
INSTRUCTOR’S MANUAL TO ACCOMPANY

INTRODUCTION TO REAL
ANALYSIS

Fourth Edition

Robert G. Bartle
Eastern Michigan University

Donald R. Sherbert
University of Illinois

JOHN WILEY & SONS, INC.
New York • Chichester • Weinheim • Brisbane • Singapore • Toronto



Copyright c© 2000, 2010 by John Wiley & Sons, Inc.

Excerpts from this work may be reproduced by instructors
for distribution on a not-for-profit basis for testing or
instructional purposes only to students enrolled in courses
for which the textbook has been adopted. Any other
reproduction or translation of this work beyond that
permitted by Sections 107 or 108 of the 1976 United States
Copyright Act without the permission of the copyright
owner is unlawful. Requests for permission or further
information should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030-5774, (201)-748-6011, Fax (201) 748-6008,
Website http://www.wiley.com/go/permissions.

ISBN 978-0-471-44799-3



PREFACE

This manual is offered as an aid in using the fourth edition of Introduction to Real
Analysis as a text. Both of us have frequently taught courses from the earlier
editions of the text and we share here our experience and thoughts as to how to
use the book. We hope our comments will be useful.

We also provide partial solutions for almost all of the exercises in the book.
Complete solutions are almost never presented here, but we hope that enough is
given so that a complete solution is within reach. Of course, there is more than
one correct way to attack a problem, and you may find better proofs for some of
these exercises.

We also repeat the graphs that were given in the manual for the previous
editions, which were prepared for us by Professor Horacio Porta, whom we wish
to thank again.

Robert G. Bartle November 20, 2010
Donald R. Sherbert
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CHAPTER 1

PRELIMINARIES

We suggest that this chapter be treated as review and covered quickly, without
detailed classroom discussion. For one reason, many of these ideas will be already
familiar to the students — at least informally. Further, we believe that, in practice,
those notions of importance are best learned in the arena of real analysis, where
their use and significance are more apparent. Dwelling on the formal aspect of
sets and functions does not contribute very greatly to the students’ understanding
of real analysis.

If the students have already studied abstract algebra, number theory or com-
binatorics, they should be familiar with the use of mathematical induction. If not,
then some time should be spent on mathematical induction.

The third section deals with finite, infinite and countable sets. These notions
are important and should be briefly introduced. However, we believe that it is
not necessary to go into the proofs of these results at this time.

Section 1.1

Students are usually familiar with the notations and operations of set algebra,
so that a brief review is quite adequate. One item that should be mentioned is
that two sets A and B are often proved to be equal by showing that: (i) if x∈A,
then x∈B, and (ii) if x∈B, then x∈A. This type of element-wise argument is
very common in real analysis, since manipulations with set identities is often not
suitable when the sets are complicated.

Students are often not familiar with the notions of functions that are injective
(= one-one) or surjective (= onto).

Sample Assignment: Exercises 1, 3, 9, 14, 15, 20.

Partial Solutions:

1. (a) B ∩ C = {5, 11, 17, 23, . . .} = {6k − 1 : k ∈ N}, A∩ (B ∩C) = {5, 11, 17}
(b) (A ∩B) \ C = {2, 8, 14, 20}
(c) (A ∩C) \ B = {3, 7, 9, 13, 15, 19}

2. The sets are equal to (a) A, (b) A ∩B, (c) the empty set.
3. If A ⊆B, then x∈A implies x∈B, whence x∈A∩B, so that A ⊆A ∩B ⊆A.

Thus, if A ⊆B, then A = A ∩ B.
Conversely, if A = A ∩ B, then x∈A implies x∈A ∩ B, whence x∈B.

Thus if A = A ∩ B, then A ⊆ B.
4. If x is in A \ (B ∩ C), then x is in A but x /∈ B ∩ C, so that x∈A and x is

either not in B or not in C. Therefore either x ∈ A \ B or x ∈ A \ C, which
implies that x ∈ (A \ B) ∪ (A \ C). Thus A \ (B ∩ C) ⊆ (A \ B) ∪ (A \ C).
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2 Bartle and Sherbert

Conversely, if x is in (A \ B) ∪ (A \ C), then x ∈ A \ B or x ∈ A \ C. Thus
x ∈ A and either x /∈ B or x /∈ C, which implies that x ∈ A but x /∈ B ∩ C,
so that x ∈ A \ (B ∩ C). Thus (A \ B) ∪ (A \ C) ⊆ A \ (B ∩ C).

Since the sets A \ (B∩C) and (A \ B)∪(A \ C) contain the same elements,
they are equal.

5. (a) If x ∈ A ∩ (B ∪C), then x∈A and x∈B ∪C. Hence we either have
(i) x ∈ A and x ∈ B, or we have (ii) x ∈ A and x ∈ C. Therefore, either
x ∈ A ∩ B or x ∈ A ∩ C, so that x ∈ (A ∩ B) ∪ (A ∩ C). This shows that
A ∩ (B ∪ C) is a subset of (A ∩B) ∪ (A ∩C).

Conversely, let y be an element of (A ∩B) ∪ (A ∩C). Then either (j) y ∈
A ∩B, or (jj) y ∈A ∩C. It follows that y ∈A and either y ∈B or y ∈C.
Therefore, y ∈A and y ∈B ∪C, so that y ∈A ∩ (B ∪C). Hence (A ∩B) ∪
(A ∩C) is a subset of A ∩ (B ∪C).

In view of Definition 1.1.1, we conclude that the sets A ∩ (B ∪C) and
(A ∩B) ∪ (A ∩C) are equal.
(b) Similar to (a).

6. The set D is the union of {x : x∈A and x /∈ B} and {x : x /∈ A and x∈B}.
7. Here An = {n + 1, 2(n + 1), . . .}.

(a) A1 = {2, 4, 6, 8, . . .}, A2 = {3, 6, 9, 12, . . .}, A1 ∩A2 = {6, 12, 18, 24, . . .} =
{6k : k ∈ N} = A5.
(b)

⋃
An = N \ {1}, because if n > 1, then n ∈An−1; moreover 1 /∈ An.

Also
⋂

An = ∅, because n /∈An for any n ∈ N.
8. (a) The graph consists of four horizontal line segments.

(b) The graph consists of three vertical line segments.
9. No. For example, both (0, 1) and (0,− 1) belong to C.

10. (a) f(E) = {1/x2 : 1 ≤x≤ 2} = {y : 1
4 ≤ y ≤ 1} = [14 , 1].

(b) f−1(G) = {x : 1 ≤ 1/x2 ≤ 4} = {x : 1
4 ≤x2 ≤ 1} = [−1,−1

2 ] ∪ [12 , 1].
11. (a) f(E) = {x + 2 : 0 ≤ x ≤ 1} = [2, 3], so h(E) = g(f(E)) = g([2, 3]) =

{y2 : 2 ≤ y ≤ 3} = [4, 9].
(b) g−1(G) = {y : 0 ≤ y2 ≤ 4} = [−2, 2], so h−1(G) = f−1(g−1(G)) =
f−1([−2, 2]) = {x : −2 ≤ x + 2 ≤ 2} = [−4, 0].

12. If 0 is removed from E and F , then their intersection is empty, but the
intersection of the images under f is {y : 0 < y ≤ 1}.

13. E \ F = {x : −1 ≤ x < 0}, f(E) \ f(F ) is empty, and f(E \ F ) =
{y : 0 < y ≤ 1}.

14. If y ∈ f(E ∩ F ), then there exists x∈E ∩ F such that y = f(x). Since x∈E
implies y ∈ f(E), and x∈F implies y ∈ f(F ), we have y ∈ f(E) ∩ f(F ). This
proves f(E ∩F ) ⊆ f(E) ∩ f(F ).

15. If x∈ f−1(G) ∩ f−1(H), then x∈ f−1(G) and x∈ f−1(H), so that f(x) ∈G
and f(x) ∈H. Then f(x) ∈G ∩ H, and hence x∈ f−1(G ∩ H). This shows
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that f−1(G) ∩ f−1(H) ⊆ f−1(G ∩ H). The opposite inclusion is shown in
Example 1.1.8(b). The proof for unions is similar.

16. If f(a) = f(b), then a/
√

a2 + 1 = b/
√

b2 + 1, from which it follows that a2 = b2.
Since a and b must have the same sign, we get a = b, and hence f is injective.
If −1 < y < 1, then x := y/

√
1 − y2 satisfies f(x) = y (why?), so that f takes R

onto the set {y : − 1 < y < 1}. If x > 0, then x=
√

x2 <
√

x2 + 1, so it follows
that f(x) ∈ {y : 0 < y < 1}.

17. One bijection is the familiar linear function that maps a to 0 and b to 1,
namely, f(x) := (x− a)/(b − a). Show that this function works.

18. (a) Let f(x) = 2x, g(x) = 3x.
(b) Let f(x) = x2, g(x) = x, h(x) = 1. (Many examples are possible.)

19. (a) If x∈ f−1(f(E)), then f(x) ∈ f(E), so that there exists x1 ∈E such
that f(x1) = f(x). If f is injective, then x1 = x, whence x∈E. Therefore,
f−1(f(E)) ⊆ E. Since E ⊆ f−1(f(E)) holds for any f , we have set equality
when f is injective. See Example 1.1.8(a) for an example.
(b) If y ∈H and f is surjective, then there exists x∈A such that f(x) = y.
Then x∈ f−1(H) so that y ∈ f(f−1(H)). Therefore H ⊆ f(f−1(H)). Since
f(f−1(H)) ⊆ H for any f , we have set equality when f is surjective. See
Example 1.1.8(a) for an example.

20. (a) Since y = f(x) if and only if x= f−1(y), it follows that f−1(f(x)) =x and
f(f−1(y)) = y.
(b) Since f is injective, then f−1 is injective on R(f). And since f is surjec-
tive, then f−1 is defined on R(f) = B.

21. If g(f(x1)) = g(f(x2)), then f(x1) = f(x2), so that x1 = x2, which implies that
g ◦ f is injective. If w ∈C, there exists y ∈B such that g(y) = w, and there
exists x∈A such that f(x) = y. Then g(f(x)) =w, so that g ◦ f is surjective.
Thus g ◦ f is a bijection.

22. (a) If f(x1) = f(x2), then g(f(x1)) = g(f(x2)), which implies x1 = x2, since
g ◦ f is injective. Thus f is injective.
(b) Given w ∈C, since g ◦ f is surjective, there exists x∈A such that
g(f(x)) =w. If y := f(x), then y ∈B and g(y) = w. Thus g is surjective.

23. We have x ∈ f−1(g−1(H)) ⇐⇒ f(x) ∈ g−1(H) ⇐⇒ g(f(x)) ∈ H ⇐⇒ x ∈
(g ◦ f)−1(H).

24. If g(f(x)) =x for all x∈D(f), then g ◦ f is injective, and Exercise 22(a)
implies that f is injective on D(f). If f(g(y)) = y for all y ∈D(g), then
Exercise 22(b) implies that f maps D(f) onto D(g). Thus f is a bijection of
D(f) onto D(g), and g = f−1.

Section 1.2

The method of proof known as Mathematical Induction is used frequently in real
analysis, but in many situations the details follow a routine patterns and are
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left to the reader by means of a phrase such as: “The proof is by Mathematical
Induction”. Since may students have only a hazy idea of what is involved, it may
be a good idea to spend some time explaining and illustrating what constitutes a
proof by induction.

Pains should be taken to emphasize that the induction hypothesis does not
entail “assuming what is to be proved”. The inductive step concerns the validity
of going from the assertion for k ∈ N to that for k + 1. The truth of falsity of the
individual assertion is not an issue here.

Sample Assignment: Exercises 1, 2, 6, 11, 13, 14, 20.

Partial Solutions:

1. The assertion is true for n = 1 because 1/(1 · 2) = 1/(1 + 1). If it is true
for n = k, then it follows for k + 1 because k/(k + 1) + 1/[(k + 1)(k + 2)] =
(k + 1)/(k + 2).

2. The statement is true for n = 1 because [12 · 1 · 2]2 = 1 = 13. For the inductive
step, use the fact that

[1
2k(k + 1)

]2 + (k + 1)3 =
[1

2(k + 1)(k + 2)
]2

.

3. It is true for n = 1 since 3 = 4 − 1. If the equality holds for n = k, then
add 8(k + 1) − 5 = 8k + 3 to both sides and show that (4k2 − k) + (8k + 3) =
4(k + 1)2 − (k + 1) to deduce equality for the case n = k + 1.

4. It is true for n = 1 since 1 = (4 − 1)/3. If it is true for n = k, then add
(2k + 1)2 to both sides and use some algebra to show that

1
3(4k3 − k) + (2k + 1)2 = 1

3 [4k3 + 12k2 + 11k + 3] = 1
3 [4(k + 1)3 − (k + 1)],

which establishes the case n = k + 1.
5. Equality holds for n = 1 since 12 = (−1)2(1 · 2)/2. The proof is completed by

showing (−1)k+1[k(k + 1)]/2 + (−1)k+2(k + 1)2 = (−1)k+2[(k + 1)(k + 2)]/2.
6. If n = 1, then 13 + 5 · 1 = 6 is divisible by 6. If k3 + 5k is divisible by 6,

then (k + 1)3 + 5(k + 1) = (k3 + 5k) + 3k(k + 1) + 6 is also, because k(k + 1)
is always even (why?) so that 3k(k + 1) is divisible by 6, and hence the sum
is divisible by 6.

7. If 52k − 1 is divisible by 8, then it follows that 52(k+1) − 1 = (52k − 1) + 24 · 52k

is also divisible by 8.
8. 5k+1 −4(k +1)−1=5 ·5k −4k − 5 = (5k − 4k − 1) + 4(5k − 1). Now show that

5k − 1 is always divisible by 4.
9. If k3 + (k + 1)3 + (k + 2)3 is divisible by 9, then (k + 1)3 + (k+2)3 + (k + 3)3 =

k3 + (k + 1)3 + (k + 2)3 + 9(k2 + 3k + 3) is also divisible by 9.
10. The sum is equal to n/(2n + 1).
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11. The sum is 1 + 3 + · · · + (2n − 1) = n2. Note that k2 + (2k + 1) = (k + 1)2.
12. If n0 > 1, let S1 := {n ∈ N : n − n0 + 1 ∈S} Apply 1.2.2 to the set S1.
13. If k < 2k, then k + 1 < 2k + 1 < 2k + 2k = 2(2k) = 2k + 1.
14. If n = 4, then 24 = 16 < 24 = 4!. If 2k < k! and if k ≥ 4, then 2k+1 = 2 · 2k <

2 · k! < (k + 1) · k! = (k + 1)!. [Note that the inductive step is valid when-
ever 2 < k + 1, including k = 2, 3, even though the statement is false for these
values.]

15. For n = 5 we have 7 ≤ 23. If k ≥ 5 and 2k − 3 ≤ 2k−2, then 2(k + 1) − 3 =
(2k − 3) + 2 ≤ 2k−2 + 2k−2 = 2(k + 1)−2.

16. It is true for n = 1 and n ≥ 5, but false for n = 2, 3, 4. The inequality
2k + 1 < 2k, wich holds for k ≥ 3, is needed in the induction argument. [The
inductive step is valid for n = 3, 4 even though the inequality n2 < 2n is false
for these values.]

17. m = 6 trivially divides n3 − n for n = 1, and it is the largest integer to divide
23 − 2 = 6. If k3 − k is divisible by 6, then since k2 + k is even (why?), it
follows that (k + 1)3 − (k + 1) = (k3 − k) + 3(k2 + k) is also divisible by 6.

18.
√

k + 1/
√

k + 1 = (
√

k
√

k + 1 + 1)/
√

k + 1 > (k + 1)/
√

k + 1 =
√

k + 1.
19. First note that since 2 ∈S, then the number 1 = 2− 1 belongs to S. If m /∈ S,

then m < 2m ∈S, so 2m − 1 ∈S, etc.
20. If 1≤xk−1 ≤ 2 and 1≤xk ≤ 2, then 2≤xk−1 + xk ≤ 4, so that 1 ≤xk + 1 =

(xk−1 + xk)/2 ≤ 2.

Section 1.3

Every student of advanced mathematics needs to know the meaning of the words
“finite”, “infinite”, “countable” and “uncountable”. For most students at this
level it is quite enough to learn the definitions and read the statements of the
theorems in this section, but to skip the proofs. Probably every instructor will
want to show that Q is countable and R is uncountable (see Section 2.5).

Some students will not be able to comprehend that proofs are necessary for
“obvious” statements about finite sets. Others will find the material absolutely
fascinating and want to prolong the discussion forever. The teacher must avoid
getting bogged down in a protracted discussion of cardinal numbers.

Sample Assignment: Exercises 1, 5, 7, 9, 11.

Partial Solutions:

1. If T1 �= ∅ is finite, then the definition of a finite set applies to T2 = Nn for
some n. If f is a bijection of T1 onto T2, and if g is a bijection of T2 onto Nn,
then (by Exercise 1.1.21) the composite g ◦ f is a bijection of T1 onto Nn, so
that T1 is finite.
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2. Part (b) Let f be a bijection of Nm onto A and let C = {f(k)} for some
k ∈ Nm. Define g on Nm−1 by g(i) := f(i) for i = 1, . . . , k − 1, and g(i) :=
f(i+ 1) for i= k, . . . , m− 1. Then g is a bijection of Nm−1 onto A\C. (Why?)
Part (c) First note that the union of two finite sets is a finite set. Now note
that if C/B were finite, then C = B ∪ (C \ B) would also be finite.

3. (a) The element 1 can be mapped into any of the three elements of T , and
2 can then be mapped into any of the two remaining elements of T , after
which the element 3 can be mapped into only one element of T. Hence there
are 6 = 3 · 2 · 1 different injections of S into T .
(b) Suppose a maps into 1. If b also maps into 1, then c must map into 2; if b
maps into 2, then c can map into either 1 or 2. Thus there are 3 surjections
that map a into 1, and there are 3 other surjections that map a into 2.

4. f(n) := 2n + 13, n ∈ N.
5. f(1) := 0, f(2n) :=n, f(2n + 1) :=−n for n ∈ N.
6. The bijection of Example 1.3.7(a) is one example. Another is the shift defined

by f(n) :=n + 1 that maps N onto N \ {1}.
7. If T1 is denumerable, take T2 = N. If f is a bijection of T1 onto T2, and if g

is a bijection of T2 onto N, then (by Exercise 1.1.21) g ◦ f is a bijection of T1
onto N, so that T1 is denumerable.

8. Let An := {n} for n ∈ N, so
⋃

An = N.
9. If S∩T = ∅ and f : N → S, g: N → T are bijections onto S and T , respectively,

let h(n) := f((n + 1)/2) if n is odd and h(n) := g(n/2) if n is even. It is readily
seen that h is a bijection of N onto S ∪T ; hence S ∪T is denumerable. What
if S ∩T �= ∅?

10. (a) m + n − 1 = 9 and m = 6 imply n = 4. Then h(6, 4) = 1
2 · 8 · 9 + 6 = 42.

(b) h(m, 3) = 1
2(m + 1)(m + 2) +m = 19, so that m2 + 5m − 36 = 0. Thus

m = 4.
11. (a) P({1, 2}) = {∅, {1}, {2}, {1, 2}} has 22 = 4 elements.

(b) P({1, 2, 3}) has 23 = 8 elements.
(c) P({1, 2, 3, 4}) has 24 = 16 elements.

12. Let Sn+1 := {x1, . . . , xn, xn+1} = Sn ∪ {xn+1} have n + 1 elements. Then a
subset of Sn+1 either (i) contains xn+1, or (ii) does not contain xn+1. The
induction hypothesis implies that there are 2n subsets of type (i), since each
such subset is the union of {xn+1} and a subset of Sn. There are also 2n

subsets of type (ii). Thus there is a total of 2n + 2n = 2 · 2n = 2n + 1 subsets
of Sn+1.

13. For each m ∈ N, the collection of all subsets of Nm is finite. (See Exercise 12.)
Every finite subset of N is a subset of Nm for a sufficiently large m. Therefore
Theorem 1.3.12 implies that F(N) =

⋃∞
m=1 P(Nm) is countable.



CHAPTER 2

THE REAL NUMBERS

Students will be familiar with much of the factual content of the first few sections,
but the process of deducing these facts from a basic list of axioms will be new
to most of them. The ability to construct proofs usually improves gradually
during the course, and there are much more significant topics forthcoming. A few
selected theorems should be proved in detail, since some experience in writing
formal proofs is important to students at this stage. However, one should not
spend too much time on this material.

Sections 2.3 and 2.4 on the Completeness Property form the heart of this
chapter. These sections should be covered thoroughly. Also the Nested Intervals
Property in Section 2.5 should be treated carefully.

Section 2.1

One goal of Section 2.1 is to acquaint students with the idea of deducing conse-
quences from a list of basic axioms. Students who have not encountered this type
of formal reasoning may be somewhat uncomfortable at first, since they often
regard these results as “obvious”. Since there is much more to come, a sampling
of results will suffice at this stage, making it clear that it is only a sampling.
The classic proof of the irrationality of

√
2 should certainly be included in the

discussion, and students should be asked to modify this argument for
√

3, etc.

Sample Assignment: Exercises 1(a,b), 2(a,b), 3(a,b), 6, 13, 16(a,b), 20, 23.

Partial Solutions:

1. (a) Apply appropriate algebraic properties to get b = 0 + b = (−a + a) + b =
−a + (a + b) = −a + 0 =−a.
(b) Apply (a) to (−a) + a = 0 with b = a to conclude that a = −(−a).
(c) Apply (a) to the equation a + (−1)a = a(1 + (−1)) = a · 0 = 0 to conclude
that (−1)a = −a.
(d) Apply (c) with a = −1 to get (−1)(−1) = −(−1). Then apply (b) with
a = 1 to get (−1)(−1) = 1.

2. (a) −(a + b) = (−1)(a + b) = (−1)a + (−1)b = (−a) + (−b).
(b) (−a) · (−b) = ((−1)a) · ((−1)b) = (−1)(−1)(ab) = ab.
(c) Note that (−a)(−(1/a)) = a(1/a) = 1.
(d) −(a/b) = (−1)(a(1/b)) = ((−1)a)(1/b) = (−a)/b.

3. (a) Add −5 to both sides of 2x+ 5 = 8 and use (A2),(A4),(A3) to get 2x= 3.
Then multiply both sides by 1/2 to get x= 3/2.
(b) Write x2 − 2x= x(x − 2) = 0 and apply Theorem 2.1.3(b). Alternatively,
note that x= 0 satisfies the equation, and if x �= 0, then multiplication by
1/x gives x= 2.

7
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(c) Add −3 to both sides and factor to get x2 − 4 = (x− 2)(x+ 2) = 0. Now
apply 2.1.3(b) to get x= 2 or x= −2.
(d) Apply 2.1.3(b) to show that (x− 1)(x+ 2) = 0 if and only if x= 1 or
x= −2.

4. Clearly a = 0 satisfies a · a = a. If a �= 0 and a · a = a, then (a · a)(1/a) = a(1/a),
so that a = a(a(1/a)) = a(1/a) = 1.

5. If (1/a)(1/b) is multiplied by ab, the result is 1. Therefore, Theorem 2.1.3(a)
implies that 1/(ab) = (1/a)(1/b).

6. Note that if q ∈ Z and if 3q2 is even, then q2 is even, so that q is even. Hence,
if (p/q)2 = 6, then it follows that p is even, say p = 2m, whence 2m2 = 3q2, so
that q is also even.

7. If p ∈ N, there are three possibilities: for some m ∈ N ∪ {0}, (i) p = 3m,
(ii) p = 3m + 1, or (iii) p = 3m + 2. In either case (ii) or (iii), we have p2 =
3h + 1 for some h ∈ N ∪ {0}.

8. (a) Let x= m/n, y = p/q, where m, n �= 0, p, q �= 0 are integers. Then x+ y =
(mq + np)/nq and xy = mp/nq are rational.
(b) If s :=x+ y ∈ Q, then y = s−x ∈ Q, a contradiction. If t :=xy ∈ Q and
x �= 0, then y = t/x ∈ Q, a contradiction.

9. (a) If x1 = s1 + t1
√

2 and x2 = s2 + t2
√

2 are in K, then x1 + x2 =
(s1 + s2) + (t1 + t2)

√
2 and x1x2 = (s1s2 + 2t1t2) + (s1t2 + s2t1)

√
2 are also

in K.
(b) If x= s + t

√
2 �= 0 is in K, then s− t

√
2 �= 0 (why?) and

1
x

=
s − t

√
2

(s + t
√

2)(s − t
√

2)
=

(
s

s2 − 2t2

)
−

(
t

s2 − 2t2

) √
2

is in K. (Use Theorem 2.1.4.)
10 (a) If c = d, then 2.1.7(b) implies a + c < b + d. If c < d, then a + c <

b + c < b + d.
(b) If c = d = 0, then ac= bd = 0. If c > 0, then 0< ac by the Trichotomy
Property and ac < bc follows from 2.1.7(c). If also c≤ d, then ac≤ ad < bd.
Thus 0 ≤ ac≤ bd holds in all cases.

11. (a) If a > 0, then a �= 0 by the Trichotomy Property, so that 1/a exists. If
1/a = 0, then 1 = a · (1/a) = a ·0 = 0, which contradicts (M3). If 1/a < 0, then
2.1.7(c) implies that 1 = a(1/a) < 0, which contradicts 2.1.8(b). Thus 1/a > 0,
and 2.1.3(a) implies that 1/(1/a) = a.
(b) If a < b, then 2a = a + a < a+ b, and also a + b < b + b = 2b. Therefore,
2a < a+ b < 2b, which, since 1

2 > 0 (by 2.1.8(c) and part (a)), implies that
a < 1

2(a + b) < b.

12. Let a = 1 and b = 2. If c = −3 and d = −1, then ac < bd. On the other hand,
if c = −3 and d = −2, then bd < ac. (Many other examples are possible.)
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13. If a �= 0, then 2.1.8(a) implies that a2 > 0; since b2 ≥ 0, it follows that
a2 + b2 > 0.

14. If 0≤ a < b, then 2.1.7(c) implies ab < b2. If a = 0, then 0 = a2 = ab < b2.
If a > 0, then a2 < ab by 2.1.7(c). Thus a2 ≤ ab < b2. If a = 0, b = 1, then
0 = a2 = ab < b = 1.

15. (a) If 0< a < b, then 2.1.7(c) implies that 0< a2 < ab < b2. Then by Example
2.1.13(a), we infer that a =

√
a2 <

√
ab <

√
b2 = b.

(b) If 0< a < b, then ab > 0 so that 1/ab > 0, and thus 1/a− 1/b =
(1/ab)(b − a) > 0.

16. (a) To solve (x− 4)(x+ 1) > 0, look at two cases. Case 1: x− 4 > 0 and
x+ 1 > 0, which gives x > 4. Case 2: x− 4 < 0 and x+ 1 < 0, which gives
x <−1. Thus we have {x : x > 4 or x <−1}.
(b) 1< x2 < 4 has the solution set {x : 1 < x < 2 or − 2 < x <−1}.
(c) The inequality is 1/x−x= (1 −x)(1 +x)/x < 0. If x > 0, this is equiva-
lent to (1 −x)(1 +x) < 0, which is satisfied if x > 1. If x < 0, then we solve
(1 −x)(1 +x) > 0, and get −1 < x < 0. Thus we get {x : −1 < x < 0 or x > 1}
(d) the solution set is {x : x < 0 or x > 1}.

17. If a > 0, we can take ε0 := a > 0 and obtain 0< ε0 ≤ a, a contradiction.

18. If b < a and if ε0 := (a− b)/2, then ε0 > 0 and a = b + 2ε0 > b + ε0.

19. The inequality is equivalent to 0≤ a2 − 2ab + b2 = (a− b)2.

20. (a) If 0< c < 1, then 2.1.7(c) implies that 0< c2 < c, whence 0 < c2 < c < 1.
(b) Since c > 0, then 2.1.7(c) implies that c < c2, whence 1 < c < c2.

21. (a) Let S := {n ∈ N : 0 < n < 1}. If S is not empty, the Well-Ordering Property
of N implies there is a least element m in S. However, 0 < m < 1 implies that
0 < m2 < m, and since m2 is also in S, this is a contradiction to the fact that
m is the least element of S.
(b) If n = 2p = 2q − 1 for some p, q in N, then 2(q − p) = 1, so that 0< q − p < 1.
This contradicts (a).

22. (a) Let x := c− 1 > 0 and apply Bernoulli’s Inequality 2.1.13(c) to get cn =
(1 + x)n ≥ 1 + nx ≥ 1 + x= c for all n ∈ N, and cn > 1 + x= c for n > 1.
(b) Let b := 1/c and use part (a).

23. If 0< a < b and ak < bk, then 2.1.7(c) implies that ak + 1 < abk < bk + 1 so
Induction applies. If am < bm for some m ∈ N, the hypothesis that 0< b ≤ a
leads to a contradiction.

24. (a) If m > n, then k :=m −n ∈ N, so Exercise 22(a) implies that ck ≥ c > 1.
But since ck = cm − n, this implies that cm > cn. Conversely, the hypothesis
that cm > cn and m ≤n lead to a contradiction.
(b) Let b := 1/c and use part (a).



10 Bartle and Sherbert

25. Let b := c1/mn. We claim that b > 1; for if b ≤ 1, then Exercise 22(b) implies
that 1< c= bmn ≤ b ≤ 1, a contradiction. Therefore Exercise 24(a) implies
that c1/n = bm > bn = c1/m if and only if m > n.

26. Fix m ∈ N and use Mathematical Induction to prove that am + n = aman and
(am)n = amn for all n ∈ N. Then, for a given n ∈ N, prove that the equalities
are valid for all m ∈ N.

Section 2.2

The notion of absolute value of a real number is defined in terms of the basic order
properties of R. We have put it in a separate section to give it emphasis. Many
students need extra work to become comfortable with manipulations involving
absolute values, especially when inequalities are involved.

We have also used this section to give students an early introduction to the
notion of the ε-neighborhood of a point. As a preview of the role of
ε-neighborhoods, we have recast Theorem 2.1.9 in terms of ε-neighborhhoods in
Theorem 2.2.8.

Sample Assignment: Exercises 1, 4, 5, 6(a,b), 8(a,b), 9, 12(a,b), 15.

Partial Solutions:

1. (a) If a≥ 0, then |a| = a =
√

a2; if a < 0, then |a| = −a =
√

a2.
(b) It suffices to show that |1/b| = 1/|b| for b �= 0 (why?). If b > 0, then
1/b > 0 (why?), so that |1/b| = 1/b = 1/|b|. If b < 0, then 1/b < 0, so that
|1/b| = −(1/b) = 1/(−b) = 1/|b|.

2. First show that ab≥ 0 if an only if |ab| = ab. Then show that (|a| + |b|)2 =
(a + b)2 if and only if |ab| = ab.

3. If x ≤ y ≤ z, then |x − y| + |y − z| = (y − x) + (z − y) = z − x = |z − x|. To
establish the converse, show that y < x and y > z are impossible. For example,
if y < x ≤ z, it follows from what we have shown and the given relationship
that |x − y| = 0, so that y = x, a contradiction.

4. |x− a|< ε ⇐⇒ −ε < x− a < ε ⇐⇒ a− ε < x < a+ ε.
5. If a < x < b and −b < −y < −a, it follows that a− b < x− y < b − a. Since

a− b = −(b − a), the argument in 2.2.2(c) gives the conclusion |x− y|< b − a.
The distance between x and y is less than or equal to b − a.

6. (a) |4x − 5| ≤ 13 ⇐⇒ −13 ≤ 4x − 5 ≤ 13 ⇐⇒ −8 ≤ 4x ≤ 18 ⇐⇒ −2 ≤
x ≤ 9/2.
(b) |x2 − 1| ≤ 3 ⇐⇒ −3 ≤ x2 − 1 ≤ 3 ⇐⇒ −2 ≤ x2 ≤ 4 ⇐⇒ 0 ≤ x2 ≤ 4 ⇐⇒
−2 ≤ x ≤ 2.

7. Case 1: x≥ 2 ⇒ (x+ 1) + (x− 2) = 2x− 1 = 7, so x= 4.
Case 2: −1 < x < 2 ⇒ (x+ 1) + (2−x) = 3 �= 7, so no solution.
Case 3: x≤ −1 ⇒ (−x− 1) + (2−x) = −2x+ 1 = 7, so x= −3.
Combining these cases, we get x= 4 or x= −3.



Chapter 2 — The Real Numbers 11

8. (a) If x > 1/2, then x+ 1 = 2x− 1, so that x= 2. If x≤ 1/2, then x+ 1 =
−2x+ 1, so that x= 0. There are two solutions {0, 2}.
(b) If x≥ 5, the equation implies x= −4, so no solutions. If x < 5, then x= 2.

9. (a) If x≥ 2, the inequality becomes −2 ≤ 1. If x≤ 2, the inequality is x≥ 1/2,
so this case contributes 1/2 ≤x≤ 2. Combining the cases gives us all x≥ 1/2.
(b) x≥ 0 yields x≤ 1/2, so that we get 0 ≤x≤ 1/2. x≤ 0 yields x≥ −1, so
that −1 ≤x≤ 0. Combining cases, we get −1 ≤x≤ 1/2.

10. (a) Either consider the three cases: x <−1, −1 ≤x≤ 1 and 1< x; or, square
both sides to get −2x > 2x. Either approach gives x < 0.
(b) Consider the three cases x≥ 0, − 1 ≤x < 0 and x <− 1 to get − 3/2 <
x < 1/2.

11. y = f(x) where f(x) :=−1 for x < 0, f(x) := 2x− 1 for 0≤x≤ 1, and f(x) := 1
for x > 1.

12. Case 1: x≥ 1 ⇒ 4 < (x+ 2) + (x− 1) < 5, so 3/2 < x < 2.
Case 2: −2 < x < 1 ⇒ 4 < (x+ 2) + (1−x) < 5, so there is no solution.
Case 3: x <−2 ⇒ 4 < (−x− 2) + (1−x) < 5, so −3 < x <−5/2.
Thus the solution set is {x : −3 < x <−5/2 or 3/2 < x < 2}.

13. |2x− 3|< 5 ⇐⇒ −1 < x < 4, and |x+ 1|> 2 ⇐⇒ x <−3 or x > 1. The two
inequalities are satisfied simultaneously by points in the intersection {x :
1 < x < 4}.

14. (a) |x| = |y| ⇐⇒ x2 = y2 ⇐⇒ (x− y)(x+ y) = 0 ⇐⇒ y = x or y = −x. Thus
{(x, y) : y = x or y = −x}.
(b) Consider four cases. If x≥ 0, y ≥ 0, we get the line segment joining the
points (0, 1) and (1, 0). If x≤ 0, y ≥ 0, we get the line segment joining (−1, 0)
and (0, 1), and so on.
(c) The hyperbolas y = 2/x and y = −2/x.
(d) Consider four cases corresponding to the four quadrants. The graph
consists of a portion of a line segment in each quadrant. For example, if
x≥ 0, y ≥ 0, we obtain the portion of the line y = x− 2 in this quadrant.

15. (a) If y ≥ 0, then −y ≤x≤ y and we get the region in the upper half-plane on
or between the lines y = x and y = −x. If y ≤ 0, then we get the region in the
lower half-plane on or between the lines y = x and y = −x.
(b) This is the region on and inside the diamond with vertices (1, 0), (0, 1),
(−1, 0) and (0,−1).

