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PREFACE

This manual is offered as an aid in using the fourth edition of Introduction to Real
Analysis as a text. Both of us have frequently taught courses from the earlier
editions of the text and we share here our experience and thoughts as to how to
use the book. We hope our comments will be useful.

We also provide partial solutions for almost all of the exercises in the book.
Complete solutions are almost never presented here, but we hope that enough is
given so that a complete solution is within reach. Of course, there is more than
one correct way to attack a problem, and you may find better proofs for some of
these exercises.

We also repeat the graphs that were given in the manual for the previous
editions, which were prepared for us by Professor Horacio Porta, whom we wish
to thank again.

Robert G. Bartle November 20, 2010
Donald R. Sherbert
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CHAPTER 1
PRELIMINARIES

We suggest that this chapter be treated as review and covered quickly, without
detailed classroom discussion. For one reason, many of these ideas will be already
familiar to the students — at least informally. Further, we believe that, in practice,
those notions of importance are best learned in the arena of real analysis, where
their use and significance are more apparent. Dwelling on the formal aspect of
sets and functions does not contribute very greatly to the students’ understanding
of real analysis.

If the students have already studied abstract algebra, number theory or com-
binatorics, they should be familiar with the use of mathematical induction. If not,
then some time should be spent on mathematical induction.

The third section deals with finite, infinite and countable sets. These notions
are important and should be briefly introduced. However, we believe that it is
not necessary to go into the proofs of these results at this time.

Section 1.1

Students are usually familiar with the notations and operations of set algebra,
so that a brief review is quite adequate. One item that should be mentioned is
that two sets A and B are often proved to be equal by showing that: (i) if z € A,
then x € B, and (ii) if x € B, then x € A. This type of element-wise argument is
very common in real analysis, since manipulations with set identities is often not
suitable when the sets are complicated.

Students are often not familiar with the notions of functions that are injective
(=one-one) or surjective (=onto).

Sample Assignment: Exercises 1, 3, 9, 14, 15, 20.

Partial Solutions:

1. (a) BNC={5,11,17,23,.. } ={6k— 1 : ke N}, An(BNC) = {5,11,17}
(b) (ANB)\ C={2,8,14,20}
(¢) (ANC)\ B=1{3,7,9,13,15,19}

2. The sets are equal to (a) A, (b) AN B, (c) the empty set.

3. If AC B, then x € A implies « € B, whence x € AN B, so that ACANBC A.
Thus, if AC B, then A=ANB.

Conversely, if A = AN B, then z € A implies x € A N B, whence x € B.
Thus if A=AN B, then A C B.

4. If xisin A\ (BNC), then z isin A but « ¢ BN C, so that z€ A and x is
either not in B or not in C. Therefore either z € A\ B or z € A\ C, which
implies that x € (A\ B) U (A\C). Thus A\ (BNC) C (A\B)U (4\C).
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Conversely, if z is in (A\ B)U(A\C), then x € A\ B or z € A\ C. Thus
x € A and either x ¢ B or x ¢ C, which implies that z € A but z ¢ BN C,
so that x € A\ (BNC). Thus (A\B)U(A\C) C A\(BNC).

Since the sets A\ (BNC') and (A\ B)U(A\ C) contain the same elements,
they are equal.

.(a) f x € AN(BUC), then € A and x € BUC. Hence we either have

(i) x € A and x € B, or we have (ii) z € A and = € C. Therefore, either
xre€ ANBorx e ANC, so that z € (AN B)U (ANC). This shows that
AN (BUCQC) is asubset of (ANB)U(ANC).

Conversely, let y be an element of (ANB)U(ANC). Then either (j) y €
ANB, or (jj) ye ANC. Tt follows that y€ A and either ye B or yeC.
Therefore, y€ A and y€ BUC, so that y€ AN(BUC). Hence (ANB)U
(ANC) is a subset of AN(BUC).

In view of Definition 1.1.1, we conclude that the sets AN(BUC) and
(ANB)U(ANC) are equal.

(b) Similar to (a).

The set D is the union of {z : € A and x ¢ B} and {z : x ¢ A and x € B}.
Here A, ={n+1,2(n+1),...}.

(a) A1 ={2,4,6,8,...},A>=1{3,6,9,12,...}, A1 N Ay = {6,12,18,24,...} =
{6]4) ke N}:A5

(b) UA,=N\{1}, because if n>1, then n€ A,_1; moreover 1 ¢ A,.
Also (N An =0, because n ¢ A,, for any n € N.

. (a) The graph consists of four horizontal line segments.

(b) The graph consists of three vertical line segments.

. No. For example, both (0, 1) and (0 —1) belong to C.
10.

(a) f(E
(b) f
)

{1/22:1<2x<2}={y: <y<1} [ 1].

)=
@) ={z:1<1/2? <4} = {q: 1<:1:2<1} -1, -] u 3, 1.

(a ( )={z+2:0< 2 <1} =[2,3], so h(E) = g(f(E)) = g([2,3]) =

{y*:2<y<3}=[4,9].

(b) g 1( ) ={y:0<y® <4} =[-22 s0 h'(G) = g 1(Q)) =
H([-2,2]) = {z: -2 <z +2<2} = [-4,0].

If 0 is removed from E and F', then their intersection is empty, but the
intersection of the images under f is {y: 0 <y <1}.

E\F = {z : =1 < z < 0}, f(E)\ f(F) is empty, and f(E\F) =
{y:0<y<1}.

If ye f(ENF), then there exists € EN F such that y= f(z). Since z € E
implies y € f(F), and = € F' implies y € f(F), we have y € f(E)N f(F). This
proves f(ENF) C f(E)N f(F).

If z€ f~Y4G) N f~Y(H), then z € f~1(G) and z € f~1(H), so that f(z)eG
and f(z) € H. Then f(r)€G N H, and hence x € f~}(G N H). This shows
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that f~1(G) N f~Y(H) € f~1(G N H). The opposite inclusion is shown in
Example 1.1.8(b). The proof for unions is similar.

If f(a) = f(b), then a/v/a? +1=>b/v/b?+ 1, from which it follows that a® = b2,
Since a and b must have the same sign, we get a =b, and hence f is injective.
If -1 <y<1, then z:=y/\/1—y? satisfies f(z) =y (why?), so that f takes R
onto the set {y: —1<y<1}. If >0, then z =v22 <22 +1, so it follows
that f(z)e{y: 0<y<1}.

One bijection is the familiar linear function that maps a to 0 and b to 1,
namely, f(x):= (x —a)/(b— a). Show that this function works.

(a) Let f(x)=2x, g(z)=3x.

(b) Let f(x) =12, g(x) ==, h(x)=1. (Many examples are possible.)

(a) If z€ f~Y(f(E)), then f(z)€ f(E), so that there exists z1 € E such
that f(z1)=f(x). If f is injective, then x1 =z, whence x € E. Therefore,
fYf(E)) C E. Since E C f~1(f(E)) holds for any f, we have set equality
when f is injective. See Example 1.1.8(a) for an example.

(b) If ye H and f is surjective, then there exists x € A such that f(x)=y.
Then z € f~Y(H) so that y€ f(f~1(H)). Therefore H C f(f~*(H)). Since
f(f~Y(H)) C H for any f, we have set equality when f is surjective. See
Example 1.1.8(a) for an example.

(a) Since y = f(x) if and only if z = f~!(y), it follows that f~!(f(z)) =2z and
F W) =y

(b) Since f is injective, then f~! is injective on R(f). And since f is surjec-
tive, then f~! is defined on R(f)= B.

If g(f(x1)) =g(f(x2)), then f(z1) = f(x2), so that x; = x9, which implies that
g o f is injective. If w e C, there exists y € B such that ¢g(y) = w, and there
exists ¢ € A such that f(x)=y. Then g(f(x)) =w, so that go f is surjective.
Thus g o f is a bijection.

(a) If f(x1)=f(x2), then g(f(z1))=g(f(x2)), which implies x; =x9, since
go f is injective. Thus f is injective.

(b) Given weC, since g o f is surjective, there exists x € A such that
g(f(z))=w. If y := f(x), then y € B and ¢g(y) =w. Thus g is surjective.

We have z € f~1(g7(H)) < f(z) € g7 (H) < g(f(z)) € H &z €
(g0 )~ (H).

If g(f(z))== for all z€ D(f), then g o f is injective, and Exercise 22(a)
implies that f is injective on D(f). If f(g(y))=y for all y€ D(g), then
Exercise 22(b) implies that f maps D(f) onto D(g). Thus f is a bijection of
D(f) onto D(g), and g= f~1.

The method of proof known as Mathematical Induction is used frequently in real
analysis, but in many situations the details follow a routine patterns and are
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left to the reader by means of a phrase such as: “The proof is by Mathematical
Induction”. Since may students have only a hazy idea of what is involved, it may
be a good idea to spend some time explaining and illustrating what constitutes a
proof by induction.

Pains should be taken to emphasize that the induction hypothesis does not

entail “assuming what is to be proved”. The inductive step concerns the validity
of going from the assertion for k € N to that for k + 1. The truth of falsity of the
individual assertion is not an issue here.

10.

Sample Assignment: Exercises 1, 2, 6, 11, 13, 14, 20.

Partial Solutions:

. The assertion is true for n=1 because 1/(1-2)=1/(1+1). If it is true

for n=k, then it follows for k+1 because k/(k+1)+1/[(k+1)(k+2)]=
(k+1)/(k+2).

. The statement is true for n =1 because [ -1-2]>=1=13. For the inductive

2
step, use the fact that

[Lk(k+1)]% 4 (k+1)* = [L(k+ 1)k +2)]%.

. It is true for n=1 since 3=4—1. If the equality holds for n=Fk, then

add 8(k+1) —5=8k+ 3 to both sides and show that (4k> — k) + (8k +3) =
4(k+1)? — (k+1) to deduce equality for the case n==Fk+ 1.

. It is true for n = 1 since 1 = (4 — 1)/3. If it is true for n = k, then add

(2k 4 1)2 to both sides and use some algebra to show that
T(AK® — k) + (2k +1)* = J[AK® + 12k* + 11k + 3] = $[4(k +1)° — (k + 1)],

which establishes the case n==k + 1.

. Equality holds for n =1 since 12 = (—1)%(1-2)/2. The proof is completed by

showing (—1)F1 (k4 1)]/2 4+ (~1)*2(k + 1)% = (~ DF2[(k + 1) (k + 2)]/2

.If n=1, then 1>45-1=6 is divisible by 6. If k3 + 5k is divisible by 6,

then (k+1)3+5(k + 1) = (k* +5k) + 3k(k+1) +6 is also, because k(k -+ 1)
is always even (why?) so that 3k(k + 1) is divisible by 6, and hence the sum
is divisible by 6.

If 52 — 1 is divisible by 8, then it follows that 52F+1) — 1= (5% — 1) 4 24. 5%
is also divisible by 8.

B 4 (k+1)—1=5-5—4k — 5= (5 — 4k — 1) +-4(5* — 1). Now show that

5% — 1 is always divisible by 4.

IR+ (k41)3 4 (k +2)3 is divisible by 9, then (k4 1)3 + (k+2)% + (k +3)% =

k3 + (k+1)% + (k+2)% +9(k? + 3k + 3) is also divisible by 9.
The sum is equal to n/(2n + 1).
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11. The sum is 143+ -+ 4+ (2n — 1) =n?. Note that k% + (2k+1) = (k+1)%.

12. If ng>1, let Sy :={neN:n—-—ng+1€ S} Apply 1.2.2 to the set S;.

13. If k< 2k, then k+1<2F +1 <2k 4 2F =2(2k) =2k 1,

14. If n=4, then 2*=16<24=4!. If 2 <k! and if k>4, then 21 =2.2F <
2-k'<(k+1)-kl'=(k+1)l. [Note that the inductive step is valid when-
ever 2<k+ 1, including k=2, 3, even though the statement is false for these
values.]

15. For n=>5 we have 7<23. If k>5 and 2k — 3 < 272, then 2(k+1) — 3=
(Qk _ 3) +2< 2k—2 + 2k—2 _ 2(k+ 1)—2'

16. It is true for n = 1 and n > 5, but false for n = 2,3,4. The inequality
2k +1 < 2%, wich holds for k>3, is needed in the induction argument. [The
inductive step is valid for n=3,4 even though the inequality n? < 2" is false
for these values.]

17. m =6 trivially divides n® —n for n=1, and it is the largest integer to divide
23 — 2=6. If k3 —k is divisible by 6, then since k*+k is even (why?), it
follows that (k+1)3 — (k+1) = (k% — k) + 3(k% + k) is also divisible by 6.

18. VE+1/VE+1=VkvE+1+1)/VE+1>(k+1)/VE+1=Vk+1.

19. First note that since 2 € S, then the number 1 =2 — 1 belongs to S. If m ¢ S,
then m<2™e S, s0 2™ —1€ .5, etc.

20. If 1<2,1<2 and 1<2, <2, then 2<x;_1 + 2, <4, so that 1<z 1=
(xk—l + l‘k)/Q <2.

Section 1.3

Every student of advanced mathematics needs to know the meaning of the words
“finite”, “infinite”, “countable” and “uncountable”. For most students at this
level it is quite enough to learn the definitions and read the statements of the
theorems in this section, but to skip the proofs. Probably every instructor will
want to show that Q is countable and R is uncountable (see Section 2.5).

Some students will not be able to comprehend that proofs are necessary for

“obvious” statements about finite sets. Others will find the material absolutely
fascinating and want to prolong the discussion forever. The teacher must avoid
getting bogged down in a protracted discussion of cardinal numbers.

Sample Assignment: Exercises 1, 5, 7, 9, 11.

Partial Solutions:

. If T} #0 is finite, then the definition of a finite set applies to Th = N,, for

some n. If f is a bijection of T} onto 75, and if g is a bijection of T5 onto N,,,
then (by Exercise 1.1.21) the composite g o f is a bijection of 77 onto N,,, so
that T} is finite.
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. Part (b) Let f be a bijection of N,,, onto A and let C' = {f(k)} for some

k € N,,. Define g on N,,,_1 by g(i):=f(i) for i = 1,...,k — 1, and ¢(i) :=
f(@i+1)fori=k,...,m—1. Then g is a bijection of N,,_; onto A\C. (Why?)
Part (¢c) First note that the union of two finite sets is a finite set. Now note
that if C'/B were finite, then C' =B U (C'\ B) would also be finite.

. (a) The element 1 can be mapped into any of the three elements of 7', and

2 can then be mapped into any of the two remaining elements of T, after
which the element 3 can be mapped into only one element of 7. Hence there
are 6=3-2-1 different injections of S into 7.

(b) Suppose a maps into 1. If b also maps into 1, then ¢ must map into 2; if b
maps into 2, then ¢ can map into either 1 or 2. Thus there are 3 surjections
that map a into 1, and there are 3 other surjections that map a into 2.

4. f(n):=2n+13,neN.

. f(1):=0, f(2n):=n, f(2n+1):=—n for neN.
. The bijection of Example 1.3.7(a) is one example. Another is the shift defined

by f(n):=n+1 that maps N onto N\ {1}.

If T is denumerable, take To =N. If f is a bijection of 77 onto 75, and if g
is a bijection of Ty onto N, then (by Exercise 1.1.21) go f is a bijection of T}
onto N, so that 7T} is denumerable.

8. Let A,,:={n} for neN, so [JA,=N.
9. f SNT=0and f : N — S, g: N — T are bijections onto S and T, respectively,

10.

11.

12.

13.

let h(n):= f((n+1)/2) if nis odd and h(n) :=g(n/2) if n is even. It is readily
seen that h is a bijection of N onto SUT’; hence SUT is denumerable. What
it SNT #£0?

(a) m+n—1=9 and m=6 imply n=4. Then h(6,4) =
(

3-8-94+6=42.

) h(m,3)=3(m+1)(m~+2)+m=19, so that m*+5m—36=0. Thus
=4.

) P({1,2}) ={0,{1},{2},{1,2}} has 22 =4 elements.

) P({1,2,3}) has 23 =8 elements.

c) P({1,2,3,4}) has 2* =16 elements.

Let Spy1:={z1,...,Zn,Tpny1} =5n U {zpt1} have n+1 elements. Then a
subset of S,y either (i) contains x,;, or (ii) does not contain z,4+;. The
induction hypothesis implies that there are 2" subsets of type (i), since each
such subset is the union of {z,41} and a subset of S,,. There are also 2"
subsets of type (ii). Thus there is a total of 2" +2" =2 .27 =2"+1 gubsets
of Sn+1.

o

3

o o

(
(
(

For each m € N, the collection of all subsets of N,,, is finite. (See Exercise 12.)
Every finite subset of N is a subset of N,,, for a sufficiently large m. Therefore
Theorem 1.3.12 implies that F(N) = (J;>_; P(N,,) is countable.



CHAPTER 2
THE REAL NUMBERS

Students will be familiar with much of the factual content of the first few sections,
but the process of deducing these facts from a basic list of axioms will be new
to most of them. The ability to construct proofs usually improves gradually
during the course, and there are much more significant topics forthcoming. A few
selected theorems should be proved in detail, since some experience in writing
formal proofs is important to students at this stage. However, one should not
spend too much time on this material.

Sections 2.3 and 2.4 on the Completeness Property form the heart of this
chapter. These sections should be covered thoroughly. Also the Nested Intervals
Property in Section 2.5 should be treated carefully.

Section 2.1

One goal of Section 2.1 is to acquaint students with the idea of deducing conse-
quences from a list of basic axioms. Students who have not encountered this type
of formal reasoning may be somewhat uncomfortable at first, since they often
regard these results as “obvious”. Since there is much more to come, a sampling
of results will suffice at this stage, making it clear that it is only a sampling.
The classic proof of the irrationality of v/2 should certainly be included in the
discussion, and students should be asked to modify this argument for v/3, etc.

Sample Assignment: Exercises 1(a,b), 2(a,b), 3(a,b), 6, 13, 16(a,b), 20, 23.

Partial Solutions:

1. (a) Apply appropriate algebraic properties to get b=0+b=(—a+a)+b=
—a+(a+b)=—-a+0=—a.
(b) Apply (a) to (—a) +a=0 with b=a to conclude that a = —(—a).
(c) Apply (a) to the equation a+ (—1)a=a(l+(—1))=a-0=0 to conclude
that (—=1)a=—a.
(d) Apply (c) with a=—1 to get (=1)(—1)=—(—1). Then apply (b) with
a=1to get (—1)(—-1)=1.
2. (a) =(a+b)=(-1)(a+b)=(-1)a+ (-1)b=(— )+(—b).
b) (=a) - (=b) = ((=Da) - (=1)b) = (=1)(-
c¢) Note that (—a)(—(1/a))=a(1l/a)=1.
d) —(a/b) = (=1)(a(1/b)) = ((=1)a)(1/b) = (=a)/b.
a) Add —5 to both sides of 2z +5=28 and use (A2),(A4),(A3) to get 2z =3.
Then multiply both sides by 1/2 to get x =3/2.
(b) Write 22 — 2o = z(z — 2) =0 and apply Theorem 2.1.3(b). Alternatively,
note that x =0 satisfies the equation, and if z # 0, then multiplication by
1/x gives x=2.

(
(
(
(
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(c) Add —3 to both sides and factor to get 22 —4 = (z —2)(z +2) =0. Now
apply 2.1.3(b) to get t=2 or x =—2.

(d) Apply 2.1.3(b) to show that (z—1)(x+2)=0 if and only if z=1 or
T=—2.

. Clearly a =0 satisfiesa-a=a.Ifa # 0 and a- a=a, then (a-a)(1/a) =a(l/a),

so that a=a(a(l/a))=a(l/a)=1.

. If (1/a)(1/b) is multiplied by ab, the result is 1. Therefore, Theorem 2.1.3(a)

implies that 1/(ab) = (1/a)(1/b).

. Note that if ¢ € Z and if 3¢® is even, then ¢ is even, so that ¢ is even. Hence,

if (p/q)? =6, then it follows that p is even, say p=2m, whence 2m? = 3¢, so
that ¢ is also even.

If p € N, there are three possibilities: for some m € NU {0}, (i) p=3m,
(i) p=3m+1, or (iii) p=3m+2. In either case (ii) or (iii), we have p?=
3h+1 for some h € NU {0}.

. (a) Let z=m/n,y=p/q, where m,n # 0,p,q # 0 are integers. Then = +y=

(mq+np)/nqg and xy =mp/nq are rational.
(b) If s:=x+y € Q, then y=s—x € Q, a contradiction. If t:=xy € Q and
x # 0, then y=t/x € Q, a contradiction.

() If xy=s51+1tv2 and wa=s9+12/2 are in K, then xz+axo=

(514 82) + (t1 +t2)V2 and z1m9 = (5152 + 2t1t9) + (s1t2 + sot1)V/2 are also
in K.
(b) If z=5-+1/2 # 0 is in K, then s —t/2 # 0 (why?) and

i () ()
T (s+tV2)(s—tv2)  \s? -2t s2 — 22
is in K. (Use Theorem 2.1.4.)

(a) If ¢c=d, then 2.1.7(b) implies a+c¢ < b+d. If ¢<d, then a+c<
b+c<b+d.

(b) If c=d=0, then ac=bd=0. If ¢>0, then 0<ac by the Trichotomy
Property and ac < be follows from 2.1.7(c). If also ¢ <d, then ac<ad <bd.
Thus 0 <ac<bd holds in all cases.

(a) If a>0, then a # 0 by the Trichotomy Property, so that 1/a exists. If
1/a=0, then 1=a-(1/a) =a-0=0, which contradicts (M3). If 1/a <0, then
2.1.7(c) implies that 1 =a(1/a) <0, which contradicts 2.1.8(b). Thus 1/a >0,
and 2.1.3(a) implies that 1/(1/a) =a.

(b) If a<b, then 2a=a+a<a+b, and also a+b<b+b=2b. Therefore,
2a < a+b<2b, which, since >0 (by 2.1.8(c) and part (a)), implies that
a<i(a+b)<b.

Let a=1 and b=2. If c=—-3 and d=—1, then ac<bd. On the other hand,
if c=—3 and d=—2, then bd < ac. (Many other examples are possible.)
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If @ # 0, then 2.1.8(a) implies that a?>0; since b*>0, it follows that
a?+b%>0.

If 0<a<b, then 2.1.7(c) implies ab<b?>. If a=0, then 0=a?=ab<b>.
If a>0, then a?<ab by 2.1.7(c). Thus a®><ab<b?>. If a=0,b=1, then
0=a’=ab<b=1.

(a) If 0 < a < b, then 2.1.7(c) implies that 0 < a? < ab < b%. Then by Example
2.1.13(a), we infer that a = Va2 < vab< Vb2 =b.

(b) If 0<a<b, then ab>0 so that 1/ab>0, and thus 1/a—1/b=
(1/ab)(b—a)>0.

(a) To solve (x —4)(z+1)>0, look at two cases. Case 1: x—4>0 and
x+1>0, which gives £ >4. Case 2: z—4<0 and z+1<0, which gives
x < —1. Thus we have {x : >4 or x < —1}.

(b) 1< 22 <4 has the solution set {r:1<z<2or —2<z<—1}.

(c) The inequality is 1/z —z=(1—x)(1+x)/x <0. If x>0, this is equiva-
lent to (1 —z)(1+x) <0, which is satisfied if z>1. If x <0, then we solve
(1—2)(1+2)>0, and get —1 <z <0. Thus we get {x: —1<z<0orxz>1}
(d) the solution set is {z : x <0 or z > 1}.

If a >0, we can take g :=a >0 and obtain 0 < eg < a, a contradiction.

If b<a and if eg:=(a—b)/2, then €9 >0 and a=b+ 2¢¢ > b+ &y.

The inequality is equivalent to 0 < a? — 2ab+b> = (a — b)*.

(a) If 0< c< 1, then 2.1.7(c) implies that 0 < ¢? < ¢, whence 0 <c?<c< 1.
(b) Since ¢> 0, then 2.1.7(c) implies that ¢ < ¢?, whence 1 < ¢ < 2.

(a) Let S:={neN:0<n<1}. If Sisnot empty, the Well-Ordering Property
of N implies there is a least element m in S. However, 0 < m < 1 implies that
0 <m? < m, and since m? is also in S, this is a contradiction to the fact that
m is the least element of S.

(b) If n=2p=2q — 1 for some p, g in N, then 2(¢ —p) =1,sothat 0 < g —p< 1.
This contradicts (a).

(a) Let z:=c¢—1>0 and apply Bernoulli’s Inequality 2.1.13(c) to get ¢" =
(I+z)">14+nx>1+x=cforallneN, and " >14+z=c for n>1.

(b) Let b:=1/c and use part (a).

If 0<a<b and a* <b¥, then 2.1.7(c) implies that a**1 <abl <bF*1! so

Induction applies. If ™ <b™ for some m € N, the hypothesis that 0 <b<a
leads to a contradiction.

(a) If m >n, then k:=m —n €N, so Exercise 22(a) implies that ¢ >c> 1.
But since ¢* =¢™~ ", this implies that ¢™ > ¢®. Conversely, the hypothesis
that ¢ > "™ and m <n lead to a contradiction.

(b) Let b:=1/c and use part (a).
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25. Let b:= /™", We claim that b>1; for if <1, then Exercise 22(b) implies
that 1 <c=b0""<b<1, a contradiction. Therefore Exercise 24(a) implies
that ¢!/® =™ > b = c!/™ if and only if m > n.

26. Fix m € N and use Mathematical Induction to prove that a™ "™ =a™a"™ and
(a™)"=a™" for all n € N. Then, for a given n € N, prove that the equalities
are valid for all m € N.

Section 2.2

The notion of absolute value of a real number is defined in terms of the basic order
properties of R. We have put it in a separate section to give it emphasis. Many
students need extra work to become comfortable with manipulations involving
absolute values, especially when inequalities are involved.

We have also used this section to give students an early introduction to the
notion of the e-neighborhood of a point. As a preview of the role of
e-neighborhoods, we have recast Theorem 2.1.9 in terms of e-neighborhhoods in
Theorem 2.2.8.

Sample Assignment: Exercises 1, 4, 5, 6(a,b), 8(a,b), 9, 12(a,b), 15.
Partial Solutions:

1. (a) If a>0, then |a| =a=Va?; if a <0, then |a| = —a = Va?2.
(b) It suffices to show that |1/b|=1/]b| for b # 0 (why?). If b>0, then
1/b>0 (why?), so that |1/b|=1/b=1/|b]. If b<0, then 1/b<0, so that
[1/b] = =(1/b) =1/(=b) =1/1b].

2. First show that ab>0 if an only if |ab| =ab. Then show that (|a|+ [b|)? =
(a+b)? if and only if |ab| = ab.

B.Ife<y<zthen|z—yl+|ly—z2l=y—2)+(z—y)=2—x=|z—2z| To
establish the converse, show that y < x and y > z are impossible. For example,
if y < <z, it follows from what we have shown and the given relationship
that |z — y| = 0, so that y = z, a contradiction.

4. |[x—al<e<=—cec<r—a<e<=a—-cec<z<a-+te.

5. If a<x<b and —b< —y< —a, it follows that a —b<x—y<b—a. Since
a—b=—(b—a), the argument in 2.2.2(c) gives the conclusion |z —y| <b—a.
The distance between = and y is less than or equal to b — a.

6. (a) [dx — 5| <13 «<= —13<4dr—-5< 13 <= 8 <4r <18« -2 <

x <9/2.
(b) |22 —1|<3+= 3<2?-1<3+= 2<2?<4+=0<2? <4+
—2<z <2

7.Case l: £>2= (z+1)+(x—2)=22—-1=7,s0 v =4.
Case 2: —1<x<2= (x+1)+(2—x)=3%#7, so no solution.
Case3: z<—-1=(—z—-1)+(2—2)=—2x+1=7,s0 z=—3.
Combining these cases, we get x =4 or x = —3.
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(a) If x>1/2, then x+1=2x—1, so that z=2. If 2<1/2, then z+1=
—2x 4+ 1, so that =0. There are two solutions {0, 2}.

(b) If x > 5, the equation implies x = —4, so no solutions. If x <5, then x =2.
(a) If x > 2, the inequality becomes —2 < 1. If z <2, the inequality is x > 1/2,
so this case contributes 1/2 <z <2. Combining the cases gives us all z > 1/2.
(b) >0 yields 2 <1/2, so that we get 0<z<1/2. <0 yields x > —1, so
that —1 <2 <0. Combining cases, we get —1 <z <1/2.

(a) Either consider the three cases: z < —1, —1<x <1 and 1 <z; or, square
both sides to get —2x > 2z. Either approach gives x <0.

(b) Consider the three cases © >0, —1<z<0 and x<—1 to get —3/2<
x<1/2.

y=f(x) where f(z):=—1forz <0, f(z):=2x—1for0<z <1, and f(z):=1
for x > 1.

Case l: z>1=4<(z+2)+(x—1)<5,80 3/2<x<2.

Case 2: —2<z<1=4<(x+2)+(1—x)<b5, so there is no solution.

Case 3: 1< —2=4<(—2x—2)+(1—2)<5,s0 —-3<x<—5/2.

Thus the solution set is {z : —3<x < —5/2 or 3/2<x <2},

|20 —3| <5 <= —1<z<4, and [t +1]>2 <= < -3 or z>1. The two
inequalities are satisfied simultaneously by points in the intersection {z :
1<z <4}

(a) |z|=ly| <= 2?2 =y? <= (v —y)(x+y)=0 < y=xz or y=—x. Thus
{(z,y) y=z or y=—=z}.

(b) Consider four cases. If x >0, y >0, we get the line segment joining the
points (0, 1) and (1, 0). If <0,y >0, we get the line segment joining (—1,0)
and (0,1), and so on.

(c) The hyperbolas y=2/x and y=—2/x.

(d) Consider four cases corresponding to the four quadrants. The graph
consists of a portion of a line segment in each quadrant. For example, if
x>0,y >0, we obtain the portion of the line y =x — 2 in this quadrant.

(a) If y >0, then —y <z <y and we get the region in the upper half-plane on
or between the lines y =2 and y=—xz. If y <0, then we get the region in the
lower half-plane on or between the lines y=x and y= —=.

(b) This is the region on and inside the diamond with vertices (1, 0), (0, 1),
(=1,0) and (0,—1).

For the intersection, let « be the smaller of € and §. For the union, let v be
the larger of € and 4.

Choose any ¢ > 0 such that € < |a —b|.

(a) If a<b, then max{a,b}=b=1[a+b+ (b—a)] and min{a,b}=a=
sla+b—(b—a)).

(b) If a=min {a, b, ¢}, then min{min{a, b}, c} =a=min{a, b, ¢}. Similarly, if
b or ¢ is min{a, b, c}.
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If a<b<e¢, then mid{a,b,c} =b=min{b, ¢, c} =min{max{a, b}, max{b,c},
max{c,a}}. The other cases are similar.

This section completes the description of the real number system by introducing
the fundamental completeness property in the form of the Supremum Property.
This property is vital to real analysis and students should attain a working under-
standing of it. Effort expended in this section and the one following will be richly
rewarded later.

Sample Assignment: Exercises 1, 2, 5, 6, 9, 10, 12, 14.

Partial Solutions:

Any negative number or 0 is a lower bound. For any x >0, the larger number
x+ 11isin S7, so that x is not an upper bound of S;. Since 0 < x for all x € 51,
then v =0 is a lower bound of S7. If v >0, then v is not a lower bound of 57
because v/2 € S1 and v/2 <wv. Therefore inf S; =0.

