction at A

Influence line for bending moment at n

Influence line for end moment MEB (postive clockwise)

Influence line for shear at n

D

A B

E

E

C D

A B Cn

n

+

+

D

A B

E

E

1
+

–

– –

C D

A B

+

+

–

+

C D–

–

+
1

+

1

+

–
+

Figure 12.4 Shape of influence lines for a plane frame using Müller-Breslau’s principle.

section in a continuous beam. Sketches of influence lines for several actions in a plane frame and
in a grid are deduced by Müller-Breslau’s principle in Figures 12.4 and 12.5.

12.3.1 Procedure for obtaining influence lines

The steps followed in Section 12.3 to obtain the influence line for any action can be summarized
as follows.

1. The structure is released by removal of the restraint corresponding to the action considered.
The degree of indeterminacy of the released structure compared with the original structure
is reduced by one. It follows that, if the original structure is statically determinate, the
released structure is a mechanism.
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2. Introduce a unit displacement in the released structure in a direction opposite to the positive
direction of the action. This is achieved by applying a force (or a pair of equal and opposite
forces) corresponding to the action.

3. The ordinates of the deflection line thus obtained are the influence ordinates of the action.
The ordinates of the influence line are positive if they are in the same direction as the external
applied load.

A

Ends A, C, E, B, D and F are simply supported

Influence line for bending moment at n1

Influence line for bending moment at n2

Influence line for bending moment at n3

n2

n1

n3

A

G

B

H

E

C

D

F

D

B

G

A

A

B

G

C

E

H
+

D

F

I

C

E

H

I

F

G B

C

E I F

H D

–

–

+

+

+

+

+

1

1

1

I
–

Figure 12.5 Shape of influence lines for a grid using Müller-Breslau’s principle.
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η1
η2

Adjusted influence line
for indirect loading

Influence line for
direct loading

(b)

c

c – xx

1

1 2 3

BA
Main girder

(a)

Stringer

Figure 12.6 Correction of influence lines for indirect loading. (a) Indirect loading on main girder. (b)
Influence line for any action A in main girder.

12.4 Correction for indirect loading

In some cases, loads are not applied directly to the structure for which the influence lines are
desired, but through smaller beams assumed to be simply supported on the main structure. For
instance, the main girder in Figure 12.6a supports cross-girders at nodes A, 1, 2, 3, and B, and
these in turn carry stringers to which the live load is applied. Let the solid curve in Figure 12.6b
represent the influence line of any action A, drawn on the assumption that the unit load is applied
directly to the beam. But the unit load can be transmitted to the main girder at the cross-girders
only, and we have to correct the influence line accordingly.

A unit load applied at an arbitrary point between nodes 1 and 2 is transmitted to the main
girder as two concentrated loads equal to (c − x)/c and x/c at 1 and 2 respectively. The value
of the action A due to these two loads is

A = x
c
η2 + c − x

c
η1 (12.3)

where c is the panel length and x is the distance indicated in Figure 12.6a. This is the equation
of the straight line between points 1 and 2 shown dashed in Figure 12.6b. Thus, the corrected
influence line is composed of straight segments between the node points.

In pin-connected trusses, all the loads are assumed to act at the joints; thus, influence lines for
trusses are composed of straight segments between the joints.

12.5 Influence lines for a beam with fixed ends

Let us now use Müller-Breslau’s principle to find the influence lines for the end-moments of a
beam with fixed ends. From these, by equations of statics, influence lines for reaction, shear,
and bending moments at any section can be determined. We use – as in previous chapters – the
convention that a clockwise end-moment is positive.
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l

Figure 12.7 Influence lines for a prismatic beam with fixed ends. (a) Beam. (b) End-moments corres-
ponding to a unit angular rotation at end A. (c) Bending moment diagram for the beam
in part (b). (d) Influence lines for end-moments. (e) Influence line for RA. (f) Influence line
for M(x=0.4l). (g) Influence line for V(x=0.4l).

To find the influence line for the end-moment MAB in the beam in Figure 12.7a, we introduce
a hinge at A and apply there an anticlockwise moment to produce a unit angular rotation
of the end A (Figure 12.7b). This moment must be equal in magnitude to the end-rotational
stiffness SAB. The corresponding end-moment at B is t = CABSAB, where SAB,CAB and t are
the end-rotational stiffness, the carryover factor, and the carryover moment respectively. The
deflection line corresponding to the bending moment diagram in Figure 12.7c is the required
influence line.

When the beam has a constant flexural rigidity EI and length l, the end-moments at A and B
are respectively −4EI/l and −2EI/l. These values can be substituted in the expression for the
deflection1 y in a prismatic member AB due to clockwise end-moments MAB and MBA

y = l2

6EI
[MAB(2ζ − 3ζ 2 + ζ 3) − MBA(ζ − ζ 3)] (12.4)

1 When the beam ends A and B deflect, Eq. 12.5 gives the deflection measured from the straight line joining
the displaced position of A and B.
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where ζ = x/l, x is the distance from the left-hand end A, and l is the length of the member.
Equation 12.4 can be proved by the method of elastic weights (see Section 10.4). The values of
y due to unit end-moments are given in Appendix I.

Substituting MAB = −4EI/l and MBA = −2EI/l in Eq. 12.4, we obtain the equation of the
influence line for the end-moment MAB:

ηMAB = −lζ(1 − ζ )2 (12.5)

Similarly, substituting MAB = −2EI/l and MBA = −4EI/l, we obtain the equation of the
influence line for the end-moment MBA:

ηMBA = lζ 2(1 − ζ ) (12.6)

The influence lines of the two end-moments are plotted in Figure 12.7d.
The reaction RA may be expressed as

RA = RAs − MAB + MBA

l
(12.7)

where RAs is the statically determinate reaction of the beam AB if simply supported.
Equation 12.7 is valid for any position of a unit moving load. We can therefore write:

ηRA = ηRAs − 1
l
(ηMAB + ηMBA) (12.8)

where η is the influence ordinate of the action indicated by the subscript. The influence line of
RAs is a straight line (Figure 2.15):

ηRAs = 1 − ζ (12.9)

Substitution of Eqs. 12.5, 12.6, and 12.9 in Eq. 12.8 gives the influence line for the reaction
RA (Figure 12.7e):

ηRA = 1 − 3ζ 2 + 2ζ 3 (12.10)

Similarly, the influence ordinate for the bending moment at any section distance x from the
left-hand end is given by

ηM = ηMs + (l − x)

l
ηMAB − x

l
ηMBA (12.11)

where ηM and ηMs are the influence ordinates for the bending moment at the section for a beam
with fixed ends and simply supported respectively (Figure 2.15a). The ordinates ηM for a section
at x = 0.4l are calculated in Table 12.1, and Figure 12.7f plots the relevant influence line.

The influence ordinates h of the shear at any section can be calculated by the equation

ηV = ηVs − 1
l
(ηMAB + ηMBA) (12.12)

where ηVs is the influence ordinate for the shear at the same section in a simply-supported beam.
The influence line for shear at a section at x = 0.4l is shown in Figure 12.7g. It can be seen that
this influence line can be formed by parts of the influence lines for RA and RB.
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Table 12.1 Ordinates of the Influence Line for M(x=0.4l)

Distance from
left-hand end

0.1l 0.2l 0.3l 0.4l 0.5l 0.6l 0.7l 0.8l 0.9l Multiplier

ηMs 0.060 0.120 0.180 0.240 0.200 0.160 0.120 0.080 0.040 l
0.6 ηMAB −0.049 −0.077 −0.088 −0.086 −0.075 −0.058 −0.038 −0.019 −0.005 l
−0.4 ηMBA −0.004 −0.013 −0.025 −0.038 −0.050 −0.058 −0.059 −0.051 −0.032 l
Influence ordinates

for M(x=0.4l)

0.007 0.030 0.067 0.116 0.075 0.044 0.023 0.010 0.003 l

The influence lines for continuous prismatic beams with equal spans or with unequal spans
in certain ratios are given in various references, and in most cases they need not be cal-
culated. On the other hand, influence lines are often calculated in the design of bridges of
variable l or with irregularly varying spans forming continuous beams, and also of frames
and grids.

12.6 Influence lines for plane frames

In the preceding section we have seen that the influence lines for shear or bending moment at any
section of a member can be determined from the influence lines for the end-moments by simple
equations of statics. We shall now show how to use moment distribution to find the influence
lines for the end-moments of continuous plane frames.

Let us assume that we want to find the influence line for the end-moment MBC in the frame of
Figure 12.8a. According to the Müller-Breslau principle, the influence ordinates are the ordinates
of the deflected shape of the frame corresponding to a unit angular discontinuity at end BC.
Assume that such a unit angular rotation is introduced at end BC without other displacements
at the joints, as shown in Figure 12.8b. The end-moments corresponding to this configuration
are −SBC and −tBC = −CBCSBC, where SBC is the end-rotational stiffness, tBC the carryover
moment, and CBC the carryover factor from B to C.

We now allow joint rotations (and joint translations, if any) to take place and find the cor-
responding moments at the ends of the members by moment distribution in the usual way. The
corresponding bending moment diagram will be a straight line for each member (Figure 12.8c).
The deflections, which are the influence line ordinates, are calculated by superposition of the
deflections due to the end-moments as in the previous section.

For prismatic members, the values given in Appendix I may be used. For members of variable
I, we can use the influence line ordinates of the moment at a fixed end of a member with the other
end hinged.2 To obtain the deflection due to a unit couple applied at one end, these ordinates
should be divided by the adjusted end-rotational stiffness at the fixed end while the other end is
hinged (see Figure 12.9 and Eq. 11.20).

The shape of the influence line for the end moment MBC for the frame considered is shown
in Figure 12.8d. The ordinates plotted on the columns BE and CF can be used to find the value
of MBC if a unit horizontal load is applied to either of the columns. The value will be positive
if the load points toward the left. If, however, a horizontal load on a column cannot occur,
the influence ordinates on BE and CF need not be plotted.

2 Influence-line ordinates of FEMs in beams with a variable I can be found in Handbook of Frame Constants,
Portland Cement Association, Chicago, III. and Guldan, R., Rahmentragwerke und Durchlauftrager,
Springer, Vienna, 1959.
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Figure 12.8 Determination of influence line for end-moment in a plane frame. (a) Plane frame. (b)
Unit angular rotation of end BC without other joint displacements. (c) Bending moment
diagram corresponding to the elastic line in part (d). (d) Influence line for the end-moment
MBC .
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Figure 12.9 Deflection of a nonprismatic beam due to a couple applied at one end with the other end
hinged. (a) Beam. (b) Influence line for end-moment MAB. (c) Bending moment diagram
corresponding to the deflection line in part (b).
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Example 12.1: Bridge frame: influence line for member end moment
Obtain the influence line for the end-moment MBA in the bridge frame in Figure 12.10a.
Use this influence line to find the influence ordinate of the bending moment MG at the
center of AB and of the shear Vn at a section n just to the left of B. The relative values of I
are shown in the figure.

A unit rotation in an anticlockwise direction is introduced at end B of BA, as shown
in Figure 12.10b. The corresponding end-moments are MBA = −3(EI/l)BA = −1.85EI/b
and zero for all the other ends. These values are the initial FEMs for which a moment
distribution is carried out in Figure 12.10c. The deflections of members AB, BC, and CD
due to the final end-moments are calculated in Table 12.2 at 0.3l, 0.5l, and 0.7l of each
span by the use of the tabulated values in Appendix I. These deflections, which are the
influence ordinates of the end-moment MBA, are plotted in Figure 12.10d. As always, a
positive sign indicates a clockwise end-moment.

The ordinates of the influence lines for MG and Vn are determined by superposition
Eqs. 12.11 and 12.12 respectively. The calculations are performed in Tables 12.3 and 12.4,
and the influence lines are plotted in Figures 12.11a and b.
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Figure 12.10 Influence line for an end-moment in Example 12.1. (a) Frame properties. (b) Unit
angular rotation introduced at end BA. (c) Moment distribution. (d) Influence line of
end-moment MBA.



Table 12.2 Ordinates of Influence Line for End-Moment MBA(b/10)

Deflection due
to end-moment
at

Member AB Member BC Member CD

0.3l 0.5l 0.7l 0.3l 0.5l 0.7l 0.3l 0.5l 0.7l

Left-hand end 0 0 0 3.31 3.48 2.53 −0.43 −0.45 −0.33
Right-hand end 6.23 8.55 8.15 −0.88 −1.21 −1.15 0 0 0
Influence ordinate 6.23 8.55 8.15 2.43 2.27 1.38 −0.43 −0.45 −0.33

Table 12.3 Ordinates of Influence Line for the Bending Moment MG at G (b/10)

Influence coefficient Member AB Member BC Member CD

0.3l 0.5l 0.7l 0.3l 0.5l 0.3l 0.7l 0.5l 0.7l

ηMs 9.75 16.25 9.75 0 0 0 0 0 0
− 1

2 ηMBA −3.12 −4.28 −4.08 −1.22 −1.14 −0.69 0.22 0.23 0.17
Influence ordinate 6.63 11.97 5.67 −1.22 −1.14 −0.69 0.22 0.23 0.17

Table 12.4 Ordinates of Influence Line for Shear Vn

Influence coefficient Member AB Member BC Member CD

0.3l 0.5l 0.7l l 0.3l 0.5l 0.7l 0.3l 0.5l 0.7l

ηvs −0.30 −0.50 −0.70 −1.00 0 0 0 0 0 0
−(6.5b)−1 ηMBA −0.10 −0.13 −0.13 0 −0.04 −0.04 −0.02 0.01 0.01 0.005
Influence ordinate −0.40 −0.63 −0.83 −1.00 −0.04 −0.04 −0.02 0.01 0.01 0.005

4 b5 b6.5 b

3.25 b

(a)
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b/10
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Figure 12.11 Influence line for bending moment and shear at a section of the frame in Example 12.1.
(a) Influence line for MG. (b) Influence line for Vn.
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Figure 12.11 (Continued).

12.7 Influence lines for grids

The grid in Figure 12.12a represents the main and cross-girders of a bridge deck for which
influence lines of bending moments at certain sections of the members are required. All joints
are assumed to be rigid, capable of resisting bending and torsion.

For the analysis of this grid by the displacement method each of the internal joints has three
unknown displacements: ν, θx, and θz (Figure 12.12a). At each support two rotations, θx and
θz are possible. One method of obtaining the influence lines is to carry out the analysis of the
structure for a number of loading cases (see Section 5.4) with a unit vertical load at various
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Elevation of main girder FJ

Figure 12.12 Determination of the influence line for the bending moment at section n of a grid. (a) Grid
plan. (b) Restraining forces corresponding to a unit angular discontinuity at n without
joint displacements.
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positions. Each loading case gives one ordinate for each influence line required. This method
is satisfactory when a computer is used as little additional effort in programming is required
compared with that necessary for the dead-load analysis.

Another method of obtaining the influence lines, and one which requires less computing, is
by the use of Müller-Breslau’s principle, as discussed below.

Assume that we require the influence line for the bending moment Mn at section n, just to
the left of H. We induce a rotation at the end H of member HG in the vertical plane, as shown
in the elevation of girder FJ in Figure 12.12b. The forces required to hold the structure in this
configuration are two couples and two vertical forces shown in the figure, with no forces at all
the other joints. If these forces are now released, the grid will deform maintaining a unit angular
discontinuity at H between the members HG and HI. The vertical deflections of the grid are
therefore the ordinates of the required influence line. The displacements can be determined by
solution of the equation

[S]{D} = −{F} (12.13)

where [S] is the stiffness matrix, {D} is the vector of the nodal displacements, and {F} is the
vector of nodal forces preventing the displacements, while member GH is deformed as shown
in Figure 12.12b. The restraining forces are zero at all nodes except G and H; thus,

{F} =
{
. . . ,

6EI
l2 , 0,

2EI
l

,−6EI
l2 , 0,

4EI
l

, . . .
}

(12.14)

where the elements not shown are zero; the first three forces given are at G and the remaining
forces are at H.

The vertical deflections ν, included in {D}, are equal to the coordinates ηMn of the bending
moment at section n (Figure 12.12a).

The variation of the deflection ν over the length of any member can be expressed in terms of
the two ν-values at the ends and the two end-rotations θz or θx:

ν = [L1 L2 L3 L4]

⎧⎪⎪⎨
⎪⎪⎩

νl
θl
νr

θr

⎫⎪⎪⎬
⎪⎪⎭ (12.15)

where the subscripts l and r refer to the left- and right-hand ends of the member; θ refers to θz

for the members running in the x direction and to θx for members running in the z direction; for
these, the left-hand end means the end closer to the top of the page (Figure 12.12a). The functions
L1 to L4 describe the deflected shapes of the member when one of the four end displacements is
equal to unity while the others are zero:

L1 = 1 − 3ξ2 + 2ξ3 L2 = lξ(ξ − 1)2 L3 = ξ2(3 − 2ξ) L4 = lξ2(ξ − 1) (12.16)

where ξ l is the distance from the left-hand end of the member to any section. The bending
moment corresponding to any of the four deflected shapes can be expressed by a straight-line
equation: M = C1 + C2ξ , where C1 and C2 are constants. Substitution of this equation
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in Eq. 10.1 and integration give L1, L2, L3, and L4, satisfying the appropriate boundary
conditions.

The vector {D} includes the displacements required to apply Eq. 12.15 to any member; an
exception is θr, of member GH whose value is given by θr =θz at H +1. The added unity represents
the rotation introduced while {D} = {0}, Figure 12.12b.

Example 12.2: Grid: influence line for bending moment in a section
Find the influence line for the bending moment at section n, just to the left of joint C, in
the grid of Figure 12.13a. The main girders are encastré. The relative value of I is 4 for
all main girders and 1 for the cross-girders. The ratio of the torsional rigidity GJ to the
flexural rigidity EI is 1:4 for all members.
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Figure 12.13 Analysis of the grid of Example 12.2. (a) Grid plan. (b) Coordinate system. (c) Restraining
forces corresponding to a unit angular discontinuity at n without joint displacements.
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Figure 12.13b shows a coordinate system, with three coordinates at each node. The
restraining forces corresponding to a unit angular discontinuity at n without joint
displacements are (Figure 12.13c)

{F}27×1 =
{

24EI
l2 , 0,

8EI
l

,−24EI
l2 , 0,

16EI
l

, . . .
}

where the elements not shown are zero.
Application of the restraining forces in reversed directions on the grid gives the following

displacements (determined by computer program PLANEG, Appendix L):

{D} = 10−3{{62l, 35,134}, {350l, 381,−488}, {66l, 49,−140},
{54l, 58,106}, {140l, 331,−10}, {51l, 64,−101},
{10l, 102,10}, {10l, 198,−2}, {8l, 99,−91}}

The displacements ν in the y direction (D1,D4, . . . ,D25) are coordinates ηMn of the
influence line of Mn, plotted in Figure 12.14. The variation of ηMn over the length of any
member can be determined by Eq. 12.15. For example, for member BC

(ηMn)BC = [L1 L2 L3 L4]

⎧⎪⎪⎨
⎪⎪⎩

62l
134
350l
−488 + 1000

⎫⎪⎪⎬
⎪⎪⎭10−3

Substituting the L-values at ξ ={0,0.25,0.5,0.75,1} determined by Eq. 12.16, we obtain:
{ηMn} = l{62, 102, 159,239,350}.

A

F G H I

K L M N O

J

350 66

54 140 51

10 10

Multiplier: 10–3l

8

n

62

B C D E

1

Figure 12.14 Influence line for the bending moment Mn at section n of the grid in Example 12.2.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inf luence lines 359

Example 12.3: Torsionless grid
Neglecting the torsional rigidity of the girders, find for the interconnected bridge system of
Figure 12.15a the influence lines for the following actions:

(a) bending moment at the center of girder AB
(b) bending moment at the center of girder CD
(c) bending moment in the cross-girder at J
(d) reaction Rc at support C

The main girders are simply supported and have a second moment of area of 4I, where
I is the second moment of area of the cross-girders.

The stiffness matrix of the grid corresponding to vertical downward coordinates at N, J,
K, and L (Figure 12.15b) can be calculated from the values tabulated in Appendix E. We
obtain

[S] = EI
l3

⎡
⎢⎢⎣

537.6 symmetrical
−777.6 2265.6

518.4 −1814.4 2265.6
−86.4 518.4 −777.6 537.6

⎤
⎥⎥⎦ (a)

 –48EI
l2

A
(a) (b)

(c)

1

End
DFs
FEMs

Coordinates 1 to 4 are vertical downward

l/6

l/6

l/6

A N

NA
0.5
+24

1

–12 –12
–12

Multiplier: EI
                       l+12
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A N B

l

N B

D

F

H

J

K

L

C

E

G

A N
1

2

3

4

B

D

F

H

J

K

L

C

E

G

l/2l/2

l/2 l/2

F1 =

Figure 12.15 Analysis of the torsionless grid in Example 12.3. (a) Grid plan. (b) Coordinate system.
(c) Calculation of the restraining force F1 corresponding to a unit angular discontinuity
in main girder at N, with no displacements along the coordinate.
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As an example, we calculate element S11 as follows:

S11 = 6.0(EI/l3)AN + 1.6(EI/l3)NJ = 537.6EI/l3

The two terms in this equation are read from Table E.1 as the reactions at N, treating
ANB and NJKL as continuous beams of two and three spans respectively.

To find the influence line of the bending moment at the center of girder AB, we intro-
duce a unit angular discontinuity just to the left (or right) of joint N (Figure 12.15c) with
the vertical joint displacements prevented. The end-moment MNA corresponding to this
configuration is

3E(4I)
l/2

= 24
EI
l

Moment distribution for the beam ANB is carried out in Figure 12.15c, and the restraining
force F1 required to prevent the deflection at N is

F1 = −48
EI
l2

It is obvious that no forces are required at the other three coordinates. Thus, the matrix
{F} is

{F} = EI
l2 {−48,0,0,0}

The force F1 can also be found by the use of the reactions tabulated in Appendix E, the
procedure being as follows.

In order to reach the configuration of Figure 12.16a we can proceed in two steps. First,
we introduce a unit angular discontinuity by allowing the left-hand end of the beam to lift
by a distance l/2, as shown in Figure 12.16b; no forces are involved. In the second step, the
support A is brought back to its original level by a vertical downward force at A without
a change in the angle between the ends of the members meeting at N. From Appendix
E, the value of the reaction at N due to a unit downward displacement of support A is
3E(4I)/(l/2)3 upward. Therefore, the value of the restraining force is F1 = −48(EI/l2),
which is the reaction at N corresponding to a downward displacement of l/2 at A.

Similarly, to find the influence line for the bending moment at the center of CD, we
introduce a unit rotation at the end J of JC. The corresponding restraining forces are

{F} = EI
l2 {0,−48,0,0}

For the influence line for the bending moment in the cross-girder at section J, a unit
angular discontinuity is introduced at this point, as shown in Figure 12.16c, causing the
lifting of end N by a distance l/6. The forces at N, J, K, and L required to bring joint N to
its original position, determined from Appendix E, are

{F} = EI
l2 {57.6,−129.6,86.4,−14.4}
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(a)

(c)

(b)

A

A

N B
N

N

N

J

J

K

K

L

L

F1

= 57.6 = –129.6 = 86.4 = –14.4

F2F1

1

F3 F4

1

B

l/2

l/6

1

1

Multiplier: EI
l2

l/2 l/2

l
6

l
6

l
6

Figure 12.16 Analysis of members of the torsionless grid in Example 12.3. (a) Unit angular discon-
tinuity at N with the vertical deflection restrained by the force F1. (b) Unit angular
discontinuity introduced at N without restraining forces. (c) Determination of the
restraining forces corresponding to a unit angular discontinuity in the cross-girder at
J by use of tabulated values in Appendix E.

For the influence line of the reaction Rc, a unit downward displacement is introduced
at C. The restraining force at J is taken from Appendix E, and the other restraining forces
are zero. Therefore,

{F} = EI
l3 {0,−96,0,0}

The influence ordinates for each of the four effects are summarized in the equation

[S][D] = −EI
l2

⎡
⎢⎢⎢⎣

−48 0 57.6 0

0 −48 −129.6 −96
l

0 0 86.4 0
0 0 −14.4 0

⎤
⎥⎥⎥⎦ (b)

where [S] is the stiffness matrix in Eq. (a). The solution of Eq. (b) gives

[D] =

⎡
⎢⎢⎣

0.194l 0.082l −0.038l 0.164
0.082l 0.097l 0.055l 0.194
0.010l 0.062l 0.006l 0.124

−0.034l 0.010l −0.024l 0.020

⎤
⎥⎥⎦

The influence lines for the four actions are plotted in Figure 12.17. They include ordinates
between joints, and as an example of calculation of such ordinates, the computation for
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Figure 12.17 Influence lines for the grid in Example 12.3. (a) Influence line for bending moment in main girder at center of AB, multiplier = l/1000. (b)
Influence line for bending moment in main girder at center of CD, multiplier = l/1000. (c) Influence line for bending moment in cross-girder at
joint J, multiplier = l/1000. (d) Influence line for reaction at C, multiplier = 1/1000.
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AN is given below for the influence line for the bending moment in Figure 12.17a. The
end-moment at N of member AN corresponding to the deflected shape in Figure 12.17a is

MNA = 12
EI
l

−
[

3E(4I)
(l/2)2

]
0.194l = 2.688

EI
l

The first term in this equation is the end-moment when the vertical joint displacements
are restrained, and the second term is the end-moment caused by the vertical displacement.
The bending moments caused by unit values of the vertical displacement are tabulated
in Appendix E. The deflection measured from the straight line between A and N can be
calculated by Eq. 12.4 or by the use of Appendix I (noting that AN has a second moment of
area =4I and length = l/2). Therefore, the equation of the influence line between A and N is

η = l[0.194ξ − 0.028(ξ − ξ3)]

where ξ = (2x/l), and x is the distance from A to the desired point on AN.

12.8 General superposition equation

The concept of adding influence coefficients for statically determinate and statically indeterm-
inate cases in Eq. 12.11 in order to obtain the influence coefficient for bending moment at a
section of a straight member will be extended now for any action in a statically indeterminate
structure.

The influence coefficients for any action in a linearly elastic statically indeterminate structure
can be obtained by adding the influence coefficients for the same action in a released structure
and the influence coefficients for the redundants multiplied by the values of the action due to
unit values of the redundants. Let p be the number of influence coefficients to be calculated
for any action of a structure statically indeterminate to the nth degree. If a unit point load is
applied at j, one of the p locations where the influence coefficients are required, the influence
coefficient ηj = Aj is the value of the action in the statically indeterminate structure determined
by the superposition equation

Aj = Asj + [F1jF2j . . .Fnj]{Au} (12.17)

where Asj = ηsj is the value of the action due to a unit load at j in a released structure, Fij = ηFij

is the value of the ith redundant due to a unit load at j, and the elements of {Au} are the values
of the action considered due to unit values of the redundants on the released structure.

If the statically indeterminate structure is subjected to a unit load acting separately at each of
the p locations and Eq. 12.17 is applied, we obtain the following equation of superposition of
influence coefficients:

{η}p×1 = {ηs}p×1 + [{ηF1}
... {ηF2}

... . . .
... {ηFn}]p×n {Au}n×1 (12.18)

in which the elements of the submatrices {ηFi} are the p influence coefficients of the redundants Fi.
To use Eq. 12.18 the influence lines for the redundants must first be determined. These can

be obtained by an analysis for p locations of the unit load. For each position, the n redundants
are determined, thus giving one of the p ordinates of the influence line for each redundant.

Influence lines for the redundants can also be determined by direct application of Müller-
Breslau’s principle.

The use of Eq. 12.18 for arches and trusses will be considered in the following two sections.
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12.9 Influence lines for arches

Influence lines are very useful in the analysis of arch bridges. Here, the load is applied through
vertical members supporting the deck (Figure 12.18a). Let us consider the influence lines due to
a unit vertical load in any position E on CD. This load is assumed to be transmitted to the arch
at F vertically below E.

The fixed arch in Figure 12.18a is statically indeterminate to the third degree. The simply-
supported arch in Figure 12.18b is chosen as the released structure with the clockwise end-
moments MAB and MBA, and the inward horizontal force H as the redundants. The influence
lines for the three redundants can be obtained by application of Müller-Breslau’s principle. For
the influence line for MAB, an anticlockwise unit rotation is introduced at end A: the resulting
vertical displacements of the arch axis are the influence ordinates. Similarly, for the influence
line for MBA, we introduce an anticlockwise unit rotation at B, and for the influence line for H
a unit horizontal displacement is introduced outwards at either A or B.

The bending moment M corresponding to these end displacements can be obtained by the
general force method.

The corresponding vertical deflection may be determined by the method of elastic weights
(see Section 10.4 and Prob. 10.6). This procedure ignores the effect of axial deformation of the
arch. In extremely flat arches, however, the axial deformations may have a non-negligible effect.
While a computer is commonly used for analysis of arch bridges, it is useful to discuss below the
shapes of influence lines to be expected; these make possible a broad check of the calculations.

Simple expressions can be derived for the redundants H, MAB, and MBA in a parabolic arch
in which the flexural rigidity EI varies as the secant of the inclination of the arch axis; thus,
EI = EI0 sec α, where EI0 is the flexural rigidity at the crown (Figure 12.19a). The equations of
the influence lines are

ηH = 15l
64h

(1 − ξ2)2 (12.19)

ηMAB = l
32

(1 − ξ)2(5ξ2 + 6ξ + 1) (12.20)

ηMBA = − l
32

(1 + ξ)2(5ξ2 − 6ξ + 1) (12.21)

(b)

A

MAB

MBA

B H

1

A

C E

F

B

1

1

D
Deck
level

(a)

Figure 12.18 Fixed arch and a released structure. (a) Arch supporting a bridge deck. (b) Statically
determinate released structure.
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(a) (b)

(d)

(f)

–

––
+

+
+

(c)

(e)

15l
64h

A

A B
C

BC

A
BC

EI
A B

H
A

C

B H

MBAMAB

x

l/2 l/2

EI0C

x

l

Flexural rigidity EI = EI0 sec α

α

η
η

h

l
32

3l
64

h

0.5

0.5

–

+

Figure 12.19 Influence lines for a parabolic arch with secant variation of flexural rigidity. (a) Parabolic
arch with secant variation in EI. (b) Positive direction of the redundants. (c) Influence
line for H. (d) Influence line for MAB. (e) Influence line for MC. (f) Influence line for Vc.

where ξ = x/(0.5l); l is the span, and h is the rise. Equations 12.20 and 12.21 are plotted in
Figures 12.19c and d.

The influence line for the stress resultant at any section of the arch in Figure 12.19a can be
determined by Eq. 12.18. For example, to obtain the influence line of the bending moment Mc

at the crown, we first find the values of this action due to unit values of the redundants on the
released structure of Figure 12.19b; {Au}= {−h, 1

2 ,− 1
2 }, in which the order of the redundants is

H, MAB, and MBA. The influence line ηs for the moment Mc in the released structure is formed
by two straight segments (as for a simple beam):

ηs = l
4

(1 − ξ) for 0 < ξ < 1

ηs = l
4

(1 + ξ) for 0 > ξ > −1

⎫⎪⎪⎬
⎪⎪⎭ (12.22)

The influence ordinates ηMC are given by Eq. 12.18:

ηMC = ηs +
(

−hηH + 1
2

ηMAB − 1
2

ηMBA

)

The influence ordinates between the brackets in this equation are given by Eqs. 12.19 to 12.21.
The shape of the influence line for Mc is shown in Figure 12.19e.

The influence line for shear Vc at the crown can be obtained in a similar manner; its shape is
shown in Figure 12.19f.
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It can be shown that the horizontal thrust H due to a uniform load q per unit length of the
horizontal projection of a parabolic arch, with any variation in EI and with hinged or fixed
supports, is

H = ql2

8h
(12.23)

and that the bending moment and the shear are zero at all sections. Since the area under an
influence line is equal to the value of the action considered due to a uniform load q = 1 (see
Eq. 12.19), it follows that the area under ηH (Figure 12.20c) is l2/8h and the area is zero under
the other three influence lines in Figure 12.19.

12.10 Influence lines for trusses

Influence lines for the reactions or forces in the members of pin-connected trusses can be obtained
by solving for several cases with the unit load at different joints. The influence lines can also be
obtained from Eq. 12.18, which applies to any linearly elastic structure. To use this equation,
we need the influence line for a statically determinate released truss, the influence lines for the
redundants, and the values of the action due to unit values of the redundants. The procedure is
illustrated by the following example.

Example 12.4: Continuous truss
Find the influence line for the reaction at B and the forces in the members labeled Z1 and
Z2 in the truss of Figure 12.20a. The unit load can act at the nodes of the lower chord only.
All the members are assumed to have the same value of l/aE, l being the length defined in
Figure 12.20a, and a the cross-sectional area of the members.

A released structure is shown in Figure 12.20b, in which the redundants F1 and F2 are
taken as the forces in members Z3 and Z4 respectively. The influence ordinates ηs for the
values of the required actions in the released structure are plotted in Figures 12.20c, d,
and e. These can be checked by simple statics.

According to Müller-Breslau’s principle, the influence line for F1 can be obtained by
cutting the member Z3 and applying equal and opposite forces (causing compression in
Z3) to the remaining truss, so as to produce a relative unit displacement at the cut section.

Then, the deflected shape of the bottom chord of the truss gives the influence line for F1.
This is the same as finding the deformations in the actual structure due to a unit extension
of member Z3, such as that caused by a rise in temperature or a lack of fit in this member.

The flexibility matrix of the released structure is

[f ] = l
8Ea

[
57 3

3 57

]

The elements of this matrix can be checked by virtual work (see Section 8.6). For conveni-
ence, the forces in the members due to F1 = 1 are shown in Figure 12.20f. Making use of
symmetry of the structure, the forces in members due to F2 = 1 can also be deduced from
this figure.

Forcing member Z3, with unit elongation, to fit has the same effect as introducing the
imposed displacements {�}= {−1,0} at the coordinates in Figure 12.20b; the values of the
redundants necessary to produce {�} are (Eq. 4.11)
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Figure 12.20 Analysis of the continuous truss of Example 12.4. (a) Continuous truss. (b) Released
structure and coordinate system. (c) Influence line for RB in the released structure. (d)
Influence line for the force in Z1 in the released structure. (e) Influence line for the force
in Z2 in the released structure. (f) Reactions and forces in members due to F1 = 1.
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[f ]
{

F1

F2

}
= −

{
1
0

}

Solution of this equation gives {F} = (Ea/405l){−57,3}. By superposition (Eq. 4.12),
using the values given in Figure 12.20f, we can determine the forces in the actual truss due
to a unit extension of member Z3. The corresponding deflections can be determined by
virtual work (Eq. 8.20), giving the influence line ordinates at the joints 1, 2, . . . , 9 of the
redundant F1 (Figure 12.21a).
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Figure 12.21 Influence lines for the continuous truss of Figure 12.20 (Example 12.4). (a) Influence line
for redundant F1 (force in member Z3). (b) Influence line for vertical reaction at B. (c)
Influence line for force in member Z1. (d) Influence line for force in member Z2.
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The values in this figure can, of course, be verified by a computer program for analysis
of plane trusses (such as PLANET, Appendix L). The analysis needs to be done for one
load case, namely, that of a unit elongation of member Z3. Because the structure is
symmetrical, the same ordinates in reversed order are the ordinates at the nine joints of
the influence line for F2.

For the influence line of the reaction at B, we use Eq. 12.18 to determine the coordinates
at the joints 1, 2, . . . , 9:

{η}9×1 = {ηs}9×1 + [{ηF1}
... {ηF2}]9×2 {Au}2×1 (12.24)

The elements of {Au} are the reactions at B due to F1 = 1 and F2 = 1 (see Figure 12.20f)

{Au} =
{ −0.5

0.25

}

An upward reaction is considered positive. Substituting in Eq. 12.18, we obtain the
influence ordinates for RB:

{η} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.250
0.500
0.750
0.750
0.500
0.250
0
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ 10−3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−167 0
−263 −4
−219 −15
−211 −155
−250 −250
−155 −211
−15 −219
−4 −263

0 −167

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

{ −0.5
0.25

}
= 10−3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

333
631
856
817
562
275
−47
−64
−42

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The influence line for RB is plotted in Figure 12.21b. The influence lines for the forces
in members Z1 and Z2 are determined by Eq. 12.18 in the same way, and the results are
plotted in Figures 12.21c and d.

12.11 General

The influence line for any action in a structure can be obtained by repeating the ana-
lysis for several cases of loading with a unit load at different positions: each loading case
gives one ordinate of the required influence line. This method is convenient only with a
computer.

Using Müller-Breslau’s principle, influence lines can be represented as deflection lines. The use
of this principle makes it possible to determine without any special calculations the shape of the
influence line, and this indicates the parts of the structure to be loaded in order to obtain the
maximum effects. The principle is also used to calculate the ordinates of the influence line, and
can be applied to continuous frames, grids, and trusses.

When a computer is used to determine influence lines, Müller-Breslau’s principle can give
a single loading case for which the deflections are the influence line ordinates. The study of
influence lines in this chapter should help to predict the shape of influence lines to be expected
and to verify computer analysis.

The general superposition Eq. 12.18 is shown to facilitate the derivation of influence lines for
arches and trusses.
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Problems

12.1 Obtain the influence lines for the reaction at B, and bending moment and shear at E in the
statically determinate beam shown in the figure. From the influence ordinates, determine
the maximum positive values of these actions resulting from a uniform traveling live load
q/unit length. The live load is to be applied on parts of the beam such that it produces
maximum effect.

A
E

B

l l/5 4l/5

3l/8
CD

Prob. 12.1

12.2 Obtain the influence lines for the forces in the members marked Z1 and Z2 of the truss
shown.

Moving unit
load

A

C D E

B

Z1

Z2

4l

l

Prob. 12.2

12.3 Obtain the influence lines of the horizontal component of the reaction at A and the
bending moment at D for the three-hinged parabolic arch shown in the figure. What are
the maximum positive and negative values of the bending moment at D due to a uniform
live load of q/unit length of horizontal projection?

l/2

D
A

C

B

l/4

l/2

h

Prob. 12.3

12.4 For the bridge frame shown, calculate the influence ordinate at 0.3l, 0.5l, and 0.7l of
each span and draw the influence lines for the following actions:

(a) Bending moment at n
(b) Bending moment at center of span AB
(c) Shearing force at n
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A I = 4

I = 1

I = 4B

n

D

C

l l

(3/8)l

Prob. 12.4

12.5 The continuous prismatic beam shown in the figure is totally fixed at A and supported
at B and C on elastic supports of stiffness EI/l3, where EI is the flexural rigidity of the
beam. Obtain the influence lines for RA, RB and the end-moment at A. Give the ordinates
at the supports and the middle of each span.

A B C

D E

l/2 l/2 l/2 l/2
l l

Prob. 12.5

12.6 Replace the hinged support at A of the frame of Prob. 12.4 by a roller support, then
obtain the influence line of the end-moment DB. Give the ordinates at 0.3l, 0.5l, and 0.7l
for each of the spans AB and BC.

12.7 Find the influence line of the bending moment at section n of the grid shown in the
figure. The relative EI values are given alongside the girders. The ratio GJ/(EI) = 1

4 for
all members. Give ordinates at G, H, and I only. The end supports prevent the rotations
about the x axis as well as the vertical displacements in the y direction.

l/2

l

E

C

A G B

D
H

EI

EI
F

4EI

K

I

z

xy

4EI
l/2

l/2

Support

4EI4EI

4EI 4EI

n

l

Prob. 12.7

12.8 Solve Prob. 12.7 with GJ = 0. Give the influence ordinates at G, H, I, and the center of
CH.

12.9 Prove Eq. 12.16.
12.10 Prove Eq. 12.19.
12.11 Obtain the influence line for the reaction components XA, YA, and MAB in the arch shown

due to a unit vertical load. This load can be applied at the panel points A, B, C, D, and
E. Consider bending deformations only.
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A
Constant EI

B

C

D

E

CL

XA

MAB
YA

b b b b

bb3
4

Prob. 12.11

12.12 Obtain the influence line for the component XA of the reaction at A in the two-hinged
truss in the figure. Use this influence line to obtain the influence line for the force in
member DE. Assume that all the members are of the same cross section.

CL

XA

YA

A

H J

l

D E F G
Moving unit

load

B

C

3c
4

3c
4

c

c c c c

Prob. 12.12

12.13 Find the influence lines for the forces in members Z1 and Z2 of the truss in the figure.
Assume that all the members have the same b/(aE) value, b and a being the length defined
in the figure and the cross-sectional area of the member.

D

Z1

Z2

A
E F B G H CI

Moving unit
load

b

4b 4b

Prob. 12.13



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 13

Effects of axial forces on flexural
stiffness

13.1 Introduction

The forces required to cause a unit rotation or translation in the transverse direction at one end
of a member decrease when the member is subjected to axial compressive force, and conversely
increase if the axial force is tensile. When the axial forces in members of frames are relatively
high, the change in stiffness arising from bending by the axial force can be of importance.
This effect of the axial force is important in slender members only, and is referred to as the
beam–column effect (or, casually, P-delta effect).

In the following sections, the beam–column effect is discussed for analysis of plane frames.
Calculation of the critical buckling loads for members and frames is also presented.

13.2 Stiffness of a prismatic member subjected
to an axial force

We recall that the force and displacement methods of analysis considered in the previous chapters
are for linear structures for which the principle of superposition holds. In such structures, the
deformations are proportional to the applied loads, and the displacements or the internal forces
caused by a set of effects can be obtained by superposition.

In Section 3.6, we saw that the superposition of deflections cannot be applied in the case of
a strut subjected to axial compression together with a transverse load because of the additional
moment caused by the change in geometry of the member by the loading. If, however, the strut is
subjected to a system of loads or end displacements all acting in the presence of an unaltered axial
force, the effects of these loads and the displacements can be superimposed. Thus, the axial force
can be looked upon as a parameter which affects the stiffness or the flexibility of the member and,
once these have been determined, the methods of analysis of linear structures can be applied.

In the analysis of rigid frames with very slender members, the axial forces are generally not
known at the outset of the analysis. A set of axial forces is estimated, the stiffness (or flexibility) of
the members is determined accordingly, and the frame is analyzed as a linear structure. If the res-
ults show that the axial forces obtained by this analysis differ greatly from the assumed values, the
calculated values are used to find new stiffness (or flexibility) values and the analysis is repeated.

Let us now consider in detail the effects of an axial compressive and axial tensile force on the
stiffness of a prismatic member.

13.3 Effect of axial compression

The differential equation governing the deflection y of a prismatic member AB subjected to a
compressive force P and any end restraint (Figure 13.1a and Eq. 10.7) is

d4y
dx4 + P

EI
d2y
dx2 = q

EI
(13.1)
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P

l

Figure 13.1 Stiffness of a strut. (a) Deflection of a strut assumed to be subjected to end-forces
and end-displacements at the coordinates indicated in part (b). (b) Coordinate system
corresponding to the stiffness matrix of a strut in Eq. 13.14. (c) End-forces correspond-
ing to D1 = 1 while D2 = D3 = D4 = 0. (d) End-forces corresponding to D2 = 1 while
D1 = D3 = D4 = 0.

where q is the intensity of transverse loading. When q = 0, the general solution of Eq. 13.1 is

y = A1 sin u
x
l

+ A2 cosu
x
l

+ A3x + A4 (13.2)

where

u = l

√
P
EI

(13.3)

and A1, A2, A3, and A4 are the integration constants to be determined from the boundary
conditions.
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Equation 13.2 will now be used to derive the stiffness matrix of an axially compressed member
corresponding to the coordinates 1, 2, 3, and 4 in Figure 13.1b. The displacements {D} at the
four coordinates

D1 = (y)x=0 D2 =
(

dy
dx

)
x=0

D3 = (y)x=l D4 =
(

dy
dx

)
x=l

are related to the constants {A} by the equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D1

D2

D3

D4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 1
u
l

0 1 0

s c l 1
u
l

c −u
l

s 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A1

A2

A3

A4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(13.4)

where s = sin u, and c = cos u.
Equation 13.4 can be written

{D} = [B]{A} (13.5)

where [B] is the 4×4 matrix in Eq. 13.4.
The forces {F} at the four coordinates are the shear and bending moment at x = 0 and x = l;

thus,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F1

F2

F3

F4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−V)x=0

(M)x=0

(V)x=l

(−M)x=l

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= EI

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
d3y
dx3 + u2

l2

dy
dx

)
x=0(

−d2y
dx2

)
x=0(

−d3y
dx3 − u2

l2

dy
dx

)
x=l(

d2y
dx2

)
x=l

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13.6)

Equation 10.1 expresses the bending moment M in terms of the deflections. Using this equation
with Eqs. 10.3 and 13.3, the shear can be expressed as

V = dM
dx

− P
dy
dx

= EI
(

−d3y
dx3 − u2

l2

dy
dx

)
(13.7)

Differentiating Eq. 13.2 and substituting in Eq. 13.6 give

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

F1

F2

F3

F4

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

= EI

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
u2

l2 0

0
u2

l2 0 0

0 0 −u2

l2 0

− su2

l2 −cu2

l2 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A1

A2

A3

A4

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(13.8)
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or

{F} = [C]{A} (13.9)

where [C] = EI times the 4 × 4 matrix in Eq. 13.8.
Solving for {A} from Eq. 13.5 and substituting into Eq. 13.9,

{F} = [C][B]−1{D} (13.10)

Putting

[S] = [C][B]−1 (13.11)

Eq. 13.10 takes the form

{F} = [S]{D}, (13.12)

where [S] is the required stiffness matrix. The inverse of [B] is

[B]−1 = 1
2 − 2c − us

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−s

(l − c)

u
l

s

(l − c − us)

l
u

(1 − c − us)

l
u

(s − uc)

(l − c)

− l
u

(s − uc)

s

−(1 − c)

−u
l

s

(l − c)

− l
u

(1 − c)

l
u

(u − s)

(1 − c)

− l
u

(u − s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13.13)

Substituting Eq. 13.13 into Eq. 13.11, we obtain the stiffness of a strut corresponding to the
coordinates in Figure 13.1b:

[S] = EI

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u3s
l3(2 − 2c − us)

symmetrical

u2(1 − c)
l2(2 − 2c − us)

u(s − uc)
l(2 − 2c − us)

− u3s
l3(2 − 2c − us)

− u2(1 − c)
l2(2 − 2c − us)

u3s
l3(2 − 2c − us)

u2(1 − c)
l2(2 − 2c − us)

u(u − s)
l(2 − 2c − us)

− u2(1 − c)
l2(2 − 2c − us)

u(s − uc)
l(2 − 2c − us)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13.14)

When the axial force P vanishes, u→0, and the above stiffness matrix becomes identical with
the stiffness matrix in Eq. 6.8. Thus,
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Lim
u→o

[S]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12EI
l3 symmetrical

6EI
l2

4EI
l

−12EI
l3 −6EI

l2

12EI
l3

6EI
l2

2EI
l

6EI
l2

4EI
l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13.15)

The elements in the first and second column of [S] in Eq. 13.14 are the forces necessary
to hold the member in the deflected configuration shown in Figures 13.1c and d. The two
end-moments in Figure 13.1d are the end-rotational stiffness S(= SAB = SBA) and the carry-
over moment t, which are needed for moment distribution. Thus, the end-rotational stiffness
and the carryover moment for a prismatic member subjected to an axial compressive force P
(Figure 13.1d) are

S = u(s − uc)
(2 − 2c − us)

EI
l

(13.16)

and

t = u(u − s)
(2 − 2c − us)

EI
l

(13.17)

where s = sin u, c = cos u, and u = l
√

P/(EI). The carryover factor C(= CAB = CBA) is

C = t
S

= u − s
s − uc

(13.18)

When u tends to zero, S, t, and C tend to 4EI/l, 2EI/l, and 1/2 respectively. It can be seen
thus that the axial compressive force reduces the value of S and increases C. When the force P
reaches the critical buckling value, S becomes zero, which means that the displacement D2 can
be caused by an infinitely small value of the force F2, and the value of C approaches infinity.
From Eq. 13.16, S is zero when s = uc or tan u = u. The smallest value of u to satisfy this
equation is u = l

√
Pcr/(EI) = 4.49. Thus, the buckling load of the strut with the end conditions

of Figure 13.1d is Pcr = 20.19(EI/l2).
The critical buckling load corresponding to any end conditions can be derived from the

stiffness matrix in Eq. 13.14.
The deflected shape in Figure 13.1c can be achieved in two stages. First, a unit downward

translation is introduced at A while the end-rotations are allowed to occur freely; this condition
can be represented by a straight line (a chord) joining A and B. Second, clockwise end-rotations,
through angles equal to 1/l, at A and B produce the deflected shape in Figure 13.1c, and require
the end-moments MAB =S21 = (S + t)/l and MBA =S41 = (S + t)/l. The vertical forces S11 and S31

can now be determined by considering the equilibrium of the system of forces in Figure 13.1c.
Thus, the elements in the first column of the stiffness matrix corresponding to the coordinates
in Figure 13.1b can be expressed in terms of S and t. The end-moments S and t in Figure 13.1d
are, respectively, equal to S22 and S42; again, considering equilibrium of the forces in this figure,
S12 = (S + t)/l = −S32. This gives the elements in the second column of [S] in terms of S and t.
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In a similar way, the elements in the remaining two columns of [S] can be derived. Thus, the
stiffness matrix for a prismatic member subjected to a compressive axial force (Figure 13.1b)
can be expressed as

[S] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(S + t)
l2 − P

l
symmetrical

S + t
l

S

−2(S + t)
l2 + P

l
− (S + t)

l
2(S + t)

l2 − P
l

S + t
l

t − (S + t)
l

S

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13.19)

If we substitute P = u2EI/l2 in the above equation, it becomes apparent that all the elements
of the stiffness matrix are a function of the dimensionless parameter u, the member length l,
and the flexural rigidity EI. Figure 13.2 shows the values of the end-rotational stiffness S and
the carryover moment t in terms of the dimensionless parameter u =√

P/(EI); Table 13.1 lists

l

S
P

P = absolute value of the axial force (tension or compression)

S 
or

 t
 in

 t
er

m
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 (

E
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1

Figure 13.2 End-rotational stiffness and carryover moment for a prismatic member subjected to an
axial force.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effects of axial forces on flexural stiffness 379

Table 13.1 Values of End-rotational Stiffness S and Carryover Moment t in Terms of EI/l for Prismatic
Members Subjected to Axial Forces (Eqs. 13.16, 13.17, 13.20, and 13.21; see Figure 13.2)

Axial compressive force P Axial tensile force P

u∗ S t u S t u S t u S t

0.0 4.000 2.000 3.0 2.624 2.411 0.0 4.000 2.000 3.0 5.081 1.766
0.1 3.998 2.000 3.1 2.515 2.450 0.1 4.001 1.999 3.1 5.147 1.754
0.2 3.995 2.001 3.2 2.399 2.492 0.2 4.005 1.999 3.2 5.214 1.742
0.3 3.988 2.003 3.3 2.276 2.538 0.3 4.012 1.997 3.3 5.283 1.730
0.4 3.977 2.005 3.4 2.146 2.588 0.4 4.021 1.995 3.4 5.353 1.718
0.5 3.967 2.008 3.5 2.008 2.642 0.5 4.033 1.992 3.5 5.424 1.706
0.6 3.952 2.012 3.6 1.862 2.702 0.6 4.048 1.988 3.6 5.497 1.694
0.7 3.934 2.016 3.7 1.706 2.767 0.7 4.065 1.984 3.7 5.570 1.683
0.8 3.914 2.022 3.8 1.540 2.838 0.8 4.085 1.979 3.8 5.645 1.671
0.9 3.891 2.028 3.9 1.363 2.917 0.9 4.107 1.974 3.9 5.720 1.659
1.0 3.865 2.034 4.0 1.173 3.004 1.0 4.132 1.968 4.0 5.797 1.648
1.1 3.836 2.042 4.1 0.970 3.100 1.1 4.159 1.961 4.1 5.874 1.636
1.2 3.804 2.050 4.2 0.751 3.207 1.2 4.188 1.954 4.2 5.953 1.625
1.3 3.769 2.059 4.3 0.515 3.327 1.3 4.220 1.946 4.3 6.032 1.614
1.4 3.732 2.070 4.4 0.259 3.462 1.4 4.255 1.938 4.4 6.112 1.603
1.5 3.691 2.081 4.5 −0.019 3.614 1.5 4.292 1.930 4.5 6.193 1.592
1.6 3.647 2.093 4.6 −0.323 3.787 1.6 4.330 1.921 4.6 6.275 1.581
1.7 3.599 2.106 4.7 −0.658 3.984 1.7 4.372 1.912 4.7 6.357 1.571
1.8 3.548 2.120 4.8 −1.029 4.211 1.8 4.415 1.902 4.8 6.440 1.561
1.9 3.494 2.135 4.9 −1.443 4.475 1.9 4.460 1.892 4.9 6.524 1.551
2.0 3.436 2.152 5.0 −1.909 4.785 2.0 4.508 1.881 5.0 6.608 1.541
2.1 3.374 2.170 5.1 −2.439 5.151 2.1 4.557 1.871 5.1 6.693 1.531
2.2 3.309 2.189 5.2 −3.052 5.592 2.2 4.608 1.860 5.2 6.779 1.521
2.3 3.240 2.210 5.3 −3.769 6.130 2.3 4.661 1.849 5.3 6.865 1.512
2.4 3.166 2.233 5.4 −4.625 6.798 2.4 4.716 1.837 5.4 6.952 1.503
2.5 3.088 2.257 5.5 5.673 7.647 2.5 4.773 1.826 5.5 7.039 1.494
2.6 3.005 2.283 5.6 −6.992 8.759 2.6 4.831 1.814 5.6 7.127 1.485
2.7 2.918 2.312 5.7 −8.721 10.269 2.7 4.891 1.802 5.7 7.215 1.476
2.8 2.825 2.342 5.8 −11.111 12.428 2.8 4.953 1.791 5.8 7.303 1.468
2.9 2.728 2.376 5.9 −14.671 15.745 2.9 5.016 1.779 5.9 7.392 1.460

∗u= l
√

P/EI). Enter the table with the dimensionless parameter u and read the corresponding values of S/(EI/l) and t/(EI/l).

the numerical data. All these values apply to prismatic members only. The negative values of S
correspond to P values higher than the critical buckling load, so that the negative sign indic-
ates that a restraining moment is needed to hold the end rotation at a value not exceeding
unity.

13.4 Effect of axial tension

The stiffness of a prismatic member in tension can be derived from the expressions for a member
in compression by replacing P by (−P). Accordingly, the notation u= l

√
P/(EI) is to be replaced

by l
√−P/(EI)= iu, where i =√−1. Applying this to Eqs. 13.16 to 13.18 and making use of the

fact that

sinh u = −i sin iu
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and

cosh u = cos iu

we obtain the end-rotational stiffness, carryover moment, and carryover factor for a prismatic
member subjected to an axial tensile force P:

S = u(u cosh u − sinh u)

(2 − 2cosh u + u sinh u)

EI
l

(13.20)

t = u(sinh u − u)

(2 − 2cosh u + u sinh u)

EI
l

(13.21)

and

C = t
S

= sinh u − u
u cosh u − sinh u

(13.22)

where u= l
√

P/(EI), P being the absolute value of the axial tensile force. The values of S and t cal-
culated by the above equations are included in Table 13.1 and are plotted against u in Figure 13.2.

Considering equilibrium, we can readily see that the stiffness matrix corresponding to the
coordinates in Figure 13.1b for a member in tension is

[S] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(S + t)
l2 + P

l
S + t

l
S symmetrical

−2(S + t)
l2 − P

l
− (S + t)

l
2(S + t)

l2 + P
l

S + t
l

t − (S + t)
l

S

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13.23)

13.5 General treatment of axial force

Summarizing the above discussion, we can see that the axial force is considered as a parameter
affecting the stiffness of the member, and the forces corresponding to unit end-displacements are
expressed in terms of S and t, which are functions of the dimensionless parameter u= l

√
P/(EI).

Once the stiffness of the member is known, any one of the displacement methods of analysis
considered in the previous chapters can be used.

The end-forces corresponding to unit end-displacement of a prismatic member subjected to an
axial force are listed in Table 13.2. All forces are given in terms of S and t, which may be defined
as the end-moments F1 and F2 corresponding to the end conditions in case (b) of the table.
The values of S and t can be taken from Table 13.1 or calculated by Eqs. 13.16 and 13.17 or
Eqs. 13.20 and 13.21. When the axial force is zero, S and t become 4EI/l and 2EI/l respectively,
and the forces listed in Table 13.2 become the same as the forces listed in Appendix D. Table 13.2
is to be used for the same purpose and in the same way as Appendix D, but with Table 13.2 the
axial force P must be known (or assumed) and the corresponding values of S and t calculated
in advance.

In some cases, it may be more convenient to substitute for P = u2(EI/l2) in the equations in
Table 13.2. With S and t expressed in terms of EI/l, all the forces in the table can be expressed
in terms of EI and l.
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Table 13.2 End-forces Caused by End-displacements of a Prismatic Member Subjected to Axial Compressive
or Tensile Force

Bar End-Forces
Axial compressive
force P

Axial tensile
force P

P P1

(a)

F2

F1

F3

F4

F1 = F2 = S + t
l

F3 = −F4

F4 = 2(S + t)
l2

− P
l

F1 = F2 = S + t
l

F3 = −F4 =
2(S + t)

l2
+ P

l

P

P

(b)

1

F2

F1

F3F4

F1 = S

F2 = t

F3 = −F4 = S + t
l

F1 = S

F2 = t

F3 = −F4 = S + t
l

P P

(c)

1

F2

F1

F3

F1 = S − (t2/S)

l
F2 = −F3 =
S − (t2/S) − Pl

l2

F1 = S − (t2/S)

l
F2 = −F3 =
S − (t2/S) − Pl

l2

P P

(d)

1

F2

F1

F3

F1 = S − (t2/S)

F2 = −F3 =
S − (t2/S)

l

F1 = S − (t2/S)

F2 = −F3 =
S − (t2/S)

l

Note: S and t are given in terms of u = l
√

P/(EI) in Table 13.1. EI is flexural rigidity and l is the length of the member. P
may be expressed as P = u2EI/l2.

13.6 Adjusted end-rotational stiffness for a prismatic member
subjected to an axial force

We recall that the end-rotational stiffness S of a beam is the moment required to rotate one
end of the beam through unity while the far end is encastré (Figure 13.1d). Following the same
procedure as in Section 11.6, the adjusted end-rotational stiffness of a beam subjected to an axial
force can be derived for various end conditions. In the following, the adjusted end-rotational
stiffnesses which are needed for analysis by moment distribution are given for beams subjected
to the conditions shown in Figure 11.7 as well as to an axial compressive or tensile force of
value P (not shown in the figure).
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For the end conditions in Figure 11.7b:

S�AB = S(1 − C2) = S − (t2/S) (13.24)

For the symmetrical conditions in Figure 11.7c:

S�AB = S(1 − C) = S − t (13.25)

For the antisymmetrical case in Figure 11.7d:

S�AB = S(1 + C) = S + t (13.26)

For the cantilever in Figure 11.7e:

S�AB = S − (S + t)
2 ± Pl/(S + t)

(13.27)

The carryover factor in the last case is

C�
AB = t2 − S2 ± tPl

S2 − t2 ± SPl
(13.28)

The sign of the terms containing Pl(= u2(EI/l)) in Eqs. 13.27 and 13.28 is plus when the axial
force is tensile and minus when compressive. The values of S, t, and C to be used in Eqs. 13.24 to
13.28 should be calculated by Eqs. 13.16 to 13.18 for compression members and by Eqs. 13.20
to 13.22 for tension members, or by Table 13.1 for both cases. Equation 13.27 can be derived
by the condensation of [S∗] corresponding to coordinates 1∗ and 2∗ in Figure 11.7f, considering
D∗

1 = 1 while F∗
2 = 0 (Section 6.5).

13.7 Fixed-end moments for a prismatic member subjected
to an axial force

Consider a straight member subjected to transverse loading and an axial force shown in
Figure 13.3. The end-displacement along the beam axis can take place freely but the end-rotation
is prevented, so that fixed-end moments are induced. The presence of an axial compressive force
causes an increase in the fixed-end moments whereas a tensile force results in a decrease. Two
cases of loading will be considered: a uniform load and a concentrated load.

13.7.1 Uniform load

The deflection of the prismatic strut AB in Figure 13.3a carrying a transverse load of constant
intensity q is governed by the differential Eq. 13.1, for which the solution is

y = G1 sin u
x
l

+ G2 cosu
x
l

+ G3x + G4 + qx2

2P
(13.29)
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(a)

(b)

(c)

P

P

D1

D2

P

P
q = Load intensity

Constant EI

Constant EI

Constant EI

A

W

C

C

B

A

A

B

B

P

P

x

y

dl bl

l

l

Figure 13.3 Straight prismatic member subjected to an axial force and transverse loading. (a) Loading
corresponding to the FEM Eqs. 13.31 or 13.33. (b) Loading corresponding to the FEM
Eq. 13.34 and Table 13.3. (c) Degrees of freedom (D1 and D2) considered for the analysis
of the strut in part (b).

The integration constants {G} are determined from the boundary conditions y = 0 and
(dy/dx) = 0 at x = 0 and x = l. It can be checked that these four conditions can be put in
the form

[B] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

G1

G2

G3

G4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+ q
P

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0

0

l2/2

l

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= {0}

where [B] has the same meaning as in Eq. 13.5. Solving for the integration constants, we obtain

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

G1

G2

G3

G4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= − ql2

u2EI
[B]−1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0

0

l2/2

l

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(13.30)

where [B]−1 is that given by Eq. 13.13.
Considering the end-moments to be positive if clockwise and making use of symmetry of the

member, the two fixed-end moments are related to the deflection by

MAB = −MBA = −EI
(

d2y
dx2

)
x=0
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Differentiating twice Eq. 13.29 and substituting in the above equation, we obtain

MAB = −MBA = EI
(

u2

l2 G2 − q
P

)

With G2 from Eq. 13.30 substituted in the above equation, the fixed-end moments due to a
uniform load on a member subjected to an axial compression are

MAB = −MBA = −ql2 1
u2

(
1 − u

2
cot

u
2

)
(13.31)

If the axial force is tensile, the expression for fixed-end moments becomes

MAB = −MBA = −ql2 1
u2

(u
2

coth
u
2

− 1
)

(13.32)

The fixed-end moments due to a uniform transverse load given by Eqs. 13.31 and 13.32 can
be expressed in the form

MAB = −MBA = − EI
2l(S + t)

ql2 (13.33)

where the values of S and t are determined as a function of u = l
√

P/(EI) (P being the absolute
value of the axial compressive or tensile force) by Eqs. 13.16 and 13.17, or by Eqs. 13.20 and
13.21, or by Table 13.1. When the axial force P vanishes, u → 0, and Eqs. 13.31, 13.32, or
13.33 give MAB = −MBA = −ql2/12.

13.7.2 Concentrated load

Consider the prismatic strut AB in Figure 13.3b carrying a transverse load W at a distance dl and
bl from the left- and right-hand ends respectively. The strut can be treated as an assemblage of
two members AC and CB with the two degrees of freedom indicated in Figure 13.3c, for which
the stiffness matrix can be derived from the stiffness of the individual members (Eq. 13.19).
Thus,

[S] =
⎡
⎢⎣

(Sd + Sb) symmetrical[
(Sb + tb)

bl
− (Sd + td)

dl

] [
(2Sd + td)

d2l2 + (2Sb + tb)

b2l2 − P
dbl

]
⎤
⎥⎦

where the subscripts d and b refer to members AC and BC respectively. The values of S and t
for the two members are given by Eqs. 13.16 and 13.17, with du or bu in place of u.

The displacements at the two coordinates are given by

{
D1

D2

}
= [S]−1

{
0
W

}

and the fixed-end moment at A (considered positive if clockwise) is given by

MAB = tdD1 − (Sd + td)
D2

dl
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Table 13.3 Influence Coefficient of the Fixed-end Moment∗ MAB Due to a Unit Transverse Load on a Pris-
matic Beam Subjected to an Axial Force MAB = −Coefficient × l (Refer to Figure 13.3b, Calculations by
Eqs. 13.34 and 13.35)

Force P u = l

√
P
EI

Value of d

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0 0.0810 0.1280 0.1470 0.1440 0.1250 0.0960 0.0630 0.0320 0.0090 0
Compressive

1.0 0 0.0815 0.1294 0.1493 0.1467 0.1276 0.0981 0.0644 0.0327 0.0091 0
2.0 0 0.0831 0.1342 0.1569 0.1558 0.1365 0.1054 0.0692 0.0350 0.0097 0
3.0 0 0.0863 0.1438 0.1725 0.1747 0.1552 0.1208 0.0796 0.0402 0.0111 0
4.0 0 0.0922 0.1624 0.2037 0.2136 0.1946 0.1540 0.1022 0.0515 0.0141 0
5.0 0 0.1057 0.2070 0.2820 0.3150 0.3009 0.2459 0.1662 0.0843 0.0229 0
6.0 0 0.1943 0.5218 0.8689 1.1150 1.1750 1.0288 0.7282 0.3789 0.1039 0

Tensile
1.0 0 0.0805 0.1265 0.1447 0.1413 0.1224 0.0939 0.0616 0.0313 0.0088 0
2.0 0 0.0791 0.1226 0.1386 0.1341 0.1155 0.0883 0.0579 0.0295 0.0083 0
3.0 0 0.0770 0.1168 0.1297 0.1239 0.1058 0.0806 0.0529 0.0271 0.0077 0
4.0 0 0.0745 0.1100 0.1196 0.1125 0.0951 0.0722 0.0474 0.0244 0.0070 0
5.0 0 0.0718 0.1029 0.1093 0.1012 0.0848 0.0641 0.0423 0.0220 0.0064 0
6.0 0 0.0690 0.0959 0.0996 0.0908 0.0754 0.0569 0.0377 0.0198 0.0059 0

∗A fixed-end moment is positive when clockwise. To find the fixed-end moment at the right-hand end enter the value of b
in lieu of d and change the sign of the moment. P is the absolute value of the axial compressive or tensile force.

The above procedure can also be followed for members subjected to axial tension. Thus, the
fixed-end moment in member AB subjected to an axial compression (Figure 13.3b) is

MAB = −Wl
(bu cosu − sin u + sin du + sin bu − u cosbu + du)

u(2 − 2cosu − u sin u)
(13.34)

and when the axial force P is tension,

MAB = −Wl
(bu cosh u − sinh u + sinh du + sinh bu − u cosh bu + du)

u(2 − 2cosh u − u sinh u)
(13.35)

Equations 13.34 and 13.35 are used to calculate influence coefficients of the fixed-end moment
MAB in Table 13.3, by fixing a value for u and varying d (and b = 1 − d). The same table can
be used for the fixed-end moments at the right-hand end MBA by considering d in the table to
represent b and changing the sign of the moment given.

13.8 Adjusted fixed-end moments for a prismatic member
subjected to an axial force

With the end-moments MAB and MBA for a beam with two fixed ends subjected to an axial
force (Figure 13.4a), we can derive the adjusted end-moments due to the same loading but
with different end conditions. The parameters involved, in addition to MAB and MBA, are the
end-rotational stiffness S and the carryover moment t. Following the same procedure as in
Section 11.7, we obtain for the beam in Figure 13.4b, with a hinged end A, the end-moment at B.
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(a)

(b)

(c)

MAB

FA

A

A

P

A B

P

P P

P

MBA

MBA

B

 P = the absolute value of
the axial forces (tension
or compression)

B

1

W1 W2

W1 W2

W1 W2

l

MBA
2

MAB
2

Figure 13.4 Adjusted fixed-end moments. (a) Rotation and translation in the transverse direction pre-
vented at both ends. (b) Free rotation at A. (c) Vertical translation at A is allowed with no
rotation.

M�
BA = MBA − CMAB (13.36)

where C = t/S. This equation is valid regardless of whether the axial force is compressive or
tensile.

For the beam in Figure 13.4c, with translation of end A in the transverse direction allowed
but rotation prevented, the end-moments are

M�
AB = MAB + FAl

(S + t)
2(S + t) ± Pl

(13.37)

M�
BA = MBA + FAl

(S + t)
2(S + t) ± Pl

(13.38)

where MAB, MBA, and FA are the end-moments and reaction for the same beam but with the
end condition of Figure 13.4a; the positive directions of these forces are indicated in the figure.
The sign of the term Pl[that is, equal to u2(EI/l)] in the denominator in the last two equations
is plus when the axial force is tensile and minus when compressive.

Example 13.1: Plane frame without joint translations
Find the end-moments for the members in the frame of Figure 13.5a, taking into account
the beam–column effect.

We assume approximate values of the axial forces in the members: PAB = PBC = 5qb
tensile, and PBD = 12.5qb compressive. The corresponding values of u = l

√
P/(EI) are:

uAB = uBC = 1.41, and uBD = 2.53.
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5b
10 qb q/unit length

q = 32 EI/1000 b3

2I 2I

I

B

D

BDBAEnd

FEMs

COF CBD = 0.74

Distribution
Final moments

DFs
BC

0.220.39 0.39

65115 115

Multiplier :

65115 –180

MDB = 0.74 × 65 = 48

–295

A
C

5b

5 qb

qb2/100

4b

(a)

(b)

Figure 13.5 Analysis of the frame of Example 13.1 by moment distribution taking into account the
beam– column effect. (a) Frame properties and loading. (b) Moment distribution.

From Eqs. 13.20 and 13.21, or from Table 13.1, we find for members AB and BC :
S = 4.26(EI/l); t = 1.94(EI/l); and C = t/S = 0.46.

Similarly, from Eqs. 13.16 and 13.17, or from Table 13.1, the values of S and t for
member BD are: S = 3.06(EI/l), t = 2.26(EI/l), and C = t/S = 0.74.

The adjusted rotational stiffness of end B of members BA and BC, to account for the
hinged ends at A and C, is (from Eq. 13.24) SBA = SBC = S(1 − C2) = 3.36EI/l.

We now substitute the relative values of EI/l for the individual members in the above
expressions, then calculate the distribution factors in the usual way (Figure 13.5b).

From Eq. 13.36, the fixed-end moment is M�
BC = MBC − CMCB, where MBC and MCB

are the end-moments when both B and C are encastré. Using Eq. 13.33,

MBC = −MCB = − EI
2l(S + t)

ql2 = − ql2

2(4.26 + 1.94)

= −0.081ql2 = −2.02qb2

Thus, the adjusted fixed-end moment is

M�
BC = −(2.02 + 0.46 × 2.02)qb2 = −2.95qb2

The moment distribution is carried out in the usual way in Figure 13.5b, and the end-
moments thus obtained are (in terms of qb2/100): MBA = 115, MBC = −180, MBD = 65,
and MDB = 48.

More accurate values of the axial forces can now be determined and the above calcula-
tions may be repeated. It is clear, however, that in this example no appreciable change in
values will result.
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Example 13.2: Plane frame with sidesway
Solve Example 13.1 with the support at A being a roller instead of a hinge, but for the
loading being that in Figure 13.6a. Note also the change in relative I values.

A solution can be obtained by moment distribution similar to the procedure followed in
Example 13.1, but the adjusted end-rotational stiffness and the carryover factor have to be
calculated for BD by Eqs. 13.27 and 13.28, and the fixed-end moments for ends BD and
DB have to be determined by Eqs. 13.37 and 13.38. This solution is not given here, but
instead we analyze the structure by the general displacement method.

The approximate values of the axial forces are: PAB = 0, PBC = 0.05qb tensile, and
PBD = 7qb compressive; the corresponding u values are: uAB = 0, uBC � 0, and uBD =
1.34. For member BD, S = 3.75EI/l and t = 2.06EI/l. With these values, the end-forces
corresponding to unit end displacements can be calculated using Table 13.2.

The stiffness matrix of the structure corresponding to the coordinates 1 and 2 in
Figure 13.6b is

[S]=

⎡
⎢⎢⎢⎣

3
(

EI
l

)
BA

+ 3
(

EI
l

)
BC

+ 3.75
(

EI
l

)
BD

symmetrical

−(3.75 + 2.06)

(
EI
l2

)
BD

2(3.75 + 2.06)

(
EI
l3

)
BD

−
(

P
l

)
BD

⎤
⎥⎥⎥⎦

The fixed-end moments at end B of members BA, BC, BD, and DB are 2.5qb2,
−3.125qb2, 0 and 0 respectively. The restraining forces at coordinates 1 and 2 to prevent
displacements at B are

{F} =
{−0.625qb2

−0.05qb

}

5 b
Q = 1.5 qb

q = 16EI/1000 b3

0.05 qb

5 b

II B
A

A

D

C

I

D

B C

0.8 q/unit length q/unit length

1

2

(b)

(a)

4 b

Figure 13.6 Analysis of the frame of Example 13.2 by the general displacement method taking into
account the beam–column effect. (a) Frame properties and loading. (b) Coordinate system.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effects of axial forces on flexural stiffness 389

The displacements at the coordinates are given by Eq. 5.3.

{D} = [S]−1{−F}

Substituting the values of I, l, and P(= u2[EI/l2]) into [S] and inverting it, then
substituting in Eq. 5.3, we obtain

{D} = qb2

EI

{
0.58
1.71b

}

The end-moments MBA, MBC, MBD, and MDB are then determined by Eq. 5.5:

{A} = {Ar} + [Au]{D}⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MBA

MBC

MBD

MDB

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= qb2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2.50

−3.125

0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.00
(

EI
l

)
BA

0

3.00
(

EI
l

)
BC

0

3.75
(

EI
l

)
BD

−(3.75 + 2.06)

(
EI
l2

)
BD

2.06
(

EI
l

)
DB

−(3.75 + 2.06)

(
EI
l2

)
DB

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

{D}

Substituting for {D}, the final end-moments are obtained

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

MBA

MBC

MBD

MDB

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= qb2

100

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

285

−277

−8

−32

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

13.9 Elastic stability of frames

In design based on a definite load factor, failure loads must be known. Broadly speaking, failure
can occur by yielding of the material at a sufficient number of locations to form a mechanism
(see Chapters 18 and 19) or by buckling due to axial compression without the stresses exceeding
the elastic limit.

Buckling of individual members was considered in Section 13.3. In the present section, we
shall deal with buckling of rigidly jointed plane frames in which the members are subjected to
axial forces only.

Consider a plane frame subjected to a system of forces {Q} (Figure 13.7a) causing axial com-
pression in some of the members. The buckling, or critical, loading α{Q} is defined by the value
of the scalar α at which the structure can be given small displacements without application of
disturbing forces. In other words, when the buckling loading α{Q} acts, it is possible to maintain
the structure in a displaced configuration without additional loading, as shown in Figure 13.7b.

If, for the frame considered, an estimate is made of the value of α and the corresponding values
of the axial forces {P(α)} are computed, it becomes possible to find the stiffness matrix [S(α)] of
the structure corresponding to any chosen coordinate system. The elements of this matrix are
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Q1

(a) (b) (c)

1

Q2
αQ1 αQ2 Q1 Q2

Figure 13.7 Buckling of a plane frame.

functions of the value α. Any system of forces {F} and displacements {D} at the coordinates are
related by the equation

[S(α)]{D} = {F}

If α corresponds to the critical buckling value, then it is possible to let the structure acquire
some small displacements {�D} without application of forces, and the last equation thus becomes

[S(α)]{δD} = {0}

For a nontrivial solution to exist, the stiffness matrix [S(α)] must be singular – that is, the
determinant

|S(α)| = 0 (13.39)

The collapse loading is that which has the smallest value of α which satisfies Eq. 13.39. In
general, there is more than one value of α which satisfies this equation, and each value has
associated with it values of {δD} of arbitrary magnitude but in definite proportions defining an
associated critical mode.

To solve Eq. 13.39 for α, the value of the determinant is calculated for a set of values of α, and
the value corresponding to a zero value of the determinant is obtained by interpolation. Once
α has been calculated, the associated displacement vector, if required, can be obtained in a way
similar to that used in the calculation of eigenvectors in Section A.3 of Appendix A.

The above procedure may involve a large amount of numerical work so that access to a
computer is necessary. However, in most structures, it is possible to guess the form of the critical
mode associated with the lowest critical load. For example, it can be assumed that when the
buckling load is reached in the frame of Figure 13.7a, a small disturbing force at coordinate 1
will cause buckling in sidesway (Figure 13.7c). At this stage, the force at 1 required to produce a
displacement at this coordinate is zero, that is S11 = 0. This condition can be used to determine
the critical load. A value of α lower than the critical value is estimated and the stiffness coefficient
S11(α) corresponding to coordinate 1 is determined. As α is increased the value of S11 decreases
and it vanishes when the critical value of α is attained. If a set of values of α is assumed and
plotted against S11, the value of α corresponding to S11 = 0 can be readily determined.

The critical buckling loads for a straight prismatic member with various end conditions are
given in Figure 13.8. These may be used to establish lower and upper bounds to the buckling
load of a frame and hence are of help in estimating the approximate values of α.
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(a) (b) (c) (d) (e) (f)

l l

π2 EI

l2

4π2 EI

l2

π2 EI

4l2

π2 EI

4l2

π2 EI

l2
20.19 EI

l2

Figure 13.8 Critical buckling load for a prismatic member.

Example 13.3: Column buckling in plane frame
Find the value of the force Q at B which causes buckling of the frame of Example 13.2
(Figure 13.6a). The frame is not subjected to loads other than the force Q.

Let Q=α. The axial forces in the members are PBA =PBC =0 and PBD =α, compressive.
The stiffness matrix of the frame corresponding to the coordinates in Figure 13.6b,
expressed as function of α, is

[S(α)] =

⎡
⎢⎢⎣

3
(

EI
l

)
BA

+ 3
(

EI
l

)
BC

+ SBD symmetrical

−(SBD + tBD)/lBD
2(SBD + tBD)

l2
BD

− α

lBD

⎤
⎥⎥⎦ (a)

where SBD and tBD are functions of α to be calculated by Eqs. 13.16 and 13.17 or from
Table 13.1.

When α corresponds to the buckling load, the determinant |S(α)| = 0, so that

determinant = S11S22 − S2
21 (b)

where Sij are elements of the stiffness matrix in Eq. (a).
Upper and lower bounds of the critical load are established if we consider that the rotation

at end B of BD is partially restrained. Thus, the buckling load for BD is some value between
π2EI/(4l2) = 0.154EI/b2 and π2EI/l2 = 0.617EI/b2, corresponding to the conditions in
Figures 13.8d and f respectively. As a first trial, let us take the average value between
these two bounds, that is α = 0.386EI/b2. The corresponding value of the determinant in
Eq. (b) is 0.0279 (EI)2/b4. In the second trial, we take α = 0.5EI/b2, giving a value of
−0.0354(EI)2/b4 for the determinant. By linear interpolation, we choose for the third trial

α =
[
0.386 + (0.5 − 0.386) 0.0279

0.0279 + 0.0354

]
EI
b2 = 0.436

EI
b2
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for which the determinant is −0.0004(EI)2/b4. This value is negligible compared with the
preceding values; thus, α =0.436EI/b2 can be considered as the buckling value. Therefore,
the critical load is

Qcr = 0.436
EI
b2

Example 13.4: Buckling in portal frame
Find the value of Q which causes buckling of the frame in Figure 13.9a.

The stiffness matrix for the three coordinates in Figure 13.9b is found from Table 13.2:

(a)

(b)

(c)

Q Q/2

Q/2

1*

s*

Q = α

B B

A

C

D

C

DA

I

I3—
4 I3—

4

6 b

100

50

EI

1000 b3

α (1000 b2/EI )
0

–50

12 18 24

25.4

30 36

11

1

32

2.4 b

Figure 13.9 Determination of the critical load on the frame of Example 13.4 by consideration of
stiffness reduction. (a) Frame dimensions and loading. (b) Coordinate system; the cor-
responding stiffness matrix in presence of the Q and Q/2 forces is given in Eq. (a). (c)
Variation of stiffness S∗

11 with α.
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[S]=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
S − t2/S − u2El/l

l2

)
BA

+
(

S − t2/S − u2El/l
l2

)
CD

symmetrical

−
(

S − t2/S
l

)
BA

(S − t2/S)BA + 4
(

EI
l

)
BC

−
(

S − t2/S
l

)
CD

2
(

EI
l

)
BC

(S − t2/S)CD + 4
(

EI
l

)
BC

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(a)

The lowest buckling load for this frame corresponds to a sidesway by a small disturbing
force at coordinate 1. It can be shown that the stiffness S∗

11 corresponding to coordinate
1∗ (Figure 13.9c) is given by (see Section 6.5, Eq. 6.18):

S∗
11 = S11 − S2

21S33 − 2S21S31S32 + S2
31S22

(S22S33 − S2
32)

(13.40)

where Sij are elements of the matrix in Eq. (a). Equation 13.40 can, in fact, be used for
condensation of any 3 ×3 stiffness matrix when the forces at coordinates 2 and 3 are zero.

Let the buckling load occur when Q = α. Considering that the rotation of end C of
member CD is partially restrained, it can be concluded that the buckling load is lower
than the value (π2EI/4l2)BA which corresponds to the conditions in Figure 13.8e. Thus,
an upper bound for α is

α <

(
π2EI
4l2

)
BA

= 0.32
EI
b2 ; Q < 0.32

EI
b2

The values of α are assumed, the corresponding u values for BA and CD are determined,
and the corresponding S and t values are taken from Table 13.1:

α(b2/EI) uBA
SBA

(EI/l)BA

tBA

(EI/l)BA
uCD

SCD

(EI/l)CD

tCD

(EI/l)CD

0.12 0.960 3.876 2.031 0.679 3.938 2.015
0.24 1.357 3.747 2.066 0.960 3.876 2.031
0.31 1.543 3.672 2.086 1.091 3.839 2.041

Substituting into Eqs. (a) and 13.40, we obtain the following value of S∗
11:

α(b2/EI) S∗
11(b

3/EI)

0.12 0.0888
0.24 0.0092
0.31 −0.0376

The above values are plotted in Figure 13.9c from which it is seen that S∗
11 = 0 when

α = 0.254EI/b2. Thus, the buckling load Qcr = 0.254EI/b2.
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13.10 Calculation of buckling load for frames by moment
distribution

We shall first consider frames without sidesway, and then adapt the method to the case when
sidesway is possible. The critical buckling load of frames with no joint translation may be determ-
ined by examining the convergence of moment distribution. Consider the frame in Figure 13.10a,
for which the critical value of the force Q is required. We assume a value for Q, and determ-
ine the end-rotational stiffness of the members and the carryover factors. We now assume an
arbitrary disturbing moment at one (or more) joint and carry out the moment distribution. The
significance of the operation lies in the fact that the behavior under moment distribution depends
on the magnitude of the load relative to its critical value. Specifically, as the load is increased to
approach the critical value, the final moments approach positive or negative infinity, whereas if
the load is less than the critical load the results converge, that is, the moments become smaller
after each cycle of moment distribution and finite values of the end-moments can be reached.

2b

2b

C

(a) Q = α

3I
4

B

A

E

D

(I/2)

(I/8)

I

1.2 b
(b) 

Joint B Cα 
End BA BE BC CB CD 

Remarks 

DFs −0.16 0.79 0.37 1.83 0.65 0.35 
COFs     ←⎯→
Apply a clockwise moment = 100 at B

Distribution −16.0 79.0 67.7  

2.7 EI
b2

CO   −80.6 44.0 

80.6< 1.00
   100 

∴αcr > 2.7 EI
b2

DFs − 0.41 1.01 0.40 2.27 0.61 0.39 
COFs     ←⎯→ 
Apply a clockwise moment = 100 at B

−41.0 101.0 40.0 90.8  
−125.6 55.3 

2.9 EI
b2

125.6> 1.00
   100 

∴αcr < 2.9 EI
b2

b2

DFs −0.27 0.89 0.38 2.02 0.63 0.37 
COFs     ←⎯→ 
Apply a clockwise moment = 100 k ft at B
 27.0 89.0 38.0 76.8  

−97.7 48.4 

2.8 EI

b2

97.7≈ 1.00
   100 

∴αcr = 2.8 EI

37.0

Figure 13.10 Calculation of the critical buckling load for Example 13.5. (a) Frame dimensions and
loading. (b) Moment distribution.
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When the assumed load is only slightly below the critical load, the results converge slowly,
and, as already stated, above the critical load the results diverge. Therefore, to find the critical
load, it is not necessary to continue the moment distribution for a great many cycles: if, after
one cycle, it is seen that the moments converge, then the load chosen is smaller than the critical
load.

Example 13.5: Buckling in a frame without joint translations
Using moment distribution, find the value of Q which will cause buckling of the frame in
Figure 13.10a.

First, the upper and lower bounds of the critical load Qcr = α have to be established.
Member AB can rotate freely at its bottom end while the rotation at the top end is partially
restrained. Therefore, the buckling load for this member has a value lying between the
critical loads for the conditions shown in Figures 13.8a and b. Thus,

(
π2EI

l2

)
AB

< Qcr < 20.19
(

EI
l2

)
AB

or

2.47
EI
b2 < Qcr < 5.05

EI
b2

Consider now the member BC. The rotation at both ends is restrained so that the buck-
ling load for BC lies between the critical loads for the conditions in Figures 13.8a and c.
Therefore,

(
π2EI

l2

)
BC

< Qcr <

(
4π2EI

l2

)
BC

1.85
EI
b2 < Qcr < 7.40

EI
b2

Hence, α lies between 1.85EI/b2 and 5.05EI/b2. For the first trial, take α = 3.6EI/b2;
the values of u, S, and t are, respectively, 3.79,1.56(EI/l)AB, and 2.83(EI/l)AB, for AB,
and 4.38,0.32(EI/l)BC, and 3.43(EI/l)BC, for BC. The rotational stiffnesses of the member
ends meeting at joint B are (Eq. 13.24)

SBA = EI
2b

(
1.56 − 2.832

1.56

)
= −1.79EI/b

SBC = E(0.75)I
2b

× 0.32 = 0.12EI/b

SBE = 3.0E(0.5)I
1.2b

= 1.25EI/b

Sum = −0.42EI/b

The sum of the rotational stiffnesses of the ends meeting at B is negative, indicating that
even with the top end of member BC totally fixed, the assumed value of α is greater than
the critical value.

For a second trial, take α = 2.7EI/b2; the corresponding end-rotational stiffness and
carryover moments are calculated as before. The corresponding distributing and carryover
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factors are given in Figure 13.10b. A disturbing clockwise moment of 100 is applied at
joint B, an appropriate moment is carried over to joint C, joint C is balanced, and a
moment of −80.6 is carried back to joint B, thus ending the first cycle. If a second cycle
of distribution were to be performed, it would begin by the distribution of a balancing
moment of +80.6, which is less than the starting moment of 100. It is clear, therefore, that
the calculation converges, indicating that the critical load has not been reached.

Two additional trials are shown in Figure 13.10b from which we conclude that the critical
load is Qcr = 2.8EI/b2.

Let us now consider frames with sidesway. The value of Q which causes buckling of the
frame in Figure 13.9a can be obtained by moment distribution. The approach is similar to
that followed in Example 13.4 in that we seek the value of Q such that sidesway can be
produced without a horizontal force at the level of BC (F∗

1 = 0 in Figure 13.9c).
The procedure is to assume a value of Q, then introduce a unit sidesway at the level of

BC; the member end-moments are determined by moment distribution and the force F∗
1 is

found by static equilibrium. If F∗
1 is positive, the frame is stable and the value of Q is less

than the critical load. The calculation is repeated with new values of Q until F∗
1 reaches a

zero value.

13.11 General

By inspection of the numerical values of S and t in Table 13.1, we can see that the stiffness of a
member is appreciably affected by an axial force P only when u = l

√
P/(EI) is relatively large,

say 1.5. However, a lower value of u appreciably changes the shear required to produce a unit
translation. For example, if the axial force is compressive, the element S11 of the stiffness matrix
in Eq. 13.19 (see also Table 13.2, case (a))

S11 = 2(S + t)
l2 − P

l
= 2(S + t)

l2 − u2EI
l3

is equal to 10.8 EI/l3 when u = 1. The value of S11 is 12EI/l3 when the axial force vanishes.
In the plane structures considered in this chapter, the deflections and bending moments are

assumed to be in the plane of the structure, while displacements normal to this plane are assumed
to be prevented. For space structures, similar methods of analysis can be developed but they
become complicated by the possibility of torsional-flexural buckling.

When the axial force is compressive and the value of P is the critical buckling load, the force
required to produce a unit displacement at a coordinate becomes zero. Thus, when S11 = 0 in
the stiffness matrix of Eq. 13.14, the value of the axial load is the critical buckling value for a
strut with the displacement at coordinate 1 (Figure 13.1b) allowed to take place freely, while
the displacements at the coordinates 2, 3, and 4 are restrained. Similarly, S22 =0 corresponds to
a critical buckling load of a strut when D2 is free to occur while D1 = D4 = D4 = 0. At higher
values of the axial loads, the elements on the diagonal of [S] become negative which means that
a restraining force is necessary to limit the displacement to unity at one of the coordinates.

The force or displacement methods of analysis for linear structures can be used for structures
in which the axial forces in the members affect their stiffness, provided that a set of axial forces
is assumed to be present in the members in all the steps of the calculations. These forces are
regarded as known parameters of the members, just like E, I, and l. Tables 13.1 and 13.2 based on
a dimensionless parameter can be used for the calculation of the stiffness of prismatic members
subjected to axial forces.
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If, after carrying out the analysis, the axial forces determined by considering the static equi-
librium of the members differ from the assumed values, revised values of the member stiffnesses
or flexibilities based on the new axial forces have to be used, and the analysis is repeated. How-
ever, the repetition is usually unnecessary, as in most practical problems a reasonably accurate
estimate of the axial forces in the members can be made. If a computer is used, the calculation
may be repeated until the assumed and calculated axial forces agree to any desired degree.

Buckling of frames subjected to forces acting at joints only, causing axial compressive forces
in the members, can be treated by a trial-and-error approach seeking the lowest load that leads
to divergent moment distribution or to a singular stiffness matrix. A transverse load within the
length of a member can be replaced by statically equivalent concentrated loads at the joints. The
critical load thus obtained is slightly higher than that obtained from a more accurate analysis
in which account is taken of the bending moment produced by the load acting at intermediate
points.

Transverse deflection of a straight member subjected to a large axial force produces bending
moment, which is considered in the analysis presented in this chapter. The transverse deflection
also produces a change in member length, which is ignored here as is generally done in linear
analysis. Considering this effect requires nonlinear analysis, discussed in Chapter 23. Neverthe-
less, the quasi-linear analysis discussed in the present chapter is sufficiently accurate for many
practical applications.

Problems

13.1 or 13.2
Determine the end-moments in the frame shown in the figure, taking into account the
change in length of members and the beam–column effect.

50 ft
or 15 m

50 ft
or 15 m

Imperial units, Prob. 13.1:
Q = 200 k; q = 2 k/ft;
a = 25 in2; I = 1000 in4,
E = 30,000 k/in2

SI units, Prob. 13.2:
Q = 900 kN; q = 30 kN/m;
a = 16 × 103 mm2; I = 400 × 106

 mm4;
E = 200 GPa

0.6 I

0.6 a

C
q

Q

Ba, I

A

Prob. 13.1 or 13.2

13.3 or 13.4
Apply the requirements of Prob. 13.1 to the frame shown.

13.5 Apply the requirements of Prob. 13.1 to the frame shown. Assume Q = 5EI/l2; al2/I =
40,000.

13.6 Prove Eqs. 13.27 and 13.28.
13.7 Verify the critical buckling loads given in Figure 13.8 for a prismatic member with differ-

ent end conditions. Hint: Determine S11 corresponding to a rotational or a translational
coordinate 1, and verify that S11 = 0, assuming that the member is subjected to an axial
compressive force equal to the critical value given in the figure.
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50 ft
or 15 m

50 ft
or 15 m

50 ft
or 15 m

Imperial units, Prob. 13.3:
Q = 150 k; q = 0.2 k/ft;
a = 15 in2; I = 1000 in4;
E = 30,000 k/in2

SI units, Prob. 13.4:
Q = 675 kN; q = 3.0 kN/m;
a = 10 × 103

 mm2; I = 400 × 106
 mm4;

E = 200 GPa

0.6 I

A
BI I

a

C

D

q

Q

a = 15 in.2

Prob. 13.3 or 13.4

l

Q

A

B

C

Constant section
of area a and
flexural rigidity EI

30° 60°

Prob. 13.5

13.8 Obtain the bending moment diagram for beam ABC shown in the figure. The beam is
fixed at A, on a roller at C and on a spring support of stiffness = 3EI/l3 at B.

q per unit length

Spring stiffness = 3 EI/l3

A
B

EI

C
Q = 3

l l

l2

Prob. 13.8

13.9 Solve Example 13.3, with the roller support at C changed to a hinged support.
13.10 Find the value of the force Q which causes buckling of the frame of Prob. 13.5. Assume

IAB = 1.73IBC. Ignore axial deformations.
13.11 Find the value of Q which causes buckling of the beam in Prob. 13.8. The beam is not

subjected to distributed loads in this case.
13.12 Show that the critical load Q associated with sidesway mode for the frame in the figure

is given by the equation

(S + t)2 =
(

S + 6
EI1

l

)
(2S + 2t − Qh)

where S and t are respectively the end-rotational stiffness and carryover moment for BA
(S and t are defined in Figure 13.2).
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l

A

B

Q Q

C

D

I2 I2 h

I1

CL

Prob. 13.12

13.13 Solve Example 13.4 by moment distribution.
13.14 Determine the value of Q which causes instability of the structure shown in the figure.

Assume E = constant.

0.6 l 0.6 l

1.5

l

A BI I C D QI

Prob. 13.14

13.15 Apply the requirements of Prob. 13.14 to the structure shown.

l

A

B

Q 0.3Q

0.4 I 0.4 I

C

D

I

l

Prob. 13.15

13.16 Derive the stiffness matrix for the member in Figure 13.1b when P=0 (Eq. 5.7), following
the procedure employed to derive Eq. 13.14. The solution of the differential Eq. 13.1
governing the deflection when P and q are zero is: y = A1 + A2x + A3x2 + A4x3.



Chapter 14

Analysis of shear-wall structures

14.1 Introduction

In high-rise buildings, it is important to ensure adequate stiffness to resist lateral forces induced
by wind, or seismic or blast effects. These forces can develop high stresses, and produce sway
movement or vibration, thereby causing discomfort to the occupants. Concrete walls, which have
high in-plane stiffness, placed at convenient locations, are often economically used to provide the
necessary resistance to horizontal forces. This type of wall is called a shear wall. The walls may
be placed in the form of assemblies surrounding lift shafts or stair wells; this box-type structure
is efficient in resisting horizontal forces. Columns, of course, also resist horizontal forces, their
contribution depending on their stiffness relative to the shear walls. The object of the analysis
for horizontal forces is to determine in what proportion are the external loads at each floor level
distributed among shear walls and the columns.

The horizontal forces are usually assumed to act at floor levels. The stiffness of the floors
in the horizontal direction is very large compared with the stiffness of shear walls or columns.
For this reason, it is common to assume that each floor diaphragm is displaced in its horizontal
plane as a rigid body. This rigid-body movement can be defined by translations along hori-
zontal perpendicular axes and a rotation about a vertical axis at an arbitrary point in the floor
(Figure 14.1c).

The assumption of rigid-body in-plane behavior is important in that it reduces considerably the
degree of kinematic indeterminacy. However, even so, the analysis of the general case as a three-
dimensional structure represents a complex problem, and further assumptions are usually made
in order to produce an analysis at a reasonable cost and in moderate time. These assumptions
differ with the chosen method of analysis or the type of structure, but the assumption that the
floor diaphragms are rigid in their own plane is generally accepted.1

A major simplification of the problem is achieved if the analysis can be limited to a plane
structure composed of shear walls and frames subjected to horizontal forces in their plane.
This is possible when the building is laid out in a symmetrical rectangular grid pattern,
so that the structure can be assumed to be made up of two sets of parallel frames act-
ing in perpendicular directions (Figure 14.1b). Very often, even in an irregular building, an
idealized plane structure is used to obtain an approximate solution. The majority of pub-
lished papers on the analysis of shear-wall structures deal with this type of two-dimensional
problems.

The unsymmetrical arrangement of shear walls in the building in Figure 14.1c causes the
diaphragms to rotate and translate under the action of symmetrical horizontal forces. The shear

1 For further reading on analysis of shear-wall structures and an extensive list of references, see Smith, B. S.
and Coull, A., Tall Building Structures: Analysis and Design, J. Wiley & Sons, New York, 1991,
537 pp.
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(a)

(b)

(c)

Floors (diaphragms)
assumed rigid in
their own plane

Shear walls

Shear walls Columns

Resultant external
force at floor level

Resultant external
force at floor level

Columns
CL

A B C D E F G H I J

x

y

z

D2

D1
D3

Figure 14.1 Illustration of shear walls and some assumptions involved in their analysis. (a) Elevation of
a multistorey structure. (b) Plan for a regular symmetric building. (c) Plan of unsymmetrical
building (rigid-body translation of the floor is defined by displacements at the coordinates
D1, D2, and D3).

walls in this case are subjected to twisting moments which cannot be calculated if the analysis
is limited to an idealized plane structure.

In the following sections, the analysis of an idealized plane shear-wall structure is treated on
the basis of certain simplifying assumptions. The three-dimensional problem is also considered,
including further simplifying assumptions.
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14.2 Stiffness of a shear-wall element

In the analysis to follow, we shall treat shear walls as vertical deep beams transmitting loads to
the foundations. The effect of shear deformations in these walls is of greater importance than
in conventional beams, where the span–depth ratio is much larger. The stiffness matrix of an
element of a shear wall between two adjacent floors (Figure 14.2a) will now be derived, shear
deformation being taken into consideration.

Consider the cantilever AB in Figure 14.2b. The flexibility matrix corresponding to the two
coordinates indicated at A is

[
f
]=

⎡
⎢⎢⎣

h
EI

symmetrical

h2

2EI

(
h3

3EI
+ h

Gar

)
⎤
⎥⎥⎦ (14.1)

The term h/Gar is the shear deflection at A due to a unit transverse load at A, with the
notation: G is the shear modulus of elasticity, ar is the effective shear area (see Section 7.3.3),
and h is the floor height.

The stiffness matrix corresponding to the coordinates in Figure 14.2b is obtained by inverting
[f]. Thus,

[
f
]−1 = 1

(1 + α)

⎡
⎢⎢⎣

(4 + α)
EI
h

symmetrical

−6EI
h2

12EI
h3

⎤
⎥⎥⎦ (14.2)

where

α = 12EI
h2Gar

(14.3)

From the elements of the stiffness matrix of Eq. 14.2 and by considering equilibrium, the
stiffness matrix corresponding to the coordinates in Figure 14.2c can be derived. Thus, the
stiffness matrix for a prismatic bar (Figure 14.2c), or the shear-wall element in Figure 14.2a,
with the shear deformation considered, is

A A

B
B

1

3 1
4

2

Elevation

(a) (b) (c) (d)

h = floor
     height

2 3
4

4

56

3 2

1

2 1

Figure 14.2 Flexibility and stiffness of a member considering shear, bending, and axial deformations.
(a) Shear-wall element. (b), (c), and (d) Coordinates corresponding to the flexibility or
stiffness matrices in: (b) Eqs. 14.1 and 14.2, (c) Eq. 14.4, and (d) Eq. 14.5.
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[S] = 1
1 + α

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12EI
h3 symmetrical

6EI
h2 (4 + α)

EI
h

−12EI
h3 −6EI

h2

12EI
h3

6EI
h2 (2 − α)

EI
h

−6EI
h2 (4 + α)

EI
h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14.4)

Putting α = 0, the stiffness matrix becomes identical with the matrix in Eq. 6.8 in which the
shear deformations are ignored.

In some cases, it is necessary to consider the axial deformation so that the stiffness matrix has
to be written for six coordinates as shown in Figure 14.2d. The stiffness matrix corresponding
to these coordinates taking into account bending, shear, and axial deformation is

[S] =

1

2

3

4

5

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ea
h

symmetrical
elements not
shown are zero12EI

(1 + α)h3

6EI
(1 + α)h2

(4 + α)EI
(1 + α)h

−Ea
h

Ea
h

− 12EI
(1 + α)h3 − 6EI

(1 + α)h2

12EI
(1 + α)h3

6EI
(1 + α)h2

(2 − α)EI
(1 + α)h

− 6EI
(1 + α)h2

(4 + α)EI
(1 + α)h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14.5)

where a is the area of a cross section perpendicular to the axis, and α is as before (Eq. 14.3). If
we put a = 0, Eq. 14.5 becomes the same as Eq. 6.7 with the shear deformations ignored.

14.3 Stiffness matrix of a beam with rigid end parts

Shear walls are usually connected by beams, and for purposes of analysis we have to find the
stiffness of such a beam corresponding to coordinates at the wall axis. Consider the beam AB
of Figure 14.3a. We assume that the beam has two rigid parts AA′ and B′B (Figure 14.3b). The
displacements {D∗} at A and B are related to the displacements {D} at A′ and B′ by geometry as
follows:

{D} = [H] {D∗} (14.6)

where

[H] =

⎡
⎢⎢⎣

1 δl 0 0
0 1 0 0
0 0 1 −βl
0 0 0 1

⎤
⎥⎥⎦ (14.7)
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*

(a)

(b)

(c)

(d)

D1=1

D1=δ l

A A′ BB′

A A′ BB′

A A′ BB′

D1=1

*D2=1

D2=1

D2 D4

D2=D3=D4=0

D3=D4=0

*

B
2*

1*

4*

3*

1

Rigid Rigid

D2
*D4

*D3
*D1 D1 D3

Flexural
rigidity=EI

γ l =
l (1-δ-β)

δl βl

A′

A

l

Figure 14.3 Coordinate system corresponding to the stiffness matrices in Eqs. 14.8 and 14.10 of a beam
between shear walls. (a) Elevation of a beam between shear walls. (b) Coordinate systems.
(c) and (d) Deflected configurations corresponding to D∗

2 = 1 and D∗
1 = 1 respectively.

The elements in the first and second column of [H], which are the {D} displacements due to
D∗

1 = 1 and D∗
2 = 1 respectively, can be checked by examining Figure 14.3c.

If shear deformations are to be considered, the stiffness matrix [S] of the beam corresponding
to the {D} coordinates is the same as in Eq. 14.4 with �l substituted for h. Thus,

[S] = 1
1 +�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12EI
(�l)3 symmetrical

6EI
(�l)2 (4 +�)

EI
�l

−12EI
(�l)3 − 6EI

(�l)2

12EI
(�l)3

6EI
(�l)2 (2 −�)

EI
�l

− 6EI
(�l)2 (4 +�)

EI
�l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14.8)

where �= 1 − �− �, and � and � are the ratios of the lengths of the rigid parts of the beam to
the total length l.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis of shear-wall structures 405

From Eq. 9.17, the stiffness matrix corresponding to the {D∗} coordinates is given by

[
S∗]= [H]T [S] [H] (14.9)

Substituting Eqs. 14.7 and 14.8 into Eq. 14.9 gives

[S∗] = EI
1 +�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12
(�l)3

symmetrical

6
(�l)2

+ 12�
�3l2

4 +�

�l
+ 12�

�2l
+ 12�2

�3l

− 12
(�l)3

− 6
(�l)2

− 12�
�3l2

12
(�l)3

6
(�l)2

+ 12�
�3l2

2 −�

�l
+ 6�+ 6�

�2l
+ 12��

�3l
− 6

(�l)2
− 12�

�3l2

4 +�

�l
+ 12�

�2l
+ 12�2

�3l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14.10)

Equation 14.10 thus gives the stiffness matrix corresponding to {D∗} coordinates (Figure 14.3a)
for a prismatic bar of length l with parts �l and �l at the ends of infinite flexural rigidity
(Figure 14.3b). The term �= (12EI)/(�2l2Gar) accounts for the shear deformations; if these are
to be ignored, � is set equal to zero. The end-rotational stiffness of member AB in Figure 14.3c,
SAB = S∗

22; the carryover factors CAB = S∗
42/S∗

22 and CBA = S∗
42/S∗

44; where Sij is any element of
[S∗]. The adjusted end-rotational stiffness, S1

AB = SAB(1 − CABCBA) (see Section 11.6, Eq. 11.20
and Figures 11.7a and b). When �=0 and shear deformation is ignored, this equations becomes:

S�AB = 3EI
l

(1 − �)3 (14.11)

This is the end moment at A to deform AB as shown in Figure 11.7b, assuming that the member
has a rigid part of length �l adjacent to A.

14.4 Analysis of a plane frame with shear walls

Consider the structure shown in Figure 14.1b, composed of frames parallel to the axis of sym-
metry. Some of these frames include shear walls. Because of symmetry in structure and in loading,
the diaphragms translate without rotation. With the diaphragms assumed rigid in their own
planes, all the frames sway by the same amount D∗ at a given floor level, as shown in Figure 14.4a.

The stiffness matrix [S∗]i (of the order n × n, where n is the number of floors), corresponding
to the {D∗} coordinates is calculated for each plane frame. The matrices are then added to obtain
the stiffness [S∗] of the entire structure

[
S∗]= m∑

i=1

[
S∗]

i (14.12)

where m is the number of the frames.
The sway at the floor levels is calculated by

[
S∗]

n×n {D∗}n×1 = {F∗}n×1

where {F∗} are the resultant horizontal forces at floor levels, and n is the number of floors.
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(a)

(b)

Frame on lines
A, C, D, G, H and J

Beams have infinite
rigidity over this length

D1
*

D2
*

D3
*

D4
*

Dn
*

Frame on lines
E and F

D1
*

D2
*

D3
*

D4
*

Dn
*

Frame on lines
B and I

D1
*

D2
*

D3
*

D4
*

Dn
*

Wall axis
Columns

Beam Beam

Typical coordinates at a floor
level representing forces {F }
and displacements {D}

Figure 14.4 Plane frames considered in the analysis of the symmetrical three-dimensional struc-
ture of Figure 14.1b. (a) Frames parallel to the line of symmetry in the building
of Figure 14.1b. (b) Coordinate system corresponding to the stiffness matrix
[S]i for the frame on lines B and I.

In order to determine [S∗]i for any frame, say, the frame on line B or I (Figure 14.4a), coordin-
ates are taken at the frame joints as shown in Figure 14.4b. These represent rotation and vertical
displacement at each joint and sway of the floor as a whole. The corresponding stiffness matrix
[S]i (of the order 7n × 7n, in this case) is first derived using the stiffness of the shear wall and
beam attached to it (as obtained in Sections 14.2 and 14.3). The stiffness matrix [S]i is then
condensed into matrix [S∗]i corresponding to coordinates for the sidesway at floor level (see
Section 6.5). The elements of [S∗]i are forces at floor levels corresponding to unit horizontal
displacements at alternate floors with the rotations and vertical joint displacements allowed to
take place.

After solving Eq. 14.12 for {D∗}, the horizontal forces at floor levels for each plane frame are
determined by[

S∗]
i {D∗} = {F∗}i (14.13)

When the horizontal forces {F∗}i are applied at the floors of the ith frame, without forces
at the other coordinates in Figure 14.4b, the displacements at all the other coordinates in this
figure can be calculated. From these, the stress resultants in any element can be determined.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis of shear-wall structures 407

Clough et al.2 give details of an analysis involving the same assumptions as in the above
approach and describe an appropriate computer program. It may be interesting to give here the
results of their analysis of a 20-storey structure with the plan arrangement shown in Figure 14.5a,
subjected to wind loading in the direction of the x axis. Storey heights are 10 ft (3.05 m), except
for the ground floor which is 15 ft (4.58 m) high. All columns and shear walls are fixed at the
base. The properties of the structural members are listed in Table 14.1.

(a)

Beams

Shear wall

Frame A

Frame B

Frame B

Frame A

b = 10ft
 = 3.05 m

x

y

1.6b 1.6b 1.6b2b 2b

(b) (c)
Roof

18

16

14

12

10

8

6

4

2

0
0 200 400 0 –250 0 25025 ×103 50 ×103

Shear wall

Fl
oo

r

Shear (kip) Moments (kip in.)
1 kip = 4.45 kN 1 kip in, = 0.113 kNm

All columns

Shear
wall

Inner column
(frame A)

Figure 14.5 Example of a building analyzed by Clough, King, and Wilson. (a) Plan. (b) Shearing force
distribution. (c) Moments in vertical members.

2 Clough, R. W., King, I. P. and Wilson, E. L., “Structural Analysis of Multistorey Buildings,’’ Proc. ASCE,
(90), No. ST3, Part 1 (1964), pp. 19–34.
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Table 14.1 Member Properties for the Example of Figure 14.5

Columns Shear Walls Girders

I, in.4 Area, in.2 I, in.4 Area, in.2 I, in.4 Area, in.2

Stories 11–20 3437 221.5 1793 × 104 3155 6875 —
Stories 1–10 9604 313.5 2150 × 104 3396 11295 —

1 in.2 = 645mm2; 1 in.4 = 416000mm4.

For this structure, two types of frames need to be considered: frame A with five bays, with all
columns considered to be of zero width in the x direction; and frame B of three bays: 26, 36,
and 26 ft (7.93, 10.98, and 7.93 m) with two shear-wall columns 20 ft (6.10 m) wide.

Figure 14.5b, taken from Clough’s paper, shows the distribution of shear force between the
columns and shear walls; we can see that the major part of the lateral resistance is provided by
the shear walls.

Figure 14.5c, also reproduced from Clough et al., shows the bending moment in the shear
wall and in an inner column of frame A. These results clearly demonstrate the different behavior
of columns and shear walls: in Clough’s words, “the shear wall is basically a cantilever column,
with frame action modifying its moment diagram only slightly, whereas the single column shows
essentially pure frame action.’’ The effect of discontinuity in column stiffness between the 10th
and 11th floors is apparent in Figures 14.5b and c.

14.5 Simplified approximate analysis of a building as a plane
structure

The preceding example (see Figure 14.5c) shows that the columns have a point of inflection
within the height of each storey, while the deflection of the walls is similar to that of a cantilever.
This is so because the rotation of the column ends is elastically restrained by the beams. When
the walls have a very high I value compared to that of the beams, which is the case in practice, the
beams cannot significantly prevent the rotation at the floor levels associated with the deflection
in the form of a cantilever.

This behavior leads to the suggestion that structures of the type shown in Figures 14.1b or
14.5a under the action of horizontal forces can be idealized into a structure composed of the
two systems indicated in Figure 14.6a. One of these is a shear wall which has an I value in any
storey equal to the sum of the I values of all the walls; the second system is an equivalent column
rigidly jointed to the beams. The Ic value for the equivalent column is the sum of the I values
for all the columns in a storey. The (I/l)b value for any of the beams is equal to four times the
sum of (I/l) values for all the beams running in the x direction. The two systems, connected
by inextensible link members, are assumed to resist the full external horizontal forces at floor
levels. Further, the axial deformations of all the members are ignored. The shear deformations
of the wall or the columns may or may not be included in the analysis. If they are, the reduced
(effective) area is the sum of the reduced areas of the walls or columns in a storey.

Replacement of the actual frames by the substitute frame in Figure 14.6a implies the assump-
tion that, under the effect of horizontal forces at floor levels, the beams deflect with a point of
inflection (zero bending moment) at their middle; e.g. see the frame of Problem 11.27. For this
frame, we can verify that the displacements at C or B are the same as those of a substitute frame
subjected to the same forces as the actual structure. The substitute frame represents the left-hand
half of the actual frame, with roller supports preventing the vertical displacements at the middle
of CD and BE; IAB or IBC in the substitute frame= the sum of the I-values of the columns on the



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis of shear-wall structures 409

Iw Ic (I/l)b

Shear
wall

Substitute
frame

(a)

(b)

Total
external
loads or
sidesway
at floor
levels of
actual
structure

Floor
heights
in actual
structure

F1, D1
* *

F2, D2
* *

F3, D3
* *

Fn, Dn
* *

h

h

For the substitute frame:
Ic = Σ Ici and (I/l)b = 4Σ (I/l)bi

For the shear wall:
Iw = Σ Iwi

i is for all walls, columns or beams in a floor. Subscripts
w, c, and b refer to wall, column, and beam respectively.

2n

n

2

1 1

2

(n +1)
(n +1)

(n +2)
(n +2)

2n

n

Typical
coordinates
at a floor level

Figure 14.6 Simplified analysis of a building frame of the type shown in Figures 14.1b or 14.5a. (a)
Idealized structure. (b) Coordinates corresponding to stiffness matrices [Sw] and [Sr].

opposite sides of the actual frame; for the beam at C or D in the substitute frame, (I/l)beam = four
times (I/l)CD or BE.

The idealized structure in Figure 14.6a is assumed to have n degrees of freedom representing
the sidesway of the floors. The stiffness matrix [S∗]n×n of this structure is obtained by summation
of the stiffness matrices of the two systems. Thus,

[
S∗]= [

S∗]
w + [

S∗]
r (14.14)
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where [S∗]w and [S∗]r are the stiffness matrices, respectively, of the shear wall and the substitute
frame, corresponding to n horizontal coordinates at the floor levels. For the determination of
[S∗]w or [S∗]r two degrees of freedom (a rotation and sidesway) are considered at each floor level
for the wall and at each beam–column connection in the substitute frame. A stiffness matrix
[S]w or [S]r of order 2n × 2n corresponding to the coordinates in Figure 14.6b is written, then
these matrices are condensed to [S∗]w and [S∗]r which relate horizontal forces to sidesway with
the rotations unrestrained (see Section 6.5).

The sidesway at floor levels of the actual structure is then calculated by solving

[
S∗]

n×n {D∗}n×1 = {F∗}n×1 (14.15)

The displacements {D∗} represent the horizontal translation at floor levels of all columns or
shear walls in the building. The external forces {F∗}= {F∗}w +{F∗}r, where {F∗}w and {F∗}r are,
respectively, the forces resisted by walls and by the substitute frame, can be calculated from

[
F∗]

w = {S∗}w{D∗} (14.16)

and

[
F∗]

r = {S∗}r{D∗} (14.17)

These forces are then applied to the shear wall and to the substitute frame, and the mem-
ber end-moments are determined in each system. If these end-moments are apportioned to the
walls, columns, and beams of the actual structure according to their (EI/h) or (EI/l) values,
approximate values of the actual member end-moments can be obtained. The apportionment in
this manner may result in unbalanced moments at some of the joints. Improved values can be
rapidly reached by performing one or two cycles of moment distribution.

It is important to note that if the shear walls differ considerably from one wall to another or if
there are variations in cross section at different levels, the above method of calculation can lead to
erroneous results. In such a case, it may be necessary to consider an idealized structure composed
of more than one wall attached by links to the substitute frame and to derive the stiffness of
each separately; the stiffness of the idealized structure is then obtained by summation.

14.5.1 Special case of similar columns and beams

When the column cross section and height are the same in all stories and (I/l)b is the same at
all floors, the stiffness matrix of the substitute frame in the right-hand side of Figure 14.6b is

[S]r2n×2n
=
[

[S11]r [S12]r

[S21]r [S22]r

]
(14.18)

The submatrices are

[S11]r = 2(S + t)
h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

Elements not . . . . . . . . .

shown are zero −1 2 −1
−1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

n×n

(14.19)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis of shear-wall structures 411

[S21]r = [S12]T
r = (S + t)

h

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1
−1 0 1

−1 0 1
. . . . . . . . .

Elements not . . . . . . . . .

shown are zero −1 0 1
−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

n×n

(14.20)

and

[S22]r = S

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 + β) C
C (2 + β) C

C (2 + β) C
. . . . . . . . .

Elements not . . . . . . . . .

shown are zero C (2 + β) C
C (2 + β)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

n×n

(14.21)

where

β = 3E
S

(I/l)b (14.22)

S = (4 + α)

(1 + α)

EIc

h
(14.23)

t = (2 − α)

(1 + α)

EIc

h
(14.24)

and

C = (t/S) (14.25)

The term S is the column rotational stiffness at one end with the far end fixed; t is the carryover
moment (refer to Eq. 14.4); and C the carryover factor. The shear deformation of the vertical
members is accounted for by the term

α = 12EIc

h2Garc
(14.26)

while the shear deformation of the beams is ignored. The values Ic and (I/l)b are the properties
respectively of the column and of the beam in the substitute frame (see Figure 14.6a). The cross-
sectional area arc = �arci is the sum of the reduced (effective) cross-sectional areas of all the
columns in the frame.

The general case in which the column cross section and height vary from storey to storey and
the beams do not have the same values of (I/l)b at all floor levels is considered in Prob. 14.2.

The above equations can be used to obtain the stiffness matrix [S]w of the wall corresponding
to the coordinates in Figure 14.6b. For this purpose, we put β = 0 and substitute the subscript
w for c.
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Example 14.1: Structures with four and with twenty stories
Find the approximate values of the end-moments in a column and a shear wall in a structure
which has the same plan as in Figure 14.5a, and has four stories of equal height h=b. The
frame is subjected to a horizontal force in the x direction of magnitude P/2 at top floor
and P at each of the other floor levels. The properties of members are as follows: for any
column I =17 × 10−6b4, for any beam I =34 × 10−6b4, and for any wall I =87 × 10−3b4.
Take E=2.3G. The area of wall cross section is 222×10−3b2. Consider shear deformation
in the walls only.

The wall and the substitute frame of the idealized structure are shown in Figure 14.7a.
In the actual structure there are 16 columns, 4 walls, 12 beams of length 1.6b, and 4 beams
of length 2b. The properties of members of the idealized structure are

Ic = �Ici = 16 × 17 × 10−6b4 = 272 × 10−6b4

(I/l)b = 4�(I/l)bi = 4 × 34 × 10−6b4
(

12
1.6b

+ 4
2.0b

)
= 1292 × 10−6b3

Iw = �Iwi = 4 × 87 × 10−3b4 = 348 × 10−3b4

arw = �arwi = 4 × 5
6

× 222 × 10−3b2 = 740 × 10−3b2
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Ic = 272 × 10–6b4

(I/l)b = 1292 × 10–6b3

Iw = 348 × 10–3b4

arw = 740 × 10–3b2

A
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H
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J

B

C

D

E77.79

43.24

18.78

4.37

0.334

0.289

0.265

0.196

0.262

0.276

0.293

0.298

Figure 14.7 Analysis of the four-storey building in Example 14.1. (a) Shear wall. (b) Substitute frame.
(c) Sum of moments in walls in terms of Ph/10. (d) Sum of moments in columns in terms
of Ph/10.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis of shear-wall structures 413

For the derivation of the stiffness matrix of the wall and the substitute frame, the
following quantities are calculated by Eqs. 14.22 to 14.26.

