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Introduction

It took a lot longer than expected to be able to bring this book
out, but it’s been all the better for how long the ideas have
been fermenting in the heads of so many developers. Many of
the concepts that were fledgling assumptions have now been
tested out in practice. In many cases, the following chapters
are ideas that started out as simple observations and slowly
evolved into solid frameworks for building software in a data-
oriented manner. Some sections have remained largely un-
changed from their first drafts, such as the sections on exis-
tence based processing or the arguments against the object-
oriented approach, but others have been re-written a number
of times, trying to distill just the right kind of information at
the right pace.

The data-oriented movement has also calmed down now.
It’s no longer fighting to be heard, and many more people
are seeing the core issues with object-oriented approaches,
so the idea of data-oriented design sounds a lot less like a
rage against the establishment. People who used to be all
entrenched advocates of object-oriented design have moved
to functional programming with languages like Clojure, or to
concurrency centric languages like Go, or moved the goal-
posts by embracing a distributed way of developing their
software, such as through service oriented architectures, or

v



vi INTRODUCTION

microservices. With the enterprise developer taking their
leave of the monolithic object-oriented approach, the voices
for object-oriented design now seem more like the zealots.

Most people come at data-oriented design from object-
oriented design, and have heard of it only because of people
claiming object-oriented design to be bad, or wrong, or simply
not the only way of doing things. This may be the case for
large-scale software, and though object-oriented code does
have its place (as we shall discuss in chapter 14), it has been
the cause1 of much wasted time and effort during its relatively
short life in our passionate industry of software development
and game development in particular.

My own journey through imperative procedural program-
ming, then object-oriented programming then finally finding,
embracing, and now spreading the word of data-oriented de-
sign, all started with C++. I like to think of C++ as a go to
language for the best of both worlds when you require one of
the worlds to be assembly level quality of control over your
instructions. The other world is the world of abstractions,
the ability to create code that does more in less time. Over
the years, I have learned a great deal about how C++ helps
add layer upon layer of abstraction to help make less code do
more, but I’ve also seen how the layers of various quality code
can cause a cascade of errors and unmaintainable spaghetti
that puts off even the most crunch hardened programmers.

I’d like to thank those who have helped in the making of
this book, whether by reading early versions of this text and
criticising the content or structure, or by being an inspira-
tion or guiding light on what would truly best represent this
new paradigm. You can thank the critics for the layout of the
chapters and the removal of so much of the negativity that

1 Large-Scale C++[2] is a book almost entirely dedicated to showing how
object-oriented development needn’t destroy the productivity of large-scale
software projects
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originally sat on the pages in the critique of design patterns,
which are very nearly the opposite of data-oriented design. It
was natural they took a beating. However, the whole chapter
felt like a flame war, so it was removed.

This book is a practical guide for software developers. It is
for software engineers working to create high quality products
across multiple platforms. It’s for independent developers try-
ing to get the most out of their chosen target hardware. In fact,
it’s for anyone who develops large-scale, cutting-edge software
in restrictive hardware, in a competitive environment. It is a
book about how to write code. It is a book written to educate
developers in a coding paradigm that is future proof, unlike
the style of coding we’ve become so accustomed to. It is a
book rooted in C++, the language of choice by game develop-
ers of the last ten years, and provides practical advice on how
to migrate without throwing away years of accumulated code
and experience. This book is about how you can transform
your development.

This book is for you because I cannot hold it back anymore.
There needs to be a book on this subject, and even though I’m
not the right person to write it (this is my first textbook and I
have no support from a publisher or anyone with experience
in writing textbooks) it’s probably better it exists, so someone
can criticise its content and write a better one. As an author,
a programmer, a parent, a dabbler in many things, I suffer
from imposter syndrome, and the idea that I could write a
book that people would find useful is alien, but the reason
this book is in print right now is that real people have told
me the version I released for free has already helped them.
Knowing some people have read that book, with its errors,
incomplete sections, and sometimes, outright misinformation
due to the decay over time and the problems with trying to
translate experience into facts, I couldn’t let it be the only
resource anymore.
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So here we are. More experience has shown that even
though the concepts within the book are timeless, some of the
ways in which the subject was taught have not survived the
movement of game development towards relying much more
on third party engines. Some of the concrete implementation
details no longer work on current hardware, so the point of
testing your work, and working out what is happening your-
self, have been emphasised.

Let’s make this absolutely clear here: the literal techniques
that are identified in this book as ways of working with hard-
ware to increase performance wouldn’t have worked twenty
years ago, and very likely, won’t work in another twenty years.
That is another reason why this book needed a revision be-
fore being released fully. The ideas that data-oriented design
pushes are not specific to an era, they can even be used out-
side of programming. The ideals are timeless, but they are
also rooted in their history of needing a solution to an era of
game development that was suffering from a delusion of piling
on more and more complexity to fight against slipping dead-
lines. The games industry really needed a new way to think
about what it was we were really trying to do when developing
games.

This updated, but technically first edition, is an attempt
to make the book perennial in nature and as such has re-
moved some of the examples and suggestions, and instead
replaced them with processes that lead to the same results
which can be applied without being aware of what the future
holds. Where previously there were chapters on how to do a
thing, there are now examples of how a thing is moved to the
data-oriented style.

I say in this book, programmers are not fortune tellers. It’s
true. I cannot tell what the future holds for us, or what hap-
pens after I am gone, but instead I have relied on those that
told the truth longer ago. I’ve curated the processes which
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haven’t changed over time and apply well to data-oriented de-
sign. I’ve kept the core message of looking at patterns, and be-
ing investigative and realistic over architectural and abstract
in your approach.

The first version was never produced in a printed form
other than as a couple of handmade proof copies. This will be
the first version available to buy in hard copy. Bringing this
book to physical release will be committing the ideas more per-
manently than before, and I hope this version will be around
a lot longer, hence taking more time to make sure it’s a good
reference. I’m still not happy with it. I don’t think I ever will
be. But perfect is the enemy of good, so what you have, and
what you can hopefully gain insight from, is what I could do
in the time I’ve had.

Thanks go to my reviewers, Pavel Bibergal, Alexandre
”Lanedraex” Cavalcante, Stefan Hoppe, Russell Klenk, and
Caitlin Ring. Without them, the book would be much less
readable, and might have had as many errors as the orig-
inal online version. Thanks also go to Alexandru Ene for
inspiration and example code in listing 8.1.
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Chapter 1

Data-Oriented Design

Data-oriented design has been around for decades in one form
or another but was only officially given a name by Noel Llopis
in his September 2009 article[1] of the same name. Whether it
is, or is not a programming paradigm is seen as contentious.
Many believe it can be used side by side with other pro-
gramming paradigms such as object-oriented, procedural, or
functional programming. In one respect they are right, data-
oriented design can function alongside the other paradigms,
but that does not preclude it from being a way to approach
programming in the large. Other programming paradigms
are known to function alongside each other to some extent
as well. A Lisp programmer knows that functional program-
ming can coexist with object-oriented programming and a C
programmer is well aware that object-oriented programming
can coexist with procedural programming. We shall ignore
these comments and claim data-oriented design as another
important tool; a tool just as capable of coexistence as the
rest. 1

1There are some limits, but it is not mutually exclusive with any paradigm
other than maybe the logic programming languages such as Prolog. The ex-

1
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The time was right in 2009. The hardware was ripe for a
change in how to develop. Potentially very fast computers were
hindered by a hardware ignorant programming paradigm.
The way game programmers coded at the time made many
engine programmers weep. The times have changed. Many
mobile and desktop solutions now seem to need the data-
oriented design approach less, not because the machines are
better at mitigating an ineffective approach, but the games be-
ing designed are less demanding and less complex. The trend
for mobile seems to be moving to AAA development, which
should bring the return of a need for managing complexity
and getting the most out of the hardware.

As we now live in a world where multi-core machines
include the ones in our pockets, learning how to develop soft-
ware in a less serial manner is important. Moving away from
objects messaging and getting responses immediately is part
of the benefits available to the data-oriented programmer.
Programming, with a firm reliance on awareness of the data
flow, sets you up to take the next step to GPGPU and other
compute approaches. This leads to handling the workloads
that bring game titles to life. The need for data-oriented de-
sign will only grow. It will grow because abstractions and
serial thinking will be the bottleneck of your competitors, and
those that embrace the data-oriented approach will thrive.

1.1 It’s all about the data

Data is all we have. Data is what we need to transform in
order to create a user experience. Data is what we load when
we open a document. Data is the graphics on the screen, the
pulses from the buttons on your gamepad, the cause of your

tremely declarative ”what, not how” approach does seem to exclude thinking
about the data and how it interacts with the machine.
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speakers producing waves in the air, the method by which you
level up and how the bad guy knew where you were so as to
shoot at you. Data is how long the dynamite took to explode
and how many rings you dropped when you fell on the spikes.
It is the current position and velocity of every particle in the
beautiful scene that ended the game which was loaded off
the disc and into your life via transformations by machinery
driven by decoded instructions themselves ordered by assem-
blers instructed by compilers fed with source-code.

No application is anything without its data. Adobe Pho-
toshop without the images is nothing. It’s nothing without
the brushes, the layers, the pen pressure. Microsoft Word is
nothing without the characters, the fonts, the page breaks.
FL Studio is worthless without the events. Visual Studio is
nothing without source. All the applications that have ever
been written, have been written to output data based on some
input data. The form of that data can be extremely complex,
or so simple it requires no documentation at all, but all appli-
cations produce and need data. If they don’t need recognis-
able data, then they are toys or tech demos at best.

Instructions are data too. Instructions take up memory,
use up bandwidth, and can be transformed, loaded, saved
and constructed. It’s natural for a developer to not think of
instructions as being data2, but there is very little differenti-
ating them on older, less protective hardware. Even though
memory set aside for executables is protected from harm and
modification on most contemporary hardware, this relatively
new invention is still merely an invention, and the modified
Harvard architecture relies on the same memory for data as
it does for instructions. Instructions are therefore still data,
and they are what we transform too. We take instructions and
turn them into actions. The number, size, and frequency of
them is something that matters. The idea that we have control

2unless they are a Lisp programmer
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over which instructions we use to solve problems leads us to
optimisations. Applying our knowledge of what the data is al-
lows us to make decisions about how the data can be treated.
Knowing the outcome of instructions gives us the data to de-
cide what instructions are necessary, which are busywork,
and which can be replaced with equivalent but less costly al-
ternatives.

This forms the basis of the argument for a data-oriented
approach to development, but leaves out one major element.
All this data and the transforming of data, from strings, to
images, to instructions, they all have to run on something.
Sometimes that thing is quite abstract, such as a virtual ma-
chine running on unknown hardware. Sometimes that thing
is concrete, such as knowing which specific CPU and GPU
you have, and the memory capacity and bandwidth you have
available. But in all cases, the data is not just data, but
data that exists on some hardware somewhere, and it has
to be transformed by that same hardware. In essence, data-
oriented design is the practice of designing software by de-
veloping transformations for well-formed data where the cri-
teria for well-formed is guided by the target hardware and
the patterns and types of transforms that need to operate on
it. Sometimes the data isn’t well defined, and sometimes the
hardware is equally evasive, but in most cases a good back-
ground of hardware appreciation can help out almost every
software project.

If the ultimate result of an application is data, and all in-
put can be represented by data, and it is recognised that all
data transforms are not performed in a vacuum, then a soft-
ware development methodology can be founded on these prin-
ciples; the principles of understanding the data, and how to
transform it given some knowledge of how a machine will do
what it needs to do with data of this quantity, frequency, and
its statistical qualities. Given this basis, we can build up a
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set of founding statements about what makes a methodology
data-oriented.

1.2 Data is not the problem domain

The first principle: Data is not the problem domain.

For some, it would seem that data-oriented design is the
antithesis of most other programming paradigms because
data-oriented design is a technique that does not readily al-
low the problem domain to enter into the software as written
in source. It does not promote the concept of an object as
a mapping to the context of the user in any way, as data is
intentionally and consistently without meaning. Abstraction
heavy paradigms try to pretend the computer and its data do
not exist at every turn, abstracting away the idea that there
are bytes, or CPU pipelines, or other hardware features, and
instead bringing the model of the problem into the program.
They regularly bring either the model of the view into the
code, or the model of the world as a context for the problem.
That is, they either structure the code around attributes of
the expected solution, or they structure the code around the
description of the problem domain.

Meaning can be applied to data to create information.
Meaning is not inherent in data. When you say 4, it means
very little, but say 4 miles, or 4 eggs, it means something.
When you have 3 numbers, they mean very little as a tuple,
but when you name them x,y,z, you can put meaning on them
as a position. When you have a list of positions in a game,
they mean very little without context. Object-oriented design
would likely have the positions as part of an object, and by
the class name and neighbouring data (also named) you can
get an idea of what that data means. Without the connected
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named contextualising data, the positions could be inter-
preted in a number of different ways, and though putting
the numbers in context is good in some sense, it also blocks
thinking about the positions as just sets of three numbers,
which can be important for thinking of solutions to the real
problems the programmers are trying to solve.

For an example of what can happen when you put data
so deep inside an object that you forget its impact, consider
the numerous games released, and in production, where a 2D
or 3D grid system could have been used for the data layout,
but for unknown reasons the developers kept with the object
paradigm for each entity on the map. This isn’t a singular
event, and real shipping games have seen this object-centric
approach commit crimes against the hardware by having hun-
dreds of objects placed in WorldSpace at grid coordinates,
rather than actually being driven by a grid. It’s possible that
programmers look at a grid, and see the number of elements
required to fulfil the request, and are hesitant to the idea of al-
locating it in a single lump of memory. Consider a simple 256
by 256 tilemap requiring 65,536 tiles. An object-oriented pro-
grammer may think about those sixty-five thousand objects
as being quite expensive. It might make more sense for them
to allocate the objects for the tiles only when necessary, even
to the point where there literally are sixty-five thousand tiles
created by hand in editor, but because they were placed by
hand, their necessity has been established, and they are now
something to be handled, rather than something potentially
worrying.

Not only is this pervasive lack of an underlying form a poor
way to handle rendering and simple element placement, but
it leads to much higher complexity when interpreting locality
of elements. Gaining access to elements on a grid-free rep-
resentation often requires jumping through hoops such as
having neighbour links (which need to be kept up to date),
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running through the entire list of elements (inherently costly),
or references to an auxiliary augmented grid object or spatial
mapping system connecting to the objects which are other-
wise free to move, but won’t, due to the design of the game.
This fake form of freedom introduced by the grid-free design
presents issues with understanding the data, and has been
the cause of some significant performance penalties in some
titles. Thus also causing a significant waste of programmer
mental resources in all.

Other than not having grids where they make sense, many
modern games also seem to carry instances for each and every
item in the game. An instance for each rather than a variable
storing the number of items. For some games this is an op-
timisation, as creation and destruction of objects is a costly
activity, but the trend is worrying, as these ways of storing
information about the world make the world impenetrable to
simple interrogation.

Many games seem to try to keep everything about the
player in the player class. If the player dies in-game, they
have to hang around as a dead object, otherwise, they lose
access to their achievement data. This linking of what the
data is, to where it resides and what it shares lifetime with,
causes monolithic classes and hard to untangle relationships
which frequently turn out to be the cause of bugs. I will not
name any of the games, but it’s not just one title, nor just
one studio, but an epidemic of poor technical design that
seems to infect those who use off the shelf object-oriented
engines more than those who develop their own regardless of
paradigm.

The data-oriented design approach doesn’t build the real-
world problem into the code. This could be seen as a failing
of the data-oriented approach by veteran object-oriented de-
velopers, as examples of the success of object-oriented design
come from being able to bring the human concepts to the ma-
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chine, then in this middle ground, a solution can be written
that is understandable by both human and computer. The
data-oriented approach gives up some of the human read-
ability by leaving the problem domain in the design docu-
ment, bringing elements of constraints and expectations into
the transforms, but stops the machine from having to handle
human concepts at any data level by just that same action.

Let us consider how the problem domain becomes part of
the software in programming paradigms that promote need-
less abstraction. In the case of objects, we tie meanings to
data by associating them with their containing classes and
their associated functions. In high-level abstraction, we sep-
arate actions and data by high-level concepts, which might
not apply at the low level, thus reducing the likelihood the
functions can be implemented efficiently.

When a class owns some data, it gives that data a con-
text which can sometimes limit the ability to reuse the data
or understand the impact of operations upon it. Adding func-
tions to a context can bring in further data, which quickly
leads to classes containing many different pieces of data that
are unrelated in themselves, but need to be in the same class
because an operation required a context and the context re-
quired more data for other reasons such as for other related
operations. This sounds awfully familiar, and Joe Armstrong
is quoted to have said “I think the lack of reusability comes in
object-oriented languages, not functional languages. Because
the problem with object-oriented languages is they’ve got all
this implicit environment that they carry around with them.
You wanted a banana but what you got was a gorilla holding
the banana and the entire jungle.”3 which certainly seems to
resonate with the issue of contextual referencing that seems
to be plaguing the object-oriented languages.

3From Peter Seibel’s Coders at Work[3]
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You could be forgiven for believing that it’s possible to re-
move the connections between contexts by using interfaces
or dependency injection, but the connections lie deeper than
that. The contexts in the objects are often connecting dif-
ferent classes of data about different categories in which the
object fits. Consider how this banana has many different pur-
poses, from being a fruit, to being a colour, to being a word
beginning with the letter B. We have to consider the problem
presented by the idea of the banana as an instance, as well as
the banana being a class of entity too. If we need to gain in-
formation about bananas from the point of view of the law on
imported goods, or about its nutritional value, it’s going to be
different from information about how many we are currently
stocking. We were lucky to start with the banana. If we talk
about the gorilla, then we have information about the individ-
ual gorilla, the gorillas in the zoo or jungle, and the class of
gorilla too. This is three different layers of abstraction about
something which we might give one name. At least with a
banana, each individual doesn’t have much in the way of im-
portant data. We see this kind of contextual linkage all the
time in the real world, and we manage the complexity very
well in conversation, but as soon as we start putting these
contexts down in hard terms we connect them together and
make them brittle.

All these mixed layers of abstraction become hard to un-
tangle as functions which operate over each context drag in
random pieces of data from all over the classes meaning many
data items cannot be removed as they would then be inacces-
sible. This can be enough to stop most programmers from
attempting large-scale evolving software projects, but there
is another issue caused by hiding the actions applied to the
data that leads to unnecessary complexity. When you see lists
and trees, arrays and maps, tables and rows, you can reason
about them and their interactions and transformations. If
you attempt to do the same with homes and offices, roads
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and commuters, coffee shops and parks, you can often get
stuck in thinking about the problem domain concepts and
not see the details that would provide clues to a better data
representation or a different algorithmic approach.

There are very few computer science algorithms that can-
not be reused on primitive data types, but when you introduce
new classes with their own internal layouts of data, that don’t
follow clearly in the patterns of existing data-structures, then
you won’t be able to fully utilise those algorithms, and might
not even be able to see how they would apply. Putting data
structures inside your object designs might make sense from
what they are, but they often make little sense from the per-
spective of data manipulation.

When we consider the data from the data-oriented design
point of view, data is mere facts that can be interpreted in
whatever way necessary to get the output data in the format
it needs to be. We only care about what transforms we do,
and where the data ends up. In practice, when you discard
meanings from data, you also reduce the chance of tangling
the facts with their contexts, and thus you also reduce the
likelihood of mixing unrelated data just for the sake of an op-
eration or two.

1.3 Data and statistics

The second principle: Data is the type, frequency, quantity,
shape, and probability.

The second statement is that data is not just the structure.
A common misconception about data-oriented design is that
it’s all about cache misses. Even if it was all about making
sure you never missed the cache, and it was all about struc-
turing your classes so the hot and cold data was split apart,
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it would be a generally useful addition to your programming
toolkit, but data-oriented design is about all aspects of the
data. To write a book on how to avoid cache misses, you need
more than just some tips on how to organise your structures,
you need a grounding in what is really happening inside your
computer when it is running your program. Teaching that
in a book is also impossible as it would only apply to one
generation of hardware, and one generation of programming
languages, however, data-oriented design is not rooted in just
one language and just some unusual hardware, even though
the language to best benefit from it is C++, and the hardware
to benefit the approach the most is anything with unbalanced
bottlenecks. The schema of the data is important, but the val-
ues and how the data is transformed are as important, if not
more so. It is not enough to have some photographs of a chee-
tah to determine how fast it can run. You need to see it in the
wild and understand the true costs of being slow.

The data-oriented design model is centred around data. It
pivots on live data, real data, data that is also information.
Object-oriented design is centred around the problem defini-
tion. Objects are not real things but abstract representations
of the context in which the problem will be solved. The ob-
jects manipulate the data needed to represent them without
any consideration for the hardware or the real-world data pat-
terns or quantities. This is why object-oriented design allows
you to quickly build up first versions of applications, allowing
you to put the first version of the design document or problem
definition directly into the code, and make a quick attempt at
a solution.

Data-oriented design takes a different approach to the
problem, instead of assuming we know nothing about the
hardware, it assumes we know little about the true nature of
our problem, and makes the schema of the data a second-
class citizen. Anyone who has written a sizeable piece of
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software may recognise that the technical structure and the
design for a project often changes so much that there is
barely any section from the first draft remaining unchanged
in the final implementation. Data-oriented design avoids
wasting resources by never assuming the design needs to
exist anywhere other than in a document. It makes progress
by providing a solution to the current problem through some
high-level code controlling sequences of events and specifying
schema in which to give temporary meaning to the data.

Data-oriented design takes its cues from the data which
is seen or expected. Instead of planning for all eventualities,
or planning to make things adaptable, there is a preference
for using the most probable input to direct the choice of al-
gorithm. Instead of planning to be extendable, it plans to be
simple and replaceable, and get the job done. Extendable can
be added later, with the safety net of unit tests to ensure it re-
mains working as it did while it was simple. Luckily, there is
a way to make your data layout extendable without requiring
much thought, by utilising techniques developed many years
ago for working with databases.

Database technology took a great turn for the positive
when the relational model was introduced. In the paper Out
of the Tar Pit [4], Functional Relational Programming takes it
a step further when it references the idea of using relational
model data-structures with functional transforms. These are
well defined, and much literature on how to adapt their form
to match your requirements is available.

1.4 Data can change

Data-oriented design is current. It is not a representation of
the history of a problem or a solution that has been brought
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up to date, nor is it the future, with generic solutions made
up to handle whatever will come along. Holding onto the past
will interfere with flexibility, and looking to the future is gener-
ally fruitless as programmers are not fortune tellers. It’s the
opinion of the author, that future-proof systems rarely are.
Object-oriented design starts to show its weaknesses when
designs change in the real-world.

Object-oriented design is known to handle changes to un-
derlying implementation details very well, as these are the
expected changes, the obvious changes, and the ones often
cited in introductions to object-oriented design. However, real
world changes such as change of user’s needs, changes to in-
put format, quantity, frequency, and the route by which the
information will travel, are not handled with grace. It was
introduced in On the Criteria To Be Used in Decomposing Sys-
tems into Modules[5] that the modularisation approach used
by many at the time was rather like that of a production
line, where elements of the implementation are caught up in
the stages of the proposed solution. These stages themselves
would be identified with a current interpretation of the prob-
lem. In the original document, the solution was to introduce
a data hiding approach to modularisation, and though it was
an improvement, in the later book Software Pioneers: Contri-
butions to Software Engineering[6], D. L. Parnas revisits the
issue and reminds us that even though initial software devel-
opment can be faster when making structural decisions based
on business facts, it lays a burden on maintenance and evolu-
tionary development. Object-oriented design approaches suf-
fer from this inertia inherent in keeping the problem domain
coupled with the implementation. As mentioned, the prob-
lem domain, when introduced into the implementation, can
help with making decisions quickly, as you can immediately
see the impact the implementation will have on getting closer
to the goal of solving or working with the problem in its cur-
rent form. The problem with object-oriented design lies in the
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inevitability of change at a higher level.

Designs change for multiple reasons, occasionally includ-
ing times when they actually haven’t. A misunderstanding
of a design, or a misinterpretation of a design, will cause as
much change in the implementation as a literal request for
change of design. A data-oriented approach to code design
considers the change in design through the lens of under-
standing the change in the meaning of the data. The data-
oriented approach to design also allows for change to the code
when the source of data changes, unlike the encapsulated in-
ternal state manipulations of the object-oriented approach. In
general, data-oriented design handles change better as pieces
of data and transforms can be more simply coupled and de-
coupled than objects can be mutated and reused.

The reason this is so, comes from linking the intention, or
the aspect, to the data. When lumping data and functions in
with concepts of objects, you find the objects are the schema
of the data. The aspect of the data is linked to that object,
which means it’s hard to think of the data from another point
of view. The use case of the data, and the real-world or design,
are now linked to the data layout through a singular vision
implied by the object definition. If you link your data layout
to the union of the required data for your expected manipu-
lations, and your data manipulations are linked by aspects
of your data, then you make it hard to unlink data related
by aspect. The difficulty comes when different aspects need
different subsets of the data, and they overlap. When they
overlap, they create a larger and larger set of values that need
to travel around the system as one unit. It’s common to refac-
tor a class out into two or more classes, or give ownership of
data to a different class. This is what is meant by tying data
to an aspect. It is tied to the lens through which the data has
purpose, but with static typed objects that purpose is prede-
fined, a union of multiple purposes, and sometimes carries
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around defunct relationships. Some purposes may no longer
required by the design. Unfortunately, it’s easier to see when
a relationship needs to exist, than when it doesn’t, and that
leads to more connections, not fewer, over time.

If you link your operations by related data, such as when
you put methods on a class, you make it hard to unlink your
operations when the data changes or splits, and you make it
hard to split data when an operation requires the data to be
together for its own purposes. If you keep your data in one
place, operations in another place, and keep the aspects and
roles of data intrinsic from how the operations and transforms
are applied to the data, then you will find that many times
when refactoring would have been large and difficult in object-
oriented code, the task now becomes trivial or non-existent.
With this benefit comes a cost of keeping tabs on what data
is required for each operation, and the potential danger of de-
synchronisation. This consideration can lead to keeping some
cold code in an object-oriented style where objects are respon-
sible for maintaining internal consistency over efficiency and
mutability. Examples of places where object-oriented design
is far superior to data-oriented can be that of driver layers
for systems or hardware. Even though Vulkan and OpenGL
are object-oriented, the granularity of the objects is large and
linked to stable concepts in their space, just like the object-
oriented approach of the FILE type or handle, in open, close,
read, and write operations in filesystems.

A big misunderstanding for many new to the data-oriented
design paradigm, a concept brought over from abstraction
based development, is that we can design a static library or
set of templates to provide generic solutions to everything pre-
sented in this book as a data-oriented solution. Much like
with domain driven design, data-oriented design is product
and work-flow specific. You learn how to do data-oriented de-
sign, not how to add it to your project. The fundamental truth
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is that data, though it can be generic by type, is not generic in
how it is used. The values are different and often contain pat-
terns we can turn to our advantage. The idea that data can
be generic is a false claim that data-oriented design attempts
to rectify. The transforms applied to data can be generic to
some extent, but the order and selection of operations are lit-
erally the solution to the problem. Source code is the recipe
for conversion of data from one form into another. There can-
not be a library of templates for understanding and leverag-
ing patterns in the data, and that’s what drives a successful
data-oriented design. It’s true we can build algorithms to find
patterns in data, otherwise, how would it be possible to do
compression, but the patterns we think about when it comes
to data-oriented design are higher level, domain-specific, and
not simple frequency mappings.

Our run-time benefits from specialisation through perfor-
mance tricks that sometimes make the code harder to read,
but it is frequently discouraged as being not object-oriented,
or being too hard-coded. It can be better to hard-code a trans-
form than to pretend it’s not hard-coded by wrapping it in a
generic container and using less direct algorithms on it. Us-
ing existing templates like this provides a benefit of an in-
crease in readability for those who already know the library,
and potentially fewer bugs if the functionality was in some way
generic. But, if the functionality was not well mapped to the
existing generic solution, writing it with a function template
and then extending will make the code harder to understand.
Hiding the fact that the technique had been changed subtly
will introduced false assumptions. Hard-coding a new algo-
rithm is a better choice as long as it has sufficient tests, and
is objectively new. Tests will also be easier to write if you con-
strain yourself to the facts about concrete data and only test
with real, but simple data for your problem, and not generic
types on generic data.
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1.5 How is data formed?

The games we write have a lot of data, in a lot of different
formats. We have textures in multiple formats for multiple
platforms. There are animations, usually optimised for differ-
ent skeletons or types of playback. There are sounds, lights,
and scripts. Don’t forget meshes, they consist of multiple
buffers of attributes. Only a very small proportion of meshes
are old fixed function type with vertices containing positions,
UVs, and normals. The data in game development is hard to
box, and getting harder to pin down as more ideas which were
previously considered impossible have now become common-
place. This is why we spend a lot of time working on editors
and tool-chains, so we can take the free-form output from de-
signers and artists and find a way to put it into our engines.
Without our tool-chains, editors, viewers, and tweaking tools,
there would be no way we could produce a game with the time
we have. The object-oriented approach provides a good way
to wrap our heads around all these different formats of data.
It gives a centralised view of where each type of data belongs
and classifies it by what can be done to it. This makes it very
easy to add and use data quickly, but implementing all these
different wrapper objects takes time. Adding new function-
ality to these objects can sometimes require large amounts
of refactoring as occasionally objects are classified in such a
way that they don’t allow for new features to exist. For ex-
ample, in many old engines, textures were always 1,2, or 4
bytes per pixel. With the advent of floating point textures, all
that code required a minor refactoring. In the past, it was
not possible to read a texture from the vertex shader, so when
texture based skinning came along, many engine program-
mers had to refactor their render update. They had to allow
for a vertex shader texture upload because it might be nec-
essary when uploading transforms for rendering a skinned
mesh. When the PlayStation2 came along, or an engine first
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used shaders, the very idea of what made a material had to
change. In the move from small 3D environments to large
open worlds with level of detail caused many engineers to start
thinking about what it meant for something to need render-
ing. When newer hardware became more picky about align-
ment, other hard to inject changes had to be made. In many
engines, mesh data is optimised for rendering, but when you
have to do mesh ray casting to see where bullets have hit, or
for doing IK, or physics, then you need multiple representa-
tions of an entity. At this point, the object-oriented approach
starts to look cobbled together as there are fewer objects that
represent real things, and more objects used as containers
so programmers can think in larger building blocks. These
blocks hinder though, as they become the only blocks used
in thought, and stop potential mental connections from hap-
pening. We went from 2D sprites to 3D meshes, following the
format of the hardware provider, to custom data streams and
compute units turning the streams into rendered triangles.
Wave data, to banks, to envelope controlled grain tables and
slews of layered sounds. Tilemaps, to portals and rooms, to
streamed, multiple levels of detail chunks of world, to hybrid
mesh palette, props, and unique stitching assets. From flip-
book to Euler angle sequences, to quaternions and spheri-
cal interpolated animations, to animation trees and behaviour
mapping/trees. Change is the only constant.

All these types of data are pretty common if you’ve worked
in games at all, and many engines do provide an abstraction
to these more fundamental types. When a new type of data
becomes heavily used it is promoted into engines as a core
type. We normally consider the trade-off of new types being
handled as special cases until they become ubiquitous to be
one of usability vs performance. We don’t want to provide
free access to the lesser understood elements of game devel-
opment. People who are not, or can not, invest time in finding
out how best to use new features, are discouraged from using
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them. The object-oriented game development way to do that
is to not provide objects which represent them, and instead
only offer the features to people who know how to utilise the
more advanced tools.

Apart from the objects representing digital assets, there
are also objects for internal game logic. For every game, there
are objects which only exist to further the game-play. Col-
lectable card games have a lot of textures, but they also have
a great deal of rules, card stats, player decks, match records,
with many objects to represent the current state of play. All
of these objects are completely custom designed for one game.
There may be sequels, but unless it’s primarily a re-skin, it
will use quite different game logic in many places, and there-
fore require different data, which would imply different meth-
ods on the now guaranteed to be internally different objects.

Game data is complex. Any first layout of the data is in-
spired by the game’s initial design. Once development is un-
derway, the layout needs to keep up with whichever way the
game evolves. Object-oriented techniques offer a quick way to
implement any given design, are very quick at implementing
each singular design in turn, but don’t offer a clean or graceful
way to migrate from one data schema to the next. There are
hacks, such as those used in version based asset handlers,
or in frameworks backed by update systems and conversion
scripts, but normally, game developers change the tool-chain
and the engine at the same time, do a full re-export of all the
assets, then commit to the next version all in one go. This can
be quite a painful experience if it has to happen over multiple
sites at the same time, or if you have a lot of assets, or if you
are trying to provide engine support for more than one title,
and only one wants to change to the new revision. An ex-
ample of an object-oriented approach that handles migration
of design with some grace is the Django framework, but the
reason it handles the migration well is that the objects would
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appear to be views into data models, not the data itself.

There have not yet been any successful efforts to build a
generic game asset solution. This may be because all games
differ in so many subtle ways that if you did provide a generic
solution, it wouldn’t be a game solution, just a new language.
There is no solution to be found in trying to provide all the
possible types of object a game can use. But, there is a so-
lution if we go back to thinking about a game as merely run-
ning a set of computations on some data. The closest we can
get in 2018 is the FBX format, with some dependence on the
current standard shader languages. The current solutions
appear to have excess baggage which does not seem easy to
remove. Due to the need to be generic, many details are lost
through abstractions and strategies to present data in a non-
confrontational way.

1.6 What can provide a computational
framework for such complex data?

Game developers are notorious for thinking about game devel-
opment from either a low level all out performance perspec-
tive or from a very high-level gameplay and interaction per-
spective. This may have come about because of the widen-
ing gap between the amount of code that has to be high per-
formance, and the amount of code to make the game com-
plete. Object-oriented techniques provide good coverage of
the high-level aspect, so the high-level programmers are con-
tent with their tools. The performance specialists have been
finding ways of doing more with the hardware, so much so
that a lot of the time content creators think they don’t have a
part in the optimisation process. There has never been much
of a middle ground in game development, which is proba-
bly the primary reason why the structure and performance
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techniques employed by big-iron companies didn’t seem use-
ful. The secondary reason could be that game developers
don’t normally develop systems and applications which have
decade-long maintenance expectations4 and therefore are less
likely to be concerned about why their code should be en-
capsulated and protected or at least well documented. When
game development was first flourishing into larger studios in
the late 1990’s, academic or corporate software engineering
practices were seen as suspicious because wherever they were
employed, there was a dramatic drop in game performance,
and whenever any prospective employees came from those in-
dustries, they failed to impress. As games machines became
more like the standard micro-computers, and standard micro-
computers drew closer in design to the mainframes of old, the
more apparent it became that some of those standard profes-
sional software engineering practices could be useful. Now
the scale of games has grown to match the hardware, but the
games industry has stopped looking at where those non-game
development practices led. As an industry, we should be look-
ing to where others have gone before us, and the closest set
of academic and professional development techniques seem to
be grounded in simulation and high volume data analysis. We
still have industry-specific challenges such as the problems
of high frequency highly heterogeneous transformational re-
quirements that we experience in sufficiently voluminous AI
environments, and we have the issue of user proximity in net-
worked environments, such as the problems faced by MMOs
when they have location-based events, and bandwidth starts
to hit n2 issues as everyone is trying to message everyone else.

With each successive generation, the number of developer
hours to create a game has grown, which is why project man-
agement and software engineering practices have become
standardised at the larger games companies. There was a

4people at Blizzard Entertainment, Inc. likely have something to say about
this
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time when game developers were seen as cutting-edge pro-
grammers, inventing new technology as the need arises, but
with the advent of less adventurous hardware (most notably
in the x86 based recent 8thgenerations), there has been a
shift away from ingenious coding practices, and towards a
standardised process. This means game development can be
tuned to ensure the release date will coincide with marketing
dates. There will always be an element of randomness in high
profile game development. There will always be an element
of innovation that virtually guarantees you will not be able
to predict how long the project, or at least one part of the
project, will take. Even if data-oriented design isn’t needed to
make your game go faster, it can be used to make your game
development schedule more regular.

Part of the difficulty in adding new and innovative features
to a game is the data layout. If you need to change the data
layout for a game, it will need objects to be redesigned or ex-
tended in order to work within the existing framework. If there
is no new data, then a feature might require that previously
separate systems suddenly be able to talk to each other quite
intimately. This coupling can often cause system-wide con-
fusion with additional temporal coupling and corner cases so
obscure they can only be reproduced one time in a million.
These odds might sound fine to some developers, but if you’re
expecting to sell five to fifty million copies of your game, at
one in a million, that’s five to fifty people who will experience
the problem, can take a video of your game behaving oddly,
post it on the YouTube, and call your company rubbish, or
your developers lazy, because they hadn’t fixed an obvious
bug. Worse, what if the one in a million issue was a way
to circumvent in-app-purchases, and was reproducible if you
knew what to do and the steps start spreading on Twitter, or
maybe created an economy-destroying influx of resources in
a live MMO universe5. In the past, if you had sold five to fifty

5The webcomic and anecdotes site The-Trenches did a se-
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million copies of your game, you wouldn’t care, but with the
advent of free-to-play games, five million players might be con-
sidered a good start, and poor reviews coming in will curb the
growth. IAP circumventions will kill your income, and econ-
omy destruction will end you.

Big iron developers had these same concerns back in the
1970’s. Their software had to be built to high standards be-
cause their programs would frequently be working on data
concerned with real money transactions. They needed to
write business logic that operated on the data, but most im-
portant of all, they had to make sure the data was updated
through a provably careful set of operations in order to main-
tain its integrity. Database technology grew from the need
to process stored data, to do complex analysis on it, to store
and update it, and be able to guarantee it was valid at all
times. To do this, the ACID test was used to ensure atomicity,
consistency, isolation, and durability. Atomicity was the test
to ensure all transactions would either complete or do noth-
ing. It could be very bad for a database to update only one
account in a financial transaction. There could be money lost
or created if a transaction was not atomic. Consistency was
added to ensure all the resultant state changes which should
happen during a transaction do happen, that is, all triggers
which should fire, do fire, even if the triggers cause triggers
recursively, with no limit. This would be highly important if
an account should be blocked after it has triggered a form of
fraud detection. If a trigger has not fired, then the company
using the database could risk being liable for even more than
if they had stopped the account when they first detected fraud.
Isolation is concerned with ensuring all transactions which
occur cannot cause any other transactions to differ in be-
haviour. Normally this means that if two transactions appear

quence of strips in a webcomic on this, and pointed out
many of the issues with trying to fix it once it has gone live
http://www.trenchescomic.com/comic/post/apocalypse

http://www.trenchescomic.com/comic/post/apocalypse
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to work on the same data, they have to queue up and not try
to operate at the same time. Although this is generally good,
it does cause concurrency problems. Finally, durability. This
was the second most important element of the four, as it has
always been important to ensure that once a transaction has
completed, it remains so. In database terminology, durabil-
ity meant the transaction would be guaranteed to have been
stored in such a way that it would survive server crashes or
power outages. This was important for networked computers
where it would be important to know what transactions had
definitely happened when a server crashed or a connection
dropped.

Modern networked games also have to worry about highly
important data like this. With non-free downloadable con-
tent, consumers care about consistency. With consumable
downloadable content, users care a great deal about every
transaction. To provide much of the functionality required of
the database ACID test, game developers have gone back to
looking at how databases were designed to cope with these
strict requirements and found reference to staged commits,
idempotent functions, techniques for concurrent develop-
ment, and a vast literature base on how to design tables for a
database.

1.7 Conclusions and takeaways

We’ve talked about data-oriented design being a way to think
about and lay out your data and to make decisions about your
architecture. We have two principles that can drive many of
the decisions we need to make when doing data-oriented de-
sign. To finish the chapter, there are some takeaways you can
use immediately to begin your journey.
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Consider how your data is being influenced by what it’s
called. Consider the possibility that the proximity of other
data can influence the meaning of your data, and in doing so,
trap it in a model that inhibits flexibility. For the considera-
tion of the first principle, data is not the problem domain, it’s
worth thinking about the following items.

• What is tying your data together, is it a concept or implied
meaning?

• Is your data layout defined by a single interpretation
from a single point of view?

• Think about how the data could be reinterpreted and cut
along those lines.

• What is it about the data that makes it uniquely impor-
tant?

You are not targeting an unknown device with unknowable
characteristics. Know your data, and know your target hard-
ware. To some extent, understand how much each stream of
data matters, and who is consuming it. Understand the cost
and potential value of improvements. Access patterns mat-
ter, as you cannot hit the cache if you’re accessing things in a
burst, then not touching them again for a whole cycle of the
application. For the consideration of the second principle,
data is the type, frequency, quantity, shape, and probability,
it’s worth thinking about the following items.

• What is the smallest unit of memory on your target plat-
form?6

• When you read data, how much of it are you using?
• How often do you need the data? Is it once, or a thou-

sand times a frame?
• How do you access the data? At random, or in a burst?
• Are you always modifying the data, or just reading it?

Are you modifying all of it?
6On most machines in 2018, the smallest unit of memory is 64 byte aligned

lump called a cache line.
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• Who does the data matter to, and what about it matters?
• Find out the quality constraints of your solutions, in

terms of bandwidth and latency.
• What information do you have that isn’t in the data per-

se? What is implicit?



Chapter 2

Relational Databases

In order to lay your data out better, it’s useful to have an un-
derstanding of the methods available to convert your existing
structures into something linear. The problems we face when
applying data-oriented approaches to existing code and data
layouts usually stem from the complexity of state inherent in
data-hiding or encapsulating programming paradigms. These
paradigms hide away internal state so you don’t have to think
about it, but they hinder when it comes to reconfiguring data
layouts. This is not because they don’t abstract enough to
allow changes to the underlying structure without impacting
the correctness of the code that uses it, but instead because
they have connected and given meaning to the structure of
the data. That type of coupling can be hard to remove.

In this chapter, we go over some of the pertinent parts of
the relational model, relational database technology, and nor-
malisation, as these are examples of converting highly com-
plex data structures and relationships into very clean collec-
tions of linear storable data entries.

27
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You certainly don’t have to move your data to a database
style to do data-oriented design, but there are many places
where you will wish you had a simple array to work with, and
this chapter will help you by giving you an example of how
you can migrate from a web of connected complex objects to
a simpler to reason about relational model of arrays.

2.1 Complex state

When you think about the data present in most software,
it has some qualities of complexity or interconnectedness.
When it comes to game development, there are many ways
in which the game entities interact, and many ways in which
their attached resources will need to feed through different
stages of processes to achieve the audio, visual and some-
times haptic feedback necessary to fully immerse the player.
For many programmers brought up on object-oriented de-
sign, the idea of reducing the types of structure available
down to just simple arrays, is virtually unthinkable. It’s very
hard to go from working with objects, classes, templates, and
methods on encapsulated data to a world where you only have
access to linear containers.

In A Relational Model of Data for Large Shared Data Banks[7],
Edgar F. Codd proposed the relational model to handle the
current and future needs of agents interacting with data. He
proposed a solution to structuring data for insert, update,
delete, and query operations. His proposal claimed to reduce
the need to maintain a deep understanding of how the data
was laid out to use it well. His proposal also claimed to reduce
the likelihood of introducing internal inconsistencies.

The relational model provided a framework, and in Further
Normalization of the Data Base Relational Model.[8], Edgar F.
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Codd introduced the fundamental terms of normalisation we
use to this day in a systematic approach to reducing the most
complex of interconnected state information to linear lists of
unique independent tuples.