So has lower bounds, so that inf S5 exists. The argument used for S also
shows that inf S =0, but that inf S5 does not belong to Ss. Sy does not
have upper bounds, so that sup S5 does not exists.

Since 1/n <1 for all n€N, then 1 is an upper bound for S3. But 1 is a
member of S3, so that 1 =sup S3. (See Exercise 7 below.)

4. sup Sy =2 and inf Sy =1/2. (Note that both are members of Sy.)

. It is interesting to compare algebraic and geometric approaches to these

problems.

(a) inf A=—5/2, sup A does not exist,
(b) sup B=2, inf B=—1,

(c) sup C'=1, inf B does not exist,

(d) sup D=1++/6, inf D=1—+/6.

. If S is bounded below, then S":={—s : s€S} is bounded above, so that

u:=sup S’ exists. If v<s for all s€ S, then —v>—s for all s€ S, so that
—v >u, and hence v < —u. Thus inf S = —u.

Let uw €S be an upper bound of S. If v is another upper bound of .S, then
u<v. Hence u=sup S.

8. If t>wu and t € S, then u is not an upper bound of S.

9. Let u:= sup S. Since u is an upper bound of S, so is u+ 1/n for all n € N.

10.

Since u is the supremum of S and u—1/n < u, then there exists sy € S with
u—1/n < sp, whence u—1/n is not an upper bound of S.

Let u:=sup A, v:=sup B and w:=sup{u,v}. Then w is an upper bound of
AU B, because if z € A, then z <u <w, and if x € B, then x <v<w. If z is
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any upper bound of AU B, then z is an upper bound of A and of B, so that
u<z and v<z. Hence w < z. Therefore, w=sup(A U B).

11. Since sup S is an upper bound of S, it is an upper bound of Sy, and hence
sup Sp <sup S.

12. Consider two cases. If u>s* then u=sup(S U {u}). If u<s*, then there
exists s € S such that v < s <s*, so that s* =sup(S U {u}).

13. If Sy :={x1}, show that z; =sup S;. If Sy:={x1,...,z} is such that sup
Sk € Sk, then preceding exercise implies that sup{xi,..., 2z, x+1} is the
larger of sup Sy and zj 1 and so is in Sk 1.

14. If w=inf S and £ >0, then w + ¢ is not a lower bound so that there exists ¢
in S such that t <w +e¢. If w is a lower bound of S that satisfies the stated
condition, and if z>w, let e=2z—w>0. Then there is ¢ in .S such that
t<w+4e=z, so that z is not a lower bound of S. Thus, w=inf S.

Section 2.4

This section exhibits how the supremum is used in practice, and contains some
important properties of R that will often be used later. The Archimedean Proper-
ties 2.4.3-2.4.6 and the Density Properties 2.4.8 and 2.4.9 are the most significant.
The exercises also contain some results that will be used later.

Sample Assignment: Exercises 1, 2, 4(b), 5, 7, 10, 12, 13, 14.

Partial Solutions:

1. Since 1 —1/n< 1 for all n €N, the number 1 is an upper bound. To show
that 1 is the supremum, it must be shown that for each £ >0 there exists
n €N such that 1 —1/n>1—¢, which is equivalent to 1/n<e. Apply the
Archimedean Property 2.4.3 or 2.4.5.

2. inf S=—1 and sup S=1. To see the latter note that 1/n—1/m <1 for all
m,n €N. On the other hand if € >0 there exists m € N such that 1/m <e,
so that 1/1—1/m>1—e¢.

3. Suppose that u € R is not the supremum of S. Then either (i) u is not an
upper bound of S (so that there exists s; € S with u < s1, whence we take
n €N with 1/n < s; —u to show that w+ 1/n is not an upper bound of S), or
(ii) there exists an upper bound u; of S with u; <w (in which case we take
1/n<u—wuy to show that uw—1/n is not an upper bound of 5).

4. (a) Let u:=sup S and a>0. Then z <wu for all x € S, whence ax < au for all
x € S, whence it follows that au is an upper bound of aS. If v is another upper
bound of aS, then ax <wv for all z € S, whence z <wv/a for all z € S, showing
that v/a is an upper bound for S so that u<wv/a, from which we conclude
that au <wv. Therefore au=sup(aS). The statement about the infimum is
proved similarly.
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(b) Let u:=sup S and b<0. If x€S, then (since b<0) bu<bzx so that
bu is a lower bound of bS. If v <bx for all x € S, then = <wv/b (since b<0),

so that v/b is an upper bound for S. Hence u <v/b whence v < bu. Therefore
bu=inf(bS).

.If €8, then 0 <z <u, so that 22 <wu? which implies sup 7' <u?. If t is any

upper bound of T, then z € S implies 22 <t so that x <+/t. It follows that
u<+/t, so that u? <t. Thus u? <sup 7.

. Let u:=sup f(X). Then f(z)<u for all z€ X, so that a+ f(z) <a+wu for

all z € X, whence sup{a+ f(z) : x € X} <a+u. If w<a+u, then w—a<u,
so that there exists z,, € X with w—a < f(zy), whence w<a+ f(xy), and
thus w is not an upper bound for {a+ f(z): x € X}.

Let uw:=sup S, v:i=sup B, w:=sup(A+B). If x€A and ye B, then
r+y<u-+wv, so that w<wu+4wv. Now, fix y€ B and note that z <w—y
for all z € A; thus w—y is an upper bound for A so that u <w —y. Then
y<w—u for all y€ B, so v <w —u and hence u+ v <w. Combining these
inequalities, we have w =u+ v.

. Ifu:=sup f(X) and v:=sup ¢g(X), then f(x) <w and g(z) <v for all z € X,

whence f(z)+g(z)<u+wv for all z€ X. Thus u+v is an upper bound
for the set {f(z)+g(x) : z€X}. Therefore sup{f(z)+g(z) : € X} <
u—+v.

. (a) f(z)=2x+1, inf{f(x) :z€e X} =1.

(b) 9(y) =y, sup{g(y) : y €Y} =1.

(a) f(x)=1forzeX. (b)g(y)=0foryeY.

If xeX, yeY, then g(y)<h(z,y) < f(z). If we fix y€Y and take the
infimum over z € X, then we get g(y) <inf{f(x) : x€ X} for each yeVY.
Now take the supremum over y €Y.

Let S:={h(z,y) : v € X,ycY}. We have h(z,y) < F(x) forall ze X,ye€Y
so that sup S <sup{F(z) : x€ X}. If w<sup{F(z) : v € X}, then there
exists zg € X with w < F(zg) =sup {h(zo,y) : y €Y}, whence there exists
Yo €Y with w<h(xp,yp). Thus w is not an upper bound of S, and so
w<sup S. Since this is true for any w such that w<sup{F(x) : z€ X},
we conclude that sup{F(z) : x € X} <sup S.

If x€Z, take n:=x+1. If © ¢ Z, we have two cases: (i) >0 (which is
covered by Cor. 2.4.6), and (ii) 2 <0. In case (ii), let z:= —z and use 2.4.6.
If n1 <ng are integers, then ny <ng — 1 so the sets {y : n1 — 1<y <n;} and
{y : na —1 <y < na} are disjoint; thus the integer n such that n—1<zx<n
is unique.

Note that n <2" (whence 1/2" <1/n) for any n € N.

Let S3:={s€R : 0<s,s><3}. Show that S3 is nonempty and bounded
by 3 and let y:=sup S3. If y><3 and 1/n<(3—y?)/(2y+ 1) show that
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y+1/ne€Ss. If y>>3 and 1/m < (y*>—3)/2y show that y—1/meSs.
Therefore y? = 3.

16. Case 1: If a>1, let Sy:={s€R:0<s,s?><a}. Show that S, is nonempty
and bounded above by a and let z:=sup S,. Now show that 22 =a.

Case 2: If 0 <a <1, there exists k €N such that k%a > 1 (why?). If 22 = k?a,
then (2/k)? =a.

17. Consider T:={tcR :0<t,t3 < 2}. If t > 2, then t3>2 so that ¢t ¢ T. Hence
y:=sup T exists. If y3<2, choose 1/n<(2—14%)/(3y>+3y+1) and show
that (y +1/n)3 <2, a contradiction, and so on.

18. If x <0<y, then we can take r=0. If x <y <0, we apply 2.4.8 to obtain a
rational number between —y and —zx.

19. There exists r € Q such that x/u <r <y/u.

Section 2.5

Another important consequence of the Supremum Property of R is the Nested
Intervals Property 2.5.2. It is an interesting fact that if we assume the validity of
both the Archimedean Property 2.4.3 and the Nested Intervals Property, then we
can prove the Supremum Property. Hence these two properties could be taken
as the completeness axiom for R. However, establishing this logical equivalence
would consume valuable time and not significantly advance the study of real anal-
ysis, so we will not do so. (There are other properties that could be taken as the
completeness axiom.)

The discussion of binary and decimal representations is included to give the
student a concrete illustration of the rather abstract ideas developed to this point.
However, this material is not vital for what follows and can be omitted or treated
lightly. We have kept this discussion informal to avoid getting buried in technical
details that are not central to the course.

Sample Assignment: Exercises 3, 4, 5, 6, 7, 8, 10, 11.

Partial Solutions:

1. Note that [a,b] C [a/,V'] if and only if ¢’ <a<b<V'.

2. S has an upper bound b and a lower bound « if and only if S is contained in
the interval [a, b].

3. Since inf S is a lower bound for S and sup S is an upper bound for .S, then
S C Is. Moreover, if S C [a,b], then a is a lower bound for S and b is an
upper bound for S, so that [a,b] 2 Ig.

4. Because z is neither a lower bound or an upper bound of S.

5. If z€R, then z is not a lower bound of S so there exists x, €.5 such that
x,<z. Also z is not an upper bound of S so there exists y, € S such that
z <y,. Since z belongs to [z, y.], it follows from the property (1) that z € S.
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But since z € R is arbitrary, we conclude that R C S, whence it follows that
S=R=(—00,00).

. Since [an,bp|=1In 2 Iny1=[an+1,bn+1], it follows as in Exercise 1 that

an <ap4+1<bp4+1<b,. Therefore we have a1 <as<--- <a,<--- and
by >2by> - 2by> -

Since 0€ I, for all neN, it follows that 0€ ()2 I,. On the other hand
if >0, then Corollary 2.4.5 implies that there exists n € N with 1/n < u,
whence u ¢ [0,1/n]|=1,. Therefore, such a u does not belong to this
intersection.

. If x>0, then there exists n € N with 1/n <z, so that = ¢ J,,. If y <0, then

y¢J1

. If 2<0, then z ¢ K;. If w> 0, then it follows from the Archimedean Property

that there exists n,, € N with w ¢ (ny,00) =K, .

Let n:=inf{b, : n€N}; we claim that a, <7 for all n. Fix neN; we will
show that a,, is a lower bound for the set {b : kK € N}. We consider two cases.
(j) If n <k, then since I,, D I, we have a, <ag <bg. (jj) If £ <n, then since
I, O I,, we have a,, <b, <b,. Therefore a,, <b; for all k€N, so that a,, is
a lower bound for {b; : k€ N} and so a,, <7. In particular, this shows that
N € [an, by for all n, so that ne€ (N I,.

In view of 2.5.2, we have [, n] C I, for all n, so that [{,n] C [ I,. Con-
versely, if z € I,, for all n, then a, <z <b, for all n, whence it follows that
¢ =sup {a,} <z <inf{b,} =n. Therefore ()1, C [¢,n] and so equality holds.
If neN, let ¢,:=a1/2+az/22+ -+ +a,/2" and d,,:=a1/2+ag/2%+ --- +
(an +1)/2"™, and let J,, :=[cp, dy]. Since ¢, <cpt1<dp4+1<d, for n €N, the
intervals J,, form a nested sequence.

3 =(.011000 - - )2 =(.010111-+-)s. & =(.0111000---)s = (.0110111---)s.
a) + ~ (.0101), b) £ =(.010101---)s, the block 01 repeats.
3 3

We may assume that a, # 0. If n>m we multiply by 10" to get 10p+
an =10q, where p,q €N, so that a, =10(¢ —p). Since g —p € Z while a,, is
one of the digits 0,1,...,9, it follows that a, =0, a contradiction. Therefore
n <m, and a similar argument shows that m <n; therefore n =m.

Repeating the above argument with n =m, we obtain 10p + a,, = 10q + b,,,
so that a,, — b, =10(q — p), whence it follows that a, =b,. If this argument
is repeated, we conclude that ap =by for k=1,...,n.

The problem here is that —2/7 is a negative number, so we write it as
—1+5/7. Since 5/7=.714285 - - - with the block repeating, we write —2/7=
—1+4.714285
1/7=.142857--- , the block repeats. 2/19=.105263157894736842--- , the
block repeats.

1.25137---137--- =31253/24975, 35.14653---653 - -- =3511139,/99900.



CHAPTER 3
SEQUENCES

Most students will find this chapter easier to understand than the preceding one
for two reasons: (i) they have a partial familiarity with the notions of a sequence
and its limit, and (ii) it is a bit clearer what one can use in proofs than it was for
the results in Chapter 2. However, since it is essential that the students develop
some technique, one should not try to go too fast.

Section 3.1

The main difficulty students have is mastering the notion of limit of a sequence,
given in terms of € and K (¢). Students should memorize the definition accurately.
The different quantifiers in statements of the form “given any ..., and there
exists ...” can be confusing initially. We often use the K(¢) game as a device
to emphasize exactly how the quantities are related in proving statements about
limits. The facts that the € >0 comes first and is arbitrary, and that the index
K (e) depends on it (but is not unique) must be stressed.

The idea of deriving estimates is important and Theorem 3.1.10 is often used
as a means of establishing convergence of a sequence by squeezing |x,, — 2| between
0 and a fixed multiple of |a,|.

A careful and detailed examination of the examples in 3.1.11 is very instruc-
tive. Although some of the arguments may seem a bit artificial, the particular
limits established there are useful for later work, so the results should be noted
and remembered.

Sample Assignment: Exercises 1, 2(a,c), 3(b,d), 5(b,d), 6(a,c), 8, 10, 14,
15, 16.

Partial Solutions:

1. (a) 0,2,0,2,0, (b) —1,1/2,—1/3,1/4,—1/5,
(c) 1/2,1/6, 1/12,1/20,1/30,  (d) 1/3, 1/6, 1/11, 1/18, 1/27.
2. (a) 2n+3, (b) (=1)m+t/2n (c) n/(n+1), (d) n2.
3. (a) 1,4, 13,40, 121, (b) 2, 3/2, 17/12, 577/408, 665, 857 /470, 832,
(€) 1,2 3,5 4, (d) '3, 5, 8, 13, 21.
4. Given € >0, take K(e) > |b|/e if b # 0.
(a) We have 0<n/(n?+1)<n/n?=1/n. Given ¢ >0, let K(¢)>1/e.
(b) We have |2n/(n+1) —2|=2/(n+1) <2/n. Given £ >0, let K(¢)>2/e.
(¢) We have |(3n+1)/(2n+5)—3/2|=13/(4n+10) <13/4n. Given € >0,
let K(e)>13/4e.
(d) We have |(n?—1)/(2n? +3) —1/2| =5/(4n? +6) < 5/4n? <5/4n. Given
>0, let K(g)>5/4e.

17
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(a) 1/v/n+7<1/y/n, (b) [2n/(n+2)—2|=4/(n+2) <4/n,

(© v/t 1) <1/ym, () [(~1)"n/(n?+1)| < 1/n.

(a) [1/In(n+1) <e] <= [In(n+1) > 1/e] <= [n+1>e'/?]. Given e >0, let
K> elle —1.

(b) If e=1/2, then e*—126.389, so we choose K=7. If e=1/10, then
el0 —1~22,025.466, so we choose K = 22,026.

. Note that ||z,| — 0| =]z, —0|. Consider ((—1)").
L 0< /Ty <e <= 0<ua, <e’
10.

Let e:=x/2. If M := K (¢), then n > M implies that |z — x,,| <& =x/2, which
implies that @, >z —z/2=x/2>0.
1/n—1/(n+1)|=1/n(n+1)<1/n?<1/n.

Multiply and divide by v'n? + 14n to obtain vn? + 1—n = 1/(vVn? + 14+n) <
1/n.

Note that n < 3" so that 0<1/3" <1/n.

Let b := 1/(1 + a) where a > 0. Since (14 a)® > in(n — 1)a®, we have
0<nb" <n/[3n(n—1)a? <2/[(n—1)a?]. Thus lim(nb")=0.

Use the argument in 3.1.11(d). If (2n)Y/™ =14 k,, then show that k2 <
22n—1)/n(n—1)<4/(n—1).

If n>3, then 0<n?/n!<n/(n—2)(n—1)<1/(n—3).
22222, 22 222 2 <2> g

n! 1-2-3-4- 34 n 3 3 3 3

If e:=x/2, then n > K(g) implies that |x — x,| < x/2, which is equivalent to
/2 <z, <3x/2<2z.

The results in this section, at least beginning with Theorem 3.2.3, are clearly
useful in calculating limits of sequences. They are also easy to remember. The
proofs of the basic theorems use techniques that will recur in later work, and so are
worth attention (but not memorization). It may be pointed out to the students
that the Ratio Test in 3.2.11 has the same hypothesis as the Ratio Test for the
convergence of series that they encountered in their calculus course. There are
additional results of this nature in the exercises.

Sample Assignment: Exercises 1, 3,5, 7,9, 10, 12, 13, 14.

Partial Solutions:

a) lim(z,)=1. (b) Divergence.

c) xn, >n/2, so the sequence diverges.
d) hm(:pn) =1lim(2+1/(n?+1))=2.

a) X :=(n), Y :=(=n) or X:=((-1)")

, Y :=((=1)"*"1). Many other exam-
ples are p0881ble. (b) X=Y:=((-1)")



CHAPTER 3 — SEQUENCES 19

3.V =(X+Y)-X.
4. If 2, := xpy, and lim(z,) = # 0, then ultimately z,, # 0 so that y, = z,, /2.
5. (a) (2™) is not bounded since 2" >n by Exercise 1.2.13.

10.

11.

12.

13.

14.

15.
16.
17.
18.

19.

(b) The sequence is not bounded.
(a) (hm(%—k%/n)) :221: , (b) 0, since |(=1)"/(n+2))| <1/n,
(c) li 1+1§ﬁ ==L (@ lim(1/n'/?2 +1/n3/2)=0+0=0.

If |b,| < B, B>0, and £>0, let K be such that |a,|<e/B for n> K. To
apply Theorem 3.2.3, it is necessary that both (a,) and (b,) converge, but a
bounded sequence may not be convergent.

In (3) the exponent k is fixed, but in (14 1/n)" the exponent varies.

1
Since yp=———-,
Y/ By
vn B 1
Vntl+yn  JT+1/n+1
(a) Multiply and divide by v4n? +n+ 2n to obtain 1/(y/4 +1/n+ 2) which
has limit 1/4.
(b) Multiply and divide by v/n?+5n+n to obtain 5/(1/1+5/n+ 1) which
has limit 5/2.

(a) (vV3)Y"(nY/™)1/* converges to 1-1Y/4=1.
(b) Show that (n+1)/™+ 1 =¢ for all n€N.

we have lim(y,)=0. Also we have /ny,=

so that lim(y/ny,) =

b)" +b b
W has limit O::—_l =b since 0 <a/b< 1.
(n+a)(n+b)—n? (atbntab  1/n
(n+a)(n+b)+n \/m—i-n 1/n

a+b+ab/n _) a+b
\/(l—i—a/n)(l—i—b/n) 2
(a) Since 1 <n!/" <nY/™ the limit is 1.
(b) Since 1 <n!<n™ implies 1 < (n!)l/”2 <n!/" the limit is 1.
Show that b < z, < 2!/"b.
(a) L=a, (b) L=b/2, (¢) L=1/b, (d) L=8/9.
(a) (1/n),  (b) (n).
If 1<r<L,let e:=L—r. Then there exists K such that |z,41/x, — L| <&

for n> K. From this one gets z,41/x, >r for n>K. If n>K, then
zp, > 1" Kz, Since r > 1, it follows that () is not bounded.

(a) Converges to 0, (b) Diverges,
(c) Converges to 0, (d) n!/n™ <1/n.
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20.

21.
22.

23.

24.
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If L<r<1 and e:=r — L, then there exists K such that |x71/n—L] <e=

r — L for n > K, which implies that x,l/n <r forn>K. Then 0 <z, <r" for
n> K, and since 0 <r <1, we have lim(r") =0. Hence lim(z,) =0.

(@) @),  (b) (n).

Yes. The hypothesis implies that lim(y,, — x,) =0. Since y,, = (yn — Tpn) + Tp,
it follows that lim(y,) = lim(zy,).

It follows from Exercise 2.2.18 that u,, = %(azn—i—ynﬂxn—ynD. Theorems 3.2.3
and 3.2.9 imply that lim(u,) = §[lim(zy,) + lim(y,) + | lim(z,) — lim(y,)|] =
max{lim(xy), lim(yy)}. Similarly for lim(vy,).

Since it follows from Exercises 2.2.18(b) and 2.2.19 that mid{a,b,c}=

min{max{a, b}, max{b, c}, max{c,a}}, this result follows from the preceding
exercise.

The Monotone Convergence Theorem 3.3.2 is a very important (and natural)
result. It implies the ezistence of the limit of a bounded monotone sequence.
Although it does not give an easy way of calculating the limit, it does give some
estimates about its value. For example, if (z,,) is an increasing sequence with
upper bound b, then limit z* must satisfy z, <z* <b for any n €N. If this is
not sufficiently exact, take x,, for m >n and look for a smaller bound ¥ for the
sequence.

Sample Assignment: Exercises 1, 2, 4, 5,7, 9, 10.

Partial Solutions:

. Note that zo =6 <z;. Also, if x5 <xg, then xp o= %xk+1 +2< %xk +2=

Zp4+1. By Induction, (z,) is a decreasing sequence. Also 0 <z, <8 for all
n€N. The limit = := lim(z,) satisfies z = Jx +2, so that z =4.

Show, by Induction, that 1<z, <2 for n>2 and that (z,) is monotone.
In fact, (z,,) is decreasing, for if z1 <3, then we would have (z1—1)?<
2?2 —2r1+1=0. Since z:= lim(z,) must satisfy r=2—1/z, we have
r=1.

Cap > 2, thenzpy =14+ —1>14+v/2—-1=2,s0x, >2foralln € N,

by Induction. If xpiq <z, then zpio=14+ 21 —1<14+Vap—1=
Zgt1, SO (xy,) is decreasing. The limit x:= lim(x,,) satisfies z =1+ v/x — 1 so
that © =1 or x=2. Since z =1 is impossible (why?), we have . =2.

. Note that y1=1<vV3=1vs, and if 941 —yn>0, then ynio—yni1=

(Yn+1—Yn)/(V2+ Ynt1+v2+yn) >0, so (yn) is increasing by Induction.
Alsoy1 <2 and if y,, < 2, then y,+1 =v/2 + yn < V2 +2 =2, 50 (y,) is bounded
above. Therefore (y,,) converges to a number y which must satisfy y = /2 +y,
whence y = 2.
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. We have y2 = \/p++/p > /D = y1. Also y, > y,—1 implies that y,41 =

VD F Yn > /D F Yn—1 = YUn, 50 (ypn) is increasing. An upper bound for (y,)
is B:=1+ 2,/p because y1 < B and if y, < B then y,y1 < /p+B =
1+ /p < B. If y:=lim(y,), then y = \/p + y so that y = %(1 +1+4p).
Show that the sequence is monotone. The positive root of the equation
22— 2z—a=0is z*:=1(14 /I +4a). Show that if 0 < z; < z*, then 27 — z; —
a < 0 and the sequence increase to z*. If z* < z1, then the sequence decreases
to z*.

Since x, >0 for all neN, we have z,; =2, +1/z, >x,, so that (x,) is
increasing. If z,, <b for all n €N, then z,,+1 —z, =1/x, >1/b>0 for all n.
But if lim(zy,,) exists, then lim(z,4+1 —x,) =0, a contradiction. Therefore
(xy,) diverges.

The sequence (a,,) is increasing and is bounded above by b1, so £ := lim(ay,)
exists. Also (by) is decreasing and bounded below by a; so n:= lim(by,)
exists. Since b, —a, >0 for all n, we have n—¢>0. Thus a, <&E<n<bh,
for all neN.

Show that if x1,x9,...,z,_1 have been chosen, then there exists x,, € A such
that , >u—1/n and x, > x for k=1,2,...,n—1.

Since yp41 —yYn=1/2n+1)+1/2n+2)-1/(n+1)=1(2n+1)(2n+2) >0,
it follows that (y,) is increasing. Also y,=1/(n+1)+1/(n+2)+ --- +
1/2n<1/(n+1)+1/(n+1)+ --- +1/(n+1)=n/(n+1) <1, so that (y,)
is bounded above. Thus (y,) is convergent. (It can be show that its limit
is In 2).

11. The sequence (z,) is increasing. Also z, < 14+ 1/1-241/2-3+--- +
I/(n=1)n=14+(1-1/2)+(1/2-1/3)+---+(1/(n—1)—1/n) =2-1/n < 2,
so (xy) is bounded above and (z,) is convergent. (It can be shown that its
limit is 72/6).

12. (a) (1+1/n)"(1+1/n) »e-1=¢,  (b) [(1+1/n)"]* — €7,

() [1+1/(n+ )" /[1+1/(n+1)] — e/l=e,
(d) 1=1/n)"=[1+1/(n—-1)]" e l=1/e.

13. Note that if n>2, then 0<s,, — V2 < s% — 2.

14. Note that 0 <s, —v/5<(s2 —5)/V5 < (s2 —5)/2.

15. e9=2.25, e, =2.441406, es=2.565785,  e15=2.637928.

16. e50 =2.691 588, e1p0 =2.704 814, e1000 =2.716 924.

Section 3.4

The notion of a subsequence is extremely important and will be used often. It
must be emphasized to students that a subsequence is not simply a collection of
terms, but an ordered selection that is a sequence in its own right. Moreover, the
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order is inherited from the order of the given sequence. The distinction between
a sequence and a set is crucial here.

The Bolzano-Weierstrass Theorem 3.4.8 is a fundamental result whose impor-

tance cannot be over-emphasized. It will be used as a crucial tool in establishing
the basic properties of continuous functions in Chapter 5.

10.

Sample Assignment: Exercises 1, 2, 3, 5, 6, 9, 12.

Partial Solutions:

Let xon—1:=2n—1, x2, :=1/2n; that is (z,)=(1,1/2,3,1/4,5,1/6,...).

 If 2 =Y, where 0 < ¢ < 1, then (z,) is increasing and bounded, so it has a

limit x. Since wo, = /Ty, the limit satisfies x =+/x, so x=0 or x=1. Since
x =0 is impossible (why?), we have z =1.

Since x, > 1 for all n € N, L > 0. Further, we have x,, = 1/x,1 +1 =
L=1/L+1=L*~L—-1=0= L=3(1+5).

. (a) w9y, — 0 and 9,41 — 2.

(b) 28, =0 and xg,41 = sin(7/4) =1/+/2 for all n€N.

I jzy, — 2| <e for n> Ky and |y, —z| <e for n> Ky, let K := sup{2K; —

1,2K5}. Then |z, — 2| <e for n> K.

(a) Zpy1 < Tp <= (n+ DY) < pl/m s (4 1) <™t =" . p =
(1+1/n)" <n.
(b) If z:= lim(x,), then

x = lim(z2n) = Um((2n)"/?") = lim((2"/"n!/™)1/2) = £1/2,

so that =0 or x =1. Since x, > 1 for all n, we have z=1.

(a) (14+1/n?)" — e,

(b) (14 1/2n)" = ((1+1/2n)?")}/2 — !/2,
(c) (1+1/n?)?" = 2.

(d) (1+2/n)"=1+1/(n+1)"- (1+1/n)" = e-e=e>.
(a) (3n)1/2n — ((3n)1/3n)3/2 v 13/2 = 1,

(b) (1+1/2n)3" = ((141/2n)>")3/2 — &3/2,

If (x,) does not converge to 0, then there exists g9 >0 and a subsequence
(T, ) with |zp, | >eo for all keN.

Choose my such that S <s,,, <S5+ 1. Now choose k; such that k; >m; and
Smy — 1 <@g, <8y fmp<mo< -+ <mp_1 and k; <ka < --- <kp_; have
been selected, choose m,, >m,_1 such that S <s,,, <S+1/n. Now choose
kn >my, and ky, > k,—1 such that s, —1/n<zy, <sp,. Then (zf, ) is a
subsequence of (z,,) and |z, — S| <1/n.
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11. Show that lim((—1)"z,)=0.

12. Choose n; >1 so that |x,,|> 1, then choose ny >n; so that |z,,| >2, and,
in general, choose n; >ny_1 so that |z,,| > k.

13. (2n_1)=(—1,-1/3,-1/5,...).

14. Choose nj >1 so that z,, > s— 1, then choose ng >n; so that z,, >s—1/2,
and, in general, choose ny >ny_1 so that x,, >s—1/k.

15. Suppose that the subsequence (z,, ) converges to z. Given n € N there exists
K such that if k> K then ng >n, so that x,, € I,, C I,=ay,by,] for all
k> K. By 3.2.6 we conclude that x = lim(zy,, ) belongs to I,, for arbitrary
neN.

16. For example, X =(1, 1/2, 3, 1/4, 5, 1/6, ...).
17. limsup(z,) =1, sup{z,}=2, liminf(z,)=0, inf{z,}=—1.

18. If = lim(x,) and €>0 is given, then there exists N such that x — ¢ <
Zn < x + ¢ for n > N. The second inequality implies limsup(z,) < x + ¢
and the first inequality implies liminf(z,) >z —e. Then 0 < limsup(z,) —
liminf(z,) <2e. Since €>0 is arbitrary, equality follows. Conversely, if
x = lim inf(z,)= limsup(z,), then there exists Ny such that x,, <z +¢ for
n > N1, and Ny such that x — e <z, for n > No. Now take NV to be the larger
of N1 and NQ.

19. If v > limsup(zy,) and u > limsup(y, ), then there are at most finitely many
n such that x, > v and at most finitely many n such that y, >v. Therefore,
there are at most finitely many n such that x, 4+ y, > v+ u, which implies
lim sup(zy, + yn) <v+wu. This proves the stated inequality. For an example
of strict inequality, one can take z,, = (—1)" and y, = (—1)"*1.

Section 3.5

At first, students may encounter a little difficulty in working with Cauchy
sequences. It should be emphasized that in proving that a sequence (z,) is a
Cauchy sequence, the indices n,m in Definition 3.5.1 are completely indepen-
dent of one another (however, one can always assume that m >n). On the other
hand, to prove that a sequence is not a Cauchy sequence, a particular relationship
between n and m can be assumed in the process of showing that the definition is
violated.

The significance of Cauchy criteria for convergence is not immediately appar-
ent to students. Its true role in analysis will be slowly revealed by its use in
subsequent chapters.

We have included the discussion of contractive sequences to illustrate just
one way in which Cauchy sequences can arise.
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Sample Assignment: Exercises 1, 2, 3,5, 7, 9, 10.