16. For the intersection, let γ be the smaller of ε and δ. For the union, let γ be
the larger of ε and δ.

17. Choose any ε > 0 such that ε < |a− b|.
18. (a) If a≤ b, then max{a, b} = b = 1

2 [a + b + (b − a)] and min{a, b} = a =
1
2 [a + b − (b − a)].
(b) If a = min {a, b, c}, then min{min{a, b}, c} = a = min{a, b, c}. Similarly, if
b or c is min{a, b, c}.
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19. If a≤ b ≤ c, then mid{a, b, c} = b = min{b, c, c} = min{max{a, b}, max{b, c},
max{c, a}}. The other cases are similar.

Section 2.3

This section completes the description of the real number system by introducing
the fundamental completeness property in the form of the Supremum Property.
This property is vital to real analysis and students should attain a working under-
standing of it. Effort expended in this section and the one following will be richly
rewarded later.

Sample Assignment: Exercises 1, 2, 5, 6, 9, 10, 12, 14.

Partial Solutions:

1. Any negative number or 0 is a lower bound. For any x≥ 0, the larger number
x+ 1 is in S1, so that x is not an upper bound of S1. Since 0 ≤x for all x∈S1,
then u = 0 is a lower bound of S1. If v > 0, then v is not a lower bound of S1
because v/2 ∈S1 and v/2 < v. Therefore inf S1 = 0.

2. S2 has lower bounds, so that inf S2 exists. The argument used for S1 also
shows that inf S2 = 0, but that inf S2 does not belong to S2. S2 does not
have upper bounds, so that sup S2 does not exists.

3. Since 1/n ≤ 1 for all n ∈ N, then 1 is an upper bound for S3. But 1 is a
member of S3, so that 1 = sup S3. (See Exercise 7 below.)

4. sup S4 = 2 and inf S4 = 1/2. (Note that both are members of S4.)
5. It is interesting to compare algebraic and geometric approaches to these

problems.
(a) inf A = −5/2, sup A does not exist,
(b) sup B = 2, inf B = −1,
(c) sup C = 1, inf B does not exist,
(d) sup D = 1 +

√
6, inf D = 1 −

√
6.

6. If S is bounded below, then S′ := {−s : s∈S} is bounded above, so that
u := sup S′ exists. If v ≤ s for all s∈S, then −v ≥ −s for all s∈S, so that
−v ≥u, and hence v ≤ −u. Thus inf S = −u.

7. Let u ∈S be an upper bound of S. If v is another upper bound of S, then
u ≤ v. Hence u = sup S.

8. If t > u and t ∈S, then u is not an upper bound of S.
9. Let u := sup S. Since u is an upper bound of S, so is u + 1/n for all n ∈ N.

Since u is the supremum of S and u − 1/n < u, then there exists s0 ∈S with
u − 1/n < s0, whence u − 1/n is not an upper bound of S.

10. Let u := sup A, v := sup B and w := sup{u, v}. Then w is an upper bound of
A ∪ B, because if x∈A, then x≤u ≤w, and if x∈B, then x≤ v ≤w. If z is
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any upper bound of A ∪ B, then z is an upper bound of A and of B, so that
u ≤ z and v ≤ z. Hence w ≤ z. Therefore, w = sup(A ∪ B).

11. Since sup S is an upper bound of S, it is an upper bound of S0, and hence
sup S0 ≤ sup S.

12. Consider two cases. If u ≥ s∗, then u = sup(S ∪ {u}). If u < s∗, then there
exists s∈S such that u < s ≤ s∗, so that s∗ = sup(S ∪ {u}).

13. If S1 := {x1}, show that x1 = sup S1. If Sk := {x1, . . . , xk} is such that sup
Sk ∈Sk, then preceding exercise implies that sup{x1, . . . , xk, xk + 1} is the
larger of sup Sk and xk + 1 and so is in Sk + 1.

14. If w = inf S and ε > 0, then w + ε is not a lower bound so that there exists t
in S such that t < w + ε. If w is a lower bound of S that satisfies the stated
condition, and if z > w, let ε = z −w > 0. Then there is t in S such that
t < w + ε = z, so that z is not a lower bound of S. Thus, w = inf S.

Section 2.4

This section exhibits how the supremum is used in practice, and contains some
important properties of R that will often be used later. The Archimedean Proper-
ties 2.4.3–2.4.6 and the Density Properties 2.4.8 and 2.4.9 are the most significant.
The exercises also contain some results that will be used later.

Sample Assignment: Exercises 1, 2, 4(b), 5, 7, 10, 12, 13, 14.

Partial Solutions:

1. Since 1 − 1/n < 1 for all n ∈ N, the number 1 is an upper bound. To show
that 1 is the supremum, it must be shown that for each ε > 0 there exists
n ∈ N such that 1− 1/n > 1 − ε, which is equivalent to 1/n < ε. Apply the
Archimedean Property 2.4.3 or 2.4.5.

2. inf S = −1 and sup S = 1. To see the latter note that 1/n − 1/m ≤ 1 for all
m, n ∈ N. On the other hand if ε > 0 there exists m ∈ N such that 1/m < ε,
so that 1/1 − 1/m > 1 − ε.

3. Suppose that u ∈ R is not the supremum of S. Then either (i) u is not an
upper bound of S (so that there exists s1 ∈S with u < s1, whence we take
n ∈ N with 1/n < s1 −u to show that u + 1/n is not an upper bound of S), or
(ii) there exists an upper bound u1 of S with u1 < u (in which case we take
1/n < u −u1 to show that u − 1/n is not an upper bound of S).

4. (a) Let u := sup S and a > 0. Then x≤u for all x∈S, whence ax≤ au for all
x∈S, whence it follows that au is an upper bound of aS. If v is another upper
bound of aS, then ax≤ v for all x∈S, whence x≤ v/a for all x∈S, showing
that v/a is an upper bound for S so that u ≤ v/a, from which we conclude
that au ≤ v. Therefore au = sup(aS). The statement about the infimum is
proved similarly.
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(b) Let u := sup S and b < 0. If x∈S, then (since b < 0) bu ≤ bx so that
bu is a lower bound of bS. If v ≤ bx for all x∈S, then x≤ v/b (since b < 0),
so that v/b is an upper bound for S. Hence u ≤ v/b whence v ≤ bu. Therefore
bu = inf(bS).

5. If x∈S, then 0≤x≤u, so that x2 ≤u2 which implies sup T ≤u2. If t is any
upper bound of T , then x∈S implies x2 ≤ t so that x≤

√
t. It follows that

u ≤
√

t, so that u2 ≤ t. Thus u2 ≤ sup T.

6. Let u := sup f(X). Then f(x) ≤u for all x∈X, so that a + f(x) ≤ a + u for
all x∈X, whence sup{a + f(x) : x∈X} ≤ a + u. If w < a+ u, then w − a < u,
so that there exists xw ∈X with w − a < f(xw), whence w < a+ f(xw), and
thus w is not an upper bound for {a + f(x) : x∈X}.

7. Let u := sup S, v := sup B, w := sup(A + B). If x∈A and y ∈B, then
x+ y ≤u + v, so that w ≤u + v. Now, fix y ∈B and note that x≤w − y
for all x∈A; thus w − y is an upper bound for A so that u ≤w − y. Then
y ≤w −u for all y ∈B, so v ≤w −u and hence u + v ≤w. Combining these
inequalities, we have w = u + v.

8. If u := sup f(X) and v := sup g(X), then f(x) ≤u and g(x) ≤ v for all x∈X,
whence f(x) + g(x) ≤u + v for all x∈X. Thus u + v is an upper bound
for the set {f(x) + g(x) : x∈X}. Therefore sup{f(x) + g(x) : x∈X} ≤
u + v.

9. (a) f(x) = 2x+ 1, inf{f(x) : x∈X} = 1.
(b) g(y) = y, sup{g(y) : y ∈Y } = 1.

10. (a) f(x) = 1 for x∈X. (b) g(y) = 0 for y ∈Y .
11. If x∈X, y ∈Y , then g(y) ≤h(x, y) ≤ f(x). If we fix y ∈Y and take the

infimum over x∈X, then we get g(y) ≤ inf{f(x) : x∈X} for each y ∈Y .
Now take the supremum over y ∈Y .

12. Let S := {h(x, y) : x∈X, y ∈Y }. We have h(x, y) ≤F (x) for all x∈X, y ∈Y
so that sup S ≤ sup{F (x) : x∈X}. If w < sup{F (x) : x∈X}, then there
exists x0 ∈X with w < F (x0) = sup {h(x0, y) : y ∈Y }, whence there exists
y0 ∈Y with w < h(x0, y0). Thus w is not an upper bound of S, and so
w < sup S. Since this is true for any w such that w < sup{F (x) : x∈X},
we conclude that sup{F (x) : x∈X} ≤ sup S.

13. If x∈ Z, take n :=x+ 1. If x /∈ Z, we have two cases: (i) x > 0 (which is
covered by Cor. 2.4.6), and (ii) x < 0. In case (ii), let z :=−x and use 2.4.6.
If n1 < n2 are integers, then n1 ≤n2 − 1 so the sets {y : n1 − 1 ≤ y < n1} and
{y : n2 − 1 ≤ y < n2} are disjoint; thus the integer n such that n − 1 ≤x < n
is unique.

14. Note that n < 2n (whence 1/2n < 1/n) for any n ∈ N.
15. Let S3 := {s∈ R : 0 ≤ s, s2 < 3}. Show that S3 is nonempty and bounded

by 3 and let y := sup S3. If y2 < 3 and 1/n < (3 − y2)/(2y + 1) show that
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y + 1/n ∈S3. If y2 > 3 and 1/m < (y2 − 3)/2y show that y − 1/m ∈S3.
Therefore y2 = 3.

16. Case 1: If a > 1, let Sa := {s∈ R : 0 ≤ s, s2 < a}. Show that Sa is nonempty
and bounded above by a and let z := sup Sa. Now show that z2 = a.
Case 2: If 0 < a < 1, there exists k ∈ N such that k2a > 1 (why?). If z2 = k2a,
then (z/k)2 = a.

17. Consider T := {t ∈ R : 0 ≤ t, t3 < 2}. If t > 2, then t3 > 2 so that t /∈ T . Hence
y := sup T exists. If y3 < 2, choose 1/n < (2 − y3)/(3y2 + 3y + 1) and show
that (y + 1/n)3 < 2, a contradiction, and so on.

18. If x < 0 < y, then we can take r = 0. If x < y < 0, we apply 2.4.8 to obtain a
rational number between −y and −x.

19. There exists r ∈ Q such that x/u < r < y/u.

Section 2.5

Another important consequence of the Supremum Property of R is the Nested
Intervals Property 2.5.2. It is an interesting fact that if we assume the validity of
both the Archimedean Property 2.4.3 and the Nested Intervals Property, then we
can prove the Supremum Property. Hence these two properties could be taken
as the completeness axiom for R. However, establishing this logical equivalence
would consume valuable time and not significantly advance the study of real anal-
ysis, so we will not do so. (There are other properties that could be taken as the
completeness axiom.)

The discussion of binary and decimal representations is included to give the
student a concrete illustration of the rather abstract ideas developed to this point.
However, this material is not vital for what follows and can be omitted or treated
lightly. We have kept this discussion informal to avoid getting buried in technical
details that are not central to the course.

Sample Assignment: Exercises 3, 4, 5, 6, 7, 8, 10, 11.

Partial Solutions:

1. Note that [a, b] ⊆ [a′, b′] if and only if a′ ≤ a≤ b ≤ b′.
2. S has an upper bound b and a lower bound a if and only if S is contained in

the interval [a, b].
3. Since inf S is a lower bound for S and sup S is an upper bound for S, then

S ⊆ IS . Moreover, if S ⊆ [a, b], then a is a lower bound for S and b is an
upper bound for S, so that [a, b] ⊇ IS .

4. Because z is neither a lower bound or an upper bound of S.
5. If z ∈ R, then z is not a lower bound of S so there exists xz ∈S such that

xz ≤ z. Also z is not an upper bound of S so there exists yz ∈S such that
z ≤ yz. Since z belongs to [xz, yz], it follows from the property (1) that z ∈S.
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But since z ∈ R is arbitrary, we conclude that R ⊆ S, whence it follows that
S = R = (−∞,∞).

6. Since [an, bn] = In ⊇ In + 1 = [an + 1, bn + 1], it follows as in Exercise 1 that
an ≤ an + 1 ≤ bn + 1 ≤ bn. Therefore we have a1 ≤ a2 ≤ · · · ≤ an ≤ · · · and
b1 ≥ b2 ≥ · · · ≥ bn ≥ · · · .

7. Since 0 ∈ In for all n ∈ N, it follows that 0∈
⋂∞

n=1 In. On the other hand
if u > 0, then Corollary 2.4.5 implies that there exists n ∈ N with 1/n < u,
whence u /∈ [0, 1/n] = In. Therefore, such a u does not belong to this
intersection.

8. If x > 0, then there exists n ∈ N with 1/n < x, so that x /∈ Jn. If y ≤ 0, then
y /∈ J1.

9. If z ≤ 0, then z /∈ K1. If w > 0, then it follows from the Archimedean Property
that there exists nw ∈ N with w /∈ (nw,∞) = Knw

.
10. Let η := inf{bn : n ∈ N}; we claim that an ≤ η for all n. Fix n ∈ N; we will

show that an is a lower bound for the set {bk : k ∈ N}. We consider two cases.
(j) If n ≤ k, then since In ⊇ Ik, we have an ≤ ak ≤ bk. (jj) If k < n, then since
Ik ⊇ In, we have an ≤ bn ≤ bk. Therefore an ≤ bk for all k ∈ N, so that an is
a lower bound for {bk : k ∈ N} and so an ≤ η. In particular, this shows that
η ∈ [an, bn] for all n, so that η ∈

⋂
In.

In view of 2.5.2, we have [ξ, η] ⊂ In for all n, so that [ξ, η] ⊆
⋂

In. Con-
versely, if z ∈ In for all n, then an ≤ z ≤ bn for all n, whence it follows that
ξ = sup {an} ≤ z ≤ inf{bn} = η. Therefore

⋂
In ⊆ [ξ, η] and so equality holds.

11. If n ∈ N, let cn := a1/2 + a2/22 + · · · + an/2n and dn := a1/2 + a2/22 + · · · +
(an + 1)/2n, and let Jn := [cn, dn]. Since cn ≤ cn + 1 ≤ dn + 1 ≤ dn for n ∈ N, the
intervals Jn form a nested sequence.

12. 3
8 = (.011000 · · · )2 = (.010111 · · · )2. 7

16 = (.0111000 · · · )2 = (.0110111 · · · )2.
13. (a) 1

3 ≈ (.0101)2 (b) 1
3 = (.010101 · · · )2, the block 01 repeats.

14. We may assume that an �= 0. If n > m we multiply by 10n to get 10p +
an = 10q, where p, q ∈ N, so that an = 10(q − p). Since q − p ∈ Z while an is
one of the digits 0, 1, . . . , 9, it follows that an = 0, a contradiction. Therefore
n ≤m, and a similar argument shows that m ≤n; therefore n = m.

Repeating the above argument with n = m, we obtain 10p + an = 10q + bn,
so that an − bn = 10(q − p), whence it follows that an = bn. If this argument
is repeated, we conclude that ak = bk for k = 1, . . . , n.

15. The problem here is that −2/7 is a negative number, so we write it as
−1 + 5/7. Since 5/7 = .714285 · · · with the block repeating, we write −2/7 =
−1 + .714285

16. 1/7 = .142857 · · · , the block repeats. 2/19 = .105263157894736842 · · · , the
block repeats.

17. 1.25137 · · · 137 · · · = 31253/24975, 35.14653 · · · 653 · · · = 3511139/99900.



CHAPTER 3

SEQUENCES

Most students will find this chapter easier to understand than the preceding one
for two reasons: (i) they have a partial familiarity with the notions of a sequence
and its limit, and (ii) it is a bit clearer what one can use in proofs than it was for
the results in Chapter 2. However, since it is essential that the students develop
some technique, one should not try to go too fast.

Section 3.1

The main difficulty students have is mastering the notion of limit of a sequence,
given in terms of ε and K(ε). Students should memorize the definition accurately.
The different quantifiers in statements of the form “given any . . . , and there
exists . . . ” can be confusing initially. We often use the K(ε) game as a device
to emphasize exactly how the quantities are related in proving statements about
limits. The facts that the ε > 0 comes first and is arbitrary, and that the index
K(ε) depends on it (but is not unique) must be stressed.

The idea of deriving estimates is important and Theorem 3.1.10 is often used
as a means of establishing convergence of a sequence by squeezing |xn −x| between
0 and a fixed multiple of |an|.

A careful and detailed examination of the examples in 3.1.11 is very instruc-
tive. Although some of the arguments may seem a bit artificial, the particular
limits established there are useful for later work, so the results should be noted
and remembered.

Sample Assignment: Exercises 1, 2(a,c), 3(b,d), 5(b,d), 6(a,c), 8, 10, 14,
15, 16.

Partial Solutions:

1. (a) 0, 2, 0, 2, 0, (b) −1, 1/2,−1/3, 1/4,−1/5,
(c) 1/2, 1/6, 1/12, 1/20, 1/30, (d) 1/3, 1/6, 1/11, 1/18, 1/27.

2. (a) 2n + 3, (b) (−1)n+1/2n, (c) n/(n + 1), (d) n2.
3. (a) 1, 4, 13, 40, 121, (b) 2, 3/2, 17/12, 577/408, 665, 857/470, 832,

(c) 1, 2, 3, 5, 4, (d) 3, 5, 8, 13, 21.
4. Given ε > 0, take K(ε) ≥ |b|/ε if b �= 0.
5. (a) We have 0 < n/(n2 + 1) < n/n2 = 1/n. Given ε > 0, let K(ε) ≥ 1/ε.

(b) We have |2n/(n + 1) − 2| = 2/(n + 1) < 2/n. Given ε > 0, let K(ε) ≥ 2/ε.
(c) We have |(3n + 1)/(2n + 5) − 3/2| = 13/(4n + 10) < 13/4n. Given ε > 0,
let K(ε) ≥ 13/4ε.
(d) We have |(n2 − 1)/(2n2 + 3) − 1/2| = 5/(4n2 + 6) < 5/4n2 ≤ 5/4n. Given
ε > 0, let K(ε) ≥ 5/4ε.

17
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6. (a) 1/
√

n + 7 < 1/
√

n, (b) |2n/(n + 2) − 2| = 4/(n + 2) < 4/n,
(c)

√
n/(n + 1) < 1/

√
n, (d) |(−1)n n/(n2 + 1)| ≤ 1/n.

7. (a) [1/ ln(n + 1) < ε] ⇐⇒ [ln(n + 1) > 1/ε] ⇐⇒ [n + 1 > e1/ε]. Given ε > 0, let
K ≥ e1/ε − 1.
(b) If ε = 1/2, then e2 − 1 ≈ 6.389, so we choose K = 7. If ε = 1/10, then
e10 − 1 ≈ 22,025.466, so we choose K = 22,026.

8. Note that ||xn| − 0| = |xn − 0|. Consider ((−1)n).
9. 0 <

√
xn < ε ⇐⇒ 0 < xn < ε2.

10. Let ε :=x/2. If M :=K(ε), then n ≥M implies that |x−xn|< ε = x/2, which
implies that xn > x−x/2 = x/2 > 0.

11. |1/n − 1/(n + 1)| = 1/n(n + 1) < 1/n2 ≤ 1/n.
12. Multiply and divide by

√
n2 + 1+n to obtain

√
n2 + 1−n = 1/(

√
n2 + 1+n) <

1/n.
13. Note that n < 3n so that 0 < 1/3n < 1/n.
14. Let b := 1/(1 + a) where a > 0. Since (1 + a)n > 1

2n(n − 1)a2, we have
0 < nbn ≤n/[12n(n − 1)a2] ≤ 2/[(n − 1)a2]. Thus lim(nbn) = 0.

15. Use the argument in 3.1.11(d). If (2n)1/n = 1 + kn, then show that k2
n ≤

2(2n − 1)/n(n − 1) < 4/(n − 1).
16. If n > 3, then 0< n2/n! < n/(n − 2)(n − 1) < 1/(n − 3).

17.
2n

n!
=

2 · 2 · 2 · 2 · · · 2
1 · 2 · 3 · 4 · · ·n = 2 · 1 · 2

3
· 2
4

· · · 2
n

≤ 2 · 2
3

· 2
3

· · · 2
3

= 2
(

2
3

)n−2

.

18. If ε :=x/2, then n > K(ε) implies that |x−xn|< x/2, which is equivalent to
x/2 < xn < 3x/2 < 2x.

Section 3.2

The results in this section, at least beginning with Theorem 3.2.3, are clearly
useful in calculating limits of sequences. They are also easy to remember. The
proofs of the basic theorems use techniques that will recur in later work, and so are
worth attention (but not memorization). It may be pointed out to the students
that the Ratio Test in 3.2.11 has the same hypothesis as the Ratio Test for the
convergence of series that they encountered in their calculus course. There are
additional results of this nature in the exercises.

Sample Assignment: Exercises 1, 3, 5, 7, 9, 10, 12, 13, 14.

Partial Solutions:

1. (a) lim(xn) = 1. (b) Divergence.
(c) xn ≥n/2, so the sequence diverges.
(d) lim(xn) = lim(2 + 1/(n2 + 1)) = 2.

2. (a) X := (n), Y := (−n) or X := ((−1)n), Y := ((−1)n+1). Many other exam-
ples are possible. (b) X = Y := ((−1)n).
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3. Y = (X + Y ) −X.

4. If zn :=xnyn and lim(xn) = x �= 0, then ultimately xn �= 0 so that yn = zn/xn.

5. (a) (2n) is not bounded since 2n > n by Exercise 1.2.13.
(b) The sequence is not bounded.

6. (a) (lim(2 + 1/n))2 = 22 = 4, (b) 0, since |(−1)n/(n + 2))| ≤ 1/n,

(c) lim
(

1 − 1/
√

n

1 + 1/
√

n

)
=

1
1

= 1, (d) lim(1/n1/2 + 1/n3/2) = 0 + 0 = 0.

7. If |bn| ≤B, B > 0, and ε > 0, let K be such that |an|< ε/B for n > K. To
apply Theorem 3.2.3, it is necessary that both (an) and (bn) converge, but a
bounded sequence may not be convergent.

8. In (3) the exponent k is fixed, but in (1 + 1/n)n the exponent varies.

9. Since yn =
1√

n + 1 +
√

n
, we have lim(yn) = 0. Also we have

√
nyn =

√
n√

n + 1 +
√

n
=

1√
1 + 1/n + 1

, so that lim(
√

nyn) = 1
2 .

10. (a) Multiply and divide by
√

4n2 + n + 2n to obtain 1/(
√

4 + 1/n + 2) which
has limit 1/4.
(b) Multiply and divide by

√
n2 + 5n + n to obtain 5/(

√
1 + 5/n + 1) which

has limit 5/2.

11. (a) (
√

3)1/n(n1/n)1/4 converges to 1 · 11/4 = 1.
(b) Show that (n + 1)1/ ln(n + 1) = e for all n ∈ N.

12.
a(a/b)n + b

(a/b)n + 1
has limit

0 + b

0 + 1
= b since 0 < a/b < 1.

13.
(n + a)(n + b) −n2√

(n + a)(n + b) + n
=

(a + b)n + ab√
(n + a)(n + b) + n

· 1/n

1/n

=
a + b + ab/n√

(1 + a/n)(1 + b/n) + 1
→ a + b

2
.

14. (a) Since 1≤n1/n2 ≤n1/n, the limit is 1.
(b) Since 1≤n! ≤nn implies 1 ≤ (n!)1/n2 ≤n1/n, the limit is 1.

15. Show that b ≤ zn ≤ 21/nb.

16. (a) L= a, (b) L= b/2, (c) L= 1/b, (d) L= 8/9.

17. (a) (1/n), (b) (n).

18. If 1< r < L, let ε :=L− r. Then there exists K such that |xn+1/xn −L|< ε
for n > K. From this one gets xn+1/xn > r for n > K. If n > K, then
xn ≥ rn−KxK . Since r > 1, it follows that (xn) is not bounded.

19. (a) Converges to 0, (b) Diverges,
(c) Converges to 0, (d) n!/nn ≤ 1/n.
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20. If L < r < 1 and ε := r −L, then there exists K such that |x1/n
n −L|< ε =

r −L for n > K, which implies that x
1/n
n < r for n > K. Then 0< xn < rn for

n > K, and since 0 < r < 1, we have lim(rn) = 0. Hence lim(xn) = 0.

21. (a) (l), (b) (n).

22. Yes. The hypothesis implies that lim(yn −xn) = 0. Since yn = (yn −xn) + xn,
it follows that lim(yn) = lim(xn).

23. It follows from Exercise 2.2.18 that un = 1
2(xn+yn+|xn−yn|). Theorems 3.2.3

and 3.2.9 imply that lim(un) = 1
2 [lim(xn) + lim(yn) + | lim(xn) − lim(yn)|] =

max{lim(xn), lim(yn)}. Similarly for lim(vn).

24. Since it follows from Exercises 2.2.18(b) and 2.2.19 that mid{a, b, c} =
min{max{a, b}, max{b, c}, max{c, a}}, this result follows from the preceding
exercise.

Section 3.3

The Monotone Convergence Theorem 3.3.2 is a very important (and natural)
result. It implies the existence of the limit of a bounded monotone sequence.
Although it does not give an easy way of calculating the limit, it does give some
estimates about its value. For example, if (xn) is an increasing sequence with
upper bound b, then limit x∗ must satisfy xn ≤x∗ ≤ b for any n ∈ N. If this is
not sufficiently exact, take xm for m > n and look for a smaller bound b′ for the
sequence.

Sample Assignment: Exercises 1, 2, 4, 5, 7, 9, 10.

Partial Solutions:

1. Note that x2 = 6 < x1. Also, if xk+1 < xk, then xk+2 = 1
2xk+1 + 2 < 1

2xk + 2 =
xk+1. By Induction, (xn) is a decreasing sequence. Also 0 ≤xn ≤ 8 for all
n ∈ N. The limit x := lim(xn) satisfies x= 1

2x+ 2, so that x= 4.
2. Show, by Induction, that 1< xn ≤ 2 for n ≥ 2 and that (xn) is monotone.

In fact, (xn) is decreasing, for if x1 < x2, then we would have (x1 − 1)2 <
x2

1 − 2x1 + 1 = 0. Since x := lim(xn) must satisfy x= 2 − 1/x, we have
x= 1.

3. If xk ≥ 2, then xk+1 := 1 +
√

xk − 1 ≥ 1+
√

2 − 1 = 2, so xn ≥ 2 for all n ∈ N,
by Induction. If xk+1 ≤xk, then xk+2 = 1 +

√
xk+1 − 1 ≤ 1 +

√
xk − 1 =

xk+1, so (xn) is decreasing. The limit x := lim(xn) satisfies x= 1 +
√

x− 1 so
that x= 1 or x= 2. Since x= 1 is impossible (why?), we have x= 2.

4. Note that y1 = 1 <
√

3 = y2, and if yn+1 − yn > 0, then yn+2 − yn+1 =
(yn+1 − yn)/(

√
2 + yn+1 +

√
2 + yn) > 0, so (yn) is increasing by Induction.

Also y1 < 2 and if yn < 2, then yn+1 =
√

2 + yn <
√

2 + 2 = 2, so (yn) is bounded
above. Therefore (yn) converges to a number y which must satisfy y =

√
2 + y,

whence y = 2.
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5. We have y2 =
√

p +
√

p >
√

p = y1. Also yn > yn−1 implies that yn+1 =√
p + yn >

√
p + yn−1 = yn, so (yn) is increasing. An upper bound for (yn)

is B := 1 + 2
√

p because y1 ≤ B and if yn ≤ B then yn+1 <
√

p + B =
1 +

√
p < B. If y := lim(yn), then y =

√
p + y so that y = 1

2(1 +
√

1 + 4p).
6. Show that the sequence is monotone. The positive root of the equation

z2 − z − a = 0 is z∗ := 1
2(1 +

√
1 + 4a). Show that if 0< z1 < z∗, then z2

1 − z1 −
a < 0 and the sequence increase to z∗. If z∗ < z1, then the sequence decreases
to z∗.

7. Since xn > 0 for all n ∈ N, we have xn+1 = xn + 1/xn > xn, so that (xn) is
increasing. If xn ≤ b for all n ∈ N, then xn+1 −xn = 1/xn ≥ 1/b > 0 for all n.
But if lim(xn) exists, then lim(xn+1 −xn) = 0, a contradiction. Therefore
(xn) diverges.

8. The sequence (an) is increasing and is bounded above by b1, so ξ := lim(an)
exists. Also (bn) is decreasing and bounded below by a1 so η := lim(bn)
exists. Since bn − an ≥ 0 for all n, we have η − ξ ≥ 0. Thus an ≤ ξ ≤ η ≤ bn

for all n ∈ N.
9. Show that if x1, x2, . . . , xn−1 have been chosen, then there exists xn ∈ A such

that xn > u − 1/n and xn ≥xk for k = 1, 2, . . . , n− 1.
10. Since yn+1 − yn = 1/(2n + 1) + 1/(2n + 2) − 1/(n + 1) = 1(2n + 1)(2n + 2) > 0,

it follows that (yn) is increasing. Also yn = 1/(n + 1) + 1/(n + 2) + · · · +
1/2n < 1/(n + 1) + 1/(n + 1) + · · · + 1/(n + 1) =n/(n + 1) < 1, so that (yn)
is bounded above. Thus (yn) is convergent. (It can be show that its limit
is ln 2).

11. The sequence (xn) is increasing. Also xn < 1 + 1/1 · 2 + 1/2 · 3 + · · · +
1/(n−1)n = 1+(1−1/2)+(1/2−1/3)+ · · ·+(1/(n−1)−1/n) = 2−1/n < 2,
so (xn) is bounded above and (xn) is convergent. (It can be shown that its
limit is π2/6).

12. (a) (1 + 1/n)n(1 + 1/n) → e · 1 = e, (b) [(1 + 1/n)n]2 → e2,
(c) [1 + 1/(n + 1)]n+1/[1 + 1/(n + 1)] → e/1 = e,
(d) (1− 1/n)n = [1 + 1/(n − 1)]−n → e−1 = 1/e.

13. Note that if n ≥ 2, then 0≤ sn −
√

2 ≤ s2
n − 2.

14. Note that 0 ≤ sn −
√

5 ≤ (s2
n − 5)/

√
5 ≤ (s2

n − 5)/2.
15. e2 = 2.25, e4 = 2.441 406, e8 = 2.565 785, e16 = 2.637 928.
16. e50 = 2.691 588, e100 = 2.704 814, e1000 = 2.716 924.

Section 3.4

The notion of a subsequence is extremely important and will be used often. It
must be emphasized to students that a subsequence is not simply a collection of
terms, but an ordered selection that is a sequence in its own right. Moreover, the
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order is inherited from the order of the given sequence. The distinction between
a sequence and a set is crucial here.

The Bolzano-Weierstrass Theorem 3.4.8 is a fundamental result whose impor-
tance cannot be over-emphasized. It will be used as a crucial tool in establishing
the basic properties of continuous functions in Chapter 5.

Sample Assignment: Exercises 1, 2, 3, 5, 6, 9, 12.

Partial Solutions:

1. Let x2n−1 := 2n − 1, x2n := 1/2n; that is (xn) = (1, 1/2, 3, 1/4, 5, 1/6, . . .).

2. If xn := c1/n, where 0 < c < 1, then (xn) is increasing and bounded, so it has a
limit x. Since x2n =

√
xn, the limit satisfies x=

√
x, so x= 0 or x= 1. Since

x= 0 is impossible (why?), we have x= 1.

3. Since xn ≥ 1 for all n ∈ N, L > 0. Further, we have xn = 1/xn−1 + 1 ⇒
L= 1/L + 1 ⇒ L2 −L− 1 = 0 ⇒ L= 1

2(1 +
√

5).

4. (a) x2n → 0 and x2n+1 → 2.
(b) x8n = 0 and x8n+1 = sin(π/4) = 1/

√
2 for all n ∈ N.

5. If |xn − z|< ε for n ≥K1 and |yn − z|< ε for n ≥K2, let K := sup{2K1 −
1, 2K2}. Then |zn − z|< ε for n ≥K.

6. (a) xn+1 < xn ⇐⇒ (n + 1)1/(n+1) < n1/n ⇐⇒ (n + 1)n < nn+1 = nn · n ⇐⇒
(1 + 1/n)n < n.
(b) If x := lim(xn), then

x= lim(x2n) = lim((2n)1/2n) = lim((21/nn1/n)1/2) = x1/2,

so that x= 0 or x= 1. Since xn ≥ 1 for all n, we have x= 1.

7. (a) (1 + 1/n2)n2 → e,
(b) (1 + 1/2n)n = ((1 + 1/2n)2n)1/2 → e1/2,
(c) (1 + 1/n2)2n2 → e2.
(d) (1 + 2/n)n = (1 + 1/(n + 1))n · (1 + 1/n)n → e · e = e2.

8. (a) (3n)1/2n = ((3n)1/3n)3/2 → 13/2 = 1,
(b) (1 + 1/2n)3n = ((1 + 1/2n)2n)3/2 → e3/2.

9. If (xn) does not converge to 0, then there exists ε0 > 0 and a subsequence
(xnk

) with |xnk
|> ε0 for all k ∈ N.

10. Choose m1 such that S ≤ sm1 < S + 1. Now choose k1 such that k1 ≥m1 and
sm1 − 1 < xk1 ≤ sm1 . If m1 < m2 < · · · < mn−1 and k1 < k2 < · · · < kn−1 have
been selected, choose mn > mn−1 such that S ≤ smn

< S + 1/n. Now choose
kn ≥mn and kn > kn−1 such that smn

− 1/n < xkn
≤ smn

. Then (xkn
) is a

subsequence of (xn) and |xkn
−S| ≤ 1/n.
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11. Show that lim((−1)nxn) = 0.

12. Choose n1 ≥ 1 so that |xn1 |> 1, then choose n2 > n1 so that |xn2 |> 2, and,
in general, choose nk > nk−1 so that |xnk

|> k.

13. (x2n−1) = (−1,−1/3,−1/5, . . .).

14. Choose n1 ≥ 1 so that xn1 ≥ s− 1, then choose n2 > n1 so that xn2 > s− 1/2,
and, in general, choose nk > nk−1 so that xnk

> s− 1/k.

15. Suppose that the subsequence (xnk
) converges to x. Given n ∈ N there exists

K such that if k ≥K then nk ≥n, so that xnk
∈ Ink

⊆ In = [an, bn] for all
k ≥K. By 3.2.6 we conclude that x= lim(xnk

) belongs to In for arbitrary
n ∈ N.

16. For example, X = (1, 1/2, 3, 1/4, 5, 1/6, . . . ).

17. lim sup(xn) = 1, sup{xn} = 2, lim inf(xn) = 0, inf{xn} = −1.

18. If x= lim(xn) and ε > 0 is given, then there exists N such that x − ε <
xn < x + ε for n ≥ N . The second inequality implies lim sup(xn) ≤ x + ε
and the first inequality implies lim inf(xn) ≥x− ε. Then 0 ≤ lim sup(xn) −
lim inf(xn) ≤ 2ε. Since ε > 0 is arbitrary, equality follows. Conversely, if
x= lim inf(xn) = lim sup(xn), then there exists N1 such that xn < x+ ε for
n > N1, and N2 such that x− ε < xn for n ≥N2. Now take N to be the larger
of N1 and N2.

19. If v > lim sup(xn) and u > lim sup(yn), then there are at most finitely many
n such that xn > v and at most finitely many n such that yn > v. Therefore,
there are at most finitely many n such that xn + yn > v + u, which implies
lim sup(xn + yn) ≤ v + u. This proves the stated inequality. For an example
of strict inequality, one can take xn = (−1)n and yn = (−1)n+1.