2.2 What can provide a computational
framework for complex data?

Databases store highly complex data in a structured way
and provide a language for transforming and generating re-
ports based on that data. The language, SQL, invented in
the 1970’s by Donald D. Chamberlin and Raymond F. Boyce
at IBM, provides a method by which it is possible to store
computable data while also maintaining data relationships
following in the form of the relational model. Games don’t
have simple computable data, they have classes and objects.
They have guns, swords, cars, gems, daily events, textures,
sounds, and achievements. It is very easy to conclude that
database technology doesn’t work for the object-oriented ap-
proach game developers use.

The data relationships in games can be highly complex,
it would seem at first glance that it doesn’t neatly fit into
database rows. A CD collection easily fits in a database, with
your albums neatly arranged in a single table. But, many
game objects won’t fit into rows of columns. For the uniniti-
ated, it can be hard to find the right table columns to describe
a level file. Trying to find the right columns to describe a car
in a racing game can be a puzzle. Do you need a column for
each wheel? Do you need a column for each collision primi-
tive, or just a column for the collision mesh?

An obvious answer could be that game data doesn’t fit
neatly into the database way of thinking. However, that’s
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only because we’ve not normalised the data. To show how
you can convert from a network model, or hierarchical model
to what we need, we will work through these normalisation
steps. We’ll start with a level file as we find out how these
decades-old techniques can provide a very useful insight into
what game data is really doing.

We shall discover that everything we do is already in a
database, but it wasn’t obvious to us because of how we
store our data. The structure of any data is a trade-off be-
tween performance, readability, maintenance, future proof-
ing, extendibility, and reuse. For example, the most flexible
database in common use is your filesystem. It has one ta-
ble with two columns. A primary key of the file path, and a
string for the data. This simple database system is the per-
fect fit for a completely future proof system. There’s nothing
that can’t be stored in a file. The more complex the tables
get, the less future proof, and the less maintainable, but
the higher the performance and readability. For example, a
file has no documentation of its own, but the schema of a
database could be all that is required to understand a suffi-
ciently well-designed database. That’s how games don’t even
appear to have databases. They are so complex, for the sake
of performance, they have forgotten they are merely a data
transform. This sliding scale of complexity affects scalability
too, which is why some people have moved towards NoSQL
databases, and document store types of data storage. These
systems are more like a filesystem where the documents are
accessed by name, and have fewer limits on how they are
structured. This has been good for horizontal scalability, as
it’s simpler to add more hardware when you don’t have to keep
your data consistent across multiple tables that might be on
different machines. There may come a day when memory is
so tightly tied to the closest physical CPU, or when memory
chips themselves get more processing power, or running 100
SoCs inside your desktop rig is more effective than a single
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monolithic CPU, that moving to document store at the high-
level could be beneficial inside your app, but for now, there
do not seem to be any benefits in that processing model for
tasks on local hardware.

We’re not going to go into the details of the lowest level
of how we utilise large data primitives such as meshes, tex-
tures, sounds and such. For now, think of these raw assets
(sounds, textures, vertex buffers, etc.) as primitives, much
like the integers, floating point numbers, strings and boolean
values we shall be working with. We do this because the rela-
tional model calls for atomicity when working with data. What
is and is not atomic has been debated without an absolute
answer becoming clear, but for the intents of developing soft-
ware intended for human consumption, the granularity can
be rooted in considering the data from the perspective of hu-
man perception. There are existing APIs that present strings
in various ways depending on how they are used, for example
the difference between human-readable strings (usually UTF-
8) and ASCII strings for debugging. Adding sounds, textures,
and meshes to this seems quite natural once you realise all
these things are resources which if cut into smaller pieces be-
gin to lose what it is that makes them what they are. For ex-
ample, half of a sentence is a lot less useful than a whole one,
and loses integrity by disassociation. A slice of a sentence
is clearly not reusable in any meaningful way with another
random slice of a different sentence. Even subtitles are split
along meaningful boundaries, and it’s this idea of meaningful
boundary that gives us the our definition of atomicity for soft-
ware developed for humans. To this end, when working with
your data, when you’re normalising, try to stay at the level of
nouns, the nameable pieces. A whole song can be an atom,
but so is a single tick sound of a clock. A whole page of text
is an atom, but so is the player’s gamer-tag.
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2.3 Normalising your data

Figure 2.1: Visual representation of the setup script

We’re going to work with a level file for a game where you hunt
for keys to unlock doors in order to get to the exit room. The
level file is a sequence of script calls which create and con-
figure a collection of different game objects which represent
a playable level of the game, and the relationships between
those objects. First, we’ll assume it contains rooms (some
trapped, some not), with doors leading to other rooms which
can be locked. It will also contain a set of pickups, some let
the player unlock doors, some affect the player’s stats (like
health potions and armour), and all the rooms have lovely
textured meshes, as do all the pickups. One of the rooms is
marked as the exit, and one has a player start point.

In this setup script (Listing 2.1) we load some resources,
create some pickup prototypes, build up a few rooms, add
some instances to the rooms, and then link things together.
Here we also see a standard solution to the problem of things



2.3. NORMALISING YOUR DATA 33

1 // create rooms , pickups , and other things.
2 Mesh msh_room = LoadMesh( "roommesh" );
3 Mesh msh_roomstart = LoadMesh( "roommeshstart" );
4 Mesh msh_roomtrapped = LoadMesh( "roommeshtrapped" );
5 Mesh msh_key = LoadMesh( "keymesh" );
6 Mesh msh_pot = LoadMesh( "potionmesh" );
7 Mesh msh_arm = LoadMesh( "armourmesh" );
8 // ...
9 Texture tex_room = LoadTexture( "roomtexture" );

10 Texture tex_roomstart = LoadTexture( "roomtexturestart" );
11 Texture tex_roomtrapped = LoadTexture( "roomtexturetrapped" );
12 Texture tex_key = LoadTexture( "keytexture" );
13 Texture tex_pot = LoadTexture( "potiontexture" );
14 Texture tex_arm = LoadTexture( "armourtexture" );
15
16 Anim anim_keybob = LoadAnim( "keybobanim" );
17 // ...
18 PickupID k1 = CreatePickup( TYPE_KEY , msh_key , tex_key ,

TintColourCopper , anim_keybob );
19 PickupID k2 = CreatePickup( TYPE_KEY , msh_key , tex_key ,

TintColourSilver , anim_keybob );
20 PickupID k3 = CreatePickup( TYPE_KEY , msh_key , tex_key ,

TintColourGold , anim_keybob );
21 PickupID p1 = CreatePickup( TYPE_POTION , msh_pot , tex_pot ,

TintColourGreen );
22 PickupID p2 = CreatePickup( TYPE_POTION , msh_pot , tex_pot ,

TintColourPurple );
23 PickupID a1 = CreatePickup( TYPE_ARMOUR , msh_arm , tex_arm );
24 // ...
25 Room r1 = CreateRoom( WorldPos (0,0), msh_roomstart , tex_roomstart

);
26 Room r2 = CreateRoom( WorldPos (-20,0), msh_roomtrapped ,

tex_roomtrapped , HPDamage (10) );
27 Room r3 = CreateRoom( WorldPos (-10,20), msh_room , tex_room );
28 Room r4 = CreateRoom( WorldPos (-30,20), msh_room , tex_room );
29 Room r5 = CreateRoom( WorldPos (20 ,10), msh_roomtrapped ,

tex_roomtrapped , HPDamage (25) );
30 // ...
31 AddDoor( r1 , r2 );
32 AddDoor( r1 , r3, k1 );
33 SetRoomAsSpecial( r1 , E_STARTINGROOM , WorldPos (1,1) );
34 //
35 AddPickup( r2 , k1 , WorldPos (-18,2));
36 AddDoor( r2 , r1 );
37 AddDoor( r2 , r4, k2 );
38 // ...
39 AddPickup( r3 , k2 , WorldPos (-8,12));
40 AddPickup( r3 , p1 , WorldPos (-7,13));
41 AddPickup( r3 , a1 , WorldPos (-8,14));
42 AddDoor( r3 , r1 );
43 AddDoor( r3 , r2 );
44 AddDoor( r3 , r5, k3 );
45 // ...
46 AddDoor( r4 , r2 );
47 AddPickup( r4 , k3 , WorldPos (-28,14));
48 AddPickup( r4 , p2 , WorldPos (-27,13));
49 // ...
50 SetRoomAsSpecial( r5 , E_EXITROOM );

Listing 2.1: A setup script
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which reference each other. We create the rooms before we
connect them to each other because before they exist we can’t.
When we create entities in C++, we assume they are bound
to memory, and the only efficient way to reference them is
through pointers, but we cannot know where they exist in
memory before we allocate them, and we cannot allocate them
before filling them out with their data as the allocation and
initialisation are bound to each other through the ‘new’ mech-
anism. This means we have difficulty describing relation-
ships between objects before they exist and have to stagger
the creation of content into phases of setting up and connect-
ing things together.

To bring this setup script into a usable database-like for-
mat, or relational model, we will need to normalise it. When
putting things in a relational model of any sort, it needs to
be in tables. In the first step you take all the data and put
it into a very messy, but hopefully complete, table design. In
our case we take the form of the data from the object creation
script and fit it into a table. The asset loading can be directly
translated into tables, as can be seen in table 2.1

Primed with this data, it’s now possible for us to create the
Pickups. We convert the calls to CreatePickup into the tables
in table 2.2. Notice that there was a pickup which did not
specify a colour tint, and this means we need to use a NULL
to represent not giving details about that aspect of the row.
The same applies to animations. Only keys had animations,
so there needs to be NULL entries for all non-key rows.

Once we have loaded the assets and have created the
pickup prototypes, we move onto creating a table for rooms.
We need to invent attributes as necessary using NULL ev-
erywhere that an instance doesn’t have that attribute. We
convert the calls to CreateRoom, AddDoor, SetRoomAsSpe-
cial, and AddPickup, to columns in the Rooms table. See
table 2.3 for one way to build up a table that represents all
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Meshes
MeshID MeshName
msh rm "roommesh"

msh rmstart "roommeshstart"

msh rmtrap "roommeshtrapped"

msh key "keymesh"

msh pot "potionmesh"

msh arm "armourmesh"

Textures
TextureID TextureName
tex rm "roomtexture"

tex rmstart "roomtexturestart"

tex rmtrapped "roomtexturetrapped"

tex key "keytexture"

tex pot "potiontexture"

tex arm "armourtexture"

Animations
AnimID AnimName
anim keybob "keybobanim"

Table 2.1: Initial tables created by converting asset load calls

Pickups
PickupID MeshID TextureID PickupType ColourTint Anim
k1 msh key tex key KEY Copper anim keybob
k2 msh key tex key KEY Silver anim keybob
k3 msh key tex key KEY Gold anim keybob
p1 msh pot tex pot POTION Green NULL
p2 msh pot tex pot POTION Purple NULL
a1 msh arm tex arm ARMOUR NULL NULL

Table 2.2: Initial tables created by converting CreatePickup
calls
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those setup function calls.

Rooms
RoomID MeshID TextureID WorldPos Pickups ...
r1 msh rmstart tex rmstart 0, 0 NULL ...
r2 msh rmtrap tex rmtrap -20,10 k1 ...
r3 msh rm tex rm -10,20 k2,p1,a1 ...
r4 msh rm tex rm -30,20 k3,p2 ...
r5 msh rmtrap tex rmtrap 20,10 NULL ...
... DoorsTo Locked IsStart IsEnd
... NULL r2,r3 r3 with k1 true WorldPos(1,1) false
... 10HP r1,r4 r4 with k2 false false
... NULL r1,r2,r5 r5 with k3 false false
... NULL r2 false false
... 25HP NULL false true

Table 2.3: Initial table created by converting CreateRoom and
other calls.

Once we have taken the construction script and generated
these first tables, we find the tables contain a lot of NULLs.
The NULLs in the rows replace the optional content of the ob-
jects. If an object instance doesn’t have a certain attribute
then we replace those features with NULLs. There are also
elements which contain more than one item of data. Having
multiple doors per room is tricky to handle in this table. How
would you figure out what doors it had? The same goes for
whether the door is locked, and whether there are any pick-
ups. The first stage in normalising is going to be reducing the
number of elements in each cell to 1, and increasing it to 1
where it’s currently NULL.

2.4 Normalisation

Back when SQL was first created there were only three well-
defined stages of data normalisation. There are many more
now, including six numbered normal forms. To get the most
out of a database, it is important to know most of them, or at
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least get a feel for why they exist. They teach you about data
dependency and can hint at reinterpretations of your data lay-
out. For game structures, BCNF (Boyce-Codd normal form is
explained later) is probably as far as you normally would need
to take your methodical process. Beyond that, you might wish
to normalise your data for hot/cold access patterns, but that
kind of normalisation is not part of the standard literature on
database normalisation. If you’re interested in more than this
book covers on the subject, a very good read, and one which
introduces the phrase “The key, the whole key, and nothing
but the key.” is the article A Simple Guide to Five Normal Forms
in Relational Database Theory[9] by William Kent.

If a table is in first normal form, then every cell contains
one and only one atomic value. That is, no arrays of values,
and no NULL entries. First normal form also requires every
row be distinct. For those unaware of what a primary key is,
we shall discuss that first.

2.4.1 Primary keys

All tables are made up of rows and columns. In a database,
each row must be unique. This constraint has important con-
sequences. When you have normalised your data, it becomes
clear why duplicate rows don’t make sense, but for now, from
a computer programming point of view, consider tables to be
more like sets, where the whole row is the set value. This
is very close to reality, as sets are also not ordered, and a
database table is not ordered either. There is always some
differentiation between rows, even if a database management
system (DBMS) has to rely on hidden row ID values. It is
better to not rely on this as databases work more efficiently
when the way in which they are used matches their design.
All tables need a key. The key is often used to order the sort-
ing of the table in physical media, to help optimise queries.
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For this reason, the key needs to be unique, but as small as
possible. You can think of the key as the key in a map or
dictionary. Because of the uniqueness rule, every table has
an implicit key because the table can use the combination of
all the columns at once to identify each row uniquely. That
is, the key, or the unique lookup, which is the primary key
for a table, can be defined as the totality of the whole row. If
the row is unique, then the primary key is unique. Normally,
we try to avoid using the whole row as the primary key, but
sometimes, it’s actually our only choice. We will come across
examples of that later.

For example, in the mesh table, the combination of meshID
and filename is guaranteed to be unique. However, currently
it’s only guaranteed to be unique because we have presumed
that the meshID is unique. If it was the same mesh, loaded
from the same file, it could still have a different meshID.
The same can be said for the textureID and filename in the
textures table. From the table 2.2 it’s possible to see how
we could use the type, mesh, texture, tint and animation to
uniquely define each Pickup prototype.

Now consider rooms. If you use all the columns other than
the RoomID of the room table, you will find the combination
can be used to uniquely define the room. If you consider an
alternative, where a row had the same combination of values
making up the room, it would in fact be describing the same
room. From this, it can be claimed that the RoomID is being
used as an alias for the rest of the data. We have stuck the
RoomID in the table, but where did it come from? To start
with, it came from the setup script. The script had a Roo-
mID, but we didn’t need it at that stage. We needed it for the
destination of the doors. In another situation, where nothing
connected logically to the room, we would not need a RoomID
as we would not need an alias to it.

A primary key must be unique. RoomID is an example of
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a primary key because it uniquely describes the room. It is
an alias in this sense as it contains no data in and of itself,
but merely acts as a handle. In some cases the primary key
is information too, which again, we will meet later.

As a bit of an aside, the idea that a row in a database is also
the key can be a core concept worth spending time thinking
about. If a database table is a set, when you insert a record,
you’re actually just asking that one particular combination of
data is being recorded as existing. It is as if a database table
is a very sparse set from an extremely large domain of possible
values. This can be useful because you may notice that under
some circumstances, the set of possible values isn’t very large,
and your table can be more easily defined as a bit set. As an
example, consider a table which lists the players in an MMO
that are online right now. For an MMO that shards its servers,
there can be limits in the early thousands for the number of
unique players on each server. In that case, it may be easier
to store the currently online players as a bit set. If there are
at most 10,000 players online, and only 1000 players online
at any one time, then the bitset representation would take up
1.25kb of memory, whereas storing the online players as a
list of IDs, would require at least 2kb of data if their IDs were
shrunk to shorts, or 4kb if they had 32bit IDs to keep them
unique across multiple servers. The other benefit in this case
is the performance of queries into the data. To quickly access
the ID in the list, you need it to remain sorted. The best case
then is O(log n). In the bitset variant, it’s O(1).

Going back to the asset table, an important and useful de-
tail when we talk about the meshID and mesh filename is that
even though there could be two different meshIDs pointing
at the same file, most programmers would intuitively under-
stand that a single meshID was unlikely to point at two differ-
ent mesh files. Because of this asymmetry, you can deduce,
the column that seems more likely to be unique will also be
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the column you can use as the primary key. We’ll choose the
meshID as it is easier to manipulate and is unlikely to have
more than one meaning or usage, but remember, we could
have chosen the filename and gone without the meshID alto-
gether.

If we settle on TextureID, PickupID, and RoomID as the
primary keys for those tables, we can then look at continuing
on to first normal form. We’re using t1, m2, r3, etc. to show
typesafe ID values, but in reality, these can all be simple in-
tegers. The idea here is to remain readable, but it also shows
that each type can have unique IDs for that type, but have
common IDs with another. For example, a room may have an
integer ID value of 0, but so may a texture. It can be bene-
ficial to have IDs which are unique across types, as that can
help debugging, and using the top few bits in that case can be
helpful. If you’re unlikely to have more than a million entities
per class of entity, then you have enough bits to handle over
a thousand distinct classes.

2.4.2 1st Normal Form

First normal form can be described as making sure the tables
are not sparse. We require that there be no NULL pointers
and that there be no arrays of data in each element of data.
This can be performed as a process of moving the repeats and
all the optional content to other tables. Anywhere there is a
NULL, it implies optional content. Our first fix is going to be
the Pickups table, it has optional ColourTint and Animation
elements. We invent a new table PickupTint, and use the pri-
mary key of the Pickup as the primary key of the new table.
We also invent a new table PickupAnim. Table 2.4 shows the
result of the transformation, and note we no longer have any
NULL entries.
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Pickups
PickupID MeshID TextureID PickupType
k1 msh key tex key KEY
k2 msh key tex key KEY
k3 msh key tex key KEY
p1 msh mpot tex pot POTION
p2 msh mpot tex pot POTION
a1 msh marm tex arm ARMOUR

PickupTints
PickupID ColourTint
k1 Copper
k2 Silver
k3 Gold
p1 Green
p2 Purple

PickupAnims
PickupID Anim
k1 anim keybob
k2 anim keybob
k3 anim keybob

Table 2.4: Pickups in 1NF

Two things become evident at this point, firstly that nor-
malisation appears to create more tables and fewer columns
in each table, secondly that there are only rows for things
which matter. The former is worrisome, as it means more
memory usage. The latter is interesting as when using an
object-oriented approach, we allow objects to optionally have
attributes. Optional attributes cause us to check they are not
NULL before continuing. If we store data like this, then we
know everything is not NULL. Moving away from having to do
a null check at all will make your code more concise, and you
have less state to consider when trying to reason about your
systems.

Let’s move onto the Rooms table. In there we saw sin-
gle elements that contained multiple atomic values. We need
to remove all elements from this table that do not conform
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to the rules of first normal form. First, we remove reference
to the pickups, as they had various quantities of elements,
from none to many. Then we must consider the traps, as
even though there was only ever one trap, there wasn’t al-
ways a trap. Finally, we must strip out the doors, as even
though every room has a door, they often had more than one.
Remember that the rule is one and only one entry in every
meeting of row and column. In table 2.5 it shows how we only
keep columns that are in a one to one relationship with the
RoomID.

Rooms
RoomID MeshID TextureID WorldPos IsStart IsExit
r1 msh rmstart tex rmstart 0,0 true false
r2 msh rmtrap tex rmtrap -20,0 false false
r3 msh rm tex rm -10,20 false false
r4 msh rm tex rm -30,20 false false
r5 msh rmtrap tex rmtrap 20,10 false true

Table 2.5: Rooms table now in 1NF

Now we will make new tables for Pickups, Doors, and
Traps. In table 2.6 we see many decisions made to satisfy the
first normal form. We have split out the array like elements
into separate rows. Note the use of multiple rows to specify
the numerous pickups all in the same room. We see that
doors now need two tables. The first table to identify where
the doors are, and where they lead. The second table seems
to do the same, but doesn’t cover all doors, only the ones
that are locked. What’s actually happening here is a need
to identify doors by their primary key in the locked doors
table. If you look at the Doors table, you can immediately tell
that neither column is a candidate for the primary key, as
neither contain only unique values. What is unique though
is the combination of values, so the primary key is made up
of both columns. In the table LockedDoors, FromRoom and
ToRoom are being used as a lookup into the Doors table. This
is often called a foreign key, meaning that there exists a table
for which these columns directly map to that table’s primary
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key. In this case, the primary key is made up of two columns,
so the LockedDoors table has a large foreign key and a small
bit of extra detail about that entry in the foreign table.

PickupInstances
RoomID PickupID
r2 k1
r3 k2
r3 a1
r3 p1
r4 k3
r4 p2

Doors
FromRoom ToRoom
r1 r2
r1 r3
r2 r1
r2 r4
r3 r1
r3 r2
r3 r5
r4 r2

LockedDoors
FromRoom ToRoom LockedWith
r1 r3 k1
r2 r4 k2
r3 r5 k3

Traps
RoomID Trapped
r2 10hp
r5 25hp

Table 2.6: Additional tables to support 1NF rooms

Laying out the data in this way takes less space in larger
projects as the number of NULL entries or arrays would have
only increased with increased complexity of the level file. By
laying out the data this way, we can add new features with-
out having to revisit the original objects. For example, if we
wanted to add monsters, normally we would not only have to
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add a new object for the monsters, but also add them to the
room objects. In this format, all we need to do is add a new
table such as in table 2.7.

Monsters
MonsterID Attack HitPoints StartRoom
M1 2 5 r3
M2 2 5 r4

Table 2.7: Adding monsters

And now we have information about the monster and what
room it starts in without touching any of the original level
data.

2.4.3 2nd Normal Form

Second normal form is about trying to pull out columns that
don’t depend on only a part of the primary key. This can be
caused by having a table that requires a compound primary
key, and some attributes of the row only being dependent on
part of that compound key. An example might be where you
have weapons defined by quality and type, and the table looks
like that in table 2.8, what you can see is that the primary
key must be compound, as there are no columns with unique
values here.

Weapons
WeaponType WeaponQuality WeaponDamage WeaponDamageType
Sword Rusty 2d4 Slashing
Sword Average 2d6 Slashing
Sword Masterwork 2d8 Slashing
Lance Average 2d6 Piercing
Lance Masterwork 3d6 Piercing
Hammer Rusty 2d4 Crushing
Hammer Average 2d4+4 Crushing

Table 2.8: Weapons in 1NF
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It makes sense for us looking at the table that the primary
key should be the compound of WeaponType and Weapon-
Quality, as it’s a fairly obvious move for us to want to look
up damage amount and damage type values based on what
weapon we’re using. It’s also possible to notice that the Dam-
ageType does not depend on the WeaponQuality, and in fact
only depends on the WeaponType. That’s what we mean about
depending on part of the key. Even though each weapon is de-
fined in 1NF, the type of damage being dealt currently relies
on too little of the primary key to allow this table to remain in
2NF. We split the table out in table 2.9 to remove the column
that only relies on WeaponType. If we found a weapon that
changed DamageType based on quality, then we would put
the table back the way it was. An example might be the badly
damaged morningstar, which no longer does piercing damage,
but only bludgeons.

Weapons
WeaponType WeaponQuality WeaponDamage
Sword Rusty 2d4
Sword Average 2d6
Sword Masterwork 2d8
Lance Average 2d6
Lance Masterwork 3d6
Hammer Rusty 2d4
Hammer Average 2d4+4

WeaponDamageTypes
WeaponType WeaponDamageType
Sword Slashing
Lance Piercing
Hammer Crushing

Table 2.9: Weapons in 2NF

When considering second normal form for our level data,
it’s worth understanding some shortcuts we made in moving
to first normal form. Firstly, we didn’t necessarily need to
move to having a PickupID, but instead could have referenced
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the pickup prototype by PickupType and TintColour, but that
was cumbersome, and would have introduced a NULL as a
requirement as the armour doesn’t have a tint. Table 2.10
shows how this may have looked, but the complications with
making this connect to the rooms was the deciding factor for
introducing a PickupID. Without the pickup ID, the only way
to put the pickups in rooms was to have two tables. One table
for pickups with tints, and another for pickups without tints.
This is not absurd, but it doesn’t seem clean in this particular
situation. There will be cases where this would be the right
approach.

Pickups
MeshID TextureID PickupType ColourTint
mkey tkey KEY Copper
mkey tkey KEY Silver
mkey tkey KEY Gold
mpot tpot POTION Green
mpot tpot POTION Purple
marm tarm ARMOUR NULL

Normalising to 1NF:

Pickups 1NF
PickupType MeshID TextureID
KEY mkey tkey
POTION mpot tpot
ARMOUR marm tarm

TintedPickups 1NF
PickupType ColourTint
KEY Copper
KEY Silver
KEY Gold
POTION Green
POTION Purple

Table 2.10: An alternative 0NF and 1NF for Pickups

If we now revisit the Pickup table from before, with the
knowledge that the PickupID is an alias for the combination
of PickupType and ColourTint, then we can apply the same
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transform we see when moving to 1NF in the alternative form.
That is, of moving MeshID and TextureID to their own table,
and depending only on PickupType, not the compound key of
PickupType and ColourTint.

In table 2.11, the assets elements now rely on the whole of
their compound key, not just part of it.

Pickups
PickupID PickupType
k1 KEY
k2 KEY
k3 KEY
p1 POTION
p2 POTION
a1 ARMOUR

PickupTints
PickupID ColourTint
k1 Copper
k2 Silver
k3 Gold
p1 Green
p2 Purple

PickupAssets
PickupType MeshID TextureID
KEY msh key tex key
POTION msh pot tex pot
ARMOUR msh arm tex arm

PickupAnims
PickupType AnimID
KEY key bob

Table 2.11: Pickups in 2NF

We can’t apply the same normalisation of table data to
the Room table. The Room table’s RoomID is an alias for
the whole row, possibly, or just the WorldPos, but in both
cases, it’s possible to see a correlation between the MeshID,
TextureID, and the value of IsStart. The problem is that it
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also relies on the existence of entries in an external table. If
we take the table as it is, the MeshID and TextureID do not
directly rely on anything other than the RoomID in this form.

2.4.4 3rd Normal Form

When considering further normalisation, we first have to re-
move any transitive dependencies. By this we mean any de-
pendencies on the primary key only via another column in the
row. We can do a quick scan of the current tables and see all
resources references refer to pairs of MeshID and TextureID
values. Anything that uses a MeshID will use the matching
TextureID. This means we can pull out one or the other from
all the tables that use them, and look them up via a table
of pairs. We shall arbitrarily choose to use the TextureID as
the main lookup, and slim down to one table for meshes and
textures.

TexturesAndMeshes
TextureID TextureName MeshName
tex room "roomtexture" "roommesh"

tex roomstart "roomtexturestart" "roommeshstart"

tex roomtrap "roomtexturetrapped" "roommeshtrapped"

tex key "keytexture" "keymesh"

tex pot "potiontexture" "potionmesh"

tex arm "armourtexture" "armourmesh"

Table 2.12: Assets in 3NF

2.4.5 Boyce-Codd Normal Form

The assets used for a room are based on whether it is trapped,
or it’s the starting room. This is a functional dependency, not
a direct one, so we have to introduce a new column to describe
that aspect, and it’s going to require generating intermediate
data to drive the value query, but it makes real the lack of
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direct link between the room and the assets. The rooms can
be trapped, and can be starting rooms, and the assets con-
nected to the room depend on those attributes, not the room
itself. This is why Boyce-Codd Normal Form, or BCNF, can be
thought of as the functionally dependent normalisation stage.

Rooms
RoomID WorldPos IsStart IsExit
r1 0,0 true false
r2 -20,10 false false
r3 -10,20 false false
r4 -30,20 false false
r5 20,10 false true

Rooms
IsStart HasTrap TextureID
true false tex rmstart
false false tex rm
false true tex rmtrap

Table 2.13: Rooms table now in BCNF

2.4.6 Domain Key / Knowledge

Domain key normal form is normally thought of as the last
normal form, but for developing efficient data structures, it’s
one of the things best studied early and often. The term do-
main knowledge is preferable when writing code as it makes
more immediate sense and encourages use outside of keys
and tables. Domain knowledge is the idea that data depends
on other data, but only given information about the domain
in which it resides. Domain knowledge can be as simple as
awareness of a colloquialism for something, such as knowing
that a certain number of degrees Celsius or Fahrenheit is hot,
or whether some SI unit relates to a man-made concept such
as 100m/s being rather quick.

An example of where domain knowledge can help with
catching issues can be with putting human interpretations of
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values into asserts. Consider an assert for catching physics
systems blowups. What is a valid expected range of values
for acceleration? Multiply it by ten, and you have a check for
when everything goes a bit crazy.

Some applications avoid the traditional inaccurate and er-
ratic countdown timer, and resort to human-readable forms
such as in a few minutes or time to grab a coffee, however
domain knowledge isn’t just about presenting a human inter-
pretation of data. For example things such as the speed of
sound, of light, speed limits and average speed of traffic on
a given road network, psychoacoustic properties, the boiling
point of water, and how long it takes a human to react to any
given visual input. All these facts may be useful in some way,
but can only be put into an application if the programmer
adds it specifically as procedural domain knowledge or as an
attribute of a specific instance.

Looking at our level data, one thing we can guess at is
the asset filenames based on the basic name. The textures
and meshes share a common format, so moving away from
storing the full filenames could give us a Domain Knowledge
normalised form.

AssetLookupTable
AssetID StubbedName
ast room "room%s"

ast roomstart "room%sstart"

ast roomtrap "room%strapped"

ast key "key%s"

ast pot "potion%s"

ast arm "armour%s"

Table 2.14: Assets in DKNF

Domain knowledge is useful because it allows us to lose
some otherwise unnecessarily stored data. It is a compiler’s
job to analyse the produced output of code (the abstract syn-
tax tree) to then provide itself with data upon which it can
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infer and use its domain knowledge about what operations
can be omitted, reordered, or transformed to produce faster
or cheaper assembly. It’s our job to do the same for elements
the compiler can’t know about, such as the chance that some-
one in the middle of a fight is going to be able to hear a coin
drop in another room.

Domain knowledge is what leads to inventions such as
JPEG and MP3. Thinking about what is possible, what is pos-
sible to perceive, and what can possibly be affected by user
actions, can reduce the amount of work done by an applica-
tion, and can reduce its complexity. When you jump in a game
with physics, we don’t move the world down by fractions of a
nanometre to represent the opposite reaction caused by the
forces applied.

2.4.7 Reflections

What we see here as we normalise our data is a tendency to
split data by dependency. Looking at many third party en-
gines and APIs, you can see some parallels with the results of
these normalisations. It’s unlikely that the people involved in
the design and evolution of these engines took their data and
applied database normalisation techniques, but sometimes
the separations between object and components of objects can
be obvious enough that you don’t need a formal technique in
order to realise some positive structural changes.

In some games, the entity object is not just an object that
can be anything, but is instead a specific subset of the types of
entity involved in the game. For example, in one game there
might be a class for the player character, and one for each
major type of enemy character, and another for vehicles. The
player may have different attributes to other entities, such
as lacking AI controls, or having player controls, or having
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regenerating health, or having ammo. This object-oriented
approach puts a line, invisible to the user, but intrusive to
the developer, between classes of object and their instances.
It is intrusive because when classes touch, they have to adapt
to each other. When they don’t reside in the same hierarchy,
they have to work through abstraction layers to message each
other. The amount of code required to bridge these gaps can
be small, but they always introduce complexity.

When developing software, this usually manifests as time
spent writing out templated code that can operate on multiple
classes rather than refactoring the classes involved into more
discrete components. This could be considered wasted time
as the likelihood of other operations needing to operate on all
the objects is greater than zero, and the effort to refactor into
components is usually similar to the effort to create a working
templated operation.

Without classes to define boundaries, the table-based ap-
proach levels the playing field for data to be manipulated to-
gether. In all cases on our journey through normalising the
level data, we have made it so changes to the design require
fewer changes to the data, and made it so data changes are
less likely to cause the state to become inconsistent. In many
cases, it would seem we have added complexity when it wasn’t
necessary, and that’s up to experimentation and experience
to help you decide how far to go.

2.5 Operations

When you use objects, you call methods on them, so how
do you unlock a door in this table-based approach? Actions
are always going to be insert, delete, or updates. These were
clearly specified in Edgar F. Codd’s works, and they are all
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you need to manipulate a relational model.

In a real database, finding what mesh to load, or whether a
door is locked would normally require a join between tables.
A real database would also attempt to optimise the join by
changing the sequence of operations until it had made the
smallest possible expected workload. We can do better than
that because we can take absolute charge of how we look at
and request data from our tables. To find out if a door is
locked, we don’t need to join tables, we know we can look up
into the locked doors table directly. Just because the data is
laid out like a database, doesn’t mean we have to use a query
language to access it.

When it comes to operations that change state, it’s best
to try to stick to the kind of operation you would normally
find in a DBMS, as doing unexpected operations brings un-
expected state complexity. For example, imagine you have a
table of doors that are open, and a table of doors that are
closed. Moving a door from one table might be considered
wasteful, so you may consider changing the representation
to a single table, but with all closed doors at one end, and
all open at the other. By having both tables represented as
a single table, and having the isClosed attribute defined im-
plicitly by a cut-off point in the array, such as in listing 2.2,
leads to the table being somewhat ordered. This type of mem-
ory optimisation comes at a price. Introducing order into a
table makes the whole table inherently less parallelisable to
operations, so beware the additional complexity introduced
by making changes like this, and document them well.

Unlocking a door can be a delete. A door is locked because
there is an entry in the LockedDoors table that matches the
Door you are interested in. Unlocking a door is a delete if door
matches, and you have the right key.

The player inventory would be a table with just PickupIDs.
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1 typedef std::pair <int ,int > Door;

2 typedef std::vector <Door > DoorVector

3 DoorVector gDoors;

4 int gDoors_firstClosedDoor = 0;

5

6 AddClosedDoor( Door d ) {

7 gDoors.push_back ();

8 }

9 AddOpenDoor( Door d ) {

10 gDoors.insert( gDoors.begin() + gDoors_firstClosedDoor , d );

11 gDoors_firstClosedDoor += 1;

12 }

Listing 2.2: Abusing the ordered nature of a vector

This is the idea that ”the primary key is also the data” men-
tioned much earlier. If the player enters a room and picks up
a Pickup, then the entry matching the room is deleted while
the inventory is updated to include the new PickupID.

Databases have the concept of triggers, whereupon oper-
ations on a table can cause cascades of further operations.
In the case of picking up a key, we would want a trigger on
insert into the inventory that joined the new PickupID with
the LockedDoors table. For each matching row there, delete
it, and now the door is unlocked.

2.6 Summing up

At this point we can see it is perfectly reasonable to store any
highly complex data structures in a database format, even
game data with its high interconnectedness and rapid design
changing criteria.

Games have lots of state, and the relational model provides
a strong structure to hold both static information, and mu-
table state. The strong structure leads to similar solutions to
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similar problems in practise, and similar solutions have sim-
ilar processing. You can expect algorithms and techniques
to be more reusable while working with tables, as the data
layout is less surprising.

If you’re looking for a way to convert your interconnected
complicated objects into a simpler flatter memory layout, you
could do worse than approach the conversion with normali-
sation in mind.

A database approach to data storage has some other use-
ful side-effects. It provides an easier route to allowing old
executables to run off new data, and it allows new executa-
bles to more easily run with old data. This can be vital when
working with other people who might need to run an earlier
or later version. We saw that sometimes adding new features
required nothing more than adding a new table, or a new col-
umn to an existing table. That’s a non-intrusive modification
if you are using a database style of storage, but a significant
change if you’re adding a new member to a class.

2.7 Stream Processing

Now we realise that all the game data and game runtime can
be implemented in a database-like approach, we can also
see that all game data can be implemented as streams. Our
persistent storage is a database, our runtime data is in the
same format as it was on disk, what do we benefit from this?
Databases can be thought of as collections of rows, or col-
lections of columns, but it’s also possible to think about the
tables as sets. The set is the set of all possible permutations
of the attributes.

For most applications, using a bitset to represent a ta-
ble would be wasteful, as the set size quickly grows out of
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scope of any hardware, but it can be interesting to note what
this means from a processing point of view. Processing a set,
transforming it into another set, can be thought of as travers-
ing the set and producing the output set, but the interesting
attribute of a set is that it is unordered. An unordered list can
be trivially parallel processed. There are massive benefits to
be had by taking advantage of this trivialisation of parallelism
wherever possible, and we normally cannot get near this be-
cause of the data layout of the object-oriented approaches.

Coming at this from another angle, graphics cards ven-
dors have been pushing in this direction for many years, and
we now need to think in this way for game logic too. We can
process lots of data quickly as long as we utilise stream pro-
cessing or set processing as much as possible and use random
access processing as little as possible. Stream processing in
this case means to process data without writing to variables
external to the process. This means not allowing things like
global accumulators, or accessing global memory not set as a
source for the process. This ensures the processes or trans-
forms are trivially parallelisable.

When you prepare a primitive render for a graphics card,
you set up constants such as the transform matrix, the tex-
ture binding, any lighting values, or which shader you want to
run. When you come to run the shader, each vertex and pixel
may have its own scratchpad of local variables, but they never
write to globals or refer to a global scratchpad. The concept of
shared memory in general purpose GPU code, such as CUDA
and OpenCL, allows the use of a kind of managed cache. None
of the GPGPU techniques offer access to global memory, and
thus maintain a clear separation of domains and continue to
guarantee no side-effects caused by any kernels being run
outside of their own sandboxed shared memory. By enforcing
this lack of side-effects, we can guarantee trivial parallelism
because the order of operations are assured to be irrelevant.
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If a shader was allowed to write to globals, there would be
locking, or it would become an inherently serial operation.
Neither of these are good for massive core count devices like
graphics cards, so that has been a self imposed limit and an
important factor in their design. Adding shared memory to
the mix starts to inject some potential locking into the pro-
cess, and hence is explicitly only used when writing compute
shaders.

Doing all processing this way, without globals / global
scratchpads, gives you the rigidity of intention to highly par-
allelise your processing and make it easier to think about the
system, inspect it, debug it, and extend it or interrupt it to
hook in new features. If you know the order doesn’t mat-
ter, it’s very easy to rerun any tests or transforms that have
caused bad state.

2.8 Why does database technology mat-
ter?

As mentioned at the start of the chapter, the relational model
is currently a very good fit for developing non-sparse data lay-
outs that are manipulable with very little complicated state
management required once the tables have been designed.
However, the only constant is change. That which is current,
regularly becomes the old way, and for widely scaled systems,
the relational model no longer provides all features required.

After the emergence of NoSQL solutions for handling even
larger workloads, and various large companies’ work on cre-
ating solutions to distribute computing power, there have
been advances in techniques to process enormous data-sets.
There have been advances in how to keep databases current,
distributed, and consistent (within tolerance). Databases
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now regularly include NULL entries, to the point where there
are far more NULL entries than there are values, and these
highly sparse databases need a different solution for pro-
cessing. Many large calculations and processes now run via
a technique called map-reduce, and distributing workloads
has become commonplace enough that people have to be
reminded they don’t always need a cluster to add up some
numbers.

What’s become clear over the last decade is that most of the
high-level data processing techniques which are proving to be
useful are a combination of hardware-aware data manipula-
tion layers being used by functional programming style high-
level algorithms. As the hardware in your PC becomes more
and more like the internet itself, these techniques will begin
to dominate on personal hardware, whether it be personal
computers, phones, or whatever the next generation brings.
Data-oriented design was inspired by a realisation that the
hardware had moved on to the point where the techniques we
used to use to defend against latency from CPU to hard drive,
now apply to memory. In the future, if we raise processing
power by the utilisation of hoards of isolated unreliable com-
putation units, then the techniques for distributing comput-
ing across servers that we’re developing in this era, will apply
to the desktops of the next.



Chapter 3

Existential Processing

If you saw there weren’t any apples in stock, would you still
haggle over their price?

Existential processing attempts to provide a way to remove
unnecessary querying about whether or not to process your
data. In most software, there are checks for NULL and queries
to make sure the objects are in a valid state before work is
started. What if you could always guarantee your pointers
were not null? What if you were able to trust that your objects
were in a valid state, and should always be processed?

In this chapter, a dynamic runtime polymorphism tech-
nique is shown that can work with the data-oriented de-
sign methodology. It is not the only way to implement data-
oriented design friendly runtime polymorphism, but was the
first solution discovered by the author, and fits well with
other game development technologies, such as components
and compute shaders.

59
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3.1 Complexity

When studying software engineering you may find references
to cyclomatic complexity or conditional complexity. This is a
complexity metric providing a numeric representation of the
complexity of programs and is used in analysing large-scale
software projects. Cyclomatic complexity concerns itself only
with flow control. The formula, summarised for our purposes,
is one (1) plus the number of conditionals present in the sys-
tem being analysed. That means for any system it starts at
one, and for each if, while, for, and do-while, we add one. We
also add one per path in a switch statement excluding the
default case if present.

Under the hood, if we consider how a virtual call works,
that is, a lookup in a function pointer table followed by a
branch into the class method, we can see that a virtual call
is effectively just as complex as a switch statement. Count-
ing the flow control statements is more difficult in a virtual
call because to know the complexity value, you have to know
the number of possible methods that can fulfil the request.
In the case of a virtual call, you have to count the number
of overrides to a base virtual call. If the base is pure-virtual,
then you may subtract one from the complexity. However, if
you don’t have access to all the code that is running, which
can be possible in the case of dynamically loaded libraries,
then the number of different potential code paths increases
by an unknown amount. This hidden or obscured complex-
ity is necessary to allow third party libraries to interface with
the core process, but requires a level of trust that implies no
single part of the process is ever going to be thoroughly tested.

This kind of complexity is commonly called control flow
complexity. There is another form of complexity inherent in
software, and that is the complexity of state. In the paper
Out of the Tar Pit [4], it’s concluded that the aspect of software
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which causes the most complexity is state. The paper contin-
ues and presents a solution which attempts to minimise what
it calls accidental state, that is, state which is required by the
software to do its job, but not directly required by the problem
being solved. The solution also attempts to abolish any state
introduced merely to support a programming style.

We use flow control to change state, and state changes
what is executed in our programs. In most cases flow con-
trol is put in for one of two reasons: to solve the problem pre-
sented (which is equivalent to the essential state in Out of the
Tar Pit ), and to help with the implementation of the solution
(which is equivalent to the accidental state).

Essential control is when we need to implement the de-
sign, a gameplay feature which has to happen when some
conditions are met, such as jumping when the jump button is
pressed or autosaving at a save checkpoint when the savedata
is dirty, or a timer has run out.

Accidental control is non-essential to the program from
the point of view of the person using it, but could be founda-
tion work, making it critical for successful program creation.
This type of control complexity is itself generally split into two
forms. The first form is structural, such as to support a pro-
gramming paradigm, to provide performance improvements,
or to drive an algorithm. The second form is defensive pro-
gramming or developer helpers such as reference counting
or garbage collection. These techniques increase complexity
where functions operating on the data aren’t sure the data
exists, or is making sure bounds are observed. In practice,
you will find this kind of control complexity when using con-
tainers and other structures, control flow is going to be in the
form of bounds checks and ensuring data has not gone out
of scope. Garbage collection adds complexity. In many lan-
guages, there are few guarantees about how and when it will
happen. This also means it can be hard to reason about object
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lifetimes. Because of a tendency to ignore memory allocations
early in development when working with these languages, it
can be very hard to fix memory leaks closer to shipping dates.
Garbage collection in unmanaged languages is easier to han-
dle, as reference counts can more easily be interrogated, but
also due to the fact that unmanaged languages generally al-
locate less often in the first place.