Wall Substitute frame

α: 12.9 0
S: 0.423Eh3 1.09 × 10−3 Eh3

t: −0.273Eh3 0.54 × 10−3 Eh3

C: −0.65 0.5
β: — 3.56

To obtain the stiffness matrix of the substitute frame, we substitute in Eqs. 14.19 to 14.21
to calculate the submatrices of [Sr]:

[S11]r = 3.26 × 10−3Eh

⎡
⎢⎢⎢⎣

1 −1
−1 2 −1

−1 2 −1
−1 2

⎤
⎥⎥⎥⎦

[S21]r = [S12]T
r = 1.63 × 10−3Eh2

⎡
⎢⎢⎢⎣

−1 1
−1 0 1

−1 0 1
−1 0

⎤
⎥⎥⎥⎦

[S22]r = 1.09 × 10−3Eh3

⎡
⎢⎢⎢⎣

4.56 0.5
0.5 5.56 0.5

0.5 5.56 0.5
0.5 5.56

⎤
⎥⎥⎥⎦

The condensed stiffness matrix corresponding to the four sidesway coordinates is (by
Eq. 5.17)

[
S∗]

r = [S11]r − [S12]r [S22]−1
r [S21]r (14.27)

Substituting, we obtain

[
S∗]

r = 10−4Eh

⎡
⎢⎢⎢⎣

23.55 symmetrical
−27.16 55.08

3.93 −31.93 56.03
−0.36 4.40 −32.40 60.37

⎤
⎥⎥⎥⎦

In a similar way, the stiffness matrix of the wall corresponding to horizontal coordinates
at the floor level is

[
S∗]

w = 10−2Eh

⎡
⎢⎢⎢⎣

13.98 symmetrical
−22.76 51.22

5.70 −31.84 53.77
2.33 2.55 −30.19 56.33

⎤
⎥⎥⎥⎦
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The stiffness matrix of the idealized structure (wall and substitute frame connected) is
obtained by Eq. 14.14:

[
S∗]= [

S∗]
w + [

S∗]
r

= 10−4Eh

⎡
⎢⎢⎢⎢⎢⎢⎣

1421.40 symmetrical

−2303.05 5177.15

574.22 −3215.76 5433.34

232.28 259.64 −3051.41 5692.92

⎤
⎥⎥⎥⎥⎥⎥⎦

Substituting [S∗] from the above equation and {F∗}= P{0.5,1.0,1.0,1.0} in Eq. 14.15 and
solving for {D∗}, we find the sidesway of the actual structure at floor levels

{D∗} = 10P
Eh

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

11.47

8.32

5.03

2.03

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Multiplying [S∗]w or [S∗]r by {D∗}, we obtain the forces resisted by the wall and by the
substitute frame (Eqs. 14.16 and 14.17):

{F∗}w = P

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.4368

1.0050

1.0041

1.0083

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

; {F∗}r = P

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.0632

−0.0050

−0.0041

−0.0083

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

The joint rotations of the substitute frame {D2}r, can be determined by

{D2}r = − [S22]−1
r [S21]r {D1}r (14.28)

where {D1}r ={D∗} are the displacements at the first n coordinates in Figure 14.7b. A part
of the calculations required for the equation has already been done in the operations for
Eq. 14.27. From the rotation and translation of the joints in the column, the end-moments
can be easily calculated. The bending moment diagram of the substitute frame is shown in
Figure 14.7d. The moment in the shear walls is calculated by applying the forces {F∗}w on
a cantilever and is plotted in Figure 14.7c.

Because all the walls are of the same cross section, and likewise the columns, the moment
in each wall is 1

4 of the value in Figure 14.7c, and in each column 1/16 of the value in
Figure 14.7d.

The solution of the same problem with the number of stories n = 20, instead of 4, gives
the results shown in Figure 14.8. The external applied forces are P/2 on the top diaphragm
and P on each of the others. All stories have the same height h.
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(a) (b)

Force
Floor
number

20

51

59

29

40

149

302

499

747

1049

1412

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

11.57

1.52

1.44

1.37

1.30

1.24

1.19

1.13

1.10

1.06

1.04

1.01

0.99

0.97

0.96

0.96

0.96

0.92

1.52

3.32

Walls

20.2

16.5

17.0

17.1

17.3

17.4

17.5

17.6

17.5

17.3

16.9

16.3

15.6

14.6

13.3

11.8

9.9

7.6

4.9

1.9

3.0

5.7

8.3

10.4

12.2

13.7

14.9

15.8

16.5

17.0

17.3

17.5

17.6

17.5

17.4

17.3

17.1

16.9

16.6

18.1

Columns

Figure 14.8 Forces and moments in a 20-storey building shown in plan in Figure 14.5a, using analysis
in Example 14.1. (a) Forces resisted by shear walls in terms of P. (b) Moments in vertical
members in terms of Ph/10.

14.6 Shear walls with openings

Figures 14.9a and b show the types of walls which are often used in dwelling blocks. The two
types shown differ in the size of openings and in their location. An exact treatment of this
problem would require the solution of the governing plane-stress elasticity equations, but this
is difficult and cannot be used in practice. A reasonable solution can be obtained by the finite-
element method (see Chapter 16) or by idealizing the wall into different types of latticed frames
composed of small elements; however, the calculation generally requires the solution of a large
number of equations. These methods are used in the analysis of walls with openings arranged
in any pattern, and they give a better picture of the stress distribution than the much more
simplified analysis described below.

In the simplified analysis, walls with a row of openings of the type shown in Figures 14.9a
and b are idealized to a frame composed of two wide columns connected by beams with end
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(a)

(d)

(b) (c)Beam
length

Beam
length

b

Rigid Flexural
rigidity EI

b

The beams are assumed to
be rigid over these lengths

2

1

l

δ l γ l

Figure 14.9 Idealized structure for the analysis of a wall with row of openings. (a) Symmetrical wall.
(b) Wall with a row of openings. (c) Idealized structure for the analysis of the wall in part
(b). (d) Coordinates corresponding to the stiffness matrix S given by Eq. 14.29.

parts infinitely rigid. The stiffness of the elements forming such a structure and the method
of analysis are given in Sections 14.2 and 14.3. MacLeod3 showed by model testing that the
idealization of a wall of this type by a frame gives a good estimate of stiffness (corresponding to
sidesway) for most practical cases. It seems, therefore, that the finite-element idealization offers
little advantage in this respect.

The symmetrical wall in Figure 14.9a can be analyzed using a suitable frame composed of
one column rigidly connected to beams (see Figure 14.7b). Each beam has a rigid part near
its connection with the column. The stiffness matrix of such a beam with one end hinged,
corresponding to the coordinates in Figure 14.9d can be easily derived from Eq. 14.10 and is

[
S
]
=

⎡
⎢⎢⎢⎣

S∗
11 − S∗2

14

S∗
44

symmetrical

S∗
21 − S∗

24S41

S∗
44

S∗
22 − S∗2

24

S∗
44

⎤
⎥⎥⎥⎦ (14.29)

3 MacLeod, I. A., “Lateral Stiffness of Shear Walls with Openings in Tall Buildings,’’ Proceedings of a
Symposium on Tall Buildings, Southampton, Pergamon Press, New York, 1967, pp. 223–244.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis of shear-wall structures 417

where S∗
ij are elements of the stiffness matrix in Eq. 14.10 with b = 0. If the axial deformation is

ignored in the special case of a symmetrical wall having the same height and cross section in all
stories and the beams between the windows are the same in all floors, Eqs. 14.18 to 14.26 can be
used to derive the stiffness matrix of the substitute frame, but β of Eq. 14.22 must be replaced by

β ′ = S22

S
(14.30)

where S22 is an element of the stiffness matrix in Eq. 14.29 and S is defined by Eq. 14.23. The
reason for this is that in Eq. 14.22, the quantity 3E(I/l)b is the adjusted end-rotational stiffness
of a prismatic horizontal beam in the substitute frame. The corresponding quantity for the beam
in Figure 14.9d is S22.

14.7 Three-dimensional analysis

A joint in a three-dimensional framed structure has in general six degrees of freedom: three
rotations and three translations in the x, y, and z directions (Figure 14.10a). The assumption
that the diaphragms in a multistorey building are rigid constrains three of the displacements
(D1, D2 and D3) to be the same at all joints in one floor. Even with this important simplification,
the analysis is complicated in the case of three-dimensional structures incorporating members
having an arbitrary orientation in space.

This section deals with the case of a structure formed of shear walls in a random arrangement.
Any two or more walls which are monolithic will be referred to as a wall assembly. A typical
wall assembly is shown in plan in Figure 14.10b. The structure is analyzed to determine the
forces resisted by different shear walls when horizontal forces in any direction are applied at
floor levels. In addition to the rigid-diaphragm assumption used in the previous sections, we
assume here that the floors do not restrain the joint rotations about the x and y axes (D4

and D5 in Figure 14.10a). This assumption is equivalent to considering that the diaphragm
has a small flexural rigidity compared with the walls and can therefore be ignored. With this
additional assumption, horizontal forces result in no axial forces in the walls; thus, the vertical
displacements (D6 in Figure 14.10a) are zero.

Given all these assumptions, the analysis by the stiffness method will now be performed for a
single-storey structure and then extended to a multistorey building.

14.7.1 One-storey structure

Imagine that the building shown in plan in Figure 14.10b has one storey of height h and the
walls are totally fixed at the base. The displacement of the walls at the floor level is completely
defined if the displacements {D} at the coordinates 1, 2, and 3 are known at any arbitrary point
O in the floor level. A horizontal force anywhere in the plane of the floor can be analyzed into
three components {F} along the three coordinates.

The forces and displacements at the shear center at the top of any wall assembly are related by

[
S
]

i
{q}i = {Q}i (14.31)

where [S]i is the stiffness matrix of the ith wall assembly, and {q}i and {Q}i are respectively
displacements and forces at three local coordinates in that assembly; they represent translations
(or forces) at the shear center of this wall at the floor level parallel to the x and y axes and a
rotation (or a couple) about the z axis (Figure 14.10b).
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(a) Typical joint

D1 D4
x

x

y

z

0

1

Typical wall assembly

Floor rigid in its plane
but with no rigidity for
flexure outside its plane

Resultant of
external load
at floor level

Shear center (x, y)

2

3
(D1, F1)

q2, Q2

q1, Q1

q3, Q3

(D3, F3)

(D2, F2)

y

D2 D6

D3

D5

(b)

Figure 14.10 Coordinate system for the analysis of a single-storey shear-wall structure. (a) Degrees of
freedom of a typical joint in a building frame. (b) Coordinate system.

To derive the stiffness matrix [S]i consider any wall AB in Figure 14.11a fixed at the base
and free at the top. The flexibility matrix corresponding to the coordinates in Figure 14.11b, of
which 1∗ and 2∗ are parallel to the principal axes of inertia of the cross section, is

[
f ∗]

i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
h3

3EI v
+ h

Garv

)
(

h3

3EIu
+ h

Garu

)
Elements not
shown are zero

h − (tanh �h)/�

GJ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

i

(14.32)
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(a)

Vertical line
through the
shear center

Shear
center

Centroid

u and v are centroidal
principal axes. 1* and
2* are parallel to u and
v through the shear
center

Parallel to x axis
(see Fig. 14.10b)

u

θ

A

v
u

B

(b)

1*

3*

2*

23
(c)

1

Figure 14.11 Coordinate systems corresponding to the flexibility and stiffness matrices of a wall
assembly in Eqs. 14.32, 14.34, and 14.37. (a) Elevation. (b) Plan showing coordinates
corresponding to the flexibility matrix in Eq. 14.32. (c) Coordinates corresponding to
matrix in Eq. 14.34 or 14.37.

where Iv and Iu are the second moments of the cross-sectional area about the principal axes v and
u respectively; and arv and aru are reduced (effective) areas of the cross section corresponding to
loading in the vertical plane through axes u and v respectively. The second term in the expressions
for f ∗

11 and f ∗
22 in the above matrix accounts for shear deformation, while the second term in f ∗

33
is included because the warping of the cross section at the bottom of the wall is prevented.4 The
parameter � is given by

� =
√

GJ
EK

(14.33)

where J is the torsion constant (length4) and K is the warping constant (length6) of the cross
section. If shear deformation is ignored and the warping at the two ends is not prevented, or the
warping effect is ignored, the three diagonal terms in Eq. 14.32 become: h3/(3EIv), h3/(3EIu),
and h/(GJ) (which are the displacements given in Appendix B).

The nondiagonal elements in [f ∗]i are all zero because the three coordinates are chosen through
the shear center, and 1∗ and 2∗ are parallel to the principal axes of the section: a force applied
through the shear center produces no twisting of the cross section; further, if this force is parallel
to one of the principal axes, then the deflection takes place in a plane parallel to this axis.

The stiffness matrix [S]i corresponding to the coordinates in Figure 14.11c can be derived by
inversion of [f ∗]i and transformation (see Eq. 9.17).

[
S
]

i
=
⎡
⎢⎣S11 S12 0

S21 S22 0
0 0 S33

⎤
⎥⎦

i

(14.34)

4 See Timoshenko, S. P., Strength of Materials, Part II, 3rd ed., Van Nostrand, New York, 1956, 260 pp.
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where

S11 = E
h3

[
12 cos2 θ

(4 + αv)
Iv + 12sin2 θ

(4 + αu)
Iu

]

S22 = E
h3

[
12 sin2 θ

(4 + αv)
Iv + 12cos2 θ

(4 + αu)
Iu

]

S12 = S21 = E
h3

[
sin θ cos θ

(
12Iv

(4 + αv)
− 12Iu

(4 + αu)

)]

S33 = GJ
h − (tanh�h)/�

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(14.35)

αu = 12EIu

h2Garu

αv = 12EIv

h2Garv

⎫⎪⎪⎬
⎪⎪⎭ (14.36)

and θ = the angle between the x and u axes.
If the shear deformation and the warping effect are ignored, the stiffness matrix in Eq. 14.34

corresponding to the three coordinates in Figure 14.11c becomes

[
S
]

i
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3EIy

h3 symmetrical

3EIxy

h3

3EIx

h3

0 0
GJ
h

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

i

(14.37)

where Iy and Ix are the moments of inertia about axes parallel to the y and x axes through the
centroid, and Ixy is the product of inertia about the same axes.

The displacements {q}i of the ith wall are related to the floor displacement {D} by geometry
as follows:

{
q
}

i = [C]i {D} (14.38)

where

[C]i =
⎡
⎢⎣

0 0 −y

0 1 x

0 0 1

⎤
⎥⎦

i

(14.39)

Here, [C]i is a transformation matrix for the ith wall, and x and y are the Cartesian coordinates
of the shear center of this wall (Figure 14.10b). The transpose of this matrix relates the forces
{Q}i to equivalent forces {F}i at the {D} coordinates (see Section 9.3):

{F}i = [C]T
i

{
Q
}

i

Applying Eq. 9.17, the stiffness matrix of the ith wall corresponding to the {D} coordinates is

[S]i = [C]T
i

[
S
]

i
[C]i (14.40)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis of shear-wall structures 421

This equation transforms the stiffness matrix [S]i corresponding to the {q} coordinates to a
stiffness matrix [S]i corresponding to the {D} coordinates. Performing the multiplication in
Eq. 14.40 gives

[S]i =

⎡
⎢⎢⎣

S11

S21 S22 symmetrical(
−S11y + S21x

) (
−S12y + S22x

) (
S11y2 − 2S21xy + S22x2 + S33

)
⎤
⎥⎥⎦ (14.40a)

The stiffness matrix of the structure can now be obtained by summation, thus,

[S] =
m∑

i−1

[S]i (14.41)

where m is the number of wall assemblies.
The floor displacement can be determined by the equation

{F}3×1 = [S]3×3 {D}3×1 (14.42)

and the forces {Q}i on each wall assembly are calculated by Eqs. 14.38 and 14.31.
The above analysis for a single-storey structure is given separately not only because of its

intrinsic importance but also because it serves as an introduction to the multistorey case. Some
designers use the single-storey solution to each storey of a multistorey structure in turn in order
to obtain an approximate solution. However, for an accurate solution, all the floors must be
treated simultaneously.

The above solution can also be used to calculate the displacement of bridge decks due to
horizontal forces at the deck level. This is particularly useful for skew or curved bridges. The
stiffness [S]i of the elements in this case would be that of a supporting pier or elastomeric bearing
pad or a combination of these (see Prob. 14.8).

Example 14.2: Structure with three shear walls
Find the horizontal force resisted by each of the shear walls 1, 2, and 3 in a single-storey
building whose plan is shown in Figure 14.12a. All the walls are fixed to the base. Take
shear deformation into consideration but ignore warping. Assume E = 2.3G.

The axes x and y are chosen to pass through the center of the shaft as shown in
Figure 14.12b, in which the coordinate system is indicated. In the present case, the shear
center of each wall coincides with its centroid, for which the x and y coordinates are given
in brackets. (The principal axes for each wall are parallel to the x and y axes.) The values
of Iu, Iv, J, aru, and arv, for each wall are given below:

Iu Iv J aru arv

Wall 1: 0.03413b4 0.03413b4 0.0512b4 0.16b2 0.16b2

Wall 2 or 3: 0.0342b4 0.00013b4 0.00053b4 0.133b2 0.133b2

Substituting in Eq. 14.34 with θ = 0 and neglecting the warping term, we obtain

[
S
]

1
= 10−4Eh

⎡
⎢⎣

414.2 0 0

0 414.2 0

0 0 223.0h2

⎤
⎥⎦
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(a)

(b)

(c)

8b 8b
y

P

4.4b 4.8b

0.8b

0.8b

1.6b1 2

3

2 3

u

v 1.6b x

Height of walls,
h = b

thickness = b/10

1
3

2

x

y

x

y

Wall
1Wall

Wall
(0, 0)

(4.4b, –0.8b) (9.2b, 0)

0.0419 Ph
0.0004 Ph

0.000 Ph

0.017 P

~0
~0

~0

–0.699 P
–0.318 P

Figure 14.12 A one-storey structure considered in Example 14.2. (a) Plan of shear walls. (b) Coordinate
system. (c) Forces resisted by the various walls.

No transformation is needed for this matrix, because of the choice of the origin at the
shear center of the shaft. Thus,

[S]1 =
[
S
]

1

Similarly, Eq. 14.34 applied to wall 2 or 3 gives

[
S
]

2 or 3
= 10−4Eh

⎡
⎢⎣

3.87 0 0

0 370 0

0 0 2.3h2

⎤
⎥⎦

Substituting in Eq. 14.40a, we obtain

[S]2 = Eh

⎡
⎣ 0.387 × 10−3 symmetrical

0 37 × 10−3

0.3099 × 10−3h 0.1627h 716.46 × 10−3h2

⎤
⎦
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and

[S]3 = Eh

⎡
⎣0.387 × 10−3 symmetrical

0 37 × 10−3

0 0.3402h 3130.4 × 10−3h2

⎤
⎦

The stiffness matrix of the structure is given by Eq. 14.41 with m = 3:

[S] = Eh

⎡
⎣ 42.2 × 10−3 symmetrical

0 115.4 × 10−3

0.31 × 10−3h 0.503h 3869.1 × 10−3h2

⎤
⎦

The forces at the coordinates equivalent to the external applied load are

{F} = P

⎧⎨
⎩

0
−1

−1.2h

⎫⎬
⎭

Substituting in Eq. 14.42 and solving for {D}, we obtain

{D} = P
Eh

⎧⎨
⎩

− 0.0138
−16.8782

1.884/h

⎫⎬
⎭

Combining Eqs. 14.38 and 14.31, we find the forces resisted by any one of the wall
assemblies

{
Q
}

i =
[
S
]

i
[C]i {D}

For example, the forces on wall 2 are

{
Q
}

2 =
[
S
]

2

⎡
⎣1 0 0.8h

0 1 4.4h
0 0 1

⎤
⎦ {D} = P

⎡
⎣ 0.0000

−0.3176
0.00044h

⎤
⎦

The forces on all three walls are shown in Figure 14.12c.

14.7.2 Multistorey structure

A typical wall assembly in a building with n floors is shown in Figure 14.13a. Figure 14.13b
is an isometric view of a vertical axis through the shear center of a shear wall assembly i. The
local coordinates 1∗ to n∗ and (n + 1)∗ to (2n)∗ lie in vertical planes parallel to the principal
axes of inertia of the cross sections u and v respectively (Figure 14.13b). The directions of u
and v are assumed to be the same at all floors for a given wall. The third set of coordinates,
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Typical wall assembly

Shear center
(x, y)i

1* to n*

n*

3n*

2n*

1*

2*

(2n + 1)*

to (3n )*

2n + 1

(n + 1)* to (2n)*

(2n + 1)* to 3n*

(n + 1) to 2n

Local coordinates: forces
{Q*}i and displacements
[q*}i 

Resultant of external
load at a floor level

Floor rigid in its plane
but with no rigidity for
flexure outside its plane

1 to n
x

y

0

(a) Global coordinates: forces
{F } and displacements {D}

(b) (c)
Shear center

(n + 1)*

(n + 2)*

(2n + 2)*Coordinates 1* to n*

are in a vertical plane
parallel to x axis

Shear center

Centroid
Parallel to x axis

u and v are
centroidal
principal axes

u

v

θ

Coordinates
indicated in
isometric
view in (b)

Coordinates (n + 1)* to (2n)*

are in a vertical plane parallel
to y axis

Figure 14.13 Coordinates for the analysis of a multistorey shear wall structure. (a) Coordinate system.
(b) Local coordinates for a typical wall. (c) Plan of a typical wall assembly.

(2n + 1)∗ to (3n)∗, represent angles of twist or twisting couples. The stiffness matrix for the ith
wall corresponding to these coordinates is of the form

[
S∗]

i =

⎡
⎢⎢⎢⎣

[
S∗

u

]
[
S∗

v

]
Submatrices not

[
S∗

θ

]
show are zero

⎤
⎥⎥⎥⎦ˆ (14.43)
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Each of the submatrices [S∗
u]i and [S∗

v]i can be determined separately in a way similar to that
used for a plane structure in Sections 14.4 and 14.5 (using Eq. 5.17). If warping is ignored and
the wall is encastré at the base, the submatrix [S∗

θ ]i will be

[
S∗

θ

]
i
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
GJ
h

)
1

−
(

GJ
h

)
1

(
GJ
h

)
1

+
(

GJ
h

)
2

symmetrical

−
(

GJ
h

)
2

(
GJ
h

)
2

+
(

GJ
h

)
3

. . .

. . .

−
(

GJ
h

)
n−1 (

GJ
h

)
n−1

+
(

GJ
h

)
n

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

-—
—

—
—

—
—

—
—

—
—

—
—

—

—
—

—
–

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

i

(14.43a)

where the subscripts refer to the storey number reckoned from the top of the structure.
In order to consider the effect of warping in a rational way, the angles of twist can be calculated

at floor levels due to a unit twisting couple acting separately at each floor,5 thus forming a
flexibility matrix which, when inverted, gives [S∗

θ ]. At a fixed base, the warping is restrained
whereas it is free to occur in the upper stories in a high building. Thus, neglecting warping
underestimates the torsional stiffness at the floors near the base.

The displacements {q∗}i and the forces {Q∗}i at the coordinates in Figure 14.13b are related
by

{
Q∗}

i =
[
S∗]

i

{
q∗}

i (14.44)

A global coordinate system is defined in Figure 14.13a, in which the coordinates 1 to n, and
(n + 1) to 2n represent translations or horizontal forces at the floor levels at an arbitrary point
O, and (2n + 1) to 3n are floor rotations or twisting couples. The displacements {q∗}i and {D}
are related by geometry so that

{
q∗}

i3n×1 = [B]i3n×3n {D}3n×1 (14.45)

where

[B]i =

⎡
⎢⎢⎢⎢⎢⎣

�cos θ , . . .� �sin θ , . . .� �(x sin θ − y cos θ) , . . .�
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

�− sin θ , . . .� �cos θ , . . .� �(x cos θ + y sin θ) , . . .�
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

[0] [0] [I]

⎤
⎥⎥⎥⎥⎥⎦ (14.46)

5 See reference in footnote 4 of this chapter: use Eq. (p), p. 260 of that reference.
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The special brackets used indicate diagonal submatrices, each of order n×n. The diagonal term
for each of these submatrices is given above. The principal axes of any wall are assumed to have
the same directions in all floors. If, in addition, the x and y coordinates of the shear center are the
same in all floors, the submatrices have a diagonal element repeated in each row. For example,

[B11]i = �cos θ , cos θ , . . . , cos θ�i = cos θi [I]

If the coordinates x and y change from floor to floor, the submatrix [B13]i is

[B13]i = �(x1 sin θ − y1 cos θ) , . . . ,
(
xj sin θ − yj cos θ

)
, . . .�

where the subscripts of x and y indicate the floor (1 means the top floor and n the lowest floor).
A similar equation can be written for [B23]i.

Applying Eq. 9.17, the stiffness matrix of the ith wall corresponding to the global coordinates
can be obtained from

[S]i = [B]T
i

[
S∗]

i [B]i (14.47)

If [B]i is divided into submatrices [B1]i, [B2]i, and [B3]i (each of order n×3n) along the horizontal
dashed lines in Eq. 14.46, then Eq. 14.47 can be written in a more convenient form

[S]i =
3∑

r=1

[Br]T
i

[
S∗

r

]
i [Br]i (14.47a)

where [S∗
r ]i with r = 1,2,3 are the three submatrices [S∗

u], [S∗
v] and [S∗

θ ] of [S∗]i defined in
Eq. 14.43.

When xi and yi coordinates are the same at all floors, Eq. 14.47a yields

[S]i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c2
[
S∗

u

]+ S2
[
S∗

v

]
symmetrical

- - - - - - - - - - - - - -
cs
([

S∗
u

]− [
S∗

v

])
s2
[
S∗

u

]+ c2
[
S∗

v

]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c(xs − yc)
[
S∗

u

]
s
(
xs − yc − [

S∗
u

])
(xs − yc)2 [S∗

u

]+
s (xc + ys)

[
S∗

v

]
c (xc + ys)

[
S∗

v

]
(xc + ys)2 [S∗

v

]+ [
S∗

θ

]

--
--

--
--

--
--

--
--

--
-

--
--

--
--

--
--

--
--

--
- ⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦
i

(14.47b)

where c = cos θ and s = sin θ .
The stiffness matrix of the structure corresponding to the global coordinates is obtained by

summation

[S] =
m∑

i=1

[S]i (14.48)

where m is the number of wall assemblies.
The displacements at the global coordinates can now be determined by solving the equation

{F}3n×1 = [S]3n×3n {D}3n×1 (14.49)

where {F} are forces at the global coordinates equivalent to the external loading. The forces on
each wall assembly can be calculated by Eqs. 14.44 and 14.45.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis of shear-wall structures 427

Example 14.3: Three-storey structure
Analyze the structure of Example 14.2 but with three stories instead of one.

Let the center of the global coordinates be chosen at the center of the shaft (wall 1 in
Figure 14.12b) with the coordinates 1, 2, and 3 representing translation in the x direction,
4, 5, and 6 translation in the y direction, and 7, 8, and 9 rotation in the clockwise direction.
The stiffness matrix [S]2 of wall 2 with respect to the global coordinates is derived below
in some detail. For simplicity, deformation due to shear forces is ignored.

First, a stiffness matrix of order 6×6 is generated corresponding to a translation in the u
direction and a rotation about the v axis at each floor level.6 This matrix is then condensed
by Eq. 5.17 to obtain

[
S∗

u

]
2 = 10−3Eh

⎡
⎣ 0.2100 symmetrical

−0.4800 1.320
0.3600 −1.380 2.400

⎤
⎦

By a similar procedure, we obtain

[
S∗

v

]
2 = Eh

10

⎡
⎣ 0.5525 symmetrical

−1.263 3.473
0.9471 −0.3631 0.6314

⎤
⎦

Because the cross section and the height of wall 2 are the same in all floors and warping
is ignored, Eq. 14.43a gives

[
S∗

θ

]
2 = 0.2304 × 10−3Eh3

⎡
⎣ 1 symmetrical

−1 2
0 −1 2

⎤
⎦

For the transformation of the stiffness matrix [S∗]2 corresponding to local coordinates
into the matrix [S]2 referring to the global coordinates (using Eq. 14.47) we need the
transformation matrix [B]2 given by Eq. 14.46. Substituting in this equation i = 2, θ = 0,
x = 4.4b, and y = −0.8b, we obtain

[B]2 =
⎡
⎣ [I] [0] h�0.8,0.8,0.8�

[0] [I] h�4.4,4.4,4.4�
[0] [0] [I]

⎤
⎦

Equation 14.47 or 14.47b gives

[S]2 =E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h

⎡
⎢⎢⎢⎣

2100e − 7

−4800e − 7 1320e − 6

3600e − 7 −1380e − 6 2400e − 6

⎤
⎥⎥⎥⎦ symmetrical

h

⎡
⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎦ h

⎡
⎢⎢⎢⎣

5525e − 5

−1263e − 4 3473e − 4

9471e − 5 −3631e − 4 6314e − 4

⎤
⎥⎥⎥⎦

h2

⎡
⎢⎢⎢⎣

1680e − 7 −3840e − 7 2880e − 7

−3840e − 7 1056e − 6 −1104e − 6

2880e − 7 −1104e − 6 1920e − 6

⎤
⎥⎥⎥⎦ h2

⎡
⎢⎢⎢⎣
2431e − 4 −5556e − 4 4167e − 4

5556e − 4 1528e − 3 −1597e − 3

4167e − 4 −1597e − 3 2778e − 3

⎤
⎥⎥⎥⎦ h3

⎡
⎢⎢⎢⎣

1070e − 3

−2445e − 3 6724e − 3

1834e − 3 −7030e − 3 1223e − 2

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

6 See answer to Prob. 14.2 for a general form of the matrix required.
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By a similar procedure, [S]1 and [S]3 for walls 1 and 3 are derived and added to [S]2 to
obtain the stiffness matrix of the structure (Eq. 14.48).

The forces at the global coordinates equivalent to the external applied loads are

{F} = P
{
0, 0, 0,−1,−1,−1,−1.2h,−1.2h,−1.2h

}
Solving for {D} in Eq. 14.49, we obtain

{D} = P
Eh

{− 0.9923e − 1,−0.5423e − 1,−0.1669e − 1,−0.2948e + 3,−0.1608e + 3,

− 0.4935e + 2,0.3280e + 2/h, 0.1793e + 2/h, 0.5516e + 1/h
}

Substitution in Eqs. 14.44 and 14.45 gives the forces in the walls at each of the three
stories; these are given in Figure 14.14.

0.331 Ph

–0.655 P

–0.691P

–0.153 Ph –0.002 Ph –0.002 Ph

–0.340 P

0.043 P

–0.055 Ph

–0.344 P

Top floor

Middle floor

Wall 1 Wall Wall

Lowest floor

–0.704 P
–0.346 P

–0.046 P

–0.003 P

~0

~0

~0

–0.001 Ph
–0.001 Ph

~0

~0
~0

~0

~0

~0

0.003 Ph
0.003 Ph

2 3

Figure 14.14 Forces resisted by various walls in Example 14.3.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis of shear-wall structures 429

14.8 Outrigger-braced high-rise buildings

The drift of a tall building caused by horizontal forces due to wind or earthquake can be reduced
by the provision of outriggers. Figure 14.15a represents plan of a typical floor of a tall building,
in which the core is composed of two halves; each consists of concrete walls housing the elev-
ator shafts. The core is the main lateral force-resistant component. The maximum horizontal
displacement (the drift) is limited by codes for the stability of the building and for the comfort
of its occupants. Also, the codes limit the interstorey drift ratio, defined as the difference of
drift in two consecutive floors divided by the vertical distance between them. The sum of the
moments at the ends of a column at a floor level is a couple transferred, in the opposite dir-
ection, to the floor; the floor must be designed for the flexural and shear stress caused by the
transfer. The moments transferred between the columns and the floors are mainly dependent on
the interstorey drift ratio.

N

Outrigger

3.
6 

m

10.1

B

0.45

N

Outriggers:
thickness = 0.5 m;
depth = full height

of the 25th and
50th floors

Flat plate
thickness = 0.3 m

0.
45

10.0 9.2 10.0 0.45
30.1 m

0.
45

3.
5 

m

0.9 (typ.)

0.5 (typ.)

N

All columns
0.9 m × 0.9 m

aa

Beams between shafts.
Width = 0.9 m; depth
below slab = 0.7 m

Outrigger

Flat plate:
0.3 m thick

(typical)

9.55 9.5510.1

(a)

(b)

A C

B D

A
5 

× 
9.

0 
m

 =
 4

5.
0 

m

50
 ×

 3
.6

 m
 =

 1
80

 m

Figure 14.15 Tall building with outriggers (Example 14.4). (a) Plan of a typical floor. (b) Sectional
elevation a-a.
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The outriggers are relatively stiff horizontal members, of depth commonly equal to one-storey
height, connecting the core to the exterior columns, inducing in them tensile and compress-
ive forces, forming stabilizing couples that reduce the maximum drift and the interstorey drift
ratio. The outriggers can be at one level or at two levels (Figure 14.15b), or at up to four
levels in very tall buildings. For lateral loads in the west–east direction on the building in
Figure 14.15, the columns at the east and the west extremities of the outriggers are subjected
to tensile and compressive forces respectively; the corresponding internal forces act downward
and upward at the east and the west extremities, respectively, of the outriggers. A stiff spandrel
girder or truss on the periphery can also be provided to connect the outer ends of the outrig-
gers and also to mobilize the columns on the north and west ends of the building to stiffen
the core.

14.8.1 Location of the outriggers

The outriggers are walls that impair the use of the floor area; thus, they are usually located in
a tall building in the floor(s) of mechanical equipments. However, it is useful to study at what
level an outrigger is most effective in reducing the drift and the bending moment in the core. For
this purpose, consider a cantilever CD representing the core of a building subjected to uniform
load q/unit length (Figure 14.16a). A rigid outrigger AB elastically restrains the rotation of the
cantilever at E by columns extending from A and B to the base, at the same level as D. The
elasticity modulus E is assumed to be the same for all members. Constant I and a are assumed
for the core and for the columns respectively; the flexural rigidity of the columns is ignored and

B

D

(a)

Core
I = constant

C

E
A

B

b/2 b/2

Columns
a = constant

q/unit length

Rigid outrigger

β =
ab2 + 2I

ab2
(b)

277

106
117

Location of
outrigger for
minimum
drift at top 

EI
ql4

0.037Dtop = EI
ql4

0.033Dtop =

(c)

92
108

33

267
Multiplier:
ql2/1000

Multiplier:
ql2/1000

l

x =
ξ l

x =
0.54 l

l/2

l/2

D

Figure 14.16 Core wall with one and two rigid outriggers. (a) Simplified model considering only bend-
ing deformation of the core and axial deformation of the columns. (b) Bending moment
in core with one outrigger at x = 0.54l, with β = 0.8. (c) Bending moment in core with
outriggers at top and at mid-height, with β = 0.8.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis of shear-wall structures 431

only their axial deformation and the bending deformation of the core are considered. The floors
connecting the core to the exterior columns also restrain the free rotation and translation of the
core; the existence of these floors is ignored here, but it is assumed that their presence excludes
buckling of the exterior columns. We analyze the structure by the force method, releasing a single
redundant F1 representing the moment connecting AB to the cantilever at E; the redundant F1

is a clockwise couple on AB and anticlockwise on the core. The incompatible rotation of the
released core at E is (Eq. B.28):

D1 = − ql3

6EI

(
3ξ − 3ξ2 + ξ3

)
(14.50)

where 	 = x/l. The relative rotation of the released core relative to AB at E due to F1 = 1 is
(Eq. B.31):

f11 = ξ l
EI

+ 2ξ l
Eab2 (14.51)

f11 = ξ l
βEI

(14.52)

where

β = ab2/(ab2 + 2I) (14.53)

Thus, the redundant F1(= −D1/f11) can be expressed as:

F1 = ql2

6
β(3 − 3ξ + ξ2) (14.54)

The drift at the top and the bending moment at the base of the core are (Eqs. B.29 and B.32):

Dtop = ql4

8EI
− F1l2

EI
ξ(1 − 0.5ξ); Mbase = ql2

2
− F1 (14.55)

When the outrigger is at the top, 	= 1.0 and

F1 = ql2β

6
; Dtop = ql4

EI

(
1
8

− β

12

)
; Mbase = ql2

(
0.5 − β

6

)
(14.56)

The location of the outrigger that minimizes Dtop is at 	= 0.54 giving:

F1 = 0.279βql2; Dtop = ql4

EI

( 1
8 − 0.110β

)
; Mbase = ql2(0.5 − 0.279β) (14.57)

The bending moment diagram of the core with 	=0.54 and �=0.8 is shown in Figure 14.16b. It
can be seen that the outrigger reduces Dtop (from 0.125ql2/EI to 0.037ql2/EI) and Mbase (from
0.500ql2 to 0.278ql2) without affecting the shear at the base. Figure 14.16c shows the bending
moment diagram of the core with rigid outriggers at the top and mid-height; the corresponding
drift at the top is also given in the figure.

Considering the flexibility of the outrigger in the above equations will only increase f11

(Eq. 14.51) to become f 11 = f11 + b(1 − �)3/(12EIo), where EIo is the flexural rigidity of the
outrigger, � is a ratio (=the length of the rigid part of AB divided by AB (see Eq. 14.11)). For
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practical values of Io/I, considering the flexibility of the outriggers will have a small effect on
the values given in Figures 14.16b and c; see the answers to Probs. 14.9 and 14.10.

Example 14.4: Concrete building with two outriggers subjected to wind load
The 50-storey reinforced concrete building shown in Figure 14.15 is analyzed for the effect
of wind load in the east–west direction. For simplicity, uniform load q per unit height of
the building is considered. The building is idealized as a plane frame subjected to a uniform
load of intensity q (Figure 14.17a). Line AB represents the centroidal axis of the core; at
each floor level, AB is connected to rigid elements representing the parts within the shaft
width. Members on line CD represent the six columns on the east façade. The two columns,
away from the corners, on the north and the south façades can contribute to resisting the
wind load by framing with the corner columns; this relatively small contribution is here
ignored for simplicity of presentation.

In calculating the cross-sectional properties of the members given in Figure 14.17a, the
gross concrete sections are considered for the core (AB) and for the edge columns on CD;
to account for cracking, half the gross concrete sections are considered for the floor slabs.
Within the width of the core, the horizontal members are considered rigid. A single value
of the elasticity modulus is assumed for all members.

The reactions at B and D and the bending moments in AB and CD are given in
Figures 14.17a, b and c respectively. The applied moment of the wind load about the
base is 500 × 10−3ql2. This is partly resisted by the anticlockwise moment reactions at
B, D, and F; the total moment value = (0.322 + 0.308 + 280)10−3ql2 = 281 × 10−3ql2,
representing 56 percent of the applied moment. The remainder of the applied moment
is resisted by the couple induced by the upward and downward vertical reactions at
B and D respectively (Figure 14.17a); the resisting moment of the vertical reaction
components = 1.35ql × 0.1622l = 219 × 10−3ql2.

If the wind load were resisted totally by the core, the horizontal displacement at the top
would be 125 × 10−3ql4/(EI), with I = 744.9m4 = the second moment of area of the core
about its centroidal axis. Because of the interaction of the core with other members, the
drift at the top is reduced to Dtop = 44 × 10−3ql4/(EI). Repetition of the analysis with the
cross-sectional area properties of the outriggers reduced by a factor of 0.5 (e.g. to account
for cracking) gives results that are not significantly different.

In the above elastic analysis, a reduction factor of 0.5 is applied to the gross concrete
cross-sectional area properties to obtain effective values that account for cracking of the
slabs. Codes differ in their requirements for the reduction factors that account for the
variation in concrete cracking of the structural components; different reduction factors are
required for the slabs, the core, and the columns. The results in Figure 14.17 are obtained
(using PLANEF, Appendix L) assuming that the length of the flexible parts of the outriggers
is equal to their clear length (outside the faces of the core walls). To account for the high-
strain penetration in the wall, an effective length – longer than the clear length (e.g. by
20%) – may be used. When reduction factors of 0.5 and 0.25 are applied to the gross
concrete cross-sectional properties of all horizontal members, the outriggers and the slabs
respectively, the following results are obtained: Dtop =47×10−3ql4/(EI); the anticlockwise
moment reactions at F, B and D = 0.328 × 10−3ql2, 296 × 10−3ql2, and 0.303 × 10−3ql2

respectively; the downward and upward reactions at F and D=1.253ql. As expected, Dtop

and the bending moments in the shaft are increased.
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0.322 × 10–3ql2 0.280 ql2 0.308 × 10–3ql2
Multiplier:
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Figure 14.17 The tall building of Figure 14.15 analyzed for the effect of uniform wind load
(Example 14.4). (a) Plane frame idealization of the right-hand half of the building. (b)
Bending moment in the core. (c) Total bending moment in the six columns on the east
edge.

14.9 General

The analysis of the effect of horizontal forces on building frames with shear walls is simplified by
the assumption that each floor is infinitely rigid in its own plane, so that the degree of kinematic
indeterminacy of the frame is considerably reduced.

Some regular building frames can be analyzed as plane structures, two procedures being
available (Sections 14.4 and 14.5). In the simplified approximate method of Section 14.5 the
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problem is reduced to the analysis of one wall and one substitute frame connected by inextensible
links.

A relatively simple analysis of a three-dimensional structure is possible when it is composed
of frames – with or without walls – arranged in plan in a regular rectangular pattern. When the
shear walls are arranged in a random manner, the analysis is rather complex, but procedures
have been developed both for one-storey and multistorey frames, on the assumption that floors
have a negligible flexural rigidity compared with the walls.

Problems

14.1 Assuming that the displacement at coordinates 3∗ and 4∗ for the beam in Figure 14.3a
are restrained, find the flexibility matrix corresponding to the coordinates 1∗ and 2∗. Use
the principle of virtual work to calculate the displacements and take shear deformation
into account. Invert the derived matrix and compare the elements of the resulting stiffness
matrix with the appropriate elements in Eq. 14.10.

14.2 Derive the submatrices in Eq. 14.18 in the case when the column cross section and height
vary from storey to storey and the beams at floor levels do not have the same (I/l)b
values.

14.3 Solve Example 14.1 with the properties of members in the top two stories as follows:
for any column I = 17 × 10−6b4; for any beam I = 24.3 × 10−6b4; for any wall I =
58 × 10−3b4; and area of wall cross section = 146 × 10−3b2. All other data unchanged.

14.4 Find the bending moment at section A–A and the end-moment in the beam at the lower
floor in the symmetrical wall with openings shown in the figure. Neglect shear deforma-
tion in the beams and axial deformations in all elements. Take E = 2.3G. The wall has a
constant thickness. To idealize the shear wall, use a substitute frame similar to that shown
in Figure 14.7b. The substitute frame has one vertical column connected to horizontal
beams. The top three beams are of length 3b/4 and the lower three are of length b.

b/2
b b b

b/2
P

P

P

P

P

P

AA

b

(typical
at all floors)

Equal
heights
h

5

b h3
4=

CL

Prob. 14.4

14.5 Solve Prob. 14.4 by moment distribution. Use a substitute frame similar to the one in
Figure 14.7b. and for any of the beams given in Eq. 14.29 (element S22 of the matrix in this
equation). Because of the small stiffness of the beams in the substitute frame compared to



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis of shear-wall structures 435

the stiffness of the column, the moment distribution in the above solution will converge
slowly.

14.6 Find the forces on each of the shear walls in a single-storey building shown in the figure.
All walls have thickness=b/12 and height=b and are totally fixed to a rigid foundation.
Neglect the warping effect of the shear walls. Take E = 2.3G.

0.75 b

0.75 b

3.75 b 2.25 b

1.5 b

1.5 b

1.5 b

2.25 b

A B

C

P

Prob. 14.6

14.7 Apply the requirements of Prob. 14.6 to the single-storey building shown in the figure.

1.2 b

4.8 b
1.2 b

2.7 b

4.2 b

1.2 b

1.2 b

1.2 b

1.2 b

3.6 b

D
C

B

P
A

Prob. 14.7

14.8 Imperial units or 14.9 SI units. The figure shows a plan view of a curved slab bridge deck,
supported on piers at B and C and on bearing pads above rigid abutments at A and D.
The piers are assumed to be pin-connected to an infinitely rigid bridge deck. Each pier
has a cross section 2 ft × 8 ft (or 0.6m × 2.4 m) and is 40 ft (or 12 m) high and encastré
at the base. The bearing pads at A and D have an area of 4 ft2 (or 0.36 m2), thickness
1.25 in. (or 32 mm) and shear modulus of elasticity = 300 lb/in2 or (2.1 N/mm2). Find
the three displacement components of the deck and the forces on each of the supporting
elements A, B, C, and D due to a force P at the deck level, as shown. Assume for the pier
material: E = 2.3G = 4000kip/in2 (or 28GN/m2), and that the bearing pads at A and
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D are strips of total length 8 ft, width 6 in. and height 1.25 in. (or length 2.4 m, width
0.15 m and height 32 mm).

140 ft
or 42 m

A B

44 ft
or 13.2 m 8 ft

  o
r 2

.4
m

Total area of
bearing pads
at A = 4 ft2

or 0.36 m2
y

8 ft

2 ft
or 0.6 m

2 ft
or 0.6 mor 2.4 m P

C

D

Bridge deck

x

18°

15° 15°

30°
Bearing pads of
total area = 4 ft2

or 0.36 m2

Prob. 14.8 or 14.9

14.10 Find the drift at the top and the bending moment diagram in the core wall in Figure 14.16
with rigid outriggers at the top and at mid-height. The outer columns have constant cross
section, the area of which is a=8I/b2, where I is the second moment of the cross-sectional
area of the core. Consider only bending deformation of the core and axial deformation
of the columns; E = constant for all members. The answers are given in Figure 14.16c.

14.11 Solve Prob. 14.10 considering flexible outriggers with Io/I = 0.2 or 2.0; where Io is the
second moment of the cross-sectional area of the outriggers about their centroidal axis.
Assume: b = l/5; � = 1/15 =ratio of the length of rigid part of each outrigger (=the
width of the core) to its total length b (Figure 14.16a). The answers to this problem and
Prob. 14.10 show the effect of varying Io/I as follows: Io/I = 0.2, 2.0, and ∞.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 15

Method of f inite differences

15.1 Introduction

We should bear in mind that all methods of structural analysis are essentially concerned with
solving the basic differential equations of equilibrium and compatibility, although in some of
the methods this fact may be obscured. Analytical solutions are limited to the cases when the
load distribution, section properties, and boundary conditions can be described by mathematical
expressions, but for complex structures numerical methods are in general a more practical means
of analysis.

One of these is the finite-difference method, in which a numerical solution of the differential
equation for displacement or stress resultant is obtained for chosen points on the structure,
referred to as nodes or pivotal points, or simply as points of division. The numerical solution is
thus obtained from differential equations which are applicable to the actual continuous structure.
This is different from the finite-element method (dealt with in Chapters 16 and 17), in which
the actual continuous structure is idealized into an assembly of discrete elements, for which
force-displacement relations and stress distributions are determined (or assumed), and the com-
plete solution is obtained by combining the individual elements into an idealized structure for
which the conditions of equilibrium and compatability are satisfied at the junctions of these
elements.

The numerical solution by finite differences generally requires replacing the derivatives of
a function by difference expressions of the function at the nodes. The differential equation
governing the displacement (or stress) is applied in a difference form at each node, relating
the displacement at the given node and at nodes in its vicinity to the external applied load.
This usually provides a sufficient number of simultaneous equations for the displacements (or
stresses) to be determined. The finite-difference coefficients of the equations applied at nodes on,
or close to, the boundary have to be modified, compared with the coefficients used at interior
points, in order to satisfy the boundary conditions of the problem. Therein lies one of the
difficulties of the method of finite differences and a disadvantage in its use compared with the
finite-element method. Nevertheless, the finite-difference method can be conveniently used for
a variety of problems, and, when it is used, the number of simultaneous equations required (for
a comparable degree of accuracy) is generally only about a half or a third of the number of the
equations needed in the finite-element method.

15.2 Representation of derivatives by finite differences

Figure 15.1 represents a function y = f (x), which for our purposes can, for example, be the
deflection of a beam. Consider equally-spaced abscissae xi−1, xi and xi+1 and the corresponding
ordinates yi−1, yi, and yi+1. The derivative (or the slope) of the curve at point xi− 1

2
midway

between i and i − 1 can be approximated by
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λ

i – ½ 

i – 2

yi – 2
yi – 1

y

x

yi 
yi + 1 yi + 2

i – 1

The slope of a straight line
joining these two points is
considered to be equal to
the slope of the tangent to
the curve at (i  – ½)

i i + 1 i + 2

i + ½ 
λ /2λ /2

λ λ λ

Figure 15.1 Graph of function y = f (x).

(
dy
dx

)
i− 1

2

∼= 1
λ

(yi − yi−1) (15.1)

where λ is the spacing of the abscissae. Similarly, the slope of the curve midway between i and
i + 1 is(

dy
dx

)
i+ 1

2

∼= 1
λ

(yi+1 − yi) (15.2)

The second derivative at i (which is the rate of change of slope) is approximately equal to the
difference between the slope at i + 1

2 and at i − 1
2 divided by λ thus,

(
d2y
dx2

)
i

∼= 1
λ

[(
dy
dx

)
i+ 1

2

−
(

dy
dx

)
i− 1

2

]

Substituting from Eqs. 15.1 and 15.2,

(
d2y
dx2

)
i

∼= 1
λ2 (yi+1 − 2yi + yi−1) (15.3)

In the above expressions we have used central differences because the derivative of the
function in each case was expressed in terms of the values of the function at points located
symmetrically with respect to the point considered. The process can be repeated to calcu-
late higher derivatives, in which case the values of y at a greater number of equally-spaced
points are required. This is done in the finite-difference pattern of coefficients as shown in
Figure 15.2.

The first derivative at i can also be expressed in terms of yi−1 and yi+1 with interval 2λ.
Similarly, the third derivative at i can be expressed from the difference of the second derivatives
at i + 1 and i − 1 with interval 2λ. The resulting coefficients are given in the last two rows of
Figure 15.2.
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–1

i – 2

Equal intervals λ

i – 1
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dx

λ λ λλ

λ
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i + 1

1 2

i + 2i

+1

+1

+1

+1

+1
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–1
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–4

λ
2

λ
2

i + 

1 2i + 

dy
( =)
dx 2λ

1
i

2λ3
1

=
λ3
1

1 2i + 

d2 y
( =)
dx2 λ2

1
i

d3 y
( )
dx3

=
i 

d3 y
( )
dx3

=
λ4
1

i
d4 y

( )
dx4

Figure 15.2 Finite-difference pattern of coefficients, using central differences.

Other finite-difference expressions can be obtained by considering forward or backward dif-
ferences, in which the derivative at any point is expressed in terms of the value of the function
at points in ascending or descending order with respect to the point under consideration. The
central differences are more accurate than either forward or backward differences and they will
be used in this chapter.

15.3 Bending moments and deflections in a statically
determinate beam

Consider a simple beam AB subjected to vertical loading of varying intensity, as shown in
Figure 15.3. The bending moment M and the load intensity q are related by the differential
equation (see Eqs 10.1 and 10.5)

d2M
dx2 = −q (15.4)
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l

λλλ
λ = l/4

l = 4λ

q
1

q
2

q
3

10

(a) (b)

2 3

0 1

0.5 1.0 1.0 1.0

2 3 4

4

BA

Figure 15.3 Simple beam subjected to nonuniform loading. (a) Beam divisions used in the finite-
difference Eq. 16.14. (b) Beam considered in Example 15.1.

which, when applied at a general point i, can be put in the finite-difference form (see
Figure 15.2)

[1 − 2 1]

⎧⎨
⎩

Mi−1

Mi

Mi+1

⎫⎬
⎭∼= −qiλ

2 (15.5)

The load q is positive when downward and M is positive when the bottom fiber is in tension;
x is measured from the left-hand end of the beam.

The bending moment at the ends of the beam of Figure 15.3a is M0 =M4 =0. Writing Eq. 15.13
at each of the three interior points, we obtain

⎡
⎣ 2 −1 0

−1 2 −1
0 −1 2

⎤
⎦
⎧⎨
⎩

M1

M2

M3

⎫⎬
⎭∼= λ2

⎧⎨
⎩

q1

q2

q3

⎫⎬
⎭ (15.6)

With the load q known, the solution of these three simultaneous equations gives the moments
M1, M2, and M3.

In the beam considered, we have found it possible to carry out the analysis by using only
the finite-difference equations relating the bending moment to the external loading. This is so
because the bending moment at the ends of the beam is known to be zero, so that the finite-
difference equations at the internal points are sufficient in number to determine the unknown
moments. If, however, the beam is statically indeterminate, e.g. when the ends A and B are
encastré, the end-moments are unknown. However, the deflection and slope at the ends are
known to be zero, and we therefore use finite-difference equations relating the deflection to the
applied loading, discussed in Section 15.4.

Example 15.1: Simple beam
Determine the bending moments in a simple beam with the loading shown in Figure 15.3b:

Applying Eq. 16.14 for the loading: q1 = 0.50, q2 = 1.00, and q3 = 1.00, and
solving, we obtain {M} = l2{0.0703,0.1094,0.0859}. The exact answer is {M} =
l2{0.0677,0.1042, 0.0833}.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method of f inite differences 441

15.3.1 Use of equivalent concentrated loading

We should note that the solution of Eq. 15.14 depends upon the intensity of loading at the nodes
but does not take into account the manner in which the loading varies between these points.
More accurate values would be obtained if the beam were divided into smaller intervals, thereby
requiring a larger number of equations.

Exact values can be obtained if the actual loading is replaced by equivalent concentrated loads;
the finite-difference Eq. 15.13 at a general point is then replaced by the exact equation

[
1 −2 1

]⎧⎨⎩
Mi−1

Mi

Mi+1

⎫⎬
⎭= −Qiλ (15.7)

where Qi is an equivalent concentrated load replacing (qiλ) in Eq. 15.5. We should note that
we no longer use ∼= but =, as Eq. 15.7 is exact. The method of calculating the equivalent
concentrated load Qi and the proof of Eq. 15.7 are given in Section 10.4.1 (refer to Eq. 10.13).

The bending moment M and the deflection y are related by the differential equation (see
Section 10.2).

EI
d2y
dx2 = −M (15.8)

where EI is the flexural rigidity of the beam, and x is the distance from its left-hand end.
Comparing this equation with Eq. 15.4, we can write the approximate finite-difference form of
Eq. 15.8 by replacing M and q in Eq. 15.5 by y and M/(EI) respectively. Similarly, an exact
form can be obtained by replacing M and Q in Eq. 15.7 by y and �wi where �wi is an equivalent
elastic loading (refer to Eqs. 10.15 and 10.16). An example of the use of the approximate and
exact equations in the calculation of deflection is given in Section 10.5.

15.4 Finite-difference relation between beam deflection and
applied loading

The equations relating deflection to the bending moment can be used to calculate the deflec-
tions when the moments are known, as is the case in statically determinate beams. In statically
indeterminate structures, it is more convenient to relate the deflections to the applied loads, and
solve for deflections which can then be used to determine the unknown stress resultants.

From Eqs. 15.12 and 15.16, the deflection y and the intensity of loading q can be related by
the differential equation

d2

dx2

(
EI

d2y
dx2

)
= q (15.9)

This equation can be put in finite-difference form in two steps as follows. First, the term in
brackets (which is equal to minus the bending moment) is replaced by finite differences, using
Eq. 15.3:

Mi ∼= −EIi

λ2 (yi−1 − 2yi + yi+1) (15.10)
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Then the second derivative of the moment is put in finite-difference form, again using Eq. 15.2:

d2

dx2

(
EI

d2y
dx2

)
= −

(
d2M
dx2

)
∼= − 1

λ2 (Mi−1 − 2Mi + Mi+1) (15.11)

The values of Mi−1 and Mi+1 can be expressed in terms of deflections by using Eq. 15.10 with
i −1 and i +1 in place of i. Substituting these values in Eq. 15.11 and combining it with Eq. 15.9,
we obtain the finite-difference equation applied at a general point i:

E
λ4

[
Ii−1

∣∣−2(Ii−1 + Ii)
∣∣(Ii−1 + 4Ii + Ii+1)

∣∣−2(Ii + Ii+1)
∣∣Ii+1

]

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yi−2

yi−1

yi

yi+1

yi+2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

∼= qi

(15.12)

The accuracy of this equation is improved if the equivalent concentrated load Qi is used
instead of qiλ. Then Eq. 15.12 becomes

E
λ3

[
Ii−1

∣∣−2(Ii−1 + Ii)
∣∣(Ii−1 + 4Ii + Ii+1)

∣∣−2(Ii + Ii+1)
∣∣Ii+1

]×

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yi−2

yi−1

yi

yi+1

yi+2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

∼= Qi

(15.13)

This equation is, in fact, a combination of the exact Eq. 15.7 and the approximate Eq. 15.10,
and is therefore an approximate relation for beams of variable I. The pattern of coefficients of
Eq. 15.13 is shown in Figure 15.4a.

When the beam is prismatic, i.e. I is constant, Eq. 15.13 simplifies to Eq. 15.21a, given in
Figure 15.5a.

15.4.1 Beam with a sudden change in section

Consider the beam shown in Figure 15.6, which has a sudden change in the flexural rigidity at a
node i. We propose to show that, if the flexural rigidities are EIil and EIir at sections just to the
left and just to the right of i respectively, Eqs. 15.12 and 15.13 are applicable with an effective
flexural rigidity EIi at i, where

and
EIi =

(
2

1 + α

)
EIir

α = EIir

EIil

⎫⎪⎪⎬
⎪⎪⎭ (15.14)

Let the deflection at three equally-spaced points on the beam be yi−1, yi, and yi+1. Extend
the two parts AB and CB of the deflection line, respectively, to fictitious points C′ and A′

(Figure 15.6b) whose ordinates are yf
i+1 and yf

i−1. For compatibility, the slope of the two curves
are the same. Thus,



                                                   

Position of node i Coefficient of the deflection in terms of E/λ3 Right-hand side Equation number

Yi−2 Yi−1 Y∗
i Yi+1 Yi+2

(a)

λ λ λ λ

Qi

i – 2 i – 1 i + 1 i + 2i
Ii−1 −2(Ii−1 + Ii) (Ii−1 + 4Ii + Ii+1) −2(Ii + Ii+1)

Ii+1 = Qi 15.13

(b)

Qi

Hinged
support

i – 1
i + 1 i + 2i

− − (4Ii + Ii+1) −2(Ii + Ii+1) Ii+1 = Qi 15.19

(c)

Qi

Fixed
support

i – 1 i + 1 i + 2i
− − (2Ii−1) + 4Ii + Ii+1 −2(Ii + Ii+1) Ii+1 = Qi 15.20

(d)

Qi

Free
end i + 1 i + 2i

− − Ii+1 −2Ii+1 Ii+1 = Qi 15.21

(e)

Qi

Free
end i – 1 i + 1 i + 2i

− −2Ii (4Ii + Ii+1) −2(Ii + Ii+1) Ii+1 = Qi 15.22

∗ For a beam on elastic foundation of modulus Ki (force/length2), add Kiλ/2 to the coefficient of Yi in Eq. 15.21 and Kiλ in other equation. If the
beam is on elastic spring at i of stiffness Ki (force/length), add Ki to the coefficient of Yi in all equations.

Figure 15.4 Finite-difference equations relating beam deflection to applied load.



Position of node i Coefficient of the deflection in terms of E/λ3 Right-hand side Equation number

Yi−2 Yi−1 Y∗
i Yi+1 Yi+2

(a)

λ λ λ λ

Qi

i – 2 i – 1 i + 1 i + 2i
1 –4 6 –4 1 = Qi 15.13a

(b)

Qi

Hinged
support i + 1 i + 2i

– – 5 –4 1 = Qi 15.19a

(c)

Qi

Fixed
support

i – 1 i + 1 i + 2i
– – 7 –4 1 = Qi 15.20a

(d)

Qi

Free
end i + 1 i + 2i

– – 1 –2 1 =Qi 15.21a

(e)

Qi

Free
end i – 1 i + 1 i + 2i

– –2 5 –4 1 = Qi 15.22a

∗ For a beam on elastic foundation of modulus Ki (force/length2), add Kiλ/2 to the coefficient of Yi in Eq. 16.29 and Kiλ in other equation. If the
beam is on elastic spring at i of stiffness Ki (force/length), add Ki to the coefficient of Yi in all equations.

Figure 15.5 Finite-difference equations relating beam deflection to applied load, when I is constant.
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Flexural
rigidity

(a)

(b)

A

A′

C′

C
B

EIil

(i – 1) (i + 1)i

(i – 1) (i  + 1)i

EIir

λ λ

yi – 1
yi – 1 yi + 1yi

+

f

y i + 1
f

Figure 15.6 Deflection of a beam with a sudden change in section. (a) Beam properties. (b) Deflection
line.

1
2λ

(−yf
i−1 + yi+1) = 1

2λ
(yf

i+1 − yi−1) (15.15)

Also, for equilibrium, the bending moment just to the right and just to the left of node i must
be the same, that is,

Mil = Mir = Mi

Applying Eq. 15.10,

Mi = Mil = −
(

EI
d2y
dx2

)
il

∼= −EIil

λ2 (yi−1 − 2yi + yf
i+1) (15.16)

and

Mi = Mir = −
(

EI
d2y
dx2

)
ir

∼= −EIir

λ2 (yf
i−1 − 2yi + yi+1) (15.17)

From Eqs. 15.15 to 15.17, by eliminating the fictitious deflections, we obtain

Mi ∼= −
(

2
1 + α

)
EIir

λ2 [1 − 2 1]

⎧⎨
⎩

yi−1

yi

yi+1

⎫⎬
⎭ (15.18)

If the quantity 2EIir/(1 + α) in this equation is substituted by an effective flexural rigidity EIi

(as defined in Eq. 15.14), Eq. 15.18 becomes identical with Eq. 15.10.



Type of support Coefficient of the deflection in terms of E/λ3 when I is variable, or in
terms of EI/λ3 when I is constant

Right-hand side Equation number

Yi−2 Yi−1 Y∗
i Yi+1 Yi+2

(a)

Qi

Ri

i – 2

Intermediate support

i – 1 i + 1 i + 2i V
ar

ia
bl

e
I

−Ii−1 2(Ii−1 + Ii) −(Ii−1 + 4Ii +
Ii+1)

2(Ii + Ii+1) −Ii+1 = (Ri − Qi) 15.25

C
on

st
an

t
I

−1 4 –6 4 –1 = (Ri − Qi) 15.25a

(b)

Qi

Ri

i

Hinged end

i + 1 i + 2

V
ar

ia
bl

e
I

– – −Ij+1 2Ij+1 −Ij+1 = (Ri − Qi) 15.26

C
on

st
an

t
I

– – −1 2 –1 = (Ri − Qi) 15.26a

(c)

Qi

i

Ri

Rotation at i is prevented

Fixed-end
moment Mi
(given by)
Eq. 16-36)

i + 1 i + 2

V
ar

ia
bl

e
I

– – −2(Ii + Ii+1) 2(Ii + Ii+1) −Ii+1 = (Ri − Qi) 15.29

C
on

st
an

t
I

– – –3 4 –1 = (Ri − Qi) 15.29a

∗ For a beam on elastic foundation of modulus ki (force/length2), add to the coefficient of yi the value (−kiλ) in the first two equations and (−kiλ/2)
in the other equations of this table.

Figure 15.7 Finite-difference equations relating beam deflection to reaction.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method of f inite differences 447

If the derivation of Eqs. 15.12 and 15.13 is reviewed, it can be seen that the sudden variation in
the flexural rigidity can be accounted for simply by using an effective flexural rigidity (calculated
by Eq. 15.14) at the node where the sudden change occurs. The same applies to all the other
finite-difference equations in Figures 15.4, 15.5, and 15.7.

15.4.2 Boundary conditions

When the finite-difference Eq. 15.13 relating the deflection to external loading is applied at
or near a discontinuous end, the deflections at fictitious nodes outside the beam are included.
These deflections are then expressed in terms of the deflections at other nodes on the beam, the
procedure for different end conditions being as follows.

(a) SIMPLE SUPPORT. The deflection and the bending moment are zero. Referring to
Figure 15.4b, yi−1 = 0, and Mi−1 = 0.

These two conditions are satisfied if the beam is considered to be continuous with another
similar beam with similar loading acting in the opposite direction. Therefore, at a fictitious point
i −2 (not shown in the figure), the deflection yi−2 =−yi, and the finite-difference Eq. 15.13, when
applied at a point i adjacent to a simple support, takes the form of Eq. 15.9 in Figure 15.4b.

(b) FIXED END. The deflection and the slope are zero. Referring to Figure 15.4c,

yi−1 = 0 and
(

dy
dx

)
i−1

= 0

These two conditions are satisfied if the beam is considered continuous with a similar beam
loaded in the same manner as the actual beam. Therefore, yi−2 = yi, and the finite-difference
Eq. 15.13, when applied at a point i adjacent to a fixed support, takes the form of Eq. 15.20 in
Figure 15.4c.

(c) FREE END. The bending moment is zero. Referring to Figure 15.4d, and considering simple
statics, we can write

Mi+1 = −Qiλ

Substituting for Mi+1 in terms of the deflections from Eq. 15.10, we obtain the finite-difference
Eq. 15.21 applied at point i at the free end, given in Figure 15.4d.

Referring to Figure 15.4e, and applying Eq. 15.7, with Mi−1 = 0, we obtain

−1
λ

(−2Mi + Mi+1) = Qi

Substituting for Mi. and Mi+1 in terms of deflection from Eq. 15.10, we obtain the finite-
difference Eq. 15.22 applied at point i adjacent to a free end, given in Figure 15.4e.

When the beam has a constant second moment of area, the equations listed in Figure 15.4
simplify to the form given in Figure 15.5.

15.5 Finite-difference relation between beam deflection and
stress resultant or reaction

The finite-difference method can be used in the analysis of structures also for the purpose of
determining the internal forces. First, the deflection is related to the loading by a finite-difference
equation applied at each node where the deflection is unknown. The appropriate equation to be
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used at each node is selected from Figures 15.4 or 15.5. Thus, we obtain a system of simultaneous
linear equations which can be put in the form

[K] {y} = {Q} (15.23)

Examination of the finite-difference coefficients of y in the equations listed in Figures 15.4 or
15.5 will show that the matrix [K] is symmetrical. For example, the coefficient of yi+1 when the
finite-difference equation is applied at node i in Figure 15.4d is the same as the coefficient of yi

when the equation is applied at node i + 1 (see Figure 15.4e). In Section 15.15 we shall use the
matrix [K] as an equivalent stiffness matrix.

A solution of the equation [K]{y} = {Q} makes it possible to find the nodal deflections {y}.
With the deflections known, the bending moment, shear, and reactions can be calculated by the
finite-difference equations derived below.

The shear midway between nodes i and i + 1 is

Vi+ 1
2

∼= 1
λ

(Mi+1 − Mi)

Substituting for Mi from Eq. 15.10,

Vi+ 1
2

∼= E
λ3 [Iiyi−1 − (2Ii + Ii+1)yi + (Ii + 2Ii+1)yi+1 − Ii+1yi+2] (15.24)

The same value represents also the shear at any point between the nodes i and i + 1 when no
load acts between those nodes.

The reaction at an intermediate support i in a continuous beam is given in Figure 15.7a as

Ri =Qi − E
λ3 [Ii−1yi−2 − 2(Ii−1 + Ii)yi−1 + (Ii−1 + 4Ii + Ii+1)yi

− 2(Ii + Ii+1)yi+1 + Ii+1yi+2] (15.25)

where Qi is the equivalent concentrated load acting directly above the support.
The reaction at a hinged end i (Figure 15.7b) is

Ri = Qi + Mi+1

λ

Substituting for Mi+1 from Eq. 15.10,

Ri ∼= Qi − EIi+1

λ3 (yi − 2yi+1 + yi+2) (15.26)

The reaction at a totally fixed end is

Ri = Qi + 1
λ

(Mi+1 − Mi) (15.27)

The moment Mi at a fixed end i where rotation is prevented but transverse displacement yi

can occur (Figure 15.7c) is

Mi ∼= EI
λ2 (2yi − 2yi+1) (15.28)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method of f inite differences 449

The bending moment Mi is, of course, numerically equal to the fixed-end moment. A positive
Mi indicates a clockwise moment for a left-hand end of the beam.

Substituting for Mi+1 and Mi in Eq. 15.28 in terms of deflection, we obtain the reaction at a
totally fixed end i:

Ri = Qi + E
λ3 [−(2Ii + Ii+1)yi + 2(Ii + Ii+1)yi+1 − Ii+1yi+2] (15.29)

The various equations are collected in Figure 15.7, together with the corresponding equa-
tions for the case when I is constant. When there is no settlement at the support, yi = 0 in the
appropriate equation.

15.6 Beam on an elastic foundation

The basic differential equation for a beam resting on an elastic foundation is (see Eq. 10.5a)

d2

dx2

(
EI

d2y
dx2

)
= q − ky (15.30)

where k is the foundation modulus, that is, the foundation reaction per unit length of the beam
per unit deflection (force/length2), and the remaining notation is the same as used in Eq. 15.9.

The finite-difference form of Eq. 16.38 when applied at a general point i is

E
λ4 [Ii−1| − 2(Ii−1 + Ii)|(Ii−1 + 4Ii + Ii+1)| − 2(Ii + Ii+1)|Ii+1]

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yi−2

yi−1

yi

yi+1

yi+2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

∼= qi − kiyi

(15.31)

Equation 15.31 can be derived in the same way as Eq. 15.12. Using the equivalent concentrated
load Qi to replace qiλ and rearranging terms, Eq. 15.31 becomes

E
λ3

[
Ii−1| − 2(Ii−1 + Ii)|

(
Ii−1 + 4Ii + Ii+1 + kiλ

4

E

)
| − 2(Ii + Ii+1)|Ii+1

]

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yi−2

yi−1

yi

yi+1

yi+2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

∼= Qi
(15.32)

This equation can be applied to a beam of variable section resting on a foundation of variable
modulus. Comparing Eqs. 15.13 and 15.32, we see that the presence of the elastic foundation
can be accounted for simply by adding the term kiλ to the coefficient of yi. If, instead of an
elastic foundation, a spring of stiffness Ki (force/length) is placed at point i, the term to be added
to the coefficient of yi is equal to Ki.

With a similar modification, all the other equations in Figures 15.4 and 15.5 can be used
for a beam on an elastic foundation. The modification is indicated at the bottom of these two
figures.
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Example 15.2: Beam on elastic foundation
Determine the deflection, bending moment, and end support reactions for the beam of
Figure 15.8a, which has a constant EI. The beam is resting on an elastic foundation between
the supports with a modulus k = 0.1024EI/λ4, where λ = l/4.

The dimensionless term is

kλ4

EI
= 0.1024

Applying the appropriate finite-difference equations from Figure 15.5 at each point of
division, we can write

EI
λ3

⎡
⎣(5 + 0.1024) −4 1

−4 (6 + 0.1024) −4
1 −4 (5 + 0.1024)

⎤
⎦
⎧⎨
⎩

y1

y2

y3

⎫⎬
⎭= qλ

⎧⎨
⎩

1
1
1

⎫⎬
⎭

for which the solution is

y1 = y3 = 1.928q
λ4

EI
and y2 = 2.692q

λ4

EI

or

y1 = y3 = 0.00753ql4/EI and y2 = 0.0105ql4/EI

We may note in passing that we could have made use of symmetry of the structure by
putting y1 = y3; hence, only two simultaneous equations would have required solving.

Applying Eq. 15.10 at points 1 and 2, we obtain

M1 = −EI
λ2 × q

λ4

I
(0 − 2 × 1.928 + 2.692) = 1.164qλ2 = 0.0728ql2

and

M2 = −EI
λ2 × q

λ4

I
(1.928 − 2 × 2.692 + 1.928) = 1.528qλ2 = 0.0955ql2

(a)

l

4λ = l

0 1 2 3 4

(b)

(c)

q per unit length

Multiplier:
  ql2/1000

72.8 95.5
72.8

Figure 15.8 Beam on an elastic foundation considered in Example 15.2. (a) Beam on an elastic
foundation. (b) Nodes. (c) Bending moment diagram.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method of f inite differences 451

The bending moment diagram for the beam is plotted in Figure 15.8c. The reaction at 0
is given by Eq. 15.34a (Figure 15.7b) as

EI
λ3 (2y1 − y2) = (R0 − Q0)

Substituting for y the values calculated previously and Q0 = qλ/2 = ql/8, we find

R0 = R4 = 0.416ql

The exact values using an analytical solution1 are: y1 = y3 = 0.00732ql4/EI, y2 =
0.0102ql4/EI, M1 = M3 = 0.0745ql2, M2 = 0.0978ql2, and R0 = R4 = 0.414ql.

15.7 Axisymmetrical circular cylindrical shell

Consider a thin-walled elastic cylinder subjected to any axisymmetrical radial loading. Because
of symmetry, any section of the shell perpendicular to the cylinder axis will remain circular,
while the radius r will undergo a change �r = y. We need therefore to consider the deformation
of only one strip parallel to the generatrix of the cylinder (Figure 15.9a). Let the width of the
strip be unity.

The radial displacement y must be accompanied by a circumferential (or hoop) force
(Figure 15.9b) whose magnitude per unit length of the generatrix is

N = Eh
r

y (15.33)

where h is the thickness of the cylinder and E is the modulus of elasticity. The hoop forces are
considered positive when tensile. The radial deflection and loading are positive when outward.

The resultant of the hoop forces N on the two edges of the strip acts in the radial direction
opposing the deflection, and its value per unit length of the strip is

−N
r

= −Eh
r2 y (15.34)

Hence, the strip may be regarded as a beam on an elastic foundation whose modulus is

k = Eh
r2 (15.35)

Because of the axial symmetry of the deformation of the wall, the edges of any strip must
remain in radial planes, and lateral extension or contraction (caused by bending of the strip in
a radial plane) is prevented. This restraining influence is equivalent to a bending moment in a
circumferential direction.

Mφ = vM (15.36)

1 See Hetényi, M., Beams on Elastic Foundation, University of Michigan Press, Ann Arbor, 1952, p. 60.
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Strip width

Resultant
= N/r

Positive direction of
axisymmetrical loading
q and of deflection y

(a)

(b)

h
N

N

x

1

r

1

Figure 15.9 A strip parallel to the generatrix of an axisymmetrical cylindrical wall considered
analogous to a beam on an elastic foundation. (a) Pictorial view. (b) Cross section.

where M is the bending moment parallel to a generatrix and ν is Poisson’s ratio of the material.
It can be shown that the stiffening effect of Mφ on the bending deformation of the beam strip
can be taken into account by increasing the second moment of area of the strip in the ratio
1/(1 − ν2); hence, the flexural rigidity of the strip of unit width is

EI = Eh3

12(1 − v2)
(15.37)

The differential equation for the deflection of a beam resting on an elastic foundation
(Eq. 15.30) can thus be used for the cylinder with y indicating the deflection in the radial
direction, and x the distance from the lower edge of the wall (Figure 15.9a); EI and k are as
defined earlier, and q is the intensity of radial pressure on the wall.

When the thickness of the wall is variable both EI and k vary. However, this does not cause
an appreciable difficulty in the finite-differences solution.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method of f inite differences 453

The finite-difference equations derived for beams and listed in Figures 15.4, 15.5, and 15.7
can be used for circular cylindrical shells subjected to axisymmetrical loading, the equivalent
concentrated load Qi being taken for a strip of unit width.

Example 15.3: Circular cylindrical tank wall
Determine the lateral radial deflection caused by hydrostatic pressure on the wall of a
cylindrical water tank shown in Figure 15.10a. Calculate also the hoop force, the bending
moment along the wall, and the reaction at its top and bottom. The wall is assumed pinned
at both edges. Neglect the effect of Poisson’s ratio.

The nodes are chosen as shown in Figure 15.10b, with λ = H/5. The terms kiλ
4/E and

Qi required in the calculation of the coefficients of the finite-difference equations are given
in Figure 15.10b. Substituting for ki from Eq. 15.35,

kiλ
4

E
= Ehi

r2

λ4

E
= hiλ

4

r2

The value of Qi is calculated using the expression for the equivalent concentrated loading
from Figure 10.9.

(a)

Water level
2r = 2H

Weight per
unit volume = γ

Hydrostatic pressure

H/60

H/40 H/40

H/60

i
hi

γH

qi H

CL

(b)

0

1

2

3

4

5

E
qu

al
 s

pa
ci

ng
s

λ

i hi

(H/40)

Ii = h3
i

12
(H/40)3

kiλ
4

E
= hiλ

4

r2

(H/40)3

Qi

(γ H2)

0 0.667 0.025 0.0067

1 0.733 0.033 1.876 0.0400

2 0.800 0.043 2.048 0.0800

3 0.867 0.054 2.220 0.1200

4 0.933 0.068 2.388 0.1600

5 1.00 0.083 0.0933

Figure 15.10 Wall of the water tank considered in Example 15.3. (a) Wall. (b) Calculation of kiλ
4/E

and Qi.
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(a) DEFLECTIONS. Applying the appropriate finite-difference equation from Figure 15.4 at
each of the nodes 1, 2, 3, and 4, we write

(
E
λ3

)(
H
40

)3

×
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(4 × 0.033 + 0.043 + 1.876) −2(0.033 + 0.043) 0.043 0

−2(0.033 + 0.043) (0.033 + 4 × 0.043 + 0.054 + 2.048) −2(0.043 + 0.054) 0.054

0.043 −2(0.043 + 0.054) (0.043 + 4 × 0.054 + 0.068 + 2.220) −2(0.054 + 0.068)

0 0.054 −2(0.054 + 0.068) (0.054 + 4 × 0.068 + 2.388)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y1

y2

y3

y4

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= λH2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.040

0.080

0.120

0.160

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

The solution of these equations is

{
y1,y2,y3,y4

}= λH2

E
{10.88, 20.12, 28.57, 32.35}

(b) HOOP FORCES. Substituting in Eq. 15.33 for yi, we find

{N1, N2, N3, N4} = λH2{0.199, 0.402, 0.619, 0.755}

(c) BENDING MOMENT. Applying Eq. 15.18 at points 1, 2, 3, and 4, with y0 = y5 = 0, we
obtain

{M1, M2, M3, M4} = γ H3

1000
{0.021, 0.013, 0.099, 0.960}

(d) REACTIONS. Applying Eq. 15.26 (see Figure 15.7b), we find the reaction at the top support
R0 = 0.0068γ H2, and the reaction at the bottom support R5 = 0.0981γ H2.

15.8 Representation of partial derivatives by finite differences

Thin plates subjected to transverse (normal) loading are subjected to bending and are therefore
referred to as plates in bending. They undergo transverse deflections which are small compared
with the dimensions of the plate. As a result, the stretching of the middle plane of the plate is
negligible, and the in-plane displacement of points on the middle plane is assumed to be zero.
Thus, the displacement at any point on the middle plane (or surface) of the plate, say, the x − y
plane, can be defined by a translation in the z direction and two rotations about the x and y axes.
The plate-bending problem involves the solution of a partial differential equation, for which the
finite-difference method will be used.

Figure 15.11 shows a mesh drawn on a surface representing a function w = f (x,y), which can,
for example, be the deflected surface of a plate in bending. The derivative of w with respect to
x or y can be expressed as a difference of the values of w at the nodes of the mesh in the same
manner as the ordinary finite differences considered in Section 15.4. In the following expressions,
central differences are used to express values at point O.

The slope of the surface in the x direction is

(
∂w
∂x

)
0

∼= 1
2λx

[−1 1]
{

w1

w2

}
(15.38)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method of f inite differences 455

λxλxλx

λy/2

x

y
13

3 6 5

2
7

12

8

9

1 0

i

4

14

10

11

λx 
/2

λy

λy

λy

λx

λy

Figure 15.11 Mesh used in a finite-difference representation of the derivatives of a function w= f (x,y).

and the curvature in the x direction is

(
∂2w
∂x2

)
0

∼= 1
λ2

x
[1 − 2 1]

⎧⎨
⎩

w1

w0

w2

⎫⎬
⎭ (15.39)

Similar expressions can be written for derivatives with respect to y.
The Laplacian operator in the x and y variables

∇2 = ∂2

∂x2 + ∂2

∂y2 (15.40)

applied at a general point O can be put in the finite-difference form

(∇2w)0 ∼= 1
λ2

x
[1 − 2 1]

⎧⎨
⎩

w1

w0

w2

⎫⎬
⎭+ 1

λ2
y

[1 − 2 1]

⎧⎨
⎩

w3

w0

w4

⎫⎬
⎭ (15.41)

The mixed derivative at point i, the center of the hatched rectangle in Figure 15.11, is

(
∂2w
∂x∂y

)
i

∼= 1
λy

[(
∂w
∂x

)
7
−
(

∂w
∂x

)
6

]

whence

(
∂2w
∂x∂y

)
i

∼= 1
λyλx

[1 − 1 1 − 1]

⎧⎪⎪⎨
⎪⎪⎩

w2

w0

w3

w5

⎫⎪⎪⎬
⎪⎪⎭ (15.42)
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λ x/2

1
2–2(

Node i

Node i

(a)

(b)

(c)

Equation
(15.41)

Equation
(15.42)

+ )
λ x

1
2λ y

1
2λ y

1

1 –1

–1

1 –2

4

–2

–2

1

–2

1

1

1

2λ y

1
2λ x

(∇2)i ≅

∂2

∂x∂y
≅

≅

1
2λ x

y

x

y

x

Equation
(15.43)

y

x

i

∂4

∂x  ∂y i

i

λ y/2

–

+

2 2

Figure 15.12 Coefficients for central-difference approximations of partial derivatives (λx and λy are
mesh widths in x and y directions). (a) Equation 15.41. Laplacian operator in two vari-
ables. (b) Equation 15.42. Multiplier for all coefficients: 1/(λ2

xλ
2
y). (c) Equation 15.43.

Multiplier for all coefficients: 1/(λ2
xλ

2
y).

The mixed derivative at node O can be expressed in a way similar to Eq. 15.42 in terms of w
at the four corners of the rectangle of size 2λx × 2λy whose center is the node O.

The coefficients of w at the nodes in Eqs. 15.41 and 15.42 applied at a general node i are
given in Figures 15.12a and b. The coefficients of ω for the derivative ∂4w/(∂x2∂y2)i are given
in Eq. 15.43 in Figure 15.12c.

15.9 Governing differential equations for plates subjected to
in-plane forces

The method of finite differences can be used in the analysis of thin plates. Two different problems
arise depending on the type of loading. In this section, we consider the case when all the forces
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σy

τxy

τxy
σx

σy

σx

y

dy

x
z

dx

τs σs

θ

A

Figure 15.13 Positive direction of stresses.

are applied in the plane of the plate, say, the x − y plane: the stresses produced are σx, σy, and
τxy(= τyx), while σz, τzx, τxz, τzy, and τyz are zero (see Figures 6.4 and 15.13).

This is referred to as plane-stress distribution and the forces involved are called in-plane
forces. The displacement at any point in the plane of the plate can be completely defined by two
components in the x and y directions.

However, the finite-differences solution of the plane-stress problem is omitted in the
present edition of this book because it has no advantage over the finite-element method
(Chapters 16 and 17).

Nevertheless, we give below the equations of equilibrium and compatibility and boundary
conditions for plates subjected to in-plane forces because they serve as an introduction to the
plate-bending problem (Section 15.10) and will also be used in Chapter 16.

(a) EQUILIBRIUM. Considering the forces in the x and y directions acting on a small rectan-
gular block A with sides dx, dy, and h, where h is the plate thickness (Figure 15.13), we can
write the following differential equations of equilibrium:

∂σx

∂x
+ ∂τxy

∂y
+ X = 0 (15.44)

and

∂σy

∂y
+ ∂τxy

∂x
+ Y = 0 (15.45)

where X and Y are components of body force per unit volume in the x and y directions. The
positive direction of stresses is shown in Figure 15.13.

(b) COMPATIBILITY. If u and ν are the in-plane displacements of a general point in the x and
y directions, the strain components εx, εy and γxy can be expressed as

∈x= ∂u
∂x

; ∈y= ∂v
∂y

; γxy = ∂u
∂y

+ ∂v
∂x

(15.46)
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The three strain components εx, εy, and γxy are not independent, but must satisfy the
compatibility equation

∂2∈x

∂y2 + ∂2∈y

∂x2 = ∂2γxy

∂x∂y2 (15.47)

which can be derived from Eq. 15.46.
The stress–strain relations (Hooke’s law, Eq. 6.6) for an isotropic thin plate with a plane-stress

distribution can be written in the form

⎧⎨
⎩

∈x

∈y

λxy

⎫⎬
⎭= 1

E

⎡
⎣ 1 −v 0

−v 1 0
0 0 2(1 + v)

⎤
⎦
⎧⎨
⎩

σx

σy

τxy

⎫⎬
⎭ (15.48)

where E is the modulus of elasticity, and n is Poisson’s ratio. Combining Eqs. 15.44 to 15.48,
the compatibility condition in terms of stress components becomes

∇2(σx + σy) = −(1 + v)

(
∂X
∂x

+ ∂Y
∂y

)
(15.49)

(c) BOUNDARY CONDITIONS. Considering the equilibrium of forces acting on a triangular
block B at the plate boundary (Figure 15.13), the external applied stresses normal (σa) and
tangential (τa) to the boundary can be related to the stress components σx, σy, and τxy near the
boundary by

{
σa

τa

}
=
⎡
⎣ cos2

− sin 2θ

2

sin2 θ
sin 2θ

2

sin 2θ

cos2θ

⎤
⎦
⎧⎨
⎩

σx

σy

τxy

⎫⎬
⎭ (15.50)

where θ is the angle between the normal to the boundary and the x axis (see Figure 15.13).

15.10 Governing differential equations for plates in bending

In this section we deal with thin plates subjected to transverse loading causing deflections which
are small compared with the plate thickness (Figure 15.14a). If the orthogonal axes x and y
are chosen in the middle surface of the plate, we can neglect, at all points on this surface, the
displacements u and ν parallel to the x and y axes, the stresses σx and σy and the deformations
caused by the stress σz. Further, we assume that a normal to the middle surface remains straight
across the plate thickness and is normal to the deflected middle surface. This is analogous to the
assumption in the bending theory that plane cross sections remain plane after bending, which is
normally made for beams long in comparison with their cross-sectional dimensions.

Figure 15.14b shows the forces acting on a small rectangular block A of sides dx, dy, and h. If
dx and dy are taken equal to unity, the internal forces Mx, My, Mxy, Vx, and Vy on the block edges
are equal to the resultants of the appropriate stresses on the element sides. The positive directions
of these stress resultants are indicated in Figure 15.14b, and the positive directions of stresses
are shown in Figure 7.4. The stress resultants are related to the stresses σx, σy, and τxy as follows:

Mx =
∫ h/2

−h/2
σxzdz; My =

∫ h/2

−h/2
σxz dz (15.51)
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A
dy

Vx Mx

Mx +
∂Mx

∂x

Mxy

Myx

My

Vy

y

z

x

y

z

h

q

x

dx

Typical
applied
loads

(a)

(b)

Typical reactions

Thickness = h

Vy +
∂Vy

∂y
Vx +

∂Vx

∂x

Mxy
+

∂Mxy

∂xMy +
∂My

∂y

Myx +
∂Myx

∂y

dx = 1
dy = 1

Figure 15.14 (a) Plate in bending. (b) Forces acting on the block A in part (a). This figure also indicates
the positive directions of the stress resultants.

Myx = −Mxy =
∫ h/2

−h/2
τxyz dz (15.52)

and

Vx =
∫ h/2

−h/2
τxzdz and Vy =

∫ h/2

−h/2
τyz dz (15.53)

To solve for the stress resultants we consider the equilibrium and the deformation of the block.

(a) EQUILIBRIUM. The sum of the vertical forces is zero and the sum of the moments about
edges dx and dy equals zero. Thus,

∂Vx

∂x
+ ∂Vy

∂y
+ q = 0

∂Mx

∂x
+ ∂Myx

∂y
− Vx = 0

and

−∂My

∂y
+ ∂Mxy

∂x
+ Vy = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.54)
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where q is the intensity of the applied load per unit area. These three equations can be combined
in one equation:

∂2Mx

∂x2 − 2
∂2Mxy

∂x∂y
+ ∂2My

∂y2 = −q (15.55)

(b) DEFORMATION. The displacements u and ν (in the direction of the x and y axes) at any
point at a distance z from the middle surface can be expressed in terms of the slope of the
deflected surface by

u = −z
∂w
∂x

and v = −z
∂w
∂y

(15.56)

where w is the deflection in the direction of the z axis. The partial derivatives represent the slope
of the deflected surface which is also equal to the rotation of the normal to the middle surface.

The strain at the same point is expressed in terms of the displacements by Eq. 15.46, from
which we obtain

∈x = −z
∂2w
∂x2 ∈y = −z

∂2w
∂y2 and γxy = −2z

∂2w
∂x∂y

(15.57)

The stress is related to strain by Hooke’s law, which for a homogeneous, isotropic plate is
expressed by Eq. 15.48. Using this equation and Eq. 15.57, the stress can be expressed in terms
of the deflection of the middle surface:

⎧⎨
⎩

σx

σy

τxy

⎫⎬
⎭= − Ez

(1 − v2)

⎡
⎣1 v 0

v 1 0
0 0 (1 − v)

⎤
⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂2w
∂x2

∂2w
∂y2

∂2w
∂x∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(15.58)

Substituting for the stress from Eq. 15.48 into Eqs. 15.51 and 15.52, we obtain

⎧⎨
⎩

Mx

My

Mxy

⎫⎬
⎭= −N

⎡
⎣1 v 0

v 1 0
0 0 −(1 − v)

⎤
⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂2w
∂x2

∂2w
∂y2

∂2w
∂x∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(15.59)

where

N = Eh3

12(1 − v2)
(15.60)

represents the flexural rigidity of a strip of the plate having a unit width.
From last two of Eq. 15.54 and Eq. 15.59, the shear can also be expressed in terms of the

deflection:

Vx = −N
∂

∂x
(∇2w) and Vy = −N

∂

∂y
(∇2w) (15.61)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method of f inite differences 461

where ∇2 is the Laplacian operator.

(c) DERIVATION. Substitution of Eq. 15.59 into Eq. 15.55 gives

∂4w
∂x4 + 2

∂4w
∂x2∂y2 + ∂4w

∂y4 = q
N

(15.62)

which can be written in the form

∇2(∇2w) = q/N (15.63)

In the analysis of plates in bending, deflection is obtained by solving Eq. 15.62 satisfying the
conditions at the plate boundaries; the stress resultants are then determined by Eqs. 15.59 and
15.61. In the following, the solution for the deflection will be obtained by the method of finite
differences.

15.11 Finite-difference equations at an interior node of a plate
in bending

Equation 15.41 gives the finite-difference form of the Laplacian operator ∇2 for a function of
x and y, and the finite-difference coefficients are schematically represented in Figure 15.12a.
Applying Laplace’s operator ∇2 to the function ∇2w and using the pattern of coefficients of
Figure 15.12a, we obtain the finite-difference form of the derivative ∇2(∇2w). The pattern of
coefficients for the operator ∇2(∇2) applied at a node i for a function which varies with x and
y is shown in Figure 15.15a. When the mesh widths are such that λx = λy = λ, the pattern of

2α

(a)

(∇2∇2)i
≅

y

x α2

–4α (1 + α)

Node i Equation (15.64)

Multiplier for all coefficients: (1/λx)

6 + 6α2
 + 8α

α2

–4(1 + α )–4(1 + α )

–4(1 + α ) 2α

2α

1

2α

1

4

Figure 15.15 Central-difference approximation of the partial derivative (∇2∇2)i. The above coeffi-
cients are to be used in the finite-difference form of Eq. 15.62 or 15.63 as follows:
[coefficients] {w}∼= qi/N. (a) Rectangular mesh; α = (λx/λy)

2; λx and λy are mesh widths
in the x and y directions. (b) Square mesh; the mesh width is λ in the x and y directions.
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(b)

(∇2∇2)i
≅

Equation (15.65)

Multiplier for all coefficients: (1/λ4)

1

22

–8

2 –8 2

1 1

–8

20 –8

Node i

y

x

1

Figure 15.15 (Continued).

coefficients is as shown in Figure 15.15b. Hence, the finite-difference form of Eq. 15.62, applied
at a general interior node i, is

[
coefficients

] {w} ∼= qi/N (15.66)

where the coefficients are as indicated in Figure 15.15. This equation relates the deflection wi at
i and at 12 other nodes in its vicinity to the load intensity qi.

The stress resultants at an interior node can be expressed in terms of the node deflections
w by the finite-difference form of Eqs. 15.59 and 15.61. The pattern of coefficients for these
approximations is given in Figure 15.16.

1

1 1 {w}

{w}

{w}

–1 1

–1

να

να

–2(1 + να)

Node i Node i

Node i

–2(ν + α)ν ν

α

α

(Mx) i ≅
–N

λx

(My) i ≅
–N

(Mxy) i ≅
N(1–ν)
4λxλy

2 λx
2

Figure 15.16 Finite-difference forms of Eqs. 15.59 and 15.61 using a rectangular mesh.
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{w}

{w}

y

x

–1

–1–1

1 1

α

1

Node i

Node i

2(1 + α) –2(1 + α)

–2(1 + α)

2(1 + α)

–α

–α

–α

α

α

(Vx) i ≅
N

–
2λx

(Vy) i ≅
N

–
2λyλx

α =  (λx/λy)2

λx and λy are the
mesh width in the
x and y directions

3

2

Figure 15.16 (Continued)

15.12 Boundary conditions of a plate in bending

In Figure 15.17 the orthogonal coordinates n and t are taken normal and tangential to plate
boundary. Considering equilibrium of the small block B (see Figure 15.17b), the bending and
twisting moment at the boundary can be related to Mx, My, and Mxy by

{
Mn

Mnt

}
=
⎡
⎣cos2 θ

sin 2θ

2

sin2 θ

− sin 2θ

2

− sin 2θ

cos2θ

⎤
⎦
⎧⎪⎨
⎪⎩

Mx

My

Mxy

⎫⎪⎬
⎪⎭ (15.67)

The boundary shear Vn is related to Vx and Vy by

Vn = Vx cos θ + Vy sin θ (15.68)

At a plate edge, one or more of the stress resultants or the deflection or slope of the
deflected surface can be known. This information is taken into account when writing the finite-
difference equations relating the deflection to the applied loads. The different edge conditions
are considered below.

(a) BUILT-IN EDGE. The deflection at all points on a built-in edge and the slope of the deflected
surface normal to the edge are zero, so that

w = 0 and
∂w
∂n

= 0 (15.69)
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Mx

Mn

Mnt

Vy

Vn

B

θ
θ

θ

Vx

n

t

B

Plate

Boundary

(a)

(b)

cos θ

s

Mxy
Myx

My

y

y

z

x

x

sinθ

ds = 1

Figure 15.17 A block near the boundary of a plate in bending considered in the derivation of Eqs. 15.67
and 15.68. (a) Top view of a plate. (b) Forces acting on block B in part (a). This figure
also indicates the positive directions of Vn, Mn, and Mnt .

Consider the case when the plate edge is straight. The conditions of Eq. 15.69 will be satisfied
if the plate is considered continuous with a symmetrical fictitious plate subjected to symmetrical
loading so that its deflected middle surface is a mirror image of the actual deflected middle
surface.

If the built-in edge is parallel to the x axis, as in Figure 15.18a, the conditions of Eq. 15.69
give wD = wB = wE = 0 and wC = wA. When the finite-difference Eq. 15.66 is applied at node
A, the deflection at the fictitious node C is put equal to WA and the deflection of the edge
nodes is taken as zero. Hence, we obtain an equation relating the deflection at the interior
nodes to the intensity of the applied load at A. The finite-difference Eq. 15.66 applied at each
interior node gives a sufficient number of simultaneous equations for the nodal deflections to be
calculated.

(b) SIMPLY-SUPPORTED EDGE. The deflection w and the moment Mn vanish at all points of
a simply-supported edge, that is,

w = 0 and Mn = 0 (15.70)

Combining Eqs. 15.67 and 15.59, the second boundary condition can be represented in terms
of the deflection by

(1 − v)

(
∂2w
∂x2 cos2 θ + 2

∂2w
∂x∂y

sin θ cos θ + ∂2w
∂y2 sin2 θ

)
+ v∇2w = 0 (15.71)
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Figure 15.18 Use of boundary conditions for the elimination of the deflection at fictitious nodes when the finite-difference Eq. 15.66 is applied at a node A on
or near a plate edge. (a) Node A near a fixed edge. (b) Node A near a simply-supported edge. (c) Node A near a free edge. (d) Node A on a free
edge. (e) Node A at a corner.
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When the plate edge is straight, the two conditions of Eq. 15.70 will be satisfied if the plate is
considered continuous with a fictitious symmetrical plate subjected to antisymmetrical loading
so that the deflections of the middle surface are equal and opposite at symmetrical points.

If the simply-supported edge is parallel to the x axis, as in Figure 15.18b, the conditions
of Eq. 15.70 give wD = wB = wE = 0 and wC = −wA. These equations are substituted in the
finite-difference Eq. 15.66 applied at node A in a manner similar to that used for the built-in edge.

(c) FREE EDGE. The bending moment at any point on a free edge is zero, that is, Mn = 0. This
means that Eq. 15.71 must be satisfied. Further, at a free edge there should be no transverse forces.
Now, the shear Vn and the twisting moment Mnt (Figure 15.17) can be reduced to transverse
forces only2 and, since these vanish at a free edge, we can write

Vn − ∂Mnt

∂s
= 0 (15.72)

Using Eqs. 15.59, 15.61, 15.67, and 15.68, this condition can be represented in terms of the
deflection in the form

(1 − v)
∂

∂s

[(
∂2w
∂x2 − ∂2w

∂y2

)
sin θ cos θ − ∂2w

∂x∂y
(cos2 θ − sin2 θ)

]

−
(

∂3w
∂x3 + ∂3w

∂x∂y2

)
cos θ −

(
∂3w
∂y3 + ∂3w

∂y∂x2

)
sin θ = 0

(15.73)

When the free edge is parallel to the x axis (θ = 90◦ and ∂s =−∂x), the conditions at the free
edge become

∂2w
∂y2 + v

∂2w
∂x2 = 0 (15.74)

and

∂3w
∂y3 + (2 − v)

∂3w
∂y∂x2 = 0 (15.75)

When the finite-difference Eq. 15.66 is applied at node A on the first mesh line inside the
boundary (Figure 15.18c), the deflection at a fictitious node C can be eliminated using the
following finite-difference form of Eq. 15.74 applied at node B:

1
λ2

y
(wC − 2wB + wA) + v

λ2
x
(wE − 2wB + wD) ∼= 0 (15.76)

Application of Eq. 15.66 at node A on a free edge (Figure 15.18d) includes the deflection at
the fictitious nodes H, D, K, and E. The deflection wE can be expressed in terms of the deflection
at the other nodes, using the following finite-difference form of Eq. 15.75 applied at A:

1
2λ3

y
(wE − 2wD + 2wC − wB)+ (2 − v)

2λy

(
wK − 2wD + wH

λ2
x

− wI − 2wC + wF

λ2
x

)
∼=0 (15.77)

2 See Timoshenko, S. and Wojnowsky-Krieger, S., Theory of Plates and Shells, 2nd ed., McGraw-Hill, New
York, 1959.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method of f inite differences 467

Three equations similar to Eq. 15.76 can be applied at nodes G, A, and J (Figure 15.18d) and
used to eliminate the fictitious deflections wH , wD, and wK.

(d) CORNER. At a corner where two free edges parallel to the x and y axes meet (Figure 15.18e),
the boundary conditions of Eqs. 15.74 and 15.75 apply (as to all the nodes on the edge parallel
to the x axis). Two similar equations apply to the nodes on the edge parallel to the y axis. In
addition, at a corner,3 the twisting moment Mxy =0; this can be written in finite-difference form
(see Figure 15.16) as

N(1 − v)

4λxλy
(wB − wC + wD − wE) ∼= 0 (15.78)

Application of Eq. 15.66 at a corner node A (Figure 15.18e) includes deflections at the fictitious
nodes B, D, G, F, H, I, and E. The deflection at E can be eliminated by the use of Eq. 15.78, and
the other fictitious deflections are eliminated using the remainder of the boundary conditions in
the same manner as for the free edge.

15.13 Analysis of plates in bending

The procedure outlined in the preceding sections leads to linear equations relating the deflections
at nodes within the boundary to the external applied load. These equations will have one of the
forms given in Figure 15.19 when applied at a node i, which may be a general interior node or
a node on or near the boundary. Any one of these forms can be expressed as

(Nλy/λ
3
x)
[
coefficients

] {w} ∼= Qi (15.79)

where the coefficients are as given in Figure 15.19, and Qi is an equivalent concentrated load
at i. When the load is uniform and of intensity q, and i is an interior node, Qi = qλxλy. The
values of Q where i is on an edge or at a corner are, respectively, qλxλy/2 and qλxλy/4.

In the case of nonuniform loading, the equivalent concentrated load can be calculated from
the equations given in Section 10.4.1. For example, if we use the expression for parabolic vari-
ation (see Figure 10.9) to find the equivalent concentrated load Q0 at node O of the mesh in
Figure 15.11, we write

p3 = λx

12
(q9 + 10q3 + q5)

p0 = λx

12
(q1 + 10q0 + q2)

p4 = λx

12
(q10 + 10q4 + q8)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(15.80)

where the q terms are the load intensities at the nodes (force/area) and the p values are line load
intensities (force/length) on a line parallel to the y axis through 0. Applying the same expression
for the load p, we obtain

Q0 = λy

12
(p3 + 10p0 + p4) (15.81)

3 For a discussion of this condition, see reference in footnote 4 in this chapter.
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5α2(1 – ν 

2)
2

Q = –2α (1 – ν + α (1 – ν 
2))

2

R  = 2α (1 – ν) + 
1 (1 – α2)(1 – ν 

2)
2

S    = –2(α (1–ν) + 1 (1–ν 
2))

2
T   = 

1 (1 – ν 
2)

2

E

(a) (b) (c)

(d) (e) (f)

λx

λy

C

CD D

E

E

C D

L
L

O U

S TR
i

K

P

Q H

I

H

F

H

I M B F

HO

A  = 6 + 6α2
 + 8α H  = α (2 – ν)

free edge mesh lines

I    = –2(2α  – να  + 1)
J   = 1 + 4α (1 – ν) + 3α2(1 – ν 

2)
K  = –2α [1 – ν + α (1 – ν 

2)]

M = 5 + 5α2
 + 8α

Q = –2α (2 – ν + α )

Where α  =
2λx

λy

B  = –4(1 + α )
C  = –4α (1 + α )
D = 2α
E  = α2

F   = 1
G = 5 + 6α2

 + 8α

U
i i

i

D D D

L

K

J

K

L

H

I

H

F
F iB

DC
i

E

H

H C

E

x

y

GIBABF F

U    = 2α (1 – ν)

( )

L   = 
1 α2(1 – ν 2)
2

Figure 15.19 Finite-difference coefficients in Eq. 15.79 applied at node i on or near the edge of a plate
in bending (from reference in footnote 6 in this chapter).

Combining Eqs. 15.80 and 15.81, we find

Q0 = λxλy

144
[100q0 + 10(q1 + q2 + q3 + q4) + (q9 + q5 + q10 + q8)] (15.82)

For other forms of load variation, or for edge or corner nodes, the other equations for the line
loads given in Figure 10.10 can be used to derive corresponding expressions for the equivalent
concentrated load.

Applying the finite-difference equations at all mesh points where the deflection is not known
leads to a system of simultaneous equations which may be written in matrix form

[K] {w} ∼= {Q} (15.83)

where [K] is a square matrix formed by the finite-difference coefficients. Examination of the
coefficients in Figure 15.19 shows that the matrix [K] is symmetrical. For example, the finite-
difference equation applied at a corner node (Figure 15.19f) has a coefficient U = 2α(1 − ν) for



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method of f inite differences 469

the deflection at a diagonally opposite node, and, when the equation is applied at this latter node
(see Figure 15.19d) the coefficient at the corner is also equal to U. We may consider the matrix
[K] as an equivalent stiffness matrix, and we shall so use it in the following chapter.

The procedure of the analysis of plates in bending by finite differences can be summarized as
follows. A system of linear simultaneous equations is written in the form of Eq. 15.83, in which
{Q} are the known forces and {w} are the unknown deflections. The elements of the matrix [K]
are determined using Figure 15.19, which covers the majority of practical cases. The solution of
Eq. 15.83 gives the deflections, and these are then substituted in the finite-difference equations
in Figure 15.16 to determine the stress resultants.

The finite-difference equations in Figure 15.19 can be used for a plate with a simply-supported
edge by substituting zero for the deflection at nodes on this edge. A figure similar to Figure 15.19
can be prepared for the finite-difference equations applied at nodes on the first mesh line inside
the boundary parallel to a built-in edge. This figure is not given here as it is easy to derive from
Figure 15.19a if we observe that the deflections at fictitious nodes outside the boundary are
a mirror image of the deflections at corresponding nodes within the boundary. When the free
edge is inclined to the x and y directions, the finite-difference equations can also be derived by
a similar procedure.4

When a plate has a curved boundary, the nodes of a rectangular mesh may not fall on the plate
edge. In this case, the finite-difference expressions have to be used for unevenly-spaced nodes.5

In the analysis of a parallelogram-shaped plate, it may be more suitable to use skew coordinate
axes and a skew mesh in the finite-difference equations.6 In some other cases, a mesh formed by
arcs of circles and radial lines may be used. The coefficients of the finite-difference equations for
these types of meshes are not given here, but the basic ideas in the analysis are the same in all cases.

15.13.1 Stiffened plates

If a plate is stiffened by beams located on mesh lines and assumed to be connected to the plate
in the idealized fashion indicated in Figures 15.20a or b, the effect of the stiffening can be easily
included by substituting [K]=[K]p +[K]b in Eq. 15.83, where [K]p is the plate equivalent stiffness
matrix for the plate alone, obtained as described before from the finite-difference coefficients,
and [K]b is the equivalent stiffness matrix for the beams, defined by

[K]b {w} = {Q}b (15.84)

Here, {w} are the nodal deflections of the composite system beam-plate, {Q}b is a vector of the
part of {Q} carried by the beams alone, and [K]b is an equivalent stiffness matrix for the beams.
The elements of [K]b can be derived from the finite-difference coefficients given in Figures 15.4
and 15.5.

Beam Plate

(b)(a)

Figure 15.20 Idealized plate-beam connections.

4 See Ghali, A. and Bathe, K.-J., “Analysis of Plates in Bending Using Large Finite Elements,’’ International
Association for Bridges and Structural Engineering, 30/II, Zurich, 1970.

5 For further discussion, see Crandall, S. H., Engineering Analysis, McGraw-Hill, New York, 1956.
6 Jensen, V. P., Analysis of Skew Slabs, University of Illinois Engineering Experiment Station, Bulletin No.

332.
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Example 15.4: Square plate simply supported on three sides
Find the deflection and moment My at node 2 and the moments Mx and My at node 6 in
the plate shown in Figure 15.21, subjected to a uniform load q per unit area. The plate is
of constant thickness h, and has three edges simply supported and one edge free. Assume
Poisson’s ratio ν = 0.3.

Applying Eq. 15.79 at each of the eight nodes (see Figure 15.21) and using the finite-
difference patterns of coefficients in Figure 15.19, the following simultaneous equations
can be written:

N
λ2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J K I H F
2K J 2H I F
I H G C B D F

2H I 2C G 2D B F
F B D A C B D

F 2D B 2C A 2D B
F B D G C

F 2D B 2C G

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1

w2

w3

w4

w5

w6

w7

w8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∼= qλ2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.5
0.5
1.0
1.0
1.0
1.0
1.0
1.0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where the coefficients A, B, . . . are defined in Figure 15.19. The square matrix on the left-
hand side can be made symmetrical by multiplying by 2 each of the first, third, fifth, and
seventh equations. The figure 2 represents the number of nodes of the mesh which have
the same deflection as each of w1, w3, w5, and w7. The property of symmetry is useful to
detect any mistakes which may have been made in forming the equations.

Substituting the values of the coefficients A, B, . . . and solving, we obtain

{w} ∼= qλ4

N

{
2.3984, 3.3516, 1.9361, 2.7033, 1.4899, 2.0749, 0.8641, 1.1979

}

b = 4λx

b = 4λy

x

y B

2 4

Free edge

6 8

7531

Simply-supported edges

Simply-supported edge

A

C

CL

λx = λy = λ

Figure 15.21 Square plate subjected to a uniform transverse load analyzed by finite difference in
Example 15.4.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method of f inite differences 471

The required deflection at node 2 is w2 ∼= 0.1429qb4/Eh3. At node 2 the moment My on
the free edge is (from Eq. 15.59)

(My)2 = −N
(

∂2w
∂y2 + v

∂2w
∂x2

)
2

and the moment Mx is

(Mx)2 = −N
(

∂2w
∂x2 + v

∂2w
∂y2

)
2
= 0

Hence,

(My)2 = −N(1 − v2)
∂2w
∂y2

Using finite-difference approximation for the derivatives, we obtain

(My)2 ∼= −N
(1 − v2)

λ2
y

(2w1 − 2w2) = 0.1084qb2

Substituting for w in the Mx and My equations in Figure 15.16, we obtain

(Mx)6 ∼= 0.0374qb2 and (My)6 ∼= 0.0777qb2

Exact answers7 to this problem are: w2 = 0.1404qb4/Eh3, (My)2 = 0.112qb2, (Mx)6 =
0.039qb2, and (My)6 = 0.080qb2.

15.14 Stiffness matrix equivalent

In this chapter we have shown that the use of finite differences for solving differential equations
relating the transverse load to the deflection in beams and slabs results in a system of simultaneous
linear equations of the form

[K] {D} ∼= {F} (15.85)

where [K] is a matrix formed by the finite-difference coefficients of the transverse deflections at
the nodes {D}, and {F} are nodal transverse loads (compare with Eqs. 15.23 and 15.83).

Comparing Eq. 15.85 with the fundamental equation

[S] {D} = {F} (15.86)

we see that replacing the stiffness matrix [S] by [K] results in the approximate Eq. 15.85. The
matrix [K] can, therefore, be treated as equivalent to the stiffness matrix. The inverse of the
equivalent stiffness matrix gives the approximate influence coefficients of transverse deflections.
From these, influence coefficients of the stress resultants and reactions can be calculated.

7 Taken from reference in footnote 4 in this chapter.



472 Method of f inite differences

The equivalent stiffness matrix [K] is easily generated by the use of the finite-difference pat-
terns of coefficients given in this chapter. The matrix [K] which corresponds to coordinates
representing transverse deflections can be transformed to stiffness matrices corresponding to
other sets of coordinates.

The principles discussed are general and can be applied to a variety of structures, such as
continuous beams, frames, grids, slabs, and shells.

15.15 Comparison between equivalent stiffness matrix
and stiffness matrix

Consider a beam on an elastic foundation (Figure 15.22a) which for simplicity is assumed to
have a constant flexural rigidity EI, and a constant foundation modulus k per unit length per
unit deflection.

Let the beam be divided into five equal intervals λ. Using the finite-difference pattern of
coefficients of Figure 15.5, we can generate the following equivalent stiffness matrix relating the
nodal transverse deflections to nodal transverse forces:

[K] = EI
λ3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1 + kλ4

2EI

)
symmetrical

−2

(
5 + kλ4

EI

)

1 −4

(
6 + kλ4

EI

)

1 −4

(
6 + kλ4

EI

)

Elements are

zero

not shown 1 −4

(
5 + kλ4

EI

)

1 −2

(
1 + kλ4

EI

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15.87)

Replace the elastic foundation by elastic supports (springs) of stiffness equal to kλ at nodes
2, 3, 4, and 5, and equal to kλ/2 at the end nodes 1 and 6. The elements of the stiff-
ness matrix of this beam are the support reactions of the continuous beam in Figure 15.22b
when one support undergoes a unit downward displacement. These can be obtained from
Appendix E. Thus,

λλλ λ λ

1

(a)

(b)

2 3 4 5 6

1

S13 S23 S33 S43 S53 S63

2 3 4 5 6

Figure 15.22 Beam on an elastic foundation considered in Section 15.15. (a) Points of division in a
beam on an elastic foundation. (b) Forces in the third column of the stiffness matrix [S],
Eq. 15.88.
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[S] = EI
λ3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1.6077 + kλ4

2EI

)

−3.6459

(
9.8756 + kλ4

EI

)
symmetrical

2.5837 −9.5024

(
14.0096 + kλ4

EI

)

−0.6890 4.1340 −10.5359

(
14.0096 + kλ4

EI

)

0.1723 −1.0335 4.1340 −9.5024

(
9.8756 + kλ4

EI

)

−0.0287 0.1723 −0.6890 2.5837 −3.6459

(
1.6077 + kλ4

2EI

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15.88)

We can now verify that the equivalent stiffness matrix [K] in Eq. (15.87) has all the general
properties of stiffness matrices discussed in Section 6.6. The sum of the elements of any column
(or row) of [K] or [S] is equal to the value kλ (or kλ/2). This value is the additional force
required at the displaced support to overcome the stiffness of the spring below this support, so
that either matrix satisfies the equilibrium condition that the sum of the reactions produced by
the displacement of one support of a continuous beam is zero. If k is zero, that is, if the elastic
foundation is removed, the beam becomes unstable. This is reflected in both the stiffness mat-
rix and the equivalent stiffness matrix: their determinants vanish and both [S] and [K] become
singular.

The two matrices [K] and [S], when inverted, give the flexibility matrices [f̄ ] and [f ], in which
any element f̄ij ∼= fij, the degree of approximation depending on the chosen node spacing. If, for
example, we take kλ4/(EI)=0.1 in Eqs. (15.87) and (15.88) and invert, we obtain the following
flexibility matrices, which can be compared:

[
f̄
]
= [K]−1 = λ3

EI

⎡
⎢⎢⎢⎢⎢⎢⎣

8.569 symmetrical
5.285 4.095
2.572 2.642 2.583
0.474 1.250 2.003 2.583

−1.224 −0.017 1.250 2.642 4.095
−2.782 −1.224 0.474 2.572 5.284 8.569

⎤
⎥⎥⎥⎥⎥⎥⎦

(15.89)

and

[
f
]= [S]−1 = λ3

EI

⎡
⎢⎢⎢⎢⎢⎢⎣

8.489 symmetrical
5.304 4.062
2.605 2.654 2.529
0.483 1.265 2.001 2.529

−1.242 −0.020 1.265 2.654 4.062
−2.807 −1.242 0.483 2.605 5.304 8.489

⎤
⎥⎥⎥⎥⎥⎥⎦

(15.90)

The methods of condensation of the stiffness matrix discussed in Section 6.5 can also be
used with the equivalent stiffness matrix. For example, if in the beam of Figure 15.22a the
displacement at node 6 is prevented by the introduction of a support, the deflection D6 = 0,
and the stiffness matrix of the resulting structure is obtained by deletion of the 6th row and
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column from [K]. The last row of [K] can then be used to find the force F6 at the support
introduced:

F6 = [K61K62 . . .K65]

⎧⎪⎪⎨
⎪⎪⎩

D1

D2

. . .

D5

⎫⎪⎪⎬
⎪⎪⎭ (15.91)

15.16 General

The problems treated in this chapter, ranging from beams to plates in bending, involve the
solution of differential equations using the method of finite differences. Thus, derivatives of
the deflection are represented by finite differences and the problem reduces to the solution of
simultaneous algebraic equations. The number of equations depends upon the number of nodes
chosen to approximate the deflection. The accuracy of the solution is improved with a decrease
in the node spacing and an increase in the number of equations. However, in many problems
adequate accuracy can be achieved with a small number of equations.

When the pattern of the finite-difference coefficients is known, the formation of the simultan-
eous equations is an easy process and the finite-difference solution can be used to advantage.
All the steps of the analysis can be easily programmed for the use of computers. However, in
some cases, such as with irregular boundaries, it is rather difficult to derive the finite-difference
equations which suit the boundary conditions.

The finite-difference method can also be used to solve structural problems not included in
this chapter, for example, a stretched membrane, or torsion, shell vibration problems. In all
these cases we find solution of a partial differential equation using finite differences in a manner
similar to that used in plate problems.

Problems

15.1 Find the deflections at points 1, 2, and 3 in the beam in Figure 10.15a using the approx-
imate equations listed in Figure 15.4. Compare the answers with the values obtained in
Section 10.5.

15.2 Determine the deflection, the bending moment at the nodes, and the support reactions for
the beam in the figure, with a constant EI. The beam is on an elastic foundation between
the supports A, B, and C with a modulus k = 1184EI/l4.

1 2 3
λ = l/4

A C

B

l l

Elastic foundation

Uniform load q per unit length

Prob. 15.2

15.3 Using finite differences, find the rotation at end A due to a unit couple applied at A for the
beam in the figure and compare the result with the exact answer (l/4EI). Hint: Replace
the couple by two equal and opposite forces at A and at node 1, and find the deflections
using the equations listed in Figure 15.5. The slope is then calculated from the deflection
using the expression given in Figure 15.2.

15.4 Using finite differences, find the flexibility matrix [f ] corresponding to coordinates 1
and 2 of the cantilever in the figure. Compare the answer with accurate values from
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1 2 3
1 Constant EI

λ = l/4

A B
l

Prob. 15.3

Appendix B. Hint: A couple at coordinate 2 can be replaced by two equal and opposite
forces at nodes 1 and 2. To calculate f21, that is, the rotation at coordinate 2 due to a unit
force at 1, we use the fact that the slope of the elastic line at 1 is approximately equal
to the slope of the line joining the deflected position of nodes 1 and 2. This is acceptable
because, for this loading, the bending moment, and hence the rate of change of slope at
node 1, are zero. To calculate f22, use the expression given in Figure 15.2.

λ = l/3

1 2 3
2

1

Constant EI

l

Prob. 15.4

15.5 Using finite differences, find the end-rotational stiffness at A and the carryover moment
at B for the beam of Prob. 15.3. The beam is subjected to an axial compressive force
P = 9El/l2 (not shown in the figure). Compare your results with the exact answers from
Table 13.1. See the hint given for Prob. 15.3.

15.6 Using finite differences, find the end-moment at B in the beam-column shown in the
figure.

λ = l/4

1 2 3 P = 9 EI/l2P = 9 EI/l2

A
B

l

El 1.5 El

Q

Prob. 15.6

15.7 Using finite differences, find the deflection at the nodes 1, 2, and 3 on the base of the long
rectangular water tank shown in the figure. Consider a strip of unit width of the wall
and base as a frame ABCD of constant flexural rigidity El. Neglect the self-weight of the
frame. Hint: Walls AB and DC are subjected to a linearly varying outward horizontal
load of yl/2 at the bottom and zero at the top, and the base BC is subjected to a uniform
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λ

l

l/2

x

y

F

A D

B C

1 2 3

Rigid tie Water level

Specific weight of
water = γ

CL

Consider a strip of unit width as
a beam BC on elastic foundation
with a modulus k =103 EI/l4

Prob. 15.7

vertical load λl/2. Analyze the symmetrical beam BC by finite differences. One of the
end conditions at B is: MB =−λl3/120 − 6Ely′

B/l =−Ely′′
B; where |λl3/120| is absolute

value of moment at end B when its rotation is prevented; |6EI/l| is absolute value of the
end moment due to unit rotation; y′

B = (y2 −yF)/(2λ); y′′
B = (yF −2y1 +y2)/λ

2; yF is the
deflection at a fictitious point F.

15.8 Find the radial deflection caused by hydrostatic pressure on the wall of a circular cyl-
indrical water tank shown in the figure. Calculate also the hoop force, the bending
moment in the vertical direction along the wall height, and the reaction at the bot-
tom. Assume Poisson’s ratio ν = 1/6. The answers to this problem are given at the
end of the book, using two solutions: one with λ = H/5 as shown in the figure, and
the other with λ = H/20. A comparison of the two results gives an indication of the
accuracy gained by reducing λ. With λ = H/5, five simultaneous equations have to be
solved. Readers may either solve the equations or use the given answers to verify their
equations.

Diameter = 2H

Built-in edge

Free edge

Specific weight of
liquid = γ

Liquid
level

H/24

H/12

λ = H/5

1
2
3
4
5

H

Prob. 15.8

15.9 Using finite differences with the mesh shown in the figure, find the deflection at the
nodes and the bending moment My at nodes 1 and 2 of the plate shown. The plate
is subjected to a uniform transverse load q, has a constant thickness h, and Poisson’s
ratio ν = 0.

15.10 Solve Prob. 15.9 with the width of the plate in the x direction of 2b, and use the same
mesh with λx = 2λy.
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b = 5λ

b = 5λ

λx = λy = λ

Simply-supported
edge

Simply-supported
edge

Built-in edge

Built-in edge

A

D

E

x

y

F

B

3 4

21

G H

C

Prob. 15.9

15.11 Solve Prob. 15.9 with the plate subjected (in lieu of q) to a uniform positive bending
moment M on the two edges AD and BC. Hint: Replace the edge moments by two equal
and opposite transverse loads on the edge nodes and at nodes on a mesh line at distance
λx from the edge.