Section 3.5

At first, students may encounter a little difficulty in working with Cauchy
sequences. It should be emphasized that in proving that a sequence (xn) is a
Cauchy sequence, the indices n, m in Definition 3.5.1 are completely indepen-
dent of one another (however, one can always assume that m > n). On the other
hand, to prove that a sequence is not a Cauchy sequence, a particular relationship
between n and m can be assumed in the process of showing that the definition is
violated.

The significance of Cauchy criteria for convergence is not immediately appar-
ent to students. Its true role in analysis will be slowly revealed by its use in
subsequent chapters.

We have included the discussion of contractive sequences to illustrate just
one way in which Cauchy sequences can arise.
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Sample Assignment: Exercises 1, 2, 3, 5, 7, 9, 10.

Partial Solutions:

1. For example, ((−1)n).
2. (a) If m > n, then |(1 + 1/m) − (1 + 1/n)|< 2/n.

(b) 0< 1/(n + 1)! + · · · + 1/m! < 1/2n, since 2k < k! for k ≥ 4.
3. (a) Note that |(−1)n − (−1)n+1| = 2 for all n ∈ N.

(b) Take m = 2n, so xm −xn = x2n −xn ≥ 1 for all n.
(c) Take m = 2n, so xm −xn = x2n −xn = ln 2n − lnn = ln 2 for all n.

4. Use |xmym −xnyn| ≤ |ym||xm −xn| + |xn||ym − yn| and the fact that Cauchy
sequences are bounded.

5. lim(
√

n + 1 −
√

n) = lim
(

1√
n + 1 +

√
n

)
= 0. However, if m = 4n, then

√
4n −

√
n =

√
n for all n.

6. Let xn := 1 + 1/2 + · · · + 1/n, which is not a Cauchy sequence. (Why?)
However, for any p ∈ N, then 0< xn+p −xn = 1/(n + 1) + · · · + 1/(n + p) ≤
p/(n + 1), which has limit 0.

7. If xn, xm are integers and |xm −xn|< 1, then xn = xm.
8. Let u := sup{xn : n ∈ N}. If ε > 0, let H be such that u − ε < xH ≤u. If

m ≥n ≥H, then u − ε < xn ≤xm ≤u so that |xm −xn|< ε.
9. If m > n, then |xm −xn|< rn + rn+1 + · · · + rm−1 ≤ rn/(1 − r), which con-

verges to 0 since 0 < r < 1.
10. If L :=x2 −x1, then |xn+1 −xn| = L/2n−1, whence it follows that (xn) is a

Cauchy sequence. To find the limit, show that x2n+1 = x1 + L/2 + L/23 +
L/25 + · · · + L/22n−1, whence lim(xn) = x1 + (2/3)L= (1/3)x1 + (2/3)x2.

11. Note that |yn − yn+1| = (2/3)|yn − yn−1|. Since y2 > y1, the limit is y = y1 +
(3/5)(y2 − y1) = (2/5)y1 + (3/5)y2.

12. Show that |xn+1 −xn|< 1
4 |xn −xn−1|. The limit is

√
2 − 1.

13. Note that xn ≥ 2 for all n, so that |xn+1 − xn| = |1/xn − 1/xn−1| =
|xn −xn−1|/xnxn−1 ≤ 1

4 |xn −xn−1|. The limit is 1 +
√

2.
14. Let xn+1 = (x3

n + 1)/5 and x1 := 0. Four iterations give r = 0.201 64 to 5
decimal places.

Section 3.6

This section can be omitted on a first reading. However, it is short, relatively easy,
and prepares the way for Section 4.3. One must frequently emphasize that ∞ and
−∞ are not real numbers, but merely convenient abbreviations. While there is
no reason to expect that one can manipulate with properly divergent sequences
as one does in Theorem 3.2.3, there are some results in this direction.
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Sample Assignment: Exercises 1, 2, 3, 5, 8, 9.

Partial Solutions:

1. If the set {xn : n ∈ N} is not bounded above, choose nk+1 > nk such that
xnk

≥ k for k ∈ N.
2. (a) xn :=

√
n, yn :=n, (b) xn :=n, yn :=

√
n.

3. Note that |xn − 0|< ε if and only if 1/xn > 1/ε.
4. (a) [

√
n > a] ⇐⇒ [n > a2], (b)

√
n + 1 >

√
n,

(c)
√

n − 1 ≥
√

n/2 when n ≥ 2, (d) n/
√

n + 1 ≥
√

n/2.
5. No. As in Example 3.4.6(c), there is a subsequence (nk) with nk sin(nk) > 1

2nk,
and there is a subsequence (mk) with mk sin(mk) < −1

2mk.
6. If (yn) does not converge to 0, there exists c > 0 and a subsequence (ynk

) with
|ynk

| ≥ c. Hence |xnk
| = |xnk

ynk
/ynk

| is bounded, contradicting the fact that
(xn) is properly divergent.

7. (a) There exists N1 such that if n > N1, then 0< xn < yn. If lim(xn) = ∞
then lim(yn) = ∞.
(b) Suppose that |yn| ≤M for some M > 0. Given ε > 0 there exists Nε

such that if n ≥Nε then 0< xn/yn ≤ ε/M . Therefore |xn| ≤ (ε/M)yn ≤ ε for
n ≥Nε.

8. (a) n < (n2 + 2)1/2.
(b) Since

√
n ≤ n, then

√
n/(n2 + 1) ≤n/(n2 + 1) < 1/n.

(c) Since n < (n2 + 1)1/2, then n1/2 < (n2 + 1)1/2/n1/2.
(d) If the sequence were convergent, the subsequence corresponding to rk = k2

would converge, contrary to Example 3.4.6(c).
9. (a) Since xn/yn → ∞, there exists K1 such that if n ≥K1, then xn ≥ yn. Now

apply Theorem 3.6.4(a).
(b) Let 0 < xn < M . If (yn) does not converge to 0, there exist ε0 > 0 and a
subsequence (ynk

) such that ε0 < ynk
. Since lim(xn/yn) = ∞, there exists K

such that if k > K, then M/ε0 < xnk
/ynk

, which is a contradiction.
10. Apply Theorem 3.6.5.

Section 3.7

This section gives a brief introduction to infinite series, a topic that will be
discussed further in Chapter 9. However, since the basic results are merely a
reformulation of the material in Sections 3.1–3.6, it is useful to treat this section
here — especially, if there is a possibility that one might not be able to cover
Chapter 9 in class.

It must be made clear to the students that there is a significant difference
between a “sequence” of numbers and a “series” of numbers. Indeed, a series is
a special kind of sequence, where the terms are obtained by adding terms in a
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given sequence. For a series to be convergent, the given terms must approach
0 “sufficiently fast”. Unfortunately there is no clear demarcation line between
the convergent and the divergent series. Thus it is especially important for the
students to acquire a collection of series that are known to be convergent (or
divergent), so that these known series can be used for the purpose of comparison.
The specific series that are discussed in this section are particularly useful in this
connection.

Although much of the material in this section will be somewhat familiar to the
students, most of them will not have heard of the Cauchy Condensation Criterion
(Exercise 15), which is a very powerful test when it applies.

Sample Assignment: Exercises 1, 2, 3(a,b), 4, 8, 12, 15, 16, 17.

Partial Solutions:

1. Show that the partial sums of
∑

bn form a subsequence of the partial sums
of

∑
an.

2. If an = bn for n > K, show that the partial sums sn of
∑

an and tn of
∑

bn

satisfy sn − tn = sK − tK for all n > K.
3. (a) Note that 1/(n + 1)(n + 2) = 1/(n + 1) − 1/(n + 2), so the series is tele-

scoping and converges to 1.
(b) 1/(α + n)(α + n + 1) = 1/(α + n) − 1/(α + n + 1).
(c) 1/n(n + 1)(n + 2) = 1/2n − 1/(n + 1) + 1/2(n + 2), so that

∑N
1 =

1/4 − 1/2(N + 1) + 1/2(N + 2).
4. If sn :=

∑n
1 xk and tn :=

∑n
1 yk, then sn + tn =

∑n
1 (xk + yk).

5. No. Let zk :=xk + yk so that yk = zk + (−1)xk. If
∑

(−1)xk and
∑

zk are
convergent, then

∑
yk is convergent.

6. (a) (2/7)2[1/(1 − 2/7)] = 4/35. (b) (1/9)[1/(1 − 1/9)] = 1/8.
7. r2(1 + r2 + (r2)2 + · · · ) = r2/(1 − r2)
8. S = ε + ε2 + ε3 + · · · = ε/(1 − ε).

S = 1/9 = 0.111· · · if ε = 0.1, and S = 1/99 = 0.0101· · · if ε = 0.01.
9. (a) The sequence (cos n) does not converge to 0.

(b) Since |(cos n)/n2| ≤ 1/n2, the convergence of
∑

(cos n)/n2 follows from
Example 3.7.6(c) and Theorem 3.7.7.

10. Note that the “even” sequence (s2n) is decreasing, and the “odd” sequence
(s2n+1) is increasing and −1 ≤ sn ≤ 0. Moreover 0 ≤ s2n − s2n+1 =
1/

√
2n + 1.

11. If convergent, then an → 0, so there exists M > 0 such that 0< an ≤M ,
whence 0 < a2

n ≤Man, and the Comparison Test 3.7.7 applies.
12.

∑
1/n2 is convergent, but

∑
1/n is not.

13. Recall that if a, b≥ 0 then 2
√

ab≤ a + b, so √
anan+1 ≤ (an + an+1)/2. Now

apply the Comparison Test 3.7.7.
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14. Show that bk ≥ a1/k for k ∈ N, whence b1 + · · · + bn ≥ a1(1 + · · · + 1/n).
15. Evidently 2a(4) ≤ a(3) + a(4) ≤ 2a(2) and 22a(8) ≤ a(5) + · · · + a(8) ≤ 22a(4),

etc. The stated inequality follows by addition. Now apply the Comparison
Test 3.7.7.

16. Clearly np < (n + 1)p if p > 0, so that the terms in the series are decreasing.
Since 2n ·(1/2pn) = (1/2p−1)n, the Cauchy Condensation Test asserts that the
convergence of the p-series is the same as that of the geometric series with
ratio 1/2p−1, which is < 1 when p > 1 and is ≥ 1 when p ≤ 1.

17. (a) The terms are decreasing and 2n/2n ln(2n) = 1/(n ln 2). Since the har-
monic series

∑
1/n diverges, so does

∑
1/(n lnn).

(b) 2n/2n(ln 2n)(ln ln 2n) = 1/(n ln 2)(lnn(ln 2)). Now use the Limit Compa-
rison Test 3.7.8 and part (a).

18. (a) The terms are decreasing and 2n/2n(ln 2n)c = (1/nc) · (1/ ln 2)c. Now use
the fact that

∑
(1/nc) converges when c > 1.

(b) Since ln(n/2) < ln(n ln 2), we have 1/(ln(n lnn))c < 1/(ln(n/2))c. Now
apply (a).



CHAPTER 4

LIMITS

In this chapter we begin the study of functions of a real variable. This and
the next chapter are the most important ones in the book, since all subsequent
material depends on the results in them. In Section 4.1 the concept of a limit of a
function at a point is introduced, and in Section 4.2 the basic properties of limits
are established. Both of these sections are necessary preparation for Chapter 5.
However, Section 4.3 can be omitted on a first reading, if time is short.

Examples are a vital part of real analysis. Although certain examples do
not need to be discussed in detail, we advise that the students be urged to study
them carefully. One way of encouraging this is to ask for examples of various
phenomena on examinations.

Section 4.1

Attention should be called to the close parallel between Section 3.1 and this sec-
tion. It should be noted that here δ(ε) plays the same role as K(ε) did in Section
3.1. The proof of the Sequential Convergence Theorem 4.1.8 is instructive and
the result is important. As a rule of thumb, the ε-δ formulation of the limit is
used to establish a limit, while sequences are more often used to (i) evaluate a
limit, or (ii) prove that a limit fails to exist.

Sample Assignment: Exercises 1, 3, 6, 8, 9, 10(b,d), 11(a), 12(a,c), 15.

Partial Solutions:

1. (a–c) If |x− 1| ≤ 1, then |x+ 1| ≤ 3 so that |x2 − 1| ≤ 3|x− 1|. Thus, |x− 1| <
1/6 assures that |x2 − 1|< 1/2, etc.
(d) Since x3 − 1 = (x− 1)(x2 + x+ 1), if |x− 1|< 1, then 0< x < 2 and so
|x3 − 1| ≤ 7|x− 1|.

2. (a) Since |
√

x− 2| = |x− 4|/(
√

x+ 2) ≤ 1
2 |x− 4|, then |x− 4| < 1 implies that

|
√

x− 2|< 1
2 .

(b) If |x− 4|< 2 × 10−2 = .02, then |
√

x− 2|< .01.

3. Apply the definition of the limit.

4. If lim
y→c

f(y) = L, then for any ε > 0 there exists δ > 0 such that if 0< |y − c|< δ,

then |f(y) −L|< ε. Now let x := y − c so that y = x+ c, to conclude that
lim
x→0

f(x+ c) = L.

5. If 0< x < a, then 0< x+ c < a+ c < 2a, so that |x2 − c2| = |x+ c||x− c| ≤
2a|x− c|. Given ε > 0, take δ := ε/2a.

6. Take δ := ε/K.

28
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7. Let b := |c| + 1. If |x|< b, then |x2 + cx+ c2| ≤ 3b2. Hence |x3 − c3| ≤
(3b2)|x− c| for |x|< b.

8. Note that
√

x−
√

c = (
√

x−
√

c)(
√

x+
√

c)/(
√

x+
√

c) = (x− c)/(
√

x+
√

c).
Hence, if c �= 0, we have |

√
x−

√
c| ≤ (1/

√
c)|x− c|, so that we can take δ :=

ε
√

c. If c = 0, we can take δ := ε2, so that if 0< x < δ, then |
√

x− 0|< ε.

9. (a) If |x− 2|< 1/2, then x > 3/2, so x− 1 > 1/2 whence 0 < 1/(x− 1) < 2
and so |1/(1 −x) + 1| = |(x− 2)/(x− 1)| ≤ 2|x− 2|. Thus we can take
δ := inf{1/2, ε/2}.
(b) If |x− 1|< 1, then x+ 1 > 1, so 1/(x+ 1) < 1 whence |x/(1 + x) − 1/2| =
|x− 1|/(2|x+ 1|) ≤ |x− 1|/2 ≤ |x− 1|. Thus we may take δ := inf{1, ε}.
(c) If x �= 0, then |x2/|x| − 0| = |x|. Take δ := ε.
(d) If |x− 1|< 1, then |2x− 1|< 3 and 1/|x+ 1|< 1, so that |(x2 −x+ 1)/
(x+ 1) − 1/2| = |2x− 1||x− 1|/(2|x+ 1|) ≤ (3/2)|x− 1|, so we may take δ :=
inf{1, 2ε/3}.

10. (a) If |x− 2|< 1, then |x2 + 4x− 12| = |x+ 6||x− 2|< 9|x− 2|. We may take
δ := inf{1, ε/9}.
(b) If |x+ 1|< 1/4, then −5/4 < x <−3/4 so that 1/2 < 2x+ 3 < 3/2, and thus
0 < 1/(2x+ 3) < 2. Then |(x+ 5)/(2x+ 3) − 4| = 7|x+ 1|/|2x+ 3|< 14|x+ 1|,
so that we may take δ := inf{1/4, ε/14}.

11. (a) If |x− 3|< 1/2, then x > 5/2, so 4x− 9 > 1 and then 1/|4x− 9|< 1. Then∣∣∣2x + 3
4x − 9 − 3

∣∣∣ =
∣∣∣10x − 30

4x − 9

∣∣∣ ≤ 10|x− 3|. Thus we take δ = inf{1/2, ε/10}.

(b) If |x− 6|< 1, then x+ 1 < 8, and x+ 3 > 8, so that (x+ 1)/(x+ 3) < 1.
Then

∣∣∣x2 − 3x
x + 3 − 2

∣∣∣ =
∣∣∣x + 1
x + 3

∣∣∣ |x− 6| ≤ |x− 6|. Thus we take δ = inf{1, ε}.

12. (a) Let xn := 1/n. (b) Let xn := 1/n2.
(c) Let xn := 1/n and yn :=−1/n.
(d) Let xn := 1/

√
nπ and yn := 1/

√
π/2 + 2πn.

13. If |f(y) −L|< ε for |y|< δ, then |g(x) −L|< ε for 0< |x|< δ/a.

14. (a) Given ε > 0, choose δ > 0 such that 0< |x− c|< δ implies (f(x))2 < ε2.
(b) If f(x) := sgn(x), then lim

x→0
(f(x))2 = 1, but lim

x→0
f(x) does not exist.

15. (a) Since |f(x) − 0| ≤ |x|, we can take δ := ε to show that lim
x→0

f(x) = 0.
(b) If c �= 0 is rational, let (xn) be a sequence of irrational numbers that
converges to c; then f(c) = c �= 0 = lim(f(xn)). If c is irrational, let (rn)
be a sequence of rational numbers that converges to c; then f(c) = 0 �= c =
lim(f(rn)).

16. Since I is an open interval containing c, there exists a > 0 such that the
a-neighborhood Va(c) ⊆ I. For ε > 0, if δ > 0 is chosen so that δ ≤ a, then it
will apply to both f and f1.

17. The restriction of sgn to [0, 1] has a limit at 0.
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Section 4.2

Note the close parallel between this section and Section 3.2. While the proofs
should be read carefully, the main interest here is in the application of the theorems
to the calculation of limits.

Sample Assignment: Exercises 1, 2, 4, 5, 9, 11, 12.

Partial Solutions:

1. (a) 15, (b) −3, (c) 1/12, (d) 1/2.
2. (a) The limit is 1.

(b) Since (x2 − 4)/(x− 2) = x+ 2 for x �= 2, the limit is 4. Note that Theorem
4.2.4(b) cannot be applied here.
(c) The quotient equals x+ 2 for x �= 0. Hence the limit is 2.
(d) The quotient equals 1/(

√
x+ 1) for x �= 1. The limit is 1/2.

3. Multiply the numerator and denominator by
√

1 + 2x+
√

1 + 3x. The limit
is −1/2.

4. If xn := 1/2πn for n ∈ N, then cos(1/xn) = 1. Also, if yn := 1/(2πn + π/2) for
n ∈ N, then cos(1/yn) = 0. Hence cos(1/x) does not have a limit as x → 0.
Since |x cos(1/x)| ≤ |x|, the Squeeze Theorem 4.2.7 applies.

5. If |f(x)| ≤M for x ∈ Vδ(c), then |f(x)g(x) − 0| ≤M |g(x) − 0| for x ∈ Vδ(c).
6. Given ε > 0, choose δ1 > 0 so that if 0< |x− c|< δ1, x ∈ A, then |f(x) −L|<

ε/2. Choose δ2 > 0 so that if 0< |x− c|< δ2, x ∈ A, then |g(x) −M |< ε/2.
Take δ := inf{δ1, δ2}. If x ∈ A satisfies 0 < |x− c|< δ, then |(f(x) + g(x)) −
(L+ M)| ≤ |f(x) −L| + |g(x) −M |< ε/2 + ε/2 = ε.

7. Let (xn) be any sequence in A \ {c} that converges to c. Then (f(xn)) con-
verges to L and (h(xn)) converges to H. By 3.23(b), (f(xn)/h(xn)) converges
to L/H. Since (xn) is an arbitrary sequence in A \ {c}, it follows from 4.1.8
that lim

x→c
f/h = L/H.

8. If |x| ≤ 1, k ∈ N, then |xk| = |x|k ≤ 1, whence −x2 ≤xk+2 ≤x2. Thus, if n ≥ 2,
we have |xn − 0| ≤ |x2 − 0| for |x| ≤ 1. Consequently lim

x→0
xn = 0.

9. (a) Note that g(x) = (f + g)(x) − f(x).
(b) No; for example, take f(x) = x2 and g(x) := 1/x for x > 0.

10. Let f(x) := 1 if x is rational and f(x) := 0 if x is irrational, and let
g(x) := 1− f(x). Then f(x) + g(x) = 1 for all x∈ R, so that lim

x→0
(f + g) = 1,

and f(x)g(x) = 0 for all x∈ R, so that lim
x→0

fg = 0.

11. (a) No limit, (b) 0, (c) No limit, (d) 0.
12. Since f((k + 1)y) = f(ky + y) = f(ky) + f(y), an induction argument shows

that f(ny) = nf(y) for all n ∈ N, y ∈ R. If we substitute y := 1/n, we get
f(1/n) = f(1)/n, whence L= lim

x→0
f(x) = lim(f(1/n)) = 0. Since f(x) − f(c) =
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f(x− c), we infer that lim
x→c

(f(x) − f(c)) = lim
x→c

f(x− c) = lim
z→0

f(z) = 0, so that
lim
x→c

f(x) = f(c).

13. (a) g(f(x)) = g(x+ 1) = 2 if x �= 0, so that lim
x→0

g(f(x)) = 2, but g( lim
x→0

f(x)) =
g(f(0)) = g(1) = 0. Not equal.
(b) f(g(x)) = g(x) + 1 = 3 if x �= 1, so that lim

x→1
f(g(x)) = 3, and f( lim

x→1
g(x)) =

f(2) = 3. Equal.
14. If lim

x→c
f(x) = L, then ||f(x)| − |L|| ≤ |f(x) −L| implies that lim

x→c
|f(x)| = |L|.

15. This follows from Theorem 3.2.10 and the Sequential Criterion 4.1.8. Alter-
natively, an ε-δ proof can be given.

Section 4.3

This section can play the role of reinforcing the notion of the limit, since it provides
several extensions of this concept. However, the results obtained here are used in
only a few places later, so that it is easy to omit this section on a first reading.
In fact, one-sided limits are used only once or twice in subsequent chapters.

In any case, we advise that the discussion of this section be quite brief.
Indeed, it is quite reasonable to give a short introduction to it in a class, and
leave it to the students to return to it later, when needed.

Sample Assignment: Exercises 2, 3, 4, 5(a,c,e,g), 8, 9.

Partial Solutions:

1. Modify the proof of Theorem 4.1.8 appropriately. Note that 0< |x− c|< δ is
replaced by 0< x− c < δ since x > c.

2. Let f(x) := sin(1/x) for x < 0 and f(x) := 0 for x > 0.
3. Given α > 0, if 0< x < 1/α2, then

√
x < 1/α, and so f(x) > α. Since α is

arbitrary, lim
x→0 +

x/(x− 1) = ∞.

4. If α > 0, then f(x) > α if and only if |1/f(x) − 0|< 1/α.
5. (a) If α > 1 and 1< x < α/(α − 1), then α < x/(x− 1), hence we have

lim
x→1+

x/(x− 1) = ∞.

(b) The right-hand limit is ∞; the left-hand limit is −∞.
(c) Since (x+ 2)/

√
x > 2/

√
x, the limit is ∞.

(d) Since (x+ 2)/
√

x >
√

x, the limit is ∞.
(e) If x > 0, then 1/

√
x < (

√
x+ 1)/x, so the right-hand limit is ∞. What is

the left-hand limit?
(f) 0. (g) 1. (h) −1.

6. Modify the proof of Theorem 4.3.2 (using Definition 4.3.10). Note that
0 < x− c < δ(ε) is replaced by x > K(ε).

7. Use Theorem 4.3.11.
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8. Note that |f(x) −L|< ε for x > K if and only if |f(1/z) −L|< ε for
0 < z < 1/K.

9. There exists α > 0 such that |xf(x) −L|< 1 whenever x > α. Hence |f(x)|<
(|L| + 1)/x for x > α.

10. Modify the proof of Theorem 4.3.11 (using Definition 4.3.13). Note that
|f(x) −L|< ε is replaced by f(x) > α [respectively, f(x) < α].

11. Let α > 0 be arbitrary and let β > (2/L)α. There exists δ1 > 0 such that
if 0< |x− c|< δ1 then f(x) > L/2, and there exists δ2 > 0 such that if
0 < |x− c|< δ2, then g(x) > β. If δ3 := inf{δ1, δ2}, and if 0< |x− c|< δ3 then
f(x)g(x) > (L/2)β > α. Since α is arbitrary, then lim

x→c
fg = ∞. Let c = 0 and

let f(x) := |x| and g(x) := 1/|x| for x �= 0.
12. Let f(x) = g(x) :=x (or let f(x) :=x and g(x) :=x+ 1/x).

No. If h(x) := f(x) − g(x), then f(x)/g(x) = 1 +h(x)/g(x) → 1.

13. Suppose that |f(x) −L|< ε for x > K, and that g(y) > K for y > H. Then
|f ◦ g(y) −L|< ε for y > H.



CHAPTER 5

CONTINUOUS FUNCTIONS

This chapter can be considered to be the heart of the course. We now use all the
machinery that has been developed to this point in order to study the most impor-
tant class of functions in analysis, namely, continuous functions. In Section 5.3,
the fundamental properties of continuous functions are proved, and this section is
the most important of this chapter. Sufficient time should be spent on it to allow
adequate study of the proofs and examples. Section 5.4 on uniform continuity is
also an important section. Section 5.5 contains a different approach to the basic
theorems in Sections 5.3 and 5.4, using the idea of a “gauge”.

The results on monotone functions in Section 5.6 are interesting, but they
are not central to this course and these results will not be used often in later parts
of this book.

Section 5.1

This important section is absolutely basic to everything that will follow. Every
effort should be made to have the students master the notions presented here.
They should memorize the definition of continuity and its various equivalents,
and they should study the examples very carefully.

Sample Assignment: Exercises 1, 3, 4(a,b), 5, 7, 11, 12, 13.

Partial Solutions:

3. We will establish the continuity of h at b. Since f is continuous at b, given
ε > 0 there exists δ1 > 0 such that if b − δ1 < x < b, then |f(x) − f(b)|< ε. Sim-
ilarly, there exists δ2 > 0 such that if b < x < b+ δ2, then |g(x) − g(b)|< ε. Let
δ := inf{δ1, δ2} so that |h(x) −h(b)|< ε for |x− b|< δ, whence h is continuous
at b.

4. (a) Continuous if x �= 0,±1,±2, . . . ,
(b) Continuous if x �= ±1,±2, . . . ,
(c) Continuous if sinx �= 0, 1,
(d) Continuous if x �= 0,±1,±1/2, . . . .

5. Yes. Define f(2) := lim
x→2

f(x) = 5.

6. Given ε > 0, choose δ > 0 such that if x∈Vδ(c) ∩ A, then |f(x) − f(c)|< ε/2.
Then if y ∈Vδ(c) ∩ A, we have |f(y) − f(x)| ≤ |f(x) − f(c)| + |f(c) − f(y)|<
ε/2 + ε/2 = ε.

7. Let ε := f(c)/2, and let δ > 0 be such that if |x− c|< δ, then |f(x) − f(c)|< ε,
which implies that f(x) > f(c) − ε = f(c)/2 > 0.

8. Since f is continuous at x, we have f(x) = lim(f(xn)) = 0. Thus x∈S.

33
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9. (a) If |f(x) − f(c)|< ε for x∈Vδ ∩B, then |g(x) − g(c)| = |f(x) − f(c)|< ε for
x∈Vδ(c) ∩ A.
(b) Let f = sgn on B := [0, 1], g = sgn on A := (0, 1] and c = 0.

10. Note that
∣∣|x| − |c|

∣∣ ≤ |x− c|.
11. Let c∈ R be given and let ε > 0. If |x− c|< ε/K, then |f(x) − f(c)| ≤

K|x− c|< K(ε/K) = ε.
12. If x is irrational, then by the Density Theorem 2.4.8 there exists a sequence

(rn) of rational numbers that converges to x. Then f(x) = lim(f(rn)) = 0.
13. Since |g(x) − 6| ≤ sup{|2x− 6|, |x− 3|} = 2|x− 3|, then g is continuous at

x= 3. If c �= 3, let (xn) be a sequence of rational numbers converging to
c and let (yn) be a sequence of irrational numbers converging to c. Then
lim(g(xn)) = 2c �= c + 3 = lim(g(yn)), so g is not continuous at c.

14. Let c∈A. If k is continuous at c, it follows from 4.2.2 that k is bounded
on some neighborhood (c− δ, c + δ). Let m ∈ N be given; then there exists
a prime number p such that 1/p < δ and p ≥m. (Why?) There must be at
least one rational number q/p with c− δ < q/p < c + δ; otherwise there exists
an integer q0 such that q0/p ≤ c− δ and c + δ ≤ (q0 + 1)/p, which implies that
2δ ≤ 1/p, a contradiction. We conclude that k(x) = p ≥m for at least one
point x∈ (c− δ, c + δ). But this is a contradiction.

15. Let In := (0, 1/n] for n ∈ N. Show that (sup f(In)) is a decreasing sequence
and (inf f(In)) is an increasing sequence. If lim(sup f(In)) = lim(inf f(In)),
then lim

x→0
f exists. Let xn, yn ∈ In be such that f(xn) > sup f(In) − 1/n and

f(yn) < inf f(In) + 1/n.

Section 5.2

Note the similarity of this section with Sections 4.2 and 3.2. However, Theorem
5.2.6 concerning composite functions is a new result, and an important one. Its
importance may be suggested by the fact, noted in 5.2.8, that it implies several
of the earlier results.

The significance of this section should be clear: it enables us to establish the
continuity of many functions.

Sample Assignment: Exercises 1, 3, 5, 6, 10, 12, 13.

Partial Solutions:

1. (a) Continuous on R, (b) Continuous for x≥ 0,
(c) Continuous for x �= 0, (d) Continuous on R.

2. Use 5.2.1(a) and Induction; or, use 5.2.8 with g(x) :=xn.
3. Let f be the Dirichlet discontinuous function (Example 5.1.6(g)) and let

g(x) := 1− f(x).
4. Continuous at every noninteger.
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5. The function g is not continuous at 1 = f(0).
6. Given ε > 0, there exists δ1 > 0 such that if |y − b|< δ1, then |g(y) − g(b)|< ε.

Further, there exists δ > 0 such that if 0< |x− c|< δ, then |f(x) − b|< δ1.
Hence, if 0 < |x − c| < δ, then we have |(g ◦ f)(x) − g(b)| < ε, so that
lim
x→c

(g ◦ f)(x) = g(b).

7. Let f(x) := 1 if x is rational, and f(x) :=−1 if x is irrational.
8. Yes. Given x∈ R, let (rn) be a sequence of rational numbers with rn → x.
9. Show that an arbitrary real number is the limit of a sequence of numbers of

the form m/2n, where m ∈ Z, n ∈ N.
10. If c∈P , then f(c) > 0. Now apply Theorem 4.2.9.
11. If h(x) := f(x) − g(x), then h is continuous and S = {x∈ R : h(x) � 0}.
12. First show that f(0) = 0 and f(−x) = −f(x) for all x∈ R; then note that

f(x−x0) = f(x) − f(x0). Consequently f is continuous at the point x0 if
and only if it is continuous at 0. Thus, if f is continuous at x0, then it is
continuous at 0, and hence everywhere.

13. First show that f(0) = 0 and (by Induction) that f(x) = cx for x∈ N, and
hence also for x∈ Z. Next show that f(x) = cx for x∈ Q. Finally, if x /∈ Q,
let x= lim(rn) for some sequence in Q.

14. First show that either g(0) = 0 or g(0) = 1. Next, if g(α) = 0 for some
α ∈ R and if x∈ R, let y :=x−α so that x= α + y; hence g(x) = g(α + y) =
g(α)g(y) = 0. Thus, if g(α) = 0 for some α, then it follows that g(x) = 0
for all x∈ R.

Now suppose that g(0) = 1 so that g(c) �= 0 for any c∈ R. If g is continuous
at 0, then given ε > 0 there exists δ > 0 such that if |h|< δ, then |g(h) − 1|<
ε/|g(c)|. Since g(c+h)−g(c) = g(c)(g(h)−1), it follows that |g(c+h)−g(c)| =
|g(c)‖g(h) − 1|< ε, provided |h|< δ. Therefore g is continuous at c.

15. If f(x) ≥ g(x), then both expressions given h(x) = f(x); and if f(x) ≤ g(x),
then h(x) = g(x) in both cases.

Section 5.3

In this section, we establish some very important properties of continuous func-
tions. Unfortunately, students often regard these properties as being “obvious”,
so that one must convince them that if the hypotheses of the theorems are
dropped, then the conclusions may not hold. Thus, for example, if any one of the
three hypotheses [(i) I is closed, (ii) I is bounded, (iii) f is continuous at every
point of I] of Theorem 5.3.2 is dropped, then the conclusion that f is bounded
may not hold, even though the other two hypotheses are retained. Similarly for
Theorems 5.3.4 and 5.3.9. Thus, each theorem must be accompanied by examples.
In 5.3.7, we do not assume that I is a closed bounded interval, but we work within
a closed bounded subinterval of I.
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The proofs of Theorems 5.3.2 and 5.3.4 presented here are based on the
Bolzano-Weierstrass Theorem. In Section 5.5 different proofs are presented based
on the concept of a “gauge”. In Chapter 11 these theorems are extended to general
“compact” sets in R by using the Heine-Borel Theorem.

Students often misunderstand Theorems 5.3.9 and 5.3.10, believing that the
image of an interval with endpoints f(a), f(b). Consequently, Figure 5.3.3 should
be stressed in an attempt to dispell this misconception. Also, examples can be
given to show that the continuous image of an interval (a, b) can be any type of
interval, and not necessarily an open interval or a bounded interval.

Sample Assignment: Exercises 1, 3, 5, 6, 7, 8, 10, 13, 15.

Partial Solutions:

1. Apply either the Boundedness Theorem 5.3.2 to 1/f , or the Maximum-
Minimum Theorem 5.3.4 to conclude that inf f(I) > 0.

Alternatively, if xn ∈ I such that 0< f(xn) < 1/n, then there is a subse-
quence (xnk

) that converges to a point x0 ∈ I. Since f(x0) = lim(f(xnk
)) = 0,

we have a contradiction.
2. If f(xn) = g(xn) and lim(xn) = x0, then f(x0) = lim(f(xn)) = lim(g(xn)) =

g(x0).
3. Let x1 be arbitrary and let x2 ∈ I be such that |f(x2)| ≤ 1

2 |f(x1)|. By Induc-
tion, choose xn+1 such that |f(xn+1)| ≤ 1

2 |f(xn)| ≤
(1

2

)n |f(x1)|. Apply the
Bolzano-Weierstrass Theorem to obtain a subsequence that converges to some
c∈ I. Now show that f(c) = 0.

Alternatively, show that if the minimum value of |f | on I is not 0, then a
contradiction arises.

4. Suppose that p has odd degree n and that the coefficient an of xn is positive.
By 4.3.16, we have lim

x→∞
p(x) = ∞ and lim

x→−∞
p(x) = −∞. Hence p(α) < 0 for

some α < 0 and p(β) > 0 for some β > 0. Therefore there is a zero of p in
[α, β].

5. In the intervals [1.035, 1.040] and [−7.026, −7.025].
6. Note that g(0) = f(0) − f(1/2) and g(1/2) = f(1/2) − f(1) =−g(0). Hence

there is a zero of g at some c∈ [0, 1/2]. But if 0 = g(c) = f(c) − f(c + 1/2),
then we have f(c) = f(c + 1/2).