3.2 Debugging

What classes of issues do we suffer with high complexity pro-
grams? Analysing the complexity of a system helps us un-
derstand how difficult it is to test, and in turn, how hard it
is to debug. Some issues can be classified as being in an
unexpected state, and then having no way forward. Others
can be classified as having bad state, and then exhibiting un-
expected behaviour due to reacting to this invalid data. Yet
others can be classified as performance problems, not just
correctness, and these issues, though somewhat disregarded
by a large amount of academic literature, are costly in practice
and usually come from complex dependencies of state.

For example, the complexity caused by performance tech-
niques such as caching, are issues of complexity of state. The
CPU cache is in a state, and not being aware of it, and not
working with the expected state in mind, leads to issues of
poor or inconsistent performance.

Much of the time, the difficulty we have in debugging
comes from not fully observing all the flow control points,
assuming one route has been taken when it hasn’t. When
programs do what they are told, and not what we mean, they
will have entered into a state we had not expected or prepared
for.
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With runtime polymorphism using virtual calls, the likeli-
hood of that happening can dramatically increase as we can-
not be sure we know all the different ways the code can branch
until we either litter the code with logging, or step through in
a debugger to see where it goes at run-time.

3.3 Why use an if

In real-world cases of game development, the most common
use of an explicit flow control statement would appear to be
in the non-essential set. Where defensive programming is be-
ing practiced, many of the flow control statements are just
to stop crashes. There are fail-safes for out of bounds ac-
cesses, protection from pointers being NULL, and defenses
against other exceptional cases that would bring the program
to a halt. It’s pleasing to note, GitHub contains plenty of high
quality C++ source-code that bucks this trend, preferring to
work with reference types, or with value types where possible.
In game development, another common form of flow control
is looping. Though these are numerous, most compilers can
spot them, and have good optimisations for these and do a
very good job of removing condition checks that aren’t nec-
essary. The final inessential but common flow control comes
from polymorphic calls, which can be helpful in implementing
some of the gameplay logic, but mostly are there to entertain
the do-more-with-less-code development model partially en-
forced in the object-oriented approach to writing games.

Essential game design originating flow control doesn’t ap-
pear very often in profiles as causes of branching, as all the
supporting code is run far more frequently. This can lead to
an underappreciation of the effect each conditional has on the
performance of the software. Code that does use a conditional
to implement AI or handle character movement, or decide on
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when to load a level, will be calling down into systems which
are full of loops and tree traversals, or bounds checks on ar-
rays they are accessing in order to return the data upon which
the game is going to produce the boolean value to finally drive
the side of the if to which it will fall through. That is, when
the rest of your code-base is slow, it’s hard to validate writing
fast code for any one task. It’s hard to tell what additional
costs you’re adding on.

If we decide the elimination of control flow is a goal wor-
thy of consideration, then we must begin to understand what
control flow operations we can eliminate. If we begin our at-
tempt to eliminate control flow by looking at defensive pro-
gramming, we can try to keep our working set of data as a
collections of arrays. This way we can guarantee none of our
data will be NULL. That one step alone may eliminate many
of our flow control statements. It won’t get rid of loops, but
as long as they are loops over data running a pure functional
style transform, then there are no side-effects to worry about,
and it will be easier to reason about.1

The inherent flow control in a virtual call is avoidable, as
it is a fact that many programs were written in a non-object-
oriented style. Without virtuals, we can rely on switch state-
ments. Without those, we can rely on function pointer tables.
Without those, we can have a long sequence of ifs. There are
many ways to implement runtime polymorphism. It is also
possible to maintain that if you don’t have an explicit type,
you don’t need to switch on it, so if you can eradicate the
object-oriented approach to solving the problem, those flow
control statements go away completely.

When we get to the control flow in gameplay logic, we find
there is no simple way to eradicate it. This is not a terri-

1Sean Parent’s talks on C++ seasoning are worth watching. They talk
practically about simplification and elimination of unnecessary loops and
structure.



3.3. WHY USE AN IF 65

ble thing to worry about, as the gameplay logic is as close
to essential complexity as we can get when it comes to game
development.

Reducing the number of conditionals, and thus reducing
the cyclomatic complexity on such a scale is a benefit which
cannot be overlooked, but it is one that comes with a cost. The
reason we are able to get rid of the check for NULL is that we
will have our data in a format that doesn’t allow for NULL at
all. This inflexibility will prove to be a benefit, but it requires
a new way of processing our entities.

Where once we would have an object instance for an area
in a game, and we would interrogate it for exits that take us to
other areas, now we look into a structure that only contains
links between areas, and filter by the area we are in. This
reversal of ownership can be a massive benefit in debugging,
but can sometimes appear backward when all you want to do
is find out what exits are available to get out of an area.

If you’ve ever worked with shopping lists or to-do lists,
you’ll know how much more efficient you can be when you
have a definite list of things to purchase or complete. It’s very
easy to make a list, and adding to it is easy as well. If you’re
going shopping, it’s very hard to think what might be missing
from your house in order to get what you need. If you’re the
type that tries to plan meals, then a list is nigh on essential
as you figure out ingredients and then tally up the number of
tins of tomatoes, or other ingredients you need to last through
all the meals you have planned. If you have a to-do list and a
calendar, you know who is coming and what needs to be done
to prepare for them. You know how many extra mouths need
feeding, how much food and drink you need to buy, and how
much laundry you need done to make enough beds for the
visitors.

To-do lists are great because you can set an end goal and
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then add in subtasks that make a large and long distant goal
seem more doable. Adding in estimates can provide a little
urgency that is usually missing when the deadline is so far
away. Many companies use software to support tracking of
tasks, and this software often comes with features allowing
the producers to determine critical paths, expected developer
hours required, and sometimes even the balance of skills re-
quired to complete a project. Not using this kind of software
is often a sign that a company isn’t overly concerned with ef-
ficiency, or waste. If you’re concerned about efficiency and
waste in your program, lists of tasks seem like a good way to
start analysing where the costs are coming from. If you keep
track of these lists by logging them, you can look at the data
and see the general shape of the processing your software is
performing. Without this, it can be difficult to tell where the
real bottlenecks are, as it might not be the processing that is
the problem, but the requirement to process data itself which
has gotten out of hand.

When your program is running, if you don’t give it homoge-
neous lists to work with, but instead let it do whatever comes
up next, it will be inefficient and have irregular or lumpy frame
timings. Inefficiency of hardware utilisation often comes from
unpredictable processing. In the case of large arrays of point-
ers to heterogeneous classes all being called with an update()

function, you can hit high amounts of data dependency which
leads to misses in both data and instruction caches. See
chapter 14 for more details on why.

Slowness also comes from not being able to see how much
work needs to be done, and therefore not being able to priori-
tise or scale the work to fit what is possible within the given
time-frame. Without a to-do list, and an ability to estimate
the amount of time each task will take, it is difficult to decide
the best course of action to take in order to reduce overhead
while maintaining feedback to the user.
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Object-oriented programming works very well when there
are few patterns in the way the program runs. When either
the program is working with only a small amount of data, or
when the data is incredibly heterogeneous, to the point that
there are as many classes of things as there are things.

Irregular frame timings can often be blamed on not being
able to act on distant goals ahead of time. If you, as a devel-
oper, know you have to load the assets for a new island when
a player ventures into the seas around it, the streaming sys-
tem can be told to drag in any data necessary. This could also
be for a room and the rooms beyond. It could be for a cave
or dungeon when the player is within sight of the entrance.
We consider this kind of preemptive streaming of data to be a
special case and invent systems to provide this level of fore-
thought. Relying on humans, or even level-designers, to link
these together is prone to error. In many cases, there are
chains of dependencies that can be missed without an auto-
mated check. The reason we cannot make systems self-aware
enough to preload themselves is that we don’t have a common
language to describe temporal dependencies.

In many games, we stream things in with explicit triggers,
but there is often no such system for many of the other game
elements. It’s virtually unheard of for an AI to pathfind to
some goal because there might soon be a need to head that
way. The closest would be for the developer to pre-populate
a navigation map so coarse grain pathing can be completed
swiftly.

There’s also the problem of depth of preemptive work. Con-
sider the problem of a small room, built as a separate asset, a
waiting room with two doors near each other, both leading to
large, but different maps. When the player gets near the door
to the waiting room in map A, that little room can be preemp-
tively streamed in. However, in many engines, map B won’t
be streamed in, as the locality of map B to map A is hidden
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behind the logical layer of the waiting room.

It’s also not commonplace to find a physics system doing
look ahead to see if a collision has happened in the future in
order to start doing further work. It might be possible to do a
more complex breakup simulation if it were more aware.

If you let your game generate to-do lists, shopping lists,
distant goals, and allow for preventative measures by forward-
thinking, then you can simplify your task as a coder into pri-
oritising goals and effects, or writing code that generates pri-
orities at runtime. You can start to think about how to chain
those dependencies to solve the waiting room problem. You
can begin to preempt all types of processing.

3.4 Types of processing

Existential processing is related to to-do lists. When you
process every element in a homogeneous set of data, you
know you are processing every element the same way. You
are running the same instructions for every element in that
set. There is no definite requirement for the output in this
specification, however, it usually comes down to one of three
types of operation: a filter, a mutation, or an emission. A
mutation is a one to one manipulation of the data, it takes
incoming data and some constants that are set up before the
transform, and produces one and only one element for each
input element. A filter takes incoming data, again with some
constants set up before the transform, and produces one ele-
ment or zero elements for each input element. An emission is
a manipulation of the incoming data that can produce mul-
tiple output elements. Just like the other two transforms, an
emission can use constants, but there is no guaranteed size
of the output table; it can produce anywhere between zero
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and infinity elements.

A fourth, and final form, is not really a manipulation of
data, but is often part of a transform pipeline, and that is
the generator. A generator takes no input data, but merely
produces output based on the constants set up. When work-
ing with compute shaders, you might come across this as a
function that merely clears out an array to zero, one, or an
ascending sequence.

Transforms

Mutation in == out

Handles input data. Produces
one item of output for every item
of input.

Filter in >= out

Handles input data. Produces
up to one item of output for
every item of input.

Emission out =

{
0, in = 0

>= 0, otherwise

Handles input data. Produces
unknown amount of items per
item of input. With no input,
output is also empty.

Generation in = 0 ∧ out >= 0

Does not read data. Produces an
unknown amount of items just
by running.

Table 3.1: Types of transform normally encountered

These categories can help you decide what data structure
you will use to store the elements in your arrays, and whether
you even need a structure, or you should instead pipe data
from one stage to another without it touching down on an
intermediate buffer.

Every CPU can efficiently handle running processing ker-
nels over homogeneous sets of data, that is, doing the same
operation over and over again over contiguous data. When
there is no global state, no accumulator, it is proven to be
parallelisable. Examples can be given from existing technolo-
gies such as map-reduce and simple compute shaders, as to
how to go about building real work applications within these
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restrictions. Stateless transforms also commit no crimes that
prevent them from being used within distributed processing
technologies. Erlang relies on these guarantees of being side-
effect free to enable not just thread safe processing or inter-
process safe processing, but distributed computing safe pro-
cessing. Stateless transforms of stateful data are highly ro-
bust and deeply parallelisable.

Within the processing of each element, that is for each da-
tum operated on by the transform kernel, it is fair to use con-
trol flow. Almost all compilers should be able to reduce sim-
ple local value branch instructions into a platform’s preferred
branch-free representation, such as a CMOV, or select func-
tion for a SIMD operation. When considering branches inside
transforms, it’s best to compare to existing implementations
of stream processing such as graphics card shaders or com-
pute kernels.

In predication, flow control statements are not ignored, but
they are used instead as an indicator of how to merge two
results. When the flow control is not based on a constant, a
predicated if will generate code that will run both sides of the
branch at the same time and discard one result based on the
value of the condition. It manages this by selecting one of the
results based on the condition. As mentioned before, in many
CPUs there is an intrinsic for this, but all CPUs can use bit
masking to effect this trick.

SIMD or single-instruction-multiple-data allows the par-
allel processing of data when the instructions are the same.
The data is different but local. When there are no condition-
als, SIMD operations are simple to implement on your trans-
forms. In MIMD, that is multiple instructions, multiple data,
every piece of data can be operated on by a different set of in-
structions. Each piece of data can take a different path. This
is the simplest and most error-prone to code for because it’s
how most parallel programming is currently done. We add a
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thread and process some more data with a separate thread of
execution. MIMD includes multi-core general purpose CPUs.
It often allows shared memory access and all the synchroni-
sation issues that come with it. It is by far the easiest to get
up and running, but it is also the most prone to the kind of
rare fatal error caused by complexity of state. Because the
order of operations become non-deterministic, the number
of different possible routes taken through the code explode
super-exponentially.

3.5 Don’t use booleans

When you study compression technology, one of the most im-
portant aspects you have to understand is the difference be-
tween data and information. There are many ways to store in-
formation in systems, from literal strings that can be parsed
to declare something exists, right down to something simple
like a single bit flag to show that a thing might have an at-
tribute. Examples include the text that declares the existence
of a local variable in a scripting language, or the bit field con-
taining all the different collision types a physics mesh will re-
spond to. Sometimes we can store even less information than
a bit by using advanced algorithms such as arithmetic en-
coding, or by utilising domain knowledge. Domain knowledge
normalisation applies in most game development, but it is in-
creasingly infrequently applied, as many developers are falling
foul to overzealous application of quoting premature optimi-
sation. As information is encoded in data, and the amount of
information encoded can be amplified by domain knowledge,
it’s important that we begin to see that the advice offered by
compression techniques is: what we are really encoding is
probabilities.

If we take an example, a game where the entities have
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1 struct Entity {

2 // information about the entity position

3 // ...

4 // now health data in the middle of the entity

5 float timeoflastdamage;

6 float health;

7 // ...

8 // other entity information

9 };

10 list <Entity > entities;

Listing 3.1: basic entity approach

1 void UpdateHealth( Entity *e ) {

2 TimeType timeSinceLastShot = e->timeOfLastDamage - currentTime;

3 bool isHurt = e->health < MAX_HEALTH;

4 bool isDead = e->health <= 0;

5 bool regenCanStart = timeSinceLastShot >

TIME_BEFORE_REGENERATING;

6 // if alive , and hurt , and it’s been long enough

7 if( !isDead && isHurt && regenCanStart ) {

8 e->health = min(MAX_HEALTH , e->health + tickTime * regenRate);

9 }

10 }

Listing 3.2: simple health regen

health, regenerate after a while of not taking damage, can die,
can shoot each other, then let’s see what domain knowledge
can do to reduce processing.

We assume the following domain knowledge:

• If you have full health, then you don’t need to regenerate.

• Once you have been shot, it takes some time until you
begin regenerating.

• Once you are dead, you cannot regenerate.

• Once you are dead you have zero health.
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1 struct Entity {

2 // information about the entity position

3 // ...

4 // other entity information

5 };

6 struct Entitydamage {

7 float timeoflastdamage;

8 float health;

9 }

10 list <Entity > entities;

11 map <EntityRef ,Entitydamage > entitydamages;

Listing 3.3: Existential processing style health

If we have a list for the entities such as in listing 3.1, then
we see the normal problem of data potentially causing cache
line utilisation issues, but aside from that, we can see how
you might run an update function over the list, such as in
listing 3.2, which will run for every entity in the game, every
update.

We can make this better by looking at the flow control
statement. The function won’t run if health is at max. It
won’t run if the entity is dead. The regenerate function only
needs to run if it has been long enough since the last dam-
age dealt. All these things considered, regeneration isn’t the
common case. We should try to organise the data layout for
the common case.

Let’s change the structures to those in listing 3.3 and then
we can run the update function over the health table rather
than the entities. This means we already know, as soon as we
are in this function, that the entity is not dead, and they are
hurt.

We only add a new entityhealth element when an entity
takes damage. If an entity takes damage when it already has
an entityhealth element, then it can update the health rather
than create a new row, also updating the time damage was
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1 void UpdateHealth () {

2 for( edIter : entityDamages ) {

3 EntityDamage &ed = edIter ->second;

4 if( ed.health <= 0 ) {

5 // if dead , insert the fact that this entity is dead

6 EntityRef entity = edIter ->first;

7 deadEntities.insert( entity );

8 // if dead , discard being damaged

9 discard(ed);

10 } else {

11 TimeType timeSinceLastShot = ed.timeOfLastShot - currentTime

;

12 bool regenCanStart = timeSinceLastShot >

TIME_BEFORE_REGENERATING;

13 if( regenCanStart )

14 ed->health =ed->health + tickTime * regenRate;

15 // if at max health or beyond , discard being damaged

16 if( ed->health >= MAX_HEALTH )

17 discard(ed);

18 }

19 }

20 }

Listing 3.4: every entity health regen

last dealt. If you want to find out someone’s health, then you
only need to look and see if they have an entityhealth row, or if
they have a row in deadEntities table. The reason this works
is, an entity has an implicit boolean hidden in the row exist-
ing in the table. For the entityDamages table, that implicit
boolean is the isHurt variable from the first function. For the
deadEntities table, the boolean of isDead is now implicit, and
also implies a health value of 0, which can reduce process-
ing for many other systems. If you don’t have to load a float
and check it is less than 0, then you’re saving a floating point
comparison or conversion to boolean.

This eradication of booleans is nothing new, because every
time you have a pointer to something you introduce a boolean
of having a non-NULL value. It’s the fact that we don’t want to
check for NULL which pushes us towards finding a different
representation for the lack of existence of an object to process.
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Other similar cases include weapon reloading, oxygen lev-
els when swimming, anything which has a value that runs
out, has a maximum, or has a minimum. Even things like
driving speeds of cars. If they are traffic, then they will spend
most of their time driving at traffic speed not some speed they
need to calculate. If you have a group of people all heading
in the same direction, then someone joining the group can be
intercepting until they manage to, at which point they can give
up their independence, and become controlled by the group.
There is more on this point in chapter 5.

By moving to keeping lists of attribute state, you can intro-
duce even more performance improvements. The first thing
you can do for attributes that are linked to time is to put them
in a sorted list, sorted by time of when they should be acted
upon. You could put the regeneration times in a sorted list
and pop entityDamage elements until you reach one that can’t
be moved to the active list, then run through all the active list
in one go, knowing they have some damage, aren’t dead, and
can regen as it’s been long enough.

Another aspect is updating certain attributes at different
time intervals. Animals and plants react to their environment
through different mechanisms. There are the very fast mech-
anisms such as reactions to protect us from danger. Pulling
your hand away from hot things, for example. There are the
slower systems too, like the rationalising parts of the brain.
Some, apparently quick enough that we think of them as real-
time, are the quick thinking and acting processes we consider
to be the actions taken by our brains when we don’t have time
to think about things in detail, such as catching a ball or bal-
ancing a bicycle. There is an even slower part of the brain,
the part that isn’t so much reading this book, but is consum-
ing the words, and making a model of what they mean so as
to digest them. There is also the even slower systems, the
ones which react to stress, chemical levels spread through
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the body as hormones, or just the amount of sugar you have
available, or current level of hydration. An AI which can think
and react on multiple time-scales is more likely to waste fewer
resources, but also much less likely to act oddly, or flip-flop
between their decisions. Committing to doing an update of
every system every frame could land you in an impossible sit-
uation. Splitting the workload into different update rates can
still be regular, but offers a chance to balance the work over
multiple frames.

Another use is in state management. If an AI hears gunfire,
then they can add a row to a table for when they last heard
gunfire, and that can be used to determine whether they are
in a heightened state of awareness. If an AI has been involved
in a transaction with the player, it is important they remember
what has happened as long as the player is likely to remember
it. If the player has just sold an AI their +5 longsword, it’s
very important the shopkeeper AI still have it in stock if the
player just pops out of the shop for a moment. Some games
don’t even keep inventory between transactions, and that can
become a sore point if they accidentally sell something they
need and then save their progress.

From a gameplay point of view, these extra bits of informa-
tion are all about how the world and player interact. In some
games, you can leave your stuff lying around forever, and it
will always remain just how you left it. It’s quite a feat that all
the things you have dumped in the caves of some open-world
role-playing games, are still hanging around precisely where
you left them hours and hours ago.

The general concept of tacking on data, or patching loaded
data with dynamic additional attributes, has been around for
quite a while. Save games often encode the state of a dynamic
world as a delta from the base state, and one of the first ma-
jor uses was in fully dynamic environments, where a world is
loaded, but can be destroyed or altered later. Some world gen-
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erators took a procedural landscape and allowed their content
creators to add patches of extra information, villages, forts,
outposts, or even break out landscaping tools to drastically
adjust the generated data.

3.6 Don’t use enums quite as much

Enumerations are used to define sets of states. We could have
had a state variable for the regenerating entity, one that had
infullhealth, ishurt, isdead as its three states. We could have
had a team index variable for the avoidance entity enumerat-
ing all the available teams. Instead, we used tables to provide
all the information we needed, as there were only two teams.
Any enum can be emulated with a variety of tables. All you
need is one table per enumerable value. Setting the enumer-
ation is an insert into a table or a migration from one table to
another.

When using tables to replace enums, some things become
more difficult: finding out the value of an enum in an entity is
difficult as it requires checking all the tables which represent
that state for the entity. However, the main reason for getting
the value is either to do an operation based on an external
state or to find out if an entity is in the right state to be con-
sidered for an operation. This is disallowed and unnecessary
for the most part, as firstly, accessing external state is not
valid in a pure function, and secondly, any dependent data
should already be part of the table element.

If the enum is a state or type enum previously handled by a
switch or virtual call, then we don’t need to look up the value,
instead, we change the way we think about the problem. The
solution is to run transforms taking the content of each of the
switch cases or virtual methods as the operation to apply to



78 CHAPTER 3. EXISTENTIAL PROCESSING

the appropriate table, the table corresponding to the original
enumeration value.

If the enum is instead used to determine whether or not an
entity can be operated upon, such as for reasons of compati-
bility, then consider an auxiliary table to represent being in a
compatible state. If you’re thinking about the case where you
have an entity as the result of a query and need to know if it
is in a certain state before deciding to commit some changes,
consider that the compatibility you seek could have been part
of the criteria for generating the output table in the first place,
or a second filtering operation could be committed to create a
table in the right form.

In conclusion, the reason why you would put an enum in
table form, is to reduce control flow impact. Given this, it’s
when we aren’t using the enumerations to control instruction
flow that it’s fine to leave them alone. Another possibility is
when the value of the enum changes with great frequency, as
moving objects from table to table has a cost too.

Examples of enumerations that make sense are keybind-
ings, enumerations of colours, or good names for small finite
sets of values. Functions that return enums, such as collision
responses (none, penetrating, through). Any kind of enumer-
ation which is actually a lookup into data of another form is
good, where the enum is being used to rationalise the access
to those larger or harder to remember data tables. There is
also a benefit to some enums in that they will help you trap
unhandled cases in switches, and to some extent, they are a
self-documenting feature in most languages.
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3.7 Prelude to polymorphism

Let’s consider now how we implement polymorphism. We
know we don’t have to use a virtual table pointer; we could
use an enum as a type variable. That variable, the member
of the structure that defines at runtime what that structure
should be capable of and how it is meant to react. That vari-
able will be used to direct the choice of functions called when
methods are called on the object.

When your type is defined by a member type variable, it’s
usual to implement virtual functions as switches based on
that type, or as an array of functions. If we want to allow
for runtime loaded libraries, then we would need a system
to update which functions are called. The humble switch is
unable to accommodate this, but the array of functions could
be modified at runtime.

We have a solution, but it’s not elegant, or efficient. The
data is still in charge of the instructions, and we suffer the
same instruction cache misses and branch mispredictions as
whenever a virtual function is unexpected. However, when
we don’t really use enums, but instead tables that represent
each possible value of an enum, it is still possible to keep com-
patible with dynamic library loading the same as with pointer
based polymorphism, but we also gain the efficiency of a data-
flow processing approach to processing heterogeneous types.

For each class, instead of a class declaration, we have a fac-
tory that produces the correct selection of table insert calls.
Instead of a polymorphic method call, we utilise existential
processing. Our elements in tables allow the characteristics
of the class to be implicit. Creating your classes with factories
can easily be extended by runtime loaded libraries. Register-
ing a new factory should be simple as long as there is a data-
driven factory method. The processing of the tables and their
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update() functions would also be added to the main loop.

3.8 Dynamic runtime polymorphism

If you create your classes by composition, and you allow the
state to change by inserting and removing from tables, then
you also allow yourself access to dynamic runtime polymor-
phism. This is a feature normally only available when dynam-
ically responding via a switch.

Polymorphism is the ability for an instance in a program
to react to a common entry point in different ways due only
to the nature of the instance. In C++, compile-time polymor-
phism can be implemented through templates and overload-
ing. Runtime polymorphism is the ability for a class to provide
a different implementation for a common base operation with
the class type unknown at compile-time. C++ handles this
through virtual tables, calling the right function at runtime
based on the type hidden in the virtual table pointer at the
start of the memory pointed to by the this pointer. Dynamic
runtime polymorphism is when a class can react to a com-
mon call signature in different ways based on its type, but
its type can change at runtime. C++ doesn’t implement this
explicitly, but if a class allows the use of an internal state
variable or variables, it can provide differing reactions based
on the state as well as the core language runtime virtual ta-
ble lookup. Other languages which define their classes more
fluidly, such as Python, allow each instance to update how
it responds to messages, but most of these languages have
very poor general performance as the dispatch mechanism
has been built on top of dynamic lookup.

Consider the code in listing 3.5, where we expect the run-
time method lookup to solve the problem of not knowing the
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1 class shape {

2 public:

3 shape() {}

4 virtual ~shape() {}

5 virtual float getarea () const = 0;

6 };

7 class circle : public shape {

8 public:

9 circle( float diameter ) : d(diameter ) {}

10 ~circle () {}

11 float getarea () const { return d*d*pi/4; }

12 float d;

13 };

14 class square : public shape {

15 public:

16 square( float across ) : width( across ) {}

17 ~square () {}

18 float getarea () const { return width*width; }

19 float width;

20 };

21 void test() {

22 circle circle( 2.5f );

23 square square( 5.0f );

24 shape *shape1 = &circle , *shape2 = &square;

25 printf( "areas are %f and %f\n", shape1 ->getarea (), shape2 ->

getarea () );

26 }

Listing 3.5: simple object-oriented shape code
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1 enum shapetype { circletype , squaretype };

2 class mutableshape {

3 public:

4 mutableshape( shapetype type , float argument )

5 : m_type( type ), distanceacross( argument )

6 {}

7 ~mutableshape () {}

8 float getarea () const {

9 switch( m_type ) {

10 case circletype: return distanceacross*distanceacross*pi/4;

11 case squaretype: return distanceacross*distanceacross;

12 }

13 }

14 void setnewtype( shapetype type ) {

15 m_type = type;

16 }

17 shapetype m_type;

18 float distanceacross;

19 };

20 void testinternaltype () {

21 mutableshape shape1( circletype , 5.0f );

22 mutableshape shape2( circletype , 5.0f );

23 shape2.setnewtype( squaretype );

24 printf( "areas are %f and %f\n", shape1.getarea (), shape2.

getarea () );

25 }

Listing 3.6: ugly internal type code

type but wanting the size. Allowing the objects to change
shape during their lifetime requires some compromise. One
way is to keep a type variable inside the class such as in listing
3.6, where the object acts as a container for the type variable,
rather than as an instance of a specific shape.

A better way is to have a conversion function to handle
each case. In listing 3.7 we see how that can be achieved.

Though this works, all the pointers to the old class are
now invalid. Using handles would mitigate these worries, but
add another layer of indirection in most cases, dragging down
performance even further.

If you use existential processing techniques, your classes
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1 square squarethecircle( const circle &circle ) {

2 return square( circle.d );

3 }

4 void testconvertintype () {

5 circle circle( 5.0f );

6 square square = squarethecircle( circle );

7 }

Listing 3.7: convert existing class to new class

defined by the tables they belong to, then you can switch
between tables at runtime. This allows you to change be-
haviour without any tricks, without the complexity of man-
aging a union to carry all the different data around for all the
states you need. If you compose your class from different at-
tributes and abilities then need to change them post creation,
you can. If you’re updating tables, the fact that the pointer
address of an entity has changed will mean little to you. It’s
normal for an entity to move around memory in table-based
processing, so there are fewer surprises. Looking at it from
a hardware point of view, in order to implement this form of
polymorphism you need a little extra space for the reference
to the entity in each of the class attributes or abilities, but
you don’t need a virtual table pointer to find which function
to call. You can run through all entities of the same type in-
creasing cache effectiveness, even though it provides a safe
way to change type at runtime.

Via the nature of having classes defined implicitly by the
tables they belong to, there is an opportunity to register a
single entity with more than one table. This means that not
only can a class be dynamically runtime polymorphic, but it
can also be multi-faceted in the sense that it can be more than
one class at a time. A single entity might react in two different
ways to the same trigger call because it might be appropriate
for the current state of that class.

This kind of multidimensional classing doesn’t come up
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much in traditional gameplay code, but in rendering, there
are usually a few different axes of variation such as the ma-
terial, what blend mode, what kind of skinning or other ver-
tex adjustments are going to take place on a given instance.
Maybe we don’t see this flexibility in gameplay code because
it’s not available through the natural tools of the language.
It could be that we do see it, but it’s what some people call
entity component systems.

3.9 Event handling

When you wanted to listen for events in a system in the old
days, you’d attach yourself to an interrupt. Sometimes you
might get to poke at code that still does this, but it’s normally
reserved for old or microcontroller scale hardware. The idea
was simple, the processor wasn’t really fast enough to poll all
the possible sources of information and do something about
the data, but it was fast enough to be told about events and
process the information as and when it arrived. Event han-
dling in games has often been like this, register yourself as
interested in an event, then get told about it when it hap-
pens. The publish and subscribe model has been around for
decades, but there’s no standard interface built for it in some
languages and too many standards in others. As it often re-
quires some knowledge from the problem domain to choose
the most effective implementation.

Some systems want to be told about every event in the sys-
tem and decide for themselves, such as Windows event han-
dling. Some systems subscribe to very particular events but
want to react to them as soon as they happen, such as han-
dlers for the BIOS events like the keyboard interrupt. The
events could be very important and dispatched directly by the
action of posting the event, such as with callbacks. The events
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could be lazy, stuck in a queue somewhere waiting to be dis-
patched at some later point. The problem they are trying to
solve will define the best approach.

Using your existence in a table as the registration tech-
nique makes this simpler than before and lets you register and
de-register with great pace. Subscription becomes an insert,
and unsubscribing a delete. It’s possible to have global tables
for subscribing to global events. It would also be possible to
have named tables. Named tables would allow a subscriber
to subscribe to events before the publisher exists.

When it comes to firing off events, you have a choice. You
can choose to fire off the transform immediately, or queue
up new events until the whole transform is complete, then
dispatch them all in one go. As the model becomes simpler
and more usable, the opportunity for more common use leads
us to new ways of implementing code traditionally done via
polling.

For example: unless a player character is within the dis-
tance to activate a door, the event handler for the player’s
action button needn’t be attached to anything door related.
When the character comes within range, the character regis-
ters into the has pressed action event table with the open door (X)
event result. This reduces the amount of time the CPU wastes
figuring out what thing the player was trying to activate, and
also helps provide state information such as on-screen dis-
plays saying pressing Green will Open the door.

If we allow for all tables to have triggers like those found in
DBMSs, then it may be possible to register interest in changes
to input mappings, and react. Hooking into low-level tables
such as a insert into a has pressed action table would allow
user interfaces to know to change their on-screen display to
show the new prompt.
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This coding style is somewhat reminiscent of aspect-
oriented programming where it is easy to allow for cross-
cutting concerns in the code. In aspect-oriented program-
ming, the core code for any activities is kept clean, and any
side effects or vetoes of actions are handled by other con-
cerns hooking into the activity from outside. This keeps the
core code clean at the expense of not knowing what is really
going to be called when you write a line of code. How using
registration tables differs is in where the reactions come from
and how they are determined. Debugging can become sig-
nificantly simpler as the barriers between cause and effect
normally implicit in aspect-oriented programming are signifi-
cantly diminished or removed, and the hard to adjust nature
of object-oriented decision making can be softened to allow
your code to become more dynamic without the normally
associated cost of data-driven control flow.



Chapter 4

Component Based
Objects

A component-oriented design is a good start for high-level
data-oriented design. Developing with components can put
you in the right frame of mind to avoid linking together con-
cepts needlessly. Objects built this way can more easily be
processed by type, instead of by instance, which can lead
to them being easier to profile. Entity systems built around
them are often found in game development as a way to pro-
vide data-driven functionality packs for entities, allowing for
designer control over what would normally be in the realm of
a programmer. Not only are component based entities better
for rapid design changes, but they also stymie the chances of
getting bogged down into monolithic objects, as most game
designers would demand more components with new features
over extending the scope of existing components. This is be-
cause most new designs need iterating on, and extending
an existing component by code to introduce design changes
wouldn’t allow game designers to switch back and forth trying

87
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out different things as easily. It’s usually more flexible to add
another component as an extension or as an alternative.

A problem that comes up with talking about component-
oriented development is how many different types of entity
component systems there are. To help clear the ambiguity,
we shall describe some different ways in which component-
oriented designs work.

The first kind of component-oriented approach most peo-
ple use is a compound object. There are a few engines that
use them this way, and most of them use the power of their
scripting language to help them achieve a flexible, and de-
signer friendly way to edit and create objects out of compo-
nents. For example, Unity’s GameObject is a base entity type
which can include components by adding them to that par-
ticular instance’s list of components. They are all built onto
the core entity object, and they refer to each other through
it. This approach means every entity still tends to update via
iteration over root instances, not iteration over systems.

Common dialogue around creating compound objects fre-
quently refers to using components to make up an object di-
rectly by including them as members of the object. Though
this is better than a monolithic class, it is not yet a fully com-
ponent based approach. This technique uses components to
make the object more readable, and potentially more reusable
and robust to change. These systems are extensible enough to
support large ecosystems of components shareable between
projects. The Unity Asset Store proves the worth of compo-
nents from the point of view of rapid development.

When you introduce component based entities, you have
an opportunity to turn the idea of how you define an object
on its head. The normal approach to defining an object in
object-oriented design is to name it, then fill out the details
as and when they become necessary. For example, your car
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object is defined as a Car, if not extending Vehicle, then at
least including some data about what physics and meshes
are needed, with construction arguments for wheels and body
shell model assets etc, possibly changing class dependent on
whether it’s an AI or player car. In component-oriented de-
sign, objects aren’t so rigidly defined, and don’t so much be-
come defined after they are named, as much as a definition is
selected or compiled, and then tagged with a name if neces-
sary. For example, instancing a physics component with four-
wheel physics, instancing a renderable for each part (wheels,
shell, suspension) adding an AI or player component to control
the inputs for the physics component, all adds up to some-
thing which we can tag as a Car, or leave as is and it becomes
something implicit rather than explicit and immutable.

A truly component based object is nothing more than the
sum of its parts. This means the definition of a component
based object is also nothing more than an inventory with
some construction arguments. This object or definition ag-
nostic approach makes refactoring and redesigning a much
simpler exercise. Unity’s ECS provides such a solution. In
the ECS, entities are intangible and implicit, and the compo-
nents are first class citizens.

4.1 Components in the wild

Component based approaches to development have been tried
and tested. Many high-profile studios have used component
driven entity systems to great success1, and this was in part
due to their developer’s unspoken understanding that objects
aren’t a good place to store all your data and traits. For some,
it was the opportunity to present the complexity of what

1Gas Powered Games, Looking Glass Studios, Insomniac, Neversoft all
used component based objects.
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makes up an entity through simpler pieces, so designers and
modders would be able to reason about how their changes
fit within the game framework. For some, it was about giv-
ing power over to performance, where components are more
easily moved to a structure-of-arrays approach to processing.

Gas Powered Games’ Dungeon Siege Architecture is prob-
ably the earliest published document about a game company
using a component based approach. If you get a chance, you
should read the article[10] to see where things really kicked
off. The article explains that using components means the
entity type2 doesn’t need to have the ability to do anything.
Instead, all the attributes and functionality come from the
components of which the entity is made.

The list of reasons to move to a manager driven, component
based approach are numerous, and we shall attempt to cover
at least a few. We will talk about the benefits of clear update
sequences. We will mention how components can make it
easier to debug. We will talk about the problem of objects
applying meaning to data, causing coupling, and therefore
with the dissolution of the object as the central entity, how
the tyranny of the instance is mitigated.

In this section, we’ll show how we can take an existing class
and rewrite it in a component based fashion. We’re going to
tackle a fairly typical complex object, the Player class. Nor-
mally these classes get messy and out of hand quite quickly.
We’re going to assume it’s a Player class designed for a generic
3rd person action game, and take a typically messy class as
our starting point. We shall use listing 4.1 as a reference ex-
ample of one such class.

1 class Player {

2 public:

3 Player ();

2GPG:DG uses GO or Game-Objects, but we stick with the term entity
because it has become the standard term.
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4 ~Player ();

5 Vec GetPos (); // the root node position

6 void SetPos( Vec ); // for spawning

7 Vec GetSpeed (); // current velocity

8 float GetHealth ();

9 bool IsDead ();

10 int GetPadIndex (); // the player pad controlling me

11 float GetAngle (); // the direction the player is pointing

12 void SetAnimGoal( ... ); // push state to anim -tree

13 void Shoot( Vec target ); // fire the player ’s weapon

14 void TakeDamage( ... ); // take some health off , maybe animate

for the damage reaction

15 void Speak( ... ); // cause the player to start audio/anim

16 void SetControllable( bool ); // no control in cut -scene

17 void SetVisible( bool ); // hide when loading / streaming

18 void SetModel( ... ); // init streaming the meshes etc

19 bool IsReadyForRender ();

20 void Render (); // put this in the render queue

21 bool IsControllable (); // player can move about?

22 bool IsAiming (); // in normal move -mode , or aim -mode

23 bool IsClimbing ();

24 bool InWater (); // if the root bone is underwater

25 bool IsFalling ();

26 void SetBulletCount( int ); // reload is -1

27 void AddItem( ... ); // inventory items

28 void UseItem( ... );

29 bool HaveItem( ... );

30 void AddXP( int ); // not really XP, but used to indicate when

we let the player power -up

31 int GetLevel (); // not really level , power -up count

32 int GetNumPowerups (); // how many we’ve used

33 float GetPlayerSpeed (); // how fast the player can go

34 float GetJumpHeight ();

35 float GetStrength (); // for melee attacks and climb speed

36 float GetDodge (); // avoiding bullets

37 bool IsInBounds( Bound ); // in trigger zone?

38 void SetGodMode( bool ); // cheater

39 private:

40 Vec pos;

41 Vec up, forward , right;

42 Vec velocity;

43 Array <ItemType > inventory;

44 float health;

45 int controller;

46 AnimID idleAnim;

47 AnimID shootAnim;

48 AnimID reloadAnim;

49 AnimID movementAnim;

50 AnimID currentAnimGoal;

51 AnimID currentAnim;

52 int bulletCount;

53 float shotsPerSecond;

54 float timeSinceLastShot;

55 SoundHandle playingSoundHandle; // null most of the time
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56 bool controllable;

57 bool visible;

58 AssetID playerModel;

59 LocomotionType currentLocomotiveModel;

60 int xp;

61 int usedPowerups;

62 int SPEED , JUMP , STRENGTH , DODGE;

63 bool cheating;

64 };

Listing 4.1: Monolithic Player class

This example class includes many of the types of things
found in games, where the codebase has grown organically.
It’s common for the Player class to have lots of helper functions
to make writing game code easier. Helper functions typically
consider the Player as an instance in itself, from data in save
through to rendering on screen. It’s not unusual for the Player
class to touch nearly every aspect of a game, as the human
player is the target of the code in the first place, the Player
class is going to reference nearly everything too.

AI characters will have similarly gnarly looking classes if
they are generalised rather than specialised. Specialising AI
was more commonplace when games needed to fit in smaller
machines, but now, because the Player class has to interact
with many of them over the course of the game, they tend to
be unified into one type just like the player, if not the same
as the player, to help simplify the code that allows them to
interact. As of writing, the way in which AI is differentiated
is mostly by data, with behaviour trees taking the main stage
for driving how AI thinks about its world. Behaviour trees are
another concept subject to various interpretations, so some
forms are data-oriented design friendly, and others are not.
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4.2 Away from the hierarchy

A recurring theme in articles and post-mortems from people
moving from object-oriented hierarchies of gameplay classes
to a component based approach is the transitional states of
turning their classes into containers of smaller objects, an ap-
proach often called composition. This transitional form takes
an existing class and finds the boundaries between concepts
internal to the class and attempts to refactor them out into
new classes which can be owned or pointed to by the original
class. From our monolithic player class, we can see there are
lots of things that are not directly related, but that does not
mean they are not linked together.

Object-oriented hierarchies are is-a relationships, and
components and composition oriented designs are tradition-
ally thought of as has-a relationships. Moving from one to
the other can be thought of as delegating responsibility or
moving away from being locked into what you are, but hav-
ing a looser role and keeping the specialisation until further
down the tree. Composition clears up most of the common
cases of diamond inheritance issues, as capabilities of the
classes are added by accretion as much as they are added by
overriding.

The first move we need to make will be to take related pieces
of our monolithic class and move them into their own classes,
along the lines of composing, changing the class from owning
all the data and the actions that modify the data into having
instances which contain data and delegating actions down
into those specialised structures where possible. We move
the data out into separate structures so they can be more
easily combined into new classes later. We will initially only
separate by categories we perceive as being the boundaries
between systems. For example, we separate rendering from
controller input, from gameplay details such as inventory, and
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we split out animation from all.

Taking a look at the results of splitting the player class
up, such as in listing 4.2, it’s possible to make some initial
assessments of how this may turn out. We can see how a
first pass of building a class out of smaller classes can help
organise the data into distinct, purpose oriented collections,
but we can also see the reason why a class ends up being a
tangled mess. When you think about the needs of each of the
pieces, what their data requirements are, the coupling can
become evident. The rendering functions need access to the
player’s position as well as the model, and the gameplay func-
tions such as Shoot(Vec target) need access to the inventory as
well as setting animations and dealing damage. Taking dam-
age will need access to the animations and health. Things are
already seeming more difficult to handle than expected, but
what’s really happening here is that it’s becoming clear that
code needs to cut across different pieces of data. With just
this first pass, we can start to see that functionality and data
don’t belong together.

1 struct PlayerPhysical {

2 Vec pos;

3 Vec up, forward , right;

4 Vec velocity;

5 };

6 struct PlayerGameplay {

7 float health;

8 int xp;

9 int usedPowerups;

10 int SPEED , JUMP , STRENGTH , DODGE;

11 bool cheating;

12 float shotsPerSecond;

13 float timeSinceLastShot;

14 };

15 struct EntityAnim {

16 AnimID idleAnim;

17 AnimID shootAnim;

18 AnimID reloadAnim;

19 AnimID movementAnim;

20 AnimID currentAnimGoal;

21 AnimID currentAnim;

22 SoundHandle playingSoundHandle; // null most of the time

23 };

24 struct PlayerControl {
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25 int controller;

26 bool controllable;

27 };

28 struct EntityRender {

29 bool visible;

30 AssetID playerModel;

31 };

32 struct EntityInWorld {

33 LocomotionType currentLocomotiveModel;

34 };

35 struct Inventory {

36 Array <ItemType > inventory;

37 int bulletCount;

38 };

39

40 class Player {

41 public:

42 Player ();

43 ~Player ();

44 // ...