Partial Solutions:

1. For example, ((—1)").

.lim(m—ﬁ):lim<

a) If m>n, then [(14+1/m)—(1+1/n)|<2/n.
YO<1/(n+ 1)+ -+ +1/m! <1/2", since 2F < k! for k> 4.

) Take m=2n, S0 x, — &y = T2, — x, > 1 for all n.
c) Take m=2n, S0 &y, — T =T2p — Tp= In2n— Inn=In2 for all n.

(
(b
. (a) Note that |(—1)" — (—=1)"*!|=2 for all n € N.
(b
(

. Use |mYm — Tnn| < |ym||Tm — zn| + |Zn||ym — yn| and the fact that Cauchy

sequences are bounded.

1
———— ] =0. However, if m=4n, then
vn+14 \/ﬁ>
Vian — y/n=+/n for all n.

. Let x,:=1+1/24 --- +1/n, which is not a Cauchy sequence. (Why?)

However, for any peN, then 0<zpip—2,=1/(n+1)+ --- +1/(n+p) <
p/(n+1), which has limit 0.

7. If x, xy, are integers and |z, — x| <1, then z, = x,.

10.

. Let u := sup{z,, : neN}. If £>0, let H be such that u—e<zy <u. If

m>n>H, then u—e <z, <z, <uso that |z, —x,|<e.

. If m>n, then |y, —x,| <r"+7r"T 4 ... 49m=L <9 /(1 —7), which con-

verges to 0 since 0 <r < 1.

If L:=x9— 21, then |z,.1 — 2, =L/2""!, whence it follows that (z,,) is a
Cauchy sequence. To find the limit, show that 9, 1 =21+ L/2+ L/23+
L/25+ -+ + L/2*""1 whence lim(x,,) =21 + (2/3) L= (1/3)z1 + (2/3)x2.

11. Note that |yn, — yn+1| = (2/3)|yn — Yn—1]- Since y2 >y1, the limit is y=y; +
(3/5)(y2 — 1) = (2/5)yr + (3/5)yz-

12. Show that |z,+1 —n| < %|acn — 2p_1|. The limit is v/2 — 1.

13. Note that z, > 2 for all n, so that |zp+1 — xn| = |1/2n — 1/ap_1| =
|Tn — Tp—1|/Tnxn—1 < %]azn — x,_1|. The limit is 1+ /2.

14. Let zp41= (23 +1)/5 and x1:=0. Four iterations give r=0.20164 to 5
decimal places.

Section 3.6

This section can be omitted on a first reading. However, it is short, relatively easy,
and prepares the way for Section 4.3. One must frequently emphasize that oo and
—o0 are not real numbers, but merely convenient abbreviations. While there is
no reason to expect that one can manipulate with properly divergent sequences
as one does in Theorem 3.2.3, there are some results in this direction.
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Sample Assignment: Exercises 1, 2, 3, 5, 8, 9.

Partial Solutions:

. If the set {x, : n€N} is not bounded above, choose njii1 >ny such that

ZTp, >k for ke N.

2. (a‘) T = \/ﬁv Yn =N, (b) Tn =Ny Yn = \/ﬁ

3. Note that |z, — 0| <e if and only if 1/x,, >1/e.

10.

Section 3.7

(a) [yn>a] &= [n>d?], (b) vVn+1>+/n,
(c) VR —1>+/n/2 when n>2, (d) n/vn+1>+/n/2.

. No. Asin Example 3.4.6(c), there is a subsequence (ny) with n sin(ng) > $ng,

and there is a subsequence (my,) with my sin(mg) < —Fmy.

If (y,,) does not converge to 0, there exists ¢ >0 and a subsequence (y,, ) with
|yn, | = c. Hence |z, | = |%n, Yn,/Yn,| is bounded, contradicting the fact that
(z,) is properly divergent.

(a) There exists Ny such that if n> Ny, then 0<z, <y,. If lim(z,)=o00
then lim(y,) = co.

(b) Suppose that |y,| <M for some M >0. Given >0 there exists N,
such that if n > N then 0 <z, /y, <e/M. Therefore |z,| < (¢/M)y, <e for
n> Ne.

(a) n < (n?+2)Y/2.

(b) Since \/n < n, then /n/(n?+1)<n/(n?+1)<1/n.

(c¢) Since n < (n? +1)Y/2, then n'/? < (n? +1)Y/2/n1/2,

(d) If the sequence were convergent, the subsequence corresponding to rj, = k?
would converge, contrary to Example 3.4.6(c).

(a) Since z,/y, — 00, there exists K7 such that if n > K, then x,, > y,,. Now
apply Theorem 3.6.4(a).

(b) Let 0 <x,, <M. If (y,) does not converge to 0, there exist ¢g >0 and a
subsequence (yy, ) such that g <yp,. Since lim(x, /y,) =00, there exists K
such that if k> K, then M/eg < xp, /Yn,, which is a contradiction.

Apply Theorem 3.6.5.

This section gives a brief introduction to infinite series, a topic that will be
discussed further in Chapter 9. However, since the basic results are merely a
reformulation of the material in Sections 3.1-3.6, it is useful to treat this section
here — especially, if there is a possibility that one might not be able to cover
Chapter 9 in class.

It must be made clear to the students that there is a significant difference

between a “sequence” of numbers and a “series” of numbers. Indeed, a series is
a special kind of sequence, where the terms are obtained by adding terms in a
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given sequence. For a series to be convergent, the given terms must approach
0 “sufficiently fast”. Unfortunately there is no clear demarcation line between
the convergent and the divergent series. Thus it is especially important for the
students to acquire a collection of series that are known to be convergent (or
divergent), so that these known series can be used for the purpose of comparison.
The specific series that are discussed in this section are particularly useful in this
connection.

Although much of the material in this section will be somewhat familiar to the

students, most of them will not have heard of the Cauchy Condensation Criterion
(Exercise 15), which is a very powerful test when it applies.

Sample Assignment: Exercises 1, 2, 3(a,b), 4, 8, 12, 15, 16, 17.

Partial Solutions:

. Show that the partial sums of ) b, form a subsequence of the partial sums

of > ap.

. If a, =b,, for n> K, show that the partial sums s, of > a, and ¢, of > b,

satisfy s, —t, =sg —tg for all n > K.

. (a) Note that 1/(n+1)(n+2)=1/(n+1)—1/(n+2), so the series is tele-

scoping and converges to 1.

(b) 1/(a+n)(a+n+1)=1/(a+n) —1/(a+n+1). N
(c) 1/n(n+1)(n+2) = 1/2n —1/(n+ 1) + 1/2(n + 2), so that > ;' =
1/4—1/2(N+1)+1/2(N +2).

4. If sp:= Y 7 xp and tn 1= D> 7 Yk, then s, +t, = > 7 (zk + y)-

. No. Let zp:=zf +yg so that yp =z + (—1D)ag. If D (—1)xp and > z; are

convergent, then Yy is convergent.

(a) (2/7)?[1/(1-2/T)]=4/35.  (b) (1/9)[1/(1—1/9)]=1/8.

7214+ (P24 ) =12/ (1—-1?)

10.

11.

12.
13.

S=e+el+34 - =¢/(1—e).

S=1/9=0.111--- if e=0.1, and S=1/99=0.0101--- if e =0.01.

. (a) The sequence (cosn) does not converge to 0.

(b) Since |(cosn)/n?| <1/n?, the convergence of Y (cosn)/n? follows from
Example 3.7.6(c) and Theorem 3.7.7.

Note that the “even” sequence (sg,,) is decreasing, and the “odd” sequence
(S2n+1) is increasing and —1 < s, < 0. Moreover 0 < S9, — Sopq1 =

1/v2n+1.

If convergent, then a, — 0, so there exists M >0 such that 0<a, <M,
whence 0 < a2 < Ma,, and the Comparison Test 3.7.7 applies.

3" 1/n? is convergent, but > 1/n is not.

Recall that if a,b>0 then 2v/ab<a+b, 50 \/anani1 < (an + ans1)/2. Now
apply the Comparison Test 3.7.7.
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Show that by > ay/k for k €N, whence by + -+ +b, >a1(1+ --- +1/n).
Evidently 2a(4) < a(3) + a(4) < 2a(2) and 22a(8) < a(5) + - - +a(8) < 2%a(4),
etc. The stated inequality follows by addition. Now apply the Comparison
Test 3.7.7.

Clearly n? < (n+1)P if p >0, so that the terms in the series are decreasing.
Since 2" (1/2P") = (1/2P~1)", the Cauchy Condensation Test asserts that the
convergence of the p-series is the same as that of the geometric series with
ratio 1/2P~!, which is <1 when p>1 and is >1 when p <1.

(a) The terms are decreasing and 2"/2"In(2")=1/(nIn2). Since the har-
monic series »_ 1/n diverges, so does Y 1/(nlnn).

(b) 27/2"(In2")(Inln2") =1/(nIn2)(Inn(ln2)). Now use the Limit Compa-
rison Test 3.7.8 and part (a).

(a) The terms are decreasing and 2"/2"(In2")¢ = (1/n) - (1/1n2)°. Now use
the fact that > (1/n¢) converges when ¢ > 1.

(b) Since In(n/2) < In(nln2), we have 1/(In(nlnn))®<1/(In(n/2))¢. Now
apply (a).



CHAPTER 4
LIMITS

In this chapter we begin the study of functions of a real variable. This and
the next chapter are the most important ones in the book, since all subsequent
material depends on the results in them. In Section 4.1 the concept of a limit of a
function at a point is introduced, and in Section 4.2 the basic properties of limits
are established. Both of these sections are necessary preparation for Chapter 5.
However, Section 4.3 can be omitted on a first reading, if time is short.

Examples are a vital part of real analysis. Although certain examples do
not need to be discussed in detail, we advise that the students be urged to study
them carefully. One way of encouraging this is to ask for examples of various
phenomena on examinations.

Section 4.1

Attention should be called to the close parallel between Section 3.1 and this sec-
tion. It should be noted that here §(¢) plays the same role as K () did in Section
3.1. The proof of the Sequential Convergence Theorem 4.1.8 is instructive and
the result is important. As a rule of thumb, the -0 formulation of the limit is
used to establish a limit, while sequences are more often used to (i) evaluate a
limit, or (ii) prove that a limit fails to exist.

Sample Assignment: Exercises 1, 3, 6, 8, 9, 10(b,d), 11(a), 12(a,c), 15.

Partial Solutions:

1. (a—c)If |z — 1| <1, then |z + 1| <3sothat |#? — 1| <3|z —1|. Thus, |z — 1| <
1/6 assures that |z — 1| < 1/2, etc.
(d) Since 2® —1=(zx—1)(z®2+z+1), if [x—1| <1, then 0<z <2 and so
|23 — 1| < 7|z —1].

2. (a) Since |z —2|= |z —4]/(v/z +2) < §|z — 4|, then |z — 4| <1 implies that

lVz—2]<i.
(b) If |z — 4| < 2 x 1072 =.02, then |\/z — 2| < .01.

3. Apply the definition of the limit.

4. If 11;1£>nc f(y) =L, then for any € > 0 there exists > 0 such that if 0 < |y — ¢| <4,
then |f(y) — L|<e. Now let z:=y—c so that y=x+¢, to conclude that
iig(l) flx+c)=L.

5. If 0<z<a, then 0<x+c<a+c<2a, so that |22 —c?|=|z+c||lz—¢| <
2a|z — c|. Given € > 0, take ¢ :=¢/2a.

6. Take 0:=¢/K.
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Let b:=|c|+1. If |z|<b, then |22+ cx+c?<3b%. Hence |23—c3|<
(3b%)|x — ¢| for |z| <b.

Note that /z —+vc= (Ve —ve)(Ve+ve)/(Ve+e)=(z—c)/(Ve+/c).
Hence, if ¢#0, we have |\/z — /¢| < (1//¢)|z — ¢|, so that we can take § :=
ev/c. If c=0, we can take § :=¢2, so that if 0 <z <, then |\/z — 0| <e.

(a) If |[z—2|<1/2, then x>3/2, so x —1>1/2 whence 0<1/(z—1)<2
and so [1/(1—z)+1|=|(z—2)/(x—1)]<2|z—2|. Thus we can take
d:=inf{l1/2,¢/2}.

(b) If |x —1] <1, then z+1>1,s0 1/(x+1) <1 whence |z/(1+xz)—1/2|=
|z —1]/(2|z+1]) < |z —1]/2 < |z — 1|. Thus we may take 0 := inf{l,e}.

(c) If 2 #0, then |22/|z| — 0| = |z|. Take § :=¢.

(d) If |x—1| <1, then |22 —1|<3 and 1/|z+1| <1, so that |(2®> —x+1)/
(x+1)—1/2| =22 — 1||xz — 1|/(2|x +1]) < (3/2)|z — 1|, so we may take §:=
inf{1, 2¢/3}.

(a) If |z —2| < 1, then |22+ 42 — 12| = |2 + 6|z — 2| < 9|z — 2|. We may take
d:= inf{1,e/9}.

(b) If [x+1| <1/4, then —5/4 <z < —3/4 so that 1/2 <2z + 3 < 3/2, and thus
0<1/(2z+3)<2. Then [(x+5)/(2z +3) —4|="T|z +1|/|2z + 3| < 14|z + 1],
so that we may take 0 := inf{1/4,¢/14}.

(a) If | — 3| <1/2, then x >5/2, so 4x —9 > 1 and then 1/|4z — 9| <1. Then
ar =1 3‘ = ‘M’ < 10|z — 3|. Thus we take 6 = inf{1/2,¢/10}.

dz—9 4z -9
(b) If |z —6| <1, then z4+1<8, and x+3>8, so that (x+1)/(z+3)<1.

Then ‘xijr:;x —2‘ = ‘ii%’ |z — 6] <|x —6]. Thus we take § = inf{1,e}.

(a) Let zp,:=1/n. (b) Let z,, :=1/n?.

(c) Let x,:=1/n and y,, :=—1/n.

(d) Let z, :=1/y/nm and y,, :=1/+/7/2+ 27n.

If |f(y) — L| <e for |y| <0, then |g(x) — L| <& for 0< |z| <d/a.

(a) Given £ >0, choose d >0 such that 0 < |z —c| < implies (f(x))? < 2.
(b) If f(x):=sgn(x), then liH?(l)(f(l‘))2 =1, but lirr%] f(x) does not exist.
x— z—

(a) Since |f(z) — 0| <|z|, we can take § :=¢ to show that lin(l) f(z)=0.

T—
(b) If ¢#0 is rational, let (x,) be a sequence of irrational numbers that
converges to ¢; then f(c)=c#0=lim(f(x,)). If ¢ is irrational, let (ry,)
be a sequence of rational numbers that converges to ¢; then f(c)=0#c=
lim(f(rn)).
Since I is an open interval containing ¢, there exists a >0 such that the
a-neighborhood V,(¢) C I. For € >0, if § >0 is chosen so that § <a, then it
will apply to both f and f;.

The restriction of sgn to [0, 1] has a limit at 0.
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Note the close parallel between this section and Section 3.2. While the proofs
should be read carefully, the main interest here is in the application of the theorems
to the calculation of limits.

Sample Assignment. Exercises 1, 2, 4, 5, 9, 11, 12.

Partial Solutions:

1. (a) 15 (b) —3, (c) 1/12, (d) 1/2.

(a) The limit is 1.

(b) Since (22 —4)/(z — 2) =x + 2 for x # 2, the limit is 4. Note that Theorem
4.2.4(b) cannot be applied here.

(c¢) The quotient equals = + 2 for x # 0. Hence the limit is 2.

(d) The quotient equals 1/(y/z+ 1) for  # 1. The limit is 1/2.

. Multiply the numerator and denominator by /1+ 2z ++/1+ 3z. The limit

is —1/2.

. If x,:=1/27n for n €N, then cos(1/zy,)=1. Also, if y,, :=1/(2mn + 7/2) for

n €N, then cos(1/y,) =0. Hence cos(1/z) does not have a limit as x — 0.
Since |z cos(1/x)| < |z|, the Squeeze Theorem 4.2.7 applies.

I f(x)| <M for x € Vs(c), then |f(z)g(x) — 0] < M|g(x) — 0| for = € Vj(c).

6. Given € >0, choose 01 >0 so that if 0 < |z —¢| < d1,x € A, then |f(z) — L| <

10.

11.
12.

£/2. Choose 02 >0 so that if 0< |z —¢|<d2,z € A, then |g(x) — M|<e/2.
Take §:= inf{d;,02}. If x € A satisfies 0 < |z — | <9, then |(f(z)+g(z)) —
(L+ M)|<|f(z) = L]+ |g(x) — M| <e/2+¢/2=¢.

Let (x,) be any sequence in A\ {c} that converges to ¢. Then (f(zy)) con-
verges to L and (h(z,,)) converges to H. By 3.23(b), (f(z,)/h(x,)) converges
to L/H. Since (z,,) is an arbitrary sequence in A\ {c}, it follows from 4.1.8
that glcig}:f/h:L/H.

If |#| <1,k €N, then |2¥| = |z|* <1, whence — 22 <2¥"2 <22 Thus, if n>2,
we have |2" — 0| < |22 — 0| for || < 1. Consequently lir% " =0.
T—>

. () Note that g(z) = (f + g)(z) — f(2).

(b) No; for example, take f(z)=2? and g(z):=1/z for x> 0.

Let f(x):=1 if x is rational and f(x):=0 if x is irrational, and let
g(x):=1— f(x). Then f(x)+g(x)=1 for all z€R, so that ilir(l)(f +g9)=1,
and f(x)g(x)=0 for all x € R, so that ili% fg=0.

(a) No limit, (b) 0, (c) No limit, (d) 0.

Since f((k+1)y)= f(ky+y)=f(ky)+ f(y), an induction argument shows
that f(ny)=nf(y) for all neN, yeR. If we substitute y:=1/n, we get
f(1/n)=f(1)/n, whence L = ilg%)f(x) = lim(f(1/n))=0. Since f(z) — f(c)=



13.

14.
15.

Section 4.3

CHAPTER 4 — LIMITS 31

Tr—cC Tr—cC

f(z—¢), we infer that lim(f(x) — f(¢))= lim f(x —c)= li_r)r(lJ f(2)=0, so that

() 9(f(x) =gz +1) =2 2 £0, so that lim g(f(x)) =2, but g(lim (x)) =
g9(f(0))=g(1)=0. Not equal.

(b) f(g(x)) =g(x) + 1=3if z # 1, s0 that lim f(g(x)) =3, and f(lim g(x)) =
f(2)=3. Equal.

If aljll}r}:f($) =L, then ||f(x)| — |L|| <|f(xz) — L| implies that glclgé|f(x)| =|L|.
This follows from Theorem 3.2.10 and the Sequential Criterion 4.1.8. Alter-
natively, an e-§ proof can be given.

This section can play the role of reinforcing the notion of the limit, since it provides
several extensions of this concept. However, the results obtained here are used in
only a few places later, so that it is easy to omit this section on a first reading.
In fact, one-sided limits are used only once or twice in subsequent chapters.

In any case, we advise that the discussion of this section be quite brief.

Indeed, it is quite reasonable to give a short introduction to it in a class, and
leave it to the students to return to it later, when needed.

Sample Assignment: Exercises 2, 3, 4, 5(a,c,e,g), 8, 9.

Partial Solutions:

. Modify the proof of Theorem 4.1.8 appropriately. Note that 0 < |x —¢| <4 is

replaced by 0 <z — ¢ < since x > c.
Let f(x):=sin(1/x) for <0 and f(z):=0 for > 0.

3. Given a>0, if 0<z<1/a?, then /2 <1/a, and so f(x)>a. Since a is

arbitrary, lironJr x/(x—1)=o0.
r—r

4. If >0, then f(z) >« if and only if [1/f(z) — 0| <1/a.

.(a) If a>1 and 1<z<a/(a—1), then a<z/(r—1), hence we have

(b) The right-hand limit is oco; the left-hand limit is —oo.

(c) Since (z +2)/v/x >2/+/x, the limit is co.

(d) Since (z +2)/+/x > +/z, the limit is oco.

(e) If x>0, then 1/\/z < (v/x+1)/x, so the right-hand limit is co. What is
the left-hand limit?

(f) 0. (g) 1. (h) —1.

Modify the proof of Theorem 4.3.2 (using Definition 4.3.10). Note that
0<x—c<d(e) is replaced by = > K (e).

Use Theorem 4.3.11.
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. Note that |f(z)—L|<e for z>K if and only if |f(1/z)—L|<e for
0<z<1/K.

. There exists a> 0 such that |z f(z) — L| <1 whenever x > a. Hence |f(z)| <
(IL|+1)/x for z > a.

Modify the proof of Theorem 4.3.11 (using Definition 4.3.13). Note that
|f(xz) — L| <e is replaced by f(z)> «a [respectively, f(z) < a].

Let >0 be arbitrary and let 3> (2/L)a. There exists d; >0 such that
if 0<|z—c|<d; then f(x)>L/2, and there exists 62 >0 such that if
0<|z—c| < dg, then g(x) > 3. If d3:= inf{d1, 42}, and if 0 < |z — ¢| < 3 then
f(z)g(z) > (L/2)B > a. Since « is arbitrary, then liin fg=o00. Let ¢=0 and
let f(x):=|z| and g(x):=1/|x| for x # 0.

Let f(x)=g(x):=z (or let f(z):=z and g(z) =2+ 1/x).

No. If h(z):= f(z) — g(z), then f(z)/g(x)=1+h(x)/g(x) — 1.

Suppose that |f(x) — L| <e for x > K, and that g(y) > K for y> H. Then
|fog(y)—L|<e for y>H.



CHAPTER 5
CONTINUOUS FUNCTIONS

This chapter can be considered to be the heart of the course. We now use all the
machinery that has been developed to this point in order to study the most impor-
tant class of functions in analysis, namely, continuous functions. In Section 5.3,
the fundamental properties of continuous functions are proved, and this section is
the most important of this chapter. Sufficient time should be spent on it to allow
adequate study of the proofs and examples. Section 5.4 on uniform continuity is
also an important section. Section 5.5 contains a different approach to the basic
theorems in Sections 5.3 and 5.4, using the idea of a “gauge”.

The results on monotone functions in Section 5.6 are interesting, but they
are not central to this course and these results will not be used often in later parts
of this book.

Section 5.1

This important section is absolutely basic to everything that will follow. Every
effort should be made to have the students master the notions presented here.
They should memorize the definition of continuity and its various equivalents,
and they should study the examples very carefully.

Sample Assignment: Exercises 1, 3, 4(a,b), 5, 7, 11, 12, 13.

Partial Solutions:

3. We will establish the continuity of h at b. Since f is continuous at b, given
€ > 0 there exists 6; > 0 such that if b — d; < x < b, then |f(z) — f(b)| <e. Sim-
ilarly, there exists d2 > 0 such that if b < x < b+ d2, then |g(z) — g(b)| <e. Let
d:= inf{d1, 02} so that |h(x) — h(b)| < e for |x — b| < §, whence h is continuous
at b.

4. (a) Continuous if x #0,+1,+2, ...,

(b) Continuous if z# +1,+2,...,
(c¢) Continuous if sinz #0, 1,
(d) Continuous if z#0,+1,4+1/2,....

5. Yes. Define f(2):= il_)ﬂ% f(z)=5.

6. Given € >0, choose § >0 such that if x € Vs(c) N A, then |f(x) — f(c)| <e/2.
Then if y € V5(c) N A, we have [f(y) — f(2)| <[f(x) = f(c)| +|f(c) = f(y)| <
g/2+¢/2=c¢.

7. Let e:= f(c)/2, and let 6 > 0 be such that if |x —¢| <, then |f(x) — f(c)| <e,
which implies that f(x)> f(c) —e= f(c)/2>0.

8. Since f is continuous at x, we have f(x)= lim(f(z,))=0. Thus z€S.

33
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(a) If | f(x) — f(c)| <e for z € VzN B, then |g(x) — g(c)| =|f(x) — f(c)| <e for
x € Vs(c) N A.

(b) Let f=sgn on B:=[0,1],g=sgn on A:=(0,1] and ¢=0.

Note that ||z — \CH <|zx—c|.

Let c€R be given and let e>0. If |z—c|<e/K, then |f(z)— f(c)|<
Klzr—c|<K(e/K)=e.

If x is irrational, then by the Density Theorem 2.4.8 there exists a sequence
(rn) of rational numbers that converges to . Then f(x)= lim(f(r,))=0.
Since |g(z) — 6] < sup{|2z — 6|, |v — 3|} =2|z — 3|, then g is continuous at
x=3. If ¢#3, let (z,) be a sequence of rational numbers converging to
¢ and let (y,) be a sequence of irrational numbers converging to c¢. Then
lim(g(xy,)) =2c¢# c+ 3= lim(g(yn)), so g is not continuous at c.

Let ce A. If k is continuous at ¢, it follows from 4.2.2 that k is bounded
on some neighborhood (¢ —d,c¢+J). Let m €N be given; then there exists
a prime number p such that 1/p<d and p>m. (Why?) There must be at
least one rational number ¢/p with ¢ —§ < q/p < ¢+ J; otherwise there exists
an integer go such that qo/p<c—3d and ¢+ 06 < (go + 1)/p, which implies that
26 <1/p, a contradiction. We conclude that k(xz)=p>m for at least one
point = € (¢ —9J,c+6). But this is a contradiction.

Let I, :=(0,1/n] for ne€N. Show that (sup f(I,)) is a decreasing sequence
and (inf f(I,)) is an increasing sequence. If lim(sup f(I,,)) = lim(inf f(1,)),
then lim f exists. Let xy,,y, € I, be such that f(x,)> sup f(I,,) —1/n and

Flyn)' < inf F(I,) +1/n.

Note the similarity of this section with Sections 4.2 and 3.2. However, Theorem
5.2.6 concerning composite functions is a new result, and an important one. Its
importance may be suggested by the fact, noted in 5.2.8, that it implies several
of the earlier results.

The significance of this section should be clear: it enables us to establish the

continuity of many functions.

Sample Assignment: Exercises 1, 3, 5, 6, 10, 12, 13.

Partial Solutions:

. (a) Continuous on R, (b) Continuous for z >0,

(c¢) Continuous for z # 0, (d) Continuous on R.

2. Use 5.2.1(a) and Induction; or, use 5.2.8 with g(z) :=a".
3. Let f be the Dirichlet discontinuous function (Example 5.1.6(g)) and let

g(x):=1— f(x).

. Continuous at every noninteger.
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. Given € > 0, there exists d; >0 such that if |y — b| < d1, then |g(y
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The function g is not continuous at 1= f(0).

)—g(b)| <e.
Further, there exists § >0 such that if 0<|z —¢| <9, then |f(z)—b| <.
Hence, if 0 < |z —¢| < 6, then we have |[(g o f)(z) — g(b)] < ¢, so that
lim (g o f)(x) = g(b).
Tr—cC
Let f(x):=1 if = is rational, and f(z):=—1 if x is irrational.
Yes. Given z € R, let (r,) be a sequence of rational numbers with r, — x.

Show that an arbitrary real number is the limit of a sequence of numbers of
the form m/2", where m € Z,n € N.

If ce P, then f(c)>0. Now apply Theorem 4.2.9.

If h(z):= f(z) — g(x), then h is continuous and S = {x € R : h(z) > 0}.
First show that f(0)=0 and f(—x)=—f(x) for all z€R; then note that
flx—x0)=f(x) — f(zp). Consequently f is continuous at the point zq if
and only if it is continuous at 0. Thus, if f is continuous at xzg, then it is
continuous at 0, and hence everywhere.

First show that f(0)=0 and (by Induction) that f(z)=cx for z €N, and
hence also for xz € Z. Next show that f(z)=cz for z € Q. Finally, if x ¢ Q,
let = lim(r,) for some sequence in Q.

First show that either g(0) = 0 or g(0) = 1. Next, if g(o) = 0 for some
a € R and if x €R, let y:=x — « so that z =a+y; hence g(x) =g(a+y) =
g(a)g(y)=0. Thus, if g(a)=0 for some «, then it follows that g(z)=0
for all z € R.

Now suppose that g(0) =1 so that g(c) #0 for any c € R. If g is continuous
at 0, then given € >0 there exists 6 >0 such that if |h| <J, then |g(h) — 1| <
e/lg(c)]. Since g(c+h)—g(c) = g(c)(g(h)—1), it follows that |g(c+h)—g(c)| =
lg(c)]lg(h) — 1] < e, provided |h| < §. Therefore g is continuous at c.

If f(x)>g(x), then both expressions given h(x)= f(z); and if f(z)<g(z),
then h(z) =g(x) in both cases.

In this section, we establish some very important properties of continuous func-
tions. Unfortunately, students often regard these properties as being “obvious”,
so that one must convince them that if the hypotheses of the theorems are
dropped, then the conclusions may not hold. Thus, for example, if any one of the
three hypotheses [(i) [ is closed, (ii) I is bounded, (iii) f is continuous at every
point of I] of Theorem 5.3.2 is dropped, then the conclusion that f is bounded
may not hold, even though the other two hypotheses are retained. Similarly for
Theorems 5.3.4 and 5.3.9. Thus, each theorem must be accompanied by examples.
In 5.3.7, we do not assume that I is a closed bounded interval, but we work within
a closed bounded subinterval of I.
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The proofs of Theorems 5.3.2 and 5.3.4 presented here are based on the

Bolzano-Weierstrass Theorem. In Section 5.5 different proofs are presented based
on the concept of a “gauge”. In Chapter 11 these theorems are extended to general
“compact” sets in R by using the Heine-Borel Theorem.

Students often misunderstand Theorems 5.3.9 and 5.3.10, believing that the

image of an interval with endpoints f(a), f(b). Consequently, Figure 5.3.3 should
be stressed in an attempt to dispell this misconception. Also, examples can be
given to show that the continuous image of an interval (a,b) can be any type of
interval, and not necessarily an open interval or a bounded interval.

Sample Assignment: Exercises 1, 3, 5, 6, 7, 8, 10, 13, 15.

Partial Solutions:

. Apply either the Boundedness Theorem 5.3.2 to 1/f, or the Maximum-

Minimum Theorem 5.3.4 to conclude that inf f(1) >0

Alternatively, if x, € I such that 0< f(z,) <1/n, then there is a subse-
quence (z,, ) that converges to a point xg € I. Since f(z¢) = lim(f(zn,))=0,
we have a contradiction.

I f(xn) =g(x,) and lim(x,) =xg, then f(xg)= lim(f(z,))= lim(g(z,))=

g(wo).

. Let 21 be arbitrary and let 5 € I be such that |f(22)| < 3| f(z1)|. By Induc-

tion, choose @,41 such that |f(2ni1)| < 5|f(@n)] < (3)"[f(z1)|. Apply the
Bolzano-Weierstrass Theorem to obtain a subsequence that converges to some
c€ 1. Now show that f(c)=0

Alternatively, show that if the minimum value of |f| on I is not 0, then a
contradiction arises.

. Suppose that p has odd degree n and that the coefficient a,, of ™ is positive.

By 4.3.16, we have li_>m p(z) =00 and EIP p(z) = —o00. Hence p(a) <0 for
some <0 and p(3) >0 for some [§>0. Therefore there is a zero of p in

[, 1.