15.12 Solve Prob. 15.9 with the plate reinforced by beams of flexural rigidity EI = 2Nλ along
mesh lines EF and GH. The beams are assumed to be attached to the plate in the idealized
fashion indicated in Figure 15.20b and have the ends simply supported. What is the
bending moment in beam EF at node 1?

15.13 Using finite differences with the mesh shown in the figure, find the deflections at the
nodes and My at points A, B, and C of the plate in the figure. The plate has a constant
thickness h, Poisson’s ratio ν = 0, and is loaded by one concentrated load P on the free
edge DE, as shown.

1 2 3

4 5 6

A B C

DE
P

 Built-in edge

Free edges

y

x

2b = 4λ

b = 2λ

Prob. 15.13

15.14 Solve Prob. 15.13 with the plate reinforced by a beam along DE with free ends and a
flexural rigidity EI =2Nλ. The beam is assumed to be attached to the plate in the idealized
fashion indicated in Figure 15.20a.
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15.15 Using finite differences with the mesh shown in the figure, find the deflections at the nodes
and the reaction at the support A of the plate in the figure. The plate has a constant
thickness h, Poisson’s ratio ν = 0, is built-in along two edges, free at the other two and
has a support at A which can provide a transverse reaction only. The load intensity on
the plate varies as shown. Hint: Apply the finite-difference equations in Figure 15.19 at
nodes 1, 2, and 3, solve for the deflections, and then use the equation in Figure 15.19f to
calculate the reaction at A.

2b = 2λx

b = 2λy

 Built-in edges

Free
edges

Support

Variation
of transverse
loading

A

q

32

1

Prob. 15.15



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 16

Finite-element method

16.1 Introduction

The finite-element method is widely used in structural analysis. The method is also used in a wide
range of physical problems1 including heat transfer, seepage, flow of fluids, and electrical and
magnetic potential. In the finite-element method, a continuum is idealized as an assemblage of
finite elements with specified nodes. The infinite number of degrees of freedom of the continuum
is replaced by specified unknowns at the nodes.

In essence, the analysis of a structure by the finite-element method is an application of
the displacement method. In frames, trusses, and grids, the elements are bars connected
at the nodes; these elements are considered to be one-dimensional. Two-dimensional or
three-dimensional finite elements are used in the analysis of walls, slabs, shells, and mass struc-
tures. The finite elements can have many shapes with nodes at the corners or on the sides
(Figure 16.1). The unknown displacements are nodal translations or rotations or derivatives of
these.

The use of a computer is essential in the finite-element method because of the large number
of degrees of freedom commonly involved. Chapters 21 to 23 discuss the computer analysis of
structures; the approach there applies to structures which are composed of finite elements of
any type. However, the matrices for individual elements, given explicitly in earlier chapters
(e.g. Eqs. 6.6 to 6.7) and in Chapters 21 to 23, are for one-dimensional bar elements. The
present chapter is mainly concerned with the generation of matrices for finite elements other
than bars. The element matrices required are: the stiffness matrix, relating nodal forces to nodal
displacements; the stress matrix, relating the stress or internal forces at any point within an
element to its nodal displacements; and vectors of restraining nodal forces for use when the
external forces are applied away from the nodes or when the element is subjected to temperature
variation.

For finite elements other than bars, “exact’’ element matrices cannot be generated. The dis-
placements (e.g. u and ν) within an element are expressed in terms of the nodal displacement.
Assumed displacement fields (e.g. a polynomial in x and y) are used. The corresponding strains
are determined by differentiation and the stress by using Hooke’s law. Use of the principle of
virtual work or minimization of the total potential energy (Sections 7.5, 7.6 and 9.6) with respect
to the element nodal displacements gives the desired element matrices.

Use of displacement fields as described above is similar to the Rayleigh-Ritz method presented
in Section 10.7, where the deflection of a beam is represented by a series of assumed functions
with indeterminate parameters. The unknown parameters are derived by the principle of virtual
work. They can also be derived by minimization of total potential energy. In the finite-element

1 See Zienkiewicz, O.C. and Taylor, R.L.,The Finite Element Method, 6th ed., McGraw-Hill, London, 2005.
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Plate subjected to in-plane forces
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Figure 16.1 Examples of finite elements with nodal degrees of freedom shown at a typical node only.

formulation, using assumed displacement fields, the indeterminate parameters are the nodal
displacements. As in the Rayleigh-Ritz method, the solution obtained by the finite-element
method is approximate; however, convergence to the exact solution is achieved as the num-
ber of unknown parameters is increased. In other words, when a finer finite-element mesh is
used, more unknown displacements are involved and a greater accuracy is achieved.

The use of smaller elements for convergence is not required when the true displacement shapes
can be derived and used to generate the element matrices. This is the case with prismatic bar
elements.

This chapter gives the general procedures to derive matrices for finite elements of any type.
This is explained by reference to bar elements and to plate elements subjected to in-plane forces
or to bending. Other element types are discussed in Chapter 17.
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It is most common to derive the matrices for finite elements using assumed displacement fields,
and this method will be mainly used in this chapter. It is also possible to generate the element
matrices using assumed fields for displacements and for stresses (or strains): this results in what
are known as hybrid elements. The unknowns will then be the stress (or strain) parameters,
in addition to the nodal displacements. However, all the unknown parameters other than the
nodal displacements are eliminated at the element level; the global system of equations for the
structure involves nodal displacements only. When the same number of equations is solved,
a more accurate analysis is obtained with hybrid elements compared with the analysis using
displacement-based finite elements. Thus, the use of hybrid elements represents a convenient
practical approach. Section 17.13 discusses the generation of stiffness and stress matrices for
hybrid elements.

16.2 Application of the five steps of displacement method

In essence, the analysis of a structure by the finite-element method is an application of the five
steps of the displacement method summarized in Section 5.6. This analysis is explained below by
reference to a plate subjected to in-plane forces (Figure 16.2) which is idealized as an assemblage
of rectangular finite elements. Each element has four nodes with two degrees of freedom per node,
that is, translations u and ν in the x and y directions respectively. The purpose of the analysis
is to determine the stress components {σ } = {σx,σy, τxy} at O, the center of each element. The
external loads are nodal forces {Fx,Fy}i at any node i, and body forces with intensities per unit
volume of {px, py}m distributed over any element m. Other loadings can also be considered,
such as the effects of temperature variation or of shrinkage (or swelling).

x

1
u

0

0
x

y
v

2

l

Fy

Fx

py

px

Global
axes

Opening

External
forces at a
typical node

Typical
degrees of
freedom
at a node 

Typical element

τxy

τxy

σy

σx

Stresses at 0

Body forces
per unit
volume

y

Figure 16.2 Example of a finite-element model for the analysis of stresses in a wall subjected to in-plane
forces.
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The five steps in the analysis are as follows:

Step 1 Define the unknown degrees of freedom by two coordinates u and v at each node. The
actions to be determined for any element m are {A}m ≡ {σ }m = {σx,σy, τxy}m.

Step 2 With the loading applied, determine the restraining forces {F} to prevent the displace-
ments at all coordinates. Also, for any element, determine {Ar}m ≡ {σr}m, which represents the
values of the actions (the stresses) with the nodal displacements prevented.

The stresses {σr} are produced only when effects of temperature are considered; {σr} due to
body forces is commonly ignored.

The vector {F} is considered equal to the sum of two vectors:

{F} = {Fa} + {Fb} (16.1)

The vector {Fa} is composed of the external nodal forces reversed in sign; {Fb} is generated by
assemblage of {F∗

b}m for individual elements. The vector {F∗
b}m is composed of forces at the nodes

of element m in equilibrium with the external forces on the element body away from the nodes;
in the case of temperature variation, {F∗

b}m represents a system of nodal forces in equilibrium
producing stresses {σr}. (Eq. 6.43 gives the nodal forces due to temperature variation for a
member of a plane frame; for other finite elements, see Section 16.6.1.)

Step 3 Generate the structure stiffness matrix [S] by assemblage of the stiffness matrices [S]m of
individual elements. Also, generate [Au]m ≡[σu]m, which represents the stress components at O
in any element due to unit displacement introduced separately at the element nodal coordinates.
For the example considered in Figure 16.2, [σu]m will be a 3×8 matrix.

Step 4 Solve the equilibrium equations

[S] {D} = −{F} (16.2)

This gives the structure nodal displacements {D}. In the example considered, the number of
elements in {D} is twice the number of nodes.

Step 5 Calculate the required stress components for each element:

{A}m = {Ar}m [Au]m {D}m (16.3)

or

{σ }m = {σr}m + [σu]m {D}m (16.4)

The values {D}m are the nodal displacements for the element m; in the example considered
(Figure 16.2), {D}m has eight values (subset of the structure displacement vector {D}).

Ignoring {σr} caused by body forces (steps 2 and 5) produces an error which diminishes as the
size of the finite elements is reduced. However, when the elements are bars (in framed structures),
{σr} ≡ {Ar}, and the other matrices for individual members can be determined exactly; for this
reason, {σr} is commonly not ignored and the exact answers can be obtained without the need
to reduce the size of the elements for convergence.

Assemblage of the structure load vector and of the stiffness matrix may be done by Eqs. 21.34
and 21.31. The nonzero elements of [S] are generally limited to a band adjacent to the diagonal.
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This property, combined with the symmetry of [S], is used to conserve computer storage and to
reduce the number of computations. These topics and the methods of solution of Eq. 16.2 to
satisfy displacement constraints are discussed in Chapters 21 and 22. Examples of displacement
constraints are a zero or a prescribed value for the displacement at a support.

16.3 Basic equations of elasticity

The stresses and strains in an elastic body are related by Hooke’s law, which can be written in
the generalized form

{σ } = [
d
] {ε} (16.5)

where {σ } and {ε} are generalized stress and strain vectors respectively, and [d] is a square
symmetrical matrix referred to as the elasticity matrix.

The strain components are defined as derivatives of the displacement component by the
generalized equation

{ε} = [∂]
{
f
}

(16.6)

where [∂] is a matrix of the differential operator, and {f } is a vector of functions describing the
displacement field.

The symbols {σ } and {ε} will be used to represent stress or strain components in one-, two-, or
three-dimensional bodies. The displacement field {f } will have one, two, and three components:
u, v, and w in the direction of orthogonal axes x, y, and z. The differential operator matrix [∂]
will represent derivatives with respect to one, two, or three of the variables x, y, and z.

In a bar subjected to an axial force (Figure 7.5a), each of {σ } and {ε} has one component and [d]
has one element equal to E, the modulus of elasticity. The strain ε is equal to du/dx, where u is dis-
placement along the beam axis and x is distance measured in the same direction. Thus, we can use
Eqs. 16.5 and 16.6 for the uniaxial stress state, with the symbols having the following meanings:

{σ } ≡ σ {ε} ≡ ε
[
d
]≡ E

{
f
}≡ u [∂] = d/dx (16.7)

We shall also use the symbol {σ } to represent a vector of stress resultants. For the bar considered
above, we can take {σ } ≡ N, the axial force on the bar cross section, and [d] ≡ Ea, where a is
the cross-sectional area. Again, Eqs. 16.5 and 16.6 apply, with the symbols having the following
meanings:

{σ } ≡ N {ε} ≡ ε
[
d
]≡ Ea

{
f
}≡ u [∂] = d/dx (16.8)

The generalized Eqs. 16.5 and 16.6 apply to a bar in bending (Figure 6.5b), with the symbols
having the following meanings:

{σ } ≡ M {ε} ≡ ψ
[
d
]≡ EI

{
f
}≡ ν [∂] = d2/dx2 (16.9)

where M is the bending moment, ψ is the curvature, I is the second moment of area about the
centroidal axis, and ν is the displacement in the y direction.

The product {σ }T {ε} integrated over the volume of an element appears in the strain energy
Eq. 7.14 and in the virtual work Eq. 7.46, both of which will be frequently used. When {σ }
represents stress resultants over a cross section of a bar, the integral over the volume has to be
replaced by an integral over the length (see Eq. 7.32). For plates in bending, we shall use {σ } to
represent bending and twisting moments {Mx,My,Mxy} and the integral will be over the area.
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In the following subsections we shall apply the generalized Eqs. 16.5 and 16.6 in three stress
states.

16.3.1 Plane stress and plane strain

Consider a plate subjected to in-plane forces (Figure 16.13). At any point, the stress , strain, and
displacement components are

{σ } = {σx,σy, τxy} {ε} = {εx, εy,γxy} {f } = {u,v} (16.10)

The strains are defined as derivatives of {f} by the generalized Eq. 16.6, with the differential
operator matrix

[∂] =
⎡
⎢⎣

∂/∂x 0

0 ∂/∂y

∂/∂y ∂/∂x

⎤
⎥⎦ (16.11)

The stress and strain vectors are related by generalized Hooke’s law (Eq. 16.5) with the elasticity
matrix [d] given by one of the Eqs. 16.12 or 16.13.

When strain in the z direction is free to occur, σz = 0 and we have the state of plane stress.
Deep beams and shear walls are examples of structures in a state of plane stress. When strain in
the z direction cannot occur, εz =0 and we have the state of plane strain. The state of plane strain
occurs in structures which have a constant cross section perpendicular to the z direction and also
have the dimension in the z direction much larger than those in the x and y directions. Concrete
gravity dams and earth embankments are examples of structures in this category. The analysis
of these structures may be performed for a slice of unit thickness in a state of plane strain.

For an isotropic material, the elasticity matrix in a plane-stress state is

[d] = E
1 − v2

⎡
⎣1 v 0

v 1 0
0 0 (1 − v)/2

⎤
⎦ (16.12)

where E is the modulus of elasticity in tension or in compression, and ν is Poisson’s ratio.
The elasticity matrix for a plane-strain state is

[d] = E(1 − v)

(1 + v)(1 − 2v)

⎡
⎢⎣

1 v/(1 − v) 0

v/(1 − v) 1 0

0 0 (1 − 2v)/2(1 − v)

⎤
⎥⎦ (16.13)

Equation 16.12 can be derived from Eq. 6.6 or by inversion of the square matrix in Eq. 15.53.
Equation 16.13 can also be derived from Eq. 7.8 by setting εz = 0 (in addition to τxz = τyz = 0).
The same equations give the normal stress in the z direction in the plane-strain state

σz = v
(
σx + σy

)
(16.14)

16.3.2 Bending of plates

For a plate in bending (Figure 15.14), the generalized stress and strain vectors are defined as

{σ } = {
Mx, My, Mxy

}
(16.15)
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and

{ε} =
{
−∂2w/∂x2,−∂2w/∂y2, 2∂2w (∂x∂y)

}
(16.16)

One component of body force and one component of displacement exist:

{
p
}≡ {

q
}

(16.17){
f
}≡ {w} (16.18)

where q is force in the z direction per unit area and w is deflection in the same direction. The
generalized Eqs. 16.5 and 16.6 apply to a plate in bending, with

[∂]

⎧⎪⎨
⎪⎩

−∂2/∂x2

−∂2/∂y2

2∂2/ (∂x∂y)

⎫⎪⎬
⎪⎭ (16.19)

For an orthotropic plate in bending, the elasticity matrix is

[
d
]= h3

12

⎡
⎢⎢⎣

Ex/
(
1 − νxνy

)
νxEy/

(
1 − νxνy

)
0

νxEy/
(
1 − νxνy

)
Ey/

(
1 − νxνy

)
0

0 0 G

⎤
⎥⎥⎦ (16.20)

where Ex, Ey are moduli of elasticity in tension or in compression in the x and y directions; νx

and νy are Poisson’s ratios; G is shear modulus of elasticity; and h is the plate thickness. The
shear modulus of elasticity

G =
√

ExEy/[2(1 + √
νxνy)]

When the plate is isotropic, we set E = Ex = Ey and ν = νx = νy in Eq. 16.20:

[
d
]= Eh3

12
(
1 − ν2

)
⎡
⎣1 ν 0

ν 1 0
0 0 (1 − ν) /2

⎤
⎦ (16.21)

It can be noted that, for a plate in bending, the generalized Eq. 16.5 is simply a condensed form
of Eq. 15.64.

16.3.3 Three-dimensional solid

For a three-dimensional body, the generalized Eqs. 16.5 and 16.6 apply again, with the vectors
{p} and {f } having the following meaning:

{
p
}= {

px, py, pz
}

(16.22){
f
}= {u,ν, w} (16.23)
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where {px,py,pz} are body forces per unit volume, and {u,ν,w} are translations in the x, y, and
z directions (Figure 7.4). The stress and strain vectors {σ } and {ε} are defined by Eqs. 7.9 and
7.10, and the [d] matrix is given by Eq. 7.13. The differential operator is

[∂]T =
⎡
⎢⎣

∂/∂x 0 0 ∂/∂y ∂/∂z 0

0 ∂/∂y 0 ∂/∂x 0 ∂/∂z

0 0 ∂/∂z 0 ∂/∂x ∂/∂y

⎤
⎥⎦ (16.24)

16.4 Displacement interpolation

In the derivation of element matrices, interpolation functions are required to define the deformed
shape of the element. For a finite element of any type, the displacement at any point within the
element can be related to the nodal displacement by the equation

{
f
}= [L]

{
D∗} (16.25)

where {f } is a vector of displacement components at any point; {D∗} is a vector of nodal dis-
placements; and [L] is a matrix of functions of coordinates defining the position of the point
considered within the element (e.g. x and y or ξ and η in two-dimensional finite elements).

The interpolation functions [L] are also called shape functions; they describe the deformed
shape of the element due to unit displacements introduced separately at each coordinate. Any
interpolation function Li represents the deformed shape when D∗

i = 1 while the other nodal
displacements are zero.

The accuracy of a finite element depends upon the choice of the shape functions. These should
satisfy conditions which will ensure convergence to correct answers when a finer finite-element
mesh is used. The derivation of the shape functions and the conditions which should be satisfied
are discussed in Sections 16.8 and 16.9. Examples of shape functions with various types of
elements are given below.

16.4.1 Straight bar element

For the axial deformation of a bar (Figure 16.3), {f } ≡ {u} is the translation in the x direction
at any section, and {D∗} = {u1,u2} is the translation at the two ends. The matrix [L] may be
composed of two linear interpolation functions:

[L] = [1 − ξ , ξ ] (16.26)

where ξ = x/l, and l is the bar length.

1∗

2∗
x

x
and u

L1 = 1–ξ

L2 = ξ

ξ=x/l

l

1

l

Figure 16.3 Linear interpolation functions. Shape functions for a bar subjected to an axial force.
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1∗
2∗

y
and
v

1

1

1

1

3∗

4∗
x

x and ξ = x/ l

L1=1–3 ξ 2+2ξ 3

L2 = lξ (ξ–1)2

L3= ξ 2(3–2ξ )

L4= lξ 2(ξ–1)

l

Figure 16.4 Shape functions for deflection of a bar in bending.

The shape functions which can be used for a bar in bending are given in Figure 16.4. For
this element, {f } ≡ {ν} is the transverse deflection in the y direction at any section; the nodal
displacements are defined as

{
D∗}=

{
vx=0,

(
dv
dx

)
x=0

,vx=1,
(

dv
dx

)
x=1

}
(16.27)

The shape functions [L] can be the four cubic polynomials

[L] =
[
1 − 3ξ2 + 2ξ3|lξ (ξ − 1)2 |ξ2 (3 − 2ξ) |lξ2 (ξ − 1)

]
(16.28)

Each shape function Li in Eqs. 16.26 and 16.28 satisfies the requirement that D∗
i =1 with other

displacements zero. This requirement is sufficient to derive the functions (see Section 16.8).
The shape functions in Eqs. 16.26 and 16.28 correspond to the true deformed shapes of a

prismatic bar (with shear deformation ignored). The same shape functions may be used to derive
matrices for nonprismatic bars (see Examples 16.4 and 16.5).

We can recognize that the shape functions in Figures 16.3 and 16.4 are the same as the influence
lines for the nodal forces, reversed in sign. (Compare, for example, L2 and L4 in Figure 16.4
with the influence lines of the member end-moments in Figure 12.7d.)

The shape functions L1 in Figure 16.4 can be considered to be equal to the sum of the straight
lines 1 − ξ and (L2 + L4)/l; the latter term represents the deflected shape corresponding to
clockwise rotations, each equal to 1/l at the two ends. By similar reasoning, we can verify that
L3 = ξ − (L2 + L4)/l.

16.4.2 Quadrilateral element subjected to in-plane forces

Figure 16.5 shows a quadrilateral element with corner nodes and two degrees of freedom per
node. The element may be used in plane-stress and plane-strain analyses. In this case, the symbols
in the generalized Eq. 16.25 have the following meaning:

[
f
]= {u,ν} (16.29)
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1

2

3

4

ξ =1

ξ = –1

ξ

x

Nodal
displacements
at a node

Shape function L2

u

v

y

η = –1

η =1/2
η =1

ξ =1/2

η

1

Li = 1/4(1+ξ ξ i) (1+ηη i)

i =1, 2, 3, 4

1

2

3

4

Figure 16.5 Plane-stress or plane-strain quadrilateral element. Natural coordinates ξ and η define the
location of any point. Pictorial view of a shape function (hyperbolic paraboloid).

where u and ν are translations in the x and y directions, and

{
D∗}= {u1,ν1, u2,ν2,u3,ν3,u4,ν4} (16.30)

where ui and νi are translations at node i in the x and y directions. The [L] matrix for the element
in Figure 16.5 is

[L] =
[

L1 0 L2 0 L3 0 L4 0
0 L1 0 L2 0 L3 0 L4

]
(16.31)

The function Li is a sum of bilinear functions in the natural coordinates ξ and η, defined in
Figure 16.5. The value of Li is unity at node i and zero at the other three nodes; any of the four
shape functions may be expressed as

Li = 1
4

(1 + ξξi) (1 + ηηi) with i = 1,2,3,4 (16.32)

If the value of Li is plotted perpendicular to the surface of the element, a hypersurface is obtained.
Along the lines ξ = constant or η= constant, the surface follows straight lines. The shape function
L2 is plotted in pictorial view in Figure 16.5; at node 2, ξi = 1 and ηi =−1, and the function L2

defining the hypersurface is obtained by substitution of the two values in Eq. 16.32.
Equation 16.32 represents one of a family of functions used for interpolation in the isopara-

metric elements, discussed in Section 17.2. We should note that the sum of the values of the four
Li functions at any point is unity.

16.4.3 Rectangular plate-bending element

The rectangular element in Figure 16.6, used in the analysis of plates in bending, has twelve
degrees of freedom (three at each corner), defined as

{
D∗}=

{(
w, θx, θy

)
1 --

-- (
w, θx, θy

)
2 --

-- (
w, θx, θy

)
3 --

-- (w, θx, θy
)

4

}
(16.33)
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c

b

z (down)

Typical nodal
displacements

Shape function L5 Shape function L6

Shape function L4

L4

(down)

1

1

14

3

2

2

x, ξ 
ξ = x/b  η = y/c 

4

y,η

3

w

ξη

L5

1

1

2

4

3
η

ξ

L6

1

1

24

3

η
ξ

θx =
∂y
∂w

θy =
∂x
∂w–

Figure 16.6 Plate-bending element.

Here, the displacement f ≡ w is the deflection at any point. The rotations θ are treated as
derivatives of w:

θx = ∂w/∂y θy = −∂w/∂x (16.34)

The shape functions for the rectangular bending element (Figure 16.6) are

[L] =
[
(1 − ξ) (1 − η) − 1

b
(L3 + L6) + 1

c
(L2 + L11) 1

cη (η − 1)2 (1 − ξ) 2

−bξ (ξ − 1)2 (1 − η) 3

ξ (1 − η) + 1
b

(L3 + L6) + 1
c

(L5 + L8) 4

cη (η − 1)2 ξ 5

−bξ2 (ξ − 1) (1 − η) 6

ξη + 1
b

(L9 + L12) − 1
c

(L5 + L8) 7

cη2 (η − 1) ξ 8

−bξ2 (ξ − 1) η 9

(1 − ξ) η − 1
b

(L9 + L12) − 1
c

(L2 + L11) 10

cη2 (η − 1) (1 − ξ) 11

−bξ (ξ − 1)2 η
]

12

(16.35)
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where b and c are lengths of element sides; ξ = x/b and η = y/c. The functions L2, L3, L5, L6,
L8, L9, L11, L12 are shape functions given explicitly in Eq. 16.35 on lines 2, 3, 5, 6, 8, 9, 11,
and 12 respectively; they correspond to unit rotations. Pictorial views of three deflected shapes,
L4, L5, and L6, corresponding to unit displacements at node 2, are included in Figure 16.6. It
can be seen that L6 is zero along three edges, while along the fourth edge (1-2) the function is
the same as the shape function for a beam (compare with L4 in Figure 16.4, reversed in sign).
Along any line ξ = constant, L6 varies linearly, as shown in Figure 16.6. Similarly, L5 has the
same shape as a deflected bar along the edge 3-2 and varies linearly along any line η = constant.

The shape functions L1, L4, L7, L10, corresponding to w = 1 at the corners, are expressed
as the sum of bilinear shape functions (similar to the one shown in Figure 16.5) and the shape
functions corresponding to rotations at the nodes equal to ±(1/b) or ±(1/c). Each of the four
functions has values along two edges which are the same as the shape functions of a bar (L1 or
L3 in Figure 16.4). At any point, the sum L1 + L4 + L7 + L10 is equal to unity.

We should note that the deflected surface defined by any of the twelve shape functions does
not generally have a zero slope normal to the element edges. This can produce incompatibility of
slopes in adjacent elements; the effects of these incompatibilities will be discussed in Section 16.9.

16.5 Stiffness and stress matrices for displacement-based
elements

Equation 16.25 defines the element displacement field in terms of the nodal displacement. By
appropriate differentiation, we can derive the strain (Eq. 16.6):

{
f
}= [L]

{
D∗} (16.36)

{ε} = [∂] [L]
{
D∗} (16.37)

Thus, the strain at any point in a displacement-based element is

{ε} = [B]
{
D∗} (16.38)

where

[B] = [∂] [L] (16.39)

The matrix [B] may be referred to as the nodal displacement-strain transformation matrix.
Any column j of [B] represents the strain components {εuj} due to D∗

j = 1. Use of Hooke’s law
(Eq. 16.5) gives the stress at any point in a displacement-based element:

{σ } = [
d
] [B]{D∗} (16.40)

or

{σ } = [σ ]u {D∗} (16.41)

where [σu] is the stress matrix for the element:

[σu] = [d] [B] (16.42)

The elements of any column j of [σu] are the stress components at any point due to D∗
j = 1.
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An element S∗
ij of the stiffness matrix is the force at coordinate i corresponding to unit

displacement at j; S∗
ij can be determined by the unit-displacement theorem (Eq. 7.47):

S∗
ij =

∫
v

{
σuj
}T {εui}dν (16.43)

where {σuj} represents the “actual’’ stresses at any point due to unit displacement at j; {εui}
represents the strains at the same point corresponding to unit virtual displacement at i; and
dv is an elemental volume.2 The integral over the volume is replaced by an integral over the
length in the case of a bar and over the area in the case of a plate. For this purpose, the symbols
{σ } and {ε} in Eq. 16.43 represent generalized stress and strain respectively. For example, in a
bar, {σ } represents internal forces at a section; in a plate in bending, {ε} represents curvatures
(Eq. 16.16).

Using the shape functions [L] to determine the actual stresses and the virtual strains via
Eqs. 16.39 and 16.42, substitution in Eq. 16.43 gives any element of the stiffness matrix:

S∗
ij =

∫
v
{B}T

j

[
d
] {B}i ν (16.44)

where {B}i and {B}j are the ith and jth columns of [B]. The stiffness matrix of a finite element is
given by

[
S∗] ∫

ν

[B]T [d] [B]dν (16.45)

In Eqs. 16.43 and 16.44 we are accepting an assumed displacement field, namely Lj, as actual.
However, in general, the assumed shape is different from the actual. What we are doing then is
tantamount to imposing the assumed configuration by the application of small distributed forces
on the element body in addition to the nodal forces. The distributed forces have the effect of
changing the actual configuration to the assumed shape; these forces, not accounted for, cause
the stiffness calculated by Eq. 16.45 to be an overestimate. In other words, a finite-element
analysis in which the element stiffness matrices are derived by the above procedure is expected
to give smaller displacements than the actual ones.

16.6 Element load vectors

The vector of restraining forces, to be used in the equilibrium Eq. 16.2, includes a component
{Fb} representing the forces in equilibrium with the external loads applied on the body of the
elements away from the nodes (Eq. 16.1). Considering a single element, the equilibrant at node
j to the body forces can be determined by

Fbj = −
∫

ν

{
Lj
}T {p}dν (16.46)

where {p} represents the magnitudes per unit volume of forces applied in the same directions as
the displacements {f }.

Equation 16.46 can be explained by the principle of virtual work (Eq. 7.46) and also, suc-
cinctly, by Betti’s theorem (Section 9.2). Here, the body forces and the nodal equilibrants form

2 The symbol dν representing elemental volume should not be confused with ν, which represents a
translational displacement.
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one system; the element subjected only to those nodal forces which produce the displacement
configuration Lj represents the second system. According to Betti’s theorem, the work of the
forces of the first system during displacements by the second system is equal to the work of
the second system during displacements by the first system. Now, the second quantity is zero
because the second system has forces at the nodes only, and the nodal displacements in the first
system are all zero.

By the use of Eq. 16.46, we are treating the shape function Lj as the influence line (or influence
surface) of the nodal force at j, reversed in sign (see Section 12.3). We should remember that an
approximation is involved in Eq. 16.46 by the acceptance of an assumed deflected shape as the
actual displacement field.

The vector of nodal forces in equilibrium with the forces applied on the element away from
the nodes is

{
F∗

b

}= −
∫

ν

[L]T {p}dν (16.47)

This vector is referred to as the element consistent load vector because the same shape functions
[L] are used to generate [S∗] and {F∗

b}. The superscript ∗ is used here to refer to local coordinates
of an individual element.

When the external forces are applied to the surface of the element, the integral in Eq. 16.47
should be taken over the area of the element. When concentrated forces act, the integ-
ral is replaced by a summation of the forces multiplied by the values of [L]T at the load
positions.

16.6.1 Analysis of effects of temperature variation

When an element is subjected to temperature variation (or to shrinkage), with the displacements
restrained, the stresses at any point are given by (Eq. 16.5)

{σr} = −[d] {ε0} (16.48)

where {ε0} represents the strains which would exist if the change in volume were free to occur. In
a two-dimensional plane-stress or plane-strain state, a rise of temperature of T degrees produces
the free strain

{ε0} = αT

⎧⎨
⎩

1
1
0

⎫⎬
⎭ (16.49)

where α is the coefficient of thermal expansion.
For an element subjected to volume change, the consistent vector of restraining forces is

given by

{
F∗

b

}= −
∫

v
[B]T [d] {ε0}dν (16.50)

Again, the unit-displacement theory may be used to derive Eq. 16.50. With the actual stress
being {σr} = −[d] {ε0} and the virtual strain being {εuj} = {B}j, Eq. 7.50 gives the jth element of
the consistent load vector.

In most cases, the integrals involved in generating the stiffness matrix and the load vectors for
individual elements are evaluated numerically using Gaussian quadrature (see Section 17.9).
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16.7 Derivation of element matrices by minimization of total
potential energy

The element stiffness matrix [S∗] and the consistent load vector {F∗
b} (Eqs. 16.45 and 16.47)

can be derived by the principle of total potential energy (Section 9.6). Consider a finite element
subjected to body forces {p} and nodal forces {Q∗}. The total potential energy is defined as the
sum of potential energy and strain energy (Eq. 9.27):

� = −{D∗}T [Q∗]− ∫
ν

{
f
}T {p}dν + 1

2

∫
ν

{σ }T {ε}dν (16.51)

where {f } are displacement components at any point; {p} are body forces per unit volume applied
in the same directions as {f }; {σ } are stresses; {ε} are strains; and {D∗} are nodal displacements.
Substitution of Eqs. 16.36, 16.38, and 16.40 in the above equation gives

� = −{D∗}T {Q∗}−
∫

ν

{
D∗}T [L]T {p}dν

+ 1
2

∫
ν

{
D∗}T [B]T [d] [B]

{
D∗}dν (16.52)

The principle of minimum total potential energy can be expressed as (Eq. 9.30)

∂�

∂D∗
i

= 0 (16.53)

where the subscript i refers to any of the nodal displacements. Partial differentiation3 with
respect to each nodal displacement gives

∂�

∂ {D∗} = −{Q∗}−
∫

ν

[L]T {p}dν +
∫

ν

[B]T [d] [B]
{
D∗}dv = 0 (16.54)

Equation 16.54 can be rewritten in the form

[
S∗] {D∗}= −{F∗} (16.55)

where {F∗} are nodal forces which would prevent the nodal displacements. The restraining forces
are the sum of the nodal forces {Q∗} in a reversed direction and of the nodal equilibrants of the
body forces. Thus,

{
F∗}= {

F∗
a

}+ {Fb} (16.56)

where {F∗
a}=−{Q∗}, and {F∗

b} is the element consistent load vector. The matrix [S∗] is the element
stiffness matrix. Combining Eqs. 16.55 and 16.56 and comparing with Eq. 16.54, we obtain,
by analogy, Eqs. 16.47 and 16.45.

3 It can be shown that if a scalar quantity y is expressed as a sum of products of matrices y= (1/2){x}T [a] {x}+
{x}T {b}, where [a] and {b} are constants and [a] is symmetrical, differentiation of y with respect to xi for
i = 1,2, . . . gives ∂y/∂{x} = {∂y/∂x1, ∂y/∂x2, . . .} = [a]{x} + {b}.
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16.8 Derivation of shape functions

The displacement field {f } may be expressed as polynomials of the coordinates x and y (or
ξ and η) defining the position of any point. For example, the deflection w in a plate-bending
element or the translations u and ν in a plane-stress or a plane-strain element may be expressed as

f (x,y) =
[
1, x, y, x2, . . .

]
{A} = [P] {A} (16.57)

where {A} is a vector of constants, yet to be determined; and [P] is a matrix of polynomial
terms, the number of which equals the number of nodal degrees of freedom. Pascal’s triangle
(Figure 16.7) can be used to select the polynomial terms to be included in [P]. In general, the
lower-degree terms are used. Examples of the polynomial terms used in several elements are
given later in this section.

The nodal displacements {D∗} can be related to the constants {A} by substituting x and y (or
ξ and η) values at the nodes in Eq. 16.57 (or its derivatives). This gives

{
D∗}= [C] {A} (16.58)

The elements of [C] are known values depending upon (xi,yi), with i = 1,2, . . . referring to
the node numbers. The undetermined constants {A} can now be expressed in terms of {D∗} by
inversion:

{A} = [C]−1 {D∗} (16.59)

Substituting Eq. 16.59 into Eq. 16.57, and by analogy of the resulting equation with Eq. 16.36,
we obtain the shape functions

[L] = [P] [C]−1 (16.60)

As an example of polynomial selection, let us consider the bar element shown in Figure 16.3,
which is subjected to an axial force. With two degrees of freedom, [P] has only two terms:

[P] = [
1 ξ

]
(16.61)

For a bar in bending (Figure 16.4),

[P] = [
1 ξ ξ2 ξ3

]
(16.62)

x4 y4

x3 y3

x2 y2

x

xy

x2y xy2

x3y xy3x2y2

y

1

Figure 16.7 Pascal’s triangle.
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For a plate element subjected to in-plane forces (Figure 16.5), each of the displacements u and
ν is associated with four nodal displacements. A polynomial with four terms is used for each
of u and ν:

[P] = [
1 ξ η ξη

]
(16.63)

For the plate-bending element in Figure 16.6, with twelve degrees of freedom, we express the
deflection as w = [P] {A}, with

[P] = [
1 ξ η ξ2 ξη η2 ξ3 ξ2η ξη2 η3 ξ3η ξη3

]
(16.64)

For elements with two or more variables, such as x and y (or x, y, and z), the terms included
in [P] should be invariant if the reference axes x and y (or x, y, and z) are interchanged. Thus,
in Eq. 16.63 we should not replace the terms ξη by ξ2 or by η2. Similarly, in Eq. 16.64 we
should not replace ξ3η or ξη3 by ξ2η2. In other words, [P] includes symmetrical terms from
Pascal’s triangle (Figure 16.7). When this requirement is satisfied, the element does not have a
“preferred’’ direction. In consequence, the use of such an element in the analysis of the structure
shown in Figure 16.2 will give the same answers regardless of whether the global axes x and y
are as shown or are rotated through 90◦ so that x becomes vertical.

The invariance requirement is relaxed for the rectangular plate element subjected to in-plane
forces included in Figure 16.1. The element has four nodes with three nodal displacements per
node: u, ν, ∂v/∂x. The inclusion of ∂ν/∂x (but not of other derivatives of u and ν) makes the
element behave differently in the x and y directions. The polynomials used for u and for ν

are different:

u (x,y) = [1 x y xy] {A}u (16.65)

ν (x,y) =
[
1 x y x2 xy x3 x2y x3y

]
{A}ν (16.66)

The variation of ν in the x direction is cubic, while a linear variation is used for ν in the y
direction and for u in both the x and y directions. The shape functions for the element are given
in Eq. 16.67 (see Example 16.3).

This element4 gives excellent accuracy when used for structures which have beam-like beha-
vior, e.g. folded plates and box girders. For this use, the element local x axis must be in the
direction of the “beam’’. For comparison of accuracy of results of this element with other
elements, see Prob. 17.18.

Example 16.1: Beam in flexure
Derive the shape functions for the bar element in Figure 16.4. The deflection v is expressed
as a cubic polynomial of ξ , where ξ = x/l (Eqs. 16.57 and 16.62).

ν = [
1 ξ ξ2 ξ3

] {A} = [P] {A}

4 The rectangular element considered here is a special case of the quadrilateral element referred to as
QLC3. See Sisodiya, R., Cheung, Y. K. and Ghali, A., “New Finite Element with Application to Box
Girder Bridges,’’ Proceedings, The Institution of Civil Engineers, London, Supplement 1972, Paper 7495,
pp. 207–225. The combination of QLC3 with the rectangular bending element shown in Figure 16.6
gives a good shell element with three translations and three rotations per node for the analysis of spatial
structures (See 17.10.1).
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The nodal displacements defined by Eq. 16.27 are substituted in the above equations to
give

{D∗} =

⎡
⎢⎢⎢⎣

1 0 0 0

0 1/l 0 0

1 1 1 1

0 1/l 2/l 3/l

⎤
⎥⎥⎥⎦ {A}

Inversion of the square matrix in the above equation gives

[C]−1 =

⎡
⎢⎢⎢⎣

1 0 0 0

0 l 0 0

−3 −2l 3 −l

2 l −2 l

⎤
⎥⎥⎥⎦

The product [P] [C]−1 gives the shape functions [L] (Eq. 16.28).

Example 16.2: Quadrilateral plate subjected to in-plane forces
Derive the shape functions for the plane-stress or plane-strain quadrilateral element shown
in Figure 16.5.

We have u or ν = [P]{A}, with [P] given in Eq. 16.63. Substituting for ξ and η by their
values at the four corners, we write for u:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u1

u2

u3

u4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎣

1 −1 −1 1

1 1 −1 −1

1 1 1 1

1 −1 1 −1

⎤
⎥⎥⎥⎦ {A}

Inversion of [C], which is the square matrix in this equation, gives

[C]−1 = (1/4)

⎡
⎢⎢⎢⎣

1 1 1 1

−1 1 1 −1

−1 −1 1 1

1 −1 1 −1

⎤
⎥⎥⎥⎦

Substitution in Eq. 16.60 gives

[L1,L2,L3, L4] = 1
4 [1 − ξ − η + ξη, 1 + ξ − η − ξη, 1 + ξ + η + ξη,

1 − ξ + η − ξη]

which is the same as Eq. 16.32. The same shape functions apply to ν.
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Example 16.3: Rectangular element QLC3
Using the polynomials in Eq. 16.66, derive the shape functions for the displacement ν in a
rectangular plate element QLC3 subjected to in-plane forces (Figure 16.1).

The nodal displacements are defined as

{
D∗}=

{(
u, v,

∂ν

∂x

)
1

,
(

u,ν,
∂ν

∂x

)
2

,
(

u,ν,
∂ν

∂x

)
3

,
(

u,ν,
∂ν

∂x

)
4

}

Using the symbols ξ = x/b and η = y/c, Eq. 16.66 can be written as ν = [P]{Ā}, with

[P] = [
1 ξ η ξ2 ξη ξ3 ξ2η ξ3η

]
The nodal displacements associated with ν are

{
D∗

v

}= {
D∗

2, D∗
3,D∗

5,D∗
6,D∗

8,D∗
9,D∗

11,D∗
12

}
Substituting for ξ and η by their values at the nodes, we can write {D∗

v} = [C] {Ā}, with

[C] =

2

3

5

6

8

9

11

12

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 1/b 0 0 0 0 0 0

1 1 0 1 0 1 0 0

0 1/b 0 2/b 0 3/b 0 0

1 1 1 1 1 1 1 1

0 1/b 0 2/b 1/b 3/b 2/b 3/b

1 0 1 0 0 0 0 0

0 1/b 0 0 1/b 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Inversion of [C] and substitution in Eq. 16.60 gives the eight shape functions associated
with ν :L2, L3, L5, L6, L8, L9, L11, L12. For reference, we give the complete shape functions
for the element as follows:

L1 = (1 − ξ) (1 − η) L2 = (
1 − 3ξ2 + 2ξ3

)
(1 − η) L3 = bξ (ξ − 1)2 (1 − η)

L4 = ξ (1 − η) L5 = ξ2 (3 − 2ξ) (1 − η) L6 = bξ2 (ξ − 1) (1 − η)

L7 = ξη L8 = ξ (3 − 2ξ) η L9 = bξ2 (ξ − 1) η

L10 = (1 − ξ) η L11 = (
1 − 3ξ2 + 2ξ3

)
η L12 = bξ (ξ − 1)2 η

(16.67)

These functions can be used to express u and ν by the equation {u, ν} = [L]{D∗} (see
Eq. 16.25), with

[L] =
[

L1 0 0 L4 0 0 L7 0 0 L10 0 0
0 L2 L3 0 L5 L6 0 L8 L9 0 L11 L12

]
(16.68)
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16.9 Convergence conditions

In principle, it is possible to use any continuous shape function for the displacement field of
a finite element; however, polynomials are commonly used. For monotonic convergence to the
correct answer as smaller elements are used, the shape functions should satisfy the following
three requirements:

1. The displacements of adjacent elements along a common boundary must be identical.

It can be seen that this condition is satisfied in the plane-stress or plane-strain element in
Figure 16.5 and in the plate-bending element in Figure 16.6. Along any side 1-2, the translations
u and ν in Figure 16.5 or the deflection w in Figure 16.6 are functions of the nodal displacements
at 1 and 2 only. It thus follows that two adjacent elements sharing nodes 1 and 2 will have the
same nodal displacements at the two nodes and the same u and ν or w along the line 1-2.

In some cases, the first partial derivatives of the element should also be compatible. This
condition needs to be satisfied in plate-bending elements but not in plane-stress or plane-strain
elements.

Two adjacent elements of the type shown in Figure 16.6 have the same deflection and hence
the same slope along the common edge. However, normal to the common edge, the tangents
of the deflected surfaces of the two elements have the same slope only at the nodes. Away from
the nodes, the tangents normal to a common edge can have slopes differing by an angle a. The
quantity (1/2)

∫
Mnα ds represents, for the assembled structure, strain energy not accounted for

in the process of minimizing the total potential energy (see Eq. 16.52); here, Mn is the resultant
of stresses normal to the common edge and ds is an elemental length of the edge.

The rule to ensure convergence is that the compatibility be satisfied for [L] and its deriv-
atives of order one less than the derivatives included in [B]. For a plate-bending element, [B]
includes second derivatives (Eqs. 16.39 and 16.19): −∂2w/∂x2,−∂2w/∂y2, 2∂2w/∂x∂y. Thus,
compatibility is required for ∂w/∂x and ∂w/∂y in addition to w.

Several elements, said to be incompatible or nonconforming, such as the element in
Figure 16.6, do not satisfy the requirement of compatibility of displacement derivatives, and
yet some of these elements give excellent results. An explanation of this behavior is that the
excess stiffness, which is a characteristic of displacement-based finite elements, is compensated
by the increase in flexibility resulting from a lack of compatibility of slopes.

Nonconforming elements converge towards the correct answer when the incompatibilities
disappear as the mesh becomes finer and the strains within the element tend to be constants.

2. When the nodal displacements {D∗} correspond to rigid-body motion, the strains [B] {D∗}
must be equal to zero.

This condition is easily satisfied when the polynomial matrix [P] in Eq. 16.57 includes the
lower-order terms of Pascal’s triangle. For example, for the plate-bending element (Figure 16.6),
inclusion of the terms 1, x, y would allow w to be represented by the equation of an inclined plane.

We can verify that the shape functions in Eq. 16.35 for the element shown in Figure 16.6
allow translation as a rigid body by setting w = 1 at the four corners and θx = θy = 0 at all
nodes; Eq. 16.25 will then give w = 1, representing unit downward translation. (This is because
L1 + L4 + L7 + L10 = 1, as noted earlier.) To check that the shape functions allow rigid-body
rotation, let w = 1 at nodes 1 and 2, and θx = −1/c at the four nodes of the element, while all
other nodal displacements are zero. It can be seen that substitution of these nodal displacements
and of Eq. 16.35 in Eq. 16.25 gives w = 1 − η, which is the equation of the plane obtained by
rotation of the element through an angle θx =−1/c about the edge 4-3. In a similar way, we can
verify that the shape functions allow a rigid-body rotation θy = constant.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finite-element method 499

3. The shape functions must allow the element to be in a state of constant strain.

This is required because, as the elements become smaller, the strains within individual elements
tend to constants. Thus, a smooth curve (or surface) representing the strain variation can be
approximated by step variation.

This requirement will be satisfied when the polynomial [P] in Eq. 16.57 includes the lower
terms which contribute to the strain. For example, for the rectangular bending element shown in
Figure 16.6, the strains are {ε} = {−∂2w/∂x2,−∂2w/∂y2, 2∂2w/(∂x∂y)}; the terms x2, xy, and
y2 of Pascal’s triangle must be included in [P].

We can verify that the shape functions in Eq. 16.35 allow a constant curvature, i.e.
−∂2w/∂x2 = constant, by setting θy =1 at nodes 1 and 4, and θy =−1 at nodes 2 and 3, while the
remaining nodal displacements are equal to zero. Substitution in Eq. 16.36 gives w = bξ(1 − ξ),
which represents the surface of a cylinder with a constant curvature of 2/b.

For the same element, 2∂2w(∂x∂y) will be constant (=−4/bc) when the element is twisted so
that w = 1 at nodes 2 and 4, with the edges remaining straight. Thus, the nodal displacements
will be: w = 0 at 1 and 3; w = 1 at 2 and 4; θx = 1/c at 1 and 4; θx =−1/c at 2 and 3; θy =−1/b
at 1 and 2; and θy = 1/b at 3 and 4.

Requirement 2 can be considered to be a special case of requirement 3 when the constant strain
is zero. The “patch test’’ (Section 16.10) is a numerical method for nonconforming elements to
verify that an assemblage of elements can assume a constant-strain state.

16.10 The patch test for convergence

It is advisable to perform a patch test before a new computer program or a new element is adop-
ted.5 The test is conducted on a patch of several elements (Figure 16.8). Prescribed displacements
are introduced at boundary nodes which correspond to constant-strain conditions. If the strains
determined by the analysis are constant, the patch test is passed. If the test is not passed, con-
vergence with an arbitrary fine mesh is not ensured. Passing the patch test for conforming or
nonconforming elements means that convergence requirements 2 and 3 in the preceding section
are satisfied.

In the patch of plane-stress or plane-strain elements shown in Figure 16.8, a constant-strain
state should exist for all elements of the patch when the displacement at the boundary nodes are
prescribed by

u = a1x + a2y + a3 ν = a4x + a5y + a6

b

x

y

bt/2 bt/2bt bt

t = plate thickness
σy = –1

b b

Figure 16.8 Model for the patch test for the plane-stress or plane-strain element of Figure 16.5.
Consistent nodal forces correspond to a uniform stress σy = −1 on the top edge of the
patch.

5 The importance of the patch test, what it achieves and the philosophy behind it are the subject of a chapter
in Irons, B. M. and Ahmad, S., Techniques of Finite Elements, Ellis Horwood, Chichester, England, and
Halsted Press (Wiley), New York, 1980 (see pp. 149–162).
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where a1 to a6 are arbitrary constants. The inner nodes should be left free. The expected strains
are (Eq. 16.6): {εx, εy, γxy} = {a1, a5, (a2 + a4)}. When the patch test is passed, the computed
strains agree with the exact values to the limit of computer accuracy.

Alternatively, appropriate supports and consistent nodal forces (calculated by Eq. 16.47) may
be introduced to represent the state of constant stress. An example of this is shown in Figure 16.8,
in which is represented a constant stress σy =−1. Other constant-stress (or constant-strain) states
and more than one geometry should be tested to guarantee convergence.

Example 16.4: Axial forces and displacements of a bar of variable cross section
Generate the stiffness matrix and the vector of restraining forces due to a uniform rise in
temperature of T degrees for the bar shown in Figure 16.3. Assume that the cross section
varies as a = a0(2 − ξ), where a0 is constant. The coefficient of thermal expansion is α and
the modulus of elasticity is E.

Using the shape functions of Eq. 16.26, the [B] matrix is (Eq. 16.39)

[B] = d
dx

[1 −ξ ξ ] = d
ldξ

[1 −ξ ξ ] = 1
l

[−1 1]

The elasticity matrix in this case has one element [d]≡ [E]. Substitution in Eq. 16.45 gives
the stiffness matrix:

[
S∗]= l

∫ 1

0

1
l

{ −1
1

}
[E]

1
l

[−1,phantom−1
]
a0 (2 − ξ)dξ

or

[
S∗]= Ea0

l

[
1 −1

−1 1

][
2ξ − ξ2

2

]1

0
= 1.5Ea0

l

[
1 −1

−1 1

]

If the effect of the temperature change is not restrained, the strain is ε0 = αT. The nodal
forces to restrain nodal displacements (Eq. 16.50) are then

{Fb}m = −l
∫ 1

0

1
l

{ −1
1

}
EαTa0 (2 − ξ)dξ = 1.5EαTa0

{
1

−1

}

The same results would be obtained if the member were treated as a prismatic bar with
a constant cross-sectional area equal to the average of the values at the two ends. The
exact answer for the stiffness matrix is the same as above with the constant 1.5 replaced
by (1/ ln 2) = 1.443 (obtained by considering the true deformed shape). As expected, the
use of assumed shape functions resulted in an overestimate of stiffness.

Example 16.5: Stiffness matrix of a beam in flexure with variable cross section
Determine element S∗

12 of the stiffness matrix for the bar shown in Figure 16.4, assuming the
second moment of the cross section to vary as I = I0(1 + ξ), where I0 is constant. Consider
bending deformations only; E = constant. Also, generate the vector of nodal equilibrants
of a uniform load q per unit length covering the entire length.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finite-element method 501

For a beam in bending, [d] ≡ [EI], {σ } ≡ {M}, and {ε} ≡ −d2v/dx2. Using the shape
functions in Figure 16.4, the [B] matrix is (Eq. 16.39)

[B] = − d2

dx2 [1 − 3ξ2 + 2ξ3 lξ (ξ − 1)2 ξ2 (3 − 2ξ) lξ2 (ξ − 1)
]

[B] = − 1
l2

[−6 + 12ξ l (6ξ − 4) 6 − 12ξ l (16ξ − 2)
]

The required element of the stiffness matrix (Eq. 16.44) is

S∗
12 =

∫ 1

0

(
6 − 12ξ

l2

)
EI0 (1 + ξ)

(−6ξ + 4
l

)
ldξ = 8

EI0

l2

The exact answer can be calculated by Eq. 11.15, giving S∗
12 = 7.72 EI0/l2. As expected,

the stiffness is overestimated by the use of the assumed shape function L2 instead of the
true deflected shape due to D∗

2 = 1.
The entire stiffness [S∗] derived by Eq. 16.45 may be compared with the exact stiffness

matrix (by Eq. 11.15) in the answers to Prob. 16.1
The nodal forces in equilibrium with the uniform load q, with nodal displacements

prevented, are (Eq. 16.47)

{Fb}m = −
∫ 1

0

⎧⎪⎪⎨
⎪⎪⎩

1 − 3ξ2 + 2ξ3

1ξ (ξ − 1)2

ξ2 (3 − 2ξ)

1ξ2 (ξ − 1)

⎫⎪⎪⎬
⎪⎪⎭ql dξ =

⎧⎪⎪⎨
⎪⎪⎩

−ql/2
−ql/12
−ql/2

−ql2/12

⎫⎪⎪⎬
⎪⎪⎭

These are the same forces as for a prismatic beam; again, an approximation is involved in
accepting the deflected shapes of a prismatic bar for a bar with a variable I.

Example 16.6: Stiffness matrix of a rectangular plate subjected to in-plane forces
Determine element S∗

22 of the stiffness matrix for a rectangular plane-stress element of
constant thickness h (Figure 16.1). The shape functions for this element are derived in
Example 16.3. Determine also the stresses at any point due to D∗

2 = 1.
Due to D∗

2 = 1, the displacements at any point are given by (Eqs. 16.67 and 16.68) as{
u
ν

}
=
{

0
L2

}
=
{

0(
1 − 3ξ2 + 2ξ3

)
(1 − η)

}

The strain at any point (Eqs. 16.39 and 16.11) is

{B}2 =
⎧⎨
⎩

0
(1/c)

(−1 + 3ξ2 − 2ξ3
)(

1/b
) (−6ξ + 6ξ2

)
(1 − η)

⎫⎬
⎭

The required element of the stiffness matrix is given by Eq. 16.44 as

S∗
22 = bch

∫ 1

0

∫ 1

0
{B}T

2

[
d
] {B}2 dξdη
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Substituting for [d] from Eq. 16.12 and performing the integral gives

S∗
22 = 1

Eh
1 − ν2

[
13
35

(
b
c

)
+ 1

5

( c
b

)
(1 − ν)

]

The stress at any point due to D∗
2 = 1 is (Eq. 16.42)

{σu}2 = [
d
] {B}2

= E
1 − ν2

{
ν

c

(
−1 + 3ξ2 − 2ξ3

)
,

1
c

(
−1 + 3ξ2 − 2ξ3

)
,
3 (1 − ν)

b
(1 − η)

(
−ξ + ξ2

)}

16.11 Constant-strain triangle

The triangular element shown in Figure 16.9 may be used in a plane-stress or plane-strain
analysis. The element has three nodes at the corners, with two nodal displacements u and ν. The

x

*S51

*S61

*S31

*S41

*S11

*S21

k k

i i

j j

5

1

2

3

4

6

(a)

y

x
(b)

y

σy = d21 bi

k

i

j

σx=d11 bi

(c)
k

i

j

k

τxy=d33 ci

i

j

Figure 16.9 Triangular plane-stress or plane-strain element. (a) Nodal coordinates. (b) and (c) Stresses
on element edges lumped in equivalent forces at the nodes.
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element is called a constant-strain triangle because the strain, and hence the stress, within the
element is constant.

Each of u and ν is associated with three of the six nodal displacements. The same polynomial
may therefore be used for the two variables:

[P] = [1, x, y] (16.69)

We shall now derive the shape functions associated with u, which are the same as the shape
functions associated with v. At the three nodes we have

⎧⎨
⎩

ui

uj

uk

⎫⎬
⎭=

⎡
⎣ 1 xi yi

1 xj yj

1 xk yk

⎤
⎦ {A} (16.70)

or

{u} = [C] {A} (16.71)

Inversion of [C], using Cramer’s rule (Appendix A, Section A.9) or other methods, gives

[C]−1 = 1
2�

⎡
⎣ ai aj ak

bi bj bk
ci cj ck

⎤
⎦ (16.72)

where 2� is the determinant of [C] = 2× area of triangle. Here,

ai = xjyk − yjxk bi = yi − yk ci = xk = xj (16.73)

By cyclic permutation of the subscripts i, j, and k, similar equations can be written for {aj,bj, cj}
and for {ak,bk, ck}.

Substitution in Eq. 16.60 gives the shape functions:

[L] = 1
2�

[(
ai + bix + ciy

) (
aj + bjx + cjy

) (
ak + bkx + cky

)]
(16.74)

The displacements {u, ν} at any point may be expressed in terms of the nodal displacements
(Eq. 16.25):

{
u
ν

}
=
[

L1 0 L2 0 L3 0
0 L1 0 L2 0 L3

]{
D∗} (16.75)

where

{
D∗}= {

ui,νi, uj,νj,uk,νk
}

The matrix [B], relating strains {ε} to {D∗} is (Eqs. 16.39 and 16.11)

[B] = 1
2�

⎡
⎣ bi 0 bj 0 bk 0

0 ci 0 cj 0 ck
ci bi cj bj ck bk

⎤
⎦ (16.76)
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The product [d] [B] gives the stresses due to unit nodal displacements (Eq. 16.42):

[σu] = 1
2�

⎡
⎢⎣

d11bi d21ci d11bj d21cj d11bk d21ck

d21bi d22ci d21bj d22cj d21bk d22ck

d33ci d33bi d33cj d33bj d33ck d33bk

⎤
⎥⎦ (16.77)

where dij are elements of the elasticity matrix [d], given by Eqs. 16.12 and 16.13 for the states
of plane stress and plane strain respectively. It can be seen that all the elements of [B] and [σu]
are constants, indicating constant strain and stress. If the thickness h is constant, the stiffness
matrix of the element is (Eq. 16.45)

[
S∗]= h� [B]T [d] [B] = h� [B]T [σu] (16.78)

that is,

[S∗] = h
4�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d11b2
i + d33c2

i symmetrical

d21bici + d33bici d22c2
i + d33b2

i

d11bibj + d33cicj d21cibj + d33cjbi d11b2
j + d33c2

j

d21bicj + d33bjci d22cicj + d33bibj d21bjcj + d33cjbj

d11bibk + d33cick d21cibk + d33bick d11bjbk + d33cjck

d21bick + d33bkci d22cick + d33bibk d21bjck + d33cjbk

d22c2
j + d33b2

j

d21cjbk + d33bjck d11b2
k + d33c2

k

d22cjck + d33bjbk d21bkck + d33ckck d22c2
k + d33b2

k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(16.79)

If the element is subjected to uniform body forces with intensities per unit volume of {p}={qx,qy}
the equilibrants at the nodes, when the nodal displacements are prevented, are (Eq. 16.47)

{
F∗

b

}= −h
∫ ∫ [

L1 0 L2 0 L3 0
0 L1 0 L2 0 L3

]T {
qx

qy

}
dx dy (16.80)

Evaluation of the integrals is simplified by noting that
∫ ∫

dx dy = �;
∫ ∫

xdx dy is the first
moment of area about the y axis, so that

∫ ∫
ydx dy = (�/3)(yi + yj + yk). The consistent vector

of forces in equilibrium with the body forces thus becomes

{
F∗

b

}= �h
3

{
qx, qy,qx,qy,qx,qy

}
(16.81)

This means that one-third of the load on the triangle is assigned to each node. The same distri-
bution could have been suggested intuitively. (However, it is not always possible to determine
{F∗

b} intuitively; see Figure 17.7.)
The consistent vector of restraining forces when the element is subjected to a rise in

temperature of T degrees is obtained by substitution of Eqs. 16.49 and 16.76 into Eq. 16.50:

{Fb}m = −αTh
2

(
d11 + d21

) {
bi, ci,bj, cj,bk, ck

}
(16.82)

Here, we have assumed that the material is isotropic (d22 = d11).
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16.12 Interpretation of nodal forces

In the derivation of the stiffness matrix of individual elements, the forces distributed along the
edges of the elements are replaced by equivalent forces lumped at the nodes. The equivalent
forces are determined by the use of the principle of virtual work.

This approach can be seen in the example of the constant-strain triangular element shown in
Figure 16.9. For a unit nodal displacement, say, D∗

1 = 1, while other nodal displacements are
zero, the stresses are (Eq. 16.77, first column of [σu])

{σ } = 1
2�

{
d11bi, d21bi,d33ci

}
(16.83)

where dij are elements of the elasticity matrix [d] given in Eqs. 16.12 and 16.13 for plane-stress
or plane-strain states respectively; bi = yj − yk; ci = xk − xj; and � = area of the triangle.

The stresses are represented by uniform forces on the edges of the element in Figure 16.9c.
The distributed forces in Figure 16.9c are lumped at the nodes in Figure 16.9b. The force in

the x or y direction at a node is equal to the sum of one-half of the distributed load on each of
the two sides connected to the node. For example, the horizontal force at node k is one-half of
the load on edges ki and kj; thus,

S∗
51 = h

{σx

2

[
(yi − yk) − (

yj − yk
)]+ τxy

2

[(
xj − xk

)− (xi − xk)
]}

(16.84)

We can now verify that this is the same as element S∗
51 of the stiffness matrix in Eq. 16.79. Any

other element of the stiffness matrix can be verified in a similar way.
Equation 16.84 means that the virtual work of force S∗

51 during nodal displacement D∗
1 =

1 is the same as the work done by the forces distributed over edges ki and kj during their
corresponding virtual displacements (which, in this example, vary linearly).

The consistent load vector also represents the distributed forces lumped at the nodes. If the
element shown in Figure 16.9b is subjected to a rise in temperature of T degrees and the element
expansion is restrained, the stresses in an isotropic material will be (Eqs. 16.48 and 16.49)

{σr} = − [d] {ε0} = −αT
(
d11 + d21

)⎧⎨⎩
1
1
0

⎫⎬
⎭ (16.85)

where a is the coefficient of thermal expansion.
Under the conditions of restraint, uniform forces act on the edges so as to produce σx = σy =

−αT(d11 + d21). Lumping one-half of the distributed load on any edge at the two end nodes
gives the nodal forces of Eq. 16.82.

16.13 General

The displacement method of analysis is applicable to structures composed of finite elements
which may be one-, two-, or three-dimensional. The analysis requires the generation of stiffness
and stress matrices and of load vectors for individual elements. Exact element matrices can be
generated only for bars. Procedures to generate approximate matrices for elements of any type
have been presented in this chapter. Convergence to the exact solution can be ensured as a finer
finite-element mesh is used. The general procedures have been applied to bar elements and to
plate elements subjected to in-plane forces and to bending. Other finite elements are discussed
in Chapter 17.
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Assemblage of stiffness matrices and load vectors of individual elements, generation of struc-
ture equilibrium equations and their solutions, and the use of computers are discussed in
Chapters 21 and 22. This is done mainly for structures composed of bar elements (framed
structures). However, the same techniques apply when any type of finite element is used.

Problems

16.1 Determine any element S∗
ij for the bar of Example 16.5, using the shape functions in

Figure 16.4. Compare the answer with an exact value as given by Eq. 11.15.
16.2 Consider the member of Prob. 1 as a cantilever fixed at the end x = l and subjected to a

transverse concentrated load P at the free end. Find the deflection at the tip of the cantilever,
using the two matrices given in the answers to Prob. 1.

16.3 For the prismatic bar shown, generate the stiffness matrix corresponding to the three
coordinates indicated. Use the following shape functions: L1 = −(1/2)ξ(1 − ξ);L2 =
(1/2)ξ(1 + ξ); L3 = 1 − ξ2 (Lagrange polynomials, Figure 17.3). Condense the stiffness
matrix by elimination of node 3.

l—
2

ξ=–1 ξ=0 ξ=1

l—
2

1 3 2

Prob. 16.3

16.4 Assume that the displacement at coordinate 1 of the bar element of Prob. 16.3 is prevented.
A spring support is provided at coordinate 2 so that F2 = −Ku2, where F2 and u2 are,
respectively, the force and the displacement at coordinate 2, and K is the spring constant
equal to Ea/(3l). What will be the displacements at coordinates 2 and 3 and the stress in
the bar when it is subjected to a rise in temperature of T = (1/2)T0(1 + ξ) where T0 is a
constant? Use the shape functions given in Prob. 16.3. Do you expect exact answers?

16.5 Determine S∗
11, S∗

21, S∗
31, S∗

41, and S∗
51 of the stiffness matrix of the plane-stress finite element

in Figure 16.5. Assume that the element is rectangular with sides b and c parallel to the x
and y axes respectively, and is made of an isotropic material with ν =0.2. Element thickness
is constant and equal to h. The nodal displacement vector and shape functions are defined
by Eqs. 16.30 to 16.32.

16.6 Determine the consistent vector of restraining forces {F∗
b} for a rectangular plane-stress

element (Example 16.2) subjected to a uniform temperature rise of T degrees. Assume
an isotropic material with v = 0.2. Only the first two elements of the vector need to be
determined by Eq. 16.50; the remaining elements can be generated by consideration of
equilibrium and symmetry.

16.7 Considering symmetry and equilibrium, use the results of Prob. 16.5 to generate [S∗] for
the element when b = c. For a comparison of the accuracy of this element with other
elements, see Prob. 17.18.

16.8 Use the results of Prob. 16.5 to calculate the deflection at the middle of a beam idealized
by two elements as shown. Take the beam width as h and Poisson’s ratio as 0.2. Compare
the result with that obtained by beam theory, considering bending and shear deformations.
Note that the deflection calculated by the finite-element method is smaller than the more
accurate value obtained by beam theory and that the percentage error increases with an
increase in the ratio b/c.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finite-element method 507

P/2

P/2

c

b b

Prob. 16.8

16.9 Use the displacement determined in Prob. 16.8 to calculate the stresses in the top fiber at
the fixed end.

16.10 Determine the consistent vector of restraining forces {F∗
b} for the rectangular plane-stress

element considered in Example 16.3 when it is subjected to a uniform temperature rise of
T degrees. Assume an isotropic material. Only the first three elements of the vector need
to be determined by Eq. 16.50; the remaining elements can be obtained by considering
equilibrium and symmetry.

16.11 Determine S∗
11 for the rectangular plate-bending element shown in Figure 16.6. The nodal

displacement vector and the shape functions are defined in Eqs. 16.33 to 16.35. Use the
result to calculate the central deflection of a rectangular plate 2b × 2c with built-in edges
and subjected to a concentrated load P at mid-point. Consider an isotropic material with
v =0.3. Idealize the plate by four elements and perform the analysis for one element only,
taking advantage of symmetry. Use Figure 16.6 to represent the element analyzed with
node 1 at the center of the plate. Determine also Mx at node 2.

16.12 The answers to this problem are given in terms of the ratio b/c. For comparison, we give
here the exact6 answers for a square plate (b/c = 1): deflection = 0.244 Pb2/Eh3; Mx at
node 2 = −0.126P. The deflection is smaller than the finite-element solution: why?

16.13 The figure shows identical plane-stress elements with three coordinate systems. For the
system in (a), calculate S∗

11, S∗
21, S∗

31, S∗
33, S∗

34, and S∗
44, and, by considering equilibrium

and symmetry, generate the remaining elements of [S∗]. What are the transformation
matrix [T] and the equation to be used to transform [S∗] into [S] for the coordinate

(a)

5*

2*

1*

3*

4*

6*
(c) 4

3

1

2 6

5
3

4

5

6

1

2
α

(b)

Prob. 16.13

6 From Timoshenko, S. and Goodier, J. N., Theory of Elasticity, 2nd ed., McGraw-Hill, New York, 1951.



508 Finite-element method

system in (b)? What is the value of the angle a to be substituted in the equations to give
[S] corresponding to the coordinates in (c)? Consider an isotropic material with Poisson’s
ratio v = 0. Element thickness is h; element sides are b, b, b

√
2.

16.14 Using the answers of Prob. 16.2 and taking advantage of symmetry, determine, for the
beam shown, the nodal displacements and the stress in element 2-6-3. The beam is of
isotropic material; v = 0; beam width is h. The structure idealization is composed of
isosceles right-angle triangles of the same size. The equilibrium equations can be checked
by substitution of {D} given in the answers.

x, u

b b

P

1 4

5

6

8

7

9

2

3

P

b

b

y, v

Prob. 16.14

16.15 Generate columns 1, 2 and 3 of the [B] matrix for element QLC3 (Figure 16.1).
16.16 Calculate any stiffness coefficient S∗

ij for a rectangular plane-stress element QLC3
(Figure 16.1 and Example 16.3). Consider an isotropic square element of side b, con-
stant thickness h and Poisson’s ratio v = 0.2. The stiffness matrix is given in the answers
and is used in Prob. 17.18 to compare the accuracy of results when using this approach
and two other types of element (the element in Figure 16.5 and the hybrid element of
Example 17.6).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 17

Further development of f inite-element
method

17.1 Introduction

This chapter is a continuation of Chapter 16, introducing various types of finite elements which
are frequently used in practice.

The isoparametric formulation1 is widely used because of its effectiveness and because it
allows the elements to have curved shapes. In this chapter it is used for one-, two-, and three-
dimensional elements. For this purpose, functions in natural coordinates ξ , (ξ ,η) or (ξ ,η, ζ ) are
used to describe the geometry of the element, and the same functions are used as shape functions
describing the variation of the displacement components over the elements.

The integration involved in the generation of the finite-element matrices is, in the majority
of cases, evaluated numerically. The Gauss quadrature method, which is frequently used, is
discussed in Section 17.9.

Sections 17.10 and 17.11 present elements suitable for the analysis of shell structures and
solids of revolution.

Instead of the division of a structure into elements by a mesh in two or three directions, it
is possible to perform the analysis on an assemblage of finite strips or finite prisms. For this
purpose the structure is divided in one dimension or in two dimensions only, instead of two
or three dimensions respectively. The division results in finite strips or finite prisms running
the full length of the structure. The analysis using this structural idealization is discussed in
Section 17.12.

Section 17.13 is an introduction to the hybrid elements which were briefly discussed in
Section 16.1.

17.2 Isoparametric elements

Isoparametric elements can be in the form of a curved bar, a triangular or quadrilateral plate
with curved edges, or a three-dimensional brick with curved edges. The quadrilateral plane-stress
or plane-strain element in Figure 16.5 is an example of an isoparametric element. The nodal
displacements for the element are{

D∗}= {u1,ν1, u2,ν2,u3,ν3,u4,v4} (17.1)

The displacements u and v at any point are determined from the nodal displacements, using
shape functions:

u = �Liui ν = �Liνi (17.2)

1 The technique was developed by B. M. Irons: see the following two papers by this author: “Numerical
Integration Applied to Finite Element Methods’’. Conf. Use of Digital Computers in Struct. Eng., Univ. of
Newcastle, 1966, and, “Engineering Application of Numerical Integration in Stiffness Method’’, JAIAA
(14), 1966, pp. 2035–2037.
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where Li with i = 1, 2, 3, 4 represents shape functions of the natural coordinates ξ and η. The
shape functions for this element are given by Eq. 16.32, which is repeated here:

Li = 1
4

(1 + ξξi) (1 + ηηi) (17.3)

The natural coordinates varying between −1 and 1 (Figure 16.5) define the relative position of
any point with respect to the corner nodes. The same shape functions can be used to determine
the (x, y) coordinates of any point in terms of ξ and η:

x = �Lixi y = �Liyi (17.4)

where (xi,yi) with i = 1, 2, 3, 4 represent cartesian coordinates at the nodes. The element is
called isoparametric because the same interpolation functions are used to express the location
of a point and the displacement components in terms of ξ and η.

The strain components at any point involve derivatives ∂/∂x and ∂/∂y with respect to the
cartesian coordinates. Derivatives of any variable g with respect to the natural coordinates are
obtained by the chain rule:

∂g
∂ξ

= ∂g
∂x

∂x
∂ξ

+ ∂g
∂y

∂y
∂ξ

∂g
∂η

= ∂g
∂x

∂x
∂η

+ ∂g
∂y

∂y
∂η

(17.5)

We can rewrite Eq. 17.5 in matrix form:{
∂g/∂ξ

∂g/∂η

}
= [J]

{
∂g/∂x
∂g/∂y

}
;
{

∂g/∂x
∂g/∂y

}
= [J]−1

{
∂g/∂ξ

∂g/∂η

}
(17.6)

Here, [ J ] is the Jacobian matrix; it serves to transform the derivatives of any variable with respect
to ξ and η into derivatives with respect to x and y, and vice versa. The elements of [ J ] are given by

[J] =
[

∂x/∂ξ ∂y/∂ξ

∂x/∂η ∂y/∂η

]
(17.7)

When Eq. 17.4 applies, the Jacobian can be expressed as

[J] = �

[
xi (∂Li/∂ξ) yi (∂Li/∂ξ)

xi (∂Li/∂η) yi (∂Li/∂η)

]
(17.8)

The element geometry is defined by the cartesian coordinates (x, y) at the four nodes. For a
given quadrilateral, the Jacobian varies, with ξ and η defining the position of any point.

The strains at any point are given by {ε} = [∂] {u,v}; the derivative operator [∂] is defined by
Eq. 16.11. Substitution of Eq. 17.2 gives

{ε} =
n∑

i=1

{
[B]i

{
ui

νi

}}
(17.9)

where n is the number of nodes; for the quadrilateral element in Figure 16.5, n = 4. Here,

[B]i =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂Li

∂x
0

0
∂Li

∂y
∂Li

∂y
∂Li

∂x

⎤
⎥⎥⎥⎥⎥⎥⎦

; [B] = [[B]1 [B]2 . . . [B]n] (17.10)
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When [ J ] and its inverse are determined at a particular point, numerical values of the derivatives
(∂Li/∂x) and (∂Li/∂y) required for generating [B]i are calculated from ∂Li/∂ξ and ∂Li/∂η via
Eq. 17.6. The integrals involved in the generation of the element stiffness matrix and of the
consistent load vector are obtained numerically.

The element stress matrix relating the stresses at any point to nodal displacements
(Eq. 16.42) is

[σu] = [
d
]
[B] (17.11)

The element stiffness matrix is given by (Eq. 16.45)

[
S∗]= h

∫ 1

−1

∫ 1

−1
[B]T [d] [B]

∣∣J∣∣dξdη (17.12)

where h is the element thickness, which is assumed constant, and

∣∣J∣∣dξdη = da (17.13)

Here, da is the elemental area (parallelogram) shown in Figure 17.1. The determinant of the
Jacobian serves as a scaling factor (length2) to transform the dimensionless product dξdη into
an elemental area. The validity of Eq. 17.13 can be verified by considering the following areas:

parallelogram ABCD = rectangle EFGH − 2(triangle EAD + triangle AFB)

If the element is subjected to a rise in temperature of T degrees and the expansion is restrained,
the stress {σr} will be the same as given by Eq. 16.48, and the consistent vector of restraining
forces will be given by (Eq. 16.50)

{
F∗

b

}= −h
∫ 1

−1

∫ 1

−1
[B]T [d] {ε0}

∣∣J∣∣dξdη (17.14)

where {ε0} represents the change in strains if the expansion is free to occur (Eq. 16.49).
For a quadrilateral element, the determinant |J| at the center of the element is equal to one-

quarter of its area. For a rectangle, [ J ] is constant. In general, the determinant |J| is positive,

da

    ∂x   −—
     ∂η

    ∂x    —
    ∂ξ

    ∂y    —
    ∂ξ

dη

    ∂y   −—
    ∂η

dη

dξ

dξ

Elemental area da

E A F

B

C GH

D

ξ

η

0

y

x

Figure 17.1 Verification of Eq. 17.12.
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the matrix [ J ] is nonsingular, and the matrix inversion in Eq. 17.6 is possible. If two corners
of the quadrilateral coincide, the element becomes triangular. At the point where they coincide,
[ J ] is singular, indicating that the strains cannot be determined at this point. When the internal
angle at each of the four corners of a quadrilateral is smaller than 180◦, [ J ] is nonsingular at
all points and its determinant is positive.

Equations 17.2 and 17.4 to 17.14 are general for any isoparametric plane-stress or plane-
strain element, with two degrees of freedom per node. The shape functions [L] differ depending
on the number of nodes and the arrangement of the nodes in each element. Methods of
derivation of shape functions for various isoparametric elements are given in Sections 17.4
and 17.5.

Example 17.1: Quadrilateral element: Jacobian matrix at center
Determine the Jacobian matrix at the center of the quadrilateral element shown in
Figure 16.5, using the following (x, y) coordinates: node 1(0, 0); node 2(7, 1); node 3(6, 9);
node 4(−2, 5). Use the determinant of the Jacobian to calculate the area of the quadrilateral.

The derivatives of the shape function in Eq. 17.3 at ξ = η = 0 are

∂Li

∂ξ
= ξi

4
;

∂Li

∂η
= ηi

4

The Jacobian is (Eq. 17.8)

[J] =

⎡
⎢⎢⎣

0
(−1

4

)
0
(−1

4

)

0
(−1

4

)
0
(−1

4

)
⎤
⎥⎥⎦+

⎡
⎢⎢⎣

7
(

1
4

)
1
(

1
4

)

7
(−1

4

)
1
(−1

4

)
⎤
⎥⎥⎦

+

⎡
⎢⎢⎢⎣

6
(

1
4

)
9
(

1
4

)

6
(

1
4

)
9
(

1
4

)
⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎣

−2
(−1

4

)
5
(−1

4

)

−2
(

1
4

)
5
(

1
4

)
⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

15
4

5
4

−3
4

13
4

⎤
⎥⎥⎦

Area = 4|J| = 4(13.125)= 52.5

17.3 Convergence of isoparametric elements

One of the requirements for the shape functions for a finite element is that they allow a constant-
strain state (see Section 16.9). To verify that the shape functions of isoparametric elements satisfy
this requirement, let the element acquire nodal displacements given by

ui = a1xi + a2yi + a3 νi = a4xi + a5yi + a6 (17.15)
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where a1 to a6 are arbitrary constants, and i is the node number. The displacement at any point
(ξ ,η) is given by substitution of Eq. 17.15 in Eq. 17.2:

u = a1

∑
Lixi + a2

∑
Liyi + a3

∑
Li (17.16)

v = a4

∑
Lixi + a5

∑
Liyi + a6

∑
Li

We note that �Lixi = x and �Liyi = y (Eq. 17.4). If �Li = 1, Eq. 17.16 can be rewritten as

u = a1x + a2y + a3 ν = a4x + a5y + a6 (17.17)

Equation 17.17 indicates that the strains are constant when the sum �Li = 1. This condition is
satisfied for the shape functions in Eq. 17.3. It is also satisfied for the shape functions of other
isoparametric elements discussed below.

Another requirement for convergence is that the shape functions allow rigid-body motion
with zero strains. This represents a special case of the state of constant strain. This then verifies
the fact that the shape functions allow the element to move as a rigid body.

17.4 Lagrange interpolation

Consider a function g(ξ) for which the n values g1, g2, . . . ,gn are known at ξ1, ξ2, . . . , ξn

(Figure 17.2). The Lagrange equation gives a polynomial g(ξ) which passes through the n points.
The equation takes the form of a summation of n polynomials:

g (ξ) =
n∑

i=1

giLi (17.18)

where Li is a polynomial in ξ of degree n−1. Equation 17.18 can be used to interpolate between
g1, g2, . . . , gn to give the g value at any intermediate ξ . Figure 17.3 shows Lagrange interpolation
functions for n =2, 3, and 4. It can be seen that any function Li has a unit value at ξi and a zero
value at ξj, where j �= i.

Lagrange interpolation functions are expressed as a product of n − 1 terms:

Li = ξ − ξ1

ξi − ξ1

ξ − ξ2

ξi − ξ2
. . .

ξ − ξi−1

ξi − ξi−1

ξ − ξi+1

ξi − ξi+1
. . .

ξ − ξn

ξi − ξn
(17.19)

which gives polynomials of order n − 1.
Equation 17.19 can be used to derive any of the functions Li in Figure 17.3, which are linear,

quadratic, and cubic corresponding to n = 2, 3, and 4 respectively. It can be verified that, for
any n, the sum (L1 + L2 + · · · + Ln) is equal to 1 for any value of ξ .

gn

n
ξn

ξ

ξ. . .

. . .
ξ2

21
ξ = ξ1

g1
g2

g

g...

Figure 17.2 Function g(ξ) with n known values g1, g2, . . . ,gn at ξ = ξ1, ξ2, . . . , ξn.
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Figure 17.3 Linear, quadratic, and cubic Lagrange polynomials used to give the value of a function at
any point in terms of n known values, with n = 2, 3, and 4 respectively (Eq. 17.18).

17.5 Shape functions for two- and three-dimensional
isoparametric elements

Figure 17.4 shows a quadrilateral element with corner nodes and also intermediate nodes on the
edges. This element can be used for plane-stress or plane-strain analysis; the degrees of freedom
at each node are u and ν, representing translations in x and y directions. The nodes are equally
spaced on each edge. The number of intermediate nodes on any edge can be 0, 1, 2, . . ., but the
most commonly used elements have one or two intermediate nodes on each edge.

The shape functions are represented by Lagrange polynomials at one edge (or at two adjacent
edges) with linear interpolation between each pair of opposite edges. As an example, the shape
functions L5 and L6 for the element in Figure 17.4 are

L5 = 1
2

(
1 − ξ2

)
(1 − η) (17.20)

L6 = 1
2

(
1 − η2

)
(1 + ξ) (17.21)

The shape functions L are used for interpolation of u or ν and also for the coordinates x and y
between nodal values of the same parameters. Figure 17.4 includes pictorial views of L5 and L6

plotted perpendicular to the surface of the element.
For corner node 2, the shape function is

L2 = 1
4 (1 + ξ) (1 − η) − L5

2
− L6

2
(17.22)
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x

y

η = –1

5 2
1

4
ξ

η
η = 1

6

3 ξ = 1

4

1

1

5

6
2

ξ

3 η

4

1

1

ξ

2

η
3

Displacements
at a typical node

u

v

ξ = –1

L5 =     (1 – ξ2) (1 – η)

L6 =      (1 – η2) (1 + ξ)1
2

1
2

Figure 17.4 Generation of shape functions by superposition of shapes. The function L2 is the shape
function shown in Figure 16.5 minus one-half of (L5 + L6) of this figure.

The first term in this equation is the shape function for the same corner node in an element
without mid-side nodes (Figure 16.5). The terms L5/2 and L6/2 are subtracted to make L2 equal
to zero at the two added mid-side nodes 5 and 6.

The use of Lagrange polynomials at the edges and linear interpolation between opposite sides,
in the manner described above, enables us to write directly (by intuition) the shape functions
for any corner or intermediate node on the element edges. Figure 17.5 gives the shape functions
for an eight-node element; such an element is widely used in plane-stress or plane-strain analysis
because it gives accurate results. In general form, the edges are curved (second-degree parabola)
and the coordinates ξ and η are curvilinear. The shape functions given in this figure can be used
with Eq. 17.2 and Eqs. 17.4 to 17.14 to generate a stiffness matrix and a load vector without
any complication caused by the curvilinear coordinates.

The above approach can be extended directly to three-dimensional solid elements with three
degrees of freedom per node, u, ν, and w, in the global x, y, and z directions. The shape functions

x

y

1 5

2

6

3

7
η

ξ
ξ = 1

ξ = –1

η =  1

η = –1

8

4

with i = 1, 2, 3, 4
Li =     (1 + ξξi) (1 + η ηi) (ξξi + ηηi – 1)

Li =     (1 – ξ2) (1 + η ηi) with i = 5, 7

Li =      (1 – η2) (1 + ξξi) with i = 6, 8

 1
—
 4

 1
—
 2

 1
—
 2

Figure 17.5 Shape functions for a two-dimensional element with corner and mid-side nodes.
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8-node solid
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6

18

2

13

20-node solid
3

124

1620

8
15

5

11 14

17

19

9

7

ζ

ζ

ξη

η ξ
Li =      (1 + ξξi) (1 + η ηi) (1 + ζζi) with i = 1 to 8 

Li =     (1 – ξ2) (1 + η ηi) (1 + ζζi) with i = 9 to 12 

Li =     (1 – η2) (1 + ξξi) (1 + ζζi) with i = 13 to 16 

Li =     (1 – ζ2) (1 + ξξi) (1 + η ηi) with i = 17 to 20 

Li =     (1 + ξξi) (1 + η ηi) (1 + ζζi) (ξξi + ηηi + ξξi – 2)

      with i = 1 to 8 

 1
—
 8

 1
—
 8

 1
—
 4

 1
—
 4

 1
—
 4

Figure 17.6 Shape functions for isoparametric solid elements with eight and twenty nodes.

are given in Figure 17.6 for an element with corner nodes and for an element with corner as
well as mid-edge nodes. With the addition of mid-edge nodes, the accuracy is increased and the
element can have curved edges.

For the three-dimensional isoparametric elements shown in Figure 17.6, the shape func-
tions L(ξ ,η, ζ ) are used for interpolation of displacements u, ν, w and coordinates x, y, z as
follows:

u =
∑

Liui ν =
∑

Liνi w =
∑

Liwi (17.23)

x =
∑

Lixi y =
∑

Liyi zi =
∑

Lizi (17.24)

with i = 1 to 8 or 1 to 20.
It is of interest to note that, by use of Lagrange polynomials, the sum of the interpolation

functions at any point equals unity. This can be verified for the two- and three-dimensional
elements discussed above.

Example 17.2: Element with four corner nodes and one mid-edge node
Construct shape functions for the isoparametric element shown in Figure 17.5 with four
corner nodes and only one mid-edge node 5 (nodes 6, 7, and 8 are deleted).

The shape functions can be generated by intuition as explained in Section 17.5. The
shape function L5 is

L5 = 1
2

(
1 − ξ2

)
(1 − η)
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For L1 and L2, combine the shape functions in Figure 16.5 with L5:

L1 = 1
4 (1 − ξ) (1 − η) − L5

2
L2 = 1

4 (1 + ξ) (1 − η) − L5

2

The shape functions L3 and L4 are the same as in Figure 16.5:

L3 = 1
4 (1 + ξ) (1 + η) L4 = 1

4 (1 − ξ) (1 + η)

17.6 Consistent load vectors for rectangular plane element

Equations 16.47 and 16.50 can be used to determine the consistent load vectors due to body
forces or due to temperature variation for the plane-stress or plane-strain element shown in
Figure 17.5. Consider a special case when the element is a rectangle subjected to a uniform load
of qx per unit volume (Figure 17.7). The consistent vector of restraining forces is (Eq. 16.47)

{
F∗

b

}= −hbc
4

∫ 1

−1

∫ 1

−1

[
L1 0 L2 0 . . . L8 0
0 L1 0 L2 . . . 0 L8

]T { qx

0

}
dξdη (17.25)

where b and c are the element sides and h is its thickness; L1 to L8 are given in Figure 17.5. The
integrals in Eq. 17.25 give the consistent nodal forces shown in Figure 17.7.

Note the unexpected result: the forces at corner nodes are in the opposite direction to the
forces at mid-side nodes. But, as expected, the sum of the forces at the eight nodes is equal to
qxhbc. Apportionment of the load on the nodal forces intuitively may be sufficient when the
finite-element mesh is fine, but greater accuracy is obtained using the consistent load vector,
particularly when the mesh is coarse.

Let the element in Figure 17.7 be subjected to a temperature rise of T degrees; if the expansion
is restrained, the stresses are

{σ }r = − [EαT/ (1 − ν)] {1,1,0} (17.26)

Uniform load of qx
per unit volume

y

x

1/12

1/3

1/12

Multiplier : qx h b c

Element thickness = h 

1/12

1/13

1/12

1/3

1/3

1

8

4 7

2

6

3

5

b

cη ξ

Temperature rise T degrees

b/6

b/6

2b/3

2b/3

b/6

b/6

c/6c/6

2c/32c/3

c/6c/6

Multiplier : α TEh/(1–ν )

1 5 2

8
4

6
37

Figure 17.7 Rectangular plane-stress element. Consistent nodal forces due to a uniform load qx and
due to a rise in temperature of T degrees, with the nodal displacements prevented.
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where E, ν, and α are modulus of elasticity, Poisson’s ratio, and coefficient of thermal expansion
of the material (assumed isotropic). The corresponding consistent nodal forces can be determ-
ined by substitution of Eqs. 17.10, 17.26, and 16.48 into 16.50, using the shape functions in
Figure 17.5. The resulting nodal forces are included in Figure 17.7.

The same results can be obtained by integration, over the length of the edges, of the product
of σrx or σry and the shape functions, with the result multiplied by the thickness h. For example,
the force at node 8 is

F8 = σrxh
∫ c

2

− c
2

(L8)ξ=−1 dy = σrx
hc
2

∫ 1

−1
(1 − η2)dη = 2

3σrxhc (17.27)

Here again, the consistent load vector cannot be generated by intuition.

17.7 Triangular plane-stress and plane-strain elements

Consider the triangular element 1.2.3 shown in Figure 17.8a, which has an area �. Joining any
point (x,y) inside the triangle to its three corners divides � into three areas, A1, A2, and A3. The
position of the point can be defined by the dimensionless parameters α1, α2, and α3, where

α1 = A1/� α2 = A2/� α3 = A3/� (17.28)

and

α1 + α2 + α3 = 1 (17.29)

The parameters α1, α2, and α3 are called area coordinates or areal coordinates. Any two of them
are sufficient to define the position of a point within the element. Lines parallel to the sides of
the triangle are lines of equal αi (Figure 17.8b).

Figure 17.8c is a pictorial view of the shape function L1 for the constant-strain triangle dis-
cussed in Section 16.11. The element has three corner nodes with degrees of freedom u and n per
node, representing translations in the x and y directions. The ordinates L1, which are plotted
perpendicular to the surface of the triangle, represent the variation in u or ν when the nodal
displacement u1 or ν1 equals unity. If we plot lines of equal L1, they will be identical to the lines
of equal α1, indicating that α1 is equal to L1. Thus, the shape functions α1, α2, and α3 can serve
as shape functions L1, L2, and L3 for the constant-strain triangle.

Therefore, we can express the displacement at any point by

u =∑
Liui ν =∑

Liνi (17.30)

(a) (b) (c)
1 1

1
1

2 2 2

3 3

3

A1

A2 A3

x x x

y y

y

α
1 = 1/2

α1 =  0

α
1 = 1

L
1 =

 1/2
L
1 =

 0

L
1 =

 1

Figure 17.8 Constant-strain triangle. (a) Area coordinates {α1,α2,α3}= (1/�){A1,A2,A3}. (b) Lines of
equal α1. (c) Pictorial view of shape function L1 = α1.
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It can be shown (by linear interpolation) that

x =∑
Lixi y =∑

Liyi (17.31)

Equations 17.30 and 17.31 are the same as Eqs. 17.2 and 17.4, indicating that the constant-strain
triangle is an isoparametric element in which the area coordinates serve as shape functions:

L1 = α1 L2 = α2 L3 = α3 (17.32)

For a triangle with straight edges (Figure 17.8a), the area coordinates can be expressed in terms
of x and y by combining Eqs. 17.29, 17.31 and 17.32, giving

{α1,α2,α3} = 1
2�

{
a1 + b1x + c1y, a2 + b2x + c2y, a3 + b3x + c3y

}
(17.33)

where

a1 = x2y3 − y2x3 b1 = y2 − y3 c1 = x3 − x2 (17.34)

By cyclic permutation of the subscripts 1, 2, and 3, similar equations can be written for a2, b2,
c2 and a3, b3, c3.

17.7.1 Linear-strain triangle

An isoparametric triangular element with corner and mid-side nodes is shown in Figure 17.9a.
This element is widely used in practice for plane-stress or plane-strain analysis because it gives
accurate results. The nodal displacements are ui and vi with i =1,2, . . . , 6. Equations 17.30 and
17.31 apply to this element, with the shape functions L1 to L6 derived by superposition for
various shapes, in a way similar to that used for the quadrilateral element in Figure 17.4.

The shape functions for the mid-side nodes in Figure 17.9a are

L4 = 4α1α2 L5 = 4α2α3 L6 = 4α3α1 (17.35)

A pictorial view of L4, plotted perpendicular to the plane of the element, is shown in Figure 17.9b.
The function is quadratic along edge 1–2, but linear along lines α1 or α2 = constant.

The shape functions for corner nodes are obtained by an appropriate combination of L4, L5,
and L6 with the shape functions for the three-node element. For example, combining the shape

(a) (b) (c)1

6 3

4

253
5

6

2
4

1
1

3

6

5 2

4

1

y

x

y x

Figure 17.9 Triangular isoparametric element for plane-stress or plane-strain analysis. Two degrees of
freedom per node: u and ν in x and y directions. (a) Node numbering. (b) Pictorial view
of shape function L4. (c) General quadratic triangle.
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function of Figure 17.8 with −L4/2 and −L6/2 gives shape function L1 for the six-node element.
The function obtained in this way has a unit value at 1, and a zero value at all other nodes, as
it should. The shape functions for the three corner nodes for the element in Figure 17.9a are

L1 = α1 (2α1 − 1) L2 = α2 (2α2 − 1) L3 = α3 (2α3 − 1) (17.36)

It can be seen from Eqs. 17.35 and 17.36 that the shape functions are quadratic, but the first
derivatives, which give the strains, are linear. The six-node triangular element is sometimes
referred to as a linear-strain triangle.

The six-node element can have curved sides. The x, y coordinates of any point are given by
Eq. 17.31, using the shape functions in Eqs. 17.35 and 17.36. The lines of equal α will not be
straight in this case, and Eq. 17.33 does not apply.

The stiffness matrix and the consistent load vectors for the six-node isoparametric triangular
element can be generated using the equations given in Section 17.2 for a quadrilateral element,
replacing ξ and η by α1 and α2 respectively. The third parameter α3 is eliminated from the shape
functions by substituting α3 = 1 − α1 − α2.

The integrals involved in the derivation of the matrices of triangular elements can be put in
the form

∫
a
f (α1,α2)da =

∫ 1

0

∫ 1−α1

0
f (α1,α2)

∣∣J∣∣dα2dα1 (17.37)

where f (α1,α2) is a function of α1 and α2, and |J| is the determinant of the Jacobian. The inner
integral on the right-hand side represents the value of the integral over a line of constant α1;
over such a line, the parameter α2 varies between 0 and 1 − α1.

The Jacobian can be determined by Eq. 17.8, replacing ξ and η as mentioned above. We can
verify that, when the sides of the triangle are straight, [ J ] is constant and its determinant is equal
to twice the area.

The integral on the right-hand side of Eq. 17.37 is commonly evaluated numerically, using
Eq. 17.48. However, in the case of a triangle with straight edges, the determinant |J| can be
taken out of the integral and the following closed-form equation can be used to evaluate the
functions in the form

∫
a
α

n1
1 α

n2
2 α

n3
3 da = 2�

n1!n2!n3!
(n1 + n2 + n3 + 2)! (17.38)

where n1, n2, and n3 are any integers; the symbol ! indicates a factorial.

17.8 Triangular plate-bending elements

A desirable triangular element which can be used for the analysis of plates in bending and for
shell structures (when combined with plane-stress elements) should have three degrees of free-
dom per node, namely w, θx, and θy, representing deflection in a global z direction and two
rotations θx and θy (Figure 17.10a). With nine degrees of freedom, the deflection w should be
expressed by a polynomial with nine terms. Pascal’s triangle (Figure 16.7) indicates that a com-
plete quadratic polynomial has six terms and a cubic polynomial has ten. Leaving out one of the
terms x2y or xy2 gives an element for which the outcome is dependent upon the choice of x and
y axes.
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(a) (b)

(down)

Node 1

Node
3

7

9 Node
2

6

54

10
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6
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1
w x
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x

y

nn

n

φ

Figure 17.10 Triangular bending elements. (a) Number of degrees of freedom 10: w, θx, θy at each
corner and w at centroid. (b) Number of degrees of freedom 6: w at corners and ∂w/∂n
at mid-side nodes.

It is possible to express w using area coordinates and a polynomial of nine terms (which are
not a simple selection). This gives a nonconforming element2 which is widely used in practice
because its results are accurate (although it does not pass the patch test, Section 16.10).

The two triangular elements shown in Figure 17.10b. and 17.10a have six and ten degrees
of freedom respectively. The deflection w for the two elements can be represented by complete
quadratic and cubic polynomials respectively, containing the top six or ten terms of Pascal’s
triangle (Figure 16.7).

The six degrees of freedom for the element in Figure 17.10b. are

{
D∗}=

{
w1, w2, w3,

(
∂w
∂n

)
4

,
(

∂w
∂n

)
5

,
(

∂w
∂n

)
6

}
(17.39)

where ∂w/∂n is the slope of a tangent normal to the sides half-way between the nodes. The
positive direction of the normal vector is pointing either inwards or outwards, so that the angle φ,
measured in the clockwise direction from the global x axis to the normal, is smaller than π . Thus,
for the triangle in Figure 17.10b, the normal at node 6 points inwards. However, for an adjacent
triangle (not shown) sharing side 1–3, the normal points outwards; the two triangles share the
same degree of freedom ∂w/∂n, which is indicated in a positive direction (Figure 17.10b). The
derivative ∂w/∂n can be expressed as

∂w
∂n

= ∂w
∂x

cosφ + ∂w
∂y

sinφ (17.40)

The deflection is expressed by the upper six terms of Pascal’s triangle (Figure 16.7):

w =
[
1x y x2 xy y2

]
{A} = [P] {A} (17.41)

Substituting for x and y by their values at the nodes, the nodal displacements can be expressed
by [D∗] = [C]{A}, with

2 See Bazeley, G. P., Cheung, Y. K., Irons, B. M. and Zienkiewicz, O. C., “Triangular Elements in Plate Bend-
ing: Conforming and Non-Conforming Solutions,’’ Proceedings of the Conference on Matrix Methods in
Structural Mechanics, Air Force Institute of Technology, Wright Patterson Base, Ohio, 1965.
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[C] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 y1 x2
1 x1y1 y2

1

1 x2 y2 x2
2 x2y2 y2

2

1 x3 y3 x2
3 x3y3 y2

2

0 c4 s4 2x4c4 y4c4 + x4s4 2y4s4

0 c5 s5 2x5c5 y5c5 + x5s5 2y5s5

0 c6 s6 2x6c6 y6c6 + x6s6 2y6s6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17.42)

where si = sinφi, ci = cosφi.
The shape functions can be derived by Eq. 16.60, the [B] matrix by Eqs. 16.39 and 16.19,

and the stiffness matrix and consistent load vectors by Eqs. 16.45, 16.47, and 16.50. The
strains for this element are constant and the element matrices are relatively simple to derive (see
Prob. 17.8).

Despite its simplicity, the element with six degrees of freedom (Figure 17.10b) gives fairly
accurate results. It can be shown that the element is nonconforming because the inter-element
deflections and their derivatives are not compatible. However, the element passes the patch
test and the results converge quickly to the exact solution as the finite-element mesh is
refined.3

The element in Figure 17.10a has ten degrees of freedom {D∗}, as shown. The tenth displace-
ment is a downward deflection at the centroid. The deflection can be expressed as w =[L]{D∗},
where [L] is composed of ten shape functions given in terms of area coordinates α1, α2, and α3

(Eq. 17.28) as follows:

L1 = α2
1(α1 + 3α2 + 3α3) − 7α1α2α3

L2 = α2
1(b2α3 − b3α2) + (b3 − b2)α1α2α3

L3 = α2
1(c2α3 − c3α2) = (c3 − c2)α1α2α3 (17.43)

L10 = 27α1α2α3

where bi and ci are defined by Eq. 17.34. The equation for L1 can be used for L4 and L7 by
cyclic permutation of the subscripts 1, 2, and 3. Similarly, the equation for L2 can be used for
L5 and L8, and the equation for L3 can be used for L6 and L9. We can verify that the ten shape
functions and their derivatives take unit or zero values at the nodes, as they should. This involves
the derivatives ∂αi/∂x and ∂αi/∂y which are, respectively, equal to bi/2� and ci/2�, where �

is the area of the triangle (see Eq. 17.33).
The inter-element displacement compatibility for ∂w/∂n is violated with the shape functions

in Eq. 17.43, but the values of w of two adjacent elements are identical along a common side.
This element does not give good accuracy.

However, the accuracy of the element shown in Figure 17.10a can be improved by imposing
constraints in the solution of the equilibrium equations of the assembled structure (Section 22.4).
The constraints specify continuity of normal slopes ∂w/∂n at mid-points of element sides. With
such treatment, the accuracy of this element will be better than that of the element shown in
Figure 17.10b.

3 Numerical comparison of results obtained by various types of triangular bending elements and convergence
as the mesh is refined can be seen in Gallagher, R. H., Finite Element Analysis Fundamentals, Prentice-
Hall, Englewood Cliffs, NJ, 1975, p. 350. The same book includes other triangular elements and a list of
references on this topic.
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17.9 Numerical integration

The Gauss method of integration is used extensively in generating the matrices of finite ele-
ments. The method is given below without derivation4 for one-, two-, and three-dimensional
integration.

A definite integral of a one-dimensional function g(ξ) (Figure 17.11) can be calculated by

∫ 1

−1
g(ξ)dξ �

n∑
i=1

Wigi (17.44)

where gi represents the values of the function at n sampling points ξ1, ξ2, . . . , ξn and Wi represents
the weight factors. The sampling points are sometimes referred to as Gauss points. The values
ξi and Wi are given to 15 decimal places in Table 17.1 for n between 1 and 6.5 The values of ξi

and Wi used in computer programs should include as many digits as possible.

–1 10

–0.577... 0.577...
ξ = ξ =

g2

g1

g(ξ )

ξ

Figure 17.11 Gauss numerical integration of function g(ξ) by Eq. 17.44. Example for a number of
sampling points n = 2.

Table 17.1 Location of Sampling Points and Weight Factors for Gauss
Numerical Integration by Eqs. 17.44 to 17.46

n ξi, ηi or ζi Wi

1 0.000 000 000 000 000 2.000 000 000 000 000
2 ±0.577 350 269 189 626 1.000 000 000 000 000
3 0.000 000 000 000 000 0.888 888 888 888 888

±0.774 596 669 241 483 0.555 555 555 555 556
4 ±0.339 981 043 584 856 0.652 145 154 862 546

±0.861 136 311 594 053 0.347 858 485 137 454
0.000 000 000 000 000 0.568 888 888 888 889

5 ±0.538 469 310 105 683 0.478 628 670 499 366
±0.906 179 845 938 664 0.236 926 885 056 189
±0.238 619 186 083 197 0.467 913 934 572 691

6 ±0.661 209 386 466 265 0.360 761 573 048 139
±0.932 469 514 203 152 0.171 324 492 379 170

4 Derivation can be found in Irons, B. M. and Shrive, N. G., Numerical Methods in Engineering and Applied
Science, Ellis Horwood, Chichester, England and Halsted Press (Wiley), New York, 1987.

5 Values of ξi and Wi for n between 1 and 10 can be found on p. 79 of the reference in footnote 4 in this
chapter. See also Kopal, Z., Numerical Analysis, 2nd ed., Chapman & Hall, 1961.
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The location of the sampling points, specified by the values of ξi in the table, is chosen to
achieve the maximum accuracy for any given n. The sampling points are located symmetrically
with respect to the origin.

If the function is a polynomial, g =a0 +a1ξ +· · ·+amξm, Eq. 17.44 is exact when the number
of sampling points is n � (m + 1)/2. In other words, n Gauss points are sufficient to integrate
exactly a polynomial of order 2n−1. For example, we can verify that using n=2 (Figure 17.11)
gives exact integrals for each of the functions g = a0 + a1ξ , g = a0 + a1ξ + a2ξ

2 and g = a0 +
a1ξ + a2ξ

2 + a3ξ
3. The two sampling points are at ξ = ±0.577 . . . and the weight factors are

equal to unity.
We should note that the sum of the weight factors in Eq. 17.44 is 2.0.
A definite integral for a two-dimensional function g(ξ ,η) can be calculated by

∫ 1

−1

∫ 1

−1
g(ξ ,η)dξdη �

nn∑
j

nξ∑
i

WjWig(ξi,ηj) (17.45)

where nξ and nη are the number of sampling points on ξ and η axes respectively. Figure 17.12
shows two examples of sampling points. In most cases, nξ and nη are the same (equal to n); then
n × n Gauss points integrate exactly a polynomial g(ξ ,η) of order 2n − 1.

Equation 17.45 can be derived from Eq. 17.44 by integrating first with respect to ξ and
then with respect to η. For 3 × 2 Gauss points (nξ = 3,nη = 2), Eq. 17.45 can be rewritten
(Figure 17.12) as

∫ 1

−1

∫ 1

−1
g(ξ ,η)dξdη

� (1.0)(0.555 · · · )g1 + (1.0)(0.888 · · · )g2 + (1.0)(0.555 · · · )g3

+ (1.0)(0.555 · · · )g4 + (1.0)(0.888 · · · )g5 + (1.0)(0.555 · · · )g6 (17.46)

We can note that the sum of the multipliers of g1 to g6 is 4.0.
For a function in three dimensions, g(ξ ,η, ζ ), the integral is

∫ 1

−1

∫ 1

−1

∫ 1

−1
g(ξ ,η, ζ )dξdηdζ �

nζ∑
k

nn∑
j

nξ∑
i

WkWjWig(ξi,ηj, ζk) (17.47)

Equations 17.44, 17.45, and 17.47 can be used for one-, two-, and three-dimensional elements
with curvilinear axes.

η = –0.577...
η = –0.577...

η = 0.577...

η = 0.577...–0.577...
ξ =

0.577...
ξ =

η

ξ
ξ

ξ = –0.774... ξ = 0.774...

η

1
2

3

5
4

6

Figure 17.12 Examples of sampling points for two-dimensional Gauss numerical integration.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Further development of f inite-element method 525

When the element is triangular and the area coordinates α1, α2, and α3 are used (Figure 17.8a),
any variable over the area of the element can be expressed as a function f (α1,α2), in which α3

is eliminated by substituting α3 = 1 −α1 −α2. The integral
∫

f da over the area of the triangle is
expressed by Eq. 17.37, and can be evaluated numerically using

∫ 1

0

∫ 1−α1

0
g(α1,α2)dα2dα1 �

n∑
i=1

Wigi (17.48)

In this equation, the symbol g(α1,α2) stands for the product f (α1,α2)|J| in Eq. 17.37, where |J|
is the determinant of the Jacobian.

The location of the sampling points and the corresponding weight factors for use in Eq. 17.48
are given in Figure 17.13.6 These values give the exact integrals when g is linear, quadratic,
cubic, and quintic, as indicated.

We should note that the sum of the weight factors for all the sampling points of any triangle
is equal to one-half. For a triangle with straight edges, |J| = 2�, where � is the area. If we set

Linear

α1

α2

1

Point α1 or α2 Point Weight factor

1 0.333 333 333 3 1 W1 = 0.5000000000

Quadratic

1

2

3

α
2

α1

3 0.000 000 000 0 1 W1,2,3 = 0.1666666667
1,2 0.500 000 000 0 2,3

Cubic

2

5

3

14

6

7

α1

α2 4,6,7 0.000 000 000 0 2,5,7 W1 = 0.2250000000
1 0.333 333 333 3 1

2,3 0.500 000 000 0 3,4 W2,3,4 = 0.0666666667
5 1.000 000 000 0 6 W5,6,7 = 0.0250000000

Quintic

4 1 6

2 3 5

7
α1

α2 4 0.059 715 871 8 2 W1 = 0.1125000000
6,7 0.101 286 507 3 5,7

1 0.333 333 333 3 1 W2,3,4 = 0.0661970764
2,3 0.470 142 064 1 3,4 W5,6,7 = 0.0629695903

5 0.797 426 985 4 6

Figure 17.13 Numerical integration of function g(a1,a2,a3) over the area of a triangle. Values of a1,
a2, and a3 defining sampling points and weight factors Wi for use in Eq. 17.48 (a3 =
1 − a1 − a2).

6 See Cowper, G. R., “Gaussian quadrature formulas for triangles’’, Int. J. Num. Math. Eng. (7), (1973),
pp. 405–408; and Zienkiewicz, O. C, The Finite Element Method in Engineering Science, 4th ed.,
McGraw-Hill, London, 1989.
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f (α1,α2) = 1, the function g(α1,α2) = 2�, and the value of the integral given by Eq. 17.48 is
equal to (2�)�Wi = �, as it should.

The number of sampling points in the numerical integration to generate the stiffness matrices of
finite elements influences the accuracy and the convergence. The appropriate choice of sampling
points is discussed in more detail in references devoted specifically to the finite-element method.7

A small number of points is generally used in order to reduce computation. Furthermore, the
use of a small number of points tends to reduce the stiffness, thus compensating for the excess
in stiffness associated with displacement-based finite elements (see Section 16.5). However, the
number of sampling points cannot be reduced without limit. Some elements have a spurious
mechanism when a specified pattern of sampling points is used in the integration for the deriva-
tion of the stiffness matrix. This mechanism occurs when the element can deform in such a way
that the strains at the sampling points are zero.

Two-by-two sampling points are frequently used in quadrilateral plane linear elements with
corner nodes only or in quadratic elements with corner and mid-side nodes. Three or four
sampling points in each direction are used when the elements are elongated or in cubic8 elements.

Example 17.3: Stiffness matrix of quadrilateral element in plane-stress state
Determine coefficient S∗

11 of the stiffness matrix of the quadrilateral element of
Example 17.1 and Figure 16.5. The element is of isotropic material; Poisson’s ratio ν =0.2.
Also find the consistent restraining force at coordinate 1 when the element is subjected to
a constant rise of temperature of T degrees. Use only one Gauss integration point.

The displacement field corresponding to D∗
1 = 1 is {u,ν} = {L1, 0}, where

L1 = 1
4 (1 − ξ)(1 − η)

Derivatives of L1 with respect to x and y at the center (ξ =η = 0) are (using Eq. 17.6, with
[ J ] from Example 17.1){

∂L1/∂x
∂L1/∂y

}
=
[

15/4 5/4
−3/4 13/4

]−1 {−(1 − η)/4
−(1 − ξ)/4

}
= 1

210

{ −8
−18

}

When D∗ = 1, the strains at the same point are (Eq. 17.10)

{B}1 = 1
210

{−8,0,−18}

The value of the product in the stiffness matrix of Eq. 17.12 at the center of the element
(Eq. 16.12) is

g1 = h{B}T
1 [d]{B}1|J|

= 1
(210)2 [−8,0,−18] − Eh

1 − (0.2)2

⎡
⎣ 1 0.2 0

0.2 1 0
0 0 (1 − 0.2)/2

⎤
⎦
⎧⎨
⎩

−8
0

−18

⎫⎬
⎭∣∣J∣∣

= 4.57 × 10−3Eh
∣∣J∣∣

7 See, for example, the reference in footnote 5 in Chapter 16. Other selected books are included in the
References to this book.

8 For example, element QLC3; see footnote 4 in Chapter 16, and Example 16.3.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Further development of f inite-element method 527

The determinant of the Jacobian is 13.125 (see Example 17.1). Substitution in Eq. 17.45
with W1 = 2 (from Table 17.1) gives

S∗
11 = 2 × 2(4.57 × 10−3)Eh(13.125) = 0.240Eh

The free strains due to the temperature rise are αT{1,1,0}. Substitution in Eq. 17.14 gives

F∗
b1 =2 × 2(13.125)(−h)

(
1

210

)
[−8,0,−18]

× E
1 − (0.2)2

⎡
⎣ 1 0.2 0

0.2 1 0
0 0 (1 − 0.2)2

⎤
⎦
⎧⎨
⎩

1
1
0

⎫⎬
⎭αT = 2.5EαTh

Example 17.4: Triangular element with parabolic edges: Jacobian matrix
Determine the Jacobian at (α1,α2) = (1/3,1/3) in a triangular isoparametric element
with corner and mid-side nodes, where α1 and α2 are area coordinates. The (x,
y) coordinates of the nodes are: (x1,y1) = (0,0); (x2,y2) = (1,1); (x3,y3) = (0,1);
(x4,y4) = ((

√
2)/2, 1 − (

√
2)/2); (x5,y5)= (0.5,1); (x6,y6)= (0,0.5). These correspond to

a quarter of a circle with its center at node 3 and a radius of unity. By numerical integration
of Eq. 17.48, determine the area of the element, using only one sampling point.

The shape functions L1 to L6 are given by Eqs. 17.35 and 17.36. We eliminate α3 by
substituting α3 = 1 − α1 − α2, and then determine the derivatives ∂Li/∂α1 and ∂Li/∂α2 at
(α1,α2) = (1/3, 1/3). The Jacobian at this point (from Eq. 17.8, replacing ξ and η by α1

and α2) is

[J] =
⎡
⎣ 0

(
1
3

)
0
(

1
3

)
0(0) 0(0)

⎤
⎦+

⎡
⎣ 1(0) 1(0)

1
(

1
3

)
1
(

1
3

) ⎤
⎦+

⎡
⎢⎢⎣

0
(

−1
3

)
1
(

−1
3

)

0
(

−1
3

)
1
(

−1
3

)
⎤
⎥⎥⎦

+

⎡
⎢⎢⎢⎣

√
2

2

(
4
3

) (
1 −

√
2

2

)(
4
3

)
√

2
2

(
4
3

) (
1 −

√
2

2

)(
4
3

)
⎤
⎥⎥⎥⎦+

⎡
⎣ 0.5

(
−4

3

)
1
(

−4
3

)
0.5(0) 1(0)

⎤
⎦

+
⎡
⎢⎣

0(0) 0.5(0)

0
(

−4
3

)
0.5

(
−4

3

)
⎤
⎥⎦=

[
0.2761 −1.2761
1.2761 −0.2761

]

The area of the element (from Eq. 17.48 with W1 from Figure 17.13) is

area =
∫ 1

0

∫ 1−α1

0

∣∣J∣∣dα2dα1 = 0.5
∣∣J∣∣= 0.7761
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17.10 Shells as assemblage of flat elements

Finite elements in the form of flat quadrilateral or triangular plates can be used to idealize a shell
(Figure 17.14). In general, the elements will be subjected to in-plane forces and to bending. The
element matrices derived separately in earlier sections for elements in a state of plane stress and
for bending elements can be combined for a shell element as discussed below.

Idealization of a shell, using curved elements, may be necessary if large elements are employed,
particularly in double-curved shells. However, in practice, many shells, particularly those of
cylindrical shape, have been analyzed successfully using triangular, quadrilateral, or rectangular
elements.

Flat shell elements can be easily combined with beam elements to idealize edge beams or ribs,
which are common in practice.

17.10.1 Rectangular shell element

Figure 17.15 represents a rectangular shell element with six nodal displacements at each corner,
three translations {u,ν,w} and three rotations {θx, θy, θz}. The derivation of the matrices for
a plane-stress rectangular element with nodal displacements u, ν, and θz at each corner was
discussed in Section 16.8 (see Example 16.3). A rectangular bending element with nodal
displacements w, θx, and θy at each corner was discussed in Section 16.43.

The stiffness matrix for the shell element in Figure 17.15 can be written in the form

[S∗] =
[ [S∗

m] [0]
[0] [S∗

b]
]

(17.49)

where [S∗
m] is a 12 × 12 membrane stiffness matrix relating forces to the displacements u, ν, and

θz, and [S∗
b] is a 12×12 bending stiffness matrix relating forces to the displacements w, θx, and θy.

The off-diagonal submatrices in Eq. 17.49 are null because the first set of displacements produces
no forces in the directions of the second set, and vice versa. The two sets of displacements are
said to be uncoupled.

For convenience in coding, the degrees of freedom at each node are commonly arranged in the
order {u,ν,w, θx, θy, θz}. The columns and rows in the 24 × 24 stiffness matrix in Eq. 17.49 are

Flat element

Flat element

Figure 17.14 Cylindrical shells idealized as an assemblage of flat elements.

1 2

3

w
(down)

xz
(down)

Nodal displacements
at a typical node

u

v

4

y

θz

θy

θx

Figure 17.15 Rectangular flat shell element.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Further development of f inite-element method 529

rearranged so that the nodal coordinates are numbered in the following sequence: six coordinates
at node 1, followed by six coordinates at node 2, and so on.

17.10.2 Fictitious stiffness coefficients

The majority of plane-stress elements have two degrees of freedom per node, u and ν. Combining
such an element with a bending element (with nodal displacements w, θx, and θy) so as to form a
shell element will leave the θz coordinate unused. The five degrees of freedom, u,ν,w, θx, and θy,
are not sufficient to analyze a spatial structure. This can be seen by considering elements in two
intersecting planes; no matter how the global axes are chosen, the structure will, in general, have
three rotation components in the three global directions at the nodes on the line of intersection.

We may think of generating a stiffness matrix for the shell element with six degrees of free-
dom per node, with zero columns and rows corresponding to the θz coordinates. However, when
elements situated in one plane meet at a node, a zero will occur at the diagonal of the stiffness
matrix of the assembled structure; this will result in an error message with common computer
equation solvers (Sections 21.11 and A.9) when attempting to divide a number by the stiffness
coefficient on the diagonal. To avoid this difficulty Zienkiewicz9 assigns fictitious stiffness coef-
ficients, instead of zeros, in the columns and rows corresponding to θz. For a triangular element
with three nodes, the fictitious coefficients are

[S]fict = βE

⎡
⎣ 1 −0.5 −0.5

−0.5 1 −0.5
−0.5 −0.5 1

⎤
⎦ (volume) (17.50)

where E is the modulus of elasticity, the multiplier at the end is the volume of the element, and β

is an arbitrarily chosen coefficient. Zienkiewicz suggested a value β = 0.03 or less. We can note
that the sum of the fictitious coefficients in any column is zero, which is necessary for equilibrium.

17.11 Solids of revolution

Figure 17.16 represents a solid of revolution which is subjected to axisymmetrical loads (not
shown). For the analysis of stresses in this body, it is divided into finite elements in the form of
rings, the cross sections of which are triangles or quadrilaterals. The element has nodal circular

Section through axis of revolution

Stress
components
at a typical
point P

Typical element

Axis of
revolution

u

w

uu
ww3

2

1

z

r

r

P
r

τrz

τrz

σθσr

σz

Figure 17.16 Finite-element idealization of a solid of revolution.

9 See reference mentioned in footnote 1 of Chapter 16.
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lines, rather than point nodes. The displacements at the nodes are u and w in the radial direction
r and in the z direction respectively.

The arrangement of the nodes and the shape functions used for plane-stress and plane-strain
elements (Sections 16.42, 16.11, 17.2, 17.5, and 17.7) can be used for axisymmetric solid ele-
ments. The parameters x, y, u, and ν used for plane elements have to be replaced by r, z, u, and
w respectively.

One additional strain component needs to be considered in solids of revolution, namely, the
hoop strain εθ , which represents elongation in the tangential direction, normal to the plane of
the element. Thus, the strain vector has four components:

{ε} =

⎧⎪⎪⎨
⎪⎪⎩

εr

εz

εθ

γrz

⎫⎪⎪⎬
⎪⎪⎭=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂r
0

0
∂

∂w
1
r

0

∂

∂w
∂

∂r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
{

u
w

}
(17.51)

The stress vector has also one additional component, the hoop stress σθ (Figure 17.16). The
stress–strain relation for solids of revolution of isotropic material is

{σ } = [d] {ε} (17.52)

where

{σ } = {σr,σz,σθ ,γrz} (17.53)

and

{d} = E
(1 + ν)(1 − 2ν)

⎡
⎢⎢⎢⎣

1 − ν ν ν 0
ν 1 − ν ν 0
ν ν 1 − ν 0

0 0 0
1 − 2ν

2

⎤
⎥⎥⎥⎦ (17.54)

The element stiffness matrix for an axisymmetric solid element is given by (see Eq. 16.45)

[S∗] = 2π

∫ ∫
[B]T [d][B]r dr dz (17.55)

When the natural coordinates ξ and ν are used, the elemental area dr dz is replaced by |J|dξdη,
where |J| is the determinant of the Jacobian (Eq. 17.7 or 17.8). The limits for each of the two
integrals become −1 to 1.