45 // ... the member functions

46 // ...

47 private:

48 PlayerPhysical phsyical;

49 PlayerGameplay gameplay;

50 EntityAnim anim;

51 PlayerControl control;

52 EntityRender render;

53 EntityInWorld inWorld;

54 Inventory inventory;

55 };

Listing 4.2: Composite Player class

In this first step, we made the player class a container for
the components. Currently, the player has the components,
and the player class has to be instantiated to make a player
exist. To allow for the cleanest separation into components
in the most reusable way, it’s worth attempting to move com-
ponents into being managed by managers, and not handled
or updated by their entities. In doing this, there will also be
a benefit of cache locality when we’re iterating over multiple
entities doing related tasks when we move them away from
their owners.

This is where it gets a bit philosophical. Each system has
an idea of the data it needs in order to function, and even
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though they will overlap, they will not share all data. Consider
what it is that a serialisation system needs to know about a
character. It is unlikely to care about the current state of
the animation system, but it will care about inventory. The
rendering system will care about position and animation, but
won’t care about the current amount of ammo. The UI ren-
dering code won’t even care about where the player is, but will
care about inventory and their health and damage. This dif-
ference of interest is at the heart of why putting all the data
in one class isn’t a good long-term solution.

The functionality of a class, or an object, comes from how
the internal state is interpreted, and how the changes to state
over time are interpreted too. The relationship between facts
is part of the problem domain and could be called meaning,
but the facts are only raw data. This separation of fact from
meaning is not possible with an object-oriented approach,
which is why every time a fact acquires a new meaning, the
meaning has to be implemented as part of the class containing
the fact. Dissolving the class, extracting the facts and keep-
ing them as separate components, has given us the chance to
move away from classes that instill permanent meaning at the
expense of occasionally having to look up facts via less direct
methods. Rather than store all the possibly associated data
by meaning, we choose to only add meaning when necessary.
We add meaning when it is part of the immediate problem we
are trying to solve.

4.3 Towards managers

After splitting your classes up into components, you might
find your classes look more awkward now they are access-
ing variables hidden away in new structures. But it’s not
your classes that should be looking up variables, but instead
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1 class Renderable {
2 void RenderUpdate () {
3 auto pos = gPositionArray[index];
4 gRenderer.AddModel( playerModel , pos );
5 }
6 };
7 class RenderManager {
8 void Update () {
9 gRenderer.BeginFrame ();

10 for( auto &renderable : renderArray ) {
11 renderable.RenderUpdate ();
12 }
13 gRenderer.SubmitFrame ();
14 }
15 };
16 class PhysicsManager {
17 void Update () {
18 for( auto &physicsRequest : physicsRequestArray ) {
19 physicalArray[physicsRequest.index ]. UpdateValues(

physicsRequest.updateData );
20 }
21 // Run physics simulation
22 for( auto &physical : physicalArray ) {
23 positionArray[physical.index].pos = physical.pos;
24 }
25 }
26 };
27 class Controller {
28 void Update () {
29 Pad pad = GetPad( controller );
30 if( pad.IsPressed( SHOOT ) ) {
31 if( inventoryArray[index ]. bulletCount > 0 )
32 animRequest.Add( SHOOT_ONCE );
33 }
34 }
35 }
36 };
37 class PlayerInventory {
38 void Update () {
39 if( inv.bulletCount == 0 ) {
40 if( animArray.contains( inv.index ) {
41 anim = animArray[ index ];
42 anim.currentAnim = RELOAD;
43 inventoryArray[index]. bulletCount = 6;
44 anim.playingSoundHandle = PlaySound( GUNFIRE );
45 }
46 }
47 }
48 };
49 class PlayerControl {
50 void Update () {
51 for( auto &control : controlArray ) {
52 control.Update ();
53 }
54 for( auto &inv : inventoryArray ) {
55 inv.Update ();
56 }
57 }
58 }

Listing 4.3: Manager ticked components



98 CHAPTER 4. COMPONENT BASED OBJECTS

transforms on the classes. A common operation such as ren-
dering requires the position and the model information, but
it also requires access to the renderer. Such object boundary
crossing access is seen as a compromise during game devel-
opment, but here it can be seen as the method by which we
move away from a class-centric approach to a data-oriented
approach. We will aim at transforming our data into render
requests which affect the graphics pipeline without referring
to data unimportant to the renderer.

Referring to listing 4.3, we move to no longer having a
player update, but instead an update for each component that
makes up the player. This way, everyone entity’s physics is
updated before it is rendered, or could be updated while the
rendering is happening on another thread. All entity’s con-
trols (whether they be player or AI) can be updated before
they are animated. Having the managers control when the
code is executed is a large part of the leap towards fully paral-
lelisable code. This is where performance can be gained with
more confidence that it’s not negatively impacting other areas.
Analysing which components need updating every frame, and
which can be updated less frequently leads to optimisations
that unlock components from each other.

In many component systems that allow scripting lan-
guages to define the actions taken by components or their
entities, performance can fall foul of the same inefficiencies
present in an object-oriented program design. Notably, the
dependency inversion practice of calling Tick or Update func-
tions will often have to be sandboxed in some way which will
lead to error checking and other safety measures wrapping
the internal call. There is a good example of this being an
issue with the older versions of Unity, where their compo-
nent based approach allowed every instance to have its own
script which would have its own call from the core of Unity
on every frame. The main cost appeared to be transitioning
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in and out of the scripting language, crossing the boundary
between the C++ at the core, and the script that described the
behaviour of the component. In his article 10,000 Update()
calls[11], Valentin Simonov provided information on why the
move to managers makes so much sense, giving details on
what is costing the most when utilising dependency inversion
to drive your general code update strategies. The main cost
was in moving between the different areas of code, but even
without having to straddle the language barrier, managers
make sense as they ensure updates to components happen
in sync.

What happens when we let more than just the player use
these arrays? Normally we’d have some separate logic for han-
dling player fire until we refactored the weapons to be generic
weapons with NPCs using the same code for weapons proba-
bly by having a new weapon class that can be pointed to by
the player or an NPC, but instead what we have here is a way
to split off the weapon firing code in such a way as to allow
the player and the NPC to share firing code without inventing
a new class to hold the firing. In fact, what we’ve done is split
the firing up into the different tasks it really contains.

Tasks are good for parallel processing, and with compo-
nent based objects, we open up the opportunity to move most
of our previously class oriented processes out, and into more
generic tasks that can be dished out to whatever CPU or co-
processor can handle them.

4.4 There is no entity

What happens when we completely remove the Player class? If
an entity can be represented by its collection of components,
does it need any further identity than those self same com-
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1 struct Orientation { Vec pos , up , forward , right; };

2 SparseArray <Orientation > orientationArray;

3 SparseArray <Vec > velocityArray;

4 SparseArray <float > healthArray;

5 SparseArray <int > xpArray , usedPowerupsArray , controllerID ,

bulletCount;

6 struct Attributes { int SPEED , JUMP , STRENGTH , DODGE; };

7 SparseArray <Attributes > attributeArray;

8 SparseArray <bool > godmodeArray , controllable , isVisible;

9 SparseArray <AnimID > currentAnim , animGoal;

10 SparseArray <SoundHandle > playingSound;

11 SparseArray <AssetID > modelArray;

12 SparseArray <LocomotionType > locoModelArray;

13 SparseArray <Array <ItemType > > inventoryArray;

14

15 int NewPlayer( int padID , Vec startPoint ) {

16 int ID = newID();

17 controllerID[ ID ] padID;

18 GetAsset( "PlayerModel", ID ); // adds a request to put the

player model into modelArray[ID]

19 orientationArray[ ID ] = Orientation(startPoint);

20 velocityArray[ ID ] = VecZero ();

21 return ID;

22 }

Listing 4.4: Sparse arrays for components

ponents? Like the values in the rows of a table, the compo-
nents describe a single instance, but also like the rows in a
table, the table is also a set. In the universe of possibilities
of component combinations, the components which make up
the entity are not facts about the entity, but are the entity,
and are the only identity the entity needs. As an entity is its
current configuration of components, then there is the possi-
bility of removing the core Player class completely. Removing
this class can mean we no longer think of the player as being
the centre of the game, but because the class no longer ex-
ists, it means the code is no longer tied to a specific singular
entity. Listing 4.4 shows a rough example of how you might
develop this kind of setup.

Moving away from compile-time defined classes means
many other classes can be invented without adding much
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code. Allowing scripts to generate new classes of entity by
composition or prototyping increases their power dramati-
cally, and cleanly increase the apparent complexity of the
game without adding more actual complexity. Finally, all the
different entities in the game will now run the same code at
the same time, which simplifies and centralises your process-
ing code, leading to more opportunity to share optimisations,
and fewer places for bugs to hide.
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Chapter 5

Hierarchical Level of
Detail and
Implicit-state

Consoles and graphics cards are not generally bottlenecked at
the polygon rendering stage in the pipeline. Usually, they are
bandwidth bound. If there is a lot of alpha blending, it’s often
fill-rate issues. For the most part, graphics chips spend a lot
of their time reading textures, and texture bandwidth often
becomes the bottleneck. Because of this, the old way of doing
level of detail with multiple meshes with decreasing numbers
of polygons is never going to be as good as a technique which
takes into account the actual data required of the level of de-
tail used in each renderable. The vast majority of stalls when
rendering come from driver side processing, or from process-
ing too much for what you want to actually render. Hierarchi-
cal level of detail can fix the problem of high primitive count
which causes more driver calls than necessary.
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The basic approach for art is to make optimisations by
grouping and merging many low level of detail meshes into
one single low level of detail mesh. This reduces the time
spent in the setup of render calls which is beneficial in sit-
uations where driver calls are costly. In a typical very large
scale environment, a hierarchical level of detail approach to
game content can reduce the workload on a game engine by
an order of magnitude as the number of entities in the scene
considered for processing and rendering drops significantly.

Even though the number of polygons rendered may be ex-
actly the same, or maybe even higher, the fact that the engine
usually is only handling roughly the same number of enti-
ties at once on average increases stability and allows for more
accurately targeted optimisations of both art and code.

5.1 Existence from Null to Infinity

If we consider that entities can be implicit based on their at-
tributes, we can utilise the technique of hierarchical level of
detail to offer up some optimisations for our code. In tradi-
tional level of detail techniques, as we move further away from
the object or entity of interest, we lose details and fidelity.
We might reduce polygon count, or texture sizes, or even the
number of bones in a skeleton that drives the skinned mesh.
Game logic can also degrade. Moving away from an entity, it
might switch to a much coarser grain time step. It’s not un-
heard of for behaviours of AI to migrate from a 50hz update to
a 1hz update. In a hierarchical level of detail implementation,
as the entity becomes closer, or more apparent to the player,
it might be that only at that point does it even begin to exist.

Consider a shooter game where you are defending a base
from incoming attacks. You are manning an anti-air turret,
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and the attackers come in squadrons of aircraft, you can see
them all coming at once, over ten thousand aircraft in all, and
up to a hundred at once in each squadron. You have to shoot
them down or be inundated with gunfire and bombs, taking
out both you and the base you are defending.

Running full AI, with swarming for motion and avoidance
for your slower moving ordnance might be too much if it was
run on all ten thousand ships every tick, but you don’t need
to. The basic assumption made by most AI programmers is
that unless they are within attacking range, then they don’t
need to be running AI. This is true and offers an immedi-
ate speedup compared to the naı̈ve approach. Hierarchical
LOD provides another way to think about this, by changing
the number of entities based on how they are perceived by
the player. For want of a better term, collective lodding is a
name that describes what is happening behind the scenes a
little better. Sometimes there is no hierarchy, and yet, there
can still be a change in the manner in which the elements
are referenced between the levels of detail. The term collec-
tive lodding is inspired by the concept of a collective term. A
murder of crows is a computational element, but each crow is
a lower level of detail sub-element of the collective.

Murder

yy �� %%
Crow Crow Crow

In the collective lodding version of the base defender game,
there are a few wave entities which project squadron blips
on the radar. The squadrons don’t exist as their own enti-
ties until they get close enough. Once a wave’s squadron is
within range, the wave will decrease its squadron count and
pop out a new squadron entity. The newly created squadron
entity shows blips on the radar for each of its component air-
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craft. The aircraft don’t exist yet, but they are implicit in the
squadron in the same way the squadron was implicit in the
wave. The wave continues to pop Squadrons as they come into
range, and once its internal count has dropped to zero, it can
delete itself as it now represents no entities. As a squadron
comes into even closer range, it pops out its aircraft into their
own entities and eventually deletes itself. As the aircraft get
closer, traditional level of detail techniques kick in and their
renderables are allowed to switch to higher resolution and
their AI is allowed to run at a higher intelligence setting.

Blip
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Squadron Squadron
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Squadron
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When the aircraft are shot at, they switch to a taken dam-
age type. They are full health enemy aircraft unless they take
damage. If an AI reacts to damage with fear, they may eject,
adding another entity to the world. If the wing of the plane
is shot off, then that also becomes a new entity in the world.
Once a plane has crashed, it can delete its entity and replace
it with a smoking wreck entity that will be much simpler to
process than an aerodynamic simulation, faked or not.

If things get out of hand and the player can’t keep the
aircraft at bay and their numbers increase in size so much
that any normal level of detail system can’t kick in to miti-
gate it, collective lodding can still help by returning aircraft
to squadrons and flying them around the base attacking as a
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group, rather than as individual aircraft. In the board game
Warhammer Fantasy Battle, there were often so many troops
firing arrows at each other, that players would often think of
attacks by squads as being collections of attacks, and not ac-
tually roll for each individual soldier, rat, orc or whatever it
was, but instead counted up how many troops they had, and
rolled that many dice to see how many attacks got through.
This is what is meant by attacking as a squadron. The air-
craft no longer attack, instead, the likelihood an attack will
succeed is calculated, dice are rolled, and that many attacks
get through. The level of detail heuristic can be tuned so the
nearest and front-most squadron are always the highest level
of detail, effectively making them roll individually, and the
ones behind the player maintain a very simplistic representa-
tion.

This is game development smoke and mirrors as a basic
game engine element. In the past we have reduced the num-
ber of concurrent attacking AI1, reduced the number of cars
on screen by staggering the lineup over the whole race track2,
and we’ve literally combined people together into one person
instead of having loads of people on screen at once3. This kind
of reduction of processing is commonplace. Now consider us-
ing it everywhere appropriate, not just when a player is not
looking.

5.2 Mementos

Reducing detail introduces an old problem, though. Changing
level of detail in game logic systems, AI and such, brings with
it the loss of high detail history. In this case, we need a way

1I believe this was Half-Life
2Ridge Racer was known for this
3Populous did this
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to store what is needed to maintain a highly cohesive player
experience. If a high detail squadron in front of the player
goes out of sight and another squadron takes their place, we
still want any damage done to the first group to reappear when
they come into sight again. Imagine if you had shot out the
glass on all the aircraft and when they came round again, it
was all back the way it was when they first arrived. A cosmetic
effect, but one that is jarring and makes it harder to suspend
disbelief.

When a high detail entity drops to a lower level of detail, it
should store a memento, a small, well-compressed nugget of
data that contains all the necessary information in order to re-
build the higher detail entity from the lower detail one. When
the squadron drops out of sight, it stores a memento con-
taining compressed information about the amount of damage,
where it was damaged, and rough positions of all the aircraft
in the squadron. When the squadron comes into view once
more, it can read this data and generate the high detail en-
tities back in the state they were before. Lossy compression
is fine for most things, it doesn’t matter precisely which win-
dows, or how they were cracked, maybe just that about 2/3 of
the windows were broken.

HighDetail

store

''

HighDetail

Memento
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Another example is in a city-based free-roaming game. If
AIs are allowed to enter vehicles and get out of them, then
there is a good possibility you can reduce processing time by
removing the AIs from the world when they enter a vehicle. If
they are a passenger, then they only need enough information
to rebuild them and nothing else. If they are the driver, then
you might want to create a new driver type based on some
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attributes of the pedestrian before making the memento for
when they exit the vehicle.

If a vehicle reaches a certain distance away from the player,
then you can delete it. To keep performance high, you can
change the priorities of vehicles that have mementos so they
try to lose sight of the player thus allowing for earlier re-
moval from the game. Optimisations like this are hard to co-
ordinate in object-oriented systems as internal inspection of
types isn’t encouraged. Some games get around it by design-
ing in ways to reset memento data as a gameplay element.
The game Zelda: Breath of the Wild resets monsters during a
Blood Moon, and by doing so, you as a player, are not sur-
prised when you return to camps to find all the monsters are
just as you left them.

5.3 JIT mementos

If a vehicle that has been created as part of the ambient pop-
ulation is suddenly required to take on a more important role,
such as the car being involved in a firefight, it needs to gain
detail. This detail must come from somewhere and must be
convincing. It is important to generate new entities which
don’t seem overly generic or unlikely, given what the player
knows about the game so far. Generating that data can be
thought of as providing a memento to read from just in time.
Just in time mementos, or JIT mementos, offers a way to cre-
ate fake mementos that can provide continuity by utilising
pseudo-random generators or hash functions to create suit-
able information on demand without relying on storing data
anywhere. Instead, they rely only on information provided
implicitly by the entity in need of it.

Instead of generating new characters from a global random
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number generator, it is possible to seed the generator with
details about the thing that needs generation. For example,
you want to generate a driver and some passengers, as you’re
about to get close enough to a car to need to render the peo-
ple inside it. Just creating random characters from a set of
lookup tables is good, but if you drive past them far enough for
them to get out of rendering range, and then return, the peo-
ple in the car might not look the same anymore as they had to
be regenerated. Instead, generate the driver and passengers
using some other unique attribute, such as the license plate,
as a seed. This way, while you have not affected the result
of generating the memento, you have no memory overhead to
store it, and no object lifetime to worry about either, as it can
always be reproduced from nothing again.

V ehicle

seed
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This technique is used all the time in landscape genera-
tors, where the landscape is seeded from the x,y location in
the map, so why not use it when generating the weather for
day 107 of the game? When generating Perlin noise, many
algorithms call upon a noise function, but to have a repro-
ducible landscape, the noise function must be a repeatable
function, so it can create the same results over and over again.
If you’re generating a landscape, it’s preferred for the noise
function to be coherent, that is, for small variances in the in-
put function, only small changes should be observed in the
output. We don’t need such qualities when generating JIT me-
mentos, and a hash function which varies wildly with even the
smallest change in the input will suffice.
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An example of using this to create a JIT memento might be
to generate a house for a given landscape. First, take any nor-
mal random number generator and seed it with the location of
the building. Given the landscape the house is on, select from
a building template and start generating random numbers to
answer questions about the house the same way loading a
file off disk answers questions about the object. How large
is the house? Is it small, medium, large? Generate a ran-
dom number and select one answer. How many rooms does
it have based on the size? 2 or 3 for small, or (int)(7 + rand

* 10) for large. The point is, once you have seeded the ran-
dom number generator, you’re going to get the same results
back every time you run through the same process. Every
time you visit the house at {223.17,-100.5}, you’re going to
see the same 4 (or more) walls, and it will have the same paint
job, broken windows, or perfect idyllic little frog pond in the
back garden.

JIT mementos can be the basis of a highly textured envi-
ronment with memento style sheets or style guides which can
direct a feel bias for any mementos generated in those virtual
spaces. Imagine a city style guide that specifies rules for oc-
cupants of cars. The style guide might claim that business-
men might share, but are much less likely to, that families
have children in the back seats with an older adult driving. It
might declare that young adults tend to drive around in pairs.
Style guides help add believability to any generated data. Add
in local changes such as having types of car linked to types
of drivers. Have convertibles driven by well-dressed types or
kids, low riders driven almost exclusively by their stereotyp-
ical owner, and imports and modded cars driven by young
adults. In a space game, dirty hairy pilots of cargo ships,
well turned out officers commanding yachts, rough and ready
mercenaries in everything from a single seater to a dread-
nought. Then, once you have the flavour in place, allow for a
little surprise to bring it to life fully.
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JIT mementos are a good way to keep the variety up, and
style guides bias that so it comes without the impression that
everyone is different so everyone is the same. When these
biases are played out without being strictly adhered to, you
can build a more textured environment. If your environment
is heavily populated with completely different people all the
time, there is nothing to hold onto, no patterns to recognise.
When there are no patterns, the mind tends to see noise or
consider it to be a samey soup. Even the most varied virtual
worlds look bland when there is too much content all in the
same place. Walk along the street and see if you can spot any
identical paving slabs. You probably can, but also see the
little bits of damage, decay, dirt, mistakes, and blemishes. To
make an environment believable, you have to make it look like
someone took a lot of effort trying to make it all conform.

5.4 Alternative axes

As with all things, take away an assumption and you can find
other uses for a tool. Whenever you read about, or work with a
level of detail system, you will be aware that the constraint on
what level of detail is shown has always been some distance
function in space. It’s now time to take the assumption, dis-
card it, and analyse what is really happening.

First, we find that if we take away the assumption of dis-
tance, we can infer the conditional as some kind of linear mea-
sure. This value normally comes from a function which takes
the camera position and finds the relative distance to the en-
tity under consideration. What we may also realise when dis-
carding the distance assumption is a more fundamental un-
derstanding of what we are trying to do. We are using a single
runtime variable to control the presentation state of the enti-
ties of our game. We use runtime variables to control the state
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of many parts of our game already, but in this case, there is
a passive presentation response to the variable, or axis being
monitored. The presentation is usually some graphical, or
logical level of detail, but it could be something as important
to the entity as its own existence.

5.4.1 The true measure

Distance is the measure we normally use to identify what level
of detail something should be at, but it’s not the metric we
really need, it’s just very closely related. In fact, it’s inversely
related. The true metric of level of detail should be how much
of our perception an entity is taking up. If an entity is very
large, and far away, it takes up as much of our perception
as something small and nearby. All this time we have talked
about hierarchical level of detail the elephant in the room has
been the language used. We had waves on our radar. They
took up as much perception attention as a single squadron,
and a single squadron took up as much perceptual space as
a single aircraft when it was in firing range.

Understand this concept: level of detail should be defined
by how the player perceives a thing, at the range it is at. If
you internalise this, you will be on your way to making good
decisions about where the boundaries are between your levels
of detail.

5.4.2 Beyond space

Let’s now consider what other variables we can calculate that
present an opportunity to remove details from the game’s rep-
resentation. We should consider anything which presents an
opportunity to no longer process data unnecessarily. If some
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element of a game is not the player’s current concern, or will
fade from memory soon enough, we can dissolve it away. If
we consider the probability of the player caring about a thing
as a metric, then we begin to think about recollection and at-
tention as measurable quantities we can use to drive how we
end up representing it.

An entity that you know has the player’s attention, but is
hidden, maintains a large stake on the player’s perception.
That stake allows the entity to maintain a higher priority on
level of detail than it would otherwise deserve. For example, a
character the player is chasing in an assassination game, may
be spotted only once at the beginning of the mission, but will
have to remain at a high consistency of attribute throughout
the mission, as they are the object the player cares about the
most, coming second only to primitive needs such as survival.
Even if the character slips into the crowd, and is not seen
again until much later, they must look just like they did when
you first caught sight of them.

Ask the question, how long until a player forgets about
something that might otherwise be important? This informa-
tion will help reduce memory usage as much as distance. If
you have ever played Grand Theft Auto IV, you might have no-
ticed that the cars can disappear just by not looking at them.
As you turn around a few times you might notice the cars
seem to be different each time you face their way. This is
a stunning use of temporal level of detail. Cars which have
been bumped into or driven and parked by the player remain
where they were, because, in essence, the player put them
there. Because the player has interacted with them, they are
likely to remember they are there. However, ambient vehicles,
whether they are police cruisers or civilian vehicles, are less
important and don’t normally get to keep any special status
so can vanish when the player looks away.

At the opposite end of the scale, some games remember ev-
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erything you have done. Kill enemies in the first few minutes
of your game, loot their corpses, and chuck items around,
then come back a hundred hours later and the items are still
wherever you left them. Games like this store vast amounts of
tiny details, and these details need careful storage otherwise
they would cause continual and crushing performance degra-
dation. Using spatially mapped mementos is one approach
that can attempt to rationalise this kind of level of attention
to player game interaction.

In addition to time-since-seen, some elements may base
their level of detail on how far a player has progressed in the
game, or how many of something a player has, or how many
times they have done it. For example, a typical bartering an-
imation might be cut shorter and shorter as the game uses
the axis of how many recent barters to draw back the length
of any non-interactive sections which could be caused by the
event. This can be done simply, and the player will be thank-
ful. Consider allowing multi-item transactions only after a
certain number of single transactions have happened. In ef-
fect, you could set up gameplay elements, reactions to situa-
tions, triggers for tutorials, reminders, or extensions to game-
play options all through these abstracted level of detail style
axes. Handling the idea of player expertise through axes of
level of detail of gameplay mechanic depth or complexity.

This way of manipulating the present state of the game is
safer from transition errors. These are errors that happen
because going from one state to another may have set some-
thing to true when transitioning one direction, but might not
set it back to false when transitioning the other way. You can
think of the states as being implicit on the axis. When state is
modified, it’s prone to being modified incorrectly, or not mod-
ified at the right time. If state is tied to other variables, that
is, if state is a function of other state, then it’s less prone to
inconsistency.
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An example of where transition errors occur is in menu
systems where all transitions should be reversible, sometimes
you may find that going down two levels of menu, but back
only one level, takes you back to where you started. For ex-
ample, entering the options menu, then entering an adjust
volume slider, but backing out of the slider might take you
out of the options menu altogether. These bugs are common
in UI code as there are large numbers of different layers of in-
teraction. Player input is often captured in obscure ways com-
pared to gameplay input response. A common problem with
menus is one of ownership of the input for a particular frame.
For example, if a player hits both the forward and backward
button at the same time, a state machine UI might choose
to enter whichever transition response comes first. Another
might manage to accept the forward event, only to have the
next menu accept the back event, but worst of all might be
the unlikely, but seen in the wild, menu transitioning to two
different menus at the same time. Sometimes the menu may
transition due to external forces, and if there is player input
captured in a different thread of execution, the game state
can become disjoint and unresponsive. Consider a network
game’s lobby, where if everyone is ready to play, but the host of
the game disconnects while you are entering into the options
screen prior to game launch, in a traditional state-machine
like approach to menus, where should the player return to
once they exit the options screen? The lobby would normally
have dropped you back to a server search screen, but in this
case, the lobby has gone away to be replaced with nothing.
This is where having simple axes instead of state machines
can prove to be simpler to the point of being less buggy and
more responsive.
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5.5 Collective lodding - or how to re-
duce your instance count.

It’s an ugly term, and I hope one day someone comes up with
a better one, but it’s a technique that didn’t need a name
until people stopped doing it. Over the time it has taken
to write this book, games have started to have too many in-
stances. We’re not talking about games that have hundreds of
enemy spacecraft, battling each other in a desperate fight for
superiority, firing off missile after missile, generating visual
effects which spawn multiple GPU particles. We’re talking
about simple seeming games. We’re talking about your aver-
age gardening simulator, where for some reason, every leaf on
your plants is modeled as an instance, and every insect going
around pollinating is an instance, and every plot of land in
which your plants can grow is an instance, and every seed
you sew is an instance, and each have their own lifetimes,
components, animations, and their own internal state adding
to the ever-growing complexity of the system as a whole.

I have a fictional farming game, where I harvest wheat. I
have a field which is 100 by 100 tiles, each with wheat grow-
ing. In some games, those wheat tiles would be instances,
and the wheat on the tiles would be instances too. There’s
little reason for this, as we can reduce the field down to some
very small data. What do we actually need to know about the
field and the wheat? Do we need to know the position of the
wheat? We don’t, because it’s in a tiled grid. Do we need to
know if the tile has wheat or not? Yes, but it doesn’t need an
object instance to tell us that. Do we need an object to render
the wheat? It needs to blow in the wind, so don’t we need to
have it keep track of where it is to blow around and maintain
momentum? No, because in almost all cases, cheating at this
kind of thing is cheap and believable. Grass rendering works
fine without an instance per blade of grass. The right data
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format for a field full of wheat could be as simple as 10,000
unsigned chars, with zero being no wheat, and values from 1
to 100 being how grown it is. The wheat doesn’t have posi-
tions. The positions have wheat.

If you have a stack of blocks in Minecraft, you don’t have
64 instances in your inventory slot, you just have a type, and
a multiple. You have a stack. If you have a stack of plates in
a restaurant sim, you don’t have 10 plate instances, you have
a stack of plates object with an int saying how many plates
there currently are.

The underlying principle of this is making sure you have
slots in the world, whether hand placed, or generated in a pat-
tern, and keeping track of what’s in them, rather than placing
things in the world directly. Refer to things by how a stranger
would name them. When you ask someone what is in a room,
they won’t say a sofa, a bookshelf, an armchair, another arm-
chair, a coffee table, a TV stand, more bookshelves. No, they
will say furniture. Look at your game from the outside. Use
how the players describe what is on screen. Look at how they
describe their inventory. Look at how they describe the game,
understand their mental model, match that, and you will find
a strong correlation to what is taking up the players percep-
tion space.

When normalising your data, look at how your rows are
aligned to some kind of container. If you have any form of
grid, from 1D to 4D, it’s worth looking at how you can utilise
it. Don’t ignore other tesselations, such as triangle grids, or
hexagon grids. Hexagon grids, in particular, get a bad name,
but they can be represented by a square grid with different
traversal functions. Don’t give up just because the literal grid
is irregular either, in some grid-based games, the centres of
the cells are perturbed to give a more natural look, but the
game code can be strict grid-based, leading to better solution
space, and more likely easier for the player to reason about
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what they can and can’t do.
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Chapter 6

Searching

When looking for specific data, it’s very important to remem-
ber why you’re doing it. If the search is not necessary, then
that’s your biggest possible saving. Finding if a row exists in a
table will be slow if approached naı̈vely. You can manually add
searching helpers such as binary trees, hash tables, or just
keep your table sorted by using ordered insertion whenever
you add to the table. If you’re looking to do the latter, this
could slow things down, as ordered inserts aren’t normally
concurrent, and adding extra helpers is normally a manual
task. In this chapter, we find ways to combat all these prob-
lems.

6.1 Indexes

Database management systems have long held the concept of
an index. Traditionally, they were automatically added when
a DBMS noticed a particular query had been run a large num-
ber of times. We can use this idea and implement a just-in-
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time indexing system in our games to provide the same kinds
of performance improvement.

In SQL, every time you want to find out if an element exists,
or even just generate a subset like when you need to find all
the entities in a certain range, you will have to build it as a
query. The query exists as an entity of a kind, and helps build
intuition into the DBMS.

The query that creates the row or table generation can be
thought of as an object which can hang around in case it’s
used again, and can transform itself depending on how it’s
used over time. Starting out as a simple linear search query
(if the data is not already sorted), the process can find out that
it’s being used quite often through internal telemetry, and be
able to discover that it generally returns a simply tunable set
of results, such as the first N items in a sorted list. After
some predefined threshold number of operations, lifetime, or
other metric, it would be valuable for the query object to hook
itself into the tables it references. Hooking into the insertion,
modification, and deletion would allow the query to update its
answers, rather than run the full query again each time it’s
asked.

This kind of smart object is what object-oriented program-
ming can bring to data-oriented design. It can be a significant
saving in some cases, but it can also be safe, due to its op-
tionality.

If we build generalised backends to handle building queries
into these tables, they can provide multiple benefits. Not only
can we expect garbage collection of indexes which aren’t in
use, but they can also make the programs in some way self-
documenting and self-profiling. If we study the logs of what
tables had pushed for building indexes for their queries, then
we can see data hotspots and where there is room for improve-
ment. It may even be possible to have the code self-document
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what optimisation steps should be taken.

6.2 Data-oriented Lookup

The first step in any data-oriented approach to searching is
to understand the difference between the search criteria, and
the data dependencies of the search criteria. Object-oriented
solutions to searching often ask the object whether or not it
satisfies some criteria. Because the object is asked a ques-
tion, there can be a lot of code required, memory indirectly
accessed, and cache lines filled but hardly utilised. Even out-
side of object-oriented code-bases, there’s still a lot of poor
utilisation of memory bandwidth. In listing 6.1, there is an
example of simple binary search for a key in a naı̈ve imple-
mentation of an animation container. This kind of data access
pattern is common in animation libraries, but also in many
hand-rolled structures which look up entries that are trivially
sorted along an axis.

We can improve on this very quickly by understanding the
dependence on the producer and the consumer of the process.
Listing 6.2, is a quick rewrite that saves us a lot of memory
requests by moving out to a partial structure-of-arrays ap-
proach. The data layout stems from recognising what data is
needed to satisfy the requirements of the program.

First, we consider what we have to work with as inputs, and
then what we need to provide as outputs. The only input we
have is a time value in the form of a float, and the only value
we need to return in this instance is an animation key. The
animation key we need to return is dependent on data internal
to our system, and we are allowing ourselves the opportunity
to rearrange the data any way we like. As we know the input
will be compared to the key times, but not any of the rest
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1 struct FullAnimKey {

2 float time;

3 Vec3 translation;

4 Vec3 scale;

5 Vec4 rotation; // sijk quaternion

6 };

7 struct FullAnim {

8 int numKeys;

9 FullAnimKey *keys;

10 FullAnimKey GetKeyAtTimeBinary( float t ) {

11 int l = 0, h = numKeys -1;

12 int m = (l+h) / 2;

13 while( l < h ) {

14 if( t < keys[m].time ) {

15 h = m-1;

16 } else {

17 l = m;

18 }

19 m = (l+h+1) / 2;

20 }

21 return keys[m];

22 }

23 };

Listing 6.1: Binary search through objects

of the key data, we can extract the key times to a separate
array. We don’t need to access just one part of the animation
key when we find the one we want to return, but instead, we
want to return the whole key. Given that, it makes sense to
keep the animation key data as an array of structures so we
access fewer cache lines when returning the final value.

It is faster on most hardware, but why is it faster? The first
impression most people get is that we’ve moved the keys from
nearby the returned data, ensuring we have another fetch be-
fore we have the chance to return. Sometimes it pays to think
a bit further than what looks right at first glance. Let’s look
at the data layout of the AnimKeys.
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1 struct DataOnlyAnimKey {

2 Vec3 translation;

3 Vec3 scale;

4 Vec4 rotation; // sijk quaternion

5 };

6 struct DataOnlyAnim {

7 int numKeys;

8 float *keyTime;

9 DataOnlyAnimKey *keys;

10 DataOnlyAnimKey GetKeyAtTimeBinary( float t ) {

11 int l = 0, h = numKeys -1;

12 int m = (l+h) / 2;

13 while( l < h ) {

14 if( t < keyTime[m] ) {

15 h = m-1;

16 } else {

17 l = m;

18 }

19 m = (l+h+1) / 2;

20 }

21 return keys[m];

22 }

23 };

Listing 6.2: Binary search through values

t tx ty tz sx sy sz rs
ri rj rk t tx ty tz sx cacheline

sy sz rs ri rj rk t tx
ty tz sx sy sz rs ri rj cacheline

rk t tx ty tz sx sy sz
rs ri rj rk t . . . cacheline

Primarily, the processing we want to be doing is all about
finding the index of the key by hunting for through values in
a list of times. In the extracted times code, we’re no longer
looking for a whole struct by one of its members in an array
of structs. This is faster because the cache will be filled with
mostly pertinent data during the hunt phase. In the original
layout, we one or two key times per cache line. In the updated
code, we see 16 key times per cache line.
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t0 t1 t2 t3 t4 t5 t6 t7
t8 t9 t10 t11 t12 t13 t14 t15 cacheline

There are ways to organise the data better still, but any
more optimisation requires a complexity or space time trade
off. A basic binary search will home in on the correct data
quite quickly, but each of the first steps will cause a new cache
line to be read in. If you know how big your cache line is, then
you can check all the values that have been loaded for free
while you wait for the next cache line to load in. Once you
have got near the destination, most of the data you need is in
the cache and all you’re doing from then on is making sure you
have found the right key. In a cache line aware engine, all this
can be done behind the scenes with a well-optimised search
algorithm usable all over the game code. It is worth mention-
ing again, every time you break out into larger data struc-
tures, you deny your proven code the chance to be reused.

A binary search is one of the best search algorithms for
using the smallest number of instructions to find a key value.
But if you want the fastest algorithm, you must look at what
takes time, and often, it’s not the instructions. Loading a
whole cache line of information and doing as much as you can
with that would be a lot more helpful than using the smallest
number of instructions. It is worth considering that two dif-
ferent data layouts for an algorithm could have more impact
than the algorithm used.

As a comparison to the previous animation key finding
code, a third solution was developed which attempted to
utilise the remaining cache line space in the structure. The
structure that contained the number of keys, and the two
pointers to the times and the key data, had quite a bit of
space left on the cache line. One of the biggest costs on the
PS3 and Xbox360 was poor cache line utilisation, or CLU.
In modern CPUs, it’s not quite as bad, partially because the
cache lines are smaller, but it’s still worth thinking about
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1 struct ClumpedAnim {

2 float *keyTime;

3 DataOnlyAnimKey *keys;

4 int numKeys;

5 static const int numPrefetchedKeyTimes = (64- sizeof(int)-sizeof(

float*)-sizeof(DataOnlyAnimKey *))/sizeof(float);

6 static const int keysPerLump = 64/ sizeof(float);

7 float firstStage[numPrefetchedKeyTimes ];

8 DataOnlyAnimKey GetKeyAtTimeLinear( float t ) {

9 for( int start = 0; start < numPrefetchedKeyTimes; ++ start ) {

10 if( firstStage[start] > t ) {

11 int l = start*keysPerLump;

12 int h = l + keysPerLump;

13 h = h > numKeys ? numKeys : h;

14 return GetKeyAtTimeLinear( t, l );

15 }

16 }

17 return GetKeyAtTimeLinear( t, numPrefetchedKeyTimes*

keysPerLump );

18 }

19 DataOnlyAnimKey GetKeyAtTimeLinear( float t, int startIndex ) {

20 int i = startIndex;

21 while( i < numKeys ) {

22 if( keyTime[i] > t ) {

23 --i;

24 break;

25 }

26 ++i;

27 }

28 if( i < 0 )

29 return keys [0];

30 return keys[i];

31 }

32 };

Listing 6.3: Better cache line utilisation

what you get to read for free with each request. In this partic-
ular case, there was enough cache line left to store another
11 floating point values, which are used as a place to store
something akin to skip-list.

times keys n s0 s1 s2
s3 s4 s5 s6 s7 s8 s9 s10 cacheline

Using the fact that these keys would be loaded into mem-
ory, we give ourselves the opportunity to interrogate some
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data for free. In listing 6.3 you can see it uses a linear search
instead of a binary search, and yet it still manages to make
the original binary search look slow by comparison, and we
must assume, as with most things on modern machines, it
is because the path the code is taking is using the resources
better, rather than being better in a theoretical way, or using
fewer instructions.

i5-4430 @ 3.00GHz

Average 13.71ms [Full anim key - linear search]

Average 11.13ms [Full anim key - binary search]

Average 8.23ms [Data only key - linear search]

Average 7.79ms [Data only key - binary search]

Average 1.63ms [Pre-indexed - binary search]

Average 1.45ms [Pre-indexed - linear search]

If the reason for your search is simpler, such as checking
for existence, then there are even faster alternatives. Bloom
filters offer a constant time lookup. Even though it produces
some false positives, it can be tweaked to generate a reason-
able answer hit rate for very large sets. In particular, if you
are checking for which table a row exists in, then bloom filters
work very well, by providing data about which tables to look
in, usually only returning the correct table, but sometimes
more than one. The engineers at Google have used bloom fil-
ters to help mitigate the costs of something of a write-ahead
approach with their BigTable technology[12], and use bloom
filters to quickly find out if data requests should lookup their
values in recent change tables, or should go straight to the
backing store.

In relational databases, indexes are added to tables at run-
time when there are multiple queries that could benefit from
their presence. For our data-oriented approach, there will al-
ways be some way to speed up a search but only by looking
at the data. If the data is not already sorted, then an index
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is a simple way to find the specific item we need. If the data
is already sorted, but needs even faster access, then a search
tree optimised for the cache line size would help.

Most data isn’t this simple to optimise. But importantly,
when there is a lot of data, it usually is simple to learn pat-
terns from it. A lot of the time, we have to work with spatial
data, but because we use objects, it’s hard to strap on an
efficient spatial reference container after the fact. It’s virtu-
ally impossible to add one at runtime to an externally defined
class of objects.

Adding spatial partitioning when your data is in a sim-
ple data format like rows allows us to generate spatial con-
tainers or lookup systems that will be easy to maintain and
optimise for each particular situation. Because of the in-
herent reusability in data-oriented transforms, we can write
some very highly optimised routines for the high-level pro-
grammers.

6.3 Finding lowest or highest is a sort-
ing problem

In some circumstances, you don’t even really need to search.
If the reason for searching is to find something within a range,
such as finding the closest food, or shelter, or cover, then the
problem isn’t really one of searching, but one of sorting. In
the first few runs of a query, the search might literally do a
real search to find the results, but if it’s run often enough,
there is no reason not to promote the query to a runtime-
updating sorted-subset of some other tables’ data. If you need
the nearest three elements, then you keep a sorted list of the
nearest three elements, and when an element has an update,
insertion or deletion, you can update the sorted three with
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1 Array <int > bigArray;

2 Array <int > bestValue;

3 const int LIMIT = 3;

4

5 void AddValue( int newValue ) {

6 bigArray.push( newValue );

7 bestValue.sortedinsert( newValue );

8 if( bestValue.size() > LIMIT )

9 bestValue.erase(bestValue.begin());

10 }

11 void RemoveValue( int deletedValue ) {

12 bigArray.remove( deletedValue );

13 bestValue.remove( deletedValue );

14 }

15 int GetBestValue () {

16 if( bestValue.size() ) {

17 return bestValue.top();

18 } else {

19 int best = bigArray.findbest ();

20 bestvalue.push( best );

21 return best;

22 }

23 }

Listing 6.4: keeping more than you need

that information. For insertions or modifications which bring
elements that are not in the set closer, you can check whether
the element is closer and pop the lowest before adding the
new element to the sorted best. If there is a deletion or a
modification that makes one in the sorted set a contender for
elimination, a quick check of the rest of the elements to find
a new best set might be necessary. If you keep a larger than
necessary set of best values, however, then you might find this
never happens.

The trick is to find, at runtime, the best value to use that
covers the solution requirement. The only way to do that is to
check the data at runtime. For this, either keep logs or run
the tests with dynamic resizing based on feedback from the
table’s query optimiser.
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6.4 Finding random is a hash/tree is-
sue

For some tables, the values change very often. For a tree rep-
resentation to be high performance, it’s best not to have a high
number of modifications as each one could trigger the need
for a rebalance. Of course, if you do all your modifications
in one stage of processing, then rebalance, and then all your
reads in another, then you’re probably going to be okay still
using a tree.

The C++ standard template library implementation of map
for your compiler might not work well even when committing
all modifications in one go, but a more cache line aware imple-
mentation of a tree, such as a B-tree, may help you. A B-tree
has much wider nodes, and therefore is much shallower. It
also has a much lower chance of making multiple changes at
once under insert and delete operations, as each node has a
much higher capacity. Typically, you will see some form of
balancing going on in a red-black tree every other insert or
delete, but in most B-tree implementations, you will have tree
rotations occur relative to the width of the node, and nodes
can be very wide. For example, it’s not unusual to have nodes
with 8 child nodes.