. In the intervals [1.035, 1.040] and [—7.026, —7.025].
6. Note that ¢g(0)=f(0)— f(1/2) and g¢(1/2)=f(1/2)— f(1)

=—g(0). Hence
there is a zero of g at some c€[0,1/2]. But if 0=g(c)= f(c) — f(c+1/2),
then we have f(c)=f(c+1/2).

In the interval [0.7390, 0.7391].
[

. In the interval [1.4687, 1.4765].
. (a) 1, (b) 6.

10.
11.

1/2" <107 implies that n > (5In10)/In2 ~ 16.61. Take n=17.

If f(w)<O0, then it follows from Theorem 4.2.9 that there exists a
d-neighborhood Vjs(w) such that f(x) <0 for all z € Vs(w). But since w < b,
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this contradicts the fact that w = sup W. There is a similar contradiction if
we assume that f(w) > 0. Therefore f(w)=0.

12. Since f(m/4) <1 while f(0)=1 and f(7w/2) > 1, it follows that z¢ € (0,7/2).
If cosxg > x%, then there exists a d-neighborhood Vs(xg) € I on which
f(x)= cosz, so that z( is not an absolute minimum point for f.

13. If f(z)=0 for all z €R, then all is trivial; hence, assume that f takes on
some nonzero values. To be specific, suppose f(c) >0 and let ¢:= % f(e),
and let M >0 be such that |f(z)| <e provided |z| > M. By Theorem 5.3.4,
there exists ¢* € [-M, M| such that f(c¢*) > f(x) for all x € [-M, M| and we
deduce that f(c*) > f(z) for all x € R. To see that a minimum value need not
be attained, consider f(z):=1/(z%+1).

14. Apply Theorem 4.2.9 to 5 — f(x).

15. If 0<a<b< oo, then f((a,b))=(a? b?); if —co<a<b<0, then f((a,b))
(b%,a%). If a<0<b, then f((a,b)) is not an open interval, but equals [0, c
where c¢:= sup{a?,b?}. Images of closed intervals are treated similarly.

16. For example, if a <0< b and c¢:= inf{1/(a®+1),1/(b*> + 1)}, then g((a,b))
(c,1]. If 0<a<b, then g((a,b))=(1/(b>+1),1/(a®>+1)). Also g([-1,1])
[1/2,1]. If a <b, then h((a,b)) = (a3,b3) and h((a,b]) = (a3, b3].

17. Yes. Use the Density Theorem 2.4.8.

18. If f is not bounded on I, then for each n € N there exists x, € I such that
| f(x5,)| > n. Then a subsequence of (x,) converges to zg € I. The assumption
that f is bounded on a neighborhood of zg leads to a contradiction.

19. Consider g(z):=1/x for x € J:=(0,1).

~

Section 5.4

The idea of uniform continuity is a subtle one that often causes difficulties for stu-
dents. The point, of course, is that for a uniformly continuous function f : A — R,
the § can be chosen to depend only on € and not on the points in A. The
Uniform Continuity Theorem 5.4.3 guarantees that every continuous function on
a closed bounded interval is uniformly continuous; however, a continuous func-
tion defined on an interval may be uniformly continuous even when the interval
is not closed and bounded. For example, every Lipschitz function is uniformly
continuous, no matter what the nature of its domain is. A condition for a
function to be uniformly continuous on a bounded open interval is given in 5.4.8.
The extension of the Uniform Continuity Theorem to compact sets in given in
Chapter 11.

One interesting application of uniform continuity is the approximation of
continuous functions by “simpler” functions. Consequently we have included a
brief discussion of this topic here. The Weierstrass Approximation Theorem 5.4.14
is a fundamental result in this area and we have stated it without proof.
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Sample Assignment: Exercises 1, 2, 3,6, 7, 8, 11, 12, 15.

Partial Solutions:

. Since 1/x —1/u= (u—x)/zu, it follows that |[1/z —1/u|<(1/a?)|z —u| for

x,u€ [a,00).

If z,u > 1, then |1/2? — 1/u?| = (1/2%u + 1/2u?)|z — u| < 2|z — u|, and it
follows that f is uniformly continuous on [1,00). If z, :=1/n,u, :=1/(n+1),
then |z, —u,|— 0 but |f(x,) — f(un)|=2n+1>1 for all n, so f is not uni-
formly continuous on (0, co).

. (a) Let zp:=n+1/n,up:=n. Then |z, —u,|—0, but f(z,)— f(u,)=

2+ 1/n%>2 for all n.
(b) Let xy,:=1/2nm, uy:=1/2nm +x/2). Note that |g(z,)— g(u,)| =1 for
all n.

. Show that | f(2)— f(u)| < [(|z|+|uf)/(1+22) (1+u?)]le—u] < (1/2+1/2)|e—u] =

|z — u|. (Note that x — x/(1+ 2?) attains a maximum of 1/2 at z=1.)

- Note that [(f(z)+g(x)) — (f(w) +g(u)| <[f(z) = f(w)|+lg(z) —g(u)| <e

provided that |z —u| < inf{d(e/2),04(c/2)}.

M|f(x)— f(u)]|4+ M|g(x) — g(u)| for all z,u e A. B

Since lin%(sinm)/x: 1, there exists § >0 such that sinz >z /2 for 0 <z <J.
Tr—r

Let x,, :=2nm and uy, :=2nm + 1/n, so that sinz, =0 and sinu, = sin(1/n).
If h(z) :=zsinx, then |h(xz,) — h(uy)| = up sin(l/n) > (2nt+1/n)/2n>7 >0
for sufficiently large n.

. Given € > 0 there exists 07 > 0 such that |y —v| <&y implies |f(y) — f(v)| <e.

Now choose d4 > 0 so that |z —u| < d, implies |g(x) — g(u)| < dy.

- Note that [1/f(z) —1/f(u)| < (1/k%)|f () — f(u)|.
10.

There exists § >0 such that if |x —u| <d,z,u€ A, then |f(x) — f(u)| < 1. If
A is bounded, it is contained in the finite union of intervals of length 6.

If |g(z) — g(0)] < K|z — 0| for all z €0, 1], then /x < Kz for z € [0,1]. But if
Ty, :=1/n?, then K must satisfy n < K for all n € N, which is impossible.
Given € > 0, choose 0 < 1 <1 so that |f(x) — f(u)| <& whenever |z —u| <
and z,u € [0,a+ 1]. Also choose 0 < d2 <1 so that |f(z) — f(u)| < e whenever
|z —u| <dy and x,u € [a,00). Now let §:= inf{d1,d2}. If |z —u| <4, then
since § < 1, either z,u €[0,a+ 1] or z,u, € [a,00), so that |f(z)— f(u)| <e.
Note that [f(z) — f(u)| <|f () = ge(2)[ + 9-(2) — ge (W) + 9= (u) — f(u)].
Since f is bounded on [0, p], it follows that it is bounded on R. Since f is

continuous on J:=[—1,p+ 1], it is uniformly continuous on J. Now show
that this implies that f is uniformly continuous on R.
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Assume |f(z) — f(y)| < Kylz —y| and |g(z) —g(y)| < Kyl —y| for all z,

Y
in A (a) [(f(z) + g(x)) = (f(¥) + 9| < [f(x) = f(W)] + lg(z) — 9(y)] <
(K5 + Kg)|z +yl.

(b) If | f(z)| < By and |g(x)| < By for all  in A, then

|f(@)g(x) — f(y)g(y)| = |f(x)g(x) — f(x)g(y) + f(= ) (y) = f(W)g(y)|

< Bylg(z) — g(y)| + Byl f () — f(y)]
< (Bng +BgKf)|l‘ -yl

(c) Consider f(x)=

If | f(z) — f(y)| < K|z —y| for all z,y in I, then has Lipschitz constant K on I.
Then for disjoint subintervals [z, yi],n =1,2,...,n, we have X| f (zx)— f (yx)| <
Y K|z — ygl, so that if e > 0 is given and 0 =¢/nK, then X|f(z) — f(yx)| <e.
Thus f is absolutely continuous on I.

In this section we introduce the notion of a “gauge” which will be used in the
development of the generalized Riemann integral in Chapter 10. We will also use
gauges to give alternate proofs of the main theorems in Section 5.3 and 5.4, Dini’s
Theorem 8.2.6, and the Lebesgue Integrability Criterion in Appendix C.

o Gt W

Sample Assignment: Exercises 1, 2,4, 6,7, 9.

Partial Solutions:

) The d-intervals are [0—1,0+%]=[—1,1].[3—
3 3 39
87 14 + ] [87 8]

Eg +11=[%.3] and
4

(b) The thlrd §-interval is [, 3%

(a

(b

N[ =

)

N[ =
=

2] which does not contain (3, 1].

) Yes. Since §(t) <61(t), every d-fine partition is d;-fine.
) Yes. The third &;-interval is [, 1] which contains [1, 1].

207 20
No. The first p-interval is [— 15, 75] and does not contain [0, 1.
(b) If t € (3,1) then [t —(t),t +6(t)] =[—5 + 5t, 5+ 5t] C (},1).

Routine verification.

We could have two subintervals having ¢ as a tag with one of them not
contained in the d-interval around c. Consider constant gauges ¢':=1 on
[0, 1] and §”:=1 on [1, 2], so that §(1) = 3. If P’ consists of the single pair
([0,1],1), it is ¢'-fine. However, P’ is not d-fine.

Clearly 0*(¢) > 0 so that ¢* is a gauge on [a,b]. If

75 = {([awrl]’tl)’ <o ([xk*hc}atk)? ([Ca$k+1}vtk+1)v B ([xm b],tn)}
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is ¢*-fine, then it is clear that P ={([a,x1], t1), ..., ([r_1, ], tx)} is a
¢'-fine partition of [a,c] and P":={([c,zr41],tkr1), -+ ([Tn, 0], t0)} is a

§"-fine partition of [¢,b]. Evidently P =P UP”".

. (a) If [a,b] a d-fine partition P’ and [c,b] has a d-fine partition P”, then

P’ UP" is a d-fine partition of [a, b], contrary to hypothesis.

(b) Let I be [a,c| if it does not have a d-fine partition; otherwise, let I; be
[c,b], so the length of I is (b—a)/2. Now bisect I; and let I, which has
length (b—a)/2%, be an interval that has no é-fine partition. Continue this
process by Induction.

(c) By the Nested Intervals Theorem there exists a common point £. By the
Archimedean Property there exists p € N such that (b—a)/2P <§(§). Since
¢ € I, and the length of I, is (b —a) /2P, it follows that I, C [£ — (&), &+ (E)].

. The hypothesis that f is locally bounded presents us with a gauge §. If

{([xi=1,xi], ti) }]- is a d-fine partition of [a,b] and M; is a bound for |f| on
[xi—1,x;], let M :=sup{M; :i=1,...,n}.

The hypothesis that f is locally increasing presents us with a gauge 6. If
{([wi=1,xi], ti) }[ is a -fine partition of [a, b], then f is increasing on each
interval [x;_1, z;]. By Induction it follows that f(z;) < f(z;) fori<j. fx <y
belong to [a,b], then = € [x;_1,2;] and y € [x;_1,x;] where i <j. If i=j, the
fact that f is increasing on [z;_1,z;] implies that f(z) < f(y). If i < 7, then
f(@) < flai) < flzj-1) < f(y).

The collection of monotone functions is a special, but very useful class of functions.
This is particularly the case since most functions that arise in elementary analysis
are either monotone, or their domains can be written as a union of intervals
on which their restrictions are monotone. Theorem 5.6.4 shows that a monotone
function is automatically continuous except (at most) at a countable set of points.

It will also be seen in Theorem 5.6.5 that continuous strictly monotone

functions have continuous strictly monotone inverse functions.

1. If z € [a, b], then f(a) < f(x).
If 2y <z, then f(z1)<

Sample Assignment: Exercises 1, 2, 4, 5, 7, 10, 12.

Partial Solutions:

f(z2) and g(x1) <g(z2), whence f(z1)+g(z1)<
f(x2) + g(w2).

. Note that (fg)(0)=0> (fg)(1/2)=—1/4.

4. 1f 0< f(z1) < f(w2) and 0<g(x1) <g(w2), then f(z1)g(x1) < f(x2)g(r1) <

f(x2)g(w2).
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If L= inf{f(z) : x € (a,b]} and >0, then there exists x. € (a,b] with L <

f(ze)<L+e. Since f is increasing, then L < f(z)<L+¢e for z € (a,xc;

hence lim f exists and equals L.
r—a+

Conversely, if K:= limJr f, then given ¢ > 0, there exists 6 > 0 such
r—a
that if z € (a,a+9), then K —e< f(z) < K+e¢e. It follows from this that
K —e<L< K +¢; since € >0 is arbitrary, we have K = L.

If f is continuous at ¢, then lim(f(x,)) = f(c), since ¢= lim(x,). Conversely,
since 0 <jf(c) < f(x2n) — f(x2n41), it follows that jr(c) =0, so f is continu-
ous at c.

It follows from Exercises 2.4.4, 2.4.6 and the Principle of the Iterated Infima,
(analogous to the result in Exercise 2.4.12), that

Jrle)=inf{f(y) ryel,c<y}—sup{f(z):xel,z<c}
=inf{f(y):yel,c<y}+ inf{—f(x) :xel,x<c}
=inf{f(y) — f(z) 1 z,yel,z<c<y}

Let z1 € I be such that y = f(x1) and x2 € I be such that y = g(x2). If x9 <x1,
then y=g(y2) < f(x2) < f(z1) =y, a contradiction.

If x €1 is rational, then f(z)=ux is also rational so f(f(x))=f(x)=ux; if
y €I is irrational, then f(y)=1—y is irrational so f(f(y))=f(1—y)=1—
(1 —y)=y. Suppose that z1 #x9,z; € I;if x;1 € Qand z2 ¢ Q, then f(z1) €Q
and f(x2) ¢ Q, which implies that f(x1)# f(x2). The other cases are similar.
Since |f(x) —1/2|=|z —1/2|, then f is continuous at 1/2. If x # 1/2,x € Q,
take a sequence (y,) of irrationals converging to x, so that f(y,)=
1—y, —1—x#x. Similarly for the case z # 1/2,x2 ¢ Q.

If f has an absolute maximum at c€ (a,b), and if f is injective, we have
fla) < f(c) and f(b)< f(c). Either f(a) < f(b) or f(b) < f(a). In the first
case, either f(a)=f(b) or f(a)< f(b) < f(c), whence there exists b’ € (a,c)
such that f(0')=f(b). Either possibility contradicts the assumption that
f is injective. The case f(b) < f(a) is similar.

Note that f~! is continuous at every point of its domain [0,1] U (2, 3]. The
function f is not continuous at z=1.

Let a€(0,1) be arbitrary. If f(a) < f(0), then there exists a’ € (a,1) with

f(a")=f(0), a contradiction. Also f(a)= f(0) is excluded by hypothesis.

Therefore we must have f(0) < f(a), and a similar argument yields f(a) < f(1).
If b€ (a,1) is given, then f(b) < f(a) implies that there exists a” € (b, 1) with

f(a)=f(a"), a contradiction. Since f(b)= f(a) is excluded, we must have

76) > f(a).

Assume that h is continuous on [0, 1] and let ¢; < ¢z be the two points in [0, 1]

where h attains its supremum. If 0 < ¢;, choose a1, as such that 0 <a; <c1 <

az < cp. Let k satisfy sup{h(a1),h(a2)} <k <h(c1)=h(cz); then there exist
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three numbers b; such that a; <b; <1 <bg <az <bz<cy where k=h(b;),
a contradiction. Now consider the points where h attains its infimum.

Let 2 >0 and consider the case m,p,n,qg€N. Let y:=z'/" and z:=2'9 so

that y" =2 =29, whence (by Exercise 2.1.26) y™? =P = 29%. Since np =mg,
we have (y")9=y"4=2P1=(zP), from which it follows that y"" =2zP, or
(zV/mym = (x1/9)P | or x™/™ = zP/9. Now consider the case where m, p € Z.
Let >0 and consider the case where r=m/n and s=p/q, where m,n,p,
q € N. Since r =mgq/nq and s =pn/qn, it follows from the preceding exercise
that 2" = (2!/"9)™ and 2° = (2'/™9)P" so that (by Exercise 2.1.26) z"2° =
(zl/maymatpn — p(matpn)/ng — grts - Similarly, " = (#'/*)™ >0 and if y >0,
then (by 5.6.7) y*=(y*)"/? so that (z")*=(((z'/™)™)?)1/4. This implies
that ((z")%)?= (z'/")™ = (z)V/" so that ((27)*)?" =2™P, whence (z")° =
2P/1" = 275 Now consider the case where m,p € Z.



CHAPTER 6
DIFFERENTIATION

The basic properties and applications of the derivative are given in the first two
sections of this chapter. Section 6.1 is a survey of the techniques of differentiation
from a rigorous viewpoint. Since the students will be familiar with most of the
results (though not the proofs), the section can be covered reasonably quickly.
Section 6.2 contains material that is new to students, since in introductory calculus
courses the Mean Value Theorem is not usually given the emphasis it deserves.
Sections 6.3 and 6.4 are optional and can be discussed in either order and to
whatever depth that time permits.

Section 6.1

This section contains the calculational rules of differentiation that students learn
and use in introductory calculus courses. However, the emphasis here is on the
rigorous establishment of these results rather than on the development of calcu-
lational skills.

The topic that students will find troublesome is the differentiation of com-
posite and inverse functions. We feel that the use of Carathéodory’s Theorem
6.1.5 is a considerable simplification of the proofs of these results.

Sample Assignment: Exercises 1(a,b), 2, 4, 5, 9, 11, 13, 15.

Partial Solutions:

1. (a) f'(z)= hm[(m—i—h) — 23] /h= ’lli_r>r%)(3x2+3xh+h2):3w2,

1 1 1 —1 —1
/ = 1 — —_ = l _—
(b) g'(x) h0 h <x+h x> hlg%x(x—i—h) 22’

vVr+h—r i 1 1

(c) W(w) = Jim = —— = Jim Z—— NeENG
() k() = 1/\/334— - 1/yx i -1
hjol h h=0 \/z + h/x (Ve +h+/T)

- 2z+/x"
2. lir%(f(:z:) - f(0)/(x—0)= hr%xl/S/x— lim 1/2%/® does not exist.
T—

x—0
3. (a) (af)(c) = lim D =) y F@ 1)

Tr—C Tr —C Tr—C Tr —C

(b) (f +gY(c) = lim LB +9@) = () +9(c))

o FEF@ o)~ (0

T—C T —cC T—C xr—c

=af'(c),

=f'(c)+4'(0).

43
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4. Note that |f(x)/z| <|z| for z €R.

10.

11.

12.
13.

14.
15.
16.
17.

- (a) fl(@)=(1-2%)/(1+2%)?

(b) ¢'(2) = (v = 1)/V5 — 2z + 272,

(c) B! (x) = m(sinz®)™ 1 (cos 2*) (kaF1),

(d) k' (x) =2z sec?(z?).

The function f’ is continuous for n > 2 and is differentiable for n > 3.

By definition ¢'(c) = fllii%\f(c—i— h)|/h, if this limit exists. If 0=|f'(c)|=
}llig%)]f(c—i— h)/h|, it follows that ¢'(c)=0. If f’(¢)=L#0, then we have
lim(f(ct1/n)/(£1/n))= L, while im(|f(c+1/n)|/(£1/n))]==+L, so that
|f]'(¢) does not exist.

. (a) fi(x)=2for x>0; f'(x)=0 for —1<x<0; and f'(x)= -2 for z < —1,
(b) ¢'(z)=3 if 2 >0; ¢'(x) =1 if £ <0; ¢’(0) does not exist,
(¢c) W(z)=2|z| for all z€R,
(d) ' (z)=(=1)"cosz for nt <z < (n+1)m,n€Z; k' (nm) does not exist,
(e) p'(0)=0; if  #0, then p'(x) does not exist.

.If f is an even function, then f’(—m):}llii%[f(—x—kh)—f(—x)]/h:

—lim (e — )~ F()}/(~h) =~ f'(z).

If #0, then ¢ (z)=2wsin(1/2%)— (2/x)cos(1/2%). Moreover, ¢'(0)=
}lLiE%h sin(1/h?)=0. If x,:= 1/v/2n7, then z, =0 and |¢'(z,)|=2V2nm,
so ¢’ is unbounded in every neighborhood of 0.

(a) f'(2)=2/(2z+3), (b) ¢'(x)=6(L(z?))?/x,

(c) W () =1/, (d) K'(z) =1/(xL(x)).

r>1.

Many examples are possible. For example, let f(z):= x for z rational and
f(x):= 0 for x irrational.

1/0(0)=1/2, 1/h'(1) =1/5 and 1/A/(—1)=1/5.

D[Arccos y]=1/Dlcosz|=—1/sinx =—1/y/1—y>.

D[Arctan y]=1/Dftanx] =1/sec? 2 =1/(1+y?).

Given €>0, let d6(¢)>0 be such that if 0<|w—c|<d(e),wel, then
|f(w)— f(c) = (w—rc)f'(c)] <e|w — ¢|]. Now take w =wu and w = v as described
and subtract and add the term f(c) — f’(¢)c and use the Triangle Inequality
to get

[f(v) = f(u) = fi(e)(v —u)| < |f(v) = f(c) = f(c)(v —c)|
+1f(e) = f(u) = f(e)(c —u)| < efo -] +ele - ul.
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Since v —¢>0 and ¢—u >0, then |[v —c|=v—c¢ and |c—u|=c—u, so that
the final term equals (v —c+c—u) =¢e(v —u).

Section 6.2

The Mean Value Theorem is stated for a function f on an interval [a, b]. However,
many of its applications use intervals of the form [a, x] or [z1,x2] where x or 7,
xo are points in [a,b]. The shift from a “fixed interval” to what seems to be a
“variable interval” can cause confusion for some students. A word of explanation
when this first occurs will help to alleviate this confusion.

WARNING: Exercises 16 and 18 are rather difficult.

Sample Assignment: Exercises 2(a, b), 3(a, b), 6, 7, 9, 10, 12, 13, 17.

Partial Solutions:

(a) Increasing on [3/2, 00), decreasing on (—oc, 3/2],
(b) Increasing on (—oo, 3/8], decreasing on [3/8, c0),
(¢) Increasing on (—oo, —1] and [1, 00),

(d) Increasing on [0, oo)

(a) f'(z) =1—1/2% Relative minimum at z = 1; relative maximum at z = —1,
() ¢'(x)=(1+2)(1 —2)/(1+2%)?2 Relative minimum at z=—1; relative

maximum at x =1,
(c) W(z)= 1/2\/5— 1/v/x+ 2. Relative maximum at x=2/3,
(d) K'(z) =2(2® — 1) /23. Relative minimum at x = 1.
3. (a) Relative minima at = = +1; relative maxima at = =0, +4,
(b) Relative maximum at x = 1; relative minima at =0, 2,
(c) Relative minima at x = —2, 3; relative maximum at =2,
(d) K'(z) =4(z — 6)/3(x — 8)%/3. Relative minimum at z = 6; relative maxima
at £=0,9.

4. z=(1/n)(a1+- - +an).

5. Show that f’(z) <0 for > 1. Then f is strictly decreasing on [1, c0) so that
fla/b) < f(1) for a>b>0.

6. If x <y, there exists ¢ in (z,y) such that |sinxz — siny|=|cosc||ly — z|.

7. There exists ¢ with 1 < ¢ <z such that Inz = (z — 1)/c. Now use the inequal-
ity 1/x<1/c<1.

8. If h>0 and a+ h <b, there exists ¢, € (a,a+ h) such that f(a+h)— f(a) =
hf'(cp). Since ¢y —a as h— 0+, it follows that f'(a)= hl_i>151+[f(a+h)—

(c
f(a)]/h= hm f'(er) = A. Now consider h < 0.
9. f(x)=2a* (2+ sm(l/x)) >0 for all x#0, so f has an absolute minimum at

r=0. We have f'(x) =823 +4z3sin(1/x) — 22 cos(1/z) for x # 0. Now verify
that f'(1/2n7) <0 for n>2 and f'(2/(4n+1)w) >0 for n > 1.
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g'(0)= lirr(1)(1+2xsin(1/:c)):1—|—0:1, and if x#0, then ¢'(x)=1+
T—>

4zsin(l/x) —2cos(1/z). Now show that ¢'(1/2nm) <0 and that we have

g (2/(4n+1)m) >0 for n€N.

For example, f(z):= /.

Apply Darboux’s Theorem 6.2.12. If g(z):= a for £ <0,g(x):= x+0b for
x>0, where a,b are any constants, then ¢'(x) =h(z) for x #0.

If x1<z9, then there exists c€ (z1,22) such that f(z2)— f(x1)=
(.%'2 — 1’1)]“(0) > 0.

Apply Darboux’s Theorem 6.2.12.

Suppose that |f'(x)|<K for x€I. For z,y€l, apply the Mean Value
Theorem to get |f(z) — f(y)|=[(z —y)f'(c)| < K|z —yl.

(a) Given € >0 there exists n. €N such that if > n., then |f/(z)—b| <e.
Hence if x > n. and h >0, there exists y, € (x,z + h) such that

flz+h) - f(z)
h

—b| = |f,(yz) _b|<€'

Since € > 0 is arbitrary, then li_>m (f(x+h)— f(x))/h=0.

(b) Assume that b# 0 and let £ < |b|/2. Let n. be as in part (a). Since xlingo f
exists, we may also assume that if z,y>n., then |f(x)— f(y)|<e. Hence
there exists x. in (ne,ne+1) such that e >|f(ne+1)— f(n)|=|f"(xc)| >
|b|/2. Since € > 0 is arbitrary, the hypothesis that b+ 0 is contradicted.

(¢) If x>n., then there exists y.€ (ne,z) such that f(z)— f(n:)=
(x —ne) f'(ye), so that we have

fl@)/z—b= f/(ys) —b+ f(ne)/z — nef,(ye)/x'

Since y. > ne, we have |f'(y.) —b| <e. Moreover |f(n:)/x|<e if x is suffi-
ciently large; since f’ is bounded on [n.,o00), then |n.f'(y:)/z|<e if x is
sufficiently large. Therefore, li_>m flx)/x=0b.

Tr—r0o0

Apply the Mean Value Theorem to the function g — f on [0, z].

Given € >0, let § =49(¢) be as in Definition 6.1.1, and let z <c <y be such

that 0 < |z —y|<d. Since f(x)— f(y)=f(z)— f(c)+ f(c) — f(y), a simple
calculation shows that

T —y x—y T —c x—y y—c

f@) = fly) _z—c f@)=flo) c—y [fly)=flc)



CHAPTER 6 — DIFFERENTIATION 47

Since both (x —¢)/(x —y) and (¢ —y)/(x —y) are positive and have sum 1,
it follows that

DI
x—y
o G e R

<£U—C c—y>
< + E=¢.
r—y -y

Note that if one (but not both) of x and y equal ¢, the conclusion still holds.

19. Let z,y € I, x #y; then
R T Y. fl@) = fly) | fl) = fly) '
(@)= fy) = f(=) r—y | s—y (),
so that
f(x) — fly flx) — fly
@)~ )| < | ) - LW DTG
x—y x—y
If f is uniformly differentiable on I, given € >0 there exists 6 >0 such that
if 0<|x—y|<d,x,y €I, then both terms on the right side are less than e.
Hence we have |f'(z) — f'(y)| < 2¢ for |z —y|<d, x,y€l, whence we con-
clude that f’ is (uniformly) continuous on I.
20. (a,b) Apply the Mean Value Theorem.
(c) Apply Darboux’s Theorem to the results of (a) and (b).
Section 6.3

The proofs of the various cases of L’Hospital’s Rules range from fairly trivial to
rather complicated. The only really difficult argument in this section is the proof
of Theorem 6.3.5, which deals with the case co/oo. This requires a more subtle
analysis than the other cases.

This section may be regarded as optional. Students are already familiar with

the mechanics of L’Hospital’s Rules.

1.
2.

Sample Assignment: Exercises 1, 2, 4, 6, 7(a,b), 8(a,b), 9(a,b), 13, 14.
Partial Solutions:

A= B(lm £(x)/g(z)) =0.

If A>0, then f is positive on a neighborhood of ¢ and liin (9(x)/f(x))=0.

Since g(z)/f(z) > 0 on a neighborhood of ¢, we use the fact that f(z)/g(x)=
1/[g(x)/f(x)] to get a limit of oo.
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. In fact, if € (0,1] then f(z)/g(x)= sin(1/z), which does not have a limit

at 0. [Note that 6.3.1 cannot applied be applied since ¢’(0) =0, and 6.3.3
cannot be applied since f/(x)/¢’(x) does not have a limit at 0.]

4. Note that f/(0) =0, but that f’(z) does not exist if x #0.

10.
11.
12.

. Recall that lim (sinz)/x =1, but that lim cos(1/x) does not exist.
z—0 z—0

¥ —eTT -2 . e +e® . e te T
. (a) lim ——— = lim —— = lim —— =2.
z—0 1— cosx z—0 sinx z—0 COSZT
(b) I l‘Q—Sian‘_ . 2x—2sinxcosx_ . 2x — sin2x
xlil’(l) .’E4 o xli}% 4563 o xlg% 4.T3
1 — cos2x . 2sin2x . 4dcos2x 1
= lim ————— = lim = l1m = —.
z—0 6x2 z—0 12z x—0 12 3
(a) 1, (b) 1, (c)0, (d) 1/3
(@1,  (b)oo, ()0,  (d)o0.
(a) 0, (b) 0, (c) O, (d) 0.
(a) 1, (b) 1, (c)€*,  (d)o0.
@1, 1, (@1 (o
Let h(z):= e*f(x). Then h/(z)=e"(f(z)+ f'(x)), so that li_>m B (x)/e® =

li_)m (f(x)+ f'(z)) =L, by hypothesis. Give £ >0, there exists a >0 such
X oo

that L —e/2<h/(z)/e* <L+¢/2 for all z>a. If a<y<uaz, then by 6.3.2
there exists ¢ > o with
hz) — hiy) _ K0

et —e¥Y ec

and therefore L—e/2 < (h(z)—h(y))/(e*—e¥) < L+e/2. But since e*—e¥ > 0,
this implies that

)

ex—ey.(L_€/2)<h(x)—h(y) <ex—ey

er er er (L+e/2).
Add h(y)/e" to all sides and rearrange terms to get

(L—2/2) + hy) —e?(L —¢/2) _ hz) _ (Lte/2)+ h(y) = e!(L+¢/2)

er er er

For fixed y, we note that xh_}rglo[h(y) —eY(L+e/2)]/e* =0. Since h(z)/e* =
f(z), it follows that for sufficiently large x we have L—e< f(z)<L+e.
Therefore xl;rglo f(z) = L, which implies that zhﬁnolo fl(x)= leIEO(f(x) + f(x)) —
lim f(z)=L—-L=0.

x%ﬁ%ote. If e* is replaced by a function g(z) such that ¢'(z) >0 for large
values of z, then the above argument can be modified slightly to prove the
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following version of L’Hospital’s Rule: If h and g are differentiable func-
tions on (0,00) that satisfy lim A/(z)/¢'(z)=L and lim ¢'(x) =00, then

Tr—00 T—00
lim h(z)=1L.]
T—00
13. The limit is 1.