7. In the interval [0.7390, 0.7391].
8. In the interval [1.4687, 1.4765].
9. (a) 1, (b) 6.

10. 1/2n < 10−5 implies that n > (5 ln 10)/ ln 2 ≈ 16.61. Take n = 17.
11. If f(w) < 0, then it follows from Theorem 4.2.9 that there exists a

δ-neighborhood Vδ(w) such that f(x) < 0 for all x∈Vδ(w). But since w < b,
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this contradicts the fact that w = supW . There is a similar contradiction if
we assume that f(w) > 0. Therefore f(w) = 0.

12. Since f(π/4) < 1 while f(0) = 1 and f(π/2) > 1, it follows that x0 ∈ (0, π/2).
If cos x0 > x2

0, then there exists a δ-neighborhood Vδ(x0) ⊆ I on which
f(x) = cos x, so that x0 is not an absolute minimum point for f .

13. If f(x) = 0 for all x∈ R, then all is trivial; hence, assume that f takes on
some nonzero values. To be specific, suppose f(c) > 0 and let ε := 1

2f(c),
and let M > 0 be such that |f(x)|< ε provided |x|> M . By Theorem 5.3.4,
there exists c∗ ∈ [−M, M ] such that f(c∗) ≥ f(x) for all x∈ [−M, M ] and we
deduce that f(c∗) ≥ f(x) for all x∈ R. To see that a minimum value need not
be attained, consider f(x) := 1/(x2 + 1).

14. Apply Theorem 4.2.9 to β − f(x).
15. If 0< a < b≤ ∞, then f((a, b)) = (a2, b2); if −∞ ≤ a < b < 0, then f((a, b)) =

(b2, a2). If a < 0 < b, then f((a, b)) is not an open interval, but equals [0, c)
where c := sup{a2, b2}. Images of closed intervals are treated similarly.

16. For example, if a < 0 < b and c := inf{1/(a2 + 1), 1/(b2 + 1)}, then g((a, b)) =
(c, 1]. If 0< a < b, then g((a, b)) = (1/(b2 + 1), 1/(a2 + 1)). Also g([−1, 1]) =
[1/2, 1]. If a < b, then h((a, b)) = (a3, b3) and h((a, b]) = (a3, b3].

17. Yes. Use the Density Theorem 2.4.8.
18. If f is not bounded on I, then for each n ∈ N there exists xn ∈ I such that

|f(xn)| ≥n. Then a subsequence of (xn) converges to x0 ∈ I. The assumption
that f is bounded on a neighborhood of x0 leads to a contradiction.

19. Consider g(x) := 1/x for x∈J := (0, 1).

Section 5.4

The idea of uniform continuity is a subtle one that often causes difficulties for stu-
dents. The point, of course, is that for a uniformly continuous function f : A → R,
the δ can be chosen to depend only on ε and not on the points in A. The
Uniform Continuity Theorem 5.4.3 guarantees that every continuous function on
a closed bounded interval is uniformly continuous; however, a continuous func-
tion defined on an interval may be uniformly continuous even when the interval
is not closed and bounded. For example, every Lipschitz function is uniformly
continuous, no matter what the nature of its domain is. A condition for a
function to be uniformly continuous on a bounded open interval is given in 5.4.8.
The extension of the Uniform Continuity Theorem to compact sets in given in
Chapter 11.

One interesting application of uniform continuity is the approximation of
continuous functions by “simpler” functions. Consequently we have included a
brief discussion of this topic here. The Weierstrass Approximation Theorem 5.4.14
is a fundamental result in this area and we have stated it without proof.
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Sample Assignment: Exercises 1, 2, 3, 6, 7, 8, 11, 12, 15.

Partial Solutions:

1. Since 1/x− 1/u = (u −x)/xu, it follows that |1/x− 1/u| ≤ (1/a2)|x−u| for
x, u∈ [a,∞).

2. If x, u ≥ 1, then |1/x2 − 1/u2| = (1/x2u + 1/xu2)|x − u| ≤ 2|x − u|, and it
follows that f is uniformly continuous on [1,∞). If xn := 1/n, un := 1/(n + 1),
then |xn −un| → 0 but |f(xn) − f(un)| = 2n + 1 ≥ 1 for all n, so f is not uni-
formly continuous on (0,∞).

3. (a) Let xn :=n + 1/n, un :=n. Then |xn −un| → 0, but f(xn) − f(un) =
2 + 1/n2 ≥ 2 for all n.
(b) Let xn := 1/2nπ, un := 1/(2nπ + π/2). Note that |g(xn) − g(un)| = 1 for
all n.

4. Show that |f(x)−f(u)| ≤ [(|x|+|u|)/(1+x2)(1+u2)]|x−u| ≤ (1/2+1/2)|x−u| =
|x − u|. (Note that x �→ x/(1 + x2) attains a maximum of 1/2 at x= 1.)

5. Note that |(f(x) + g(x)) − (f(u) + g(u))| ≤ |f(x) − f(u)| + |g(x) − g(u)|< ε
provided that |x−u|< inf{δf (ε/2), δg(ε/2)}.

6. If M is a bound for both f and g on A, show that |f(x)g(x) − f(u)g(u)| ≤
M |f(x) − f(u)| + M |g(x) − g(u)| for all x, u∈A.

7. Since lim
x→0

(sin x)/x= 1, there exists δ > 0 such that sinx≥x/2 for 0≤x < δ.
Let xn := 2nπ and un := 2nπ + 1/n, so that sinxn = 0 and sinun = sin(1/n).
If h(x) :=x sin x, then |h(xn) −h(un)| = un sin(1/n) ≥ (2nπ + 1/n)/2n > π > 0
for sufficiently large n.

8. Given ε > 0 there exists δf > 0 such that |y − v|< δf implies |f(y) − f(v)|< ε.
Now choose δg > 0 so that |x−u|< δg implies |g(x) − g(u)|< δf .

9. Note that |1/f(x) − 1/f(u)| ≤ (1/k2)|f(x) − f(u)|.
10. There exists δ > 0 such that if |x−u|< δ, x, u∈A, then |f(x) − f(u)|< 1. If

A is bounded, it is contained in the finite union of intervals of length δ.

11. If |g(x) − g(0)| ≤K|x− 0| for all x∈ [0, 1], then
√

x≤Kx for x∈ [0, 1]. But if
xn := 1/n2, then K must satisfy n ≤K for all n ∈ N, which is impossible.

12. Given ε > 0, choose 0 < δ1 < 1 so that |f(x) − f(u)|< ε whenever |x−u|< δ1
and x, u∈ [0, a+ 1]. Also choose 0 < δ2 < 1 so that |f(x) − f(u)|< ε whenever
|x−u|< δ2 and x, u∈ [a,∞). Now let δ := inf{δ1, δ2}. If |x−u|< δ, then
since δ < 1, either x, u∈ [0, a+ 1] or x, u, ∈ [a,∞), so that |f(x) − f(u)|< ε.

13. Note that |f(x) − f(u)| ≤ |f(x) − gε(x)| + |gε(x) − gε(u)| + |gε(u) − f(u)|.
14. Since f is bounded on [0, p], it follows that it is bounded on R. Since f is

continuous on J := [−1, p + 1], it is uniformly continuous on J . Now show
that this implies that f is uniformly continuous on R.
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15. Assume |f(x) − f(y)| ≤Kf |x− y| and |g(x) − g(y)| ≤Kg|x− y| for all x, y
in A. (a) |(f(x) + g(x)) − (f(y) + g(y))| ≤ |f(x) − f(y)| + |g(x) − g(y)| ≤
(Kf + Kg)|x+ y|.
(b) If |f(x)| ≤Bf and |g(x)| ≤Bg for all x in A, then

|f(x)g(x) − f(y)g(y)| = |f(x)g(x) − f(x)g(y) + f(x)g(y) − f(y)g(y)|
≤ Bf |g(x) − g(y)| + Bg|f(x) − f(y)|
≤ (BfKg + BgKf )|x− y|.

(c) Consider f(x) = x.

16. If |f(x) − f(y)| ≤K|x− y| for all x, y in I, then has Lipschitz constant K on I.
Then for disjoint subintervals [xk,yk],n = 1,2, . . . , n, we have Σ|f(xk)−f(yk)| ≤
ΣK|xk − yk|, so that if ε > 0 is given and δ = ε/nK, then Σ|f(xk) − f(yk)| ≤ ε.
Thus f is absolutely continuous on I.

Section 5.5

In this section we introduce the notion of a “gauge” which will be used in the
development of the generalized Riemann integral in Chapter 10. We will also use
gauges to give alternate proofs of the main theorems in Section 5.3 and 5.4, Dini’s
Theorem 8.2.6, and the Lebesgue Integrability Criterion in Appendix C.

Sample Assignment: Exercises 1, 2, 4, 6, 7, 9.

Partial Solutions:

1. (a) The δ-intervals are [0 − 1
4 , 0 + 1

4 ] = [− 1
4 , 1

4 ], [12 − 1
4 , 1

2 + 1
4 ] = [14 , 3

4 ] and
[34 − 3

8 , 3
4 + 3

8 ] = [38 , 9
8 ].

(b) The third δ-interval is [ 3
10 , 9

10 ] which does not contain [12 , 1].
2. (a) Yes. Since δ(t) ≤ δ1(t), every δ-fine partition is δ1-fine.

(b) Yes. The third δ1-interval is [ 3
20 , 21

20 ] which contains [12 , 1].
3. No. The first δ2-interval is [− 1

10 , 1
10 ] and does not contain [0, 1

4 ].
4. (b) If t ∈ (1

2 , 1) then [t − δ(t), t + δ(t)] = [−1
2 + 3

2 t, 1
2 + 1

2 t] ⊂ (1
4 , 1).

5. Routine verification.
6. We could have two subintervals having c as a tag with one of them not

contained in the δ-interval around c. Consider constant gauges δ′ := 1 on
[0, 1] and δ′′ := 1

2 on [1, 2], so that δ(1) = 1
2 . If Ṗ ′ consists of the single pair

([0, 1], 1), it is δ′-fine. However, Ṗ ′ is not δ-fine.
7. Clearly δ∗(t) > 0 so that δ∗ is a gauge on [a, b]. If

Ṗ := {([a, x1], t1), . . . ([xk−1, c], tk), ([c, xk+1], tk+1), . . . , ([xn, b], tn)}
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is δ∗-fine, then it is clear that Ṗ ′ := {([a, x1], t1), . . . , ([xk−1, c], tk)} is a
δ′-fine partition of [a, c] and Ṗ ′′ := {([c, xk+1], tk+1), . . . , ([xn, b], tn)} is a
δ′′-fine partition of [c, b]. Evidently Ṗ = Ṗ ′ ∪ Ṗ ′′.

8. (a) If [a, b] a δ-fine partition Ṗ ′ and [c, b] has a δ-fine partition Ṗ ′′, then
Ṗ ′ ∪ Ṗ ′′ is a δ-fine partition of [a, b], contrary to hypothesis.
(b) Let I1 be [a, c] if it does not have a δ-fine partition; otherwise, let I1 be
[c, b], so the length of I1 is (b − a)/2. Now bisect I1 and let I2, which has
length (b − a)/22, be an interval that has no δ-fine partition. Continue this
process by Induction.
(c) By the Nested Intervals Theorem there exists a common point ξ. By the
Archimedean Property there exists p ∈ N such that (b − a)/2p < δ(ξ). Since
ξ ∈ Ip and the length of Ip is (b − a)/2p, it follows that Ip ⊂ [ξ − δ(ξ), ξ + δ(ξ)].

9. The hypothesis that f is locally bounded presents us with a gauge δ. If
{([xi−1, xi], ti)}n

i=1 is a δ-fine partition of [a, b] and Mi is a bound for |f | on
[xi−1, xi], let M := sup{Mi : i= 1, . . . , n}.

10. The hypothesis that f is locally increasing presents us with a gauge δ. If
{([xi−1, xi], ti)}n

i=1 is a δ-fine partition of [a, b], then f is increasing on each
interval [xi−1, xi]. By Induction it follows that f(xi) ≤ f(xj) for i < j. If x < y
belong to [a, b], then x∈ [xi−1, xi] and y ∈ [xj−1, xj ] where i≤ j. If i= j, the
fact that f is increasing on [xi−1, xi] implies that f(x) ≤ f(y). If i < j, then
f(x) ≤ f(xi) ≤ f(xj−1) ≤ f(y).

Section 5.6

The collection of monotone functions is a special, but very useful class of functions.
This is particularly the case since most functions that arise in elementary analysis
are either monotone, or their domains can be written as a union of intervals
on which their restrictions are monotone. Theorem 5.6.4 shows that a monotone
function is automatically continuous except (at most) at a countable set of points.

It will also be seen in Theorem 5.6.5 that continuous strictly monotone
functions have continuous strictly monotone inverse functions.

Sample Assignment: Exercises 1, 2, 4, 5, 7, 10, 12.

Partial Solutions:

1. If x∈ [a, b], then f(a) ≤ f(x).
2. If x1 ≤x2, then f(x1) ≤ f(x2) and g(x1) ≤ g(x2), whence f(x1) + g(x1) ≤

f(x2) + g(x2).
3. Note that (fg)(0) = 0> (fg)(1/2) = −1/4.
4. If 0≤ f(x1) ≤ f(x2) and 0≤ g(x1) ≤ g(x2), then f(x1)g(x1) ≤ f(x2)g(x1) ≤

f(x2)g(x2).
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5. If L := inf{f(x) : x∈ (a, b]} and ε > 0, then there exists xε ∈ (a, b] with L≤
f(xε) < L+ ε. Since f is increasing, then L≤ f(x) < L+ ε for x∈ (a, xε];
hence lim

x→a+
f exists and equals L.

Conversely, if K := lim
x→a+

f , then given ε > 0, there exists δ > 0 such

that if x∈ (a, a+ δ), then K − ε < f(x) < K + ε. It follows from this that
K − ε ≤L < K + ε; since ε > 0 is arbitrary, we have K = L.

6. If f is continuous at c, then lim(f(xn)) = f(c), since c = lim(xn). Conversely,
since 0 ≤ jf (c) ≤ f(x2n) − f(x2n+1), it follows that jf (c) = 0, so f is continu-
ous at c.

7. It follows from Exercises 2.4.4, 2.4.6 and the Principle of the Iterated Infima,
(analogous to the result in Exercise 2.4.12), that

jf (c) = inf{f(y) : y ∈ I, c < y} − sup{f(x) : x∈ I, x < c}
= inf{f(y) : y ∈ I, c < y} + inf{−f(x) : x∈ I, x < c}
= inf{f(y) − f(x) : x, y ∈ I, x < c < y}

8. Let x1 ∈ I be such that y = f(x1) and x2 ∈ I be such that y = g(x2). If x2 ≤x1,
then y = g(y2) < f(x2) ≤ f(x1) = y, a contradiction.

9. If x∈ I is rational, then f(x) = x is also rational so f(f(x)) = f(x) = x; if
y ∈ I is irrational, then f(y) = 1 − y is irrational so f(f(y)) = f(1 − y) = 1 −
(1 − y) = y. Suppose that x1 �= x2, xj ∈ I; if x1 ∈ Q and x2 /∈ Q, then f(x1) ∈ Q

and f(x2) /∈ Q, which implies that f(x1) �= f(x2). The other cases are similar.
Since |f(x) − 1/2| = |x− 1/2|, then f is continuous at 1/2. If x �= 1/2, x∈ Q,
take a sequence (yn) of irrationals converging to x, so that f(yn) =
1 − yn → 1 −x �= x. Similarly for the case x �= 1/2, x /∈ Q.

10. If f has an absolute maximum at c∈ (a, b), and if f is injective, we have
f(a) < f(c) and f(b) < f(c). Either f(a) ≤ f(b) or f(b) < f(a). In the first
case, either f(a) = f(b) or f(a) < f(b) < f(c), whence there exists b′ ∈ (a, c)
such that f(b′) = f(b). Either possibility contradicts the assumption that
f is injective. The case f(b) < f(a) is similar.

11. Note that f−1 is continuous at every point of its domain [0, 1] ∪ (2, 3]. The
function f is not continuous at x= 1.

12. Let a∈ (0, 1) be arbitrary. If f(a) < f(0), then there exists a′ ∈ (a, 1) with
f(a′) = f(0), a contradiction. Also f(a) = f(0) is excluded by hypothesis.
Therefore we must have f(0) < f(a), and a similar argument yields f(a) < f(1).
If b ∈ (a, 1) is given, then f(b) < f(a) implies that there exists a′′ ∈ (b, 1) with
f(a) = f(a′′), a contradiction. Since f(b) = f(a) is excluded, we must have
f(b) > f(a).

13. Assume that h is continuous on [0, 1] and let c1 < c2 be the two points in [0, 1]
where h attains its supremum. If 0< c1, choose a1, a2 such that 0< a1 < c1 <
a2 < c2. Let k satisfy sup{h(a1), h(a2)} < k < h(c1) = h(c2); then there exist
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three numbers bj such that a1 < b1 < c1 < b2 < a2 < b3 < c2 where k = h(bj),
a contradiction. Now consider the points where h attains its infimum.

14. Let x > 0 and consider the case m, p, n, q ∈ N. Let y :=x1/n and z :=x1/q so
that yn = x= zq, whence (by Exercise 2.1.26) ynp = xp = zqp. Since np = mq,
we have (ym)q = ymq = zpq = (zp)q, from which it follows that ym = zp, or
(x1/n)m = (x1/q)p, or xm/n = xp/q. Now consider the case where m, p ∈ Z.

15. Let x > 0 and consider the case where r = m/n and s = p/q, where m, n, p,
q ∈ N. Since r = mq/nq and s = pn/qn, it follows from the preceding exercise
that xr = (x1/nq)mq and xs = (x1/nq)pn so that (by Exercise 2.1.26) xrxs =
(x1/nq)mq + pn = x(mq+pn)/nq = xr+s. Similarly, xr = (x1/n)m > 0 and if y > 0,
then (by 5.6.7) ys = (yp)1/q so that (xr)s = (((x1/n)m)p)1/q. This implies
that ((xr)s)q = (x1/n)mp = (xmp)1/n so that ((xr)s)qn = xmp, whence (xr)s =
xmp/qn = xrs. Now consider the case where m, p ∈ Z.



CHAPTER 6

DIFFERENTIATION

The basic properties and applications of the derivative are given in the first two
sections of this chapter. Section 6.1 is a survey of the techniques of differentiation
from a rigorous viewpoint. Since the students will be familiar with most of the
results (though not the proofs), the section can be covered reasonably quickly.
Section 6.2 contains material that is new to students, since in introductory calculus
courses the Mean Value Theorem is not usually given the emphasis it deserves.
Sections 6.3 and 6.4 are optional and can be discussed in either order and to
whatever depth that time permits.

Section 6.1

This section contains the calculational rules of differentiation that students learn
and use in introductory calculus courses. However, the emphasis here is on the
rigorous establishment of these results rather than on the development of calcu-
lational skills.

The topic that students will find troublesome is the differentiation of com-
posite and inverse functions. We feel that the use of Carathéodory’s Theorem
6.1.5 is a considerable simplification of the proofs of these results.

Sample Assignment: Exercises 1(a,b), 2, 4, 5, 9, 11, 13, 15.

Partial Solutions:

1. (a) f ′(x) = lim
h→0

[(x+ h)3 − x3]/h = lim
h→0

(3x2 + 3xh + h2) = 3x2,

(b) g′(x) = lim
h→0

1
h

(
1

x+ h
− 1

x

)
= lim

h→0

−1
x(x+ h)

=
−1
x2 ,

(c) h′(x) = lim
h→0

√
x+ h −

√
x

h
= lim

h→0

1√
x+ h +

√
x

=
1

2
√

x
,

(d) k′(x) = lim
h→0

1/
√

x+ h − 1/
√

x

h
= lim

h→0

−1√
x+ h

√
x(

√
x+ h +

√
x)

=
−1

2x
√

x
.

2. lim
x→0

(f(x) − f(0))/(x− 0) = lim
x→0

x1/3/x= lim
x→0

1/x2/3 does not exist.

3. (a) (αf)′(c) = lim
x→c

αf(x) −αf(c)
x− c

= α lim
x→c

f(x) − f(c)
x− c

= αf ′(c),

(b) (f + g)′(c) = lim
x→c

(f(x) + g(x)) − (f(c) + g(c))
x− c

= lim
x→c

f(x) − f(c)
x− c

+ lim
x→c

g(x) − g(c)
x− c

= f ′(c) + g′(c).

43
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4. Note that |f(x)/x| ≤ |x| for x∈ R.
5. (a) f ′(x) = (1−x2)/(1 + x2)2,

(b) g′(x) = (x− 1)/
√

5 − 2x+ x2,

(c) h′(x) = m(sin xk)m−1(cos xk)(kxk−1),

(d) k′(x) = 2x sec2(x2).
6. The function f ′ is continuous for n ≥ 2 and is differentiable for n ≥ 3.
7. By definition g′(c) = lim

h→0
|f(c + h)|/h, if this limit exists. If 0 = |f ′(c)|=

lim
h→0

|f(c + h)/h|, it follows that g′(c) = 0. If f ′(c) = L �= 0, then we have

lim(f(c± 1/n)/(±1/n)) =L, while lim(|f(c± 1/n)|/(±1/n))] =±L, so that
|f |′(c) does not exist.

8. (a) f ′(x) = 2 for x > 0; f ′(x) = 0 for −1 < x < 0; and f ′(x) = −2 for x <−1,

(b) g′(x) = 3 if x > 0; g′(x) = 1 if x < 0; g′(0) does not exist,

(c) h′(x) = 2|x| for all x∈ R,

(d) k′(x) = (−1)n cos x for nπ < x < (n + 1)π, n ∈ Z; k′(nπ) does not exist,

(e) p′(0) = 0; if x �= 0, then p′(x) does not exist.
9. If f is an even function, then f ′(−x) = lim

h→0
[f(−x+ h) − f(−x)]/h =

− lim
h→0

[f(x−h) − f(x)]/(−h) = −f ′(x).

10. If x �= 0, then g′(x) = 2x sin(1/x2) − (2/x) cos(1/x2). Moreover, g′(0) =
lim
h→0

h sin(1/h2) = 0. If xn := 1/
√

2nπ, then xn → 0 and |g′(xn)| = 2
√

2nπ,

so g′ is unbounded in every neighborhood of 0.
11. (a) f ′(x) = 2/(2x+ 3), (b) g′(x) = 6(L(x2))2/x,

(c) h′(x) = 1/x, (d) k′(x) = 1/(xL(x)).
12. r > 1.
13. Many examples are possible. For example, let f(x) := x for x rational and

f(x) := 0 for x irrational.
14. 1/h′(0) = 1/2, 1/h′(1) = 1/5 and 1/h′(−1) = 1/5.
15. D[Arccos y] = 1/D[cos x] =−1/ sin x= −1/

√
1 − y2.

16. D[Arctan y] = 1/D[tanx] = 1/ sec2 x= 1/(1 + y2).
17. Given ε > 0, let δ(ε) > 0 be such that if 0< |w − c|< δ(ε), w ∈ I, then

|f(w) − f(c) − (w − c)f ′(c)|< ε|w − c|. Now take w = u and w = v as described
and subtract and add the term f(c) − f ′(c)c and use the Triangle Inequality
to get

|f(v) − f(u) − f ′(c)(v − u)| ≤ |f(v) − f(c) − f ′(c)(v − c)|
+ |f(c) − f(u) − f ′(c)(c − u)| ≤ ε|v − c| + ε|c − u|.
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Since v − c≥ 0 and c−u ≥ 0, then |v − c| = v − c and |c−u| = c−u, so that
the final term equals ε(v − c + c−u) = ε(v −u).

Section 6.2

The Mean Value Theorem is stated for a function f on an interval [a, b]. However,
many of its applications use intervals of the form [a, x] or [x1, x2] where x or x1,
x2 are points in [a, b]. The shift from a “fixed interval” to what seems to be a
“variable interval” can cause confusion for some students. A word of explanation
when this first occurs will help to alleviate this confusion.

WARNING: Exercises 16 and 18 are rather difficult.

Sample Assignment: Exercises 2(a, b), 3(a, b), 6, 7, 9, 10, 12, 13, 17.

Partial Solutions:

1. (a) Increasing on [3/2,∞), decreasing on (−∞, 3/2],
(b) Increasing on (−∞, 3/8], decreasing on [3/8,∞),
(c) Increasing on (−∞,−1] and [1,∞),
(d) Increasing on [0,∞).

2. (a) f ′(x) = 1−1/x2. Relative minimum at x= 1; relative maximum at x= −1,
(b) g′(x) = (1 +x)(1 −x)/(1 + x2)2. Relative minimum at x= −1; relative
maximum at x= 1,
(c) h′(x) = 1/2

√
x− 1/

√
x+ 2. Relative maximum at x= 2/3,

(d) k′(x) = 2(x3 − 1)/x3. Relative minimum at x= 1.
3. (a) Relative minima at x= ±1; relative maxima at x= 0,±4,

(b) Relative maximum at x= 1; relative minima at x= 0, 2,
(c) Relative minima at x= −2, 3; relative maximum at x= 2,
(d) k′(x) = 4(x− 6)/3(x− 8)2/3. Relative minimum at x= 6; relative maxima
at x= 0, 9.

4. x= (1/n)(a1 + · · ·+ an).
5. Show that f ′(x) < 0 for x > 1. Then f is strictly decreasing on [1,∞) so that

f(a/b) < f(1) for a > b > 0.
6. If x < y, there exists c in (x, y) such that | sin x− sin y| = | cos c||y −x|.
7. There exists c with 1< c < x such that lnx= (x− 1)/c. Now use the inequal-

ity 1/x < 1/c < 1.

8. If h > 0 and a + h < b, there exists ch ∈ (a, a+ h) such that f(a + h) − f(a) =
hf ′(ch). Since ch → a as h → 0 + , it follows that f ′(a) = lim

h→0+
[f(a + h) −

f(a)]/h = lim
h→0+

f ′(ch) = A. Now consider h < 0.

9. f(x) = x4(2 + sin(1/x)) > 0 for all x �= 0, so f has an absolute minimum at
x= 0. We have f ′(x) = 8x3 + 4x3 sin(1/x) −x2 cos(1/x) for x �= 0. Now verify
that f ′(1/2nπ) < 0 for n ≥ 2 and f ′(2/(4n + 1)π) > 0 for n ≥ 1.
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10. g′(0) = lim
x→0

(1 + 2x sin(1/x)) = 1 + 0 = 1, and if x �= 0, then g′(x) = 1 +
4x sin(1/x) − 2 cos(1/x). Now show that g′(1/2nπ) < 0 and that we have
g′(2/(4n + 1)π) > 0 for n ∈ N.

11. For example, f(x) :=
√

x.

12. Apply Darboux’s Theorem 6.2.12. If g(x) := a for x < 0, g(x) := x+ b for
x≥ 0, where a, b are any constants, then g′(x) = h(x) for x �= 0.

13. If x1 < x2, then there exists c∈ (x1, x2) such that f(x2) − f(x1) =
(x2 −x1)f ′(c) > 0.

14. Apply Darboux’s Theorem 6.2.12.

15. Suppose that |f ′(x)| ≤K for x∈ I. For x, y ∈ I, apply the Mean Value
Theorem to get |f(x) − f(y)| = |(x− y)f ′(c)| ≤K|x− y|.

16. (a) Given ε > 0 there exists nε ∈ N such that if x≥nε, then |f ′(x) − b|< ε.
Hence if x≥nε and h > 0, there exists yx ∈ (x, x+ h) such that

∣∣∣∣f(x+ h) − f(x)
h

− b

∣∣∣∣ = |f ′(yx) − b|< ε.

Since ε > 0 is arbitrary, then lim
x→∞

(f(x+ h) − f(x))/h = b.

(b) Assume that b �= 0 and let ε < |b|/2. Let nε be as in part (a). Since lim
x→∞

f

exists, we may also assume that if x, y ≥nε, then |f(x) − f(y)|< ε. Hence
there exists xε in (nε, nε + 1) such that ε > |f(nε + 1) − f(nε)| = |f ′(xε)| ≥
|b|/2. Since ε > 0 is arbitrary, the hypothesis that b �= 0 is contradicted.
(c) If x≥nε, then there exists yε ∈ (nε, x) such that f(x) − f(nε) =
(x−nε)f ′(yε), so that we have

f(x)/x − b = f ′(yε) − b + f(nε)/x − nεf
′(yε)/x.

Since yε > nε, we have |f ′(yε) − b|< ε. Moreover |f(nε)/x|< ε if x is suffi-
ciently large; since f ′ is bounded on [nε,∞), then |nεf

′(yε)/x|< ε if x is
sufficiently large. Therefore, lim

x→∞
f(x)/x= b.

17. Apply the Mean Value Theorem to the function g − f on [0, x].

18. Given ε > 0, let δ = δ(ε) be as in Definition 6.1.1, and let x < c < y be such
that 0< |x− y|< δ. Since f(x) − f(y) = f(x) − f(c) + f(c) − f(y), a simple
calculation shows that

f(x) − f(y)
x − y

=
x − c

x − y
· f(x) − f(c)

x − c
+

c − y

x − y
· f(y) − f(c)

y − c
.
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Since both (x− c)/(x− y) and (c− y)/(x− y) are positive and have sum 1,
it follows that∣∣∣∣f(x) − f(y)

x − y
− f ′(c)

∣∣∣∣
≤

(
x − c

x − y

) ∣∣∣∣f(x) − f(c)
x − c

− f ′(c)
∣∣∣∣ +

(
c − y

x − y

) ∣∣∣∣f(y) − f(c)
y − c

− f ′(c)
∣∣∣∣

<

(
x − c

x − y
+

c − y

x − y

)
ε = ε.

Note that if one (but not both) of x and y equal c, the conclusion still holds.

19. Let x, y ∈ I, x �= y; then

f ′(x) − f ′(y) = f ′(x) − f(x) − f(y)
x − y

+
f(x) − f(y)

x − y
− f ′(y),

so that

∣∣f ′(x) − f ′(y)
∣∣ ≤

∣∣∣∣f ′(x) − f(x) − f(y)
x − y

∣∣∣∣ +
∣∣∣∣f(x) − f(y)

x − y
− f ′(y)

∣∣∣∣ .

If f is uniformly differentiable on I, given ε > 0 there exists δ > 0 such that
if 0< |x− y|< δ, x, y ∈ I, then both terms on the right side are less than ε.
Hence we have |f ′(x) − f ′(y)|< 2ε for |x− y|< δ, x, y ∈ I, whence we con-
clude that f ′ is (uniformly) continuous on I.

20. (a,b) Apply the Mean Value Theorem.
(c) Apply Darboux’s Theorem to the results of (a) and (b).

Section 6.3

The proofs of the various cases of L’Hospital’s Rules range from fairly trivial to
rather complicated. The only really difficult argument in this section is the proof
of Theorem 6.3.5, which deals with the case ∞/∞. This requires a more subtle
analysis than the other cases.

This section may be regarded as optional. Students are already familiar with
the mechanics of L’Hospital’s Rules.

Sample Assignment: Exercises 1, 2, 4, 6, 7(a,b), 8(a,b), 9(a,b), 13, 14.

Partial Solutions:

1. A = B(lim
x→c

f(x)/g(x)) = 0.

2. If A > 0, then f is positive on a neighborhood of c and lim
x→c

(g(x)/f(x)) = 0.
Since g(x)/f(x) > 0 on a neighborhood of c, we use the fact that f(x)/g(x) =
1/[g(x)/f(x)] to get a limit of ∞.
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3. In fact, if x∈ (0, 1] then f(x)/g(x) = sin(1/x), which does not have a limit
at 0. [Note that 6.3.1 cannot applied be applied since g′(0) = 0, and 6.3.3
cannot be applied since f ′(x)/g′(x) does not have a limit at 0.]

4. Note that f ′(0) = 0, but that f ′(x) does not exist if x �= 0.
5. Recall that lim

x→0
(sin x)/x= 1, but that lim

x→0
cos(1/x) does not exist.

6. (a) lim
x→0

ex − e−x − 2
1 − cos x

= lim
x→0

ex + e−x

sin x
= lim

x→0

ex + e−x

cos x
= 2.

(b) lim
x→0

x2 − sin2 x

x4 = lim
x→0

2x− 2 sin x cos x

4x3 = lim
x→0

2x− sin 2x

4x3

= lim
x→0

1 − cos 2x

6x2 = lim
x→0

2 sin 2x

12x
= lim

x→0

4 cos 2x

12
=

1
3
.

7. (a) 1, (b) 1, (c) 0, (d) 1/3.
8. (a) 1, (b) ∞, (c) 0, (d) 0.
9. (a) 0, (b) 0, (c) 0, (d) 0.

10. (a) 1, (b) 1, (c) e3, (d) 0.
11. (a) 1, (b) 1, (c) 1, (d) 0.
12. Let h(x) := exf(x). Then h′(x) = ex(f(x) + f ′(x)), so that lim

x→∞
h′(x)/ex =

lim
x→∞

(f(x) + f ′(x)) =L, by hypothesis. Give ε > 0, there exists α > 0 such
that L− ε/2 < h′(x)/ex < L+ ε/2 for all x > α. If α < y < x, then by 6.3.2
there exists c > α with

h(x) − h(y)
ex − ey

=
h′(c)
ec

,

and therefore L−ε/2 < (h(x)−h(y))/(ex−ey)< L+ε/2. But since ex−ey > 0,
this implies that

ex − ey

ex
· (L − ε/2) <

h(x) − h(y)
ex

<
ex − ey

ex
· (L + ε/2).

Add h(y)/ex to all sides and rearrange terms to get

(L − ε/2) +
h(y) − ey(L − ε/2)

ex
<

h(x)
ex

< (L + ε/2) +
h(y) − ey(L + ε/2)

ex
.

For fixed y, we note that lim
x→∞

[h(y) − ey(L± ε/2)]/ex = 0. Since h(x)/ex =
f(x), it follows that for sufficiently large x we have L− ε < f(x) < L+ ε.
Therefore lim

x→∞
f(x) = L, which implies that lim

x→∞
f ′(x) = lim

x→∞
(f(x) + f ′(x)) −

lim
x→∞

f(x) = L−L= 0.
[Note. If ex is replaced by a function g(x) such that g′(x) > 0 for large

values of x, then the above argument can be modified slightly to prove the
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following version of L’Hospital’s Rule: If h and g are differentiable func-
tions on (0,∞) that satisfy lim

x→∞
h′(x)/g′(x) = L and lim

x→∞
g′(x) = ∞, then

lim
x→∞

h(x) = L.]

13. The limit is 1.

14. lim
x→c

xc − cx

xx − cc
= lim

x→c

cxc−1 − (ln c)cx

(1 + lnx)xx
=

1 − ln c

1 + ln c
.

Section 6.4

The applications of Taylor’s Theorem are similar in spirit to those of the Mean
Value Theorem, but the technical details can be more complicated since higher
order derivatives are involved. Instead of estimating f ′, the use of Taylor’s
Theorem usually requires the estimation of the remainder Rn.

The applications that are presented here are independent of one another and
they need not all be covered to illustrate the use and importance of Taylor’s
Theorem. If Newton’s Method is discussed, students should be encouraged to
program the algorithm on a computer or programmable calculator; comparison of
the rate of convergence with the bisection method of locating roots is instructive.

Sample Assignment: Exercises 1, 2, 4, 5, 7, 8, 12, 14(a,b), 19, 20, 23.

Partial Solutions:

1. f (2n−1)(x) = (−1)na2n−1 sin ax and f (2n)(x) = (−1)na2n cos ax for n ∈ N.
2. g′(x) = 3x2 for x≥ 0, g′(x) = −3x2 for x < 0, and g′′(x) = 6|x| for x∈ R.
3. Use the relation:

(
n+1

k

)
=

(
n
k

)
+

(
n

k−1

)
for 0≤ k ≤n, where k, n∈ N.