If you have many different queries on some data, you can
end up with multiple different indexes. How frequently the
entries are changed should influence how you store your in-
dex data. Keeping a tree around for each query could be-
come expensive, but would be cheaper than a hash table in
many implementations. Hash tables become cheaper where
there are many modifications interspersed with lookups, trees
are cheaper where the data is mostly static, or at least hangs
around in one form for a while over multiple reads.



132 CHAPTER 6. SEARCHING

When the data becomes constant, a perfect hash can
trump a tree. Perfect hash tables use pre-calculated hash
functions to generate an index and don’t require any space
other than what is used to store the constants and the array
of pointers or offsets into the original table. If you have the
time, then you might find a perfect hash that returns the
actual indexes. It’s not often you have that long though.

For example, what if we need to find the position of some-
one given their name? The players won’t normally be sorted
by name, so we need a name to player lookup. This data is
mostly constant during the game so would be better to find a
way to directly access it. A single lookup will almost always
trump following a pointer chain, so a hash to find an array en-
try is likely to be the best fit. Consider a normal hash table,
where each slot contains either the element you’re looking for,
or a different element, and a way of calculating the next slot
you should check. If you know you want to do one and only
one lookup, you can make each of your hash buckets as large
as a cache line. That way you can benefit from free memory
lookups.



Chapter 7

Sorting

For some subsystems, sorting is a highly important function.
Sorting the primitive render calls so they render from front to
back for opaque objects can have a massive impact on GPU
performance, so it’s worth doing. Sorting the primitive render
calls so they render from back to front for alpha blended ob-
jects is usually a necessity. Sorting sound channels by their
amplitude over their sample position is a good indicator of
priority.

Whatever you need to sort for, make sure you need to sort
first, as usually, sorting is a highly memory intense business.

7.1 Do you need to?

There are some algorithms which seem to require sorted data,
but don’t, and some which require sorted data but don’t seem
to. Be sure you know whether you need to before you make
any false moves.

133
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A common use of sorting in games is in the render pass
where some engine programmers recommend having all your
render calls sorted by a high bit count key generated from
a combination of depth, mesh, material, shader, and other
flags such as whether the call is alpha blended. This then
allows the renderer to adjust the sort at runtime to get the
most out of the bandwidth available. In the case of the ren-
dering list sort, you could run the whole list through a general
sorting algorithm, but in reality, there’s no reason to sort the
alpha blended objects with the opaque objects, so in many
cases you can take a first step of putting the list into two sep-
arate buckets, and save some work overall. Also, choose your
sorting algorithm wisely. With opaque objects, the most im-
portant part is usually sorting by textures then by depth, but
that can change with how much your fill rate is being trashed
by overwriting the same pixel multiple times. If your over-
draw doesn’t matter too much but your texture uploads do,
then you probably want to radix sort your calls. With alpha
blended calls, you just have to sort by depth, so choose an
algorithm which handles your case best. Be aware of how
accurately you need your data to be sorted. Some sorts are
stable, others unstable. Unstable sorts are usually a little
quicker. For analogue ranges, a quick sort or a merge sort
usually offer slow but guaranteed accurate sorting. For dis-
crete ranges of large n, a radix sort is very hard to beat. If
you know your range of values, then a counting sort is a very
fast two pass sort, for example, sorting by material, shader,
or other input buffer index.

When sorting, it’s also very important to be aware of algo-
rithms that can sort a range only partially. If you only need
the lowest or highest n items of an m long array, you can use
a different type of algorithm to find the nth item, then sort
all the items greater or less than the returned pivot. In some
selection algorithms you will end with some guarantees about
the data. Notably, quickselect will result in the nth item by
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sorting criteria residing in the nth position. Once complete,
all items either side remain unsorted in their sub-ranges, but
are guaranteed to be less than or more than the pivot, de-
pending on the side of the pivot they fall.

If you have a general range of items which need to be sorted
in two different ways, you can either sort with a specialised
comparison function in a one-hit sort, or you can sort hierar-
chically. This can be beneficial when the order of items is less
important for a subset of the whole range. The render queue
is still a good example. If you split your sort into different
sub-sorts, it makes it possible to profile each part of the sort,
which can lead to beneficial discoveries.

You don’t need to write your own algorithms to do this
either. Most of the ideas presented here can be imple-
mented using the STL, using the functions in algorithms.
You can use std::partial sort to find and sort the first n

elements, you can use std::nth element to find the nth value
as if the container was sorted. Using std::partition and
std::stable partition allow you to split a range by a criteria,
effectively sorting a range into two sub-ranges.

It’s important to be aware of the contracts of these algo-
rithms, as something as simple as the erase/remove process
can be very expensive if you use it without being aware that
remove will shuffle all your data down, as it is required to
maintain order. If there was one algorithm you should add to
your collection, it would be your own version of remove which
does not guarantee maintaining order. Listing 7.1 shows one
such implementation.
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1 template <class It, class T>

2 It unstable_remove( It begin , It end , const T& value )

3 {

4 begin = find(begin , end , value);

5 if (begin != end) {

6 --end;

7 *begin = move( *end );

8 }

9 return end;

10 }

Listing 7.1: A basic implementation of unstable remove

7.2 Maintain by insertion sort or par-
allel merge sort

Depending on what you need the list sorted for, you could sort
while modifying. If the sort is for some AI function that cares
about priority, then you may as well insertion sort as the base
heuristic commonly has completely orthogonal inputs. If the
inputs are related, then a post insertion table wide sort might
be in order, but there’s little call for a full-scale sort.

If you really do need a full sort, then use an algorithm
which likes being parallel. Merge sort and quick sort are
somewhat serial in that they end or start with a single thread
doing all the work, but there are variants which work well with
multiple processing threads, and for small datasets there are
special sorting network techniques which can be faster than
better algorithms just because they fit the hardware so well1.

1Tony Albrecht proves this point in his article on sorting networks
http://seven-degrees-of-freedom.blogspot.co.uk/2010/07/question-of-
sorts.html

http://seven-degrees-of-freedom.blogspot.co.uk/2010/07/question-of-sorts.html
http://seven-degrees-of-freedom.blogspot.co.uk/2010/07/question-of-sorts.html


7.3. SORTING FOR YOUR PLATFORM 137

7.3 Sorting for your platform

Always remember that in data-oriented development you
must look to the data for information before deciding which
way you’re going to write the code. What does the data look
like? For rendering, there is a large amount of data with
different axes for sorting. If your renderer is sorting by mesh
and material, to reduce vertex and texture uploads, then the
data will show that there are a number of render calls which
share texture data, and a number of render calls which share
vertex data. Finding out which way to sort first could be fig-
ured out by calculating the time it takes to upload a texture,
how long it takes to upload a mesh, how many extra uploads
are required for each, then calculating the total scene time,
but mostly, profiling is the only way to be sure. If you want to
be able to profile and get feedback quickly or allow for runtime
changes in case your game has such varying asset profiles
that there is no one solution to fit all, having some flexibility of
sorting criteria is extremely useful and sometimes necessary.
Fortunately, it can be made just as quick as any inflexible
sorting technique, bar a small setup cost.

Radix sort is the fastest serial sort. If you can do it, radix
sort is very fast because it generates a list of starting points
for data of different values in a first pass, then operates using
that data in a second pass. This allows the sorter to drop their
contents into containers based on a translation table, a table
that returns an offset for a given data value. If you build a list
from a known small value space, then radix sort can operate
very fast to give a coarse first pass. The reason radix sort is
serial, is that it has to modify the table it is reading from in
order to update the offsets for the next element that will be put
in the same bucket. If you ran multiple threads giving them
part of the work each, then you would find they were non-
linearly increasing in throughput as they would be contending
to write and read from the same memory, and you don’t want
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to have to use atomic updates in your sorting algorithm.

It is possible to make this last stage of the process parallel
by having each sorter ignore any values it reads which are
outside its working set, meaning each worker reads through
the entire set of values gathering for their bucket, but there is
still a small chance of non-linear performance due to having
to write to nearby memory on different threads. During the
time the worker collects the elements for its bucket, it could
be generating the counts for the next radix in the sequence,
only requiring a summing before use in the next pass of the
data, mitigating the cost of iterating over the whole set with
every worker.

If your data is not simple enough to radix sort, you might
be better off using a merge sort or a quicksort, but there are
other sorts that work very well if you know the length of your
sortable buffer at compile time, such as sorting networks.
Through merge-sort is not itself a concurrent algorithm, the
many early merges can be run in parallel, only the final merge
is serial, and with a quick pre-parse of the to-be-merged data,
you can finalise with two threads rather than one by starting
from both ends (you need to make sure the mergers don’t run
out of data). Though quick sort is not a concurrent algorithm
each of the substages can be run in parallel. These algorithms
are inherently serial, but can be turned into partially paral-
lelisable algorithms with O(log n) latency.

When your n is small enough, a traditionally good tech-
nique is to write an in-place bubble sort. The algorithm is
so simple, it is hard to write wrong, and because of the small
number of swaps required, the time taken to set up a better
sort could be better spent elsewhere. Another argument for
rewriting such trivial code is that inline implementations can
be small enough for the whole of the data and the algorithm to
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fit in cache2. As the negative impact of the inefficiency of the
bubble sort is negligible over such a small n, it is hardly ever
frowned upon to do this. In some cases, the fact that there
are fewer instructions can be more important than the opera-
tional efficiency, as instruction eviction could cost more than
the time saved by the better algorithm. As always, measure
so you can be certain.

If you’ve been developing data-oriented, you’ll have a trans-
form which takes a table of n and produces the sorted version
of it. The algorithm doesn’t have to be great to be better than
bubble sort, but notice it doesn’t cost any development time
to use a better algorithm as the data is in the right shape al-
ready. Data-oriented development naturally leads us to reuse
of good algorithms.

When looking for the right algorithm, it’s worth knowing
about more than you are presented during any coursework,
and look into the more esoteric forms. For sorting, sometimes
you want an algorithm that always sorts in the same amount
of time, and when you do, you can’t use any of the standard
quick sorts, radix sorts, bubble or other. Merge sort tends
to have good performance, but to get truly stable times when
sorting, you may need to resort to sorting networks.

Sorting networks work by implementing the sort in a static
manner. They have input data and run swap if necessary
functions on pairs of values of the input data before out-
putting the final. The simplest sorting network is two inputs.

2It might be wise to have some inline sort function templates in your own
utility header so you can utilise the benefits of miniaturisation, but don’t
drop in a bloated std::sort
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A // //

��

// A′

B // //

BB

// B′

If the values entering are in order, the sorting crossover
does nothing. If the values are out of order, then the sort-
ing crossover causes the values to swap. This can be imple-
mented as branch-free writes:

a’ <= MAX(a,b)

b’ <= MIN(a,b)

This is fast on any hardware. The MAX and MIN func-
tions will need different implementations for each platform
and data type, but in general, branch-free code executes a lit-
tle faster than code that includes branches. In most current
compilers, the MIN and MAX functions will be promoted to
intrinsics if they can be, but you might need to finesse the
data so the value is part of the key, so it is sorted along with
the keys.

Introducing more elements:

A // 1 //

��

2 //

��

3 // // A′

B // //

��

//

BB

��

// // B′

C // //

II

//

��

BB

// // C ′

D // //

II

//

BB

// // D′
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What you may notice here is that the critical path is not
long (just three stages in total), the first stage is two concur-
rent sortings of A/C, and B/D pairs. The second stage, sort-
ing A/B, and C/D pairs. The final cleanup sorts the B/C
pair. As these are all branch-free functions, the performance
is regular over all data permutations. With such a regular
performance profile, we can use the sort in ways where the
variability of sorting time length gets in the way, such as just-
in-time sorting for subsections of rendering. If we had radix
sorted our renderables, we can network sort any final required
ordering as we can guarantee a consistent timing.

a’ <= MAX(a,c)

b’ <= MIN(b,d)

c’ <= MAX(a,c)

d’ <= MIN(b,d)

a’’ <= MAX(a’,b’)

b’’ <= MIN(a’,b’)

c’’ <= MAX(c’,d’)

d’’ <= MIN(c’,d’)

b’’’ <= MIN(b’’,c’’)

c’’’ <= MAX(b’’,c’’)

Sorting networks are somewhat like predication, the branch-
free way of handling conditional calculations. Because sort-
ing networks use a min/max function, rather than a condi-
tional swap, they gain the same benefits when it comes to
the actual sorting of individual elements. Given that sorting
networks can be faster than radix sort for certain imple-
mentations, it goes without saying that for some types of
calculation, predication, even long chains of it, will be faster
than code that branches to save processing time. Just such
an example exists in the Pitfalls of Object Oriented Program-
ming[14] presentation, concluding that lazy evaluation costs
more than the job it tried to avoid. I have no hard evidence for
it yet, but I believe a lot of AI code could benefit the same, in
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that it would be wise to gather information even when you are
not sure you need it, as gathering it might be quicker than
deciding not to. For example, seeing if someone is in your field
of vision, and is close enough, might be small enough that it
can be done for all AI rather than just the ones requiring it,
or those that require it occasionally.



Chapter 8

Optimisations and
Implementations

When optimising software, you have to know what is causing
the software to run slower than you need it to run. We find in
most cases, data movement is what really costs us the most.
Data movement is where most of the energy goes when pro-
cessing data. Calculating solutions to functions, or running
an algorithm on the data uses less energy. It is the fulfill-
ment of the request for data in the first place that appears to
be the largest cost. As this is most definitely true about our
current architectures, we find implicit or calculable informa-
tion is often much more useful than cached values or explicit
state data.

If we start our game development by organising our data
into arrays, we open ourselves up to many opportunities for
optimisation. Starting with such a problem agnostic layout,
we can pick and choose from tools we’ve created for other
tasks, at worst elevating the solution to a template or a strat-
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egy, before applying it to both the old and new use cases.

In Out of the Tar Pit [4], it’s considered poor form to add
state and complexity for the sake of performance until late
in the development of the solution. By using arrays to solve
the problem, and side-effect free transforms on those tables,
performance improvements can be made across systems in
general. The improvements can be applied at many sites in
the program with little fear of incompatibility, and a conviction
that we’re not adding state, but augmenting the language in
which we work.

The bane of many projects, and the cause of their late-
ness, has been the insistence on not doing optimisation pre-
maturely. The reason optimisation at late stages is so difficult
is that many pieces of software are built up with instances of
objects everywhere, even when not needed. Many issues with
object-oriented design are caused by the idea that an instance
is the unit of processing. Object-oriented development prac-
tices tend to assume the instance is the unit on which code
will work, and techniques and standards of practice treat col-
lections of objects as collections of individuals.

When the basic assumption is that an object is a unique
and special thing with its own purpose, then the instructions
to carry out what it needs to do, will necessarily be selected
in some way dependent on the object. Accessing instructions
via the vtable pointer is the usual method by which operations
are selected. The greater threat is when five, ten, or a hundred
individual instances, which could have been represented as a
group, a swarm, or merely an increment on a value, are pro-
cessed as a sequence of individuals. There are many cases
where an object exists just because it seemed to match the
real world concept it was trying to represent at the scale of
the developer implementing it, rather than because it needed
to function as a unique individual element of which the user
would be aware. It’s easy to get caught up implementing fea-
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tures from the perspective of what they are, rather than how
they are perceived.

8.1 When should we optimise?

When should optimisation be done? When is it truly prema-
ture? The answer lies in data of a different sort. Premature
optimisation is when you optimise something without know-
ing whether it will make a difference. If you attempt to opti-
mise something because in your mind it will “speed things up
a bit”, then it can be considered premature, as it’s not appar-
ent there is anything to optimise.

Let’s be clear here, without the data to show that a game
is running slow, or running out of memory, then all optimisa-
tions are premature. If an application has not been profiled,
but feels slow, sluggish, or erratic, then anything you do can-
not be objectively defined as improving it, and any improve-
ments you attempt to do cannot be anything but premature
optimisations. The only way to stop premature optimisation
is to start with real data. If your application seems slow, and
has been profiled, and what is considered unacceptable is a
clearly defined statement based on data, then anything you
do to improve the solution will not be premature, because it
has been measured, and can be evaluated in terms of failure,
success, or progress.

Given that we think we will need to optimise at some point,
and we know optimising without profiling is not actually op-
timising, the next question becomes clear. When should you
start profiling? When should you start work on your profiling
framework? How much game content is enough to warrant
testing performance? How much of the game’s mechanics
should be in before you start testing them for performance
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spikes?

Consider a different question. Is the performance of your
final product optional? Would you be able to release the game
if you knew it had sections which ran at 5fps on certain hard-
ware? If you answer that it’s probably okay for your game to
run at around 30fps, then that’s a metric, even if it’s quite
imprecise. How do you know your game already isn’t running
at 5fps on one of your target audience’s hardware configura-
tions? If you believe there are lower limits to frame-rate, and
upper limits to your memory usage, if there is an expected
maximum time for a level to load before it’s just assumed to
be stuck, or a strong belief the game should at least not kill
the battery on a phone when it’s running, then you have, in at
least some respect, agreed that performance is not optional.

If performance is not optional, and it requires real work to
optimise, then start asking yourself a different set of ques-
tions. How long can you delay profiling? How much art or
other content can you afford to redo? How many features are
you willing to work on without knowing if they can be included
in the final game? How long can you work without feedback
on whether any of what you have done, can be included in the
final product?

8.2 Feedback

Not knowing you are writing poor performance code doesn’t
just hurt your application. By not having feedback on their
work, developers cannot get better, and myths and techniques
which do not work are reinforced and perpetuated. Daniel
Kahneman, in his book Thinking, Fast and Slow[13], provides
some evidence that you can learn well from immediate reac-
tions, but cannot easily pick up skills when the feedback is
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longer in arriving. In one part, he puts it in terms of psy-
chotherapists being able to acquire strong intuitive skills in
patient interaction, as they are able to observe the patient’s
immediate reactions, but they are less likely to be able to build
strong intuitions for identifying the appropriate treatment for
a patient, as the feedback is not always available, not always
complete, and often delayed. Choosing to work without feed-
back would make no sense, but there is little option for many
game developers, as third party engines offer very little in the
way of feedback mechanisms for those learning or starting out
on their projects. They do not provide mechanisms to apply
budgets to separate aspects of their engines, other than the
coarse grain of CPU, GPU, Physics, render, etc. They provide
lots of tools to help fix performance when it has been iden-
tified as an issue, but can often provide feedback which is
incomplete, or inaccurate to the final form of the product, as
built-in profiling tools are not always available in fully opti-
mised publishing ready builds.

You must get feedback on what is going on, as otherwise
there is a risk the optimisations you will need to do will con-
sume any polish time you have. Make sure your feedback is
complete and immediate where possible. Adding metrics on
the status of the performance of your game will help with this.
Instant feedback on success or failure of optimisations helps
mitigate the sunk cost fallacy that can intrude on rational dis-
course about a direction taken. If a developer has a belief in
a way of doing things, but it’s not helping, then it’s better to
know sooner rather than later. Even the most entrenched in
their ways are more approachable with raw data, as curios-
ity is a good tonic for a developer with a wounded ego. If you
haven’t invested a lot of time and effort into an approach, then
the feedback is even easier to integrate, as you’re going to be
more willing to throw the work away and figure out how to do
it differently.
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You also need to get the feedback about the right thing. If
you find you’ve been optimising your game for a silky smooth
frame rate and you think you have an average frame rate of
60fps, and yet your customers and testers keep coming back
with comments about nasty frame spikes and dropout, then
it could be that you’re not profiling the right thing, or not
profiling the right way. Sometimes it can be that you have to
profile a game while it is being played. Sometimes it can be as
simple as remembering to profile frame times on a per frame
basis, not just an average.

Profiling doesn’t have to be about frame rate. A frame
isn’t a slow thing, something in that frame was slow. An old-
fashioned, but powerful way to develop software, is to provide
budgets to systems and departments. We’re not talking about
financial budgets here, but instead time, memory, bandwidth,
disk space, or other limits which affect the final product di-
rectly. If you give your frame a budget of 16ms, and you don’t
go over, you have a 60fps game, no ifs, no buts. If you decide
you want to maintain good level load times, and set yourself
a budget of 4 seconds to load level data, then as long as you
don’t go over, no one is going to complain about your load
times.

Beyond games, if you have a web-based retail site, you
might want to be aware of latency, as it has an effect on your
users. It was revealed in a presentation in 2008 by Greg Lin-
den that for every additional 100ms of latency, Amazon would
experience a loss of 1% in sales. It was also revealed that
Google had statistics showing a 20% drop in site traffic was
experienced when they added just half a second of latency
to page generation. Most scarily of all was a comment from
TABB group in 2008, where they mention company wrecking
levels of costs.

TABB Group estimates that if a broker’s electronic
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trading platform is 5 milliseconds behind the com-
petition, it could lose at least 1% of its flow; that’s
$4 million in revenues per millisecond. Up to 10
milliseconds of latency could result in a 10% drop
in revenues. From there it gets worse. If a broker is
100 milliseconds slower than the fastest broker, it
may as well shut down its FIX engine and become
a floor broker.

1

If latency, throughput, frame times, memory usage, or an-
other resource is your limit, then budget for it. What would
cripple your business? Are you measuring it? How long can
you go without checking that you’re not already out of busi-
ness?

8.2.1 Know your limits

Building budgets into how you work means, you can set re-
alistic budgets for systems early and have them work at a
certain level throughout development knowing they will not
cause grief later in development. On a project without bud-
gets, frame spikes may only become apparent near release
dates as it is only then that all systems are coming together
to create the final product. A system which was assumed to
be quite cheap, could cause frame spikes in the final prod-
uct, without any evidence being previously apparent. When
you finally find out which system causes the spikes, it may be
that it was caused by a change from a very long time ago, but
as resources were plentiful in the early times of development
on the project, the spikes caused by the system would have

1From THE VALUE OF A MILLISECOND: FINDING THE OPTIMAL SPEED OF
A TRADING INFRASTRUCTURE by Viraf (Willy) Reporter
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gone completely unnoticed, flying under the radar. If you give
your systems budgets, violations can be recorded and raised
as issues immediately. If you do this, then problems can be
caught at the moment they are created, and the cause is usu-
ally within easy reach.

Build or get yourself a profiler that runs all the time. En-
sure your profiler can report the overall state of the game
when the frame time goes over budget. It’s highly benefi-
cial to make it respond to any single system going over bud-
get. Sometimes you need the data from a number of frames
around when a violation occurred to really figure out what is
going on. If you have AI in your game, consider running con-
tinuous testing to capture performance issues as fast as your
build machine churns out testable builds. In all cases, un-
less you’re letting real testers run your profiler, you’re never
going to get real world profiling data. If real testers are going
to be using your profiling system, it’s worth considering how
you gather data from it. If it’s possible for you, see if you can
get automatically generated profile data sent back to an an-
alytics or metrics server, to capture issues without requiring
user intervention.

8.3 A strategy for optimisation

You can’t just open up an editor and start optimising. You
need a strategy. In this section, we walk through just one such
strategy. The steps have parallels in industries outside game
development, where large companies such as Toyota optimise
as part of their business model. Toyota has refined their tech-
niques for ensuring maximum performance and growth, and
the Toyota Production System has been the driving idea be-
hind the Lean manufacturing method for the reduction of
waste. There are other techniques available, but this subset
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of steps shares much with many of them.

8.3.1 Define the problem

Define your problem. Find out what it is you think is bad.
Define it in terms of what is factual, and what is assumed to
be a final good solution. This can be as simple as saying the
problem is that the game is running at 25fps, and you need
it to be at 30fps. Stick to clear, objective language.

It’s important to not include any guesses in this step, so
statements which include ideas on what or how to optimise
should be prohibited. Consider writing it from the point of
view of someone using the application, not from the perspec-
tive of the developer. This is sometimes called quality criteria,
or customer requirements.

8.3.2 Measure

Measure what you need to measure. Unlike measuring ran-
domly, targeted measuring is better for figuring out what is
actually going on, as you are less likely to find a pattern in
irrelevant data. P-hacking or data dredging can lead you to
false convictions about causes of problems.

At this stage, you also need to get an idea of the quality of
your measurements. Run your tests, but then run them again
to make sure they’re reproducible. If you can’t reproduce the
same results before you have made changes, then how are
you going to be sure the changes you have made, have had
any effect?
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8.3.3 Analyse

The first step in most informal optimisation strategies: the
guessing phase. This is when you come up with ideas about
what could be the problem and suggest different ways to
tackle the problem. In the informal optimisation process, you
pick the idea which seems best, or at least the most fun to
implement.

In this more formal strategy, we analyse what we have mea-
sured. Sometimes it’s apparent from this step that the mea-
surements didn’t provide enough direction to come up with
a good optimisation plan. If your analysis proves you don’t
have good data, the next step should be to rectify your abil-
ity to capture useful data. Don’t tackle optimisation without
understanding the cost associated with failing to understand
the problem.

This is also the stage to make predictions. Estimate the
expected impact of an improvement you plan to make. Don’t
just lightly guess, have a really good go at guessing with some
number crunching. You won’t be able to do it after the imple-
mentation, as you will have too much knowledge to make an
honest guess. You will be suffering what some call the curse
of knowledge. By doing this, you can learn about how good
you are at estimating the impact of your optimisations, but
also, you can get an idea of the relative impact of your change
before you begin work.

8.3.4 Implement

The second step in most informal optimisation strategies; the
implementation phase. This is when you make the changes
you think will fix the problem.
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If possible, do an experimental implementation of the op-
timisation to your solution. A program is a solution to a prob-
lem, it is a strategy to solve a data transform, and you should
remember that when designing your experiment.

Before you consider the local version to be working, and in-
deed, worth working on, you must prove it’s useful. Check the
measurements you get from the localised experiment are in
line with your expectations as measured from the integrated
version.

If your optimisation is going to be perfect first time, then
the experimental implementation will only be used as a proof
that the process can be repeated and can be applicable in
other circumstances. It will only really be useful as a teaching
tool for others, in helping them understand the costs of the
original process and the expected improvement under similar
constraints.

If you are not sure the optimisation will work out first time,
then the time saved by not doing a full implementation can be
beneficial, as a localised experiment can be worked on faster.
It can also be a good place to start when trying to build an
example for third parties to provide support, as a smaller ex-
ample of the problem will be easier to communicate through.

8.3.5 Confirm

This step is critical in more ways than expected. Some may
think it an optional step, but it is essential for retaining the
valuable information you will have generated while doing the
optimisation.

Create a report of what you have done, and what you have
found. The benefits of doing this are twofold. First, you have
the benefit of sharing knowledge of a technique for optimisa-
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tion, which clearly can help others hitting the same kind of
issue. The second is that creating the report can identify any
errors of measurement, or any steps which can be tested to
ensure they were actually pertinent to the final changes com-
mitted.

In a report, others can point out any illogical leaps of rea-
soning, which can lead to even better understanding and can
also help deny any false assumptions from building up in your
understanding of how the machine really works. Writing a re-
port can be a powerful experience that will give you valuable
mental building blocks and the ability to better explain what
happens under certain conditions.

8.3.6 Summary

Above all things, keep track. If you can, do your optimisa-
tion work in isolation of a working test bed. Make sure your
timings are reproducible even if you have to get up to date
with the rest of the project due to having to work on a bug or
feature. Making sure you keep track of what you are doing
with notes can help you understand what was in your head
when you made earlier changes, and what you might not have
thought about.

It is important to keep trying to improve your ability to see;
to observe. You cannot make measurable progress if you can-
not measure, and you cannot tell you have made an improve-
ment without tools for identifying the improvement. Improve
your tools for measuring when you can. Look for ways to look.
Whenever you find that there was no way to know with the
tools you had available, either find the tools you need or if
you can’t find them, attempt to make them yourself. If you
cannot make them yourself, petition others, or commission
someone else to create them. Don’t give in to hopeful optimi-
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sations, because they will teach you bad habits and you will
learn false facts from random chance proving you right.

8.4 Tables

To keep things simple, advice from multiple sources indicate
that keeping your data as vectors has a lot of positive ben-
efits. There are some reasons to use something other than
the STL, but learn its quirks, and you can avoid a lot of the
issues. Whether you use std::vector, or roll your own dynam-
ically sized array, it is a good starting place for any future op-
timisations. Most of the processing you will do will be reading
an array, transforming one array into another, or modifying a
table in place. In all these cases, a simple array will suffice
for most tasks.

Moving to arrays is good, moving to structure-of-arrays can
be better. Not always. It’s very much worth considering the
access patterns for your data. If you can’t consider the access
patterns, and change is costly, choose based on some other
criteria, such as readability.

Another reason to move away from arrays of objects, or ar-
rays of structures, is to keep the memory accesses specific
to their tasks. When thinking about how to structure your
data, it’s important to think about what data will be loaded
and what data will be stored. CPUs are optimised for certain
patterns of memory activity. Many CPUs have a cost associ-
ated with changing from read operations to write operations.
To help the CPU not have to transition between read and write,
it can be beneficial to arrange writing to memory in a very pre-
dictable and serial manner. An example of hot cold separation
that doesn’t take into account the importance of writing can
be seen in the example code in listing 8.1 that attempts to up-
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1 struct PosInfo

2 {

3 vec3 pos;

4 vec3 velocity;

5 PosInfo ():

6 pos (1.0f, 2.0f, 3.0f),

7 velocity (4.0f, 5.0f, 6.0f)

8 {}

9 };

10

11 struct nodes

12 {

13 std::vector <PosInfo > posInfos;

14 std::vector <vec3 > colors;

15 std::vector <LifetimeInfo > lifetimeInfos;

16 } nodesystem;

17

18 // ...

19

20 for (size_t times = 0; times < trialCount; times ++)

21 {

22 std::vector <PosInfo >& posInfos = nodesystem.posInfos;

23 for (size_t i = 0; i < node_count; ++i)

24 {

25 posInfos[i].pos += posInfos[i]. velocity * deltaTime;

26 }

27 }

Listing 8.1: Mixing hot reads with hot and cold writes

date values which are used both for read and write, but are
close neighbours of data which is only used for reading.

The code in listing 8.2 shows a significant performance
improvement.

For the benefit of your cache, structs of arrays can be more
cache-friendly if the data is not strongly related both for read-
ing and writing. It’s important to remember this is only true
when the data is not always accessed as a unit, as one ad-
vocate of the data-oriented design movement assumed that
structures of arrays were intrinsically cache-friendly, then
put the x,y, and z coordinates in separate arrays of floats. It is
possible to benefit from having each element in its own array
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1 struct nodes

2 {

3 std::vector <vec3 > positions;

4 std::vector <vec3 > velocities;

5 std::vector <vec3 > colors;

6 std::vector <LifetimeInfo > lifetimeInfos;

7 };

8 // ...

9 nodes nodesystem;

10 // ...

11 for (size_t times = 0; times < trialCount; times ++)

12 {

13 for (size_t i = 0; i < node_count; ++i)

14 {

15 nodesystem.positions[i] += nodesystem.velocities[i] *

deltaTime;

16 }

17 }

Listing 8.2: Ensuring each stream is continuous

when you utilise SIMD operations on larger lists. However, if
you need to access the x,y, or z of an element in an array, then
you more than likely need to access the other two axes as well.
This means that for every element you will be loading three
cache lines of float data, not one. If the operation involves a
lot of other values, then this may overfill the cache. This is
why it is important to think about where the data is coming
from, how it is related, and how it will be used. Data-oriented
design is not just a set of simple rules to convert from one
style to another. Learn to see the connections between data.
In this case, we see that in some circumstances, it’s better to
keep your vector as three or four floats if it’s not commonly
used as a value in an operation that will be optimised with
SIMD instructions.

There are other reasons why you might prefer to not store
data in trivial SoA format, such as if the data is commonly
subject to insertions and deletions. Keeping free lists around
to stop deletions from mutating the arrays can help alleviate
the pressure, but being unable to guarantee every element
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1 ProcessJoin( Func functionToCall ) {

2 TableIterator A = t1Table.begin();

3 TableIterator B = t2Table.begin();

4 TableIterator C = t3Table.begin();

5 while( !A.finished && !B.finished && !C.finished ) {

6 if( A == B && B == C ) {

7 functionToCall( A, B, C );

8 ++A; ++B; ++C;

9 } else {

10 if( A < B || A < C ) ++A;

11 if( B < A || B < C ) ++B;

12 if( C < A || C < B ) ++C;

13 }

14 }

15 }

Listing 8.3: Zipping together multiple tables by merging

requires processing moves away from simple homogeneous
transformations which are often the point of such data lay-
out changes.

If you use dynamic arrays, and you need to delete elements
from them, and these tables refer to each other through some
IDs, then you may need a way to splice the tables together in
order to process them as you may want to keep them sorted
to assist with zipping operations. If the tables are sorted by
the same value, then it can be written out as a simple merge
operation, such as in listing 8.3.

This works as long as the == operator knows about the ta-
ble types and can find the specific column to check against,
and as long as the tables are sorted based on this same col-
umn. But what about the case where the tables are zipped
together without being the sorted by the same columns? For
example, if you have a lot of entities which refer to a mod-
elID, and you have a lot of mesh-texture combinations which
refer to the same modelID, then you will likely need to zip to-
gether the matching rows for the orientation of the entity, the
modelID in the entity render data, and the mesh and texture
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1 ProcessJoin( Func functionToCall ) {

2 for( auto A : orientationTable ) {

3 for( auto B : entityRenderableTable ) {

4 if( A == B ) {

5 for( auto C : meshAndTextureTable ) {

6 if( A == C ) {

7 functionToCall( A, B, C );

8 }

9 }

10 }

11 }

12 }

13 }

Listing 8.4: Join by looping through all tables

combinations in the models. The simplest way to program a
solution to this is to loop through each table in turn looking
for matches such as in Listing 8.4. This solution, though sim-
ple to write, is incredibly inefficient, and should be avoided
where possible. But as with all things, there are exceptions.
In some situations, very small tables might be more efficient
this way, as they will remain resident, and sorting them could
cost more time.

Another thing you have to learn about when working with
data which is joined on different columns is the use of join
strategies. In databases, a join strategy is used to reduce
the total number of operations when querying across multiple
tables. When joining tables on a column (or key made up of
multiple columns), you have a number of choices about how
you approach the problem. In our trivial coded attempt, you
can see we simply iterate over the whole table for each table
involved in the join, which ends up being O(nmo) or O(n3)for
roughly same size tables. This is no good for large tables, but
for small ones it’s fine. You have to know your data to decide
whether your tables are big2 or not. If your tables are too big

2dependent on the target hardware, how many rows and columns, and
whether you want the process to run without trashing too much cache
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to use such a trivial join, then you will need an alternative
strategy.

You can join by iteration, or you can join by lookup3, or you
can even join once and keep a join cache around. Keeping the
join cache around makes it appear as if you can operate on
the tables as if they are sorted in multiple ways at the same
time.

It’s perfectly feasible to add auxiliary data which will allow
for traversal of a table in a different order. We add join caches
in the same way databases allow for any number of indexes
into a table. Each index is created and kept up to date as the
table is modified. In our case, we implement each index the
way we need to. Maybe some tables are written to in bursts,
and an insertion sort would be slow, it might be better to sort
on first read, or trash the whole index on modify. In other
cases, the sorting might be better done on write, as the writes
are infrequent, or always interleaved with many reads.

8.5 Transforms

Taking the concept of schemas a step further, a static schema
definition can allow for a different approach to iterators. In-
stead of iterating over a container, giving access to an element,
a schema iterator can become an accessor for a set of tables,
meaning the merging work can be done during iteration, gen-
erating a context upon which the transform operates. This
would benefit large, complex merges which do little with the
data, as there would be less memory usage creating tempo-
rary tables. It would not benefit complex transforms as it
would reduce the likelihood that the next set of data is in

3often a lookup join is called a join by hash, but as we know our data, we
can use better row search algorithms than a hash when they are available
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cache ready for the next cycle.

Another aspect of transforms is the separation of what
from how. That is, separating the gathering or loading of data
we will transform from the code which ultimately performs the
operations on the data. In some languages, introducing map
and reduce is part of the basic syllabus, in C++, not so much.
This is probably because lists aren’t part of the base language,
and without that, it’s hard to introduce powerful tools which
require them. These tools, map and reduce, can be the ba-
sis of a purely transform and flow driven program. Turning
a large set of data into a single result sounds eminently se-
rial, however, as long as one of the steps, the reduce step, is
associative, then you can reduce in parallel for a significant
portion of the reduction.

A simple reduce, one made to create a final total from a
mapping which produces values of zero or one for all match-
ing elements, can be processed as a less and less parallel tree
of reductions. In the first step, all reductions produce the total
of all odd-even pairs of elements and produce a new list which
goes through the same process. This list reduction continues
until there is only one item left remaining. Of course, this
particular reduction is of very little use, as each reduction is
so trivial, you’d be better off assigning an nthof the workload
to each of the n cores and doing one final summing. A more
complex, but equally useful reduction would be the concate-
nation of a chain of matrices. Matrices are associative even
if they are not commutative, and as such, the chain can be
reduced in parallel the same way building the total worked.
By maintaining the order during reduction you can apply par-
allel processing to many things which would normally seem
serial, so long as they are associative in the reduce step. Not
only matrix concatenation, but also products of floating point
values such as colour modulation by multiple causes such
as light, diffuse, or gameplay related tinting. Building text
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strings can be associative, as can be building lists.

8.6 Spatial sets for collisions

In collision detection, there is often a broad-phase step which
can massively reduce the number of potential collisions we
check against. When ray casting, it’s often useful to find
the potential intersection via an octree, BSP, or other spatial
query accelerator. When running pathfinding, sometimes it’s
useful to look up local nodes to help choose a starting node
for your journey.

All spatial data-stores accelerate queries by letting them
do less. They are based on some spatial criteria and return a
reduced set which is shorter and thus less expensive to trans-
form into new data.

Existing libraries which support spatial partitioning have
to try to work with arbitrary structures, but because all our
data is already organised by table, writing adaptors for any
possible table layout is made simpler. Writing generic algo-
rithms becomes easier without any of the side effects nor-
mally associated with writing code that is used in multiple
places. Using the table-based approach, because of its in-
tention agnosticism (that is, the spatial system has no idea
it’s being used on data which doesn’t technically belong in
space), we can use spatial partitioning algorithms in unex-
pected places, such as assigning audio channels by not only
their distance from the listener, but also their volume and
importance. Making a 5 dimensional spatial partitioning sys-
tem, or even an n dimensional one, would be an investment.
It would only have to be written once and have unit tests writ-
ten once, before it could be used and trusted to do some very
strange things. Spatially partitioning by the quest progress
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for tasks to do seems a little overkill, but getting the set of
all nearby interesting entities by their location, threat, and
reward, seems like something an AI might consider useful.

8.7 Lazy evaluation for the masses

When optimising object-oriented code, it’s quite common to
find local caches of completed calculations hidden in mutable
member variables. One trick found in most updating hierar-
chies is the dirty bit, the flag that says whether the child or
parent members of a tree have decided this object needs up-
dating. When traversing the hierarchy, this dirty bit causes
branching based on data which has only just loaded, usually
meaning there is no chance to guess the outcome and thus in
most cases, causes memory to be read in preparation, when
it’s not required.

If your calculation is expensive, then you might not want to
go the route that render engines now use. In render engines,
it’s often cheaper to do every scene matrix concatenation ev-
ery frame than it is only doing the ones necessary and figuring
out if they are.

For example, in the Pitfalls of Object-Oriented Program-
ming [14] presentation by Tony Albrecht, in the early slides
he declares that checking a dirty flag is less useful than not
checking it, as when it does fail (the case where the object
is not dirty) the calculation that would have taken 12 cycles
is dwarfed by the cost of a branch misprediction (23-24 cy-
cles). Things always move on, and in the later talk Pitfalls
revisited[15], he notes that the previous improvement gained
through manual devirtualization no longer provides any ben-
efit. Whether it was the improvements in the compiler or the
change in hardware, reality will always trump experience.
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If your calculation is expensive, you don’t want to bog down
the game with a large number of checks to see if the value
needs updating. This is the point at which existence-based-
processing comes into its own again as existence in the dirty
table implies it needs updating, and as a dirty element is up-
dated it can be pushing new dirty elements onto the end of
the table, even prefetching if it can improve bandwidth.

8.8 Necessity, or not getting what you
didn’t ask for

When you normalise your data you reduce the chance of an-
other multifaceted problem of object-oriented development.
C++’s implementation of objects forces unrelated data to
share cache lines.

Objects collect their data by the class, but many objects, by
design, contain more than one role’s worth of data. This is be-
cause object-oriented development doesn’t naturally allow for
objects to be recomposed based on their role in a transaction,
and also because C++ needed to provide a method by which
you could have object-oriented programming while keeping
the system level memory allocations overloadable in a simple
way. Most classes contain more than just the bare minimum,
either because of inheritance or because of the many contexts
in which an object can play a part. Unless you have very care-
fully laid out a class, many operations which require only a
small amount of information from the class will load a lot of
unnecessary data into the cache in order to do so. Only us-
ing a very small amount of the loaded data is one of the most
common sins of the object-oriented programmer.

Every virtual call loads in the cache line that contains the
virtual-table pointer of the instance. If the function doesn’t
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use any of the class’s early data, then that will be cache line
utilisation in the region of only 4%. That’s a memory through-
put waste, and cannot be recovered without rethinking how
you dispatch your functions. Adding a final keyword to your
class can help when your class calls into its own virtual func-
tions, but cannot help when they are called via a base type.

In practice, only after the function has loaded, can the
CPU load the data it wants to work on, which can be scattered
across the memory allocated for the class too. It won’t know
what data it needs until it has decoded the instructions from
the function pointed to by the virtual table entry.

8.9 Varying length sets

Throughout the techniques so far, there’s been an implied ta-
ble structure to the data. Each row is a struct, or each table is
a row of columns of data, depending on the need of the trans-
forms. When working with stream processing, for example,
with shaders, we would normally use fixed size buffers. Most
work done with stream processing has this same limitation,
we tend to have a fixed number of elements for both sides.

For filtering where the input is known to be a superset of
the output, there can be a strong case for an annealing struc-
ture. Outputting to multiple separate vectors, and concate-
nating them in a final reduce. Each transform thread has its
own output vector, the reduce step would first generate a total
and a start position for each reduce entry and then processes
the list of reduces onto the final contiguous memory. A paral-
lel prefix sum would work well here, but simple linear passes
would suffice.

If the filtering was a stage in a radix sort, counting sort,
or something which uses a similar histogram for generating
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offsets, then a parallel prefix sum would reduce the latency
to generate the offsets. A prefix sum is the running total of a
list of values. The radix sort output histogram is a great ex-
ample because the bucket counts indicate the starting points
through the sum of all histogram buckets that come prior.
on =

∑n−1
i=0 bi. This is easy to generate in serial form, but in

parallel, we have to consider the minimum required opera-
tions to produce the final result. In this case, we can remem-
ber that the longest chain will be the value of the last offset,
which is a sum of all the elements. This is normally optimised
by summing in a binary tree fashion. Dividing and conquer-
ing: first summing all odd numbered slots with all even num-
bered slots, then doing the same, but for only the outputs of
the previous stage.
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Then once you have the last element, backfill all the other
elements you didn’t finish on your way to making the last el-
ement. When you come to write this in code, you will find
these backfilled values can be done in parallel while making
the longest chain. They have no dependency on the final value
so can be given over to another process, or managed by some
clever use of SIMD.

a

��

ab

�� !!

c

��

abcd

��
a ab abc abcd



8.9. VARYING LENGTH SETS 167

Parallel prefix sums provide a way to reduce latency, but
are not a general solution which is better than doing a lin-
ear prefix sum. A linear prefix sum uses far fewer machine
resources to do the same thing, so if you can handle the la-
tency, then simplify your code and do the sum linearly.