. at—=c® el —(lnc¢)c® 1-Inc
14. lim = lim = .

z—c ¥ — ¢ T—C (1 + In x)x”ﬁ 1+ Inec
Section 6.4

The applications of Taylor’s Theorem are similar in spirit to those of the Mean
Value Theorem, but the technical details can be more complicated since higher
order derivatives are involved. Instead of estimating f’, the use of Taylor’s
Theorem usually requires the estimation of the remainder R,,.

The applications that are presented here are independent of one another and
they need not all be covered to illustrate the use and importance of Taylor’s
Theorem. If Newton’s Method is discussed, students should be encouraged to
program the algorithm on a computer or programmable calculator; comparison of
the rate of convergence with the bisection method of locating roots is instructive.

Sample Assignment: Exercises 1, 2, 4, 5, 7, 8, 12, 14(a,b), 19, 20, 23.

Partial Solutions:

f@=(z) = (=1)"a*" 'sinaz and @ (z)=(—1)"a*" cosax for n € N.

g (x) =322 for >0, ¢'(x) = —322 for £ <0, and ¢"(x) = 6|z| for z € R.

Use the relation: ("}') = (})+ (,",) for 0<k<n, where k,n €N.

Apply Taylor’'s Theorem to f(z):=+1+x at zg:=0 and note that

Ri(z) <0 and Ry(z) >0 for z>0.

1.095<v1.2< 1.1 and 1.375 <2< 1.5.

R2(0.2) < 0.0005 and Ra(1) < 0.0625.

Ro(z) = (1/6)(10/27)(1 4 ¢)~%/323 < (5/81)a3, where 0 < ¢ < .

Ry (x) =e(z — x0)" "1 /(n+1)! = 0 as n — oo.

|R,(2)| < |z —x0/"/n! — 0 an n — oc.

10. Use Induction to show h(™(0)=0 for n€N. If z # 0, then h("™(z) is the
sum of terms of the form e~1/*" /z¥; therefore, if h(™(0) =0, then A"t (0) =
ii_)n% h(")(z)/z=0. Since P,(z)=0 for all = and all n, while h(z) # 0 for
x # 0, the remainder R, (z) cannot converge to 0 for x # 0.

11. With n=4, In1.5=0.40; with n=7, In 1.5 =0.405.

12. Use FPs(x) and note that 7! = 5040.

13. For f(x)=e" at 9 =0, the remainder at x = 1 satisfies the inequality R, (1) <
3/(n+1)!<1077 if n>10. Pyg(1) =2.718 2818 to seven places.

Ll

e e B



50

14
15

16.
17.
18.

19.

20.
21.
22.
23.
24.

BARTLE AND SHERBERT
. (a) No. (b) No. (¢) No. (d) Relative minimum.
. Apply the Mean Value Theorem to f no [a,zp] and on [b, o] get ¢; and

cg such that f'(c1) = f'(c2). Now apply the Mean Value Theorem to f’ on
[c1, cal.

To obtain the formula, apply 6.3.3 and 6.3.1.

Apply Taylor’s Theorem to f at zg=c to get f(z)> f(c)+ f'(c)(z — ¢).
Apply Taylor’s Theorem to f and then to g at xg = c¢. Then form the quotient
and use the continuity of the nth derivatives.

Since f(2) <0 and f(2.2) >0, there is a zero of f in [2.0, 2.2]. The value of
x4 is approximately 2.094 551 5.

r1 =~ 1.452626 88 and ro ~ —1.164 035 14.
r~ 1.32471796.

r1 ~ 0.158594 34 and ry =~ 3.146 193 22.
r1 ~ 0.5 and r9 ~ 0.809 016 99.

r~ 0.739 085 13.



CHAPTER 7
THE RIEMANN INTEGRAL

Students will, of course, have met with the Riemann integral in calculus, although
few of them would be able to define it with any precision. The approach used here
is almost certain to be the same as that used in their calculus course, although it
will probably come as news to the students that the subintervals in the partitions
do not need to have equal length.

If the students have a strong background, it is possible to go quickly through
this chapter and then discuss part of Chapter 10, dealing with the generalized
Riemann integral. However, for most classes in a one semester course, all of the
time available may be needed to cover this chapter. In that case, Chapter 10 can
be assigned as a “extra topic” to special students.

Since the most important results in this chapter are the Fundamental Theo-
rems given in Section 7.3, discussion should be focussed to lead to these results.

Section 7.4 is an optional section on the Darboux approach to the integral
using upper and lower integrals. The relative merits of the two approaches are
discussed in the introduction to the section. Section 7.5 deals with methods of
approximating integrals.

Section 7.1

Most of the results will be familiar to students. Discuss the examples carefully and
sample some of the proofs. Leave time for a discussion of some of the exercises.

Sample Assignment: Exercises 1(a,c), 2(a,c), 6, 9, 10, 12, 14.
Partial Solutions:

a) [Pill=2, () [[Pell=2  (¢) IPsll=1.4,  (d) [[Paf =2
Y)02-14+12-1+422.2=0+1+8=9,
)12.1422.1442.2=1+4+32=3T7,

) 0224221432 1=0+4+9=13,

d)22.2+4+3%2.14+4%.1=8+9+16=33.

3. Definition 7.1.1 requires that if IP| < de, then |S(f; P) — L| <e. Therefore, if
|P|| <8/2, then ||P|| < 8. so that [S(f; P) — L| <e. Hence we take 8. := d./2.
On the other hand, if |P|| <#. implies that |S(f;P)—L|<e, we set 0, :=
(1/2)1. /2. Then if |P|| < 6. then ||P| <12 so that IS(f;P)—L|<e/2<e.

4. (b) If ue€ Uy, then u€ [z; 1,7 with tag t; €[1,2], so that (i) z;1 <t; <2
which implies that u<z; <1 +[|P|| <2+ |P|| and (i) 1<t <z; which
implies that 1 — |P|| <@ — ||P|| < xi—1 <u. Therefore u belongs to [1— || P,
2+|P|].

51
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On the other hand, if 1+ ||P|| < v < 2 — ||P|| and v € [x;_1,2;], then
(i) 1+ ||P|| < x; which implies that 1 < z; — |P|| < 231 < t; and (i) z;_; <
2 — |P|| which implies that ¢; < 2; < z;_1 4+ |P|| < 2. Therefore we get

€1,2].

- (a) If ue€lwi—1,2i], then x;1 <wu so that ¢ <t; <z;<w; 1+ |P|| whence

— Pl <@xi1 <u. Also u<wz; so that x; — ||P|| <z <t; <cz, whence
u<z; <ca+|PJ.
(b) If ¢; +||P|| <v<z; then ¢; <z — |P|| < z_1 and if v <cy— ||P||, then
2 <xi_1 + ||P|| < ¢g. Therefore ¢ <zi_q <t; <z <cy.

. (a) If Pis a tagged partition of [0, 2], let P be the subset of P having tags

n [0, 1], and let P2 be the subset of P having tags in [1, 2]. The union of
the subintervals in P; contains the interval [0,1—||P[]] and is contained in
[0, 14 ||P|]], so that 2(1 — IPI) <S(f; 731) <2(1+|P|)). Similarly, the union
of the subintervals in Py contains [1 + HPH 2] and is contained in [1 — HPH 2],
so that 1 — ||P|| < S(f;P2) < 1+ ||P|. Therefore 3 — 3H73H < S(f;P) =
S(f; 731) + S(f;P2) <3+ 3|P||, whence |S(f;P)—3| <3||P||, and we should

take ||73’|| <e/3.
(b) If Py is the subset of 73 having tags at 1, then the union of the (at
most two) subintervals in Py is contained in [1 —|IPlI,1 + ||P|l], so that

|S(h; Po)| <3 - 2||P||, and |S(h; P) — 3| <9|P|.

7. Use the fact that Z?;rll kifi=Q i1 kifi) Fhntifati.

10.

11.

12.

13.

14.

Since —M < f(x) <M for x € [a,b], Theorem 7.1.5(c) implies that we have
—~M@®b—a)< [] br<M (b — a) whence the inequality follows.

. Given & > 0 there exists d. > 0 such that if | P|| < d. then |S( fi P)— f fl<e.

Since HP | = 0, there exists K. such that if n > K then ||P,| < ., whence
1S(f;Pn) f f| <e. Therefore, f f=1lim, S(f;Py).

Since g is not bounded, it is not Riemann integrable. Let P, be the partition
of [0, 1] into n equal subintervals with tags at the left endpoints, which are
rational numbers.

If f€RJa,b], then Exercise 9 implies that both sequences of Riemann sums
converge to f; f.

Let P, be the partition of [0, 1] into n equal parts. If P,, is this partition with
rational tags, then S(f;P,)=1, while if Q,, is this partition with irrational
tags, then S(f; Q,)=0

If | P|| < 6. := € /4a, then the union of the subintervals in P with tags in [c, d]
contains the interval [c+ ., d — é.] and is contained in [c — ¢, d 4 dc]. There-
fore a(d—c—26.) <S(p;P) <a(d—c+26.), whence |S(p;P)—a(d—rc)| <
200 < €.

(a) Since 0<xz 1 <xl, we have O<a:z 1 < Xixi—1 <x , so that Sx%_l <xl2+
z;wi—1 + 22 = 3q? < 3x2. Therefore 0 <z;_1 < ¢q; < ;.
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b) In fact, (27 4+ xizio1 + 22 1) - (v —2im1) =23 — 23 1.

(
(¢) The terms in S(Q; Q) telescope.
(d) If P has the tags t; and |P|| <4, then |t; —q;| <& so that we have
1S(Q:P) - S(Q: Q) < 00— ) |
15. Let P={([zi—1, 2], t:) } - 1 be a tagged partition of [a,b] and let Q:=
{([zic1 + ¢, + ], ti + ¢) -, so that Q is a tagged partition of [a+c b+c]
and ||Q||=||P|. Moreover, S(g;Q)=S(f;P) so that |S(g;Q f fl=
S P)— [' f << when [| Q] <6

Section 7.2

The Cauchy Criterion follows the standard pattern. It is used to obtain the
Squeeze Theorem 7.2.3, which is the tool used in proving the important inte-
grability theorems 7.2.5, 7.2.7 and 7.2.8. The only “tricky” proof is that of the
Additivity Theorem 7.2.9, but that proof can be soft-pedaled since the validity of
the theorem will seem obvious to most students.

Sample Assignment: Exercises 1, 2, 7, 8, 11, 12, 15, 18.
Partial Solutions:

1. If the conditions in 7.2.2(b) is satisfied, we can taken n=1/n and obtain the
condition in the statement. Conversely, if the statement holds and n >0 is
given, we can take n € N such that 1/n <n to get the desired P, Q.

2. If the tags are all rational, then S(h; P) > 1, while if the tags are all irrational,
then S(h; P)=0.

3. Let P,, be the partition of [0, 1] into n equal subintervals with ¢; =1/n and
O, be the same subintervals tagged by irrational points.

4. No. Let f(z):==z if x is rational and f(x):=0 if z is irrational in [0, 1].
There is no squeeze; that is, fab (we — ;) is not small.

5. If c1,. .., ¢y, are the distinct values taken by ¢, then ¢p~!(¢;) is the union of a
finite collection {.Jj1,...,Jj;,} of disjoint subintervals of [a,b]. We can write
O=>0 1 Dy Gk

6. Not necessarily. The Dirichlet function takes on only two values, but QN
[0,1] and [0, 1] \ Q are not intervals.

7.1 P={([zi1,m],t:) Y1, take @(x):= f(t;) for = €[z 1, ;) and @(b):=0,
so that ¢ is a simple function. By the formula in Theorem 7.2.5, we have

Ji o= f(t) (@i —zim1) = S(f; P).

8. If f(c)>0 for some c€ (a,b), there exists § >0 such that f(z)>3f(c) for
|x — | <. Then f; f> fccj; f > 3f(c)(26) > 0. If ¢ is an endpoint, a similar
argument applies.

9. The function f(0):=1 and f(x):=0 elsewhere on [0, 1] has integral 0. More
dramatically, consider Thomae’s function in Example 7.1.7.
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Let h:=f — g so that h is continuous. By Bolzano’s Theorem 5.3.7, if h is
never 0, then either h(xz)>0, or h(x) <0 for all x €[a,b]. In the first case
there exists 7> 0 such that h(x) >+, whence f; h>~(b—a)>0.

Since a.(z) = f(z) for x € [c, b], then a. € R|c, b]; similarly w. € R[c,b]. The
Additivity Theorem 7.2.9 implies that a. and w. are in Rla,b]. Moreover,
ff (we —ae) =2M(c—a) <e when c—a<e/2M. The Squeeze Theorem 7.2.3
implies that f € R[a,b]. Further, | f; f— fcbf| =| [T fI<M(c—a).

Indeed, |g(x)| <1 for all z€0,1]. Since g is continuous on every interval
[c, 1] where 0 < ¢ < 1, it belongs to R]c, 1] and the preceding exercise applies.
Let f(z):=1/z for z € (0,1] and f(0) :=0. Then f € R]c, 1] for every c€ (0, 1),
but f ¢ R[0,1] since f is not bounded.

Use Mathematical Induction.

Suppose E={a=c¢yp<c1 < -+ <c¢y=>}. Since f if continuous on the inter-
val (¢;—1,¢;), a two-sided version of Exercise 11 implies that its restriction is
in R[ci—1, ¢;]. The preceding exercise implies that f € R[a, b]. The case where
a or b is not in F is similar.

Let m:=inf f(x) and M :=sup f(z). By Theorem 7.1.5(c), we have
m(b—a)< f; f< M(b—a). By Bolzano’s Theorem 5.3.7, there exists ¢ € [a, D]
such that f(c)= ([ f)/(b—a).

Since g(z) >0, we have mg(x) < f(z)g(z) < Mg(x) for all x € [a,b], whence
mf:gg fab fg< Mf;g. Since ffg>0 (why?), Bolzano’s Theorem 5.3.7
implies that there exists ¢ € [a, b] such that f(c)= (f; fg)/(ff 9)-

Let M := sup f and let p € [a,b] be such that f(p)=M. Given € >0 there

exists an interval [¢, d] containing p with d — ¢ > 0 such that M —e < f(z) <M
for = € [¢,d]. Therefore

d b
(M-erd-o< [ < [ <are-a),

If we take the nth root, we have (M —&)(d —¢)"/™ < M,, < M (b— a)'/™. Now
use the fact that o'/™ — 1 for a >0 to complete the details.

The Additivity Theorem implies that the restrictions of f to [~a,0] and [0, a]
are Riemann integrable. Let 7, be a sequence of tagged partitions of [0, a
with ||P,|| — 0 and let P} be the corresponding “symmetric” partition of
[—a, al. ' .

(a) Show that S(f;Py)=25(f;Pn) — 2, f

(b) Show that S(f;P})=0.

Note that  — f(22) is an even continuous function.



CHAPTER 7 — THE RIEMANN INTEGRAL 55

Section 7.3

The main results are the Fundamental Theorems, given in 7.3.1 and 7.3.5, and
the Lebesgue Integrability Criterion, stated in 7.3.12. The First Form 7.3.1 allows
for a finite set F where the function ' may not be differentiable. It is useful to
point out that if £ =, then one does not need to assume that F is continuous
at every point of [a,b]. However, one often encounters functions where F' is not
differentiable at every point (for example F'(x)=+/x). It is also worth stressing
that the hypothesis 7.3.1(c) is essential. The Second Form 7.3.5 is complementary
to the First Form, but is nowhere nearly as important in most situations.

The notion of a null set is an important one. No doubt most students will
think of countable sets, but it is worth pointing out that there are uncountable
null sets; however, it may be best to wait until the students encounter the Cantor
set in Section 11.2 before too much is made of this fact. Similarly, the proof of
the Lebesgue Criterion is given in Appendix C, but it is probably too complicated
for the average student at this level.

Sample Assignment: Exercises 2, 3, 5, 7, 9, 13, 18(a,c).

Partial Solutions:

1. Suppose that E:={a=cp<c; < -+ <e¢pn=>} contains the points in [a,d]
where the derivative F'(z) either does not exist, or does not equal f(z). If
we apply the proof of the 7.3.1 to [¢;—1,¢;], we have that f € R[c;—1,¢] and
fcc,l f=F(c;) — F(ci—1). Exercise 7.2.14 and Corollary 7.2.10 imply that
feR[a,b] and that [° f= " (F(c;) = Fei1)) = F(b) — F(a).

2. We note that H,, is continuous on [a,b] and H] (z)=21" for all x € [a,b], so
f; a2"dx = H,(b) — H,(a). Here E=1).

3. Let E:={-1,1}. If z ¢ E, the Chain Rule 6.1.6 implies that G'(z)=
1sgn(z? —1) - 2z=xsgn(z® — 1) =g(z). Also g€ R[-2,3].

4. Indeed, B'(z) =|z| for all x.

5. (a) We have @, (z) = ®'(x) = f(x) for all x € [a, b], so ®¢ is also an antideriva-
tive of f on [a,b].

6. By Theorem 7.2.13, we have Fy(z)= [ f+ [ f, so that F,=F,— [’ f.

7. Let h be Thomae’s function. There is no function H : [0,1] — R such that
H'(z) = h(x) for 2 in some nondegenerate open interval; otherwise Darboux’s

Theorem 6.2.12 would be contradicted on this interval. So a finite set E will
not suffice for this function.

8. Note that F(0)=0= lim F(z) and that if n € N, then
z—0+

lim F(z)=(n—-1)n/2=F(n)= lim F(z).

T—n— T—n+
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Therefore, F is continuous for z > 0. Also F'(z)=n—1=[z] for x in
(n—1,n),n € N. However, F' does not have (a two-sided) derivative at
n =0,1,2,.... Since there are only a finite number of these points in [a, b,
the Fundamental Theorem 7.3.1 implies that fab [z]dz = F(b) — F(a).

. (a) G(x)=F(x)— F(c), (b) H(z)=F(b) — F(z), (c) S(z)=F(sinz) — F(x).
10.

If F(x):= ff f, then since f is continuous on [a,b], Theorem 7.3.6 implies

that F'(x)= f(x) for all z € [a,b]. Since G(x)= F(v(x)), the statement fol-

lows from the Chain Rule 6.1.6.

(a) F'(z)=2x(1+25)71, (b) F'(z) = (1 +22)/2 = 22(1 4 2*)1/2.

F(z):=2%/2for 0 <z < 1, F(x):=2 —1/2 for 1 < z < 2, and F(z):=

(x2 —1)/2 for 2< 2 <3. Ifx;é 2 then F'(x) = f(x), but F'(2) does not exist.

For 0<3:<2 we have G(x)= [; (—1)dt=—x; and for 2<x <3, we have
fo Ddt+ [} 1dt——2—|—(ac— 2)=x—4. G(x) is not differentiable

at Tr=

The Fundamental Theorem implies that if f'(z) <2 for 0 <z <2, then f(x)—
= [y f(@)de < [ 2dx=2x, so that f(z) < 2z + f(0) = 2z — 1 for

OS:):SQ Then f(2) <3 so that f( ) = 4 is impossible.

Since g(z)= [ f— J77°f and f is continuous, then ¢'(x)=f(z +c)—

fla— C)

If F(z):= [y f=— [ [, then F'(z)= f(z) =—f(z), so that 2f(x)=0 and

hence f( )=0 for all z €0, 1].

(a) Take @(t)=1+12 to get 1 [l ()2 - @/ (t)dt=1 [*7 2" 2da =

3 3/2‘ (23/2 )

b) Take 90( ):1+t3 to get % t=2 (go(t))_l/Q . go,(t)dt— 1 rz= 9 1200 =

t=0 -3
1/2‘1 (91/2_1):%

(c) Take ) =1+VT to get 2 = ()2 - Y O)dt=2 [*=) &' 2da =
T /2’2: %(33/2 _23/2).

(() Take gp(;ﬁ):tl/z to get 2ftt:14 cos(ip(t)) - cp’(t)dtfof:f cosx dr =
2(sin2 — sin1).

(
2
3%
4
3

In (a)—(c) ¢'(0) does not exist. For (a), one can integrate over [c,4] and let
¢ — 0+. For (b) the integrand is not bounded near 0, so the integral does
not exist. For (c), note that the integrand is even, so the integral equals
2 fol (141t)'/2dt. For (d), /(1) does not exist, so integrate over [0, | and let
c—1—.

(b) It is clear that |J,, Z, is contained in |J, , Ji' and that the sum of the
lengths of these intervals is < ) ¢/2" =e¢.

(a) The Product Theorem 7.3.16 1mphes that (tf & g)? >0 is integrable.

(b) We have F2t fab fg<t? fab 2+ f g%. Now divide by ¢ to obtain (b).
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(c) Let t — oo in (b).

(d) 1f f: 240, let t:(ffg2/f: )12 in (b). Now replace f and g by |f]
and |g|.

22. Note that the composite function sgn oh is Dirichlet’s function, which is not
Riemann integrable.

Section 7.4

This optional section presents an alternative approach to the integral developed
by Gaston Darboux. Instead of Riemann sums using tags, this approach employs
upper and lower sums using suprema and infima. The material in this section is
independent of the earlier sections of the chapter until the equivalence of the two
approaches is discussed. Because of time pressure, instructors will need to make
decisions about selection of material and this section provides an option.

Sample Assignment: Exercises 1, 4, 7, 9, 10, 12, 13, 14.

Partial Solutions:

L (@) LG P)=(040+1) - 1=1, U(fiP)=(1+1+2)1=1

(b) L(f;Pz):(l/Q—i-O—i-O—l-1/2+1+3/2)-527/4,

U(f; Po)=(1+1/2+1/2+1+3/2+2)-(1/2)=13/4.

2. If P=(a,x2,x3,...,2n-1,b) is any partition of [a,b] and f(z)=c for all
x, then L(f;P) = U(f;P) = c((x2 —a) + (x3 — x9) + (x4 —x3)+ -+ +
(b—xp-1)) =c(b—a).

3. If P is a partition, then inf{f(x):xz €I} < inf{g(z):x €I} for each k,
so that L(f; P)<L(g; P). Since P is an arbitrary partition, we have L(f) <

L(g)-
4. If k>0, then inf{kf(z):x€l;}=kinf{f(x):x€l;}, whence L(kf;P)=
kEL(f; P). It follows that L(kf) =k L(f).

5. It follows from Exercise 3 that L(f)<L(g) <L(h) and U(f)<U(g)
Butif L(f)=U(f)=Aand L(h)=U(h)= A, it follows that L(g) = A
whence g is Darboux integrable with integral A.

I IA

U(h).
Ul(g),

6. Given ¢ > 0, consider the partition P. = (0,1 — ¢/2,1 4+ ¢/2,2). Then
U(f;P.)=2 and L(f; P.) =2 —¢. It follows that the integral is equal to 2.

7. (a) If P. = (0,1/2 —¢,1/2+¢,1), then L(g; P:) = 1/2 — ¢ and U(g; P.) =

1/2+e.
(b) Here L(g; P:)=1/2—¢ and U(g; P:) =1/2+ 13¢.
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. If for some c € I we have f(c) >0, then (by Theorem 4.2.9) there exists § >0

such that f(z)> f(c)/2>0 for |x —¢| <,z € I. Thus for some partition P,
we have L(f; P.) >0, and therefore L(f) > 0.

. Given € >0, let P; and P be partitions of I such that L(f;) —e/2 < L(fj; P;),

and let P.=P; U P, so that L(f;) —e/2<L(f;; P-) for j=1,2. If I, ..., I,
are the subintervals of I arising from P:, then it follows that

inf{fi(x) : x € I} + inf{ fo(x) : x € I};) < inf{ f1(x) + fa(z) : x € I}.}.

Thus we obtain L(f1; P.)+ L(f2; P:) < L(f1 + f2; P-) < L(f1 + f2). Hence
L(f1)+ L(f2) — e < L(f1+ f2), where € >0 is arbitrary.

Let fi be the Dirichlet function (see Example 7.4.7(d)) and let fo=1— fi.
Then L(f1) = L(f2) =0, but L(f1 + f2) =1.

If |f(z)| <M for x € [a,b] and € >0, let P. be a partition such that the total
length of the subintervals that contain any of the points c1,ca,..., ¢, is less
than ¢/M. Then U(f; P,,) — L(f; P,,) <e, so the Integrability Criterion 7.4.8
applies. Also 0<U(f; P,) <e, so that U(f)=0.

L(f;P) = (02 +12+---+(n—1)?)/n3=(n—1)n2n —1)/6n3

_1(1 3+1>
3 on  2n2

U(f;P) = (124224 - 4+ n?)/nd=n(n+1)(2n+1)/6n°

Therefore, 1/3=sup{L(f; P,):ne N}<L(f)<U(f)<inf{U(f; P,):neN} =
1/3, and we conclude that L(f)=U(f)=1/3.

It follows from Lemma 7.4.2 that if P is a refinement of P;, then L(f; P.) <
L(f;P) and U(f; P) < U(f;P.), so that U(f;P) — L(f; P) < U(f; P:) —
L(f; P:).

(a) By the Uniform Continuity Theorem 5.4.3, f is uniformly continuous on
I. Therefore if € >0 is given, there exists § >0 such that if u,v in I and
|lu—v|<d, then |f(u)— f(v)|<e/(b—a). Let n be such that n> (b —a)/d
and P, = (zg,21,...,2,) be the partition of I into n equal parts so that
xp —xp—1=(b—a)/n<d. Applying the Maximum-Minimum Theorem 5.3.4
to each subinterval, we get ug,vg in Iy so that f(ux)= My and f(vg)=mg.
Then Mj, —my = f(ux) — f(vk) <e/(b—a). Then 0 < U(f; P,) — L(f; P,) =
Yonoy (M —my)(xp —xk—1) <e. Since £>0 is arbitrary, it follows from
Corollary 7.4.9 that f is integrable on 1.
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(b) If f is increasing on I, let P, be the partition as in (a). Then f(zy) = Mj
and f(zg—1) =myg. Then we have the “telescoping” sum

S (M= i) — i) = TS () Sasr)
k=1 k=1
= P20 ) — o) + fa2) — o)
+ -+ f(@n) = flzn-1))
=" 0) - )

Now given € >0, choose n > (bn— a)(f(b) — f(a))/e. Then for partition P,,
we get U(f; P,)— L(f; P,) = Z (My —my)(xk — x—1) <e. Corollary 7.4.9
implies that f is integrable onk T .1

15. We have 0<U(f; P,) — L(f; P,) < K(b—a)?/n, and therefore

b

OSWﬁBn—/fSKw—@Ww

a

Section 7.5

The proofs of the error estimates for the Trapezoidal, Midpoint and Simpson
formulas involve application of the Mean Value Theorem and the Bolzano Inter-
mediate Value Theorem. Since they are not particularly instructive, they are given
in Appendix D and the instructor may not wish to discuss them. Consequently,
it should be possible to cover this section in a single lesson.

Attention should be paid to the fact that, in the presence of convexity (or
concavity) of the integrand, one has bounds for the error in the Trapezoidal and
Midpoint Rules without examining the second derivative of the integrand.

Sample Assignment: Exercises 1, 2, 7, 8, 9, 17.

Partial Solutions:

1. Use (4) withn=4,a=1,b=2,h=1/4. Here 1/4 < f"(¢) <2, s0 Ty ~ 0.697 02.
2. Use (10) with n=4,a=1,b=2,h=1/4. Since f®(z) = 24/2°, we have
3/4< fW(c) <2. Here Sy ~ 0.693 25.

Ty ~ 0.78279.

The index n must satisfy 2/12712 < 10*6; hence n > 1000/\/6 ~ 408.25.

Syq ~ 0785 39.

The index n must satisfy 96/180n* < 1075; hence n > 28.

S Gtk W
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7. Note that p™® (z) =0 for all x.

8. Use the fact that f”(x)>0 in (4) and (7). Geometrically the inequality is
reasonable because, if the function is convex, then the chord of the trapezoid
lies above the tangent to the graph. If f”(x) <0, then the graph is concave
and the inequality is reversed.

9. A direct calculation.
10. A direct calculation.
11. Use Exercise 10.

12. The integral is equal to the area of one quarter of the unit circle. The error
estimates cannot be used because the derivatives of h are unbounded on [0, 1].
Since h”(x) <0, the inequality is T),(h) < 7/4 < M, (h). See Exercise 8.

13. Interpret K as an area. Show that h”(z) = —(1 —22)3/? and that h¥)(z)=
—3(1+422)(1+22)~7/2. To eight decimal places, 7 = 3.141 592 65.

14. Approximately 3.653 484 49.
15. Approximately 4.821 159 32.
16. Approximately 0.835 648 85.
17. Approximately 1.85193705.
18. 1.

19. Approximately 1.198 140 23.
20. Approximately 0.904 524 24.



CHAPTER 8
SEQUENCES OF FUNCTIONS

In this chapter we study the pointwise and uniform convergence of sequences
of functions, so it draws freely from results in Chapter 3. After introducing
these concepts in Section 8.1, we show in Section 8.2 that one can interchange
certain important limiting operations (e.g., differentiation and integration) when
the convergence is uniform. Both of these sections are important and should be
discussed in detail.

Section 8.3 and 8.4 and more special. In Section 8.3 we use the results in
Section 8.2 to establish the exponential function on a firm foundation, after which
the logarithm is treated. In Section 8.4 we do the same for the sine and cosine
functions. Most of these properties will be familiar to the students, although the
approach will surely be new to them. A detailed discussion of Section 8.3 and 8.4
can be omitted if time is short.

Section 8.1

The distinction between ordinary (= pointwise) convergence and uniform conver-
gence of a sequence of functions on a set A is a subtle one. It centers on whether
the index K(e,x) can be chosen to be independent of the point = € A; that is,
whether the set {K(e,z) : x € A} is bounded in R. If so, we can take K (c) to be
the supremum of this set. However, it is not always easy to determine whether
this set is bounded for each € > 0. Often it is easier to obtain estimates for the
uniform norms introduced in Definition 8.1.7.

Sample Assignment: Exercises 1, 2, 3, 4, 7, 11, 12, 13, 14, 17.

Partial Solutions:

1. Note that 0 < f,(z) <z/n — 0 as n — oo.

2. Note that f,(0)=0 for all n. If >0, we have |f,(z)]<1/(nz) — 0 as
n — 00.

3. Note that f,,(0)=0 for all neN. If x >0, then |f,(x) —1|<1/(nz) — 0 as

n — 0.

4. If z€[0,1), then |fy(x)] <2™ — 0. If x=1, then f,(1)=1/2 for all neN.
If x> 1, then |fp(x)—1/=1/(14+2") <(1/x)" — 0.

5. Note that f,,(0)=0 for all n. If x > 0, then |f,(z)| < 1/(nz) — 0.

6. Note that f,(0)=0 for all n. If 0<e<m/2, let M.:=tan(n/2—¢)>0
so that if y> M., then 7/2 —e < Arctan y <m/2. Therefore if n> M. /x,
then m/2 —e < Arctan nz < /2. Similarly if z <0.

61
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Note that f,(0)=1 for all n. If >0, then 0<e ™™ <1 so that 0<e ™™ =
(e7*)" = 0.

Note that f,(0)=0 for all n. If x>0, it follows from Exercise 7 that 0 <
z(e )" - x-0=0.

For both functions f,,(0) =0 for all n. If 2 >0, then 0 < 2%2e " = 22(e~%)" —
0, since 0<e ¥ <1. For the second function, use Theorem 3.2.11 and
[(n+1)2 22e~(+ 1] /[n222 e = (1 +1/n)%e™® = e % < 1.