Any element S∗
ij of the stiffness matrix represents 2πri multiplied by the intensity of a uniform

load distributed on a nodal line at node i when the displacement at j is 1. Thus, S∗
ij has the units

of force per length.
If the element is subjected to a rise in temperature of T degrees and the expansion is restrained,

the stress at any point is

{σ0} = −EαT[d] {1,1,1,0} (17.56)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Further development of f inite-element method 531

and the consistent vector of restraining forces is

{Fb} = 2π

∫ ∫
[B]T {σ0}r dr dz (17.57)

17.12 Finite strip and finite prism

Figure 17.17 shows a top view of a simply-supported bridge with three types of cross section.
Analysis of stress and strain can be performed by treating the structure as an assemblage of
finite strips or finite prisms as shown.10 Similar to the elements used in the analysis of solids of
revolution (Section 17.11), the finite strips and finite prisms have nodal lines rather than node
points.

Over a nodal line, any displacement component is expressed as a sum of a series �n
k=1akYk,

where the values a are unknown amplitudes. The terms Y are functions of y which satisfy a
priori the displacement conditions at the extremities of the strip.

An example of Y functions suitable for the determination of the deflection of a simply-
supported strip is

Yk = sin
μky

l
with μk = kπ (17.58)

Over the width of the strip, or over the cross-sectional area of the prism, the displacement
components are assumed to vary as polynomials of x or of x and z. The same polynomials as

Three types of cross-section A – A

Finite prisms

Finite strips subjected to
bending and in-plane forces

Finite strips in bending

z (down)

A A

x

y Line of supports
Top view

Line of supports

Nodal lines

Figure 17.17 Example of the use of finite strips and finite prisms for the analysis of a simply-supported
bridge with three types of cross section: slab, box, and voided slab.

10 The theory and applications of finite strips and finite prisms are discussed in more detail in Cheung,
Y. K., Finite Strip Method in Structural Analysis, Pergamon Press, Oxford, New York, Toronto, 1976.
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used for one-dimensional or two-dimensional elements are generally used for the strip and the
prism respectively.

In general, the displacement components in a finite strip or a finite prism are expressed as

{f } =
n∑

k=1

[L]k{D∗}k (17.59)

where {D∗}k is a vector of nodal parameters (displacement amplitudes, i.e. the a values), and [L]k
is a matrix of shape functions pertaining to the kth term of the series. The nodal displacement
parameters for a strip or a prism are

{D∗} = {{D∗}1, {D∗}2, . . . , {D∗}n} (17.60)

For the finite strip in Figure 17.18a, usable for the analysis of plates in bending, the displacement
field {f } ≡ {w} represents deflection, and the nodal parameters are defined as

{D∗}k = {w1, θ1, w2, θ2}k (17.61)

where the subscripts 1 and 2 refer to nodal lines along the sides of the strip; θ = θy = −∂w/∂x.
The strip has 4n degrees of freedom.

The shape functions for a finite strip in bending are (Figure 17.18a)

[L]k = [1 − 3ξ2 + 2ξ3,−bξ(ξ − 1)2, ξ2(3 − 2ξ),−bξ2(ξ − 1)]Yk (17.62)

z (down) Supported side
x

AA
l

y
Supported

side

Top view

Displacement
at a typical node

v
(up)

x

z

y
(up)

Prism

(d)

(c)

Shell

w2

w1

u1

u1

u

w

θ1 θ2

*
* *

*
*

*

y
(up)

z

x

u2u1

w2w1

θ1
θ2

v2
(up)

v1
(up)

y
(up)

y
(up)

x, ξ

x, ξ

z

b

21
Plate in
bending

(b)

(a)

Plate subjected
to in-plane
forces

x

Figure 17.18 Top view and cross section A–A showing nodal displacement parameters for (a) finite
strip in bending. (b) finite strip subjected to in-plane forces. (c) finite strip subjected to
bending combined with in-plane forces (a shell). (d) finite prism.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Further development of f inite-element method 533

We recognize that the functions in the 1 ×4 matrix are the same as the shape functions for a bar
in bending (Figure 16.4); here, b is the width of the strip and ξ = x/b.

A finite strip suitable for the analysis of plates subjected to in-plane forces is shown in
Figure 17.18b. The displacement components at any point are {f } ≡ {u,v} and the nodal
displacement parameters are

{D∗}k = {u1,ν1, u2,ν2} (17.63)

The same Y functions which are used for plates in bending are suitable to describe the variation of
u in the y direction. However, for the variation of ν it is suitable to use the derivative Y ′ =dY/dy.
This choice can represent the behavior of a beam in bending with the same cross section as the
strip and subjected to forces in the x direction.

The u displacement represents the deflection in the direction of the applied load. If the beam
is simply supported, the sinusoidal Y function (Eq. 17.58) can be used to represent the variation
of u in the y direction. However, the displacement in the v direction (caused by the shortening
or elongation of the fibers due to bending) is equal to Y ′ multiplied by the distance from the
neutral axis of the beam.

In general, to describe the variation of the displacement components in the y direction, we
use the Yk functions for u and w, and Yk

′l/μk for ν. Thus, when Y is a sine series (Eq. 17.58),
the variation of ν is described by a cosine series.

The shape functions for a finite strip subjected to in-plane forces (Figure 17.18b) are

[L]k =
⎡
⎣ (1 − ξ)Yk 0 ξ 0

0 (1 − ξ)
1
μk

Y ′
k 0 ξ

1
μk

Y ′
k

⎤
⎦ (17.64)

For the variation of each of u and w over the width of the strip, we use linear functions
(Figure 17.3).

When a strip is subjected to bending combined with in-plane forces, the nodal displacement
parameters will be those defined by Eqs. 17.61 and 17.63 combined. We should note that the
two sets of displacements are uncoupled. Thus, the stiffness matrix of a finite strip, suitable
for the analysis of shells, folded plates, or box girders, is obtained by combining the stiffness
matrices of a bending strip and a plane-stress strip as shown in Eq. 17.49.

The finite strip for shell analysis is shown in Figure 17.18c in a general inclined position. The
nodal displacement parameters are indicated in local directions. The stiffness matrix has to be
derived with respect to these local directions and then transformed to correspond to the global
directions before the assemblage of strip matrices can be performed (see Sections 21.8 and 21.9).

The nodal displacement parameters for the finite prism in Figure 17.18d are

{D∗}k = {u1,ν1, w1,u2,ν2,w2, . . . , u8,ν8,w8}k (17.65)

The shape functions for the finite prism can be expressed by the shape functions for the plane-
stress element shown in Figure 17.5 multiplied by Yk or by (l/μk)Yik

′.

17.12.1 Stiffness matrix

The strains at any point in a finite strip or a finite prism are given by Eq. 16.6:

{ε} = [∂]{f } (17.66)

The differential operator [∂] is given by Eqs. 16.19, 16.11, and 16.24 for the elements in
Figures 17.18a, b, and d respectively.
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Substitution of Eq. 17.59 into Eq. 17.66 gives

{ε} = [B]{D∗} =
n∑

k=1

[B]k{D∗}k (17.67)

The [B] matrix is thus partitioned into n submatrices, given by

{B}k = [∂][L]k (17.68)

The stiffness matrix of a finite strip or a finite prism can be generated by Eq. 16.45, which is
repeated here:

[S∗] =
∫

ν

[B]T [d][B] dν (17.69)

The number of rows or columns in [S∗] is n1n2n, where n1 is the number of nodal lines in the
finite strip or prism, n2 is the number of degrees of freedom per node, and n is the number of
terms in the Y series.

The matrix [S∗] can be partitioned into n × n submatrices, of which a typical submatrix is

[S∗]kr =
∫

ν

[B]Tk [d][B]r dν (17.70)

Generation of the stiffness submatrix [S∗]kr by Eq. 17.70 involves integration over the length of
nodal lines of the products YkYr, Y ′′

kY ′′
r Y ′

kY ′
r and YkY ′′

r. For k �= r, the integrals for the first two
products are zero when Y is given by any of Eqs. 17.58 or 17.79 to 17.81. However, the integrals
of the remaining two products are also zero only when Y is a sine series (Eq. 17.58). Because of
these properties, with k �= r, Eq. 17.70 gives submatrices [S∗]kr equal to zero only when Y is a
sine series. In this case, the stiffness matrix of the finite strip or finite prism takes the form

[S∗] =

⎡
⎢⎢⎣

[S∗]11 submatrices not
[S∗]22 shown are null

. . .

[S∗]n n

⎤
⎥⎥⎦ (17.71)

The stiffness matrices of individual strips or prisms have to be assembled to obtain the stiffness
matrix of the structure (see Section 21.9).

The stiffness matrix of the assembled structure will also have the form of Eq. 17.71 when
Y is a sine series. Thus, the equilibrium equations [S]{D} = −{F} will uncouple, which means
that, instead of a large set of simultaneous equations having to be solved, n subsets (of much
smaller band width) are solved separately. Each subset is of the form [S]k{D}k = −{F}k and its
solution gives the nodal displacement parameters for the kth term of the Y series. This results in
a substantial reduction in computing.

The variation of a displacement component over a nodal line is given by

Di =
n∑

k=1

DikYk (17.72)

where Di1, Di2, . . . , Din are the nodal parameters for Di obtained by the solution of the
equilibrium equations.
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17.12.2 Consistent load vector

When a strip or a prism is subjected to body forces {p} per unit volume, the consistent vector of
restraining forces is given by Eq. 16.47, which is repeated here:

{F∗
b} = −

∫
ν

[L]T {p} dν (17.73)

The vector {F∗
b} can be partitioned into n subvectors, given by

{F∗
b}k = −

∫
ν

[L]TK{p} dν (17.74)

Similarly, the consistent vector of forces to restrain a temperature expansion is given by Eq. 16.50.
The vector can be partitioned into subvectors, given by

{F∗
b}k = −

∫
ν

[B]TK[d]{ε0} dν (17.75)

where {ε0} represents the strains if the expansion were free to occur.
Element matrices for a finite strip for the analysis of plates in bending (Figure 17.18a) are

given explicitly in Section 17.12.4.
We shall now consider the case when an external load of intensity q per unit length is applied

on a nodal line in the direction of one of the nodal coordinates. The displacement due to this
loading can be restrained by a consistent force equal to the sum of n terms of the form

F∗
ak = −

∫ 1

0
qYkdy (17.76)

When a concentrated force P is applied on the nodal line, the integral in Eq. 17.74 is replaced
by the product PYk(yp), where Yk(yp) is the value of Yk at yp defining the location of P:

F∗
ak = −PYk(yp) (17.77)

The vector of restraining forces to prevent the nodal displacements is (Eq. 21.32)

{F} = {Fa} + {Fb} (17.78)

where {Fa} accounts for external forces applied on the nodal lines, calculated by Eqs. 17.76 and
17.77 and transformed to global directions. The vector {Fb} accounts for body forces. Consistent
force vectors for individual strips or prisms are calculated by Eqs. 17.73 to 17.75, transformed
to global directions and assembled into one vector by Eq. 21.34.

17.12.3 Displacement variation over a nodal line

The variation of all displacement components in the y direction is described by the y functions
which satisfy the boundary conditions at y=0 and y= l. Functions of the shape of free vibration
modes of prismatic beams are suitable.11

11 Derivations of the Y functions used here are given in Vlasov, V. Z., General Theory of Shells and its
Applications in Engineering; Translated from Russian by NASA; distributed by Office of Technical Ser-
vices, Department of Commerce, Washington, DC, 1949, pp. 699–707. This reference gives Y functions
suitable for other boundary conditions not included above.
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For simply-supported finite strips of prisms, Y and Y ′′ are zero at y = 0 and y = l; these
conditions are satisfied when Y is a sine series (Eq. 17.58). When one end is simply supported
and the other end is built in, Y and Y ′′ are zero at y = 0 while Y and Y ′′ are zero at y = l. These
conditions are satisfied by

Yk = sin
μky

l
− αk sinh

μky
l

(17.79)

where

μk = 3.927, 7.068, . . . ,
4k + 1

4
π αk = sinμk

sinhμk

When both ends of a finite strip or prism are built in, Y and Y ′ are zero there, so that

Yk = sin
μky

l
− sinh

μky
l

+ αk

(
cosh

μky
l

− cos
μky

l

)
(17.80)

where

μk = 4.730, 7.853, . . . ,
2k + 1

2
π αk = sinhμk − sinμk

coshμk − cosμk

When the end y = 0 is built in and the other end is free, Y and Y ′ are zero at y = 0 while Y ′′ and
Y ′′′ are zero at y = l. These conditions are satisfied by

Yk = sin
μky

l
+ sinh

μky
l

+ αk

(
cosh

μky
l

− cos
μky

l

)
(17.81)

where

μk = 1.875, 4.694, . . . ,
2k − 1

2
π αk = sinhμk + sinμk

coshμk + cosμk

17.12.4 Plate-bending finite strip

The strains at any point in the finite strip shown in Figure 17.18a are given by Eq. 17.67, in
which the matrix [B]k is (Eqs. 17.68, 16.19, and 17.62)

[B]k =

⎡
⎢⎢⎢⎢⎣

1
b2 (6 − 12ξ)Yk

1
b

(−4 + 6ξ)Yk
1
b2 (12ξ − 6)Yk

1
b

(−2 + 6ξ)Yk

−(1 − 3ξ2 + 2ξ3)Y ′′
k bξ(ξ − 1)2Y ′′

k −ξ2(3 − 2ξ)Y ′′
k 6ξ2(ξ − 1)Y ′′

k
2
b

(−6ξ + 6ξ2)Y ′
k 2(−3ξ2 + 4ξ − 1)Y ′

k

1
b

(6ξ − 6ξ2)Y ′
k 2(−3ξ2 + 2ξ)Y ′

k

⎤
⎥⎥⎥⎥⎦

(17.82)

For a simply-supported strip, Yk = sin(kπy/l), and the stiffness matrix submatrices [S∗]kr are
nonzero only when k = r.

Equation 17.70 can be rewritten in the form

[S∗]kk = b
∫ 1

0

∫ 1

0
[B]Tk [d][B]kdξdy (17.83)
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The elasticity matrix [d] for a plate in bending is given by Eq. 16.20 or Eq. 16.21. For a strip of
constant thickness, the integrals involved in Eq. 17.83 can be expressed explicitly, noting that

∫ 1

0
Y2

k dy = 1
2

;
∫ 1

0
YkY ′′

k dy = k2π2

2l∫ 1

0
(Y ′′

k )2dy = k4π4

2l3 ;
∫ 1

0
(Y ′

k)
2dy = k2π2

2l

(17.84)

Thus, the submatrix [S∗]kk of a simply-supported finite strip is (Figure 17.18a)

[S∗]kk =b

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6l
b4 d11 + 13k4π4

70l3
d22

+ 6k2π2

5b2l
d21 + 12k2π2

5b2l
d33 symmetrical

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

− 3l
b3 d11 − 11bk4π4

420l3
d22

2l
b2 d11 + b2k4π4

210l3
d22

− 3k2π2

5bl
d21 − k2π2

5bl
d33 + 2k2π2

15l
d21

+ 4k2π2

15l
d33

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

− 6l
b4 d11 + 9k4π4

140l3
d22

3l
b3 d11 − 13bk4π4

840l3
d22

6l
b4 d11 + 13k4π4

70l3
d22

− 6k2π2

5b2l
d21 − 12k2π2

5b2l
d33 + k2π2

10bl
d21 + k2π2

5bl
d33 + 6k2π2

5b2l
d21 + 12k2π2

5b2l
d33

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

− 3l
b3 d11 + 13bk4π4

840l3
d22

1
b2 d11 − b2k4π4

280l3
d22

3l
b3 d11 + 11bk4π4

420l3
d22

2l
b2 d11

+ b2k4π4

210l3
d22

− k2π2

10bl
d21 − k2π2

5bl
d33 − k2π2

30l
d21 − k2π2

15l
d33 + 3k2π2

5bl
d21 + k2π2

5bl
d33 + 2k2π2

15l
d21

+ 4k2π2

15l
d33

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-
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-
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-
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-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17.85)

where dij represents elements of the elasticity matrix (Eq. 16.20 or Eq. 16.21).
When a strip is subjected to a load in the z direction, distributed over a rectangle (Figure 17.19),

the consistent subvector of restraining forces is (see Eq. 17.74)

{F∗
b}k = −b

∫ y2

y1

∫ ξ2

ξ1

qz[L]Tk dξdy (17.86)

where qz is the load intensity.
When a concentrated load P is applied at (xp,yp) (Figure 17.19), Eq. 17.86 becomes

{F∗
b}k = −p[L(ξp, yp)]Tk with ξp = xp/b (17.87)
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z (down)

b

x, ξ

ξ = ξ2

ξ = ξ1y1
y2

qz (down) 

(xp, xp )

P (down) x—
b

ξ =

y

l

Figure 17.19 Finite strip loads considered in Eqs. 17.86 and 17.87.

When the load qz is constant over the whole area of the strip, Eq. 17.86 becomes

{F∗
b}k = −qz

{
b
2

, − b2

12
,

b
2

,
b2

12

}∫ 1

0
Ykdy (17.88)

When a sine series is used for Yk (Eq. 17.58), the integral in Eq. 17.88 is replaced by 2l/kπ or
by zero when k is odd or even respectively.

When a plate in bending is stiffened by a beam running along a nodal line, compatibility of
displacement will be ensured by assuming that the deflection w and the angle of twist θ vary over
the beam length according to the same Y function as used for the finite strips. To account for
the contribution of the beam to the stiffness of the system, we can derive flexural and torsional
stiffness for the beam (see answers to Prob. 17.5) and add them to the diagonal coefficients,
corresponding to w and θ , in the stiffness matrix of the finite strips assemblage.

Example 17.5: Simply-supported rectangular plate
For a horizontal rectangular plate with sides of length l and c, determine the deflection
at the center due to: (a) a downward line load of p per unit length along the axis of
symmetry parallel to the dimension l, and (b) a uniform downward load of q per unit
area. The plate is simply supported at its four sides, has a constant thickness h, and is of
isotropic material with a modulus of elasticity E and Poisson’s ratio ν =0.3. The aspect ratio
is l/c = 2.

Divide the slab into two strips parallel to the l dimension. Because of symmetry, only
one strip needs to be considered; this strip can be represented by Figure 17.18a, with nodal
lines 1 and 2 running along the supported edge and the slab center line respectively. The
width of the strip is b = c/2 = l/4. The displacement parameters w1 and θ2 are zero. This
leaves only two unknowns:

{D} = {θ1, w2}

In case (a), only one-half of the line load intensity (p/2) is applied to the half-slab
considered.

For an isotropic slab with thickness h, the elements of the elasticity matrix are (Eq. 16.21).

d11 = d22 = Eh3

12(1 − v2)
= 91.58 × 10−3Eh3

d21 = vd11 = 27.47 × 10−3Eh3

d33 = Eh3

24(1 + v)
= 32.05 × 10−3Eh3
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The submatrix [S]kk for the half-slab is given by Eq. 17.85 after deletion of the first and
the fourth rows and columns:

[S]kk =10−3Eh3

⎡
⎣ 732.6 + 0.6637k4 + 30.13k2 symmetrical

1
c
(2198 − 4.314k4 + 45.19k2)

1
c2 (8791 + 103.5k4 + 1085k2)

⎤
⎦

The consistent subvectors of restraining forces for the two loading cases are null for values
of k which are even numbers. For k = 1,3, . . ., the subvectors are (Eqs. 17.76 and 17.88)

[F]k = −

⎡
⎢⎢⎢⎣

0 − b2

12

(
2l
kπ

)
p
2

2l
kπ

q
b
2

(
2l
kπ

)
⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎣

0 q
c3

12kπ

−2pc
kπ

−qc2

kπ

⎤
⎥⎥⎦

The equilibrium equations are

[S]k{D}k = −{F}k

Substitution and solution with k = 1 and k = 3 gives the nodal displacement parameters in
the two cases of loading:

[D]1 = c2

Eh2

[ −0.5470p −0.3751qc
0.1865pc 0.1161qc2

]

[D]3 = c2

Eh3

[ −0.0205p −0.0205qc
0.0096pc 0.0057qc2

]

It can be seen that the contribution of the third term (k = 3) is much smaller than the
contribution of the first term. Using k = 1 and k = 3, the deflection at the center of the slab
(ξ = 1; y = l/2) is as follows (Eq. 17.59):

Case (a):

wcenter = pc3

Eh3

(
0.1865sin

π

2
+ 0.0096sin

3π

2

)
= 0.1769

pc3

Eh3

Case (b):

wcenter = qc4

Eh3

(
0.1161sin

π

2
+ 0.0057 sin

3π

2

)
= 0.1104

qc4

Eh3

The “exact’’ answers12 to the same problem are 0.1779pc3/Eh3 and 0.1106qc4/Eh3

respectively.
While high accuracy in the calculation of deflection is achieved with only two strips and

two nonzero terms, for the same accuracy in the calculation of moments a larger number
of strips and of terms may be necessary, particularly with concentrated loads.

Finally, the displacement parameters can be used to calculate the strains (curvatures) and
the stresses (moments) at any point by Eqs. 17.82, 16.15, and 16.40.

12 See Timoshenko, S. and Wojnowsky-Krieger, S., Theory of Plates and Shells, 2nd ed., McGraw-Hill, New
York, 1959.
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17.13 Hybrid finite elements

In displacement-based finite elements, the displacement components are assumed to vary as
(Eq. 16.25)

{f } = [L]{D∗} (17.89)

where {D∗} are nodal displacements and [L] are displacement shape functions. The strain and
the stress components are determined from the displacements by Eqs. 16.37 to 16.40.

Two techniques of formulating hybrid finite elements will be discussed: hybrid stress and
hybrid strain formulations.13 In the first of these, the displacements are assumed to vary
according to Eq. 17.89 and the stresses according to an assumed polynomial

{σ } = [P]{β} (17.90)

In the second technique, in addition to the displacement field (Eq. 17.89), a strain field is assumed:

{ε} = [P]{α} (17.91)

In the last two equations, [P] represents assumed polynomials; {β} and {α} are unknown
multipliers referred to as the stress parameter and the strain parameter respectively.

In the hybrid stress or hybrid strain formulation, a finite element has two sets of unknown
parameters, {D∗} with {β} or {D∗} with {α}. However, the parameters {β} or {α} are eliminated,
by condensation, before assemblage of the element matrices in order to obtain the stiffness
matrix of the structure. The equilibrium equations [S]{D} = −{F} are generated and solved by
the general techniques discussed in Sections 21.9 to 21.11.

In the formulation of displacement-based elements and hybrid elements, the forces applied
on the body of the element are represented by a vector of consistent restraining nodal forces
(Eq. 16.47):

{F∗
b} = −

∫
ν

[L]T {p} dν (17.92)

where {p} are body forces per unit volume.

17.13.1 Stress and strain fields

We give here, as an example, the polynomials [P] selected successfully14 to describe the stress
field by Eq. 17.90 in a plane-stress or plane-strain hybrid stress element, with corner nodes and
two degrees of freedom per node (Figure 17.20):

[P] =
⎡
⎣ 1 y 0 0 0

0 0 1 x 0
0 0 0 0 1

⎤
⎦ (17.93)

The stress vector in this example is {σ } = {σx,σy, τxy}.

13 The material in this section is based on Ghali, A. and Chieslar, J., “Hybrid Finite Elements,’’ Journal of
Structural Engineering, 112 (11) (November 1986), American Society of Civil Engineers, pp. 2478–2493.

14 Pian, T. H. H. and Sumihara, K. “Rational Approach for Assumed Stress Finite Elements,’’ International
Journal for Numerical Methods in Engineering, 20 (1984), pp. 1685–1695.
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2 4

3
1 2

4 3
5

8 6

1

7

x, ξ

y, η
b

c

Figure 17.20 Hybrid finite element for plane-stress and plane-strain analysis.

For a general quadrilateral, x and y can be replaced by the natural coordinates ξ and η, and the
use of the Jacobian matrix will be necessary in the derivation of element matrices (Section 17.2).
The same matrix [P] can be used for a hybrid strain element.

The number of stress or strain parameters, {β} or {α}, must be at least equal to the difference
between the number of degrees of freedom of the element and the minimum number of degrees
of freedom at which displacements have to be restrained in order to prevent rigid-body motion.
The element shown in Figure 17.20 has eight degrees of freedom, and rigid-body motion will not
occur if the displacements are prevented at three coordinates (e.g. two in the x direction and one
in the y direction). Thus, for this element, the minimum number of parameters in {β} or {α} is five.

17.13.2 Hybrid stress formulation

For this formulation we shall use the principle of virtual work (Eq. 6.36), which is rewritten
here as

{F∗}T {D∗} =
∫

{σ }T {ε} dν (17.94)

We recall that two interpretations are possible for the symbols in this equation. In one, {F∗}
and {σ } represent actual nodal forces and corresponding stresses, while {D∗} and {ε} represent
virtual nodal displacements and the corresponding strains. In the second interpretation, {D∗}
and {ε} are real while {F∗} and {σ } are virtual.

The two interpretations will be used in the formulation of hybrid elements. Equations 17.90
and 17.91 will be considered to represent real stresses and strains, but the virtual strains are
chosen as the derivatives of the displacement shape functions (Eq. 16.39):

[B] = [∂][L] = [{B}1{B}2 . . . {B}n] (17.95)

where [∂] is a matrix of differential operators (see, for example, the 3×2 matrix in Eq. 16.11),
and n is the number of nodal displacements. Each column of [B] may be used to represent a
virtual strain field.

We apply the principle of virtual work (Eq. 17.94) to a finite element subjected to nodal forces
{F∗} producing stresses {σ }= [P]{β}. The virtual displacement field is assumed to correspond to
D∗

1 = 1, while the other nodal displacements are zero. The corresponding virtual strains are

{ε}1 = {B}1 = [∂]{L}1 (17.96)

For this application, Eq. 17.94 gives

{F∗}T

⎧⎨
⎩

1
0
. . .

⎫⎬
⎭=

∫
ν

{σ }T {ε}1 dν (17.97)
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Substitution of Eq. 17.90 produces

{F∗}T

⎧⎨
⎩

1
0
. . .

⎫⎬
⎭=

∫
ν

([P]{β})T {B}1 dν (17.98)

By repeated application of Eq. 17.94, using pairs of virtual vectors {0,1,0, . . .} and {B}2, and so
on, and combining the resulting equations, we obtain

{F∗}T [I] = {β}T
∫

ν

[P]T [B] dν (17.99)

We can rewrite Eq. 17.99 as

{F∗} = [G]T {β} (17.100)

where

[G] =
∫

ν

[P]T [B] dv (17.101)

The elements in any row i of [G] are forces at the nodes when the stresses are represented by
the ith column of [P]. The elements in any row of [G] form a set of self-equilibrating forces (see
Example 17.6).

The procedure to generate [G], used above, is tantamount to a repeated application of the
unit-displacement theorem (Eq. 6.40) in order to determine nodal forces corresponding to given
stress fields {σ } = [P]{β}.

The strains in the element considered above can be determined from the stresses by

{ε} = [e]{σ } = [e][P]{β} (17.102)

where

[e] = [d]−1

Here, [d] is the material elasticity matrix (Eqs. 6.11, 16.12, 16.13, 16.20, and 16.21); [e] is given
in Eq. 6.9 for an isotropic three-dimensional solid.

Let us now apply again the principle of virtual work (Eq. 17.94) but this time with {D∗} and
{[e][P]{β}} representing real displacements and strains, and [G]T and [P] representing virtual
forces and stresses:

[G][D∗] =
∫

ν

[P]T [e][P]{β} dν (17.103)

or

[G]{D∗} = [H]{β} (17.104)

where

[H] =
∫

[P]T [e][P] dν (17.105)
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The matrix [H] is a symmetrical matrix which we refer to as the quasi-flexibility matrix.
The explanation of this term is as follows. For a regular flexibility matrix, we should integrate
the product of stress and strain produced by unit forces at the nodes. For the quasi-flexibility
matrix, we also integrate the product of stress and strain, but these correspond to nodal forces
[G]. We can obtain the stiffness matrix of the hybrid stress element by inverting [H] and pre-
and post-multiplying by [G]T and [G] respectively:

[S∗]hybrid stress = [G]T [H]−1[G] (17.106)

This equation can be derived from Eq. 17.100 by elimination of {β} using Eq. 17.104:

[G]T [H]−1[G]{D∗} = {F∗} (17.107)

or

[S∗]{D∗} = {F∗} (17.108)

A comparison of the last two equations gives Eq. 17.106.
When the nodal displacements have been determined (by the solution of the equilibrium

equations for the structure) the stress parameters for individual hybrid stress elements can be
determined by Eq. 17.104:

{β} = [H]−1[G]{D∗} (17.109)

The stresses due to unit nodal displacements in the hybrid stress element are

[σu]hybird stress = [P][H]−1[G] (17.110)

Here, [σu] is referred to as the stress matrix. The product [P][H]−1[G] is the equivalent of the
product [d][B] in displacement-based finite elements (Eqs. 16.41 and 16.42).

Example 17.6: Rectangular element in plane-stress state
Generate the matrices [G] and [H] for a hybrid stress rectangular element for plane-stress
analysis (Figure 17.20). The element has a constant thickness h, modulus of elasticity E,
and Poisson’s ratio ν. Use the polynomial matrix of Eq. 17.93 and the shape functions
given by Eqs. 16.31 and 16.32.

[B] =
⎡
⎣ ∂/∂x 0

0 ∂/∂y
∂/∂y ∂/∂x

⎤
⎦ [L]

= 1
4

⎡
⎢⎢⎢⎢⎢⎢⎣

−2
b

(1 − η) 0
2
b

(1 − η) 0
2
b

(1 + η) 0
2
b

(1 + η) 0

0 −2
c
(1 − ξ) 0 −2

c
(1 + ξ) 0

2
c
(1 + ξ) 0

2
c
(1 − ξ)

−2
c
(1 − ξ) −2

b
(1 − η) −2

c
(1 + ξ)

2
b

(1 − η)
2
c
(1 + ξ)

2
b

(1 + η)
2
c
(1 − ξ) −2

b
(1 + η)

⎤
⎥⎥⎥⎥⎥⎥⎦
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Substitution in Eq. 17.101 gives

[G] =
∫

ν

[P]T [B] dν = h
bc
4

∫ 1

−1
[P]T [B]dξdη

= hbc

⎡
⎢⎢⎢⎢⎣

−1/(2b) 0 1/(2b) 0 1/(2b) 0 −1/(2b) 0
c/(12b) 0 −c/(12b) 0 c/(12b) 0 −c/(12b) 0

0 −1/(2c) 0 −1/(2c) 0 1/(2c) 0 1/(2c)
0 b/(12c) 0 −b/(12c) 0 b/(12c) 0 −b/(12c)

−1/(2c) −1/(2b) −1/(2c) −1/(2b) 1/(2c) 1/(2b) 1/(2c) −1/(2b)

⎤
⎥⎥⎥⎥⎦

The inverse of the elasticity matrix for the plane-stress state is (Eq. 16.12)

[e] = [d]−1 = 1
E

⎡
⎣ 1 −ν 0

−ν 0 0
0 0 2(1 + ν)

⎤
⎦

Substitution of this matrix and of Eq. 17.93 in Eq. 17.105 gives

[H] = hbc
E

⎡
⎢⎢⎢⎢⎣

1 symmetrical
0 c2/12

−ν 0 1
0 0 0 b2/12
0 0 0 0 2(1 + ν)

⎤
⎥⎥⎥⎥⎦

The accuracy of the results obtained by this element is compared with two displacement-
based elements in Prob. 17.14.

17.13.3 Hybrid strain formulation

We shall now consider an element in which the strain field is assumed to be {ε} = [P]{α}
(Eq. 17.91) while the corresponding stress field is determined from

{σ } = [d]{ε} = [d][P]{α} (17.111)

Application of the principle of virtual work (Eq. 17.94) in two different ways, as was done in
Section 17.13.2, gives

{F∗} = [G]{α} (17.112)

and

[G]{D∗} = [H]{α} (17.113)

where

[G] =
∫

ν

[P]T [d][B] dν (17.114)

and

[H] =
∫

ν

[P]T [d][P] ν (17.115)
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The elements in any row i of [G] are the nodal forces which produce the strain vector represented
by the ith column of [P]. The symmetrical matrix [H] is referred to as the quasi-stiffness matrix.

The stiffness matrix of a hybrid strain element is

[S∗]hybrid strain = [G]T [H]−1[G] (17.116)

The strain parameters are given by (Eq. 17.113)

{α} = [H]−1[G]{D∗} (17.117)

The stress matrix for a hybrid strain element is

[σu]hybrid strain = [d][P][H]−1[G] (17.118)

The product of the four matrices in this equation can be used to replace the product [d][B] in
displacement-based finite elements.

The assumption that the strain field is continuous over the element (rather than the stresses
being continuous) is more representative of actual conditions in some applications. These include
composite materials and materials with a nonlinear stress–strain relationship.

17.14 General

In this chapter and in Chapter 16 we have discussed the main concepts and techniques widely
used in the analysis of structures by the finite-element method. This was possible because
the finite-element method is an application of the displacement method, which is extensively
discussed in earlier chapters and also in Chapters 21 and 22.

Selected books on the finite-element method are included in the References to this book. Some
of these books contain extensive lists of references on the subject.

Problems

17.1 Generate [S] for the isoparametric bar element of Prob. 17.3, assuming that the
cross-sectional area equals 2a0,a0, and 1.25a0 at nodes 1, 2, and 3 respectively. For
interpolation between these values, use the displacement shape functions. Evaluate the
integrals numerically with two sampling points. Would you expect a change in the answer
if three or four sampling points were used?

17.2 The figure shows two load distributions on an element boundary. Determine the con-
sistent vectors of restraining forces, assuming that the variation of displacement is: (a)
linear between each two adjacent nodes, and (b) quadratic polynomial. Use Lagrange
interpolation (Figure 17.3). The answers to (a) are included in Figure 10.9. Compare the
answers to (b) when q1 = q2 = q3 = q with the consistent nodal forces due to a rise in
temperature as given in Figure 17.7.

q per unit length q1

q2
q3

b b

1 2 3 1 2 3
ξ = –1 ξ = –1ξ = 0 ξ = 0ξ = 1 ξ = 1

Prob. 17.2
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17.3 Use the shape functions in Figure 17.5 to verify the consistent vectors of restraining nodal
forces given in Figure 17.7.

17.4 Using Lagrange polynomials (Figure 17.3), construct shape functions L1, L2, L10, and
L11 for the element shown. Using these shape functions and considering symmetry and
equilibrium, determine the consistent vector of nodal forces in the y direction when the
element is subjected to a uniform load of qy per unit volume.

b

x, ξ

21 3 4

5

6789

10 11 12

/3 /3 /3b b b

Constant
thickness h

y, η

c

Prob. 17.4

17.5 Determine the strains at nodes 1, 2, and 3 in the linear-strain triangle (Figure 17.9) due
to D∗

1 ≡ u1 = 1 and to D∗
2 ≡ v1 = 1.

17.6 Show that the shape functions of Eqs. 17.35 and 17.36 give linear strains in the element
shown in Figure 17.9. The answers to Prob. 17.5 give the strains at the three corners of
the triangle. By linear interpolation, using area coordinates, determine the strains at any
point in the element. These give the first two columns of the [B] matrix.

17.7 Use the answers to Prob. 17.6 to determine S∗
11 and S∗

12 of the linear-strain triangle
(Figure 17.9).

17.8 Derive [B] and [S∗] for the triangular bending element with equal sides l shown. Assume
a constant thickness h and an isotropic material with ν = 0.3.

6∗

1∗3∗

5∗ 4∗

2∗

x

y

n n

1∗, 2∗ and 3∗

represent
downward
deflections

Prob. 17.8
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17.9 The hexagonal horizontal plate shown is simply supported at the corners and carries a
downward concentrated load P at the center. Calculate the deflection at this point and the
moments at A by idealizing the plate as an assemblage of six triangular elements identical
to the element of Prob. 17.8. Check the value of Mx by taking the moment of the forces
situated to the left or to the right of the y axis.

x

A

P
down

y

Simple
supports

Prob. 17.9

17.10 If the plate in Prob. 17.9 is built-in along the edges, find the deflection at the center
and the moments Mx,My, and Mxy at A caused by a change in temperature of T/2 and
−T/2 degrees at the bottom and top surfaces respectively, with a linear variation over
the thickness. Take the coefficient of thermal expansion as α.

17.11 Using one strip and one term of the series, calculate the deflection at A and also Mx at B
in the plate shown. The plate is subjected to a uniform load of q per unit area. Assume a
constant thickness h and Poisson’s ratio ν = 0.2.

b

x

y

A B
2b

Simply-supported
         edge

Built-in edge

Plate thickness = h

Free edge

Prob. 17.11

17.12 Solve Prob. 17.11 for a uniform line load of p per unit length applied along the plate
center line parallel to the x axis.

17.13 Find the deflection at the center of a square, simply-supported plate due to a uniform
load of q per unit area. Assume a constant thickness h, a length of side l, and an isotropic
material with ν = 0.3. Divide the slab into two finite strips and use one term of the
series.
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17.14 Find the variation in the deflection of the plate in Example 17.5 along the center line
parallel to the l dimension, due to a hydrostatic pressure qz =q0y/l. Divide the plate into
two strips of length l and width c/2, and use three terms of the series.

17.15 The figure shows a top view of a rectangular plate simply supported at two edges, with
each of the other two edges stiffened by a beam. The centroid of the beam cross section
is in the plane of middle surface of the plate; the cross-sectional area properties of the
beam are I = 3lh3/100 and J = 4lh3/100. Poisson’s ratio ν = 0. The plate is subjected to
a concentrated load P at the center.

(a) Derive the flexural and torsional stiffnesses for the beam which can be combined with
the finite-strip stiffness. Use a sine series (Eq. 17.58) to describe the variation in the
deflection of the beam, w, and in the angle of twist, θ .

(b) Find the deflection at the center of the slab and the bending moment in the edge
beams at mid-span. Divide the plate into two strips and use one term of the series.

Edge beam
Edge beam

Simple support

Simple support

 3l—
 8

 3l—
 8

P
(down)

AAl

Prob. 17.15

17.16 Derive S∗
11, S∗

21, S∗
31, S∗

41, and S∗
51 for the hybrid plane-stress element in Figure 17.20.

Assume a constant thickness h and an isotropic material with ν = 0.2.
17.17 Use the results of Prob. 17.16 and consider symmetry and equilibrium to generate [S∗]

for the hybrid rectangular element when b = c.
17.18 Use the stiffness matrices generated in Probs. 16.7, 16.15 and 17.17 to calculate the

deflection at A, the stress σx at B, and τxy at C for one or more of the cantilevers shown.
The answers to this problem are given in the figure, which indicates the degree of accuracy
when we use two displacement-based elements and a hybrid element. The stresses are
determined at two points on a vertical section at the middle of an element rather than at
the corners because, at the chosen locations, the stresses are more accurate.

B

Width of cantilevers = h: γ = 0.2

C
b

P/2

P/2
A

b

y

x

Element
type

Deflection
at A

Normal
stress
σx at B

Shear
stress
τxy at C

1 4.46 2.14 1.00
2 5.01 3.00 1.17
3 5.40 3.00 1.00

Exact 6.88 3.00 1.50

Prob. 17.18
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P/2

P/2

A

x

C

B

b

b

y

b

Element
type

Deflection
at A

Normal
stress
σx at B

Shear
stress
τxy at C

1 25.4 6.43 1.00
2 33.3 9.00 1.15
3 34.8 9.00 1.00

Exact 37.8 9.00 1.50

B

C
b

b b b

y

A

P/2

P/2
x 1 79.2 10.7 1.00

2 107.7 15.0 1.15
3 112.2 15.0 1.00

Exact 116.6 15.0 1.50

b

b

b b b
P/2

P/2

A

x
B

C

1 182.4 15.0 1.00
2 251.2 21.0 1.15
3 261.6 21.0 1.00

Exact 267.5 21.0 1.50

Multipliers P/Eh P/hb

Element types:
1 Displacement-based, 8 degrees of freedom (Example 16.2)
2 Displacement-based, 12 degrees of freedom (element QLC3, Example 16.2)
3 Hybrid-stress, 8 degrees of freedom (Example 17.6)

Prob. 17.18 (Continued)



Chapter 18

Plastic analysis of continuous beams
and frames

18.1 Introduction

An elastic analysis of a structure is important to study its performance, especially with regard
to serviceability, under the service loading for which the structure is designed. However, if the
load is increased until yielding occurs at some locations, the structure undergoes elastic-plastic
deformations and, on further increase, a fully plastic condition is reached, at which a suffi-
cient number of plastic hinges are formed to transform the structure into a mechanism. This
mechanism would collapse under any additional loading. A study of the mechanism of failure
and the knowledge of the magnitude of the collapse load are necessary to determine the load
factor in analysis. Alternatively, if the load factor is specified, the structure can be designed so
that its collapse load is equal to, or higher than, the product of the load factor and the service
loading.

Design of structures based on the plastic approach (referred to as limit design) is accepted by
various codes of practice, particularly for steel construction. The material is assumed to deform
in the idealized manner shown in Figure 18.1. The strain and stress are proportional to one
another up to the yield stress, at which the strain increases indefinitely without any further
increase in stress. This type of stress–strain relation is not very different from that existing in
mild steel. However, there exists a reserve of strength due to strain hardening but this will not
be allowed for in the analysis in this chapter.

εy=Yield strain

σy=Yield stress

σ

ε

Figure 18.1 Idealized stress–strain relation.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plastic analysis of continuous beams and frames 551

We shall now consider the principles of plastic analysis of plane frames in which buckling
instability is prevented and fatigue or brittle failure is not considered possible. In most cases,
the calculation of the collapse load involves trial and error, which may become tedious in large
structures. A general procedure of limit analysis by the displacement method suitable for use
with computers will be discussed in Chapter 22.

18.2 Ultimate moment

Consider a beam whose cross section has an axis of symmetry as shown in Figure 18.2a. Let
the beam be subjected to bending in the plane of symmetry. If the bending moment is small,
the stress and the strain vary linearly across the section, as shown in Figure 18.2b. When the
moment is increased, yield stress is attained in the top fiber (Figure 18.2c), and with a further
increase the yield stress is reached in the bottom fiber as well, as shown in Figure 18.2d. If the
bending moment continues to increase, yield will spread from the outer fibers inward until the
two zones of yield meet (Figure 18.2e); the cross section in this state is said to be fully plastic.

The value of the ultimate moment in the fully plastic condition can be calculated in terms of
the yield stress σy. Since the axial force is zero in the case considered, the neutral axis in the
fully plastic condition divides the section into two equal areas, and the resultant tension and
compression are each equal to (aσy/2), forming a couple equal to the ultimate moment:

x

y

Centroid

Stress distribution

Stress distribution

Neutral axis in
fully plastic state

      Myσ  =  —       I

    
 – yc
    
 – yt

σy

σyσy

σy

σy

y

(a) (b) (c) (d)

(e)

a/2

a/2

Figure 18.2 Stress distribution in a symmetrical cross section subjected to a bending moment of increas-
ing magnitude. (a) Beam cross section. (b) Elastic. (c) Plastic at top fiber. (d) Plastic at top
and bottom fibers. (e) Fully plastic state.
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Mp = 1
2

a σy(yc + yt) (18.1)

where yc and yt are, respectively, the distance of the centroid of the compression and tension
area from the neutral axis in the fully plastic condition.

The maximum moment which a section can carry without exceeding the yield stress is My =
σyZ, where Z is the section modulus. The ratio α = Mp/My depends on the shape of the cross
section and is referred to as the shape factor; it is always greater than unity.

For a rectangular section of breadth b and depth d, Z = bd2/6, Mp = σybd2/4; hence α = 1.5.
For a solid circular cross section α = 1.7, while for I-beams and channels α varies within the
small range of 1.15 to 1.17.

18.3 Plastic behavior of a simple beam

To consider displacements let us assume an idealized relation between the bending moment and
curvature at a section, as shown in Figure 18.3.

If a load P at the mid-span of a simple beam (Figure 18.4a) is increased until the bending
at the mid-span cross section reaches the fully plastic moment Mp, a plastic hinge is formed at
this section and collapse will occur under any further load increase. According to the assumed
idealized relation, the curvature, and hence the rotation, at the plastic hinge increase at a constant
load; so does deflection. The collapse load Pc can be easily calculated from statics:

Pc = 4Mp/l (18.2)

The bending moment at sections other than mid-span is less than Mp, and by virtue of the
assumed idealized relations the beam remains elastic away from this section. The deflected
configurations of the beam in the elastic and plastic stages are shown in Figure 18.4b. The
increase in deflection during collapse is caused by the rotation at the central hinge without a
concurrent change in curvature of the two halves of the beam. Figure 18.4c represents the change
in deflection during collapse; this is a straight line for each half of the beam. The same figure
shows also the collapse mechanism of the beam.

Mp  =  fully plastic moment

d2y
Curvature ≅

M

dx2

Figure 18.3 Idealized moment–curvature relation.
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(a)

(c)

(d)

(b)

A

P

C

B

l θ/2
θ 2θ

C

Pc

A B

θ

Deflection
during collapse

Elastic deflection

Plastic hinge

Hinge rotation

         Pl3
D  =  ——        48EI

l/2 l/2

CL

Figure 18.4 Plastic behavior of a simple beam. (a) Beam. (b) Deflection lines. (c) Change in deflection
during collapse. (d) Elevation of beam showing yielding near the mid-span section.

The collapse load of the beam (and this applies also to statically indeterminate structures)
can be calculated by equating the external and internal work during a virtual movement of the
collapse mechanism. Let each half of the beam in Figure 18.4c acquire a virtual rotation θ , so
that the corresponding rotation at the hinge is 2θ , and the downward displacement of the load
Pc is lθ/2. Equating the work done by Pc to the work of the moment Mp at the plastic hinge,
we obtain

Pc = lθ
2

= Mp2θ (18.3)

which gives the same result as Eq. 18.2.
The idealized relation between load and central deflection for this beam is represented by the

line OFM in Figure 18.5. When the collapse load corresponding to point F in Figure 18.5 is
reached, the elastic deflection at mid-span is

DF = Pc
l3

48EI
(18.4)

However, the actual load–deflection relation follows the dashed curve GKE. When the yield
moment My(= σyZ) is reached at the mid-span section, the upper or the lower fiber, or both,
yield and the elastic behavior comes to an end. If the load is increased further, the yield spreads
inward at this section and also laterally to other nearby sections. Figure 18.4d illustrates this
spread of yield. After My has been reached, the deflection increases at a greater rate per unit
increase of load until Mp is reached, as indicated by the curve GK in Figure 18.5. In practice,
rolled steel sections continue to show a small rise in the load–deflection curve during collapse
(line KE); this is due to strain hardening which is generally not considered in ordinary plastic
analysis.
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Load
P

Yield load
causing My
at mid-span

Pc

 Pcl3——
48EI

 lθ—
 2

0
Mid-span deflection D

F

G

K E

M

Idealized

Actual

Figure 18.5 Load–deflection relation for the beam in Figure 18.4.

18.4 Ultimate strength of fixed-ended and continuous beams

Consider a prismatic fixed-ended beam subjected to a uniform load of intensity q (Figure 18.6a).
The resulting bending moments are MA = MC = −ql2/12 and MB = ql2/24. When the load
intensity is increased to q1 such that the moments at the supports reach the fully plastic moment
Mp =q1l2/12, hinges are formed at A and C. If q is further increased, the moment at the supports
will remain constant at Mp; free rotation will take place there so that the deflection due to the
load in excess of q1 will be the same as in a simply-supported beam. The collapse will occur at
a load intensity qc which produces the moment at mid-span of magnitude Mp, so that a third
hinge is formed at B. The bending moment diagrams due to load intensity q for the cases q=q1,
q1 < q < qc, and q = qc are shown in Figure 18.6b and the collapse mechanism in Figure 18.6c.
The collapse load qc is calculated by the virtual-work equation

Mp(θ + 2θ + θ) = 2
(

qcl
2

)
θ l
4

(18.5)

where θ , 2θ , and θ are the virtual rotations at the plastic hinges A, B, and C respectively, and
θ l/4 is the corresponding downward displacement of the resultant load on one-half of the beam.
Equation 18.5 gives the intensity of the collapse load:

qc = 16Mp

l2 (18.6)

If the beam is of solid rectangular section, Mp = 1.5My and the maximum load intensity
computed by elastic theory with the maximum fiber stress σy is qE = 12 My/l2. Thus, the ratio
qc/qE = 2, which clearly indicates that the design of the beam considered by elastic theory is
conservative.

In plastic design of continuous beams, we draw the bending moment diagram for each span
as a simple beam loaded with the design load multiplied by the load factor. Arbitrary values
may be chosen for the bending moment at the supports and a closing line such as AB′C′D in
Figure 18.7d is drawn. The value of the bending moment at any section will then be the ordinate
between the closing line and the simple-beam moment diagram. The beam will have the required
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Load intensity, q

q  =  q1, end
of elastic stage

(a)

(b)

(c)

l/2 l/2

ql2/12

A B C

A

B

C

q1 < q < qc
Plastic hinges
at A and C,
MA  =  MC  =  Mp q =qc

At collapse,
hinges are
developed at
A, B, and C,
MA=MB=Mp

qrl2
—
24

θ θ

2θ

ql2/12

Figure 18.6 Collapse of a beam with fixed ends under a uniformly distributed load. (a) Beam. (b)
Bending moment diagrams for three load intensities. (c) Collapse mechanism.

ultimate capacity if the sections are then selected so that the plastic moment of resistance is
everywhere equal to or in excess of the bending moment. However, the most economical design
is generally attained when a regular section is used of size such that a collapse mechanism
develops.

If the beam sections are given or assumed, the values of the collapse load corresponding to
all possible mechanisms are determined; the actual collapse load is the smallest one of these.
Consider, for example, the continuous beam in Figure 18.7a which has constant section with
a plastic moment of resistance Mp. We want to find the value of the two equal loads P which
causes collapse; denote this value by Pc. Failure can occur only by one of the two mechanisms
shown in Figures 18.7b and c. By a virtual-work equation for each of the two mechanisms, we
obtain
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P P

A B C D

E F

A B C D

E
2θ

θθ

A B C D

F 2θ

θθ

A B C DE F

B′

B′′ C′

(a)

(b)

(c)

(d)

l l l

4
Pcl

Mp

Mp

Mp

l/2 l/2 l/2 l/2

Mp

Figure 18.7 Plastic analysis of a continuous beam. (a) Continuous beam of constant section and of
plastic moment of resistance Mp. (b) Collapse mechanism 1. (c) Collapse mechanism 2.
(d) Bending moment diagram.

Pc1

(
lθ
2

)
= Mp(θ + 2θ + θ) (see Figure 18.7b)

whence

Pc1 = 8Mp/l (18.7)

and

Pc2

(
lθ
2

)
= Mp(θ + 2θ) (see Figure 18.7c)
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whence

Pc2 = 6Mp/l (18.8)

The smaller of these two values is the true collapse load, Pc =6Mp/l. The corresponding bend-
ing moment diagram is shown in Figure 18.7d, in which the values of the bending moment at C
and F are equal to Mp. When the collapse occurs, the part of the beam between A and C is still
in the elastic stage, and the value of the bending moment at B can be calculated by analyzing a
continuous beam ABC, hinged at A and C, and subjected to a clockwise couple of magnitude Mp

at C and a vertical load Pc =6Mp/l at E. However, this calculation has no practical value in limit
design. It is clear that the closing line AB′C′ of the bending moment diagram can take any pos-
ition between the limiting lines AB′′C′ and ABC′ with the bending moment at no section
exceeding Mp.

18.5 Rectangular portal frame

Let us determine the collapse load for the frame shown in Figure 18.8a, assuming the plastic
moment of resistance 2 Mp for the beam BC and Mp for the columns. There are only three
possible collapse mechanisms, which are shown in Figures 18.8b, c, and d.

A virtual-work equation for each of these mechanisms gives

Mp(θ + θ) + 2Mp(2θ) = 2Pc1

(
lθ
2

)
(see Figure 18.8b)

or

Pc1 = 6Mp

l
(18.9)

Mp(θ + θ + θ + θ) = Pc2(0.6lθ) (see Figure 18.8c)

or

Pc2 = 6.67
Mp

l
(18.10)

and

Mp(θ + θ + 2θ) + 2Mp(2θ) = Pc3(0.6lθ) + 2Pc3

(
lθ
2

)
(see Figure 18.8d)

or

Pc3 = 5
Mp

l
(18.11)

The collapse load is the smallest of Pc1, Pc2, and Pc3; thus, Pc =5Mp/l, and failure of the frame
will occur with the mechanism of Figure 18.8d. The corresponding bending moment diagram in
Figure 18.8e has an ordinate Mp at the plastic hinges A, C, and D and 2Mp at E, with the plastic
moment of resistance exceeded nowhere. A check on the calculations can be made by verifying
that the bending moment diagram in Figure 18.8e satisfies static equilibrium.
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Figure 18.8 Plastic analysis of a rectangular portal frame. (a) Frame loading and properties. (b) Mech-
anism corresponding to collapse load Pc1. (c) Mechanism corresponding to collapse load
Pc2. (d) Mechanism corresponding to collapse load Pc3. (e) Bending moment diagram at
collapse.

18.5.1 Location of plastic hinges under distributed loads

Consider the frame analyzed in the previous section, but with a vertical load 4 P distributed
over the beam BC, as shown in Figure 18.9a; the horizontal load P is unchanged. In this case,
the position of the maximum positive bending moment in BC is not known, so that the location
of the plastic hinge has to be determined.
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0.6l

Figure 18.9 Frame subjected to distributed load analyzed in Section 18.5.1. (a) Frame loading and
properties. (b) Bending moment diagram due to loading in part (a) on the mechanism in
Figure 18.8d. (c) Mechanism corresponding to collapse load Pc in Eq. 18.14.

Let us apply the virtual-work equation to the mechanism in Figure 18.8d, loaded as in
Figure 18.9a, with the hinge in the beam assumed at mid-span. Each half of the beam is subjected
to a vertical load whose resultant 2Pc3 moves through a vertical distance lθ/4.

The internal virtual work and the external virtual work of the horizontal force are the same
as before (Eq. 18.11); thus,

Mp(θ + θ + 2θ) + 2Mp(2θ) = Pc3(0.6lθ) + 2 × 2Pc3

(
lθ
4

)
(18.12)

This equation gives the same value of the collapse load as Eq. 18.11.
The bending moment diagram for the mechanism in Figure 18.8d with the loads in

Figure 18.9a is shown in Figure 18.9b, from which it can be seen that the fully plastic moment
2Mp is slightly exceeded in the left-hand half of the beam.

This maximum moment occurs at a distance x = 0.45 l from B, and its value is 2.025 Mp. It
follows that the assumed collapse mechanism is not correct, the reason for this being that the
plastic hinge in the beam should not be located at mid-span. The calculated value of Pc =5Mp/l
is an upper bound on the value of the collapse load. If the load Pc is given, the structure must
be designed for a plastic moment Mp slightly greater than Pcl/5, and this value is to be con-
sidered a lower bound on the required plastic moment. It is clear that the structure will be safe
if designed for

Mp = 2.025
2

(
Pcl
5

)
= 1.0125

Pcl
5
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Therefore, the required value of Mp is

Pcl
5

< Mp < 1.0125
Pcl
5

(18.13)

These limits define the value of Mp to within 1.25 percent and are accurate enough for practical
purposes. However, the precise value of Mp can be calculated considering the mechanism in
Figure 18.9c, with a plastic hinge F at a distance x from B. By a virtual-work equation Mp can be
derived in terms of x. The value of x is then chosen so that Mp is a maximum, that is, dMp/dx=0.

The rotation at the hinges and the translation of the loads are shown in Figure 18.9c, and the
virtual-work equation is

Mp

(
θ + θ + l

l − x
θ

)
+ 2Mp

(
l

l − x
θ

)
= Pc(0.6lθ) + 4Pc

l
x
(

xθ

2

)

+ 4Pc

l
(l − x)

(
xθ

2

)

or

Mp = Pc
(0.6l2 + 1.4lx − 2x2)

(5l − 2x)
(18.14)

Putting dMp/dx = 0, we obtain

4x2 − 20lx + 8.2l2 = 0 (18.15)

whence x = 0.4505l. Substituting in Eq. 18.14, we obtain the maximum value of Mp:

Mp = 1.0061
Pcl
5

(18.16)

The values of x and Mp differ slightly from the approximate value x = 0.45l and from the
conservative value of Mp = 1.0125 (Pcl/5) obtained from the bending moment diagram in
Figure 18.9b.

18.6 Combination of elementary mechanisms

We can now consider the plastic analysis of plane frames in general. A sufficient number of
plastic hinges are introduced at assumed locations to form a mechanism and the corresponding
collapse load is calculated by virtual work. The value determined in this way is an upper bound
on the correct load capacity, that is, the load indicated is greater than the correct load. In other
words, if the plastic moment Mp required for any specified collapse is calculated according
to any mechanism, then the resulting value of Mp is a lower bound on the necessary plastic
resisting moment. In practical calculation, the correct mechanism may be reached by considering
elementary mechanisms and combining them to obtain the lowest, that is, the correct, load
capacity.

Consider the frame of Figure 18.10a with prismatic members; the relative values of the fully
plastic moment are indicated. Three elementary mechanisms are shown in Figures 18.10b, c,
and d and the work equation for each is given alongside.

Mechanism 2 gives the lowest Pc, and we combine it with the other mechanisms to reach a
smaller value of Pc. Two combinations are shown in Figures 18.10e and f. Mechanism 4 is a
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Figure 18.10 Plastic analysis of a multibay frame. (a) Frame properties and loading. (b) Mechanism
1. (c) Mechanism 2. (d) Mechanism 3. (e) Mechanism 4. (f) Mechanism 5.
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Figure 18.11 Bending moment diagram for mechanism 5 in Figure 18.10f.

combination of mechanisms 2 and 3 with a modification of the location of the hinge above the
central column. The resulting collapse load is Pc4 1.33 Mp/l. Mechanism 5 is a combination of
mechanisms 1, 2, and 3, again with the same modification, giving a value Pc5 =1.31 Mp/l, which
is lower than all the previous values.

To find whether or not Pc5 is the lower bound on Pc, the corresponding bending moment
diagram is drawn. If the moment at no section is greater than its plastic moment, Pc5 is the
lower bound and the solution is correct. The bending moment diagram of Figure 18.11 shows
that mechanism 5 is the correct mechanism. In the construction of this diagram, the known
values of moments at the plastic hinges were first plotted, and the other ordinates were then
derived by simple statics.

It is possible that, on plotting the bending moment diagram, we find that the moment at some
section exceeds the plastic moment of resistance. If the excess is small, say 5 percent, then it
is safe to consider that the frame can carry the loads previously calculated, each reduced by
1/1.05. Some publications1 suggest that, if, for a specified collapse load calculated for a wrong
mechanism, the plastic moment of resistance is nowhere exceeded by more than 30 percent, a
fairly close estimate of the required bending strength can be obtained by increasing the computed
value of Mp by one-half of the largest excess moment.

18.7 Frames with inclined members

In computing the angle between the ends of members at a plastic hinge in a nonrectangular
frame, it may be convenient to locate the instantaneous center about which a part of the frame
rotates during collapse.

Consider the gable frame in Figure 18.12a, for which a trial mechanism 1 is given in
Figure 18.12b. Joining the plastic hinges at A and C and extending the line AC to meet GF,
locates O, the center of rotation of the part CDF. Parts ABC and GF rotate about A and G
respectively. During collapse points C and F move along the normals to the lines AO and GO
respectively, that is, along the common tangent to circles having their centers located at the

1 See Plastic Design of Steel, The American Institute of Steel Construction, New York, 1959, p. 7.
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Figure 18.12 Plastic analysis of a gable frame. (a) Frame properties and loading. (b) Mechanism 1.
(c) Mechanism 2. (d) Bending moment diagram for mechanism 2.

centers of rotation A, O, and G. Assuming the angle of rotation of GF to be θ1, the angles of
rotation of the frame parts about their instantaneous centers can be determined easily by geo-
metry: θ2 = θ1/4 and θ3 = 3θ2 = 3θ1/4. The relative rotations of frame parts at the plastic hinges
are indicated in Figure 18.12b, and the corresponding internal virtual work W is the sum of the
work done at the four hinges A, C, F, and G; thus,

W = Mp[θ3 + (θ3 + θ2) + (θ2 + θ1) + θ1]
= 4Mpθ1
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The translation of the external loads corresponding to the above rotations is calculated from
the geometry of the mechanism, and the external virtual work is obtained as follows.

Load
point

Displacement Load External
work

B 0.75 θ1 × 3b = 2.25 θ1b P 2.25Pb θ1

C 0.75 θ1 × 1.5b = 1.125 θ1b 3P 3.375Pb θ1

E 0.25 θ1 × 1.5b = 0.375 θ1b 3P 1.125Pb θ1

Total = 6.75Pb θ1

Equating the external and internal work, we obtain

Mp = 1.6875Pb

If the bending moment corresponding to this mechanism is sketched, it will be clear that
the value Mp = 1.6875Pb is exceeded at several points, which means that mechanism 1 is not
the correct collapse mechanism. A second mechanism is shown in Figure 18.12c, for which the
instantaneous centers are B, O, and G for frame parts BC, CF, and FG respectively. An arbitrary
small virtual rotation θ1 is assumed for FG, and the corresponding rotations for the other parts
are determined in terms of θ1 by considering the geometry of the mechanism. The work equation
for this mechanism gives Mp =1.8Pb. The corresponding bending moment diagram is shown in
Figure 18.12d: the value of Mp is not exceeded, indicating that collapse takes place according
to mechanism 2.

18.8 Effect of axial forces on plastic moment capacity

In previous sections we assumed that the fully plastic state at a hinge is induced solely by the
bending moment Mp. However, in the presence of a high axial compressive or tensile force, a
plastic hinge can be formed at a moment Mpc lower than the value Mp. We shall now derive
an expression for Mpc for a rectangular cross section subjected to a tensile or compressive axial
force; any buckling effect will be ignored.

Figures 18.13a to e show the changes in stress distribution in a rectangular cross section b×d
subjected to an axial compressive force P together with a bending moment M in the vertical
plane, as the magnitude of M and P is increased at a constant value of M/P until the fully plastic
stage is reached. The values of the axial force and the moment at this stage are

P = 2σyby0 (18.17)

and

Mpc = σyb
4

(d2 − 4y2
0) (18.18)

where σy is the yield stress and y0 is the distance from the centroid of the section to the
neutral axis.

In the absence of the axial force, y0 = 0, and the fully plastic moment is then

Mp = σy
bd2

4
(18.19)
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d/2

d/2

b

Figure 18.13 Stress distribution in a rectangular section subjected to an increasing bending moment
M and axial force P at a constant value of M/P.

On the other hand, if the axial force alone causes a fully plastic state, its magnitude is

Py = σybd (18.20)

From Eqs. 18.17 to 18.20 we can obtain the interaction equation

Mpc

Mp
= 1 −

(
P
Py

)2

(18.21)

The interaction curve of Mpc/Mp plotted against P/Py in Figure 18.14 can be used to determine
the strength of a section under combined loading of an axial force and a bending moment from
the strengths in two simple types of loading: axial force only and bending moment only.

The shape of the interaction curve depends on the geometry of the cross section. For all wide-
flange I-sections used in steel construction, the interaction curves fall within a narrow band
and may be approximated by two straight lines2 shown in Figure 18.14. From this figure it is
apparent that when P/Py ≤0.15, the effect of the axial load is neglected, and when P/P0 ≥0.15,

2 Joint Committee of the Welding Research Council and the American Society of Civil Engineers,
Commentary on Plastic Design in Steel, ASCE Manual of Engineering Practice, No. 41, New York, 1961.
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Figure 18.14 Axial-force/bending moment interaction curves for rectangular cross sections and for
wide-flange I-sections.

we use the equation

Mpc

Mp
= 1.18

(
1 − P

Py

)
(18.22)

18.9 Effect of shear on plastic moment capacity

The presence of shear at a section at which the bending moment is high may limit the ultimate
load capacity of a structure to a value below that which produces the fully plastic moment Mp

at the location of the plastic hinges. Although in the majority of practical cases the influence
of shear is small, there are circumstances when shear may produce a plastic hinge at a bending
moment Mps appreciably smaller than Mp.

The main assumptions made in deriving an interaction equation for Mps/Mp for rectangular
and wide-flange I-sections are:

1. The outer portions of the beam (the flanges and a part of the web) are in a yield
state and resist bending only, while the middle portion is in an elastic state and resists
shear.

2. The shearing stress in the (rectangular) center portion is calculated by ordinary elastic
equations.
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The resistance of the section is assumed to be exhausted when the shearing stress in
the center portion reaches yield under pure shear, which, according to von Mises-Hencky
yield criterion, equals σy/

√
3. With these assumptions, the following equation can be

derived:3

Mps

Mp
= 8bc2

9αZ

(√
1 + 9

4
αZ
bc2 − 1

)
(18.23)

where b is the width of the rectangular section or of the web of an I-section, Z is the section modu-
lus, α is as defined at the end of Section 18.2, and c is the shear span (= bending moment/shearing
force).

18.10 General

This chapter is no more than an introduction to the structural analysis required in the plastic
design of steel structures. For safe and efficient use of plastic design of continuous framed
structures, it is important to understand the restrictions and limitations of this design method,
such as the effect of repeated loading, instability, and also to be able to estimate deflections at
working and ultimate loads.4

Problems

18.1 Find the required plastic moment resistance of the cross section(s) for the beam in the
figure, which is to be designed to carry the given loads with a load factor of 1.7. Assume
that the beam has: (a) a constant cross section, (b) two different cross sections one from
A to C, and the other from C to D.

ql/4

DA B C q/unit length

l3l/4 3l/8 3l/8

Prob. 18.1

3 See pp. 35–40 of the reference in footnote 2 in this chapter for proof and limitations of this equation, and
also for the combined effect of shear and axial force.

4 See, for instance, Neal, B.G., The Plastic Methods of Structural Analysis, 2nd ed., Chapman and Hall,
London, 1963. A list of other references can be found at the end of the manual referred to in footnote 2
in this chapter.
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18.2 Determine the fully plastic moment for the frames shown, with the collapse loads indicated.
Ignore the effects of shear and axial forces.

A

A

A

A

B

E

P

B

B

BC

C

C

C

D

D

D

D E

E

F

F

0.4P

Constant Mp

Constant Mp

Constant MpConstant Mp

(d)

(e)

(a)

(b)

(c)

2b

b

0.6qb

q/unit length

q/ unit length

0.2qb

W— 4

Total distributed load W

Deck of constant Mp

Assume that failure can occur only in the
deck and that the pin-connected members
do not buckle 

Total distributed load 7P

l/2 l/2 l/2 l/2

P P

P

P

E

3b/4

2.5b 1.5b

1.6b

b

b b b

2.4b2.4b

l l2l

l

l

1.5b

Prob. 18.2

18.3 What is the value of Mp for the frame in Prob. 18.2b, if the axial force effect (excluding
buckling) is taken into account? Assume that the frame has a constant rectangular section
b × d, with d = l/15.

18.4 What is the value of Mp for the beam in Prob. 18.1, if the shear effect is taken into account?
Assume that the beam has a constant rectangular section b × d, with d = l/30.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 19

Yield-line and strip methods for slabs

19.1 Introduction1

This chapter deals in a general way with plates but many of the applications are virtually limited
to reinforced concrete slabs. For this reason, the term slab will be generally used.

An elastic analysis of a reinforced concrete slab gives no indication of its ultimate load-
carrying capacity and further analyses have to be made for this condition. An exact solution for
the ultimate flexural strength of a slab can be found only rarely, but it is possible to determine
upper and lower bounds to the true collapse load.

The yield-line method of analysis gives an upper bound to the ultimate load capacity of a
reinforced concrete slab by a study of assumed mechanisms of collapse. This method, developed
by Johansen,2 is a powerful tool for estimating the required bending resistance and hence the
necessary reinforcement, especially for slabs of nonregular geometry or loading. Two approaches
are possible in yield-line theory. The first one is an energy method in which the external work
done by the loads during a small virtual movement of the collapse mechanism is equated to
the internal work. The alternative approach is by the study of the equilibrium of the various
parts of the slab into which the slab is divided by the yield lines. We may note that it is the
equilibrium of slab parts that is considered and not the equilibrium of forces at all points of the
yield line.

In contrast to the above, lower-bound solutions to the collapse load are obtained by satisfying
equilibrium at all points in the slab, and necessitate the determination of a complete bending
moment field in equilibrium with the applied loading. We shall restrict our discussion of these
lower-bound solutions to the special case where twisting moments are absent – the so-called
strip method. This strip method is more of a direct design procedure than the yield-line method
as the designer chooses the layout of reinforcement as the calculation progresses.

Ultimate load designs according to the yield-line or strip methods do not guarantee safety
against cracking or excessive deformations. Therefore, an understanding of elastic behavior
is necessary for the effective distribution of reinforcement when an ultimate load design
is made.

19.2 Fundamentals of yield-line theory

The slab is assumed to collapse at a certain ultimate load through a system of yield lines or
fracture lines, called the pattern of fracture. The working load is obtained by dividing this
ultimate load by the required load factor. For design, the working load is multiplied by the load
factor, and the required ultimate moment of resistance is determined.

1 Sections 19.1, 19.5, 19.6, 19.8, 19.9, and 19.10 were written in collaboration with Dr. J. Harrop,
University of Leeds.

2 Johansen, K. W., Yield-Line Theory, Cement and Concrete Association, London, 1962, p. 181.
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(a) Axes of rotation

Free edge

Free edges

Axes of rotationColumn

Axes of rotation

(b)

(c)

Figure 19.1 Typical fracture patterns in slabs. (a) Slab simply supported on four sides. (b) Slab simply
supported on three sides and free along the fourth side. (c) Slab simply supported on two
columns and on one side.

The basic fundamentals and main assumptions of the yield-line theory are as follows:

1. At fracture, the bending moment per unit length along all the fracture lines is constant and
equal to the yield value corresponding to the steel reinforcement. The fracture is assumed
to occur due to the yield of the steel.

2. The slab parts rotate about axes along the supported edges. In a slab supported directly on
columns, the axes of rotation pass through the columns. Figure 19.1 shows some typical
fracture patterns.

3. At fracture, elastic deformations are small compared with the plastic deformations and are
therefore ignored. From this assumption and the previous one, it follows that fractured slab
parts are plane and therefore they intersect in straight lines. In other words, the yield lines
are straight.

4. The lines of fracture on the sides of two adjacent slab parts pass through the point of
intersection of their axes of rotation.

Figure 19.2 shows the fracture pattern of a uniformly loaded slab simply supported on three
sides. It is readily seen that the pattern satisfies the requirements given above. Each of the three
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Figure 19.2 Angular rotation of slab parts.

slab parts rotates about its axis of rotation by an angle θi which is related to the rotation of the
other parts. Let points E and F have a virtual downward displacement w = 1. The rotations of
the slab parts are then

θ1 = 1
c1

θ2 = 1
y

and θ3 = 1
c2

19.2.1 Convention of representation

The different conditions of supports will be indicated thus:

Simply-supported edge

Built-in edge

Free edge

Downward force

Upward force

A positive ultimate moment m per unit length causes yield of the bottom reinforcement. A yield
line formed by a positive moment is referred to as a positive yield line. Negative ultimate moment
m′ per unit length causes yield of the top reinforcement along a negative yield line.3

3 There are several methods of calculation of the value of the ultimate moment in terms of the depth, area
of reinforcement and the strengths of concrete and of steel. Refer, for example, to the American Concrete
Institute Standard 318–08 Building Code Requirements for Reinforced Concrete.
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19.2.2 Ultimate moment of a slab equally reinforced in two
perpendicular directions

Consider a slab reinforced in two perpendicular directions, x and y, with different reinforcement
corresponding to ultimate positive moments m1 and m2 (Figure 19.3a). For equilibrium of the
element shown in Figure 19.3b, the bending (mα) and twisting (mt) moments at a fracture line
making an angle α with the x axis are

mα = m1 cos2 α + m2 sin2 α

mt = (m1 − m2) sin α cos α

}
(19.1)

The moments are represented in Figure 19.3b (as usual) by double-headed arrows in the
direction of the progress of a right-hand screw rotating in the same direction as the moment.

m1

m1

m
α m2

m
t

x
(a) (b)

1

cos α 

sin α 

y

m2

αα

Figure 19.3 Moments at a fracture line inclined to the direction of reinforcement.

mt

0
α

m1

m

mt

m2

mα

Figure 19.4 Moments on an inclined fracture line by Mohr’s circle.
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In an isotropic slab (that is, one equally reinforced in two perpendicular directions) m1 =m2 =m,
and the moment on any inclined fracture line is

mα = m(cos2 α + sin2 α) = m
and

mt = 0

⎫⎬
⎭ (19.2)

The values of mα and mt can also be determined by Mohr’s circle as shown in Figure 19.4.

19.3 Energy method

In this method, the pattern of fracture is assumed and the slab is allowed to deflect in the
fractured state as a mechanism. Each slab part will rotate a small virtual angle θ about its axis
of rotation. The relation between the rotation of the slab parts is defined by the choice of the
fracture pattern. The internal energy dissipated on the yield lines during the virtual rotation is
equated to the external virtual work done in deflecting the slab. From this equation, the value
of the ultimate moment is obtained. We should note, when calculating the internal energy, that
only the ultimate moments in the yield lines do work during rotation.

The virtual-work equation (similar to the equation used for plastic analysis of frames,
Chapter 18) gives either the correct ultimate moment or a value smaller than the correct value.
In other words, if the virtual-work equation is used to find the ultimate load for a slab with an
assumed bending resistance, then the value obtained will be an upper bound on the carrying
capacity of the slab. This means that the solution obtained is either correct or unsafe. In practical
calculations, one or two fracture patterns are assumed, and the value obtained is usually within
10 percent of the correct value. It seems to be a reasonable design procedure to increase the
moment obtained by the work equation by a small percentage, depending on the number of
trials and on the uncertainty of the chosen fracture pattern. The theoretical exact pattern is that
for which the ultimate moment is a maximum. This can be reached, if we define the fracture
pattern by certain parameters x1, x2, . . .; the work equation will then give the value of m as a
function of these parameters, i.e. m = f (x1, x2, . . .). The value of the parameters corresponding
to the maximum moment is determined by partial differentiation: (∂f /∂x1) = 0, (∂f /∂x2) = 0,
etc. This process can become laborious except for simple slabs in which the designer can define
a reasonable pattern and proceed as suggested above.

The internal work done during a virtual rotation θ of a slab part is equal to the scalar product

of a vector
−→
M = −→

ml and a vector
−→
θ along the axis of rotation (Figure 19.5). The internal work

for this slab part is then
−→
M .

−→
θ = ml (cosα)θ , where α is the angle between the two vectors.

This means that, for any part of the slab, the internal work is equal to the rotation of that part
multiplied by the projection of the ultimate moment upon the axis of rotation. It is sometimes
convenient to consider the components of the moments in two perpendicular directions x and y
in the plane of the slab. The total internal virtual work for all the slab parts is then

U =
∑−→

M .
−→
θ = �Mx.θx + �My.θy (19.3)

where θx and θy are the x and y components of the rotation vector, and Mx and My are the x and

y components of the vector
−→
ml. The symbol U represents the work done by the plastic moment to

produce rotation of the plastic hinge. The arrow shown on the yield line in Figure 19.5 represents
the effect of the plastic hinge on the slab part; the moment exerted by the slab part on the plastic
hinge is in the opposite direction.
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m

x

Virtu
al

rotation

of sla
b part

Axis of ro
tation

y
l

θ

α

Figure 19.5 Data for calculation of internal virtual work.

If x and y are the coordinates of any point on the slab and w is the vertical displacement
corresponding to the virtual rotation of the slab parts, then the total external virtual work is

W =
∫ ∫

qw dx dy (19.4)

where q is the load intensity. The virtual-work equation is

W = U (19.5)

whence

∑
(Mx.θx + My.θy) =

∫ ∫
qw dx dy (19.6)

Example 19.1: Isotropic slab simply supported on three sides
Determine the ultimate moment of a square isotropic slab simply supported on three sides
and subjected to a uniform load q per unit area.

Because of symmetry, the fracture pattern is fully determined by one parameter x, as
shown in Figure 19.6. Let the junction of the three fracture lines have a virtual displacement
w = 1. The rotations of the slab parts are

θ1 = 1
x

θ2 = θ3 = 2
l

The internal virtual work is

U = ml
1
x

+ 2ml
2
l

where the first term applies to Part 1 and the second to Parts 2 and 3.
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l/2 l/2

l x

Free edge

Part 1

θ2

θ1

θ3

Part 3Part 2

w=1

m
m

Simply-supported
edges

m

m

m

m

l

Figure 19.6 Slab considered in Example 19.1.

The work done by the distributed load is equal to the resultant on each part multiplied
by the vertical displacement of its point of application. Thus,

W = q
{

l
x
2

1
3

+ 2
[
(l − x)

l
2

1
2

+ xl
4

1
3

]}

Here again, the first term is for Part 1 and the second term Parts 2 and 3. Equating the
internal and external work,

m
(

l
x

+ 4
)

= ql2
(

1
2

− x
6l

)

whence

m = ql2

⎡
⎢⎢⎣

3 − x
l

6
(

l
x

+ 4
)
⎤
⎥⎥⎦

The maximum value of m is obtained when dm/dx = 0, which gives x/l = 0.65. The
corresponding ultimate moment is

m = ql2/14.1
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19.4 Orthotropic slabs

The analysis of certain types of orthotropic slabs is simplified by Johansen to that of an isotropic
affine slab for which the length of the sides and the loading are altered in certain ratios depending
on the ratio of the ultimate resistance of the orthotropic slab in the two perpendicular directions.

Consider a part of a slab ABCDEF shown in Figure 19.7, limited by positive and negative
yield lines and a free edge, assumed to rotate through a virtual angle θ about an axis of rotation
R − R. Assume that the bottom and top reinforcement are placed in the x and y directions.
Let the reinforcement in the y direction4 provide ultimate moments of m and m′, and let the
corresponding values in the x direction be φm and φm′; this means that the ratio of the top
to the bottom reinforcement is the same in both directions. The vectors �c and �b represent the
resultants of the positive and negative moments respectively.

m
Moments of resistance
provided by reinforcement
in x and y directions

Negative yield lines

Line load
p/unit length

R

ry r

n rx

B

b

c

D
R

A
Axis of rotation

Free
edge

Positive yield lines

x

y

α

ψ

α

θ

F

C

P + Point

E

Ultimate moments:
m and φm positive;
m′and φm′ negative

φm′

φm′φm φm

m′m

m′

0

Figure 19.7 Conversion of an orthotropic slab to an isotropic affine slab.

4 The ultimate moments in the x and y directions are indicated by vectors in the right-hand top corner of
Figure 19.7.
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The internal virtual work for this slab part is

U = (mcx + m′bx) θx + φ(mcy + m′by)θy (19.7)

where cx, cy and bx, by are the projections in the x and y directions of the lengths c and b, and
θx and θy are the x and y components of the rotation vector �θ .

Assuming that the virtual deflection at a point n, distance r from the axis R − R, is unity, the
rotation θ and its components can be written as

θ = 1
r

θx = θ cosα = 1
ry

θy = θ sinα = 1
rx

(19.8)

where α is the angle between the x axis and the axis of rotation. Substituting Eq. 19.8 into
Eq. 19.7, we obtain

U = θ [(mcx + m′bx) cos α + φ(mcy + m′by) sin α] (19.9)

Let us assume now that the loading on the slab part consists of a uniformly distributed load
q per unit area, a line load p per unit length on a length l in a direction making an angle ψ with
the x axis and a concentrated load P at point O. The external virtual work of the loads on this
slab part is

W =
∫ ∫

qw dx dy +
∫

pwl dl + Pwp (19.10)

where w is the deflection at any point (x, y), wl deflection of any point below the line load, and
wP the deflection below the concentrated load. The integration is carried out for the whole area
and for the loaded length. The virtual-work equation is

∑[
(mcx + m′bx)

1
ry

+ φ(mcy + m′by)
1
rx

]

=
∑(∫ ∫

qw dx dy +
∫

pwldl + Pwp

) (19.11)

where the summation is for all slab parts.
Consider an affine slab equally reinforced in the x and y directions so that the ultimate

positive and negative moments are m and m′ respectively. Suppose that this affine slab has all
its dimensions in the x direction equal to those of the actual slab multiplied by a factor λ. The
pattern of fracture remains similar and the corresponding points can still have the same vertical
displacements. The internal virtual work for the part of the affine slab is

U′ = (mλcx + m′λbx)
1
ry

+ (mcy + m′by)
1

λrx
(19.12)

Let the loading on the affine slab be a distributed load of q′ per unit area, a line load p′ per
unit length, and a concentrated load P′. The external work for this part of the affine slab is

W ′ =
∫ ∫

q′wλ dx dy +
∫

p′wl

√
(dy)2 + λ2(dx)2 + P′wp (19.13)
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Dividing both the internal and external work by λ will not change the work equation, which
then becomes

∑
(mcx + m′bx)

1
ry

+ 1
λ2

∑
(mcy + m′by)

1
rx

=
∑⎛

⎝∫ ∫
q′w dx dy +

∫
p′wl

√
(dy)2

λ2 + (dx)2 + P′

λ
wp

⎞
⎠

(19.14)

All terms of the virtual-work Eqs. 19.11 and 19.14 are identical provided that

φ = 1
λ2 or λ =

√
1
φ

(19.15)

q′ = q (19.16)

p′
√

(dy)2

λ2 + (dx)2 = pdl

or

p′ = p√
φ sin2 ψ + cos2 ψ

(19.17)

and

P′ = P

√
1
φ

(19.18)

It follows that an orthotropic slab with positive and negative ultimate moments m and m′ in
the x direction and φm and �m′ in the y direction, can be analyzed as an isotropic slab with
moments m and m′ but with the linear dimensions in the x direction multiplied by

√
1/φ. The

intensity of a uniformly distributed load remains the same. A linear load has to be multiplied by
(φ sin2 ψ +cos2 ψ)1/2, with ψ being the angle between the load line and the x axis. A concentrated
load has to be multiplied by

√
1/φ.

Example 19.2: Rectangular slab
A rectangular orthotropically reinforced slab is shown in Figure 19.8a. Find the dimensions
of an isotropic affine slab.

We have φ = 1
2 , so that side AB is to be changed to l

√
1/φ = 1.414l for an iso-

tropic affine slab with ultimate moments of 2m and 2m′. The same orthotropic slab
can also be analyzed as an isotropic slab for which side AB remains unchanged and
side AD is changed to (3l/4)/

√
2 = 0.530l, the ultimate moments being m and m′

(Figure 19.8c).
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3l /4 3l /4

0.530l

l

l

(a)

2m, 2m′

m, m′

m, m′

m, m′

m=m′

A

D C

B

(b)

(c)

1.414l

2m, 2m′

2m, 2m′

Figure 19.8 Orthotropic slab and affine slabs considered in Example 19.2. (a) Orthotropic slab. (b)
Affine slab. (c) Alternative affine slab.

19.5 Equilibrium of slab parts

The energy method of the last two sections gives, it will be remembered, an upper-bound value
to the collapse load and can always be used for any assumed mechanism of collapse. Where
the mechanism is complex and its layout is defined by several initially unknown dimensions,
the algebraic manipulation necessary to obtain a solution can be long and tedious. There can,
however, be a saving of work in many cases by considering the equilibrium of the slab parts.

In this approach, we abandon the virtual-work equations of the energy method and consider
instead the equilibrium of each slab part when acted upon by the external applied load, and by
the forces acting at a fracture line. In general, these are: bending moment, shearing force acting
perpendicular to the slab plane, and twisting moment.

To establish the equilibrium conditions it is not necessary to know the precise distribution of
the shear and of the twisting moment: they can be replaced by two forces perpendicular to the
plane of the slab, one at each end of the fracture line. These two forces are referred to as nodal
forces and are denoted by V; they are considered positive when acting upwards.

19.5.1 Nodal forces

The formulas given here follow the original theory of Johansen. There are some restrictions on
their use, although in the majority of cases they give a satisfactory solution. These restrictions
have been studied by Wood and Jones.5

5 “Recent Developments in Yield Line Theory.’’ Magazine of Concrete Research, May 1965. See also Jones,
L. L. and Wood, R. H., “Yield Line Analysis of Slabs,’’ Thames and Hudson, Chatto and Windus, London,
1967, p. 405.
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(b)

(c)

β 21 β13

β23

V13

β 23

(d)

Figure 19.9 Nodal forces at a junction of fracture lines.

In Figure 19.9a the shears and twists on fracture lines (1), (2), and (3) are represented by the
equivalent nodal forces V1 and V ′

1, etc., on ends of lines (1), (2), and (3). The nodal forces are
equal and opposite on the two sides of each fracture line. It follows that a summation of all
the nodal forces at any junction of the fracture lines is zero.

Consider an elemental triangle ABC of area �A limited by positive fracture lines (2) and (3)
(Figure 19.9b) and any adjacent line at a small angle dα to fracture line (2). This adjacent line
is assumed to have the same bending moment m2 as line (2) to a first-order approximation. The
resultant moment on the triangle �α is (m3 − m2) ds directed from C to A. For equilibrium of
the triangle ABC, the moments about BC vanish:

V�A ds sinγ + (m3 − m2)ds cos(180◦ − γ ) − dP
ds sin γ

3
= 0

where V�A is the nodal force at A replacing the twisting moment and shearing force on the
fracture line (2) and the length ds of the fracture line (3), and dP is the external load on the
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triangle ABC, assumed to be uniformly distributed. As the triangle �A tends to zero, γ →β and
dP → 0, so that

V�A = (m3 − m2) cotβ (19.19)

The general form of this equation is

V�A = (mds − mlong side) cotβ(acting upward) (19.20)

where the subscripts of m indicate the bending moment per unit length on the sides ds and on
the long side of the infinitesimal triangle.

Equation 19.20 can be used to find the value of the nodal force V between any two lines at
the junction of fracture lines. The nodal force between lines (1) and (3) in Figure 19.9c is equal
and opposite to the sum of the two nodal forces V�A and V�B of the infinitesimal triangles �A
and �B, that is,

V13 = −V�A − V�B

or

V13 = −(m2 − m1) cotβ21 − (m2 − m3) cotβ23 (19.21)

It follows from the above that, when the reinforcement is equal in two orthogonal directions,
the moments are m1 = m2 = m3 = m, and all the nodal forces are zero at the junction of fracture
lines of the same sign.

At a junction where two positive fracture lines (1) and (2) meet one negative fracture line (3)
in an isotropic slab (Figure 19.9d) the nodal forces are

V12 = −(−m′ − m) cotβ13 − (−m′ − m) cotβ23

or

V12 − (m′ + m)(cotβ13 + cotβ23) (19.22)

where m′ is the absolute value of the bending moment on the negative fracture line. Similar
equations can be written for the forces between other lines. When a fracture line meets a free or
simply-supported edge (Figure 19.10a), we have V12 =m cotβ. When the fracture line is positive,
the nodal force V is downward in the acute angle.

If the edge rotation is restrained or otherwise subjected to a negative moment m′
(Figure 19.10b), the nodal force is V12 = (m + m′) cotβ, acting downward in the acute angle.

19.6 Equilibrium method

As mentioned earlier, the slab parts are in equilibrium under the effect of the external loading,
the moments on the yield lines, the nodal forces, and the support reactions. For each slab part,
three equations of equilibrium can be written, viz. two moment equations about two axes in the
plane of the slab and an equation for the forces perpendicular to the plane of the slab, each of
which adds up to zero.

The fracture pattern for a slab is completely defined if the axes of rotation are known, together
with the ratios of the rotations θ1, θ2, . . . , θn of slab parts when the mechanism acquires a small
virtual deflection. For n parts, we require (n − 1) ratios. The fracture pattern in Figure 19.11a is
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(a)

m′

m′

m

V12=m cot β

V12=(m+m′ ) cot β

1

2Free or simply-supported
edge

Restrained edge

(b)

β

β

Figure 19.10 Nodal force at a free or simply-supported edge and at a restrained edge.

determined by drawing contour lines of the deflected mechanism. The contour line of deflection
w is composed of n straight segments parallel to the axes of rotation and distant from them by
w/θ1, w/θ2, . . . , w/θn (see Figure 19.11b). The intersections of the segments define points on the
fracture lines.

For a part supported on one side, the position and magnitude of the reaction are unknown,
thus representing two unknowns. For a part supported on a column, the axis of rotation passes
through the column, but its direction is unknown and so is, of course, the magnitude of the
reaction; hence, again, there are two unknowns for the part of the slab. For a nonsupported
part, the direction and position of the axis of rotation are unknown, so that, once again, we
have two unknowns.

For n parts of a slab the unknowns are: the value of the ultimate moment m, (n − 1) relations
between the rotations of the parts, and two unknowns for each part. Hence, the total number of
unknowns is 3n, that is, the same as the number of equations of equilibrium (three for each part).

The formulation of the equilibrium equations becomes complicated except in simple cases
such as the slabs considered below.

(a) Isotropic square slab, simply supported on four edges and carrying distributed load q per
unit area. The fracture pattern is shown in Figure 19.12.
Taking the moment about a supported edge for one of the parts, we obtain

lm = ql2l
4 × 6

whence

m = ql2

24
(19.23)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)

(b)

w

Axis of rotation

Deflected slab part i

Simply-supported edge;
axis of rotation for Part 3

Simply-
supported
edge; axis
of rotation
for Part 2

Contour
lines

Simply-supported edge;
axis of rotation for Part 1

Free
edge

w—θ4

w/θi

θi

w/θ2

w /θ3

Free edge

Part 3

Part 2

Part 1

Part 4

Axis of
rotation
for Part 4

Column
producing only
a vertical reaction
component

w/θ1

Figure 19.11 Determination of the fracture pattern from axes of rotation and the ratios between the
virtual rotations of slab parts. (a) Fracture pattern. (b) Cross section through the ith slab
part in a direction perpendicular to its axis of rotation.

l

l

l /6
Four
simply-
supported
edges

Total load W=ql2

Typical slab
part

m m

w—
4+

Figure 19.12 Equilibrium condition for an isotropic square slab under a uniformly distributed load of
total magnitude W .
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or

m = W
24

(19.23a)

where W is the total load.
(b) Isotropic polygonal slab simply supported on n equal sides, carrying a uniform load whose

total magnitude is W . The fracture pattern is shown in Figure 19.13. Taking moments about
the edge for any slab part, it can be shown that

m = W
6n tan(π/n)

(19.24)

The values of the ultimate moment for simply-supported slabs in the form of different
regular polygons are given in Figure 19.14. They are calculated by Eq. 19.24 with n tending
to infinity for the circular slab.

l

2π
—
n

l

Typical slab part

m W—n

m

l
6 tanπ–n

l
2 tanπ–n

Figure 19.13 Equilibrium condition for an isotropic polygonal slab under uniformly distributed load
of total magnitude W .

m=
W

31.2 m=
W
24 m=

W
20.8 m=

W
19.8 m=

W
18.8

Figure 19.14 Ultimate moment for simply-supported polygonal slabs under a uniform load of total
magnitude W .
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2 l

2 l

Simply-supported
corner

Free edges

m

m W
—
4

Axes of
rotation

l /2

l /2

Figure 19.15 Equilibrium condition for an isotropic square slab supported at corners and carrying a
uniformly distributed load of total magnitude W .

(c) Isotropic square slab simply supported at corners, carrying a uniform load whose total
magnitude is W. Taking moment for one slab part (Figure 19.15) about the axis of rotation
passing through the corner support and inclined at 45◦ to the edges, we find

m = W
8

19.7 Nonregular slabs

In the case of slabs of nonregular shape or loading, the calculation of the ultimate moment is as
follows.

(a) A fracture pattern is assumed, and the corresponding ultimate moment is computed by
considering the equilibrium of each slab part. A moment equation about the axis of rotation
of each part will give different values of the ultimate moment. For the correct yield pattern,
all yield moment values must be equal.

(b) In general, the ultimate moments computed for the first assumed fracture pattern are not
equal and the values will indicate how the pattern should be corrected. The procedure is
then repeated with a “more correct’’ pattern until the exact pattern is obtained. This then
is an iteration method.
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(c) If, for an assumed pattern, the values of the ultimate moment obtained by equilibrium
considerations do not differ much from one another, the application of the work equation
for this fracture mechanism will give a value of the ultimate moment very close to the correct
answer.

Example 19.3: Rectangular slab with opening
Find the ultimate moment for the isotropic slab shown in Figure 19.16a. The ultimate
positive and negative moments are equal.

(a)

(b)

Simply-
supported
edge

Simply-
supported
edge

Uniform load
q per unit area

Isotropic
reinforcement
m′=mLine load

0.15 qb per
unit length

Fracture
pattern A

Fracture
pattern B

Part 2

E B

Part 10.9 b

0.6 b

0.56 b

Part 3

Part 4
A

A
B

Built-in
edges

Opening

1.2 b

0.8 b

0.8 b

2.4 b

1.2 b

b

0.4 b
0.8 b

Figure 19.16 Slab analyzed in Example 19.3. (a) Slab dimensions and loading. (b) Fracture patterns.
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For the first trial, we assume the fracture pattern A of Figure 19.16b. The only nodal
forces that need to be considered are those at the intersection of the inclined fracture line
from the slab corner with the free edge. A moment equation about the axis of rotation of
each slab part gives

Part 1:

2m(1.6b) = q(1.6b)b2

6
∴ m = 0.0833qb2

Part 2:

m(1.6b) = q

[
b(0.7b)2

6
+ 0.6b(0.7b)2

2
+ 0.15qb

(0.7b)2

2

]
∴ m = 0.1659qb2

Part 3:

2m(2.4b) = q
[

b(0.9b)2

6
+ 0.6b(0.9b)2

2
+ 0.8b(0.8b)2

6

]

+ 0.15qb
(0.9b)2

2
− m

0.8b
0.8b

(0.8b) ∴ m = 0.0936qb2

Part 4:

m(0.8b) = q
(0.8b)(0.8b)2

6
+ m

0.8b
0.8b

(0.8b) ∴ m = ∞

It is clear that the chosen pattern is not the correct one. However, the moment values for
the various slab parts indicate the way in which we should move the yield lines to achieve
a better result. Specifically, we can see that Parts 1 and 3 should be increased in size and
Parts 2 and 4 decreased. The amended pattern B is therefore chosen for the second trial.
The moment equation gives

Part 1:

2m(1.6b) = q
(1.6b)(1.2b)2

6
∴ m = 0.1200qb2

Part 2:

m(1.6b) = q
[

1.2b(0.6b)2

6
+ 0.4b(0.6b)2

2

]
+ 0.15qb

(0.6b)2

2
∴ m = 0.1069qb2

Part 3:

m(2.4b + 2.16b) = q
[

1.2bb2

6
+ 0.4bb2

2
+ 0.24b(0.8b)2

2
+ 0.56b(0.8b)2

6

]

+ 0.15qb
b2

2
− m

0.56b
0.8b

(0.8b) ∴ m = 0.1194qb2
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Part 4:

m(0.8b) = q
(0.8b)(0.56b)2

6
+ m

0.56b
0.8b

(0.56b) ∴ m = 0.1025qb2

Assuming that the mechanism corresponding to pattern B acquires a unit virtual deflection
at point E, the corresponding rotation of slab parts will be 1/(1.2b), 1/(0.6b), 1/b, and
1/(1.7b) for slab Parts 1, 2, 3, and 4 respectively. Equating the internal and external virtual
work gives

2m(1.6b)
1

1.2b
+ m(1.6b)

1
0.6b

+ (2.4b + 2.6b)m
1
b

+ m(0.8b)
1

0.7b
= q

[
1.2b(1.6b)

1
3

+ 0.4b(1.6b)
1
2

+0.24b(0.8b)

(
0.8b

b

)
1
2

+ 0.56b(0.8b)

(
0.8b

b

)
1
3

]
+ 0.15qb(1.6b)

1
2

whence m = 0.1156qb2.

19.8 Strip method

We remember that the yield-line method of analysis for slabs always gives an upper bound to
the true collapse load, though for certain simple cases the exact collapse load can be intuitively
achieved by guessing the correct mechanism of failure. It is clear that for design purposes we
might justifiably consider a lower bound to the true collapse load to be preferable.

Any lower-bound solution for a slab with given loading must have a moment field which
satisfies the governing equilibrium equation at all points, and must not violate the particular
yield criterion anywhere. The equilibrium equation in rectangular coordinates is (see Eq. 15.55)

∂2Mx

∂x2 + ∂2My

∂y2 − 2
∂2Mxy

∂x∂y
= −q (19.25)

This equation must hold for both lower-bound and exact solutions regardless of the material
properties of the slab, and it is evident that there is an infinite number of moment fields which sat-
isfy Eq. 19.25. If we derive a complete moment field in equilibrium with the desired ultimate load
and then provide reinforcement such that the ultimate moments of resistance at all points exceed
or are equal to the equilibrium moments, then a lower-bound solution will be achieved. A yield-
line analysis of the completed design will, of course, give an upper bound to the collapse load.

Because of the infinite number of possible equilibrium moment fields for a given slab and
loading, and the difficulties of proportioning reinforcement in the cases where twisting moments
are present, Hillerborg6 suggested that the twisting moments Mxy be made zero at the outset of
the analysis. In this case, the equilibrium Eq. 19.25 reduces to

∂2Mx

∂x2 + ∂2Mx

∂y2 = −q (19.26)

6 Hillerborg, A., “A Plastic Theory for the Design of Reinforced Concrete Slabs,’’ Proc. 6th Congr. Int
Ass. Bridg. Struct. Eng., Stockholm, 1960; Hillerborg, A., “Jamviktsteori för Armerade Betongplattor,’’
Betong 41(4) (1956), pp. 171–182.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yield-line and strip methods for slabs 589

and the load q is carried by strips running in the x and y directions. This strip method has been
critically examined by Wood,7 who found that if the reinforcement in the slab is curtailed so that
precise correspondence between the ultimate moment field and the equilibrium moment field is
obtained, then the strip method gives an exact correspondence between the design load and the
collapse load.

To determine how the load is shared between the strips in the x and y directions, we partition
Eq. 19.26 as follows:

∂2Mx

∂x2 = −αq

∂2My

∂y2 = −(1 − α)q

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(19.27)

where the parameter α governs the way in which load is dispersed at all points in the slab. This
load-dispersion parameter may have any value between 0 and 1, and can vary from point to
point in the slab. In practice, for simplicity of design, α will normally have a constant value in
specified zones within the slab. Because we are now dealing with beam equations of the type of
Eq. 19.27, the moment profiles are easily obtained.

Consider the design of a simply-supported slab shown in Figure 19.17a, which carries a
uniformly distributed load q per unit area. We can assume the load-dispersion discontinuity

(a)

(b)
q q/unit length

l1

l2

x

y

3

1 2

α=1 α=1

α=0

Uniform load
q /unit area

c

1 2

3

c

c

c

qc2

Figure 19.17 Loading in the strip method. (a) Assumed α values. (b) Loading and bending moment
diagrams for strips of unit width, 2.2 and 3.3.

7 Wood, R. H. and Armer, G. S. T., “The Theory of the Strip Method for Design of Slabs,’’ Proc. I.C.E. 41
(1968), pp. 285–311.
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lines as shown in the figure: they are consistent with the major part of the slab spanning one-
way in the short-span direction. The slab strip 1.1 carries then the full load q over its full length
and the maximum moment will be ql2/8. Slab strips 2.2 and 3.3 are loaded over the end regions
only as shown in Figure 19.17b. In these cases, the maximum moment is qc2/2, the moment
being constant in the unloaded region.

Since the full bending moment pattern for the slab is known, the reinforcement can be provided
at all points to ensure that the ultimate moment of resistance is greater than the calculated value.
For efficiency in design, variable reinforcement in the end-loaded strips (Figure 19.17b) will be
necessary. This is difficult to handle in practical cases and it is preferable to use reinforcement
in distinct uniform bands.

19.9 Use of banded reinforcement

Wherever the load-dispersion discontinuity lines are not parallel to the support lines of the
particular strip, the maximum moment varies from strip to strip. We can, however, ensure that the
moment profiles for strips within a given bandwidth are the same by making the load-dispersion
discontinuity lines parallel to the support lines of the band.

Consider again the simply-supported slab in Figure 19.17a. We know that the elastic curvature
of the slab parallel to and near the edges is small and only small amounts of reinforcement need
to be placed there. We choose then the load-dispersion zones of Figure 19.18a. The size of the
various zones is quite arbitrary, as are the load-dispersion proportions in the corner regions.

The maximum moments in the four different bands are then

Strip 1.1 Mmax = ql2/8

Strip 2.2 Mmax = qc2/4

Strip 3.3 Mmax = qb2/2

Strip 4.4 Mmax = qb2/4

The reinforcement is provided accordingly, but it can be curtailed, if desired for economy reasons,
in accordance with the moment profiles of Figure 19.18b.

One advantage of the strip method is that the reactions to strips are known and hence the
loading on any supporting beam is immediately established. Continuity at the supports poses
no difficulty; all that is necessary is to provide an arbitrary value of moment at these points,
with consequent reduction in the interior slab moments. In the case of slabs having a free edge,
all load dispersion adjacent to the free edge must take place parallel to the edge. This will
necessitate in general a strong band of reinforcement parallel to the edge. Strips normal to the
edge are supported on this strong band and on the remote support. Figure 19.19 shows an
example of a slab with one free edge, the opposite edge continuous, and the remaining edges
simply supported, and gives the moment profiles in the various bands of the slab. The uniformly
distributed reaction, R, to strip 1.1 can be calculated once the continuity moment value has been
fixed. The loading on strip 3.3 includes the reaction R in addition to the uniformly distributed
external loading q.

Because of the large measure of freedom in using the strip method, the designer will find an
appreciation of the elastic moment fields particularly useful. Provided the equilibrium moment
field derived is not too far removed from that expected in elastic design, the working load
behavior in terms of cracking and deflections will generally be satisfactory.
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q/2 q/2

Strip 1–1

c

q l2
2/8

qb2/2

qb2/4

qc2
—4

Strip 2–2

Strip 3–3

Strip 4–4

b

l1

l2

l2

l1

4

q /2

q /2

1

1

(a)

(b)

c

3 3

4

q

bb

c

b

q

Figure 19.18 Load-dispersion zones and moment profiles for the slab in 19.17a. (a) Load-dispersion
zones. (b) Loading and bending moment diagrams for strips of unit width.
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(b)

Built-in or
continuous

edge

Free edge

l1

Reaction of total
magnitude R

Arbitrary
continuity
moment Rc /2

Strip 1–1

Strip 2–2

Strip 3–3

1

2 2

3 3

(1–α )q

(1–α )q

αq

q+R /c

q(1–α ) (l2– c) 2 /8

αql12 ⁄ 8

αq

q c

c

1

l2

l1

l2

(q+R ) l1
2 ⁄ 8

c

Figure 19.19 Strip method for a slab with a free edge. (a) Slab details and load dispersion. (b) Loading
and bending moment diagrams for strips of unit width.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yield-line and strip methods for slabs 593

19.10 General

The methods considered in this chapter are of two basic types: the energy and equilibrium
methods of yield-line theory are, strictly speaking, methods of analysis, while the strip method
is a direct design procedure. For simple cases of slab geometry and loading, the yield-line method
can be safely used as a design method since the fracture pattern to give an upper bound close to
the correct collapse load can be readily obtained. For complex cases of geometry and loading,
care must be exercised in the choice of fracture patterns, particularly where concentrated loads
occur, since local modes of collapse, called fan modes, can occur. A fracture pattern involving
fan modes will generally give lower collapse load than that obtained from the corresponding
straight line pattern.

Although the collapse loads given by the yield-line method are theoretically upper-bound
values, in practice the actual collapse load of a reinforced concrete slab may be above the
calculated value because of the presence of various secondary effects.

It has been assumed in the analysis that Eq. 19.1 can be used for calculating the moment of
resistance in a yield line at any angle to a set of orthogonal reinforcement. This method tends to
underestimate the true moment of resistance which can be increased by up to 14 percent for the
case of a yield line at 45◦ to an isotropic orthogonal set of reinforcement. The reason for this is
that the analysis takes no account of kinking of reinforcement, which places the reinforcement
almost at right angles to the fracture line and therefore increases the moment of resistance.

Where the boundaries of any slab are restrained from horizontal movement (as might occur in
the interior panels of a continuous slab) the formation of the collapse mechanism develops high
compressive forces in the plane of the slab with a consequent increase in carrying capacity. At
very large deflections of the slab, it is possible finally to develop tensile membrane action where
cracks go right through the slab so that the load is supported on the net of reinforcement.

These secondary effects will also occur in the actual behavior of slabs designed by the strip
method. The strip method will always give a lower-bound or correct value for the collapse load
depending on the degree of curtailment of reinforcement that the designer imposes. An advantage
of the strip method is that the reactions on the supports to the slab are precisely determined.

Whenever variable reinforcement is required in a slab as a move toward efficiency, then the
strip method is preferable, since economy can be readily achieved by suitable choice of the load-
dispersion parameter. The use of the yield-line method with variable reinforcement involves the
consideration of a large number of differing yield-line patterns.

Neither the yield-line method nor the strip method of ultimate load design guarantees satisfact-
ory deflection and cracking behavior at working loads, though tests carried out on slabs designed
by both methods generally exhibit satisfactory behavior. Distribution of reinforcement within
the slab which is not too far removed from that expected with an elastic distribution of bend-
ing moments will generally ensure satisfactory working-load behavior. In the context of elastic
analyses we should also remember that the bending moment distribution can change markedly
for changes in the relative stiffnesses of the slab and its supporting beams and that many of the
design tables based on elastic analyses are consistent only with nondeflecting supporting beams.

Problems

The representation of the different edge conditions of the slabs in the following problems is
made according to the convention indicated in Section 19.21.

19.1 Using the yield-line theory, find the ultimate moment for the isotropic slabs shown in the
figures under the action of uniformly distributed load. Show in a pictorial view the forces
on the fractured slab parts in Prob. 19.1a. The columns in Prob. 19.1d and e are assumed
to produce only a normal concentrated reaction component.
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(a)

(c)

(e) (f )

(b)

Column

0.7l

0.3l 0.3l0.4 l

Opening

Load q per unit area

0.3l

0.4l

Total load=W

Load q per
unit area

m=m′
Ignore the
effect of the
column size

Total load=W

m′=2m

Total load=W

2l
1.5l

l

l

l

l

l

l

l

l

(d)

Total load=W

Columns

2r

l

Prob. 19.1

19.2 Using the yield-line theory, find the ultimate moment for the slabs shown assuming the
given ratio of reinforcement in each case. Assume that the columns in Prob. 19.2b produce
only a normal concentrated reaction component.
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Chapter 20

Structural dynamics

20.1 Introduction

The previous chapters dealt with structures subjected to static forces producing displacements
that do not vary with time. We now consider dynamic problems, in which the forces are time
dependent and cause vibration of the structure; hence, it is necessary to take into account the
forces produced by the inertia of the accelerating masses. For this purpose we use Newton’s
second law of motion, which states that the product of the mass and its acceleration is equal
to the force. In practice, dynamic loading is produced by seismic forces, nonsteady wind, blast,
reciprocating machinery, or impact of moving loads.

An elastic structure disturbed from its equilibrium condition by the application and removal of
forces will oscillate about its position of static equilibrium. Thus, the displacement at any point
on the structure will vary periodically between specific limits in either direction. The distance of
either of these limits from the position of equilibrium is called the “amplitude of the vibration.’’
In the absence of external forces, the motion is called free vibration, and may continue with the
same amplitude for an indefinitely long time. In practice, energy is lost through effects such as
friction, air resistance, or imperfect elasticity, and these cause the amplitude to diminish gradually
until motion ceases. These effects are termed damping, and this type of motion is then called
damped vibration.

If external forces are applied, we have forced motion. This may be damped or undamped,
depending on the presence or absence of these energy losses. In structural analysis, damp-
ing effects are modeled as damping forces, which are often assumed to be viscous (i.e. they
are assumed to be proportional to the velocity). This is called “viscous damping’’ because the
resistance of a liquid or a gas to a moving mass (at a low velocity) is proportional to the velocity.

20.2 Lumped mass idealization

In any structure, the mass is distributed throughout the structure and its elements, and thus the
inertial forces are also distributed. This can cause difficulties, as seen in Figure 20.1a, where
an infinite number of coordinates are required to define the displacement configuration. How-
ever, if we imagine that the beam mass is lumped into two bodies, with the force-displacement
properties of the beam unchanged (Figure 20.1b), and assume that the external forces caus-
ing the motion are applied at these two masses, the deflected shape of the beam at any time
can be completely defined by 12 coordinates, 6 at each mass (Figure 20.1c). The idealized model
in Figure 20.1b, which has 12 degrees of freedom may, therefore, conveniently be considered
in dynamic problems in place of the actual structure. A more accurate representation can be
obtained by using a larger number of masses at closer intervals, but this requires a greater
number of coordinates.

To demonstrate further the use of the lumped mass idealization, consider the motion of the
multistorey frame in its own plane (Figure 20.2a). For the idealized model, we ignore axial
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z

y

x
(c)

z z

y y

x x
Beam properties
EI, Ea, Ga, GJ

Beam properties
EI, Ea, Ga, GJDistributed mass

Lumped mass
(b)(a)

Figure 20.1 Idealization of a distributed mass by a lumped-mass system. (a) A vibrating beam has
infinite degrees of freedom. (b) Idealization of the beam in part (a) into a lumped-mass
system. (c) Typical degrees of freedom at a lumped mass.

deformations of the members, and distribute the mass of the columns to the adjacent floors, and
assume that the total mass is mounted on a simple beam (Figure 20.2b), so that the mass can
sidesway only. Typically, this mass will be the mass of the floor plus one-half of the mass of the
columns and walls above and below the floor.

Let the horizontal displacements at floor levels at any time be D1, D2, . . ., Di, . . . , Dn and let
the corresponding masses be m1, m2, . . . , mi, . . . , mn. As each degree of freedom of the frame
is displaced, restraining forces will be developed as a function of the stiffness of the connecting
elements (in this case, the columns), see Figure 20.2d. There may also be external forces, Pi,
acting at the coordinates, which generally are functions of time. Thus, the total force acting on
the ith mass is:

Pi − SiDi (20.1)

Applying Newton’s second law to the ith mass, we get:

miD̈i = Pi − SiDi (20.2)

where D̈i, the acceleration of the ith mass, is equal to the second derivative of the displacement
Di with respect to time t, (d2Di/dt2). Rearranging this equation for the ith mass gives the
corresponding equation of motion:

miD̈i + SiDi = Pi (20.3)

For n masses, we can write this equation in matrix form:

[m]{D̈} + [S]{D} = {P(t)} (20.4)



598 Structural dynamics

(b)

Mass, mi, equal to mass
of i th floor plus half the
mass of columns above
and below i th floor.     

(d)

Qi  =  mi Di

P1

P2

Pi

Pn

External
applied
forces =
{P(t)}   

(a)

Qi−

(c) m1

m2

mi

mn

1

2

i

n

Figure 20.2 A multi-degree-of-freedom system. (a) Plane frame. (b) Idealization of the mass at a typical
floor. (c) Coordinate system representing positive directions of forces and displacements.
(d) Application of Newton’s second law to the mass of the ith floor.

where [m] is a diagonal matrix:

[m] =

⎡
⎢⎢⎣

m1

m2

· · ·
mn

⎤
⎥⎥⎦ (20.5)

When the system is vibrating freely, {P(t)}={0} and the equation of motion becomes (undamped
free vibration):

[m]{D̈}+ [S]{D} = {0} (20.6)

Equations 20.4 and 20.6 are termed the undamped multi-degree-of-freedom equations of motion
for forced and free vibration respectively. Corresponding equations for a single degree of freedom
can be obtained by writing the equations in scalar form.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Structural dynamics 599

20.3 Consistent mass matrix

In the preceding section we saw that, when a structure is vibrating, the mass of the various
structural elements is arbitrarily lumped at nodes, resulting in a diagonal mass matrix. The
motion of these lumped masses must be related to the translations and rotations of the struc-
tural degrees of freedom. An alternative representation of the distributed mass can be achieved
using the consistent mass matrix. The terms, mij, of the mass matrix represent the inertial
force in the ith coordinate due to unit acceleration in the jth coordinate. Using displacement
interpolation functions Li (see Section 16.4) and the principle of virtual work, the term mij

is given by:

mij =
∫

vol

�Li Lj dν (20.7)

where �(x,y, z) is the mass per unit volume and dν is the elemental volume. It is apparent from
the form of Eq. 20.7, that mij = mji, and the consistent mass matrix is symmetric.

As an example of the development of the consistent mass, consider a prismatic beam of cross-
sectional area a and the four coordinates in Fig 20.3a, and use the displacement functions of
Eq. 16.28, which can be written as:

[L] =
[(

1 − 3 x2

l2 + 2x3

l3

) (
x − 2x2

l
+ x3

l2

) (
3x2

l2 − 2x3

l3

) (
−2x2

l
+ x3

l2

)]
(20.8)

Inertia force
per unit length
= γaL1 (x)

f

2(a)

(b)

4

A B

31

x

Constant
EI, σ, y

m21 m41

m31
m11

x

The reactions are the
elements of the first
column of the con-
sistent mass matrix

3x2
—

   2x3
+  —
   

–L1(x) = –

l

l2 l3

1

1–

Figure 20.3 Derivation of the consistent mass matrix for a prismatic beam. (a) Prismatic beam of total
mass γ al. (b) Distributed inertia forces associated with acceleration D̈1 = 1.
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where l is the length of the beam. Equation 20.7 can be written as:

mij = � a

l∫
0

Li Lj dx (20.9)

Substituting for Li and Lj from Eq. 20.8 into Eq. 20.9, the following consistent mass matrix is
obtained:

[m] = � a l
420

⎡
⎢⎢⎣

156 symm.
22 l 4 l2

54 13 l 156
−13 l −3 l2 −22 l 4 l2

⎤
⎥⎥⎦ (20.10)

Figure 20.3b shows the inertia forces associated with D̈1 = 1, with the motion prevented at the
other coordinates defined in Figure 20.3a.

20.4 Undamped vibration: single-degree-of-freedom system

For a single-degree-of-freedom system, the undamped equation of motion, using the scalar
version of Eq. 20.4, is:

mD̈ + S D = P(t) (20.11)

Examples of such a system are the frame in Figure 1.13c with the mass concentrated at the top,
and the beam in Figure 20.1 with one lumped mass. The homogeneous case of this equation,
with P(t) = 0, defines free vibration of a single-degree-of-freedom system:

mD̈ + S D = 0 (20.12)

This equation can be rewritten as:

D̈ +
2 D = 0 (20.13)

where 
 is the natural frequency of the single-degree-of-freedom system, with units of radian/sec:


=√
S/m (20.14)

The solution to the differential equation (Eq. 20.13) is:

D = C1 sin
t + C2 cos
t (20.15)

This equation represents periodic motion, where the natural period of vibration, T, is given by:

T = 2π/
 (20.16)

The reciprocal of the period T, f =
/(2π), is called the cyclic natural frequency, and has units
of cycle/s = Hertz.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Structural dynamics 601

The integration constants C1 and C2 in Eq. 20.15 can be determined from the initial conditions
at time t = 0, of displacement D0, and velocity Ḋ0. Substituting these values into Eq. 20.15 and
its first derivative with respect to time, we obtain:

C1 = Ḋ0/
 ; C2 = D0 (20.17)

The complete solution for the free vibration of a single-degree-of-freedom system is then:

D = Ḋ0



sin
t + D0 cos
t (20.18)

The amplitude of vibration (Figure 20.4) is the maximum value of the displacement which, using
Eq. 20.18, is:

Dmax = D =
√√√√D2

0 +
(

Ḋ0




)2

(20.19)

Equation 20.19 can be written in terms of the amplitude:

D = D sin (
t + α) (20.20)

D

t
D0

D0

Period = T (a)

(b)

ω⎟
⎠
⎞

⎜
⎝
⎛ α−

π
2

D

D
Complete solution Steady-state

solution

t

Ω /ω = 4

D

⎟
⎠
⎞

⎜
⎝
⎛

D

Amplitude = D

Complete solution

Figure 20.4 Displacement versus time of an undamped single-degree-of-freedom system. (a) Free
vibration. (b) Motion forced by a force varying harmonically.
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where α is called the phase angle, given as:

α = tan−1 (D0 
/Ḋ0
)

(20.21)

A graph of D against t from Eq. 20.18 or Eq. 20.20 is shown in Figure 20.4a.

Example 20.1: Light cantilever with heavy weight at top
A water tower is idealized as a light prismatic cantilever fixed at the base having a lumped
mass, m = W/g at the top; where W = 400kN and g = gravity acceleration = 9.81m/s2.
The length of the cantilever is l =50m and its flexural rigidity is EI =30 × 109 N-m2. Find
the natural angular frequency 
 and the natural period of vibration T. If motion is initiated
by displacing the mass horizontally a distance D0, then the system is left to vibrate, what is
the displacement at t = T/8? What are the values of T with l reduced to 25 m or increased
to 75 m?

The static force that produces unit drift at the tip of the cantilever (Appendix E):

S = 3EI/l3 = 3
(
30 × 109

)
/(50)3 = 720 × 103 N/m

Equations 20.14, 20.16 and 20.18 give:


=√
S/m =

[
720 × 103/

(
400 × 103/9.81

)]1/2 = 4.202rad/s

T = 2π/
= 2π/4.202 = 1.495s; Dt=T/8 = D0 cos (π/4) = 0.707 D0

With l = 25, 50, and 75 m, T = 0.529, 1.495, and 2.747 s respectively; we can see that T
is proportional to l1.5.

20.4.1 Forced motion of an undamped single-degree-of-freedom system:
harmonic force

When an external harmonic force is applied to a single-degree-of-freedom system, the equation
of motion becomes:

mD̈ + S D = P0 sin�t (20.22)

where P0 is the force amplitude and � is the impressed or forcing frequency. This type of loading
can be caused by centrifugal forces resulting from imbalance in rotating machines, but many
periodic loads can be represented by a summation of harmonic loads, using Fourier analysis.
Using the definition of ω from Eq. 20.14, Eq. 20.22 can be written as:

D̈ +
2 D = P0

m
sin �t (20.23)

The solution of this equation consists of two components: the complementary solution
(Eq. 20.15), and a particular solution, which is of the form:

D = C3 sin�t (20.24)
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Substituting this solution into Eq. 20.24 and solving for C3, and adding this solution to the
homogeneous solution, the complete solution becomes:

D = C1 sin 
t + C2 cos 
t + P0

S

[
1

1 − (�/
)2

]
sin �t (20.25)

The constants C1 and C2 are again determined from the initial conditions. The first and second
terms of Eq. 20.25 are called the transient response, while the third term is called the steady-state
response. The transient response is so-called because, under damped conditions, these terms
rapidly decay to zero. However, for the undamped condition, for a single-degree-of-freedom
system, which starts from rest at its equilibrium position, the constants are:

C1 = −�P0


S

[
1

1 − (�/
)2

]
; C2 = 0 (20.26)

The complete solution is then

D = P0

S

[
1

1 − (�/
)2

](
sin �t − �



sin 
t

)
(20.27)

This solution is plotted in Figure 20.4b, from which it may be seen that the transient solution is
oscillating about the steady-state response (the last term in Eq. 20.25). The quantity P0/S is the
displacement of the system under a static load, P0. The first bracket, 1/

{
1 − (�/
)2}, is termed

the amplification factor. This factor is ∼1.0 when the frequency ratio �/ω is close to zero, but
is infinity when this ratio is 1.0. This condition is termed resonance, in which the amplitude of
vibration increases indefinitely. In practice, damping will limit the maximum amplitude to finite
values but these may still be large enough to cause damage to the system. As the frequency ratio
becomes large, �/ω>>1, the magnitude of the amplification factor decreases, eventually to zero.

20.4.2 Forced motion of an undamped single-degree-of-freedom system:
general dynamic forces

Analysis for a general dynamic loading resulting from blasts, wind gusts, or seismic effects is
accomplished by considering the loading as a sequence of impulse loads, and integrating for the
effect of these impulses to obtain the system response. This integration can either be carried out
in closed form, if the load function is fairly simple, or numerically, if the function is complex.