Also, for cases where the entity count can rise and fall,
you need a way of adding and deleting without causing any
hiccups. For this, if you intend to transform your data in
place, you need to handle the case where one thread can be
reading and using the data you’re deleting. To do this in a
system where objects’ existence was based on their memory
being allocated, it would be very hard to delete objects that
were being referenced by other transforms. You could use
smart pointers, but in a multi-threaded environment, smart
pointers cost a mutex to be thread safe for every reference and
dereference. This is a high cost to pay, so how do we avoid it?
There are at least two ways.

Don’t have a mutex. One way to avoid the mutex is to use
a smart pointer type which is bound to a single thread. In
some game engines, there are smart pointer types that in-
stead of keeping a mutex, store an identifier for the thread
they belong to. This is so they can assert every access is
made by the same thread. For performance considerations,
this data doesn’t need to be present in release builds, as the
checks are done to protect against misuse at runtime caused
by decisions made at compile time. For example, if you know
the data should not be used outside of the audio subsystem,
and the audio subsystem is running on a single thread of its
own, lock it down and tie the memory allocation to the audio
thread. Any time the audio system memory is accessed out-
side of the audio thread, it’s either because the audio system
is exposing memory to the outside systems or it’s doing more
work than it should in any callback functions. In either case,
the assert will catch the bad behaviour, and fixes can be made
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to the code to counter the general issue, not the specific case.

Don’t delete. If you are deleting in a system that is con-
stantly changing, then you would normally use pools anyway.
By explicitly not deleting, by doing something else instead,
you change the way all code accesses data. You change
what the data represents. If you need an entity to exist,
such as a CarDriverAI, then it can stack up on your table of
CarDriverAIs while it’s in use, but the moment it’s not in use,
it won’t get deleted, but instead marked as not used. This is
not the same as deleting, because you’re saying the entity is
still valid, won’t crash your transform, but it can be skipped
as if it were not there until you get around to overwriting
it with the latest request for a CarDriverAI. Keeping dead
entities around can be as cheap as keeping pools for your
components, as long as there are only a few dead entities in
your tables.

8.10 Joins as intersections

Sometimes, normalisation can mean you need to join tables
together to create the right situation for a query. Unlike
RDBMS queries, we can organise our queries much more
carefully and use the algorithm from merge sort to help us
zip together two tables. As an alternative, we don’t have to
output to a table, it could be a pass-through transform which
takes more than one table and generates a new stream into
another transform. For example, per entityRenderable, join
with entityPosition by entityID, to transform with AddRender-
Call( Renderable, Position ).
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8.11 Data-driven techniques

Apart from finite state machines, there are some other com-
mon forms of data-driven coding practices. Some are not very
obvious, such as callbacks. Some are very obvious, such as
scripting. In both these cases, data causing the flow of code to
change will cause the same kind of cache and pipeline prob-
lems as seen in virtual calls and finite state machines.

Callbacks can be made safer by using triggers from event
subscription tables. Rather than have a callback which fires
off when a job is done, have an event table for done jobs so
callbacks can be called once the whole run is finished. For ex-
ample, if a scoring system has a callback from “badGuyDies”,
then in an object-oriented message watcher you would have
the scorer increment its internal score whenever it received
the message that a badGuyDies. Instead, run each of the
callbacks in the callback table once the whole set of badGuys
has been checked for death. If you do that and execute every
time all the badGuys have had their tick, then you can add
points once for all badGuys killed. That means one read for
the internal state, and one write. Much better than multiple
reads and writes accumulating a final score.

For scripting, if you have scripts which run over multi-
ple entities, consider how the graphics kernels operate with
branches, sometimes using predication and doing both sides
of a branch before selecting a solution. This would allow you
to reduce the number of branches caused merely by interpret-
ing the script on demand. If you go one step further an actu-
ally build SIMD into the scripting core, then you might find
you can use scripts for a very large number of entities com-
pared to traditional per entity serial scripting. If your SIMD
operations operate over the whole collection of entities, then
you will pay almost no price for script interpretation4.

4Take a look at the section headed The Massively Vectorized Virtual Ma-
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8.11.1 SIMD

SIMD operations can be very beneficial as long as you have a
decent chunk of work to do, such as making an operation that
handles updating positions of particles (see listing 8.5). This
example of SIMDifying some code is straightforward, and in
tests ran about four times faster than both the array of structs
code and the naı̈ve struct of arrays code.

In many optimising compilers, simple vectorisation is car-
ried out by default, but only as far as the compiler can figure
things out. It’s not often very easy to figure these things out.

SIMD operations on machines which support SSE, allow
you to get more data into the CPU in one go. Many people
started out by putting their 3D vectors into SIMD units, but
that doesn’t allow full utilisation of the SIMD pipeline. The ex-
ample loads in four different particles at the same time, and
updates them all at the same time too. This very simple tech-
nique also means you don’t have to do anything clever with
the data layout, as you can just use a naı̈ve struct of arrays
to prepare for SIMDification once you find it has become a
bottleneck.

8.12 Structs of arrays

In addition to all the other benefits of keeping your runtime
data in a database style format, there is the opportunity to
take advantage of structures of arrays rather than arrays of
structures. SoA has been coined as a term to describe an ac-
cess pattern for object data. It is okay to keep hot and cold
data side by side in an SoA object as data is pulled into the

chine on the BitSquid blog http://bitsquid.blogspot.co.uk/2012/10/a-data-
oriented-data-driven-system-for.html

http://bitsquid.blogspot.co.uk/2012/10/a-data-oriented-data-driven-system-for.html
http://bitsquid.blogspot.co.uk/2012/10/a-data-oriented-data-driven-system-for.html
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1 void SimpleUpdateParticles( particle_buffer *pb, float delta_time

) {

2 float g = pb->gravity;

3 float gd2 = g * delta_time * delta_time * 0.5f;

4 float gd = g * delta_time;

5 for( int i = 0; i < NUM_PARTICLES; ++i ) {

6 pb ->posx[i] += pb->vx[i] * delta_time;

7 pb ->posy[i] += pb->vy[i] * delta_time + gd2;

8 pb ->posz[i] += pb->vz[i] * delta_time;

9 pb ->vy[i] += gd;

10 }

11 }

12

13 void SIMD_SSE_UpdateParticles( particle_buffer *pb, float

delta_time ) {

14 float g = pb->gravity;

15 float f_gd = g * delta_time;

16 float f_gd2 = pb->gravity * delta_time * delta_time * 0.5f;

17

18 __m128 mmd = _mm_setr_ps( delta_time , delta_time , delta_time ,

delta_time );

19 __m128 mmgd = _mm_load1_ps( &f_gd );

20 __m128 mmgd2 = _mm_load1_ps( &f_gd2 );

21

22 __m128 *px = (__m128 *)pb->posx;

23 __m128 *py = (__m128 *)pb->posx;

24 __m128 *pz = (__m128 *)pb->posz;

25 __m128 *vx = (__m128 *)pb->vx;

26 __m128 *vy = (__m128 *)pb->vy;

27 __m128 *vz = (__m128 *)pb->vz;

28

29 int iterationCount = NUM_PARTICLES / 4;

30 for( int i = 0; i < iterationCount; ++i ) {

31 __m128 dx = _mm_mul_ps(vx[i], mmd );

32 __m128 dy = _mm_add_ps( _mm_mul_ps(vy[i], mmd ), mmgd2 );

33 __m128 dz = _mm_mul_ps(vz[i], mmd );

34 __m128 newx = _mm_add_ps(px[i], dx);

35 __m128 newy = _mm_add_ps(py[i], dy);

36 __m128 newz = _mm_add_ps(pz[i], dz);

37 __m128 newvy = _mm_add_ps(vy[i], mmgd);

38 _mm_store_ps (( float*)(px+i), newx);

39 _mm_store_ps (( float*)(py+i), newy);

40 _mm_store_ps (( float*)(pz+i), newz);

41 _mm_store_ps (( float*)(vy+i), newvy);

42 }

43 }

Listing 8.5: Simple particle update with SIMD
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cache by necessity rather than by accidental physical loca-
tion.

If your animation timekey/value class resembles this:
1 struct Keyframe

2 {

3 float time , x,y,z;

4 };

5 struct Stream

6 {

7 Keyframe *keyframes;

8 int numKeys;

9 };

Listing 8.6: animation timekey/value class

then when you iterate over a large collection of them, all
the data has to be pulled into the cache at once. If we assume
that a cache line is 64 bytes, and the size of floats is 4 bytes,
the Keyframe struct is 16 bytes. This means that every time
you look up a key time, you accidentally pull in four keys and
all the associated keyframe data. If you are doing a binary
search of a 128 key stream, it could mean you end up loading
64 bytes of data and only using 4 bytes of it in up to 5 of the
steps. If you change the data layout so the searching takes
place in one array, and the data is stored separately, then you
get structures that look like this:

1 struct KeyData

2 {

3 float x,y,z;

4 // consider padding out to 16 bytes long

5 };

6 struct stream

7 {

8 float *times;

9 KeyData *values;

10 numKeys;

11 };

Listing 8.7: struct of arrays

Doing this means that for a 128 key stream, the key times
only take up 8 cache lines in total, and a binary search is go-
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ing to pull in at most three of them, and the data lookup is
guaranteed to only require one, or two at most if your data
straddles two cache lines due to choosing memory space effi-
ciency over performance.

Database technology was here first. In DBMS terms, it’s
called column-oriented databases and they provide better
throughput for data processing over traditional row-oriented
relational databases simply because irrelevant data is not
loaded when doing column aggregations or filtering. There
are other features that make column-store databases more
efficient, such as allowing them to collect many keys under
one value instead of having a key value 1:1 mapping, but
database advances are always being made, and it’s worth
hunting down current literature to see what else might be
worth migrating to your codebase.
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Chapter 9

Helping the compiler

Compilers are rather good at optimising code, but there are
ways in which we code that make things harder. There are
tricks we use that break assumptions the compiler can make.
In this section, we will look at some of the things we do that
we should try not to, and we look at how to introduce some
habits that will make it easier for the compiler to do what we
mean, not what we say.

9.1 Reducing order dependence

If the compiler is unable to deduce that the order of opera-
tions is not important to you, then it won’t be able to do work
ahead of schedule. When composing the translated code into
intermediate representation form, there’s a quality some com-
pilers use called static single assignment form, or SSA. The
idea is that you never modify variables once they are initially
assigned, and instead create new ones when a modification
becomes required. Although you cannot actually use this in

175
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loops, as any operations which carry through would require
the assigned value to change, you can get close to it, and in do-
ing so, you can help the compiler understand what you mean
when you are modifying and assigning values. Skimming the
available features and tutorials in languages such as Haskell,
Erlang, and Single-Assignment C can give you the necessary
hints to write your code in a single assignment manner.

Writing code like this means you will see where the com-
piler has to branch more easily, but also, you can make your
writes more explicit, which means that where a compiler
might have had to break away from writing to memory, you
can force it to write in all cases, making your processing more
homogeneous, and therefore more likely to stream better.

9.2 Reducing memory dependency

Linked lists are expensive due to dependencies, but depen-
dencies of a different sort. Memory being slow, you want to
be able to load it in time for your operations, but when the
address you need to load is itself still being loaded, you can’t
cheat anymore. Pointer driven tree algorithms are slow, not
because of the memory lookups, but because the memory
lookups are chained together.

If you want to make your map or set implementation run
faster, move to a wide node algorithm such as a B-tree, or
B*-tree. Hopefully, at some point soon, the STL will allow
you to chose the method by which std::map and std::set are
implemented.

When you have an entity component system using the
compositional style, and you have a pointer based composi-
tion, then the two layers of pointers to get to the component
is slowing you down. If you have pointers inside those com-
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ponents, you’re just compounding the problem.

Attempt where possible to reduce the number of hops to
get to the data you need. Each hop that depends on previous
data is potentially a stall waiting for main memory.

9.3 Write buffer awareness

When writing, the same issues need to be considered as when
reading. Try to keep things contiguous where possible. Try
to keep modified values separated from read-only values, and
also from write-only values.

In short, write contiguously, in large amounts at a time,
and use all the bytes, not a small part of them. We need to
try to do this, as not only does it help with activation and
deactivation of different memory pages, but also opens up
opportunities for the compiler to optimise.

When you have a cache, sometimes it’s important to find
ways to bypass it. If you know that you won’t be using the data
you’re loading more than once or at least not soon enough to
benefit from caching, then it can be useful to find ways to
avoid polluting the cache. When you write your transforms in
simple ways, it can help the compiler promote your operations
from ones which pollute the cache, to instructions that bypass
the cache completely. These streaming operations benefit the
caches by not evicting randomly accessed memory.

In the article What every programmer should know about
memory[18], Ulrich Drepper talks about many aspects of
memory which are interesting to get the most out of your
computer hardware. In the article, he used the term non-
temporality to describe the kinds of operations we call stream-
ing. These non-temporal memory operations help because
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they bypass the cache completely, which naı̈vely would seem
to be a poor choice, but as the name suggests, streaming data
is not likely to be recalled into registers any time soon, so hav-
ing it available in the cache is pointless, and merely evicts
potentially useful data. Streaming operations, therefore, al-
low you some control over what you consider important to be
in cache, and what is almost certainly not.

9.4 Aliasing

Aliasing is when it’s possible for pointers to reference the same
memory, and therefore require reloading between reads if the
other pointer has been written to. A simple example could
be where the value we’re looking for is specified by reference,
rather than by value, so if any functions that could potentially
affect the memory being referred to by that lookup reference,
then the reference must be re-read before doing a comparison.
The very fact it is a pointer, rather than a value, is what causes
the issue.

A reason to work with data in an immutable way comes in
the form of preparations for optimisation. C++, as a language,
provides a lot of ways for the programmer to shoot themselves
in the foot, and one of the best is that pointers to memory
can cause unexpected side effects when used without cau-
tion. Consider this piece of code:

1 char buffer[ 100 ];

2 buffer [0] = ’X’;

3 memcpy( buffer+1, buffer , 98 );

4 buffer[ 99 ] = ’\0’;

Listing 9.1: byte copying

This is perfectly correct code if you just want to get a string
filled with 99 ’X’s. However, because this is possible, memcpy
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has to copy one byte at a time. To speed up copying, you
normally load in a lot of memory locations at once, then save
them out once they are all in the cache. If your input data can
be modified by writes to your output buffer, then you have to
tread very carefully. Now consider this:

1 int q=10;

2 int p[10];

3 for( int i = 0; i < q; ++i )

4 p[i] = i;

Listing 9.2: trivially parallelisable code

The compiler can figure out that q is unaffected, and can
happily unroll this loop or replace the check against q with a
register value. However, looking at this code instead:

1 void foo( int* p, const int &q )

2 {

3 for( int i = 0; i < q; ++i)

4 p[i] = i;

5 }

6

7 int q=10;

8 int p[10];

9 foo( p, q );

Listing 9.3: potentially aliased int

The compiler cannot tell that q is unaffected by operations
on p, so it has to store p and reload q every time it checks the
end of the loop. This is called aliasing, where the address of
two variables that are in use are not known to be different, so
to ensure functionally correct code, the variables have to be
handled as if they might be at the same address.
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9.5 Return value optimisation

If you want to return multiple values, the normal way is to
return via reference arguments, or by filling out an object
passed by reference. In many cases, return by value can be
very cheap as many compilers can turn it into a non-copy
operation.

When a function attempts to return a structure by con-
structing the value in place during the return, it is allowed to
move the construction straight into the value that will receive
it, without doing a copy at all.

Utilising std::pair or other small temporary structs can
help by making more of your code run on value types, which
are not only inherently easier to reason about, but also easier
to optimise by a compiler.

9.6 Cache line utilisation

It is a truth universally acknowledged that a single memory
request will always read in at least one complete cache line.
That complete cache line will contain multiple bytes of data.
At the time of writing this book, the most common cache line
size seems to have stabilized at 64 bytes. With this informa-
tion, we can speculate about what data will be cheap to access
purely by their location relative to other data.

In Searching (Chapter 6), we utilise this information to de-
cide the location and quantity of data that is available for cre-
ating the rapid lookup table included in the example that uses
a two-layer linear search that turns out to be faster than a bi-
nary search.
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When you have an object you will be loading into memory,
calculate the difference between a cache line and the size of
the object. That difference is how much memory you have left
to place data you can read for free. Use this space to answer
the common questions you have about the class, and you will
often see speedups as there will be no extra memory accesses.

For example, consider a codebase that partially migrated
to components, and still has an entity class which points to
optional rows in component arrays. In this case, we can cache
the fact the entity has elements in those arrays in the latter
part of the entity class as a bitset. This would mean the entity
on entity interactions could save doing a lookup into the ar-
rays if there was no matching row. It can also improve render
performance as the renderer can immediately tell that there is
no damage done, so will just show a full health icon or nothing
at all.

In the example code in listing 16.11 in Chapter 16, an at-
tempt is made to use more of an object’s initial cache line to
answer questions about the rest of the object, and you can
see various levels of success in the results. In the case of
fully caching the result, a massive improvement was gained.
If the result cannot be quickly calculated and needs to be cal-
culated on demand, caching that there was something to do
was a factor of four improvement. Caching the result when
you can, had differing levels of performance improvement,
based on the likelihood of hitting a cached response. In all,
using the extra data you have on your cache line is always an
improvement over simple checking.

i5-4430 @ 3.00GHz

Average 11.31ms [Simple, check the map]

Average 9.62ms [Partially cached query (25%)]

Average 8.77ms [Partially cached presence (50%)]

Average 3.71ms [Simple, cache presence]
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Average 1.51ms [Partially cached query (95%)]

Average 0.30ms [Fully cached query]

So, in summary, keep in mind, every time you load any
memory at all, you are loading in a full cache line of bytes.
Currently, with 64-byte cache lines, that’s a 4x4 matrix of
floats, 8 doubles, 16 ints, a 64 character ASCII string, or 512
bits.

9.7 False sharing

When a CPU core shares no resources with another, it can al-
ways operate at full speed independently, right? Well, some-
times no. Even if the CPU core is working on independent
data, there are times it can get choked up on the cache.

On the opposite side of the same issue as writing linearly,
when you are writing out data to the same cache line, it can
interfere with threading. Due to the advancement of compil-
ers, it seems this happens far less frequently than it should,
and when attempting to reproduce the issue to give ideas on
the effect it can have, only by turning off optimisations is it
possible to witness the effect with trivial examples.

The idea is that multiple threads will want to read from and
write to the same cache line, but not necessarily the same
memory addresses in the cache line. It’s relatively easy to
avoid this by ensuring any rapidly updated variables are kept
local to the thread, whether on the stack or in thread local
storage. Other data, as long as it’s not updated regularly, is
highly unlikely to cause a collision.

There has been a lot of talk about this particular problem,
but the real-world is different from the real-world problems
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1 void FalseSharing () {

2 int sum =0;

3 int aligned_sum_store[NUM_THREADS] __attribute__ (( aligned (64)));

4 #pragma omp parallel num_threads(NUM_THREADS)

5 {

6 int me = omp_get_thread_num ();

7 aligned_sum_store[me] = 0;

8 for (int i = me; i < ELEMENT_COUNT; i += NUM_THREADS ) {

9 aligned_sum_store[me] += CalcValue( i );

10 }

11 #pragma omp atomic

12 sum += aligned_sum_store[me];

13 }

14 }

15

16 void LocalAccumulator () {

17 int sum =0;

18 #pragma omp parallel num_threads(NUM_THREADS)

19 {

20 int me = omp_get_thread_num ();

21 int local_accumulator = 0;

22 for (int i = me; i < ELEMENT_COUNT; i += NUM_THREADS ) {

23 local_accumulator += CalcValue( i );

24 }

25 #pragma omp atomic

26 sum += local_accumulator;

27 }

28 }

Listing 9.4: False sharing

supposed. Always check your problems are real after optimi-
sation, as well as before, as even the high and mighty have
fallen for this as a cause of massive grief.

So, how can you tell if this problem is real or not? If your
multi-threaded code is not growing at a linear rate of pro-
cessing as you add cores, then you might be suffering from
false sharing, look at the where your threads are writing, and
try to remove the writes from shared memory where possible
until the last step. The common example given is of adding
up some arrays and updating the sum value in some global
shared location, such as in listing 9.4.

In the FalseSharing function, the sums are written to as
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a shared resource, and each thread will cause the cache to
clean up and handle that line being dirty for each of the other
cores before they can update their elements in the cache line.
In the second function, LocalAccumulator, each thread sums
up their series before writing out the result.

9.8 Speculative execution awareness

Speculative execution helps as it executes instructions and
prepares data before we arrive at where we might need them,
effectively allowing us to do work before we know we need
it, but sometimes it could have a detrimental effect. For ex-
ample, consider the codebase mentioned previously, that had
partially migrated to components. The bit arrays of which
optional tables it was currently resident could lead, through
speculation, to loading in details about those arrays. With
speculative execution, you will need to watch out for the code
accidentally prefetching data because it was waiting to find
out the result of a comparison. These speculative operations
have been in the news with SPECTRE and MELTDOWN vul-
nerabilities.

These branch prediction caused reads can be reduced by
pre-calculating predicates where possible, storing the result
of doing a common query in your rows is a big win for most
machines and a massive one for machines with poor memory
latency or high CPU bandwidth to memory bandwidth ratios.
Moving to techniques where branch mispredictions cause the
smallest side-effects to the data is a generally good idea. Even
caching only when you can, storing the result back in the
initial section, can save bandwidth over time.

In the cache line utilisation section, the numbers showed
that the possibility of getting data seemed to affect how fast
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the process went, much more than it would be expected,
which leads to a belief that speculative loads of unnecessary
data were potentially harming overall throughput.

Even if all you are able to cache is whether a query will
return a result, it can be beneficial. Avoiding lookups into
complex data structures by keeping data on whether or not
there are entries matching that description can give speed
boosts with very few detrimental side-effects.

9.9 Branch prediction

One of the main causes of stalling in CPUs comes down to not
having any work to do, or having to unravel what they have
already done because they predicted badly. If code is spec-
ulatively executed, and requests memory that is not needed,
then the load has become a wasteful use of memory band-
width. Any work done will be rejected and the correct work
has to be started or continued. To get around this issue, there
are ways to make code branch free, but another way is to un-
derstand the branch prediction mechanism of the CPU and
help it out.

If you make prediction trivial, then the predictor will get it
right most of the time. If you ensure the conditions are con-
sistently true or false in large chunks, the predictor will make
fewer mistakes. A trivial example such as in listing 9.5 will
predict to either do or not do the accumulation, based on the
incoming data. The work being done here can be optimised
away by most compilers using a conditional move instruction
if the CPU supports it. If you make the work done a little
more realistic, then even with full optimisations turned on,
you can see a very large difference1 if you can sort the data

1On an i5-4430 the unsorted sum ran in 4.2ms vs the sorted sum running
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1 int SumBasedOnData () {

2 int sum =0;

3 for (int i = 0; i < ELEMENT_COUNT; i++) {

4 if( a[i] > 128 ) {

5 sum += b[i];

6 }

7 }

8 return sum;

9 }

Listing 9.5: Doing work based on data

so the branches are much more predictable. The other thing
to remember is that if the compiler can help you, let it. The
optimised trivial example is only trivial in comparison to other
common workloads, but if your actual work is trivially opti-
mised into a conditional execution, then sorting your data will
be a waste of effort.

i5-4430 @ 3.00GHz

Average 4.40ms [Random branching]

Average 1.15ms [Sorted branching]

Average 0.80ms [Trivial Random branching]

Average 0.76ms [Trivial Sorted branching]

Branching happens because of data, and remember the
reason why branching is bad is not that jumps are expensive,
but the work being done because of a misprediction will have
to be undone. Because of this, it’s valuable to remember that
a vtable pointer is data too. When you don’t batch update, you
won’t be getting the most out of your branch predictor, but
even if you don’t hit the branch predictor at all, you may still
be committing to sequences of instructions based on data.

in 0.8ms. The trivial version, which was likely mostly compiled into CMOVs,
ran in 0.4ms both sorted and unsorted
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9.10 Don’t get evicted

If you’re working with others, as many are, then perhaps the
simplest solution to a lot of issues with poor cache perfor-
mance has to take into account other areas of the code. If
you’re working on a multi-core machine (you are, unless we
went back in time), then there’s a good chance that all pro-
cesses are sharing and contending for the caches on the ma-
chine. Your code will be evicted from the cache, there is no
doubt. So will your data. To reduce the chance or frequency
of your code and data being evicted, keep both code and data
small and process in bursts when you can.

It’s very simple advice. Not only is small code less likely to
be evicted, but if it’s done in bursts it will have had a chance
to get a reasonable amount of work before being overwritten.
Some cache architectures don’t have any way to tell if the el-
ements in the cache have been used recently, so they rely on
when they were added as a metric for what should be evicted
first. In particular, some Intel CPUs can have their L1 and
L2 cache lines evicted because of L3 needing to evict, but L3
doesn’t have full access to LRU information. The Intel CPUs
in question have some other magic that reduces the likelihood
of this happening, but it does happen.

To that end, try to find ways to guarantee to the compiler
that you are working with aligned data, in arrays that are
multiples of 4 or 8, or 16, so the compiler doesn’t need to
add preambles and postamble code to handle unaligned, or
irregularly sized arrays. It can be better to have 3 more dead
elements in an array and handle it as an array of length N ∗4.
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1 void Amplify( float *a, float mult , int count )

2 {

3 for( int i = 0; i < count; ++i ) {

4 a[i] *= mult;

5 }

6 }

Listing 9.6: Trivial amplification function

1 typedef float f16 __attribute__ (( aligned (16)));

2

3 void Amplify( f16 *a, float mult , int count )

4 {

5 count &= -4;

6 for( int i = 0; i < count; ++i ) {

7 a[i] *= mult;

8 }

9 }

Listing 9.7: Amplification function with alignment hints

9.11 Auto vectorisation

Auto vectorisation will help your applications run faster just
by enabling it and forming your code in such a way that it
is possible for the compiler to make safe assumptions, and
change the instructions from scalar to vector.

There are many trivial examples of things which can be
cleanly vectorised. The first example is found in listing 9.6,
which is simple enough to be vectorised by most compilers
when optimisations are turned on. The issue is that there are
few guarantees with the code, so even though it can be quite
fast to process the data, this code will take up a lot more space
than is necessary in the instruction cache.

If you can add some simple guarantees, such as by using
aligned pointers, and by giving the compiler some guarantees
about the number of elements, then you can cut the size of
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1 typedef float f16 __attribute__ (( aligned (16)));

2

3 void Amplify( f16 *a, float mult , int count )

4 {

5 count &= -4;

6 for( int i = 0; i < count; ++i ) {

7 if( a[i] < 0 )

8 break;

9 a[i] *= mult;

10 }

11 }

Listing 9.8: Breaking out, breaks vectorisation

the emitted assembly, which on a per case basis won’t help,
but over a large codebase, it will increase the effectiveness
of your instruction cache as the number of instructions to
be decoded is slashed. Listing 9.7 isn’t faster in isolated test
beds, but the size of the final executable will be smaller, as
the generated code is less than half the size. This is a problem
with micro-benchmarks, they can’t always show how systems
work together or fight against each other. In real-world tests,
fixing up the alignment of pointers can improve performance
dramatically. In small test beds, memory throughput is nor-
mally the only bottleneck.

A thing to watch out for is making sure the loops are trivial
and always run their course. If a loop has to break based on
data, then it won’t be able to commit to doing all elements of
the processing, and that means it has to do each element at
a time. In listing 9.8 the introduction of a break based on the
data turns the function from a fast parallel SIMD operation
auto-vectorisable loop, into a single stepping loop. Note that
branching in and of itself does not cause a breakdown in vec-
torisation, but the fact the loop is exited based on data. For
example, in listing 9.9, the branch can be turned into other
operations. It’s also the case that calling out to a function can
often break the vectorisation, as side effects cannot normally
be guaranteed. If the function is a constexpr, then there’s a
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1 typedef float f16 __attribute__ (( aligned (16)));

2

3 void Amplify( f16 *a, float mult , int count )

4 {

5 count &= -4;

6 for( int i = 0; i < count; ++i ) {

7 f16 val = a[i] * mult;

8 if( val > 0 )

9 a[i] = val;

10 else

11 a[i] = 0;

12 }

13 }

Listing 9.9: Vectorising an if

much better chance it can be consumed into the body of the
loop, and won’t break vectorisation. On some compilers, there
are certain mathematical functions which are available in a
vectorised form, such as min, abs, sqrt, tan, pow, etc. Find
out what your compiler can vectorise. It can often help to
write your series of operations out longhand to some extent,
as trying to shorten the C++ code, can lead to slight ambi-
guities with what the compiler is allowed to do. One thing to
watch out for in particular is making sure you always write
out. If you only write part of the output stream, then it won’t
be able to write out whole SIMD data types, so write out to
your output variable, even if it means reading it in, just to
write it out again.

Aliasing can also affect auto vectorisation, as when point-
ers can overlap, there could be dependencies between differ-
ent members of the same SIMD register. Consider the listing
9.10, where the first version of the function increments each
member by its direct neighbour. This function is pointless but
serves us as an example. The function will create a pairwise
sum all the way to the end float by float. As such, it cannot
be trivially vectorised. The second function, though equally
pointless, makes large enough steps that auto vectorisation
can find a way to calculate multiple values per step.
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1 void CombineNext( float *a, int count )

2 {

3 for( int i = 0; i < count - 1; ++i ) {

4 a[i] += a[i+1]

5 }

6 }

7

8 void CombineFours( float *a, int count )

9 {

10 for( int i = 0; i < count - 4; ++i ) {

11 a[i] += a[i+4]

12 }

13 }

Listing 9.10: Aliasing affecting vectorisation

Different compilers will manage different amounts of vec-
torisation based on the way you write your code, but in gen-
eral, the simpler you write your code, the more likely the com-
piler will be able to optimise your source.

Over the next decade, compilers will get better and bet-
ter. Clang already attempts to unroll loops far more than
GCC does, and many new ways to detect and optimise sim-
ple code will likely appear. At the time of writing, the online
Compiler Explorer provided by Matt Godbolt2, provides a good
way to see how your code will be compiled into assembly, so
you can see what can and will be vectorised, optimised out,
rearranged, or otherwise mutated into the machine-readable
form. Remember that the number of assembly instructions
is not a good metric for fast code, that SIMD operations are
not inherently faster in all cases, and measuring the code run-
ning cannot be replaced by stroking your chin3 while thinking
about whether the instructions look cool, and you should be
okay.

2https://godbolt.org/
3or even stroking a beard, or biting a pencil (while making a really serious

face), as one reviewer pleaded

https://godbolt.org/
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Chapter 10

Concurrency

Any book on game development practices for contemporary
and future hardware must cover the issues of concurrency.
There will come a time when we have more cores in our com-
puters than we have pixels on screen1, and when that hap-
pens, it would be best if we were already coding for it, in a
style which allows for maximal throughput with the smallest
latency. Thinking about how to solve problems for five, ten
or even one hundred cores isn’t going to keep you safe. You
must think about how your algorithms would work when you
have an infinite number of cores. The real question is, can
you make your code and algorithms work for N cores?

Writing concurrent software is a hard task because most
people think they understand threading and can’t get their
heads around all the different corner cases that are intro-
duced when you share the same memory as another thread.
Fixing these with mutexes and critical sections can become
a minefield of badly written code that works only 99% of the
time. For any real concurrent development we have to stop

1We were getting close, but 4K just moved the goalposts.
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thinking about ownership, and start thinking about our code
transforming data. Every time you get a deadlock or a race
condition in threaded code, it’s because there’s some owner-
ship issue. If you code from a data transform point of view,
then there are some simple ground rules which provide very
stable tools for developing truly concurrent software.

10.1 What it means to be thread-safe

Academics consistently focus on what is possible and correct,
rather than what is practical and usable, which is why we’ve
been inundated with multi-threaded techniques which work,
but cause a lot of unnecessary pain when used in a high-
performance system such as a game. The idea that some-
thing is thread-safe implies more than just its ability to be
used safely in a multi-threaded environment. There are lots
of thread-safe functions which aren’t mentioned because they
seem trivial, but it’s a useful distinction to make when you are
tracking down what could be causing a strange thread issue.
There are functions without side-effects, such as the intrin-
sics for sin, sqrt, which return a value given a value. There is
no way they can cause any other code to change behaviour,
and no other code can change its behaviour either2. In ad-
dition to these very simple functions, there are the simple
functions that change things in an idempotent fashion, such
as memset.

Thread-safe implies it doesn’t just access its own data, but
accesses some shared data without causing the system to en-
ter into an inconsistent state. Inconsistent state is a natu-
ral side effect of multiple processes accessing and writing to
shared memory. It is these side effects which are the cause

2If you discount the possibility of other code changing the floating point
operation mode
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1 int shared = 0;

2 void foo() {

3 int a = shared;

4 a += RunSomeCalculation ();

5 shared = a;

6 }

Listing 10.1: Very leaky shared value

of many bugs in multi-threaded code, which is why the devel-
opers of the Erlang language chose to limit the programmer
to code which doesn’t have side-effects. Any code which relies
on reading from a shared memory before writing back an ad-
justed value can cause inconsistent state as there is no way to
guarantee the writing will take place before anyone else reads
it before they modify it. Listing 10.1 shows a really poor ex-
ample.

Making this work in practice is hard and expensive. The
standard technique used to ensure the state is consistent is to
make the value update atomic. How this is achieved depends
on the hardware and the compiler. Most hardware has an
atomic instruction that can be used to create thread-safety
through mutual exclusions. On most hardware, the atomic
instruction is a compare and swap, or CAS. Building larger
tools for thread-safety from this has been the mainstay of
multi-threaded programmers and operating system develop-
ers for decades, but with the advent of multi-core consoles,
programmers not well versed in the potential pitfalls of multi-
threaded development are suffering because of the learning
cliff involved in making all their code work perfectly over six
or more hardware threads.

Using mutual exclusions, it’s possible to rewrite the first
example. The code in listing 10.2 works a bit better, and will
have fewer cases of unexpected change. This function will
now always finish its task without some other thread damag-
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1 int shared = 0;

2 Mutex sharedMutex;

3 void foo() {

4 sharedMutex.acquire ();

5 int a = shared;

6 a += RunSomeCalculation ();

7 shared = a;

8 sharedMutex.release ();

9 }

Listing 10.2: Safer shared value

1 // directly modifying

2 int RunSomeCalculation () {

3 int val = 4 + ++ shared;

4 }

5

6 // indirectly modifying

7 int foo2() {

8 sharedMutex.acquire ();

9 // oops , the base thread is the same , so reentrant or recursive

lock doesn’t block.

10 shared += 1;

11 sharedMutex.release ();

12 return shared;

13 }

14 int RunSomeCalculation () {

15 int val = foo2() + 9;

16 }

Listing 10.3: Examples of how the mutexes can be
circumvented

ing its data via this same call. Every time one of the hardware
threads encounters this code, it stops all processing until the
mutex is acquired. Once it’s acquired, no other hardware
thread can enter into these instructions until the current
thread releases the mutex at the far end. That is the only
guarantee though, as it could be that RunSomeCalculation

changes shared either directly or indirectly, or something
changes shared without invoking the mutexes. See the exam-
ples in listing 10.3.

Every time a thread-safe function enters a mutex section,
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the whole machine needs to stop to do just one thing, that is,
it needs to make sure it’s allowed into that section of code by
some atomic operation. At the time of writing, a mutex takes
around 4 times as long as reading from L2 cache3. Every time
you use a mutex, you make the code thread-safe by making
it serial. Every time you use a mutex, to some extent, you
make your code run badly on infinite core machines. If you
frequently hit mutexes and stall, you’re making it even worse.
If nothing else, remember that by definition, a mutex is itself
shared state.

Thread-safe, therefore, is another way of saying: not con-
current, but won’t break anything. Concurrency is when mul-
tiple threads are doing their thing without any mutex calls,
semaphores, or other locking techniques which help main-
tain consistency by serialising tasks. Concurrent means at
the same time. A lot of the problems solved by academics us-
ing thread-safety to develop their multi-threaded applications
needn’t be mutex bound. There are many ways to skin a cat,
and many ways to avoid a mutex. Mutexes are only necessary
when more than one thread shares write privileges on a piece
of memory. If you can redesign your algorithms so they only
ever require one thread to be given write privilege, then you
can work towards a fully concurrent system.

Ownership is key to developing most concurrent algo-
rithms. Concurrency only happens when the code cannot be
in a bad state, not because it checks before doing work, but
because the design is such that no process can interfere with
another in any way.

3You can see the figures on latency in Latency Numbers Every Programmer
Should Know [16]
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10.2 Inherently concurrent operations

When working with tables of data, many operations are in-
herently concurrent. Transforms which take one table and
generate the next step, such as those of physics systems or
AI state such as finite state machines, are inherently concur-
rent. You could provide a core per row/element and there
would be no issues at all. Setting up the local bone trans-
forms from a skeletal animation data stream, ticking timers,
producing condition values for later use in condition tables.
All these are completely concurrent tasks. Anything which
could be implemented as a pixel or vertex shader is inher-
ently concurrent, which is why parallel processing languages
such as shader models, do not cheaply allow for random write
to memory and don’t allow accumulators across elements.

Seeing that these operations are inherently concurrent, we
can start to see it’s possible to restructure our game from an
end result perspective. We can use the idea of a structured
query to help us find our critical path back to the game state.
Many table transforms can be split up into much smaller
pieces, possibly thinking along the lines of map reduce, bring-
ing some previously serial operations into the concurrent so-
lution set.

Any N to N transform is perfectly concurrent. Any N to <=

N is perfectly concurrent, but depending on how you handle
output NULLs, you could end up wasting memory. A reduce
stage is necessary, but that could be managed by a gathering
task after the main task has finished, or at least, after the
first results have started coming in.

Any uncoupled transforms can be run concurrently. Tick-
ing all the finite state machines can happen at the same time
as updating the physics model and the graphics culling sys-
tem building the next frame’s render list. As long as all your
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different game state transforms are independent from each
other’s current output, they can be dependent on each other’s
original state and still maintain concurrency.

For example, the physics system can update while the ren-
derer and the AI rely on the positions and velocities of the
current frame. The AI can update while the animation sys-
tem can rely on the previous set of states.

Multi-stage transforms, such as physics engine broad-
phase, detection, reaction and resolution, will traditionally
be run in series while the transforms inside each stage run
concurrently. Standard solutions to these stages require all
data has finished processing from each previous stage, but
if you can find some splitting planes for the elements during
the first stage, you can then remove temporal cohesion from
the processing because you can know what is necessary for
the next step and hand out jobs from finished subsets of each
stage’s results.

Concurrent operation assumes that each core operating on
the data is free to access the data without interference, but
there is a way that seemingly unconnected processes can end
up getting in each other’s way. Most systems have multiple
layers of cache, and this is where the accident can happen.

10.3 Queues as gateways, and “Now”

When you don’t know how many items you are going to get out
of a transform, such as when you filter a table to find only the
X which are Y, you need run a reduce on the output to make
the table non-sparse. Doing this can be log(N) latent, that
is pairing up rows takes serial time based on log(N). But, if
you are generating more data than your input data, then you
need to handle it very differently. Mapping a table out onto a
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larger set can be managed by generating into gateways, which
once the whole map operation is over, can provide input to the
reduce stage. The gateways are queues which are only ever
written to by the Mapping functions, and only ever read by the
gathering tasks such as Reduce. There is always one gateway
per Map runtime. That way, there can be no sharing across
threads. A Map can write that it has put up more data, and
can set the content of that data, but it cannot delete it or mark
any written data as having been read. The gateway manages a
read head, which can be compared with the write head to find
out if there are any waiting elements. Given this, a gathering
gateway or reduce gateway can be made by cycling through
all known gateways and popping any data from the gateway
read heads. This is a fully concurrent technique and would
be just as at home in variable CPU timing solutions as it is
in standard programming practices as it implies a consistent
state through ownership of their respective parts. A write will
stall until the read has allowed space in the queue. A read
will either return “no data” or stall until the write head shows
there is something more to read.

When it comes to combining all the data into a final output,
sometimes it’s not worth recombining it into a different shape,
in which case we can just have an array of arrays.

Transforming an array of arrays maintains most of the effi-
ciency of contiguous arrays. Arrays of arrays is a linear repre-
sentation of data which allows for efficient storage of arbitrary
lists of data. If we use arrays of arrays for input to transforms,
we need to iterate over each subarray as a separate loop. In
tests performed where an iterator was aware of the array of
arrays, the fact it accesses the root structure created noise
for the memory access requests enough to reduce the perfor-
mance of the operations. In summary, it was better to keep
the transform code simple and call the loop code recursively.

Moving away from transforms, there is the issue of now
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that crops up whenever we talk about concurrency. Some-
times, when you are continually updating data in real time,
not per frame, but actual real time, there is no safe time to
get the data or process it. Truly concurrent data analysis has
to handle reading data which has literally only just arrived or
is in the process of being retired. Data-oriented development
helps us find a solution to this by not having a concept of
now but a concept only of the data. If you are writing a net-
work game, and you have a lot of messages coming in about
a player, and their killers and victims, then to get accurate
information about their state you have to wait until they are
already dead. With a data-oriented approach, you only try
to generate the information that is needed when it’s needed.
This saves trying to analyse packets to build some predicted
state when the player is definitely not interesting, and gives
more up to date information as it doesn’t have to wait until
the object representing the data has been updated before any
of the most recent data can be seen or acted on.

The idea of now is present only in systems that are serial.
There are multiple program counters when you have multiple
cores, and when you have thousands of cores, there are thou-
sands of different nows. Humans think of things happening
at a certain time, but sometimes you can take so long doing
something that more data has arrived by the time you’re fin-
ished reacting to it, and that data can negate the result.

Take for example the idea of a game which tries to get the
lowest possible latency between player control pad and avatar
reaction on-screen. In a lot of games, you have to put up
with the code reading the pad state, then the pad state being
used to adjust animations, then the animations adjusting the
renderables, then the rendering system rastering and finally,
the raster system swapping buffers. An example is shown in
diagram 10.1.
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Figure 10.1: The effect of input can sometimes take three
frames to be seen on screen

Many games have triple buffering and animation systems
that don’t update instantly. Some engines have extra buffer-
ing. Some engines submit a render frame based on current
frame logic, shortening the pipeline.

In these cases, the player could potentially be left until the
last minute before checking pad status and apply an emer-
gency patch to the in-flight renderQueue. If you allowed a pad
read to adjust the animation system’s history rather than its
current state, you could request that it update its historical
commits to the render system, and potentially affect the next
frame rather than the frame three buffer swaps from now.
Alternatively, have some of the game run all potential player
initiated events in parallel, then choose from the outcomes
based on what really happened, then you can have the same
response time but with less patching of data.

If all this sounds crazy and preposterous, then I have news
for you. In the time since the first online version of this book
and now, the development of VR headsets has brought about
processes very similar to this. The first of the techniques de-
veloped by VR vendors works by creating a best guess at what
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will happen in the time between the start of rendering and the
moment the visuals arrive on screen. This technique is used
in almost all VR systems in some way, and is all about predic-
tion, rather than low latency as such. After the rendering data
is prepared, many vendors update the final camera matrices
just before pushing commands to the GPU. This needs some
slack during the visibility culling stage, so elements which
might otherwise be culled in a traditional render pipeline are
given a higher chance to appear, and so will make it into the
render. Jerky head motion would create gaps in the render
without this slack. Some vendors go another step further and
commit to adjusting the copy to the screen to compensate for
the change in head motion since the frame had finished be-
ing generated by the GPU. This transform is applied where we
might normally do the swap buffers. Just before swapping,
we render where the old head position would have rendered, in
the frame of the new head position. This tiny last minute up-
date reduces the latency down to a miniscule 3ms where it is
being used. Finally, some vendors also update the final copy-
ing adjustment (sometimes called a reprojection) during the
screen horizontal refresh, right along with the rolling shutter
of the screen update. Doing this, or showing black frames be-
tween visible frames gives a much better persistence of vision
effect than if they were to present an image and leave it there
for the whole time available. All these kinds of last minute
adjustment are the reason why watching the display of a VR
headset can look odd unless you’re actually wearing it, as the
screen update is matching the head as its highest priority.