If x €7Z, then cosmw =41, so that (cosmx)?=1 and the limit equals 1. If
x ¢ Z, then 0 < (cosmz)? <1 and the limit equals 0.

If x €[0,al, then |f,(z)| <a/n. However, f,(n)=1/2.

If x € [a,00), then | f,(z)] <1/(na). However, f,(1/n)=1/2.

If a>0, then |f,(z) — 1] <1/(na) on [a,c0). However, f,(1/n)=1/2.

If  €[0,b], then | f,(x)| <b". However, f,(2-Y/")=1/3.

If # € [a, 00), then |f,,(z)| < 1/(na). However, f,(1/n)=3sin1>0.
If0<e<m/2, let M, := tan(w/2 —¢) >0, so that if na > M., then 7/2 —¢ <
Arctan na < /2. Hence, if £ > a and n > M. /a, then nx > M. and 7/2 — e <
Arctan nx < /2. However, f,(1/n)=Arctanl=m/4>0.

If x € [a,00), then | f,(z)] < (e~®)". However, f,(1/n)=1/e.

The maximum of f,, on [0,00) is at x=1/n, so || fallj0,.0) = 1/(ne).

The maximum of f,, on [0,00) is at x=2/n, so || fallj0,00) =4/(ne)?.

If n is sufficiently large, the maximum of f,, on [a,c0) is at . =a >0, so that
1f2llja,00) = a®/€™* — 0. However, | falljo,c0) = fn(2/n) =4/€”.

Given ¢ > 0, let Ki(¢/2) be such that if n > Ki(¢/2) and x € A, then
|fn(x) — f(z)] < €/2; also let Ka(e/2) be such that if n > Ks(¢/2) and
x € A, then |gn(x) — g(x)| < /2. Let K3:= sup{Ki(c/2), K2(c/2)} so that
if n > Kz and 2 € A, then [(fn + ga)(z) — (f + 9)(@)| < |fu(x) — f(2)| +
|gn(z) —g(z)| <e.

We have | f,(z) — f(z)| =1/n for all z € R. Hence (f,,) converges uniformly on
R to f. However, | f2(n) — f?(n)| > 2 so that (f2) does not converge uniformly
on R to f.

Let M be a bound for (f,(x)) and (gn(z)) on A, whence also |f(x)| < M.
The Triangle Inequality gives |f,(x)gn(z)— f(z)g(x)| < M| fu(z) — f(z)] +
|gn () — g(x)]|] for z € A.

Since g is uniformly continuous on [—M, M|, given £ >0 there exists J. >0
such that if |u —v| < d; and u,v € A, then |g(u) — g(v)| <e. If (f,) converges

uniformly to f on A, given ¢ > 0 there exists K(d) such that if n > K(9)
and z € A, then |f,(z)— f(x)| <. Therefore, if n> K(d.) and x € A, then

l9(fn(z)) —g(f(z))| <e.
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Section 8.2

The proof of Theorem 8.2.2 is short and understandable; it should be discussed
in detail. That of Theorem 8.2.3 is more delicate; observe that it depends on the
Mean Value Theorem 6.2.4 in two places. Note especially that the hypothesis in
Theorem 8.2.3 is that the sequence of derivatives is uniformly convergent (and
that the uniform convergence of the sequence of functions is a conclusion, rather
than a hypothesis). The only delicate part of the proof of Theorem 8.2.4 is to
show that the limit function is integrable. The Bounded Convergence Theorem
8.2.5 will be considerably strengthened in Section 10.4. Dini’s Theorem 8.2.6 is
interesting in that it shows that monotone convergence for continuous functions
to a continuous limit implies the uniformity of the convergence on [a, b].

Sample Assignment: Exercises 1, 2, 4, 5, 7, 8, 14, 16, 19.

Partial Solutions:

1. The limit function is f(z):=0 for 0<x <1, f(1):=1/2 and f(z):=1 for
1 <z <2. Since it is discontinuous, while the f, are all continuous, the con-
vergence cannot be uniform.

2. The convergence is not uniform, because f,(1/n)=n, while f(z)=0 for all
xz€0,1].

3. Let fn(x):=1/n if x is rational and f,(x):=0 if x is irrational.

4. If e >0 is given, let K be such that if n> K, then ||f, — f|[1 <¢/2. Then
Fn(on) — £ (o) < [Fn(n) — £ (o) + | F ) — F(0)| < &/2+ | () — (o).
Since f is continuous (by Theorem 8.2.2) and z,, — xg, then | f(z,) — f(z0)| <
e/2 for n> K', so that | f,(xn) — f(z0)| <& for n> max{K, K'}.

5. Given € >0, there exists 6 >0 such that if z,u€R and |z —u|<d, then
|f(z) = f(u)] <e. Now require that 1/n <4.

6. Here f(0)=1 and f(x)=0 for z€(0,1]. Since the f,, are continuous on
[0, 1] but f is not, the convergence cannot be uniform on [0, 1]. Alternatively,
note that f,,(1/n) — 1/e.

7. Given €:=1, there exists K >0 such that if n> K and z € A, then |f,(z) —
f(z)] <1, so that |fn(z)| <|fx(z)|+1 for all x € A. If M := max{||filla,.-,
| fc—1lla, | fxlla+1}, then |fn(z)|<M for all neN,z€ A. Therefore
|f(x)| <M for all x € A.

8. Since 0< f,(x) <nxz<non [0, 1] and 0 < f,(z) <1/x <1 on [1,00), we have
0< fo(x)<n on [0,00). Moreover, f(x):=lim(f,(z))=0 for x=0 and
f(z)=1/z for x>0, which is not bounded on [0,00). Since f is not con-
tinuous on [0, 00), the convergence is not uniform. Alternatively, f,(1/y/n)=

Vi/2.
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. Since f(x)=0 for all 2€0,1], we have f'(1)=0. Also ||fn — flljo) <1/n,
so the convergence of (f,,) is uniform. Also g(z) = lim(2"~!) so that g(1)=1.
The convergence of the sequence of derivatives is not uniform on [0,1].

10. Here ||gn|lj0,00) <1/ 80 (gn) converges uniformly to the zero function. How-
ever, lim(g),(z)) = —1 for x=0, and =0 for  >0. Hence (limg,) (0) =0 #
1= lim(g},(0)). The sequence (g},) does not converge uniformly.

11. The Fundamental Theorem 7.3.1 implies that [ f} = fu(x)— fn(a). Now
apply Theorem 8.2.4.

12. The function f,(z):=e ™" is decreasing on [1, 2] and | fall,2) =e~". Hence
Theorem 8.2.4 can be applied.

13. If a>0, then || fu|jq,x] <1/(na) and Theorem 8.2.4 applies. On the interval

[0, 7] the limit function is f(0):=1 and f(z):=0 for x € (0,7]. Moreover

| fulljo.xj =1. Hence it follows from Theorem 8.2.5 that [f=0. This can

also be proved directly by changing the variable v =nz and estimating the
integrals.

14. The limit function is f(0):=0, f(z):=1 for z € (0,1] and the convergence is
not uniform on [0, 1]. Her lim folfn =lim(1—(1/n)In(n+1))=1and folf =1.

15. Here g, (0) =0 for all n, and g,(z) — 0 for = € (0, 1] by Theorem 3.2.11. The
function g,, is maximum on [0, 1] at x=1/(n+1), whence ||gn|/(p1] <1 for
all n. Now apply Theorem 8.2.5. Or evaluate the integrals directly.

16. Each f, is Riemann integrable since it has only a finite number of disconti-
nuities. (See Exercise 7.1.13 or the Lebesgue Integrability Criterion 7.3.12.)

17. Here f(z):=0 for x € [0,1] and we have || f, — flljo,1) = 1.

18. Here f(z):=0 for z€0,1) and f(1):=1 and we have || f, — f|[jp,;) = 1.
19. Here f(z):=0 for all z €[0,00) and |f,(n)— f(n)|=1.

20. Let fy(z) :=2a" for x €0, 1].

Section 8.3

There are many different approaches to the exponential and logarithmic functions:
see R.G. Bartle’s Elements of Real Analysis. The approach here is based on
obtaining the exponential function as a limit of polynomials (which, in fact, are the
partial sums of the Maclaurin series for the exponential function). The uniqueness
and basic properties of the exponential function are based on the differential
equation and initial conditions it satisfies.

The logarithm is obtained as the function that is inverse to the exponential
function. The power functions z — a® and the functions x — log, x are often
useful, but can largely be left to the student.
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Sample Assignment: Exercises 1, 2, 3, 5, 6, 8, 10, 13.

Partial Solutions:

. To establish the inequality, let A:=2>0 and let m — oo in (5). For the

estimate on e, take z=1 and n=3 to obtain [e—22[<1/12, so e < 23.
Since (E,(1)) is increasing, we also have 2% <e.

Note that if n>9, then 2/(n+1)! <6 x 107 <5 x 107%. Hence e ~ 2.71828.

3. Evidently E,(z)<e® for all n€N, £>0. To obtain the other inequality,

o N o w;

10.

11.

12.

13.

apply Taylor’s Theorem 6.4.1 to [0,a] and note that if ¢€]0,a], then 1<
e <e?.

To obtain the inequality, replace n by n 4+ 1 and take a =1 in Exercise 3. Since
2<e<3, we have e/(n+1) for n>2. If e=m/n, then en! — (1 +14 --- +
1/n!)n! is an integer in (0, 1), which is impossible.

Note that 0 <t"/(1+t) <t" for t € [0, z].

In1.1 ~ 0.0953 and In 1.4 ~ 0.3365. Take n > 19,999.

In2 =~ 0.6931. Note that e/2 —1<0.36 and (0.36)%/8 < 0.000 04.

If f(0)=0, the argument in 8.3.4 show that f(x)=0 for all x, so we
take K = 0. If f(0) # 0, then g(z):= f(x)/f(0) is such that ¢'(x) = g(x)
for all z and ¢g(0) =1. It follows from 8.3.4 that ¢g(z) = E(x), whence f(z)=
f(1)e".

Note that if the means are equal, then we must have 1+ xp = E(xy) for all
k. It follows that x; =0, whence a; = A for all k.

L'(1) = Uim[L(1 + 1/n) — L(1)]/(1/n) = UmL((1 + 1/n)") = L(lim(1+
1/n)")=L(e)=1.

(a) Since L(1) =0, we have 1* = E(aL(1))=E(0)=1.

(b) This follows from the fact that E(z) >0 for all z€R.

(¢) (2y)° = E(aL(zy)) = E(aL(z) + aL(y)) = E(aL()) - E(aL(y
(d) Since (1/y)*=E(aL(l/y))=E(-aL(y))=(E(aL(y)) " =(
statement follows from (c).

(a) $;+ﬂ=E((a+ﬂ)L(9«“)) = E(aL(z)+8L(z)) = E(aL(z)) - E(BL(z)) =
R

(b) ()P = E(BL(z®)) = E(BaL(x)) =%, and similarly for (z?)°.

(c) 7= FE(—aL(x))=(E(aL(z)) = ()"t =1/z“.

(d) If > 1, then L(x) >0, so that if o< 3, then aL(z) < SL(z). Since E is
S

(

~—

)=ac

<
~—
L
-+
=
@

trictly increasing, we deduce that z® = FE(aL(z)) < E(BL(x)) =P.
a) If >0, it follows from 8.3.13 that z — x® is strictly increasing. Since

lim L(z) = —oo, use 8.3.7 to show that lim z*=0.
z—0+ z—0+

(b) If &« <0, then aL is strictly decreasing, whence x — z is strictly decreas-
ing. Here lim alL(z)=o00,s0 lim z%= lim E(y)=o00, and lim «aL(x) =
r—0+ r—0+ Y—>00 T—00

—00, 80 lim z%*= lim FE(y)=0.
T—00 Yy——00
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By 8.3.14, if >0 and a>0, a # 1, then (log,z)(Ina)= Inz, whence
a'*%.* = F((log, z)(Ina)) = E(Inz) =z for >0. Similarly, since In(a¥) =
In(E(ylna)) =ylna, we have log,(a¥) = (Ina¥)/(lna) =y for all y € R.

15. Use 8.3.14 and 8.3.9(vii).

16. Use 8.3.14 and 8.3.9(viii).

17. Indeed, we have log, = (Inz)/(lna)=[(Inz)/(Inbd)] - [(Inbd)/(Ina)] if a # 1,
b# 1. Now take a=10,b=e.

Section 8.4

Although the characterization of the sine and cosine functions given here is not the
traditional approach to these functions, it has several advantages. Indeed, the
most important properties of these functions follow quickly from the fact that
they satisfy the differential equation f”(x) = —f(x) for all z € R, and that any
function satisfying this differential equation is a linear combination of sin and cos.
[Other approaches to the trigonometric functions are sketched in R. G. Bartle’s
Elements of Real Analysis.]

Sample Assignment: Exercises 1, 2,4, 6, 7, 8.

Partial Solutions:

. If n>2|z|, then |cosx — Cp(z)| < (16/15)|x|*"/(2n)!. Hence cos(0.2) =

0.980067 and cos1 ~ 0.549302. As for the sine function, if n >2|z|, then
|sinx — S, (z)] < (16/15)|x[**/(2n)!. Hence sin(0.2) ~ 0.198669 and sin 1 ~
0.841471.

2. It follows from Corollary 8.4.3 that |sinz| <1 and |cosx|<1.
3. If <0, then —x >0 so property (vii) never holds. However, if z <0, we

have —(—x) < S(—z) = —S(z) < —x, whence —|z|=2 < S(z) < —x=|z|. Tt
follows from 8.4.8(ix) that —22/6 < —(sinz — z) <0 if x > 0. Hence, if x <0,
we have 23/6 < —(sinx — ) <0, whence |sinx — x| < |z[3/6.

. We integrate 8.4.8(x) twice on [0, z]. Note that the polynomial on the left

has a zero in the interval [1.56, 1.57], so 1.56 <7 /2.

. Exercise 8.4.4 shows that Cy(x) < cosz < C3(z) for all z € R. Integrating sev-

eral times, we get Sy(z) < sinz < S5(x) for all  >0. Show that S4(3.05) >0
and S5(3.15) < 0. (This procedure can be sharpened.)

. Clearly ,(0)=0 and ¢,(0)=1; also s},(z) =cp(x) and ¢}, (z) =su(x) for

n

reR,neN. Show that if |z|<A and m >n>2A, then |cp,(x) —cp(x)] <
(16/15)A?"/(2n)!, whence it follows that |c(x) — c,(x)| < (16/15) A% /(2n)!
and the convergence of (¢,) to ¢ is uniform on each interval [—A, A]. Similarly
for (s,). Since ¢, | = ¢, and s | = s, for n € N, property (j) holds. Property
(jj) is evident, and it follows from s), = ¢, and ¢, ; = s, that s’ =cand ¢’ =s.
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Note that the derivative D[(c(x))? — (s(x))?] =0 for all x € R. To establish
uniqueness, argue as in 8.4.4.

Let g(x):= f(0)e(x)+ f/(0)s(z) for x €R, so that ¢"(z)=g(x),g(0)= f(0)
and ¢'(0) = f'(0). Therefore the function h(z) := f(z) — g(x) has the property
that h”(z) =h(x) for all z €R and h(0)=0,2'(0)=0. Thus it follows as in
the proof of 8.4.4 that g(z)= f(z) for all x€R, so that f(z)= f(0)c(z)+
f(0)s(z). Now note that fi(z):=e” and fo(x):=e~* satisfy f"(z)= f(x)
for x € R. Hence fi(z) =c(x) + s(x) and fa(x) = c(z) — s(x), whence it follows
that c(z) = 3(e” + e~ %) and s(z) = 5(e” —e ™).

If p(z):=c(—z), show that ¢"(z)=p(z) and »(0)=1,¢'(0)=0, so that
() =c(z) for all x € R. Therefore c is even.

It follows from Exercise 8 that c(z) >e*/2>0 for all z €R. Therefore s
is strictly increasing on R and, since s(0)=0, it follows that ¢ is strictly
increasing on (0,00). Thus 1=¢(0) < c¢(x) for all = € (0, 00); since c¢ is even,

we deduce that ¢(x)>1 for all z€R. Since lim e =00 and lim e * =0,

it follows from Exercise 8 that lim c¢(z)= lim s(z)=oc.



CHAPTER 9
INFINITE SERIES

Students have been exposed to much of the material in this chapter in their
introductory calculus course; however, their recollection of this material probably
will not go much beyond the mechanical application of some of the “Tests”. At this
point, they should be prepared to approach the subject on a more sophisticated
level.

Instructors will recall that an introduction to series was given in Section 3.7
and it would be well to review that section very briefly. Since Section 9.1 is quite
short it is possible to do that in one lesson. Although much of Section 9.2 will be
familiar, the short Section 9.3 will probably be new. Section 9.4 is an interesting
one, and ties this discussion together with Chapter 8.

Section 9.1

The notion of absolute convergence is rather subtle, and should be stressed. The
discussion about rearrangements will help the student to realize the importance
of absolute convergence. If the Cauchy Condensation Test in Exercise 3.7.15 has
not been discussed before, it should be covered now.

Sample Assignment: Exercises 1, 2, 4, 7, 8, 11, 12.

Partial Solutions:

1. Let s, be the nth partial sum of Y °ay,, let t, be the nth partial sum
of 37 |an|, and suppose that a, >0 for n>P. If m>n> P, show that
tm —tn =5Sm — Sp. Now apply the Cauchy Criterion.

2. Replace each strictly negative term by 0 to obtain ) p,, and replace each
strictly positive term by 0 to obtain ) gn. If > p,, is convergent, then >_ gy,
is also convergent since ¢, =a, —p, and Y a, is convergent (see Exercise
3.7.4). In this case, |an| =pn — gn, so that > a, is absolutely convergent, a
contradiction.

3. Take positive terms until the partial sum exceeds 1, then take negative terms
until the partial sum is less than 1, then take positive terms until the partial
sum exceeds 2, etc.

4. It was used together with the Cauchy Criterion to assure that given £ >0
there exists IV < ¢ such that Y %, x| <e.

5. Yes. Let M > 0 be such that every partial sum ¢,, of Y |a,| satisfies 0 <t,, < M.
If > by is rearrangement of Y a, and if ug:=|bi|+ --- + |bg|, then there
exists n €N such that every term |b;| in wy is contained in ¢, and hence
0 <wg <t, <M. Therefore > by is absolutely convergent.

68
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Use Mathematical Induction to show that if n>2, then s, =—In2—1Inn+
In(n +1). Yes, since a,, <0 for all n > 2.

(a) If |bg| < M for all k €N, then |anby + -+ + ambm| < M(Jap| + -+ + |am]).
Now apply the Cauchy Criterion 3.7.4.

(b) Let by :=+1 if ar >0 and by :=—1 if ar <0. Then > apbp = >_ |ag|-

Let a:=(—1)*/Vk, so a? =1/k.

Since S2p, — Sp=apt1+ -+ + a2y > nNagy, = %(2na2n)7 then lim(2nag,)=0.
Similarly sop41 —8n > (n+1)agp+1 > %(Zn +1)agp+1, so that we have
lim(2n + 1)agn4+1 =0. Consequently lim(na,)=0.

Consider ) 5°1/(nlnn), which diverges by Exercise 3.7.17(a).

Indeed, if |n2a,| < M for all n, then |a,| < M/n? so Example 3.7.6(c) and the
Comparison Test 3.7.7(a) apply.

If 0<a<1, then a™ — 0, so 1/(1+a™) — 1 and the series diverges by the
nth Term Test 3.7.3. Similarly, if a=1, then 1/(1+a™)=3. If a>1, then
1/(1+a™) < (1/a)™ and the series converges by comparison with a geometric
series with ratio 1/a < 1.

(a) Rationalize to obtain " z,, where x,, :=[v/n(v/n+1++/n)]~! and note
that x,, ~ y, :=1/(2n). Now apply the Limit Comparison Test 3.7.8 to show
the series diverges.

(b) Rationalize and compare with 3" 1/n3/2 to show the series converges.

If > a, is absolutely convergent, then the partial sums (¢,) of Y |a,| are
bounded, say by M. It is evident that the absolute value of the partial sums
of any subseries of a,, are also bounded by M, so these subseries are also
(absolutely) convergent.

Conversely, if every subseries of )" a, is convergent, then the subseries

consisting of the strictly positive (and strictly negative) terms are absolutely
convergent, whence it follows that > a, is absolutely convergent.
If (i) exists, let s,:= Y ;2 cp. For fixed neN, choose ip,jo such that
{e1,...,en} € H{aiy i < do,j < jo}. Then s, < 3010, ;(’:1 aj; <
D2y D2y aij=B. Since n€N is arbitrary, it follows that C' exists and
C<B.

If (ii) holds, given n€N, choose meN such that {ai,...,ain} C
{c1,...,¢cm}. Then Z?:l aij < > gty <C so that Z;’il ai; <C for all
j€N. Now choose N such that {a;; : i<m,j<n} C {c : k<N}. Then
doimy iy ai < Zgﬂ ¢ <C. First let n — oo, then let m — oo to get
B<C.

Note that > 7%, a;;=—1if i=1 and =0 if i>1, whence > 7%, > 7%, a;; =
—1. On the other hand, > :° a;;=1 if j=1 and =0 if j>1, whence
Dot 2o aij=1.
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Section 9.2

The results presented in this section are primarily designed to test for absolute
convergence. All of these tests are very useful, but they are not definitive in
the sense that there are some series that do not yield to them, but require more
delicate tests (such as Kummer’s and Gauss’s Tests that are presented in more
advanced treatises).

Sample Assignment: Exercises 1, 2(a,b), 3(a,c,e), 5, 7(a,c), 9, 12(a,d), 16.

Partial Solutions:

Convergent; compare with > 1/n?.
Divergent; apply 9.2.1 with b, :=1/n.
Divergent; note that 2%/ —1.
Convergent; apply 9.2.3 or 9.2.5.

~3/2.

Convergent; use 9.2.4 and note that (n/(n+1))" — 1/e<1.
Divergent; the nth term does not tend to 0.

(Inn)P <n for large n, by L'Hospital’s Rule.

Convergent; apply 9.2.3.

Convergent; note that (Inn)™™ >n? for large n. Now apply 3.7.7 or 9.2.1.
) Divergent; note that (Inn)"™"= exp((Inlnn)?)< exp(lnn)=n for
arge n. Now apply 3.7.7 or 9.2.1.

Divergent; apply 9.2.6 or Exercise 3.7.15.
Convergent; apply 9.2.6 or Exercise 3.7.15.

a)

b)

c)

d)

a) Divergent; apply 9.2.1 with b, :=1/n.

b) Convergent; apply 3.7.7 or 9.2.1 with y,,:=n
)

d)

a)

b)

c)

d

(
(
(
(
(
(
(
(
(
(
(
(
1

€)
)
a) Convergent; apply 9.2.2 or 9.2.4.
b) Divergent; apply 9.2.4.
c) Divergent; note that e™" =n.
d) Convergent; note that (Inn)exp(—n'/?)<nexp(—n'/?)<1/n? for
arge n, by L’Hospital’s Rule.
(e) Divergent; apply 9.2.4.
(f) Divergent; apply 9.2.4.
5. Compare with > 1/n2.
6. Apply the Integral Test 9.2.6.
7. (a,b) Convergent; apply 9.2.5.
(c) Divergent; note that x, >(2/4)(4/6)---(2n/(2n+2))=1/(n+1). Or,
apply 9.2.9.
(d) Convergent; apply 9.2.9.

(
(
(
(
(
(
1

8. Here lim(:c%/n) =a<l.

9. If m>n>K, then |s,, —sp| <|Tps1| + -+ +|zm| <r"™/(1 7). Now let
m — 0.
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Relation (5) implies that |z,yx| <7*|z,| when n>K. Therefore, if m >
n> K, we have [spy — sp| < (r+72+ -+ + 7™ |2,| <|zn|(r/(1—7)). Now
take the limit as m — oo.

Let m>n>K. Use (12) to get (a—1)(|zpt1|+ -+ +|om]) <nlepia] —
M| Tmy1], whence |8y, — sp| < |Tpg1|+ -+ + |2m| <|Tpg1|n/(a —1). Now take
the limit as m — oo.

(a) A crude estimate of the remainder is given by s—s4=1/6-7+
1/7-84---< [Fa~2dz=1/5. Similarly s — 519 <1/11and s — s, <1/(n+ 1),
so that 999 terms suffice to get s — sgg9 < 1/1000. [In this case the series tele-
scopes and we have s, =1/2—1/(n+2).]

(d) If n >4, then zp41/x, <5/8 so (by Exercise 10) |s — s4| <5/12. If n > 10,
then x,41/7, <11/20 so that |s — s1o| < (10/219)(11/9) <0.012. If n=14,
then |s —s14] <0.00099. Alternatively, if n >4, then l’%/n <1/v2 so (by
Exercise 9) |s — s4| < 1/4(v/2 —1) < 0.61. If n> 10, then 2o/ " < (1/2)(10)}/10
so that |s — s19| <0.017. If n=15, then |s — s15| < 0.000 69.

(b) Here 1/5v/6 +1/6v7+ -+ < [;° 273/ dz = 1. Therefore we have 30° | <
[ 273/2dz=2/\/n, so |s — s10| < 0.633 and |s — s,| < 0.001 when n > 4x 106.
(c) If n >4, then |s — s,| < (0.694)x, so that |s — s4| < 0.065. If n > 10, then
|s — sn| <(0.628)zy, so that |s — sio| < 0.000023.

Note that s3, >14+1/4+1/7+ -+ +1/(3n+1), which is not bounded.

Since Inn= [["t7'dt<1/1+1/2+ -+ +1/(n—1), it follows that 1/n < c,.
Since ¢y, —cpt1=In(n+1)—Inn—-1/(n+1)=1/6, —1/(n+1) by the Mean
Value Theorem, where 6,, € (n,n+ 1), we have ¢, — ¢,41 >0. Therefore the
decreasing sequence (c,) converges, say to C. An elementary calculation
shows that b, =co, — ¢, + In2, so that b, — In 2.

Note that, for an integer with n digits, there are 9 ways of picking the first
digit and 10 ways of picking each of the other n — 1 digits. Thus there are 8
“sixless” values ny from 1 to 9, there are 8-9 such values from 10 to 99, there
are 8-92 values between 100 and 999, and so on. Hence Y_ 1/n;, is dominated
by 8/1+8-9/10+8-9%2/10% + - - =80.

There is one value of my from 1 to 9, there is one value from 10 to 19,
one from 20 to 29, etc. Hence the (grouped) terms of ) 1/mj dominate
1/1041/20+ --- =(1/10) >_ 1/k, which is divergent.

There are 9 values of p; from 1 to 9, there are 9 such values from 10 to
19, and so on. Hence the (grouped) terms of » 1/py dominate 9(1/10) 4+
9(1/20) + --- =(9/10) >_ 1/k, which is divergent.

The terms are positive and lim(n(1 — z,4+1/x,)) = g — p; therefore, it follows
from 9.2.9 that the series is convergent if ¢ > p + 1 and is divergent if ¢ <p+ 1.
If g=p+1, use 9.2.1 with y, :=1/n to establish divergence.

Here lim(n(1 — zp41/2n)) = (c—a—b) + 1, so the series is convergent if ¢ >
a+b and is divergent if c<a+b. [If c=a+b and ab>0, one can show



72 BARTLE AND SHERBERT
that @41/, >n/(n+1) so that (nx,) is an increasing sequence, whence
the series is divergent. The restriction that ab>0 can be removed by using
a stronger test, such as Kummer’s or Gauss’s test.]

19. Here by +bo+ --- 4+ b, = AY2 — (A— An)1/2 — AY2 50 that > by, converges
to A2, Also b, >0 and a,/b, = (A — A,_1)"/?+(A—A,)"/? = 0.

20. Here (b,) is a decreasing sequence converging to 0 and by +bg + - -+ + b, >
(a1 +as+ -+ +an) /A=A, so the series > b, diverges. Also by, /a, =
1/vV/A, — 0.

Section 9.3

In this short section, we present some results that often enable one to handle
series that are conditionally convergent. The easiest and most useful one is the
Alternating Series Test 9.3.2, since alternating series often arise (e.g., from power
series with positive coefficients). In addition, the estimate for the rapidity of
convergence (in Exercise 2) is particularly easy to apply. The tests due to Dirichlet
and Abel are more complicated, but apply to more general series.

Sample Assignment: Exercises 1, 2, 5, 7, 9, 10. (Warning: Exercises 11 and

15(c,f) are rather difficult.)

Partial Solutions:

. (a) Absolutely convergent. (b) Conditionally convergent.

(c) Divergent. (d) Conditionally convergent.

. Show by induction that so <s4 < sg<---<s5<s3<s;. Hence the limit lies

between s, and $,4+1 so that |s —s,| <|sp+1— Sn| = 2n+1-

. Let za,—1:=1/n and 29, :=0. Or, if it is desired to have z, > 0 for all n, take

Zon—1:=1/n and 2z, :=1/n?.

. Let (yn):=(4+1, =1, +1, —1,...).

5. One can use Dirichlet’s Test with (y,):=(+1,—-1,—-1,+1,+1,—-1,—1,...) to

establish the convergence. Or group the terms in pairs (after the first), use
the Alternating Series Test to establish the convergence of the grouped series,
and note that |s9, — sop—1|=1/2n — 0 so that |sp —s| — 0.

. If ¢>p, then X :=(1/n%P) is a convergent monotone sequence. Now apply

Abel’s Test with y,, := ap/nP.

If f(z):=(nz)?/x9, then f'(x) <0 for z sufficiently large. I’ Hospital’s Rule
shows that the terms in the alternating series approach 0.

. (a) Convergent by 9.3.2.

(b) Divergent; use 9.2.1 with y,:=1/(n+1).
(c) Divergent; the terms do not approach 0.
(d) Divergent; use 9.2.1 with y,, :=1/n.
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9. If t >0, the sequence (e~™) decreases to 0, so Dirichlet’s Test applies.

10. The convergence of (a,/n) follows from Dirichlet’s Test; the convergence of

11.

12.

13.

14.

15.

> (sn/n(n+1)) follows by comparison with > (1/n2). To obtain the equal-
ity, use Abel’s Lemma with x:=1/k, yr :=ar and n=0. Then let m — co.

Dirichlet’s Test does not apply (directly, at least), since the partial sums of
the series generated by (1, —1, —1,1,1,1,...) are not bounded. To estab-
lish the convergence, one can group the terms 1 —(1/2+1/3)+ (1/4+1/5+
1/6) — --- to get an alternating series. The block consisting of k terms
ends with ng:=1+2+ --- +k=k(k+1)/2, and starts with ny_; +1. The
sum of this block of k terms is greater than the integral of 1/x over the
interval [ng_1 + 1,nx + 1] and less than the integral of 1/ over the interval
[nk—1, nk); hence this sum is greater than In[(ng +1)/(ng—1 + 1)] and less than
In[ng/nk—1]. Since it is seen that nyyq1/ng < (nk+1)/(nk—1+1) when k> 2,
it follows that the terms in the grouped series are decreasing. Moreover, since
In(ng/nk—1) — 0, it follows that the terms of the grouped series approach 0;
consequently, the grouped series converges. This means that the subsequence
(Sn,) of the partial sums of the original series converges. But it is readily
seen that if ny_1 <n <ng, then s, lies between the partial sums s,,_, and
Sn,- Hence lim(s,,) = lim(s,, ), and the series converges.