Consider the time-dependent loading shown in Figure 20.5, which begins to act at t =0, when
the mass is at rest; thus, D0 =0 and Ḋ0 =0. At time t = τ , we show an impulse: I =P(τ )dτ . Such
an impulse causes a change in momentum of the system. As the mass is constant, the change is
in the velocity of the system:

dḊ = P (τ )dτ

m
(20.28)

This change in velocity may be considered as an initial condition at time t = τ , for which the
subsequent displacement is given by Eq. 20.18 (initial velocity only):

dD = dḊ



sin 
 (t − τ) (20.29)
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P(t)

t

dτ

Area = impulse = Pdτ

τ

Figure 20.5 General force–time relation.

Substituting Eq. 20.29, and integrating from time t = 0, we obtain the displacement at time t
for any arbitrary time-dependent load:

D = 1
m


t∫
0

P (τ ) sin 
 (t − τ) dτ (20.30)

This is called the Duhamel integral. Using the trigonometric identity:

sin 
 (t − τ) = sin 
t · cos 
 τ − cos 
t · sin 
 τ

we can rewrite Eq. 20.30 in the form:

D = 1
m


[�1 (t) sin 
t −�2 (t) cos 
t] (20.31)

where �1 (t) =
t∫

0
P (τ ) cos (
τ) dτ ; �2 (t) =

t∫
0

P (τ ) sin (
τ) dτ .

Depending on the nature of the function P(τ ), these integrals may be evaluated in closed form,
or numerically, using any numerical integration system (e.g. Simpson’s rule).

20.5 Viscously damped vibration: single-degree-of-freedom
system

Generally, the most widely used form of damping is viscous damping, where the actual damping
effects are replaced by forces proportional to the velocity. Thus, the damping force is:

Fc = cḊ (20.32)

where c is the damping coefficient. The equation of motion for a viscously damped single degree
of freedom then becomes (from Eq. 20.11):

mD̈ + cḊ + S D = P(t) ; D̈ + 2�
Ḋ +
2 D = P(t)/m (20.33)

�= c/ (2m
) (20.34)

where ω is the natural frequency (Eq. 20.14), and � is the damping ratio = ratio between the
actual damping coefficient and the critical damping coefficient (= 2mω, discussed below).
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20.5.1 Viscously damped free vibration

Setting P(t) equal to zero in Eq. 20.33, we obtain the free vibration equation of motion for a
damped system:

D̈ + 2�
Ḋ +
2 D = 0 (20.35)

Substituting D = e�t , we obtain the characteristic equation:

�2 + 2�
�+
2 = 0 (20.36)

which has the roots:

�1,2 =

(
−�± i

√
1 − �2

)
(20.37)

where i = √−1 and the solution to Eq. 20.35 becomes:

D = e−�
t
(
C1ei
dt + C2e−i
dt

)
(20.38)


d =

√

1 − �2 (20.39)

where ωd is the damped natural frequency; C1 and C2 are constants. Equation 20.38
can be rewritten using the relationships between trigonometric functions and exponential
functions as:

D = e−�
t
(
C1 sin
dt + C2 cos
dt

)
(20.40)

Using the initial conditions, D0 and Ḋ0, Eq. 20.40 is written as:

D = e−ζ 
 t

[(
Ḋ0 + �
D0


d

)
sin 
dt + D0 cos 
dt

]
(20.41)

When ζ =1, the system is said to be critically damping, with critical damping coefficient = 2m
.
At critical damping, the initial displacement D0 of a system, starting from rest, dies out gradually
without oscillation. ζ is the ratio between the actual damping coefficient and the critical damping
coefficient. For buildings and bridges, ζ varies between 0.01 and 0.2. Figure 20.6 illustrates this
equation for a system that starts at rest with displacement D0. The natural period of damped
vibration is:

Td = 2/
d = T /
√

1 − �2 (20.42)

The ratio of the displacement at time t to that at time t + Td is constant and the natural
logarithm of this ratio is called the logarithmic decrement, �:

�= ln

(
Dt

Dt+Td

)
= ln

(
e�
Td

)
= 2 �√

1 − �2
∼= 2 � (20.43)

This property of the free vibration response of a damped system is often used as a means of
estimating the damping ratio of real structures from measurements of the displacements.



606 Structural dynamics

2

D

D0

t

–D0

Envelope

2
π/

ω d

3π
/ω

d

4π
/ω

d

π/
ω d

Figure 20.6 Damped free vibration, with Ḋ = 0 at t = 0.

20.5.2 Viscously damped forced vibration – harmonic loading:
single-degree-of-freedom system

When a damped single-degree-of-freedom system is subject to a harmonically applied load, the
equation of motion becomes:

D̈ + 2 �
 Ḋ +
2 D = P0

m
sin �t (20.44)

The complete solution of Eq. 20.44 consists of two parts, the complementary solution (as given
by Eq. 20.40), and the particular solution representing the response to the harmonic force,
given by:

DSteady state = P0

S

{[
1 − (�/
)2] sin �t − (2 ��/
) cos �t[

1 − (�/
)2]2 + (2 ζ �/
)2

}
(20.45)

The complementary solution (Eq. 20.40) is also called the transient solution, and is damped out
after a few cycles. The particular solution of Eq. 20.45 is called the steady-state displacement and
it is this solution that defines the response of the system to the external load P(t). Equation 20.45
can be written in terms of its displacement amplitude, D, and phase angle, �:

DSteady state = D sin (� t +�) (20.46)

D =�
P0

S
(20.47)

�= tan−1
[ −2 ��/


1 − (�/
)2

]
(20.48)

�=
[{

1 − (�/
)2
}2 + (2��/
)2

]−1/2

(20.49)

The complete solution of Eq. 20.44 is then given by the sum of Eqs. 20.40 and 20.46:

D = e−�
t(C1 sin 
dt + C2 cos 
dt) + D sin(�t +�) (20.50)

The amplitude D of the steady-state displacement is equal to the static displacement (Po/S)
multiplied by the amplification factor, � (Eq. 20.49). Figure 20.7 represents � versus �/
 for
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x

0

1.0

2.0

3.0

4.0

5.0

1.0

χ=(1–Ω2/ω2)–1

2 .0 3.0

Ω
—ω

ζ=0.0

ζ=0.2

ζ=0.3

ζ=1.0

ζ=0.4

ζ=0.5

ζ=0.1

Figure 20.7 Magnification factor defined by Eq. 20.57 for a damped system subjected to harmonic
disturbing forces.

various values of the damping ratio, �. At resonance, � =
, the amplification factor = 1/(2�).
The dashed curve in Figure 20.7 is for the theoretical case of undamped motion (Eq. 20.27). The
other curves indicate that, even with a small amount of damping, finite displacements occur at
resonance. Nevertheless, this condition is generally avoided.

Example 20.2: Damped free vibration of a light cantilever with a heavy weight
at top
For the system in Example 20.1, find the damped natural frequency, 
d , the natural period
of damped vibration, Td , and the displacement at t =3Td . Assume a damping ratio �=0.05.

Using the results of Example 20.1 and applying Eqs. 20.39, 20.42 and 20.41 gives:


d =

√

1 − �2 = 4.202
[
1 − (0.05)2

]1/2 = 4.197 rad/s

Td = 2/
d = 1.497 s

Dt=3Td
= D0 e−�
(3Td) = D0 e−0.05 (4.202) (3×1.497) = 0.389 D0

We can see that with ζ =0.05 the amplitude drops to 0.39D0 in three cycles; in six cycles
(t = 6Td), it drops to 0.15D0.
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20.5.3 Viscously damped forced vibration – general dynamic loading:
single-degree-of-freedom system

Using the procedure in Section 20.4.2, we can obtain the solution for a damped single-degree-
of-freedom system subject to a randomly varying time-dependent force, P(τ ). The displacement
at time t caused by the impulse applied at earlier time τ (see Figure 20.5 and Eq. 20.29) can be
obtained from Eq. 20.41 by considering as the initial velocity :

dD = 1
m
d

P (τ ) e−�
 (t−τ) sin 
d (t − τ)dτ (20.51)

Integrating, we obtain the displacement:

D = 1
m
d

t∫
o

P (τ ) e−�
 (t−τ) sin 
d (t − τ)dτ (20.52)

Using Eq. 20.41 for the solution for the initial conditions, D0 and Ḋ0, the complete solution is
given by:

D=e−�
 t

[(
Ḋ0 + �
D0


d

)
sin 
dt + D0 cos 
dt

]
+ 1

m
d

t∫
o

P(τ ) e−�
 (t−τ) sin 
d (t − �)dτ

(20.53)

Equation 20.53 is usually evaluated numerically, except in unusual cases where P(�) can be
described by a simple function.

20.6 Undamped free vibration of multi-degree-of-freedom
systems

In Section 20.2 we developed the equation of motion for the free vibration of a system with
n degrees of freedom (Eq. 20.6). This is a system of second-order differential equations for
which the solution is a set of equations of the form:

{D} = {D} sin(
t +�) (20.54)

The elements of {D} are the amplitudes of vibration corresponding to n degrees of freedom.
Differentiation of Eq. 20.54 with respect to time gives the acceleration vector:

{
D̈
}= −
2 {D} (20.55)

Substituting Eq. 20.55 into Eq. 20.6, we obtain:

[S] {D} =
2 [m] {D} (20.56)

Pre-multiplying both sides by [m]−1 gives:

[B] {D} =
2 {D} (20.57)

[B] = [m]−1 [S] (20.58)
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Equation 20.57 is called an eigenvalue equation (see Section A.3), and its solution provides n
characteristic values (eigenvalues) of the quantity 
2. The 
 values are called the natural or
modal frequencies of the system, and the lowest is called the first mode frequency.

For each characteristic value, a corresponding eigenvector or mode shape {�} can be found.
A value is selected (e.g. unity) for one of the elements of {�} and the remaining (n–1) values are
found in terms of this value. This results in a vector {�} of modal amplitudes that define the
relationship between the magnitudes of vibration of the n degrees of freedom.

20.6.1 Mode orthogonality

The mode shapes of a multi-degree-of-freedom system have one important property that greatly
facilitates analysis of such systems. Apply Eq. 20.56 to the rth mode:


2
r [m] {�r} = [S] {�r} (20.59)

Pre-multiplying by {�s}T , we obtain:


2
r {�s}T [m] {�r} = {�s}T [S] {�r} (20.60)

Now, consider sth mode, {�s}:


2
s [m] {�s} = [S] {�s} (20.61)

Pre-multiplying by {�r}T , we obtain:


2
s {�r}T [m] {�s}T = {�r}T [S] {�s} (20.62)

Transpose this equation, and recall that [m] and [S] are symmetrical matrices:


2
s {�s}T [m] {�r} = {�s}T [S] {�r} (20.63)

Subtraction of Eq. 20.63 from Eq. 20.60 gives:

(

2

r −
2
s

)
{�s}T [m] {�r} = 0 (20.64)

When 
r �=
s, then:

{�s}T [m]{�r} = 0; {�s}T [S]{�r} = 0 (20.65)

Equation 20.65 means that the natural modes are orthogonal with respect to [m] or [S].

[�]T [m][�] = [M]; [�]T [S][�] = [K] (20.66)

where [M] and [K] are diagonal matrices; the rth elements on the diagonals are:

Mr = {�r}T [m]{�r}; Kr = {�r}T [S]{�r} (20.67)

Kr =
2
r Mr (20.68)

Mr and Kr are, respectively, called generalized mass and generalized stiffness for the rth mode.
We recall that {�r} is generated by setting one of its elements=1, and the remaining elements are
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ratios between the elements defining the shape of the rth mode (see Section 20.6). It is convenient
to use a normalized mode matrix [�] in lieu of [�], obtained by the division of the rth column

of [�] by
√

Mr =
(
{�r}T [m] {�r}

)1/2
, with r = 1,2, . . . ,n.

The use of [�] is convenient because of the relationships:

[�]T [m][�] = [I]; [�]T [S][�] = [
2] (20.69)

where [I] and [
2] are diagonal matrices. Each element on the diagonal of [I] is equal to 1.0.
The elements on the diagonal of [
2] are: 
2

1, 
2
2, . . . , 
2

n.

20.7 Modal analysis of damped or undamped
multi-degree-of-freedom systems

The equation of motion of an undamped n-degree-of-freedom system is (Eq. 20.4 and
Figure 20.2):

[m]{D̈} + [S]{D} = {P(t)} (20.70)

Use the normalized modal matrix to express {D} as sum of its modal contributions:

{D} = [�]{�} (20.71)

This equation transforms the displacements {D} into modal coordinates {�}. Substitution of
Eq. 20.71 into Eq. 20.70 and pre-multiplication by [�]T gives:

[�]T [m][�]{�̈} + [�]T [S][�]{�} = [�]T {P(t)} (20.72)

Substitution of Eq. 20.69 in this equation gives the uncoupled set of equations of motion in
modal coordinates.

{�̈} + [
2]{�} = {P∗(t)} (20.73)

{p∗(t)} = vector of generalized forces, given by:

{P∗(t)} = [�]T {P(t)} (20.74)

The typical rth equation of the set in Eq. 20.73 is the equation of motion of the rth mode for the
undamped system:

�̈r +
2
r �r = P∗

r (t) (20.75)

The equation of motion of a damped n-degree-of-freedom system is:

[m]{D̈} + [C]{Ḋ} + [S]{D} = {P(t)} (20.76)

where [C] is the damping matrix. We limit our discussion to classical damping, which is reason-
able for many structures, with [C] =a0[m]+a1[S], where a0,a1 are constants. Pre-multiplication
by [�]T , post-multiplication by [�], and substituting Eq. 20.69 gives:

[�]T [C][�] = a0[I] + a1[
2] (20.77)
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Substituting Eqs. 20.69, 20.71, 20.74 and 20.77 in Eq. 20.76, we can derive:

{�̈} + 2[�
]{�̇} + �
2�{�} = {P∗(t)}

where [ζ
] is a diagonal matrix of the products of the modal damping ratio times the modal
frequency.

This is a set of uncoupled equations; a typical uncoupled equation of motion of the rth mode
of the damped system is:

�̈r + 2�r 
r �̇r +
2
r �r = P∗

r (t) (20.78)

The uncoupled equations of motion (Eq. 20.75 and 20.78) make it possible to determine the
response of each mode as that of a single-degree-of-freedom system. The contribution of the
n-modes is then summed up by Eq. 20.71 to give {D} at any time. Comparison of Eq. 20.75
or 20.77 with Eq. 20.11 or 20.33, respectively, indicates that we can solve for �r by using the
equations of single-degree-of-freedom system by replacing D, S, m, and P(t) by �r, 
2

r , 1.0, and
P∗(t) respectively.

Example 20.3: Cantilever with three lumped masses
Find the natural frequencies {
} and the normalized mode shapes [�] for the cantilever in
Figure 20.8a. Verify the orthogonality of Eq. 20.69.

The system has three degrees of freedom indicated by the three coordinates in
Figure 20.8b. The corresponding stiffness matrix is (using Table E.3, Appendix E):

[S] = E I
l3

⎡
⎣ 1.6154 symmetrical

−3.6923 10.1538
2.7692 −10.6154 18.4615

⎤
⎦ (a)

The mass matrix is:

[m] = W
g

⎡
⎣4 0 0

0 1 0
0 0 1

⎤
⎦ (b)

where g is the acceleration due to gravity. Substituting in Eq. 20.58, we obtain

[B] = g E I
W l3

⎡
⎣ 0.4039 −0.9231 0.6923

−3.6923 10.1538 −10.6154
2.7692 −10.6154 18.4615

⎤
⎦ (c)

Substituting this equation in Eq. 20.57 and solving for the eigenvalues, 
2 (or solving the
eigenvalue problem in the form of Eq. 20.56), we obtain


2
1 = 0.02588

g EI
W l3 ; 
2

2 = 3.09908
g EI
W l3 ; 
2

3 = 25.89415
g EI
W l3 (d)

or


1 = 0.1609

√
g EI
W l3 ; 
2 = 1.7604

√
g EI
W l3 ; 
3 = 5.0886

√
g EI
W l3 (e)
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(a)

(c)

(b)Weights

l

l

l

Constant flexural
rigidity EI

4 W 1

1.00 1.00 1.00

–6.34

–13.20

19.22–4.56

0.52

0.15

2

3

W

W

ω1=0.1609
qEI
— 
Wl3 ω2=1.7604

qEI
—
Wl3 ω3=5.0886

qEI
—
Wl3

Figure 20.8 Free vibration of the beam of Example 21.2. (a) System properties. (b) Coordinate system.
(c) Mode characteristic shapes.

If we choose D1 =1, the modal vectors corresponding to the above angular frequencies are

[�] =
⎡
⎣ 1.0 1.0 1.0

0.5224 −6.3414 −13.1981
0.1506 −4.5622 19.2222

⎤
⎦ (f)

The values of
√

Mr =√{�r}T [m]{�r}, with r=1, 2, and 3 are, respectively, =2.073
√

W/g,
8.064

√
W/g, and 23.400

√
W/g; multiply columns 1, 2, and 3 of [�], respectively, by

(2.073)−1, (8.064)−1, and (23.400)−1 to obtain:
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[�] =
⎡
⎣0.4825 0.1240 0.0427

0.2521 −0.7864 −0.5640
0.0727 −0.5658 0.8214

⎤
⎦( g

W

)1/2
(g)

We can verify [�] by Eq. 20.69:

[�]T
⎡
⎣4 0 0

0 1 0
0 0 1

⎤
⎦ [�]W

g
=
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦

EI
l3 [�]T

⎡
⎣ 1.6154 symmetrical

−3.6923 10.1538
2.7692 −10.6154 18.4615

⎤
⎦ [�]

=
⎡
⎣0.02588 0 0

0 3.09908 0
0 0 25.8445

⎤
⎦ gEI

Wl3

Example 20.4: Harmonic forces on a cantilever with three lumped masses
Find the steady-state displacements of the system shown in Figure 20.8a subjected to har-
monic forces {P(t)} = P0 sin�t {2,1,1}, with � =
1/2; where 
1 = frequency of the first
natural mode. Use the results of Example 20.3.

The steady-state displacement of undamped single-degree-of-freedom system is (the last
term of Eq. 20.25):

D = P0 sin�t
S

(
1 − �2


2

)−1

(20.79)

Replace D by ηr, P0 sin�t by P∗
r (t), and S by 
2

r to obtain the rth mode of displacement in
modal coordinate:

ηr = P∗
r (t)
ω2

r

(
1 − �2


2
r

)−1

(20.80)

In this problem, �2 = (
1)
2/4 = 6.47 × 10−3[gEI/(Wl3)]. The generalized forces can be

expressed as (Eq. 20.74):

P∗
r (t) = [�]T {P(t)}

=
( g

W

) 1
2

⎡
⎣0.4825 0.2521 0.0727

0.1240 −0.7864 −0.5640
0.0427 −0.5640 0.8214

⎤
⎦
⎧⎨
⎩

2
1
1

⎫⎬
⎭P0 sin�t

=
( g

W

) 1
2

⎧⎨
⎩

1.2898
−1.1042

0.3428

⎫⎬
⎭P0 sin�t
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The steady-state displacements in natural coordinates are:

η1 =
(

W
g

) 1
2 P0 sin�t(1.2898)

(EI/l3)(0.02588)

[
1 − 6.47 × 10−3

0.02588

]−1

= 66.45
(

W
g

) 1
2 P0l3

EI
sin�t

η2 =
(

W
g

) 1
2 P0 sin�t(−1.1042)

(EI/l3)(3.0991)

[
1 − 6.47 × 10−3

3.0991

]−1

= −0.3570
(

W
g

) 1
2 P0l3

EI
sin�t

η3 =
(

W
g

) 1
2 P0 sin�t(0.3428)

(EI/l3)(25.8914)

[
1 − 6.47 × 10−3

25.8914

]−1

= 0.0136
(

W
g

) 1
2 P0l3

EI
sin�t

The displacements are (Eq. 20.71):

{D} =
(

W
g

) 1
2 [�]

⎧⎨
⎩

66.45
−0.3570

0.0136

⎫⎬
⎭ P0l3

EL
sin�t =

⎧⎨
⎩

32.02
17.03
5.044

⎫⎬
⎭ P0l3

EI
sin�t

20.8 Single- or multi-degree-of-freedom systems subjected
to ground motion

Consider the response of the single-degree-of-freedom damped system in Figure 20.9 subjected
to support motion described in terms of its acceleration üg(t). At any instant, the displacement
of the mass m relative to the ground is:

D = u − ug (20.81)

(a) (b)

(c)
cD

SD

mü

Mass
Damper

Static
equilibrium
position

D=u–us

Damping
Force

Restoring
Force

Inertia
Force

u

u

m

us us

Figure 20.9 A single-degree-of-freedom system subjected to support movements. (a) Positive directions
of u and us. (b) Deformed shape at any time t. (c) Forces acting on mass at any time t.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Structural dynamics 615

The forces acting on the mass are: an inertial force mü, a damping force cḊ, and a restoring
force SD; where S is the stiffness of the structure with respect to the coordinate shown. The
equation of motion is:

mü + cḊ + SD = 0 (20.82)

where c = damping coefficient, ζ = c/(2m
) = damping ratio (Eq. 20.34), and 
 =√
S/m =

natural frequency (Eq. 20.14). Substituting for c and S and Eq. 20.81 in Eq. 20.82, the equation
of motion of a single-degree-of-freedom damped system subjected to ground motion becomes:

D̈ + 2ζ
Ḋ +
2D = −üg (20.83)

Comparison of Eq. 20.83 with Eq. 20.33 shows that the effect of ground motion is the same as
that of the force:

P (t) = −ügm (20.84)

The modal analysis (Section 20.7) can determine the response of a damped multi-degree-of-
freedom system (Figure 20.2) subjected to ground motion, described by its acceleration, üg. For
this purpose, apply Eq. 20.78.

η̈r + 2 ζ
, η̇r +
2
r �r = P∗

r (t)

Here, D is replaced by � and
(−üg

)
by the generalized force P∗

r (t); where

{
P∗

r (t)
}= −üg [�]T

⎧⎪⎪⎨
⎪⎪⎩

m1

m2

· · ·
mn

⎫⎪⎪⎬
⎪⎪⎭ (20.85)

Equation 20.78, combined with the rth element of {P∗
r (t)}, gives the uncoupled equation of the

rth mode.
The effect of a particular earthquake can be analyzed by the substitution of its record of üg

in Eq. 20.83 or 20.85. Solution of these differential equations is commonly done by numerical
“time-stepping’’ methods.

Example 20.5: Cantilever subjected to harmonic support motion
Find the steady-state displacements of the system shown in Figure 20.8a subjected to har-
monic support acceleration üg = (g/5) sin �t, where � =
1/2 and 
1 is the frequency of
the first natural mode. Use the results of Example 20.3.

The vector of generalized forces is (Eq. 20.85)

{
P∗ (t)

}= −g
5

sin �t

⎡
⎣ 0.4825 0.2521 0.0727

0.1240 −0.7865 −0.5640
0.0427 −0.5640 0.8214

⎤
⎦
⎧⎨
⎩

4
1
1

⎫⎬
⎭
(

W
g

) 1
2

= −g
5

sin �t

⎧⎨
⎩

2.2548
−0.8545

0.4282

⎫⎬
⎭
(

W
g

) 1
2 = g sin �t

⎧⎨
⎩

−0.45096
0.17090

−0.08564

⎫⎬
⎭
(

W
g

) 1
2
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Given: � =
1/2; �2 = 
2
1

4
= 0.02588

4
g EI
W l3 . Equation 20.80 gives the displacements of

the three modes in natural coordinates:

�1 =
(

W
g

) 1
2 −0.45096

0.02588

[
1 − 0.02588

4 (0.02588)

]−1 W l3

EI
sin �t = −23.23

(
W
g

) 1
2 W l3

EI
sin �t

�2 =
(

W
g

) 1
2 0.17090

3.09908

[
1 − 0.02588

4 (3.09908)

]−1 W l3

EI
sin �t = 0.0553

(
W
g

) 1
2 W l3

EI
sin �t

�3 =
(

W
g

) 1
2 −0.08564

25.89415

[
1 − 0.02588

4 (25.89415)

]−1 W l3

EI
sin �t = −0.0033

(
W
g

) 1
2 W l3

EI
sin �t

The displacements are (Eq. 20.71):

{D} = [�] {�} =
⎧⎨
⎩

−11.200
−5.893
−1.723

⎫⎬
⎭ W l3

EI
sin �t

20.9 Earthquake response spectra

The equation of motion of a single-degree-of-freedom system (Eq. 20.83) indicates that for a
given ground acceleration üg (t) the response is dependent only upon the natural frequency 

and the damping ratio ζ . Thus, systems having the same 
 (or T = 2/
) and same ζ have the
same displacement response, although they may differ in mass and stiffness. For typical ground
motions, a structure will respond primarily in its fundamental mode, with a period close to
its fundamental T. Structures with higher fundamental period T will experience greater peak
displacement. Damping decreases the peak displacement; higher ζ corresponds to smaller peak
displacement.

The variations of ground acceleration üg (t) recorded during strong earthquakes have been
used to derive pseudo-acceleration response spectra. The jagged line in Figure 20.10a is a sketch
of the spectrum derived from the record of the earthquake at El Centro, California, 1940.
(More accurate graphs can be found in more specialized references.1) The spectrum shown
in Figure 20.10 is for ζ = 0.02. For any T value, a numerical solution (in time steps) of the
equation of motion (Eq. 20.83) gives the variation of the acceleration for the whole duration of
the earthquake record; the absolute peak value of the acceleration gives the ordinate Sa of the
pseudo-acceleration spectrum. Repetition of the solution varying T (keeping ζ = 0.02) gives the
spectrum shown in Figure 20.10a. Commonly, curves for three to five ζ values are plotted on
the same graph (e.g. ζ = 0, 0.02, 0.05, 0.10, and 0.20). Note that Sa is the peak acceleration
of a vibrating mass relative to the support (Figure 20.9); thus, Sa is different from the peak
acceleration of the ground and also different from the peak acceleration of the mass; the prefix
pseudo is used to differentiate between the accelerations.

From the same ground acceleration record, it is also possible to prepare pseudo-velocity
response and pseudo-displacement response spectra. For specific values of ζ and T, the velocity
and displacement spectra, Sv and Sd are approximately related to Sa:

Sv = Sa(T/2); Sd = Sa(T/2)2 (20.86)

1 See references at the end of this chapter.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Structural dynamics 617

0.0 0.5 1.5 2.51.0 2.0 3.0 0.0 0.5 1.5 2.51.0 2.0 3.0
0.0

0.5

1.0

1.5

T (second)

Sa /g Sa /g

0.0

0.5

1.0

1.5

T (second)

(a) (b)

Figure 20.10 Pseudo-acceleration response spectrum. (a) Sketch of the response spectrum for El Centro
(1940) ground motion with ζ = 0.02. (b) Simplified spectrum.

Figure 20.10b is a simplified version of the spectrum in Figure 20.10a. Modern codes use the
spectra of available earthquake records to develop simplified design spectra giving Sa(ζ ,T) that
vary with the geographic location of the structure; the codes also provide soil multipliers to Sa

to account for the conditions of the soil (higher multipliers for softer soil). Figure 20.11a is an
example2 of acceleration design spectrum for ζ = 0.05. The use of acceleration design spectra is
demonstrated in Examples 20.6, 20.7 and 20.8.

20.10 Peak response to earthquake: single-degree-of-freedom
system

Figure 20.11b shows a single-degree-of-freedom system with mass m and stiffness S. We can
calculate T = 2/

√
S/m and use the design spectral acceleration Sa for the site (such as the

(a)

0.024≥4.0

0.0482.0

0.1401.0

0.3400.5

0.680≤0.2

Sa/g

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

T (sec)

Sa—g

ζ=0.05

S /mT=2π

Given:
m and S 

Dpeak

Pequivalent

(b)

T, sec

Figure 20.11 Typical design data. (a) Spectral acceleration2. (b) Single degree of freedom.

2 National Building Code of Canada (NBCC 2005). The values shown are for Montreal, Quebec.
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one shown in Figure 20.11a) to determine peak displacement Dpeak and equivalent static force
Pequivalent:

Dpeak = Sa (T/2)2 (20.87)

Pequivalent = mSa (20.88)

Example 20.6: A tower idealized as a single-degree-of-freedom system subjected
to earthquake
A tower is idealized as a weightless vertical cantilever of length l = 40m, carrying a weight
W = 160kN at its tip. Find the equivalent static force at the tip, the peak drift at the
tip, the shearing force and the bending moment at the base. Given E = 200GPa, I = 30 ×
10−3 m4, and the damping ratio ζ = 0.05, the spectral acceleration for the site is shown in
Figure 20.11a. Gravitational acceleration, g = 9.81m/s2.

The stiffness is (see Appendix B, inverse of Eq. B.19):

S = 3EI/l3 = 3
(
200 × 109

)(
30 × 10−3

)
/ (40)3 = 281 × 103 N/m


2 = S/m = S/(W/g) = 281 × 103/
[(

160 × 103
)

/9.81
]
= 17.22 s−2

T = 2/
= 2/
√

17.22 = 1.51 s

Figure 20.11a gives: Sa = 0.093g = 0.093(9.81) = 0.913m/s2.
Peak displacement: Dpeak = Sa (T/2)2 = 0.913 (1.51/2)2 = 0.053m

Equivalent static force: Pequivalent = mSa = W
g

Sa = 160 × 103

9.81
(0.913) = 14.9 × 103 N

Shearing force at the base = 14.9 × 103 N
Bending moment at the base = 14.9 × 103(40) = 596 × 103 N-m

20.11 Generalized single-degree-of-freedom system

The response of a multi-degree-of-freedom system to earthquake can be analyzed (approx-
imately) using a generalized single-degree-of-freedom system. Consider the plane frame in
Figure 20.2c, idealized as a system having n degrees of freedom and n lumped masses. It is
required to determine the peak displacements, the equivalent static forces, the base shear, and
the base overturning moment due to earthquake movement described by a spectral acceleration,
Sa, as function of ζ and T.

We assume that the structure can deflect in a single assumed shape, �, which is an approx-
imation of the fundamental mode shape. For a multistorey building, the fundamental mode has
the same sign at all coordinates. Generally, one of a variety of shape functions can be selected.
For a multistorey building, examples of shape functions are:

� = 	; � =
(
3	2 − 	3

)
/2; � =

(
6	2 − 4	3 + 	4

)
/3 (20.89)

where ξ =x/l, with x and l being the distance between the base and any coordinate and between
the base and the top coordinate respectively. Each function gives � = 0 and 1 at the base and
the top. The first function is simply linear; the second and the third represent the deflected shape
of a prismatic cantilever subjected to a lateral force at its tip and to a uniform load respectively
(see Eqs. B.22 and B.29, Appendix B). The shape function must satisfy the boundary conditions
that coincide with any of the n degrees of freedom. Sometimes the shape function � is taken



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Structural dynamics 619

as the deflected shape of the frame due to static forces mg at the coordinates, where g is the
gravitational acceleration. The natural frequency of the generalized system is given by:


2
n = Sn

mn
; Sn = {�}T [S]{�}; mn = {�}T [m]{�} (20.90)

This is known as Rayleigh’s equation; Sn and mn are called generalized stiffness and generalized
mass respectively; the equation is exact when � is the true fundamental mode shape. This can
be verified by dividing the second of Eqs. 20.69 by the first. When � is assumed, Eq. 20.90 gives
an approximate value for 
n, always greater than the exact value. Rayleigh’s equation can also
be verified by virtual work. The natural period of vibration of the generalized system is:

Tn = 2π/
n (20.91)

Calculate the mass participation parameter Ln, defined as:

Ln =
n∑

i=1

�imi (20.92)

The peak displacement of the generalized system is:

Dn peak = LnSa/
(
mn 


2
n

)
(20.93)

This is the peak displacement at the point whose ξ = 1. The equivalent static force at any
coordinate i is:

pni = Ln mi �i Sa/mn (20.94)

The equivalent static shearing force and overturning moment at the base and the effective
height are:

Vbase =
n∑

i=1

pni; Mbase =
n∑

i=1

pni hi; heffective = Mbase/Vbase (20.95)

where hi is the distance from the base to coordinate i.

Example 20.7: A cantilever with three lumped masses subjected to earthquake:
use of a generalized single-degree-of-freedom system
The structure in Figure 20.8a is subjected to earthquake characterized by the design spec-
trum in Figure 20.11a (ζ = 0.05). Find the shearing force and the bending moment at
the base and the peak displacement at the top. Use a generalized single-degree-of-freedom
system. Assume Wl3/(gEI) = 950 × 10−6 s2;g = 9.81m/s2.

The stiffness matrix of the three-degrees-of-freedom system in Figure 20.8b is (Table E.3,
Appendix E):

[S] = E I
l3

⎡
⎣ 1.6154 symmetrical

−3.6923 10.1538
2.7692 −10.6154 18.4615

⎤
⎦
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The mass matrix is:

[m] = W
g

⎡
⎣4 0 0

0 1 0
0 0 1

⎤
⎦

We select the shape function:

�=
(
3 ξ2 − ξ3

)/
2 with ξ = x/(3l)

�1 = 1; �2 = 0.5185; �3 = 0.1481

The generalized stiffness and the generalized mass are (Eq. 20.90):

Sn = {�}T [S] {�} = 0.1112 EI
/

l3; mn = {�}T [m] {�} = 4.291 W/g


2
n = Sn

mn
= 0.1112

4.291
g EI
W l3 =25.92×10−3 g EI

W l3 (slightly greater than
2
1, for the fundamental

mode determined in Example 20.3)

Tn = 2π
/

n =

[
2π

/√
25.92 × 10−3

] ( g EI
W l3

)−1/2

= 39.03
(

g EI
W l3

)−1/2

= 39.03
(
950 × 10−6

)1/2 = 1.2 second

From Figure 20.11a, Sa = 0.122g = 0.122(9.81) = 1.197 m/s2

The mass participation parameter (Eq. 20.92):

Ln =
n∑

i=1

�i mi = W
g

[1.0 (4.0) + 0.5185 (1.0) + 0.1481 (1.0)] = 4.667
W
g

The peak displacement of the generalized system is:

Dn peak = Ln Sa

/(
mn 


2
n

)
= 4.667 (1.197)

4.291
[
25.92 × 10−3

/(
950 × 10−6

)] = 0.0477 m

The equivalent static forces at the coordinates are (Eq. 20.94):

{
pn
}= {

pn
}= Ln Sa

mn
{mi �i} = 4.667 (0.122)

4.291

⎧⎨
⎩

4.0 (1.0)

1.0 (0.5185)

1.0 (0.1481)

⎫⎬
⎭ W =

⎧⎨
⎩

0.5309
0.0688
0.0197

⎫⎬
⎭ W

The equivalent static shearing force and overturning moment at the base and the effective
height heffective are (Eq. 20.95):

Vbase = W (0.5309 + 0.0688 + 0.0197) = 0.6195 W
Mbase = W l (0.5309 × 3 + 0.0688 × 2 + 0.0197) = 1.789 W l
heffecive = Mbase

/
Vbase = (

1.789
/

0.6195
)

l = 2.888l



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Structural dynamics 621

20.12 Modal spectral analysis

The spectral acceleration graphs of Sa(ζ , T) (e.g. Fig. 20.11a) can be used to obtain the peak
response (forces or displacements) of a multi-degree-of-freedom system to earthquakes. Consider
the plane frame in Fig. 20.2 having n degrees of freedom and n lumped masses. The steps of
analysis are:

1. Generate the stiffness and mass matrices, [S] and [m], the product [m]−1[S], the corres-
ponding eigenvalues {ω2}, and modal shapes [�]. Divide a typical rth column of [�] by(
{�r}T [m] {�r}

)1/2
to obtain the modal shapes [�] normalized with respect to the masses.

Calculate the natural vibration periods, {T}=
{
2π

/√
ω2
}
. The calculation involved in this

step is demonstrated in Example 20.3.
2. Calculate the mass participation parameters {α} and the mass participation factors {MPF}

defined as:

{α} = [�]T [m]

⎧⎪⎪⎨
⎪⎪⎩

1
1
· · ·
1

⎫⎪⎪⎬
⎪⎪⎭ (20.96)

{MPF} =
(

n∑
i=1

mi

)−1 {
α2
}

(20.97)

Note that
n∑

i=1
MPFi = 1.0.

3. Read the spectral accelerations {Sa(ζ , T)} from spectral graphs similar to Figure 20.11a.
4. The contribution of the modes to the equivalent static base shear is given by:

{V}base =
{
α2 Sa

}
=
(

n∑
i=1

mi

)
{MPF · Sa} (20.98)

A typical rth element Vrbase of this vector is equal to the sum of the equivalent static forces
at the coordinates for the rth mode; to find the force at individual coordinates, partition
Vrbase proportional to mi�ir, with i=1, 2, . . . , n. The contribution of the rth mode to the
equivalent static forces at the coordinates is:

{
p
}

r = Vr base
n∑

i=1
mi �ir

⎧⎪⎪⎨
⎪⎪⎩

m1 �1r

m2 �2r

· · ·
mn �nr

⎫⎪⎪⎬
⎪⎪⎭= Vr base

αr

⎧⎪⎪⎨
⎪⎪⎩

m1 �1r

m2 �2r

· · ·
mn �nr

⎫⎪⎪⎬
⎪⎪⎭ (20.99)

The equivalent static overturning moment and the model height for the rth mode are:

Mrbase =
n∑

i=1

pir hi; hr = Mr base
/

Vrbase (20.100)

5. Apply the equivalent static forces {p}r on the structure to calculate displacements, internal
forces, or reactions (as required) for the rth mode.
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6. Find the contribution of each mode separately to any required action (e.g. displacement or
internal force) before combining the modal contributions, by one of the methods in Section
20.12.1, to obtain the peak value of the action.

20.12.1 Modal combinations

The peak values for different modes do not occur at the same instant. The sum of the absolute
peak values is an upper bound of the total response:

rupper bound =
n∑

i=1

|ri| hi (20.101)

where r refers to generalized response (displacement or force) and i refers to the mode number.
The use of the upper bound in design is conservative. The square root of the sum of the squares
(SRSS) gives a more realistic estimate of the peak response:

rSRSS =
(

n∑
i=1

r2
i

)1/2

(20.102)

This equation is appropriate except when the natural frequencies are close to each other. In this
case, the complete quadratic combination (CQC) method is considered more appropriate.

The contribution of the fundamental mode to the response is commonly much higher than the
remaining modes. When the number of degrees of freedom n is high, it is commonly sufficient to

use the contribution of m modes, with m < n, such that
m∑

i=1
MPFi > 0.9. The SRSS (Eq. 20.102)

applies to combine the displacements or the forces obtained for separate modes. However, the
displacements calculated by the SRSS equation do not give accurate results if used to calculate
forces; similarly, the forces obtained by the SRSS equation should not be used to calculate
displacements.

Example 20.8: Response of a multistorey plane frame to earthquake: modal
spectral analysis
A three-storey building is idealized as a plane frame with masses lumped at three coordinates
(Fig. 20.12). Calculate the equivalent static shearing force and overturning moment at the
base for the effect of an earthquake whose design acceleration response spectrum, Sa(ζ , T),
is given in Figure 20.11a (with ζ = 0.05). Assume rigid floors and consider only bending
deformation for the columns. Gravitational acceleration, g = 9.81m/s2.

The stiffness and the mass matrices are:

[S] = 12E I
l3

⎡
⎣ 2 −2 0

−2 4 −2
0 −2 4

⎤
⎦ ; [m] = 103

g

⎡
⎣200 0 0

0 280 0
0 0 280

⎤
⎦

[m]−1 [S] = 103

⎡
⎣ 0.8591 −0.8591 0

−0.6136 1.227 −0.6136
0 −0.6136 1.227

⎤
⎦ s−2

The eigenvalues are:
{

2

1, 
2
2, 
2

3

}= {143.3, 1079, 2091} s−2
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1

2

3

l =3.5m

l =3.5m

l =3.5m

6.0m

200×10 3/ g

280×10 3/ g

280×10 3/ g

E

(a) Mode 1 Mode 2 Mode 3

81.8kN

95.4kN

54.1kN

-43.0kN

15.4kN

64.0kN

10.7kN

-21.4kN

15.2kN

(b)

7.42m

Mode 1

Mass = 700×10 3/ g

231.3kN

3.29m

Mode 2

Mass =
53.2×10 3/ g

-36.4kN

3.50m

Mode 3

Mass =
6.8×10 3/ g

4.5kN

(c)

l=3.5m

l=3.5m

l=3.5m

200 × 103/g

280 × 103/g

280 × 103/g

EIcolumns=

31.3 × 106N–m2

(a)

Mode 1 Mode 2 Mode 3

81.8kN

95.4kN

54.1kN

–43.0kN

15.4kN

64.0kN

10.7kN

–21.4kN

15.2kN

(b)

7.42m

Mode 1

Mass = 700 × 103/g

231.3kN

3.29m

Mode 2

Mass =
53.2×103/g

–36.4kN

3.50m

Mode 3

Mass =
6.8×103/g

4.5kN

(c)

Figure 20.12 The plane frame of Example 20.8 subjected to earthquake. (a) Idealization, coordinates
and lumped masses. (b) Mode contributions to the equivalent static forces. (c) Effective
modal masses, heights and static forces.

The natural periods of vibration are (T = 2π/
):

{T}={0.525, 0.191, 0.137}s

The modal shapes are:

[�] =
⎡
⎣ 1 1 1

0.833 −0.256 −1.434
0.472 −1.062 1.019

⎤
⎦

{√
Mr

}
=
{(

{�r}T [m] {�r}
)1/2

}
= {216, 233, 330} kg1/2
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Divide each column of [�] by its
√

Mr value to obtain the modal shapes normalized with
respect to the masses:

[�] =
⎡
⎣4.634 4.285 3.032

3.861 −1.098 −4.349
2.186 −4.550 3.089

⎤
⎦ 10−3 kg−1/2

The mass participation parameters {�} and the mass participation factors {MPF} are (Eqs.
20.96 and 20.97):

{�} = [�]T [m]

⎧⎨
⎩

1
1
1

⎫⎬
⎭=

⎧⎨
⎩

267.2
−73.87

25.88

⎫⎬
⎭ kg1/2; {MPF} =

(
n∑

i=1

mi

)−1
⎧⎪⎨
⎪⎩

α2
1

α2
2

α2
3

⎫⎪⎬
⎪⎭=

⎧⎨
⎩

0.921
0.070
0.009

⎫⎬
⎭

Check:
3∑

i=1
MPFi = 1.000.

The spectral accelerations Sa(ζ , T) for {T} = {0.525, 0.191, 0.137}s are (Fig. 20.11a):

{Sa} = g{0.330,0.680,0.680} = {3.24,6.67,6.67}m/s2

The contribution of the modes to the equivalent static base shear is (Eq. 20.98):

{V}base =
{
α2 Sa

}
={(267.2)23.24, (73.87)26.69, (25.88)26.67}=103{231.3,36.4,4.5}N

The contribution of the first mode to the equivalent static forces at the coordinates is
(Eq. 20.99):

{
p
}

1 = 267.2 (3.24)

⎧⎨
⎩
(
200 × 103

/
9.81

) (
4.634 × 10−3

)(
280 × 103

/
9.81

) (
3.861 × 10−3

)(
280 × 103

/
9.81

) (
2.186 × 10−3

)
⎫⎬
⎭=

⎧⎨
⎩

81.8
95.4
54.1

⎫⎬
⎭kN

Check: Sum = 231.3 kN
Similar calculations for the second and third modes give:

{
p
}

2 =
⎧⎨
⎩

−43.0
15.4
64.0

⎫⎬
⎭kN;

{
p
}

3 =
⎧⎨
⎩

10.7
−21.4

15.2

⎫⎬
⎭kN

Check: Sum = 36.4 kN Sum = 4.5kN
The effective height and the overturning moment for each mode are (Eq. 20.100):

h1 = [81.8(3 × 3.5) + 95.4(2 × 3.5) + 54.1(3.5)]/231.3 = 7.42 m; M1base = 1716kN-m

h2 = [−43.0(3 × 3.5) + 15.4(2 × 3.5)+64.0(3.5)]/36.4 = −3.29 m; M2base = −120kN-m

h3 = [10.7(3 × 3.5) − 21.4(2 × 3.5) + 15.2(3.5)]/4.5 = 3.50 m; M3base = 16kN-m

Figure 20.12b shows the mode contributions to the equivalent static forces at the nodes.
Figure 20.12c is a physical interpretation of the results. The effective mass for typical mode

r is equal to
(

n∑
i=1

mi

)
MPFr; this mass multiplied by Sar gives the equivalent static force
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(sum of p1r, p2r, and p3r). We use the SRSS (Eq. 20.102) to calculate the required answers;
the equivalent static shearing force and overturning moment at the base are:

Vbase = [(231.3)2 + (36.4)2 + (4.5)2]1/2 = 234.2 kN

Mbase = [(1716)2 + (120)2 + (16)2]1/2 = 1720 kN-m

20.13 Effect of ductility on forces due to earthquakes

The maximum drift due to earthquake excitation is roughly the same for elastic or plastic
structures. But, when yielding occurs, the maximum forces are limited by the yield strengths.
The dashed and solid lines in Figure 20.13 compare the load-deflection graphs of an elastic and
a perfectly elastoplastic pendulum subjected to the same maximum displacement D>Dy, where
Dy is the displacement at yielding. For the elastic member, the loading and unloading paths are
the same (A to B, and B to A), without loss of energy. When the yield strength Fy is reached, the
paths are ACD and DE for loading and unloading respectively. The area enclosed within ACDE
is the energy lost. In seismic design of structures, codes specify forces smaller than the elastic
forces and require that the structures possess the ductility to ensure that plastic deformations
can occur without failure (see specialized references3).

Ground motion

Displacement, D
or force, F

Displacement, D

Force, F

B

D

EA

CFy

F elastic

Figure 20.13 Force–displacement relationship in an elastic structure compared with elastoplastic
structure.

3 Chopra, A. K., Dynamics of Structures, Pearson Prentice-Hall, Upper Saddle River, New Jersey, 2007,
876 pp.; Penelis, G. G. and Kappos, A. J., Earthquake-Resistant Concrete Structures, E&FN Spon, Lon-
don, 1997, 572 pp.; Priestly, M. J., Seible, F. and Calvi, G. M., Seismic Design and Retrofit of Bridges, J.
Wiley & Sons, London, 1996, 686 pp.; Paz, M., Structural Dynamics, Theory and Computation, 3rd ed.,
Van Nostrand Reinhold, New York, 1991, 626 pp.; Clough, R. W. and Penzien, J., Dynamics of Struc-
tures, 2nd ed., McGraw-Hill, New York, 1993, 738 pp.; Humar, J., Dynamics of Structures, Prentice-Hall,
Engelwood Cliffs, New Jersey, 1990, 780 pp.
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20.14 General

This chapter should be considered only as an introduction to the subject of structural dynamics.
For more complete treatment, reference can be made to specialized publications.

Problems

Take the acceleration of gravity g = 32.2 ft/sec2 (386 in./sec2) or 9.81m/sec2 whenever it is
needed in the solution of the following problems.

20.1 Imperial units. Compute the natural angular frequency of vibration in sidesway for the
frame in the figure, and calculate the natural period of vibration. Idealize the frame as a
one-degree-of-freedom system. Neglect the axial and shear deformations, and the weight
of the columns. If initially the displacement is 1 in. and the velocity is 10in./sec, what is
the amplitude and what is the displacement at t = 1 sec?

60 Kip (or 300 kN)

(EI)AB=(EI)CD

=107 kip in2

(or 30 MN m2)

B C

Rigid

D

A

30 ft.(or 9 m)

24 ft.(or 7 m)30 ft
(or 9 m)

Prob. 20.1 or Prob. 20.2

20.2 SI units. Solve Prob. 20.1 assuming the initial displacement is 25 mm and the initial
velocity 0.25 m/sec.

20.3 Imperial units. Solve Prob. 20.1 assuming that BC has a flexural rigidity (EI)BC =
107 kip in.2.

20.4 SI units. Solve Prob. 20.2 assuming that BC has a flexural rigidity (EI)BC = 30MN m2.
20.5 The prismatic cantilever AB is idealized by the two-degrees-of-freedom system shown in

the figure. Using the consistent mass matrix, find the first natural angular frequency and
the corresponding mode. The beam has a total mass m, length l, and flexural rigidity EI.
Consider bending deformation only.

l

1

2

Prob. 20.5



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Structural dynamics 627

20.6 Find the consistent mass matrix for the beam element of Prob. 20.5 assuming that the
area of the cross section varies linearly between a1 and a2 at ends A and B respectively.
Use the displacement functions of Eq. 20.11.

20.7 Imperial units. The frame in Prob. 20.1 is disturbed from rest by a horizontal force of
8 kip at C, suddenly applied at time τ = 0 and removed at time τ = T/2, where T is the
natural period of vibration. What is the displacement and velocity at the removal of the
force? What is the displacement at time τ = 11T/8?

20.8 SI units. Solve Prob. 20.7 taking the force value to be 40 kN.
20.9 Imperial units. Solve Prob. 20.7 assuming that the disturbing force increases linearly from

zero at τ = 0 to 8 kip at τ = T/4, then decreases linearly to zero at τ = T/2, at which
time the force is removed.

20.10 SI units. Solve Prob. 20.9 replacing the value 8 kip by 40 kN.
20.11 Imperial units. If the system of Prob. 20.1 has a damping coefficient ξ =0.1, what are the

damped natural circular frequency ωd and the natural period of damped vibration Td?
What is the displacement at t = 1 sec, if Ḋ0 = 1 in. and Ḋ0 = 10 in./sec?

20.12 SI units. Answer the questions of Prob. 20.11 for the system of Prob. 20.2, with Ḋ0 =
25mm and Ḋ0 = 0.25m/section.

20.13 If the amplitude of free vibration of a system with one degree of freedom decreases by
50 percent in 3 cycles, what is the damping coefficient?

20.14 Imperial units. Determine the maximum steady-state sidesway in the frame of Prob. 20.1
when it is subjected to a harmonic horizontal force at the level of BC of magnitude
4 sin 14t (kip), and (a) no damping is present, (b) the damping coefficient = 0.10.

20.15 SI units. Apply the requirements of Prob. 20.14 to the system of Prob. 20.2, replacing
the value 4 sin 14t (kip) by 20 sin 14t (kN).

20.16 Imperial units. Assume that the frame in Prob. 20.1 has a damping coefficient = 0.05
and it is disturbed from rest by a horizontal force of 8 kip at C. The force is suddenly
applied at time τ = 0 and removed at time τ = Td/2, where Td is the natural period of
damped vibration. What are the displacements at the removal of the force and at time
τ = 11Td/8? (Compare the answers with the undamped case, Prob. 20.7.)

20.17 SI units. Apply the requirements of Prob. 20.16 to the frame of Prob. 20.2, replacing the
value 8 kip by 40 kN. (Compare the answers with the undamped case, Prob. 20.8.)

20.18 and 20.19
Determine the natural circular frequencies and characteristic shapes for the two-degrees-
of-freedom systems shown in the figure.

l l l

2

m2 m1

1

Constant EI

m1=m2=m

Prob. 20.18

20.20 Write the uncoupled equations of motion for the undamped system in Prob. 20.19, assum-
ing that a force P1 is suddenly applied at time t = 0 and continues to act after this. Find
the time–displacement relations for D1 and for D2.

20.21 If in Prob. 20.20 the force P1 = P0 sin �t, what is the amplitude of the steady-state
vibration of m1?
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2

1m1

m1 = m2 = m
m2

l

l

Constant EI

Prob. 20.19

20.22 Imperial units. The supports of the frame in Prob. 20.1 move horizontally with an accel-
eration indicated in the figure. What is the maximum displacement of BC relative to the
support? Neglect damping.

T = natural period
of vibration

t T
—
 2

 T
—
 4

Üs—
 g

0.2

Prob. 20.22

20.23 SI units. Apply the requirement of Prob. 20.22 to the frame of Prob. 20.2.
20.24 If the support in Prob. 20.19 has a horizontal acceleration üs = (g/4) sin �t, determine

the maximum displacement of the mass m1 relative to the support.
20.25 Solve Example 20.8 using a generalized single-degree-of-freedom system with the shape

function � taken as the deflected shape of the frame due to static forces {m}g at the
coordinates.

20.26 Consider the plane frame in Figure 20.12 modified by the removal of the columns and the
beam of the top storey. Number the coordinates 1 and 2, with one being the coordinate at
the top of the modified frame. Calculate the equivalent static shearing force and overturn-
ing moment at the base for the effect of an earthquake whose design acceleration response
spectrum Sa(�, T) is given in Figure 20.11a (with � = 0.05). Consider only bending
deformation of all members, and assume that EI for each member is 31.3 × 106 N-m2.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 21

Computer analysis of framed
structures

21.1 Introduction

This chapter discusses the use of computers in the analysis of large structures by the displacement
(stiffness) method. Although the concepts discussed apply to all types of structure, the matrices
involved in the analysis are given explicitly only for framed structures composed of prismatic
straight members. Five types of framed structure are considered: plane and space trusses with
pin joints, plane and space frames with rigid joints, and grids with rigid joints.1

The nodes (joints) and the members are numbered sequentially 1 to nj and 1 to nm respectively.
The coordinates representing the degrees of freedom are also numbered sequentially, following
at each node the order indicated in Figure 21.1. For example, at the ith node of a plane truss,
the translations in the global x and y directions are represented by coordinate numbers (2i − 1)
and 2i respectively. The origin and the directions of the orthogonal x, y (and z) axes are chosen
arbitrarily.

The analysis of framed structures is commonly performed to determine the nodal displace-
ments and the member end-forces. While the nodal displacements are determined in the global
directions, the member end-forces are calculated in local directions of the individual members.
These are defined in the following section.

Before proceeding with this chapter, some readers may find it beneficial to go over the summary
given in Section 21.13.

21.2 Member local coordinates

The stiffness matrix [S∗] of a member of a framed structure is first generated with respect to
local coordinates in the directions of the centroidal axis and the principal axes of the member
cross section; [S∗] is then transformed to coordinates parallel to the global directions. This is
necessary before the stiffness matrix of individual members can be assembled to obtain the
structure stiffness matrix [S]. Also, the member end-actions are generally determined in local
coordinates.

Typical nodal coordinates in global directions are shown in Figure 21.1, while the local
coordinates for typical members of framed structures are shown in their positive directions
in Figure 21.2.

The local coordinates are parallel to local axes x∗, y∗, and z∗. The local x∗ axis is directed
along the centroidal axis from the first node to the second node of the member. The first node

1 A summary of the steps involved in the analysis by the displacement method is given in Section 5.6.
Appendix L describes a series of microcomputer programs available on disk for analysis of each of the five
types of framed structure. The disk include executable files and FORTRAN-language files of the codes.
Appendix L also gives address of a web site from which the files for linear analysis can be downloaded.
An order form at the end of the book can be used to obtain nonlinear analysis programs.
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Figure 21.1 Global axes, degrees of freedom, and order of numbering of the coordinates at typical
nodes of framed structures.
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Figure 21.2 Local coordinates for typical members of framed structures.
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Space frame

y∗

z ∗

5 ∗

2 ∗

3 ∗
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11 ∗

8 ∗
2

1

7 ∗
10 ∗9 ∗

12 ∗ x ∗

Second node

First node

x

y

z

Figure 21.2 (Continued).

of a member is specified arbitrarily by the analyst by the order in which the two nodes at the
ends of a member are listed in the member information in the input data (see Section 21.4).

Each of the sets of global and local axes is an orthogonal right-hand triad.
With the above system of numbering of coordinates and the choice of member local coordin-

ates, the first step of the displacement method is completed when the numbering of nodes and
elements is terminated. We recall that the first step involves the definition of the degrees of
freedom and of the required actions and their positive directions.

21.3 Band width

As mentioned in Section 5.3, any element Sij of the stiffness matrix [S] of a structure is nonzero
only when the coordinates i and j are adjacent to each other. In a framed structure, Sij �= 0 only
when i and j are at one node or when i and j are at the two ends of one member. Generally,
the nonzero elements of [S] are limited to a band adjacent to the diagonal (Figure 21.3). This
property of [S], combined with the fact that the matrix is symmetrical, is used to conserve
computer storage space and to reduce the number of computations. Only the diagonal elements
of [S] and the part of the band above the diagonal are generated and stored in a rectangular
matrix of n rows and nb columns (Figure 21.3). Here n is the number of degrees of freedom; nb
is referred to as the half-band width or simply the band width and is given by

nb = s(|k − j|largest + 1) (21.1)

where s is the number of degrees of freedom per node, namely 2, 3, 3, 3, and 6 respectively,
for plane truss, plane frame, grid, space truss, and space frame. The term |k − j| is the absolute
value of the difference between the node numbers at the ends of a member. The band width is
determined by the member for which |k − j| is a maximum.

A large portion of the computer time in the analysis of a structure is spent in the solution of
the equilibrium equations

[S][D] = −[F]
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 Band storage

Nonzero 3 × 3 submatrix

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11

12

13

Stiffness matrix

1 2

3 4

5 6 7

8 9
10

11 12 13

Band width

Figure 21.3 Node numbering and band width for a plane frame.

where [D] and [F] are, respectively, the unknown displacements and the forces at the coordinates
to prevent the displacements due to loading. The respective columns of [D] and [F] correspond
to the same loading case. The number of arithmetic operations in the solution of the equilibrium
equations increases linearly with n and with n2

b. Thus, we have an interest in reducing nb.
For a given structure, a narrower band width is generally achieved by numbering the nodes

sequentially across the side which has a smaller number of nodes. An example of a plane frame
with suggested node numbering, the corresponding [S], and the band to be generated and stored
in computing is shown in Figure 21.3. For the same structure, nb = 18 (instead of 12) when the
nodes are numbered sequentially down the columns. Note that [S] generally has zeros within
the band (as in Figure 21.3).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Computer analysis of framed structures 633

There exist several techniques2 aimed at efficiency and accuracy in equation solvers by auto-
matic renumbering of the nodes to minimize nb, by generating and operating only on the nonzero
entries of [S] and by estimating and controlling round-off errors.

The stiffness matrix discussed above (Figure 21.3) is for a free (unsupported) structure. Elim-
ination of rows and columns corresponding to the coordinates where the displacements are
zero results in a condensed stiffness matrix of the supported structure (see Section 5.5). The
condensed matrix is the one to be used in the equilibrium equations to be solved.

It is, of course, possible3 to avoid generating the nonrequired rows and columns of [S]. How-
ever, for simplicity in computer programming, at the expense of more computing, it is possible to
work with the stiffness matrix of the free structure by adjusting [S]. The adjustment, discussed in
Section 21.10, causes the displacement to be equal to zero or equal to a prescribed value at any
specified coordinates. This can be used when the analysis is for the effect of support movements.

21.4 Input data

The input data for computer analysis must be sufficient to define the material and geometric
properties of the structure as well as the loading. Two basic units are used: unit of length and
unit of force. These units must be employed consistently in the data.

The data for the geometric properties of a plane truss or a space truss are defined by the
following: the modulus of elasticity E; the (x,y) or (x,y, z) coordinates of the nodes; the cross-
sectional area of each member; two integers identifying the nodes at its ends; and the support
conditions. The support conditions are defined by giving the number of the node and a restraint
indicator for each of its two coordinates (u,ν). The convention used here is to put 1 to indicate
a free (unrestrained) displacement and 0 to indicate that the displacement at this coordinate is
prescribed. When the restraint indicator is zero, the magnitude of the prescribed displacement
must be given (zero for a support with no settlement). In Example 21.1, the input data for the
plane truss in Figure 21.4 are given in Table 21.1.

When preparing the data for support conditions, it is important to ensure that the structure
cannot translate or rotate freely as a rigid body. This requirement for stability should be verified
before the computer analysis of any structure (particularly, spatial structures).

Ideally, a truss should be loaded only at the nodes so that there are only axial forces in the
members. The input data for the load at a node are the node number and the components (Fx, Fy)
or (Fx, Fy, Fz).

When a truss member is subjected to a temperature rise, the data are the member number and
the two end-forces {Ar} (along the local coordinates) which occur when the nodal displacements
are prevented. This produces an axial compressive force of magnitude αTEa, where α is the
coefficient of thermal expansion, T is the temperature rise, E is the modulus of elasticity, and
a is the cross-sectional area.

As mentioned in Section 21.3, the effect of a prescribed displacement at a support can be
accounted for by adjusting the stiffness matrix, but this can be done only when the analysis is
for a single loading case. To avoid this restriction, we calculate the member end-forces when the
prescribed displacements occur while the other displacements are zero (see Section 4.2). These
member end-forces are then included in the data in the same way as the data for temperature. It
is obvious that this needs to be done only for the members connected to nodes with prescribed
displacements.

2 See Bathe, K. J. and Wilson, E. L., Numerical Methods in Finite Element Analysis, Prentice-Hall, Englewood
Cliffs, NJ, 1976. See also Holzer, S. M., Computer Analysis of Structures, Elsevier, New York, 1985 (a
list of references on this topic is given on pp. 325–327 of Holzer).

3 A computer coding for this purpose is discussed in Section 2.9 of Cook, R. D., Concepts and Application
of the Finite Elements, 2nd ed., Wiley, New York, 1981.
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Figure 21.4 Plane truss of Example 21.1.

Table 21.1 Input Data for a Plane Truss (Figure 21.4)

E = 200 × 109

Nodal coordinates
Node x Y
1 4.5 3.0
2 2.25 3.0
3 2.25 0.0
4 0.0 3.0
5 0.0 0.0

Element information
Element First node Second node a
1 2 1 0.0030
2 3 1 0.0024
3 2 3 0.0012
4 5 3 0.0024
5 4 2 0.0030
6 4 3 0.0048
7 5 2 0.0048

Support conditions
Node Restraint

indicator
Prescribed displacement

u v u v
4 0 0 0.0 0.0
5 0 0 0.0 0.0
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Loading case 1
Forces applied at nodes
Node Fx Fy

1 0.0 100 × 103

Loading case 2
Member end-forces with displacements restrained
Member Ar1 Ar2

4 96 × 103 −96 × 103

Loading case 3
Member end-forces with displacements restrained
Member Ar1 Ar2

6 −410 × 103 410 × 103

Example 21.1: Plane truss
Prepare the input data for the analysis of the plane truss in Figure 21.4 with the following
loading cases: (1) A single downward force of 100 × 103 N at node 1; (2) a temperature
rise of 20 degrees of member 4, the coefficient of thermal expansion being 10−5 per degree;
and (3) a downward movement of 0.002 m of node 4.

Table 21.1 gives the required input data. The member end-forces in the data for loading
case (3) are calculated in a similar way to the procedure included in Example 5.1.

For a plane frame, the input data differ from a plane truss in that the second moment of
area of the cross section must also be given; at a supported node, three displacements u, v,
and θ must be described; the forces at each member end have three components along the
local coordinates (Figure 21.2); and when a member is subjected to forces away from the
nodes, the data should include the member end-forces {Ar} with the nodal displacements
restrained. Example 21.2 gives the data for a plane frame.

The input data for a grid are similar to those for a plane frame except that the cross-sectional
torsion constant J (Appendix G) is required for the members, instead of their area; the modulus
of elasticity in shear G is also required. The displacement components at a typical node and the
local coordinates of a typical member of a grid are shown in Figures 21.1 and 21.2.

The data defining the geometric properties of a space frame are the (x,y, z) coordinates of
the nodes and, for each member, two integers identifying the nodes at its ends, the area a of
the cross section, its torsion constant J, and its second moments of area I∗

y and I∗
z about the

centroidal principal axes parallel to the local y∗ and z∗ axes (Figure 21.2). While the direction
of the local x∗ axis is defined by the (x,y, z) coordinates of the nodes, the y∗ direction needs
further definition. For this reason, we include in the data for each member the direction cosines
of y∗: λy∗x,λy∗y, λy∗z. Here, the λ values are the cosines of the angles between the local y∗ axis
and the global directions. The third direction z∗ is orthogonal to the other two local axes and
thus does not require additional data.

In most practical cases, the global axes are selected in horizontal and vertical directions and
the member cross sections have one of their principal axes horizontal or vertical. The y∗ axis
can be considered in such a direction and its direction cosines will be easy to find (see Prob. 22.1
and Eq. 21.9a).

The data for loading of a space frame are similar to those for a plane frame, noting that the
forces at the nodes have six components in the global directions and each member end has six
forces defined in Figures 21.1 and 21.2.
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Example 21.2: Plane frame
Prepare the input data for the analysis of the plane frame in Figure 21.5 for the following
loadings: (1) the loads shown; (2) displacements u = 0.2b and v = 0.5b of the support at
node 1.

Table 21.2 gives the required input data. The member end-forces included in the data
may be calculated using Appendices C and D. See also answer to Problem 22.2.
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Length unit = b
Force unit = P
E  =  30 × 103

 P/b2

300

4

3

2

1

y

2P

x

Member a I
(b2) (b4)

1 30 3000
500040

30 3000
2
3

1

2

3

Figure 21.5 Plane frame of Example 21.2.

Table 21.2 Input Data for a Plane Frame (Figure 21.5)

E = 30,000.0
Nodal coordinates
Node x y
1 0.0 300.0
2 0.0 0.0
3 300.0 150.0
4 300.0 300.0

Element information
Element First node Second node a I
1 1 2 30.0 3000.0
2 2 3 40.0 5000.0
3 3 4 30.0 3000.0

Support conditions
Node Restraint indicator Prescribed displacement

u v θ u v θ

1 0 0 0 0.0 0.0 0.0
4 0 0 1 0.0 0.0 −
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Table 21.2 (Continued)

Loading case 1
Forces applied at nodes
Node Fx Fy

2 4.0 0.0
3 2.0 0.0

Member end-forces with displacements restrained
Member Ar1 Ar2 Ar3 Ar4 Ar5 Ar6

2 −13.42 −26.83 −1500.0 −13.42 −26.83 1500.0

Loading case 2
Member end-forces with displacements restrained
Member Ar1 Ar2 Ar3 Ar4 Ar5 Ar6

1 −1500.0 8.0 1200.0 1500.0 −8.0 1200.0

21.5 Direction cosines of element local axes

The direction cosines λ of the member local x∗, y∗, z∗ axes will be used in the transformation
matrices. The coordinates (x,y) defining the position of the nodes give the λ values for the local
x∗ axis. For a member of a plane truss or a plane frame,

λx∗x = x2 − x1

l12
; λx∗y = y2 − y1

l12
(21.2)

where

l12 = [(x2 − x1)
2 + (y2 − y1)

2] 1
2 (21.3)

The subscripts 1 and 2 refer to the first and second nodes of the member.
In a plane frame, the y∗ axis for any member is perpendicular to x∗ (Figure 21.2), so that the

λ values for the y∗ axis are

�y∗x = −�x∗y �y∗y =�x∗x (21.4)

For a member of a grid in the x − z plane, the direction cosines required for the local x∗ and z∗
axes are �x∗x, �x∗z, �z∗x, and �z∗z. These are given by Eqs. 21.2 to 21.4, replacing y by z and
y∗ by z∗.

The direction cosines of the local x∗ axis of a member of a space truss or a space frame are

�x∗x = x2 − x1

l12
; �x∗y = y2 − y1

l12
; �x∗z = z2 − z1

l12
(21.5)

where

l12 = [(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2]1/2 (21.6)
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As mentioned in the preceding section, the � values for the local y∗ axis of each member are
included in the input data. The direction cosines of the local z∗ axis are obtained from the cross
product of two unit vectors in the x∗ and y∗ directions:

�z∗x =�x∗y�y∗z −�x∗z�y∗y (21.7)

�z∗y =�x∗z�y∗x −�x∗x�y∗z (21.8)

�z∗z =�x∗x�y∗y −�x∗y�y∗x (21.9)

As mentioned in Section 21.5, in practice the global x and y axes for space frames are selected
in horizontal directions and the local axis y∗ for most members can be considered horizontal.
To simplify the input data, the computer program SPACEF (available from a web site whose
address is given in Appendix L) requires that the direction cosines for axis y∗ be given only for
a special member when the assumption that its y∗ axis is parallel to the global x − y plane is not
acceptable. When the direction cosines of the local y∗ axis are not given for any member, the
program assumes that the axis is parallel to the global x − y plane and calculates its direction
cosines by Eq. 21.9a:

�y∗x = y1 − y2

[(x2 − x1)2 + (y2 − y1)2] 1
2

;�y∗y = x2 − x1

[(x2 − x1)2 + (y2 − y1)2] 1
2

;�y∗z = 0 (21.9a)

21.6 Element stiffness matrices

The stiffness matrices of individual members of a framed structure with respect to local
coordinates (Figure 21.2) can be generated from Appendix D.

For a member of a plane truss or a space truss (Figure 21.2), the stiffness matrix is

[S∗] = Ea
l

[
1 −1

−1 1

]
(21.10)

The stiffness matrix for a member of a plane frame (Figure 21.2), given in Eq. 5.6 is

[S∗] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ea/l symmetrical. Elements
12EI/l3 not shown are zero
6EI/2 4EI/l

−Ea/l Ea/l
−12EI/l3 −6EI/l2 12EI/l3

6EI/l2 2EI/l −6EI/l2 4EI/l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21.11)

In the above equation, each member has its centroidal axis in the x−y plane, and I ≡ Iz∗ with z∗
perpendicular to the same plane.

The stiffness matrix for a member of a grid is (Figure 21.2)
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[S∗] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

12EI/l3 symmetrical
0 GJ/l

6EI/l2 0 4EI/l

−12EI/l3 0 −6EI/l2 12EI/l3

0 −GJ/l 0 0 GJ/l
6EI/l2 0 2EI/l −6EI/l2 0 4EI/l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21.12)

Here, the centroidal axes of the members are in the x − z plane, and I ≡ Iz∗ , with z∗ situated in
the same plane.

The stiffness matrix for a member of a space frame (Figure 21.2) is given by Eq. 6.5.
In the above matrices, the shear deformations are ignored. To take shear deformations

into account, the elements of [S∗] associated with coordinates representing shear or bending
have to be adjusted as discussed in Section 14.2. The stiffness matrix of a typical member
of a plane frame accounting for deformations due to axial force, bending and shear is given
by Eq. 14.5.

21.7 Transformation matrices

The displacements {D∗} in local directions at the end of a member of a framed structure of
any type (Figure 21.2) are related to the displacements at the same node in global directions
(Figure 21.1) by the geometrical relation

{D∗} = [t]{D} (21.13)

where [t] is a transformation matrix which is generated in terms of the direction cosines of the
local axes x∗, y∗, z∗ with respect to the global directions. The [t] matrix for the different types
of framed structures is given below.

Plane truss [t] = [�x∗x �x∗y] (21.14)

Space truss [t] = [�x∗x �x∗y �x∗z] (21.15)

Plane frame [t] =
⎡
⎣�x∗x �x∗y 0
�y∗x �y∗y 0

0 0 1

⎤
⎦ (21.16)

Grid [t] =
⎡
⎣1 0 0

0 �x∗x �x∗z

0 �z∗x �z∗z

⎤
⎦ (21.17)

Space frame [t] =
⎡
⎣�x∗x �x∗y �x∗z

�y∗x �y∗y �y∗z

�z∗x �z∗y �z∗z

⎤
⎦ (21.18)

The transformation matrix given in the last equation is used to relate the three translations
{u∗, v∗, w∗} to {u, v, w}. The same matrix can be used to relate {θ∗

x , θ∗
y , θ∗

z } to {θx, θy, θz}.
A member stiffness matrix [S∗], with respect to local coordinates, can be transformed into a

stiffness matrix [Sm] corresponding to coordinates in the global directions (see Eq. 9.17) by

[Sm] = [T]T [S∗][T] (21.19)
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where

[T] =
[[t] [0]
[0] [t]

]
(21.20)

The above equation may be used for members of a plane truss, a space truss, a plane frame, or a
grid, substituting for [t] from one of the Eqs. 21.14 to 21.17. However, for a member of a space
frame,

[T] =

⎡
⎢⎢⎣

[t]
[t]

[t]
[t]

⎤
⎥⎥⎦ submatrices not

shown are null
(21.21)

where [t] is given by Eq. 21.18.
The [T] matrices may be used to transform the actions in local directions at the ends of a

member into equivalent forces along nodal coordinates in the global directions (see Eq. 9.16):

{F}m = [T]Tm {Ar}m (21.22)

where the subscript m refers to element number.
The elements of the matrices [Sm] and {F}m are forces in the global directions; they represent

contributions of one member. Summing the matrices for all members gives the stiffness matrix
and load vector of the assembled structure, as shown in Section 21.9.

21.8 Member stiffness matrices with respect to global
coordinates

Equation 21.19 expresses the stiffness matrix [Sm] for a member of a framed structure with
respect to coordinates at its two ends in the direction of the global axes. Instead of the matrix
product in Eq. 21.19, the stiffness matrix [Sm] is given below in explicit form for a member of
framed structures of various types.

Plane truss

[Sm] = Ea
l

⎡
⎢⎢⎢⎢⎢⎣

c2 cs −c2 −cs

cs s2 −cs −s2

- - - - - - - - - - - - - - - - - - - - - -
−c2 −cs c2 cs

−cs −s2 cs s2

⎤
⎥⎥⎥⎥⎥⎦ (21.23)

where c=cos α =λx∗x; s= sin α =λx∗y; and α is the angle defined in Figure 22.2 with its positive
sign convention.

Space truss

[Sm] =
[ [S11] [S12]

- - - - - - - - - - -[S21] [S22]

]
m

(21.24)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Computer analysis of framed structures 641

where

[S11]m = Ea
l

⎡
⎢⎣

λ2
x∗x symmetrical

λx∗yλx∗x λ2
x∗y

λx∗zλx∗x λx∗zλx∗y λ2
x∗z

⎤
⎥⎦ (21.25)

[S22]m = [S11]m; [S21]m = −[S11]m; [S12]m = [S21]Tm (21.26)

Plane frame

[Sm]=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Eac2

l
+ 12EIs2

l3
symmetrical

(
Ea
l

− 12EI
l3

)
cs

Eas2

l
+ 12EIc2

l3

−6EI
l2

s
6EI
l2

c
4EI

l
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

−Eac2

l
− 12EIs2

l3
−
(

Ea
l

− 12EI
l3

)
cs

6EI
l2

s
Eac2

l
+ 12EIs2

l3

−
(

Ea
l

− 12EI
l3

)
cs −Eas2

l
− 12EIc2

l3
−6EI

l2
c

(
Ea
l

− 12EI
l3

)
cs

Eas2

l
+ 12EIc2

l3

−6EI
l2

s
6EI
l2

c
2EI

l
6EI
l2

s −6EI
l2

c
4EI

l

--
--

--
--

--
--

--
--

--
--

--
--

--
--

-

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21.27)

where c = cosα =λx∗x =λy∗y; s = sinα =λx∗y =−λy∗x; and α is the angle defined in Figure 21.2
with its positive sign convention.

Grid

[Sm] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12EI
l3

symmetrical

−6EI
l2

s
GJc2

l
+ 4EIs2

l

6EI
l2

c
(

GJ
l

− 4EI
l

)
cs

GJs2

l
+ 4EIc2

l

−12EI
l3

6EI
l2

s −6EI
l2

c
12EI

l3

−6EI
l2

s −GJc2

l
+ 2EIs2

l

(
−GJ

l
− 2EI

l

)
cs

6EIs
l2

GJc2

l
+ 4EIs2

l

6EI
l2

c
(

−GJ
l

− 2EI
l

)
cs −GJs2

l
+ 2EIc2

l
−6EI

l2
c

(
GJ
l

− 4EI
l

)
cs

GJs2

l
+ 4EIc2

l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21.28)

where c = cosα =λx∗x =λz∗z; s = sin α =λx∗z =−λz∗x; and a is the angle defined in Figure 21.2
with its positive sign convention.
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To save computing, Eqs. 21.23 to 21.28 may be used in lieu of the matrix product in Eq. 21.19.
The stiffness matrix [Sm] for a member of a space frame with respect to global coordinates is

too long to be included here.

21.9 Assemblage of stiffness matrices and load vectors

Consider a typical member of a framed structure whose first and second nodes are numbered j
and k respectively. Let [Sm] be the stiffness matrix of the member with respect to coordinates in
the global directions at the two nodes. [Sm] may be partitioned as follows:

[Sm] =
[[S11] [S12]
[S21] [S22]

]
m

(21.29)

The same partitioning is made by dashed lines in Eqs. 21.23, 21.24, 21.27, and 21.28. The
elements above the horizontal dashed line represent the forces at the first node (the jth node),
and the elements below the same line represent forces at the second node (the kth node). The
elements to the left of the vertical dashed line are produced by unit displacements at node j, and
the elements to the right of the same line correspond to unit displacements at node k. Each of
the submatrices in Eq. 21.29 is of size s × s, where s is the number of degrees of freedom per
node.

Let the structure stiffness matrix [S] be also partitioned into nj × nj submatrices, each of
size s × s, where nj is the number of nodes. The submatrices of the element stiffness matrix in
Eq. 21.29 may be arranged in a matrix of the same size and partitioned in the same way as [S]:

[Sm] = j

k

⎡
⎢⎢⎢⎢⎢⎢⎣

j k
. . .

. . . [S11] . . . [S12] . . .

. . .

[S21] . . . [S22] . . .

. . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎦

m

(21.30)

In this equation only the submatrices associated with nodes j and k are shown while all other
submatrices are null. The above matrix represents the contribution of the mth member to the
structure stiffness. The structure stiffness matrix can now be obtained by a summation:

[S] =
nm∑

m=1

[Sm] (21.31)

where nm is the number of members.
We should note that each column of the stiffness matrix [Sm] for an element represents a set

of forces in equilibrium, and an assemblage of such matrices gives a structure stiffness matrix
[S] which has the same property.

The matrix [S] generated as described above represents the stiffness of a free unsupported
structure. It is a singular matrix which cannot be used to solve for the unknown displacements
before it has been adjusted to account for the support conditions (see Section 21.10).

If the structure is to be analyzed for one case of loading, we need to solve the equilibrium equa-
tions [S] {D} = −{F}. The vector {F} of the forces necessary to prevent the nodal displacements
may be considered as the sum of two vectors:

{F} = {Fa} + {Fb} (21.32)
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Here, {Fa} accounts for the external forces at the nodes, and {Fb} for other forces (between the
nodes), for temperature variation, and for support movements. {Fa} is generated simply by listing
the nodal forces given in the input data with a reversed sign. The vector {Fb} is generated from
the restraining forces {Ar}m given in the input data for individual members.

First, Eq. 21.22 is used to transform {Ar}m into equivalent nodal forces {F}m in global direc-
tions at member ends. The vector {F}m, which has 2s elements (s being the number of degrees of
freedom per node), may be partitioned in two submatrices, {{F1} {F2}}m, each having s elements
representing forces at one end. The two submatrices may be rearranged into a vector of the same
size as {Fb} (or {F}):

{F}m =
j

k

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

· · ·
{F1}
· · ·
{F2}
· · ·

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

m

(21.33)

This vector has nj submatrices, all of which are null with the exception of the jth and the kth,
where j and k are the node numbers at the two ends of the mth member. The vector {F}m

represents the contribution of the mth member to the load vector {Fb}: thus, summing for all
members,

{Fb} =
nm∑

m=1

{F}m (21.34)

where nm is the number of members.
Enlarging the element stiffness and the force matrices to the size of the structure stiffness

matrix and of its load vector (Eqs. 21.30 and 21.33) requires formidable computer storage
space. The actual computations are carried out using one matrix for stiffness and another for
the load vector(s) of the assembled structure. The matrices are null at the start, and then, for
each member, the elements of [Sm] and {F}m are generated and added in the appropriate location
by an algorithm. Furthermore, advantage is taken of the symmetry of the structure stiffness
matrix and of its banded nature; thus, for [S], only the elements within the band on and above
the diagonal are generated, as discussed in Section 21.3.

Example 21.3: Stiffness matrix and load vectors for a plane truss
Generate the stiffness matrix and the load vectors for the three loading cases in Example
21.1 (Figure 21.4). The input data are given in Table 21.1.

To save space, we give below the member stiffness matrices [Sm] and [Sm] for two
members only. The submatrices not shown are null.

We start with the structure stiffness matrix [S] = [0].
For member 1, having its first node j = 2 and second node k = 1 (see Table 21.1),

Eqs. 21.23 and 21.30 give

[S1] = 200 × 109(0.0030)

2.25

⎡
⎢⎢⎣

1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

⎤
⎥⎥⎦
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and

1 2 3 4 5

[S1] =

1

2

3

4

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

267 0 −267 0

0 0 0 0

−267 0 267 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

106

Adding [S1] to the existing structure stiffness matrix [S] gives the new matrix [S], which,
in this case, is the same as [S1] and therefore not repeated here.

A repetition of the above calculations for member 2, which has j = 3 and k = 1, gives

[S2] = 200 × 109(0.0024)

3.75

⎡
⎢⎢⎣

0.36 0.48 −0.36 −0.48
0.48 0.64 −0.48 −0.64

−0.36 −0.48 0.36 0.48
−0.48 −0.64 0.48 0.64

⎤
⎥⎥⎦

and

1 2 3 4 5

[S2] =

1

2

3

4

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

46 61 −46 −61

61 82 −61 −82

−46 −61 46 61

−61 −82 61 82

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

106
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Adding this matrix to the existing matrix [S], we obtain the new matrix [S]:

1 2 3 4 5

[S] =

1

2

3

4

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

313 61 −267 0 −46 −61

61 82 0 0 −61 −82

−267 0 267 0

0 0 0 0

−46 −61 46 61

−61 −82 −61 82

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

106

Repetition of the above computations for members 3 to 7 leads to the structure stiffness
matrix:

1 2 3 4 5

[S] =

1

2

3

4

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

313 61 −267 0 −46 −61

61 82 0 0 −61 −82

−267 0 625 123 0 0 −267 0 −92 −123

0 0 123 244 0 −80 0 0 −123 −164

−46 −61 0 0 352 −62 −92 123 −213 0

−61 −82 0 −80 −62 326 123 −164 0 0

−267 0 −92 123 359 −123

0 0 123 −164 −123 164

−92 −123 −231 0 305 123

−123 −164 0 0 123 164

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

106

The load vector for case 1 is

{F} = {0,−100 × 103,0,0,0,0,0,0,0,0}

For cases 2 and 3, we need a transformation matrix for member 4, which has its first node
5 and the second node 3. Equations 21.2, 21.14 and 21.20 give

[t] = [1 0] and [T] =
[

1 0 0 0
0 0 1 0

]
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For the same member, Eqs. 21.22 and 21.33 give for loading case 2

{F}4 =

⎡
⎢⎢⎣

1 0
0 0
0 1
0 0

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

96 × 103

−96 × 103

⎫⎪⎪⎬
⎪⎪⎭=

⎧⎪⎪⎨
⎪⎪⎩

96
0

−96
0

⎫⎪⎪⎬
⎪⎪⎭× 103

and

{F}4 = {0, 0, 0, 0,−96 × 103,0,0,0,96 × 103,0}

Because member 4 is the only member which has restraining forces listed in the input data
(Table 21.1), this vector is the global vector {F} for load case 2. Similar calculations are
made for case 3, and the load vectors for the three cases are combined into one matrix:

[F] =

1

2

3

4

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−100

−96 246

0 −328

−246

328
96

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

103

21.10 Displacement support conditions and support reactions

To find the unknown displacements we need to solve the equilibrium equation

[S]{D} = −{F} (21.35)

where [S] is the structure stiffness matrix, {D} is a vector of nodal displacements, and {F} is a
vector of artificial restraining forces which prevent the nodal displacements.

In general, some elements of {D} are known to be zero or have prescribed values at the
supports, while the corresponding elements of {F} are unknown. The total number of unknowns
is n, which is equal to the number of equations.

The stiffness matrix [S], generated as described in the preceding section, is the stiffness of a
free (unsupported) structure. It is theoretically possible to rearrange the rows and columns in the
matrices in Eq. 21.35 so that the known elements of {D} are listed first. The equation can then be
separated into two sets (see Section 5.5). One set, containing only the unknown displacements,
can be solved and the result is then substituted in the second set to give the reactions. However,
rearranging the equations increases the band width.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Computer analysis of framed structures 647

Without disturbing the arrangement, it is possible to adjust Eq. 21.35 so that its solution
ensures that, at any coordinate k, the displacement Dk = ck, where ck can be zero in the case of
a support without movement or can be a known value of support movement. In one method,
the kth row and column of the matrices in Eq. 21.35 are modified as follows:

1 k n

1

k

n

⎡
⎢⎢⎢⎢⎣

0
. . .

0 . . . 1 . . . 0
. . .

0

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D1

. . .

Dk
. . .

Dn

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎣

−F1 − S1kck
. . .

ck
. . .

−Fn − Snkck

⎤
⎥⎥⎥⎥⎦ (21.36)

The kth equations are now replaced by Dk = ck; the terms S1k ck, S2k ck, . . . represent the forces
at nodes 1,2, . . . when Dk = ck and the other displacements are prevented. The modifications
shown in Eq. 21.36 have to be repeated for all the prescribed displacements. The solution
of the modified equations gives the unknown displacements, but not the unknown reactions.
To determine the force Fk we substitute in the kth row of Eq. 21.35 the D values, which are now
all known:

Fk =
n∑

j=1

SkjDj (21.37)

The reaction at a supported node in the direction of the kth coordinate is given by

Rk = Fk + F′
k (21.38)

where F′
k is the kth element of the original load vector, i.e. before Eq. 21.35 was modified. This

element represents a reaction at coordinate k with {D}= {0}. The value F′
k will be nonzero only

when an external force is applied at the supported node or over the members meeting at the
node, or when the members meeting at the node are subjected to temperature change.

As mentioned in Section 21.3, computer storage space is commonly saved by storing [S] in a
compact form which takes advantage of its symmetry and its banded nature. The same space is
used to store the reduced matrix needed for the solution; thus, the original [S] is lost when {D}
is determined. To be able to use Eq. 21.37 at this stage, the necessary rows of [S] must be stored.
Also, the element F′

k of the original load vector must be retained for use in Eq. 21.38.
Another method of prescribing a displacement Dk = ck which requires fewer operations is to

modify the kth row of the original equations as follows:

⎡
⎢⎢⎢⎣

. . .

Sk1 . . . Skk × 106 . . . Skn

. . .

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D1

. . .

Dk
. . .

Dn

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−F1

. . .

Skk × 106ck
. . .

−Fn

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(21.39)

where the 106 is an arbitrarily chosen large number. The change in Eq. 21.39 is equivalent
to providing a fixed support connected to the structure by a very strong spring of stiffness
(106 − 1)Skk at the kth coordinate and applying a large force of Skk × 106ck. For all prac-
tical purposes, Eq. 21.39 satisfies with sufficient accuracy the condition that Dk equals ck.
This is so because the division of both sides of the kth row in Eq. 21.39 by 106Skk reduces
the term Skk × 106 to 1; the other S terms become negligible, and the kth row reduces to
Dk � ck.



648 Computer analysis of framed structures

After modification of the original equations for each prescribed displacement, a solution will
give a vector {D} of the displacements at all nodes. The force Fk can now be determined by
Eq. 21.37, which requires storage of the kth row of the original [S] matrix. Alternatively, Fk can
be obtained by combining Eq. 21.37 and the kth row of Eq. 21.39:

Fk = Skk × 106(ck − Dk) + DkkDk (21.40)

The difference ck −Dk needs to be determined with sufficient number of significant figures (three
or more). After calculating Fk by the above equation, substitution in Eq. 21.38 gives the support
reaction.

The condition that Dk equals ck can also be satisfied by replacing Skk on both sides of Eq. 21.39
by (Skk + 1). In this case, Fk can be calculated using Eq. 21.40 and replacing Skk in the first term
on the right-hand side by (Skk + 1). This option should be used when Skk can be zero (e.g. in
trusses).

When a structure is analyzed for a number of load cases, the vectors {D} and {F} in Eq. 21.35
are replaced by rectangular matrices [D] and [F], with the respective columns of the two matrices
representing one load case; however, the same stiffness matrix [S] is used for all cases. Modifica-
tion of [S], as suggested by Eq. 21.36 or Eq. 21.39, indicates that a loading case representing the
effect of support movements cannot be solved simultaneously with other loading cases unless the
prescribed displacements are valid for all cases. This will be the condition when all the prescribed
displacements are zero, thus representing supports without movement.

In order to analyze for a nonzero prescribed displacement Dk = ck at the same time as for
other loading cases, we may prepare the support conditions in the input data as if ck were zero.
However, the effect of Dk = ck must then be presented in the forces {Ar} included in the data;
{Ar} represents the end-forces for the members connected to the coordinate k when Dk = ck
when the displacements at the other coordinates are restrained (see Example 21.1).

The techniques presented in this section require the solution of a larger number of equations
than the number of unknown displacements. The extra computing is justified by simpler coding
and by the fact that the solution gives the unknown displacements as well as the unknown forces.

As mentioned in Section 21.3, it is possible to generate only the equilibrium equations corres-
ponding to the unknown displacements. After the solution of these equations, the displacements,
which become known at all coordinates, are used to determine the forces {A} at member ends
in the directions of local axes (see Section 21.12). The reactions at a supported node (with or
without support movement) can then be obtained by summing the forces at the ends of the
members meeting at the node:

{R} =
∑

([t]T {A})i − {Fs} (21.41)

Here, {R} represents s reaction components in global directions, s being the number of degrees
of freedom per node; the [t] matrix is included to transform the member end-forces from local
to global directions (Eq. 21.22); the subscript i refers to a member number, and the summation
is performed for the members meeting at the supported node; and {Fs} represents forces applied
direct at the supported node, producing no displacements and no member end-forces.

21.11 Solution of banded equations

The solution of the equilibrium Eq. 21.35 was expressed in earlier chapters in the succinct form
{D} = −[S]−1{F}. However, a solution by matrix inversion involves more operations than the
Gauss elimination or the Cholesky method, discussed later in this section.

Consider a system of n linear equations.

[a]{x} = {c} (21.42)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Computer analysis of framed structures 649

The elements of [a] and {c} are known, and it is required to determine the vector of unknowns {x}.
The standard Gauss elimination (see Eq. A.44, Appendix A) reduces the original equations to

[u]{x} = {d} (21.43)

where [u] is a unit upper triangular matrix in which all the diagonal elements are equal to 1, and
the elements below the diagonal are zero. Back substitution, starting from the last row, gives
successively the unknowns xn, xn−1, . . . , x1.

The Gauss elimination can be achieved by a computer, using compact storage space. In Crout’s
procedure, presented in Section A.9, the Gauss elimination is achieved by generating auxiliary
matrices [b] and {d} of the same size as [a] and {c}. The elements above the diagonal in [b] are
the same as the corresponding elements of [u]; thus,

uij ≡ bij with i < j (21.44)

For structural analysis, we are interested in the case when [a] is symmetrical and banded. In
such a case, [b] is also banded and has the same band width. Also, any element bij above the
diagonal is equal to bji/bii. Thus, when only the half-band of [a] is stored in a rectangular matrix
(Figure 21.3), [b] can be stored in a matrix of the same size with no need to store the elements
below the diagonal.

Examination of the equations which give the elements of [b] (see Eqs. A.42 and A.43 and the
numerical example in Section A.9) will indicate that, starting from the top row, the elements of
[b] can be calculated one by one. Each element bij can be stored in the same space occupied by
aij because the latter term is no longer needed. In other words, the [b] matrix can be generated
in a band form and can replace [a] using the same storage space. The vector {d} is generated in
a similar way and is stored in the same space originally occupied by {c}.

The Cholesky method offers some advantages when [a] is symmetrical and banded.4 In this
method, the symmetrical matrix [a] is decomposed into the product of three matrices:

[a] = [u]T [e][u] (21.45)

Here again, [u] is a unit upper triangular matrix and therefore its transpose [u]T is a unit lower
triangular matrix; [e] is a diagonal matrix.

Let

[e][u] = [h] (21.46)

where [h] is an upper triangular matrix. Also, let

[h]{x} = {g} (21.47)

Substitution of Eqs. 21.45 to 21.47 into Eq. 21.42 gives

[u]T {g} = {c} (21.48)

Forward substitution in this equation gives {g}, and using the result with backward substitution
in Eq. 21.47 gives the required vector {x}.

The operations involved in the matrix product in Eq. 21.45 and in the forward and backward
substitutions are relatively small, compared with the operations involved in the decomposition
to generate [u] and [e].

4 See the references in footnote 2 in this chapter.
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Performing the matrix product in Eq. 21.45 gives

aij = eiiuij +
i−1∑
k=1

ekkukjuki with i < j (21.49)

and

ajj = ejj +
j−1∑
k=1

ekku2
kj (21.50)

To avoid the triple products in the above summations and thereby reduce the number of
operations, let us introduce the symbol

uij = eiiuij (21.51)

Substitution of Eq. 21.51 into Eqs. 21.49 and 21.50 and rearrangement of term give

uij = aij −
i−1∑
k=1

ukjuki with i < j (21.52)

and

ejj = ajj −
i−1∑
k=1

ukjukj (21.53)

Here again, when [a] is symmetrically banded, only the elements within the band, on and above
the diagonal, are stored in the computer. The same storage space is reused; the elements ejj

replace ajj, and uij replace aij (with i < j).
Working down the jth column, the nonzero elements uij are calculated by Eq. 21.52 and

temporarily stored in place of aij. Then, the first nonzero uij in the column is calculated
from uij by Eq. 21.51; the product uij uij is deducted from ajj, and uij replaces uij. Repeti-
tion of this step for the remaining uij in the jth column results in the replacement of aii by eii

(see Eq. 21.53).
Unlike the Gauss eliminations, with Cholesky’s method only the matrix [a] is reduced, while

{c} is used in the forward substitution without change (Eq. 21.46).
In the following example, the same equations which are solved in Section A.9 are solved here

by Cholesky’s method.

Example 21.4: Four equations solved by Cholesky’s method
Use Cholesky’s method to solve the equations [a] {x}={c}. The vector {c} is {1,−4,11,−5}.
The matrix [a] is

⎡
⎢⎢⎢⎢⎣

5 −4 1 0

6 −4 1

6 −4

symmetrical 7

⎤
⎥⎥⎥⎥⎦
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Equations 21.49 to 21.53 are used to generate

⎡
⎢⎢⎢⎣

e11 u12 u13 0

− e22 u23 u24

− − e33 u34

− − − e44

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

5 −4/5 1/5 0

− 14/5 −8/7 5/14

− − 15/7 −4/3

− − − 17/6

⎤
⎥⎥⎥⎦

Equation 21.48 and forward substitution give

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

−4/5 1 0 0

1/5 −8/7 1 0

0 5/14 −4/3 1

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g1

g2

g3

g4

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

−4

11

−5

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

whence

{g} = {1,−16/5,50/7,17/3}

Equation 21.46 and 21.47 and backward substitution give

⎡
⎢⎢⎢⎢⎢⎣

5 −4 1 0

14/5 −16/5 1

15/7 −20/7

17/6

⎤
⎥⎥⎥⎥⎥⎦=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x1

x2

x3

x4

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

−16/5

50/7

17/3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

whence

{x} = {3, 5, 6, 2}

21.12 Member end-forces

The last step in the displacement method (see Section 4.6) is the superposition to determine the
required actions

{A} = {Ar} + [Au]{D} (21.54)

where {Ar} are the values of the actions with {D} = {0}, and [Au] are the values of the actions
due to unit displacements introduced separately at each coordinate.

In a framed structure, the required actions are commonly the forces at the member ends in
the local directions for individual members. The superposition is done separately for individual
members.
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After solution of the equilibrium equations, we have a vector {D} of the nodal displacements
in the global directions at all the nodes. Let {D} be partitioned into submatrices, each having s
values of the displacements at a node, where s is the number of degrees of freedom per node.
For the mth member, having its first and second node j and k respectively, the displacements at
the two ends in local coordinates are given by (Eq. 21.13)

{D∗}m =
{ {D∗}1

{D∗}2

}
m

=
[[t] [0]
[0] [t]

]
m

{ {D}j

{D}k

}
(21.55)

where {D}j and {D}k are submatrices of {D}, corresponding to nodes j and k, and [t]m is a
transformation matrix for the mth member given by one of Eqs. 21.14 to 21.18.

To apply the superposition Eq. 21.54 in order to find member end-forces, we have {Ar} given
in the input data. The values of the member end-forces due to unit displacements introduced
separately at each local coordinate (Figure 21.2) are the elements of the member stiffness mat-
rix [S∗], given by one of Eqs. 21.10 to 21.12 or by Eq. 5.5. Thus, in this application, the
product [S∗] {D∗} stands for [Au] {D}. The member end-forces for any member are therefore
given by

{A} = {Ar} + [S∗]{D∗} (21.56)

The stiffness matrices of individual members need to be calculated again in this step, unless they
have been stored.

Example 21.5: Reactions and member end-forces in a plane truss
Find the reactions and the end-forces in member 6 in the truss of Figure 21.4 for each of
the three cases in Example 21.1.

The stiffness matrix and the load vectors for the three cases have been determined in
Example 21.3. Zero displacement is prescribed in the x and y directions at nodes 4 and 5;
therefore, multiply the diagonal coefficient in each of rows 7, 8, 9, and 10 by 106 and set
zeros in the same rows of the load vectors (see Eq. 21.39). Because we accounted for the
support movement in the member end-forces by {Ar} used in the input data, we put here
ck = 0. The adjusted equilibrium equations are

106 ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

313 61 −267 0 −46 −61

82 0 0 −61 −82

625 123 0 0 −267 0 −92 −123

244 0 −80 0 0 −123 −164

352 −62 −92 123 −213 0

326 123 −164 0 0

symmetrical. Submatrices 359 × 106 −123

not shown are null 164 × 106

305 × 106 123

164 × 106

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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[D] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

100 0 0

0 0 0

0 0 0

0 +96 −246

0 0 +328

0 0 0

0 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× 103

The solution is

[D] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.6510 × 10−3 −0.3223 × 10−5 −0.1912 × 10−3

0.3016 × 10−2 0.5688 × 10−3 0.1372 × 10−2

−0.3698 × 10−3 −0.3223 × 10−5 −0.1912 × 10−3

0.4694 × 10−3 0.9411 × 10−4 0.5582 × 10−3

0.5925 × 10−3 0.4097 × 10−3 −0.2390 × 10−3

0.8627 × 10−3 0.2374 × 10−3 0.1408 × 10−2

−0.4180 × 10−9 −0.1013 × 10−15 −0.6856 × 10−9

0.4183 × 10−9 −0.6994 × 10−10 0.1587 × 10−8

0.4910 × 10−9 0.3142 × 10−9 0.3782 × 10−15

0.1921 × 10−9 0.6994 × 10−10 0.4149 × 10−9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

2

3

4

5

The forces at the supported nodes 4 and 5 (Eq. 21.40) are

⎧⎪⎪⎨
⎪⎪⎩

F7

F8

F9

F10

⎫⎪⎪⎬
⎪⎪⎭= 103 ×

⎡
⎢⎢⎢⎣

150 0 246

−69 11 −260

−150 −96 0

−31 −11 −68

⎤
⎥⎥⎥⎦

These forces are calculated by the multiplication of the nodal displacement with reversed
sign by the diagonal elements of the adjusted stiffness matrix. (The last term in Eq. 21.40
is negligible and ck = 0.) Addition of the above forces to the corresponding rows of the
original load vector (generated in Example 21.3) gives the reactions (Eq. 21.38):

⎧⎪⎪⎨
⎪⎪⎩

R7

R8

R9

R10

⎫⎪⎪⎬
⎪⎪⎭= 103 ×

⎡
⎢⎢⎢⎣

150 0 0

−69 11 68

−150 0 0

−31 −11 −68

⎤
⎥⎥⎥⎦
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The first and second nodes of member 6 are j = 4 and k = 3 (see input data, Table 21.1).
The transformation matrix is (Eq. 21.14)

[t] = [
0.6 −0.8

]
Let us transform the nodal displacements for the three cases of nodes 4 and 3 from global
to local directions (Eq. 21.55):

[D∗] =
[
0.6 −0.8 0 0
0 0 0.6 −0.8

]

×

⎡
⎢⎢⎢⎣

−0.4180 × 10−9 −0.1013 × 10−15 −0.6856 × 10−9

0.4183 × 10−9 −0.6994 × 10−10 0.1587 × 10−8

0.5925 × 10−3 0.4097 × 10−2.5 −0.2390 × 10−3

0.8687 × 10−3 0.2374 × 10−3 0.1408 × 10−2

⎤
⎥⎥⎥⎦

whence

[D∗] =
[−0.5854 × 10−9 0.5595 × 10−10 −0.1681 × 10−8

−0.3347 × 10−3 0.5590 × 10−4 −0.1270 × 10−2

]

The end-forces for member 6 in the three cases are (Eq. 21.54)

[A] = 103 ×
[

0 0 −410

0 0 410

]
+ 256 × 106

[
1 −1

−1 1

]
[D∗]

whence

[A] = 103 ×
[

86 −14 −85

−86 +14 85

]

21.13 General

The analysis of framed structures by computer to give the nodal displacements and the member
end-forces is summarized below. The nodal displacements are in the directions of arbitrar-
ily chosen global axes x, y, (and z) (Figure 21.1), while the member end-forces are in local
coordinates pertaining to individual members (Figure 21.2).

The input data are composed of: the material properties E (and G); the x, y (and z) coordinates
of the nodes; the number of the two nodes at the ends of each member; the cross-sectional
properties a, L, J etc. of each member; the support conditions; the external forces applied at the
nodes; and the end-forces {Ar} for the members subjected to loads away from the nodes. The
elements of {Ar} are forces in local coordinates at the member ends when the nodal displacements
are restrained.

The five steps of the displacement method summarized in Section 4.6 are executed as follows:

Step 1 The nodes and the members are numbered sequentially by the analyst, from 1 to nj and
from 1 to nm respectively. This will automatically define the degrees of freedom and the required
end-actions according to the systems specified in Figures 21.1 and 21.2.
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Step 2 The forces {Ar} included in the input data are transformed into global directions and
assembled to give a vector {Fb} of restraining nodal forces (Eqs. 21.22 and 21.34). A vector {Fa}
is also generated, simply by listing from the input data, the nodal forces with a reversed sign.
The sum {Fa} plus {Fb} gives a vector of the restraining forces {F} which are necessary to prevent
the nodal displacements (Eq. 21.32).

Step 3 To generate the stiffness matrix of the structure, start with [S] = [0] and partition
this matrix into nj × nj submatrices each of size s × s, where s is the number of degrees
of freedom per node. The stiffness matrix of the first member is generated by one of
Eqs. 21.23, 21.24, 21.27, 21.28, or 5.5 and partitioned into 2×2 submatrices, each of size s× s.
The four submatrices are added to the appropriate submatrices of [S] according to Eqs. 21.30 and
21.31. By repeating this procedure for all the members, the stiffness matrix of a free unsupported
structure is generated.

When one of Eqs. 21.23, 21.24, 21.27, or 21.28 is used, the stiffness matrix of a member is
obtained with respect to coordinates in global directions. However, Eq. 5.5 gives the stiffness
matrix of a member of a space frame with respect to local coordinates. Transformation is neces-
sary according to Eq. 21.19 before the assemblage of the stiffness matrices can be performed by
Eq. 21.31.

The structure stiffness matrix [S] is symmetrical and generally has the nonzero elements limited
to a band adjacent to the diagonal. To save computer space, only the diagonal element of [S] and
the elements above the diagonal within the band are stored in a rectangular matrix as shown in
Figure 21.3. The node numbering selected by the analyst in step 1 affects the band width and
hence the width of the rectangular matrix used to store [S]. A narrower band width is generally
obtained by numbering the nodes sequentially across that side of the frame which has a smaller
number of nodes (as an example, see Figure 21.3).

Step 4 Before the equilibrium equations [S] {D} = −{F} can be solved, [S] and {F} must be
adjusted according to the displacements prescribed in the input data (Eqs. 21.36 or 21.39).

Two methods of solution of the equilibrium equations are discussed in Section 21.11. The
solution gives the unknown displacements {D} and these are used to calculate the reactions by
Eq. 21.38 and one of Eqs. 21.37 or 21.40.

Step 5 The end-forces for each member are obtained by the superposition Eq. 21.56, which sums
{Ar} given in the input data and the product ([S∗]{D∗}), with [S∗] and {D∗} being, respectively,
the member stiffness matrix and the displacements at the member ends in local coordinates. For
this reason, the displacements obtained in step 4 have to be transformed from global directions
to local directions by Eq. 21.55 before the superposition can proceed.

The general approach in this chapter is followed in Chapter 22 by a discussion of special
topics related to use of computers in structural analysis.

Problems for Chapter 21 are included at the end of Chapter 22.



Chapter 22

Implementation of computer analysis

22.1 Introduction

Analysis of structures by the displacement method requires the solution of the equilibrium
equations [S] {D} = {−F}. The solution must satisfy the displacement boundary conditions.
In Chapter 21 we assumed that the displacements {D} and the forces {F} are in directions of
global axes. In Section 21.10, we discussed a method in which the stiffness matrix [S] generated
for a free, unsupported structure is adjusted, together with the vector {F} to satisfy the condition
that the displacement at a coordinate equals zero or a prescribed value. In Section 22.2, we shall
consider the case when the prescribed displacement is in a direction inclined to global axes; this
may be so at a roller support.

In the analysis of a large structure, it is often possible to consider only a part of the structure
rather than the whole. This approach is useful to reduce the cost of preparing the data, of
computing and of interpretation of the results. When an isolated part of a structure is analyzed,
it is crucial that the displacement boundary conditions accurately represent the conditions in the
actual structure. If this is not so, the results can be grossly erroneous.

Structures which are composed of symmetrical sectors can be analyzed by considering one
sector with appropriate displacement constraints imposed at the boundaries with adjacent sec-
tors. The displacement boundary conditions for different types of symmetry are discussed in
Sections 22.3 and 22.5.

A displacement component may be constrained so as to be equal to a prescribed value or to
zero. For instance, the constraint may be specified by imposing the value of the displacement
at one coordinate to be equal to the displacement at another coordinate; more generally, the
displacement at one coordinate may be required to be a linear combination of the displacement
at two other coordinates. Section 22.4 shows how the equilibrium equations can be adjusted to
satisfy the displacement constraints, and gives examples of structures in which such constraints
are required.

The analysis of a large structure can be reduced to a series of analyses of substructures which
are easier to handle one at a time. This is discussed in Section 22.6.

Section 22.7 is concerned with the use of computers for the plastic analysis of plane frames
on the basis of the assumptions adopted in Chapter 18.

Section 22.8 gives a method for generating the stiffness matrix of a member with a variable
section or with a curved axis. The stiffness matrix is derived from the flexibility matrix of the
member treated as a cantilever.

22.2 Displacement boundary conditions in inclined coordinates

In the analysis of structures by computer, using the displacement method, the coordinates at the
nodes typically represent displacement components in the directions of one set of global axes.
It is, however, sometimes necessary to express the boundary conditions at a node as prescribed
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ck

Node i
Node i

Fictitious bar with a
very large Ea/l but
very small I and ar

(c) Addition of a fictitious bar

(a) Plane frame

Node i

Global
axes

y

x
z

y

x

Degrees of
freedom at
a general node

v θ

u

Spring stiffness = K

(b) Addition of a fictitious spring

γ

γ i

γ

j

Figure 22.1 Introduction of displacement boundary conditions in directions inclined to the global axes.

displacements in directions inclined to the global axes. An example of this situation is at the
roller support at node i of the plane frame in Figure 22.1a. The support allows a free translation
u in the x direction, parallel to a plane inclined at an angle γi to the global x axis, but prevents
translation v in the y direction. Alternatively, v may take a prescribed value c.

For the analysis of the structure in Figure 22.1a, we need a stiffness matrix [S] corresponding
to degrees of freedom u, v, θ in the global x, y, z directions at each node except node i, where
the degrees of freedom are u, v and θ in the x, y, z directions. One way to achieve this is first to
generate the stiffness matrix [S], in the usual way, corresponding to degrees of freedom in the
global x,y, z directions, and subsequently to adjust [S] to [S] as discussed below.

In general, a geometrical relation can be written:

{D}i = [H]i{D}i (22.1)

where {D}i and {D}i are nodal displacements at i in the global x, y, z directions and in the
x, y, z directions respectively. The matrix [H]i is a transformation matrix for node i. However,
Eq. 6.6 gives the stiffness matrix the forces at node i in the two coordinate systems can also be
related by using the same transformation matrix (see Eq. 9.16):

{F}i = [H]Ti {F}i (22.2)
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In the example considered in Figure 22.1a, the transformation matrix is

[H]i =
⎡
⎣cosγ − sinγ 0

sinγ cosγ 0
0 0 1

⎤
⎦

i

(22.3)

Using the stiffness matrix [S], we can write the equilibrium equations

[S] {D} = −{F} (22.4)

Let us now partition [S] into nj × nj submatrices each of size s × s, where nj is the number of
nodes and s is the number of degrees of freedom per node. The partitioned equilibrium equation
will appear as follows:

⎡
⎢⎢⎢⎣

S1i

S2i
. . .

Si1 Si2 . . . Sii . . .
. . .

⎤
⎥⎥⎥⎦
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D1

D2
. . .

Di
. . .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= −

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F1

F2
. . .

Fi
. . .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(22.5)

In this equation and in the following two, only the elements in the ith row and ith column of
the square matrix on the left-hand side are written.

The term {D}i in Eq. 22.5 may be eliminated by the use of Eq. 22.1, giving

⎡
⎢⎢⎢⎣

S1iHi

S2iHi
. . .

Si1 Si2 . . . SiiHi . . .
. . .

⎤
⎥⎥⎥⎦
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D1

D2
. . .

Di
. . .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= −

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F1

F2
. . .

Fi
. . .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(22.6)

The submatrix {F}i in this equation may also be eliminated by multiplication of the ith row by
[H]Ti and substitution of Eq. 22.2:

⎡
⎢⎢⎢⎢⎣

S1iHi

S2iHi
. . .

HT
i Si1 HT

i Si2 . . . HT
i SiiHi . . .
. . .

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D1

D2
. . .

Di
. . .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= −

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F1

F2
. . .

Fi
. . .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(22.7)

The square symmetrical matrix on the left-hand side of Eq. 22.7 is the stiffness matrix [S] in
which the boundary conditions can be introduced as discussed in Section 21.10. In practice,
the adjustment to obtain [S] can be conveniently made to the stiffness matrices of the elements
connected to node i (see Example 22.1).

An alternative to the above procedure is to add a spring of stiffness K at node i in the y
direction (Figure 22.1b). The stiffness K is much larger than the diagonal elements of [S], e.g.
105 times larger than their values. When a displacement c is prescribed in the y direction, a
force cK has to be applied in the y direction at node i. Because the stiffness of the structure is
negligible compared with that of the spring, the force cK produces the prescribed displacement
c at i.
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The stiffness matrix of the added spring with respect to the coordinates u, v, and θ in
Figure 22.1b is

[S]k =
⎡
⎣0 0 0

0 K 0
0 0 0

⎤
⎦ (22.8)

Before assemblage of [S] (see Section 21.9), the above stiffness matrix for the spring must be
transformed to correspond to the global directions:

[S]K = [H]i[S]k[H]Ti (22.9)

where [H]i is the transformation matrix in Eq. 22.3. Equation 22.9 is derived from Eq. 9.17,
noting that the inverse of [H]i is equal to its transpose.

The concept discussed above is general and it can be used for any structure in which a
displacement is prescribed in an inclined direction.

For the frame in Figure 22.1a, the conditions that, at node i, v = c while u is free, can be
achieved by connecting to i a fictitious bar with end j fixed (Figure 22.1c). The length l and
cross-sectional area a of the fictitious bar must be chosen so that Ea/l = K, K being the same as
for the spring considered earlier. Very small values should be assigned to the second moment of
area l (and to the reduced area ar when shear deformations are considered). Prescribed displace-
ments in the global directions uj =−c sin γ and vj =c cos γ , introduced at node j instead of node
i, will produce the desired effect. This method has the advantage that the required boundary
conditions are achieved by entering appropriate input data without changing the computer pro-
gram which performs the analysis. It should be mentioned, however, that a numerical difficulty
in solving the equilibrium equations may be encountered if the stiffness of the added member is
excessive.

Example 22.1: Stiffness of member of plane frame with respect to inclined
coordinates
Generate the stiffness matrix of a prismatic member of a plane frame with respect to the
coordinates shown in Figure 22.2a.

(a)

_
3

_
1 1

2∗
3∗

1∗ 1
(b)

y∗

l

2

2 4∗
x∗

6∗
5∗

_
2 _

5
_
6

_
4

γ

Figure 22.2 Member of a plane frame. (a) Inclined coordinates. (b) Coordinates parallel to member
local axes.
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The transformation matrix relating {D} to {D∗} at node 2 is (see Eqs. 22.1 and 22.2)

[H]2 =
⎡
⎣c −s 0

s c 0
0 0 0

⎤
⎦

2

where c = cos γ and s = sin γ .
The stiffness matrix [S∗] with respect to the coordinates parallel to the member local

axes (Figure 22.2b) is given by Eq. 21.11. Application of Eq. 22.7 gives[
S11 S12H2

HT
2 S21 HT

2 S22H2

]{
D1

D2

}
=
{

F1

F2

}

where Sij represents the 3 × 3 submatrix given in Eq. 21.11; D1 ≡ D∗
1 and F1 ≡ F∗

1 are
subvectors representing, respectively, the three displacements and forces at member end 1.

Substitution for Sij and H2 gives the stiffness matrix with respect to the coordinates in
Figure 22.2a:

[S] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ea
l

0
12EI

l3

0
6EI
l2

4EI
l

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

−cEa
l

−12sEI
l3 −6sEI

l2

c2Ea
l

+ 12s2EI
l3

+ sEa
l

−12cEI
l3 −6cEI

l2 − scEa
l

+ 12scEI
l3

s2Ea
l

+ 12c2EI
l3

0
6EI
l2

2EI
l

−6sEI
l2 −6cEI

l2

4EI
l

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22.10)

22.3 Structural symmetry

Large structures are commonly analyzed by computer and, when possible, advantage is taken of
symmetry so as to reduce the effort needed in data preparation and in the interpretation of the
results. When a structure has one or more planes of symmetry it is possible to perform the analysis
on one-half, one-quarter or an even smaller part of the structure, provided that appropriate
boundary conditions are applied at the nodes on the plane(s) of symmetry. In the following
sections, these boundary conditions are discussed for spatial structures in which the symmetry
exists both for the structure configuration and for the loading, and also for the case when the
structure is symmetrical but is subjected to nonsymmetrical loads. The discussion applies to
structures composed of bars or other finite elements.

22.3.1 Symmetrical structures subjected to symmetrical loading

Figure 22.3a is a top view of a spatial structure with two vertical planes of symmetry: xz and yz.
It follows that, for all the elements and applied forces (not shown in the figure) on one side of a
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Boundary conditions for typical nodes

Node

A

B

C 0

0

1

u v

0

1

0

0 ≡ Displacement prevented

1 ≡ Displacement free

1

1

1

0

1

0

0

0

1

0

0

0

w θx θy θz

(b)
z

C A
x

B

y

C

B

y

A

z

(a) Plane of symmetry

Plane of
symmetry
x

Figure 22.3 Spatial structure with two planes of symmetry subjected to symmetrical loading. (a) Top
view. (b) Quarter structure to be analyzed.

plane of symmetry, there exists a set of mirror-image elements and forces on the opposite side.
The analysis of a structure of this type needs to be performed on one-quarter of the structure
only (Figure 22.3b).

Let us assume the degrees of freedom at a typical node to be three translations u, v, w in
the global x, y, z directions and three rotations θx, θy, θz in the same directions. The global
directions x, y, z are chosen parallel to the planes of symmetry. In the part of the structure to
be analyzed, the elements situated on a plane of symmetry must have adjusted properties. For
example, when the elements on a plane of symmetry are bars, their cross-sectional properties
(a, I, J, and ar) to be used in the analysis must be assumed to be equal to one-half of the
values in the actual structure. It is also possible, instead of changing the cross-sectional properties,
to reduce correspondingly (i.e. by one-half) the material properties E and G. Also, the forces
applied at the nodes on a plane of symmetry must be assumed to be one-half of the actual
values.

Because of symmetry, some of the displacement components at the nodes on the planes of
symmetry are known to be zero. The table in Figure 22.3b indicates 0 or 1 for each of the six
degrees of freedom at typical nodes A,B, and C on the planes of symmetry. The value 0 indicates
zero displacement, and 1 indicates that the displacement is free to occur.

As mentioned in Section 21.4, the displacement boundary conditions must be sufficient to
ensure that the structure analyzed cannot translate or rotate as a free rigid body. Now, the
boundary conditions prescribed in Figure 22.3b are not sufficient to prevent translation in the z
direction; to prevent this translation, at least one node must have w = 0.
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22.3.2 Symmetrical structures subjected to nonsymmetrical loading

Let us assume that the spatial structure shown in Figure 22.3a is subjected to forces P1 and P2

(where P1 �= P2) at the symmetrical nodes D,E,F, and G, as shown in Figure 22.4a. The system
of forces in Figure 22.4a may be considered to be equivalent to the sum of a symmetrical and an
antisymmetrical system, shown in Figure 22.4b. The magnitude of the symmetrical component
Ps and that of the antisymmetrical component Pa must satisfy the equations

Ps + Pa = P1 − Ps + Pa = P2 (22.11)

whence

Ps = P1 − P2

2
Pa = P1 + P2

2
(22.12)

Node

0 ≡ displacement prevented

Boundary conditions for antisymmetrical case

1 ≡ displacement free

u v w θx θy θz
C

B

M

y

z axis
K x

A

P
or Pa

L

A 1

1

1 0

0

0 1

0

0

0

0

0

1

1

1

0

1

0

B

C

(a)

(b)

(c)

Pa

Pa

F

G B

C

A

E

Pa

Pa Ps F

G B

C

A

E

D Ps

PsPs

D

P2

P2

H

F

G

N M
y

B

C

z axis A K

D

E P1

L

P1

x

Figure 22.4 Spatial structure with two planes of symmetry subjected to nonsymmetrical loading. (a)
Top view. (b) Symmetrical and antisymmetrical load components. (c) Quarter structure to
be analyzed.
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The analyses for the symmetrical and for the antisymmetrical loading can be performed separ-
ately for the quarter structure CKLM. For the symmetrical loading, the boundary conditions
are as indicated in Figure 22.3b. The boundary conditions for the antisymmetrical loading case
are shown in Figure 22.4c.

The results of the two analyses, when added, give the displacements and the internal forces
for the quarter structure CKLM due to the actual nonsymmetrical loading (Figure 22.4a). By
subtracting the results for the antisymmetrical loading from the results for the symmetrical
loading, we obtain a mirror image of the displacements and the internal forces in the quarter
structure CHNM due to the actual nonsymmetrical loading. In other words, the results for
the antisymmetrical loading subtracted from the results for the symmetrical loading give the
displacements and the internal forces in the quarter structure CKLM when the two forces at F
and G (Figure 22.4a) are interchanged with the two forces at D and E, and the four forces are
reversed in direction.

It should be noted that the procedure described above involves two separate analyses of
quarter structures, each requiring the solution of a set of equations which differ both in the right-
hand side and in the left-hand side. However, each set involves a smaller number of unknown
displacements than if a half structure were analyzed. The results of the two analyses of the quarter
structure must be stored and the two solutions are combined. The procedure is advantageous
only in very large structures to save computing time for the solution of the equations or when
the capacity of the computer would otherwise be exceeded.

22.4 Displacement constraints

In Section 21.10 we discussed the methods to be used in order to satisfy the condition that the
displacement at a coordinate is zero or has a prescribed value. In this section, we consider a
method to impose relations between nodal displacements.