As technology moves forward, and we get wider bandwidth
for processing, and more demand for lower latency, we will
find other techniques to do more ahead of time. Just as CPUs
waste time working on branches that were wrong, and cache
lines load in more memory than we need, we are very likely to
continue to do even more wasteful work in the future in the
battle for lower latency and higher throughput.
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Chapter 11

Finite State Machines

Turning data-driven processes into data-oriented solutions
can seem difficult at times, as there are many ways in which
algorithms designed by computer scientists can miss the re-
ality of the hardware with which we now work. In many of
the programming courses available, the attention is almost
entirely on the algorithmic complexity and programs target
abstract machines which don’t have hardware backing their
operations.

We also carry the burden of a language designed a long
time ago, back when hardware was much simpler. You are
programming with a language which has been extended, but
is still rooted in C. Some choices made about the implemen-
tation of the language and supporting libraries were made
with the hardware of the day as their main concern. Alexan-
der Stepanov (designer of the C++ Standard Template Library)
admits that hardware advances have had a big impact, and
has said openly1 that some decisions made when STL was

1In Interviews: Alexander Stepanov and Daniel E. Rose Answer Your Ques-
tions http://interviews.slashdot.org/story/15/01/19/159242/
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first conceived, have negative consequences with today’s hard-
ware.

Node-based data structures, which have low local-
ity of reference, make much less sense. If I were
designing STL today, I would have a different set of
containers. For example, an in-memory B*-tree is
a far better choice than a red-black tree for imple-
menting an associative container.

When you have little control over the data, such as in
scripting language support, you might need a completely dif-
ferent approach, but with some techniques, there is a way to
migrate. In this chapter, we will take a well known, highly
data-driven programming technique and move to a data-
oriented approach. This is done to show how you can analyse
the required inputs and outputs and create a solution which
is less wasteful than the original or traditional form.

What are they?

Finite state machines are a solid solution to many game logic
problems. They are one of the basic building blocks of a lot
of AI code and provide logical state frameworks for user inter-
faces. Notoriously convoluted finite state machines rule the
world of memory card operations and network lobbies, while
simple ones hold domain over point and click adventure puz-
zle logic. Finite state machines are highly data-driven in that
they react to what is sometimes called an alphabet of signals,
and change state based on both the signal received, and their
current state.

A finite state machine consists of a state, normally repre-
sented by an enum or an integer, sometimes a string, which
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informs the system as a whole as to which events it is cur-
rently interested in. The events are sometimes referred to as
an alphabet. These can also be enums, integers, or strings.

The concept of an alphabet is more of a formal definition
of the translation than you will come across in much working
code, and you will often see code that does its own checks,
and then either continues on as normal or calls a state ma-
chine function to cause a state change. For now, think of the
alphabet as the criteria upon which a transition should occur.

We have two sets of elements, and each relates to the other:
the states, and the alphabet. You can think of how events are
handled in a finite state machine as either having the alphabet
elements linking states to each other or as states linking to
new states by alphabet. The following example shows how
a set of states (A, B, and C) transition to each other via an
alphabet (d, e, and f).

A
d ,,

e

!!

B
f

ll

e

ssC

f

aa
d

33

In some finite state machines, there are defined end states,
which can simply be states that have no possible next state,
as they don’t respond to any event or alphabet entry.

START
d //

e

$$

B

e

ww
C

d

77

In some finite state machines, there are defined start
states, which are just states that have no events leading
to them.
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A
d //

e

��

END

C

f

WW
d

<<

Finally, one state is selected as the starting point. This
selected state does not have to be one of the start states, but
once the first transition has occurred, no start states can be
reached through the normal means of state transition.

It is common to implement simple artificial intelligence
through a finite state machine. The state of the finite state
machine represents a current plan of action for the entity,
the events or alphabet can be driven by predefined sensors
or queries about the world, and the choice of connections in
the setup of the finite state machine make up the strategy of
the AI. For example, a trivial AI to drive an NPC farmer could
have states for being at home, heading to the fields, working
the fields, and heading home. Sensors or queries to drive the
alphabet could include things like what time of day it is, and
the current position of the farmer.

AT HOME

time to work

&&
GOING HOME

got home

OO

GOING TO FIELD

arrived at field

��
WORK THE FIELD

time to eat

ff

Starting at home, in the morning, when the time ad-
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vances past the point where the farmer should be heading to
the fields, that event can trigger the change of state to the
heading-to-field state. The change of state could be used to
create the path to the field, but the fact the farmer is in the
heading-to-field state could be used to direct a passive move-
ment and pathfinding system. Once the farmer has made it
to the field, the state will change again, as the position of the
farmer now matches the field, and the event of being at the
field could be used to trigger the state change to working.

More complicated finite state machines are possible, in-
cluding hierarchical finite state machines which include lay-
ers of action and reaction. As an example of a hierarchical
finite state machine, consider a more complex entity, such as
a guard of some sort. The guard has high-level states of pa-
trolling, investigating suspicious activity, chasing down a spot-
ted intruder. In the state of patrolling, the guard may have
substates of patrol, take a break, report in. In the state of
investigating, the guard may have substates of move to sus-
picious location, look for evidence. In the chasing state, the
guard could have following target in sight, going to last known
location, guessing at where the target went, caught intruder
and escort them where they need to go. In each of the deeper
states, the overall thought process of the AI is concentrated
on that general plan, but the higher level state can be mon-
itoring things such as how long it has been since the guard
saw the intruder, whether there are any remaining areas to
investigate, whether a sound was heard, or an intruder was
seen. All these higher level triggers will be used to transition
between the higher level states.

Finite state machines can be used for other logical progres-
sions, such as resource streaming systems, user interfaces,
and even maintaining the current state of the player charac-
ter to change what they can and can’t do. A player cannot
shoot while they are reloading. A player cannot jump while
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they are in the air. Well, okay, they might be able to jump,
but it would be a double jump, which is probably going to be
handled differently anyway, so the statement still counts. Fi-
nite state machines can be used in a lot of different places
and can replace a lot of conditional logic in our entity loops
and updates.

It may be apparent at this stage, that finite state machines
are useful, but are also inherently data-driven systems. Data-
driven systems tend to be less organised around what is good
for memory access, and finite state machines, with their state
variables, do indeed request random memory for doing their
alphabet checks based on their internal state and possibly on
external state too. This leads to inefficiencies very similar to
those present in virtual table lookup in C++.

When we think about finite state machines and data-
oriented design, we might be thinking about using them to
control a large number of entities simultaneously. Attempt-
ing to drive singular machines in a data-oriented approach
can add a small benefit of making the system a little easier
to debug, but this chapter is mostly about the benefits of
migrating from an instance oriented data-driven approach to
a way to utilise parallel execution, and the framework we will
look at is one which is more easily tuned for throughput.

11.1 Tables as states

Finite state machines have another drawback which can be
unclear when you begin to work with them, in that they rep-
resent a state of something. The problem is that the state is
singular, not plural2. In some cases the problem is mitigated

2Behaviour trees are a way around this problem as they can be imple-
mented without a central state, but implicit state based on input alone
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through hierarchical states, in other cases is it circumvented
by introducing more states simultaneously, and in yet other
cases, states are pushed onto a stack, so as to be able to re-
turn to them later. All these solutions provide techniques to
get around the limitations of the core tenet of state being sin-
gular. If we could get around this limitation, then we may
not need lots of clever techniques. The solution can be found
in where the state is stored. The reason there is only one
state at once is there is normally a single variable in which
the state is held. When we free state from the confines of the
container, in effect, having the state own the machine, not
the machine owning the state, we expand the opportunities
to create different numbers of simultaneous state as the out-
come of a transition. We can have states which lead to simul-
taneous states, or no state at all, or states which are aware
of their child states, or states that know they need to return
to another state, all within the same system, but defined by
a data-driven process. Potentially new finite state machine
techniques can be developed and implemented, without a call
for new code to be written to handle the new technique.

If we wish to implement finite state machines without ob-
jects to contain them, and without state variables to instruct
their flow, we can implement states as components of an en-
tity. This could be seen as similar to the object-oriented ap-
proach to finite state machines. The object-oriented design
pattern State prefers to have an object instance that repre-
sents the state of the machine, and allow the object instance
to have its own state represented through member variables
so it can keep track of information present when that state
is current. These member variables lock the average object-
oriented approach to a singular state, but moving the state
from being a pointer in the instance, to the instancing being
a pointer in the state isn’t a great leap, and hence the com-
parison.
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If you utilise the runtime dynamic polymorphism inherent
in the data-oriented approach to component management,
you can provide these characteristics based only on the ex-
istence of rows in tables. We do not need a state variable
which would divert the flow according to internal state. We
don’t need an object to contain any state-dependent data for
analysis of the alphabet.

At the fundamental level, a finite state machine requires
a reaction to an alphabet. If we place the alphabet handling
code in components that are mapped to states of a finite state
machine, then we can either have these components destroy
themselves and create new state components, or produce out-
put tables of transitions which will be committed later. If each
state is represented by an entry in a state table, and any entity
in that state represented by a row existing in the state table,
then we can run each state in turn, collecting any transitions
in buffers, then committing these changes after everything
has finished a single update step. If we wish to work in-place,
then we need to do a little book-keeping, to ensure states don’t
bubble along the sequence of state updates (unless we actu-
ally want that) and we don’t delete potentially needed states
until all processing is complete.

In most games, finite state machines don’t use an explicit
alphabet to drive the state transitions, and we need to con-
sider that too. When writing state behaviours, it’s often the
case that the behaviour itself will drive the state transition.
This being the normal case of hand-rolled finite state ma-
chines, this is the version we profiled in the example code
in listings 16.12, 16.13, and 16.14. Truly data-driven fi-
nite state machines and behaviour trees such as those used
in commercial engines, the ones which drive scripts by be-
haviour, would seem like they could benefit from this tech-
nique too, but the hypothesis remains untested.

Finite state machines can be difficult to debug due to their
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data-driven nature. Data-driven code is normally harder to
debug because the programmer cannot just look at the code
to understand the program flow, but also has to follow the
data that is being presented as well. Being able to move to an
easier to debug framework should reduce development time.
In the author’s experience, being able to log all the transi-
tions over time reduced some AI problems down to merely
grepping through some logs before fixing an errant condition
based only on an unexpected transition logged with its cause
data.

Keeping the state as a table entry can also let the FSM do
some more advanced work, such as managing level of detail or
culling. If your renderables have a state of potentially visible,
then you can run the culling checks on just these entities
rather than those not even up for consideration this frame.
Using collective lodding with FSMs allows for game flow logic
such as allowing the triggering of a game state change to emit
the state’s linked entities, which could provide a good point
for debugging any problems.

11.2 Implementing transitions

Canonical finite state machines normally have an input
stream which modifies the internal state as fast as new sig-
nals arrive. This can lead to very fast state switching and
is useful in some applications which don’t have designated
frames. In most game engines, finite state machines and
other state transition systems normally work on a frame by
frame basis, which can cause bugs and latency of its own,
but for the sake of simplicity of explanation, it’s the approach
we’re using here. Frame-based updates also maintain the
parallelism we want. Table based finite state machines will
only run one update based on all signals available at the time
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of the tick. There should be no fear that this is a limit of the
system, as if there are more than one conditional responses
matching the input state, then it is fine to continue to process
any new states which have transpired, and it’s still valid to go
to more than one state at once as a result.

Consider the finite state machine in a point and click ad-
venture, where the character has to find three objects. In
most games, the logic would be defined as a single state wait-
ing for all objects to be found. In a table driven finite state
machine, you have a choice. Stick with the original approach,
or there could be three different tables representing each of
the objects, or three entries with data about which object it’s
waiting upon. While any table is populated, the game logic
will not progress. You would make the decision about which
technique to use based on whether there was normally only
one agent, or if there were often more than a hundred, using
judgement for the middle ground.

In a table driven finite state machine, the transition event
approach can be implemented as inserts and deletes. If you
want to do in-place transitions, then the code that runs on the
elements of the tables would be set up to react to the input sig-
nals, the alphabet, and would directly insert and delete rows
in other state tables. This means that in both cases the finite
state machine can react to multiple signals in a deterministic
way because the state will not change before it has finished
processing all the possible condition matches. There is no in-
herent temporal coupling in the transition queue design, and
only some small changes are required to allow the direct ap-
proach to safely parallelise. Traditional finite state machines
don’t allow for multiple reactions at once as they transition
from one state to another, naturally reacting on the order of
signals, which is perfect for a finite state machine built for a
lexer or parser, but possibly not for a generic gameplay state
machine.



11.3. CONDITION TABLES AS TRIGGERS 215

11.3 Condition tables as triggers

Sometimes a finite state machine transition has side effects.
Some purer alphabet driven finite state machines allow you
to add callbacks on transitions, so you can attach onEnter,
onExit, and onTransition effects. Because the state table ap-
proach can have a natural rhythm of states to transition re-
quests to new states, it’s simple to hook into any transition
request table and add a little processing before the state ta-
ble row modifications are committed. Consider where nor-
mally you would have a transition for an AI going from asleep
to awake. When the manager of the table processes the en-
tries to create the new awake state, it can also trigger any
GetUp animations or sound effects, but as a separate con-
cern from the act of going from sleeping to waking. This idea
of decorating the transition is a powerful aspect brought into
object-oriented programming from the functional program-
ming languages, but has always brought with it additional
hidden complexity. Adding it in as an aside during a commit
step in a transition from one state to another gives the dec-
orator an explicit location for processing and a natural place
to debug it.

You can use hooks for logging, telemetry, or game logic
that is watching certain states. If you have a finite state ma-
chine for mapping input to player movement, it’s important to
have it react to a player state that adjusts the control method.
For example, if the player has different controls when under-
water, the onEnter of the inWater state table could change
the player input mapping to allow for floating up or sinking
down. It would also be a good idea to attach any oxygen-level
gauge hooks here too. If there is meant to be a renderable for
the oxygen-level, it should be created by the player entering
the inWater state. It should also be hooked into the inWa-
ter onExit transition table, as it will probably want to reset or
begin regenerating at that point.
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Let’s return to the guard. High-level states can have their
own tables. When a guard has a state of patrolling, they will
also have a state of doing the rounds, which, after that state
feels like it’s done enough, creates an entry on the taking a
break state table, or creates a reporting in entry, which them-
selves, will push back and re-create a doing the rounds state
when they are done. If a doing the rounds state notices some-
thing suspicious, it can push it up to the patrolling state as an
event, and that state can handle the event. If the patrolling
state thinks it’s important it can change to investigating by
deleting all subtable entries and adding a new suspicion state
entry. If the patrolling state catches sight of the intruder,
then that event can be sent up the same way. If the sus-
picious sighting seems unrelated to the noticed intruder, the
suspicion state could be activated simultaneously or could be
stacked on a pending state table, ready to return to once the
chasing is over. When a high-level state changes, it needs to
tell any substates that it is transitioning, and they can han-
dle this either by stashing their state away into a memento
or by merely deleting. For example, the suspicion state would
want to remember what it had already investigated, so would
stash away that information, but the chasing state would de-
termine what to stash based on the outcome. If it had found
the intruder, then it could dump all information about where
the intruder has been and guesses of where they are, but if
the state timed out, then the state could stash away, or even
transfer potential suspicious locations to the suspicious state
storage.

In addition to handling game AI, the same multi-state ben-
efits apply to player input mapping. If the player is being
asked to reload, and they want to change weapon instead, the
reload state can be stashed away for that weapon, and if they
switch back, the reload can be resumed. If you use a state
variable, instead of an entry, then you may lose that informa-
tion. Even down to simple common events such as jumping,
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the state of being on the ground would listen to the jump but-
ton differently from the state of being in the air, and double-
jump could just be a state which is created from ground-jump.
Ground-jump could be a state that times out on landing, or
goes away on jump being pressed, as when the jump button
is pressed it would be a second press of the jump button and
would transition to double-jump.

One of the greatest benefits of being able to hook into states
and transitions is being able to keep track of changes in game
state for syncing. If you are trying to keep a network game
synchronised, knowing exactly what happened and why can
be the difference between a 5 minute and 5 day debugging
session.

11.4 Double buffered finite state ma-
chines

You can implement finite state machines in a read-only mode,
making the transitions only affect a future output buffer. If
you have large states, with many pieces, then it can be bene-
ficial to implement a copy on write state storage.

Normally, it’s mentioned that global variables are bad, and
that the singleton pattern is just as bad, but it’s not often
mentioned how that also can be said of shared state via smart
pointers. Large projects in the games industry overrun their
schedule when using managed languages due to shared state,
that state being the ownership of objects, that shared state
causes memory leaks which are hard to track down. Why
mention that here? To implement a low memory cost dou-
ble buffered approach to your game, you only have one good
choice, and that is to share data between frames or updates.
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FRAME1
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+3 FRAME2
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+3 FRAME3

ss
DATA

To share data between frames safely, you will need to guard
against modifying state. One way to cleanly implement shared
state is to allow for smart pointers to data that represent state,
but immutably. Copying your game state from one frame to
the next might seem like overkill, but if all you’re doing is copy-
ing pointers to large state objects, then it’s not so bad. State is
then modified by creating a new state object from the old one,
also constant, replacing the old state in the current frame.
Doing this, it should be possible to create many more frames
of historical data, which might be useful for your application
or game as replay data, or undo states.

FRAME1

��

+3 FRAME2

ww

+3 FRAME3

��
DATA

transform // DATA

If you’re going with double or more buffered, every state
is considered, updated, then pushed out the other side, this
means you will have very similar costs every single update.

As the input state is read-only, you can see exactly why
and how an FSM got where it is. You can even build in the
ability to re-run your application from an earlier point. You
can then break into the code to see what happened, and what
the inputs did to the machine.

As every machine state is copied to a final output buffer,
this system costs a write for every machine, every update,
regardless of whether there was a transition or not. If you
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can work with level of detail techniques, then the number of
copies can be reduced to a more reasonable level.

As a final mitigation against unwanted copying, you can
reduce the amount of state copied by creating different pace
streams of state analysis. Adding entries to certain tables
could be considered putting the machines to sleep, having
them update and check to see if they need to return to full
capacity in a less frequent cycle, but also, if you have different
streams, some could be full copy read-only transforms, and
others could be more traditional state migration in place.
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Chapter 12

In Practice

Data-oriented development is not rooted in theory, but prac-
tice. Because of this, it’s hard to describe the methodology
without some practical examples. In this chapter, I will doc-
ument some experiences with the data-oriented approach.

12.1 Data-manipulation

12.1.1 The Cube

In a strange game, at a startup with a rather famous founder,
there was a call to handle a large amount of traffic from a large
number of clients, potentially completely fragmented, and yet
also completely synchronised. The plan was to develop a ser-
vice capable of handling a large number of incoming packets
of update data while also compiling it into compressed out-
put data which could be sent to the client all with a minimal
turnaround time.

221
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The system was developed in C++11 on Linux and followed
the basic tenets of data-oriented design from day one. The
data was loaded, but not given true context. Manipulations
on the data were procedures that operated on the data given
other data. This was a massive time saver when the servers
needed a complete redesign. The speed of data processing
was sufficient to allow us to run all the services in debug1.

When the server went live, it wasn’t the services that died,
it was the login. Nginx is amazing, but under that amount of
load on a single server, with so many of the requests requiring
a lock on an SQL DB backend for Facebook integration, the
machine reached its limit very quickly. For once, we think
PHP itself wasn’t to blame. We had to redesign all the ser-
vices so they could work in three different situations so as to
allow the server to become a distributed service. By not lock-
ing down data into contexts, it was relatively easy to change
the way the data was processed, to reconfigure the single
service that previously did all the data consumption, colla-
tion, and serving, into three different services which handled
incoming data, merging the multiple instances, and serving
the data on the instances. In part, this was due to a very
procedural approach, but it was also down to data separa-
tion. The data, even between levels of detail, was not linked
together or bound by an object context. The lack of bind-
ing allows for simpler recombination of procedures, simpler
rewriting of procedures, and simpler repurposing of proce-
dures from related services. This is something the object-
oriented approach makes harder because you can be easily
tempted to start adding base classes and inheriting to gain
common functionality or algorithms. As soon as you do that,

1anyone remembering developing on a PS2 will likely attest to the minimal
benefit you get from optimisations when your main bottleneck is the VU and
GS. The same was true here, we had a simple bottleneck of the size of the
data and the operations to run on it. Optimisations had minimal impact on
processing speed, but they did impact our ability to debug the service when
it did crash.
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you start tying things together by what they mean rather than
what they are, and then you lose the ability to reuse code.

12.1.2 Rendering order

While working on the in-house engine at a small games com-
pany, we came up with an idea for how to reimplement the ren-
derer that should have been much more efficient, not just sav-
ing CPU cycles, but also allowing for platform-specific optimi-
sations at runtime by having the renderer analyse the current
set of renderables and organise the whole list of jobs by what
caused the least program changes, texture changes, constant
changes and primitive render calls. The system seemed too
good to be true, and though we tried to write the system, the
company never finished it. After the company dissolved, when
I did finish it, I didn’t have access to a console2, so I was only
able to test out the performance on a PC. As expected the
new system was faster, but only marginally. With hindsight, I
now see that the engine was only marginally more efficient be-
cause the tests were being run on a system that would only see
marginal improvements, but even the x86 architecture saw
improvements, which can be explained away as slightly better
control flow and generally better cache utilisation.

First, let me explain the old system.

All renderables came from a scene graph. There could be
multiple scene graph renders per frame, which is how the
2D and 3D layers of the game were composited, and each
of them could use any viewport, but most of them just used
the fullscreen viewport as the engine hadn’t been used for a
split screen game, and thus the code was probably not work-
ing for viewports anyway. Each scene graph render to view-

2The target platforms of the engine included the PlayStation2 and the Nin-
tendo Wii along with Win32.
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port would walk the scene3 collecting transforms, materials,
colour tints, and meshes, to render, at which point the node
that contained the mesh would push a render element onto
the queue for rendering into that viewport. This queueing
up of elements to render seemed simple and elegant at the
time. It meant programmers could quickly build up a scene
and render it, most of the time using helpers which loaded
up the assets and generated the right nodes for setting tex-
tures, transforms, shader constants, and meshes. These ren-
dering queues were then sorted before rendering. Sorted by
material only for solid textures, and sorted back to front for
alpha blended materials. This was the old days of fixed func-
tion pipelines and only minimal shader support on our target
platforms. Once the rendering was done, all the calculated
combinations were thrown away. This meant that for every-
thing that was rendered, there was definitely a complete walk
of the scene graph.

The new system, which was born before we were aware of
data-oriented design, but was definitely born of looking at the
data, was different in that it no longer required walking the
scene graph. We wanted to maintain the same programmer
friendly front edge API, so maintained the facade of a scene
graph walk, but instead of walking the graph, we only added a
new element to the rendering when the node was added, and
only removed it when it was removed from the scene graph.
This meant we had a lot of special code that looked for multiple
elements registered in multiple viewport lists, but, other than
that, a render merely looked up into the particular node it
cared about, gathered the latest data, and processed it pulling
when it required it rather than being pushed things it didn’t
even care about.

The new system benefited from being a simple list of point-

3sometimes multiple cameras belonged to the same scene and the scene
graph would be walked multiple times
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ers from which to fetch data (the concept of a dirty transform
was removed, all transforms were considered to be dirty every
frame), and the computation was simplified for sorting as all
the elements that were solid were already sorted from the pre-
vious render, and all the alpha blended elements were sorted
because they belonged to the set of alpha blended elements.
This lack of options accounted for some saved time, but the
biggest saving probably came from the way the data was being
gathered per frame rather than being generated from an in-
coherent tree. A tree that, to traverse, required many pointer
lookups into virtual tables as all the nodes were base classed
to a base node type and all update and render calls were vir-
tual causing many misses all the way through each of the tree
walks.

In the end, the engine was completely abandoned as the
company dissolved, but it was the first time we had taken an
existing codebase and (though inadvertently) converted it to
data-oriented.

12.1.3 Keeping track of damage

During the development of a AAA multiplayer code base there
came a point where it became more and more important that
we kept track of damage dealt to every player from every
player. Sometimes this would be because we want to estimate
more accurately how much health a player had. Sometimes
this would be because we needed to know who saved who
and thus who got a teammate saved bonus, or who got the
assist. We kept a tight ship on the game, we tried to keep the
awards precise as far as we could go, no overcompensating
for potentially lost packets. There was no faking because we
wanted a fair and competition grade experience where players
could make all the difference through skill, not through luck.
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To do this, we needed to have a system that kept track
of all the bullets fired, but not fail when we missed some, or
when they arrived out of order. What we needed was a system
which could be interrogated at any point, but could receive
data about things that had happened out of order, in effect
re-writing the past. It needed to be able to heal itself in case
of oddities, and last but not least, it needed to be really quick
so we could query it many times per frame.

The solution was built as a simple list of things that hap-
pened and at what time. Initially, the data was organised as
a list of structures with a sorted list of pointers to the data
for quick queries about events over time, but after profiling
the queries with and without the sorted list, it was clear the
cost of maintaining a sorted list outweighed the benefits. Do-
ing a one time sort on the data only when needed to satisfy
a query was better. There were only two queries which bene-
fited from the sorted data, and they were not called frequently.
When they were called, they didn’t need to be extremely fast
as they were called as the result of player death. Death not
only happened less often than once a frame, but also regu-
larly resulted in there being less to update as the player cared
a lot less about visibility checks and handling network traffic4.
This simple design allowed for many different queries to run
over the core data, and allowed for anyone to add another new
query easily because there was no data-hiding getting in the
way of any new kind of access. Object-oriented approaches to
this kind of data handling often provide a gateway to the data
but marshal it so the queries become heavyweight and con-
sistently targeted for optimisation. With a very simple data
structure and open access to the data in any form, any new
query could be as easily optimised as an existing one.

4dead men don’t care about bullets and don’t really care that much about
what other players are doing for a few frames



12.2. GAME ENTITIES 227

12.2 Game entities

12.2.1 Converting an object-oriented player

While working on a little space game which ended up being
a boat game in caverns5 and it was the first time I inten-
tionally changed a game from object-oriented to component-
oriented. The ships all had their rendering positions, their
health, speed, momentum, ammo recharge timers etc, and
these were all part of a base ship class which was extended to
be a player class, and inherited from a basic element which
was extended to also include the loot drops and the dangerous
ice blocks. All this is pretty standard practice, and from the
number of codebases I have seen, it’s pretty light on the scale
of inheritance with which games normally end up. Still, I had
this new tool in my bag, the component-oriented approach,
and specifically existential processing. I wanted to try it out,
see if it really did impact the profile of the game in any sig-
nificant way. I started with the health values. I made a new
component for health, and anyone who was at full health, or
was dead, was not given an instance of the component. The
player ship and the enemy ships all had no health values until
they were shot and found wanting.

Transitioning to the component based health took a while.
Translating any game from one programming paradigm to an-
other is not a task to be taken lightly, even when your game
code is small and you’ve only spent sixty hours developing
the game so far. Once the game was back up though, the
profile spoke loud and clear of the benefits. I had previously
spent some time in health code every frame, this was because
the ships had health regenerators which ran and updated the
health every time they got an update poll. They needed to

5due to concerns that a 2D space game might be misinterpreted as the
next title by the company I was working for at the time
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do an update because they were updated, not because they
needed to, and they didn’t have any way to opt out before the
componentisation, as the update to health was part of the
ship update. Now the health update only ran over the ac-
tive health instances and removed itself once it reached max
health rather than bounce off the max health.

This relatively small change allowed me to massively in-
crease the number of small delicate ships in the game (ships
which would beat the player ship by overrunning it rather
than being able to withstand the player’s fire and get close in
to do some damage), and also lead to another optimisation:
componentising the weapon recharge timer.

If the first change was a success, then the second was a
major success. Instead of keeping track of when a weapon
was ready to fire again, the time it would become available
was inserted into a sorted list of recharge times. Only the
head of the list was checked every global update, meaning
a large number of weapons could be recharging at once and
none of them caused any data access until they were very
nearly or actually ready.

This immediate success led me to believe the data-oriented
design movement was really important and needed to be
spread around, and probably caused my sudden distrust of
object-oriented programming. From that point on, all I could
see was cache-misses and pointless update checks.
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12.2.2 People don’t really exist.
A Mathematician, a Biologist and a Physicist are sitting in
a street cafe watching people going in and coming out of
the house on the other side of the street.

First, they see two people going into the house. Time
passes. After a while they notice three persons coming
out of the house.

The Physicist: “The measurement wasn’t accurate.”.
The Biologists conclusion: “They have reproduced”.
The Mathematician: “If now exactly 1 person enters the
house then it will be empty again.”

The followers in an infamous god game were little ob-
jects when they were running around, and though the code
changed quite a bit from the initial lists of pointers to people
structures, and thus became unwieldy, there was one element
that was a perfect example of hierarchical level of detail in the
game logic. The followers, once they had started to build a
building, disappeared. They were no longer required in any
way, so they were reduced to a mere increment of the number
of people in a building. An object-oriented programmer dis-
puted this being a good way to go, “but what if the person has
a special weapon, or is a special character?”. Logic prevailed.
If there was a special weapon, I explained, then there would
have been a count of those in the house, or the weapon would
have become owned by the house, and as for a special charac-
ter, the same kind of exception could be made, but in reality,
which is where we firmly plant ourselves when developing in
the data-oriented paradigm, these potential changes had not
yet been requested. By the end of the development, they still
hadn’t.

Another example from the god game prototype was the use
of duck-typing. Instead of adding a base class for people and
houses, just to see if they were meant to be under control
of the local player, we used a function template to extract a
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boolean value. Duck typing doesn’t require anything more
than certain member functions or variables being available.
They don’t have to be in the same place, or come bundled into
a base class: they just have to be present.

When teaching data-oriented design, I find the biggest hur-
dle is convincing programmers that data-oriented design is
possible for some areas of development. It’s very easy to ac-
cidentally assume you need to bundle things into objects, es-
pecially after years of training and teaching object-oriented
development. It won’t come naturally and you will keep catch-
ing yourself building things as objects first then making them
more relational afterwards. It will take time to fully remove
the muscle memory of putting related things in the same
class, but worry not, I’m sure all data-oriented developers go
through this transition where they know they’re not coding
data-oriented, but they don’t quite know how to do it yet.

12.2.3 Lazy evaluation molasses

The idea of lazy evaluation makes so much sense, and yet
it’s precisely that kind of sense that makes little sense for a
computer. I remember there was a dirty bit check before an
update in some of the global update code on an open world
3rd person shooter, something I would have done a hundred
times over before I started to get a better feel for what the
computer was doing, and found one of the best lines-of-code
to time-saved ratio fixes I ever found in a triple A game. The
dirty bit check was just before the code that actually did the
work of updating the instance. This meant the CPU had to
preload the fixup code while it was checking the dirty bit, and
because the fixup code was virtual functions based, it meant
the code was loading the virtual table value and the function
was preloaded all the while the dirty bit was about to say it
wasn’t necessary to do any of it. To make matters worse, the
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code was inside an if, implying to most compilers that it would
be the more likely taken branch6. The fix was simple. Build
up a local array of objects to actually do an update of, then do
them all at once. Because the code to do the update wasn’t
preloaded, the whole update took a lot less time. You can
have your lazy evaluation, but don’t preload the work to do by
accident if you don’t have to.

12.2.4 Component-oriented design

While at a small games company, I found an article about
Dungeon Seige proclaiming the benefit of components when
developing a game. The GOs or Game Objects which were
used were components that could be stitched together to cre-
ate new compound objects.

Taking that as inspiration, I looked at all our different
scene-graph nodes, gameplay helper classes and functions we
commonly used and tried to distil them into their elements. I
started by just making components such as PlayerCharacter
and AICharacter, adding a Prop element before realising where
I was going wrong. The object-oriented mindset had told me
to look at the compounds, not the elements, so I went back to
the drawing board and started dissecting the objects again.
Component-oriented development works out best when you
completely explode all your compounds, then recombine when
you find the combinations are consistent, or when combining
makes more sense to computation.

After I was done fully dissecting our basic game classes I
had a long list of separate, elements which by themselves did

6profile guided optimisation might have saved a lot of time here, but the
best solution is to give the profiler and optimiser a better chance by leaving
them less to do
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very little7. At this point, I added the bootstrap code to gener-
ate the scene. Some components required other components
at runtime, so I added a requires trait to the components,
much like #include, except to make this work for teardown, I
also added a count so components went away much like ref-
erence counted smart pointers folded away. The initial demo
was a simple animated character running around a 3D envi-
ronment, colliding with props via the collision Handler.

In the beginning, I had a container entity which main-
tained a list of components. Once I had a first working ver-
sion, I stepped back and thought about the system. I started
to see that the core entity wasn’t really necessary. As long as
any update components were updated, then the game would
tick on. As long as the entity’s components could find their re-
quirement components, then the game would work. I shifted
to having an implicit entity based on the UID I generate on
entity creation. This meant all entities were really only the
components that were linked to that ID, as the ID didn’t index
into an array of entity objects, or point to an allocated entity,
it was merely an ID off which to hang all the components.

Adding features to a class at runtime was now possible.
I could inject an additional property into the existing enti-
ties because I had centred the entities around a key, and not
any kind of central class. The next step from here was to
add components via a scripting language so it would be pos-
sible to develop new gameplay code while running the game.
Unfortunately, this never happened, but some MMO engine
developers have done precisely this.

The success of this demo convinced me that components
would play a major role in our continuing game development,
but alas, we only used the engine for one more product and

7 Position, Velocity, PlayerInputMapper, VelocityFromInput, MeshRender,
SkinnedMeshRender, MatrixPalette, AnimPlayer, AnimFromInput, and Colli-
sionHandler, to name a few.
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the time to bring the new component-based system up to
speed for the size of the last project was estimated to be coun-
terproductive. Mick West released an article about how when
he was at Neversoft, he did manage to convert the Tony Hawks
code-base to components8 which means it’s not impossible to
migrate, it’s just not easy. If we were to start component-
oriented... well that’s a different story, normally told by Scott
Bilas.

8http://cowboyprogramming.com/2007/01/05/evolve-your-heirachy/
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Chapter 13

Maintenance and
reuse

When object-oriented design was first promoted, it was said
to be easier to modify and extend existing code bases than the
more traditional procedural approach. Though it is not true
in practice, it is often cited by object-oriented developers when
reading about other programming paradigms. Regardless of
their level of expertise, an object-oriented programmer will
very likely cite the extensible, encapsulating nature of object-
oriented development as a boon when it comes to working on
larger projects.

Highly experienced but more objective developers have ad-
mitted or even written about how object-oriented C++ is not
highly suited to big projects with lots of dependencies, but can
be used as long as you follow strict guidelines such as those
found in the Large-scale C++ book[2]. For those who cannot
immediately see the benefit of the data-oriented development
paradigm with respect to maintenance and evolutionary de-
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velopment, this chapter covers why it is easier than working
with objects.

13.1 Cosmic hierarchies

Whatever you call them, be it Cosmic Base Class, Root of all
Evil, Gotcha #97, or CObject, having a base class that every-
thing derives from has pretty much been a universal failure
point in large C++ projects. The language does not naturally
support introspection or duck typing, so it has difficulty util-
ising CObjects effectively. If we have a database driven ap-
proach, the idea of a cosmic base class might make a subtle
entrance right at the beginning by appearing as the entity
to which all other components are adjectives about, thus not
letting anything be anything other than an entity. Although
component–based engines can often be found sporting an En-
tityID as their owner, not all require owners. Not all have only
one owner. When you normalise databases, you find you have
a collection of different entity types. In our level file example,
we saw how the objects we started with turned into a MeshID,
TextureID, RoomID, and a PickupID. We even saw the emer-
gence through necessity of a DoorID. If we pile all these Ids
into a central EntityID, the system should work fine, but it’s
not a necessary step. A lot of entity systems do take this ap-
proach, but as is the case with most movements, the first
swing away from danger often swings too far. The balance is
to be found in practical examples of data normalisation pro-
vided by the database industry.
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13.2 Debugging

The prime causes of bugs are the unexpected side effects of a
transform or an unexpected corner case where a conditional
didn’t return the correct value. In object-oriented program-
ming, this can manifest in many ways, from an exception
caused by de-referencing a null, to ignoring the interactions of
the player because the game logic hadn’t noticed it was meant
to be interactive.

Holding the state of a system in your head, and playing
computer to figure out what is going on, is where we get the
idea that programmers absolutely need to be in the zone to get
any real work done. The reality is probably far less thrilling.
The reality is closer to the fear that programmers only need to
be in the zone if the code is nearing deadly levels of complexity.

13.2.1 Lifetimes

One of the most common causes of the null dereference is
when an object’s lifetime is handled by a separate object to
the one manipulating it. For example, if you are playing a
game where the badguys can die, you have to be careful to up-
date all the objects that are using them whenever the badguy
gets deleted, otherwise, you can end up dereferencing invalid
memory which can lead to dereferencing null pointers be-
cause the class has destructed. Data-oriented development
tends towards this being impossible as the existence of an en-
tity in an array implies its processability, and if you leave part
of an entity around in a table, you haven’t deleted the entity
fully. This is a different kind of bug, but it’s not a crash bug,
and it’s easier to find and kill as it’s just making sure that
when an entity is destroyed, all the tables it can be part of
also destroy their elements too.
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1 bool SingleReturn( int numDucks ) {

2 bool valid = true;

3 // must be 10 or fewer ducks.

4 if( numDucks > 10 ) valid = false;

5 // number of ducks should be even.

6 valid = ( numDucks & 1 ) == 0;

7 // can’t have negative ducks.

8 if( numDucks < 0 ) valid = false;

9 return valid;

10 }

11 bool RecursiveCheck( Node * node ) {

12 bool valid = true;

13 if( node ) {

14 valid = node ->Valid();

15 valid &= RecursiveCheck( node ->sibling );

16 valid &= RecursiveCheck( node ->child );

17 }

18 return valid;

19 }

Listing 13.1: Modifying state can shadow history

13.2.2 Avoiding pointers

When looking for data-oriented solutions to programming
problems, we often find pointers aren’t required, and often
make the solution harder to scale. Using pointers where null
values are possible implies each pointer doesn’t only have the
value of the object being pointed at, but also implies a boolean
value for whether or not the instance exists. Removing this
unnecessary extra feature can remove bugs, save time, and
reduce complexity.

13.2.3 Bad State

Bugs have a lot to do with not being in the right state. Debug-
ging, therefore, becomes a case of finding out how the game
got into its current, broken state.

Whenever you assign a value to a variable, you are de-



13.2. DEBUGGING 239

stroying history. Take the example in listing 13.1. The ideal
of having only one return statement in a function can cause
this kind of error with greater frequency than expected. Hav-
ing more than one return point has its own problems. What’s
important is once you have got to the end of the function, it’s
hard to figure out what it was that caused it to fail valida-
tion. You can’t even breakpoint the bail points. The recursive
example is even more dangerous, as there’s a whole tree of ob-
jects and it will recurse through all of them before returning,
regardless of value, and again, is impossible to breakpoint.

When you encapsulate your state, you hide internal changes.
This quickly leads to adding lots of debugging logs. Instead of
hiding, data-oriented suggests keeping data in simple forms.
Potentially, leaving it around longer than required can lead to
highly simplified transform inspection. If you have a trans-
form that appears to work, but for one odd case it doesn’t, the
simplicity of adding an assert and not deleting the input data
can reduce the amount of guesswork and toil required to gen-
erate the reproduction required to understand the bug and
make a clean fix. If you keep most of your transforms as one-
way, that is to say, they take from one source, and produce
or update another, then even if you run the code multiple
times it will still produce the same results as it would have
the first time. The transform is idempotent. This useful prop-
erty allows you to find a bug symptom, then rewind and trace
through the causes without having to attempt to rebuild the
initial state.

One way of keeping your code idempotent is to write your
transforms in a single assignment style. If you operate with
multiple transforms but all leading to predicated join points,
you can guarantee yourself some timings, and you can look
back at what caused the final state to turn out like it did with-
out even rewinding. If your conditions are condition tables,
just leave the inputs around until validity checks have been
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completed then you have the ability to go into any live sys-
tem and check how it arrived at that state. This alone should
reduce any investigation time to a minimum.

13.3 Reusability

A feature commonly cited by the object-oriented developers
which seems to be missing from data-oriented development
is reusability. The idea that you won’t be able to take already
written libraries of code and use them again, or on multiple
projects, because the design is partially within the implemen-
tation. To be sure, once you start optimising your code to the
particular features of a software project, you do end up with
code which cannot be reused. While developing data-oriented
projects, the assumed inability to reuse source code would be
significant, but it is also highly unlikely. The truth is found
when considering the true meaning of reusability.

Reusability is not fundamentally concerned with reusing
source files or libraries. Reusability is the ability to maintain
an investment in information, or the invention of more vocab-
ulary with which to communicate intention, such as with the
STL, or with other libraries of structural code. In the primary
example of reuse as sequences of actions, this is a wealth of
knowledge for the entity that owns the development IP and is
very nearly what patents are built on. In the latter, the vo-
cabulary is often stumbled upon, rather than truly invented.

Copyright law has made it hard to see what resources have
value in reuse, as it maintains the source as the object of its
discussion rather than the intellectual property represented
by the source. The reason for this is that ideas cannot be
copyrighted, so by maintaining this stance, the copyrighter
keeps hold of this tenuous link to a right to withhold informa-
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tion. Reusability comes from being aware of the information
contained within the medium it is stored. In our case, it is
normally stored as source code, but the information is not the
source code. With object-oriented development, the source
can be adapted (adapter pattern) to any project we wish to
venture. However, the source is not the information. The in-
formation is the order and existence of tasks that can and will
be performed on the data. Viewing the information this way
leads to an understanding that any reusability a program-
ming technique can provide comes down to its mutability of
inputs and outputs. Its willingness to adapt a set of tempo-
rally coupled tasks into a new usage framework is how you
can find out how well it functions reusably.

In object-oriented development, you apply the information
inherent in the code by adapting a class that does the job,
or wrapper it, or use an agent. In data-oriented develop-
ment, you copy the functions and schema and transform into
and out of the input and output data structures around the
time you apply the information contained in the data-oriented
transform.

Even though, at first sight, data-oriented code doesn’t ap-
pear as reusable on the outside, the fact is, it maintains the
same amount of information in a simpler form, so it’s more
reusable as it doesn’t carry the baggage of related data or
functions like object-oriented programming, and doesn’t re-
quire complex transforms to generate the input and extract
from the output like procedural programming tends to gener-
ate due to the normalising.

Duck typing, not normally available in object-oriented pro-
gramming due to a stricter set of rules on how to interface
between data, can be implemented with templates to great
effect, turning code which might not be obviously reusable
into a simple strategy, or a sequence of transforms which can
be applied to data or structures of any type, as long as they
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maintain a naming convention.

The object-oriented C++ idea of reusability is a mixture
of information and architecture. Developing from a data-
oriented transform centric viewpoint, architecture just seems
like a lot of fluff code. The only good architecture that’s worth
saving is the actualisation of data-flow and transform. There
are situations where an object-oriented module can be used
again, but they are few and far between because of the inher-
ent difficulty interfacing object-oriented projects with each
other.