4. Apply Taylor’s Theorem to f(x) :=
√

1 + x at x0 := 0 and note that
R1(x) < 0 and R2(x) > 0 for x > 0.

5. 1.095 <
√

1.2 < 1.1 and 1.375 <
√

2 < 1.5.

6. R2(0.2) < 0.0005 and R2(1) < 0.0625.
7. R2(x) = (1/6)(10/27)(1 + c)−8/3x3 < (5/81)x3, where 0 < c < x.
8. Rn(x) = ec(x − x0)n+1/(n + 1)! → 0 as n → ∞.
9. |Rn(x)| ≤ |x − x0|n/n! → 0 an n → ∞.

10. Use Induction to show h(n)(0) = 0 for n ∈ N. If x �= 0, then h(n)(x) is the
sum of terms of the form e−1/x2

/xk; therefore, if h(n)(0) = 0, then h(n+1)(0) =
lim
x→0

h(n)(x)/x= 0. Since Pn(x) = 0 for all x and all n, while h(x) �= 0 for
x �= 0, the remainder Rn(x) cannot converge to 0 for x �= 0.

11. With n = 4, ln 1.5 = 0.40; with n = 7, ln 1.5 = 0.405.

12. Use P6(x) and note that 7! = 5040.
13. For f(x) = ex at x0 = 0, the remainder at x= 1 satisfies the inequality Rn(1) ≤

3/(n + 1)!< 10−7 if n ≥ 10. P10(1) = 2.718 281 8 to seven places.
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14. (a) No. (b) No. (c) No. (d) Relative minimum.
15. Apply the Mean Value Theorem to f no [a, x0] and on [b, x0] get c1 and

c2 such that f ′(c1) = f ′(c2). Now apply the Mean Value Theorem to f ′ on
[c1, c2].

16. To obtain the formula, apply 6.3.3 and 6.3.1.
17. Apply Taylor’s Theorem to f at x0 = c to get f(x) ≥ f(c) + f ′(c)(x − c).
18. Apply Taylor’s Theorem to f and then to g at x0 = c. Then form the quotient

and use the continuity of the nth derivatives.
19. Since f(2) < 0 and f(2.2) > 0, there is a zero of f in [2.0, 2.2]. The value of

x4 is approximately 2.094 551 5.
20. r1 ≈ 1.452 626 88 and r2 ≈ −1.164 035 14.

21. r ≈ 1.324 717 96.
22. r1 ≈ 0.158 594 34 and r2 ≈ 3.146 193 22.

23. r1 ≈ 0.5 and r2 ≈ 0.809 016 99.

24. r ≈ 0.739 085 13.



CHAPTER 7

THE RIEMANN INTEGRAL

Students will, of course, have met with the Riemann integral in calculus, although
few of them would be able to define it with any precision. The approach used here
is almost certain to be the same as that used in their calculus course, although it
will probably come as news to the students that the subintervals in the partitions
do not need to have equal length.

If the students have a strong background, it is possible to go quickly through
this chapter and then discuss part of Chapter 10, dealing with the generalized
Riemann integral. However, for most classes in a one semester course, all of the
time available may be needed to cover this chapter. In that case, Chapter 10 can
be assigned as a “extra topic” to special students.

Since the most important results in this chapter are the Fundamental Theo-
rems given in Section 7.3, discussion should be focussed to lead to these results.

Section 7.4 is an optional section on the Darboux approach to the integral
using upper and lower integrals. The relative merits of the two approaches are
discussed in the introduction to the section. Section 7.5 deals with methods of
approximating integrals.

Section 7.1

Most of the results will be familiar to students. Discuss the examples carefully and
sample some of the proofs. Leave time for a discussion of some of the exercises.

Sample Assignment: Exercises 1(a,c), 2(a,c), 6, 9, 10, 12, 14.

Partial Solutions:

1. (a) ‖P1‖ = 2, (b) ‖P2‖ = 2 (c) ‖P3‖ = 1.4, (d) ‖P4‖ = 2.

2. (a) 02 · 1 + 12 · 1 + 22 · 2 = 0 + 1 + 8 = 9,
(b) 12 · 1 + 22 · 1 + 42 · 2 = 1 + 4 + 32 = 37,
(c) 02 · 2 + 22 · 1 + 32 · 1 = 0 + 4 + 9 = 13,
(d) 22 · 2 + 32 · 1 + 42 · 1 = 8 + 9 + 16 = 33.

3. Definition 7.1.1 requires that if ‖Ṗ‖< δε, then |S(f ; Ṗ) −L|< ε. Therefore, if
‖Ṗ‖ ≤ δε/2, then ‖Ṗ‖< δε so that |S(f ; Ṗ) −L| ≤ ε. Hence we take δ′

ε := δε/2.
On the other hand, if ‖Ṗ‖ ≤ ηε implies that |S(f ; Ṗ) −L| ≤ ε, we set δε :=
(1/2)ηε/2. Then if ‖Ṗ‖ ≤ δε then ‖Ṗ‖< ηε/2 so that |S(f ; Ṗ) −L| ≤ ε/2 < ε.

4. (b) If u ∈U2, then u ∈ [xi−1, xi] with tag ti ∈ [1, 2], so that (i) xi−1 ≤ ti ≤ 2
which implies that u ≤xi ≤xi−1 + ‖Ṗ‖ ≤ 2 + ‖Ṗ‖ and (ii) 1≤ ti ≤xi which
implies that 1 − ‖Ṗ‖ ≤xi − ‖Ṗ‖ ≤xi−1 ≤u. Therefore u belongs to [1− ‖Ṗ‖,
2 + ‖Ṗ‖].
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On the other hand, if 1 + ‖Ṗ‖ ≤ v ≤ 2 − ‖Ṗ‖ and v ∈ [xi−1, xi], then
(i) 1 + ‖Ṗ‖ ≤ xi which implies that 1 ≤ xi − ‖Ṗ‖ ≤ xi−1 ≤ ti and (ii) xi−1 ≤
2 − ‖Ṗ‖ which implies that ti ≤ xi ≤ xi−1 + ‖Ṗ‖ ≤ 2. Therefore we get
ti ∈ [1, 2].

5. (a) If u ∈ [xi−1, xi], then xi−1 ≤u so that c1 ≤ ti ≤xi ≤xi−1 + ‖Ṗ‖ whence
c1 − ‖Ṗ‖ ≤xi−1 ≤u. Also u ≤xi so that xi − ‖Ṗ‖ ≤xi−1 ≤ ti ≤ c2, whence
u ≤xi ≤ c2 + ‖Ṗ‖.
(b) If c1 + ‖Ṗ‖ ≤ v ≤xi then c1 ≤xi − ‖Ṗ‖ ≤xi−1 and if v ≤ c2 − ‖Ṗ‖, then
xi ≤xi−1 + ‖Ṗ‖ ≤ c2. Therefore c1 ≤xi−1 ≤ ti ≤xi ≤ c2.

6. (a) If Ṗ is a tagged partition of [0, 2], let Ṗ1 be the subset of Ṗ having tags
in [0, 1], and let Ṗ2 be the subset of Ṗ having tags in [1, 2]. The union of
the subintervals in Ṗ1 contains the interval [0, 1 − ‖Ṗ‖] and is contained in
[0, 1 + ‖Ṗ‖], so that 2(1− ‖Ṗ‖) ≤S(f ; Ṗ1) ≤ 2(1 + ‖Ṗ‖). Similarly, the union
of the subintervals in Ṗ2 contains [1 + ‖Ṗ‖, 2] and is contained in [1− ‖Ṗ‖, 2],
so that 1 − ‖Ṗ‖ ≤ S(f ; Ṗ2) ≤ 1 + ‖Ṗ‖. Therefore 3 − 3‖Ṗ‖ ≤ S(f ; Ṗ) =
S(f ; Ṗ1) + S(f ; Ṗ2) ≤ 3 + 3‖Ṗ‖, whence |S(f ; Ṗ) − 3| ≤ 3‖Ṗ‖, and we should
take ‖Ṗ‖< ε/3.
(b) If Ṗ0 is the subset of Ṗ having tags at 1, then the union of the (at
most two) subintervals in Ṗ0 is contained in [1 − ‖Ṗ‖, 1 + ‖Ṗ‖], so that
|S(h; Ṗ0)| ≤ 3 · 2‖Ṗ‖, and |S(h; Ṗ) − 3| ≤ 9‖Ṗ‖.

7. Use the fact that
∑n + 1

i = 1 kifi = (
∑n

i = 1 kifi) + kn + 1fn + 1.
8. Since −M ≤ f(x) ≤M for x∈ [a, b], Theorem 7.1.5(c) implies that we have

−M(b − a) ≤
∫ b
a f ≤M(b − a) whence the inequality follows.

9. Given ε > 0 there exists δε > 0 such that if ‖Ṗ‖< δε then |S(f ; Ṗ) −
∫ b
a f |< ε.

Since ‖Ṗn‖ → 0, there exists Kε such that if n > Kε then ‖Ṗn‖ < δε, whence
|S(f ; Ṗn) −

∫ b
a f |< ε. Therefore,

∫ b
a f = limn S(f ; Ṗn).

10. Since g is not bounded, it is not Riemann integrable. Let Ṗn be the partition
of [0, 1] into n equal subintervals with tags at the left endpoints, which are
rational numbers.

11. If f ∈ R[a, b], then Exercise 9 implies that both sequences of Riemann sums
converge to

∫ b
a f .

12. Let Pn be the partition of [0, 1] into n equal parts. If Ṗn is this partition with
rational tags, then S(f ; Ṗn) = 1, while if Q̇n is this partition with irrational
tags, then S(f ; Q̇n) = 0.

13. If ‖Ṗ‖< δε := ε/4α, then the union of the subintervals in Ṗ with tags in [c, d]
contains the interval [c + δε, d − δε] and is contained in [c− δε, d + δε]. There-
fore α(d − c− 2δε) ≤S(ϕ; Ṗ) ≤α(d − c + 2δε), whence |S(ϕ; Ṗ) −α(d − c)| ≤
2αδε < ε.

14. (a) Since 0≤xi−1 < xi, we have 0 ≤x2
i−1 < xixi−1 < x2

i , so that 3x2
i−1 < x2

i +
xixi−1 + x2

i = 3q2
i < 3x2

i . Therefore 0 ≤xi−1 ≤ qi ≤xi.
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(b) In fact, (x2
i + xixi−1 + x2

i−1) · (xi −xi−1) = x3
i −x3

i−1.
(c) The terms in S(Q; Q̇) telescope.
(d) If Ṗ has the tags ti and ‖Ṗ‖< δ, then |ti − qi|< δ so that we have
|S(Q; Ṗ) −S(Q; Q̇)|< δ(b − a).

15. Let Ṗ = {([xi−1, xi], ti)}n
i=1 be a tagged partition of [a, b] and let Q̇ :=

{([xi−1 + c, xi + c], ti + c)}n
i=1 so that Q̇ is a tagged partition of [a + c, b + c]

and ‖Q̇‖ = ‖Ṗ‖. Moreover, S(g; Q̇) = S(f ; Ṗ) so that |S(g; Q̇) −
∫ b
a f | =

|S(f ; Ṗ) −
∫ b
a f |< ε when ‖Q̇‖< δε.

Section 7.2

The Cauchy Criterion follows the standard pattern. It is used to obtain the
Squeeze Theorem 7.2.3, which is the tool used in proving the important inte-
grability theorems 7.2.5, 7.2.7 and 7.2.8. The only “tricky” proof is that of the
Additivity Theorem 7.2.9, but that proof can be soft-pedaled since the validity of
the theorem will seem obvious to most students.

Sample Assignment: Exercises 1, 2, 7, 8, 11, 12, 15, 18.

Partial Solutions:

1. If the conditions in 7.2.2(b) is satisfied, we can taken η = 1/n and obtain the
condition in the statement. Conversely, if the statement holds and η > 0 is
given, we can take n ∈ N such that 1/n < η to get the desired Ṗn, Q̇n.

2. If the tags are all rational, then S(h; Ṗ) ≥ 1, while if the tags are all irrational,
then S(h; Ṗ) = 0.

3. Let Ṗn be the partition of [0, 1] into n equal subintervals with t1 = 1/n and
Q̇n be the same subintervals tagged by irrational points.

4. No. Let f(x) :=x if x is rational and f(x) := 0 if x is irrational in [0, 1].
There is no squeeze; that is,

∫ b
a (ωε −αε) is not small.

5. If c1, . . ., cn are the distinct values taken by ϕ, then ϕ−1(cj) is the union of a
finite collection {Jj1, . . ., Jjrj

} of disjoint subintervals of [a, b]. We can write
ϕ =

∑n
j=1

∑rj

k=1 cjϕJjk.
6. Not necessarily. The Dirichlet function takes on only two values, but Q ∩

[0, 1] and [0, 1] \ Q are not intervals.
7. If Ṗ = {([xi−1, xi], ti)}n

i=1, take ϕ(x) := f(ti) for x∈ [xi−1, xi) and ϕ(b) := 0,
so that ϕ is a simple function. By the formula in Theorem 7.2.5, we have∫ b
a ϕ =

∑n
i=1 f(ti)(xi −xi−1) = S(f ; Ṗ).

8. If f(c) > 0 for some c∈ (a, b), there exists δ > 0 such that f(x) > 1
2f(c) for

|x− c| ≤ δ. Then
∫ b
a f ≥

∫ c+δ
c−δ f ≥ 1

2f(c)(2δ) > 0. If c is an endpoint, a similar
argument applies.

9. The function f(0) := 1 and f(x) := 0 elsewhere on [0, 1] has integral 0. More
dramatically, consider Thomae’s function in Example 7.1.7.
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10. Let h := f − g so that h is continuous. By Bolzano’s Theorem 5.3.7, if h is
never 0, then either h(x) > 0, or h(x) < 0 for all x∈ [a, b]. In the first case
there exists γ > 0 such that h(x) ≥ γ, whence

∫ b
a h ≥ γ(b − a) > 0.

11. Since αc(x) = f(x) for x∈ [c, b], then αc ∈ R[c, b]; similarly ωc ∈ R[c, b]. The
Additivity Theorem 7.2.9 implies that αc and ωc are in R[a, b]. Moreover,∫ b
a (ωc −αc) = 2M(c− a) < ε when c− a < ε/2M . The Squeeze Theorem 7.2.3

implies that f ∈ R[a, b]. Further, |
∫ b
a f −

∫ b
c f | = |

∫ c
a f | ≤M(c− a).

12. Indeed, |g(x)| ≤ 1 for all x∈ [0, 1]. Since g is continuous on every interval
[c, 1] where 0 < c < 1, it belongs to R[c, 1] and the preceding exercise applies.

13. Let f(x) := 1/x for x∈ (0, 1] and f(0) := 0. Then f ∈ R[c, 1] for every c∈ (0, 1),
but f /∈ R[0, 1] since f is not bounded.

14. Use Mathematical Induction.

15. Suppose E = {a = c0 < c1 < · · · < cm = b}. Since f if continuous on the inter-
val (ci−1, ci), a two-sided version of Exercise 11 implies that its restriction is
in R[ci−1, ci]. The preceding exercise implies that f ∈ R[a, b]. The case where
a or b is not in E is similar.

16. Let m := inf f(x) and M := sup f(x). By Theorem 7.1.5(c), we have
m(b−a)≤

∫ b
a f ≤ M(b−a). By Bolzano’s Theorem 5.3.7, there exists c ∈ [a, b]

such that f(c) = (
∫ b
a f)/(b − a).

17. Since g(x) > 0, we have mg(x) ≤ f(x)g(x) ≤Mg(x) for all x∈ [a, b], whence
m

∫ b
a g ≤

∫ b
a fg ≤M

∫ b
a g. Since

∫ b
a g > 0 (why?), Bolzano’s Theorem 5.3.7

implies that there exists c∈ [a, b] such that f(c) = (
∫ b
a fg)/(

∫ b
a g).

18. Let M := sup f and let p ∈ [a, b] be such that f(p) = M . Given ε > 0 there
exists an interval [c, d] containing p with d − c > 0 such that M − ε ≤ f(x) ≤M
for x∈ [c, d]. Therefore

(M − ε)n(d − c) ≤
∫ d

c
fn ≤

∫ b

a
fn ≤Mn(b − a).

If we take the nth root, we have (M − ε)(d − c)1/n ≤Mn ≤M(b − a)1/n. Now
use the fact that α1/n → 1 for α > 0 to complete the details.

19. The Additivity Theorem implies that the restrictions of f to [−a, 0] and [0, a]
are Riemann integrable. Let Ṗn be a sequence of tagged partitions of [0, a]
with ‖Ṗn‖ → 0 and let Ṗ∗

n be the corresponding “symmetric” partition of
[−a, a].
(a) Show that S(f ; Ṗ∗

n) = 2S(f ; Ṗn) → 2
∫ a
0 f .

(b) Show that S(f ; Ṗ∗
n) = 0.

20. Note that x �→ f(x2) is an even continuous function.



Chapter 7 — The Riemann Integral 55

Section 7.3

The main results are the Fundamental Theorems, given in 7.3.1 and 7.3.5, and
the Lebesgue Integrability Criterion, stated in 7.3.12. The First Form 7.3.1 allows
for a finite set E where the function F may not be differentiable. It is useful to
point out that if E = ∅, then one does not need to assume that F is continuous
at every point of [a, b]. However, one often encounters functions where F is not
differentiable at every point (for example F (x) =

√
x). It is also worth stressing

that the hypothesis 7.3.1(c) is essential. The Second Form 7.3.5 is complementary
to the First Form, but is nowhere nearly as important in most situations.

The notion of a null set is an important one. No doubt most students will
think of countable sets, but it is worth pointing out that there are uncountable
null sets; however, it may be best to wait until the students encounter the Cantor
set in Section 11.2 before too much is made of this fact. Similarly, the proof of
the Lebesgue Criterion is given in Appendix C, but it is probably too complicated
for the average student at this level.

Sample Assignment: Exercises 2, 3, 5, 7, 9, 13, 18(a,c).

Partial Solutions:

1. Suppose that E := {a = c0 < c1 < · · · < cm = b} contains the points in [a, b]
where the derivative F ′(x) either does not exist, or does not equal f(x). If
we apply the proof of the 7.3.1 to [ci−1, ci], we have that f ∈ R[ci−1, ci] and∫ ci

ci−1
f = F (ci) −F (ci−1). Exercise 7.2.14 and Corollary 7.2.10 imply that

f ∈ R[a, b] and that
∫ b
a f =

∑m
i=1 (F (ci) −F (ci−1)) =F (b) −F (a).

2. We note that Hn is continuous on [a, b] and H ′
n(x) = xn for all x∈ [a, b], so∫ b

a xndx = Hn(b) −Hn(a). Here E = ∅.
3. Let E := {−1, 1}. If x /∈ E, the Chain Rule 6.1.6 implies that G′(x) =

1
2 sgn(x2 − 1) · 2x= x sgn(x2 − 1) = g(x). Also g ∈ R[−2, 3].

4. Indeed, B′(x) = |x| for all x.
5. (a) We have Φ′

C(x) = Φ′(x) = f(x) for all x∈ [a, b], so ΦC is also an antideriva-
tive of f on [a, b].

6. By Theorem 7.2.13, we have Fa(z) =
∫ c
a f +

∫ z
c f , so that Fc = Fa −

∫ c
a f .

7. Let h be Thomae’s function. There is no function H : [0, 1] → R such that
H ′(x) = h(x) for x in some nondegenerate open interval; otherwise Darboux’s
Theorem 6.2.12 would be contradicted on this interval. So a finite set E will
not suffice for this function.

8. Note that F (0) = 0 = lim
x→0+

F (x) and that if n ∈ N, then

lim
x→n−

F (x) = (n − 1)n/2 = F (n) = lim
x→n+

F (x).
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Therefore, F is continuous for x ≥ 0. Also F ′(x) = n − 1 = [[x]] for x in
(n − 1, n), n ∈ N. However, F does not have (a two-sided) derivative at
n = 0, 1, 2, . . .. Since there are only a finite number of these points in [a, b],
the Fundamental Theorem 7.3.1 implies that

∫ b
a [[x]]dx = F (b) −F (a).

9. (a) G(x) = F (x) −F (c), (b) H(x) = F (b) −F (x), (c) S(x) = F (sin x) −F (x).
10. If F (x) :=

∫ x
a f , then since f is continuous on [a, b], Theorem 7.3.6 implies

that F ′(x) = f(x) for all x∈ [a, b]. Since G(x) = F (v(x)), the statement fol-
lows from the Chain Rule 6.1.6.

11. (a) F ′(x) = 2x(1 + x6)−1, (b) F ′(x) = (1 +x2)1/2 − 2x(1 + x4)1/2.
12. F (x) :=x2/2 for 0 ≤ x < 1, F (x) :=x − 1/2 for 1 ≤ x < 2, and F (x) :=

(x2 − 1)/2 for 2≤x≤ 3. If x �= 2 then F ′(x) = f(x), but F ′(2) does not exist.
13. For 0≤x≤ 2, we have G(x) =

∫ x
0 (−1)dt = −x; and for 2≤x≤ 3, we have

G(x) =
∫ 2
0 (−1)dt +

∫ x
2 1dt = −2 + (x− 2) = x− 4. G(x) is not differentiable

at x= 2.
14. The Fundamental Theorem implies that if f ′(x) ≤ 2 for 0≤x≤ 2, then f(x) −

f(0) =
∫ x
0 f ′(x) dx ≤

∫ x
0 2 dx = 2x, so that f(x) ≤ 2x + f(0) = 2x − 1 for

0 ≤x≤ 2. Then f(2) ≤ 3 so that f(2) = 4 is impossible.
15. Since g(x) =

∫ x+c
0 f −

∫ x−c
0 f and f is continuous, then g′(x) = f(x+ c) −

f(x− c).
16. If F (x) :=

∫ x
0 f = −

∫ x
1 f , then F ′(x) = f(x) = −f(x), so that 2f(x) = 0 and

hence f(x) = 0 for all x∈ [0, 1].
18. (a) Take ϕ(t) = 1 + t2 to get 1

2

∫ t=1
t=0 (ϕ(t))1/2 · ϕ′(t)dt = 1

2

∫ x=2
x=1 x1/2dx =

1
3x3/2

∣∣2
1 = 1

3(23/2 − 1).

(b) Take ϕ(t) = 1 + t3 to get 1
3

∫ t=2
t=0 (ϕ(t))−1/2 · ϕ′(t)dt = 1

3

∫ x=9
x=1 x−1/2dx =

2
3x1/2

∣∣9
1 = 2

3(91/2 − 1) = 4
3 .

(c) Take ϕ(t) = 1 +
√

t to get 2
∫ t=4
t=1 (ϕ(t))1/2 · ϕ′(t)dt = 2

∫ x=3
x=2 x1/2dx =

4
3x3/2

∣∣3
2 = 4

3(33/2 − 23/2).

(d) Take ϕ(t) = t1/2 to get 2
∫ t=4
t=1 cos(ϕ(t)) · ϕ′(t)dt = 2

∫ x=2
x=1 cos x dx=

2(sin 2 − sin 1).
19. In (a)–(c) ϕ′(0) does not exist. For (a), one can integrate over [c, 4] and let

c → 0+. For (b) the integrand is not bounded near 0, so the integral does
not exist. For (c), note that the integrand is even, so the integral equals
2

∫ 1
0 (1 + t)1/2 dt. For (d), ϕ′(1) does not exist, so integrate over [0, c] and let

c → 1−.
20. (b) It is clear that

⋃
n Zn is contained in

⋃
n,k Jn

k and that the sum of the
lengths of these intervals is ≤

∑
n ε/2n = ε.

21. (a) The Product Theorem 7.3.16 implies that (tf ± g)2 ≥ 0 is integrable.
(b) We have ∓2t

∫ b
a fg ≤ t2

∫ b
a f2 +

∫ b
a g2. Now divide by t to obtain (b).
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(c) Let t → ∞ in (b).
(d) If

∫ b
a f2 �= 0, let t = (

∫ b
a g2/

∫ b
a f2)1/2 in (b). Now replace f and g by |f |

and |g|.
22. Note that the composite function sgn ◦h is Dirichlet’s function, which is not

Riemann integrable.

Section 7.4

This optional section presents an alternative approach to the integral developed
by Gaston Darboux. Instead of Riemann sums using tags, this approach employs
upper and lower sums using suprema and infima. The material in this section is
independent of the earlier sections of the chapter until the equivalence of the two
approaches is discussed. Because of time pressure, instructors will need to make
decisions about selection of material and this section provides an option.

Sample Assignment: Exercises 1, 4, 7, 9, 10, 12, 13, 14.

Partial Solutions:

1. (a) L(f ; P1) = (0 + 0 + 1) · 1 = 1, U(f ; P1) = (1 + 1 + 2) · 1 = 4.

(b) L(f ; P2) = (1/2 + 0 + 0 + 1/2 + 1 + 3/2) · 1
2

= 7/4,
U(f ; P2) = (1 + 1/2 + 1/2 + 1 + 3/2 + 2) · (1/2) = 13/4.

2. If P = (a, x2., x3, . . ., xn−1, b) is any partition of [a, b] and f(x) = c for all
x, then L(f ; P ) = U(f ; P ) = c((x2 − a) + (x3 − x2) + (x4 −x3) + · · · +
(b − xn−1)) = c(b − a).

3. If P is a partition, then inf{f(x) : x∈ Ik} ≤ inf{g(x) : x∈ Ik} for each k,
so that L(f ; P ) ≤L(g; P ). Since P is an arbitrary partition, we have L(f) ≤
L(g).

4. If k > 0, then inf{kf(x) : x∈ Ij} = k inf{f(x) : x∈ Ij}, whence L(kf ; P ) =
k L(f ; P ). It follows that L(kf) = k L(f).

5. It follows from Exercise 3 that L(f) ≤L(g) ≤L(h) and U(f) ≤U(g) ≤U(h).
But if L(f) = U(f) = A and L(h) = U(h) = A, it follows that L(g) = A = U(g),
whence g is Darboux integrable with integral A.

6. Given ε > 0, consider the partition Pε = (0, 1 − ε/2, 1 + ε/2, 2). Then
U(f ; Pε) = 2 and L(f ; Pε) = 2 − ε. It follows that the integral is equal to 2.

7. (a) If Pε = (0, 1/2 − ε, 1/2 + ε, 1), then L(g; Pε) = 1/2 − ε and U(g; Pε) =
1/2 + ε.
(b) Here L(g; Pε) = 1/2 − ε and U(g; Pε) = 1/2 + 13ε.
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8. If for some c∈ I we have f(c) > 0, then (by Theorem 4.2.9) there exists δ > 0
such that f(x) > f(c)/2 > 0 for |x− c|< δ, x∈ I. Thus for some partition Pc,
we have L(f ; Pc) > 0, and therefore L(f) > 0.

9. Given ε > 0, let P1 and P2 be partitions of I such that L(fj) − ε/2 < L(fj ; Pj),
and let Pε = P1 ∪ P2 so that L(fj) − ε/2 < L(fj ; Pε) for j = 1, 2. If I1, . . . , Im

are the subintervals of I arising from Pε, then it follows that

inf{f1(x) : x∈ Ik} + inf{f2(x) : x∈ Ik) ≤ inf{f1(x) + f2(x) : x∈ Ik}.

Thus we obtain L(f1; Pε) + L(f2; Pε) ≤L(f1 + f2; Pε) ≤L(f1 + f2). Hence
L(f1) + L(f2) − ε ≤L(f1 + f2), where ε > 0 is arbitrary.

10. Let f1 be the Dirichlet function (see Example 7.4.7(d)) and let f2 = 1 − f1.
Then L(f1) = L(f2) = 0, but L(f1 + f2) = 1.

11. If |f(x)| ≤M for x∈ [a, b] and ε > 0, let Pε be a partition such that the total
length of the subintervals that contain any of the points c1, c2, . . . , cn is less
than ε/M . Then U(f ; Pn) −L(f ; Pn) < ε, so the Integrability Criterion 7.4.8
applies. Also 0 ≤U(f ; Pn) ≤ ε, so that U(f) = 0.

12. L(f ; Pn) = (02 + 12 + · · · + (n − 1)2)/n3 = (n − 1)n(2n − 1)/6n3

=
1
3

(
1 − 3

2n
+

1
2n2

)
U(f ; Pn) = (12 + 22 + · · · + n2)/n3 = n(n + 1)(2n + 1)/6n3

=
1
3

(
1 +

3
2n

+
1

2n2

)

Therefore, 1/3=sup{L(f ; Pn): n∈N}≤L(f)≤U(f)≤ inf{U(f ; Pn): n∈N} =
1/3, and we conclude that L(f) = U(f) = 1/3.

13. It follows from Lemma 7.4.2 that if P is a refinement of Pε, then L(f ; Pε) ≤
L(f ; P ) and U(f ; P ) ≤ U(f ; Pε), so that U(f ; P ) − L(f ; P ) ≤ U(f ; Pε) −
L(f ; Pε).

14. (a) By the Uniform Continuity Theorem 5.4.3, f is uniformly continuous on
I. Therefore if ε > 0 is given, there exists δ > 0 such that if u, v in I and
|u − v|< δ, then |f(u) − f(v)|< ε/(b − a). Let n be such that n > (b − a)/δ
and Pn = (x0, x1, . . . , xn) be the partition of I into n equal parts so that
xk −xk−1 = (b − a)/n < δ. Applying the Maximum-Minimum Theorem 5.3.4
to each subinterval, we get uk, vk in Ik so that f(uk) = Mk and f(vk) = mk.
Then Mk −mk = f(uk) − f(vk) < ε/(b − a). Then 0 ≤ U(f ; Pn) −L(f ; Pn) =∑n

k = 1 (Mk −mk)(xk −xk−1) ≤ ε. Since ε > 0 is arbitrary, it follows from
Corollary 7.4.9 that f is integrable on I.
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(b) If f is increasing on I, let Pn be the partition as in (a). Then f(xk) = Mk

and f(xk−1) = mk. Then we have the “telescoping” sum
n∑

k = 1

(Mk −mk)(xk −xk−1) =
b − a

n

n∑
k = 1

(f(xk) − f(xk−1))

=
b − a

n
(f(x1) − f(x0) + f(x2) − f(x1)

+ · · · + f(xn) − f(xn−1))

=
b − a

n
(f(b) − f(a)).

Now given ε > 0, choose n > (b − a)(f(b) − f(a))/ε. Then for partition Pn,

we get U(f ; Pn) −L(f ; Pn) =
n∑

k = 1

(Mk −mk)(xk −xk−1) ≤ ε. Corollary 7.4.9

implies that f is integrable on I.

15. We have 0 ≤U(f ; Pn) −L(f ; Pn) ≤K(b − a)2/n, and therefore

0 ≤U(f ; Pn) −
b∫

a

f ≤ K(b − a)2/n.

Section 7.5

The proofs of the error estimates for the Trapezoidal, Midpoint and Simpson
formulas involve application of the Mean Value Theorem and the Bolzano Inter-
mediate Value Theorem. Since they are not particularly instructive, they are given
in Appendix D and the instructor may not wish to discuss them. Consequently,
it should be possible to cover this section in a single lesson.

Attention should be paid to the fact that, in the presence of convexity (or
concavity) of the integrand, one has bounds for the error in the Trapezoidal and
Midpoint Rules without examining the second derivative of the integrand.

Sample Assignment: Exercises 1, 2, 7, 8, 9, 17.

Partial Solutions:

1. Use (4) with n = 4, a= 1, b = 2, h = 1/4. Here 1/4 ≤ f ′′(c) ≤ 2, so T4 ≈ 0.697 02.

2. Use (10) with n = 4, a= 1, b = 2, h = 1/4. Since f (4)(x) = 24/x5, we have
3/4 ≤ f (4)(c) ≤ 2. Here S4 ≈ 0.693 25.

3. T4 ≈ 0.782 79.

4. The index n must satisfy 2/12n2 < 10−6; hence n > 1000/
√

6 ≈ 408.25.

5. S4 ≈ 0785 39.

6. The index n must satisfy 96/180n4 < 10−6; hence n ≥ 28.
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7. Note that p(4)(x) = 0 for all x.
8. Use the fact that f ′′(x) ≥ 0 in (4) and (7). Geometrically the inequality is

reasonable because, if the function is convex, then the chord of the trapezoid
lies above the tangent to the graph. If f ′′(x) ≤ 0, then the graph is concave
and the inequality is reversed.

9. A direct calculation.
10. A direct calculation.
11. Use Exercise 10.
12. The integral is equal to the area of one quarter of the unit circle. The error

estimates cannot be used because the derivatives of h are unbounded on [0, 1].
Since h′′(x) ≤ 0, the inequality is Tn(h) < π/4 < Mn(h). See Exercise 8.

13. Interpret K as an area. Show that h′′(x) = −(1 −x2)3/2 and that h(4)(x) =
−3(1 + 4x2)(1 +x2)−7/2. To eight decimal places, π = 3.141 592 65.

14. Approximately 3.653 484 49.
15. Approximately 4.821 159 32.
16. Approximately 0.835 648 85.
17. Approximately 1.851 937 05.
18. 1.
19. Approximately 1.198 140 23.
20. Approximately 0.904 524 24.



CHAPTER 8

SEQUENCES OF FUNCTIONS

In this chapter we study the pointwise and uniform convergence of sequences
of functions, so it draws freely from results in Chapter 3. After introducing
these concepts in Section 8.1, we show in Section 8.2 that one can interchange
certain important limiting operations (e.g., differentiation and integration) when
the convergence is uniform. Both of these sections are important and should be
discussed in detail.

Section 8.3 and 8.4 and more special. In Section 8.3 we use the results in
Section 8.2 to establish the exponential function on a firm foundation, after which
the logarithm is treated. In Section 8.4 we do the same for the sine and cosine
functions. Most of these properties will be familiar to the students, although the
approach will surely be new to them. A detailed discussion of Section 8.3 and 8.4
can be omitted if time is short.

Section 8.1

The distinction between ordinary (= pointwise) convergence and uniform conver-
gence of a sequence of functions on a set A is a subtle one. It centers on whether
the index K(ε, x) can be chosen to be independent of the point x∈A; that is,
whether the set {K(ε, x) : x∈A} is bounded in R. If so, we can take K(ε) to be
the supremum of this set. However, it is not always easy to determine whether
this set is bounded for each ε > 0. Often it is easier to obtain estimates for the
uniform norms introduced in Definition 8.1.7.

Sample Assignment: Exercises 1, 2, 3, 4, 7, 11, 12, 13, 14, 17.

Partial Solutions:

1. Note that 0 ≤ fn(x) ≤x/n → 0 as n → ∞.

2. Note that fn(0) = 0 for all n. If x > 0, we have |fn(x)| ≤ 1/(nx) → 0 as
n → ∞.

3. Note that fn(0) = 0 for all n ∈ N. If x > 0, then |fn(x) − 1|< 1/(nx) → 0 as
n → ∞.

4. If x∈ [0, 1), then |fn(x)| ≤xn → 0. If x= 1, then fn(1) = 1/2 for all n ∈ N.
If x > 1, then |fn(x) − 1/ = 1/(1 + xn) ≤ (1/x)n → 0.

5. Note that fn(0) = 0 for all n. If x > 0, then |fn(x)| ≤ 1/(nx) → 0.

6. Note that fn(0) = 0 for all n. If 0< ε < π/2, let Mε := tan(π/2 − ε) > 0
so that if y > Mε, then π/2 − ε < Arctan y < π/2. Therefore if n > Mε/x,
then π/2 − ε < Arctan nx < π/2. Similarly if x < 0.
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7. Note that fn(0) = 1 for all n. If x > 0, then 0< e−x < 1 so that 0 ≤ e−nx =
(e−x)n → 0.