As an example we can consider the plane frame shown in Figure 22.5a, which is composed
of an infinite number of bays identical in geometry and in loading. The analysis needs to be
performed for a single isolated bay ABCB′ with the following relation between the displacements
at nodes B and B′:

{u,v, θ}B′ = {u, v, θ}B (22.13)

Another example is shown in Figure 22.5b, which represents a square plate in bending, with
symmetry in geometry and in loading about the vertical planes through the x and y axes and
about the two diagonals. A finite-element analysis of this structure can be performed using the
square elements for the shaded part of the plate. The degrees of freedom at a typical node can
be taken as {w, θx, θy}, as shown in the figure. For symmetry of displacements, the following
constraints apply:

(θx)C = −(θy)C (θx)D = −(θy)D (θx)E = −(θy)E (22.14)

{w, θx, θy}A′ = {w,−θy,−θx}A
{w, θx, θy}B′ = {w,−θy,−θx}B (22.15)

Another example where displacement constraints can be used in finite-element analysis is shown
in Figure 22.5c. A plane-stress quadrilateral element with nodes at its corners is connected to a
beam element. The constraint equations in this case can be taken as
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Figure 22.5 Examples for use of displacement constraints. (a) Plane frame of many bays. (b) Plate in
bending. (c) Beam-to-wall connection.

uj = (1 − ξ)ui + ξuk

vj = (1 − ξ)vi + ξvk

θj =
(

1
l

)
ui −

(
1
l

)
uk

(22.16)

Displacement constraints can also be used in structures with cyclic symmetry (see Section 22.5).
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A typical constraint equation may be written in the form

Dj = βiDi (22.17)

where βi is a constant. (A second term βkDk is added to the right-hand side for the constraints
of Eq. 22.16.)

Each constraint equation reduces the number of unknown displacements by one. Thus, in the
equilibrium equations [S] {D} = −{F}, the constraint Eq. 22.17 may be used to eliminate Dj so
that we can solve the equations for the remaining unknowns, but this requires renumbering of
the unknowns. A method1 of adjusting the equilibrium equations [S] {D} = −{F} to satisfy any
number of constraints of this type is discussed below. The adjustment does not require changes
in the number of equations to be solved or in the arrangement of the unknowns.

For each constraint Eq. 22.17, the adjustments are limited to the ith and jth columns of [S]
and the ith and jth rows of [S] and of {F}. The adjustments are performed in steps. First, the
elements in the jth column of [S] are multiplied by βi and added to the ith column. Then, the
elements in the jth row of [S] and of {F} are multiplied by βi and added to the ith row. Element
Sjj is replaced by 1 and the off-diagonal elements in the jth row and column of [S] are replaced
by zero. The adjusted columns and rows now become

1 i j

1

2

i

j

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(s1i + βiS1j) 0

(s2i + βiS2j) 0
. . . . . . . . .

(si1 + βiSj1) . . . (sii + 2βiSij + β2
i Sjj) . . . 0 . . .

. . . . . . . . .

0 . . . 0 . . . 1
. . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

{D}

= −

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1

F2
. . .

Fi + βiFj
. . .

0
. . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(22.18)

The above adjustments consist of the elimination of Dj in all equations and multiplication of
both sides of the ith equation by βi to maintain symmetry; the jth equation is replaced by the
dummy equation Dj = 0. Solution of the adjusted equations gives the unknown displacements,
including a zero for Dj. This answer must be replaced by Dj = βiDi.

The adjustment of the equilibrium equations as described above can be repeated for each
constraint equation.

As mentioned earlier, for the example in Figure 22.5c, each constraint equation can be writ-
ten in the form: Dj = βiDi + βkDk. The adjustment of the equilibrium equation to satisfy this
equation has to be done as described above for the ith column of [S] and the ith row of [S]

1 Other methods are discussed in the reference in footnote 3 in Chapter 21.
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and {F}. Similar adjustments have to be made for the kth column and row of the same matrices
before replacing Sjj by 1 and the off-diagonal elements in the jth column and row by zero. This
procedure causes external forces at node j to be replaced by static equivalents added to the
external forces at nodes i and k.

The adjusted stiffness matrix will continue to be symmetrical, but the band width can increase.
Equation 21.1 can be used to calculate the new band width, noting that any element connected
to node i is also “connected’’ to node j by the constraint Eq. 23.17. For the plane frame ABCB′
in Figure 22.5a, with the number of degrees of freedom per node s=3 and a constraint equation
relating displacements at B′ and B, the band width is governed by member AB. Thus, element
AB is considered to be connected to nodes 1, 2, and 4 and the band width is (Eq. 21.1)

nb = 3[(4 − 1) + 1] = 12

We should note that, in the adjusted equations, Fi is added to βiFj. For this reason, external
forces at B in the actual frame in Figure 22.5a, which are the same as at B′, must be applied
in the analysis at either node 2 or node 4, but not at both nodes. Similarly, in the structure in
Figure 22.5b, the forces at A, which are the same as at A′, should be applied at either node 6 or
at node 7; and so on.

22.5 Cyclic symmetry

Each of the structures shown in top view in Figure 22.6 is composed of r sectors which are
identical in terms of geometry, material properties, and loading.2 The global structure can
be generated by successive rotations of the hatched sector through an angle 2π/r about a
vertical axis through O, where r is an integer. The structures can be two-dimensional or three-
dimensional and they may be idealized by bar elements or other finite elements. The analysis can
be performed for the hatched sectors isolated as shown by imposing the following displacement
constraints:

{Dn,Dt ,Dz}j = {Dn,Dt ,Dz}i (22.19)

(Dn)0 = (Dt)0 = 0 (22.20)

where i and j are nodes at equal distances from O on the common sector boundaries OA
and OA′ (indicated by heavy lines); Dn and Dt are displacement components (translations or
rotations) in the directions of the normal n and the tangent t to the common boundaries; and
Dz is a displacement component in a vertical downward direction. Equation 22.20 means that,
at nodes on a vertical axis through O, the displacements can be nonzero only in the z direction.

The equilibrium equations [S] {D}= {−F} have to be generated for all the degrees of freedom
in the sector; the equations are then adjusted as discussed in Section 22.4.

The use of Eq. 22.19 requires that the degrees of freedom at the boundaries be in the n, t,
and z directions. The necessary transformation is discussed in Section 22.2.

Members or elements located on the common boundaries may be situated either on plane OA
or on plane OA′, but not on both. Similarly, forces at the nodes on the common boundaries must
be applied on the nodes situated on one of the two vertical planes. At a node on the vertical
through O the forces on the actual structure (in the z direction) must be divided by r when
applied on the sector analyzed.

2 Further discussion of symmetry can be found in Glockner, P. G., “Symmetry in Structural Mechanics,’’
Proceedings American Society of Civil Engineers, 99 (ST1), 1973, pp. 71–89.
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Figure 22.6 Structures with cyclic symmetry.

Example 22.2: Grid: skew bridge idealization
Find the nodal displacements for the horizontal grid shown in top view in Figure 22.7.
The grid is subjected to a uniform downward load of q per unit length on DOF only.
Assume that all members have the same cross section with GJ/EI = 0.6.

The structure is composed of two identical sectors, one of which is shown in the figure.
This sector will be analyzed using seven degrees of freedom: downward deflection and two
rotations at each of the nodes B and H, and downward deflection only at O. The restraining
forces are

{F} = {0, 0, 0,−0.5ql, 0, 0, 0}
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Figure 22.7 Horizontal grid of Example 22.2.

We should note that member OB is included in the sector analyzed but OH is omitted. For
the cyclic symmetry to be valid, the two members must be identical, and OH could have
been included in the sector analyzed instead of OB.

The stiffness matrix corresponding to the coordinate system shown in Figure 22.7 is

[S]=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12 + 96c3

l3

6s + 24c2

l2

4s2 + 0.6c2 + 8c
l

6c
l2

4sc − 0.6sc
l

1.2c + 4c2 + 0.60s2

l

− 96c3

l3
− 24c2

l2
0

12 + 96c3

l3

0 0 0 0
12
l3

0 0 0 0 − 6s
l2

0.6c2 + 4s2

l

0 0 0 0
6c
l2

4cs − 0.6cs
l

4c2 + 0.6s2

l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

EI

where s = sin γ = 1/
√

5 and c = cos γ = 2/
√

5.
The displacement constraint equations are

D1 = D5 D2 = D6 D3 = D7

Substitution for s and c by their values and adjustment of the equilibrium equations gives
(Eq. 22.18)

EI

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

92.692
l3

19.2
l2

9.715
l

0
2.720

l
7.713

l

68.692
l3

19.20
l2

0
80.692

l3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1

D2

D3

D4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= ql

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

0

0

+0.5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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The last three equations, which become dummy, have been omitted here. The solution of
the above equations yields

{D} = {10.68l, 21.13, −7.45, 20.31l} 9l3

1000EI

22.6 Substructuring

A large structure may be divided into substructures to make its analysis possible by a small
computer. Such substructuring breaks a large problem into smaller parts, thus replacing
a long computer analysis by several shorter analyses. We shall explain the relevant pro-
cedure using the structure shown in top view in Figure 22.8; this structure is partitioned
into seven substructures, with six connection boundaries. The steps in the analysis are as
follows:

6

(a)

5 4

3

2

1

Connection
boundaries

(b)
1

1

2

2

3

3

4

4

5

5

6

6

Half-band
width

Null
submatrices

Figure 22.8 Substructuring. (a) Top view of actual structure. (b) Band width of assembled stiffness
matrix [Sb].
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Step 1 The equilibrium equations for a substructure are written in the form

[
S∗

bb S∗
bi

S∗
ib S∗

ii

]{
D∗

b
D∗

i

}
= −

{
F∗

b
F∗

i

}
(22.21)

In this equation, the displacement and force vectors are partitioned into connection-boundary
coordinates and interior coordinates, referred to by subscripts b and i respectively. Coordinates
at real supports are treated as interior coordinates.

The displacements of the substructure are now prevented at the supported nodes and also
at the connection-boundary nodes. With the connection-boundary nodes artificially restrained,
{D∗

b} = {0}, the displacements at interior coordinates are given by

{D∗
i }boundaries fixed = −[S∗

ii]−1{F∗
i } (22.22)

The restraining forces are

{F∗
b} = [S∗

bi][S∗
ii]−1{F∗

i } (22.23)

Step 2 For each substructure, a condensed stiffness matrix is calculated (Eq. 5.17):

[S∗
b] = [S∗

bb] − [S∗
bi][S∗

ii]−1[S∗
ib] (22.24)

An asterisk is used here as a superscript to refer to a substructure.

Step 3 The condensed stiffness matrices are assembled into the stiffness matrix [Sb] of the global
structure. The connection boundary should be numbered in sequence so that the [Sb] have small
band width. An example of boundary numbering and of the resulting band width is shown in
Figures 22.8a and b.

Step 4 A vector is generated for the restraining forces at the boundaries:

Fbj =
∑

F∗
bj − Pbj (22.25)

where j refers to a coordinate, F∗
bj is determined in step 1 (Eq. 22.23), and Pbj is the external

force at j. The summation is for the two substructures connected at the boundary considered.

Step 5 The displacements {Db} are determined by solving

[Sb]{Db} = −{Fb} (22.26)

Here, {Db} represents the displacements at the boundary nodes in the actual structure.

Step 6 Elimination of restraint produces new displacements at interior nodes. These displace-
ments have to be added to the displacements determined by Eq. 22.22 so as to give the
displacements in the actual structure:

{D∗
i } = {D∗

i }boundaries fixed − [S∗
ii]−1[S∗

ib]{D∗
b} (22.27)

The last term in this equation is determined from the second row of Eq. 22.21 by setting

{F∗
i } = {0}.
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Step 7 By steps 5 and 6, the displacements at all nodes in the actual structure have been determ-
ined; these are used in the usual way to determine the internal forces or stresses in individual
elements.

Substructuring requires more complicated coding and may not always be advantageous,
particularly when the substructures involve no repetition.

22.7 Plastic analysis of plane frames

This section discusses the use of a computer for the plastic analysis of plane frames3 on the
basis of the assumptions made in Chapter 18, in particular, the bilinear moment–curvature
relationship of Figure 18.3. The frames are assumed to have prismatic members with known
cross-sectional properties a, I, and Mp, where a and I are the area and the second moment of area
respectively, and Mp is the fully plastic moment (see Section 18.2). A set of forces is applied and
their magnitudes are increased in stages, without changing their relative values, until a collapse
mechanism is formed. A plastic hinge is assumed to occur when Mp is reached, ignoring the
effects of axial and shear forces on the plastic moment capacity (see Sections 18.8 and 18.9).

An elastic analysis is performed for each load increment and the member end-moments are
recorded. When Mp is reached at a section, a hinge is inserted there and the structure stiffness
matrix [S] is changed accordingly. Collapse is reached when: (a) [S] becomes singular (determ-
inant close to zero); or (b) a diagonal element Sii becomes zero; or (c) very large deflections are
obtained.

For each load stage, the analysis is carried out for a unit increment in one of the loads (Pi =1),
with proportionate increments in the other loads. The corresponding member end-moments are
used to determine a load multiplier which causes Mp to be reached at any one section, thus
developing a new plastic hinge. The sum of the multipliers in all stages is the value of Pj at
collapse.

For each loading stage, we generate a stiffness matrix for a structure with hinges located at the
ends of members, as determined in earlier stages. The stiffness matrix for an individual member
with a hinge at one or both ends is discussed below.

22.7.1 Stiffness matrix of a member with a hinged end

The stiffness matrix of a prismatic member of a plane frame (Figure 21.2) is given by Eq. 21.11,
which ignores the effect of shear deformation and the beam-column effect (Chapter 13). After
the development of a hinge at end 1 (left-hand end), the stiffness matrix of the member becomes

[S∗
H1]

⎡
⎢⎢⎢⎢⎢⎢⎣

Ea/l
0 3EI/l3 symmetrical
0 0 0

−Ea/l 0 0 Ea/l
0 −3EI/l3 0 0 3EI/l3

0 3EI/l2 0 0 −3EI/l2 3EI/l

⎤
⎥⎥⎥⎥⎥⎥⎦

(22.28)

This matrix can be generated by condensation of [S∗] in Eq. 21.11 (using Eq. 5.17) to obtain
a 5 × 5 matrix corresponding to the coordinates in Figure 21.2, with coordinate 3∗ omitted.

3 The method presented in this section and the example included are taken from Wang, C. K., “Gen-
eral Computer Program for Limit Analysis,’’ Proceedings American Society of Civil Engineers, 89 (ST6)
(December 1963), pp. 101–117. Appendix L includes a description of a microcomputer program, avail-
able on diskette, which performs the plastic analysis presented in this section. The diskette includes an
executable file and a FORTRAN-language file of the code.
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The original size of the matrix and the coordinate numbering are maintained by the insertion of
a column and a row of zeros, as shown in Eq. 22.28.

In a similar way, when a hinge develops at end 2 instead of end 1, the member stiffness will be

[S∗
H2] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ea/l
0 3EI/l3 symmetrical
0 3EI/l2 3EI/l

−Ea/l 0 0 Ea/l
0 −3EI/l3 −3EI/l2 0 3EI/l3

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22.29)

When hinges are developed at both ends, the member stiffness matrix will be the same as
Eq. 22.28 or Eq. 22.29, with zero substituted for all the matrix elements which include I.

It should be pointed out that, in this section, we limit the discussion to frames subjec-
ted to concentrated loads applied at nodes only. Thus, plastic hinges can develop only at
member ends.

Example 22.3: Single-bay gable frame
Determine the value of Pc to produce collapse for the load system shown in Figure 22.9.
For the seven members in the figure, the values of Mp, in terms of Pb, are {765, 765, 1275,
1275, 1015, 1015, 616}; the values of a and I are given in the same figure.

Load stage 1 With the value Pc = 1, the load system produces the end-moments {M(I)
u } listed in

Table 22.1. From these values, it can be seen that a multiplier Pc = 34.458 will cause Mp to be
reached so that the first plastic hinge is developed at node 7 in member 7. The corresponding
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Figure 22.9 Plane frame of Example 22.3.
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Table 22.1 Member End-Moments at the Termination of Stage 1 (in terms of Pb)

Member Node at
member end

Plastic
moment
capacity Mp

Moment due to
Pc = 1
M(1)

u

Load
multiplier

Number of the
stage in which a
hinge is formed

Moment at the
end of stage 1
M(1)

1 1 765.0 7.56 260.61
2 765.0 0.56 19.36

2 2 765.0 –0.56 –19.36
3 765.0 18.69 643.92

3 3 1275.0 –18.69 –643.92
4 1275.0 –12.95 –446.23

4 4 1275.0 12.95 446.23
5 1275.0 –4.59 –158.06

5 5 1015.0 4.59 158.06
6 1015.0 –9.61 –331.18

6 6 1015.0 9.61 331.18
7 1015.0 17.88 616.00

7 7 616.0 –17.88 34.458 –616.00
8 616.0 –12.94 –445.75

nodal displacements, listed for nodes 1 to 8 in the order u, v, θ and given in terms of length
unit b or radian, are

{D(1)} = 34.458 × 10−6

× {0, 0, 0,−403.5,43.44,−58.19,−436.50,86.92,101.8

− 27.80,1524,−130.9, 198.2, 2321, 41.94

399.4, 1531,−141.6, 808.8,78.11,−88.20, 0,0,0}
Load stage 2 A new stiffness matrix is generated for the structure with a hinge introduced in
member 7 at node 7. The member end-moments {M(2)

u }, for Pc = 1, given in Table 22.2, show
that a multiplier Pc = 5.871 will cause a second hinge to develop at node 3 in member 2. The
member end-moments after application of this load increment are

{M(2)} = {M(1)} + 5.871{M(2)
u }

The corresponding displacements are calculated in a way similar to that used for stage 1, giving

{D(2)} = 5.871 × 10−6

× {0, 0, 0, 245.2,48.33,61.79, 1768,96.67,282.2

2726, 3358,305.4, 3400,5643,156.5

3744, 4406,−328.1, 5024,68.21,−485.6, 0,0,0}
We should note that, with a hinge existing at the connection of member 7 to node 7, the rotation
at node 7, included in the above equation, represents the rotation at the node, and not at the
top end of member 7.

Load stage 3 A second hinge is introduced and the process described in stage 2 is repeated,
giving (Table 22.3)

{M(3)} = {M(2)} + 1.522{M(3)
u }
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Table 22.2 Member End-Moments at Termination of Stage 2 (in Terms of Pb)

Member Node at
member
end

Mp − |M(1)| Moment due
to Pc = 1
M(2)

u

Load
multiplier

Number of the
stage in which a
hinge is formed

5.871 M(2)
u Moment at the

end of stage 2
M(2)

1 1 504.39 −1.42 −8.31 252.30
2 745.64 6.02 35.34 54.71

2 2 745.64 −6.02 −35.34 −54.71
3 121.08 20.62 5.871 2 121.08 765.00

3 3 631.08 −20.62 −121.08 −765.00
4 828.77 −16.24 −95.38 −541.61

4 4 828.77 16.24 95.38 541.61
5 1116.94 −13.11 −76.98 −235.04

5 5 856.94 13.11 76.98 235.04
6 683.82 −24.37 −143.08 −474.26

6 6 683.82 24.37 143.08 474.26
7 399.00 0.00 0.00 616.00

7 7 0 0 1 0 −616.00
8 170.25 −24.83 −145.79 −591.54

Table 22.3 Member End-Moments at Termination of Stage 3 (in Terms of Pb)

Member Node at
member
end

Mp − |M(2)| Moment
due to
Pc = 1 M(3)

u

Load
multiplier

Number of the
stage in which a
hinge is formed

1.522 M(3)
u Moment at the

end of stage
3M(3)

1 1 512.70 8.91 13.56 265.86
2 710.29 −9.45 −14.39 40.32

2 2 710.29 9.45 14.39 −40.32
3 0 0 2 0 765.00

3 3 515.00 −0.00 −0.00 −765.00
4 733.39 −34.60 −52.66 −594.27

4 4 733.39 34.60 52.66 594.27
5 1039.96 −29.19 −44.44 −279.48

5 5 779.96 29.19 44.44 279.48
6 540.74 −29.73 −45.25 −519.52

6 6 540.74 29.73 45.25 519.52
7 399.00 0.00 −0.00 616.00

7 7 0 0 1 0 −616.00
8 24.46 −16.07 1.522 3 −24.46 −616.00

The corresponding displacement after the third load stage is

{D(3)} = 1.522 × 10−6

× {0, 0, 0, −755.4,43.86,−152.6, −2805,87.75,709.3,

− 867.5,6600,533.8, 288.9,10275,210.2,

1228, 6880,−551.6, 3251,77.26,−743.9, 0,0,0}
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Table 22.4 Member End-Moments at Termination of Stage 4 (in Terms of Pb)

Member Node at
member
end

Mp − |M(3)| Moment due
to Pc = 1
M(4)

u

Load
multiplier

Number of the
stage in which a
hinge is formed

15.489 M(2)
u Moment at the

end of stage 4
M(4)

1 1 499.14 −10.00 −154.84 111.01
2 714.68 0.00 0 40.32

2 2 714.68 −0.00 −0.00 −40.32
3 0 0 2 0 765.00

3 3 515.00 −0.00 −0.00 −765.00
4 680.73 −38.00 −588.402 −1182.67

4 4 680.73 38.00 588.40 1182.67
5 995.52 −36.00 −557.44 −836.92

5 5 735.52 36.00 557.44 836.92
6 495.48 −32.00 −495.48 −1015.00

6 6 495.48 32.00 15.484 4 495.48 1015.00
7 399.00 0.00 −0.00 616.00

7 7 0 0 1 0 −616.00
8 0 0 3 0 −616.00

Load stage 4 Introducing a third hinge at node 8 in member 7 and repeating the above procedure
gives (Table 22.4):

{M(4)} = {M(3)} + 15.484 {M(4)
u }

{D(4)} = 15.484 × 10−6

× {0, 0, 0, 554.1,44.53,83.11, 1385,89.08,812.6,

3623, 7575, 619.8, 4914,11883,245.0

6136, 7805,−634.7, 8442,75.92,−841.6, 0,0,0}

The fourth hinge changes the structure into a mechanism so that an additional loading stage
would give extremely large displacements. The collapse load is therefore the sum of the load
increments in the four stages, namely,

Pc = (34.458 + 5.871 + 1.522 + 15.484)P = 57.335 P

22.8 Stiffness matrix of member with variable cross section or
with curved axis

A procedure for generating the stiffness matrix of a member of a framed structure of any type
is presented below. The procedure can be used when the member has a variable cross section or
a curved axis, and also in nonlinear analysis of reinforced concrete structures where cracking
reduces the effective area4 of the cross section.

4 See the first reference mentioned in footnote 1 in Chapter 1.
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Any of the stiffness matrices given in Chapter 21 for individual members of framed structures
(Figure 21.2) may be partitioned as follows:

[S∗] =
[[S∗

11] [S∗
12]

[S∗
21] [S∗

22]

]
(22.30)

The submatrices in the first row contain forces at the first node of the member. Equilibrants of
these forces at the second node form the elements in the submatrices in the second row. Because
of this equilibrium relationship and the symmetry of [S∗], Eq. 22.30 may be rewritten as

[S∗] =
[ [S∗

11] [S∗
11][R]T

[R][S∗
11] [R][S∗

11][R]T
]

(22.31)

where [R] is a matrix generated by static equilibrium. As an example, considering a member of
a plane frame (Figure 21.2), we have

[R] =
⎡
⎢⎣

−1 0 0

0 −1 0

0 l −1

⎤
⎥⎦ (22.32)

Here, the elements in the first column of [R] are values of forces at coordinates 4∗, 5∗, and 6∗
in equilibrium with F∗

1 = 1. Similarly, the second and third columns correspond to F∗
2 = 1 and

F∗
3 = 1 respectively.
The submatrix [S∗

11] can be determined by

[S∗
11] = [f ]−1 (22.33)

where [f ] is the flexibility matrix of the member when it is treated as a cantilever fixed at the
second node. Any element fij of the flexibility matrix can be calculated by the unit-load theorem
(Section 7.6):

fij =
∫

NuiNuj
dl
Ea

+
∫

MuiMuj
dl
EI

+
∫

VuiVuj
dl
Ga r

+
∫

TuiTuj
dl
GJ

(22.34)

where N, M, V , and T are axial force, bending moment, shearing force, and twisting moment
respectively; subscripts ui and uj refer to the effect of unit force Fi = 1 and Fj = 1 respectively,
applied separately at coordinate i and j; E is the modulus of elasticity in tension or compression,
and G is the modulus of elasticity in shear; a, I, and J are, respectively, the cross-sectional
area, second moment of area, and torsion constant; and ar is the reduced area of the cross
section (see Section 7.3.3).

When the cross-sectional properties vary arbitrarily, the integrals in this equation are evaluated
numerically. Substitution in Eqs. 22.33 and 22.31 generates the stiffness matrix of the member.

Example 22.4: Horizontal curved grid member
Generate the stiffness matrix for a horizontal grid member curved in the form of circular
arc of radius r (Figure 22.10a). Consider deformations due to bending and torsion only.
The member has a constant cross section with GJ/EI = 0.8; θ = 1 radian.
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θ

1∗
(down)

4∗
(down)

5∗

6∗

3∗ 3∗
2∗

1∗
(down)

4∗
(down) 5∗

6∗

α

θ

2∗

(a) (b)

r

Figure 22.10 Top view of a curved grid member. (a) Coordinate system. (b) Member fixed at one end
to generate the flexibility matrix.

A unit load applied at coordinate 1, 2, or 3 on the cantilever in Figure 22.10b produces
the following internal forces:

Mu1 = −rs Mu2 = s Mu3 = c (22.35)

Tu1 = r(1 − c) Tu2 = c Tu3 = −s (22.36)

where s= sinα and c=cosα, with α defined in Figure 22.10b. The elements of the flexibility
matrix of the cantilever shown in Figure 22.10b are given by (Eq. 22.34)

fij = r
EI

∫ θ

0
MuiMujdα + r

GJ

∫ θ

0
TuiTujdα (22.37)

The flexibility matrix can thus be considered as

[f ] = [fM] + [fT ] (22.38)

where [fM] and [fT ] represent bending and torsion contributions to be calculated by the
first and second term of Eq. 22.37 respectively.

Substitution of Eqs. 22.35 and 22.36 into Eq.22.37 and evaluation of the integrals gives

[fM] = r
EI

⎡
⎢⎣

0.2727r2 symmetrical

−0.2727r 0.2727

−0.3540r 0.3540 0.7273

⎤
⎥⎦

[fT ] = r
GJ

⎡
⎢⎣

0.0444r2 symmetrical

0.1141r 0.7273

−0.1057r −0.3540 0.2727

⎤
⎥⎦
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and

[f ] = r
EI

⎡
⎢⎣

0.3282r2 symmetrical

−0.1300r 1.1818

−0.4861r −0.0885 1.0682

⎤
⎥⎦

Considering the reactions at the fixed end of the cantilever shown in Figure 22.10a when
unit forces are applied separately at each of coordinates 1∗, 2∗, and 3∗, we write

[R] =
⎡
⎣ −1 0 0

−r(1 − c) −c s
rs −s −c

⎤
⎦

where c and s are cos θ and sin θ respectively.
Inversion of [f ] and substitution in Eq. 22.31 gives

[S∗] = EI
r

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12.158/r2

1.763/r 1.107 symmetrical
5.679/r 0.894 3.595

--- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
−12.158/r2 −1.763/r −5.679/r 12.158/r2

−1.763/r −0.656 −0.069 1.763/r 1.107
5.679/r 0.069 2.084 −5.679/r −0.894 3.595

--
--

--
--

--
--

--
--

--
--

- ⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

22.9 General

The techniques presented in Chapters 21 and 22 can be used to analyze fairly large structures
idealized as bars or other finite elements. There exist more sophisticated techniques to make
optimum use of computer storage and to minimize computing time.

The problems given below are related to Chapters 21 and 22.

Problems

22.1 Change the space truss of Prob. 3.14 into a space frame with rigid joints. Assume that each
member has a hollow rectangular cross section, arranged so that at least two opposite

Typical member
cross-section

1–1

z*

x*
x*

y*

1

1

Prob. 22.1
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sides are in vertical planes. With this arrangement, local axis y∗ (see figure here) for each
member will be parallel to one of the global axes. Generate the transformation matrices
[t] for members AC and DG, which have local x∗ axes along AC and DG. The global
x, y, z axes are indicated in the figure for Prob. 3.14.

22.2 The right-hand end of the plane frame member in Figure 21.2 is subjected to prescribed
displacements {D}={u, ν, θ} in global x, y, z directions, while the displacements are pre-
vented at the left-hand end. The corresponding member end-forces, in local coordinates,
can be expressed as {Ar} = [G] {D}. Generate matrix [G].

22.3 Find the forces at the ends of member CD of the plane frame of Prob. 5.16 corresponding
to a unit downward displacement of D while the displacements are prevented at C.
Consider the end-forces in local directions as shown in Figure 21.2, with the first three
coordinates at C. Ignore deformations due to shear.

22.4 Use the answer of Prob. 22.2 to calculate the member end-forces {Ar} of member 1 of
the frame in Figure 21.5 due to u = 0.2b and ν = 0.5b at the bottom end while the
displacements are prevented at the top end. The answers to this problem are given in the
last row of Table 21.2 (see Example 21.2).

22.5 Use Eq. 21.41 to verify the reactions determined at node 4 in Example 21.5 for loading
case 3, Figure 21.4.

22.6 Use the nodal displacements determined in Example 21.5 to calculate the end-forces for
member 4 in the truss of Figure 21.4 due to a rise in temperature of the same member
(loading case 2).

22.7 Analysis of the frame in Figure 21.5 for the loads shown gives the following displacements:
{D}=10−3{−68.14×10−6, 8.119×10−6, −0.1601×10−6, 39.83, 8.119, 0.7198, 38.25,
5.941, −0.4722, 27.28 × 10−6, 5.941 × 10−6, 0.6186}. The displacements are listed in
the order u,ν, θ for nodes 1, 2, 3, and 4. In obtaining the solution, the displacements at
the supports were prescribed as indicated by Eq. 21.39. Find:
(a) The reactions at node 1 using Eq. 21.40 and check the results by Eq. 21.41.
(b) The forces at the ends of member 2.

22.8 Generate the stiffness matrix for a member of a plane frame corresponding to the coordin-
ates in Figure 21.2, assuming that the member has a rectangular cross section of width b
and a depth which varies as shown in Prob. 11.8.

22.9 The stiffness matrix of a grid member shown in Figure 21.2 is given by Eq. 21.12. Adjust
the stiffness matrix so that it will correspond to coordinates 5∗ and 6∗ rotated through
an angle γ in the clockwise direction, without a change in the remaining coordinates.

22.10 Derive the stiffness matrix for a member of a plane truss with the coordinates as shown.
Verify that when α1 = α2 = α, [S] will be given by Eq. 21.23.

1

α1

2

3
α2

4

Prob. 22.10

22.11 The figure represents the top view of a typical panel of a horizontal pipeline composed of
an infinite number of identical panels. Assuming that, in each panel, the pipe has supports
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at A, B, C, and D, which can provide vertical reaction components only, find θx and
θz at B. Obtain the bending moment and twisting moment diagrams for EBH due to
uniform downward load of q per unit length, representing the self-weight of the pipe and
its contents. Take GJ/EI = 0.8. (By symmetry, the unknown displacement components
can be reduced to two.)

(down)

G
A

b b

F

b

D I

E

B H C

y
x

z

Typical panel repeated over equal
intervals of length = 4b

b—
2

b—
2

b—
2

b—
2

Prob. 22.11

22.12 Solve Prob. 22.11 for a uniform rise in temperature of T degrees. The coefficient of
thermal expansion is α; the cross-sectional area of the pipe is a=100l/b2. Do not consider
the self-weight of the pipe in this problem.

22.13 The figure is a top view of a horizontal beam EF subjected to a gravity load of q per
unit length. AB and CD are rigid bars connecting E and F to supports at A,B,C, and D
which can provide vertical components only. Obtain the bending moment and twisting
moment diagrams for EF, assuming GJ/EI =0.6. Take advantage of symmetry to reduce
the unknown displacement components to one. (This structure may be considered as a
simplified idealization of a bridge girder over skew supports.)

A

l

D

CF

EB

30° 30°

l /10
l /10

Prob. 22.13

22.14 The figure is a top view of a horizontal beam EF subjected to a gravity load of q per unit
length. AB, CD, and GH are rigid bars connecting E,O, and F to supports at A,B,C,D,G,
and H which can provide vertical components only. Obtain the bending moment and
twisting moment diagrams for EF, assuming GJ/EI =0.6. Also find the reactions at sup-
ports G and H. Take advantage of cyclic symmetry to reduce the unknown displacement
components to one.

22.15 The figure is the top view of a horizontal grid. Find the displacements at node B due to the
self-weight of the members of q per unit length. All members have the same cross section,
with GJ = 0.6EI. Take advantage of symmetry to reduce the unknown displacement
components to three.
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30° 30° 30°

A

E

B

l/10

l/10

l
H

G
O

l
D

C
F

Prob. 22.14

b b b

K

H

D

J
0.3b

For all members, GJ/EI = 0.6 and EI = constant

0.3b

0.3b

0.3b

G

CB

F
E

L

A

I
3

(down)
1 2

Prob. 22.15

22.16 The grid of Prob. 22.15 is subjected to a downward force P at each of B and C.
Replace the actual load by symmetrical and antisymmetrical components and perform
analyses for a quarter structure to determine the three displacement components at
B and F.

22.17 The figure is the top view of a horizontal grid with all members subjected to a uniform
downward load of q per unit length. Find the displacement components at node E by
analyzing part AEF, considering cyclic symmetry. Also, take advantage of symmetry
about an appropriate plane to reduce the unknown displacement components to two. All
members have same length l and the same cross section, with GJ/EI = 0.5.

45° 45°

45°45°

B
z

A

FE

GH

D C

y
x

Prob. 22.17
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22.18 The figure is the top view of a horizontal grid which has supports at A,B,C,D,E, and
F providing vertical reaction components only. Find the deflection at O and bending
moments at member ends marked 1, 2, and 3 due to uniform load of q per unit length on
all members. All members have the same length l and the same cross section. Considering
cyclic symmetry, perform the analysis for FAO. In addition, take advantage of symmetry
about an appropriate plane to reduce the number of unknown displacements to two.

0

60° 60°

1
A

B

CD

E

F

2

3

Prob. 22.18



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 23

Nonlinear analysis

23.1 Introduction

In linear analysis of structures, the equations of equilibrium are based on the undeformed
geometry existing before load application. This is sufficiently accurate for many practical
cases. However, some structures, such as cable nets and fabrics, trusses, and frames with
slender members may have large deformations, so that it is necessary to consider equilib-
rium in the real deformed configurations. This requires nonlinear analysis involving iteration,
which can be done using Newton-Raphson’s technique. The equilibrium equations are based
on trial displacement values, whose accuracy is improved by iterations, so as to satisfy the
equilibrium of the nodes or the members in their displaced positions or their deformed
shapes. Nonlinearity caused by large deformations is referred to as geometric nonlinear-
ity. We are dealing here with large deformation, but small strain with linear stress–strain
relationship.

Nonlinearity can also arise when the stress–strain relationship of the material is nonlinear in
the elastic or in the plastic range; this is called material nonlinearity.

A member subjected to a large axial force combined with transverse loads or to transverse end
translation or rotation represents a geometric nonlinear problem, often referred to as a beam-
column problem, or casually, a P-delta problem. The equilibrium of the member is considered
in its deformed shape, as was done in Chapter 13, where a quasi-linear analysis is employed for
the analysis of plane frames, including calculation of the critical buckling loads. This is achieved
by considering trial values of the axial forces in the members as constants unchanged by the
nodal displacements. In this way a linear analysis is possible because of the fact that, in the
presence of a constant axial force P, the magnitude of the transverse deflection y due to any
pattern of transverse loads α{q} varies linearly with the value of α (see the governing differential
Eq. 13.1).

It should be noted that the P-delta analysis of Chapter 13 ignores the change in length of
members associated with the transverse deflection. For example, the left-hand end of the mem-
ber in Figure 13.2a is assumed to acquire a unit transverse translation without change in the
magnitude of the axial force, in spite of the fact that the length of the curved deflected line is
longer than the initial length. Such an assumption may cause inaccuracy when the deformations
are very large. This source of error is avoided in the geometric nonlinear analysis presented in
this chapter for plane and space trusses, cable nets, and plane frames. The length of a deflected
member of a frame is assumed to be equal to the length of the straight line joining its ends
(the chord). In all these cases, the geometric nonlinearity caused by axial forces, particularly
prestressing of cables, can be of prime importance.

Material nonlinearity is considered in the computer plastic analysis of plane frames presen-
ted in Section 22.7. By assuming a bilinear moment–curvature relationship (Figure 18.3), the
structure behaves linearly until the first hinge has developed. Under increasing load the structure
continues to behave linearly, generally with a reduced stiffness, until a second hinge is formed.
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The same behavior continues under increasing load until sufficient hinges have developed to
form the failure mechanism.

In the present chapter there are presented1 several techniques that can be used in analysis of
structures in general, considering material nonlinearity. Simple examples of trusses and plane
frames will be analyzed.

23.2 Geometric stiffness matrix

When the load on a geometrically nonlinear structure is applied in small increments, the force
and displacement may be related by

[S]{�D} = {�F} (23.1)

where {�F} and {�D} are increments of forces and displacements at a coordinate system. The
stiffness matrix [S] changes with the change in geometry; moreover, in framed structures [S]
depends also upon the axial forces in the members. As {�F} tends to {0}, [S] tends to [St]
referred to as the tangent stiffness matrix and is expressed as the sum of two matrices:

[St] = [Se] + [Sg] (23.2)

where [Se] is the conventional elastic stiffness matrix, based on the initial geometry of the struc-
ture at the start of loading increment and [Sg] is the geometric stiffness matrix, to be generated
in this chapter for prismatic members of plane and space trusses and of plane frames with rigid
joints and for triangular membrane elements. [Sg] depends upon the deformed geometry of the
structure and the axial forces in the members. The displacements change node positions; thus,
[Se] also varies during the analysis.

When the members are subjected to initial forces (e.g. initial prestress in cables), the initial
geometric stiffness matrix is not null.

23.3 Simple example of geometric nonlinearity

As a simple example, consider a wire stretched between two points with initial tension N(0)

(Figure 23.1a). Define one coordinate at the middle as shown. Application of a force Q at the
coordinate produces a displacement D and the tension in the cable becomes N. Assuming elastic
material, the tension in the cable can be expressed as

N = N(0) + (2Ea/b){[b/2)2 + D2]1/2 − b/2} (23.3)

where b is the initial length of cable, a is the cross-sectional area, and E is the modulus of
elasticity.

Considering equilibrium of node B in the deflected position, we write

Q = 2ND[(b/2)2 + D2]−1/2 (23.4)

For this simple structure, with a single degree of freedom, a value of D can be assumed and
successive use of Eqs. 23.3 and 23.4 can give a plot of D versus Q, as done below in Example 24.1.

1 For additional reading on nonlinear analysis, see: Levy, R. and Spillers, W.R., Analysis of Geometrically
Nonlinear Structures, Chapman and Hall, New York, 1995, 199 pp. See also, Crisfield, M.A., Non-linear
Finite Element Analysis of Solids and Structures, Wiley, Chichester, England, 1991, Vol. 1, 345 pp.
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 b—
 2

 b—
 2

4N(0)
—
 b

A B

1

C

N(0) + ΔN N(0) + ΔN

N(0)

 

N(0) = 100 × 103 P ; E = 200 × 109 P/b2; a = 100 × 10–6 b2

N(0)

C

D
B′

θ
A

Q

(a)

(b)

28

24

20

16

12

8

4

0
0 10 20 30 40

D(10–3 b)

Q
(1

03 
P

)

Figure 23.1 A wire stretched between two fixed points. (a) Geometry and forces before and after
application of force Q. (b) Plot of force Q versus displacement D.

With multiple degrees of freedom (e.g. when the cable is carrying several concentrated forces),
the equilibrium can be checked by equations similar to Eq. 23.4 using trial values of {D}. The
solution is reached only when the force in each member (in various parts of the cable example)
satisfies an elastic relation similar to Eq. 23.3. This is achieved by iterative calculations discussed
in several sections of the present chapter.

Example 23.1: Prestressed cable carrying central concentrated load
Plot a graph of D versus Q for the structure in Figure 23.1, assuming .N(0) = 100 × 103P,
a=100×10−6b2, and E=200×109P/b2, where P and b are, respectively, force and length
units. What are the initial values S(0)

g and S(0)
t ?
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Substitution of selected values of D in Eqs. 23.3 and 23.4 gives the following values
of Q, which are plotted in Figure 23.1b:

Multiplier:

D 0 10 20 30 40 10−3b
Q 0 4.159 9.272 16.287 26.140 103P

The tangent stiffness St , that is, the slope of the graph Q–D, increases with an increase
in D. When D=0, N = N(0) and the tangent stiffness is (by differentiation of Eq. 23.4)

S(0)
t = 4N(0)

b
(23.5)

In this case,

S(0)
e = 0and S(0)

t = S(0)
g = 4N(0)/b = 400 × 103P/b

23.4 Newton-Raphson’s technique: solution of nonlinear
equations

Newton-Raphson’s rapidly converging technique is presented here for the solution of nonlinear
equations with a single variable or with n unknown variables. For this purpose, consider the
symmetrical plane truss in Figure 23.2a. Define a system composed of a single coordinate as
shown. It is required to find the displacement D, for a given value of the force F.

The D–F diagram (Figure 23.2b) can be obtained by assuming a value for D and determining
the value of F, following the equilibrium equation of the displaced node B′ (Figure 23.2a):

F = −2N sin θ (23.6)

where

sin θ = (h − D)/l (23.7)

l = [b2 + (h − D)2]1/2 (23.8)

N = Ea(l − lin)/lin (23.9)

Here, N is the axial force in the members; θ is the angle between the horizontal and the displaced
position of member (B′C), lin and l are the initial length (BC) and the length after deformation
(B′C) of each member, E is the modulus of elasticity, and a is the cross-sectional area. Linear
stress–strain relation for the material is assumed.

In a multi-degree-of-freedom system with n unknown displacements, it is not simple to assume
a set of displacements {D} to satisfy equilibrium and geometry equations similar to Eqs. 23.6



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nonlinear analysis 687

(a)

(b)

Initial position;
Initial length = lin

A

b b

B′

B

D, F

Displaced
position

θ

θin

C
h

F (force unit)

150

100

50

0

–50

–100

5 10 15 20 25

D
(length
unit)

F

G

I

H

B
C

A

E

J

Figure 23.2 Geometric nonlinearity of a plane truss with a single degree of freedom. (a) Plane truss.
Example values: b = 300 and h = 10 (length unit); Ea=8 × 106 (force unit). (b) Force
versus displacement at coordinate 1.

and 23.9 at all nodes and for all members. The problem can be solved by iteration, which is
explained first with reference to the single-degree-of-freedom system in Figure 23.2a.

In the present section, we limit our discussion to the case when h is small compared to lin
(Figure 23.2a); the angle θin between the horizontal and the initial position of BC is small
and the geometric nonlinearity is too important to be ignored. Crisfield2 gives the following
approximate relation between F and D:

F � (Ea/l3
in)(2h2D − 3hD2 + D3) (23.10)

2 See Crisfield, M.A., mentioned in footnote 1 of this chapter.
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We can verify that Eq. 23.10 satisfies approximately Eq. 23.6 for values of D in the range
considered (0≤D≤2.5h), assuming as an example b=300 and h=10 (length unit) respectively,
and Ea = 8 × 106 (force unit). The second moment of area of the cross section is considered to
be sufficiently large to preclude buckling of individual members.

To determine D corresponding to a specified value of F by Newton-Raphson’s technique,
Eq. 23.10 is rewritten:

g(D) = (Ea/3
in)(2h2D − 3hD2 + D3) − F = 0 (23.11)

For the correct value of D, the function g(D) should be zero. We start by an estimated answer
D(0), for which g(D) is a nonzero value representing an out-of-balance force. A more accurate
value of D is given by the recursion equations

D(1) = D(0) + �D (23.12)

Here,

�D = −[St(D(0))]−1 g(D) (23.13)

and St(D(0)) is the value of the tangent stiffness when the value of the unknown is D(0). The
tangent stiffness can be determined by differentiation:

St = dF/dD (23.14)

Calculating g with a trial value of D and determining an improved estimate of D by Eq. 23.12
represent one iteration cycle. The cycle is repeated until the out-of-balance force is sufficiently
small. The procedure converges rapidly as demonstrated below.

As an example, consider the structure in Figure 23.2; it is required to find the value of D when
F = 90. The tangent stiffness is (by differentiation of Eq. 23.10)

St = dF/dD = (Ea/l3
in)(2h2 − 6hD + 3D2) (23.15)

This equation applies only for the simple truss in Figure 23.2, with θin �1.0. General equations
which can be used for plane or space trusses are derived in Section 23.6.

At D=0, St =59.16. We use this value to obtain the approximate answer, corresponding to
linear analysis: D(0) = (59.16)−1(90)=1.52. With D = 1.52, the out-of-balance force and the
tangent stiffness are (Eqs. 23.11 and 23.15)

g(D(0)) = −19.54(force unit) St(D(0)) = 34.23(force/length)

The improved estimate of D at the end of the first cycle is (Eqs. 23.12 and 23.13)

D(1) = 1.52 − (34.23)−1(−19.54) = 2.09(length unit)

The second and third iteration cycles give, respectively, D = 2.18 and D = 2.19. The latter
value is accurate to two decimal places.

The above procedure, represented in Figure 23.3, can be used to find points on the curve AB
before reaching the buckling load, corresponding to point C in Figure 23.2b. At this point the
iteration fails because St =0 and its inverse cannot be used in Eq. 23.13. If a model of the structure
is tested experimentally, it would be possible to follow the path AB by increasing the value of
F up to a value just below the buckling load; the structure will then suddenly snap through to
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F (force unit)

100

50

0 1 2 3 4 5
D

(length
unit)

Same
as part AB
of the graph
in Fig. 23.2b

B

E

H G

C

F = 90 D
 =

 1
.5

2

D
 =

 2
.0

9
–g

 =
 2

.4
2

–g
 =

 1
9.

54

A

Figure 23.3 The Newton-Raphson iterative procedure applied to the structure in Figure 23.2a. Two
iteration cycles are shown; the third iteration converges to the solution D = 2.19 (point E).

reach the equilibrium position represented by point I. The path CHEFI can be obtained only
by a displacement-controlled experiment.

The same path can be followed analytically by appropriate selection of the trial values of D. We
can verify that the values D=6.55 and D=21.27 (length unit) are valid answers corresponding
to F =90 (force unit) (points H and G in Figure 23.2b).

When Newton-Raphson’s technique is employed to solve a system of n equations, each of
Eqs. 23.12 to 23.14 becomes a system of n equations:

{D}(1) = {D}(0) + {�D} (23.16)

{�D} = −[St({D}(0))]−1{g} (23.17)

[St] =

⎡
⎢⎢⎣

∂F1/∂D1 ∂F1/∂D2 . . . ∂F1/∂Dn

∂F2/∂D1 ∂F2/∂D2 . . . ∂F2/∂Dn

. . .

∂Fn/∂D1 ∂Fn/∂D2 . . . ∂Fn/∂Dn

⎤
⎥⎥⎦ (23.18)

23.4.1 Modified Newton-Raphson’s technique

In practical nonlinear analysis, the external forces are introduced in stages; Newton-Raphson’s
technique is employed to reduce the out-of-balance forces {g} to tolerably small values before
introducing a new stage. The tangent stiffness matrix [St] is determined by considering the
geometry and forces in the members at the start of a loading stage; the same matrix [St] can be
used in the iteration cycles, in order to save computing a new stiffness matrix in each cycle.

For application of Eq. 23.17, [St] must be nonsingular. The matrix [St] can become singular
when instability is reached, for example, because of buckling of the system.

Figure 23.3 can also be used to explain the difference between Newton-Raphson’s tech-
nique and the modified Newton-Raphson’s technique. Point E on the curve represents the value
D=2.19 (length unit) corresponding to F =90 (force unit) on the structure in Figure 23.2a. The
values of D obtained in three iteration cycles by Newton-Raphson’s technique in Section 23.4
are: 1.52, 2.09, 2.18, and 2.19. The line AB (Figure 23.3) with slope S(0)

t = 59.16 intersects the
line F = 90 at D = 1.52; the line CG with slope (St)at D=1.52 = 34.23 intersects the line F = 90 at
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D=2.09; the second and third iterations cannot be represented in Figure 23.3 because D=2.09
is very close to the exact answer.

If the modified Newton-Raphson’s technique is used, line CG in the first cycle will be replaced
by CH, whose slope is 59.16, and the improved value of D at the end of the first cycle will be
[1.52 − (59.16)−1(−19.54)] = 1.85. More cycles will be required to reach the correct answer.
We can verify the following answers for D, determined in seven cycles: 1.52, 1.85, 2.00, 2.08,
2.13, 2.15, 2.17, 2.18.

23.5 Newton-Raphson’s technique applied to trusses

The analysis discussed below applies to plane and space trusses and cable nets. Cable nets can
be treated as trusses, provided that the cables are pretensioned so that the members remain in
tension after the nodal displacements. As usual, the external forces must be applied only at the
nodes. Thus, the self-weight of a truss member or of a cable must be represented in the analysis
by concentrated forces at the nodes. With this assumption, a cable is idealized as composed of
straight segments between the nodes. The tangent stiffness of a cable segment is the same as
that of a truss member with the same tensile force, cross-sectional area, and length, but because
a cable segment cannot carry a compressive force, its tangent stiffness is null whenever, in the
analysis, the force in the segment becomes compressive.

Consider a plane or a space truss with m members and n degrees of freedom, representing
nodal displacements in directions of global axes (x, y) or (x, y, z); n is two or three times the
number of nodes in a plane truss or a space truss respectively. It is required to find the nodal
displacements {D} and the change in member forces {�N} due to external applied loads and
temperature variations. The geometric nonlinearity is not to be ignored.

Assume that in the initial state the nodal displacements {D}n×1 = {0}, the member
lengths={lin}m×1 and the forces in the members={Nin}m×1; the initial member forces may
be caused, for example, by prestressing or by initial nodal forces {Fin}. The analysis discussed
below is not concerned with the displacements occurring during the initial prestressing or nodal
forces to produce the forces {Nin}. Unlike linear analysis, the initial member forces are required
in the input data because the tangent stiffness of individual members depends upon the geometry
and material properties as well as on the magnitude of the axial forces (see Section 23.6).

As in linear analysis (Section 4.6), the forces {F} necessary to prevent the nodal displacements
are determined. For the consideration of geometric nonlinearity, the forces at the nodes must be
in equilibrium in their displaced position. This condition is expressed by

−[G]T {N} = −{F} + {Fin} (23.19)

[G]m×n is a geometry matrix composed of one row for each member. The kth row contains
the components, in the directions of the global axes of the two equal and opposite forces exerted
by the member, on the two nodes i and j at its ends, when �Nk = 1. Thus, the kth row of [G] is

i j

[· · · [t]k · · · [−t]k · · · ]
(23.20)

This row is composed of submatrices whose number equals the number of nodes; all submatrices
except the ith and the jth are null. The submatrix [tk] is the transformation matrix given by
Eqs. 21.14 and 21.15 and repeated here:

[t]k = [λx∗x λx∗y]k(plane truss member k) (23.21)
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and

[t]k = [λx∗x, λx∗y λx∗z]k (space truss member k) (23.22)

where λx∗x, λx∗y, and λx∗z are cosines of the angles between the global axes x, y, and z and the
vector x∗ joining node i to node j in their displaced positions (Figure 21.2). Thus, [G] depends
upon the unknown displacements {D}.

Assuming that the material is linearly elastic, the force in any member can be expressed as
(positive when tensile)

N = Nin + �N �N = Nr + Ea
lin

(l − lin) (23.23)

where E is the modulus of elasticity, a is the cross-sectional area, lin and l are the member
lengths before and after the displacements of the nodes, and Nr is the force in the member due
to temperature variation with the nodal displacements r artificially restrained.

No approximation needs to be involved in calculating the change in length of members;
Eqs. 21.3 or 21.6 can be applied to give lin and l, using the x, y, and z coordinates of the
nodes in their initial and displaced positions respectively. Thus, {N} generated by Eq. 23.23 is
dependent upon the unknown displacements {D}.

The iterative Newton-Raphson’s technique can be used to determine {D} to satisfy Eq. 23.19.
Each iteration cycle involves the calculations specified below.

23.5.1 Calculations in one iteration cycle

The cycle starts with trial displacements {D(0)} and the corresponding out-of-balance forces
{g(0)}. The cycle terminates with more accurate displacements {D(1)} and smaller out-of-balance
forces {g(1)}. A cycle is completed in four steps:

Step 1 Generate the structure stiffness matrix [S(0)
t ], expressed as the sum of the elastic stiffness

matrix [S(0)
e ] and the geometric stiffness matrix [S(0)

g ]. Both matrices are dependent upon the
displacements {D(0)}; the latter matrix also depends on member forces {N(0)}. The superscript
(0) refers to values known at the start of the current cycle. The geometric stiffness matrices
of individual members of plane and space trusses are derived in Section 23.6. Assemblage of
the stiffness matrices of members to obtain the stiffness matrix of the structure is discussed in
Section 21.9.

Step 2 Determine the displacement increments {�D} by solving

[S(0)
t ]{�D} = {g(0)} (23.24)

Step 3 Calculate the new, more accurate displacements:

{D(1)} = {D(0)} + {�D} (23.25)

Using the new displacements {D(1)} and Eq. 23.23, generate new member forces {N(1)}. For this
purpose, the (x, y) or (x, y, z) coordinates of the nodes in their new displaced positions must be
calculated.

Step 4 Compute the new out-of-balance forces:

{g(1)} = –{F} + [G(1)]T {N(1)} + {Fin} (23.26)
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Here, [G(1)] and {N(1)} are to be generated by Eqs. 23.20 and 23.23 respectively, based on the
new position of the nodes (with displacements D(1)). This terminates the iteration cycle.

If the out-of-balance forces calculated at the end of the cycle are sufficiently small, the analysis
is complete. If not, a new cycle is started with {D(1)} and {g(1)} equal to the improved values
determined at the end of the preceding cycle.

23.5.2 Convergence criteria

The iteration cycles discussed above may be terminated when the following criterion is satisfied:

({g}T {g})1/2 ≤ β({F}T {F})1/2 (23.27)

where β is tolerance value, say, 0.01 to 0.001. This criterion ensures that the out-of-balance
forces are small compared to the forces {F}.

When the analysis is for the effect of prescribed displacements, Eq. 23.27 cannot be used
because {F} can be equal to {0}, while the nonzero forces are only at the coordinates where the
displacements are prescribed (including the supports). In such a case, the iteration cycles may
be terminated when

({g}T {g})1/2 ≤ β({R}T {R})1/2 (23.28)

where {R} is vector of the forces at the coordinates for which the displacements are prescribed,
including the support reactions.

As mentioned in Section 23.4.1, in practical use of nonlinear analysis, the load is introduced
in stages, with iterations and convergence achieved in each stage. Slow convergence or its lack
indicates instability, which can be monitored by looking for a negative or zero value on the
diagonal element of the tangent stiffness matrix [St] during the Gauss elimination process to
solve Eq. 23.24. Thus, by introducing the load in stages, the analysis can give a range of the
load level in which buckling occurs.

The Newton-Raphson rapid convergence occurs when the trial values are near the correct
answer. This is why convergence occurs more quickly when the load is applied in increments; in
some problems, convergence may fail when the full load is applied in one stage.

As mentioned above, each iteration cycle is started with trial displacements {D(0)}, which are
taken as displacements determined in the preceding iteration cycle. In the first cycle of the first
load stage, the starting displacements may simply be {D(0)} = {0}.

23.6 Tangent stiffness matrix of a member of plane or
space truss

The tangent stiffness matrix required in the Newton-Raphson iteration is an assemblage of the
tangent stiffness matrices of individual members. We derive below the tangent stiffness matrix
[St]m of a member of a space truss; deletion of appropriate rows and columns from this matrix
results in the tangent stiffness matrix for a plane truss member.

Figure 23.4a represents a member of a space truss and a system of coordinates in directions
of global axes x, y, and z. It is required to determine the tangent stiffness matrix relating small
increment of forces {�F} to the corresponding displacements {�D}:

[St]m{�D} = {�F} (23.29)

Before application of {�F}, the member is assumed to have an axial force N, positive when
tensile. We derive first the tangent stiffness matrix [St] for the member AB with end B supported
as shown in Figure 23.4b.
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(a)

(c)

(b)

(d)
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Figure 23.4 Derivation of the geometric stiffness matrices for a member of a plane or space truss with
an axial force N. (a) Coordinate system for a space truss member. (b) Same as (a) but with
end B supported. (c) Free-body diagram of node A. (d) Coordinate system for a plane
truss member.

The following equilibrium equation applies to node A treated as a free body (Figure 23.4c):

[t]TN = −{F} (23.30)

where [t] is the transformation matrix (Eq. 21.15):

[t] = [λx∗x λx∗y λx∗z] (23.31)

The terms λ are cosines of the angles between the member local axis x∗ in its position before
application of {�F∗} and the global axes x,y, and z.

By definition, the tangent stiffness matrix can be expressed as

[St] =
[

∂

∂{D} {F}T
]T

(23.32)

This equation may be rewritten in the form

[St] =
⎡
⎣∂F1/∂D1 ∂F1/∂D2 ∂F1/∂D3

∂F2/∂D1 ∂F2/∂D2 ∂F2/∂D3

∂F3/∂D1 ∂F3/∂D2 ∂F3/∂D3

⎤
⎦ (23.33)

Substitution of Eq. 23.30 into Eq. 23.32 and performing the differentiation gives [St] = [Se]
when [t] is considered constant. However, when [t] is considered variable, the result will be:
[St] = [Se] + [Sg]. In linear analysis we assume [t] = constant and employ the elastic stiffness
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[Se] =
[
− ∂N

∂{D} [t]
]T

(23.34)

where ∂N/∂{D} = {∂N/∂D1, ∂N/∂D2, ∂N/∂D3}. For elastic material, we have for a truss
member

∂N
∂{D} = −Ea

l
[t]T (23.35)

Substitution of Eq. 23.35 into Eq. 23.34 gives the elastic stiffness matrix, used in conventional
linear analysis (see Eq. 21.25):

[Se] = Ea
l

[t]T [t] (23.36)

Considering both N and [t] as variables and substituting Eq. 23.30 in Eq. 23.32 gives the
tangent stiffness matrix

[St] =
[
− ∂N

∂{D} [t] − N
∂[t]
∂{D}

]T

(23.37)

The first term on the right-hand side of this equation is [Se]. Recognizing that
[St] = [Se] + [Sg](see Eq. 23.2), we conclude that the geometric stiffness matrix is

[Sg] =
[
−N

∂[t]
∂{D}

]T

(23.38)

Substitution of Eq. 23.31 in this equation gives

[Sg] = −N

⎡
⎣ ∂λx∗x/∂D1 ∂λx∗x/∂D2 ∂λx∗x/∂D3

∂λx∗y/∂D1 ∂λx∗y/∂D2 ∂λx∗y/∂D3

∂λx∗z/∂D1 ∂λx∗z/∂D2 ∂λx∗z/∂D3

⎤
⎦ (23.39)

The following geometry relations apply:

λx∗x = lx
l

λx∗y = ly
l

λx∗z = lz
l

l = (l2
x + l2

y + l2
z )1/2 (23.40)

∂

∂D1
= − ∂

∂lx

∂

∂D2
= − ∂

∂ly

∂

∂D3
= − ∂

∂lz
(23.41)

where lx, ly, and lz are the x,y, and z components of a vector of magnitude l directed from node A
to node B (Figure 23.4b).

Substitution of Eqs. 23.40 and 23.41 into Eq. 23.39 gives the geometric stiffness matrix for
the space truss member in Figure 23.4b:

[Sg] = N
l

⎡
⎣ 1 − λ2

x∗x symmetrical
−λx∗xλz∗y 1 − λ2

x∗y
−λx∗xλx∗y −λx∗yλx∗z 1 − λ2

x∗z

⎤
⎦ (23.42)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nonlinear analysis 695

Considering the fact that, for equilibrium, the forces at ends A and B are equal and opposite,
the matrices [Se] and [Sg] for the supported member in Figure 23.4b can be used to generate the
stiffness matrices for the space and plane truss members in Figures 23.4a and d. Simple deletion
of the rows and columns associated with the coordinates in the z direction reduces the stiffness
matrices for a space member to those of a member of a plane truss situated in the x–y plane. For
easy reference, the member stiffness matrices required for the nonlinear analysis of space and
plane trusses are listed below.

For a member of a space or a plane truss, the tangent stiffness matrix is (Figure 23.4a or d)

[St]m = [Se]m + [Sg]m (23.43)

[Se]m =
[ [Se] −[Se]

−[Se] [Se]
]

; [Sg]m =
[ [Sg] −[Sg]

−[Sg] [Sg]
]

(23.44)

For a space truss member, the elastic and geometric stiffness submatrices are

[Se] = Ea
lin

⎡
⎣ λ2

x∗x symmetrical
λx∗xλx∗y λ2

x∗y
λx∗xλx∗z λx∗yλx∗z λ2

x∗z

⎤
⎦ for [S̄g] see Eq. 23.42 (23.45)

where lin is the initial length.
For a plane truss member, the elastic and geometric stiffness matrices are

[Se] = Ea
lin

[
c2 cs
cs s2

]
; [Sg] = N

l

[
s2 −cs

−cs c2

]
(23.46)

where c=cosα and s= sinα; angle α and its positive sign convention are defined in Figure 23.4d.

Example 23.2: Prestressed cable carrying central concentrated load: iterative
analysis
Perform two Newton-Raphson iteration cycles to determine, for the prestressed cable in
Figure 23.1a, the deflection D at mid-point and the tension N in the cable when the trans-
verse force Q = 16P. Use the elastic and the geometric stiffness matrices in Eq. 23.46.
Take E = 200 × 106P/b2; a = 100 × 10−6b2; initial tension=100P; where P and b are,
respectively, force and length units.

Because of symmetry, the system has one degree of freedom shown in Figure 23.1a; use
of Eq. 23.46 gives the following stiffness for the structure:

Se = 4Ea
b

sin2 θ Sg = 2
(

N
l

)
AB′

cos2 θ

For this structure, the out-of-balance force is (Eq. 23.26)

g = Q − 2NAB′ sin θ

The angle θ is defined in Figure 23.1a.
We start the cycles with D = 0 and g = Q. The four calculation steps specified in

Section 23.5.1 are performed:
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Iteration cycle 1

1. D(0) = 0; g(0) = 16P; N(0)

AB′ = 100P; θ(0) = 0; sin θ(0) = 0; cos θ(0) = 1; lAB′ = 0.5b; Se = 0;
Sg = 400P/b; St = 0 + (400P/b) = 400P/b.

2. �D = (400/b)−1(16) = 0.04b.
3. D(1) = 0 + 0.04b = 0.04b.
4. Equation 23.23 gives NAB′ =163.9P; sin θ(1) =0.04[(0.04)2 + (0.5)2]−1/2 =79.7 × 10−3;

g(1) = −10.140P.

Iteration cycle 2

1. D(0) = 0.04b; g(0) = −10.140P; N(0)

AB′ = 163.9P; sin θ(0) = 79.7 × 10−3; cos θ(0) =
0.9968; lAB′ = 0.5016b; Se = 508.7P/b; Sg = 649.4P/b; St = 1158.1P/b.

2. �D = (1158.1/b)−1(−10.140) = −8.76 × 10−3b.
3. D(1) = (0.04 − 8.76 × 10−3)b = 31.24 × 10−3b.
4. Equation 23.23 gives NAB′ = 139.0P; sin θ(0) = 62.3 × 10−3;g(1) = −1.330P.

A third iteration gives: D = 29.7 × 10−3b; NAB′ = 135.3P. The exact answers satisfying
Eqs. 23.3 and 23.4 are: D = 29.6 × 10−3b; N = 135.2P.

23.7 Nonlinear buckling

Consider the plane truss in Figure 23.2a and assume that its individual members have sufficient
flexural rigidities such that buckling of individual members is precluded. In the analysis in
Section 23.4, we saw that the system becomes unstable and the structure snaps through when
point C on the F − D graph in Figure 23.2b is reached. This corresponds to D = 4.23 (length
unit) and F =114 (force unit). Thus, it can be concluded that the critical buckling value of F for
this system is Fcr = 114 (force unit).

The tangent stiffness corresponding to the single coordinate shown at B in Figure 23.2a is
(Eqs. 23.6 and 23.46)

St = Se + Sg (a)

or

St = 2Ea
l

s2 +
[
− F

sl

]
c2 (b)

where s= sin θ and c=cos θ , with θ being the angle between B′C (position of BC in the displaced
position) and the horizontal. The buckling load Fcr is the value of F that makes St = zero; thus,
we can write

F = 2Ea
s3

c2 (c)

We can verify that this equation gives Fcr = 114 (force unit) for θ = tan−1[(h − D)/b], with
h = 10,b = 300, and D = 4.23 (length unit).

The value of Fcr based on the displaced positions of the nodes is referred to as the nonlinear
buckling load. For shallow plane or space trusses the risk of buckling can be examined by
nonlinear analysis which considers equilibrium of the nodes in their displaced positions.

If we use Eq. (c) to calculate Fcr based on the initial geometry (with θin = tan−1(h/b)), we would
obtain the erroneous result Fcr = 593 (force unit), which is 5.2 times larger than the correct
answer. Calculation of the critical buckling load based on the initial geometry gives what is



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nonlinear analysis 697

referred to as the linear buckling load. For the single-degree-of-freedom system considered, the
buckling is calculated by setting St equal to zero and solving for the value of F. For a multi-
degree-of-freedom system, the determinant |St | is set equal to zero and the solution gives several
values of F of which the lowest is the critical value.

It can be shown3 that the nonlinear buckling load for the plane truss in Figure 23.2a is

Fcr = 2Ea(1 − c2/3
in )3/2 (d)

where cin = cos θin, with θin being the angle between BC (the initial position of the member) and
the horizontal.

23.8 Tangent stiffness matrix of a member of plane frame

In this section, we derive the tangent stiffness matrix [St]m for a plane frame member AB
(Figure 23.5a) with respect to coordinates at the two ends in the directions of global axes.

Global axes
(a)

(c)

(d)

(e)

(b)
x∗ and y∗ are

local axes
1
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4
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y A
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1

F 
∗

1

F 
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2
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2

2
1
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Figure 23.5 Derivation of tangent stiffness matrix for a plane frame member. (a) Coordinate system.
(b) Local coordinates at end A with end B fixed. (c), (d), and (e) Introduction of unit
displacements in direction of global axes at end A.

3 See the first reference in footnote 1 of this chapter.
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The tangent stiffness matrix relates small increments of forces {�F} to the corresponding
displacements {�D}:

[St]m{�D} = {�F} (23.47)

The member end-forces at A existing before applications of {�F} are {F∗} in the direction of
local axes (Figure 23.5b). We derive first the tangent stiffness matrix [St] for the member with
end B encastré, as shown in Figure 23.5b. The forces and displacements at coordinates 1, 2, 3
(Figure 23.5a) are related to the forces and displacements at coordinates 1∗, 2∗, 3∗ (Figure 23.5b)
by equations

{D∗} = [t]{D} {F} = [t]T {F∗} (23.48)

where [t] is transformation matrix (Eq. 21.16):

[t] =
⎡
⎣ c s 0

−s c 0
0 0 1

⎤
⎦ (23.49)

with c = cos α and s = sin α; where α is the angle between local axis x∗, before application of
{�F}, and the global x axis.

The tangent stiffness matrix can be derived by differentiation, as was done for truss members in
Section 23.6. However, an alternative approach is used here to derive the tangent stiffness matrix
[St] for the member in Figure 23.5b (with end B encastré) with respect to three coordinates in the
global directions (not shown in Figure 23.5b for clarity, but shown at end A in Figure 23.5a).
Figures 23.5c, d, and e show the deformed shapes of the member with small displacements
�D1 = 1,�D2 = 1, and �D3 = 1 respectively. The end-forces {F∗} existing before the introduc-
tion of the displacements, are shown in the figures, but the forces {�F} – in the global directions
– necessary for equilibrium in the three deformed configurations are not shown. By definition,
the tangent stiffness matrix Eq. 23.33 may be written in the form

[St] = Lim(�D)→{0}
[
(�D1)

−1{�F}1 (�D2)
−1{�F}2 (�D3)

−1{�F}3
]

(23.50)

where {�F}i represents force increments corresponding to displacement change �Di at
coordinate i while the displacement increments are zero at other coordinates.

To maintain equilibrium at end A, when �D1 = 1, the forces {�F∗} – in the x∗ and y∗
directions – must be added to the forces existing before displacement (Figure 23.5c). The force
increments {�F∗} are

{�F∗}�D1=1 =

⎧⎪⎨
⎪⎩

c(Ea/lin)

−2s(S + t)/l2

−s(S + t)/l

⎫⎪⎬
⎪⎭+ F∗

1

l

⎧⎪⎨
⎪⎩

0

s

0

⎫⎪⎬
⎪⎭+ F∗

2

l

⎧⎪⎨
⎪⎩

−s

c

0

⎫⎪⎬
⎪⎭ (23.51)

where E=modulus of elasticity, a= cross-sectional area, lin is the initial member length before
any deformation; S and t are the end-moments at A and B respectively, when a unit rotation is
introduced at A while B is encastré (Figure 23.5e). S and t are given by Eqs. 13.16 and 13.17
when the axial force is compressive, and by Eqs. 13.20 and 13.21 when the axial force is tensile,
l is member length before introducing �D1. In verifying Eqs. 23.51, note that as �D1 tends to
zero, the cosine of the angle between the chord A′B and the original member direction tends to
1.0. Also, note that F∗

1 is in the direction of the chord before and after displacement. Similarly,
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F∗
2 is perpendicular to the chord before and after displacement. Similarly, equilibrium equations

can be written for end A of the deformed beams in Figures 23.5d and e and the results combined:

[�F∗] = [{�F∗}�D1=1 {�F∗}�D2=1 {�F∗}�D3=1
]

(23.52)

[�F∗] =
⎡
⎢⎣

c(Ea/lin) s(Ea/lin) 0

−2s(S + t)/l2 2c(S + t)/l2 (S + t)/l

−s(S + t)/l c(S + t)/l S

⎤
⎥⎦+ F∗

1

l

⎡
⎣0 0 0

s −c 0
0 0 0

⎤
⎦

+F∗
2

l

⎡
⎣−s c 0

c s 0
0 0 0

⎤
⎦ (23.53)

The forces [�F∗] in local directions can be transformed to the global directions by Eq. 23.48
to give the tangent stiffness matrix for the beam in Figure 24.5b, corresponding to coordinates
at A, in global directions, shown in Figure 24.5a.

[St] = [t]T [�F∗] (23.54)

Combining Eqs. 23.50 to 23.54 gives

[St] = [Se] + [Sg] (23.55)

where [Se] is the elastic stiffness matrix

[Se] =
⎡
⎣c2Ea/lin + 2s2(S + t)/l2 symmetrical

sc[Ea/lin − 2(S + t)/l2] s2Ea/lin + 2c2(S + t)/l2

−s(S + t)/l c(S + t)/l S

⎤
⎦ (23.56)

where lin is the initial length of the member and [Sg] is the geometric stiffness matrix

[Sg] = F∗
1

l

⎡
⎣−s2 sc 0

sc −c2 0
0 0 0

⎤
⎦+ F∗

2

l

⎡
⎣ −2sc c2 − s2 0

c2 − s2 2sc 0
0 0 0

⎤
⎦ (23.57)

Considering the fact that the forces in each column of the stiffness matrices are in equilibrium,
the tangent stiffness for a plane frame member (Figure 23.5a) is generated:

[St]m = [Se]m + [Sg]m (23.58)

where [Se]m is the elastic stiffness matrix

[Se]m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c2Ea
lin

+ 2s2

l2 (S + t) symmetrical

cs

[
Ea
lin

− 2
l2 (S + t)

]
s2Ea
lin

+ 2c2

l2 (S + t)

− s
l
(S + t)

c
l
(S + t) S

−S11 −S12 −S13 S11

−S21 −S22 −S23 −S24 S22

− s
l
(S + t)

c
l
(S + t) t

s
l
(S + t) −c

l
(S + t) S

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(23.59)
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The parameters S and t are dependent upon the value of the axial force F∗
1. When F∗

1 = 0,
S =4EI/l and t =2EI/l, Eq. 23.59 becomes the same as Eq. 21.27; here, I is the second moment
of cross-sectional area.

The geometric stiffness matrix corresponding to the coordinates in Figure 23.5a is

[Sg]m =
[ [Sg] −[Sg]
−[Sg] [Sg]

]
(23.60)

where [Sg] is given by Eq. 23.57.
The tangent stiffness derived above differs from the stiffness matrices generated in Chapter 13

only by the presence of the last term containing F∗
2 in Eq. 23.57. Thus, if the angle α = 0 (s = 0;

c = 1) and the last term in Eq. 23.57 is ignored, [St] generated by the equations derived in this
section will be the same as that given by Eq. 13.19 when the axial force is compressive, or by
Eq. 13.23 when the axial force is tensile. Alternatively, if the stiffness matrix in Eq. 13.19 or
13.23 is transformed to correspond to global coordinates (by Eq. 21.19), the resulting matrix
will be the same as the matrix obtained by the equations derived in this section if the transverse
force F∗

2 is assumed equal to zero.
In derivation of [St]m (Eq. 23.58), the member local axis x∗ is assumed to be the chord joining

the member ends. However, in general, the member axis is curved due to earlier loading. The
difference between the chord and the curved member axis can be reduced by a division of the
member into segments. Unlike linear analysis, in nonlinear analysis of a frame, if, for example,
a member is represented by two elements, by adding a node at its mid-length, different results
(generally more accurate) will be obtained.

23.9 Application of Newton-Raphson’s technique to
plane frames

Consider a plane frame with m members and n degrees of freedom (n being three times the
number of nodes) subjected to forces applied only at the nodes. The members may also be
subjected to temperature changes. We discuss below the geometrically nonlinear analysis to
determine the displacements {D}n×1 and the corresponding changes in the member end-forces
caused by the applied forces combined with the thermal effects. First, the displacements are
artificially restrained by restraining nodal forces {F}n×1; in this state, the temperaturee change
produces member end-forces {F∗}r. The asterisk refers to the directions of the local axes x∗
and y∗.

At all stages of the analysis, the three forces at the second node of a member can be determined
from the three forces at the first node by the equilibrium equation (Figure 23.6a):

⎧⎨
⎩

F∗
4

F∗
5

F∗
6

⎫⎬
⎭

mem

= [R]mem

⎧⎨
⎩

F∗
1

F∗
2

F∗
3

⎫⎬
⎭

mem

; [R]mem =
⎡
⎣−1 0 0

0 −1 0
0 l −1

⎤
⎦

mem

(23.61)

where l is the member length at the stage considered; the subscript “mem’’ refers to an individual
member.

Define vector {F∗}3m×1 containing the required member restraining forces at end 1 of all
members. In addition to initial geometry of the structure, the elasticity modulus E, the cross-
sectional area a, the second moment of area I, and {F∗

in}3m×1 are included in the input data. {F∗
in}

contains initial member end-forces at the first node of all members. Assume that in the initial
state the displacements {D}n×1 = {0}, the member lengths= {lin}m×1. The initial member forces
may be caused, for example, by prestressing or by initial nodal forces= {Fin}n×1. The analysis
discussed below is to determine the displacement changes {D}n×1. It is also required to determine
the final member end-forces.
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Figure 23.6 Member end-forces. (a) Definition of symbols and positive directions of {F∗}. (b) A typical
member in initial and displaced positions.

The same procedure of analysis for trusses as discussed in Sections 23.5 and 23.5.1 can be used,
with the following differences. Equation 23.19 for equilibrium of the nodes is to be replaced by

[G]T {F∗
final}3m×1 = −{F}n×1 + {Fin}n×1 (23.62)

where {F∗} represents the changes in end-forces at the first node of all members from the initial
stage to the final values, {F∗

final}. Note that {F∗} �= {F∗
final} − {F∗

in} because not all the initial and
the final member end-forces are in the same directions.

The geometry matrix [G]3m×n can be divided into m submatrices, one for each member. The
submatrix for the kth member is

[
i j

. . . [t]k . . . [t]k . . .

]
(23.63)

In this equation the 3 × n submatrix is partitioned into submatrices, each 3 × 3, all of which are
null with the exception of the ith and the jth, where i and j are, respectively, the first and second
node of the kth member. The submatrix [t]k is the same as the transformation matrix given by
Eq. 23.49. The submatrix [t]k is given by

[t]k = [t]k[R]T =
⎡
⎣−c −s sl

s −c cl
0 0 −1

⎤
⎦ (23.64)

where c = cos α and s= sin α,α being the angle between the global x axis and the local member
axis x∗ after deformation.

After r iteration cycles the axial forces at member ends become

F∗(1)

1r = F∗(1)

1in − (Ea/lin)(l(1)
r − lin); F∗(1)

4r = −F∗(1)

1r (23.65)

As before, the superscript (1) refers to the state at cycle end. The first subscript (e.g. 1 or 4)
refers to the local coordinates (Figure 23.6a), the second subscript r refers to the cycle number.
Approximate values of the end moments F∗

3 and F∗
6 can be determined by summation of the
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increments occurring in the iteration cycles. Then, the values of F∗
3 and F∗

6 can be employed to
determine the corresponding equilibrating forces F∗

2 and F∗
5:

F∗(1)

3r = F∗
3in +

r∑
i=1

[S(0)(θ
(1)

A − θ
(0)

A ) + t(0)(θ
(1)

B − θ
(0)

B )]i

F∗(1)

6r = F∗
6in +

r∑
i=1

[S(0)(θ
(1)

B − θ
(0)

B ) + t(0)(θ
(1)

A − θ
(0)

A )]i

F∗(1)

2r = (F∗(1)

3r + F∗(1)

6r )/l(1)
r

F∗(1)

5r = −F∗(1)

2r

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(23.66)

where θA and θB are the angles between the chord connecting ends A and B and the tangents of
the deflected member at the same sections (Figure 23.6b). The subscript i refers to the iteration
cycle. The magnitudes of the end-rotational stiffness S(0)

i and the carryover moment t(0)

j are

dependent upon the value of the axial force at the start of the ith cycle (= F(0)

4i ).
The out-of-balance forces at the end of each cycle are determined by Eq. 23.67 (corresponding

to Eq. 23.26 used for trusses):

{g(1)} = −{F} − [G(1)]T {F∗(1)

final} + {Fin} (23.67)

The end-forces {F∗
3 and F∗

6}(1)
r and the equilibrating forces {F∗

2 and F∗
5}(1)

r may be determined
more accurately by using the value of the axial force (F∗(1)

4r ) to calculate values of S(1)
r and t(1)

r

employing these combined with the final end rotations to determine the member end moments:

F∗(1)

3r = F∗
3in + S(1)

r (θ
(1)

Ar − θAin) + t(1)
r (θ

(1)

Br − θBin)

F∗(1)

6r = F∗
6in + S(1)

r (θ
(1)

Br − θBin) + t(1)
r (θ

(1)

Ar − θAin)

F∗(1)

2r = (F∗(1)

3r + F∗(1)

6r )/l(1)
r

F∗(1)

5r = −F∗(1)

2r

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(23.68)

However, employing Eqs. 23.68, successively, to replace Eqs. 23.66 may hamper convergence.
This is so because the values of S(0) and t(0) employed in the generation of the stiffness matrix
are not the same as S(1) and t(1) used in the calculation of the member end-forces and the
corresponding out-of-balance forces.

In a computer program named NLPF (Nonlinear Analysis of Plane Frames), described briefly
in Appendix L, Eqs. 23.66 are used during the iteration with S = 4EI/lin and t = S/2, where
E is the modulus of elasticity and I is the second moment of cross-sectional area. This implies
that the influence of axial force on member end-rotational stiffness and carryover moment is
ignored. After convergence, the analysis gives approximate values of the axial forces, which are
subsequently employed to determine more accurate values of S and t (Eqs. 13.16, 13.17, 13.20,
and 13.21) and new member end-forces are calculated by Eqs. 23.65 and 23.68. Application of
Eq. 23.67 commonly gives new out-of-balance forces, which are eliminated by a few refinement
iteration cycles in which S and t values are unchanged. Usually the refinement cycles produce
small changes in the values of axial forces which are too small to justify further analysis. However,
if this is not the case, the refinement cycles are repeated using an updated set of axial forces.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nonlinear analysis 703

Example 23.3: Frame with one degree of freedom
Perform two iteration cycles to determine the vertical downward displacement D at joint
B of the toggle shown in Figure 23.7a due to a load Q = 120. What are the corresponding
forces at the ends of member BC? Take Ea = 8.40 × 106;EI = 26.6 × 106. The data (with
units newton and mm) represent a model in an experiment reported by Williams.4

We give below the equations which will be used in the iteration cycles. Because of sym-
metry, there is a single degree of freedom, representing the deflection D at B. The elastic
and the geometric stiffnesses are (derived by Eqs. 23.59 and 23.60)
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Figure 23.7 Plane frame of Example 23.3. (a) Initial shape. (b) Deformed shape of the right-hand half.
(c) Comparison of analytical and experimental results.

4 Williams, F.W., “An Approach to the Nonlinear Behaviour of the Members of a Rigid-Jointed Plane
Framework with Finite Deflections,’’ Quarterly Journal of Mechanics and Applied Mathematics, XVII,
Pt. 4, 1964, pp. 451-469. Alternative methods which account for the geometric nonlinearity are applied
to analyze the same model in Salami, A.T. and Morley, C.T., “Finite Element Analysis of Geometric
Nonlinearity in Plane Frameworks,’’ The Structural Engineer, 70, (15), (1992), pp. 268–271.
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Se = 2(s(0))2(Ea/lin) + [4(c(0))2/l2](S(0) + t(0)) (a)

Sg = −2(c(0))2(F∗(0)

1 /l(0)) + 4s(0)c(0) (F∗(0)

2 /l(0)) (b)

where the superscript (0) refers to the geometry and member end-forces known at the start
of the cycle; s = sin α, c = cos α, α is the angle between the x direction and the chord
B′C, {F∗} are forces at end B′ (Figure 23.7b), S and t are the end-rotational stiffness and
the carryover moment (the values of S and t are dependent upon the axial force (Eqs. 13.16
and 13.17)), lin is the initial length of BC, and l(0) is the length of the chord B′C.

Each cycle starts with trial displacement D(0) and ends with a more accurate value D(1).
In a typical rth iteration, the forces at end B of member BC are (Eqs. 23.65 and 23.66)

F∗(1)

1 = −Ea
lin

(l(1) − lin); F∗(1)

3 =
r∑

i=1

[(S(0) + t(0))(θ (1) − θ(0))]i; F∗(1)

2 = 2F∗(1)

3

l(1)
(c)

The term between the square brackets is the change in end-moment in a single iteration.
The summation is to be carried out for cycles 1,2, . . . , r.

θ(1) = tan−1[D(1)cin/(lin − D(1)sin)]; l(1) = [(h − D(1))2 + b2/4]1/2 (d)

The subscript “in’’ refers to the initial geometry before any displacement; s and c are,
respectively, sine and cosine of the angle between the x axis and BC. sin =h(h2 +b2/4)−1/2;
cin = 0.5b(h2 + b2/4)−1/2; lin = 328.68

The out-of-balance force (Eq. 23.67) is

g = Q − 2(s(1)F∗(1)

1 + c(1)F∗(1)

2 ) (e)

where s(1) and c(1) are based on the updated geometry with the displacement equal
to D(1).

Iteration cycle 1 s(0) = sin = 29.85 × 10−3; c(0) = cin = 0.9996; lin = 328.68.

1. D(0) = 0; g(0) = 120; {F∗(0)} = {0}.
2. s(0) = 4EI/lin = 323.7 × l03; t(0) = 2EI/lin = 161.9 × 103; S(0) + t(0) = 485.6 × 103;

Se = 2(29.85 × 10−3)2
(

8.4 × 106

328.68

)
+ 4(0.9996)2

(328.68)2 (485.6 × 103) = 63.50;

Se = 2(29.85 × 10−3)2
(

8.4 × 106

328.68

)
+ 4(0.9996)2

(328.68)2 (485.6 × 103) = 63.50;

Sg = 0; St = Se + Sg = 63.50;
�D = (63.50)−1(120) = 1.890

3. D(1) = D(0) + �D = 1.890; s(1) = 24.10 × 10−3; c(1) = 0.9997; l(1) = 328.63.
4. The difference between the length of the chord l(1) and the initial member length lin is

−50.98 × 10−3. From Eq. (d), θ(1) = 5.749 × 10−3. The member end-forces (Eq. (c)) are

{F∗}(1) =
{
−8.4 × 106

328.68
(−50.98 × 10−3),

2(5.749 × 10−3)(485.6 × 103)

328.63
,

5.749 × 10−3(485.6 × 103)
}
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whence

{F∗}(1) = {1303, 16.99,2792}
The out-of-balance force (Eq. (e)) is
g = 120 − 2[24.10 × 10−3(1303) + 0.9997(16.99)] = 23.20

Iteration cycle 2 s(0) = 24.1 × 10−3; c(0) = 0.9997

1. D(0) = 1.890; g(0) = 23.2; {F∗(0)} = {1303,16.99,2791}.
2. With an axial compressive force of 1303, Eqs. 13.16 and 13.17 give

S(0) = 3.2395EI/lin = 262.2 × 103; t(0) = 2.2102EI/lin = 178.9 × 103

S(0) + t(0) = 441.1 × 103

Se = 46.03 Se = −7.92 St = 38.11
�D = (38.11)−1(23.2) = 0.609

3. D(1) = D(0) + �D = 2.499; s(1) = 22.25 × 10−3; c(1) = 0.9998; l(1) = 328.61.
4. l(1) − lin =−65.09 × 10−3; θ(1) − θ(0) = 1.853 × 10−3. The updated member end-forces are

(Eq. (c))

F∗(1)

1 = 1664; F∗(1)

3 = 2792 + 441.1 × 103 (1.853 × 10−3) = 3609

F∗(1)

2 = 2(3609)

328.61
= 21.96

�{F∗} = {361, 4.97,817} {F∗} = {1664,21.96,3609}
The out-of-balance force (Eq. (e)) is

g = 120 − 2[22.25 × 10−3(1664) + 0.9998(21.96)] = 2.05

After the third iteration, the updated downward displacement at B and the end-forces at end
B of member BC are

D = 2.566 {F∗} = {1701,22.49,3695}

The corresponding out-of-balance force is calculated by Eq. (e):

s = 22.04 × 10−3 c = 0.9998 g = 0.02

With member BC subjected to an axial force of −1701 (compressive), end-rotational stiffness
and carryover moment are (Eqs. 13.16 and 13.17)

S = 2.9807
EI
lin

t = 2.2913
EI
lin

and (S + t) = 426.67 × 103

Application of Eqs. 23.65, 23.68, and Eq. (e) shows that with the displacement configuration
obtained, the more accurate values of the forces at end B of member BC and the corresponding
out-of-balance force are

θA = θB = 7.8053 × 10−3 {F∗} = {1701,20.27,3330} g = 4.46

The computer program NLPF, discussed in the preceding section, performs refinement cycles
to eliminate the new out-of-balance force and gives more accurate answers:

D = 2.729 {F∗} = {1792,21.39,3514}
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We may now verify the accuracy of the answers. The change in member length = −70.11 ×
10−3, corresponding to an axial force= −1792 (compressive); (S + t)=5.2310EI/lin (Eqs. 13.16
and 13.17), θ = 8.297 × 10−3; and member end-moments at each of B and C = (S + t)θ = 3514.
Length of BC after deformations is l(1) = 328.61 and the absolute value of the shearing force in
the member is= 2θ(S + t)/l(1) = 21.39. The resultant of the forces at end B of members AB and
BC is the same as the external force applied at B, indicating zero out-of-balance force.

As mentioned earlier, the accuracy of the solution can be improved by introducing the load
in stages and partitioning members AB and BC. The results of analyses, with each of these two
members subdivided into four segments of equal length, are compared with the experimental
results in Figure 23.7c. In the analyses, prescribed D values are used to determine the corres-
ponding Q values. When D>h,B is situated below A and C, and the compressive axial force in
AB and BC decreases, this being accompanied by an increase in stiffness, represented by increase
in the slope of the Q−D graph.

Figure 23.7c includes the results of quasi-linear analyses (P-delta, Chapter 13). These analyses,
which do not rigorously consider the geometry of the structure after deformation, cannot give
accurate results when the displacements are large; in this example, when D is greater than, say,
4. Instead of using Eqs. (d) and (e), the quasi-linear analyses consider l(1) = lin − D sin αin and
Q = 2(F∗

1 sin αin + F∗
2 cos αin), where αin is the angle between the global x axis and the initial

direction of member BC (Figure 23.7a).

Example 23.4: Large deflection of a column
Determine the horizontal and vertical displacements at the top of the column shown in
Figure 23.8a. What are the reaction components at the bottom? Take lin =75(length unit);
Q = P = 150 (force unit); Ea = 10 × 106 (force unit); EI = 1.0 × 106 (force × length2

).
Assume elastic material. The forces P and Q are assumed to maintain their original
directions after deformation.

We give below the equations to be used in the iteration cycles, the superscripts (0) and
(1) referring to the values available at the start of a cycle and the values determined at its
end respectively. In a typical cycle, the updated member end-forces at A are (Figure 23.8c
and Eqs. 23.65 and 23.66)

F∗
1 = −Ea

lin
(l(1) − lin); F∗(1)

3 = Sθ
(1)

A + tθ(1)

B ; F∗(1)

2 = (S + t)
l(1)

(θ
(1)

A + θ
(1)

B ) (a)

where S = 4EI/lin and t = 2EI/lin (effects of axial force on S and t ignored)

θ
(1)

A = D(1)

3 + tan−1[D(1)

2 /(lin − D(1)

1 )]
θ

(1)

B = tan−1[D(1)

2 /(lin − D(1)

1 )]

⎫⎬
⎭ (b)

The out-of-balance forces are

{g(1)} =
⎧⎨
⎩

P
Q
0

⎫⎬
⎭−

⎡
⎣c(1) −s(1) 0

s(1) c(1) 0
0 0 1

⎤
⎦ {F∗(1)} (c)

s(1) = D(1)

2

l(1)
; c(1) = lin − D1

(1)
; l(1) = [(lin − D(1)

1 )2 + (D(1)

2 )2]1/2 (d)
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Figure 23.8 Column analyzed in Example 23.4. (a) Initial geometry and applied loads. (b) Coordinate
system. (c) Deflected shape and forces at top end. (d) Q − D2 graph with P constant.
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Iteration cycle 1 {D(0)} = {0}; {F∗(0)} = {0}; s(0) = 0; c(0) = 1.

1. {g(0)} = {150, 150,0}; S = 4EI/lin; t = 2EI/lin; [St] = [Se] + [Sg]; [Sg] = [0]. Equation23.56
gives

[St] = [Se] =
⎡
⎣ 0.13333 × 106 symmetrical

0 0.28444 × 102

0 0.10667 × 104 0.53333 × 105

⎤
⎦

2. {�D} = [St]−1{g(0)} = {0.11250 × 10−2, 0.21094 × 102,−0.42188}
3. {D(1)} = {D(0)} + {�D} = {0.11250 × 10−2, 0.21094 × 102,−0.42188}
4. Equations (a) to (d) give

l(1) = 0.77909 × 102 s(1) = −0,27075 c(1) = 0.96265

l(1) − l(0) = 0.29088 × 10 θ
(1)

A = −0.14770 θ
(1)

B = 0.27417

{F∗(1)} = {−0.38784 × 106,0.12987 × 103,−0.56629 × 103}
{g(1)} = {0.37347 × 106,−0.10498 × 106,0.56629 × l03}

Iteration cycle 2 {D(0)} = {0.11250 × 10−2, 0.21094 × 102, −0.42188}; {g(0)} = {0.37347 ×
106, −0.10498, 0.56629 × 103}

1. Substitution of s = −0.27075, c = 0.96265, l = 77.909, and (Ea/l) ≡ (Ea/lin) = 106/75 in
Eq. 23.56 gives the elastic stiffness matrix

[Se] =
⎡
⎣ 0.12356 × 106 symmetrical

−0.34745 × 105 0.97985 × 104

0.27802 × 103 0.98849 × 103 0.53333 × 105

⎤
⎦

Substitution of F∗
1 = −0.38784 × 106, F∗

2 = 0.12987 × 103, and l = 77.909 in Eq. 23.57
gives the geometric stiffness matrix

[Sg] =
⎡
⎣0.36579 × 103 symmetrical

0.12989 × 104 0.46123 × 104

0 0 0

⎤
⎦

[St] = [Se] + [Sg]

2. {�D} = [St]−1{g(0)} = 0.28030 × 10,−0.78016,0.10466 × 10−1}
3. {D(1)} = {D(0)} + {�D} = {0.28042 × 10,0.20314 × 102,−0.41141}
4. Equations (a) to (c) give

l(1) = 0.74999 × 102 s(1) = −0.27085 c(1) = 0.96262

l(1) − lin = 0.77790 × 10−3 θ
(1)

A − 0.13713 θ
(1)

B = 0.27428

The updated member forces at end A in this cycle are

{F∗(1)} = {0.10372 × 103,0.14629 × 103,0.31483}



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nonlinear analysis 709

The out-of-balance forces (Eq. (c)) are

{g(1)} = {0.10538 × 102,0.37271 × 102,−0.31483}.

After six iteration cycles, and refinement cycles in which S and t are considered functions of the
axial force, the solution is

{D} = {0.52711 × 10,0.27619 × 102,−0.57027}

The member end-forces are

{F∗} ={0.84221 × 102,0.19470 × 103,0,−0.84221 × 102,

− 0.19470 × 103,0.14602 × 105}

Quasi-linear analysis For comparison, we give below the results of a quasi-linear analysis,
in which the stiffness matrix is determined by Eq. 13.14, for a member subjected to an axial
compressive force of 150. Furthermore, this analysis ignores the downward movement of the tip
A associated with the lateral deflection. The displacements at A and the six member end-forces
obtained by the quasi-linear analysis are

{D} = {1.125 × 10−3, 31.908,−0.64754}
{F∗} = {150, 150,0,−150,−150,16036}

The graph in Figure 23.8d shows the results of nonlinear and quasi-linear analyses for the
structure in Figure 23.8a, maintaining P= constant=150 and varying Q. As expected, the quasi-
linear analysis is represented by a straight line. The nonlinear analysis gives smaller values of the
lateral deflection because, in the displaced position, the force Q is closer to the fixed end than
in its initial position.

23.10 Tangent stiffness matrix of triangular membrane
element

The stiffness of membrane elements is discussed here because it is required in the analysis of
shell structures and fabric structures composed of cable nets and fabric material. We generate
below the tangent stiffness matrix for a triangular plane element whose corner nodes i, j, and k
are defined by their (x,y, z) coordinates with respect to global orthogonal axes (Figure 23.9a).
The element local orthogonal axes (x∗, y∗, z∗) have the same origin O as the global axes, and
the x∗ − y∗ plane is parallel to the plane of the element (Figure 23.9b). Furthermore, the local
axis x∗ is parallel to the vector connecting node i to node j; the local axis y∗ is the perpendicular
to x∗, pointing toward node k in direction away from line ij.

We will derive the tangent stiffness matrix with respect to coordinates 1∗, 2∗, . . . , 9∗ in the
directions of the local axes5 (Figure 23.9b). The tangent stiffness matrix is the sum of the elastic
stiffness matrix [S∗

e ] and the geometric stiffness matrix [S∗
g]. The stiffness matrices corresponding

to the nine coordinates in the global directions can be determined by the transformation equation

[S]e or g = [T]T [S∗]e or g [T] (23.69)

5 See Levy and Spillers, footnote 1 of this chapter.
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Figure 23.9 Derivation of geometric stiffness matrix of triangular membrane element. (a) Coordinate
system in global directions. (b) View of the plane of the element and local coordinate
system. (c) Stresses on element edges. (d) Forces necessary to maintain equilibrium when
D∗

z = 1.

where

[T] =
⎡
⎣ [t]

[t]
[t]

⎤
⎦ ; submatrices not shown are null

with [t] being a 3 × 3 matrix consisting of cosines of the angles between the local and global
axes (Eq. 21.18). At any corner of the triangle, the nodal coordinates, the nodal displacements,
and the nodal forces in the local and global directions are related as follows:⎧⎨

⎩
x∗
y∗
z∗

⎫⎬
⎭= [t]

⎧⎨
⎩

x
y
z

⎫⎬
⎭ (23.70)

⎧⎨
⎩

D∗
x

D∗
y

D∗
z

⎫⎬
⎭= [t]

⎧⎨
⎩

Dx

Dy

Dz

⎫⎬
⎭

⎧⎨
⎩

Fx

Fy

Fz

⎫⎬
⎭= [t]T

⎧⎨
⎩

F∗
x

F∗
y

F∗
z

⎫⎬
⎭ (23.71)

The stresses on the edges of the element are constant and are represented in their positive
directions in Figure 23.9c (see Section 16.12 and Figure 16.9c). The nodal forces in the x∗ and
y∗ directions at a node are equal to the sum of one-half of the distributed load on each of the
two sides connected to the node (see Eq. 16.84). Thus,
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F∗
1

F∗
2

F∗
3

F∗
4

F∗
5

F∗
6

F∗
7

F∗
8

F∗
9

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= h
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(y∗
k − y∗

j ) 0 −(x∗
j − x∗

k)

0 (x∗
k − x∗

j ) −(y∗
k − y∗

j )

0 0 0
--- - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - -
−(y∗

i − y∗
k) 0 −(x∗

k − x∗
i )

0 (x∗
i − x∗

i ) −(y∗
i − y∗

k)

0 0 0
--- - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - -

0 0 −(x∗
i − x∗

j )

0 (x∗
j − x∗

i ) 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎨
⎩

σ ∗
x

σ ∗
y

τ ∗
xy

⎫⎬
⎭ (23.72)

where h is the thickness of the element, or

{F∗} = [G]{σ ∗} (23.73)

where [G] is the 9 × 3 matrix in Eq. 23.72, multiplied by h/2.
The elastic stiffness matrix for the constant-strain triangle was derived in Section 16.11

(Eq. 16.79). The same equation can be used here, by insertion of three rows and three columns
composed of zeros, corresponding to coordinates 3∗, 6∗, and 9∗. This is so because the membrane
element has no out-of-plane stiffness.

The geometric stiffness matrix will be derived by differentiation of Eq. 23.73, holding {σ ∗}
constant. A general element of the geometric stiffness matrix (see Eq. 23.33) is

S∗
gnm = ∂F∗

n

∂D∗
m

(with{σ ∗} = constant) (23.74)

Noting that differentiation with respect to D∗ is the same as differentiation with respect to x∗
or y∗ at the appropriate node, substitution of the nth row of Eq. 23.72 into Eq. 23.74 gives

S∗
gnm = ∂

∂D∗
m

[Gn1 Gn2 Gn3] {σ ∗} (23.75)

For example, for n = 4 and m = 2, we obtain

S∗
g42 = h

2
∂

∂y∗
i
[−(y∗

i − y∗
k) 0 − (x∗

k − x∗
i )]{σ ∗} (23.76)

or

S∗
g42 = −h

2
σ ∗

x (23.77)

Columns 1, 2, 4, 5, 7, and 8 of [S∗
g] can be generated by Eq. 23.75. The remaining columns

of [S∗
g] represent changes in the nodal forces resulting from separate out-of-plane displacement

D∗
z = 1 at each of the three nodes. For example, to derive the third column of [Sg], we introduce

D∗
3 = D∗

zi = 1, resulting in rotations of the plane of the element through angles θ∗
ix and θ∗

iy about
the x∗ and y∗ axes. To maintain equilibrium, the following nonzero changes in the nodal forces
must occur (Figure 23.9d):

S∗
g33 = F∗

2θ∗
ix − F∗

1θij; S∗
g63 = F∗

5θ∗
ix − F∗

4θ∗
iy; S∗

g93 = F∗
8θ∗

ix − F∗
7θ∗

iy (23.78)
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To verify the first of these three equations, consider the equilibrium of the membrane element
in the rotated position. Forces F∗

1 and F∗
2 at node i are in a plane parallel to the initial plane of

the element. Addition at node i of upward and downward forces of magnitudes F∗
1θiy and F∗

2θix,
respectively, causes the resultant nodal forces to be situated in the rotated plane of the element.
For the same purpose, forces are required at nodes j and k expressed by the second and the third
of Eqs. 23.78.

The complete geometric stiffness matrix of the membrane triangular element with respect to
the local coordinates in Figure 23.9b is

[Sg]=

1
2
3
4
5
6
7
8
9

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −h∗
xy/2 hσx/2 0 hτ ∗

xy/2 −hσx/2 0
0 0 0 −hσ ∗

y /2 hτ ∗
xy/2 0 hσ ∗

y /2 −hτ ∗
xy/2 0

0 0 F∗
2θ∗

ix − F∗
1θ∗

iy 0 0 F∗
2θ∗

jx − F∗
1θ∗

jy 0 0 F∗
2θ∗

kx
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

hτ ∗
xy/2 −hσ ∗

x /2 0 0 0 0 −hτ ∗
xy/2 hσ ∗

x /2 0
hσ ∗

y /2 −hτ ∗
xy/2 0 0 0 0 −hσ ∗

y /2 hτ ∗
xy/2 0

0 0 F∗
5θ∗

ix − F∗
4θ∗

iy 0 0 F∗
5θ∗

jx − F∗
4θ∗

jy 0 0 F∗
5θ∗

kx
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
−hτ ∗

xy/2 hσ ∗
x /2 0 hτ ∗

xy/2 −hσ ∗
x /2 0 0 0 0

−hσ ∗
y /2 hτ ∗

xy/2 0 hσ ∗
y /2 −hτ ∗

xy/2 0 0 0 0
0 0 F∗

8θ∗
ix − F∗

7θ∗
iy 0 0 F∗

8θ∗
jx − F∗

7θ∗
jy 0 0 F∗

8θ∗
kx

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
-

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
- ⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(23.79)

where θ∗
ix and θ∗

iy are rotations of the element, with respect to axes x∗ and y∗, when D∗
zi = 1; in

a similar way, θ∗
jx, θ∗

jy, θ∗
kx and θ∗

ky are defined. We can verify the following geometric relations:

θ∗
ix = −

(
x∗

j − x∗
k

x∗
j − x∗

i

)(
1

y∗
k − y∗

j

)
θ∗

iy = 1
x∗

j − x∗
i

(23.80)

θ∗
jx = −

(
x∗

k − x∗
i

x∗
j − x∗

i

)(
1

y∗
k − y∗

j

)
θ∗

jy = 1
x∗

j − x∗
i

(23.81)

θ∗
kx = 1/(y∗

k − y∗
j ) θ∗

ky = 0 (23.82)

It is to be noted that in this case [S∗
g] is a nonsymmetric matrix.

The iterative Newton-Raphson technique (Section 23.5.1) can be employed to determine the
nodal displacements which define the geometry of triangular element after deformation. Let the
line rk in Figure 23.9b be parallel to the y∗ axis passing through node k in its initial position
and in its displaced position. The element strains may be calculated from the length changes
(Figure 23.9b).

δij = lij − (lij)in δrk = lrk − (lrk)in δir = lir − (lir)in

where the subscript “in’’ refers to initial lengths. With respect to the local axes x∗, y∗, and z∗
(Figures 23.9b and c), the changes in strain from the initial state are given by

∈∗
x=

δij

(lij)in
∈∗

y=
δrk

(lrk)in
γ ∗

xy = 1
(lrk)in

[δir− ∈∗
x (lir)in] (23.83)

In verifying the equation for γ ∗
xy, note that δir represents the combined effects of ∈∗

x and τ ∗
xy

on the translation in the x∗ direction of k with respect to i; ∈∗
x (lir)in represents the part of this

translation attributed to ∈∗
x.
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The stresses after deformation are given by (Figure 23.9c)

⎡
⎣σ ∗

x
σ ∗

y
τ ∗

xy

⎤
⎦= [d]

⎡
⎣∈∗

x
∈∗

y
γ ∗

xy

⎤
⎦+

⎡
⎣ σ ∗

xin (lrk)in/lrk
σ ∗

yin (lij)in/lij
(τ ∗

xy)in �in/�

⎤
⎦ (23.84)

where [d] is the material elasticity matrix (Eq. 16.12), {σ ∗
x ,σ ∗

y , τ ∗
xy}in are stresses existing in the

initial state, and �in and � are areas of the element in initial and deformed states respectively.
The last term in Eq. 23.84 represents adjusted stresses equivalent to the initial stresses

{σ ∗
x ,σ ∗

y , τ ∗
xy}in. Considering the rectangular element in Figure 23.9c, we see that the resultants of

the initial and the adjusted stress normal to any of the sides are the same. Also, the initial and
the adjusted shear stress on each pair of opposite sides have equal resultant couples (τxy lij lrk).

23.11 Analysis of structures made of nonlinear material

Figure 23.10 shows examples of the shape of the stress–strain relation for nonlinear materials
in practice. In this section, we discuss the simplest analysis technique known as the incremental
method.

The applied forces {F} are divided into increments βi{F}. The load increments are applied one
at a time and an elastic analysis is used. For the ith load increment, the following equilibrium
equation is solved:

[S]i{�D}i = {�F}i (23.85)

The stiffness matrix [S]i depends upon the stress level reached in the preceding increment;
thus, for the ith increment, the modulus of elasticity is the slope of the stress–strain diagram at
the stress level reached in the increment (i − 1). The displacements obtained by the solution of
Eq. 23.85 for each load increment are summed to give the final displacements:

{D} = �{�D}i (23.86)

Similarly, the final stresses or stress resultants are determined by the sum of the increments
calculated in all the linear analyses.

A typical plot of the displacement at any coordinate and the corresponding nodal force is
composed of straight segments (Figure 23.11). It can be seen that the error in the results of
the incremental method increases as the load level is increased. However, the accuracy can be
improved by using smaller load increments.

The advantage of the incremental method is its simplicity. It can also be used for geometrically
nonlinear analysis. For this purpose, the stiffness matrix [S]i for increment i is based on the
geometry of the structure and the member end-forces determined in the preceding increment,
(i − 1).

Stress Stress

Strain Strain

Figure 23.10 Examples of stress–strain relations.
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Fj

Dj

j

Analysis

Error

Actual

Figure 23.11 Typical result of incremental method of analysis.

23.12 Iterative methods for analysis of material nonlinearity

Newton-Raphson’s and the modified Newton-Raphson’s techniques discussed in Sections 23.4,
23.4.1, 23.5, and 23.9 can also be used to analyze structures with material nonlinearity.
Figure 23.12 represents two analysis schemes. In Figure 23.12a the full load is introduced,
and an approximate solution is obtained and corrected by a series of iterations. A linear analysis
is performed in each iteration, using approximate stiffness, and giving approximate displace-
ments and hence the strain in each member (or in each finite element). Using the stress–strain
relation, the corresponding stress is determined. From the stress, the forces at member ends (or
at the local coordinates of finite elements) are determined by Eq. 23.88 (discussed below). These
forces are assembled to determine a vector of nodal forces {F} which maintain the equilibrium
of the structure in the approximate deformed configuration determined in this iteration cycle.
The difference between {F} and the known nodal forces represents out-of-balance forces to be
eliminated by iteration:

{g} = −{F} − {F} (23.87)

Fj

O Dj

A

B

C

j

OA and BC are
tangents

Fj

O Dj

A

B

C
D

E

F

G

OA and DE are tangents
BC is parallel to OA
FG is parallel to DE

(b)(a)

Figure 23.12 Load-displacement analysis in two consecutive iterative cycles. (a) Use of new tangent
stiffness matrix in each iteration. (b) Application of the load in increments and use of
new tangent stiffness matrix only in the first cycle after introduction of each new load
increment.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nonlinear analysis 715

where {F} represents the forces which artificially prevent the nodal displacements; {F} represents
the forces balanced by the internal forces in the members in the trial deformed configuration.

In each iteration cycle, a new stiffness matrix is used, based on the stress level in each member
(or finite element) at the end of the preceding cycle. This is represented in Figure 23.12a, which
is a graph of the force versus displacement at a typical coordinate. The slopes of OA and BC
are different, indicating different stiffnesses in consecutive iterations.

The scheme presented in Figure 23.12b employs the modified Newton-Raphson’s technique.
The load is introduced in stages, and in each stage iteration cycles are employed to determine
the nodal displacements. To avoid generating a new stiffness matrix in each iteration cycle, the
stiffness matrix determined in the first cycle in each load stage is employed in all subsequent
cycles until convergence has been achieved, before proceeding to the next load stage. This is
schematically represented in Figure 23.12b in which the slopes of OA and BC are the same,
indicating the same stiffness in two cycles.

In both schemes described above, we need to determine the nodal forces for a member (or
finite element) for which the stress {σ } is known. The unit-displacement theorem can be used
for this purpose (Eq. 6.40). For a finite element, the nodal forces are given by

{F}element =
∫

v
[B]T {σ }dv (23.88)

where [B] is the matrix expressing the strain at any point within the element in terms of the dis-
placements at the nodes of the element (Eq. 16.38); {σ }= the last determined stress at any point.

Analysis for material nonlinearity is illustrated in the following examples.

Example 23.5: Axially loaded bar
The bar shown in Figure 23.13a is made of two material types, whose stress–strain relations
are shown in Figure 23.13b. Find the axial force in segments AB, BC, and CD due to
F1 = 160. The bar cross-sectional area = 4. Assume that the given stress–strain graphs
apply both in tension and in compression.

A system of two coordinates is defined in Figure 23.13a. The forces necessary to restrain
the displacements are {F} = {−160, 0}.

Iteraction cycle 1 We start with {D(0)}= {0} and the stress is zero in the three elements. The slope
of the σ− ∈ graph at this stress level is 30 000, and the stiffness matrix corresponding to the
coordinates in Figure 23.12a is

[S(1)] = 30 000(4.0)

10

[
2 −1
1 2

]

The out-of-balance forces at the start of this cycle are: {g(0)} = −{F} = {160,0}. We have

{�D} = [S(1)]−1{g(0)} = 4444 × 10−6{2,1}

The improved displacement values are

{D(1)} = {D(0)} + {�D} = {8889,4444}10−6

The strains in the three elements are: {∈} = m10−6{−889,444,444}. Entering the stress–strain
graphs with these strain values gives the stress in the elements:

{σ } = {−26.7, 4.0,13.3}
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Figure 23.13 Bar analyzed in Example 23.5. (a) Bar dimensions. (b) σ– ∈ graphs for three elements.
(c) and (d) Element nodal forces determined in iteraction cycles 1 and 2.

The corresponding member end-forces are shown in Figure 23.13c. The nodal forces to
maintain equilibrium are

(F) = {122.7, 37.3}

The out-of-balance forces are

{g(1)} = {−F} − {F} = {37.3,−37.3}

Iteration cycle 2 We now start with {D(0)} = {8889,4444}10−6; {g(0)} = {37.3,−37.3}. Entering
the σ− ∈ graphs with the strain values determined in cycle 1 gives the values of slope E of
30 000, 0, 30 000 for elements 1, 2, and 3 respectively. The corresponding stiffness matrix for
the structure is

[S(1)] = 30 000(4)

10

[
1 0
0 1

]

Note in verifying this matrix that element 2 has zero stiffness. We have

{�D} = [S(1)]−1 {g(0)} = {3111,−3111}10−6

The improved displacements are

{D(1)} = {D(0)} + {�D} = {12 000,1333}10−6

The strains in the three elements are {∈}= 10−6{−1200,1067,133}. The corresponding stresses
are {σ }={−36, 4, 4}. The member end-forces are shown in Figure 23.13d and the corresponding
nodal forces are

{F} = {160, 0}



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nonlinear analysis 717

The out-of-balance forces are

{g(1)} = {−F} − {F} = {0}

Thus, the exact answers are: {D}=10−6{12 000,1333} and the member end-forces are as shown
in Figure 23.13d.

Example 23.6: Plane truss
Find the displacements at A and the forces in members AB, AC, and AD of the truss shown
in Figure 23.14a, assuming the stress–strain diagram in Figure 23.14b. All members have
the same cross-sectional area, a. The applied force P = 1.75σya.

The restraining forces at the coordinates in Figure 23.14c are

{F} = {0,−P} = −1.75σya{0,1}

In accordance with the σ− ∈ graph in Figure 23.14b, the axial force in any member is

N = aE1 ∈ (with ∈≤∈y) N = a[σy + E2(∈ − ∈y)] (with ∈>∈y)

From the geometry of the structure (Figure 23.14a), the strain in the members is expressed
in terms of the nodal displacements:

{∈} =
⎧⎨
⎩

∈AB

∈AC

∈AD

⎫⎬
⎭= 1

l

⎡
⎣ −1 0

0 1
0.707 0.707

⎤
⎦ {D}

The stiffness matrix for m members connected at one node (Figure 23.14b) is

[St] =
m∑

i=1

[
Eα

l

[
c2 sc
sc s2

]]
i

(23.89)

(a) (b)

A B

C

D

P P

45°l

l l

Slope = E2 = 
E1—
25

Slope = E1

σ

σy

l

(c)

1

2

A
3

2

1
∈

∈y

Figure 23.14 Plane truss of Example 23.6. (a) Truss geometry. (b) Stress–strain relation. (c) Coordinate
system.
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where si = sin θi, ci =cos θi and θi is the angle, measured in the clockwise direction, between
the x axis and the member. For the same type of structure, the forces at the nodes balanced
by the axial forces {N} in the m members are

{F} = −
m∑

i=1

{
N
{

c
s

}}
i

(23.90)

The four calculation steps outlined in Section 23.5.1 follow below.

Iteration cycle 1

1. {D(0)} = {0}; {g(0)} = 1.75 σy a {0,1}
2. {∈(0)}={0} and E for all members equals E1. Equation 23.89 gives

[St] = E1
a
l

[
1.5 0.5
0.5 1.5

]
{�D} = [St]−1{g(0)} = σyl/E1){−0.438,1.313}

3. {D(1)} = {D(0)} + {�D} = (σyl/E1){−0.438,1.313}
4. {∈(1)} =∈y {0.438, 1.313, 0.619}

{N(1)} = aσy{0.438,1.013,0.619}
Application of Eq. 23.90 gives

{g(1)} = −{F} − {F(1)} = aσy{0,0.299}

Iteration cycle 2

1. {D(0)} = (σyl/E1){−0.438,1.313}; {g(0)} = aσy{0,0.299}; {∈(0)} =∈y {0.438,1.313,0.619}.
At this strain level, E is equal to E1 for members 1 and 3, and to E2 for member 2. Use of
Eq. 23.89 gives

[St] = a
l E1

[
1.5 0.5
0.5 0.54

]

2. {�D} = [St]−1 {g(0)} = (σyl/E1) {−0.267, 0.801}
3. {D(1)} = {D(0)} + {�D} = (σyl/E1) {−0.705. 2.114}
4. {∈(1)} =∈y {0.705,2.114,0.996}

{N(1)} = aσy{0.705,1.045,0.996}
{g(1)} = −{F} − {F(1)} = {0}

The out-of-balance forces are zero, indicating that the exact solution has been reached.

23.13 General

Except for simple structures, use of a computer is necessary to perform nonlinear analysis,
generally requiring iterations. Understanding of nonlinear behavior can be enhanced by the use
of computer programs which permit the introduction of loads in multi-stages, allow changing
the number of iteration cycles, and give the out-of-balance forces at the end of each iteration
cycle. Available computer programs, described in Appendix L, may be used for this purpose.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nonlinear analysis 719

Problems

23.1 Perform two iteration cycles to determine, for F = 90, the corresponding value of D and
the forces in the members of the truss in Figure 23.2, using the tangent stiffness matrix
derived in Section 23.6. Approximate answers are given in Figure 23.3.

23.2 SI units. Calculate the displacements at B and C and the tension in segments AB, BC,
and CD of the prestressed cable shown. Initial prestress = 100kN, E = 200 GPa; cross-
sectional area = 100mm2; b = 1m.

A

B C

D

Y

b/3 b/3 b/3

16 kN
(or 3.6 kip)

8 kN
(or 1.8 kip)

Initial
tension − x
 = 100kN
(or 22 kip)

Prob. 23.2 or 23.3

23.3 Imperial units. Solve Prob. 23.2 with the following data: initial prestress = 22kip;
E = 29 000 ksi; cross-sectional area = 0.15 in2; b = 40 in.

23.4 By trial, using Eqs. 23.6 to 23.9, determine the maximum value of the force F that can
be applied to the structure in Figure 23.2a (corresponding to point C on the graph in
Figure 23.2b). Take Ea=8×106 and the ratio h/b=1/15. Note that the answer depends
only on the ratio h/b, not on the two separate values of h and b.

23.5 SI units. Determine the downward deflection D at B and the tension in AB and BC in the
initially horizontal cable net shown, due to four downward forces P = 12kN at each of
B, C, F, and G. Take initial tension in each cable to be 180 kN and Ea = 60MN.

A B C
D

E F G
H

I

J

K

L

3@2 m
or

3@80 in.

3@2 m
or

3@80 in.

Prob. 23.5 or 23.6

23.6 Imperial units. Solve Prob. 23.5 taking P = 3kip, initial tension in each cable equal to
40kip and Ea = 13500kip.

23.7 The figure shows the top view and elevation of a shallow space truss. Determine the
vertical deflection of node A and the forces in the members due to a downward force
P = 100 at the same node. Take Ea = 40000 for all members.

23.8 Determine the value of P which produces buckling of the space truss of Prob. 23.7, with
the direction of the force P reversed.
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A

B C

DE

P = 100

5

5

1

1010

Top view
B, C, D, and E
are supported

nodes

Elevation

z (down)
x

y

A

Prob. 23.7

23.9 The figure shows the top view of a cable network. The z coordinates of the nodes in their
initial positions are given by z =xy/(8l). The nodes on the external perimeter ABCD are
supported, while each of the internal nodes is subjected to a downward force Fz = Q.
Determine the displacements at nodes 5, 6, 7, and 11 and the forces after loading the
cable segments 5-6, 6-7, 1-5, 2-6, 6-11, and 3-7. Take Ea = 10 × 103Q, and P = 30Q,
where P is the initial tension in the cable. (The given equation for z describes a hyperbolic
parabolic surface, with concave and convex curvatures along AC and BD respectively.
The surface is casually referred to as a saddle dome.) Solution of this problem is too long
to be done by hand; however, the equilibrium equations of the nodes can be generated
and verified using the displacement values given in the answers.

A

B

C

D

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

xy

4×l
4×l

z(down)

Prob. 23.9

23.10 Determine the displacements at B and the member end-forces for AB and BC of the
structure shown. Take b = 100; h = 2; Q = 0.8; Ea = 1.0 × 106; EI = 0.1 × 106, where a
and I are the cross-sectional area and the second moment of area of all members.

23.11 The plane frame of Prob. 13.12 is subjected, in addition to the downward forces Q at B
and C, to two horizontal forces at the same nodes, each equal to Q/10 pointing to the
right-hand side. Find the nodal displacements and the member end-forces. Take l = 6c;
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A
B C

D

Q Qx

y

b b b

h

Prob. 23.10

h = 2.4c; for all members, a = 25 × 10−3c2, I = 60 × 10−6c4, and E = 40 × 109 (F/c2);
Q = 1.5 × 106 F, where c and F are force and length units respectively.

23.12 Find the displacement D due to an axial force F applied at the end of a straight pris-
matic bar of length l, assuming the stress–strain relation σ = C(ε − ε2/4), where C =
constant. Take F =0.7Ca, with a being the cross-sectional area. Apply Newton-Raphson’s
technique and give the answers for two iterations.

23.13 Determine the displacement D at node B of the structure shown due to a force F =1000a,
where a is the cross-sectional area of each of the two parts AB and BC. The stress–strain
graph for the two parts is shown in the figure, with

{σy, E, E}AB = {500, 200 × 103, 20 × 103}

and

{σy, E, E}BC = {400, 200 × 103, 0}

What are the axial forces in AB and BC? Assume that the stress–strain relations given
apply when the stress is tensile or compressive.