Let |s,|< B for all n. If m>mn, then it follows from Abel’s Lemma that
| > hn 1 ThYk] < Bll@m| + [n1| + 3255, 4 1 |2k — k4] Since 2, — 0 and
> |xk — Tx41] is convergent, the dominant term approaches 0, and the Cauchy
Criterion applies.

Since (a,) and (b,) are bounded monotone sequences, they are convergent.
Hence, if €>0 is given, there exists M(e) such that if m>n>M(e),
then 0<apt1 —amy1<e and 0<bpi1 —bnt1 <e. Since xp —xpy1 =
(ak — akt1) + (bgy1 —bg), ome has 3530 o |zk — py1] = (@41 — am41) +
(bm+1 — bn+1) < 2e.

By Abel’s Lemma, Y1 . ar/k=sm/m — s, /(n+1)+ S s /k(k +1).
Thus | Y7 ax/k|l < M[(1/m)'™" + (1/(n + 1) + 375 1/k* 7] Since
1 —7r>0, the first two terms approach 0; since p:=2 —r > 1, the series > _ 1/kP
is convergent by 9.2.7(d), so the final terms tends to 0.

(a) Use Abel’s Test with x,, :=1/n.

(b) Use the Cauchy Inequality with x, :=\/an, yn :=1/n, to get > \/a,/n <
(3 an)'/2(31/n?)'/2, establishing convergence.

(c) Let > (—1)*'ey, e >0, be conditionally convergent. Since 7/2>3/2,
each interval Iy, :=[(k — 1)m + 7 /4, (k — 1)7 4 37 /4] contains at least one inte-
ger point; we let ng € I, be the integer nearest (k —1/2)m so that |sinng| >
1/2. Let an, :=(—1)*"1¢; and a,,:=0 if n#ny, so that > a,, is convergent.
However, (—1)*~1 sin ny >1/2 so that by, := a,, sinny > cx/2; hence > b, is
divergent.
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(d) Let ay:=[n(Inn)?]~!, which converges by the Integral Test. However,
by :=[v/nInn]~!, which diverges.

(e) The sequence (n'/™) decreases to 1 (see Example 3.1.11(d)); hence Abel’s
Test 9.3.5 applies to give convergence.

(f) If > ay, is absolutely convergent, so is ) by; otherwise ) b, may diverge.
Indeed, (1/k)/(14+1/k)=1/(k+ 1); hence, if the block of terms 1/p, —1/2p,
—1/2p appears in > a,, then the sum of the corresponding block of terms
in ) b,is 1/(p+1)—2/(2p+1)=—-1/(p+1)(2p+1). Consequently, if this
block of three terms is repeated 2p+ 1 times in ) a,, the sum of the cor-
responding terms in » b, is —1/(n+1). Now let (ay) consist of the block
1/1, —1/2, —1/2 repeated 3 times, followed by the block 1/2, —1/4, —1/4
repeated 5 times, followed by the block 1/3, —1/6, —1/6 repeated 7 times,
and so on. Then ) a,, converges to 0, but » b, =—>1/(p+ 1) is divergent.

Section 9.4

The notion of convergence [respectively, uniform convergence] of a series of func-
tions is nothing more than the convergence [resp., uniform convergence] of the
sequence of partial sums of the functions. The importance of the uniform con-
vergence is that it enables one to interchange limit operations (as in Theorems
9.4.2-9.4.4). While the Weierstrass M-Test 9.4.6 is only a sufficient condition for
uniform convergence, it is often very useful.

The use of the Ratio Test to determine the radius of convergence will be
familiar to most students, but since the limit of |a,, +1/a,| does not always exist,
the Cauchy-Hadamard Theorem 9.4.9 (which always applies) is very important.

It is stressed that the results in 9.4.11 and 9.4.12 are for power series only.
For general series of functions, one may not be able to integrate or differentiate
the series term-by-term.

Sample Assignment: Exercises 1(a,c,e), 2, 5, 6(a,c,e), 7, 11, 15, 16, 17.
Partial Solutions:

1. (a) Take M, :=1/n? in the Weierstrass M-Test.
(b) If >0, take M, :=(1/a?)/n? to show uniform convergence for |z|> a.
The series is convergent for all x # 0, but it is not uniformly convergent on
R\ {0}, since if zp, :=1/n, then f,(z,)=1.
(c) Since |siny|<|y|, the series converges for all x. But since f,(n?)=
sin1 >0, the series is not uniformly convergent on R. However, if a >0,
the series is uniformly convergent for || <a since then |f,(z)| < a/n?.
(d) If 0<x <1, the nth term does not go to 0, so the series is divergent. If
1 < < o0, the series is convergent, since (2™ + 1)1 < (1/z)". Tt is uniformly
convergent on [a,00) for a >1. However, it is not uniformly convergent on
(1,00); take 2, := (1+1/n)1/".
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(e) Since 0< f,,(z) < z™, the series is convergent on [0,1) and uniformly con-
vergent on [0, a] for any a € (0,1). It is not uniformly convergent on [0,1);
take x,, :=1—1/n. The series is divergent on [1,00) since the terms do not
approach 0.

(f) If £ >0, the series is alternating and is convergent with |s(z) — s,(x)| <
1/(n+1). Hence it is uniformly convergent.

2. Since |sinnz| <1, we can take M, :=|a,|.
3. If €>0, there exists M such that if n>M, then |c,sinnx+ - +

copsin2nz| < e for all z. If x € [r/6n,57/12n], then sinkz > 1/2 for
k = mn,...,2n, so that (n 4+ 1)c, < 2e. It follows that 2ncy, < 4e and
(2n+1)copy1 < 4e for n> M.

. If p=o00, then the sequence (|a,|'/™) is not bounded. Hence if |zq| > 0, then
there are infinitely many k € N with |ax| > 1/|zo| so that |azzk| > 1. Thus the
series is not convergent when xg # 0.

If p=0 and xg # 0, then since |a,|'/™ <1/2|zg| for all n>nyg, it follows

that |apzf| <1/2" for n>ng, whence ) a,xj is convergent.
. Suppose that L:= lim(|ay|/|an+1]) exists and that 0 < L < co. If follows from
the Ratio Test that ) a,z™ converges for || < L and diverges for |z|> L.
Therefore it follows from the Cauchy-Hadamard Theorem that L =R.
[Alternatively, if 0 <e < L, it can be shown by Induction that there exists
m €N such that |am|(L+¢) 7% <|amsr| <|am|(L —e)~%. Hence there exists
A>0,B>0 such that A(L+¢) " <|a,|<B(L—¢)™" for r>m, whence
AV /(L 4¢) < |ap | < BY" /(L —¢€) for r>m. We conclude that p=1/L,
so L=R.]

If L=0 and € >0 is given, then we have |a,| < e|an+1| for n >n., whence
lanz™| < |ans12™ 1| for |z|>¢ so that the terms do not go to 0 for |z|>¢
and the series diverges for these values. Since € >0 is arbitrary, we have
L=R=0.

If L =00, given M >0, there exists ny; such that if n>ny; then |a,41| <
(1/M)|ay|. Hence if || < M/2, we have |an412" | < |a,a®| for all n>ny,
and so the series converges for |z| < M/2. But since M >0 is arbitrary, we
deduce that L =R =oo.

For example, take a, ::% for n even and a, :=2 for n odd. Here L does
not exist, but R=1.

(a) p=lim(1/n)=0so R=o0c.

(b ) lan/ans1]=(n+1)/(14+1/n)%, so R=oc.

(c) lim|a,/an+1|=1/e,s0 R=1/e.

(d) lim |an/ans1| =1. Alternatively, since 1/n < Inn <n, we have 1/n'/" <
[1/Inn]Y/™<nl/" so p=1and R=1.

(e) lim|a,/an+1| =4, so R=4.

(f) Since lim(n'/v™") =1, we have R=1.
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Since 0<a, <1 for all n, but a, =1 for infinitely many n, it follows that
p=limsup|a,|/" =1, whence R=1.

Note that |a,|"" < |na,|"/" =n'/"|a,|*/" and use that lim(n'/")=1.

By 3.1.11(c) we have pt/™ — 1.

By the Uniqueness Theorem 9.4.13, a,, = (—1)"a,, for all n, so that a,, =0 for
n odd.

It follows from Taylor’'s Theorem 6.4.1 that if |z|<r, then |R,(z)|<
"t B/(n+1)! = 0asn — oo.

If neN, there exists a polynomial P, such that f("(z)=e/*"P,(1/x)
for z # 0.

Let g(z):=0 for >0 and g(z):=e /%" for £ <0. Show that ¢(™(0)=0
for all n.

If m € N, the series reduces to a finite sum and holds for all € R, so we con-
sider the case where m is not an integer. If z € [0,1) and n >m,n € N, then by

Taylor’s Theorem there exists ¢, € (0,2) such that 0 < R, (x) < (nTl) i
(14¢,)"Hl-m< (7::1) 2"+l Use Theorem 3.2.11 to show that R, (z) — 0
as n — oo.

Here s,(x) = (1—2"tY) /(1 —x).

Substitute —y for x in Exercise 15 and integrate from y=0 to y=x for
|z| < 1, which is justified by Theorem 9.4.11.

If |x| < 1, it follows from Exercise 15 that (14 22)~t= Y>>/ (=1)"2?". If we

n=0
apply Theorem 9.4.11 and integrate from 0 to x, we get the given expansion

for Arctan z, valid for |z| < 1.

If |z| < 1, it follows from Exercise 14 that (1 —22)/2= 3" (17/12) (—1)nz?n
Now integrate from 0 to x and evaluate the binomial coefficient.

Integrate e~ = 32°° , (=1)"t*" /n! to get
> _1)nx2n+1

T e (
-y R.
/0 e dt 2 nl(2n+ 1) orre

Apply Exercise 14 and the fact that

w/2
/ (sinz)?"dx =
0

v 3



CHAPTER 10
THE GENERALIZED RIEMANN INTEGRAL

This chapter will certainly be new for the students, and it is also likely that it
contains material that will not be familiar to most instructors. However, the
close parallel between Section 10.1 and Sections 7.1-7.3 should make it easier to
absorb the material. Indeed, the only difference between the generalized Riemann
integral and the ordinary Riemann integral is that slightly different orderings are
used for the collection of tagged partitions. It is quite surprising that such a
“slight difference” in the ordering of the partitions makes such a big difference in
the resulting classes of integrable functions.

As we have noted the material in the first part of Section 10.1 is very similar
to that in Chapter 7. In Section 10.2 we learn that there is no such thing as an
“improper integral”, and that the generalized Riemann integral is not an “abso-
lute” integral. Section 10.3 shows how to extend the integral to functions whose
domain is not bounded; while this procedure seems a bit unnatural, it is quite
simple. (Section 10.3 can be omitted if time is short.)

The final Section 10.4 contains some important results; especially the Mono-
tone and Dominated Convergence Theorems. Most treatments of the Lebesgue
integral start with the notion of a measurable function, but using our approach it
almost seems to be an afterthought. That is not the case, but just a reflection of
the fact that all of the functions we have been dealing with are measurable.

Section 10.1

In order to use the definition to show that a function is in R*[a,b], we need to
construct a set of gauges d.. This is done for the specific functions in Example
10.1.4. (Usually that is rather difficult, except for ordinary Riemann integrable
functions where a constant gauge suffices.) In most of the other results in this
section, these gauges are constructed from other gauges; thus a gauge for f + g
is constructed from gauges for f and g. In the Fundamental Theorem 10.1.9, the
gauge for f = F” is constructed using the differentiability of F'. The Fundamental
Theorems are the highpoint of this section; the later material can be treated more
lightly.

Sample Assignment: Exercises 1, 4, 7(a,c,e), 11, 13, 15, 16, 20.

Partial Solutions:

1. (a) Since t; — §(t;) < xj—1 and z; < t; + 0(t;), then 0 < x; — z;—1 < 20(¢;).
(b) Apply (a) to each subinterval. '
(c) If @ = {([yj—1,y;]. s;) =, satisfies ||Q| <, then s; — d(s;) < s; — s
yj—1 and yj < 55+ 6, < sj+5(sj), so that s; € [yj—1,v;] C [sj — 0x, 5j + 0s]
[sj —0(s5),s; +d(sj)]. Thus Q is d-fine.
(d) inf{1/2¥+2} = 0.

<
-
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. (a) If t is a tag for two subintervals, it belongs to both of them, so it is the

right endpoint of one and the left endpoint of the other subinterval.
(b) Consider the tagged partition {([0,1],1), ([1,2],1), (2, 3],3), ([3,4],3)}.

. (a) P = {([zi_1, i), t:) }_, and if t}, is a tag for both subintervals [z)_1, 2]

and [rg, Tx+1], we must have ¢t = x;. We replace these two subintervals by
the subinterval [xy_1,xg+1] with the tag ¢y, keeping the d-fineness property.
Since f(tx)(xx — zk—1) + f(te)(@k+1 — 2x) = f(tk) (@41 — T—1), this consol-
idation of the subintervals does not change the value of the Riemann sums.
A finite number of such consolidations will result in the desired partition Q;.
(b) No. The tagged partition {(]0,1],0)([1,2],2)} of [0,2] has the property
that every tag belongs to exactly one subinterval.

(c) If t; is the tag for the subinterval [zy_1,xx] and is an endpoint of
this subinterval, we make no change. However, if ¢, € (zx_1, ), then we
replace [xg_1, zx| by the two intervals [xy_1, tx] and [t, xx] both tagged by ¢,
keeping the d-fineness property. Since f(tx)(zr — xgp—1) = f(tr)(tx — Tp—1) +
f(tg)(zk — tx), this splitting of a subinterval into two subintervals does not
change the value of the Riemann sums.

If 21 < 1 < x and if ¢ is the tag for [z5_1, 2], then we cannot have
tr > 1, since then t — () = %(tk + 1) > 1. Similarly, we cannot have
tr < 1, since then t; + 0(ty) = %(tk +1) < 1. Therefore we must have ¢ = 1.

If the subintervals [zy_1,xx] and [zp,xg+1] both have the number 1 as
tag, then 1 — .01 =1 —-6(1) < 241 < 2541 < 1+6(1) =1+ .01 so that

Th+1 — Tk—1 S 0.02.

. (a) Let 8(t):=3minf{|t — 1|,|t — 2|,|t — 3|} if t # 1,2,3 and 6(t):=1 for

t=1,2,3.
(b) Let d2(t) := min{d(t), d1(¢)}, where 6 is as in part (a).

If f € R*[a,b] and € > 0 is given, then there exists J. as in Definition 10.1.1,
and we let 7. :=0.. If P satisfies the stated condition, then P is d.-fine and
so |S(f;P)— L] <e.

Conversely, suppose the stated condition is satisfied for some gauge 7., and
let 6. := %%. If P is d.-fine, then 0 < z; — zj_; < 20-(t;) = ~e(ti), so the
hypothesis implies that |S(f; P)— L| < . Therefore f € R* [a, b] in the sense
of Definition 10.1.1.

(a) Fi(z):=(2/3)x3/? + 221/2,

(b) Fa(x) = (2/3)(1 — 2)%/% — 2(1 — )2,

(¢) F3(x):=(2/3)z*?(Inz — 2/3) for 2 € (0,1] and F3(0):=0,
(d) Fy(z):=22"%(Inz — 2) for z € (0,1] and F4(0):=0,

(e) Fs5(x):=—v1— 2+ Arcsin x.

(f) Fo(x):= Arcsin(zx — 1).

. Although the partition 75@ in the proof of 7.1.5 may be d.-fine for some gauge

Js, the tagged partition P, need not be d.-fine, since the value d.(z) may be
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much smaller than d.(z;). For the ordinary Riemann integral, we were only
concerned with the norms ||Pyl|, [|P.||, which are equal.

If f were integrable, then fol f> fol sp=1/2+1/3+--+1/(n+1).

We enumerate the nonzero rational numbers as 1, = my/n; and define
Se(my/ng) :=¢/(n281) and 6. (x) := 1 otherwise.

The function F is continuous on [a,b], and F'(z) = f(x) for z € [0,1]\ Q.
Since Q is countable, the Fundamental Theorem 10.1.9 applies.

The function M is not continuous on [—2,2], so Theorem 10.1.9 does not
apply. In fact, by Exercise 9 the function z — 1/z is not in R*[0,2] no
matter how we define it at 0.

In fact, L; is continuous and Lj(z) = l1(z) for  # 0, so Theorem 10.1.9
applies.

(a) This is possible since F' is continuous at cg.

(b) Since f(cx) = 0, then we have |F(z;) — F(zi—1) — f(cx) (@i — xi—1)| <
|F(2:) = Flew)| + | F(ai1) = Fleg)| < e/28

(¢) The point ¢; can be the tag for at most two subintervals. The sum of
such terms with tags in E is <e, and the sum of the terms with tags in I\ E
is<e(b—a).

Since C}(x) = (3/2)x'/? cos(1/x) + = /?sin(1/x) for 2 > 0, this function is
in R*[0, 1]. Since the first term in C{ has a continuous extension on [0, 1], it
is integrable; therefore the second term in also integrable.

We have Cf(z) = cos(1/z) + (1/x)sin(1/x) for > 0. By the analogue of
Exercise 7.2.12, the first term belongs to R[0, 1] and therefore to R*[0, 1].
(a) Take z = @(t):=t> +t —2s0 ¢'(t) = 2t +1 and E, = 0 to get
f;;w sgnx dr = |10| — |4 = 6.

(b) Take z = ¢(t):=Vt so 2 = t, ¢/(t) = 1/(2/t) and E, = {0}. We get
JZ2222(1+2) Mde =2 [F(x — 1+ (1 +2) Vdz = 2(2 + In3).

(c) Take # = p(t):=+/t — 1 so that t = 22 + 1, ©/(t) = 1/(2y/t — 1) and
E, = {1}. We get f;::(? 2(x? +1)"tdx = 2 Arctan 2.

(d) Take z = p(t) := Arcsin t so t = sinw, ¢'(t) = (1—2?)"/2 and E, = {1}.
We get ff:oﬂn cos?xdr = 3 Oﬂ/2(1 + cos2z)dz = (3z + % sin2z) 3/2 =ir.
Let f(z):=1/y/x for x € (0,1] and f(0):=0 and use Exercise 9.

(a) In fact f(x):=F'(x) = cos(w/z) + (7/x)sin(n/x) for z > 0; we set
f(0):=0,F’(0) = 0. Then f and |f| are continuous at every point in (0, 1].
It follows as in Exercise 16 that f € R*[0,1].

(b) Since F(ax) = 0 and F(by) = (—1)*/k, Theorem 10.1.9 implies that
1/k = |F(bx) = Fla) = | [ 1< [ 11

(o) Tf | f| € R*[0,1], then S0, 1/k < 55y [ |f] < Jy If] for all n € N,
which is a contradiction.
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20. Indeed, sgn(f(z)) = (~1)* = m(z) on [ay, bi] so m(x) - f(z) = |m(x)f(2)|
for z € [0,1]. Since the restrictions of m and |m| to every interval [c, 1] for
0 < ¢ < 1 are step functions, they belong to R][c, 1]. By Exercise 7.2.11, m
and |m/| belong to R[0,1] and folm =32 (-1)*/k(2k + 1) and fol |m| =
Yoo 1/k(2k +1).

21. Indeed, p(z) = ®'(x) = | cos(n/x)| + (7/x) sin(r/x) - sgn(cos(w/x)) for t ¢ E
by Example 6.1.7(c). Evidently ¢ is not bounded near 0. It is seen that
if x € [ag,bx|, then p(z) = |cos(w/z)| + (7/z)|sin(7w/z)| = |¢(x)| so that

fb’f' lp| = (b)) — ®(ar) = 1/k, from which it follows that || ¢ R*[0, 1].

ag

22. Here 9(x) = V'(z) = 2z|cos(r/z)| + 7sin(rw/x) - sgn(cos(mw/x)) for = ¢
{0} U E; by Example 6.1.7(c). Since v is bounded, Exercise 7.2.11 applies.
We cannot apply Theorem 7.3.1 to evaluate fé) 1) since FE is not finite, but
Theorem 10.1.9 applies and ¢ € R[0,1]. Corollary 7.3.15 implies that || €
R[0,1].

23. If p > 0, then mp < fp < Mp, where m and M denote the infimum and the
supremum of f on [a,b], so that mffp < f; fp < Mffp. If f;p =0, the
result is trivial; otherwise, the conclusion follows from Bolzano’s Intermediate
Value Theorem 5.3.7.

24. By the Multiplication Theorem 10.1.14, fg € R*[a,b]. If g is increasing,

then g(a)f < fg < g(b)f so that g(a) [ f < [*fg < g(b) [*f. Let
K(z):=g(a) [T f + g(b) f:f f, so that K is continuous and takes all values
between K (b) and K(a).

Section 10.2

The proof of Hake’s Theorem (which is omitted) is another instance where one
has to construct a set of gauges for the function; here one uses the gauges of the
restrictions of the function to a sequence of intervals [a,,|, where ~,, — b.

It is not possible to overestimate the importance of the Lebesgue integral.
Usually this integral is obtained in a very different way.

Sample Assignment: Exercises 1, 2, 5, 6(a,b), 7(a,c,e), 9, 11.

Partial Solutions:

1. Indeed fac f — A as ¢ — b— if and only if the sequential condition holds.
2. (a) If G(z):= 33 for = € [0, 1] then fclg =G(1) — G(e) = G(1) = 3.
(b) We have fcl(l/m)da: = In ¢, which does not have a limit in R as ¢ — 0.
3. Here [{(1—2)V2dz=2-2(1-¢)"/? > 2asc— 1-.
4. Since ffw = lim._yp fjw, given ¢ > 0 there exists 7. > = such that if . <

¢ < cg < b, then | [ f— [ f| < fccf w < . By the Cauchy Criterion, the
limit lim,_;, [ f exists. Now apply Hake’s Theorem.
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. Because of continuity, g1 € R*[c,1] for all ¢ € (0,1). If w(z):=2z"2, then

lg1(x)| < w(z) for all z € [0,1]. The “left version” of the preceding exercise
implies that g; € R*[0, 1] and the above inequality and the Comparison Test
10.2.4 implies that g; € L]0, 1].

(a,b) Both functions are bounded on [0, 1] (use L'Hospital) and continuous
n (0, 1).

(c) If z € (0, 3] the integrand is dominated by |(In3)Inz|. If z € [1,1) the
integrand is domlnated by [(In 3) In(1 — z)|.

(d) If z € (0, 3] the integrand is dominated by (2/v/3)|Inz|. If z € [3,1), the
integrand is bounded and continuous.

(a) Convergent, since |f1(z)| < 1/y/x.

(b) Divergent, since fa(z) > 1/(22%/?) for z € (0 1].

(c) Divergent, since — f3(x) > In2/x for x € (O 3.

(d) Convergent, since |f4(z)| < 2[Inz| on (0, 3] and is bounded on [3,1).
(e) Convergent, since |f5(x)| < |Inz| for x € (0 1].

(f) Divergent, since fs(z) > 1/(z —1) for z € [3,1).

If f € Rla,b], then f is bounded and is in R*[a,b]. Thus the Comparison
Test 10.2.4 applies.

Let f(z):=1/y/x for x € (0,1] and f(0):=

By the Multiplication Theorem 10.1.4, the product fg € R*[a,b]. Since
[f(x)g(x)| < B|f(x)|, then fg € L[a,b] and || fg|| < BI|f]|

(a) Let f(x):=(—1)k2F/k for = € [c)_1,cx) and f(1):=0, where the ¢, are as
in Example 10.2.2(a). Then f*:= max{f,0} equals 2¥/k on [cx_1,c;) when
k is even and equals 0 elsewhere. Hence [;* f* =1/2+1/4+---+1/2n, so
fT ¢ R7[0,1].

(b) From the first formula in the proof of Theorem 10.2.7, we have f* =
max{f,0} = 3(f + |f|). Thus, if f € L[a,b], then both f,|f| € R*[a,b] and
so fT belongs to R*[a,b]. Since f* > 0, it belongs to L[a, b].

If a < f and a < g, then a < min{f, g}. The second equality in the proof of
Theorem 10.2.7 implies that 0 < |f —g| = f + ¢ — 2min{f, g} < f+ g — 2c.
Therefore f + g — 2o € L[a,b] and the Comparison Theorem 10.2.4 implies
that f 4+ ¢g — 2min{f, g} € L[a,b], whence min{f, g} € R*[a,b].

(i) Evidently, dist(f,9) = [*|f — g| > 0.
() If f(x) =g(= )forallxe[a b], then dist(f, g) f If —g| = fb():().

(i) dist(f,9) = [0 1f — gl = [P1g — f| = dist(g, ).
(JV) Since |f — h| < |f — g] + |g — h|, we have dist(f,h) f |f —h| <

J21F =gl + [0 lg — h| = dist(f, g) + dist(g, ).

Consider the Dirichlet function.
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By 10.2.10(v), £l = | F+9F gl < [l f=gl+llgll, whence [Lf]—llgll < [l f+g].

Similarly, |lgl| <lg = f F fll < llg = fl + [[fIl, whence [|g]| — [ f]| < ||f £ gl|-
Now combine.

If (fn) converges to f in L[a,b], given € > 0 there exists K (¢/2) such that
if m,n > K(e/2) then | fm — f|| < ¢/2 and ||fn — f|| < €/2. Therefore
L = full < fm = FI £ 1 = full < /2 +e/2 = c. Thus we may take
H(e):=K(g/2).

Indeed, || f,| = fol z"dr =1/n and ||f, — 0| = 1/n.
If m > n, then ||gm — gnl| < 1/n+1/m — 0. One can take g :=sgn.
Since ||ha2p — byl = 1, there is no such h € L£[0, 1].

Here ||k,|| = 1/n and we can take k = 6 the O-function, or any other function
in £[0,1] with [} |k| = 0.

Although it is important to extend the integral to functions defined on unbounded
intervals, this section can be omitted if time is short.

Sample Assignment: Exercises 1, 3, 5, 7, 13, 15, 17(a,b), 18(a,b).

Partial Solutions:

. Let b > max{a,1/6(c0)}. If P is a é-fine partition of [a, b], show that P is a

d-fine subpartition of [a, 00).

. The Cauchy Criterion for the existence of lim, fJ f is: given € > 0 there

exists K (&) > a such that if ¢ > p > K(¢), then \quf\ =[[1f=J"fl<e

. If f € L]a,0), apply the preceding exercise to |f|. Conversely, if f; lfl <e

for ¢ > p > K(g), then | [T f — [P f] < f;\f\ < ¢ so that lim, [ f and
lim,, [ |f| exist; therefore f,|f| € R*[a,00) and so f € L[a, o).

. If f € L[a,00), the existence of lim, [ |f| implies that V' is a bounded set.

Conversely, if V' is bounded, let v:=sup V. If ¢ > 0, there exists K such that

v—e < faK\f\ <wv If K <p<q, we have qu\f\ < g, so the preceding
exercise applies.

If f,g € Lla,00), then f,|f|,¢g and |g| belong to R*[a,c0), so Example

10.3.3(a) implies that f+g and | f|+|g| belong to R*[a,00) and [ (| f|+|g|) =
S+ 77 Mgl Since |[f + gl < |f] + |g], it follows that [/[f + g] <
SO+ S gl < [ 1FL+ [ |9l whenee [[f + gl < [[fII+ llg]l-

. Indeed, [[(1/z)dz = In<, which does not have limit as v — co. Or, use

Exercise 2 and the fact that fp2p(1/x)dm =In2 >0 for all p > 1.
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Since f is continuous on [1,00), both f,|f] € R*[1,7] for 1 < ~. If v <
p < ¢, then \f;f\ < f; If] < Kqu(l/xQ)d:p < K(1/p —1/q). Therefore, by
Exercise 2, both f,|f| belong to R*[1, 00).

8. If v > 0, then fo7 cos x dx = siny, which does not have a limit as v — oc.
9. (a) We have [ e **dx = (1/s)(1 —e 7)) — 1/s.

10.

11.

12.

13.

14.

15.

16.

(b) Let G(z) :=—(1/s)e™** for x € [0,00) and G(o0) :=0, so G is continuous
on [0,00) and G(z) — G(c0). By the Fundamental Theorem 10.3.5, we have
Jo” 9= G(o0) = G(0) = 1/s.

(a) Integrate by parts to get 1/s% plus a term that — 0 as v — oc.

(b) Let G1(z) :=—(x/s)e™* — (1/5%)e™5% for x € [0,00) and G(00):=0, so
that G (z) = ze™** and Gi(z) — 0 as © — co. The Fundamental Theorem
implies that [} ze™**dz = G1(00) — G1(0) = 1/s%.

Use Mathematical Induction. The case n = 1 is Exercise 10. Assuming the
formula holds for £ € N, we integrate by parts.

(a) If z > e, then (Inz)/2z > 1/x. Since [{°(1/z)dx is not convergent, neither
is the given one.
(b) Integrate by parts on [1, 7] and then let v — oc.

(a) Since |sinz| > 1/v/2 > 1/2 and 1/x > 1/(n + 1)7 for z in the interval
(nm 4+ /4, nm + 3w /4), then |(1/z)sinz| > 1/(2x(n + 1)) on this interval,
which has length 7 /2. Therefore fn(:Jrl)ﬂ |(1/z)sinz|dx > 1/(4(n + 1)).

(b) If v > (n+ )7, then [ |D| > (1/4)(1/1+1/2+---+1/(n+1)).

The integrand is bounded, so is in R*[0,7]. Integrating by parts, we get
N x712sinaxdr = —2~ 2 cos ’Z - (1/2) [] 273/ cosx dz. Since |cosz| <1,
we have | [Tz 2sinzdx| < ¢~ V2 + p71/2 4 (1/2) f;x_?’/Q dx which is
<(5/4) (g2 +p71?) = 0 as p — oo

Let u = @(x) = 22 so that []sin(2?)dz = (1/2) f(f u~2sinudu. Now
apply Exercise 14.

(a) Convergent. Since Inz € R*[0,] the given integrand is in R*[0,~]. Since
(Inz)/vx — 0 as & — oo, then |(Inz)/(2? + 1)| < K/z%/? for = sufficiently
large.

(b) Divergent. As in (a), the integrand is in R*[0,1]. Since 42 > 2?2 + 1
for > 1, then (Inz)/va?2+1 > (Inz)/2z > 1/2z for = > e, so that the
integrand is not in R*[e, 0o].

(c) Divergent. If z € [0,1], then 2 > x + 1 so that 1/xz(x + 1) > 1/2z. Thus
the restriction of the integrand is not in R*[0, 1], so the integrand is not in
R*[0, o0].

(d) Convergent. The integrand is dominated by 1/22 on [0, co].

(e) Divergent. z/v1+ a3 — 1 as z — o0, so that 1/2 < x/vV/1+ 23 for x
sufficiently large, so 1/(2z) < 1/v/1 + a2 for z sufficiently large.
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(f) Convergent. Since 0 < Arctanz <7/2 for x > 0 so the integrand is
dominated by 1/(z%? + 1) < 1/2%/2 for x > 1.