8. Note that fn(0) = 0 for all n. If x > 0, it follows from Exercise 7 that 0≤
x(e−x)n → x · 0 = 0.

9. For both functions fn(0) = 0 for all n. If x > 0, then 0≤x2e−nx = x2(e−x)n →
0, since 0 < e−x < 1. For the second function, use Theorem 3.2.11 and
[(n + 1)2 x2e−(n + 1)x]/[n2x2 e−nx] = (1 + 1/n)2e−x → e−x < 1.

10. If x∈ Z, then cos πx= ±1, so that (cos πx)2 = 1 and the limit equals 1. If
x /∈ Z, then 0≤ (cos πx)2 < 1 and the limit equals 0.

11. If x∈ [0, a], then |fn(x)| ≤ a/n. However, fn(n) = 1/2.

12. If x∈ [a,∞), then |fn(x)| ≤ 1/(na). However, fn(1/n) = 1/2.

13. If a > 0, then |fn(x) − 1| ≤ 1/(na) on [a,∞). However, fn(1/n) = 1/2.

14. If x∈ [0, b], then |fn(x)| ≤ bn. However, fn(2−1/n) = 1/3.

15. If x∈ [a,∞), then |fn(x)| ≤ 1/(na). However, fn(1/n) = 1
2 sin 1 > 0.

16. If 0< ε < π/2, let Mε := tan(π/2 − ε) > 0, so that if na≥Mε, then π/2 − ε ≤
Arctan na < π/2. Hence, if x≥ a and n ≥Mε/a, then nx≥Mε and π/2 − ε ≤
Arctan nx < π/2. However, fn(1/n) = Arctan 1 =π/4 > 0.

17. If x∈ [a,∞), then |fn(x)| ≤ (e−a)n. However, fn(1/n) = 1/e.

18. The maximum of fn on [0,∞) is at x= 1/n, so ‖fn‖[0,∞) = 1/(ne).

19. The maximum of fn on [0,∞) is at x= 2/n, so ‖fn‖[0,∞) = 4/(ne)2.

20. If n is sufficiently large, the maximum of fn on [a,∞) is at x= a > 0, so that
‖fn‖[a,∞) = n2a2/ena → 0. However, ‖fn‖[0,∞) = fn(2/n) = 4/e2.

21. Given ε > 0, let K1(ε/2) be such that if n ≥ K1(ε/2) and x ∈ A, then
|fn(x) − f(x)| < ε/2; also let K2(ε/2) be such that if n ≥ K2(ε/2) and
x ∈ A, then |gn(x) − g(x)| < ε/2. Let K3 := sup{K1(ε/2), K2(ε/2)} so that
if n ≥ K3 and x ∈ A, then |(fn + gn)(x) − (f + g)(x)| ≤ |fn(x) − f(x)| +
|gn(x) − g(x)|< ε.

22. We have |fn(x) − f(x)| = 1/n for all x∈ R. Hence (fn) converges uniformly on
R to f . However, |f2

n(n) − f2(n)| ≥ 2 so that (f2
n) does not converge uniformly

on R to f .

23. Let M be a bound for (fn(x)) and (gn(x)) on A, whence also |f(x)| ≤M .
The Triangle Inequality gives |fn(x)gn(x) − f(x)g(x)| ≤M [|fn(x) − f(x)| +
|gn(x) − g(x)|] for x∈A.

24. Since g is uniformly continuous on [−M, M ], given ε > 0 there exists δε > 0
such that if |u − v|< δε and u, v ∈A, then |g(u) − g(v)|< ε. If (fn) converges
uniformly to f on A, given δ > 0 there exists K(δ) such that if n ≥K(δ)
and x∈A, then |fn(x) − f(x)|< δ. Therefore, if n ≥K(δε) and x∈A, then
|g(fn(x)) − g(f(x))|< ε.
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Section 8.2

The proof of Theorem 8.2.2 is short and understandable; it should be discussed
in detail. That of Theorem 8.2.3 is more delicate; observe that it depends on the
Mean Value Theorem 6.2.4 in two places. Note especially that the hypothesis in
Theorem 8.2.3 is that the sequence of derivatives is uniformly convergent (and
that the uniform convergence of the sequence of functions is a conclusion, rather
than a hypothesis). The only delicate part of the proof of Theorem 8.2.4 is to
show that the limit function is integrable. The Bounded Convergence Theorem
8.2.5 will be considerably strengthened in Section 10.4. Dini’s Theorem 8.2.6 is
interesting in that it shows that monotone convergence for continuous functions
to a continuous limit implies the uniformity of the convergence on [a, b].

Sample Assignment: Exercises 1, 2, 4, 5, 7, 8, 14, 16, 19.

Partial Solutions:

1. The limit function is f(x) := 0 for 0≤x < 1, f(1) := 1/2 and f(x) := 1 for
1 < x≤ 2. Since it is discontinuous, while the fn are all continuous, the con-
vergence cannot be uniform.

2. The convergence is not uniform, because fn(1/n) = n, while f(x) = 0 for all
x∈ [0, 1].

3. Let fn(x) := 1/n if x is rational and fn(x) := 0 if x is irrational.

4. If ε > 0 is given, let K be such that if n ≥K, then ‖fn − f‖I < ε/2. Then
|fn(xn) − f(x0)| ≤ |fn(xn) − f(xn)| + |f(xn) − f(x0)| ≤ ε/2 + |f(xn) − f(x0)|.
Since f is continuous (by Theorem 8.2.2) and xn → x0, then |f(xn) − f(x0)|<
ε/2 for n ≥K ′, so that |fn(xn) − f(x0)|< ε for n ≥ max{K, K ′}.

5. Given ε > 0, there exists δ > 0 such that if x, u∈ R and |x−u|< δ, then
|f(x) − f(u)|< ε. Now require that 1/n < δ.

6. Here f(0) = 1 and f(x) = 0 for x∈ (0, 1]. Since the fn are continuous on
[0, 1] but f is not, the convergence cannot be uniform on [0, 1]. Alternatively,
note that fn(1/n) → 1/e.

7. Given ε := 1, there exists K > 0 such that if n ≥K and x∈A, then |fn(x) −
f(x)|< 1, so that |fn(x)| ≤ |fK(x)| + 1 for all x∈A. If M := max{‖f1‖A, . . .,
‖fK−1‖A, ‖fK‖A + 1}, then |fn(x)| ≤M for all n ∈ N, x∈A. Therefore
|f(x)| ≤M for all x∈A.

8. Since 0 ≤ fn(x) ≤nx ≤n on [0, 1] and 0≤ fn(x) ≤ 1/x≤ 1 on [1,∞), we have
0 ≤ fn(x) ≤n on [0,∞). Moreover, f(x) := lim(fn(x)) = 0 for x= 0 and
f(x) = 1/x for x > 0, which is not bounded on [0,∞). Since f is not con-
tinuous on [0,∞), the convergence is not uniform. Alternatively, fn(1/

√
n) =√

n/2.
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9. Since f(x) = 0 for all x∈ [0, 1], we have f ′(1) = 0. Also ‖fn − f‖[0,1] ≤ 1/n,
so the convergence of (fn) is uniform. Also g(x) = lim(xn−1) so that g(1) = 1.
The convergence of the sequence of derivatives is not uniform on [0,1].

10. Here ‖gn‖[0,∞) ≤ 1/n so (gn) converges uniformly to the zero function. How-
ever, lim(g′

n(x)) = −1 for x= 0, and = 0 for x > 0. Hence (lim gn)′(0) = 0 �=
1 = lim(g′

n(0)). The sequence (g′
n) does not converge uniformly.

11. The Fundamental Theorem 7.3.1 implies that
∫ x
a f ′

n = fn(x) − fn(a). Now
apply Theorem 8.2.4.

12. The function fn(x) := e−nx2
is decreasing on [1, 2] and ‖fn‖[1,2] = e−n. Hence

Theorem 8.2.4 can be applied.

13. If a > 0, then ‖fn‖[a,π] ≤ 1/(na) and Theorem 8.2.4 applies. On the interval
[0, π] the limit function is f(0) := 1 and f(x) := 0 for x∈ (0, π]. Moreover
‖fn‖[0,π] = 1. Hence it follows from Theorem 8.2.5 that

∫ π
0 f = 0. This can

also be proved directly by changing the variable v = nx and estimating the
integrals.

14. The limit function is f(0) := 0, f(x) := 1 for x∈ (0, 1] and the convergence is
not uniform on [0, 1]. Her lim

∫ 1
0 fn = lim(1 − (1/n) ln(n + 1)) = 1 and

∫ 1
0 f = 1.

15. Here gn(0) = 0 for all n, and gn(x) → 0 for x∈ (0, 1] by Theorem 3.2.11. The
function gn is maximum on [0, 1] at x= 1/(n + 1), whence ‖gn‖[0,1] ≤ 1 for
all n. Now apply Theorem 8.2.5. Or evaluate the integrals directly.

16. Each fn is Riemann integrable since it has only a finite number of disconti-
nuities. (See Exercise 7.1.13 or the Lebesgue Integrability Criterion 7.3.12.)

17. Here f(x) := 0 for x∈ [0, 1] and we have ‖fn − f‖[0,1] = 1.

18. Here f(x) := 0 for x∈ [0, 1) and f(1) := 1 and we have ‖fn − f‖[0,1] = 1.

19. Here f(x) := 0 for all x∈ [0,∞) and |fn(n) − f(n)| = 1.

20. Let fn(x) :=xn for x∈ [0, 1].

Section 8.3

There are many different approaches to the exponential and logarithmic functions:
see R.G. Bartle’s Elements of Real Analysis. The approach here is based on
obtaining the exponential function as a limit of polynomials (which, in fact, are the
partial sums of the Maclaurin series for the exponential function). The uniqueness
and basic properties of the exponential function are based on the differential
equation and initial conditions it satisfies.

The logarithm is obtained as the function that is inverse to the exponential
function. The power functions x �→ aα and the functions x �→ loga x are often
useful, but can largely be left to the student.
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Sample Assignment: Exercises 1, 2, 3, 5, 6, 8, 10, 13.

Partial Solutions:

1. To establish the inequality, let A :=x > 0 and let m → ∞ in (5). For the
estimate on e, take x= 1 and n = 3 to obtain |e− 22

3 |< 1/12, so e < 23
4 .

Since (En(1)) is increasing, we also have 22
3 < e.

2. Note that if n ≥ 9, then 2/(n + 1)!< 6 × 10−7 < 5 × 10−6. Hence e ≈ 2.71828.
3. Evidently En(x) ≤ ex for all n ∈ N, x≥ 0. To obtain the other inequality,

apply Taylor’s Theorem 6.4.1 to [0, a] and note that if c∈ [0, a], then 1≤
ec ≤ ea.

4. To obtain the inequality, replace n by n + 1 and take a = 1 in Exercise 3. Since
2 < e < 3, we have e/(n + 1) for n ≥ 2. If e = m/n, then en! − (1 + 1 + · · · +
1/n!)n! is an integer in (0, 1), which is impossible.

5. Note that 0 ≤ tn/(1 + t) ≤ tn for t ∈ [0, x].
6. ln 1.1 ≈ 0.0953 and ln 1.4 ≈ 0.3365. Take n > 19,999.
7. ln 2 ≈ 0.6931. Note that e/2 − 1 < 0.36 and (0.36)8/8 < 0.000 04.

8. If f(0) = 0, the argument in 8.3.4 show that f(x) = 0 for all x, so we
take K = 0. If f(0) �= 0, then g(x) := f(x)/f(0) is such that g′(x) = g(x)
for all x and g(0) = 1. It follows from 8.3.4 that g(x) = E(x), whence f(x) =
f(1)ex.

9. Note that if the means are equal, then we must have 1 +xk = E(xk) for all
k. It follows that xk = 0, whence ak = A for all k.

10. L′(1) = lim[L(1 + 1/n) − L(1)]/(1/n) = limL((1 + 1/n)n) = L(lim(1+
1/n)n) = L(e) = 1.

11. (a) Since L(1) = 0, we have 1α = E(αL(1)) =E(0) = 1.
(b) This follows from the fact that E(z) > 0 for all z ∈ R.
(c) (xy)a = E(αL(xy)) =E(αL(x) + αL(y)) =E(αL(x)) · E(αL(y)) =xα · yα.
(d) Since (1/y)α = E(αL(1/y)) =E(−αL(y)) = (E(αL(y))−1 = (yα)−1, the
statement follows from (c).

12. (a) xα + β = E((α + β)L(x)) =E(αL(x) + βL(x)) =E(αL(x)) · E(βL(x)) =
xα · xβ.
(b) (xα)β = E(βL(xα)) =E(βαL(x)) =xαβ , and similarly for (xβ)α.
(c) x−α = E(−αL(x)) = (E(αL(x))−1 = (xα)−1 = 1/xα.
(d) If x > 1, then L(x) > 0, so that if α < β, then αL(x) < βL(x). Since E is
strictly increasing, we deduce that xα = E(αL(x)) < E(βL(x)) =xβ.

13. (a) If α > 0, it follows from 8.3.13 that x �→ xα is strictly increasing. Since
lim

x→0+
L(x) = −∞, use 8.3.7 to show that lim

x→0+
xα = 0.

(b) If α < 0, then αL is strictly decreasing, whence x �→ xα is strictly decreas-
ing. Here lim

x→0+
αL(x) = ∞, so lim

x→0+
xα = lim

y→∞
E(y) = ∞, and lim

x→∞
αL(x) =

−∞, so lim
x→∞

xα = lim
y→−∞

E(y) = 0.



66 Bartle and Sherbert

14. By 8.3.14, if x > 0 and a > 0, a �= 1, then (loga x)(ln a) = lnx, whence
aloga x = E((loga x)(ln a)) =E(lnx) = x for x > 0. Similarly, since ln(ay) =
ln(E(y ln a)) = y ln a, we have loga(ay) = (ln ay)/(ln a) = y for all y ∈ R.

15. Use 8.3.14 and 8.3.9(vii).
16. Use 8.3.14 and 8.3.9(viii).
17. Indeed, we have loga x= (lnx)/(ln a) = [(lnx)/(ln b)] · [(ln b)/(ln a)] if a �= 1,

b �= 1. Now take a = 10, b = e.

Section 8.4

Although the characterization of the sine and cosine functions given here is not the
traditional approach to these functions, it has several advantages. Indeed, the
most important properties of these functions follow quickly from the fact that
they satisfy the differential equation f ′′(x) = −f(x) for all x∈ R, and that any
function satisfying this differential equation is a linear combination of sin and cos.
[Other approaches to the trigonometric functions are sketched in R. G. Bartle’s
Elements of Real Analysis.]

Sample Assignment: Exercises 1, 2, 4, 6, 7, 8.

Partial Solutions:

1. If n > 2|x|, then | cos x−Cn(x)| ≤ (16/15)|x|2n/(2n)!. Hence cos(0.2) ≈
0.980 067 and cos 1 ≈ 0.549 302. As for the sine function, if n > 2|x|, then
| sin x−Sn(x)| ≤ (16/15)|x|2n/(2n)!. Hence sin(0.2) ≈ 0.198 669 and sin 1 ≈
0.841 471.

2. It follows from Corollary 8.4.3 that | sin x| ≤ 1 and | cos x| ≤ 1.
3. If x < 0, then −x > 0 so property (vii) never holds. However, if x < 0, we

have −(−x) ≤S(−x) = −S(x) ≤ −x, whence −|x| = x≤S(x) ≤ −x= |x|. It
follows from 8.4.8(ix) that −x3/6 ≤ −(sin x−x) ≤ 0 if x≥ 0. Hence, if x < 0,
we have x3/6 ≤ −(sin x−x) ≤ 0, whence | sin x−x| ≤ |x|3/6.

4. We integrate 8.4.8(x) twice on [0, x]. Note that the polynomial on the left
has a zero in the interval [1.56, 1.57], so 1.56 ≤π/2.

5. Exercise 8.4.4 shows that C4(x) ≤ cos x≤C3(x) for all x∈ R. Integrating sev-
eral times, we get S4(x) ≤ sin x≤S5(x) for all x > 0. Show that S4(3.05) > 0
and S5(3.15) < 0. (This procedure can be sharpened.)

6. Clearly sn(0) = 0 and cn(0) = 1; also s′
n(x) = cn(x) and c′

n+1(x) = sn(x) for
x∈ R, n ∈ N. Show that if |x| ≤A and m > n > 2A, then |cm(x) − cn(x)|<
(16/15)A2n/(2n)!, whence it follows that |c(x) − cn(x)|< (16/15)A2n/(2n)!
and the convergence of (cn) to c is uniform on each interval [−A, A]. Similarly
for (sn). Since c′′

n+1 = cn and s′′
n+1 = sn for n ∈ N, property (j) holds. Property

(jj) is evident, and it follows from s′
n = cn and c′

n+1 = sn that s′ = c and c′ = s.



Chapter 8 — Sequences of Functions 67

7. Note that the derivative D[(c(x))2 − (s(x))2] = 0 for all x∈ R. To establish
uniqueness, argue as in 8.4.4.

8. Let g(x) := f(0)c(x) + f ′(0)s(x) for x∈ R, so that g′′(x) = g(x), g(0) = f(0)
and g′(0) = f ′(0). Therefore the function h(x) := f(x) − g(x) has the property
that h′′(x) = h(x) for all x∈ R and h(0) = 0, h′(0) = 0. Thus it follows as in
the proof of 8.4.4 that g(x) = f(x) for all x∈ R, so that f(x) = f(0)c(x) +
f ′(0)s(x). Now note that f1(x) := ex and f2(x) := e−x satisfy f ′′(x) = f(x)
for x∈ R. Hence f1(x) = c(x) + s(x) and f2(x) = c(x) − s(x), whence it follows
that c(x) = 1

2(ex + e−x) and s(x) = 1
2(ex − e−x).

9. If ϕ(x) := c(−x), show that ϕ′′(x) = ϕ(x) and ϕ(0) = 1, ϕ′(0) = 0, so that
ϕ(x) = c(x) for all x∈ R. Therefore c is even.

10. It follows from Exercise 8 that c(x) > ex/2 > 0 for all x∈ R. Therefore s
is strictly increasing on R and, since s(0) = 0, it follows that c is strictly
increasing on (0,∞). Thus 1 = c(0) < c(x) for all x∈ (0,∞); since c is even,
we deduce that c(x) ≥ 1 for all x∈ R. Since lim

x→∞
ex = ∞ and lim

x→∞
e−x = 0,

it follows from Exercise 8 that lim
x→∞

c(x) = lim
x→∞

s(x) = ∞.



CHAPTER 9

INFINITE SERIES

Students have been exposed to much of the material in this chapter in their
introductory calculus course; however, their recollection of this material probably
will not go much beyond the mechanical application of some of the “Tests”. At this
point, they should be prepared to approach the subject on a more sophisticated
level.

Instructors will recall that an introduction to series was given in Section 3.7
and it would be well to review that section very briefly. Since Section 9.1 is quite
short it is possible to do that in one lesson. Although much of Section 9.2 will be
familiar, the short Section 9.3 will probably be new. Section 9.4 is an interesting
one, and ties this discussion together with Chapter 8.

Section 9.1

The notion of absolute convergence is rather subtle, and should be stressed. The
discussion about rearrangements will help the student to realize the importance
of absolute convergence. If the Cauchy Condensation Test in Exercise 3.7.15 has
not been discussed before, it should be covered now.

Sample Assignment: Exercises 1, 2, 4, 7, 8, 11, 12.

Partial Solutions:

1. Let sn be the nth partial sum of
∑∞

1 an, let tn be the nth partial sum
of

∑∞
1 |an|, and suppose that an ≥ 0 for n > P . If m > n > P , show that

tm − tn = sm − sn. Now apply the Cauchy Criterion.
2. Replace each strictly negative term by 0 to obtain

∑
pn, and replace each

strictly positive term by 0 to obtain
∑

qn. If
∑

pn is convergent, then
∑

qn

is also convergent since qn = an − pn and
∑

an is convergent (see Exercise
3.7.4). In this case, |an| = pn − qn, so that

∑
an is absolutely convergent, a

contradiction.
3. Take positive terms until the partial sum exceeds 1, then take negative terms

until the partial sum is less than 1, then take positive terms until the partial
sum exceeds 2, etc.

4. It was used together with the Cauchy Criterion to assure that given ε > 0
there exists N < q such that

∑q
N+1 |xk|< ε.

5. Yes. Let M > 0 be such that every partial sum tn of
∑

|an| satisfies 0 ≤ tn ≤M .
If

∑
bk is rearrangement of

∑
an and if uk := |b1| + · · · + |bk|, then there

exists n ∈ N such that every term |bi| in uk is contained in tn and hence
0 ≤uk ≤ tn ≤M . Therefore

∑
bk is absolutely convergent.

68
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6. Use Mathematical Induction to show that if n ≥ 2, then sn = −ln 2− lnn +
ln(n + 1). Yes, since an < 0 for all n ≥ 2.

7. (a) If |bk| ≤M for all k ∈ N, then |anbn + · · · + ambm| ≤M(|an| + · · · + |am|).
Now apply the Cauchy Criterion 3.7.4.
(b) Let bk := +1 if ak ≥ 0 and bk :=−1 if ak < 0. Then

∑
akbk =

∑
|ak|.

8. Let ak := (−1)k/
√

k, so a2
k = 1/k.

9. Since s2n − sn = an+1 + · · · + a2n ≥na2n = 1
2(2na2n), then lim(2na2n) = 0.

Similarly s2n+1 − sn ≥ (n + 1)a2n+1 ≥ 1
2(2n + 1)a2n+1, so that we have

lim(2n + 1)a2n+1 = 0. Consequently lim(nan) = 0.
10. Consider

∑∞
2 1/(n lnn), which diverges by Exercise 3.7.17(a).

11. Indeed, if |n2an| ≤M for all n, then |an| ≤M/n2 so Example 3.7.6(c) and the
Comparison Test 3.7.7(a) apply.

12. If 0< a < 1, then an → 0, so 1/(1 + an) → 1 and the series diverges by the
nth Term Test 3.7.3. Similarly, if a = 1, then 1/(1 + an) = 1

2 . If a > 1, then
1/(1 + an) < (1/a)n and the series converges by comparison with a geometric
series with ratio 1/a < 1.

13. (a) Rationalize to obtain
∑

xn where xn := [
√

n(
√

n + 1 +
√

n)]−1 and note
that xn ≈ yn := 1/(2n). Now apply the Limit Comparison Test 3.7.8 to show
the series diverges.
(b) Rationalize and compare with

∑
1/n3/2 to show the series converges.

14. If
∑

an is absolutely convergent, then the partial sums (tn) of
∑

|an| are
bounded, say by M . It is evident that the absolute value of the partial sums
of any subseries of an are also bounded by M , so these subseries are also
(absolutely) convergent.

Conversely, if every subseries of
∑

an is convergent, then the subseries
consisting of the strictly positive (and strictly negative) terms are absolutely
convergent, whence it follows that

∑
an is absolutely convergent.

15. If (i) exists, let sn :=
∑∞

k=1 ck. For fixed n ∈ N, choose i0, j0 such that
{c1, . . . , cn} ⊆ {aij : i ≤ i0, j ≤ j0}. Then sn ≤

∑i0
i=1

∑j0
j=1 aij ≤∑∞

i=1
∑∞

j=1 aij = B. Since n ∈ N is arbitrary, it follows that C exists and
C ≤B.

If (ii) holds, given n ∈ N, choose m ∈ N such that {ai1, . . . , ain} ⊆
{c1, . . . , cm}. Then

∑n
j=1 aij ≤

∑m
k=1 ck ≤C so that

∑∞
j=1 aij ≤C for all

j ∈ N. Now choose N such that {aij : i≤m, j ≤n} ⊆ {ck : k ≤N}. Then∑m
i=1

∑n
j=1 aij ≤

∑N
k=1 ck ≤C. First let n → ∞, then let m → ∞ to get

B ≤C.
16. Note that

∑∞
j=1 aij = −1 if i= 1 and = 0 if i > 1, whence

∑∞
i=1

∑∞
j=1 aij =

−1. On the other hand,
∑∞

i=1 aij = 1 if j = 1 and = 0 if j > 1, whence∑∞
j=1

∑∞
i=1 aij = 1.
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Section 9.2

The results presented in this section are primarily designed to test for absolute
convergence. All of these tests are very useful, but they are not definitive in
the sense that there are some series that do not yield to them, but require more
delicate tests (such as Kummer’s and Gauss’s Tests that are presented in more
advanced treatises).

Sample Assignment: Exercises 1, 2(a,b), 3(a,c,e), 5, 7(a,c), 9, 12(a,d), 16.

Partial Solutions:

1. (a) Convergent; compare with
∑

1/n2.
(b) Divergent; apply 9.2.1 with bn := 1/n.
(c) Divergent; note that 21/n → 1.
(d) Convergent; apply 9.2.3 or 9.2.5.

2. (a) Divergent; apply 9.2.1 with bn := 1/n.
(b) Convergent; apply 3.7.7 or 9.2.1 with yn :=n−3/2.
(c) Convergent; use 9.2.4 and note that (n/(n + 1))n → 1/e < 1.
(d) Divergent; the nth term does not tend to 0.

3. (a) (lnn)p < n for large n, by L’Hospital’s Rule.
(b) Convergent; apply 9.2.3.
(c) Convergent; note that (lnn)ln n > n2 for large n. Now apply 3.7.7 or 9.2.1.
(d) Divergent; note that (lnn)ln ln n = exp((ln lnn)2) < exp(lnn) = n for
large n. Now apply 3.7.7 or 9.2.1.
(e) Divergent; apply 9.2.6 or Exercise 3.7.15.
(f) Convergent; apply 9.2.6 or Exercise 3.7.15.

4. (a) Convergent; apply 9.2.2 or 9.2.4.
(b) Divergent; apply 9.2.4.
(c) Divergent; note that eln n = n.
(d) Convergent; note that (lnn) exp(−n1/2) < n exp(−n1/2) < 1/n2 for
large n, by L’Hospital’s Rule.
(e) Divergent; apply 9.2.4.
(f) Divergent; apply 9.2.4.

5. Compare with
∑

1/n2.
6. Apply the Integral Test 9.2.6.
7. (a,b) Convergent; apply 9.2.5.

(c) Divergent; note that xn ≥ (2/4)(4/6) · · · (2n/(2n + 2)) = 1/(n + 1). Or,
apply 9.2.9.
(d) Convergent; apply 9.2.9.

8. Here lim(x1/n
n ) = a < 1.

9. If m > n ≥K, then |sm − sn| ≤ |xn+1| + · · · + |xm|< rn+1/(1 − r). Now let
m → ∞.
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10. Relation (5) implies that |xn+k| ≤ rk|xn| when n ≥K. Therefore, if m >
n ≥K, we have |sm − sn| ≤ (r + r2 + · · · + rm−n)|xn|< |xn|(r/(1 − r)). Now
take the limit as m → ∞.

11. Let m > n ≥K. Use (12) to get (a− 1)(|xn+1| + · · · + |xm|) ≤n|xn+1| −
m|xm+1|, whence |sm − sn| ≤ |xn+1| + · · · + |xm| ≤ |xn+1|n/(a− 1). Now take
the limit as m → ∞.

12. (a) A crude estimate of the remainder is given by s− s4 = 1/6 · 7 +
1/7 · 8 + · · ·<

∫ ∞
5 x−2 dx = 1/5. Similarly s− s10 < 1/11 and s− sn < 1/(n + 1),

so that 999 terms suffice to get s− s999 < 1/1000. [In this case the series tele-
scopes and we have sn = 1/2 − 1/(n + 2).]
(d) If n ≥ 4, then xn+1/xn ≤ 5/8 so (by Exercise 10) |s− s4| ≤ 5/12. If n ≥ 10,
then xn+1/xn ≤ 11/20 so that |s− s10| ≤ (10/210)(11/9) < 0.012. If n = 14,
then |s− s14|< 0.000 99. Alternatively, if n ≥ 4, then x

1/n
n ≤ 1/

√
2 so (by

Exercise 9) |s− s4| ≤ 1/4(
√

2 − 1) < 0.61. If n ≥ 10, then x
1/n
n ≤ (1/2)(10)1/10

so that |s− s10|< 0.017. If n = 15, then |s− s15|< 0.000 69.
13. (b) Here 1/5

√
6 + 1/6

√
7 + · · · <

∫ ∞
4 x−3/2 dx = 1. Therefore we have

∑∞
n+1<∫ ∞

n x−3/2dx = 2/
√

n, so |s− s10|< 0.633 and |s− sn|< 0.001 when n > 4×106.
(c) If n ≥ 4, then |s− sn| ≤ (0.694)xn so that |s− s4|< 0.065. If n ≥ 10, then
|s− sn| ≤ (0.628)xn so that |s− s10|< 0.000 023.

14. Note that s3n > 1 + 1/4 + 1/7 + · · · + 1/(3n + 1), which is not bounded.
15. Since lnn =

∫ n
1 t−1 dt < 1/1 + 1/2 + · · · + 1/(n − 1), it follows that 1/n < cn.

Since cn − cn+1 = ln(n + 1) − lnn − 1/(n + 1) = 1/θn − 1/(n + 1) by the Mean
Value Theorem, where θn ∈ (n, n + 1), we have cn − cn+1 > 0. Therefore the
decreasing sequence (cn) converges, say to C. An elementary calculation
shows that bn = c2n − cn + ln 2, so that bn → ln 2.

16. Note that, for an integer with n digits, there are 9 ways of picking the first
digit and 10 ways of picking each of the other n − 1 digits. Thus there are 8
“sixless” values nk from 1 to 9, there are 8 ·9 such values from 10 to 99, there
are 8 ·92 values between 100 and 999, and so on. Hence

∑
1/nk is dominated

by 8/1 + 8 · 9/10 + 8 · 92/102 + · · · = 80.
There is one value of mk from 1 to 9, there is one value from 10 to 19,

one from 20 to 29, etc. Hence the (grouped) terms of
∑

1/mk dominate
1/10 + 1/20 + · · · = (1/10)

∑
1/k, which is divergent.

There are 9 values of pk from 1 to 9, there are 9 such values from 10 to
19, and so on. Hence the (grouped) terms of

∑
1/pk dominate 9(1/10) +

9(1/20) + · · · = (9/10)
∑

1/k, which is divergent.
17. The terms are positive and lim(n(1 −xn+1/xn)) = q − p; therefore, it follows

from 9.2.9 that the series is convergent if q > p + 1 and is divergent if q < p + 1.
If q = p + 1, use 9.2.1 with yn := 1/n to establish divergence.

18. Here lim(n(1 −xn+1/xn)) = (c− a− b) + 1, so the series is convergent if c >
a + b and is divergent if c < a+ b. [If c = a + b and ab > 0, one can show
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that xn+1/xn ≥n/(n + 1) so that (nxn) is an increasing sequence, whence
the series is divergent. The restriction that ab≥ 0 can be removed by using
a stronger test, such as Kummer’s or Gauss’s test.]

19. Here b1 + b2 + · · · + bn = A1/2 − (A −An)1/2 → A1/2, so that
∑

bn converges
to A1/2. Also bn > 0 and an/bn = (A −An−1)1/2 + (A −An)1/2 → 0.

20. Here (bn) is a decreasing sequence converging to 0 and b1 + b2 + · · · + bn >
(a1 + a2 + · · · + an)/

√
An =

√
An, so the series

∑
bn diverges. Also bn/an =

1/
√

An → 0.

Section 9.3

In this short section, we present some results that often enable one to handle
series that are conditionally convergent. The easiest and most useful one is the
Alternating Series Test 9.3.2, since alternating series often arise (e.g., from power
series with positive coefficients). In addition, the estimate for the rapidity of
convergence (in Exercise 2) is particularly easy to apply. The tests due to Dirichlet
and Abel are more complicated, but apply to more general series.

Sample Assignment: Exercises 1, 2, 5, 7, 9, 10. (Warning: Exercises 11 and
15(c,f) are rather difficult.)

Partial Solutions:

1. (a) Absolutely convergent. (b) Conditionally convergent.
(c) Divergent. (d) Conditionally convergent.

2. Show by induction that s2 < s4 < s6 < · · ·< s5 < s3 < s1. Hence the limit lies
between sn and sn+1 so that |s− sn|< |sn+1 − sn| = zn+1.

3. Let z2n−1 := 1/n and z2n := 0. Or, if it is desired to have zn > 0 for all n, take
z2n−1 := 1/n and z2n := 1/n2.

4. Let (yn) := (+1, −1, +1, −1, . . .).

5. One can use Dirichlet’s Test with (yn) := (+1,−1,−1, +1, +1,−1,−1, . . .) to
establish the convergence. Or group the terms in pairs (after the first), use
the Alternating Series Test to establish the convergence of the grouped series,
and note that |s2n − s2n−1| = 1/2n → 0 so that |sk − s| → 0.

6. If q > p, then X := (1/nq−p) is a convergent monotone sequence. Now apply
Abel’s Test with yn := an/np.

7. If f(x) := (lnx)p/xq, then f ′(x) < 0 for x sufficiently large. L’Hospital’s Rule
shows that the terms in the alternating series approach 0.

8. (a) Convergent by 9.3.2.
(b) Divergent; use 9.2.1 with yn := 1/(n + 1).
(c) Divergent; the terms do not approach 0.
(d) Divergent; use 9.2.1 with yn := 1/n.
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9. If t > 0, the sequence (e−nt) decreases to 0, so Dirichlet’s Test applies.

10. The convergence of
∑

(an/n) follows from Dirichlet’s Test; the convergence of∑
(sn/n(n + 1)) follows by comparison with

∑
(1/n2). To obtain the equal-

ity, use Abel’s Lemma with xk := 1/k, yk := ak and n = 0. Then let m → ∞.

11. Dirichlet’s Test does not apply (directly, at least), since the partial sums of
the series generated by (1, −1, −1, 1, 1, 1, . . .) are not bounded. To estab-
lish the convergence, one can group the terms 1 − (1/2 + 1/3) + (1/4 + 1/5 +
1/6) − · · · to get an alternating series. The block consisting of k terms
ends with nk := 1 + 2 + · · · + k = k(k + 1)/2, and starts with nk−1 + 1. The
sum of this block of k terms is greater than the integral of 1/x over the
interval [nk−1 + 1, nk + 1] and less than the integral of 1/x over the interval
[nk−1, nk]; hence this sum is greater than ln[(nk + 1)/(nk−1 + 1)] and less than
ln[nk/nk−1]. Since it is seen that nk+1/nk < (nk + 1)/(nk−1 + 1) when k > 2,
it follows that the terms in the grouped series are decreasing. Moreover, since
ln(nk/nk−1) → 0, it follows that the terms of the grouped series approach 0;
consequently, the grouped series converges. This means that the subsequence
(snk

) of the partial sums of the original series converges. But it is readily
seen that if nk−1 ≤n ≤nk, then sn lies between the partial sums snk−1 and
snk

. Hence lim(sn) = lim(snk
), and the series converges.

12. Let |sn| ≤B for all n. If m > n, then it follows from Abel’s Lemma that
|
∑m

k=n + 1 xkyk| ≤B[|xm| + |xn+1| +
∑m

k = n + 1 |xk −xk+1|]. Since xn → 0 and∑
|xk −xk+1| is convergent, the dominant term approaches 0, and the Cauchy

Criterion applies.