A B C

F,D
ll

σ

σy

ε

Slope
= E

Slope =⎯E

Stress–strain graph

Prob. 23.13

23.14 Determine the forces in the members of the truss of Prob. 4.1. Assume that all members
have the same cross-sectional area a and length l, and that the stress–strain relationship
for part AB of the structure in Prob. 23.13 applies to all members of the truss. Take P =
3.3×10−3, Ea=660a. Ignore geometric nonlinearity. Assume that the same stress–strain
relationship applies when the stress is tensile or compressive.



Chapter 24

Reliability analysis of structures1

24.1 Introduction

The building process includes planning, design, construction, operation/use, and demolition. All
components of the process involve uncertainties. These uncertainties can be put into two major
categories with regard to causes: human and natural. Human causes include intended and unin-
tended departures from optimum realization. In the design, this can be due to approximation,
calculation error, communication problem, omission, lack of knowledge, and so on. Similarly, in
the construction, uncertainties are due to use of inadequate materials, inappropriate methods of
construction, bad connections, or changes without analysis. During operation/use, the structure
can be subjected to overloading, inadequate maintenance, misuse, or even an act of sabotage.
Natural causes of uncertainty result from unpredictability of loads such as wind, earthquake,
snow, ice, water pressure, or live load, and also material properties, which vary from sample to
sample and within the sample. This chapter presents reliability analysis that quantifies the uncer-
tainties by means of a reliability index. The basic reliability theory, employed in the analysis, is
presented in Appendix M.

24.2 Limit states

Structural performance can be acceptable or unacceptable. A structure fails if it cannot perform
its function any longer. However, this is a rather vague definition, as it requires the definition of
a function that can be the capacity to carry the loads, the stiffness to avoid excessive deflection,
cracking, and so on. An example of a failure definition: a compact steel section fails if the bending
moment, M>Mp, where Mp is the ultimate moment in the fully plastic condition (Eq. 18.1). The
limit state is the limit at which the performance transits from acceptable to unacceptable. There
are different types of limit states: strength or ultimate limit states, serviceability limit states,
fatigue limit states, and extreme events limit states. Each limit state can be described by a limit
state function. A simple example of a limit state function is:

g = R − Q (24.1)

where R is the resistance (load-carrying capacity), Q is the load, and g ≥ 0 for acceptable per-
formance and g <0 for unacceptable performance (failure). In the case of an ultimate limit state
of flexural carrying capacity, R represents the bending moment carrying capacity and Q is the
bending moment caused by the load. In the case of the serviceability limit state of deflection,
R can represent the maximum acceptable deflection for the considered structure and Q can

1 This chapter was written in collaboration with the authors by Professor Andrzej S. Nowak, University
of Nebraska, Lincoln, USA.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reliability analysis of structures 723

Table 24.1 Probability of Failure, Pf, for Selected Values of Reliability Index β

β 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

Pf 1.59E-1 6.68E-2 2.28E-2 6.21E-3 1.35E-3 2.33E-4 3.17E-5 3.40E-6 2.87E-7 1.90E-8

represent the deflection caused by the load. However, the limit state function can be more
complex (e.g. non-linear) and the parameters can vary with time.

24.3 Reliability index definition

The reliability, that is, the probability of reaching the failure limit state of Eq. 24.1, is:

Pf = P((R − Q) < 0)= P(g < 0) (24.2)

The probability Pf is equal to the cumulative distribution function (CDF) for the random
variable g, defined by Eq. 24.1. The reliability index is defined as a function of Pf :

β = −�−1 (Pf
)

or Pf = � (−β) (24.3)

where � and �−1 are the standard normal cumulative distribution function (Table M.1) and its
inverse (Eq. M.34). Table 24.1 lists values of Pf for selected β values.

24.3.1 Linear limit state function

When R and Q are independent (uncorrelated) normally distributed random variables, the
reliability index is given by:

β = R − Q√
σ 2

R + σ 2
Q

(24.4)

where R and Q are mean values of R and Q respectively; σ 2
R and σ 2

Q are their variance values.
Equation 24.4 can be derived from Eqs. M.44, M.51, and M.53. If the independent random
variables R and Q have log-normal distribution, the reliability index is given by:

β = yR − yQ√
σ 2

yR
+ σ 2

yQ

(24.5)

where yR, yQ, σ 2
yR

, or σ 2
yQ

is the mean or the variance of:

yR = ln R; yQ = ln Q (24.6)

The variance and the mean of the Y random variables are given in terms of the variance and
the mean of R or Q by Eqs. M.51 and M.53. Application of Eq. 24.4 or 24.5 requires the
knowledge of the mean and the standard deviation, or the mean and the coefficient of variation,
of R and Q.
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The general limit state equation is:

g = R − Q = 0 (24.7)

We can think of R and Q as the “capacity’’ and the “demand’’ respectively. When R = Q, the
limit between safety and failure is reached. Equation 24.4 takes the form of Eq. 24.9 or 24.11
when g is expressed as a linear combination of random variables.

g ({X}) = a0 +
n∑

i=1

(ai Xi) = a0 + {a}T {X} (24.8)

The reliability index is:

β = g

/[
n∑

i=1

(
ai σXi

)2]1/2

(24.9)

where g is the mean value of g:

g = a0 +
n∑

i=1

(ai xi) = a0 + {a}T {x} (24.10)

The term in the square brackets in Eq. 24.9 is the variance of g. When {x} contains correlated
variables, Eq. 24.9 takes the form:

β = g /
(
{a}T [C] {a}

)1/2
(24.11)

where [C] is the covariance matrix (see Section M.13). The reliability index given by Eq. 24.4,
24.9, or 24.11 is sometimes called the second mean value reliability index, because it is expressed
in terms of the mean and the variance.

Example 24.1: Probability of flexural failure of a simple beam
Calculate the reliability index β and the probability of failure Pf for a simple beam of span
l = 6m, subjected to uniform load q/unit length, combined with a concentrated load W
at midspan. Assume that q, W , and the moment capacity at midspan Mr are uncorrelated
normal random variables given the distribution parameters: q=16kN/m; Vq =10%; W =
55kN; VW = 15%; Mr = 270kN-m; VMr = 12%.

The standard deviation is equal to the product of the mean and the coefficient of variation,
and thus the variance σ 2 of q, W , and Mr are:

σ 2
q = [0.1(16)]2 = 2.56; σ 2

W = [0.15 (55)]2 = 68.1; σ 2
Mr = [0.12 (270)]2 = 1050

Apply the limit state Eq. 24.1 with:

R = Mr; Q =
(

l2

8

)
q +

(
l
4

)
W ; g = R − Q

The mean and the variance of R are:

R = Mr = 270; σ 2
R = σ 2

Mr = 1050
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The mean and the variance of Q are (Eqs. M.51 and M.53):

Q =
(

l2

8

)
q +

(
l
4

)
W =

(
62

8

)
16 +

(
6
4

)
55 = 154.5

σ 2
Q =

(
l2

8

)2

σ 2
q +

(
l
4

)2

σ 2
W =

(
62

8

)2

(2.56) +
(

6
4

)2

(68.1) = 205.1

The reliability index (Eq. 24.4):

β = R − Q√
σ 2

R + σ 2
Q

= 270 − 154.5√
1050 + 205.1

= 3.26

The probability of failure (Eq. 24.3 and Table M.1);

Pf = � (−β) =� (−3.26) = 0.557 × 10−3

Example 24.2: Plastic moment resistance of a steel section
The plastic moment capacity of a steel section is expressed as (Eq. 18.1): Mp = fyZ, where
fy is the yield stress and Z is the plastic section modulus. Let Q be the bending moment
that the section has to resist (the demand). Find the reliability index and the probability of
failure. Assuming that fy, Z, and Q are independent log-normal random variables whose
mean values and coefficient of variations are: fy =300MPa (300×103 kN/m2); Vfy =10%;

Z = 0.9 × 10−3 m3; VZ = 5%; Q = 160kN-m; VQ = 12%.
The probability of failure,

Pf = P
(

Mp

Q
< 1

)
= P

[(
fy Z
Q

)
< 1

]

The variance of fy, Z, and Q are:

σ 2
fy

=
[
0.10

(
300 × 103

)]2 = 900 × 106; σ 2
Z =

[
0.05

(
0.9 × 10−3

)]2 = 2.025 × 10−9;

σ 2
Q = [0.12 (160)]2 = 9.437 × 106

Let Y1 = ln fy; Y2 = ln Q; Y3 = ln Z
The variance and the mean of Y1, Y2, and Y3 are (Eqs. M.38 and M.39):

σ 2
Y1

= ln
(
V2

Y1
+ 1

)
= ln

[
(0.1)2 + 1

]
= 9.95 × 10−3;

y1 = ln fy − 1
2

σ 2
Y1

= ln
(
300 × 103

)
− 1

2

(
9.95 × 10−3

)
= 12.6

σ 2
Y2

= ln
(
V2

Y2
+ 1

)
= ln

[
(0.12)2 + 1

]
= 14.3 × 10−3;

y2 = ln Q − 1
2

σ 2
Y2

= ln (160) − 1
2

(
14.3 × 10−3

)
= 5.0609
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σ 2
Y3

= ln
(
V2

Y3
+ 1

)
= ln

[
(0.05)2 + 1

]
= 2.50 × 10−3;

y3 = ln Z − 1
2

σ 2
Y3

= ln
(
0.9 × 10−3

)
− 1

2

(
2.50 × 10−3

)
= −7.0144

Let X0 = ln
(

fy Z
Q

)
; let Y = ln X0 = ln fy + ln Z − ln Q = Y1 + Y3 − Y2

The mean and variance of Y are (Eqs. M.58 and M.59):

y = y1 + y3 − y2 = 12.60 + (−7.014) − 5.0609 = 0.5247

σ 2
Y = σ 2

Y1
+ σ 2

Y2
+ σ 2

Y3
= 10−3 (9.95 + 14.3 + 2.50) = 26.75 × 10−3

The probability of failure (Table M.1):

Pf = P
[(

fy Z
Q

)
< 1

]
= �

[
ln (1) − y

σY

]
= �

[
0 − 0.5247√
26.75 × 10−3

]

= � [−3.21] = 0.664 × 10−3

The reliability index, β = 3.21.

Example 24.3: Probability of shear failure
Calculate the probability of shear failure at the section just to the left of D for the structure
in Prob. 12.1, subjected to uniform dead load q/unit length and moving concentrated
loads P1 and P2, spaced at a distance = l/15. Assume that l = 25m and q, P1, P2, and the
shear strength VD are random normally distributed variables, whose mean and standard
deviation values are:

q = 360 kN/m; P1 = 400kN; P2 = 300kN; VD = 6000kN

σq = 36kN/m; σP1 = 60kN; σP2 = 45kN; σVD = 1000kN

Consider that only P1 and P2 are correlated with COV = 2500 (kN)2. What is the mean
value VD that brings β up to 3.0 and reduces the probability of failure to 1.35 × 10−3?

Use the limit state equation: g = R − Q = 0, with R ≡ VD and Q ≡ the maximum shear
force at the section.

g = VD − (
0.4 l

)
q − P1 − (

2
/

3
)

P2 = 0

g = {a}T {x} ; {a} = {
1, −0.4 (25) , −1, − (2/3

)}
; {x} = {

VD, q, P1, P2
}

COV
[
{x}T {x}

]
=

⎡
⎢⎢⎣

(1000)2 symmetrical
0 (36)2

0 0 (60)2

0 0 2500 (45)2

⎤
⎥⎥⎦ kN and m units

σ 2
g = {a}T [C] {a} = 1.137 × 106; σg = 1066.5kN
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The reliability index and the probability of failure are (Eqs. M.44, M.51, and 24.3):

β = g
/
σg = [6000 − 0.4 × 25 × 360 − 400 − 300

(
2
/

3
)]/

(1066.5) = 1.69

Table M.1 gives: Pf = �(−1.69) = 45.5 × 10−3. To reduce this relatively high probability,
increase the reliability index to β =3.0 by the increase of shear strength to VD =7400kN.

24.3.2 Linearized limit state function

Consider a nonlinear limit state function of uncorrelated random variables, {X}n×1. The first
two terms of Taylor’s expansion transform the function to a linear equation:

g (X1, X2, . . . , Xn) ≈ g +
n∑

i=1

[
(Xi − xi)

∂g
∂Xi

]
(24.12)

where g is a value of g calculated with chosen values of the variables. One choice is: the mean
values of the random variables, giving an approximate mean value of g:

g = g (x1, x2, . . . , xn) = g ({x}) (24.13)

The first term in Eq. 24.12 is a constant, the remaining terms are linear combinations of the
variables (Xi − xi), with xi = constant; thus, Eq. 24.9 can be used to give an approximate
reliability index:

β ≈ g

/[
n∑

i=1

(ai Xi)
2

]1/2

with ai = ∂g
∂Xi

∣∣∣∣
at {x}

(24.14)

Because we use the first term of Taylor’s expansion, the reliability index given by Eq. 24.14 is
sometimes called first-order second-moment mean-value reliability index.

Example 24.4: Probability of flexural failure of a rectangular reinforced
concrete section
A rectangular reinforced concrete section is subjected to a bending moment = Q. Find the
probability of flexural failure and the reliability index using:

R = As fy

(
d − 0.59

As fy

b f ′
c

)

where R is the capacity of the cross section (the bending moment that it can carry); As and
fy are the cross-sectional area and the specified yield strength of the steel reinforcement
respectively; f ′

c is the specified compressive strength of concrete; b is the width of the
section; and d is the distance between the steel reinforcement and the extreme compression
fiber. Consider b=0.3m; d =0.45m; {As, fy, f ′

c ,Q}= random variables normally distributed
having mean and standard deviation values:

As = 2.6 × 10−3 m2; σAs = 0.05 × 10−3 m2; fy = 400MPa; σfy = 45MPa;

f ′
c = 30 MPa; σf ′

c
= 4MPa; Q = 290 × 103 N-m; σQ = 24 × 103 N-m.
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Let : {X1, X2, X3,X4} = {As, fy, f ′
c ,Q}; g = R − Q.

The mean values of the limit state function (Eq. 24.13):

g ≈ g ({x}) = 0.0026
(
400 × 106

) [
0.45 − 0.59 (0.0026)

(
400 × 106

)
0.3

(
30 × 106

)
]

− 290 × 103

= 107.1 × 103 N-m

At the mean values {x}, the partial derivatives are:

a1 = ∂g
/
∂X1 = 125.2 × 106 N/m; a2 = ∂g

/
∂X2 = 813.7 × 10−6 m3;

a3 = ∂g
/
∂X3 = 2340 × 10−6 m3; a4 = ∂g

/
∂X4 = −1.

The reliability index and the probability of failure are (Eq. 24.14 and Table M.1):

β = 107.1 × 103
{ [

125.2 (0.05) 103
]2 + [813.7 (45)]2 + [2340 (4)]2

+
[
(−1) 24 × 103

]2
}−1/2

β = 2.37;Pf = �(−2.37) = 8.89 × 10−3.

24.3.3 Comments on the first-order second-moment mean-value
reliability index

The use of Eq. 24.14 to find an approximate value of the reliability index is easy; but the equation
does not consider different distributions of random variables. The result can be inaccurate when
the tails of the distributions are far from the normal distribution. Furthermore, the value of β

calculated using Eq. 24.14 for a specific nonlinear limit state function can depend on the form
in which the function is written (see Example 24.5). The methods discussed in Section 24.4 do
not exhibit this problem.

Example 24.5: Drift at top of a concrete tower
A concrete tower is idealized as a vertical prismatic cantilever fixed at the base and subjected
to uniform load q/unit length. It is required that the elastic drift (horizontal displacement)
at the top, D = q l4

/
(8EI) does not exceed l/500; where l is the length of the cantilever;

E is the modulus of elasticity; I is the second moment of cross-sectional area. The limit
state equation can be written as: g = R − Q = (

EI
/

l3
)− (

500
/

8
)

q = 0. The same limit
state function can be expressed in terms of the permissible drift or in terms of the bending
moment at the base as:

g1 = l
500

− q l4

8 EI
; g2 = EI

125 l
− q l2

2

Use Eq. 24.14 to determine β1 using g1 and β2 using g2. Given data:
l = 50m; q, E, and I are random variables with: q = 10 kN/m; σq = 1.5 kN/m;

E = 30 GPa; σE = 3 GPa; I = 4.0m4; σI = 0.8m4.
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Use g1 as limit state equation:

g1 = 50
500

− 10 × 103 (50)4

8
(
30 × 109

)
(4.0)

= 0.0349m

a1 = −6.51 × 10−6 m2/N; a2 = 2.17 × 10−12 m3/N; a3 = 16.3 × 10−3 m−3

β1 ≈ 0.0349
{[

6.51 × 10−6
(
1.5 × 103

)]2 +
[
2.17 × 10−12

(
3 × 109

)]2

+
[
16.3 × 10−3 (0.8)

]2
}−1/2

= 1.99

Use g2 as limit state equation:

g2 = 30 × 109 (4.0)

125 (50)
− 10 × 103 (50)2

2
= 6.70 × 106 N-m

a1 = −1250 m2; a2 = 0.640 × 10−3m3; a3 = 4.80 × 106 N-m3

β2 ≈ 6.7 × 106
{ [

−1250
(
1.5 × 103

)]2 +
[
0.640 × 10−3

(
3 × 109

)]2

+
[
4.8 × 106 (0.8)

]2
}−1/2

= 1.43

24.4 General methods of calculation of the reliability index

The methods presented in this section and Sections 24.4.1 and 24.4.2 give, for any specified
limit state equation, the same answer for the reliability index β, regardless of the form in which
the equation is set. Consider the limit state equation:

g ({X}) = g (X1, X2, . . . , Xn) = 0 (24.15)

where {X}n×1 is a random variable whose mean {x} and standard deviation {σX} values are given.
It is required to find the reliability index β.

Transform {X} to {Z}= standard normal random variables, using Eq. M.28:

Zi = (Xi − xi)
/
σXi ; Xi = xi + Zi σXi (24.16)

Substitution of Eq. 24.16 gives the limit state equation as a function of {Z}:
g ({Z}) = g (Z1, Z2, . . . , Zn) = 0 (24.17)

Imagine n-dimensional space with origin O at {Z} = {0}. Figure 24.1 is a three-dimensional
representation of g(Z1, Z2), a function of two random variables. The horizontal axes Z1 and
Z2 represent {Z}. The curve SB is the intersection of the surface g({Z}) with Z1 − Z2 plane; any
point on SB satisfies the limit state Eq. 24.17. The curve SB represents a boundary between the
safe and the failure zones.

Now, let the vertical upward axis in Figure 24.1 represent also the probability density function,
φ(z), Eq. M.26. Imagine rotating the curve of φ(z) in Figure M.1a about the vertical axis to
obtain a surface of rotation, whose contour lines are the circles shown in Figure 24.1. The
shortest distance OL between O and the boundary SB is equal to reliability index β. Point L on
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L

Z1

Z2

gz = 0

Design point

β

O

Contour lines of φ (z)

Failure zone
(gz < 0)

Safety zone
(gz  >0)

g(Z1, Z2)
or φ (Z)

S

B

Figure 24.1 Three-dimensional representation of standard normal space, with limit state function of
two random variables. Top view.

SB is called the point of maximum likelihood or the design point. A vertical plane through OL
intersects the surface of revolution in a curve whose vertical coordinates are �(z); the area below
the curve between L and infinity is equal to Pf , the probability of failure. Its value is maximum
when OL is minimum. The reliability index in the case of two random variables only is:

β =
(
Z∗2

1 + Z∗2
2

)1/2
(24.18)

where {Z∗} are coordinates of the design point.
When there are n random variables, the problem of finding {Z∗}n×1 that gives minimum β

and satisfies Eq. 24.17 amounts to the solution of:

β = min
(
{Z}T {Z}

)1/2
withg ({Z}) = 0 (24.19)

This is called a constrained maximization problem, for which commercial computer programs
exist (e.g. Excel of Microsoft). An iterative solution is given in Section 24.4.2.

24.4.1 Linear limit state function

When g({Z}) in Eq. 24.17 is a linear combination of two random variables only, the safety
boundary SB in Figure 24.1 will be a straight line and OL is perpendicular to it. However, when
the limit state Eq. 24.15 is a linear combination of {X}n×1 (Eq. 24.15), the reliability index can be
determined by Eq. 24.9 or 24.11, without the need of using standardized variables (Eq. 24.16).

24.4.2 Arbitrary limit state function: iterative procedure

An iterative procedure is presented here to solve the problem discussed in Section 24.4. The
solution starts with guess values for β and the coordinates {Z∗} of the design point, with:

Z∗
i =�i β (24.20)
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In the case of two random variables represented in Figure 24.1, �1 or �2 is equal to cosine the
angle between OL and the Z1 or Z2 axis. The iteration is performed to satisfy Eq. 24.21:

�i = −∂ g({Z})
∂ Zi

[
n∑

k=1

(
∂ g ({Z})

∂ Zk

)2
]−1/2

(24.21)

Equation 24.20 gives:

∂ g({Z})
∂ Zi

= β−1
(

∂ g ({Z})
∂ αi

)
(24.22)

Thus, the partial derivatives in Eq. 24.21 can be replaced by partial derivatives with respect to
�1,�2, . . . ,�n. The values {�} calculated using Eq. 24.21 satisfy the equation:

�2
1 +�2

2 + · · · +�2
n = 1 (24.23)

The iteration may start with �2
i = 1/n and �i = ±√1/n, for all i values. The plus or minus

sign should be selected to match the expected sign of �i in Eq. 24.21. In general, the positive
sign is used for the variable that represents the load effect, and the negative sign is used for
the resistance. Express the limit state Eq. 24.17 in terms of β and {�}, and then perform the
following iterative steps:

1. Use the limit state equation to solve for improved β; the solution will, in general, include
terms with β and {�}; for these substitute the latest values.

2. Calculate improved {�} using Eq. 24.21; here again, substitute the latest values of β and
{�} in the right-hand side of the equation.

Repeat the iterative steps until the value of β does not change substantially in consecutive
iterations.

Example 24.6: Iterative calculation of the reliability index
Find the reliability index β for the concrete tower of Example 24.5, using the limit state
equation for the lateral drift at the top:

g =
(

l
500

)
E I −

(
l4

8

)
q

Consider that E, I, and q are uncorrelated normal random variables whose mean and
standard deviation values are as given in Example 24.5. Assume l = 50m.

Let {X1, X2, X3} = {E, I,q}.

The standardized normal random variables are (Eq. 24.16):

{X1,X2, X3} = {109 (30 + 3Z1), (4 + 0.8Z2) , 103 (10 + 1.5Z3)}

Substitution in the limit state equation gives:

g ({Z}) = 50 × 109

500
(30 + 3Z1) (4 + 0.8Z2) − (50)4 × 103

8
(10 + 1.5Z3)
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With Zi = β �i, the limit state equation is rewritten:

g ({Z}) = 106
(
1200β �1 + 2400β �2 + 240β2 �1 �2 − 1171.9β �3 + 4187.5

)
= 0

Solve for β:

β = −4187.5 (1200�1 + 2400�2 + 240β �1 �2 − 1171.9�3)
−1 (a)

Equation 24.21 gives:

�1 = − (1200 + 240�2)

(Sum)1/2 ; �2 = − (2400 + 240β �1)

(Sum)1/2 ; �3 = 1171.9

(Sum)1/2 (b)

where Sum is the quantity in the square brackets in Eq. 24.21. Start the iteration by: β =2.5;
α1 = α2 = −√1/3; α3 =√

1/3.
Substitution of these values in the recurrent Eqs. (a) and (b) gives the improved values in

column 3 of Table 24.2; repetition gives the values in columns 4 to 6. The last two columns
are almost the same. Thus, β = 1.49.

24.5 Monte Carlo simulation of random variables

This section is a brief introduction to the Monte Carlo method for calculating the probabil-
ity of failure. The procedure uses uniformly distributed random numbers between 0 and 1,
{u1, u2, . . . , un} to generate standard normal numbers {z1, z2, . . . , zn}. Any number ui is related
to zi by:

zi = �−1 (ui) (24.24)

The numbers {z} can be used to generate values of the standard normal random variable X using
Eq. M.28:

Xi = xi + Zi σXi (24.25)

where xi and σXi are mean and standard deviation values of Xi.
Uniformly distributed random numbers {u} of between 0 and 1 can be used to generate stand-

ard normal numbers {z} using Eq. 24.24; then, the z values can be used to generate values of a
log-normal random variable X, whose mean and coefficient of variation, x and VX, are known.

Xi = exp (y + Zi σY ) (24.26)

Table 24.2 Results of Iterative Calculation in Example 24.6

(1) Guess values Improved values

(2) (3) (4) (5) (6)

β 2.500 1.639 1.493 1.486 1.486
�1 −√1/3 −0.340 −0.326 −0.331 −0.331
�2 −√1/3 −0.817 −0.840 −0.840 −0.839
�3

√
1/3 0.466 0.434 0.431 0.431
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where

y = ln x − 1
2

σ 2
Y ≈ ln x (24.27)

σ 2
Y = ln

(
1 + V2

X

)
≈ V2

X (24.28)

The approximate formulas can be applied if the coefficient of variation does not exceed 0.2.
Using the approximate formulas, the following expression is obtained,

Xi = xi exp
(
Zi VXi

)
(24.29)

A general procedure can be formulated for any type of distribution function. Consider a ran-
dom variable X with a CDF of FX (x). To generate values of Xi, the following steps can
be taken

1. Generate ui, uniformly distributed, such that 0 ≤ ui ≤ 1.
2. Calculate Xi from the following formula

Xi = F−1
X (ui) (24.30)

where F−1
X is the inverse of FX.

Example 24.7: Generation of uniformly distributed random variables
Generate 10 uniformly distributed random variables for the dead load D on a structure
given that: D = 200kN/m; σD = 20kN/m. Use the {u} values of uniformly distributed
variables given in Table 24.3.

In Table 24.3, the values of z are calculated using Eq. 24.24 (or Eq. M.34) and the D
values are calculated using Eq. 24.25.

24.5.1 Reliability analysis using the Monte Carlo method

For a given limit state function, g = g(X1, . . . ,Xn), where X1, . . . ,Xn are random variables
with CDFs of F1, . . . , Fn respectively, the probability of failure and the reliability index can
be determined by generating a sufficiently large number of values for the random variables
X1, . . . , Xn. For each set of values of X1, . . . ,Xn generated, the value of g is calculated and saved.
The process is repeated M times. The probability of failure, Pf , can be determined in one of the
following ways:

1. Pf = m/M, where m is the number of negative values of g. However, use of this formula
requires at least 10 negative values of g(m>10). If there are no negative values of g(m=0),
or if m is less than 10, more values of g have to be generated. The reliability index can be
calculated using the previously shown relationship between β and Pf .

2. Plot the CDF of the generated values of g on normal probability paper. The obtained CDF
intersects with the vertical axis at the probability of failure (or negative value of the reliability
index). If the CDF does not intersect the vertical axis, then either generate more values of
g, or extrapolate the lower tail of the CDF.
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Table 24.3 Generation of Uniformly Distributed Random Variables from Uniformly Distributed Variables:
Example 24.7

ui 0.25089 0.74099 0.97455 0.74801 0.74908 0.05048 0.92514 0.38575 0.98618 0.03064
zi −0.6714 0.6461 1.9527 0.6679 0.6713 −1.6407 1.4408 −0.2900 2.2027 −1.8719

Di

(
kN
m

)
186.6 212.9 239.1 213.4 213.4 167.2 228.8 194.2 244.1 162.6

The Monte Carlo technique is now considered to be the most accurate and most efficient method
of the reliability analysis. It is applicable to linear and nonlinear limit state functions. The
correlated random variables require special treatment.

24.6 System reliability

In earlier examples in this chapter, the reliability analysis was applied to the calculation of the
reliability index of individual components or members of structures. However, most structures
consist of systems of interconnected components and members. When considering the system
reliability, it is important to recognize that the failure of a single component may or may not
cause failure of the structure. Therefore, there is a need to present some techniques to determine
(or at least estimate or bound) the probability of failure for a whole structure (system).

There are two extreme types of structural elements (components) that are commonly con-
sidered in system reliability analyses. These extreme types are brittle members and ductile
members. A member is classified as brittle if the member becomes completely ineffective after
it fails. Examples of members that can be classified as brittle include non-reinforced concrete
members in tension or a timber beam. Conversely, a ductile element is able to maintain its

R R

(a) (b)

Figure 24.2 Examples of structural systems. (a) Series system. (b) Parallel system.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reliability analysis of structures 735

load-carrying capacity after it fails. An example of a member with ductile behavior would be a
member made of low-carbon steel.

There are two idealized types of structural systems. In a series system, the failure of one
member leads to immediate failure of the entire system. In contrast, in a parallel system all
the members must fail before the system fails. Figures 24.2a and b show examples of the two
systems.

24.6.1 Series systems

A series system is sometimes referred to as a weakest-link system, because failure of the system
corresponds to failure of the weakest element in the system (Figure 24.2a). A statically determ-
inate truss having n members is a series system, because if any member i fails the truss will be
unable to carry its load without collapsing. The upper bound of the probability of failure of the
series system is:

Pf = 1 −
n∏

i=1

(
1 − Pfi

)
(24.31)

The lower bound of the probability of failure is max(Pfi).

Example 24.8: Probability of failure of a statically determinate truss
A statically determinate truss has 20 members; the reliability index of each is β =2.0. What
is the probability of failure of the truss?

pFi = �(−β)= −�(−2.0) = 22.8 × 10−3

The probability of failure for the truss (Eq. 24.31) is:

Pf = 1 − (1 − 22.8 × 10−3)20 = 370 × 10−3

In practice, the axial forces in the members are generally different from each other and the
reliability index β will not be the same for all members. However, this example shows that
Pf of a series system is greater than Pfi of its individual elements.

Example 24.9: Probability of failure of a two-hinged frame
Find the probability of failure of the frame shown in Figure 24.3, subjected to inde-
pendent normally distributed variable loads F1 and F2. Define the failure of the system
as the event when g = R–Q < 0 at sections A or B; where R and Q are the flexural
strength and the bending moment due to the applied loads, respectively (assuming that
moment redistribution cannot occur). Given: l1 =20m; l2 =8m; F1 =100kN; �F1 =10kN;
F2 =10kN; �F2 =1.5kN; EI =constant; RA =180kN-m; RB =260kN-m; �RA =18kN-m;
�RB = 26kN-m.
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l1

l2

Total load=F1F2

BAC

0.46 l1

Figure 24.3 The frame of Example 24.9.

The absolute values of the bending moment at A and B are:

QA = 1.184F1; QB = 1.316F1 + 4.0F2

gA = RA − QA = 180 − 118.4 = 61.6kN-m

gB = RB − QB = 260 − 171.6 = 88.4kN-m

Equations M.53 and 24.4 give:

�gA =
√
�2

RA
+�2

QA
=
√

(18)2 + (1.184 × 10)2 = 21.5kN-m

�gB =
√
�2

RB
+�2

QB
=
√

(26)2 + (1.316 × 10)2 + (4.0 × 1.5)2 = 29.7 kN-m

The reliability indices and probabilities of failure are:

βA = gA/�gA = 61.6/21.5 = 2.87; PfA = �(−βA) = �(−2.87) = 2.05 × 10−3

βB = gB/�gB = 88.4/29.7 = 2.98; PfB = �(−βB) = �(−2.98) = 1.44 × 10−3

The probability of failure of the system (using Eq. 24.31) is in the range between 1.44×10−3

and
[
1 − (

1 − 2.05 × 10−3
) (

1 − 1.44 × 10−3
)]= 3.49 × 10−3. The structure is treated as

a series system because the failure is defined as the event when the moment at one of the
sections at A or B reaches a specified limit; this would not be the case when the frame is
ductile (see Prob. 24.7 or 24.8).

24.6.2 Parallel systems

A parallel system (Figure 24.2b) can consist of ductile or brittle elements. A parallel system with
n perfectly ductile elements (e.g. see Figure 18.1) is in a state of failure when all of its elements
fail (i.e. yield). Let Ri represent the strength of the ith element in such a system. The system
strength will be the sum of all the strengths of the elements, or

R =
n∑

i=1

Ri (24.32)
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If the strengths of the individual elements are all uncorrelated normal variables, then the
system strength is also normal with mean and variance values, R and �2

R given by:

R =
n∑

i=1

Ri; �2
R =

n∑
i=1

�2
Ri

(24.33)

In practice, it is reasonable to assume R to be normally distributed, even in cases where the Ri

variables are non-normal, provided that n is not too small.
Now, let us consider a special case of the parallel system with uncorrelated, perfectly ductile

elements. If the Ri variables are identically distributed (i.e. they have the same probability density
function and the same cumulative distribution function), then the mean and variance given in
Eq. 24.33 become:

R = nRi; �2
R = n�2

Ri
(24.34)

The corresponding coefficient of variation would be

VR = �R

R
=
√

n�2
Ri

nRi
= �Ri√

nRi
= VRi√

n
(24.35)

Thus, the coefficient of variation for a system of n parallel, identically distributed elements is
smaller than the coefficient of variation of each element. The probability of failure due to a
deterministic load on a system of n parallel elements is:

Pf =
n∏

i=1

Pfi (24.36)

The probability of failure, Pf , of a parallel system is generally much less than that of any of
its elements, Pfi; e.g. with n = 2, probability index β1 = β2 = 1, Pf 1 = Pf 2 = 1.59 × 10−3 and
Pf = (1.59 × 10−3)2 = 2.53 × 10−6.

Now consider a parallel system consisting of n perfectly brittle elements. For this type of
system, if one of the brittle elements fails, it loses its capacity to carry load. The load must be
redistributed to the remaining (n−1) elements. If, after the load has been redistributed, the system
does not fail, the load can be increased until the next element fails. Then, the load is redistributed
among the remaining (n−2) elements. This process of failure and load redistribution continues
until overall failure of the system.

Let R1, R2, . . . , Rn represent the strengths of n perfectly brittle elements arranged such that
R1 < R2 < . . . < Rn. The strength of the system, R, is

R = max[nR1, (n − 1)R2, (n − 2)R3, . . . , 2Rn−1,Rn] (24.37)

When the maximum of Eq. 24.37 is defined by the ith element, the variance of the system is
(n − i + 1) �2

Ri
. Substitution of this value and R in Eq. 24.4 gives the reliability index β of the

system; then Eq. 24.3 can give the probability of the system, pF .
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Q, load effect

QiQi γiQi0
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Figure 24.4 Mean, design and factored values of load effect, Q and resistance, R. (a) Load effect. (b)
Resistance.

24.7 Load and resistance factors in codes

The basic design formula in load and resistance factor design codes is of the form:

γDD + γLL + . . .≤ φR (24.38)

where D is the dead load, �D is the dead load factor, L is the live load, �L is the live load factor,
R is the resistance, and � is the resistance factor.

To provide an adequate safety level, the design values for load and resistance have to be conser-
vative: design loads are overestimated and load-carrying capacity (resistance) is underestimated
(Figures 24.4a and b).

24.8 General

An introduction to the relatively new topic of reliability analysis of structures is presented in
this chapter. For more complete study of the subject, refer to specialized publications.2

Problems

24.1 SI units. A reinforced concrete cantilever of length l =4.0m carries at its free end a load W
combined with a uniform load w/unit length. Both W and w are normal random variables
whose mean and standard deviation values are: W =860kN; �W =160kN; w=40kN/m;
�w =3kN/m. What is the probability that the bending moment exceeds 4300kN-m? What
is the probability that the shearing force exceeds 1200kN?

24.2 Imperial units. What is the probability that the bending moment in the cantilever in Prob.
24.1 exceeds 3170 kip-ft? What is the probability that the shearing force exceeds 270 kips?
Data: l = 13.1 ft; W = 193kips; �W = 36kips; w = 2.75kip/ft; �w = 2.1kip/ft.

2 Nowak, A.S. and Collins, K.R., Reliability of Structures, McGraw-Hill, New York, 2000, 338 pp.; Melch-
ers, R.E., Structural Reliability Analysis and Prediction, Ellis Horwood Limited, Chichester, John Wiley
and Sons, 2nd ed. 1999, 437 pp.; Thoft-Christensen, P. and Murotzu, M., Application of Structural Sys-
tems Reliability Theory, Springer Verlag, Berlin, 1986; Stewart, M. and Melchers, R.E., Probabilistic Risk
Assessment of Engineering Systems, Chapman & Hall, 1997; Madsen, H.O., Krenk, S. and Lind, N.C.,
Methods of Structural Safety, Prentice Hall Inc., Englewood Cliffs, New Jersey, 1986; Walpole, R.E.,
Myers, R.H., Myers, S.L. and Ye, K., Probability & Statistics For Engineers and Scientists, Prentice Hall,
Upper Saddle River, NJ, 07458, 8th Edition, 2007, 816 pp.
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24.3 SI units. Calculate the probability of failure PfM of the cantilever in Prob. 24.1. Also, calcu-
late the probability of shear failure PfV . Assume that the flexural and the shear strengths,
RM and RV , are normal random variables, whose values of the mean and the standard
deviation are: RM = 4300kN-m; �RM = 430kN-m; RV = 1200kN; �RV = 420kN.

24.4 Imperial units. Calculate the probability of flexural failure PfM of the cantilever in Prob.
24.2. Also, calculate the probability of shear failure PfV . Assume that the flexural and
the shear strengths, RM and RV , are normal random variables, whose values of the mean
and the standard deviation are: RM =3170kip-ft; �RM =317 kip-ft; RV =270kips; �RV =
90kips.

24.5 SI units. A horizontal steel beam ABC has length l = 20m, a totally fixed support at A,
and a roller support at C. The beam is subjected to a downward concentrated load W at
section B, middle of the span. Calculate the probability of flexural failure as a mechanism
with plastic hinges at A and B. Consider that failure occurs when: g =1.5Mp − (W l/4

)
>0

(see Chapter 18), where Mp is the the absolute value of the fully plastic moment strength at
A or B. Assume that W and Mp are normal random variables, whose mean and standard
deviation values are: W = 200kN; �W = 40kN; Mp = 1150kN-m; �Mp = 120kN-m.

24.6 Imperial units. Solve Prob. 24.5 with l = 60 ft, W = 45kips, �W = 9kips, Mp = 900kip-ft,
�Mp = 100 kip-ft.

24.7 SI units. Calculate the probability of flexural failure of the frame shown in Figure 24.3 (with
l1 = 20 m; l2 = 8m) as a mechanism with plastic hinges at C and B. Consider that failure
occurs when g = 1.24F1 + 2.16F2–Mp > 0 (see Chapter 18), where Mp is the absolute
value of the fully plastic hinges at C and B. Assume that F1, F2, and Mp are normal
random values, whose mean and standard deviation values are: F1 =100kN; �F1 =10kN;
F2 = 10 kN; �F2 = 1.5kN; Mp = 210kN-m; �Mp = 21kN-m.

24.8 Imperial units. Solve Prob. 24.7 with the data: F1 = 22.5kips; �F1 = 2.25kips; F2 =
2.25kips; �F2 = 0.34kips; Mp = 155kip-ft; �Mp = 15.5kip-ft; l1 = 65.6 ft; l2 = 26.2 ft;
g = 4.07 F1 + 7.09F2–Mp > 0.

24.9 Imperial (or SI) units. Using the Monte Carlo method, calculate the probability of failure
of a steel beam. The limit state function is g = fyZ− (D + L). Assume that the yield stress,
fy, and the bending moments due to dead load, D, and live load, L, are random variables
with the statistical parameters given below, and the plastic section modulus is Z = 80 in.3

(1.31 × 10−3 m3) (deterministic value).

Parameter Mean V Type of distribution

fy 60 ksi (414 MPa) 0.09 Log-normal
D 80 k-ft (108 kN-m) 0.10 Normal
L 120 k-ft (163 kN-m) 0.18 Extreme type I



Appendix A

Matrix algebra

A.1 Determinants

The determinant of a square matrix is denoted by |S|. This indicates specified arithmetical oper-
ations with the elements of the square matrix [S], which result in a single number. A determinant
|S| is said to be of order n if [S] is a square matrix of order n × n.

A second-order determinant is defined as

|S| =
∣∣∣∣S11 S12

S21 S22

∣∣∣∣= S11 S22 − S12 S21 (A.1)

The operations for a determinant of higher order will be defined later in this section.
The minor Mij of element Sij in determinant |S| is defined as the determinant obtained by

omission of the ith row and jth column of |S|. For example, in the third-order determinant

|S| =
∣∣∣∣∣∣
S11 S12 S13

S21 S22 S23

S31 S32 S33

∣∣∣∣∣∣
the minor M32 is given by

M32 =
∣∣∣∣S11 S13

S21 S23

∣∣∣∣
It is apparent that if |S| is of order n, any minor is a determinant of order n − 1.

The cofactor Coij of element Sij is obtained from the minor Mij as follows:

Coij = (−1)i+jMij (A.2)

Thus, in the above example,

Co32 = (−1)3+2 M32 = −M32

A determinant of order n can be evaluated from the cofactors of any row i, thus:

|S| =
n∑

j=i

Sij Coij (A.3)
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Alternatively, the determinant can be evaluated from the cofactors of any column j, thus:

|S| =
n∑

i=1

Sij Coij (A.4)

Equations A.3 and A.4 are called Laplace expansion equations.
Properties of determinants. Some useful properties of determinants are listed below.

1. If all elements in one row or one column are zero, the determinant is zero.
2. When any two rows or two columns are interchanged, the sign of the determinant is

changed.
3. The determinant of a matrix is the same as the determinant of its transpose.
4. If the elements in a row (or column) are multiplied by a constant and the result added to

the corresponding elements in another row (or column), the determinant is not changed.
5. If one row (or column) can be generated by linear combination of other row(s) (or columns),

the determinant is zero. From this it follows that if two rows or columns are identical, the
determinant is zero.

6. The sum of the product of the elements in one row i by the corresponding cofactors of
another row m is zero. Thus, for a matrix [S]n×n,

n∑
j=1

Sij Comj = 0 (when i �= m) (A.5)

This is the general form of Laplace expansion; it can be compared with Eq. A.3, which gives
the value of the determinant |S| when m = i. Similarly, when the product is for the elements in
a column j with the cofactors of another column m, we can write

n∑
i=1

Sij Coim = 0 (when j �= m) (A.6)

The summation is equal to |S| when m = j (see Eq. A.4).
This last property will be used to derive the inverse of a matrix.
Matrix inversion using cofactors: Consider a matrix [S]n×n for which the inverse [S]−1 is to

be derived. We form a new matrix [Co] consisting of cofactors Coij of the elements of [S], and
then form the product

[S]n×n [Co]Tn×n = [B]n×n (A.7)

From the definition of matrix multiplication, any element of [B] is

Bij =
n∑

r=1

Sir Cojr

From Eqs. A.3 and A.5 we can see that the summation in the above equation is zero when i �= j,
and equals |S| when i = j. Therefore, [B] is a diagonal matrix with all the diagonal elements
equal to |S|. Thus, we can write [B]= |S| [I]. Hence, by substituting in Eq. A.35 and dividing by
|S|, we obtain

1
|S| [S] [Co]T = [S] [S]−1 = [I]
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whence

[S]−1 = [Co]T
|S| (A.8)

From Eq. A.36 it is apparent that the division by |S| is possible only when |S| �= 0. It follows
that only matrices which have a nonzero determinant have an inverse. When its determinant is
zero, a matrix is said to be singular (and its inverse does not exist).

A.2 Solution of simultaneous linear equations

Consider a system of n linear equations with n unknowns

[a]n×n {x}n×1 = {c}n×1 (A.9)

If all the elements in {c} are zero, the system is called homogeneous. This system occurs in
eigenvalue or characteristic-value problems, such as stability and vibration problems in structural
analysis. In this section, we shall deal only with nonhomogeneous equations for which not all
the elements of {c} are zero.

A unique solution of a system of nonhomogeneous equations exists when the determinant |a|
is nonzero. If |a|= 0, that is, if matrix [a] is singular, Eq. A.9 may have no solution or may have
an infinite number of solutions. If the determinant |a| is small compared with the cofactors of [a],
the system of equations is said to be ill-conditioned, in contrast to well-conditioned equations.
The determinant |a| of ill-conditioned equations is said to be almost singular.

For the purposes of this book, it is useful to mention two methods of solving a system of
simultaneous equations. According to one of these, known as Cramer’s rule, the solution of
Eq. A.9 is:

x1 = 1
|a|

∣∣∣∣∣∣∣∣
c1 a12 . . . a1n

c2 a12 . . . a2n

. . . . . . . . . . . .

cn an2 . . . ann

∣∣∣∣∣∣∣∣

x2 = 1
|a|

∣∣∣∣∣∣∣∣
a11 c1 . . . a1n

a21 c2 . . . a2n

. . . . . . . . . . . .

an1 cn . . . ann

∣∣∣∣∣∣∣∣

xn = 1
|a|

∣∣∣∣∣∣∣∣
a11 a12 . . . c1

a21 a22 . . . c2

. . . . . . . . . . . .

an1 an2 . . . cn

∣∣∣∣∣∣∣∣

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A.10)

Each of the unknowns xi is found by multiplying the reciprocal of the determinant |a| by
the determinant of a matrix which has the same elements as |a| except that the ith column is
replaced by the column vector {c}. The evaluation of the determinants involves a large number
of operations, and Cramer’s rule is perhaps the most suitable method when the number of
equations is 2 or 3. When the number of equations is greater, other methods require fewer
operations. However, Cramer’s rule serves to explain some of the preceding statements related
to the case when the determinant |a| is small or zero.
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As an example of the use of Cramer’s rule, let us consider the equations

[
S11 S12

S21 S22

] {
D1

D2

}
=
{

F1

F2

}
(A.11)

Applying Eq. A.38,

D1 =

∣∣∣∣∣F1 S12
F2 S22

∣∣∣∣∣∣∣∣∣∣S11 S12
S21 S22

∣∣∣∣∣
= F1S22 − F2S12

S11S22 − S12S21

and

D2 =

∣∣∣∣∣S11 F1
S21 F2

∣∣∣∣∣∣∣∣∣∣S11 S12
S21 S22

∣∣∣∣∣
= F2S11 − F1S21

S11S22 − S12S21

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A.12)

The inverse of [S] may be found, as explained in Section A.7, by solving Eq. A.12 twice: once
with {F1, F2} = {1, 0} and the second time with {F1, F2} = {0, 1}. Thus,

[
S11 S12

S21 S22

]−1

= 1
(S11S22 − S12S21)

[
S22 −S12

−S21 S11

]
(A.13)

We can see then that the inverse of a matrix of order 2 × 2 is the product of the reciprocal of
the determinant and of a matrix in which the two elements on the main diagonal of the original
matrix are interchanged, and the other two elements change sign.

The method which is most commonly used to solve linear equations (and to invert matrices)
is the method of elimination, introduced in elementary algebra. Several procedures of the elim-
ination process have been developed,1 and standard programs are now available for computers.
A discussion of these procedures and of their advantages is beyond the scope of this book, and
we shall limit ourselves here to one procedure suitable for the use of a small calculator.

In the procedure suggested by P.D. Crout,2 the calculation is arranged in two tables. Let us
consider it with reference to a system of four equations [a]4×4 {x}4×1 = {C}4×1. The tables are:
Given equations

a11 a12 a13 a14 c1

a21 a22 a23 a24 c2

a31 a32 a33 a34 c3

a41 a42 a43 a44 c4

1 See references on numerical procedures, for example, Crandall, S.H., Engineering Analysis, McGraw-Hill,
New York, 1956.

2 Crout, P. D., “A Short Method for Evaluating Determinants and Solving Systems of Linear Equations with
Real or Complex Coefficients,’’ Trans. AIEE, 60 (1941), pp. 1235–1240.



744 Appendix A

Auxiliary quantities

b11 b12 b13 b14 d1

b21 b22 b23 b24 d2

b31 b32 b33 b34 d3

b41 b42 b43 b44 d4

Solution

x1 x2 x3 x4

The first table requires no computation, and is simply formed by the elements of [a] and {c}.
The second table contains auxiliary quantities which are determined following a set pattern

of computation. The elements in the first column of this table {b11, b21, b31, b41} are the same
as the column {a11, a21, a31, a41}, and are simply copied from the first table. The quantities in
the first row are determined as follows:

[b12 b13 b14 d1] = 1
b11

[a12 a13 a14 c1]

Then the second column (b22 to b42) is completed from the following:

⎧⎨
⎩

b22

b32

b42

⎫⎬
⎭=

⎧⎨
⎩

(a22 − b21 b12)

(a32 − b31 b12)

(a42 − b41 b12)

⎫⎬
⎭

Next, the second row (b23 to d2) is completed from

[b23 b24 d2] = 1
b22

[(a23 − b21 b13), (a24 − b21 b14), (c2 − b21 d1)]

Proceeding diagonally downward, a column is completed starting from the diagonal element
bii, followed by a row to the right of the diagonal. The elements required to complete the third
column and the third row in the above example are calculated as follows:

{
b33

b43

}
=
{
(a33 − b31 b13 − b32 b23)

(a43 − b41 b13 − b42 b23)

}

[b34 d3] = 1
b33

[(a34 − b31 b14 − b32 b24), (c3 − b31 d1 − b32 d2)]

Finally, to complete the last row, the elements b44 and d4 are determined:

b44 = a44 − b41 b14 − b42 b24 − b43 b34

d4 = 1
b44

(c4 − b41 d1 − b42 d2 − b43 d3)

From the above we can see that the diagonal elements b11, b22, b33, and b44 and the elements
below the diagonal in Crout’s second table are determined by one pattern of operations. The
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same pattern is followed for the remainder of the table, except that division by the diagonal
element bii has also to be carried out.

All these operations can be summarized as follows. Any element bij, such that j ≤ i, is
calculated by

bij = aij −
j−1∑
r=1

bir brj (A.14)

An element bij, such that i < j, is determined by

bij = 1
bii

[
aij −

i−1∑
r=1

bir brj

]
(A.15)

The elements d1, . . . , d4 are determined by Eq. A.15, treating the columns {c} and {d} as if they
were the last columns of matrices [a] and [b] respectively.

The above procedure is, in fact, a process of elimination in which the original equations are
reduced to⎡

⎢⎢⎣
1 b12 b13 b14

0 1 b23 b24

0 0 1 b34

0 0 0 1

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

x1

x2

x3

x4

⎫⎪⎪⎬
⎪⎪⎭=

⎧⎪⎪⎨
⎪⎪⎩

d1

d2

d3

d4

⎫⎪⎪⎬
⎪⎪⎭ (A.16)

The values of xi can now be determined by a process of back substitution starting from the last
equation, thus,

x4 = d4

x3 = d3 − b34 x4

x2 = d2 − b23 x3 − b24 x4

x1 = d1 − b12 x2 − b13 x3 − b14 x4

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A.17)

In practice, Eqs. A.16 and A.17 need not be written down, and the answers are put directly in
a row below the tables. From Eq. A.17 we can see that, in a general case, each of the unknowns
xj is determined by

xj = dj −
n∑

r= j+1

bjr xr (A.18)

where n is the number of the unknowns (or of equations).
If we want to invert [a], the columns {c} are replaced by n columns forming a unit matrix.

These columns are treated in the same way as {c} in the preceding discussion, and the column
{d} is replaced by a matrix [d]n×n. Back substitution in Eq. A.18 with the elements of d in each
column of this matrix gives a column of the inverse matrix.

If matrix [a] is symmetrical, which is usually the case in equations needed in structural analysis,
the arithmetical operations are reduced considerably as each of the auxiliary quantities bij to
the right of the diagonal is related to an element bji below the diagonal by

bij = bji

bii
i < j (A.19)
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The following tables are an example of the application of Crout’s procedure to the solution
of four symmetrical equations.

Given equations

5 −4 1 0 1

−4 6 −4 1 −4

1 −4 6 −4 11

0 1 −4 7 −5

Auxiliary quantities

5 −4
5

1
5

0
1
5

−4
14
5

−8
7

5
14

−8
7

1 −16
5

15
7

−4
3

10
3

0 1 −20
7

17
6

2

Solution

3 5 6 2

A.3 Eigenvalues

In the preceding section we mentioned the solution of the equation [a]n×n {x}n×1 ={0}. This is of
interest when [a]=[b]n×n −�[I]n×n and � is unknown. In other words, we require the solution of

([b]n×n − λ[I]n×n) {x}n×1 = {0} (A.20)

Equation A.20 can also be written as

[b]n×n {x}n×1 = λ{x}n×1 (A.21)

which means that pre-multiplying a column vector by a matrix results in a multiple of the column
vector. Such a column vector is known as an eigenvector of the matrix, and the multiplier is called
an eigenvalue or characteristic value.

Equation A.20 represents a system of n homogenous linear equations, and its solution arising
from {x} = {0}, is given by the determinant

|[b] − λ[I]| = 0 (A.22)
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For example, if we want to find the eigenvalues of the matrix

[b] =
⎡
⎣3 7 9

7 11 7
9 7 9

⎤
⎦

we can write from Eq. A.50∣∣∣∣∣∣
3 − λ 7 9

7 11 − λ 7
9 7 9 − λ

∣∣∣∣∣∣= 0

Expanding this determinant with the aid of Eq. A.4,

|a| =
3∑

j=1

aij Coij

and choosing i = 1, we obtain

|a|= (3 − λ)[(11 − λ)(9 − λ)− 7 × 7] − 7[7(9 − λ) − 7 × 9]
+ 9[7 × 7 − (11 − λ) × 9] = 0

from which

λ3 − 23λ2 − 20λ + 300 = 0

Hence, the three values of λ are 23.31, 3.44, and −3.75. As expected, the number of eigen-
values is equal to the order of the matrix. In many practical problems, it is only the largest
eigenvalue that is of interest.

In general, when [b] is of order n, expansion of the determinant in Eq. A.22 gives a polynomial
in λ of the form

λn + c1λ
n−1 + c2λ

n−2 + · · · + cn = 0 (A.23)

This equation is called the characteristic equation of the matrix [b], and its solution gives the
eigenvalues λ1, λ2,. . ., λn which satisfy the conditions

n∑
i=1

λi =
n∑

i=1

bii (A.24)

and

λ1 × λ2 × · · · × λn = |b| (A.25)

The eigenvalues obtained in the preceding examples can be checked by these two equations.
The eigenvector corresponding to the λ values can be found by substituting for λ in Eq. A.20

and solving. Since Eq. A.20 is homogeneous, only relative values of x can be determined for
each eigenvalue. We can assume x1 = 1, solve for the other values using (n − 1) equations and
the last equation can be used to check the calculations.

Instead of evaluating the determinant, we may use an iteration method which leads to the
eigenvalue with the largest absolute value. In this we assume the value of the eigenvector {x} and
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substitute it in the left-hand side of Eq. A.21. Hence, we find a value of λ and a new value of
{x}. If this new value of {x} is equal to the assumed value, then we have solved the problem: λ is
the required eigenvalue, and {x} the eigenvector. If, however, there is a discrepancy between the
two values of {x}, we use the new value as an assumed value in the second cycle of evaluating
[b]{x}. We repeat this procedure until Eq. A.21 is satisfied.

In many practical problems, a good estimate of {x} corresponding to the largest λ can be made
from the physical data available, and rapid convergence is obtained.

As an example, let us consider the matrix [b] given earlier, and assume the vector {x(1)} as
below. Then

{x(1)} {x(2)}
↓ ↓⎡

⎣3 7 9
7 11 7
9 7 9

⎤
⎦
⎧⎨
⎩

1.0
1.2
1.1

⎫⎬
⎭=

⎧⎨
⎩

22.2
28.6
27.3

⎫⎬
⎭= 22.2

⎧⎨
⎩

1.00
1.29
1.23

⎫⎬
⎭

Since {x(2)} �= {x(1)}, we repeat the multiplication with {x(2)}:
{x(2)} {x(3)}

↓ ↓⎡
⎣3 7 9

7 11 7
9 7 9

⎤
⎦
⎧⎨
⎩

1.00
1.29
1.23

⎫⎬
⎭=

⎧⎨
⎩

23.10
29.80
29.10

⎫⎬
⎭= 23.10

⎧⎨
⎩

1.00
1.29
1.26

⎫⎬
⎭

Since {x(2)} ∼= {x(3)}, we have found the eigenvector, and λ ∼= 23.1 is the largest eigenvalue. A
third repetition of the multiplication using {x(3)} gives λ = 23, which is very close to the exact
solution.

Problems

A.1 Given the matrices

[A] =
[
1 0 2
3 1 1

]
; [B] =

[
4 2
2 3

]

execute the following matrix operations, if possible:

(a) [A] [B] (b) [A]T [B]
(c) [A]T [B] [A] (d) [A] [B]T [A]T
(e) Prove that, if [B] is symmetrical, the product [A]T [B] [A] must also be symmetrical.

A.2 Given [A] and [B] as in Prob. A.1 and

[C] =
[
3 2 0
1 0 2

]
execute the following operations:

(a) [B] [A + C] (b) [B] [A] + [B] [C]

Note that the distributive law [B] [A + C] = [B] [A] + [B] [C] applies to matrices.

A.3 Prove that the transpose of the product of two or more matrices is the product of the
transposes of the matrices in a reversed order.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix A 749

A.4 Find the inverse of the following matrices:

(a )

[
5 −2

−2 3

]
(b )

⎡
⎣ 2 −1 0

−1 2 −1
0 −1 2

⎤
⎦

( c )

⎡
⎣ 5 −4 1

−4 6 −4
1 −4 7

⎤
⎦

A.5 The coordinates 1 and 2 in part (a) of the figure represent the positive directions of forces
F1 and F2 and displacements D1 and D2 at the end A of cantilever AB. The displacements
(deflection or rotation) due to unit values of the forces (vertical load or couple) are given
in parts (b) and (c); these displacements are arranged in the flexibility matrix

[f ] =
[
f11 f12

f21 f22

]
=
[

l/(EI) −l2/(2EI)
−l2/(2EI) l3/(3EI)

]

Assuming that the displacements {D1, D2} due to forces {F1, F2} can be obtained by the
superposition equation[

f11 f12

f21 f22

]{
F1

F2

}
=
{

D1

D2

}

(a) Find the displacements due to F1 = Pl
2 and F2 = P acting simultaneousy.

(b) Find the forces S11 and S21 corresponding to the displacements D1 = 1 and D2 = 0.
Sketch the deflected shape of the beam.

(c) Find the forces S12 and S22 corresponding to the displacement D1 = 0 and D2 = 1.
Sketch the deflected shape of the beam.

(d) Show that the stiffness matrix formed by the forces obtained in (b) and (c)

[S] =
[
S11 S12

S21 S22

]

is the inverse of the flexibility matrix [f ].

(c)
Vertical load=1

(b)

Moment=1

f21= –  l2—
2EI

 l2—
2EI

 l3—
3EI

l—
EI

f22= f12= –

f11 
=

2

A B

(a)

1
l

Prob. A.5

A.6 The stiffness matrix for the beam in the figure is

[S] = EI
l3

[
9.6 −8.4

−8.4 9.6

]

The forces {F} = {F1, F2} and the corresponding displacements {D} = {D1, D2} along the
coordinates 1 and 2 are related as follows: [S] {D} = {F}.
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(a) Sketch the deflected shape of the beam when the forces applied are F1 =S11 and F2 =S21.
(b) Find the inverse of the stiffness matrix [S]. What does the resulting matrix signify?

1 2

ll l

Prob. A.6

A.7 The stiffness matrix of the beam shown in part (a) of the figure is

[S] = 4EI0

l

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 2
12
l

0 2 1 −6
l

- - - - - - - - - - - - - - - - - - -
2 1 6

6
l

12
l

−6
l

6
l

72
l2--

--
--

--
--

--
--

--
--

--
--

-

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(a)

The forces P1, P2, P3, and P4 and the corresponding displacements D1, D2, D3, and D4

along the coordinates are related as follows:[[S11] [S12]
[S21] [S22]

]{{D1}
{D2}

}
=
{{F1}
{F2}

}
(b)

where [S11], [S12] etc., refer to the partitioned matrices in [S] and

{D1} =
{

D1

D2

}
; {D2} =

{
D3

D4

}
; {F1} =

{
P1

P2

}
; {F2} =

{
P3

P4

}

By putting {F2} = {0} in Eq. (b), find a matrix [S∗] relating the forces to the displacements
along the coordinates indicated in Prob. A.7(b), such that

[S∗] {D1} = {F1} (c)

(a)

(b)

1 2

21

3

2I0 I0

l/2 l/2

l/2 l/2

4

Prob. A.7



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix A 751

A.8 Solve the following simultaneous equations:

[
8 −2

−3 11

]{
x1

x2

}
=
{

18
−17

}
(a)

⎡
⎣ 4 −2 1

−3 8 −2
2 −5 10

⎤
⎦
⎧⎨
⎩

x1

x2

x3

⎫⎬
⎭=

⎧⎨
⎩

2
13
27

⎫⎬
⎭ (b)

⎡
⎣2 1 0

1 2 1
0 1 2

⎤
⎦
⎧⎨
⎩

x1

x2

x3

⎫⎬
⎭=

⎧⎨
⎩

1
1
1

⎫⎬
⎭ (c)

EI
l

⎡
⎢⎢⎢⎢⎢⎢⎣

108
l2 −6

l
−24

l

−6
l

8 2

−24
l

2 12

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

D1

D2

D3

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

= P

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.5

l

− l
8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(d)

l
6EI

⎡
⎣4 1 0

1 4 1
0 1 4

⎤
⎦
⎧⎨
⎩

F1

F2

F3

⎫⎬
⎭=

⎡
⎢⎢⎣

1
l
0
0

⎤
⎥⎥⎦ (e)

A.9 Find the eigenvalues for the matrices in Prob. A.4 (a) and (c). Calculate the eigenvector
corresponding to the highest eigenvalue.

A.10 Using iteration, evaluate the smallest eigenvalue of the matrix

[a] =
⎡
⎣ 2 −1 0.5

−1 2 0
−1 −1 3.5

⎤
⎦

The eigenvalues of [a]−1 are the reciprocals of those for [a]. To find by iteration the largest
eigenvalue of [a]−1, assume that the eigenvector represents the buckling mode of a strut
hinged at one end and encastré at the other. The elements of the eigenvector are
proportional to the deflections at equally-spaced points on the axis of the strut. (See
Figure 14.8b.)
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Displacements of prismatic members

The following table gives the displacements in beams of constant flexural rigidity EI and constant
torsional rigidity GJ, subjected to the loading shown on each beam. The positive directions of
the displacements are downward for translation, clockwise for rotation. The deformations due
to shearing forces are neglected.

q per unit length

f4 f2 f6 f1
x

l/4 l/4 l/4 l/4

f3 f5

f2 f1

l

b

x P

f3

f1 = 5
384

ql4

EI
(B.1)

f2 = f3 = 19
2048

ql4

EI
(B.2)

f4 = −f5 = ql3

24EI
(B.3)

f6 = qx
24EI

(l3 − 2lx2 + x3) (B.4)

f1 = P(l − b)x
6lEI

(2lb − b2 − x2) when x � b (B.5)

f1 = Pb(l − x)

6lEI
(2lx − x2 − b2) when x � b (B.6)

f2 = Pb(l − b)

6lEI
(2l − b) f3 = − Pb

6lEI
(l2 − b2) (B.7)

Whenb = l/2, f2 = −f3 = Pl2/(16EI), and f1 = Pl3/48EI at x = l/2 (B.8)
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l/4 l/4 l/4 l/4

f2 f3 f4 f5 f1

M f1 = Ml
3EI

(B.9)

f2 = − Ml
6EI

(B.10)

f3 = −15Ml2

384EI
(B.11)

f4 = Ml2

16EI
(B.12)

f5 = −21Ml2

384EI
(B.13)

l/4 l/4 l/4 l/4

f2f3

f4

f1

M

f1 = Ml
4EI

(B.14)

f2 = − 9Ml2

256EI
(B.15)

f3 = − Ml2

32EI
(B.16)

f4 = − 3Ml2

256EI
(B.17)

f2

f3
f4

f1

f1

T

b d
P

l

l

f1 = Tl
GJ

(B.18)

(Effect of warping ignored)

f1 = Pl3

3EI
(B.19)

f2 = Pl2/2EI (B.20)

f4 = f1 + df2 (B.21)

f3 = Pl3

3EI

(
1 − 3b

2l
+ b3

2l3

)

for 0 � b � l (B.22)

q per unit length

f2
f1

l/2 l/2

f1 = ql4

192EI
(B.23)

f2 = − ql3

48EI
(B.24)
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f2
f1

P

l/2 l/2

f1 = 7Pl3

768EI
(B.25)

f2 = − Pl2

32EI
(B.26)

q per unit length

f1

ξ l

f3

f2

ξ lξ l

l

f1

ξ l

f3
f2

ξ l

β l
M

l

ξ l

f1 = ql4

8EI
(B.27)

f2 = ql3

6EI

(
3ξ − 3ξ2 + ξ3

)
(B.28)

f3 = ql4

24EI

(
6ξ2 − 4ξ3 + ξ4

)
(B.29)

f1 = Ml2

EI
β (1 − 0.5β) (B.30)

f2 =
{

Mlξ/(EI)with ξ ≤ β

Mlβ/(EI) with β < ξ ≤ 1
(B.31)

f3 =

⎧⎪⎨
⎪⎩

M(ξ l)2/(2EI)with ξ ≤ β

Ml2β(ξ − 0.5β)/(EI)

with β < ξ ≤ 1

(B.32)

β l / 2

f3
f1

l

f2
f4

ξ l
β l

with ξ≤ (1–β )

q/unit length

f1 = ql2

24EI
β2ξ(2−β2 −2ξ2) (B.33)

f2 = ql4

384EI
β3(32 − 39β + 12β2) (B.34)

f3 = ql3

24EI
β2(2 −β2) (B.35)

f4 = − ql3

24EI
β2(4 − 4β + β2) (B.36)
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x

x

f4

f4f3

f3

f2

f2

f1

f1

l/2

l/2 l/2

l/2

M M

Beam
depth

Thermal expansion (strain)

ψ  =  curvature

f1 = −f2 = − Ml
2EI

(B.37)

f3 = −Mx(l − x)

2EI
f4 = −Ml2

8EI
(B.38)

f1 = ψ l2/8 (B.39)

f2 = ψx(l − x)

2
(B.40)

f3 = −f4 = ψ l
2

(B.41)
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Fixed-end forces of prismatic
members

The following table gives the fixed-end forces in beams of constant flexural rigidity and constant
torsional rigidity due to applied loads. The forces are considered positive if upward or in the
clockwise direction. A twisting couple is positive if it acts in the direction of rotation of a right-
hand screw progressing to the right. When the end-forces are used in the displacement method,
appropriate signs have to be assigned according to the chosen coordinate system.

Fixed-End Force

P

F1

F2

F4 F3

l/2 l/2

F1 = −F2 = Pl
8

(C.1)

F3 = F4 = P
2

(C.2)

P

F1

F2

F4 F3

a b

l

F1 = Pa2b
l2 (C.3)

F2 = −Pab2

l2 (C.4)

F3 = P
(

a
l

+ a2b
l3 − ab2

l3

)
(C.5)

F4 = P
(

b
l

− a2b
l3 + ab2

l3

)
(C.6)

F1

F2

F4 F3

l

q per unit length F1 = −F2 = ql2

12
(C.7)

F3 = F4 = ql
2

(C.8)
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Fixed-End Force
q per
unit length

F4

F2

F3

F1

a b

c/2 c/2

l

F1 = qc
12l2 [12a2b + c2(l − 3a)]

F2 = − qc
12l2 [12ab2 + c2(l − 3b)]

F3 = qca
l

+ (F1 + F2)

l

F4 = qcb
l

− (F2 + F1)

l

F4

F2

F3

F1

a b

l

M

F1 = Ma
l

(
2 − 3a

l

)

F2 = Mb
l

(
2 − 3b

l

)

F3 = −F4 = 6Mab
l3

F4

F2

F3

F1

q per
unit length

l

F1 = ql2

20

F2 = −ql2

30

F3 = 7
20

ql

F4 = 3
20

ql

F2 F1

a

T

b

l

F1 = −Ta
l

F2 = −Tb
l

If the totally fixed support in any of the above cases, except the last, is changed to a hinge or
a roller, the fixed-end moment at the other end can be calculated using the equations of this
appendix and Eq. 11.46. Examples are as follows:
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F1

F2 F3

l

q per unit length
F1 = ql2

8
(C.9)

F2 = 3ql
8

(C.10)

F3 = 5ql
8

(C.11)

F2 F3

F1

a b

P

l

F1 = Pab
l2

(
a + b

2

)
(C.12)

F2 = P
[

b
l

− ab
l3

(
a + b

2

)]
(C.13)

F3 = P
[

a
l

+ ab
l3

(
a + b

2

)]
(C.14)

F2 F3

F1

q per unit length

l

F1 = ql2

15
(C.15)

F2 = ql
10

(C.16)

F3 = 2ql
5

(C.17)

F1
Ttop

Tbot

F2

F3

l

h Temperature rise

F1 = 3EIα
2h

(Tbot − Ttop) (C.18)

F2 = −F3 = −3EI
2hl

α(Tbot − Ttop) (C.19)

α = coefficient of thermal
expansion

F4

F3

F1

F2l

Total load=ql
F1 = F2 = ql/2 (C.20)

F3 = −F4 = −ql2/12 (C.21)
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End-forces caused by end-displacements
of prismatic members

The following table gives the forces at the ends of beams due to a unit translation or unit
rotation of one end. The positive directions for the forces are upward and clockwise. The
effect of the deformation caused by the shearing forces is neglected; this topic is considered
in Section 15.2. Moreover, the equations do not account for the bending moment due to axial
forces; if a member is subjected to a large axial force, its effect may be included using Table 13.2
instead of this appendix. The beams have a constant flexural rigidity EI and a constant torsional
rigidity GJ.

Beam Force

F2

F4 F3

F1

l

1

F1 = F2 = 6EI
l2 (D.1)

F3 = −F4 = 12EI
l3 (D.2)

F2

F4 F3

F1

l

1 F1 = 4EI
l

(D.3)

F2 = 2EI
l

(D.4)

F3 = −F4 = 6EI
l2 (D.5)

F1

F2F3

l

1 F1 = 3EI
l2 (D.6)

F2 = −F3 = 3EI
l3 (D.7)
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Beam Force

F1

F2F3

l

1

F1 = 3EI
l

(D.8)

F2 = −F3 = 3EI
l2 (D.9)

F1F2

Angle of twist = l

l

F1 = −F2 = GJ
l

(D.10)

(Effect of warping ignored)

F1 F21 1

l

F1 = −F2 = 2EI
l

(D.11)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix E

Reactions and bending moments at
supports of continuous beams due to
unit displacement of supports

The following tables give the reactions and the bending moments at the supports of a continuous
beam due to a unit downward translation of each of the supports separately. All spans are of
equal length l and have a constant flexural rigidity EI. The number of spans is 2 (or 1) to 5. The
end supports are hinged (Table E.1), fixed (Table E.2), and fixed at the left-hand end and hinged
at the right-hand end (Table E.3). The bending moment at the hinged end is known to be zero
and is not listed in the tables.

Table E.1 Effect of a Unit Downward Displacement of One Support of Continuous Beams. End Supports
Hinged, EI Constant, All Spans are of Equal Length l

Number of spans = 2
Support moments in terms of EI/l2

−1.50000
3.00000

−1.50000

Reactions in terms of EI/l3

−1.50000 3.00000 −1.50000
3.00000 −6.00000 3.00000

−1.50000 3.00000 −1.50000

Number of spans = 3
Support moments in terms of EI/l2

−1.60000 0.40000
3.60000 −2.40000

−2.40000 3.60000
0.40000 −1.60000

Reactions in terms of EI/l3

−1.60000 3.60000 −2.40000 0.40000
3.60000 −9.60000 8.40000 −2.40000

−2.40000 8.40000 −9.60000 3.60000
0.40000 −2.40000 3.60000 −1.60000

Number of spans = 4
Support moments in terms of EI/l2

−1.60714 0.42857 −0.10714
3.64286 −2.57143 0.64286

−2.57143 4.28571 −2.57143
0.64286 −2.57143 3.64286

−0.10714 0.42857 −1.60714



Table E.1 (Continued)

Reactions in terms of EI/l3

−1.60714 3.64286 −2.57143 0.64286 −0.10714
3.64286 −9.85714 9.42857 −3.85714 0.64286

−2.57143 9.42857 −13.71428 9.42857 −2.57143
0.64286 −3.85714 9.42857 −9.85714 3.64286

−0.10714 0.64286 −2.57143 3.64286 −1.60714

Number of spans = 5
Support moments in terms of EI/l2

−1.60765 0.43062 −0.11483 0.02871
3.64593 −2.58373 0.68900 −0.17225

−2.58373 4.33493 −2.75598 0.68900
0.68900 −2.75598 4.33493 −2.58373

−0.17225 0.68900 −2.58373 3.64593
0.02871 −0.11483 0.43062 −1.60765

Reactions in terms of EI/l3

−1.60765 3.64593 −2.58373 0.68900 −0.17225 0.02871
3.64593 −9.87560 9.50239 −4.13397 1.03349 −0.17225

−2.58373 9.50239 −14.00956 10.53588 −4.13397 0.68900
0.68900 −4.13397 10.53588 −14.00957 9.50239 −2.58373

−0.17225 1.03349 −4.13397 9.50239 −9.87560 3.64593
0.02871 −0.17225 0.68900 −2.58373 3.64593 −1.60765

Table E.2 Effect of a Unit Downward Displacement of One Support of Continuous Beams. Two End
Supports Fixed, EI Constant, All Spans of Equal Length l

Number of spans = 1
Support moments in terms of EI/l2

6.00000 −6.00000
−6.00000 6.00000

Reactions in terms of EI/l3

−12.00000 12.00000
12.00000 −12.00000

Number of spans = 2
Support moments in terms of EI/l2

4.50000 −3.00000 1.50000
−6.00000 6.00000 −6.00000

1.50000 −3.00000 4.50000

Reactions in terms of EI/l3

−7.50000 12.00000 −4.50000
12.00000 −24.00000 12.00000
−4.50000 12.00000 −7.50000

Number of spans = 3
Support moments in terms of EI/l2

4.40000 −2.80000 0.80000 −0.40000
−5.60000 5.20000 −3.20000 1.60000

1.60000 −3.20000 5.20000 −5.60000
−0.40000 0.80000 −2.80000 4.40000



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reactions in terms of EI/l3

−7.20000 10.80000 −4.80000 1.20000
10.80000 −19.20000 13.20000 −4.80000
−4.80000 13.20000 −19.20000 10.80000

1.20000 −4.80000 10.80000 −7.20000

Number of spans = 4
Support moments in terms of EI/l2

4.39286 −2.78571 0.75000 −0.21429 0.10714
−5.57143 5.14286 −3.00000 0.85714 −0.42857

1.50000 −3.00000 4.50000 −3.00000 1.50000
−0.42857 0.85714 −3.00000 5.14286 −5.57143

0.10714 −0.21429 0.75000 −2.78571 4.39286

Reactions in terms of EI/l3

−7.17857 10.71428 −4.50000 1.28571 −0.32143
10.71428 −18.85713 12.00000 −5.14285 1.28571
−4.50000 12.00000 −15.00000 12.00000 −4.50000

1.28571 −5.14285 12.00000 −18.85713 10.71428
−0.32143 1.28571 −4.50000 10.71428 −7.17857

Number of spans = 5
Support moments in terms of EI/l2

4.39235 −2.78469 0.74641 −0.20096 0.05742 −0.02871
−5.56938 5.13875 −2.98564 0.80383 −0.22966 0.11483

1.49282 −2.98564 4.44976 −2.81340 0.80383 −0.40191
−0.40191 0.80383 −2.81339 4.44976 −2.98564 1.49282

0.11483 −0.22966 0.80383 −2.98564 5.13875 −5.56938
−0.02871 0.05742 −0.20096 0.74641 −2.78469 4.39235

Reactions in terms of EI/l3

−7.17703 10.70813 −4.47847 1.20574 −0.34450 0.08612
10.70813 −18.83252 11.91387 −4.82296 1.37799 −0.34450
−4.47847 11.91387 −14.69856 10.88038 −4.82296 1.20574

1.20574 −4.82296 10.88038 −14.69856 11.91387 −4.47847
−0.34450 1.37799 −4.82296 11.91387 −18.83252 10.70813

0.08612 −0.34450 1.20574 −4.47847 10.70813 −7.17703

Table E.3 Effect of a Unit Downward Displacement of One Support of Continuous Beams. Support at Left
End Fixed, Hinged at Right End, El Constant, All Spans of Equal Length l

Number of spans = 1
Support moments in terms of EI/l2

3.00000
−3.00000

Reactions in terms of EI/l3

−3.00000 3.00000
3.00000 −3.00000

Number of spans = 2
Support moments in terms of EI/l2

4.28571 −2.57143
−5.14286 4.28571

0.85714 −1.71428



Table E.3 (Continued)

Reactions in terms of EI/l3

−6.85714 9.42857 −2.57143
9.42857 −13.71428 4.28571

−2.57143 4.28571 −1.71428

Number of spans = 3
Support moments in terms of EI/l2

4.38462 −2.76923 0.69231
−5.53846 5.07692 −2.76923

1.38461 −2.76923 3.69231
−0.23077 0.46154 −1.61538

Reactions in terms of EI/l3

−7.15385 10.61538 −4.15384 0.69231
10.61539 −18.46153 10.61538 −2.76923
−4.15384 10.61538 −10.15384 3.69231

0.69231 −2.76923 3.69230 −1.61538

Number of spans = 4
Support moments in terms of EI/l2

4.39175 −2.78350 0.74227 −0.18557
−5.56701 5.13402 −2.96907 0.74227

1.48454 −2.96907 4.39175 −2.59794
−0.37113 0.74227 −2.59794 3.64948

0.06186 −0.12371 0.43299 −1.60825

Reactions in terms of EI/l3

−7.17526 10.70103 −4.45361 1.11340 −0.18557
10.70103 −18.80411 11.81443 −4.45361 0.74227
−4.45361 11.81443 −14.35051 9.58763 −2.59794

1.11340 −4.45361 9.58763 −9.89690 3.64948
−0.18557 0.74227 −2.59794 3.64948 −1.60825

Number of spans = 5
Support moments in terms of EI/l2

4.39227 −2.78453 0.74586 −0.19889 0.04972
−5.56906 5.13812 −2.98342 0.79558 −0.19889

1.49171 −2.98342 4.44199 −2.78453 0.69613
−0.39779 0.79558 −2.78453 4.34254 −2.58563

0.09945 −0.19889 0.69613 −2.58563 3.64641
−0.01657 0.03315 −0.11602 0.43094 −1.60773

Reactions in terms of EI/l3

−7.17680 10.70718 −4.47513 1.19337 −0.29834 0.04972
10.70718 −18.82872 11.90055 −4.77348 1.19337 −0.19889
−4.47513 11.90055 −14.65193 10.70718 −4.17679 0.69613

1.19337 −4.77348 10.70718 −14.05524 9.51381 −2.58563
−0.29834 1.19337 −4.17679 9.51381 −9.87845 3.64641

0.04972 −0.19889 0.69613 −2.58563 3.64641 −1.60773



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix E 765

Bending moments

Reactions 3.6 –9.6

–2.40

–2.48.4

3.60 ( )EI
l2

( )EI
l3

Figure E.1 Illustration of the use of tables of Appendix E.

The values given in each row are the bending moments or the reactions at consecutive supports
starting from the left-hand end. The first row after the heading gives the effect of the settlement
of the first support from the left, the second row gives the effect of the settlement of the second
support from the left, and so on.

Figure E.1 shows an example of the use of the tables: the number of spans is 3, the second
support from left settles a unit distance and the values are taken from the second row of the
appropriate table.

In these tables, the reaction is considered positive when acting upward, and the bending
moment is positive if it causes tension in the bottom fiber of the beam. When the reactions are
used to generate a stiffness matrix, appropriate signs should be given according to the chosen
coordinate system.

The effect of deformation caused by the shearing forces is neglected.
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Properties of geometrical f igures

Area x and y coordinates
of centroid

y

l

x0

a
a × l

x = l
2

y = a
2

y

0

l

x

a2
a1

(a1 + a2)

2
× l

x = 1
3

(a1 + 2a2)

(a1 + a2)

y = (a2
1 + a1a2 + a2

2)

3(a1 + a2)

0

l

y

x

a

αl βl

a × l
2

x = 1
3

(αl + l)

y = a
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0

y

x

Second-degree parabola

a

l

2
3

a × l
x = l

2

y = 2
5

a

Area Centroid

Second-degree parabola

Tangent

a

x

y

l

1
3

a × l
x = 3

4
× l

y = 3
10

× a

Second-degree parabola

Tangent

0 x

a

y

l

2
3

a × l
x = 5

8
× l

y = 2
5

× a

Third-degree parabola
y

Tangent x

a

l

1
4

a × l

x = 4
5

× l

y = 2
7

× a

Construction of tangents of a second-degree parabola:

q per unit length

Parallel
lines Equal

distances
Equal distances

c

c—
4

c—
4

c—
4

c—
4

qc2
—8

Bending moment diagram for a part of a
member subjected to a uniform load



Appendix G

Torsional constant J

If a circular bar of constant cross section and of length l is subjected to a constant torque T, the
angle of twist between the two bar ends is

θ = Tl
GJ

where G is the shear modulus and J the polar moment of inertia.
When the cross section of the bar is noncircular, plane cross sections do not remain plane after

deformation, and warping will occur caused by longitudinal displacements of points in the cross
section. Nevertheless, the above equation can be used with good accuracy for noncircular cross
sections, but J should be taken as the appropriate torsion constant. The torsional constants for
several shapes of cross sections are listed below.

Section Torsional Constant J

r

J = πr4

2

b

b

J = 0.1406b4
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J = π(r4

1 − r4
2)

2

b

C

J = cb3

[
1
3

− 0.21
b
c

(
1 − b4

12c4

)]

bb

b

J = b4
√

3
80

ds

t

Closed section

J = 4a2∫
ds
t

where a = area enclosed by a line through the center
of the thickness and the integral is carried out over
the circumference

b2

b1

t2t2

t1

t1

J = 2t1t2(b1 − t2)
2(b2 − t1)

2

b1t2 + b2t1 − t2
2 − t1

2



b1

b2

b3
t3 t2

t1

J = b1t3
1 + b2t3

2 + b3t3
3

3

b1

b2t1
t2

J = b1t3
1 + b2t3

2

3

b2

t3

t1

t2

b3

b1

Open section composed of rectangles

J = 1
3

�bit3
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Appendix H

Values of the integral
∫

l MuMdl

The following table gives the values of the integral
∫

l MuM dl, needed in the calculation of
displacement of framed structures by virtual work (Eq. 8.2). The same table can be used for the
evaluation of the integrals

∫
l NuN dl,

∫
l VuV dl,

∫
l TuT dl, or for the integral over a length l of

the product of any two functions which vary in the manner indicated in the diagrams at the top
and at the left-hand edge of the table.



M
MM

b

l l

b

l

b
*
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b1
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* αl βl

l

b

*

a

l
abl

1
2
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2
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1
2

abl
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l

bl
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bl
6

(a1 + 2a2)
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6

(2a1 + a2)

1
6
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(1 + α)a2]
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∗ Second-degree parabola.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix I

Deflection of a simple beam of
constant EI subjected to unit
end-moments

The values of the deflection given below are helpful in the calculation of ordinates of influence
lines (see Section 12.5). The deflection y due to end-moments MAB =1 and MBA =0 (Figure I.1a)
is given from Eq. 12.5 by

y = l2

6EI
(2ξ − 3ξ2 + ξ3) (I.1)

where ξ = x/l, x is the distance from the left-hand end, and l is the member length. The values
of the deflections at different values of x/l are given in Table I.1.

MAB=1

MBA=1

A

A

B

B

x

x

yy

y

(a)

(b)

Figure I.1 Deflection of a simple beam due to unit end-moments.

Table I.1 Deflections Due to Unit Clockwise Moment at Left-Hand End

ξ = x
l

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Multiplier

y 0 285 480 595 640 625 560 455 320 165 0 10−4 l2

EI
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Table I.2 Deflections Due to Unit Clockwise Moment at Right-Hand End

ξ = x
l

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Multiplier

y 0 −165 −320 −455 −560 −625 −640 −595 −480 −285 0 10−4 l2

EI

The deflection y due to MBA = 1 and MAB = 0 (Figure I.1b) is given by

y = − l2

6EI
(ξ − ξ3) (I.2)

The values of the deflection at different values of ξ = x/l are given in Table I.2.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix J

Geometrical properties of some plane
areas commonly used in the method
of column analogy

Property Figure Representing Analogous Column

Area =a = l/EI

Ixy = l
6El

(2xAyA + 2xByB

+ xAyB + xByA)

Ix = I
3EI

(y2
A + y2

B + yAyB)

Iy = I
3EI

(x2
A + x2

B + xAxB)

Straight member of constant EI

(xA, yA)

(xB, yB)
B

l

A

y

x
 1—
EI

θ is measured in radians

Circular arch of constant EI

y

θ

l

r

b

y

x

x1

Centroid

 1
—
EI

θ

x

y

Area = a = 2θr
EI

�y = r sin θ

θ

Ix1 = r3(θ + sin θ cos θ)

EI

Iy = r3(θ − sin θ cos θ)

EI

r = 4b2 + l2

8b

y = −b + r −
√

r2 − x2



Property Figure Representing Analogous Column

Area = a = l
EI0

Ix = 4b2l
45EI0

Iy = l3

12EI0

Parabolic arch with EI assumed to vary
as the secant of the inclination of the
arch axis, EI0 is the flexural rigidity
at the crown

Centroid

Width =
1

(EI0 sec θ)

 1
—
EI0

 b—
 3

2b—
 3y

x
b

l

θ



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix K

Forces due to prestressing of
concrete members

The figures below show sets of forces in equilibrium representing the forces that prestressed ten-
dons exert on the concrete. The tendon profiles shown are composed of one or more straight lines
or of second-degree parabolas. The symbol P represents the absolute value of the prestressing
force which is assumed constant, and y represents the vertical distance between the tendon and
the centroidal axis of the member. θ represents the angle between a tangent to the tendon and
the horizontal; θ is assumed small so that θ � tan θ � sin θ and cos θ � 1.

yA
yB

A BC

θA θB

PyA PyB

PθA PθB

P A B

C

PP (θA+θB)

y y

A BC D

θ θ
Py PyPθ Pθ

P A B

C D

Pθ Pθ
P

yA
yB

A Bc

cθA θB

θA= (4c + yA– yB )l
θB= (4c – yA+ yB )l

l—
2

l—
2 PyA Py

B

PθA PθB

P
A B

P

8 Pc/l2

l

A

B

C

D

     α l
= l(1−β −γ) βl γl

yB

yA

cA cD cB

P P

PyB

PyA

2 PcA/(α l)2

2 PcA/α l 2 P(cB− cD)/(γ l )2

Two parabolas with a common tangent at
D and horizontal tangents at B and C.
The values cA, cB and γ may be chosen
arbitrarily, but β and cD must satisfy
β = γ cD/(cB − cD) and cD = cAβ2/α2.



Appendix L

Structural analysis computer programs

L.1 Introduction

A series of microcomputer programs is available for use as a companion to this book. The
programs can be employed in practical applications, involving the solution of large problems.
They are also written as a learning tool. FORTRAN-language source codes are provided with
extensive comments, such that the steps of the analysis can be followed. Reference is made to
the various sections and equations on which the computer programs are based. Modifications of
the programs to perform additional tasks can be done without difficulty, and can prove to be an
efficient means of fully understanding the analysis techniques. The comments at the beginning
of the source code include definitions of the symbols employed and instructions for input data
preparation.

L.2 Computer programs provided at:

http://www.routledge.com/books/Structural-Analysis-isbn9780415774338

The following password will be required to access the site:

STRUCTURES

(NB: The password needs to be in capital letters.)

In Section L.4 the computer programs are divided into three groups: (A) Linear analysis
programs. (B) Nonlinear analysis programs. (C) Matrix algebra. Three files described in the
following section can be obtained for each program. For the computer programs in groups A
and C, the files can be unloaded from the Internet at the web site address given above. The files
for the computer programs of group B can be ordered using the form at end of book.

L.3 Files for each program

Three files are provided for each program:

1. The source code in FORTRAN
2. Executable file
3. Input file

Each file has a name composed of up to eight letters descriptive of the program, followed by a
dot and two to three letters. For example, the three files for the program PLANEF which analyzes
plane frames have, respectively, the names: PLANEF.FOR, PLANEF.EXE, and PLANEF.IN.

http://www.routledge.com/books/Structural-Analysis-isbn9780415774338


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix L 779

Typing the letters PLANEF and pressing “Enter’’ will execute the program, generate a file
named PLANEF.OUT and – if running the program is with DOS command – cause the words
“Program terminated’’ to appear on the screen. The file PLANEF. OUT echoes the input data
and gives the results of the analysis of the problem whose data are given in PLANEF.IN.

The input files provided on the disks are for simple example problems selected from the book.
Typically, an input data line contains numbers on the left-hand side and symbols or words on
the right-hand side, indicating what are the parameters given on the line. Figure L.1 shows, as
an example, the contents of the file PLANEF.IN, giving the input data for the plane frame of
Example 21.2 (Figure 21.5 and Table 21.2). To analyze a new structure, it is proposed to revise
the example input file by changing the values of the parameters, rather than creating a new file.
Thus, any input file example provided on the disks should be copied in a back-up file before it
is revised. Preparing an input file for a new problem in this way is similar to completing a form
giving the data required on the right-hand side of the form.

As mentioned above, all symbols used are defined at the beginning of the source code of
each program. We give below definition of the symbols in Figure L.1: NJ, NM, NSJ, NLC are
numbers of joints, members, supported joints, and load cases respectively; JS and JE are start
node and end node of an individual member. The remaining symbols and the restraint indicators
are explained in Section 21.4. Program PLANEF accepts two types of loading, entered as nodal-
force components {Fx, Fy, Mz} on individual nodes, or as six fixed-end forces {Ar} for individual
members. Only the nodes subjected to nodal forces and only the members having fixed-end
forces need to be listed. A dummy data line indicates the end of data for each of the two
types of loadings. The dummy lines start with any integer greater than NLC (number of load
cases).

Figure L.2 is part of the file PLANEF.OUT, showing the input and the results of case
loading 1.

Plane frame Example 21.2, Figure 21.5.

4 3 2 2 NJ, NM, NSJ, NLC

30000. 0. Elasticity modulus, Poisson’s ratio

1 0.0 300.0 Node number, x and y coordinates

2 0.0 0.0

3 300.0 150.0

4 300.0 300.0

1 1 2 30.0 3000.0 1.e6 Member number, JS, JE, cross-sec. a, I, ar

2 2 3 40.0 5000.0 1.e6

3 3 4 30.0 3000.0 1.e6

1 3∗0 3∗0.0 Node, restraint indicators, prsc. displs.

4 0 0 1 3∗0.0

1 2 4.0 0.0 0.0 Load case, node, Fx, Fy, Mz

1 3 2.0 0.0 0.0

10 0 3∗0.0 Dummy, end of forces applied at nodes

1 2 –13.42 –26.83 –1500. –13.42 –26.83 1500. Ld. Case, member, {Ar}

2 1 –1500. 8. 1200. 1500. –8 1200.

10 0 6∗0. Dummy, end of data of member loads

Figure L.1 Image of file PLANEF.IN containing input data for the plane frame of Example 21.2.



Plane frame Example 21.2, Figure 21.5.
Number of joints = 4
Number of members = 3.
Number of joints with prescribed displacement(s) = 2
Number of Load cases = 2
Elasticity modulus = .30000E+05; Poisson’s ratio = .0000

Nodal coordinates

Node x y
1 .000 300.000
2 .000 .000
3 300.000 150.000
4 300.000 300.000

Element information

Element 1st node 2nd node a I ar
1 1 2 .30000E+02 .30000E+04 .10000E+07
2 2 3 .40000E+02 .50000E+04 .10000E+07
3 3 4 .30000E+02 .30000E+04 .10000E+07

Support conditions

Node Restraint indicators Prescribed displacements
u v theta u v theta

1 0 0 0 .00000E+00 .00000E+00 .00000E+00
4 0 0 1 .00000E+00 .00000E+00 .00000E+00

Forces applied at the nodes

Load case Node Fx Fy Mz
1 2 .40000E+01 .00000E+00 .00000E+00
1 3 .20000E+01 .00000E+00 .00000E+00

10 0 .00000E+00 .00000E+00 .00000E+00

Member end forces with nodal displacement restrained

Ld. case Member Ar1 Ar2 Ar3 Ar4 Ar5 Ar6
1 2 –.1342E+02 –.2683E+02 –.1500E+04 –.1342E+02 –.2683E+02 .1500E+04
2 1 –.1500E+04 .8000E+01 .1200E+04 .1500E+04 –.8000E+01 .1200E+04

10 0 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00

Analysis results

Load case no.1

Nodal displacements

Node u v theta
1 –.68055E–07 .81171E–08 –.16029E–09
2 .39935E–01 .81171E–02 .71994E–03
3 .38354E–01 .59412E–02 –.47191E–03
4 .27285E–07 .59412E–08 .61949E–03

Figure L.2 Image of the file PLANEF.OUT (see Figure L.1 for corresponding input data file). Results
of case of loading 2 are omitted. This figure is continued on the next page.
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Forces at the supported nodes

Node Fx Fy Mz
1 .27222E+01 –.24351E+02 .19235E+03
4 –.87311E+01 –.35647E+02 .00000E+00

Member end forces

Member F1 F2 F3 F4 F5 F6
1 .24351E+02 .27222E+01 .19235E+03 –.24351E+02 –.27222E+01 .62431E+03
2 –.48777E+01 –.24787E+02 –.62431E+03 –.21962E+02 –.28873E+02 .13097E+04
3 .35647E+02 –.87311E+01 –.13097E+04 –.35647E+02 .87311E+01 –.67057E–13

Figure L.2 (Continued)

L.4 Computer program descriptions

In the following, the available computer programs are mentioned by name and by a short
description. The programs are divided into three groups:

A. Linear analysis programs (basis: Chapter 21)

• PLANEF (plane frame)
• SPACEF (space frame)
• PLANET (plane truss)
• SPACET (space truss)
• PLANEG (plane grid)

These five programs are, respectively, for the linear analysis of plane frames, space frames,
plane trusses, space trusses, and grids.

B. Nonlinear analysis programs

• PDELTA (basis: Chapter 13)
• PLASTICF (basis: Section 22.7)
• NLST (basis: Chapter 23)
• NLPF (basis: Chapter 23)

The program PDELTA performs quasi-linear analysis of plane frames, considering the effect
of axial forces on the stiffness matrix of individual members (Eqs. 13.19 and 13.23).

Analysis of collapse loads of plane frames due to the development of plastic hinges
(Section 22.7) can be performed with the program PLASTICF. The program increases the values
of the loads gradually and indicates the load levels at which the plastic hinges are developed,
the corresponding nodal displacements and member end-forces.

The program NLST performs nonlinear analysis of space trusses, employing Newton-
Raphson’s technique. Cable nets can be analyzed by the same program. Cable nets with
membrane triangular elements can also be analyzed.

Nonlinear analysis of plane frames can be performed by the program NLPF. Similar to the
program PDELTA, the program NLPF calculates the stiffness of the members accounting for the
magnitude of the axial forces. But, in addition, NLPF considers the equilibrium of the nodes in
their displaced positions. The change in length of members is not ignored in determining the
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geometry of the deformed structure. NLPF can be employed to indicate the nonlinear buckling
loads.

C. Matrix algebra (basis: Appendix A)

To enhance the study of this book, the web site provides the following simple programs which
can perform frequently needed matrix operations:

• ADD
• MULTIPLY
• INVERT
• SOLVE
• DETERM
• EIGEN

The program ADD calculates the sum: [C] = α[A] + γ [B], where [A] and [B] are the given
matrices; α and γ are the given multipliers. The program MULTIPLY determines the product
of two given matrices. The program INVERT calculates the inverse of nonsingular matrices.
The program SOLVE gives the matrix [X] in the simultaneous linear equations [A] [X] = [B],
when [A] and [B] are given. The program DETERM calculates the determinant of a given square
matrix. EIGEN solves the equation: [S]{D} = λ[m]{D}; where [S] and [m] are square matrices;
the solution gives eigenvalues, λ and the corresponding eigenvectors (see Section 20.6).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix M

Basic probability theory1

For more comprehensive presentation of probability theory, refer to specialized texts.2

M.1 Basic definitions

Consider the outcome of an experiment; the experiment can be testing the strength of a material,
measuring a beam depth, or the occurrence of a truck on a bridge in a specified period of time.
Any outcome of the experiment is called an event. All possible events of an experiment comprise
a sample space.

Example M.1: Results of compressive strength tests of concrete
Let x1,x2, . . . , xn be the measured compressive strength (outcome) of n concrete cylin-
ders. The actual compressive strength, f ′

c , varies randomly, and n test results provide only
limited information about its variation. For this experiment, the result f ′

c can take any
positive value. Theoretically, even f ′

c = 0 is possible, but it is unlikely (when the mix is
made without any cement). Events E1,E2, . . . ,En can be defined as intervals; for example,
E1 occurs when the outcome of cylinder test falls within the interval (0, 10 MPa), E2

occurs when the outcome of cylinder test falls within the interval (10, 20 MPa), and so on.
The defined sample space for concrete cylinder tests is called a continuous sample space.
A certain event is equal to the sample space. An example of this, using the compressive
strength data, is: certain event=all positive real numbers, 0≤ f ′

c <∞ . An impossible event
is a set with no sample points in it, such as f ′

c < 0.

Example M.2: Mode of flexural failure of a reinforced concrete beam
Two possible modes of flexural failure of a reinforced concrete beam are: mode 1, failure by
crushing of concrete; and mode 2, failure by yielding of steel. In this example, the sample
space consists of two elements, mode 1 and mode 2. This sample space has a finite number
of elements (two) and it is called a discrete sample space.

1 This appendix was written in collaboration with the authors by Professor Andrzej S. Nowak, University
of Nebraska, Lincoln, USA.

2 See the references given in Chapter 24.
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M.2 Axioms of probability

Define: E= event; �= sample space; P( )= probability function of events in a sample space.

Axiom 1: For any event E, 0 ≤ P(E) ≤ 1; where P(E) = probability of event E.
Axiom 2: P(�) = 1. This means that the probability of the sample space = 1.
Axiom 3: Consider n mutually exclusive events E1,E2, . . . ,En, then

P

(
n⋃

i=1

Ei

)
=

n∑
i=1

P(Ei) = 1 (M.1)

where
n⋃

i=1
Ei = union of all events E1,E2, . . . ,En.

Mutually exclusive events exist when the occurrence of any one member in a set excludes
the occurrence of the others. For concrete compressive strength, f ′

c , examples are: E1 =
(0 ≤ f ′

c < 10MPa); E2 = (10 ≤ f ′
c < 20MPa);E3 = (20 ≤ f ′

c < 30MPa); E4 = (f ′
c ≥ 30MPa).

4⋃
i=1

Ei =
(
0 ≤ f ′

c < ∞)
(M.2)

M.3 Random variable

In the example of concrete strength, f ′
c is a random variable. A random variable X can be

continuous or discrete. Examples of continuous random variables are: if f ′
c = 31.5MPa, then

X(f ′
c)=31.5 (no units, a real number), or if X(f ′

c)={(value in MPa)/10}–2.0 and f ′
c =31.5MPa,

then X(f ′
c) = 1.15.

An example of a discrete random variable is:

X
(
f ′
c

)=
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if 0 ≤ f ′
c < 10MPa

2 if 10 ≤ f ′
c < 20MPa

3 if 20 ≤ f ′
c < 30MPa

4 if f ′
c ≥ 30MPa

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(M.3)

M.4 Basic functions of a random variable

The probability mass function is defined as: pX(x)=probability that a discrete random variable
X = x, where x is a real number and is written as:

pX(x) = P(X = x) (M.4)

As an example, for the discrete random variable X defined in Eq. M.3, we can write:

pX(1) = P(X = 1); pX(2) = P(X = 2); pX(3) = P(X = 3); pX(4) = P(X = 4) (M.5)

The cumulative distribution function (CDF) is defined as: the total accumulation of all probab-
ility distribution functions (continuous and discrete), smaller than the upper bound of a given
value.

FX(x) = P(X ≤ x) =
∑

pX(xi) with xi ≤ x (M.6)
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For the f ′
c intervals defined in Eq. M.3, assume the probability mass function as:

pX(1) = 0.05; pX(2) = 0.20; pX(3) = 0.65; pX(4) = 0.10; Total = 1.00 (M.7)

From Eq. M.7, we can write the following CDF examples:

FX(0.5) = P(X ≤ 0.5) = 0.00; FX(1) = P(X ≤ 1) = 0.05; FX(1.5) = P(X ≤ 1.5) = 0.05

FX(2) = P(X ≤ 2) = 0.25; FX(3.2) = P(X ≤ 3.2) = 0.90 (M.8)

The first derivative of FX(x)is called a probability density function (PDF), and is defined only
for continuous random variables. Most practical engineering problems deal with continuous
random variables.

fX(x) = d FX(x)

dx
(M.9)

where fX(x)is used for continuous random variables to mean the same as pX(x) for discrete
random variables.

M.5 Parameters of a random variable

The mean value of a random variable X is denoted by x. For a continuous random variable or
discrete random variable, respectively:

x =
∞∫

−∞
x fX(x)dx; x =

∑
allxi

xi pX(xi) (M.10)

The expected value of X is equal to the mean value of X,

E(X) = x (M.11)

The expected value of Xn is called the nth moment of X. For a continuous random variable or
discrete random variable, respectively:

E
(
Xn)=

∞∫
−∞

xn fX(x)dx; E
(
Xn)=∑

allxi

xn
i pX(xi) (M.12)

The variance of X, denoted σ 2
X, is defined as the expected value of (X − x)2:

σ 2
X = E

[
(X − x)2

]
(M.13)

σ 2
X = E

[(
X2 − 2X x + x2

)]
= E

(
X2
)

− 2xE(X) + x2 = E
(
X2
)

− 2x2 + x2

σ 2
X = E

(
X2
)

− x2 (M.14)

For a continuous random variable or a discrete random variable, the variance is, respectively:

σ 2
X =

∞∫
−∞

x2 fX(x)dx − x2; σ 2
X =

∑
allxi

[
x2

i p (xi)
]
− x2 (M.15)



786 Appendix M

The standard deviation of X is defined:

σX =
√

σ 2
X (M.16)

The non-dimensional coefficient of variation, VX, is the standard deviation divided by the mean;
by convention VX > 0, even though the mean may be negative.

VX = σX

|x| (M.17)

Example M.3: Calculation of x, E(X2), σ2
X , and VX

For the discrete random variable X, whose probability mass function is given by Eq. M.7,
calculate: the mean value x, the second moment E(X2), the variance �2

X, the standard
deviation �X and the coefficient of variation VX.

Equations M.10, M.12, M.14, M.16 and M.17 give, respectively:

x = 1(0.05) + 2(0.2) + 3(0.65) + 4(0.1) = 2.8

E(X2) = 12(0.05) + 22(0.2) + 32(0.65) + 42(0.1) = 8.3

σ 2
X = 8.3–(2.8)2 = 0.46

σX = √
0.46 = 0.6782

VX = 0.6782/2.8 = 0.2422

M.6 Sample parameters

If X is analyzed on the basis of test data: x1,x2, . . . ,xn, then the mean can be approximated
by the sample mean, and the standard deviation can be approximated by the sample standard
deviation.

The sample mean (approximating mean) is:

x ∼= 1
n

n∑
i=1

xi (M.18)

The sample standard deviation (approximating standard deviation) is:

σX ∼=

√√√√√
n∑

i=1
x2

i − n x2

n − 1
(M.19)

M.7 Standardized form of a random variable

Let X be a random variable. Z is called a standardized form of X, and is defined as,

Z = X − x
σX

(M.20)

The mean of Z is zero: z = 0. The variance of Z = 1 is σ 2
Z = 1.
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M.8 Types of random variables used in reliability of structures

The most important variables used in structural reliability analysis are:

1. Uniform
2. Normal
3. Log-normal
4. Extreme type I and extreme type II

M.9 Uniform random variable

Uniform random variable means that all numbers are equally likely to appear.

PDF = fX(x) =

⎧⎪⎨
⎪⎩

1
b − a

for a ≤ x ≤ b

0 otherwise
(M.21)

The mean, variance, and standard deviation are,

x= a + b
2

(M.22)

σ 2
X =

(
b − a

)2
12

; σX = b − a

2
√

3
(M.23)

M.10 Normal random variable

The PDF of a normal (or Gaussian) random variable is:

fX(x) = 1

�X
√

2π
e

−(x−x)2

2�2
X (M.24)

There is no closed-form solution for the CDF of the normal random variable,

FX(x) =
x∫

−∞
fX(x)dx (M.25)

Properties of FX(x) and fX(x) for a normal random variable include:

1. fX(x) is symmetrical about the mean x; fX(x + x) = fX(−x + x).
2. Sum of FX(x) calculated for (x + x) and (−x + x) is equal to 1; FX(x + x)=1−FX(−x + x).

The probability density function (PDF) for a standard normal random variable can be obtained
from Eq. M.24 by substituting x = 0 and � = 1. The resulting equation is (Figure M.1a):

fX(z) =�(z) = 1√
2

e
−z2

2 (M.26)
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–1–2–3–4

0.2

Figure M.1 Probability Density Function (PDF) and Cumulative Distribution Function (CDF). (a) PDF,
φ�(z) for standard normal random variable (Eq. M.26). (b) CDF, �(z) of standard normal
random variable (Table M.1). (c) PDF of a normal random variable, Example M.4. (d)
PDF of a log-normal random variable (Eq. M.36). (e) PDF of an Extreme Type I random
variable.

Equation M.24 can be rewritten as:

fX(x) = 1
�X

�(z) with z = 1
�X

(x − x) (M.27)

Let X be a normal random variable, and Z is its standardized form. Then, from Eq. M.20,

X = x + ZσX (M.28)

FX(x) = P(X ≤ x) = P(x + ZσX ≤ x) (M.29)

FX(x) = P
(

Z ≤ x − x
σX

)
= FZ

(
x − x
σX

)
= �

(
x − x
σX

)
(M.30)

The CDF for standard normal random variable is (Figure M.1b):

FX(x) = �

(
x − x
�X

)
= �(z) (M.31)

where �(z) is equal to the value of the CDF of standard normal random variable; �(z) is equal to
the area below the curve of �(z) in Figure M.1a between −∞ and the given value of z. The value
of the CDF of a normal random variable at a given x is equal to the value of its standardized
random variable at z = (x − x)/�X ; e.g. the shaded areas in Figures M.1a and c are equal.
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The area below the curve in Figure M.1a or c is equal to 1.0; from Eqs. M.10, M.15, and
M.16 we can see that the mean is the x coordinate of a vertical line through the centroid; the
variance is the second moment of the area about this line, and the standard deviation is its radius
of gyration.

The standard normal cumulative distribution function (CDF), �(z), is widely available in
tables, such as Table M.1, which gives values of CDF for z =0 to –7.0. To find �(z) for positive
z, use:

�(z) = 1 –�(–z) (M.32)

Table M.1 Cumulative Distribution Function (CDF), �(z), of a Standard Normal Random Variable∗

z
�(z)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0 500E–3 496E–3 492E–3 488E–3 484E–3 480E–3 476E–3 472E–3 468E–3 464E–3

−0.1 460E–3 456E–3 452E–3 448E–3 444E–3 440E–3 436E–3 433E–3 429E–3 425E–3
−0.2 421E–3 417E–3 413E–3 409E–3 405E–3 401E–3 397E–3 394E–3 390E–3 386E–3
−0.3 382E–3 378E–3 374E–3 371E–3 367E–3 363E–3 359E–3 356E–3 352E–3 348E–3
−0.4 345E–3 341E–3 337E–3 334E–3 330E–3 326E–3 323E–3 319E–3 316E–3 312E–3
−0.5 309E–3 305E–3 302E–3 298E–3 295E–3 291E–3 288E–3 284E–3 281E–3 278E–3

−0.6 274E–3 271E–3 268E–3 264E–3 261E–3 258E–3 255E–3 251E–3 248E–3 245E–3
−0.7 242E–3 239E–3 236E–3 233E–3 230E–3 227E–3 224E–3 221E–3 218E–3 215E–3
−0.8 212E–3 209E–3 206E–3 203E–3 200E–3 198E–3 195E–3 192E–3 189E–3 187E–3
−0.9 184E–3 181E–3 179E–3 176E–3 174E–3 171E–3 169E–3 166E–3 164E–3 161E–3
−1.0 159E–3 156E–3 154E–3 152E–3 149E–3 147E–3 145E–3 142E–3 140E–3 138E–3

−1.1 136E–3 133E–3 131E–3 129E–3 127E–3 125E–3 123E–3 121E–3 119E–3 117E–3
−1.2 115E–3 113E–3 111E–3 109E–3 107E–3 106E–3 104E–3 102E–3 100E–3 98.5E–3
−1.3 96.8E–3 95.1E–3 93.4E–3 91.8E–3 90.1E–3 88.5E–3 86.9E–3 85.3E–3 83.8E–3 82.3E–3
−1.4 80.8E–3 79.3E–3 77.8E–3 76.4E–3 74.9E–3 73.5E–3 72.1E–3 70.8E–3 69.4E–3 68.1E–3
−1.5 66.8E–3 65.5E–3 64.3E–3 63.0E–3 61.8E–3 60.6E–3 59.4E–3 58.2E–3 57.1E–3 55.9E–3

−1.6 54.8E–3 53.7E–3 52.6E–3 51.6E–3 50.5E–3 49.5E–3 48.5E–3 47.5E–3 46.5E–3 45.5E–3
−1.7 44.6E–3 43.6E–3 42.7E–3 41.8E–3 40.9E–3 40.1E–3 39.2E–3 38.4E–3 37.5E–3 36.7E–3
−1.8 35.9E–3 35.1E–3 34.4E–3 33.6E–3 32.9E–3 32.2E–3 31.4E–3 30.7E–3 30.1E–3 29.4E–3
−1.9 28.7E–3 28.1E–3 27.4E–3 26.8E–3 26.2E–3 25.6E–3 25.0E–3 24.4E–3 23.9E–3 23.3E–3
−2.0 22.8E–3 22.2E–3 21.7E–3 21.2E–3 20.7E–3 20.2E–3 19.7E–3 19.2E–3 18.8E–3 18.3E–3

−2.1 17.9E–3 17.4E–3 17.0E–3 16.6E–3 16.2E–3 15.8E–3 15.4E–3 15.0E–3 14.6E–3 14.3E–3
−2.2 13.9E–3 13.6E–3 13.2E–3 12.9E–3 12.5E–3 12.2E–3 11.9E–3 11.6E–3 11.3E–3 11.0E–3
−2.3 10.7E–3 10.4E–3 10.2E–3 9.90E–3 9.64E–3 9.39E–3 9.14E–3 8.89E–3 8.66E–3 8.42E–3
−2.4 8.20E–3 7.98E–3 7.76E–3 7.55E–3 7.34E–3 7.14E–3 6.95E–3 6.76E–3 6.57E–3 6.39E–3
−2.5 6.21E–3 6.04E–3 5.87E–3 5.70E–3 5.54E–3 5.39E–3 5.23E–3 5.08E–3 4.94E–3 4.80E–3

−2.6 4.66E–3 4.53E–3 4.40E–3 4.27E–3 4.15E–3 4.02E–3 3.91E–3 3.79E–3 3.68E–3 3.57E–3
−2.7 3.47E–3 3.36E–3 3.26E–3 3.17E–3 3.07E–3 2.98E–3 2.89E–3 2.80E–3 2.72E–3 2.64E–3
−2.8 2.56E–3 2.48E–3 2.40E–3 2.33E–3 2.26E–3 2.19E–3 2.12E–3 2.05E–3 1.99E–3 1.93E–3
−2.9 1.87E–3 1.81E–3 1.75E–3 1.69E–3 1.64E–3 1.59E–3 1.54E–3 1.49E–3 1.44E–3 1.39E–3
−3.0 1.35E–3 1.31E–3 1.26E–3 1.22E–3 1.18E–3 1.14E–3 1.11E–3 1.07E–3 1.04E–3 1.00E–3

−3.1 9.68E–4 9.35E–4 9.04E–4 8.74E–4 8.45E–4 8.16E–4 7.89E–4 7.62E–4 7.36E–4 7.11E–4
−3.2 6.87E–4 6.64E–4 6.41E–4 6.19E–4 5.98E–4 5.77E–4 5.57E–4 5.38E–4 5.19E–4 5.01E–4
−3.3 4.83E–4 4.66E–4 4.50E–4 4.34E–4 4.19E–4 4.04E–4 3.90E–4 3.76E–4 3.62E–4 3.49E–4
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Table M.1 (Continued)

z
�(z)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

−3.4 3.37E–4 3.25E–4 3.13E–4 3.02E–4 2.91E–4 2.80E–4 2.70E–4 2.60E–4 2.51E–4 2.42E–4
−3.5 2.33E–4 2.24E–4 2.16E–4 2.08E–4 2.00E–4 1.93E–4 1.85E–4 1.78E–4 1.72E–4 1.65E–4

−3.6 1.59E–4 1.53E–4 1.47E–4 1.42E–4 1.36E–4 1.31E–4 1.26E–4 1.21E–4 1.17E–4 1.12E–4
−3.7 1.08E–4 1.04E–4 9.96E–5 9.57E–5 9.20E–5 8.84E–5 8.50E–5 8.16E–5 7.84E–5 7.53E–5
−3.8 7.23E–5 6.95E–5 6.67E–5 6.41E–5 6.15E–5 5.91E–5 5.67E–5 5.44E–5 5.22E–5 5.01E–5
−3.9 4.81E–5 4.61E–5 4.43E–5 4.25E–5 4.07E–5 3.91E–5 3.75E–5 3.59E–5 3.45E–5 3.30E–5
−4.0 3.17E–5 3.04E–5 2.91E–5 2.79E–5 2.67E–5 2.56E–5 2.45E–5 2.35E–5 2.25E–5 2.16E–5

−4.1 2.07E–5 1.98E–5 1.89E–5 1.81E–5 1.74E–5 1.66E–5 1.59E–5 1.52E–5 1.46E–5 1.39E–5
−4.2 1.33E–5 1.28E–5 1.22E–5 1.17E–5 1.12E–5 1.07E–5 1.02E–5 9.77E–6 9.34E–6 8.93E–6
−4.3 8.54E–6 8.16E–6 7.80E–6 7.46E–6 7.12E–6 6.81E–6 6.50E–6 6.21E–6 5.93E–6 5.67E–6
−4.4 5.41E–6 5.17E–6 4.94E–6 4.71E–6 4.50E–6 4.29E–6 4.10E–6 3.91E–6 3.73E–6 3.56E–6
−4.5 3.40E–6 3.24E–6 3.09E–6 2.95E–6 2.81E–6 2.68E–6 2.56E–6 2.44E–6 2.32E–6 2.22E–6

−4.6 2.11E–6 2.01E–6 1.92E–6 1.83E–6 1.74E–6 1.66E–6 1.58E–6 1.51E–6 1.43E–6 1.37E–6
−4.7 1.30E–6 1.24E–6 1.18E–6 1.12E–6 1.07E–6 1.02E–6 9.68E–7 9.21E–7 8.76E–7 8.34E–7
−4.8 7.93E–7 7.55E–7 7.18E–7 6.83E–7 6.49E–7 6.17E–7 5.87E–7 5.58E–7 5.30E–7 5.04E–7
−4.9 4.79E–7 4.55E–7 4.33E–7 4.11E–7 3.91E–7 3.71E–7 3.52E–7 3.35E–7 3.18E–7 3.02E–7
−5.0 2.87E–7 2.72E–7 2.58E–7 2.45E–7 2.33E–7 2.21E–7 2.10E–7 1.99E–7 1.89E–7 1.79E–7

−5.1 1.70E–7 1.61E–7 1.53E–7 1.45E–7 1.37E–7 1.30E–7 1.23E–7 1.17E–7 1.11E–7 1.05E–7
−5.2 9.96E–8 9.44E–8 8.95E–8 8.48E–8 8.03E–8 7.60E–8 7.20E–8 6.82E–8 6.46E–8 6.12E–8
−5.3 5.79E–8 5.48E–8 5.19E–8 4.91E–8 4.65E–8 4.40E–8 4.16E–8 3.94E–8 3.72E–8 3.52E–8
−5.4 3.33E–8 3.15E–8 2.98E–8 2.82E–8 2.66E–8 2.52E–8 2.38E–8 2.25E–8 2.13E–8 2.01E–8
−5.5 1.90E–8 1.79E–8 1.69E–8 1.60E–8 1.51E–8 1.43E–8 1.35E–8 1.27E–8 1.20E–8 1.14E–8

−5.6 1.07E–8 1.01E–8 9.55E–9 9.01E–9 8.50E–9 8.02E–9 7.57E–9 7.14E–9 6.73E–9 6.35E–9
−5.7 5.99E–9 5.65E–9 5.33E–9 5.02E–9 4.73E–9 4.46E–9 4.21E–9 3.96E–9 3.74E–9 3.52E–9
−5.8 3.32E–9 3.12E–9 2.94E–9 2.77E–9 2.61E–9 2.46E–9 2.31E–9 2.18E–9 2.05E–9 1.93E–9
−5.9 1.82E–9 1.71E–9 1.61E–9 1.51E–9 1.43E–9 1.34E–9 1.26E–9 1.19E–9 1.12E–9 1.05E–9
−6.0 9.87E–10 9.28E–10 8.72E–10 8.20E–10 7.71E–10 7.24E–10 6.81E–10 6.40E–10 6.01E–10 5.65E–10

−6.1 5.30E–10 4.98E–10 4.68E–10 4.39E–10 4.13E–10 3.87E–10 3.64E–10 3.41E–10 3.21E–10 3.01E–10
−6.2 2.82E–10 2.65E–10 2.49E–10 2.33E–10 2.19E–10 2.05E–10 1.92E–10 1.81E–10 1.69E–10 1.59E–10
−6.3 1.49E–10 1.40E–10 1.31E–10 1.23E–10 1.15E–10 1.08E–10 1.01E–10 9.45E–11 8.85E–11 8.29E–11
−6.4 7.77E–11 7.28E–11 6.81E–11 6.38E–11 5.97E–11 5.59E–11 5.24E–11 4.90E–11 4.59E–11 4.29E–11
−6.5 4.02E–11 3.76E–11 3.52E–11 3.29E–11 3.08E–11 2.88E–11 2.69E–11 2.52E–11 2.35E–11 2.20E–11

−6.6 2.06E–11 1.92E–11 1.80E–11 1.68E–11 1.57E–11 1.47E–11 1.37E–11 1.28E–11 1.19E–11 1.12E–11
−6.7 1.04E–11 9.73E–12 9.09E–12 8.48E–12 7.92E–12 7.39E–12 6.90E–12 6.44E–12 6.01E–12 5.61E–12
−6.8 5.23E–12 4.88E–12 4.55E–12 4.25E–12 3.96E–12 3.69E–12 3.44E–12 3.21E–12 2.99E–12 2.79E–12
−6.9 2.60E–12 2.42E–12 2.26E–12 2.10E–12 1.96E–12 1.83E–12 1.70E–12 1.58E–12 1.48E–12 1.37E–12
−7.0 1.28E–12 1.19E–12 1.11E–12 1.03E–12 9.61E–13 8.95E–13 8.33E–13 7.75E–13 7.21E–13 6.71E–13

∗ For positive z values, use this table in conjunction with Eq. M.32.