(a) If f1 () := sinz, then f; ¢ R*[0,00). By Exercise 14, if fo(x) := z~'/?sin z,
then fo € R*[0,00) and @2(z) :=1/+/x is bounded and decreasing on [1, 00).
(b) If f(z):= sin(2?), then Exercise 15 implies that f € R*[0,00). Here
o(x):=x/(x + 1) is bounded and increasing on [0, 00).

(c) Take f(z):=2""?sinz € R*[0,00) by Exercise 14 and o(z):= (z + 1)/
so that ¢ is bounded and decreasing on [0, c0).

(d) Take ¢(x):=Arctanz, so ¢ is bounded and increasing on [0, c0), while
f(@):=1/(%? +1) <2732 for x > 1.

(a) f(z):=sinz is continuous so is in R*[0,7]. Also F(z):= [, sintdt =
1 — cosz is bounded by 2 on [0,00) and ¢(z):=1/z decreases to 0.

(b) Take ¢(x):=1/Inz so ¢ decreases monotonely to 0.

(¢) F(x):= [; costdt = sinz is bounded by 1 on [0,00) and ¢(z):= z=1/?
decreases monotonely to 0.

(d) ¢(x):=z/(x + 1) increases to 1 (not 0).

Let u = ¢(z):=12? so that [ 21/?sin(2?)dz = (1/2) f072 u/*sinudu. By
the Chartier-Dirichlet Test, this integral converges and Hake’s Theorem
applies.

(a) If v > 0, then [J e ®dz =1—e7 = 1s0 e ™® € R*0,00). Similarly
el = e € R*(—o0,0].

(b) |z —2|/e=*/? = 0 as & — o0, so |x — 2| < e~*/? for z sufficiently large,
so the integrand is dominated by e~%/2 for x large. Therefore the integrand
is in R*[0, 00) and similarly on (—oo, 0].

(c) We have 0 < e™** < e™* for |z| > 1, so e=* € R*[0,00). Similarly on
(—00,0].

(d) The integrand approaches 1 as  — 0. Since e*/(e* —e™®) — 1 as
x — 00, we have 2z/(e” — e™7) < 4ze~* for x sufficiently large. Therefore
the integrand is in R*[0, 00). Similarly on (—o0, 0].

This section contains some very important results.

Sample Assignment: Exercises 1, 3(a,c,e), 5, 6, 9, 11, 14.

Partial Solutions:

(a) Converges to 0 at z = 0, to 1 on (0, 1]. Not uniform. Bounded by 1.

Increasing. Limit=1.

(b) Converges to 0 on [0, 1), to % at x = 1, to 1 on (1,2]. Not uniform.

Bounded by 1. Not monotone (although decreasing on [0,1] and increasing
n [1,2]). Limit=1.
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(c) Converges to 1 on [0, 1), to 3 at 2 = 1. Not uniform. Bounded by 1.
Increasing. Limit = 1.

(d) Converges to 1 on [0, 1), converges to % at © = 1, to 0 on (1, 2]. Not
uniform. Bounded by 1. Not monotone (although increasing on [0, 1] and
decreasing on (1, 2]). Limit = 1.

2. (a) Converges to /z on [0, 1]. Uniform. Bounded by 1. Increasing. Limit =
2/3.
(b) Define to equal 0 at « = 0, converges to 1/y/z on (0, 1), to 1 at z = 1.
Not uniform. Not bounded. Dominated by 11/z. Increasing. Limit=2.
(c) Converges to & at = 1, to 0 on (1, 2. Not uniform. Bounded by 1.
Decreasing. Limit =0.
(d) Define to equal 0 at x = 0, converges to 1/2/z on (0, 1), to 1 at = = 1.
Not uniform. Not bounded. Dominated by 1/2/z. Decreasing. Limit=1.

3. (a) Converges to 1 at = 0, to 0 on (0,1]. Not uniform. Bounded by 1.
Decreasing. Limit =0.
(b) Define to be 0 at x = 0. The functions do not have (a finite) integral.
Converges to 0. Not uniform. Not bounded. Decreasing. Integral of limit =0.
(c) Converges to 0. Not uniform. Bounded by 1/e. Not monotone. Limit=0.
(d) Converges to 0. Not uniform. Not bounded. Not monotone. Limit=
fooo ye Ydy = 1.
(e) Converges to 0. Not uniform. Bounded by 1/y/2e. Not monotone.
Limit =0.
(f) Converges to 0. Not uniform. Not bounded. Not monotone. Not
dominated. Limit=3 [;° e ¥dy = 3.

. (a) Since fx(x) — Oforx € [0,1) and | fx(z)| < 1, the Dominated Convergence
Theorem applies.
(b) fr(x) — 0 for = € [0,1), but (fx(1)) is not bounded. No obvious
dominating function. Integrate by parts and use (a). The result shows that
the Dominated Convergence Theorem does not apply.

. Note that f; is a step function and f02 fre = k(1/k) = 1. If x € (0,2], there
exists k, such that 2/k < x for k > k,; therefore fi(x) — 0.

. Suppose that (fx(c)) converges for some ¢ € [a,b]. By the Fundamental
Theorem, we have fi(z) — fr(c) = fcx fr.- By the Dominated Convergence
Theorem, [ f; — [ g, whence (fi(x)) converges for all z € [a,b]. Note that
if fr(x):=(—1)*, then (fix(z)) does not converge for any = € [a, b].

7. Indeed, g(z):=sup{fr(z):k € N} equals 1/k on (k — 1,k], so that [;'g =
1+21+---+21 Hence g ¢ R*[0,00).

. Indeed, [;*e " dx = (—l/t)e*m‘zzgo = 1/t. If we integrate by parts, then
we get [T xe " de = (—a/t — 1/t2)e*m‘izgo =1/t

- Indeed, [~ e ™sinxdr = —[e" ™ (tsinz + cosx) /(> + 1)]|T_ " = 1/(t* + 1).
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(a) If @ > 0, then |(e ¥ sinz)/z| < e for t € J,:=(a,00). If t € J, and
ty — to € Jgu, then the argument in 10.4.6(d) shows that E is continuous at ¢.
Also, if t, > 1, then |(e % sinx)/x| < e~ and the Dominated Convergence
Theorem implies that E(t;) — 0. Thus E(t) — 0 as t — oc.

(b) It follows as 10.4.6(¢) that E'(to) = — [ e " sinz dx = —1/(t§ + 1).
(c) By 10.1.9, E(s) — E(t) = [JE'(t)dt = —[;(t* + 1)"'dt = Arctant —
Arctan s for s,t > 0. But E(s) — 0 and Arctan s — 7/2 as s — o0.

(d) We do not know that E is continuous as ¢t — 0+.

(a) Note that e=*(**+1) < 1 for t > 0 and that e "+ 5 0 ast — oo
for all z > 0. Thus the Dominated Convergence Theorem can be applied to
sequences to give the continuity of G' and the fact that G(t) — 0 as t — oc.
(b) The partial derivative equals —2te~ " e ¥**  which is bounded by 2 for
t > 0,2 € [0,1]. An argument as in 10.4.6(e) gives the formula for G'(¢).

(c) Indeed, F'(t) = 2¢~*" [ e dx for t > 0, so F'(t) = —G'(t) for t > 0.
(d) Since limy_,o0 F(t) = 17, we have [ e dz = /7.

Fix x € I. As in 10.4.6(e), if t,t9 € [a,b], there exists t, between t,tg
such that f(t,x) — f(to,x) = (t — to)%(tx,:c). Therefore a(x) < [f(t,z) —
fto,z)]/(t — tp) < w(x) when t # tg. Now argue as before and use the
Dominated Convergence Theorem 10.4.5.

(a) If (sr) is a sequence of step functions converging to f a.e., and (t) is a
sequence of step functions converging to g a.e., then it follows from Theorem
10.4.9(a) and Exercise 2.2.18 that (max{sg, t; }) is a sequence of step functions
that converges to max{f, g} a.e. Similarly, for min{f, g}.

(b) By part (a), the functions max{f, g}, max{g, h} and max{h, f} are mea-
surable. Now apply Exercises 2.2.18 and 2.2.19.

(a) Since fr € M]a,b] is bounded, it belongs to R*[a,b]. The Dominated
Convergence Theorem implies that f € R*[a, b]. The Measurability Theorem
10.4.11 now implies that f € M|a, b)].

(b) Since t — Arctant is continuous, Theorem 10.4.9(b) implies that fi:=
Arctano g, € Mla,b]. Further, |fi(z)| < 37 for « € [a,b], so (fx), is also a
bounded sequence in M|a, b].

(c) If gr — g a.e., from the continuity of Arctan, it follows that fr — f a.e.
Part (a) implies that f € M|a,b] and Theorem 10.4.9(b) applied to ¢ = tan
implies that g = tanof € M]a,b].

(a) Since 1g is bounded, it is in R*[a, b] if and only if it is in M]a, b].

(b) Indeed, 1y is the 0-function, and if J is any subinterval of [a, b], then 1;
is a step function.

(¢) This follows from the fact that 1z =1 — 1p.

(d) We have x € EU F if and only if x € F or € F. Thus

lpup(x) =1<=1g(z)=1or 1p(z) =1 <= max{1g(z),1p(z)} = 1.
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Similarly, z € EN F if and only if x € E and x € F. Thus
lpap(z) =1<=1g(z) =1 and 1p(z) = 1 <= min{lg(z),1p(x)} = 1.

Further, E\F = ENF'.

(e) If (E)) is an increasing sequence in Ma, b], then (1g,) is an increasing
sequence in MJa,b]. Moreover, 1g(z) = limy 1pg, (x), and we can apply
Theorem 10.4.9(c). Similarly, (1r,) is a decreasing sequence in M]a, b] and
Lp(z) = limyg, 1y, (x).

(f) Let Ay, := Jj_; Ek, so that (A,) is an increasing sequence in M[a, b] with
U2, An = E, so (e) applies. Similarly, if B, := ();_, F), then (B,) is a
decreasing sequence in M[a,b] with ()72 B,, = F..

(a) m(0) = f;O =0and 0 < 1p <1 implies 0 < m(E) = f;lE < f;l =
b—a.

(b) Since 1. g is a step function, then m([¢,d]) = d — c. The other charac-
teristic functions are a.e. to 1j. g, so have the same integral.

(c) Since 1 =1 — 1g, we have m(E') = f;(l —1p) = (b—a) — m(FE).

((%) Note that 1gur + 1pnr = 1g + 1p. Therefore, m(EUF) +m(ENF) =

J,(Apur + 1par) = f;(lE +1p) = m(E) + m(F).

(e) If ENF =0, then (d) and (a) imply that m(EUF)+0 = m(E) +m(F).
(f) If (E)) is increasing in MJa, b] to E, then (1, ) is increasing in MJa, b] to
1r. The Monotone Convergence Theorem 10.4.4 implies that 15 € M|a, b
and that m(Ey) = ff 1p, — f; 1 =m(E).

(g) If (Cy) is pairwise disjoint and E, :=J,_,; Cy for n € N, then, by
Induction in part (e), we have m(E,) = m(Cy) + --- + m(C,). But, since
Uiy Cw =U,2, Ep and (E,) is increasing, (f) implies that

m (U ck) = limm(E,) = ligan(C’k) = m(C).
k=1 k=1 n=1



CHAPTER 11
A GLIMPSE INTO TOPOLOGY

We present in this chapter an introduction into the subject of topology. In the first
edition of this book, most of the ideas presented here were discussed as the notions
naturally arose. However, our experience in teaching from that edition was that
some of the students were confused by ideas that they felt were very abstract and
difficult. Consequently, in later editions, we have dealt only with open and closed
intervals in Chapters 1 through 10, even though some of the results that were
established held for general open and closed (or at least compact) subsets of R.

Some instructors may wish to blend part of this material into their presenta-
tion of the earlier material. Others may decide to omit the entire chapter, or to
assign it only to the better students as a unifying “special project”.

In the final section, we give the definitions of a metric function and a metric
space. They are very important for further developments in analysis as well as in
the field of topology, and we feel that they are quite natural ideas. This section
will serve as a springboard to students who continue their study of analysis beyond
this course.

Section 11.1

Here the notions of open and closed subsets of R are introduced and such sets are
characterized. The final topic of this section is the Cantor set F, which should
expand the imagination of the students.

Sample Assignment: Exercises 1, 2, 4, 9, 10, 13, 18, 23.

Partial Solutions:

1. If |z —u| < inf{z,1 -2}, then u<zx+ (1—2)=1 and u>z —2=0, so that
O<u<l.

2. If x € (a,00), then take £, :=x —a. The complement of [b,c0) is the open
set (—o0, b).

3. Suppose that G, ..., Gk, Giy1 are open sets and that G1 U - - - UGy, is open.
It then follows from the fact that the union of two open sets is open that
GiU - UGkUGk_H:(GlU UGk)UGk_H is open.

4. If z€(0,1], then z€ (0,1+1/n) for all neN. Also, if x>1, thenz—1> 0
so there exists ng, € N such that  — 1> 1/n,, whence z ¢ (0,14 1/n,).

5. The complement of N is the union (—oo,1)U(1,2)U--- of open intervals.

6. The sequence (1/n) belongs to A and converges to 0¢ A, so A is not closed,
by 11.1.7. Alternatively, use 11.1.8 and the fact that 0 is a cluster point of A.

7. Corollary 2.4.9 of the Density Theorem implies that every neighborhood of a
point x in Q contains a point not in Q. Hence Q is not an open set.
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If F is a closed set, its complement C(F') is open and G\ F =G NC(F).
This is a rephrasing of Definition 11.1.2.

Note that x is a boundary point of A <= every neighborhood V of z
contains points in A and pointsin C(A) <= =z is a boundary point of C(A).

Note that if ACR and z € R, then precisely one of the following statements
is true: (i) « is an interior point of A, (ii) = is a boundary point of A, and (iii)
x is an interior point of C(A). Hence, if A is open, then it does not contain
any boundary points (since it contains only interior points) of A. Conversely,
if A does not contain any boundary points of A, then all of its points are
interior points of A.

Let F be closed and let = be a boundary point of F'. If z ¢ F', then x € C(F).
Since C(F') is an open set, there exists a neighborhood V' of z such that
V C C(F), contradicting the hypothesis that = is a boundary point of F'.
Conversely, if F' contains all of its boundary points and if y ¢ F', then y is
not a boundary point of F'| so there exists a neighborhood V' of y such that
V CC(F). This implies that C(F') is open, so that F' is closed.

(Alternative proof.) The sets F' and C(F’) have the same boundary points.
Therefore F' contains all of its boundary points <= C(F') does not contain
any of its boundary points <= C(F) is open.

Since A° is the union of open sets, it is open (by 11.1.4(a)). If G is an open set
with G C A, then G C A° (by its definition). Also x € A° <= =z belongs
to an open set V C A<=z is an interior point of A.

Since A° is the union of subsets of A, we have A°CA. It follows that
(A°)° C A°. Since A° is an open subset of A° and (A°)° is the union of
all open sets contains in A°, then A° C (A°)°. Therefore A° = (A°)°

Since A° is an open set in A and B° is an open set in B, then A° N B°
is an open set in AN B, whence A° N B° C (AN B)°. And since A° N B°
is an open set in A, then (AN B)°C A°; similarly (A N B)° C B°, so that
(AN B)°C A° N B°. Therefore (AN B)°=A°nN B°.

If A:=Q and B:=R\Q, then A°=B°=(), while A U B=R, whence
(AuB)°=R.
Since A~ is the intersection of all closed sets containing A, then by 11.1.5(a)
it is a closed set containing A. Since C(A™) is open, then z € C(A™) <=z
has a neighborhood V.(z) in C(A™) <= z is neither an interior point nor a
boundary point of A.

For any set B, since B~ is a closed set containing B, then BC B~. If we
take B=A", we get A~ C (A7)". Since A~ is a closed set containing A~,
we have (A7)” C A~. Therefore (A7) =A".

Since (AU B)~ is a closed set containing A, then A~ C (AUB)~. Similarly
B~ C(AUB)~, so we conclude that A~UB~ C (AUB)~. Conversely A C A~
and B C B, and since A~ and B~ are closed, it follows from 11.1.5(b) that
A~ UB™ is closed; hence (AUB)" CA-UB™.
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If A:=Q, then A~ =R; if B:=R\Q, then B~ =R. Therefore AN B=0
while A =B~ =A"UB™ =R.
Take A=Q.

FEither u:=sup F belongs to F, or u is a cluster point of F. If F is closed,
then 11.1.8 implies that any cluster point of F' belongs to F.

If G#0 is open and z €@, then there exists € >0 such that V.(z) CG,
whence it follows that a:=x — ¢ is in A,.

If a, € G, then since G is open, there exists ¢ >0 with (a; —¢,a, +¢) CG.
This contradicts the definition of a,.

If a, <y < z then since a, := inf A, there exists a’ € A, such that a, <a’ < y.
Therefore (y,z] C (a/,2] CG and y € G.

If b, #by, then either (i) b, <b, or (ii) by <b,. In case (i), then b, €I, =
(ay,by) CG, contrary to b, ¢ G. In case (ii), then b, €I, =(as,b;) CG,
contrary to by ¢ G.

If x €F and n €N, the interval I,, in F,, containing = has length 1/3". Let
yn be an endpoint of I, with y, #x. Then 0< |y, — x| <1/3™. Since y, is
an endpoint of I, it also belongs to F. Consequently x = lim(y,,) is a cluster
point of F.

If € F and n € N, the interval I, in F,, containing x has length 1/3". Let z,
be the midpoint of I,,, so that 0 < |z, — x| <1/3". Since z, does not belong to
F, 41, it follows that z, € C(F). Consequently = lim(z,) is a cluster point
of C(F).

Most students will find the notion of compactness to be difficult, especially when
they learn that they must be prepared to consider every open cover of the set.
They also find the Heine-Borel Theorem 11.2.5 a bit disappointing, since compact
sets in R turn out to be of a very easily described nature. But this is exactly the
reason why the Heine-Borel Theorem is important: it makes the determination of
a compact set in R a relatively simple matter. Students need to be told that the
situation is different in more complicated topological spaces; unfortunately, they
will have to take that fact on faith until a later course.

While the sequential characterizations of compact sets are somewhat special,

they are easier to grasp than the covering aspects.

1.
2.

Sample Assignment: Exercises 1, 3, 4, 5, 6, 9, 11.
Partial Solutions:

Let G,,:=(1+1/n,3) for n€N.
Let Gp:=(n—1/2,n+1/2) for neN.
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Let Gy, :=(1/2n,2) for neN.

. If G is an open cover of F, then GU{C(F')} is an open cover of K.

. If Gy is an open cover of K1 and G- is an open cover of Ko, then G; UGy is

an open cover of K1 U Ko.

Let K be a bounded infinite subset of R; we want to show that K has a cluster
point. If not, then it follows from Theorem 11.1.8 that K must be closed.
Since K is bounded, it follows from the Heine-Borel Theorem 11.2.5 that K
is compact. If k € K is arbitrary, then since k € K is not a cluster point of K,
we conclude that there exists an open neighborhood Ji of k that contains no
point of K\ {k}. But since {Jj: k € K} is an open cover of K, it follows that
there exists a finite number of points ki, ..., ky, such that {Jg, :i=1, ..., n}
covers K. But this implies that K is a finite set.

Let K, :=[0,n| for n € N.

If {K,} is a collection of compact subsets of R, it follows from the Heine-
Borel Theorem 11.2.5 that each set K|, is closed and bounded. Hence, from
11.1.5(a) the set Ko:= [ K, is also closed. Since Kj is also bounded (since
it is a subset of a bounded set), it follows from the Heine-Borel Theorem that
K is compact, as asserted.

For each n € N, let z, € K,,. Since the set {x,}C K;, we infer that the
sequence () is a bounded sequence. By the Bolzano-Weierstrass Theorem,
(z,,) has a subsequence (x,,, ) that converges to a point zg. Since z,,, € K,
for all r >mn, it follows that xo = lim(x,,, ) belongs to () K.

Since K # 0 is bounded, it follows that inf K exists in R. If K,,:={k€ K :
k < (inf K)+1/n}, then K, is closed and bounded, hence compact. By the
preceding exercise [ K, # 0, but if g € (| K, then z¢ € K and it is readily
seen that xo = inf K. [Alternatively, use Theorem 11.2.6.]

For ne€N, let x,, € K be such that |c —z,| < inf{|c—z|:2€ K} +1/n. Now
apply Theorem 11.2.6.

Let K CR be compact and let ¢ € R. If n € N, there exists x, € K such that
sup{lc—z|: 2 € K} —1/n<|c—zy,]|. It follows from the Bolzano-Weierstrass
Theorem that there exists a subsequence (x,,) that converges to a point b,
which also belongs to the compact set K. Moreover, we have

lc —b] = lim |c — xy,, | > sup{|c — x| : x € K}.

But since b€ k, it also follows that |¢ —b| < sup{|c—z|:x € K}.

The family {Vj, (z):2 € K} forms an open cover of the compact set [a,b].
Therefore it can be replaced by a finite subcover, say {V,, ..., Vy, }. If b; is
a bound for f on V,,, then sup{by, ...,b,} is a bound for f on [a, b].

Suppose K; and Ky are disjoint compact sets and assume that inf{|z —y|:
x€ K1,y€ Ko} =0. Then there exist sequences (z,) in K; and (y,) in K
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such that |z, —yn| <1/n for n€N. Let (x}) be a subsequence of (z,) that
converges to a point zg € K7, and let (y;) be the corresponding subsequence
of (y). Then (y},) has a subsequence (y;) that converges to a point yo € K.
If (x}) is the corresponding subsequence of (z}), then we conclude that
|zo — yo| = lim |2} — y}/| =0, from which it follows that xo=yo, so that K;
and K5 are not disjoint, contrary to the hypothesis.

Let Fy:={n:n € N} and Fo:={n+1/n:n € N,n > 2}.

The relationship between continuous functions and open sets is very important and
the interplay between continuous functions and compact sets is further clarified
here. Students who go on to more advanced courses in topology should find this
to be a very useful introduction.

NSOt N

Sample Assignment: Exercises 1, 2, 4, 5, 6, 9.

Partial Solutions:

(a) If a<b<0, then f~(I)=0. If a<0<b, then f~1(I)=(—Vb,Vb). If
0<a<b, then f~1(I)=(—vb, —/a) U (va, VD).
(b) If I := (a,b) where a <0<b, then f(I)=]0,c), where c:= sup{a?, b*}.
(a)

f maps the interval (—1,1) to (1/2,1]. (b) f maps [0,00) to (0, 1].
FHG) =f7Y0,e))=[1,1+¢€%)=(0,1+*) NI
Let G:=(1/2,3/2). Let F:=[—1/2,1/2].
f1((—o0, a)) is the inverse image of the open set (—o0, ).
The set {r € R: f(z) <a}=f1((—o0,a]) and (—o0,a] is closed in R.
If z,€R is such that f(z,)=k for all n€N and if x=lim(z,), then
f(z)=lim(f(z,)) =k. Alternatively, {z € R:f(z)=k}={z € R:f(z) <k}N
{z eR: f(x) > k}.

8. Let f be the Dirichlet Discontinuous Function.
9. First note that if ACRandz € R, thenwehavex € f~1(R\ A) <= f(z)¢

10.

Section 11.4

R\A < f(z)¢ A < z¢ f1(A) <= zcR\f1(A); therefore,
YR\ A)= R\ f~1(A4). Now use the fact a set F'CR is closed if and only
if R\ F' is open, together with Corollary 11.3.3.

If (x,,) is a sequence in I such that f(z,) = g(z,) for all n and if x,, — x¢, then
it follows from the fact that I =[a,b] is closed that xo € I. Moreover, since f
and ¢ are continuous at g, thenf(xo) = lim f(z,,) = lim g(x,) = g(zo).

We have merely introduced the notion of a metric space, but we think it may be
useful and stimulating for students to see that a great deal of what has been done
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can be extended to much wider generality. Some instructors may wish to use this
brief section as a springboard for further discussion; other may decide to omit it
completely.

Sample Assignment: Exercises 1, 3, 4, 7, 9, 10.

Partial Solutions:

1. If Pl L= (xluyl)apz = ($2)y2))P3 = (1"37y3)7 then

di(P1, P2) < (|z1 — x3] + |x3 — x2|) + (ly1 — y3| + |yz — v2])
= dy(P1, P3) + di(P3, Py).

Thus d; satisfies the Triangle Inequality.

To see that d satisfies the Triangle Inequality, note that |z —x3|<
doo (P, P3) and |y1 — y3| < doo(P1, P3), and also that |z3 — x2| < doo(Ps3, P2)
and |ys — ya| <doo (Ps, P2). Therefore, we have |11 — 2| < |21 — x3|+|xs — 22| <
doo(P1, P3) +doo(Ps, P2) and  |y1 —yo| < [y1 — ys| + [ys — y2| S doo(P1, P3) +
doo(P3, P2), whence it follows that do(Pr, P2) = sup{|x1 — x2|, |y1 — 12|} <
doo(Pla Pg) + doo(Pg, P2)

2. Since |f(z) — g(x)| < |f(z) = h(z)[+[h(z) — 9(2)] < doo(f, h) +doo(h, g) for all
x €10,1], it follows that doo(f, 9) <doo(f, h)+ d(h,g) and d satisfies the
Triangle Inequality.

We also have di(f,9)= Jy |f =gl < [y {1f = bl + |h=gl} = Jg |f = hl +
Jo 1h—gl=di(f, h) +di(h, g).

3. We have s # t if and only if d(s,t) =1. If s # t, the value of d(s,u) + d(u,t)
is either 1 or 2 depending on whether u equals s or ¢, or neither.

4. Since doo(Py, P) = sup{|z, — 2|, |yn — y|}, if doo(Ppn, P) — 0 then it follows
that both |z, — x| — 0 and |y, —y| — 0, whence x,, — z and y, —y. Con-
versely, if z, —z and y, —y, then |z, —z|—0 and |y, —y|— 0, whence
doo(Py, P)— 0.

5. If (xn),(yn) converge to z, y, respectively, then d(P,,P)=|z,—z|+
|y —y| — 0, so that (P,) converges to P. Conversely, since |z, — | <d(FP,, P),
if d(P,,, P) — 0, then lim(x, ) =z, and similarly for (y,).

6. If a sequence (z,) in S converges to z relative to the discrete metric d,
then d(zp,x)— 0 which implies that =, =z for all sufficiently large n. The
converse is trivial.

7. Show that a set consisting of a single point is open. Then it follows that
every set is an open set, so that every set is also a closed set.

8. (a) {(z,y): |z| + |y| <1} is the square with vertices (+1,0) and (0, £1), includ-
ing its interior.
(b) {(x,y):|z| <1,|y| <1} is the square with vertices (1,1),(—1,1),(—1,—1)
and (1, —1), including its interior.
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. For a given y € V.(x), let 0 :=& — d(x, y); then § > 0. Show that V5(y) C V().

Since y is arbitrary, it follows that V.(x) is an open set.

Let G C Sy be open in (Sg,ds) and let z € f~1(G) so that f(z) €G. Then
there exists an e-neighborhood V.(f(z)) CG. Since f is continuous at z,
there exists a d-neighborhood Vs(z) such that f(Vs(x)) € V.(f(x)). Since
r € f~1(G) is arbitrary, we conclude that f~1(G) is open in (S1,d1).

If f~1(Q) is open in S; for every open set G C So, and if 29 € S, we let

yo := f(xo) € Se. If Vo(yo) is any (open) e-neighborhood of yg, the hypothesis
is that f~1(Vz(yo)) is an open set in S;. Since it contains zg, there is a
§-neighborhood Vs(xg) € f~1(Vz(yo)), whence f(Vs(x0)) C Vz(yo). Therefore
f is continuous at the arbitrary point xg € .S;.
Let G={G.} be a cover of f(S) C R by open sets in R. It follows from
11.4.11 that each set f~1(G,) is open in (S,d). Therefore, the collection
{f71(G4)} is an open cover of S. Since (S,d) is compact, a finite subcol-
lection {f~1(Ga), ..., [ H(Gay)} covers S, whence it follows that the sets
{Ga,, .-.,Gqy} must form a finite subcover of G for f(S). Since G was an
arbitrary open cover of f(.5), we conclude that f(.5) is compact.

Modify the proof of Theorem 11.2.4.



SELECTED GRAPHS

We include in this manual the graphs of a few selected functions that have a
special place in real analysis. They can be photocopied onto transparencies and
used with an overhead projector, if desired. They are just an indication of how
computer graphics can be used to exhibit the properties of some of the important
examples in real analysis.

The graphs were constructed using the facilities of the CALCULUS AND
MATHEMATICA project that was developed at the University of Illinois at
Urbana-Champaign by Professors H. Porta and J. J. Uhl, Jr. This is an exciting
and innovative computer laboratory in which the students use the graphic and
calculational power of Mathematica to learn calculus. The teaching of calculus
is thus brought into the modern world by having students actively interact with
modern technology.

(A) Figures 1, 2, 3. Here f(x):=2%sin(1/z) for x # 0 and f(0):=0.

Three graphs are shown using three different plot ranges, which gives a mild zoom
effect. Figure 1 gives a global perspective, and shows that for “large” values of z,
the graph approaches the line y = . Note that

flz) == [Sm(l/‘r)} and  lim [Sm(l/x)] —1

1/z z—oo | 1/x

As the plot range becomes smaller, the oscillations become increasingly dominant.
The guiding parabolas y = z? and y = —2? are shown as dashed curves. It is
important to note that the scales on the coordinate axes are different in the three
graphs; in Figure 1, the scale is 1 to 10, while in Figure 3 the scale is 10 to 1.
With these scales, the parabolic curves have the same shape in all three figures.
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Figure 1. f(z) = x?sin(1/z), plot range —10 < z < 10
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Figure 2. f(z) = z%sin(1/z), plot range —1 < z < 1
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Figure 3. f(z) = #?sin(1/z), plot range —0.1 < 2 < 0.1
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(B) Figures 4,5,6. Here g(z) :=x[2 + sin(1/x)] for z # 0 and g(0) :=0.

There are three graphs of the function g for three different plot ranges, with the
effect of enlarging the graph near the origin. As the plot range decreases, the
oscillations become more apparent.

The function g has an absolute minumum at z = 0, but the derivative ¢’
changes sign infinitely often in every neighborhood of x = 0; thus the first deriva-
tive test does not apply. The guiding curves y = z* and y = 32* are shown as
dashed curves. Note that the scale on the coordinate axes is different in each
figure.
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Figure 4. g(z) = x*[2 + sin(1/z)], plot range —0.4 < z < 0.4
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Figure 5. g(z) = x*[2 + sin(1/x)], plot range —0.1 < z < 0.1
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Figure 6. g(z) = 2*[2 + sin(1/x)], plot range —0.01 < z < 0.01
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(C) Figure 7. Here h(z):=1/n if x = m/n, where m,n are relatively prime
natural numbers with m < n, and h(x):=0 if 0 < x < 1 and x is irrational.

The graph of this function (Thomae’s function on (0, 1)) is shown. This graph
has been plotted for values of n from 1 to 70, and we have decreased the level of
shading near the z-axis to keep the graph from becoming a blotch of ink for larger
values of n. There is a gap of white just above the x-axis which must be filled in
by the imagination. No attempt is made to represent the points on the z-axis.

This function is interesting because it is discontinuous at every rational
number, and so has an infinite number of discontinuities. However, it is Riemann
integrable.
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Figure 7. Thomae’s function
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