13. Since (an) and (bn) are bounded monotone sequences, they are convergent.
Hence, if ε > 0 is given, there exists M(ε) such that if m > n ≥M(ε),
then 0≤ an+1 − am+1 < ε and 0≤ bm+1 − bn+1 < ε. Since xk −xk+1 =
(ak − ak+1) + (bk+1 − bk), one has

∑m
k=n + 1 |xk −xk+1| = (an+1 − am + 1) +

(bm+1 − bn+1) < 2ε.

14. By Abel’s Lemma,
∑m

k=n + 1 ak/k = sm/m − sn/(n + 1) +
∑m−1

n+1 sk/k(k + 1).
Thus |

∑m
n+1 ak/k| ≤ M [(1/m)1−r + (1/(n + 1))1−r +

∑m−1
n+1 1/k2−r]. Since

1 − r > 0, the first two terms approach 0; since p := 2− r > 1, the series
∑

1/kp

is convergent by 9.2.7(d), so the final terms tends to 0.

15. (a) Use Abel’s Test with xn := 1/n.
(b) Use the Cauchy Inequality with xn :=

√
an, yn := 1/n, to get

∑√
an/n ≤

(
∑

an)1/2(
∑

1/n2)1/2, establishing convergence.
(c) Let

∑
(−1)k−1ck, ck > 0, be conditionally convergent. Since π/2 > 3/2,

each interval Ik := [(k − 1)π + π/4, (k − 1)π + 3π/4] contains at least one inte-
ger point; we let nk ∈ Ik be the integer nearest (k − 1/2)π so that | sin nk|>
1/2. Let ank

:= (−1)k−1ck and an := 0 if n �= nk so that
∑

an is convergent.
However, (−1)k−1 sin nk > 1/2 so that bnk

:= ank
sin nk > ck/2; hence

∑
bn is

divergent.
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(d) Let an := [n(lnn)2]−1, which converges by the Integral Test. However,
bn := [

√
n lnn]−1, which diverges.

(e) The sequence (n1/n) decreases to 1 (see Example 3.1.11(d)); hence Abel’s
Test 9.3.5 applies to give convergence.
(f) If

∑
an is absolutely convergent, so is

∑
bn; otherwise

∑
bn may diverge.

Indeed, (1/k)/(1 + 1/k) = 1/(k + 1); hence, if the block of terms 1/p, −1/2p,
−1/2p appears in

∑
an, then the sum of the corresponding block of terms

in
∑

bn is 1/(p + 1) − 2/(2p + 1) =−1/(p + 1)(2p + 1). Consequently, if this
block of three terms is repeated 2p + 1 times in

∑
an, the sum of the cor-

responding terms in
∑

bn is −1/(n + 1). Now let (an) consist of the block
1/1, −1/2, −1/2 repeated 3 times, followed by the block 1/2, −1/4, −1/4
repeated 5 times, followed by the block 1/3, −1/6, −1/6 repeated 7 times,
and so on. Then

∑
an converges to 0, but

∑
bn = −

∑
1/(p + 1) is divergent.

Section 9.4

The notion of convergence [respectively, uniform convergence] of a series of func-
tions is nothing more than the convergence [resp., uniform convergence] of the
sequence of partial sums of the functions. The importance of the uniform con-
vergence is that it enables one to interchange limit operations (as in Theorems
9.4.2–9.4.4). While the Weierstrass M -Test 9.4.6 is only a sufficient condition for
uniform convergence, it is often very useful.

The use of the Ratio Test to determine the radius of convergence will be
familiar to most students, but since the limit of |an + 1/an| does not always exist,
the Cauchy-Hadamard Theorem 9.4.9 (which always applies) is very important.

It is stressed that the results in 9.4.11 and 9.4.12 are for power series only.
For general series of functions, one may not be able to integrate or differentiate
the series term-by-term.

Sample Assignment: Exercises 1(a,c,e), 2, 5, 6(a,c,e), 7, 11, 15, 16, 17.

Partial Solutions:

1. (a) Take Mn := 1/n2 in the Weierstrass M -Test.
(b) If a > 0, take Mn := (1/a2)/n2 to show uniform convergence for |x| ≥ a.
The series is convergent for all x �= 0, but it is not uniformly convergent on
R \ {0}, since if xn := 1/n, then fn(xn) = 1.
(c) Since | sin y| ≤ |y|, the series converges for all x. But since fn(n2) =
sin 1 > 0, the series is not uniformly convergent on R. However, if a > 0,
the series is uniformly convergent for |x| ≤ a since then |fn(x)| ≤ a/n2.
(d) If 0≤x≤ 1, the nth term does not go to 0, so the series is divergent. If
1 < x <∞, the series is convergent, since (xn + 1)−1 ≤ (1/x)n. It is uniformly
convergent on [a,∞) for a > 1. However, it is not uniformly convergent on
(1,∞); take xn := (1 + 1/n)1/n.
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(e) Since 0 ≤ fn(x) ≤xn, the series is convergent on [0,1) and uniformly con-
vergent on [0, a] for any a∈ (0, 1). It is not uniformly convergent on [0,1);
take xn := 1− 1/n. The series is divergent on [1,∞) since the terms do not
approach 0.
(f) If x≥ 0, the series is alternating and is convergent with |s(x) − sn(x)| ≤
1/(n + 1). Hence it is uniformly convergent.

2. Since | sin nx| ≤ 1, we can take Mn := |an|.
3. If ε > 0, there exists M such that if n ≥M , then |cn sin nx + · · · +

c2n sin 2nx| < ε for all x. If x ∈ [π/6n, 5π/12n], then sin kx ≥ 1/2 for
k = n, . . . , 2n, so that (n + 1)c2n < 2ε. It follows that 2nc2n < 4ε and
(2n + 1)c2n+1 < 4ε for n ≥M .

4. If ρ = ∞, then the sequence (|an|1/n) is not bounded. Hence if |x0|> 0, then
there are infinitely many k ∈ N with |ak|> 1/|x0| so that |akx

k
0|> 1. Thus the

series is not convergent when x0 �= 0.
If ρ = 0 and x0 �= 0, then since |an|1/n < 1/2|x0| for all n ≥n0, it follows

that |anxn
0 |< 1/2n for n ≥n0, whence

∑
anxn

0 is convergent.
5. Suppose that L := lim(|an|/|an+1|) exists and that 0< L <∞. If follows from

the Ratio Test that
∑

anxn converges for |x|< L and diverges for |x|> L.
Therefore it follows from the Cauchy-Hadamard Theorem that L= R.
[Alternatively, if 0< ε < L, it can be shown by Induction that there exists
m ∈ N such that |am|(L+ ε)−k < |am+k|< |am|(L− ε)−k. Hence there exists
A > 0, B > 0 such that A(L+ ε)−r < |ar|< B(L− ε)−r for r ≥m, whence
A1/r/(L+ ε) < |ar|1/r < B1/r/(L− ε) for r ≥m. We conclude that ρ = 1/L,
so L= R.]

If L= 0 and ε > 0 is given, then we have |an|< ε|an+1| for n ≥nε, whence
|anxn|< |an+1x

n+1| for |x| ≥ ε so that the terms do not go to 0 for |x| ≥ ε
and the series diverges for these values. Since ε > 0 is arbitrary, we have
L= R = 0.

If L= ∞, given M > 0, there exists nM such that if n ≥nM then |an+1|<
(1/M)|an|. Hence if |x|< M/2, we have |an+1x

n+1| ≤ 1
2 |anxn| for all n ≥nM

and so the series converges for |x|< M/2. But since M > 0 is arbitrary, we
deduce that L= R = ∞.

For example, take an := 1
2 for n even and an := 2 for n odd. Here L does

not exist, but R = 1.
6. (a) ρ = lim(1/n) = 0 so R = ∞.

(b) |an/an+1| = (n + 1)/(1 + 1/n)α, so R = ∞.
(c) lim |an/an+1| = 1/e, so R = 1/e.
(d) lim |an/an+1| = 1. Alternatively, since 1/n ≤ lnn ≤n, we have 1/n1/n ≤
[1/ lnn]1/n ≤n1/n, so ρ = 1 and R = 1.
(e) lim |an/an+1| = 4, so R = 4.
(f) Since lim(n1/

√
n) = 1, we have R = 1.
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7. Since 0 ≤ an ≤ 1 for all n, but an = 1 for infinitely many n, it follows that
ρ = lim sup |an|1/n = 1, whence R = 1.

8. Note that |an|1/n ≤ |nan|1/n = n1/n|an|1/n and use that lim(n1/n) = 1.
9. By 3.1.11(c) we have p1/n → 1.

10. By the Uniqueness Theorem 9.4.13, an = (−1)nan for all n, so that an = 0 for
n odd.

11. It follows from Taylor’s Theorem 6.4.1 that if |x|< r, then |Rn(x)| ≤
rn+1B/(n + 1)! → 0 as n → ∞.

12. If n ∈ N, there exists a polynomial Pn such that f (n)(x) = e−1/x2
Pn(1/x)

for x �= 0.
13. Let g(x) := 0 for x≥ 0 and g(x) := e−1/x2

for x < 0. Show that g(n)(0) = 0
for all n.

14. If m ∈ N, the series reduces to a finite sum and holds for all x∈ R, so we con-
sider the case where m is not an integer. If x∈ [0, 1) and n > m, n ∈ N, then by
Taylor’s Theorem there exists cx ∈ (0, x) such that 0≤Rn(x) ≤

(
m

n+1

)
xm+1

(1 + cx)n+1 − m ≤
(

m
n+1

)
xn+1. Use Theorem 3.2.11 to show that Rn(x) → 0

as n → ∞.
15. Here sn(x) = (1−xn+1)/(1 −x).
16. Substitute −y for x in Exercise 15 and integrate from y = 0 to y = x for

|x|< 1, which is justified by Theorem 9.4.11.
17. If |x|< 1, it follows from Exercise 15 that (1 +x2)−1 =

∑∞
n=0 (−1)nx2n. If we

apply Theorem 9.4.11 and integrate from 0 to x, we get the given expansion
for Arctanx, valid for |x|< 1.

18. If |x|< 1, it follows from Exercise 14 that (1−x2)1/2 =
∑∞

n=0

(
1/2
n

)
(−1)nx2n.

Now integrate from 0 to x and evaluate the binomial coefficient.
19. Integrate e−t2 =

∑∞
n=0 (−1)nt2n/n! to get

∫ x

0
e−t2dt =

∞∑
n=0

(−1)nx2n+1

n!(2n + 1)
for x∈ R.

20. Apply Exercise 14 and the fact that

∫ π/2

0
(sin x)2ndx =

π

2
· 1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · 2n
.



CHAPTER 10

THE GENERALIZED RIEMANN INTEGRAL

This chapter will certainly be new for the students, and it is also likely that it
contains material that will not be familiar to most instructors. However, the
close parallel between Section 10.1 and Sections 7.1–7.3 should make it easier to
absorb the material. Indeed, the only difference between the generalized Riemann
integral and the ordinary Riemann integral is that slightly different orderings are
used for the collection of tagged partitions. It is quite surprising that such a
“slight difference” in the ordering of the partitions makes such a big difference in
the resulting classes of integrable functions.

As we have noted the material in the first part of Section 10.1 is very similar
to that in Chapter 7. In Section 10.2 we learn that there is no such thing as an
“improper integral”, and that the generalized Riemann integral is not an “abso-
lute” integral. Section 10.3 shows how to extend the integral to functions whose
domain is not bounded; while this procedure seems a bit unnatural, it is quite
simple. (Section 10.3 can be omitted if time is short.)

The final Section 10.4 contains some important results; especially the Mono-
tone and Dominated Convergence Theorems. Most treatments of the Lebesgue
integral start with the notion of a measurable function, but using our approach it
almost seems to be an afterthought. That is not the case, but just a reflection of
the fact that all of the functions we have been dealing with are measurable.

Section 10.1

In order to use the definition to show that a function is in R∗[a, b], we need to
construct a set of gauges δε. This is done for the specific functions in Example
10.1.4. (Usually that is rather difficult, except for ordinary Riemann integrable
functions where a constant gauge suffices.) In most of the other results in this
section, these gauges are constructed from other gauges; thus a gauge for f + g
is constructed from gauges for f and g. In the Fundamental Theorem 10.1.9, the
gauge for f = F ′ is constructed using the differentiability of F . The Fundamental
Theorems are the highpoint of this section; the later material can be treated more
lightly.

Sample Assignment: Exercises 1, 4, 7(a,c,e), 11, 13, 15, 16, 20.

Partial Solutions:

1. (a) Since ti − δ(ti) ≤ xi−1 and xi ≤ ti + δ(ti), then 0 ≤ xi − xi−1 ≤ 2δ(ti).
(b) Apply (a) to each subinterval.
(c) If Q̇ = {([yj−1, yj ], sj)}m

j=1 satisfies ‖Q̇‖ ≤ δ∗, then sj − δ(sj) ≤ sj − δ∗ ≤
yj−1 and yj ≤ sj + δ∗ ≤ sj + δ(sj), so that sj ∈ [yj−1, yj ] ⊆ [sj − δ∗, sj + δ∗] ⊆
[sj − δ(sj), sj + δ(sj)]. Thus Q̇ is δ-fine.
(d) inf{1/2k+2} = 0.

77
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2. (a) If t is a tag for two subintervals, it belongs to both of them, so it is the
right endpoint of one and the left endpoint of the other subinterval.
(b) Consider the tagged partition {([0, 1], 1), ([1, 2], 1), ([2, 3], 3), ([3, 4], 3)}.

3. (a) If Ṗ = {([xi−1, xi], ti)}n
i=1 and if tk is a tag for both subintervals [xk−1, xk]

and [xk, xk+1], we must have tk = xk. We replace these two subintervals by
the subinterval [xk−1, xk+1] with the tag tk, keeping the δ-fineness property.
Since f(tk)(xk − xk−1) + f(tk)(xk+1 − xk) = f(tk)(xk+1 − xk−1), this consol-
idation of the subintervals does not change the value of the Riemann sums.
A finite number of such consolidations will result in the desired partition Q̇1.
(b) No. The tagged partition {([0, 1], 0)([1, 2], 2)} of [0, 2] has the property
that every tag belongs to exactly one subinterval.
(c) If tk is the tag for the subinterval [xk−1, xk] and is an endpoint of
this subinterval, we make no change. However, if tk ∈ (xk−1, xk), then we
replace [xk−1, xk] by the two intervals [xk−1, tk] and [tk, xk] both tagged by tk,
keeping the δ-fineness property. Since f(tk)(xk − xk−1) = f(tk)(tk − xk−1) +
f(tk)(xk − tk), this splitting of a subinterval into two subintervals does not
change the value of the Riemann sums.

4. If xk−1 ≤ 1 ≤ xk and if tk is the tag for [xk−1, xk], then we cannot have
tk > 1, since then tk − δ(tk) = 1

2(tk + 1) > 1. Similarly, we cannot have
tk < 1, since then tk + δ(tk) = 1

2(tk + 1) < 1. Therefore we must have tk = 1.
If the subintervals [xk−1, xk] and [xk, xk+1] both have the number 1 as

tag, then 1 − .01 = 1 − δ(1) ≤ xk−1 < xk+1 ≤ 1 + δ(1) = 1 + .01 so that
xk+1 − xk−1 ≤ 0.02.

5. (a) Let δ(t) := 1
2 min{|t − 1|, |t − 2|, |t − 3|} if t �= 1, 2, 3 and δ(t) := 1 for

t = 1, 2, 3.
(b) Let δ2(t) := min{δ(t), δ1(t)}, where δ is as in part (a).

6. If f ∈ R∗[a, b] and ε > 0 is given, then there exists δε as in Definition 10.1.1,
and we let γε := δε. If Ṗ satisfies the stated condition, then Ṗ is δε-fine and
so |S(f ; Ṗ) − L| < ε.

Conversely, suppose the stated condition is satisfied for some gauge γε, and
let δε := 1

2γε. If Ṗ is δε-fine, then 0 < xi − xi−1 ≤ 2δε(ti) = γε(ti), so the
hypothesis implies that |S(f ; Ṗ)−L| < ε. Therefore f ∈ R∗[a, b] in the sense
of Definition 10.1.1.

7. (a) F1(x) := (2/3)x3/2 + 2x1/2,
(b) F2(x) := (2/3)(1 − x)3/2 − 2(1 − x)1/2,
(c) F3(x) := (2/3)x3/2(lnx − 2/3) for x ∈ (0, 1] and F3(0) := 0,
(d) F4(x) := 2x1/2(lnx − 2) for x ∈ (0, 1] and F4(0) := 0,
(e) F5(x) :=−

√
1 − x2 + Arcsin x.

(f) F6(x) := Arcsin(x − 1).
8. Although the partition Ṗ0 in the proof of 7.1.5 may be δε-fine for some gauge

δε, the tagged partition Ṗz need not be δε-fine, since the value δε(z) may be
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much smaller than δε(xj). For the ordinary Riemann integral, we were only
concerned with the norms ‖Ṗ0‖, ‖Ṗz‖, which are equal.

9. If f were integrable, then
∫ 1
0 f ≥

∫ 1
0 sn = 1/2 + 1/3 + · · · + 1/(n + 1).

10. We enumerate the nonzero rational numbers as rk = mk/nk and define
δε(mk/nk) := ε/(nk2k+1) and δε(x) := 1 otherwise.

11. The function F is continuous on [a, b], and F ′(x) = f(x) for x ∈ [0, 1] \ Q.
Since Q is countable, the Fundamental Theorem 10.1.9 applies.

12. The function M is not continuous on [−2, 2], so Theorem 10.1.9 does not
apply. In fact, by Exercise 9 the function x �→ 1/x is not in R∗[0, 2] no
matter how we define it at 0.

13. In fact, L1 is continuous and L′
1(x) = l1(x) for x �= 0, so Theorem 10.1.9

applies.
14. (a) This is possible since F is continuous at ck.

(b) Since f(ck) = 0, then we have |F (xi) − F (xi−1) − f(ck)(xi − xi−1)| ≤
|F (xi) − F (ck)| + |F (xi−1) − F (ck)| ≤ ε/2k+1.
(c) The point ck can be the tag for at most two subintervals. The sum of
such terms with tags in E is < ε, and the sum of the terms with tags in I \ E
is < ε(b − a).

15. Since C ′
1(x) = (3/2)x1/2 cos(1/x) + x−1/2 sin(1/x) for x > 0, this function is

in R∗[0, 1]. Since the first term in C ′
1 has a continuous extension on [0, 1], it

is integrable; therefore the second term in also integrable.
16. We have C ′

2(x) = cos(1/x) + (1/x) sin(1/x) for x > 0. By the analogue of
Exercise 7.2.12, the first term belongs to R[0, 1] and therefore to R∗[0, 1].

17. (a) Take x = ϕ(t) := t2 + t − 2 so ϕ′(t) = 2t + 1 and Eϕ = ∅ to get∫ x=10
x=4 sgn x dx = |10| − |4| = 6.

(b) Take x = ϕ(t) :=
√

t so x2 = t, ϕ′(t) = 1/(2
√

t) and Eϕ = {0}. We get∫ x=2
x=0 2x2(1 + x)−1dx = 2

∫ 2
0 (x − 1 + (1 + x)−1)dx = 2(2 + ln 3).

(c) Take x = ϕ(t) :=
√

t − 1 so that t = x2 + 1, ϕ′(t) = 1/(2
√

t − 1) and
Eϕ = {1}. We get

∫ x=2
x=0 2(x2 + 1)−1dx = 2 Arctan 2.

(d) Take x = ϕ(t) := Arcsin t so t = sinx, ϕ′(t) = (1−x2)−1/2 and Eϕ = {1}.
We get

∫ x=π/2
x=0 cos2 x dx = 1

2

∫ π/2
0 (1 + cos 2x)dx = (1

2x + 1
4 sin 2x)|π/2

0 = 1
4π.

18. Let f(x) := 1/
√

x for x ∈ (0, 1] and f(0) := 0 and use Exercise 9.
19. (a) In fact f(x) :=F ′(x) = cos(π/x) + (π/x) sin(π/x) for x > 0; we set

f(0) := 0, F ′(0) = 0. Then f and |f | are continuous at every point in (0, 1].
It follows as in Exercise 16 that f ∈ R∗[0, 1].
(b) Since F (ak) = 0 and F (bk) = (−1)k/k, Theorem 10.1.9 implies that
1/k = |F (bk) − F (ak)| = |

∫ bk

ak
f | ≤

∫ bk

ak
|f |.

(c) If |f | ∈ R∗[0, 1], then
∑n

k=1 1/k ≤
∑n

k=1
∫ bk

ak
|f | ≤

∫ 1
0 |f | for all n ∈ N,

which is a contradiction.
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20. Indeed, sgn(f(x)) = (−1)k = m(x) on [ak, bk] so m(x) · f(x) = |m(x)f(x)|
for x ∈ [0, 1]. Since the restrictions of m and |m| to every interval [c, 1] for
0 < c < 1 are step functions, they belong to R[c, 1]. By Exercise 7.2.11, m
and |m| belong to R[0, 1] and

∫ 1
0 m =

∑∞
k=1(−1)k/k(2k + 1) and

∫ 1
0 |m| =∑∞

k=1 1/k(2k + 1).
21. Indeed, ϕ(x) = Φ′(x) = | cos(π/x)| + (π/x) sin(π/x) · sgn(cos(π/x)) for x �∈E

by Example 6.1.7(c). Evidently ϕ is not bounded near 0. It is seen that
if x ∈ [ak, bk], then ϕ(x) = | cos(π/x)| + (π/x)| sin(π/x)| = |ϕ(x)| so that∫ bk

ak
|ϕ| = Φ(bk) − Φ(ak) = 1/k, from which it follows that |ϕ| /∈ R∗[0, 1].

22. Here ψ(x) = Ψ′(x) = 2x| cos(π/x)| + π sin(π/x) · sgn(cos(π/x)) for x /∈
{0} ∪E1 by Example 6.1.7(c). Since ψ is bounded, Exercise 7.2.11 applies.
We cannot apply Theorem 7.3.1 to evaluate

∫ b
0 ψ since E is not finite, but

Theorem 10.1.9 applies and ψ ∈ R[0, 1]. Corollary 7.3.15 implies that |ψ| ∈
R[0, 1].

23. If p ≥ 0, then mp ≤ fp ≤ Mp, where m and M denote the infimum and the
supremum of f on [a, b], so that m

∫ b
a p ≤

∫ b
a fp ≤ M

∫ b
a p. If

∫ b
a p = 0, the

result is trivial; otherwise, the conclusion follows from Bolzano’s Intermediate
Value Theorem 5.3.7.

24. By the Multiplication Theorem 10.1.14, fg ∈ R∗[a, b]. If g is increasing,
then g(a)f ≤ fg ≤ g(b)f so that g(a)

∫ b
a f ≤

∫ b
a fg ≤ g(b)

∫ b
a f . Let

K(x) := g(a)
∫ x
a f + g(b)

∫ b
x f , so that K is continuous and takes all values

between K(b) and K(a).

Section 10.2

The proof of Hake’s Theorem (which is omitted) is another instance where one
has to construct a set of gauges for the function; here one uses the gauges of the
restrictions of the function to a sequence of intervals [a, γn], where γn → b.

It is not possible to overestimate the importance of the Lebesgue integral.
Usually this integral is obtained in a very different way.

Sample Assignment: Exercises 1, 2, 5, 6(a,b), 7(a,c,e), 9, 11.

Partial Solutions:

1. Indeed
∫ c
a f → A as c → b− if and only if the sequential condition holds.

2. (a) If G(x) := 3x1/3 for x ∈ [0, 1] then
∫ 1
c g = G(1) − G(c) → G(1) = 3.

(b) We have
∫ 1
c (1/x)dx = ln c, which does not have a limit in R as c → 0.

3. Here
∫ c
0 (1 − x)−1/2dx = 2 − 2(1 − c)1/2 → 2 as c → 1−.

4. Since
∫ b
γ ω = limc→b

∫ c
γ ω, given ε > 0 there exists γε ≥ γ such that if γε ≤

c1 < c2 < b, then |
∫ c2

a f −
∫ c1

a f | ≤
∫ c2

c1
ω < ε. By the Cauchy Criterion, the

limit limc→b

∫ c
a f exists. Now apply Hake’s Theorem.
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5. Because of continuity, g1 ∈ R∗[c, 1] for all c ∈ (0, 1). If ω(x) :=x−1/2, then
|g1(x)| ≤ ω(x) for all x ∈ [0, 1]. The “left version” of the preceding exercise
implies that g1 ∈ R∗[0, 1] and the above inequality and the Comparison Test
10.2.4 implies that g1 ∈ L[0, 1].

6. (a,b) Both functions are bounded on [0, 1] (use L’Hospital) and continuous
in (0, 1).
(c) If x ∈ (0, 1

2 ] the integrand is dominated by |(ln 1
2) lnx|. If x ∈ [12 , 1) the

integrand is dominated by |(ln 1
2) ln(1 − x)|.

(d) If x ∈ (0, 1
2 ] the integrand is dominated by (2/

√
3)| lnx|. If x ∈ [12 , 1), the

integrand is bounded and continuous.

7. (a) Convergent, since |f1(x)| ≤ 1/
√

x.
(b) Divergent, since f2(x) ≥ 1/(2x3/2) for x ∈ (0, 1].
(c) Divergent, since −f3(x) ≥ ln 2/x for x ∈ (0, 1

2 ].
(d) Convergent, since |f4(x)| ≤ 2| lnx| on (0, 1

2 ] and is bounded on [12 , 1).
(e) Convergent, since |f5(x)| ≤ | lnx| for x ∈ (0, 1].
(f) Divergent, since f6(x) ≥ 1/(x − 1) for x ∈ [12 , 1).

8. If f ∈ R[a, b], then f is bounded and is in R∗[a, b]. Thus the Comparison
Test 10.2.4 applies.

9. Let f(x) := 1/
√

x for x ∈ (0, 1] and f(0) := 0.

10. By the Multiplication Theorem 10.1.4, the product fg ∈ R∗[a, b]. Since
|f(x)g(x)| ≤ B|f(x)|, then fg ∈ L[a, b] and ‖fg‖ ≤ B‖f‖.

11. (a) Let f(x) := (−1)k2k/k for x ∈ [ck−1, ck) and f(1) := 0, where the ck are as
in Example 10.2.2(a). Then f+ := max{f, 0} equals 2k/k on [ck−1, ck) when
k is even and equals 0 elsewhere. Hence

∫ c2k

0 f+ = 1/2 + 1/4 + · · · + 1/2n, so
f+ /∈ R∗[0, 1].
(b) From the first formula in the proof of Theorem 10.2.7, we have f+ =
max{f, 0} = 1

2(f + |f |). Thus, if f ∈ L[a, b], then both f, |f | ∈ R∗[a, b] and
so f+ belongs to R∗[a, b]. Since f+ ≥ 0, it belongs to L[a, b].

12. If α ≤ f and α ≤ g, then α ≤ min{f, g}. The second equality in the proof of
Theorem 10.2.7 implies that 0 ≤ |f − g| = f + g − 2 min{f, g} ≤ f + g − 2α.
Therefore f + g − 2α ∈ L[a, b] and the Comparison Theorem 10.2.4 implies
that f + g − 2 min{f, g} ∈ L[a, b], whence min{f, g} ∈ R∗[a, b].

13. (j) Evidently, dist(f, g) =
∫ b
a |f − g| ≥ 0.

(jj) If f(x) = g(x) for all x ∈ [a, b], then dist(f, g) =
∫ b
a |f − g| =

∫ b
a 0 = 0.

(jjj) dist(f, g) =
∫ b
a |f − g| =

∫ b
a |g − f | = dist(g, f).

(jv) Since |f − h| ≤ |f − g| + |g − h|, we have dist(f, h) =
∫ b
a |f − h| ≤∫ b

a |f − g| +
∫ b
a |g − h| = dist(f, g) + dist(g, h).

14. Consider the Dirichlet function.
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15. By 10.2.10(iv), ‖f‖ = ‖f±g∓g‖ ≤ ‖f±g‖+‖g‖, whence ‖f‖−‖g‖ ≤ ‖f±g‖.
Similarly, ‖g‖ ≤ ‖g ± f ∓ f‖ ≤ ‖g ± f‖ + ‖f‖, whence ‖g‖ − ‖f‖ ≤ ‖f ± g‖.
Now combine.

16. If (fn) converges to f in L[a, b], given ε > 0 there exists K(ε/2) such that
if m, n ≥ K(ε/2) then ‖fm − f‖ < ε/2 and ‖fn − f‖ < ε/2. Therefore
‖fm − fn‖ ≤ ‖fm − f‖ + ‖f − fn‖ < ε/2 + ε/2 = ε. Thus we may take
H(ε) :=K(ε/2).

17. Indeed, ‖fn‖ =
∫ 1
0 xn dx = 1/n and ‖fn − θ‖ = 1/n.

18. If m > n, then ‖gm − gn‖ ≤ 1/n + 1/m → 0. One can take g := sgn.

19. Since ‖h2n − hn‖ = 1, there is no such h ∈ L[0, 1].

20. Here ‖kn‖ = 1/n and we can take k = θ the 0-function, or any other function
in L[0, 1] with

∫ 1
0 |k| = 0.

Section 10.3

Although it is important to extend the integral to functions defined on unbounded
intervals, this section can be omitted if time is short.

Sample Assignment: Exercises 1, 3, 5, 7, 13, 15, 17(a,b), 18(a,b).

Partial Solutions:

1. Let b ≥ max{a, 1/δ(∞)}. If Ṗ is a δ-fine partition of [a, b], show that Ṗ is a
δ-fine subpartition of [a,∞).

2. The Cauchy Criterion for the existence of limγ

∫ γ
a f is: given ε > 0 there

exists K(ε) ≥ a such that if q > p ≥ K(ε), then |
∫ q
p f | = |

∫ q
a f −

∫ p
a f | < ε.

3. If f ∈ L[a,∞), apply the preceding exercise to |f |. Conversely, if
∫ q
p |f | < ε

for q > p ≥ K(ε), then |
∫ q
a f −

∫ p
a f | ≤

∫ q
p |f | < ε so that limγ

∫ γ
a f and

limγ

∫ γ
a |f | exist; therefore f, |f | ∈ R∗[a,∞) and so f ∈ L[a,∞).

4. If f ∈ L[a,∞), the existence of limγ

∫ γ
a |f | implies that V is a bounded set.

Conversely, if V is bounded, let v := supV. If ε > 0, there exists K such that
v − ε <

∫ K
a |f | ≤ v. If K ≤ p < q, we have

∫ q
p |f | < ε, so the preceding

exercise applies.
5. If f, g ∈ L[a,∞), then f, |f |, g and |g| belong to R∗[a,∞), so Example

10.3.3(a) implies that f+g and |f |+|g| belong to R∗[a,∞) and
∫ ∞
a (|f |+|g|) =∫ ∞

a |f | +
∫ ∞
a |g|. Since |f + g| ≤ |f | + |g|, it follows that

∫ γ
a |f + g| ≤∫ γ

a |f | +
∫ γ
a |g| ≤

∫ ∞
a |f | +

∫ ∞
a |g|, whence ‖f + g‖ ≤ ‖f‖ + ‖g‖.

6. Indeed,
∫ γ
1 (1/x)dx = ln γ, which does not have limit as γ → ∞. Or, use

Exercise 2 and the fact that
∫ 2p
p (1/x)dx = ln 2 > 0 for all p ≥ 1.
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7. Since f is continuous on [1,∞), both f, |f | ∈ R∗[1, γ] for 1 ≤ γ. If γ ≤
p < q, then |

∫ q
p f | ≤

∫ q
p |f | ≤ K

∫ q
p (1/x2)dx ≤ K(1/p − 1/q). Therefore, by

Exercise 2, both f, |f | belong to R∗[1,∞).

8. If γ > 0, then
∫ γ
0 cos x dx = sin γ, which does not have a limit as γ → ∞.

9. (a) We have
∫ γ
0 e−sxdx = (1/s)(1 − e−sγ) → 1/s.

(b) Let G(x) :=−(1/s)e−sx for x ∈ [0,∞) and G(∞) := 0, so G is continuous
on [0,∞) and G(x) → G(∞). By the Fundamental Theorem 10.3.5, we have∫ ∞
0 g = G(∞) − G(0) = 1/s.

10. (a) Integrate by parts to get 1/s2 plus a term that→ 0 as γ → ∞.
(b) Let G1(x) :=−(x/s)e−sx − (1/s2)e−sx for x ∈ [0,∞) and G1(∞) := 0, so
that G′

1(x) = xe−sx and G1(x) → 0 as x → ∞. The Fundamental Theorem
implies that

∫ ∞
0 xe−sxdx = G1(∞) − G1(0) = 1/s2.

11. Use Mathematical Induction. The case n = 1 is Exercise 10. Assuming the
formula holds for k ∈ N, we integrate by parts.

12. (a) If x ≥ e, then (lnx)/x ≥ 1/x. Since
∫ ∞
1 (1/x)dx is not convergent, neither

is the given one.
(b) Integrate by parts on [1, γ] and then let γ → ∞.

13. (a) Since | sin x| ≥ 1/
√

2 > 1/2 and 1/x > 1/(n + 1)π for x in the interval
(nπ + π/4, nπ + 3π/4), then |(1/x) sin x| ≥ 1/(2π(n + 1)) on this interval,
which has length π/2. Therefore

∫ (n+1)π
nπ |(1/x) sin x|dx ≥ 1/(4(n + 1)).

(b) If γ > (n + 1)π, then
∫ γ
0 |D| ≥ (1/4)(1/1 + 1/2 + · · · + 1/(n + 1)).

14. The integrand is bounded, so is in R∗[0, γ]. Integrating by parts, we get∫ q
p x−1/2 sin x dx = −x−1/2 cos

∣∣q
p

− (1/2)
∫ q
p x−3/2 cos x dx. Since | cos x| ≤ 1,

we have |
∫ q
p x−1/2 sin x dx| ≤ q−1/2 + p−1/2 + (1/2)

∫ q
p x−3/2 dx which is

≤(5/4)(q−1/2 + p−1/2) → 0 as p → ∞.

15. Let u = ϕ(x) = x2 so that
∫ γ
0 sin(x2)dx = (1/2)

∫ γ2

0 u−1/2 sin u du. Now
apply Exercise 14.

16. (a) Convergent. Since lnx ∈ R∗[0, γ] the given integrand is in R∗[0, γ]. Since
(lnx)/

√
x → 0 as x → ∞, then |(lnx)/(x2 + 1)| ≤ K/x3/2 for x sufficiently

large.
(b) Divergent. As in (a), the integrand is in R∗[0, 1]. Since 4x2 > x2 + 1
for x ≥ 1, then (lnx)/

√
x2 + 1 > (lnx)/2x ≥ 1/2x for x ≥ e, so that the

integrand is not in R∗[e,∞].
(c) Divergent. If x ∈ [0, 1], then 2 > x + 1 so that 1/x(x + 1) > 1/2x. Thus
the restriction of the integrand is not in R∗[0, 1], so the integrand is not in
R∗[0,∞].
(d) Convergent. The integrand is dominated by 1/x2 on [0,∞].
(e) Divergent. x/ 3

√
1 + x3 → 1 as x → ∞, so that 1/2 < x/ 3

√
1 + x3 for x

sufficiently large, so 1/(2x) < 1/ 3
√

1 + x3 for x sufficiently large.
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(f) Convergent. Since 0 ≤ Arctanx≤π/2 for x ≥ 0 so the integrand is
dominated by 1/(x3/2 + 1) < 1/x3/2 for x ≥ 1.