The relationship for the PDF of any normal random variable, fX(x), and the PDF of its
standardized normal variable, �(z), is:

fX(x) =�

(
x − x
�X

)
1
�X

(M.33)
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Most practical applications require the inverse �−1 of the standard normal cumulative dis-
tribution function �(z). Let p = �(z); the value of z can be accurately calculated by the
approximation Eq. M.34, which is adopted in most computer procedures.

z = �−1(p) = −t + c0 + c1 t + c2 t2

1 + d1 t + d2 t2 + d3 t3 with p ≤ 0.5 (M.34)

where c0 = 2.515517; c1 = 0.802853; c2 = 0.010328; d1 = 1.432788; d2 = 0.189269;
d3 = 0.001308; t =√−ln p2.

For p > 0.5, calculate �−1(1–p), and use Eq. M.32, which is equivalent to:

�−1(p) = −�−1(1 − p) (M.35)

Example M.4: Normal random variable
A normal random variable, X has x = 1250 and �X = 150. Find: FX(1100), FX(1550),
FX(1400), fX(1100), and fX(1250).

Equations M.31 and M.32 and Table M.1 give:

FX(1100) = �

(
1100 − 1250

150

)
= �(−1.0) = 0.159

FX(1550) = �

(
1550 − 1250

150

)
= �(2.0) = 1 − �(−2.0) = 1 − 0.0228 = 0.9772

FX(1400) = �

(
1400 − 1250

150

)
= �(1.0) = 1 − �(−1.0) = 1 − 0.159 = 0.841

Equations M.26 and M.27 give:

fX(1100) = 1
150

�

(
1100 − 1250

150

)
= 1

150
�(−1.0) = 1.613 × 10−3

fX(1250) = 1
150

�

(
1250 − 1250

150

)
= 1

150
�(0.0) = 2.660 × 10−3

The probability density function of this random variable is shown in Figure M.1c.

M.11 Log-normal random variable

A random variable X has a log-normal distribution when the random variable Y has a normal
distribution; where Y = lnX (i.e. X = eY ). With a mean value y and a standard deviation �Y , the

density function fX(x) is given by Eq. M.24 substituting e
−(x−x)2

2�2
X by e

−(y−y)2

2�2
Y :

fX(x) = 1

�Y
√

2
e

−(y−y)2

2�2
Y (M.36)
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The cumulative distribution function, CDF, can be calculated using the standard normal values
(Table M.1).

FX(x) = P(X ≤ x) = P
(
ln X ≤ ln x

)= FY (y) = �

(
y − y
�Y

)
(M.37)

where �Y and y can be expressed in terms of VX (defined by Eq. M.17):

�2
Y = ln

(
V2

X + 1
)

≈ V2
X (M.38)

y = ln x − 1
2
�2

Y ≈ ln x (M.39)

The above approximations are accurate for VX < (∼ 0.20).

Example M.5: Log-normal distribution for test results of concrete strength
A test series on the strength, X, of the concrete to be used in a major project exhibits a
log-normal distribution. The tests give a sample mean, x = 50MPa and a sample standard
deviation, �X = 6 MPa. What is the probability that the concrete strength does not exceed
40MPa? What is the characteristic concrete strength, defined as the strength below which
5 percent of random X values may fall? What is the characteristic concrete strength if the
PDF is considered normal instead of log-normal?

The coefficient of variation (Eq. M.17):

VX = 6/50 = 0.12

The variance, the standard deviation and the mean of Y(= lnX) are (Eqs. M.38 and M.39):

�2
Y = ln

(
V2

X + 1
)

= 0.0143; �Y = √
0.0143 = 0.1196; y = ln x − 1

2
�2

Y = 3.905

The probability that the concrete strength does not exceed 40 MPa is (Eq. M.37 and

Table M.1):

FX(40) = P(X ≤ 40) = �

(
y − y
�Y

)
= �

(
ln 40 − 3.905

0.1196

)
= �(−1.81) = 0.035

(y − y)/�Y = �−1(0.05) ; x = ey

(y − 3.905)/0.1196 = −1.645 ; y = 3.708

The characteristic strength, x = e3.708 = 40.8MPa.
With normal PDF, solve for x in: (x − x) /�X = �−1(0.05).

(x − 50)/6 = −1.645 ; x = 40.1MPa
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M.12 Extreme type I (or Gumbel distribution)

The maximum or the minimum value, X, of certain events follow an extreme type I distribution
(e.g. the largest wind pressure over a structure in a specified period or the lowest strength of a
certain type of beam). Let x1,x2, . . . ,xn be values of these events in the lifetime of the considered
structure or beam. The CDF and the PDF for extreme type I are:

FX(x) = e−
(
e−�(x−u)

)
for − ∞ ≤ x ≤ ∞ (M.40)

fX(x) =� e−
(
e−�(x−u)

)
e−�(x−u) (M.41)

The parameters � and u are related to the mean x and the standard deviation �X by the
approximations:3

x ∼= u + 0.577
�

; �X ∼= 1.282
�

; u ∼= x − 0.45�X

The extreme type II distribution gives the best approximation for seismic load.3

M.13 Normal probability paper

The graph in Figure M.2 has two vertical axes: the first represents �−1(z) with a linear scale from
−3 to +3; the second represents the corresponding values of �(z) with a scale from 1.35×10−3

to (1–1.35 × 10−3) = 0.99865. We can use Table M.1 to compare any value on the first scale
with the opposite value on the second scale: e.g. at �−1(z)=−1 and 1, the � scale reads 0.159
and (1–0.159)= 0.841 respectively. As another example, we can use Eq. M.34 to verify that at
�(z)=0.3 and 0.7, the opposite values on the �−1(z) scale are −0.524 and +0.524 respectively.
The horizontal x axis in the graph represents a random value with a linear scale. Commercially
available probability paper can be used to plot graphs similar to the one in Figure M.2. The
inclined straight line in the figure represents the CDF of a normal random variable with a mean
value x=6.0 and a standard deviation �X =1.5. The slope of the line=1/�X and it intersects the
horizontal axis at x=x. The CDF of any normal random variable appears as a straight line when
plotted with reference to the axes x and �(z) in Figure M.2, with z = (x − x)/�X. The rationale
behind the normal probability paper is explained by considering the standardized form, z, of a
normal random variable X; for any value x, the z value is:

z = x − x
�X

= 1
�X

x − x
�X

(M.42)

�−1(p) = z = 1
�X

x − x
�X

(M.43)

This is the equation of the inclined straight line in Figure M.2. The normal probability paper
can be used to determine whether a set of data has a normal distribution or not. The inclined
line in Figure M.2 intersects the �(z) axis at �−1(p) = −x/�X, where p = the probability of X
being less than 0. The opposite value on the �−1 scale is (−�); the parameter �, which is called
the reliability index, is given by:

�= x/�X (M.44)

3 See references in Chapter 24.
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0.841

0.159

Normal
probability
scale, Φ(z)

1.35×10–3–3
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σx σx

Inverse normal
distribution

function, Φ–1(z)

x

Mean = x

0.99865

z = (x − x)/σx

Figure M.2 Mean value and standard deviation on the normal probability paper.

In practice, in structural reliability analysis, � is positive. A negative � corresponds to a
probability of failure larger than 0.5.

Wood is an example of material having a correlation coefficient (≈0.8) between its flexural
strength and modulus of elasticity; it also has a smaller correlation coefficient (≈0.4 between flex-
ural strength and weight per unit volume). The higher coefficient indicates a better correlation.

Example M.6: Use of normal probability paper
Consider a test giving n(= 9) data values xi(i = 1 to 9) for a random variable X; the values
of xi arranged in ascending order are given in the table. Can X be treated as a normal
random variable? Find its mean value, x, and standard deviation, �X.

Number 1 2 3 4 5 6 7 8 9

Test result value probability 5.3 5.5 5.9 5.9 6.4 6.5 6.5 6.8 7.2
P(x ≤ xi) = xi/(1 + n) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

The plot of the data on normal probability paper is shown in Figure M.3. Because
the graph is approximately a straight line, we conclude that the data follow a normal
distribution. A straight line fitting the graph intersects the horizontal axis at x = 6.2 and
has a slope 1/�X = 1.55; thus, �X = 0.65.
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x
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3

2

1
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–1

0

Φ–1(z)

σx = 0.65

x = 6.2

Figure M.3 CDF of the test results in Example M.6.

M.14 Covariance of two random variables

Consider a vector {X}n×1 of n random variables. A pair of dependent (correlated) variables Xi

and Xj has a covariance, COV(Xi,Xj), a positive or negative value, defined as:

COV(Xi, Xj) = E
[
(Xi − xi)(Xj − xj)

]= E(Xi Xj) − xi xj (M.45)

The covariance of the two variables is equal to the mean of their product minus the product
of their mean values. Equation M.14 is a special case of Eq. M.45 when Xi and Xj are the same.
The correlation coefficient between Xi and Xj is defined as:

�XiXj = COV(Xi,Xj)

�Xi�Xj

(M.46)

It can be shown that: −1 ≤ �Xi Xj ≤ 1. The value of �Xi Xj is indicative of the degree of linear

dependence between Xi and Xj. When
∣∣∣�Xi Xj

∣∣∣ is close to one, the two variables are linearly

correlated. When
∣∣∣�Xi Xj

∣∣∣ is close to zero, the two variables may have a nonlinear relationship.
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The covariance matrix, [C]n×n, is a square symmetrical matrix whose general element
Cij = COV(Xi, Xj); and any diagonal element, Cii = �2

Xi
(always positive). When Xi and Xj

are uncorrelated, the element Cij = 0. Similarly, the matrix of correlation coefficients, [�]n×n is
defined as:

[�] =

⎡
⎢⎢⎢⎣
�11 �12 . . . �1n

�21 �22 . . . �2n
...

...
. . .

...
�n1 �n2 . . . �nn

⎤
⎥⎥⎥⎦ (M.47)

where �ij = �Xi Xj ; any diagonal element �ii = 1; �ij = 0 when Xi and Xj are uncorrelated.

M.15 Mean and variance of linear combinations
of random variables

This section gives some properties of a random variable Y, which is a linear combination of
random variables X1, X2, . . . , Xn. We can prove Eqs. M.48 to M.53, in which a0, a1, . . . , an are
constants. If Y = aX, the mean and the variance of Y are:

y = ax ; �2
y = a2�2

X (M.48)

If Y = a1X1 + a2X2, the mean and the variance of Y are:

y = a1x1 + a2x2 (M.49)

�2
Y = a2

1 �2
X1

+ a2
2 �2

X2
+ 2a1a2COV(X1,X2) (M.50)

If Y = a0 + a1X1 + a2X2 + . . .+ anXn = {a}T {X}, the mean and the variance of Y are:

y = a0 +
n∑

i=1

(ai xi) (M.51)

�2
Y = {a}T [C]{a} (M.52)

where [C] is the covariance matrix, whose general element Cij = COV(Xi,Xj). Equations M.49
and M.50 are for a special case of Eqs. M.51 and M.52 respectively. When the variables in {X}
are uncorrelated, the non-diagonal elements of [C] are nil and Eq. M.52 becomes:

�2
Y =

n∑
i=1

(
ai �Xi

)2 (M.53)

The coefficient of variation of Y is:

VY =�2
Y/|y| (M.54)

The covariance of correlated random variables Xi and Xj,

COV(a Xi, Xj) = a COV(Xi,Xj) (M.55)
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Equations M.48 to M.54 give the mean, the variance, and the coefficient of variation for
linear combinations of random variables, whose distributions are arbitrary. When the ran-
dom variables X1, X2, . . . , Xn are uncorrelated and normally distributed, Y is also a
normal random variable. Examples of the use of the equations in this section are given in
Chapter 24.

M.16 Product of log-normal random variables

Consider a random variable Y expressed in terms of independent log-normal random variables
X1, X2, and X3, and a constant a:

X0 = a
X1 X3

X2
(M.56)

ln X0 = ln a + ln X1 + ln X3 − ln X2 (M.57)

Equation M.57 is a linear combination of the normally distributed uncorrelated random vari-
ables: Y = lnX0; Y1 = ln X1; Y2 = ln X2 and Y3 = lnX3. Equations M.51 and M.53 can give the
mean and the variance of Y:

y = ln a + y1 + y3 − y2 (M.58)

�2
Y =�2

Y1
+�2

Y2
+�2

Y3
(M.59)

Equations M.58 and M.59 apply to all Xi. If not all X1, X2, and X3 are log-normal,
Eqs. M.58 and M.59 can still apply, but we cannot say that the probability distribution of
X0 is log-normal. The use of the equations in this section is demonstrated in Example 24.2,
Chapter 24.

Problems

M.1 Imperial units. The values of stress at the extreme fibers in flexural tests of 2 in. × 10 in.
timber beams are given in the table below. Calculate the mean and standard deviation.

Test data (psi)

4677 4741 4020 5436 5897 4758 3874 5023 5085
4212 5123 3845 5088 4830 7130 3966 5702 4310
4327 4930 5772 4724 6408 4667 5332 3973 5631

M.2 SI units. The values of stress at the extreme fibers in flexural tests of 38mm × 241mm
timber beams are given in the table below. Calculate the mean and standard deviation.

Test data (MPa)

32.3 32.7 27.7 37.5 40.7 32.8 26.7 34.6 35.1
29.0 35.3 26.5 35.1 33.3 49.2 27.4 39.3 29.7
29.8 34.0 39.8 32.6 44.2 32.2 36.8 27.4 38.8
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M.3 A normal random variable, X, has the mean value, x = 142, and standard deviation,
�X = 21. Calculate the probability: (a) X < 100; (b) X ≥ 187.

M.4 A log-normal random variable, X, has the mean value, x = 3000, and �X = 700. Calculate
the probability: (a) X ≤ 2500; (b) 2800 ≤ X ≤ 3200.

M.5 The CDFs of dead load, live load, and resistance are plotted on the normal probability
paper, as shown. Determine the mean and standard deviation for the dead load, live load,
and resistance.

Inverse normal
distribution

function, Φ–1(z)  

Dead load

12010060

Live load

Resistance
–3.0

–2.0

–1.0

0.0

1.0

2.0

3.0

200160 1801408040

Prob. M.5

M.6 The load-carrying capacity of a structural member from 19 randomly selected samples
are: {3.92, 4.62,4.03,3.89,4.51,4.39,4.21,3.90,3.78,4.53,3.40,4.44,4.16,4.31,4.22,
4.07,3.97, 4.12, 4.38}. Plot the test data on normal probability paper; from the plot, find
the mean and the standard deviation.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Answers to problems

Chapter 1

1.1 (a) {θA, θB, θC, θD, } = {13.5, −9.4, 2.3, −1.2} · 10−3ql3/EI
Bending moments at supports (positive moment produces tension at bottom face):
{MB, MC} = {−32.8,9.4} · 10−3ql2.

(b) {θA, θB, θC, θD, } = {−7.0, 13.9, −13.9, 7.0} · 10−3ql3/EI
Bending moments at supports (positive moment produces tension at bottom face):
{MB, MC} = {−55.6, −55.6} · 10−3ql2.

(c) {θB, θC} = {2.4, 2.4} · 10−3 Pl2/EI
Member end moments: {MAB, MBA, MCB, MDC}={−0.11, −0.09, 0.07, −0.07} ·Pl.

(d) {θA, θB, θC, θD} = {66.7, −8.3, 91.7, 16.7} · 10−3 Pl2/EI
{MBA, MBC, MCB, MCD} = {−0.15, 0.15, 0.35, 0.15} · Pl.

(e) {θA, θB, θC, θD} = {225.0, 29.2, 54.2, 191.7} · 10−3 Pl2/EI
{MBA, MBC, MCB, MCD} = {−0.22, 0.22, 0.27, −0.27} · Pl.

(f) {θB, θc} = {28.0, 14.8} · 10−3 Pl2/EI
{MAB, MBA, MBC, MBE, MCB, MCD}= {−0.24, −0.13, −0.04, 0.17, −0.09, 0.09} ·
Pl.

1.2 {θB, θC} = {−0.86, −0.86} · δ/l; {uB, vB, uC, vC} = {0.429, 0, 0.429, 1} · δ;
{MAB, MBA, MBC, MCD, MDC} = {−0.86, 0.86, −0.86, −0.86, 0.86,−0.86} · EIδ/l2.

1.3 {σtop, σbottom} = [N/(bh)] · {4, −2}.
1.4 Vertical members: {NAB, NBC, NCD, NHG, NGF , NFE}= (H/8) · {9, 5, 1, −13, −9, −5};

Horizontal members: {NBG,NCF}=(H/2) · {−1, −1}); Inclined members: {NAG, NBF , NCE}
= (H/

√
2) · {1, 1, 1}.

1.6 R = (3EI/l)ψfree (down).

1.7 h1 = 8l/27; h2 = 10l/27.

1.8 Mx= l/4 =3Pl/32; Mx=3l/4 =−3Pl/32; positive moment produces tension at bottom face.
Shear just to the right and just to the left of the applied load are 0.474P and −0.474 P
respectively.

1.9 Horizontal component in all four segments= Pl/(2hC); vertical components in AB and
BC = 3Pl/(2hC) and Pl/(2hC) respectively.

1.11 Horizontal
translation at B

MAB MBA

Without bracing 27.3 × 10−3 Pl3/(EI)AB −0.223 Pl −0.154 Pl
With bracing as shown in part (b) 0.968 × 10−3 Pl3/(EI)AB −7.47 ×10−3 Pl −4.51 × 10−3 Pl
With bracing as shown in part (c) 1.36 × 10−3 Pl3/(EI)AB −11.2×10−3 Pl −7.96 × 10−3 Pl
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1.12

Horizontal translation at B MAB MBA

Without bracing 5.91 × 10−3 m −64.1kN.m −44.2kN.m
With bracing as shown in part (b) 0.210 × 10−3 m −2.15kN.m −1.33kN.m
With bracing as shown in part (c) 0.294 × 10−3 m −3.23kN.m −2.29kN.m

1.13

Horizontal translation at B MAB MBA

Without bracing 0.219 in. −570 × 103 lb.in −393 × 103 lb.in
With bracing as shown in part (b) 7.75 × 10−3 in. −19.1 × 103 lb.in −11.8 × 103 lb.in
With bracing as shown in part (c) 10.9 × 10−3 in. −28.7 × 103 lb.in −20.4 × 103 lb.in

1.14 Using computer program PLANET, horizontal translation at B=0.994 × 10−3Pl3/(EI)AB;
{NAB, NBC, NCD, NAC, NBD} = P · {0.414, −0.448, −0.336, 0.560, −0.690}.

1.15

Member AG BH CI AB BC CD AH

Force in terms of P −0.500 1.500 0.500 2.500 4.000 4.500 −3.536

Member BI CJ HN NO IO NI OJ

Force in terms of P −2.121 −0.707 −1.398 −1.250 −0.839 0.625 0.750

1.16

Member AG AB BC CD AH BI CJ BH

Force in terms of P −0.500 2.500 4.000 4.500 −3.536 −2.121 −0.707 1.500

Member CI HN NO IO NI OJ HI IJ

Force in terms of P 0.500 −0.699 −0.625 −0.419 0.313 0.375 −1.250 −2.000

Chapter 2

2.1 (a) Reactions: RDx =−0.2P; RDy =−0.8P; Rcy =−1.2P. Member forces: {AB, BC, CD,
DA, AC} = P{−0.200, −1.020, 0.360, −0.816, −0.256}.

(b) Reactions: RDy =−2P/3; Rcx =−P/2; Rcy =−4P/3. Member forces: {AB, BC, CE, ED,
DA, AE, EB} = P{−0.25, −1.33, −0.50, 0, −0.67, −0.42, 0.42}.

(c) Reactions: RHy = −P, RKy = −4P; RNy = −P. Selected member forces: {BC, IJ, BJ,
BI} = P{0, 0.5, −0.707, −0.5}.

(d) Forces in members: {AB, AC, AD} = P{1.166, −6.319, −0.574}. Reactions:
{Rx, Ry, Rz}B = P{0, −0.6, 1.0}; {Rx, Ry, Rz}c = P{−2.2, −2.2, −5.5};
{Rx, Ry, Rz}D = P{0.2, −0.2, −0.5}.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Answers to problems 801

2.3 {R1, R3, R4, R5, R6, R7} = P{−1.833, −2.75, −2.917, −3.0,−0.625, −1.375}.
2.4 (a) RA = 0.68ql; Rc = 1.42ql; MB = 0.272 ql2; Mc = −0.1ql2.

(b) RA = 1.207P down and 1.207P to the left; RD = 0.5P up and 0.5P to the left;
MB = 1.207Pl, tension side inside frame; MA = MC = MD = 0.

(c) RA = 0.57ql; RB = 1.23ql; RC = 1.08ql; RD = 0.42ql; MG = 0.16ql2; MB =
MC = −0.08ql2.

(d) RA = 0.661ql up; RC = 0.489ql up. Member end-moments: MBD = 0.03125qb2;
MBA = −0.06610qb2; MBC = 0.03485qb2.

(e) RF = 0.75ql up and 0.0857ql to the right. Member end-moments: MBF = 0.0429ql2;
MBA = 0.05ql2; MBC = −0.0929ql2.

(f) RA = 0.6ql up and 0.2ql to the right; RB = ql/
√

5; VA =−VB = ql/
√

5; M = 0 at two
ends and at center M = ql2/8.

(g) RA = 2.375P; RG = 1.625P up and 2P to the right. Nonzero member end-moments:
MFG = −MFE = 1.5Pl; MEF = −MED = 2.625Pl; MDE = −MDC = 2.75Pl; MCD =
−MCB = 1.875Pl. VBr = 1.68P; VDl = 0.78P.

(h) Considering M positive producing tension at bottom fiber, MAr = −2.18ql2; MBl =
−0.56ql2; MBr = −0.625ql2. Torsion in AB = 0.28ql2.

(i) RA = 0.4ql; RB = 0.98ql; RC = 0.42ql; ME = 0.16ql2; MB = −0.08ql2.
(j) RA = 0.4ql; RC = 0.745ql; RE = 0.755ql; RH = 0.4ql; M at middle of AB = 0.08ql2;

MC = −0.1ql2; ME = −0.08ql2; MG = 0.16ql2.
(k) RB = 0.62ql; RC = 1.18ql; RE = 0.4ql; MB = −0.02ql2; MC = −0.1ql2; M at middle

of DE = 0.08ql2.
(l) R1 = 0.125ql; R2 = 0.8125ql; R3 = 0.375ql; R4 = 1.6875ql; MB = 0.125ql2, tension

side outside the frame; end moments {MDC, MDF , MDE} = ql2 {0.6875, −0.1250,
−0.5625}.

(m) R1 = −0.375ql; R2 = 0.25ql; R3 = 0.625ql; R4 = 0.375ql2; MB = 0.375ql2, tension
side inside the frame; MD = 0.625 ql2, tension side outside the frame.

(n) R1 = 0.158ql; R2 = 0.421ql; R3 = 0.158ql; R4 = 0.579ql; MB = 0.0395ql2; MD =
0.0789ql2, tension side outside frame at B and D.

2.5 (a) Mmax+ = 0.405Wl, at 0.05l on either side of mid-span.
(b) Mmax+ = 0.476Wl, at 0.02l on either side of mid-span (assuming reversible loading).
(c) Mmax+ = 0.2628Wl, at 0.3625l from the left support (when one of the two loads is

at this section and the other is at 0.9125l from the same support).
2.6 Mmax+ = 0.352Wl, at l/30 on either side of mid-span. Vmax+ = −Vmax− = 1.56W at the

supports.
2.8 The maximum bending moment diagrams are symmetrical about the center line of the

beam. The ordinates for the left half are as follows:

(a) Mmax+ is zero for the overhang and is the same as in Fig. 2.8a for the remaining part.
Mmax− is 0,−0.3Pl, −0.39Pl and −0.195Pl at distances 0, 0.3l, 0.35l and 0.85l from
the left end; join the ordinates by straight lines.

(b) Mmax+ is zero for the overhang; between the support and the center, Mmax+ is
Pl(1.32ξ − 1.8ξ2), where ξ is the distance from the support divided by l. Mmax−
is 0, −0.35Pl and −0.175Pl at distances 0,0.35l and 0.85l from the left-hand end;
join ordinates by straight lines.

2.9 (a) Mn max+ = 0.2775Pl; Mn max− = −0.2925Pl; Vn max+ = 1.11P.
(b) Mn max+ = 93.75 × 10−3ql2; Mn max− = −61.25 × 10−3ql2; Vn max+ = 0.3425ql.

2.10 (a) The maximum positive bending moment is 0.395Pl; it occurs at distance from A of
0.439l. The maximum negative bending moment is −0.210Pl; it occurs at C. (b) The
maximum positive bending moment is 0.394Pl; it occurs at distance from A of 0.556l.
The maximum negative bending moment is −0.210Pl, and occurs at C.
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2.11 The maximum positive bending moment diagram has zero ordinates between D and B.
Between B and C, the maximum positive bending moment diagram is the same as that
in Figure 2.13a. The maximum negative bending moment diagram has the ordinates 0,
−0.285Pl, and 0 at D, B, and C respectively; the diagram is linear between D and B and
between B and C. The influence line for Mn is composed of straight lines with the ordinates:
�A =0; �D =−0.1133l; �B =0; �n =0.2456l; �C =0. The maximum positive and negative
bending moments at n are 0.3380Pl and −0.1615Pl.

2.12 The force in each member running in the x, y, or z direction is 0.5T/l (tension). The force
in each diagonal member is −0.7071T/l (compression). The reaction components are nil,
except: (Ry)I = –(Ry)K = 0.5T/l; (Rz)J = –(Rz)L = 0.5T/l.

Chapter 3

3.1 i = 1. Introduce a hinge in the beam at B.
3.2 i = 1. Delete members CF or ED.
3.3 i = 3. Make A a free end.
3.4 i = 2. Introduce hinges in the beam at B and D.
3.5 i = 4. Change support B to a roller and cut member DE at any section.
3.6 i = 5. Remove support B and delete members AE, IF, FJ, and GC.
3.7 i = 3.
3.8 (a) i = 15. (b) i = 7.
3.9 i = 2. Delete members IJ and EG.
3.10 5 degrees and 3 degrees when axial deformation is ignored.
3.11 14 degrees and 8 degrees when axial deformation is ignored.
3.12 9 degrees.
3.13 Cut member BC at any section. The member end-moments in the released structure are:

MAD = −MAB = Pb, all other end-moments are zero. A positive end-moment acts in a
clockwise direction on the member end.

3.14 Cut six members: AC, BD, AH, DG, CF, and BE. Forces in members of the released
structure: AD=−P; AE=P; DE=P

√
2; AF =−P

√
2; DH =−P; forces in other members

are zero.
3.15 (a) Cut EF and CD; each results in three releases.

(b) Member end-moments: MAC = MCA = MBD = MDB = −Pl/2; MCE = MEC = MDF =
MFD = −Pl/4; MEF = MFE = Pl/4; MCD = MDC = 3Pl/4.

3.16

Member AB AC BC AD BE CF BD CD BF CE

Force in terms
of P/1000

−577 −577 0 0 −577 −577 817 817 0 0

The nonzero reaction components are: (Ry)D = –P; (Rz)D = 1.155P; (Rz)E = (Rz)F =
−0.577P.

Chapter 4

4.1 (a) [f ] = l
6EI

[
4 1
1 2

]
.

(b) [f ] = l3

6EI

[
16 5

5 2

]
.
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4.2 (a) {F} = −ql2
{

3
28

,
1
14

}
. (b) {F} = ql

{
11
28

,
8
7

}
.

4.3 MB = 0.0106ql2, and MC = −0.0385ql2.

4.4 MB = 0.00380
EI
l

, and Mc = −0.00245
EI
l

.

4.5 MB = −0.0377 ql2 = MC.
4.6 Forces in the springs:

(a) {FA, FB, FC} = −P{0.209, 0.139, 0.039}.
Reactions:
{RD, RE, RF , RG} = P{0.51, 0.10, 0.24, 0.15}.

(b) {FA, FB, FC} = P{0.5, 0, 0}; RD = RF = 0.375P; RE = RG = 0.125P.

4.7 Forces in the springs:

{FA, FB} = P
{
− 9

400
,

9
400

}
.

4.8 or 4.9 Forces in the cables: {FC, FD} = {0.427, 4.658} k or {2.12, 23.29} kN.
MD = 1.28 k ft or 1.96 kN m.

4.10 MC = −0.075ql2.
4.11 {MB, MC} = ql2{−0.158,−0.128}.
4.12 The answers are in terms of αEI(Tt −Tb)/h. Bending moments: MB =9/7; Mc =6/7. Reac-

tion components: at A, 9/7l up; at B, 12/7l down; and at C, 3/7l up with an anticlockwise
couple of 6/7.

4.13 MA = −0.0556ql2; MB = −0.1032ql2, MC = −0.1151ql2. Upward reactions at A, B, and
C are 0.785ql, 1.036ql, and 0.512ql.

4.14 At end of stage 1: MA =MD =0; MB =−20×10−3 ql2; RA =0.480ql; RB =0.720ql. At end
of stage 2: MA = MC = 0; MB = −74.4 × 10−3 ql2; MD = 20.5 × 10−3 ql2. RA = 0.426ql;
RB = 1.148ql; RC = 0.426ql.

4.16 Maximum negative bending moment at each of the two interior supports is −0.2176ql2.
Maximum positive bending moment at the center of each exterior span is 0.175ql2, and
at the center of the interior span is 0.100ql2. Maximum reaction at an interior support is
2.300ql. Absolute maximum shear is 1.2167ql at the section which is at a distance l from
the ends, just before reaching the interior supports.

4.18 MB = −0.096ql2; MC = −0.066ql2; RB = 0.926ql; deflection at center of BC = 2.88 ×
10−3ql4/(EI).

4.19 MB = −1.167qb2; MC = −1.417qb2; RB = 3.326qb; deflection at D = 0.75qb4/(EI). The
reaction at B due to the settlement = −0.298EIδ/b3.

4.20 MB max− = −3.952qb2; ME max+ = 2.427qb2; RC max+ = 5.546qb.
4.21 The deflection at the middle of AD, at D, and at middle of BC is 10−3�freel2{45.0, −70.0,

31.3}. With �free having a negative value given by Eq. 1.7, the deflections are downward
at D and upward at the middle of AD and BC.

4.22 {MAB, MBA, MBC, MCB} = {0, 0.0899, −0.0899, 0}ql2. Force in tie= 0.7304ql, tension.
4.23 Three loading cases are needed with q on all spans, combined with 0.75q on: (1) BC; (2)

AB, and CD; (3) AB and BC. The bending moments in the three cases at B and C are:

[
MB

MC

]
= − q l2

1000

[
234 181 277
234 181 222

]

The maximum bending moment diagram is obtained by drawing M for the three cases
on the same figure. The maximum ordinates at B and C are −0.277ql2; the maximum
ordinates at the middle of AB, BC, and CD are 10−3ql2{128, 195, 128}. Maximum RB =
2.416ql; |Vmax| at Br is 1.264ql.
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Chapter 5

5.1 Forces in members AB, AC, AD, and AE are:
{A} = P{−0.33, 0.15,0.58,0.91}.

5.2 Ai = PH(xi sin θi/
n∑

i=1
x2

i sin2 θi).

5.3 See answers to Prob. 3.7.

5.4 [S] = Ea
b

⎡
⎢⎢⎣

1.707 symmetrical
0 2.707

−1.000 0 1.707
0 0 0 2.707

⎤
⎥⎥⎦.

5.5 Force in the vertical member = 0.369P. Force in each of the inclined members meeting
at the point of application of P = 0.446P. Force at each of the other two inclined
members = −0.261P.

5.6 Bending moment at B = 0.298Pl. Changes in the axial forces in AC and AD are,
respectively, 0.496P and −0.496P.

5.7 Bending moment at B = 0.202Pl. Changes in the axial forces in AE, AG, AF and AH are,
respectively, 0.299P, 0.299P, −0.299P and −0.299P.

5.8 {MBC, MCF} = Pl{−0.0393, 0.0071}.

5.9 {MBC, MCF} = EI
l2 �

{
186
35

, −72
35

}
.

5.10 [S] = EI
l

[
8 2
2 12

]
, MBC = −0.0507ql2, and MCB = 0.0725ql2.

Reaction at A: 0.478ql upward, 0.076ql to the right, and a couple of 0.0254ql2 clockwise.
5.11 or 5.12 {MBC, MCB} = {−0.704, −0.415} k ft or {−0.722, −0.426} kN m.

5.13 The first column of [S] is

{(
12EI2

l3
2

+ Ea1

l1

)
, 0, −6EI2

l2
2

, −Ea1

l1
, 0, 0

}
.

5.14 S11 = 4EI2

l2
+ 4EI1

l1
, S12 = 2EI1

l1
, S13 = −6EI2

l2
2

.

S22 = 4EI2

l2
+ 4EI1

l1
, S32 = −6EI2

l2
2

, S33 = −24EI2

l3
2

.

5.15 The end-moments for the members are (in terms of Pl1):
MAB = −0.010, MBA = 0.135, MBC = −0.135, MCB = −0.366, MCD = −0.366,
MDC = −0.260.

5.16 The end-moments for the members are (in terms of Pl):
MAB = −0.123, MBA = 0.133, MBC = −0.133, MCB = 0.090. MCD = −0.090,
MDC = −0.051.

5.17 {D}= Pl2

EI
{0.038l, 0.022, −0.048}. D1 is a downward deflection, D2 and D3 are rotations

represented by vectors in the positive x and z directions.
5.18 The first column of [S] is{

48EI
l3 , 0, 0, −12EI

l3 , 0,
6EI
l2 , −12EI

l3 ,
6EI
l2 , 0, 0, 0, 0

}

and the second column is{
0,
(

8EI
l

+ 2GJ
l

)
, 0, 0, −GJ

l
, 0, −6EI

l2 ,
2EI

l
, 0, 0, 0, 0

}
.
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5.19 See answers to Prob. 3.5.
5.20 Girder BE:

{MB, MI , MJ , ME} = Pl{−0.184, 0.142, −0.032, −0.035}.
Girder AF:
{(MA, MK, ML, MF)} = Pl{−0.077, 0.051, 0.006, −0.038}.

5.21 [S] =
n∑

i=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

12
EIi

l3i
symmetrical

−6s
EIi

l3i
4s2 EIi

li
+ c2 GJ

li

6c
EIi

l2i
−sc

(
4EIi

li
− GJi

li

)
4c2 EIi

li
+ s2 GJi

li

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where s = sinαi and c = cosαi.
5.23 {D} = (Pl2/EI) {0.0498l, 0.1504, 0.0172}

{A} = Pl{0, 049, 0.51, 0.49, −0.49, 0}.
5.24 {D} = Pl2

EI
{0.0572, −0.0399, 0.0730l}

{A} = pl
1000

{0, 23, −23, 783, −783, −884}.

Chapter 6

6.1 {D} = pl3

384EI{21, 21, 11, 11}. The values of the bending moments at four sections of

DG are:

{MD, MJ , ML, MG} = Pl
384

{−100, 74, −10, −28}.
6.2 The bending moment values at four sections of beam AD are:

MA = MD = 0, MB = MC = 4Pl/13,
and for beam BF:
MB = 0, and MF = −18Pl/13.

6.3 (a) [S] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

24EI
l3

symmetrical

0
8EI

l

−12EI
l3

−6EI
l2

24EI
l3

6EI
l2

2EI
l

0
8EI

l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(b) [S] =

⎡
⎢⎢⎢⎢⎢⎣

12EI
l3

symmetrical

0
8EI

l
6EI
l2

2EI
l

8EI
l

⎤
⎥⎥⎥⎥⎥⎦.

(c) [S] = EI
l3

[
19.2 −13.2

−13.2 19.2

]
.
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6.4 (a) [S]=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

24EI
l3 symmetrical

0
8EI

l

−12EI
l3 −6EI

l2

12EI
l3

6EI
l2

2EI
l

−6EI
l2

4EI
l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(b) [S]=

⎡
⎢⎢⎢⎢⎢⎣

24EI
l3 symmetrical

0
8EI

l
6EI
l2

2EI
l

4EI
l

⎤
⎥⎥⎥⎥⎥⎦.

(c) [S]= EI
l3

[
13.71 −4.29
−4.29 1.71

]
.

6.5 [S] = EI
l3

⎡
⎣ 2.5 symmetrical

−3.0 7.0
1.5 −3.0 2.5

⎤
⎦ {D} = Pl3

EI
{2.85, 1.30, −0.15}.

6.7 [S] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

24EI
l3 symmetrical

0
12EI

l

−12EI
l3 −6EI

l2

12EI
l3

6EI
l2

2EI
l

−6EI
l2

8EI
l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[S∗] = EI
l3

[
19.304 −8.087
−8.087 5.743

]
.

6.8 S∗
11 = S33 − S2

31S22 − 2S31 S32S21 + S2
32S11

S11S22 − S2
21

.

6.9 The value of P which makes the structure unstable is P = EI
2l2 .

6.10 The smallest value of P for the instability of the system is P = Kl
3

.

6.11 Bending moment ordinates: MA = Pl/24; MB =−Pl/12; ME = Pl/6. Reactions: RA = P/8
down; RB = 5P/8 up.

6.13 Bending moment ordinates: MA = MB = −Pl/9; MC = Pl/9. Shearing force ordinates: for
AC, V = 2P/3; for CB,V = −P/3. Reactions: RA = RB = P.

6.14 MA = −2Pl/27; MB = −Pl/27; VAr = (19/27)P; VAl = −(l/27)P; VBl = −(8/27)P;
VBr = −(1/27)P.

6.15 MA = MB = −ql2/24; VAr = −VBl = ql/2; VAl = VBr = 0.
6.16 Member end-moments: MAB = 0.0703qb2; MBA = 0.1406qb2; MBC =−0.1406qb2. Reac-

tions at A : 0.75qb up, 0.211qb horizontal to the right, and a clockwise couple
0.070qb2.

6.17 Member end-moments: MAB = ql2/48; MBA = ql2/24; MBD = −ql2/24; MDB = 5ql2/48.
Reactions at A: 7ql/16 up, ql/16 to the right, and ql2/48 clockwise. Reaction at
C = 9ql/8 up.
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6.18 Member end-moments: MAB = −MBA = −ql2/12 VA = −VB = 0.5ql cos θ .

6.19 {D} = 10−3 Pl3

EI
(92.01l, −145.8, −76.39, 149.3l, −208.3).

6.20 {D} = 10−3 ql4

EI

{
11.11,

22.22
l

, 19.44
}

.

6.21 Stresses at top, mid-height, and bottom, in terms of αET, are −0.25, 0.25, and −0.25
respectively. The variation between these values is linear. The change in length of centroidal
axis is 0.25αTl. The deflection at mid-span is αTl2

/8d upward.
6.22 At the central support, M = 1.5EIαT/d. The stresses at top, mid-height, and bottom are,

in terms of αET, −1.00, 0.25, and 0.50 respectively. Reactions at outer supports are
1.5EIαT/dl up, and at interior support 3EIαT/dl down.

6.23 Member end-moments in terms of EIαT/d:MAB =−0.234; MBA =−MBC =−0.694. Reac-
tions at A: horizontal outward component is 0.928EIαT/d2, and anticlockwise couple is
0.234EIαT/d.

6.24 Answers in terms of |P|: {MA, ME, MB, MF} = h{0.15, −0.239, 0.522, −0.278};
RA = 0.0174h/b up = −RB; deflection at center of AB = 0.877hb2/EI up; VAr =
−0.276h/b; VBl = 0.382h/b; VBr = −0.356h/b; VCl = 0.356h/b; VCr = −0.382h/b;
VDl = 0.276h/b.

6.25 Answers in terms of |P|: {MA, ME, MB, MF} = h{0, −0.3043, 0.3915, −0.4085};
RA = 0.0012 down = −RB; deflection at E = 0.843hb2/(EI) up; VAr = −0.0869h/b; VBl =
0.1988h/b; VBr = −0.1778h/b; VCl = 0.1778h/b; VCr = −0.1988h/b; VDl = 0.0869h/b.

6.26 σ = EαTtop[0.167 + 0.357 μ − (0.5 − μ)5]; extreme tension at bottom fiber = 3.1 MPa
(or 0.45 ksi).

6.27 MBA = −MBC = −MDE = MDC = 0.038ql2; MCB = −MBC = 0.106ql2. The force in the
tie = 1.098ql.

6.28 MBA = −MBC = −MDE = MDC = 0.0810ql2; MCB = −MBC = 0.0492ql2. The force
in the tie = 0.8555ql.

6.29 Forces in members OA, OB, OC, and OD are, respectively, in terms of P:
0.919, −0.306, −2.756, and −1.531. {Rx, Ry, Rz}A = P{−0.375, −0.375, 0.750};
{Rx, Ry, Rz}B =P{−0.125, 0.125, −0.250}; {Rx, Ry, Rz}C =P{−1.125, −1.125, −2.250};
{Rx, Ry, Rz}D = P{0.625, −0.625, −1.250}.

Chapter 8

8.1 D1 = 0.248, D2 = 0.228 (inch or cm).
8.2 D1 = 2.121PB. Forces in members of the indeterminate truss are (in terms of P):

CB = −0.53, AD = 0.88, AC = 0.38, CD = 0.38, DB = −0.62, BA = 0.38.

8.3 D = 3.73
hP
Ea

.

8.4 Downward deflection at E in cases (a) and (b) = b
{

9.84
P
Ea

, −0.22 × 10−3
}

.

Forces in members in case (c) are (in terms of P):
AE = 1.78, EF = 1.46, FB = 1.56, AC = −2.22, CD = −1.88, DB = −1.94, CE = 1.26,
DF = 0.93, DE = 0.40, and CF = 0.12.

8.5 Vertical deflection at C in cases (a) and (b) = {0.11, −0.34} in. Forces in members in case
(c) are (kip):
AB=−18.9, BC =−15.0, DE=26.1, EC =25.0, EA=−18.5, EB=−5.2, and BD=6.5.

8.6 Vertical deflection at C in cases (a) and (b)= {3.3, −8.3} mm. Forces in members in case
(c) are (kN):
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AB =−94.5, BC =−75.0, DE = 130.5, EC = 125.0, EA =−92.5, EB =−26.0 and BD =
32.5.

8.7 Forces in members are (in terms of P):
AB=−1.95, BC =−0.38, CD=−0.38, DE=−0.62, EF =2.06, BE=−0.33, CE=0.54,
DB = −0.88, BF = 1.34, and EA = −1.49.

8.8 {D1, D2, D3} = [Pl/(aE)] {20.46, −0.09541, 3.588}.
8.9 {D1, D2} = [Pl/aE)] {3.828, 4.828}. f11 = 10.07l(aE).
8.10 {N} = P{−0.180,0.320,−0.180,0.254,−0.453,0.641}.
8.11 Forces in members: {AB, BC, AD, BE, BD, BF} = P{−0.577,0.133,0,−0.444,0.817,

−0.189}; the remaining forces can be determined from symmetry. The required
displacement = 3.065Pl/(aE).

8.12 MAB = −0.056ql2, MBA = 0.043ql2.
8.13 MAB = −0.057ql2, MBA = 0.130ql2.

8.14 [f ] = l
24EI

[
4.5 −3

−3 7.5

]
.

8.16 Force in tie = 2.34P. Bending moment values (in terms of Pb):
MA = 0, MB = MD = 0.099, and Mc = 0.132.

8.17 Force in tie = 25.6 kip. Horizontal reaction component at A = 2.44kN (inward). Bending
moment values (kip ft): MA = ME = 0, MB = MD = −73.2, MC = −43.8.

8.18 Force in tie = 7.68 kN. Horizontal reaction component at A = 0.73kN (inward). Bending
moment values (kN m):
MA = ME = 0, MB = MD = −6.59, MC = −3.94.

8.19 and 8.20 Downward deflection at A = 0.104l3/(EI) and 0.0774l3/(EI) respectively.
8.21 Downward deflection at D=0.015Pl3/(EI), and rotation at A=0.047Pl2/(EI) (clockwise).
8.22 Points E and C move away from each other a distance = 0.0142Pl3/EI.

8.23 and 8.24 [f ] =
[
1.093 1.320
1.320 1.947

]
in./kip, and 10−6

[
6.402 7.734
7.734 11.400

]
m/N.

8.27 {D1, D2, D3}= {2.331, 2.992, 1.278} Pl3/(1000EI), in case (a); {D1, D2, D3}= {353.3,
−25.47, 102.7} Pl3/(1000EI), in case (b).

8.28 MA = −0.167ql2; MB = −0.080ql2; MD = 0.022ql2; RA 0.0673ql (up).
8.29 MBC = 0.3915ql2; RB = 0.8115ql (up); deflection at A = 0.1663ql4/(EI).
8.30 Mcenter = 39.83 × l0−3qr2 (producing tension at bottom fiber). The fixed-end forces are:

{F∗} = qr {−0.5,−1.48 × 10−3r,−87.46 × 10−3r,−0.5,−1.48 × 10−3r, 87.46 × 10−3r}.
8.31 Redundant forces (Figure 6.6d), {F} = ql(0.4012, 0.2495, 0.0358l). {MBA, MBF , MFB,

MBC, MCB} = ql2

1000
{98.8, 116.0, 133.5, −214.8, −35.8}.

8.32 Chosen redundants: RA =0.3471ql (up); NAD =0.5362ql; NED =0.5134ql. Member end-
moments: {MBA, MBE, MEB, MEC, MCE, MBD}= (ql2/1000) {8.44, −13.00, 4.58, −4.58,
−9.31, 4.56}.

8.33 The nonzero reaction components at A are: Fx =0.189P and My =0.405Pl. Displacement
at C in the x direction is 0.2095Pl3/(EI).

8.34 The influence line for MBr is composed of straight segments; the ordinates are:
{�F , �B, �C, �D, �G} = b{−0.4, 0.4, −2.0, −0.4, 0.4}.
The influence line for VBr is composed of straight segments; the ordinates are:
{�F , �Bl , �Br, �D, �G} = {0.1, −0.1, 0.9, 0.1, −0.1}.

8.35 MBA = −MBC = MDC = −MDE = 0.045ql2. At the middle of BC, M = 0.103ql2 (tension
face at bottom). MA = MC = ME = 0. Force in tie= 0.365ql.

8.36 Forces in members in terms of 10−3 P: AB = 2042; CD = −2591; DE = −2020;
AH = −2152; HI = 439; CA = −1319; DH = −819; EI = 278; CH = 2458; DI = −542.
Use symmetry for the remaining members.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Answers to problems 809

Chapter 9

9.1 [B] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8 −0.6 0
0.6 0.8 0
0 0 1

−0.8 0.6 0
−0.6 −0.8 0

0.6l 0.8l −1
0.8 0.6 0

−0.6 0.8 0
−0.6l −0.8l 1
−0.8 −0.6 0

0.6 −0.8 0
0 1.6l −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

9.2 [f ] = 1
EI

⎡
⎣ 0.24l3 symmetrical

0.48l3 1.707l3

−0.6l2 −1.6l2 2l

⎤
⎦.

9.3 [f ] = 1
6EI

⎡
⎣2 symmetrical

1 4
0 −1 2

⎤
⎦.

9.4 [f ] = 1
24EI

⎡
⎣ 9l3 symmetrical

−15l3 60l
−12l3 36l2 32l3

⎤
⎦.

9.5 [C]T =
⎡
⎣0 1 0 1 0 0 0 0

0 0 0 0 0 1 0 1
1.155 0 1 0 1 0 1.155 0

⎤
⎦.

[S] = EI
l

⎡
⎣ 12 symmetrical

4 12
− 6.93/l 6.93/l 32/l2

⎤
⎦.

9.6 {F} = q{0.041l2, −0.014l2, −1.366l2}.
For any member i.

9.8 [Sm]i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12EI/l3 symmetrical

0 GJ/l

6EI/l2 0 4EI/l

−12EI/l3 0 −6EI/l3 12EI/l3

0 −GJ/l 0 0 GJ/l

6EI/l2 0 2EI/l −6EI/l2 0 4EI/l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

i

.

The displacements {D∗}i at the coordinates of the ith member are related to the
displacements {D} at the structure coordinates by the equation {D∗}i = [C]i {D} where

[C]i =
[[0] [0]
[t]i [0]

]
(i = 1, 2), [C]3 = [I].

[C]i =
[[0] [t]i
[0] [0]

]
(i = 4, 5), [t]i =

⎡
⎣1 0 0

0 cosαi sinαi

0 − sinαi cosαi

⎤
⎦.
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9.9 [S] =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ea
l

symmetrical

0
12EI

l3

0
6EI
l3

4EI
l

⎤
⎥⎥⎥⎥⎥⎥⎦

.

[S∗] =

⎡
⎢⎢⎢⎢⎢⎢⎣

12EI
l3 symmetrical

6EI
bl2

Ea
4l

+ 4EI
b2l

6EI
bl2 −Ea

4l
+ 4EI

b2l
Ea
4l

+ 4EI
b2l

⎤
⎥⎥⎥⎥⎥⎥⎦

.

9.10 [f ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

l
Ea

symmetrical

0
l3

3El

0 − l2

2El
l

El

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

[f ∗] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

l3

3EI
symmetrical

− bl2

4El
l

aE
+ b2l

4El

− bl2

4El
− l

aE
+ b2l

4El
l

aE
+ b2l

4El

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

9.11 [S] = EI

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
l

symmetrical

0
4
l

2
l

2
l

8
l

− 6
l2

6
l2 0

24
l3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

[S∗] = EI

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

16
b2l

symmetrical

− 12
b2l

16
b2l

− 16
b2l

8
b2l

32
b2l

− 12
bl2

12
bl2 0

24
l3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

9.12 F1 = π4EI
8 l3 D1.

9.13 F1 = D1

(
π4

8
− π2

2

)
EI
l3

.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Answers to problems 811

9.15 Forces in members AB, AC, AD, and AE are (in terms of P): {−0.3544, 0.1530, 0.6003,
0.885}.

9.16 [Sm]= the 3×3 matrix in Eq. 22.25. Forces in members AB,AC,AD, and AE are (in terms
of P): {−0.3118,−4.0535,−2.1826,1.5590}.

Chapter 10

10.3 Deflection at C = 0.197 in. downward. Rotation at C = 0.00413 rad clockwise.
10.4 Deflection at C = 5.59 mm downward. Rotation at C = 0.00469 rad clockwise.
10.5 Deflection at D = 2.40Pb3/EI0. Deflection at C = Pb3/EI0 (both downward).

10.7 Vertical deflections are: at C or E, 1.212
Hl3

EI
and at D, 1.687

Hl3

EI
, both upward.

10.8 or 10.9 [S] = EI0

l

[
6.59 2.92
2.92 4.35

]
.

10.10 M = 3
16

EI
l

. Deflection at D = (13/32) l downward and at E = (3/32) l upward.

10.11 (a) Deflection at D = −0.0070qb4/(EI).
(b) The settlement = 0.0790qb4/(EI) and the rotation = 0.1267qb3/(EI).

10.12 {y1, y2, y3}= [10−3Pl3/(EI0)] {3.06, 4.98, 3.79}; rotation at A = 12.3 [10−3Pl2/(E10)].
10.13 y=[10−3Pl3/(EI0)] [4.478 sin(πx/l)−0.323 sin(2πx/l)]. {y1, y2, y3}=[10−3Pl3/(EI0)]

{2.84, 4.48, 3.49}; rotation at A = 12.0 [10−3Pl2/(EI0)].
10.14 y = 4ql4

π5EI

∞∑
n=1,3, ...

sin (nπx/l)
n3[n2 − Pl2/(π2EI)] .

10.15 a1 = 0.02511ql4/EI, a2 = 0, and a3 = 0.0000569ql4/EI.

10.16 y = 4Pl3

π4EI

∞∑
n=1,2, ...

[1 − cos (2nπc/l)] [1 − cos(2nπx/l)]
16n4 + 3k l4/(π4EI)

.

10.17 D1 = (l/192) [22 36 24 12 2] {Ψ }; D2 = −(l/192) [2 12 24 36 22] {Ψ ];
D3 = (l2/192) [1 6 10 6 1] {Ψ ].
For the beam of Prob. 10.12; rotation at the left-hand end = 12.2 × 10−3Pl2/(EI0);
deflection at mid-length = 4.46 × 10−3Pl3/(EI0).

Chapter 11

11.1 The member end-moments are (in terms of Pb):
MAB = −0.54, MBA = −MBC = −0.09, MCB = −MCD = −0.70, MDC = −MDE = 1.11,
MED = −1.27.
Reaction components at A are 0.7P (upward), 0.21P (to the left) and 0.535Pb (anti-
clockwise). Reaction components at E are: 1.3P (upward), 0.79 (to the left) and 1.265Pb
(anticlockwise).

11.2 The member end-moments are (in terms of Pb):
MAB = −MAF = −0.461, MBA = −MBC = MCB = −MCD = −0.149.
Use symmetry to find the moments in the other half of the frame.

11.3 The member end-moments in terms of (Pb/24) are: MBC =5, MCB =−MCD =1, MDC =7.
Use symmetry about vertical and horizontal axes to find the remaining moments.

11.4 The member end-moments are (in terms of qb2/100):
MAB = −188.9, MBA = −MBC = −45.7, MCB = 111.8, MCE = −40.0, MCD = −71.8.
The reaction components at A are: 0.79qb (downward), 2.28qb (to the left) and −1.89qb2

(anticlockwise). The reaction components at D are 1.79qb (upward) and 0.72qb
(to the left).
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11.5 The member end-moments in terms of Pb:
MCA = −0.500, MCD = 0.249, MCG = 0.251, MDC = −MDE = −MDE = 0.215, and
MED = −0.535.
Use symmetry to find the moments in the other half of the frame.

11.6 The forces at end A are: 1.6qb (upward), 1.07qb (to the right) and 0.213qb2 (anti-
clockwise). Use the symmetry of the frame to find the forces at end B.

11.7 SAB = 7.272EI0/l, SBA = 4.364EI0/l, CAB = 2/5, and CBA = 2/3.
11.8 SAB = 9.12EIB/l, SBA = 4.75EIB/l, CAB = 0.428, and CBA = 0.824, where EIB is the

flexural rigidity at B.
11.9 MAB = −0.0966wl2, and MBA = 0.0739wl2.
11.10 MAB = −0.2171Pl, and MBA = 0.0866Pl.
11.11 The end-moments on the members are (in terms of ql2/1000):

MAB=25.3, MBA=−MBC=50.7, MCB=72.5, MCD=−36.3, MDC=−18.1, MCE=−36.3.
Reaction components at A: 0.479ql upward, 0.077ql to the right and 0.025ql2 clockwise.

11.12 The end-moments on the members are (in terms of ql2/1000):
MAB=19.6, MBA=−MBC=46.6, MCB=75.9, MCD=−41.7, MDC=−24.5, MCE=−34.3.
Reaction components at A: 0.471ql upward, 0.067ql to the right and 0.020ql2 clockwise.

11.13 The member end-moments are (in terms of ql2/1000):
MBA = 93.7, MBE = 6.1, MBC = −99.8, and MEB = 3.1.
The end-moments in the right-hand half of the frame are equal and opposite in sign.

11.14 The member end-moments are (in terms of Hl/100):
MBA = −3.39, MBE = 7.92, MBC = −4.53, and MEB = 8.73.
Because of antisymmetry the end-moments in the right-hand half are equal.

11.15 The member end-moments in terms of EIA/l2 are:
MBA = 10.2, MBE = 3.5, MBC = −13.8, MED = 1.2, MCB = −17.1, MCF = −2.7, MCD =
19.8, MFC = −2.0.

11.16 The values of the bending moment at support B for the four cases of loading are:
ql2 {−0.2422,−0.3672,−0.2422,−0.1016}.

11.17 The member end-moments are (in terms of qb2/100):
MAB = 2.62, MBA = −MBC = 7.95, MCB = 24.15, MCD = −6.15, MCE = −18.00,
MDC = −4.42.

11.18 (a) The member end-moments are (k ft):
MAB = 122, MBA = −MBC = 126.
Because of symmetry, the end-moments in the right-hand half of the frame are equal
and opposite.

(b) The reaction components at A are: 0.782 k to the right and 27.4 k ft clockwise, and
the vertical component is zero.

11.19 (a) The member end-moments are (kN m):
MAB = 10.94, MBA = −MBC = 11.38.

(b) The reaction components at A are: 3.62 kN to the right and 38.0 kN m clockwise,
and the vertical component is zero.

11.20 The required values of the bending moments are (kip ft):

(a) MA = MB = −20.7, and MC = MD = −8.3.
(b) MA = −MB = 27.8, and MC = −MD = 27.8.
(c) MA = −111.5, MB = −251.2, and MC = −2.7, MD = −142.4.

As usual, a positive bending moment causes tensile stress in the inner fiber of the
frame.

11.21 The required values of the bending moments are (kN m):

(a) MA = MB = −27.1, and MC = MD = −10.8.
(b) MA = −MB = 28.5, and MC = −MD = 28.5.
(c) MA = −145.2, MB = −327.1, MC = −3.5 and M = −185.4.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Answers to problems 813

As usual, a positive bending moment causes tensile stress in the inner fiber of the
frame.

11.22 (a) The end-moment at the top or bottom of any of the three piers is Pl/12.
(b) Shear at F or H is P/6 and shear at G is 2P/3.

11.23 The member end-moments in the left-hand half of the frame are: {MAB, MBA, MBC, MCB,
MCD, MDC} = Pl{0.178, 0.150, −0.150, −0.121, 0.121, 0.116}; member DE has zero
moment.

11.24 The member end-moments in the left-hand half of the frame are: {MAB, MBA, MBC, MCD} =
Pl{0.140, 0.143,−0.143,−0.145}.

11.25 The member end-moments in the left-hand half of the frame are (in terms of Pb): MAB =
−1.19, MBA = −0.31, MBG = 0.89, MBC = −0.58, MCB = −0.68, MCF = 0.79, MCD =
−0.11, and MDC = −0.89.
The corresponding end-moments in the right-hand half are equal.

11.26 The member end-moments in the left-hand half of the frame are (in terms of Pb/10):
MAB =MFG =−5.71, MBA =MGF =−5.54, MBC =MGH =−1.41, MCB =MHG =−2.34,
MAF = MFA = 5.71, MBG = MGB = 6.95, MCH = MHC = 0.
The end-moments in the right-hand half are equal and opposite.

11.27 The member end-moments in the left-hand half of the frame (in terms of Pl) are:
MAB =−1.545, MBA =−0.455, MBE =0.614, MBC =−0.159, MCB =−MCD =−0.341.
The corresponding end-moments in the right-hand half are equal.

Chapter 12

12.1 The influence lines are composed of straight segments joining the following ordinates:
Reaction at B: �A = 0, �D = 1.2, and �C = 0.
Bending moment at E(l): �A = 0, �E = 0.234,�D = −0.075, and �C = 0.

Shear at E: �A = 0, �E left = −3
8

, �E right = 5
8

, �D = 1
5

, and �C = 0.

12.2 The influence lines are composed of straight segments joining the following ordinates:

Force in member Z1: �A = 0, �C = 3
4

, and �B = 0.

Force in member Z2: �A = 0, �C = −0.354, �D = 0.707, and �B = 0.
12.3 With the line AB as a datum, the influence line is composed of straight segments joining

the following ordinates:
Horizontal component of the reaction at A (inward):

�A =�B = 0, and �C = l
4h

.

Bending moment at D:

�A =�B = 0, �D = 3l
32

, and �C = − l
16

.

12.4 The three required ordinates in the spans are
Bending moment at n:
Span AB: {−89, −123, −117} l/1000.
Span BC: {−62, −65, −47} l/1000.
Bending moment at center of AB:
Span AB: {105, 189, 92} l/1000.
Span BC: {−31, −33, −24} l/1000.
Shearing force at n:
Span AB: {−0.389, −0.623, −0.817}.
Span BC: {−0.062, −0.065, −0.047}.

12.5 Influence ordinates of RA:
{�A, �D, �B, �E, �C} = {1.0, 0.902, 0.677, 0.404, 0.119}.
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Influence ordinates of RB:
{�A, �D, �B, �E, �C} = {0, 0.046, 0.126, 0.175, 0.199}.
Influence ordinates of the end-moment at A:
{�A, �D, �B, �E, �C} = l{0, −0.350, −0.480, −0.483, −0.437}.

12.6 The three required ordinates in the spans are
Span AB : {1.36, 1.88, 1.79} l/100.
Span BC : {−1.79, −1.88, −1.36} l/100.

12.7 �G = 0.132l, �H = 0.236l, and �I = 0.132l.
12.8 �G = 0.125l, �H = 0.250l, �I = 0.125l, and �K = 0.078l.
12.11 The influence lines are composed of straight segments joining the following ordinates:

For XA: {�A, �B, �C, �D, �E} = {0,0.535,0.931,0.535,0}.
For YA: {�A, �B, �C, �D, �E} = {1.0, 0.840, 0.500, 0.160, 0}.
For MAB: {�A,�B,�C,�D,�E} = b{0, −0.222, 0.084, 0.139, 0}.

12.12 The influence lines are composed of straight segments joining the following ordinates:
For XA: {�C, �D, �E, �F , �G} = {0.036, 0.427, 0.643, 0.427, 0.036}.
For the force in DE : {�C, �D, �E, �F , �G}={0.072, −0.146, −0.714, −0.146, 0.072}.

12.13 The influence lines are composed of straight segments joining the following ordinates:
For the force in Z1: {�A, �D, �E, �F , �B} = {0, −0.333, −0.632, −0.860, 0} and the
line is symmetrical about B.
For the force in Z2, the ordinates in the spans are
Span AB: {�A,�D,�E,�F ,�B} = {0, −0.125, −0.197, −0.164, 0}.
Span BC: {�B,�G,�H ,�I ,�C} = {0, 0.586, 0.303, 0.125, 0}.

Chapter 13

13.1 MBC = −MBA = 246.0k ft; MAB = −165.6k ft.
13.2 MBC = −MBA = 329.6kN m; MAB = −226.1kN m.
13.3 {MBA, MBC, MBD, MDB} = {28.1, −25.8, −2.27, −11.7}k ft.
13.4 {MBA, MBC, MBD, MDB} = {38.6, −34.6, −3.99, −16.5}kN m.
13.5 {MAB, MBA, MBC, MCB} = {−0.589, −0.726, 0.726, 0.985} EI/(103l).
13.8 {MAB, MBA, MBC, MCB} = ql2{−0.665, −0.366, 0.366, 0}.
13.9 Buckling occurs when Q = 1.82EI/b2.
13.10 Q = 93.2EIBC/l2.
13.11 Q = 6.02EI/l2.
13.14 Q = 20.8EI/l2.
13.15 Q = 3.275EI/l2.

Chapter 14

14.2 The required matrices are:

[S11]r =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(S1 + t1)

h2
1

symmetrical

−2(S1 + t1)

h2
1

2(S1 + t1)

h2
1

+ 2(S2 + t2)

h2
2

− 2(S2 + t2)

h2
2

2(S2 + t2)

h2
2

+ 2(S3 + t3)

h2
3

elements not shown
are zero

. . . . . .
. . .

− 2(Sn−1 + tn−1)

h2
n−1

[
2(Sn−1 + tn−1)/h2

n−1+
+2(Sn + tn)/h2

n
]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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[S21]r =[S12]Tr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− (S1 + t1)

h1

(S1 + t1)

h1

− (S1 + t1)

h1

(S1 + t1)

h1
− (S2 + t2)

h2

(S2 + t2)

h2

− (S2 + t2)

h2

(S2 + t2)

h2
− (S3 + t3)

h3

(S3 + t3)

h3

elements not
shown are zero

. . . . . . . . .

. . . . . . . . .

(Sn−1 + tn−1)

hn−1

[
(Sn−1 + tn−1)/hn−1

−(Sn + tn)/h
]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[S22]r =

⎡
⎢⎢⎢⎢⎢⎢⎣

S1 + 3(I/l)b1 symmetrical

t1 S1 + S2 + 3E(I/l)b2

t2 S2 + S3 + 3E(I/l)b3

elements not
shown are zero

tn−1 [Sn−1 + Sn + 3E(I/l)bn]

⎤
⎥⎥⎥⎥⎥⎥⎦

where

Si = (4 + αi)

(1 + αi)

EIci

hi

ti = (2 − αi)

(1 + αi)

EIci

hi

αi = 12EIci

h2
i Garci

The subscripts i of S, t, h, Tc, α, and arc in the above equations refer to the storey
number starting from the top storey. The subscript i in (I/l)bi refers to the floor number
starting from the roof.

14.3 The sums of moments in walls are (refer to Figure 15.7)

{MA, MB, MC, MD, ME, } = Ph
10

{0, 4.41, 18.80, 43.27, 77.82}.
The sums of moments in columns are (in terms of Ph/10):
MFG = −0.318, MGF = −0.271, MGH = −0.287, MHG = −0.316. MHI = −0.260,
MIH = −0.275, MIJ = −0.196, MJI = −0.262.

14.4 Bending moment at Section A.A is 6.07 Ph. The moment on each end of the lower beam
(at its intersection with the wall) is 0.295 Ph.

14.6 Forces on the walls are:
{F1, F2, F3}A = P{0.0003, −0.1050, −0.03272b}
{F1, F2, F3}B = P{−0.0003, −0.3150, −0.00027b}
{F1, F2, F3}C = P{0, −0.5800, −0.00027b}
where F1, F2 are components in the x and y directions respectively, and F3 is a clockwise
couple.

14.7 Forces on the walls are:
{F1, F2, F3}A = P{0.1183, 0.2739, 0.00072b}
{F1, F2, F3}B = P{0.0008, 0.4603, 0.00036b}
{F1, F2, F3}C = P{−0.1176, 0.0047, 0.00036b}
{F1, F2, F3}D = P{−0.0015, 0.2611, 0.00036b}
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where F1, F2 are components in the x and y directions respectively, and F3 is a clockwise
couple.

14.8 The translation of point B in the x and y directions and the rotation of the deck in the
clockwise direction are (kip, ft units):
10−6P{330.68,−2.51,−1.29}.
The forces on the supporting elements are (kip, ft units):
{F1, F2, F3}A = P{0.4571, 0.0748, −0.0002}
{F1, F2, F3}B = P{0.0475, −0.0056, −0.1448}
{F1, F2, F3}C = P{0.1207, 0.1194, −0.1448}
{F1, F2, F3}D = P{0.3747, −0.1886, −0.0002}
where F1, F2 are components in the x and y directions respectively, and F3 is a clockwise
couple.

14.9 The translation of point B in the x and y directions and the rotation of the deck in the
clockwise direction are (N, m units):
10−6 P{0.02315, −0.00019, −0.000302}
The forces on the supporting elements are (N, m units):
{F1, F2, F3}A = P{0.4557, 0.0747, 0.0000}
{F1, F2, F3}B = P{0.0485, −0.0062, 0.0446}
{F1, F2, F3}C = P{0.1226, 0.1207, −0.0446}
{F1, F2, F3}D = P{0.3732, −0.1892, 0,0000}.

14.11 For Io/I = 0.2, Dtop = 38 × 10−3 ql4/EI; {MCE, MEC, MED, MDE} = −10−3ql2{45, 80,
93, 282}. For Io/I = 2.0, Dtop = 34 × 10−3 ql4/EI; {MCE, MEC, MED, MDE} =
−10−3ql2{35, 90, 107, 268}.

Chapter 15

15.1 {y1, y2, y3} = ql4

384EIA
{2.1, 2.7, 1.8}.

15.2 {y1, y2, y2} = (ql4/1000EI) {0.698, 0.843, 0.566}. {M1, M2, M3} = (ql2/100) {0.885,
0.675, 0.462}. MB = −1.811, RA = 0.160ql and RB = 0.432ql.

15.3 Rotation at A is l/(3.882EI).

15.4 [f ] =

⎡
⎢⎢⎣

l3

2.842EI
− l2

2EI

− l2

2EI
l

EI

⎤
⎥⎥⎦ .

15.5 End-rotational stiffness S =2.102EI/l. Carryover moment t =2.008EI/l. From Table 14.1,
we have:
S = 2.624EI/l, and t = 2.411EI/l.

15.6 MB = −0.324Ql.

15.7 {y1, y2, y3} = 10−3 γ l5

EI
{0.571,0.480,0.469}.

15.8 Radial outward deflections at nodes 1, 2, . . . , 5 are:
γ H2

10E
{15.853, 43.974,72.552,83.022,54.410}.

The hoop forces per unit height at the nodes are:
10−2 × γ H2{6.605, 21.987, 42.322, 55.348, 40.807}.
The bending moments in the vertical direction at the nodes are:
10−3 × γ H3 {0, −0.01, 0.77, 2.48, 2.32}.
The radial reaction at the bottom =0.172γ H2 (inward). The fixing moment at the
base=0.013γ H3 (producing tensile stress at inner face). With λ=H/20, the solution
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gives the following values at the nodes at fifth points of the height. Radial outward
deflections at nodes 1,2, . . . , 5 are:
γ H2

103E
{4.284, 43.109, 74.776, 81.176, 43.749}.

The hoop forces per unit height at the nodes are:
10−2 × γ H2 {1.758, 21,554, 43.619, 54.117, 32.811}.
The bending moments in the vertical direction at the nodes are:
10−3 × γ H3 {0, 0.17, 1.05, 3.03, 1.62}.
The radial reaction at the bottom=0.190γ H2 and the fixing moment=0.019γ H3.

15.9 {w} = qλ4

N
{1.2950, 0.8456, 0.6918, 0.4586}.

(My)1 = 0.0241qb2, and (My)2 = 0.0155qb2.

15.10 {w} = qb4

N
{0.00305, 0.00235, 0.00155, 0.00122}.

(My)1 = 0.0375qb2, and (My)2 = 0.0283qb2.

15.11 {w} = Mλ2

N
{0.4494, 0.3962, 0.2332, 0.2254}.

(My)1 = 0.2162M and (My)2 = 0.1708M.

15.12 {w} = qλ4

N
{1.0614, 0.6764, 0.5894, 0.3869}.

(My)1 = 0.0189qb2, (My)2 = 0.0116qb2.
Bending moment in beam EF:
M1 = 0.00616qb3.

15.13 {w} = pλ2

N
{0.2981, 0.2506, 0.2006, 0.8871, 0.7423, 0.6281}.

My at A, B, and C are:
{My} = P{−0.5962, −0.5012, −0.4012}

15.14 {w} = pλ2

N
{0.2740, 0.2525, 0.2211, 0.8159, 0.7531, 0.6780}.

My at A, B and C are:
{My} = −P{0.5480, 0.5050, 0.4422}.

15.15 {w} = pb2

N
{0.0143,0.0095,0.0047}.

Reaction RA = 0.1039qb2.

Chapter 16

16.1
[
S∗]= EI0

l3

⎡
⎢⎢⎣

18 symmetrical
8l 5l2

−18 −8l 18
10l 3l2 −10l 7l2

⎤
⎥⎥⎦

[
S∗]= EI0

l3

⎡
⎢⎢⎣

17.45 symmetrical
7.72l 4.86l

−17.45 −7.72l 17.45
9.72l 2.86l2 −9.72l 6.86l2

⎤
⎥⎥⎦ .

16.2 Deflection by finite-element method is 0.1923Pl3/EI0. Exact answer is
0.1928Pl3/EI0.
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16.3 [S] = Ea
3l

⎡
⎣ 7 1 −8

1 7 −8
−8 −8 16

⎤
⎦, [S∗] = Ea

l

[
1 −1

−1 1

]
.

16.4 D2 = 0.375αT0l; D3 = 0.0625αT0l; σ = −0.125EαT0.

16.5 S∗
11 = Eh

(
0.347

c
b

+ 0.139
b
c

)
; S∗

21 = 0.156Eh;

S∗
31 = Eh

(
−0.347

c
b

+ 0.069
b
c

)
; S∗

41 = −0.52Eh;

S∗
51 = Eh

(
−0.174

c
b

− 0.069
b
c

)
.

16.6 {Fb} = 0.625αTEh {c, b, −c, b, −c, −b, c, −b}.

16.7 [S∗] = Eh
1000

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

486 symmetrical
156 486

−278 52 486
−52 35 −156 486

−243 −156 35 52 486
−156 −243 −52 −278 156 486

35 −52 −243 156 −278 52 486
52 −278 156 −243 −52 35 −156 486

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

16.8 Deflection by finite-element method is 1.202Pb/Ehc; deflection by beam theory is
(P/Eh) [0.5(b/c)3 + 1.44(b/c)].

16.9 {σ } = {0, 0,−0.5P/hc}.
16.10 {F∗

b} = αEhT
1 − ν

{
c
2

,
b
2

,
b2

12
, − c

2
,

b
2

, − b2

12
, − c

2
, −b

2
,

b2

12
,

c
2

, −b
2

, − b2

12

}
.

16.11 [S∗
11] = Eh3

(1 − ν2)cb

[
1
3

(
b2

c2 + c2

b2

)
− ν

15
+ 7

30

]
.

Deflection at center of rectangular clamped plate D∗
1 = (S∗

11)
−1(P/4). Mx at node 2 is

−[Eh3/2(1 − ν2)b2]D∗
1.

16.12
[
S∗]= Eh

4

⎡
⎢⎢⎢⎢⎢⎢⎣

3 symmetrical
−1 3
−1 1 1

0 −2 0 2
−2 0 0 0 2

1 −1 −1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

; [T] =
⎡
⎣[t] [0] [0]

[0] [t] [0]
[0] [0] [t]

⎤
⎦ ;

[t] =
[

c s
−s c

]
where cos α and s = sin α.

For the system in (b), [S]= [T]T [S∗] [T]. For the system in (c), substitute α = 180◦; thus,
[t] = −[I] and [S̄] = [S∗].

16.13 The nonzero nodal displacements are
{ν1, ν2, ν3, u4, ν4, u5, ν5, u6, ν6}
= P

Eh
{2.68, 2.21, 2.57, −0.44, 1.16, 0.03, 1.19, 0.39, 1.28}.

Stresses in element 2.6.3 are

{σx, σy, τxy} = P
bh

{0.392, 0.358, −0.642}.

16.14 [{B}1 {B}2 {B}3] =
⎡
⎣−(1 −�)/b 0 0

0 −(1 − 3ξ2 + 2ξ3)/c −ξ(ξ − 1)2b/c
−(1 − ξ)/c (−6 ξ + 6 ξ2)(1 −�)/b (3ξ2 − 4ξ + 1)(1 −�)

⎤
⎦
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16.15

[S∗] = (Eh/1000)×⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

486 symmetrical
156 552

−8.7b 68b 28b2

−278 52 8.7b 486
−52 −31 19b −156 552

8.68b −19b −12b2 −8.7b −68b 28b2

−243 −156 −26b 35 52 26b 486
−156 −219 −40b −52 −302 47b 156 552

26b 40b 5.5b2 −26b 47b −0.3b2 8.7b −68b 28b2

35 −52 26b −243 156 −26b −278 52 −8.7b 486
52 −302 −47b 156 −219 40b −52 −31 −19b 156 552

−26b −47b −0.3b2 26b −40b 5.5b2 −8.7b 19b −12b2 8.7b 68b 28b2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Chapter 17

17.1 [S] = Ea0

l

⎡
⎣ 3.775 symmetrical

0.442 2.443
−4.221 −2.889 7.110

⎤
⎦

The function integrated is quartic; three sampling points are sufficient for exact
integration.

17.2 When both q and the displacement are quadratic, the consistent restraining forces
are: Fb1 = −(b/30) (4q1 + 2q2 − q3); Fb2 = −(b/30) (2q1 + 16q2 + 2q3); Fb3 =
−(b/30) (−q1 + 2q2 + 4q3). When q is constant and the displacement is quadratic,
substitute q for q1, q2 and q3, giving {Fb} = −qb {1/6, 2/3, 1/6}.

17.4 L1 = 1
32

�(1 −�)(3ξ + 1)(3ξ − 1)(ξ − 1); L2 = − 9
32

�(1 −�)(ξ + 1)(3ξ − 1)(ξ − 1);

L10 = − 1
16

(1 −�2)(3ξ + 1)(3ξ − 1)(ξ − 1); L11 = 9
16

(1 −�2)(ξ + 1)(3ξ − 1)(ξ − 1).

Consistent restraining forces in the y direction at the nodes 1 to 12 are

−qybch
{

1
48

,
1
16

,
1
16

,
1
48

,
1
12

,
1
48

,
1
16

,
1
16

,
1
48

,
1
12

,
1
4

,
1
4

}
.

17.5

⎧⎨
⎩

{�}1

{�}2

{�}3

⎫⎬
⎭= [G]

{
D∗

1
D∗

2

}
;

[G]T = 1
2�

[
3b1 0 3c1 −b1 0 −c1 −b1 0 −c1

0 3c1 3b1 0 −c1 −b1 0 −c1 −b1

]
.

17.6 [{B}1 {B}2] = 1
2�

⎡
⎢⎣

3b1α1 −b1α2 −b1α3 0

0 3c1α1 − c1α2 − c1α3

3c1α1 −c1α2 −c1α3 3b1α1 − b1α2 − b1α3

⎤
⎥⎦.

17.7 S∗
11 = h

4�
(d11d2

1 + d33c2
1); S∗

12 = (c1b1h/4�) (d12 + d33).

17.8 [B] = 1
l

⎡
⎣ −1/l 2/l −1/l −1.732 −1.732 0

1/l −2/l 1/l −0.577 −0.577 2.309
−3.464/l 0 3.464l 2 −2 0

⎤
⎦ .
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[S∗] = �Eh3

1000l4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

513 symmetrical

−256 513

−256 −256 513

−148l −148l 295l 488l2

296l −148l −148l 232l2 488l2

148l −296l 148l −232l2 −232l2 488l2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

17.9 Deflection at center = 1.154 (Pl2/Eh3); {Mx, My, Mxy}A = (P/1000) {192,0,0}.
17.10 No deflection. {Mx,My,Mxy}A = αEh2T(0.119,0.119,0).
17.11 Deflection at A = 0.381qb4/Eh3; MxB = −0.200qb2.
17.12 Deflection at A = 0.1536pb3/Eh3; MxB = −0.074pb.
17.13 Because of symmetry, one strip only needs to be considered. The nodal displacement

parameters are: θat support = −0.1515ql3/Eh3; wat center = 0.0452ql4/Eh3.
17.14 Deflection along center line = 10−3qo(c4/Eh3)

[
58 sin (πy/l) − 11 sin (2πy/l)+

2.8 sin (3πy/l)
]
.

17.15 Beam flexural stiffness = (EIl/2) (kπ/l)4; beam torsional stiffness = (GJl/2)(kπ/l)2. Deflec-
tion at center = 0.204Pl2/Eh3; bending moment in an edge beam at midspan = 0.045Pl.

17.16 S∗
11 = Eh

1 − ν2

[
c

12b
(4 − ν2) + b

8c
(1 − ν)

]
; S∗

21 = Eh
8(1 − ν)

;

S∗
31 = Eh

1 − ν2

[
− c

12b
(4 − ν2) + b

8c
(1 − ν)

]
; S∗

41 = Eh(3ν − 1)

8(1 − ν2)
;

S∗
51 = − Eh

(1 − ν2)

[
c

12b
(2 + ν2) + b

8c
(1 − ν)

]
.

17.17 [S∗] = Eh
1000

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

448
156 448 symmetrical

−240 52 448
−52 73 −156 448
−281 −156 73 52 448
−156 −281 −52 −240 156 448

73 −52 −281 156 −240 52 448
52 −240 156 −281 −52 73 −156 448

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Chapter 18

18.1 (a) Mp = 0.1458ql2. (b) For AC, Mp = 0.0996ql2. For CD, Mp = 0.1656ql2.
18.2 (a) Mp = 0.29Pb. (b) Mp = 0.1875Pl.

(c) Mp = 1.2Pb. (d) MP = 1.59qb2.
(e) Mp = 0.11Wl.

18.3 Mp = 0.1884Pl.
18.4 Mp = 0.1461ql2.

Chapter 19

19.1 (a) m = 0.090W . (b) m = W/18.
(c) m = W/6. (d) m = W/14.14.
(e) m = 0.0637ql2. (f) m = 0.0262ql2.
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19.2 (a) m = 0.00961ql2. (b) m = 0.299ql2.
(c) m = 0.113ql2. (d) m = 25P/72.
(e) m = 0.1902qb2.

Chapter 20

20.1 ω = 7.0 rad/sec, T = 0.898sec. The amplitude = 1.745 in., and Dt=1 = 1.692 in.
20.2 ω = 7.103 rad/sec, T = 0.885sec. The amplitude = 43.2 mm, and Dt=1 = 42.8 mm.
20.3 ω = 5.714 rad/sec, T = 1.09 sec. The amplitude = 2.02 in., and Dt=1 = −0.101 in.
20.4 ω = 5.777 rad/sec, T = 1.088sec. The amplitude = 50.0 mm, and Dt=1 = 0.9mm.

20.5 ω1 = 3.53
l2

√
EIl
ml

; {D(1)} =
{

1.00, −1.38
l

}
.

20.6 The consistent mass matrix is

m = γ l
840

⎡
⎢⎢⎢⎣

(240a1 + 72a2) symmetrical

(30a1 + 14a2)l (5a1 + 3a2)l2

(54a1 + 54a2) (−93a1 + 119a2)l (72a1 + 240a2)

−(14a1 + 12a2)l −(3a1 + 3a2)l2 −(14a1 + 30a2)l (3a1 + 5a2)l2

⎤
⎥⎥⎥⎦.

20.7 Dτ=T/2 = 2.107in., Dτ=T/2 = 0, and Dτ=11T/8 = 1.488 in.
20.8 Dτ=T/2 = 51.9 mm, Dτ=T/2 = 0 and Dτ=11T/8 = 36.7 mm.
20.9 Dτ=T/2 = 1.342 in., Dτ=T/2 = 0, and Dτ=11T/8 = 0.95 in.
20.10 Dτ=T/2 = 33.0 mm, Dτ=T/2 = 0, and Dτ=11T/8 = 23.3mm.
20.11 ωd = 6.964 rad/sec, Td = 0.902sec,Dt=1 = 0.866 in.
20.12 ωd = 7.067 rad/sec, Td = 0.889sec, Dt=1 = 21.9mm.
20.13 ξ = 0.0368.
20.14 (a) Dmax = 0.176 in. (b) Dmax = 0.174 in.
20.15 (a) Dmax = 4.49mm. (b) Dmax = 4.45mm.
20.16 Dτ=Td/2 = 1.953 in., and Dτ=11Td/8 = 0.995m.
20.17 Dτ=Td/2 = 48.1mm, and Dτ=11Td/8 = 24.5mm.

20.18 ω2
1 = 1.2

EI
ml3 , {D(1)} = {1,1}.

ω2
2 = 18.0

EI
ml3 , and {D(2)} = {1,−1}.

20.19 ω2
1 = 0.341

EI
ml3 , {D(1)} = {1,0.32}.

ω2
2 = 15.088

EI
ml3 , and {D(2)} = {1,−3.12}.

20.20 Equations of motion in the {�} coordinates:

�̈+ 0.34
EI
ml3 �= 0.906P1/m.

�̈+ 15.09
EI
ml3 �= 0.103P1/m.

�1 = P1

0.3758
l3

EI

[
1 − cos

(
τ

√
0.341

EI
ml3

)]
.

�2 = P1

131.78
l3

EI

[
1 − cos

(
τ

√
15.09

EI
ml3

)]
.

D1 =�1 +�2, D2 = 0.32�1 − 3.12�2.
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20.21 Amplitude of m1 = P0

0.3758
EI
l3 − 1.1024m�2

.

20.22 Maximum displacement of BC relative to the support = 2.01 in.
21.23 Maximum displacement of BC relative to the support = 49.5 mm.
21.24 Maximum displacement of mass m1 relative to the support

= (g/4)

1.2EI/(ml3) − �2 .

20.25 Vbase = 236.4 kN; Mbase = 1728kN-m.

20.26 [S] =106
[

7.935 −11.45
−11.45 27.69

]
N/m;

{
ω2

1, ω2
2

} = {94.3,1154} s−2; Vbase =145.9kN;

Mbase =816.7 kN-m.

Chapter 22

22.1 [t]AC =
⎡
⎣0.707 0.707 0

0 0 1
0.707 −0.707 0

⎤
⎦ , [t]DG =

⎡
⎣ 0.707 0 0.707

0 1 0
−0.707 0 0.707

⎤
⎦.

22.2 [G]T = E

⎡
⎢⎣

−ac/l 12Is/l3 6Is/l2 ac/l −12Is/l3 6Is/l2

−as/l −12Ic/l3 −6Ic/l2 as/l 12Ic/l3 −6Ic/l2

0 6I/l2 2I/l 0 −6I/l2 4I/l

⎤
⎥⎦

where c = cosα and s = sinα.

22.3 {Ar} = E
{
−0.894

a
l
,−5.367

I
l3 ,−2.683

I
l2 , 0.894

a
l
, 5.367

I
l3 , 2.683

I
l2

}
CD

.

Matrix [G] given in the answer to Prob. 22.2 may be used in this problem.
22.6 Member end-forces at nodes 5 and 3 are {A} = {8597, −8597} N.
22.7 Reactions at node 1 are: R1 = 2.73P; R2 = −24.4P; R3 = 193Pb. Forces at the ends of

member 2 are {A} = {−4.89, −24.8, −625, −22.0, −28.9, 1310}.

22.8 [S∗] = Ebh
l

⎡
⎢⎢⎢⎢⎢⎢⎣

1.12 symmetrical
0 1.81h2/l2

0 1.09h2/l 0.762h2

−1.12 0 0 1.120
0 −1.81h2/l −1.09h2/l 0 1.81h2/l2

0 0.722h2/l 0.326h2 0 −0.722h2/l 0.396h2

⎤
⎥⎥⎥⎥⎥⎥⎦

.

22.9 The stiffness matrix elements on and below the diagonal are: six elements on the first three
rows in Eq. 21.12 unchanged; S41 = −12EI/l3; S42 = 0; S43 = −6EI/l2; S44 = 12EI/l3;
S51 = −6EIs/l2; S52 = −GJc/l; S53 = −2EIs/l; S54 = 6EIs/l2; S55 = GJc2/l + 4EIs2/l;
S61 =6EIc/l2; S62 =−GJs/l; S63 =2EIc/l; S64 =−6EIc/l2; S65 =GJcs/l − 4EIcs/l; S66 =
4EIc2/l + GJs2/l; where s = sinγ , c = cosγ .

22.10 The elements of [S] on and below the diagonal are (in terms of Ea/l): S11 = c2
1; S21 = c1s1;

S31 =−c1c2; S41 =−c1s2; S22 = s2
1; S32 =−c2s1; S42 =−s1s2; S33 = c2

2; S43 = c2s2; S44 = s2
2;

where c1 = cosα1, s1 = sinα1, c2 = cosα2, s2 = sinα2.
22.11 Rotations at B: θ2 = −0.00658qb3/EI; θx = 0.09186qb3/EI. Bending and torsional

moments in terms of 10−3qb2; in member EB, ME = 181.8, MB =−68.2 and TE = TB =
68.2; in member BC, MB =−96.5, MH =28.5 and TB =TH =0. Positive bending moment
produces tension in bottom fiber; twisting moment is given as an absolute value.

22.12 Member end-moments in terms of EIαT/b: MEB = 0; MBE = −MBH = MHB = 2.59. No
torsion.
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22.13 Bending and twisting moments are given in terms of ql2 and reactions in terms of ql.
Positive bending moment produces tension in bottom fiber; twisting moment is given
as an absolute value; upward reaction is positive. ME = MF = −13.9 × 10−3; TE = TF =
24.1 × 10−3; RA = RD = 0.370; RB = RC = 0.130.

22.14 Bending and twisting moments are given in terms of 10−3ql2 and reactions in terms of ql.
ME =MF =−4.0; Mo =−123.0; T =6.9= constant over whole length; RA =RD =0.225;
RB =RC =0.156; RG =RH =0.619. Positive bending moment produces tension in bottom
fiber; twisting moment is given as an absolute value.

22.15 Displacement components at B: {D} = (qb3/EI) {0.187b, 0.0235, 0.209}.
22.16 Due to P/2 at each of B, C, G, and F, the displacements at B are {D} =

(Pb2/EI) {0.0544b, 0.00608, 0.0635}. Due to P/2 at each of B and C and –P/2 at
F and G, the displacements at B are {D} = (Pb2/EI) {0.0172b, −0.0493, 0.0206}. Due
to actual loading, the displacements are {D}B = (Pb2/EI) {0.0716b, −0.0432, 0.0841},
{D}F = (Pb2/EI) {0.0372b, −0.0554, 0.0429}.

22.17 Displacements at E: downward deflection is 0.256ql4/(EI); rotation vector perpendicular
to AE is 0.262ql3/(EI).

22.18 Deflection at O is 7ql4/(48EI). Bending moments in terms of ql2: M1 = 0.125;
M2 = −0.125; M3 = 0.375. Positive bending moment produces tension in bottom fiber.

Chapter 23

23.2 {Dx, Dy}B = 10−3{−0.604, 30.4}m; {Dx, Dy}C = 10−3b {0.110, 24.3}m. {NAB, NBC,
NCD} = {146.8, 146.2, 146.5}kN.

23.3 {Dx, Dy}B = {−25.0 × 10−3, 1.23} in.; {Dx, Dy}C = {4.52 × 10−3, 0.988}in.; {NAB,
NBC, NCD} = {32.50, 32.37, 32.45}kip.

23.4 The value of F at which snap through occurs is 908.3.
23.5 DB = 0.0605 m. Tensions in AB and BC are 198.4 and 198.2 kN.
23.6 DB = 2.67 in. Tensions in AB and BC are 45.01 and 44.98 kip.
23.7 DA = 0.483; force in any member = 190.1.
23.8 Per = 21.86 (upward), corresponding to upward displacement of node A, DAcr =−0.42.
23.9 The displacements in x, y, and z directions are: {{D5}, {D6}, {D7}, {D11}} = 10−3l

{{2.50, 2.50, 21.17}, {3.30, −0.16, 26.84}, {2.68, −2.68, 20.93}, {0, 0, 34.65}}. Forces
in the cables {F5–6, F6–7, F1–5, F2–6, F6–11 F3–7}={31.1, 31.3, 30.9, 32.0, 32.0, 31.6} Q.

23.10 {Dx, Dy, θ}B = {1.94 × 10−3, 0.317, 3.724 × 10−3}; forces in AB = {38.9, −0.146,
−9.73, −38.9, 0.146, −4.86}; forces in BC = {38.9, 0,4.86, −38.9, 0, −4.86}.

23.11 Displacements and member end-forces are (units: c, F, or cF):
{Dx, Dy, θ}B = {0.3645, 0.0311, 0.1451}; {Dx, Dy, θ}c = {0.3647, 0.0317, 0.1459}.
{F∗}AB = 103 {1341.0, −379.2, −558.3, −1341.0, 379.2, −350.5}.
{F∗}BC = 103 {−20.80, 116.9, 350.5, 20.80, −116.9, 351.2}.
{F∗}CD = 103 {1578.4, −373.8, −351.2, −1578.4, 373.8, −544.5}.

23.12 Iteration 1: D = 0.7l; out-of-balance force = 0.123Ca. Iteration 2: D = 0.889l; out-of-
balance force = 0.009Ca. The exact answer: D = 0.905l.

23.13 D = 0.0075l; FAB = 600a; FBC = 400a.
23.14 Nodal displacements at A: {Dx, Dy}= 10−3l{3.017, 2.300}. Forces in the members AB,

AC, AD, and AE are: a{−292.6, 96.6, 460.0, 525.3}.

Chapter 24

24.1 P(M > 4300 kN-m) = 0.2; P(V > 1200kN) = 0.131.
24.2 P(M > 3170 kip-ft) = 0.2; P(V > 270kips) = 0.131.
24.3 PfM = 242 × 10−3; PfV = 345 × 10−3.
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24.4 Same as Prob. 24.3.
24.5 Pf = 3.53 × 10−3.
24.6 Pf = 4.04 × 10−4.
24.7 and 24.8 Pf = 4.43 × 10−3.
24.9 Pf = 0.728 × 10−6.

Appendix A

A.1 (a) [A][B]: not possible.

(b) [A]T [B] =
⎡
⎣10 11

2 3
10 7

⎤
⎦.

(c) [A]T [B] [A] =
⎡
⎣43 11 31

11 3 7
31 7 27

⎤
⎦.

(d) [A] [B]T [A]T : not possible.

A.2 (a) [B] [A + C] =
[
24 10 14
20 7 13

]
.

(b) [B] [A] + [B] [C] =
[
24 10 14
20 7 13

]
.

A.4 (a)
1

11

[
3 2
2 5

]
.

(b)

⎡
⎣0.750 symmetrical

0.500 1.000
0.250 0.500 0.750

⎤
⎦.

(c)

⎡
⎣0.591 symmetrical

0.545 0.773
0.227 0.364 0.318

⎤
⎦.

A.5 (a) {D} =
{

0,
pl2

12EI

}
.

(b) S11 = 4EI
l

, and S21 = 6EI
l2 .

(c) S12 = 6EI
l2 , S22 = 12EI

l3 .

A.6 [S]−1 = l3

18EI

[
8 7
7 8

]
.

A.7 (a) [S∗] = EI0

l

[
7.272 2.909
2.909 4.364

]
.

A.8 (a) {x} = {2,−1}; (b) {x} = {1,3,4}; (c) {x} = {0.5,0,0.5}; (d) {D} = [10−3Pl2/(EI)]
{8.681 l, 135.4,−15.63}; (e) {F} = (EI/l2) {1.6071,−0.4286,0.1071}.

A.9 (a) λ = 12.372, 6.628. The required vector is {1.0,−2.186}.
(c) λ = 3.414, 2.000, 0.586. The required vector is {1.0,1.414,1.0}.

A.10 λ = 1.111.
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Appendix M

M.1 x = 4944 psi, �X = 787 psi.
M.2 x = 34.1 MPa, �X = 5.44MPa.
M.3 (a) P(X < 100) = 22.8 × 10−3; (b) P(X ≥187) = 16.2 × 10−3.
M.4 �Y = 0.2302; y = 7.980; (a) P(X ≤ 2500) = 249 × 10−3; (b) P(2800 ≤ X ≤ 3200) = 227 ×

10−3.
M.5 Dead load: x = 87, σX = 6; live load: x = 53, σX = 14; resistance: x = 162, σX = 25.
M.6 The straight line, best fitting the data on normal probability paper, has the equation: y =

2.820x − 11.71. Its intersection with the x axis is the mean load-carrying capacity: x =
4.153; its slope= 1/�X = 2.820; σX = 0.355.
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Index

A

action 94
adjusted end-rotational stiffness 321–3
adjusted fixed-end moments 323–4, 385–9
amplification factor (dynamics) 603, 606
analogous column 309–10
antisymmetry, see symmetry
arch

axial forces in 8
bending moment in 8

without bending 10, 36
by column analogy 309–14
comparison, with cable 5, 8, 10

with beam and truss 30
deflection of 284, 306
influence lines for 364–5
simply-supported with a tie 6, 110–11
support conditions in 34
three or two hinged 34

example 62, 110
tied 4, 6

area coordinates, see area coordinates for
triangle

area coordinates for triangle 518–19
area reduced, shear deformation

analysis 207
areas of geometrical figures 766
assemblage of load vectors 642–3
assemblage of stiffness matrices 269–71,

642–3
axial forces

adjusted end-rotational stiffness
with 381

adjusted fixed-end moments with 385–9
carryover factor with 377
carryover moment with 377
change in stiffness 373–80
effect on plastic moment 564–6
effects of 373–97
end-forces caused by end displacements

with 381
end-rotational stiffness with 373–81
fixed-end moments with 382–5
stiffness with 373–80

B

balancing load by prestressing 188–92
banded equations solution 648–51

displacement constraints 663–5
support conditions and reactions 646–8

banded reinforcement 590–2
band width 631–2
beam

with axial load 93, 279, 298–304
differential equations for deflection 278–80
on elastic foundation 280, 302, 304, 449–50,

472–4
on elastic supports 129, 162, 194, 302, 329,

371, 399, 443
idealization of structure as 16

Beam–column effect 373–80, 683
bending moment 15, 53

diagram 54
absolute maximum 67
due to temperature 30
examples 15, 28
maximum 66

displacement of supports, due to 759–60
moving loads, due to 63–73

bents 309–11
Betti’s theorem 260–2

use in transformation 262–6
buckling

of frames 389–96
nonlinear 696
of struts 378–91

C

cable
comparison with arch 8–11
funicular shape of 5, 44
nonlinear analysis of 685, 695

see also the order form at the end of the book
computer program 781
example 695

prestressed 685, 695, 719
stayed structures 5, 13
suspended bridges 5
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cables and cable nets 683, 690, 709, 721, 781
carryover factor 311–12, 312–13, 377–9
carryover moment

with axial force 377, 378–9
defined 311, 314
with shear 411

Castigliano’s theorems 217–21
catenary 10
centroid of geometrical figures 775
characteristic equation 747
characteristic value 609, 746
Cholesky’s method of solving equations 650–1
Clapeyron’s equation 118
cofactor 740
COF, see carryover factor
column analogy 309–14

definition of analogus column 309
properties of plane areas in 775
sign convention 310

compatibility conditions 88, 273
compatibility theorem

Castigliano’s 220
complementary energy 208–11
complementary work 208–11
computation methods 629–55
computer analysis 629–55

assemblage of stiffness matrices 642
band width 631–2
boundary conditions in inclined directions

656–9
data input 633, 778
displacement constraints 633
displacement support conditions 646–8
framed structures 629
local axes 629, 637
member end forces 651–2
number of nodes and coordinates 629
plastic for plane frames 671–4
programs 18, 778

web site to download 778
reactions 646
solution of equations 648
stiffness matrices of elements 638

in global coordinates 640
in local coordinates 638
nonprismatic curved bar 675–7

transformation matrices 639
computer programs 18, 778–82

see also web site for computer programs
for nonlinear analysis, see the order form at the

end of the book
condensation of stiffness matrices 167–8, 406,

413
conjugate beam 283–7
connecting moments 114
connections 20

hinged joint 20
rigid joint 7, 20

consistent load, see finite element
consistent mass matrix 599
constant-strain triangle 502

continuous beam 47
bending moment diagram for 115
connecting moments in 114
by equation of three moments 118–24
by force method 100–4, 112–18
influence line for 344, 348–51
by moment distribution 314–16, 319–21
movement of supports in 112–18, 120–3,

761–5
moving load on 124–8
plastic analysis 550
shearing force diagram for 117, 125
on spring supports 109, 112–14, 129, 162,

194, 329, 371, 443
temperature effect in 104–6, 112–14
with unit displacement of supports 759

continuous (non-framed) structures 19
convergence criteria, see Newton-Raphson’s

technique
convergence of finite element analysis 498, 512
coordinate

defined 92
effect of displacement at 101, 108
system defined 100

force method 100
Cramer’s rule 742
creep effects 105, 114, 132, 179, 187
cumulative distribution function, see random

variable
cylindrical shells 451–4

D

damped free vibration 604
damping coefficient 604
damping critical 605
data preparation for computer 633
definite integral of product of two functions

231–2, 771
deflection

see also displacement
of arch 284, 306
of beam

with axial load 93, 278–80, 298–304
of constant EI with unit end-moments 773
differential equation 278–80
on elastic foundation 280, 302, 304
of variable EI with unit end-moments 352

due to shear 239–40
inflection point 15
of a portal frame 15

due to temperature variation 30
representation by Fourier series 297–8
representation by series with indeterminate

parameters 298–304
shapes 14, 22, 24, 29

due to temperature 30
examples of 29
sketching of 2
understanding 14

by virtual work 223–59
evaluation of integrals 229–32, 771
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degrees of freedom
number of 88–92, 328
in sidesway 89, 328

determinants 740
determinate, see statically determinate structures
direction cosines of straight members 637
displacement

see also deflection
of beams and frames: contribution of stress

resultants 225
of bridge decks due to horizontal forces 421,

436
by complementary energy 219
at coordinates, effect of 101, 108, 151–2
geometry of 199–201
at joints, effect of 103–6

see also support movement
method 88, 135–58, 314

for beam–column effect 386–9
summary 144

or force method, choice of 161
of prismatic members 752
shape functions, see finite element
of statically indeterminate structures 226–9
support conditions 646
of trusses 232–5
by virtual work 215, 216–17, 223–59

distribution factor 316
dome 8, 9
Duhamel’s superposition integral 604
dummy load 224
dynamics of structures 596–628

E

earthquakes
ductility effect on forces induced by 625
generalized single-degree-of-freedom system

618–20
modal spectral analysis 621
peak response to 616, 617

single-degree-of-freedom-system 617–18
response spectra 616

earthquakes, response to 614–25
eigenstresses 180
eigenvalues 611, 746
eigenvector 611, 746
elastic center 310
elastic foundation 280, 302–4, 304, 443–4
elasticity equations 483
elasticity matrix, see finite element
elastic load (or weight) 120, 283
elastic weights method 120, 283
end-forces caused by end displacements of bent

310–14
of prismatic member 759

under axial force 381
end-rotational stiffness 311–14, 321–3, 377,

380–2, 396, 702
adjusted 321–3
with shear deformation 411

end-stiffness
of straight members 311–14

energy
see also complementary energy; strain energy
method for slabs 573
theorems 260–77

environmental (including temperature) effects
beam deflection 242
displacement method 144
eigenstresses 180
finite element 482, 492

consistent vector of restraining forces 492,
500, 504, 509, 517, 529

nonlinear temperature variation 179–87
self-equilibrating stresses 180
truss deflection 232–5, 366

equation of motion 600
damped system 604–8
undamped vibration 600

equation of three moments 118–23
equilibrium

of a body 48–53
of joint of space truss 51

equivalent concentrated loading 287–91, 441–2,
443–4

equivalent joint loading 235
equivalent loading on symmetrical structure 325
external work 169–71

F

FEM, see fixed-end moment
finite differences 437–78

for axisymmetrical circular shells 451–4
for beam on elastic foundation 443–4,

449–51
boundary conditions for beams 447
central-difference approximations 456, 461–2
for deflection of beams 439–40
for plates 456–71

in bending 467–71
with in-plane forces 456–8

relation between beam deflection and loading
441–7

relation between beam deflection and stress
resultant 447–51

representation of derivatives 437–40
finite element 479–549

beam 486–7, 495–6, 506
consistent load vector 491–2, 511, 517, 531
constant-strain triangle 502–5
convergence conditions 498–500
displacement interpolation, see shape functions
displacement method application 481–3
elasticity equations 483–6

bending of plates 484–5
plane stress and plane strain 484
three-dimensional solids 485–6

elasticity matrix
bending of plates 485
definition 204, 483
plane stress and plane strain 484
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finite element (continued)
solids of revolution 529–31
three-dimensional solid 204

hybrid 481, 540–5
isoparametric 509–17
linear-strain triangle 519–20
nodal displacement parameters 522
nodal force interpretation 505
patch test 499–500
plane stress and plane strain 484, 496, 502–4,

517, 518
plate bending 481, 488–90, 520–2
QLC3 480, 497
rectangular plate bending 488–90
shape functions for displacement fields

definition 486
derivation 493–7
finite strip 531
free vibration modes of beams 535
isoparametric elements 509–17
Lagrange 513–16
quadrilateral element 487
rectangular plate bending 488–90
straight bar 486–7
triangular elements 502–4, 518–22, 525–6,

546
shell 480, 528–9

stiffness coefficients, fictitious 529
spurious mechanisms 526
stiffness matrix 491

constant-strain triangle 502–5
displacement-based 490–1, 493
hybrid strain 544
hybrid stress 541–3
shell 528–9

stiffness reduction 526
stress matrix 490–1
temperature effects 482, 492

consistent vector of restraining forces 492,
500, 504, 511, 517, 531

triangular 502–4, 518–22, 525–6, 546
finite prism 531
finite strip 531–9

consistent load vector 535
displacement shapes of nodal lines 535–6
stiffness matrix 537

fixed-end forces 756
fixed-end moment

adjusted 323–4, 385–6
axial force 382–6
in nonprismatic beam 312–14
in prismatic member with axial force 382–6

flexibility coefficient 101, 262
flexibility matrix 102, 159–61, 169–71

of beam on elastic foundation 473
of cantilever with shear 418
properties of 169–71
relation to stiffness matrix 159–61
transformation 266–9

flexibility method, see force method

forced motion 598, 603
damped 604
multidegree-of-freedom forced

undamped system 603, 610
single-degree-of-freedom undamped system

603–4
force method 88, 99–134

application of 309–14
or displacement method, choice of 161–3
summary of 107–8

Fourier series 297–8
framed structures 16, 46–7, 629–55

member stiffness matrices 638
pin-jointed, see trusses
with respect to global coordinates 640
rigid-jointed, see frames
types of

beam 16
grid 19
plane frame 16
plane truss 17
space frame 18
space truss 18

frames
beam–column effect 386–8
by column analogy 309–10
defined 16, 81–2
degree of statical indeterminacy 84–8
by displacement method 139–43, 270–1
elastic stability of 389–96
end-stiffness of 310–14
influence lines for 341, 348–55
with joint translation 328–32
kinematic indeterminacy of 88–92
by moment distribution 318, 328
multibay 318, 324, 328
multistorey 318, 405
plane 16, 47
plastic analysis of 550–68
with shear walls 405–8
space 17, 47
without joint translation 318–19

free vibration 600
damped 604
modes of beams 535
of multistorey frame 598
undamped 600–2

of multidegree-of-freedom system 610–14
frequency

impressed 602
natural 600

G

Gauss numerical integration 523–6
geometric nonlinearity 683–709

simple example of 684
geometry conditions 88, 101

see also compatibility conditions
of displacements 88, 199



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Index 831

grids 19, 47
bridge deck idealization as 19
by displacement method 148–50, 157–8,

163–4
displacement by virtual work 243–4
influence lines for 355–63
kinematic indeterminacy of 88
statical indeterminacy of 80–4
torsion in 83
torsion less 83–4, 87, 163, 359

H

half-band width, see band width
Hardy Cross method 314
high-rise buildings

see also shear, walls
outrigger-braced 429–33

location, most effective for drift
reduction 430

Hooke’s Law 46, 203–4
for plate with plane-strain

distribution 484
for plate with plane-stress

distribution 484
hybrid finite elements 540–5
hyperstatic structure, see statical

indeterminacy

I

idealization 1
see also modeling structures for analysis
of loads 21–3
of structures 16
of supports 21

ill-conditioned equations 742
indeterminacy, see statical indeterminacy
indeterminate structures 80–1
indirect loading 348
influence coefficients

of fixed-end moment in beam with axial
force 385

influence lines 341–69
for arches 364–6
for beams 341–51

with fixed ends 348–51
correction for indirect loading 348
for grids 355–63
with indirect loading 348
for plane frames 351–5
for trusses 70, 366–9
by virtual work 215

integral
∫

MuMdl 793
see also definite integral of product of two

functions
integration, numerical 523
internal energy, see strain energy
internal forces

see also stress, resultants
sign convention 54
verification 56–8

examples 58–62

isoparametric finite elements 509–16
iteration method for slabs 586

J

Jacobian matrix 509–11
Johansen’s theory, see yield-line theory
joints

hinged 20, 21
arches, in 23
trusses, in 17

pinned 20, 27
rigid, definition 7

K

kinematic indeterminacy 88–92

L

lack of fit, see environmental (including
temperature) effects

Lagrange interpolation 513
least work principle 220
limit design, see plastic analysis
limit state function 722

linear 723–4
linearized 727

linear equations 742
ill-conditioned 742
well-conditioned 742

linear (or nonlinear) displacement 46, 92–4, 202,
214, 220, 236

see also nonlinear analysis
linear-strain triangle 519
live load 63

see also moving load effects
Load

see also loading
idealization 21
load and resistance factors 738
path 2, 11

beam, arch and truss, comparison 30–4
loading

analysis for different 107, 143
correction of influence lines for indirect 348
equivalent concentrated 287–91
on symmetrical structure 324

local coordinates 629
logarithmic decrement 605
lumped masses 596

M

magnification factor (dynamics), see amplification
factor (dynamics)

material nonlinearity 683, 713–17
incremental method of analysis 714



832 Index

matrix 41
addition 712
algebra 41, 740–51
almost singular 742
column 744
condensation of stiffness 167–8
elasticity, see finite element
flexibility, see flexibility matrix
inversion 742
nonsingular 171
positive definite 170–1
singular 171
stiffness, see stiffness matrix
stress 490
transformation 262–9

maximum moment curve, see moving load effects
Maxwell’s reciprocal relation 170, 260
Maxwell’s reciprocal theorem 170, 260
membrane triangular elements 709, 782
minor of element of a matrix 740
modal coordinates 610
modal vector (dynamics) 612
mode characteristic shapes 612
modeling structures for analysis 1–45

see also idealization
moment–area theorems 280–3
moment distribution method 314–32

for buckling load of frames 386–8
for plane frames

with joint translation 328–9
without joint translation 318–19

process of 314
with sway 328–9

Monte Carlo method 732–4
moving load effects 63–73, 124–8

absolute maximum 69
on continuous beams and frames 124–8, 336
group of concentrated loads 69
maximum bending moment 66–7, 125, 128

simple beam, example 66–7
two-span continuous beam, example 126–8

on simple beams 63–73, 80
single concentrated load 63
two concentrated loads 64–7
uniform load 63–4
using influence lines 69–73, 341–2, 370–1

Müller-Breslau’s principle 70, 342–6, 347

N

natural angular frequency 600
natural damped circular frequency 605
natural frequency 600
natural period of damped vibration 605
Newton-Raphson’s technique 686, 690, 700

for analysis of material nonlinearity 714
applied to plane frames 700
applied to trusses 690
calculations in one iteration cycle 691
convergence criteria 692
modified 689
solution of nonlinear equations 686

Nodal displacement parameters 533–5
nodal forces (yield-line analysis for slabs) 579
nonconforming finite elements 521
non-framed (continuous) structures 19

see also shell; plate
nonlinear analysis 683–721
nonlinearity, see geometric nonlinearity; material

nonlinearity
nonsingularity of stiffness matrix 171
numerical integration, see integration, numerical

O

orthogonality of natural modes 609
orthotropically reinforced slabs 576
orthotropic plates in bending 484–5
outriggers, see high-rise buildings

P

patch test for convergence 499–500
path of load 11

comparisons 30
plane strain 484
plane stress 458, 484
plastic analysis 550–68, 569–95, 671, 782

axial force effect 564
of beams 550–6
combination of elementary

mechanisms 560
of frames 557–67

with computer 671, 782
with inclined members 563

fully plastic moment 551, 564, 566
location of plastic hinges 558
of rectangular portal 557
shear effect 566
of simple beam 552

plastic hinges 550
location of 558

plastic moment 551, 564, 566
plate

see also finite element
bending of 484–5, 488–91

governing differential equations 458–61
boundary conditions 463–9
finite differences 461–70

bending 461–3, 465–70
stiffened 469–71

with in-plane forces
governing differential equations 456–8

stress-strain relation with plane-stress 458
positive definite matrix 171
potential energy 271–3

finite element matrices 490–1
minimization of total 272, 493

prestrain, see prestress
prestress 104–6

forces due to tendons 188–92, 777



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Index 833

prestressing effects
balancing load 188–92
displacement method 188
force method 104–6
primary and secondary forces 189

principle
of least work 220
Müller-Breslau’s 70, 342–6, 347
of stationary potential energy 272
of superposition 46, 92–4, 373
of virtual work 211–14

probability theory
see also random variable
axions of 783–4
basics of 783–98
certain event 783
cumulative distribution function 784, 789–90
density function 785
impossible event 783

example 783
mass function 784
mutually exclusive event 784
normal probability paper 793–5

example use of 795
sample space 783

continuous 783
discrete 783

Q

QLC3, 480, 497

R

Random variable 784
basic functions of 784–5

cumulative distribution function 723, 784
probability density function 785
probability mass function 784

coefficient of variation 786
continuous or discrete 784
correlation coefficient matrix 726, 795–6
correlation coefficient of two 795–6
covariance of two 795–6
expected value 785
extreme type I 787, 793
Gaussian (normal) 787–92
log-normal 92, 787

example 792
mean value 785
moment of 785
Monte Carlo simulation 732–3
normal 787–92
parameters of 785–7
second moment of 786

example 786
standard deviation of 786
standard form of 786
uniform 787

Rayleigh-Ritz method 298, 479–80
reactions by computer 647
reactions due to support displacement 759, 761
rectangular element, see finite element

redundant forces 99
releases 88

continuous beam as a series of simple
beams 114

force method, coordinates 99
reliability

system’s 734–7
examples 735–6
parallel 736–7
series 735

reliability analysis of structures 722–39
reliability index

definition 723
example: drift of a concrete tower 728–9
example: flexural failure of a reinforced concrete

section 783
example: flexural failure of a simple beam

724–5
example: plastic moment resistance of a steel

section 725–6
example: shear failure 726–7
first-order second-moment mean-value 727–8
general method of calculation 729–30

arbitrary limit state function 731
linear limit state function 730

from graph on normal probability paper 793–4
iterative calculation of 731–2

rotational stiffness of member end, see
end-rotational stiffness

S

settlement, see support movement
shape factor 551
shape functions, see finite element
shear

deformation 239–40, 402–3
effect on plastic moment 566–7
walls 14, 400–34

multistorey 423–7
one-storey 417–23
with openings 415–17
outrigger-braced 429–33
plane frame with 405–7
simplified analysis 408–10
stiffness of element 402–3
three-dimensional analysis 417–28

shell
cylindrical 451–3
examples 7, 8, 9

shrinkage effects, see environmental (including
temperature) effects

sidesway 89
see also sway

sign convention for internal forces 53
simultaneous equations, see linear equations
space frames 14, 17–18, 46–7, 86–7, 91, 629, 639
space trusses 18, 46–7, 50–1, 73–4, 79, 84–5, 91,

97–8, 629, 639, 692
stability

elastic, of frames 389–92
of prismatic members 391



834 Index

statical indeterminacy 46, 80–8
degree of 80–1, 84–8
external 80
internal 80

statically determinate structures 46–79
statical relations 138
static equilibrium 48–53
stationary potential energy 272
stiffness, adjusted end-rotational 321–2, 381
stiffness coefficients 138, 217–19
stiffness matrix 137–43, 159–61

of assembled structure 269–71, 642
for beam

on elastic foundation 472
with rigid end parts 403–4
with shear deformation considered 402–3

condensation 167–8, 406, 413
for constant-strain triangular element 502–5
for displacement-based finite elements 490–3
equivalent 471–4
by finite differences 472–4
for finite strip in bending 537
formulation by potential energy minimization

493
geometric 684

for member of plane frame 697
for member of plane truss 692
for member of space truss 692
for triangular membrane element 709

for member with axial compression 373–9
for member with axial tension 379
for members of framed structures 638
modified by plastic hinge 671
for nonprismatic or curved member 675
for prismatic beam with shear deformation

considered 402
for prismatic member of

grid 638, 641
plane frame 166, 638, 640, 697
plane truss 638, 640, 692
space frame 165, 638
space truss 638, 640, 692

of prismatic member with axial force 373–9
properties 169–71
for rectangular plate bending element 488–9,

507
relation to flexibility matrix 159–61
of shear wall element 402
for square plane-stress elements 549
for straight member with variable EI 705
of substitute frame 410–11
transformation 266–9
for triangular plate bending element 546

stiffness method, see displacement, method
strain 25–8
strain energy 201–8

density 202
due to axial force 205
due to bending moment 206
due to shear 207–8
due to torsion 208
equation in framed structure 208

strain, generalized 483
strain hardening 553
stress 25–8

generalized 483
matrix 490
normal, distribution in a column cross section

25–8
resultants 53–8, 86

diagrams 53–8
sign convention 53–8
in statically determinate structures 53–62
in three-hinged plane frame 55–6

strip method 588
with banded reinforcement 590

strut-and-tie models (reinforced concrete design)
37–41

B-and D-regions 38
Bernoulli’s region 38
disturbed region 38

structural design 41
load and resistance factors 41, 738
strength reduction factors 41, 738

structural dynamics 596–628
substitute frame 410–11
substructuring 698–9
superposition

of displacements 92–3
of forces 94, 103, 128, 329
principle of 92–4, 373

support conditions 20
support movement 104–6, 112–18, 119–24,

144–8, 761–5
sway 89

degrees of freedom in 328
symmetry

adjusted end-rotational stiffness 321, 329
antisymmetrical load components 324, 662
boundary conditions on a plane of symmetry

660, 666
cyclic 695–7
displacement method 174
of flexibility matrix 102, 170, 262
force method 171–3
grids 177, 680–2
of stiffness matrix 138, 170

T

tangent stiffness matrix of member of plane frame
728

member of plane truss 692
member of space truss 692
membrane triangular element 709

temperature effects 22, 30
see also environmental (including temperature)

effects
thermal effects 22, 30

see also temperature effects
bending moment diagram due to 30
continuous beam, example 104–7, 112
deflected shape due to 30
deformation of a simple beam 22



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Index 835

three-dimensional analysis of shear
walls 417–28

three-moment equation 118–24
examples 120–4

torsional constants 768–70
total potential energy 271
transformation

of flexibility matrix 266–9
of forces and displacements 262–6
matrix 264, 639
of stiffness matrix 266–9
by virtual work 214–17

triangular finite elements 502–4,
518–22, 546

trusses
displacement 232–5
influence lines for 366–9
kinematic indeterminacy 91
plane 47, 85
space 47, 85
statical indeterminacy of 80, 84–5

types of structures 2, 30
arches 2, 34
beams 16
cables 2
domes 7, 8
grids 18
plane frames 17
plane trusses 17
shells 7, 9
slabs 17
space frames 17
space trusses 18

U

ultimate moment for beams, see plastic
moment

ultimate moment for slab
equally reinforced in two perpendicular

directions 572
under uniform load 584

unit-displacement theorem 212–14, 272
unit-load theorem 212–14, 237–51

application of 223–37

V

vibration, see forced motion; free vibration
virtual complementary energy 211–13
virtual transformations 214–17
virtual work 211–13

in displacement
of frames 223–32
of trusses 232–5

in matrices of finite elements 490–3, 541–4
in plastic analysis

of beams and frames 550–8
of slabs 573–8, 586, 593

viscously damped vibration 604–8
harmonically forced 606
response to disturbing force 608

W

warping 417
web site for computer programs 18, 778

password 778
well-conditioned equations 742
work

external 169–70
transformations 214
virtual 223–51

Y

yield-line theory 569–93
equilibrium method 581

of slab parts 579–80
fundamentals of 569
nodal forces 579
nonregular slabs 585
for orthotropic slabs 576
ultimate moment of equally reinforced

slabs in two perpendicular directions 572



ADVERTISEMENT
Computer Programs for the Analysis of Framed Structures

Based on A. Ghali, A.M. Neville and T.G. Brown, Structural Analysis: a unified classical and
matrix approach (Taylor & Francis) 6th ed, 2009

Nonlinear analysis programs

PDELTA
PLASTICF
NLST
NLPF

The above computer programs, described in Appendix L of this book, are all sold together as a
set. They are available on disc, containing the following files for each program: (1) The source
code in FORTRAN. (2) An executable file, for use on IBM personal computers or compatibles.
(3) An input-file example. The comments, which are given at the beginning of the source code
for each program, include simple instructions for input data preparation. No printed manual is
needed.

Disclaimer of Warranties and Order Form

The above computer programs are sold without warranty of any kind, either expressed or
implied, including but not limited to implied warranties of merchantability and fitness for any
particular purpose. The seller and the author are not responsible for any damage whatsoever
which may be incurred by the purchaser or any other person by reason of any defect in the
software. The author reserves the right to revise the software without obligation to notify any
person of revisions or changes. I hereby accept the conditions of the disclaimer.

Please send me sets of the software and invoice me for the sum of $120 Canadian
per set, plus a small mailing and handling charge.

Name:

Address:

Signature: Date:

Please photocopy the above order form and disclaimer, fill in the form and sign the disclaimer
as acceptance of its terms and conditions, then mail to Mrs Liliane Ghali, 3911 Vincent Drive
N.W., Calgary, Alberta, T3A OG9, Canada, to whom all enquiries should be sent. Please make
payment by money order in Canadian dollars after receipt of an invoice.
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