17. (a) If f1(x) := sinx, then f1 /∈ R∗[0,∞). By Exercise 14, if f2(x) :=x−1/2 sin x,
then f2 ∈ R∗[0,∞) and ϕ2(x) := 1/

√
x is bounded and decreasing on [1,∞).

(b) If f(x) := sin(x2), then Exercise 15 implies that f ∈ R∗[0,∞). Here
ϕ(x) :=x/(x + 1) is bounded and increasing on [0,∞).
(c) Take f(x) :=x−1/2 sin x ∈ R∗[0,∞) by Exercise 14 and ϕ(x) := (x + 1)/x
so that ϕ is bounded and decreasing on [0,∞).
(d) Take ϕ(x) := Arctanx, so ϕ is bounded and increasing on [0,∞), while
f(x) := 1/(x3/2 + 1) < x−3/2 for x ≥ 1.

18. (a) f(x) := sinx is continuous so is in R∗[0, γ]. Also F (x) :=
∫ x
0 sin t dt =

1 − cos x is bounded by 2 on [0,∞) and ϕ(x) := 1/x decreases to 0.
(b) Take ϕ(x) := 1/ lnx so ϕ decreases monotonely to 0.
(c) F (x) :=

∫ x
0 cos t dt = sinx is bounded by 1 on [0,∞) and ϕ(x) :=x−1/2

decreases monotonely to 0.
(d) ϕ(x) :=x/(x + 1) increases to 1 (not 0).

19. Let u = ϕ(x) :=x2 so that
∫ γ
0 x1/2 sin(x2)dx = (1/2)

∫ γ2

0 u−1/4 sin u du. By
the Chartier-Dirichlet Test, this integral converges and Hake’s Theorem
applies.

20. (a) If γ > 0, then
∫ γ
0 e−xdx = 1 − e−γ → 1 so e−x ∈ R∗[0,∞). Similarly

e−|x| = ex ∈ R∗(−∞, 0].
(b) |x − 2|/e−x/2 → 0 as x → ∞, so |x − 2| ≤ e−x/2 for x sufficiently large,
so the integrand is dominated by e−x/2 for x large. Therefore the integrand
is in R∗[0,∞) and similarly on (−∞, 0].
(c) We have 0 ≤ e−x2 ≤ e−x for |x| ≥ 1, so e−x2 ∈ R∗[0,∞). Similarly on
(−∞, 0].
(d) The integrand approaches 1 as x → 0. Since ex/(ex − e−x) → 1 as
x → ∞, we have 2x/(ex − e−x) ≤ 4xe−x for x sufficiently large. Therefore
the integrand is in R∗[0,∞). Similarly on (−∞, 0].

Section 10.4

This section contains some very important results.

Sample Assignment: Exercises 1, 3(a,c,e), 5, 6, 9, 11, 14.

Partial Solutions:

1. (a) Converges to 0 at x = 0, to 1 on (0, 1]. Not uniform. Bounded by 1.
Increasing. Limit = 1.
(b) Converges to 0 on [0, 1), to 1

2 at x = 1, to 1 on (1,2]. Not uniform.
Bounded by 1. Not monotone (although decreasing on [0,1] and increasing
on [1,2]). Limit = 1.
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(c) Converges to 1 on [0, 1), to 1
2 at x = 1. Not uniform. Bounded by 1.

Increasing. Limit = 1.
(d) Converges to 1 on [0, 1), converges to 1

2 at x = 1, to 0 on (1, 2]. Not
uniform. Bounded by 1. Not monotone (although increasing on [0, 1] and
decreasing on (1, 2]). Limit = 1.

2. (a) Converges to
√

x on [0, 1]. Uniform. Bounded by 1. Increasing. Limit =
2/3.
(b) Define to equal 0 at x = 0, converges to 1/

√
x on (0, 1), to 1

2 at x = 1.
Not uniform. Not bounded. Dominated by 1

√
x. Increasing. Limit = 2.

(c) Converges to 1
2 at x = 1, to 0 on (1, 2]. Not uniform. Bounded by 1.

Decreasing. Limit = 0.
(d) Define to equal 0 at x = 0, converges to 1/2

√
x on (0, 1), to 1 at x = 1.

Not uniform. Not bounded. Dominated by 1/2
√

x. Decreasing. Limit = 1.

3. (a) Converges to 1 at x = 0, to 0 on (0,1]. Not uniform. Bounded by 1.
Decreasing. Limit = 0.
(b) Define to be 0 at x = 0. The functions do not have (a finite) integral.
Converges to 0. Not uniform. Not bounded. Decreasing. Integral of limit = 0.
(c) Converges to 0. Not uniform. Bounded by 1/e. Not monotone. Limit = 0.
(d) Converges to 0. Not uniform. Not bounded. Not monotone. Limit =∫ ∞
0 ye−ydy = 1.

(e) Converges to 0. Not uniform. Bounded by 1/
√

2e. Not monotone.
Limit = 0.
(f) Converges to 0. Not uniform. Not bounded. Not monotone. Not
dominated. Limit = 1

2

∫ ∞
0 e−ydy = 1

2 .

4. (a) Since fk(x) → 0 for x ∈ [0, 1) and |fk(x)| ≤ 1, the Dominated Convergence
Theorem applies.
(b) fk(x) → 0 for x ∈ [0, 1), but (fk(1)) is not bounded. No obvious
dominating function. Integrate by parts and use (a). The result shows that
the Dominated Convergence Theorem does not apply.

5. Note that fk is a step function and
∫ 2
0 fk = k(1/k) = 1. If x ∈ (0, 2], there

exists kx such that 2/k < x for k ≥ kx; therefore fk(x) → 0.

6. Suppose that (fk(c)) converges for some c ∈ [a, b]. By the Fundamental
Theorem, we have fk(x) − fk(c) =

∫ x
c f ′

k. By the Dominated Convergence
Theorem,

∫ x
c f ′

k →
∫ x
c g, whence (fk(x)) converges for all x ∈ [a, b]. Note that

if fk(x) := (−1)k, then (fk(x)) does not converge for any x ∈ [a, b].

7. Indeed, g(x) := sup{fk(x) : k ∈ N} equals 1/k on (k − 1, k], so that
∫ n
0 g =

1 + 1
2 + · · · + 1

n . Hence g /∈ R∗[0,∞).

8. Indeed,
∫ ∞
0 e−tx dx = (−1/t)e−tx

∣∣x=∞
x=0 = 1/t. If we integrate by parts, then

we get
∫ ∞
0 xe−tx dx = (−x/t − 1/t2)e−tx

∣∣x=∞
x=0 = 1/t2.

9. Indeed,
∫ ∞
0 e−tx sin x dx = −[e−tx(t sin x + cos x)/(t2 + 1)]

∣∣x=∞
x=0 = 1/(t2 + 1).
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10. (a) If a > 0, then |(e−tx sin x)/x| ≤ e−ax for t ∈ Ja := (a,∞). If tk ∈ Ja and
tk → t0 ∈ Ja, then the argument in 10.4.6(d) shows that E is continuous at t0.
Also, if tk ≥ 1, then |(e−tkx sin x)/x| ≤ e−x and the Dominated Convergence
Theorem implies that E(tk) → 0. Thus E(t) → 0 as t → ∞.
(b) It follows as 10.4.6(e) that E′(t0) = −

∫ ∞
0 e−t0x sin x dx = −1/(t20 + 1).

(c) By 10.1.9, E(s) − E(t) =
∫ s
t E′(t)dt = −

∫ s
t (t

2 + 1)−1dt = Arctan t −
Arctan s for s, t > 0. But E(s) → 0 and Arctan s → π/2 as s → ∞.
(d) We do not know that E is continuous as t → 0+.

11. (a) Note that e−t2(x2+1) ≤ 1 for t ≥ 0 and that e−t2(x2+1) → 0 as t → ∞
for all x ≥ 0. Thus the Dominated Convergence Theorem can be applied to
sequences to give the continuity of G and the fact that G(t) → 0 as t → ∞.
(b) The partial derivative equals −2te−t2e−t2x2

, which is bounded by 2 for
t ≥ 0, x ∈ [0, 1]. An argument as in 10.4.6(e) gives the formula for G′(t).
(c) Indeed, F ′(t) = 2e−t2

∫ t
0 e−x2

dx for t ≥ 0, so F ′(t) = −G′(t) for t ≥ 0.
(d) Since limt→∞ F (t) = 1

4π, we have
∫ ∞
0 e−x2

dx = 1
2
√

π.

12. Fix x ∈ I. As in 10.4.6(e), if t, t0 ∈ [a, b], there exists tx between t, t0
such that f(t, x) − f(t0, x) = (t − t0)∂f

∂t (tx, x). Therefore α(x) ≤ [f(t, x) −
f(t0, x)]/(t − t0) ≤ ω(x) when t �= t0. Now argue as before and use the
Dominated Convergence Theorem 10.4.5.

13. (a) If (sk) is a sequence of step functions converging to f a.e., and (tk) is a
sequence of step functions converging to g a.e., then it follows from Theorem
10.4.9(a) and Exercise 2.2.18 that (max{sk, tk}) is a sequence of step functions
that converges to max{f, g} a.e. Similarly, for min{f, g}.
(b) By part (a), the functions max{f, g}, max{g, h} and max{h, f} are mea-
surable. Now apply Exercises 2.2.18 and 2.2.19.

14. (a) Since fk ∈ M[a, b] is bounded, it belongs to R∗[a, b]. The Dominated
Convergence Theorem implies that f ∈ R∗[a, b]. The Measurability Theorem
10.4.11 now implies that f ∈ M[a, b].
(b) Since t �→ Arctan t is continuous, Theorem 10.4.9(b) implies that fk :=
Arctan ◦ gk ∈ M[a, b]. Further, |fk(x)| ≤ 1

2π for x ∈ [a, b], so (fk), is also a
bounded sequence in M[a, b].
(c) If gk → g a.e., from the continuity of Arctan, it follows that fk → f a.e.
Part (a) implies that f ∈ M[a, b] and Theorem 10.4.9(b) applied to ϕ = tan
implies that g = tan ◦f ∈ M[a, b].

15. (a) Since 1E is bounded, it is in R∗[a, b] if and only if it is in M[a, b].
(b) Indeed, 1∅ is the 0-function, and if J is any subinterval of [a, b], then 1J

is a step function.
(c) This follows from the fact that 1E′ = 1 − 1E .
(d) We have x ∈ E ∪ F if and only if x ∈ E or x ∈ F . Thus

1E∪F (x) = 1 ⇐⇒ 1E(x) = 1 or 1F (x) = 1 ⇐⇒ max{1E(x),1F (x)} = 1.
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Similarly, x ∈ E ∩ F if and only if x ∈ E and x ∈ F . Thus

1E∩F (x) = 1 ⇐⇒ 1E(x) = 1 and 1F (x) = 1 ⇐⇒ min{1E(x),1F (x)} = 1.

Further, E \ F = E ∩ F ′.
(e) If (Ek) is an increasing sequence in M[a, b], then (1Ek

) is an increasing
sequence in M[a, b]. Moreover, 1E(x) = limk 1Ek

(x), and we can apply
Theorem 10.4.9(c). Similarly, (1Fk

) is a decreasing sequence in M[a, b] and
1F (x) = limk 1Fk

(x).
(f) Let An :=

⋃n
k=1 Ek, so that (An) is an increasing sequence in M[a, b] with⋃∞

n=1 An = E, so (e) applies. Similarly, if Bn :=
⋂n

k=1 Fk, then (Bn) is a
decreasing sequence in M[a, b] with

⋂∞
n=1 Bn = F .

16. (a) m(∅) =
∫ b
a 0 = 0 and 0 ≤ 1E ≤ 1 implies 0 ≤ m(E) =

∫ b
a 1E ≤

∫ b
a 1 =

b − a.
(b) Since 1[c,d] is a step function, then m([c, d]) = d − c. The other charac-
teristic functions are a.e. to 1[c,d], so have the same integral.
(c) Since 1E′ = 1 − 1E , we have m(E′) =

∫ b
a (1 − 1E) = (b − a) − m(E).

(d) Note that 1E∪F + 1E∩F = 1E + 1F . Therefore, m(E ∪ F ) + m(E ∩ F ) =∫ b
a (1E∪F + 1E∩F ) =

∫ b
a (1E + 1F ) = m(E) + m(F ).

(e) If E ∩ F = ∅, then (d) and (a) imply that m(E ∪ F ) + 0 = m(E) + m(F ).
(f) If (Ek) is increasing in M[a, b] to E, then (1Ek

) is increasing in M[a, b] to
1E . The Monotone Convergence Theorem 10.4.4 implies that 1E ∈ M[a, b]
and that m(Ek) =

∫ b
a 1Ek

→
∫ b
a 1E = m(E).

(g) If (Ck) is pairwise disjoint and En :=
⋃n

k=1 Ck for n ∈ N, then, by
Induction in part (e), we have m(En) = m(C1) + · · · + m(Cn). But, since⋃∞

k=1 Ck =
⋃∞

n=1 En and (En) is increasing, (f) implies that

m

( ∞⋃
k=1

Ck

)
= lim

n
m(En) = lim

n

n∑
k=1

m(Ck) =
∞∑

n=1

m(Ck).



CHAPTER 11

A GLIMPSE INTO TOPOLOGY

We present in this chapter an introduction into the subject of topology. In the first
edition of this book, most of the ideas presented here were discussed as the notions
naturally arose. However, our experience in teaching from that edition was that
some of the students were confused by ideas that they felt were very abstract and
difficult. Consequently, in later editions, we have dealt only with open and closed
intervals in Chapters 1 through 10, even though some of the results that were
established held for general open and closed (or at least compact) subsets of R.

Some instructors may wish to blend part of this material into their presenta-
tion of the earlier material. Others may decide to omit the entire chapter, or to
assign it only to the better students as a unifying “special project”.

In the final section, we give the definitions of a metric function and a metric
space. They are very important for further developments in analysis as well as in
the field of topology, and we feel that they are quite natural ideas. This section
will serve as a springboard to students who continue their study of analysis beyond
this course.

Section 11.1

Here the notions of open and closed subsets of R are introduced and such sets are
characterized. The final topic of this section is the Cantor set F, which should
expand the imagination of the students.

Sample Assignment: Exercises 1, 2, 4, 9, 10, 13, 18, 23.

Partial Solutions:

1. If |x−u|< inf{x, 1 −x}, then u < x + (1 −x) = 1 and u > x−x= 0, so that
0 < u < 1.

2. If x ∈ (a,∞), then take εx :=x− a. The complement of [b, ∞) is the open
set (−∞, b).

3. Suppose that G1, . . . , Gk, Gk+1 are open sets and that G1 ∪ · · · ∪Gk is open.
It then follows from the fact that the union of two open sets is open that
G1 ∪ · · · ∪ Gk ∪ Gk+1 = (G1 ∪ · · · ∪ Gk) ∪ Gk+1 is open.

4. If x∈ (0, 1], then x∈ (0, 1 + 1/n) for all n ∈ N. Also, if x > 1, then x− 1 > 0
so there exists nx ∈ N such that x− 1 > 1/nx, whence x /∈ (0, 1 + 1/nx).

5. The complement of N is the union (−∞, 1) ∪ (1, 2) ∪ · · · of open intervals.
6. The sequence (1/n) belongs to A and converges to 0 /∈A, so A is not closed,

by 11.1.7. Alternatively, use 11.1.8 and the fact that 0 is a cluster point of A.
7. Corollary 2.4.9 of the Density Theorem implies that every neighborhood of a

point x in Q contains a point not in Q. Hence Q is not an open set.

88
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8. If F is a closed set, its complement C(F ) is open and G \ F = G ∩ C(F ).
9. This is a rephrasing of Definition 11.1.2.

10. Note that x is a boundary point of A ⇐⇒ every neighborhood V of x
contains points in A and points in C(A) ⇐⇒ x is a boundary point of C(A).

11. Note that if A ⊆ R and x∈ R, then precisely one of the following statements
is true: (i) x is an interior point of A, (ii) x is a boundary point of A, and (iii)
x is an interior point of C(A). Hence, if A is open, then it does not contain
any boundary points (since it contains only interior points) of A. Conversely,
if A does not contain any boundary points of A, then all of its points are
interior points of A.

12. Let F be closed and let x be a boundary point of F . If x /∈ F , then x∈ C(F ).
Since C(F ) is an open set, there exists a neighborhood V of x such that
V ⊆ C(F ), contradicting the hypothesis that x is a boundary point of F .
Conversely, if F contains all of its boundary points and if y /∈F , then y is
not a boundary point of F , so there exists a neighborhood V of y such that
V ⊆ C(F ). This implies that C(F ) is open, so that F is closed.

(Alternative proof.) The sets F and C(F ) have the same boundary points.
Therefore F contains all of its boundary points ⇐⇒ C(F ) does not contain
any of its boundary points ⇐⇒ C(F ) is open.

13. Since A◦ is the union of open sets, it is open (by 11.1.4(a)). If G is an open set
with G ⊆ A, then G ⊆A◦ (by its definition). Also x∈A◦ ⇐⇒ x belongs
to an open set V ⊆A ⇐⇒ x is an interior point of A.

14. Since A◦ is the union of subsets of A, we have A◦ ⊆A. It follows that
(A◦)◦ ⊆A◦. Since A◦ is an open subset of A◦ and (A◦)◦ is the union of
all open sets contains in A◦, then A◦ ⊆ (A◦)◦. Therefore A◦ = (A◦)◦

Since A◦ is an open set in A and B◦ is an open set in B, then A◦ ∩ B◦

is an open set in A ∩ B, whence A◦ ∩ B◦ ⊆ (A ∩ B)◦. And since A◦ ∩ B◦

is an open set in A, then (A ∩ B)◦ ⊆A◦; similarly (A ∩ B)◦ ⊆B◦, so that
(A ∩ B)◦ ⊆A◦ ∩ B◦. Therefore (A ∩ B)◦ = A◦ ∩ B◦.

If A := Q and B := R \ Q, then A◦ = B◦ = ∅, while A ∪ B = R, whence
(A ∪B)◦ = R.

15. Since A− is the intersection of all closed sets containing A, then by 11.1.5(a)
it is a closed set containing A. Since C(A−) is open, then z ∈ C(A−) ⇐⇒ z
has a neighborhood Vε(z) in C(A−) ⇐⇒ z is neither an interior point nor a
boundary point of A.

16. For any set B, since B− is a closed set containing B, then B ⊆B−. If we
take B = A−, we get A− ⊆ (A−)−. Since A− is a closed set containing A−,
we have (A−)− ⊆A−. Therefore (A−)− = A−.

Since (A ∪B)− is a closed set containing A, then A− ⊆ (A∪B)−. Similarly
B− ⊆ (A∪B)−, so we conclude that A−∪B− ⊆ (A∪B)−. Conversely A ⊆A−

and B ⊆B−, and since A− and B− are closed, it follows from 11.1.5(b) that
A− ∪B− is closed; hence (A ∪ B)− ⊆A− ∪ B−.
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If A := Q, then A− = R; if B := R \ Q, then B− = R. Therefore A ∩ B = ∅
while A− = B− = A− ∪B− = R.

17. Take A = Q.
18. Either u := sup F belongs to F , or u is a cluster point of F . If F is closed,

then 11.1.8 implies that any cluster point of F belongs to F .
19. If G �= ∅ is open and x∈G, then there exists ε > 0 such that Vε(x) ⊆G,

whence it follows that a :=x − ε is in Ax.
20. If ax ∈G, then since G is open, there exists ε > 0 with (ax − ε, ax + ε) ⊆G.

This contradicts the definition of ax.
21. If ax < y < x then since ax := inf Ax there exists a′ ∈Ax such that ax < a′ ≤ y.

Therefore (y, x] ⊆ (a′, x] ⊆G and y ∈G.
22. If bx �= by, then either (i) bx < by or (ii) by < bx. In case (i), then bx ∈ Iy =

(ay, by) ⊆G, contrary to bx /∈ G. In case (ii), then by ∈ Ix = (ax, bx) ⊆G,
contrary to by /∈ G.

23. If x∈ F and n ∈ N, the interval In in Fn containing x has length 1/3n. Let
yn be an endpoint of In with yn �= x. Then 0 < |yn −x| ≤ 1/3n. Since yn is
an endpoint of In, it also belongs to F. Consequently x= lim(yn) is a cluster
point of F.

24. If x ∈ F and n ∈ N, the interval In in Fn containing x has length 1/3n. Let zn

be the midpoint of In, so that 0< |zn −x| ≤ 1/3n. Since zn does not belong to
Fn+1, it follows that zn ∈ C(F). Consequently x= lim(zn) is a cluster point
of C(F).

Section 11.2

Most students will find the notion of compactness to be difficult, especially when
they learn that they must be prepared to consider every open cover of the set.
They also find the Heine-Borel Theorem 11.2.5 a bit disappointing, since compact
sets in R turn out to be of a very easily described nature. But this is exactly the
reason why the Heine-Borel Theorem is important: it makes the determination of
a compact set in R a relatively simple matter. Students need to be told that the
situation is different in more complicated topological spaces; unfortunately, they
will have to take that fact on faith until a later course.

While the sequential characterizations of compact sets are somewhat special,
they are easier to grasp than the covering aspects.

Sample Assignment: Exercises 1, 3, 4, 5, 6, 9, 11.

Partial Solutions:

1. Let Gn := (1 + 1/n, 3) for n ∈ N.
2. Let Gn := (n − 1/2, n + 1/2) for n ∈ N.



Chapter 11 — A Glimpse into Topology 91

3. Let Gn := (1/2n, 2) for n ∈ N.
4. If G is an open cover of F , then G ∪ {C(F )} is an open cover of K.
5. If G1 is an open cover of K1 and G2 is an open cover of K2, then G1 ∪G2 is

an open cover of K1 ∪K2.
6. Let K be a bounded infinite subset of R; we want to show that K has a cluster

point. If not, then it follows from Theorem 11.1.8 that K must be closed.
Since K is bounded, it follows from the Heine-Borel Theorem 11.2.5 that K
is compact. If k ∈K is arbitrary, then since k ∈K is not a cluster point of K,
we conclude that there exists an open neighborhood Jk of k that contains no
point of K \ {k}. But since {Jk : k ∈K} is an open cover of K, it follows that
there exists a finite number of points k1, . . . , kn such that {Jki

: i= 1, . . . , n}
covers K. But this implies that K is a finite set.

7. Let Kn := [0, n] for n ∈ N.
8. If {Kα} is a collection of compact subsets of R, it follows from the Heine-

Borel Theorem 11.2.5 that each set Kα is closed and bounded. Hence, from
11.1.5(a) the set K0 :=

⋂
Kα is also closed. Since K0 is also bounded (since

it is a subset of a bounded set), it follows from the Heine-Borel Theorem that
K0 is compact, as asserted.

9. For each n ∈ N, let xn ∈Kn. Since the set {xn} ⊆K1, we infer that the
sequence (xn) is a bounded sequence. By the Bolzano-Weierstrass Theorem,
(xn) has a subsequence (xmr

) that converges to a point x0. Since xmr
∈Kn

for all r ≥n, it follows that x0 = lim(xmr
) belongs to

⋂
Kn.

10. Since K �= ∅ is bounded, it follows that inf K exists in R. If Kn :={k ∈K :
k ≤ (inf K) + 1/n}, then Kn is closed and bounded, hence compact. By the
preceding exercise

⋂
Kn �= ∅, but if x0 ∈

⋂
Kn, then x0 ∈K and it is readily

seen that x0 = inf K. [Alternatively, use Theorem 11.2.6.]
11. For n ∈ N, let xn ∈K be such that |c−xn| ≤ inf{|c−x| : x∈K} + 1/n. Now

apply Theorem 11.2.6.
12. Let K ⊆ R be compact and let c ∈ R. If n ∈ N, there exists xn ∈K such that

sup{|c−x| : x∈K} − 1/n < |c−xn|. It follows from the Bolzano-Weierstrass
Theorem that there exists a subsequence (xnk

) that converges to a point b,
which also belongs to the compact set K. Moreover, we have

|c − b| = lim |c − xnk
| ≥ sup{|c − x| : x∈K}.

But since b ∈ k, it also follows that |c− b| ≤ sup{|c−x| : x∈K}.
13. The family {Vδx

(x) : x∈K} forms an open cover of the compact set [a, b].
Therefore it can be replaced by a finite subcover, say {Vx1 , . . . , Vxn

}. If bj is
a bound for f on Vxj

, then sup{b1, . . . , bn} is a bound for f on [a, b].
14. Suppose K1 and K2 are disjoint compact sets and assume that inf{|x− y| :

x∈K1, y ∈K2} = 0. Then there exist sequences (xn) in K1 and (yn) in K2
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such that |xn − yn|< 1/n for n ∈ N. Let (x′
k) be a subsequence of (xn) that

converges to a point x0 ∈K1, and let (y′
k) be the corresponding subsequence

of (yn). Then (y′
k) has a subsequence (y′′

k) that converges to a point y0 ∈K2.
If (x′′

k) is the corresponding subsequence of (x′
k), then we conclude that

|x0 − y0| = lim |x′′
k − y′′

k | = 0, from which it follows that x0 = y0, so that K1
and K2 are not disjoint, contrary to the hypothesis.

15. Let F1 := {n : n ∈ N} and F2 := {n + 1/n : n ∈ N, n ≥ 2}.

Section 11.3

The relationship between continuous functions and open sets is very important and
the interplay between continuous functions and compact sets is further clarified
here. Students who go on to more advanced courses in topology should find this
to be a very useful introduction.

Sample Assignment: Exercises 1, 2, 4, 5, 6, 9.

Partial Solutions:

1. (a) If a < b≤ 0, then f−1(I) = ∅. If a < 0 < b, then f−1(I) = (−
√

b,
√

b). If
0 ≤ a < b, then f−1(I) = (−

√
b, −

√
a) ∪ (

√
a,

√
b).

(b) If I := (a, b) where a < 0 < b, then f(I) = [0, c), where c := sup{a2, b2}.
2. (a) f maps the interval (−1, 1) to (1/2, 1]. (b) f maps [0,∞) to (0, 1].
3. f−1(G) = f−1([0, ε)) = [1, 1 + ε2)) = (0, 1 + ε2) ∩ I.
4. Let G := (1/2, 3/2). Let F := [−1/2, 1/2].
5. f−1((−∞, α)) is the inverse image of the open set (−∞, α).
6. The set {x ∈ R : f(x) ≤α} = f−1((−∞, α]) and (−∞, α] is closed in R.
7. If xn ∈ R is such that f(xn) = k for all n ∈ N and if x= lim(xn), then

f(x) = lim(f(xn)) = k. Alternatively, {x ∈ R :f(x) = k} = {x ∈ R :f(x) ≤ k}∩
{x ∈ R : f(x) ≥ k}.

8. Let f be the Dirichlet Discontinuous Function.
9. First note that if A ⊆ R and x ∈ R, then we have x∈ f−1(R \ A) ⇐⇒ f(x) ∈

R \ A ⇐⇒ f(x) /∈ A ⇐⇒ x /∈ f−1(A) ⇐⇒ x ∈ R \ f−1(A); therefore,
f−1(R \ A) = R \ f−1(A). Now use the fact a set F ⊆ R is closed if and only
if R \ F is open, together with Corollary 11.3.3.

10. If (xn) is a sequence in I such that f(xn) = g(xn) for all n and if xn → x0, then
it follows from the fact that I = [a, b] is closed that x0 ∈ I. Moreover, since f
and g are continuous at x0, thenf(x0) = lim f(xn) = lim g(xn) = g(x0).

Section 11.4

We have merely introduced the notion of a metric space, but we think it may be
useful and stimulating for students to see that a great deal of what has been done
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can be extended to much wider generality. Some instructors may wish to use this
brief section as a springboard for further discussion; other may decide to omit it
completely.

Sample Assignment: Exercises 1, 3, 4, 7, 9, 10.

Partial Solutions:

1. If P1 : = (x1, y1), P2 := (x2, y2), P3 := (x3, y3), then

d1(P1, P2) ≤ (|x1 − x3| + |x3 − x2|) + (|y1 − y3| + |y3 − y2|)
= d1(P1, P3) + d1(P3, P2).

Thus d1 satisfies the Triangle Inequality.
To see that d∞ satisfies the Triangle Inequality, note that |x1 −x3| ≤

d∞(P1, P3) and |y1 − y3| ≤ d∞(P1, P3), and also that |x3 − x2| ≤ d∞(P3, P2)
and |y3 − y2|≤d∞(P3, P2). Therefore, we have |x1 −x2|≤|x1 −x3|+|x3 −x2| ≤
d∞(P1, P3) + d∞(P3, P2) and |y1 − y2| ≤ |y1 − y3| + |y3 − y2| ≤ d∞(P1, P3) +
d∞(P3, P2), whence it follows that d∞(P1, P2) = sup{|x1 −x2|, |y1 − y2|} ≤
d∞(P1, P3) + d∞(P3, P2).

2. Since |f(x) − g(x)| ≤ |f(x) −h(x)|+ |h(x) − g(x)| ≤ d∞(f, h)+d∞(h, g) for all
x∈ [0, 1], it follows that d∞(f, g) ≤ d∞(f, h) + d∞(h, g) and d∞ satisfies the
Triangle Inequality.

We also have d1(f, g) =
∫ 1
0 |f − g| ≤

∫ 1
0 {|f −h| + |h − g|} =

∫ 1
0 |f −h| +∫ 1

0 |h − g| = d1(f, h) + d1(h, g).
3. We have s �= t if and only if d(s, t) = 1. If s �= t, the value of d(s, u) + d(u, t)

is either 1 or 2 depending on whether u equals s or t, or neither.
4. Since d∞(Pn, P ) = sup{|xn −x|, |yn − y|}, if d∞(Pn, P ) → 0 then it follows

that both |xn −x| → 0 and |yn − y| → 0, whence xn → x and yn → y. Con-
versely, if xn → x and yn → y, then |xn −x| → 0 and |yn − y| → 0, whence
d∞(Pn, P ) → 0.

5. If (xn), (yn) converge to x, y, respectively, then d(Pn, P ) = |xn −x| +
|yn −y|→0, so that (Pn) converges to P . Conversely, since |xn −x|≤d(Pn, P ),
if d(Pn, P ) → 0, then lim(xn) = x, and similarly for (yn).

6. If a sequence (xn) in S converges to x relative to the discrete metric d,
then d(xn, x) → 0 which implies that xn = x for all sufficiently large n. The
converse is trivial.

7. Show that a set consisting of a single point is open. Then it follows that
every set is an open set, so that every set is also a closed set.

8. (a) {(x, y) : |x| + |y| ≤ 1} is the square with vertices (±1, 0) and (0,±1), includ-
ing its interior.
(b) {(x, y) : |x| ≤ 1, |y| ≤ 1} is the square with vertices (1, 1), (−1, 1), (−1,−1)
and (1,−1), including its interior.
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9. For a given y ∈Vε(x), let δ := ε − d(x, y); then δ > 0. Show that Vδ(y) ⊆Vε(x).
Since y is arbitrary, it follows that Vε(x) is an open set.

10. Let G ⊆S2 be open in (S2, d2) and let x∈ f−1(G) so that f(x) ∈G. Then
there exists an ε-neighborhood Vε(f(x)) ⊆G. Since f is continuous at x,
there exists a δ-neighborhood Vδ(x) such that f(Vδ(x)) ⊆ Vε(f(x)). Since
x∈ f−1(G) is arbitrary, we conclude that f−1(G) is open in (S1, d1).

If f−1(G) is open in S1 for every open set G ⊆S2, and if x0 ∈S1, we let
y0 := f(x0) ∈S2. If Vε(y0) is any (open) ε-neighborhood of y0, the hypothesis
is that f−1(Vε(y0)) is an open set in S1. Since it contains x0, there is a
δ-neighborhood Vδ(x0) ⊆ f−1(Vε(y0)), whence f(Vδ(x0)) ⊆Vε(y0). Therefore
f is continuous at the arbitrary point x0 ∈S1.

11. Let G = {Gα} be a cover of f(S) ⊆ R by open sets in R. It follows from
11.4.11 that each set f−1(Gα) is open in (S, d). Therefore, the collection
{f−1(Gα)} is an open cover of S. Since (S, d) is compact, a finite subcol-
lection {f−1(Gα), . . . , f−1(GαN

)} covers S, whence it follows that the sets
{Gα1 , . . . , GαN

} must form a finite subcover of G for f(S). Since G was an
arbitrary open cover of f(S), we conclude that f(S) is compact.

12. Modify the proof of Theorem 11.2.4.



SELECTED GRAPHS

We include in this manual the graphs of a few selected functions that have a
special place in real analysis. They can be photocopied onto transparencies and
used with an overhead projector, if desired. They are just an indication of how
computer graphics can be used to exhibit the properties of some of the important
examples in real analysis.

The graphs were constructed using the facilities of the CALCULUS AND
MATHEMATICA project that was developed at the University of Illinois at
Urbana-Champaign by Professors H. Porta and J. J. Uhl, Jr. This is an exciting
and innovative computer laboratory in which the students use the graphic and
calculational power of Mathematica to learn calculus. The teaching of calculus
is thus brought into the modern world by having students actively interact with
modern technology.

(A) Figures 1, 2, 3. Here f(x) :=x2 sin(1/x) for x �= 0 and f(0) := 0.

Three graphs are shown using three different plot ranges, which gives a mild zoom
effect. Figure 1 gives a global perspective, and shows that for “large” values of x,
the graph approaches the line y = x. Note that

f(x) = x ·
[
sin(1/x)

1/x

]
and lim

x→∞

[
sin(1/x)

1/x

]
= 1.

As the plot range becomes smaller, the oscillations become increasingly dominant.
The guiding parabolas y = x2 and y = −x2 are shown as dashed curves. It is
important to note that the scales on the coordinate axes are different in the three
graphs; in Figure 1, the scale is 1 to 10, while in Figure 3 the scale is 10 to 1.
With these scales, the parabolic curves have the same shape in all three figures.
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Figure 1. f(x) = x2 sin(1/x), plot range −10 < x < 10
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Figure 2. f(x) = x2 sin(1/x), plot range −1 < x < 1
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Figure 3. f(x) = x2 sin(1/x), plot range −0.1 < x < 0.1
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(B) Figures 4,5,6. Here g(x) :=x4[2 + sin(1/x)] for x �= 0 and g(0) := 0.

There are three graphs of the function g for three different plot ranges, with the
effect of enlarging the graph near the origin. As the plot range decreases, the
oscillations become more apparent.

The function g has an absolute minumum at x = 0, but the derivative g′

changes sign infinitely often in every neighborhood of x = 0; thus the first deriva-
tive test does not apply. The guiding curves y = x4 and y = 3x4 are shown as
dashed curves. Note that the scale on the coordinate axes is different in each
figure.
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Figure 4. g(x) = x4[2 + sin(1/x)], plot range −0.4 < x < 0.4
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Figure 5. g(x) = x4[2 + sin(1/x)], plot range −0.1 < x < 0.1
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Figure 6. g(x) = x4[2 + sin(1/x)], plot range −0.01 < x < 0.01
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(C) Figure 7. Here h(x) := 1/n if x = m/n, where m, n are relatively prime
natural numbers with m < n, and h(x) := 0 if 0 < x < 1 and x is irrational.

The graph of this function (Thomae’s function on (0, 1)) is shown. This graph
has been plotted for values of n from 1 to 70, and we have decreased the level of
shading near the x-axis to keep the graph from becoming a blotch of ink for larger
values of n. There is a gap of white just above the x-axis which must be filled in
by the imagination. No attempt is made to represent the points on the x-axis.

This function is interesting because it is discontinuous at every rational
number, and so has an infinite number of discontinuities. However, it is Riemann
integrable.
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Figure 7. Thomae’s function
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