The most reusable object-oriented code appears as inter-
faces to agents into a much more complex system. The best
example of an object-oriented approach that made everything
easier to handle, that was highly reusable, and was fully en-
capsulated was the FILE type from stdio.h which is used as an
agent into whatever the platform and OS would need to open,
access, write, and read to and from a file on the system.

13.4 Reusable functions

Apart from the freedom of extension when it comes to keep-
ing all your data in simple linear arrangements, there is also
an implicit tendency to turn out accidentally reusable solu-
tions to problems. This is caused by the data being formatted
much more rigidly, and therefore when it fits, can almost be
seen as a type of duck-typing. If the data can fit a transform,
a transform should be able to act on it. Some would argue,
just because the types match, it doesn’t mean the function
will create the expected outcome, but in addition to this be-
ing avoidable by not reusing code you don’t understand, in
some cases, all you need is to know the signature to under-
stand the transform. As an extreme example, it’s possible to
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understand a fair number of Haskell functions purely based
on their arguments. Finally, because the code becomes much
more penetrable, it takes less time to look at what a transform
is doing before committing to reusing it in your own code.

Because the data is built in the same way each time,
handled with transforms and always being held in the same
types of container, there is a very good chance there are
multiple design agnostic optimisations which can be ap-
plied to many parts of the code. General purpose sorting,
counting, searches and spatial awareness systems can be
attached to new data without calling for OOP adapters or im-
plementing interfaces so Strategies can run over them. This
is why it’s possible to have generalised query optimisations in
databases, and if you start to develop your code this way, you
can carry your optimisations with you across more projects.

13.5 Unit testing

Unit testing can be very helpful when developing games, but
because of the object-oriented paradigm making program-
mers think about code as representations of objects, and
not as data transforms, it’s hard to see what can be tested.
Linking together unrelated concepts into the same object
and requiring complex setup state before a test can be car-
ried out, has given unit testing a stunted start in games as
object-oriented programming caused simple tests to be hard
to write. Making tests is further complicated by the addition
of the non-obvious nature of how objects are transformed
when they represent entities in a game world. It can be very
hard to write unit tests unless you’ve been working with them
for a while, and the main point of unit tests is that someone
who doesn’t fully grok the system can make changes without
falling foul of making things worse.



244 CHAPTER 13. MAINTENANCE AND REUSE

Unit testing is mostly useful during refactorings, taking a
game or engine from one code and data layout into another
one, ready for future changes. Usually, this is done because
the data is in the wrong shape, which in itself is harder to do if
you normalise your data as you’re more likely to have left the
data in an unconfigured form. There will obviously be times
when even normalised data is not sufficient, such as when
the design of the game changes sufficient to render the origi-
nal data-analysis incorrect, or at the very least, ineffective or
inefficient.

Unit testing is simple with data-oriented technique be-
cause you are already concentrating on the transform. Gen-
erating tables of test data would be part of your development,
so leaving some in as unit tests would be simple, if not part of
the process of developing the game. Using unit tests to help
guide the code could be considered to be partial following
the test-driven development technique, a proven good way to
generate efficient and clear code.

Remember, when you’re doing data-oriented development
your game is entirely driven by stateful data and stateless
transforms. It is very simple to produce unit tests for your
transforms. You don’t even need a framework, just an input
and output table and then a comparison function to check
the transform produced the right data.

13.6 Refactoring

During refactoring, it’s always important to know you’ve not
broken anything by changing the code. Allowing for such sim-
ple unit testing gets you halfway there. Another advantage of
data-oriented development is that, at every turn, it peels away
the unnecessary elements. You might find refactoring is more
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a case of switching out the order of transforms than chang-
ing how things are represented. Refactoring normally involves
some new data representation, but as long as you build your
structures with normalisation in mind, there’s going to be lit-
tle need of that. When it is needed, tools for converting from
one schema to another could be written once and used many
times.

It might come to pass, as you work with normalised data,
that you realise the reason you were refactoring so much in
the first place, was that you had embedded meaning in the
code by putting the data in objects with names, and methods
that did things to the objects, rather than transformed the
data.
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Chapter 14

What’s wrong?

What’s wrong with object-oriented design? Where’s the harm
in it?

Over the years, game developers have fallen into a style
of C++ that is so unappealing to hardware that the managed
languages don’t seem all that much slower in comparison.
The pattern of usage of C++ in game development was so ap-
pallingly mismatched to the hardware of the PlayStation 3
and Xbox 360 generation, it is no wonder an interpreted lan-
guage is only in the region of 50% slower under normal use
and sometimes faster1 in their specialist areas. What is this
strange language that has embedded itself into the minds of
C++ game developers? What is it that makes the fashionable
way of coding games one of the worst ways of making use of
the machines we’re targeting? Where, in essence, is the harm
in game-development style object-oriented C++?

1http://keithlea.com/javabench/ tells the tale of the server JVM being
faster than C++. There are some arguments against the results, but there
are others backing it up. Read, make up your own mind.
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Some of this comes from the initial interpretation of what
object-oriented means, as game developers tended to believe
that object-oriented meant you had to map instances of every-
thing you cared about into the code as instances of objects.
This form of object-oriented development could be interpreted
as instance-oriented development, and it puts the singular
unique entity ahead of the program as a whole. When put this
way, it is easier to see some of the problems that can arise.
Performance of an individual is very hard to decry as poor,
as object methods are hard to time accurately, and unlikely
to be timed at all. When your development practices promote
individual elements above the program as a whole, you will
also pay the mental capacity penalty, as you have to consider
all operations from the point of view of the actors, with their
hidden state, not from a point of view of value semantics.

Another issue is it appears that performance has not been
ignored by the language designers, but potentially instead it
has been tested for quality in isolation. This could be be-
cause the real world uses of C++ are quite different from the
expectation of the library providers, or it could be the library
providers are working to internal metrics instead of making
sure they understand their customer. It’s the opinion of the
author, when developing a library, or a set of templates for
use in C++, it shouldn’t just be possible to tune performance
out of the code you are using, it should come as default. If
you make it possible to tune performance, you trade features
for understanding and performance. This is a poor trade for
game developers, but has been accepted, as the benefit of a
common language is a very tempting offer.
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14.1 The harm

Claim: Virtuals don’t cost much, but if you call them a lot it can
add up.
aka - death by a thousand paper cuts

The overhead of a virtual call is negligible under simple
inspection. Compared to what you do inside a virtual call,
the extra dereference required seems petty and very likely not
to have any noticeable side effects other than the cost of a
dereference and the extra space taken up by the virtual table
pointer. The extra dereference before getting the pointer to the
function we want to call on this particular instance seems to
be a trivial addition, but let’s have a closer look at what is
going on.

A class that has derived from a base class with virtual
methods has a certain structure to it. Adding any virtual
methods to a class instantly adds a virtual table to the ex-
ecutable, and a virtual table pointer as the implicit first data
member of the class. There is very little way around this. It’s
allowed in the language specification for the data layout of
classes to be up to the compiler to the point where they can
implement such things as virtual methods by adding hidden
members and generating new arrays of function pointers be-
hind the scenes. It is possible to do this differently, but it
appears most compilers implement virtual tables to store vir-
tual method function pointers. It’s important to remember
virtual calls are not an operating system level concept, and
they don’t exist as far as the CPU is concerned, they are just
an implementation detail of C++.

When we call a virtual method on a class we have to know
what code to run. Normally we need to know which entry
in the virtual table to access, and to do that we read the first
data member in order to access the right virtual table for call-
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ing. This requires loading from the address of the class into a
register and adding an offset to the loaded value. Every non-
trivial virtual method call is a lookup into a table, so in the
compiled code, all virtual calls are really function pointer ar-
ray dereferences, which is where the offset comes in. It’s the
offset into the array of function pointers. Once the address of
the real function pointer is generated, only then can instruc-
tion decoding begin. There are ways to not call into the vir-
tual table, notably with C++11, there has been some progress
with the final keyword that can help as classes that cannot
be overridden can now know that if they call into themselves,
then they can call functions directly. This doesn’t help for
polymorphic calls, or call sites that access the methods from
the interface without knowing the concrete type (see listing
14.1), but it can occasionally help with some idioms such as
private implementation (pImpl), and the curiously recurring
template pattern.

For multiple inheritance it is slightly more convoluted, but
basically, it’s still virtual tables, but now each function will
define which class of vtable it will be referencing.

So let’s count up the actual operations involved in this
method call: first we have a load, then an add, then another
load, then a branch. To almost all programmers this doesn’t
seem like a heavy cost to pay for runtime polymorphism. Four
operations per call so you can throw all your game entities into
one array and loop through them updating, rendering, gath-
ering collision state, spawning off sound effects. This seems
to be a good trade-off, but it was only a good trade-off when
these particular instructions were cheap.

Two out of the four instructions are loads, which don’t
seem like they should cost much, but unless you hit a nearby
cache, a load takes a long time and instructions take time to
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1 #include <stdio.h>

2

3 class B {

4 public:

5 B() {}

6 virtual ~B() {}

7 virtual void Call() { printf( "Base\n" ); }

8 void LocalCall () {

9 Call();

10 }

11 };

12

13 class D final : public B {

14 public:

15 D() {}

16 ~D() {}

17 virtual void Call() { printf( "Derived\n" ); }

18 void LocalCall () {

19 Call();

20 }

21 };

22

23 B *pb;

24 D *pd;

25

26 int main() {

27 D *d = new D;

28 pb = pd = d;

29

30 pb->LocalCall ();

31 // prints "Derived" via virtual call

32 pd->LocalCall ();

33 // prints "Derived" via direct call

34 }

Listing 14.1: A simple derived class
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decode. The add is very cheap2, to modify the register value to
address the correct function pointer, but the branch is not al-
ways cheap as it doesn’t know where it’s going until the second
load completes. This could cause an instruction cache miss.
All in all, it’s common to see a chunk of time wasted due to
a single virtual call in any significantly large scale game. In
that chunk of time, the floating point unit alone could have
finished naı̈vely calculating lots of dot products, or a decent
pile of square roots. In the best case, the virtual table pointer
will already be in memory, the object type the same as last
time, so the function pointer address will be the same, and
therefore the function pointer will be in cache too, and in that
circumstance it’s likely the branch won’t stall as the instruc-
tions are probably still in the cache too. But this best case is
not always the common case for all types of data.

Consider the alternative, where your function ends, and
you are returning some value, then calling into another func-
tion. The order of instructions is fairly well known, and to
the CPU looks very similar to a straight line. There are no
deviations from getting instructions based on just following
the program counter along each function in turn. It’s possi-
ble to guess quite far ahead the address of any new functions
that will be called, as none of them are dependent on data.
Even with lots of function calls, the fact they are deducible at
compile time makes them easy to prefetch, and pretranslate.

The implementation of C++ doesn’t like how we iterate over
objects. The standard way of iterating over a set of heteroge-
neous objects is to literally do that, grab an iterator and call
the virtual function on each object in turn. In normal game
code, this will involve loading the virtual table pointer for each
and every object. This causes a wait while loading the cache
line, and cannot easily be avoided. Once the virtual table
pointer is loaded, it can be used, with the constant offset (the

2Adding to a register before accessing memory is free on most platforms
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index of the virtual method), to find the function pointer to
call, however, due to the size of virtual functions commonly
found in game development, the table won’t be in the cache.
Naturally, this will cause another wait for load, and once this
load has finished, we can only hope the object is actually the
same type as the previous element, otherwise, we will have to
wait some more for the instructions to load.

Even without loads, not knowing which function will be
called until the data is loaded means you rely on a cache line
of information before you can be confident you are decoding
the right instructions.

The reason virtual functions in games are large is that
game developers have had it drilled into them that virtual
functions are okay, as long as you don’t use them in tight
loops, which invariably leads to them being used for more ar-
chitectural considerations such as hierarchies of object types,
or classes of solution helpers in tree-like problem-solving sys-
tems (such as pathfinding, or behaviour trees).

Let’s go over this again: many developers now believe the
best way to use virtuals is to put large workloads into the
body of the virtual methods, so as to mitigate the overhead
of the virtual call mechanism. 3 However, doing this, you
can virtually guarantee not only will a large portion of the
instruction and data cache be evicted by each call to update(),
but most branch predictor slots may become dirty too, and fail
to offer any benefit when the next update() runs. Assuming
virtual calls don’t add up because they are called on high-
level code is fine until they become the general programming
style, leading to developers failing to think about how they
affect the application, ultimately leading to millions of virtual
calls per second. All those inefficient calls are going to add up
and impact the hardware, but they hardly ever appear on any

3There are parallels with task systems, where you want to mitigate the cost
of setup and tear down of tasks.
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profiles. The issue isn’t that it’s not there, it’s that it’s spread
thinly over the whole of the processing of the machine. They
always appear somewhere in the code being called.

Carlos Bueno’s book Mature Optimization Handbook[17],
talks about how it’s very easy to miss the real cause of slow-
ness by blindly following the low hanging fruit approach. This
is where the idea of creating a hypothesis can prove useful, as
when it turns out to not reap the expected rewards, you can
retrace and regroup faster. For Facebook, they traced what
was causing evictions and optimised those functions, not for
speed, but to remove as much as possible the chance that
they evicted other data from the cache.

In C++, classes’ virtual tables store function pointers by
their class. The alternative is to have a virtual table for each
function and switch function pointer on the type of the calling
class. This works fine in practice and does save some of the
overhead as the virtual table would be the same for all the
calls in a single iteration of a group of objects. However, C++
was designed to allow for runtime linking to other libraries,
libraries with new classes that may inherit from the existing
codebase. The design had to allow a runtime linked class
to add new virtual methods, and have them callable from the
original running code. If C++ had gone with function oriented
virtual tables, the language would have had to runtime patch
the virtual tables whenever a new library was linked, whether
at link-time for statically compiled additions, or at runtime
for dynamically linked libraries. As it is, using a virtual ta-
ble per class offers the same functionality but doesn’t require
any link-time or runtime modification to the virtual tables as
the tables are oriented by the classes, which by the language
design are immutable during link-time.

Combining the organisation of virtual tables and the or-
der in which games tend to call methods, even when running
through lists in a highly predictable manner, cache misses
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are commonplace. It’s not just the implementation of classes
that causes these cache misses, it’s any time data is the de-
ciding factor in which instructions are run. Games commonly
implement scripting languages, and these languages are of-
ten interpreted and run on a virtual machine. However the
virtual machine or JIT compiler is implemented, there is al-
ways an aspect of data controlling which instructions will be
called next, and this causes branch misprediction. This is
why, in general, interpreted languages are slower, they either
run code based on loaded data in the case of bytecode in-
terpreters or they compile code just in time, which though it
creates faster code, causes issues of its own.

When a developer implements an object-oriented frame-
work without using the built-in virtual functions, virtual ta-
bles and this pointers present in the C++ language, it doesn’t
reduce the chance of cache miss unless they use virtual tables
by function rather than by class. But even when the devel-
oper has been especially careful, the very fact they are do-
ing object-oriented programming with game developer access
patterns, that of calling singular virtual functions on arrays
of heterogeneous objects, they are still going to have some of
the same instruction decode and cache misses as found with
built-in virtuals. That is, the best they can hope for is one
less data dependent CPU state change per virtual call. That
still leaves the opportunity for two mispredictions.

So, with all this apparent inefficiency, what makes game
developers stick with object-oriented coding practices? As
game developers are frequently cited as a source of how the
bleeding edge of computer software development is progress-
ing, why have they not moved away wholesale from the prob-
lem and stopped using object-oriented development practices
all together?
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14.2 Mapping the problem

Claim: Objects provide a better mapping from the real world
description of the problem to the final code solution.

Object-oriented design when programming in games starts
with thinking about the game design in terms of entities.
Each entity in the game design is given a class, such as
ship, player, bullet, or score. Each object maintains its own
state, communicates with other objects through methods,
and provides encapsulation so when the implementation of
a particular entity changes, the other objects that use it or
provide it with utility do not need to change. Game devel-
opers like abstraction, because historically they have had
to write games for not just one target platform, but usually
at least two. In the past, it was between console manufac-
turers, but now game developers have to manage between
WindowsTM and console platforms, plus the mobile targets
too. The abstractions in the past were mostly hardware ac-
cess abstractions, and naturally some gameplay abstractions
as well, but as the game development industry matured,
we found common forms of abstractions for areas such as
physics, AI, and even player control. Finding these common
abstractions allowed for third party libraries, and many of
these use object-oriented design as well. It’s quite common
for libraries to interact with the game through agents. These
agent objects contain their own state data, whether hidden
or publicly accessible, and provide functions by which they
can be manipulated inside the constraints of the system that
provided them.

The game design inspired objects (such as ship, player,
level) keep hold of agents and use them to find out what’s go-
ing on in their world. A player interacts with physics, input,
animation, other entities, and doing this through an object-
oriented API hides much of the details about what’s actually
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required to do all these different tasks.

The entities in object-oriented design are containers for
data and a place to keep all the functions that manipulate that
data. Don’t confuse these entities with those of entity sys-
tems, as the entities in object-oriented design are immutable
of class over their lifetime. An object-oriented entity does not
change class during its lifetime in C++ because there is no
process by which to reconstruct a class in place in the lan-
guage. As can be expected, if you don’t have the right tools for
the job, a good workman works around it. Game developers
don’t change the type of their objects at runtime, instead, they
create new and destroy old in the case of a game entity that
needs this functionality. But as is often the case, because the
feature is not present in the language, it is underutilised even
when it would make sense.

For example, in a first-person shooter, an object will be
declared to represent the animating player mesh, but when
the player dies, a clone would be made to represent the dead
body as a rag doll. The animating player object may be made
invisible and moved to their next spawn point while the dead
body object with its different set of virtual functions, and dif-
ferent data, remains where the player died so as to let the
player watch their dead body. To achieve this sleight of hand,
where the dead body object sits in as a replacement for the
player once they are dead, copy constructors need to be de-
fined. When the player is spawned back into the game, the
player model will be made visible again, and if they wish to,
the player can go and visit their dead clone. This works re-
markably well, but it is a trick that would be unnecessary if
the player could become a dead rag doll rather than spawn a
clone of a different type. There is an inherent danger in this
too, the cloning could have bugs, and cause other issues, and
also if the player dies but somehow is allowed to resurrect,
then they have to find a way to convert the rag doll back into
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the animating player, and that is no simple feat.

Another example is in AI. The finite state machines and be-
haviour trees that run most game AI maintain all the data nec-
essary for all their potential states. If an AI has three states, {
Idle, Making-a-stand, Fleeing-in-terror } then it has the data
for all three states. If the Making-a-stand has a scared-points
accumulator for accounting their fear, so they can fight, but
only up until they are too scared to continue, and the Fleeing-
in-terror has a timer so they will flee, but only for a certain
time, then Idle will have these two unnecessary attributes as
well. In this trivial example, the AI class has three data en-
tries, { state, how-scared, flee-time }, and only one of these
data entries is used by all three states. If the AI could change
type when it transitioned from state to state, then it wouldn’t
even need the state member, as that functionality would be
covered by the virtual table pointer. The AI would only allo-
cate space for each of the state tracking members when in
the appropriate state. The best we can do in C++ is to fake it
by changing the virtual table pointer by hand, dangerous but
possible, or setting up a copy constructor for each possible
transition.

Apart from immutable type, object-oriented development
also has a philosophical problem. Consider how humans per-
ceive objects in real life. There is always a context to every
observation. The humble table, when you look at it, you may
see it to be a table with four legs, made of wood and mod-
estly polished. If so, you will see it as being a brown colour,
but you will also see the reflection of the light. You will see
the grain, but when you think about what colour it is, you
will think of it as being one colour. However, if you have the
training of an artist, you will know what you see is not what is
actually there. There is no solid colour, and if you are looking
at the table, you cannot see its precise shape, but only infer
it. If you are inferring it is brown by the average light colour
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entering your eye, then does it cease to be brown if you turn
off the light? What about if there is too much light and all
you can see is the reflection off the polished surface? If you
close one eye and look at its rectangular form from one of the
long sides, you will not see right angle corners, but instead, a
trapezium. We automatically adjust for this and classify ob-
jects when we see them. We apply our prejudices to them and
lock them down to make reasoning about them easier. This is
why object-oriented development is so appealing to us. How-
ever, what we find easy to consume as humans, is not optimal
for a computer. When we think about game entities being ob-
jects, we think about them as wholes. But a computer has
no concept of objects, and only sees objects as being badly
organised data and functions randomly called on it.

If you take another example from the table, consider the
table to have legs about three feet long. That’s someone’s
standard table. If the legs are only one foot long, it could
be considered to be a coffee table. Short, but still usable as a
place to throw the magazines and leave your cups. But when
you get down to one inch long legs, it’s no longer a table, but
instead, just a large piece of wood with some stubs stuck on
it. We can happily classify the same item but with different
dimensions into three distinct classes of object. Table, coffee
table, a lump of wood with some little bits of wood on it. But,
at what point does the lump of wood become a coffee table?
Is it somewhere between 4 and 8 inch long legs? This is the
same problem as presented about sand, when does it transi-
tion from grains of sand to a pile of sand? How many grains
are a pile, are a dune? The answer must be that there is no
answer. The answer is also helpful in understanding how a
computer thinks. It doesn’t know the specific difference be-
tween our human classifications because to a certain degree
even humans don’t.

The class of an object is poorly defined by what it is, but
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better by what it does. This is why duck typing is a strong
approach. We also realise, if a type is better defined by what
it can do, then when we get to the root of what a polymor-
phic type is, we find it is only polymorphic in terms of what
it can do. In C++, it’s clear a class with virtual functions can
be called as a runtime polymorphic instance, but it might
not have been clear that if it didn’t have those functions, it
would not need to be classified in the first place. The reason
multiple inheritance is useful stems from this. Multiple in-
heritance just means an object can behave, that is react, to
certain impulses. It has declared that it can fulfil some con-
tract of polymorphic function response. If polymorphism is
just the ability for an object to fulfil a functionality contract,
then we don’t need virtual calls to handle that every time, as
there are other ways to make code behave differently based
on the object.

In most games engines, the object-oriented approach leads
to a lot of objects in very deep hierarchies. A common ancestor
chain for an entity might be: PlayerEntity → CharacterEntity
→ MovingEntity → PhysicalEntity → Entity → Serialisable →
ReferenceCounted → Base.

These deep hierarchies virtually guarantee multiple indi-
rect calls when calling virtual methods, but they also cause a
lot of pain when it comes to cross-cutting code, that is code
that affects or is affected by unrelated concerns, or concerns
incongruous to the hierarchy. Consider a normal game with
characters moving around a scene. In the scene you will have
characters, the world, possibly some particle effects, lights,
some static and some dynamic. In this scene, all these things
need to be rendered, or used for rendering. The traditional ap-
proach is to use multiple inheritance or to make sure there
is a Renderable base class somewhere in every entity’s inher-
itance chain. But what about entities that make noises? Do
you add an audio emitter class as well? What about entities
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that are serialised vs those that are explicitly managed by the
level? What about those that are so common they need a
different memory manager (such as the particles), or those
that only optionally have to be rendered (like trash, flowers,
or grass in the distance). This has been solved numerous
times by putting all the most common functionality into the
core base class for everything in the game, with special ex-
ceptions for special circumstances, such as when the level
is animated, when a player character is in an intro or death
screen, or is a boss character (who is special and deserves a
little more code). These hacks are only necessary if you don’t
use multiple inheritance, but when you use multiple inheri-
tance you then start to weave a web that could ultimately end
up with virtual inheritance and the complexity of state that
brings with it. The compromise almost always turns out to be
some form of cosmic base class anti-pattern.

Object-oriented development is good at providing a human
oriented representation of the problem in the source code, but
bad at providing a machine representation of the solution. It
is bad at providing a framework for creating an optimal solu-
tion, so the question remains: why are game developers still
using object-oriented techniques to develop games? It’s possi-
ble it’s not about better design, but instead, making it easier
to change the code. It’s common knowledge that game de-
velopers are constantly changing code to match the natural
evolution of the design of the game, right up until launch.
Does object-oriented development provide a good way of mak-
ing maintenance and modification simpler or safer?

14.3 Internalised state

Claim: Encapsulation makes code more reusable. It’s easier to
modify the implementation without affecting the usage. Main-
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tenance and refactoring become easy, quick, and safe.

The idea behind encapsulation is to provide a contract to
the person using the code rather than providing a raw imple-
mentation. In theory, well written object-oriented code that
uses encapsulation is immune to damage caused by chang-
ing how an object manipulates its data. If all the code us-
ing the object complies with the contract and never directly
uses any of the data members without going through acces-
sor functions, then no matter what you change about how the
class fulfils that contract, there won’t be any new bugs intro-
duced by any change. In theory, the object implementation
can change in any way as long as the contract is not modified,
but only extended. This is the open closed principle. A class
should be open for extension, but closed for modification.

A contract is meant to provide some guarantees about how
a complex system works. In practice, only unit testing can
provide these guarantees.

Sometimes, programmers unwittingly rely on hidden fea-
tures of objects’ implementations. Sometimes the object they
rely on has a bug that just so happens to fit their use case.
If that bug is fixed, then the code using the object no longer
works as expected. The use of the contract, though it was
kept intact, has not helped the other piece of code to main-
tain working status across revisions. Instead, it provided false
hope that the returned values would not change. It doesn’t
even have to be a bug. Temporal couplings inside objects or
accidental or undocumented features that go away in later re-
visions can also damage the code using the contract without
breaking it.

Consider an implementation that maintained an internal
list in sorted order, and a use case that accidentally relied on
it (an unforeseen bug in the user’s use case, not an inten-
tional dependency), but when the maintainer pushes out a



14.3. INTERNALISED STATE 263

performance enhancing update, the only thing the users are
going to see is a pile of new bugs, and they will likely assume
the performance update is suspect, not their own code.

A concrete example could be an item manager that kept a
list of items sorted by name. If the function returns all the
item types that match a filter, then the caller could iterate
the returned list until it found the item it wanted. To speed
things up, it could early-out if it found an item with a name
later than the item it was looking for, or it could do a binary
search of the returned list. In both those cases, if the internal
representation changed to something that wasn’t ordered by
name, then the code would no longer work. If the internal
representation was changed so it was ordered by hash, then
the early-out and binary search would be completely broken.

In many linked list implementations, there is a decision
made about whether to store the length of the list or not. The
choice to store a count member will make multi-threaded ac-
cess slower, but the choice not to store it will make finding
the length of the list an O(n)operation. For situations where
you only want to find out whether the list is empty, if the ob-
ject contract only supplies a get count() function, you can-
not know for sure whether it would be cheaper to check if the
count was greater than zero, or check if the begin() and end()

are the same. This is another example of the contract being
too little information.

Encapsulation only seems to provide a way to hide bugs
and cause assumptions in programmers. There is an old
saying about assumptions, and encapsulation doesn’t let you
confirm or deny them unless you have access to the source
code. If you have, and you need to look at it to find out what
went wrong, then all the encapsulation has done is add an-
other layer to work around rather than add any useful func-
tionality of its own.
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14.4 Instance oriented development

Claim: Making every object an instance makes it very easy
to think about what an object’s responsibilities are, what its
lifetime looks like, and where it belongs in the world of objects.

The first problem with instance thinking is that everything
is centred around the idea of one item doing a thing, and that
is a sure way to lead to poor performance.

The second, and more pervasive issue with instance think-
ing is it leads to thinking in the abstract about instances, and
using full objects as building blocks for thought can lead to
very inefficient algorithms. When you hide the internal repre-
sentation of an item even from the programmer using it, you
often introduce issues of translation from one way of think-
ing about an object to another, and back again. Sometimes
you may have an item that needs to change another object,
but cannot reach it in the world it finds itself, so has to send
a message to its container to help it achieve the goal of an-
swering a question about another entity. Unfortunately, it’s
not uncommon for programs to lose sight of the data require-
ment along these routes, and send more than necessary in
the query, or in the response, carrying around not only un-
necessary permissions, but also unnecessary limitations due
to related system state.

As an example of how things can go wrong, imagine a city
building game where the population has happiness ratings.
If each individual citizen has a happiness rating, then they
will need to calculate that happiness rating. Let’s assume the
number of citizens isn’t grossly overwhelming, with maybe a
maximum of a thousand buildings and up to ten citizens per
building. If we only calculate the happiness of the citizens
when necessary, it will speed things up, and in at least one
game where these numbers are similar, lazy evaluation of the
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citizen happiness was the way things were done. How the
happiness is calculated can be an issue if it is worked out
from the perspective of the individual, rather than the per-
spective of the city. If a citizen is happy when they are close
to work, close to local amenities, far from industrial locations,
and able to get to recreational areas easily, then a lot of the
happiness rating comes from a kind of pathfinding. If the
result of pathfinding is cached, then at least the citizens in
the same building can benefit, but every building will have
small differences in distances to each of the different types of
building. Running pathfinding over that many instances is
very expensive.

If instead, the city calculates happiness, it can build a map
of distances from each of the types of building under consid-
eration as a flood fill pass and create a general distance map
of the whole city using a Floyd-Warshall algorithm to help cit-
izens decide on how close their places of work are. Normally,
substituting an O(n3)algorithm for an O(n2)could be seen as
silly, but the pathfinding is being done for each citizen, so
becomes O(n2m) and is not in fact algorithmically superior.
Finally, this is the real world, and doing the pathing itself has
other overheads, and running the Floyd-Warshall algorithm
to generate a lookup before calculating happiness means the
work to calculate happiness can be simpler (in data storage
terms), and require fewer branches off into supporting code.
The Floyd-Warshall algorithm can also have a partial update
run upon it, using the existing map to indicate which items
need to be updated. If running from the instance point of
view, knowing a change to the topology or the type of build-
ings nearby would require doing some form of distance check
per instance.

In conclusion, abstractions form the basis of solving diffi-
cult problems, but in games, we’re often not solving difficult
algorithmic problems at a gameplay level. To the contrary, we
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have a tendency to abstract too early, and object-oriented de-
sign often gives us an easy and recognisable way to commit to
abstractions without rendering the costs apparent until much
later, when we have become too dependent upon them to clear
them away without impacting other code.

14.5 Hierarchical design vs change

Claim: Inheritance allows reuse of code by extension. Adding
new features is simple.

Inheritance was seen as a major reason to use classes in
C++ by game programmers. The obvious benefit was being
able to inherit from multiple interfaces to gain attributes or
agency in system objects such as physics, animation, and ren-
dering. In the early days of C++ adoption, the hierarchies were
shallow, not usually going much more than three layers deep,
but later it became commonplace to find more than nine lev-
els of ancestors in central classes such as that of the player,
their vehicles, or the AI players. For example, in Unreal Tour-
nament, the minigun ammo object had this:

Miniammo→ TournamentAmmo→ Ammo→ Pickup→ In-
ventory → Actor → Object

Game developers use inheritance to provide a robust way
to implement polymorphism in games, where many game en-
tities can be updated, rendered, or queried en-mass, without
any hand coded checking of type. They also appreciate the re-
duced copy-pasting, because inheriting from a class also adds
functionality to a class. This early form of mix-ins was seen to
reduce errors in coding as there were often times where bugs
only existed because a programmer had fixed a bug in one
place, but not all of them. Gradually, multiple inheritance
faded into interfaces only, the practice of only inheriting from
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1 class A {

2 virtual void foo( int bar = 5 ) { cout << bar; }

3 };

4 class B : public A {

5 void foo( int bar = 7 ) { cout << bar * 2; }

6 };

7 int main( int argc , char *argv[] ) {

8 A *a = new B;

9 a->foo();

10 return 0;

11 }

Listing 14.2: Runtime, compile-time, or link-time?

one real class, and any others had to be pure virtual interface
classes as per the Java definition.

Although it seems like inheriting from class to extend its
functionality is safe, there are many circumstances where
classes don’t quite behave as expected when methods are over-
ridden. To extend a class, it is often necessary to read the
source, not just of the class you’re inheriting, but also the
classes it inherits too. If a base class creates a pure vir-
tual method, then it forces the child class to implement that
method. If this was for a good reason, then that should be
enforced, but you cannot enforce that every inheriting class
implements this method, only the first instantiable class in-
heriting it. This can lead to obscure bugs where a new class
sometimes acts or is treated like the class it is inheriting from.

A feature missing from C++ also is the idea of being non-
virtual. You cannot declare a function as not being virtual.
That is, you can define that a function is an override, but you
cannot declare that it is not an override. This can cause is-
sues when common words are used, and a new virtual method
is brought into existence. If it overlaps extant functions with
the same signature, then you likely have a bug.

Another pitfall of inheritance in C++ comes in the form of
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runtime versus compile time linking. A good example is de-
fault arguments on method calls and badly understood over-
riding rules. What would you expect the output of the pro-
gram in listing 14.2 to be?

Would you be surprised to find out it reported a value of
10? Some code relies on the compiled state, some on run-
time. Adding new functionality to a class by extending it
can quickly become a dangerous game as classes from two
layers down can cause coupling side effects, throw excep-
tions (or worse, not throw an exception and quietly fail), cir-
cumvent your changes, or possibly just make it impossible to
implement your feature as they might already be taking up
the namespace or have some other incompatibility with your
plans, such as requiring a certain alignment or need to be in
a certain bank of ram.

Inheritance does provide a clean way of implementing run-
time polymorphism, but it’s not the only way as we saw earlier.
Adding a new feature by inheritance requires revisiting the
base class, providing a default implementation, or a pure vir-
tual, then providing implementations for all the classes that
need to handle the new feature. This requires modification to
the base class, and possible touching all of the child classes
if the pure virtual route is taken. So even though the com-
piler can help you find all the places where the code needs to
change, it has not made it significantly easier to change the
code.

Using a type member instead of a virtual table pointer can
give you the same runtime code linking, could be better for
cache misses, and could be easier to add new features and
reason about because it has less baggage when it comes to
implementing those new features, provides a very simple way
to mix and match capabilities compared to inheritance, and
keeps the polymorphic code in one place. For example, in
the fake virtual function go-forward, the class Car will step
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on the gas. In the class Person, it will set the direction vec-
tor. In the class UFO, it will also just set the direction vector.
This sounds like a job for a switch statement fall through.
In the fake virtual function re-fuel, the class Car and UFO
will start a re-fuel timer and remain stationary while their
fuelling-up animations play, whereas the Person class could
just reduce their stamina-potion count and be instantly refu-
elled. Again, a switch statement with fall through provides all
the runtime polymorphism you need, but you don’t need to
multiple inherit in order to provide different functionality on
a per class per function level. Being able to pick what each
method does in a class is not something inheritance is good
at, but it is something desirable, and non inheritance based
polymorphism does allow it.

The original reason for using inheritance was that you
would not need to revisit the base class, or change any of the
existing code in order to extend and add functionality to the
codebase, however, it is highly likely you will at least need to
view the base class implementation, and with changing spec-
ifications in games, it’s also quite common to need changes at
the base class level. Inheritance also inhibits certain types of
analysis by locking people into thinking of objects as having
IS-A relationships with the other object types in the game.
A lot of flexibility is lost when a programmer is locked out
of conceptualising objects as being combinations of features.
Reducing multiple inheritance to interfaces, though helping
to reduce the code complexity, has drawn a veil over the one
good way of building up classes as compound objects. Al-
though not a good solution in itself as it still abuses the cache,
a switch on type seems to offer similar functionality to virtual
tables without some of the associated baggage. So why put
things in classes?
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14.6 Divisions of labour

Claim: Modular architecture for reduced coupling and better
testing

The object-oriented paradigm is seen as another tool in
the kit when it comes to ensuring quality of code. Strictly
adhering to the open closed principle, always using acces-
sors, methods, and inheritance to use or extend objects, pro-
grammers write significantly more modular code than they do
if programming from a purely procedural perspective. This
modularity separates each object’s code into units. These
units are collections of all the data and methods that act upon
the data. It has been written about many times that testing
objects is simpler because each object can be tested in isola-
tion.

However, we know it to be untrue, due to data being linked
together by purpose, and purposes being linked together by
data in a long chain of accidental relationships.

Object-oriented design suffers from the problem of errors
in communication. Objects are not systems, and systems
need to be tested, and systems comprise of not only objects,
but their inherent communication. The communication of ob-
jects is difficult to test because in practice it is hard to iso-
late the interactions between classes. Object-oriented devel-
opment leads to an object-oriented view of the system which
makes it hard to isolate non-objects such as data transforms,
communication, and temporal coupling.

Modular architecture is good because it limits the poten-
tial damage caused by changes, but just like encapsulation
before, the contract to any module has to be unambiguous so
as to reduce the chance of external reliance on unintended
side effects of the implementation.
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The reason object-oriented modular approach doesn’t work
as well is that the modules are defined by object boundary,
not by a higher level concept. Good examples of modularity
include stdio’s FILE, the CRT’s malloc/free, The NvTriStrip
library’s GenerateStrips. Each of these provides a solid,
documented, narrow set of functions to access functionality
that could otherwise be overwhelming and difficult to reason
about.

Modularity in object-oriented development can offer pro-
tection from other programmers who don’t understand the
code. But why is a programmer that doesn’t understand the
code going to be safe even using a trivialised and simplified in-
terface? An object’s methods are often the instruction manual
for an object in the eyes of someone new to the code, so writing
all the important manipulation methods in one block can give
clues to anyone using the class. The modularity is important
here because game development objects are regularly large,
offering a lot of functionality spread across their many differ-
ent aspects. Rather than find a way to address cross-cutting
concerns, game objects tend to fulfil all requirements rather
than restrict themselves to their original design. Because of
this bloating, the modular approach, that is, collecting meth-
ods by their concern in the source, can be beneficial to pro-
grammers coming at the object fresh. The obvious way to fix
this would be to use a paradigm that supports cross-cutting
concerns at a more fundamental level, but object-oriented de-
velopment in C++ seems to be inefficient at representing this
in code.

If object-oriented development doesn’t increase modular-
ity in such a way as it provides better results than explicitly
modularising code, then what does it offer?
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14.7 Reusable generic code

Claim: Faster development time through reuse of generic code

It is regarded as one of the holy grails of development to be
able to consistently reduce development overhead by reusing
old code. In order to stop wasting any of the investment in
time and effort, it’s been assumed it will be possible to put
together an application from existing code and only have to
write some minor new features. The unfortunate truth is any
interesting new features you want to add will probably be in-
compatible with your old code and old way of laying out your
data, and you will need to either rewrite the old code to allow
for the new feature, or rewrite the old code to allow for the
new data layout. If a software project can be built from exist-
ing solutions, from objects invented to provide features for an
old project, then it’s probably not very complex. Any project of
significant complexity includes hundreds if not thousands of
special case objects that provide all particular needs of that
project. For example, the vast majority of games will have
a player class, but almost none share a common core set of
attributes. Is there a world position member in a game of
poker? Is there a hit point count member in the player of a
racing game? Does the player have a gamer tag in a purely of-
fline game? Having a generic class that can be reused doesn’t
make the game easier to create, all it does is move the spe-
cialisation into somewhere else. Some game toolkits do this
by allowing script to extend the basic classes. Some game
engines limit the gameplay to a certain genre and allow ex-
tension away from that through data-driven means. No one
has so far created a game API, because to do so, it would have
to be so generic it wouldn’t provide anything more than what
we already have with our languages we use for development.

Reuse, being hankered after by production, and thought
of so highly by anyone without much experience in making
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games, has become an end in itself for many game develop-
ers. The pitfall of generics is a focus on keeping a class generic
enough to be reused or re-purposed without thought as to
why, or how. The first, the why, is a major stumbling block
and needs to be taught out of developers as quickly as pos-
sible. Making something generic, for the sake of generality,
is not a valid goal. Making something generic in the first in-
stance adds time to development without adding value. Some
developers would cite this as short-sighted, however, it is the
how that deflates this argument. How do you generalise a
class if you only use it in one place? The implementation of
a class is testable only so far as it can be tested, and if you
only use a class in one place, you can only test that it works
in one situation. The quality of a class’s reusability is inher-
ently untestable until there is something to reuse it, and the
general rule of thumb is that it’s not reusable unless there
are at least three things using it. If you then generalise the
class, yet don’t have any other test cases than the first situ-
ation, then all you can test is that you didn’t break the class
when generalising it. So, if you cannot guarantee that the
class works for other types or situations, all you have done
by generalising the class is added more code for bugs to hide
in. The resultant bugs are now hidden in code that works,
possibly even tested in its isolation, which means any bugs
introduced during this generalising have been stamped and
approved, and are now trusted.

Test-driven development implicitly denies generic coding
until the point where it is a good choice to do so. The only
time when it is a good choice to move code to a more generic
state, is when it reduces redundancy through reuse of com-
mon functionality.

Generic code has to fulfil more than just a basic set of
features if it is to be used in many situations. If you write
a templated array container, access to the array through the
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square bracket operators would be considered a basic feature,
but you will also want to write iterators for it and possibly add
an insert routine to take the headache out of shuffling the ar-
ray up in memory. Little bugs can creep in if you rewrite these
functions whenever you need them, and linked lists are no-
torious for having bugs in quick and dirty implementations.
To be fit for use by all users, any generic container should
provide a full set of methods for manipulation, and the STL
does that. There are hundreds of different functions to un-
derstand before you can be considered an STL-expert, and
you have to be an STL-expert before you can be sure you’re
writing efficient code with the STL. There is a large amount
of documentation available for the various implementations
of the STL. Most of the implementations of the STL are very
similar if not functionally the same. Even so, it can take some
time for a programmer to become a valuable STL programmer
due to this need to learn another language. The program-
mer has to learn a new language, the language of the STL,
with its own nouns verbs and adjectives. To limit this, many
games companies have a much reduced feature set reinter-
pretation of the STL that optionally provides better memory
handling (because of the awkward hardware), more choice for
the containers (so you may choose a hash-map, trie, or b-tree
directly, rather than just a map), or explicit implementations
of simpler containers such as stack or singly linked lists and
their intrusive brethren. These libraries are normally smaller
in scope and are therefore easier to learn and hack than the
STL variants, but they still need to be learnt and that takes
some time. In the past this was a good compromise, but now
the STL has extensive online documentation, there is no ex-
cuse not to use the STL except where memory overhead is
very intrusive, such as in the embedded space where main
memory is measured in kilobytes, or where compilation time
is of massive concern4.

4The STL is large, but not as large as some OS headers, so fight the right
battle first
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The takeaway from this, however, is that generic code still
needs to be learnt in order for the coder to be efficient, or
not cause accidental performance bottlenecks. If you go with
the STL, then at least you have a lot of documentation on
your side. If your game company implements an amazingly
complex template library, don’t expect any coders to use it
until they’ve had enough time to learn it, and that means,
if you write generic code, expect people to not use it unless
they come across it accidentally, or have been explicitly told
to, as they won’t know it’s there, or won’t trust it. In other
words, starting out by writing generic code is a good way to
write a lot of code quickly without adding any value to your
development.
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Chapter 15

Looking at hardware

The first thing a software engineer does when starting work on
a new platform is to read the contents listings of all the hard-
ware manuals they have access to. The second thing they
usually do is try to get hello world up and running. It’s un-
common for a game development software engineer to read
all the documentation available. The return on investment
doesn’t generally look good. It usually turns out to be a valid
call, as when it comes to developing a game, the amount of
times you need that information is normally quite small, and
by the time you need that information, you will likely have for-
gotten about it if you read it all up front. Software developers
optimise their workload, even down to how much they learn in
order to do their work. This isn’t just game developers either,
it’s anyone working as a programmer now, as the CPUs and
GPUs are too complex, or are black boxes to the developers, or
don’t exist in some cases, as the hardware is undocumented
or the platform you are working on really is an abstraction,
such as Javascript.

When developers read the manuals, they will be reading

277
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them out of necessity, and they will be taking them literally,
and possibly not getting all the implied information. When it
comes to understanding hardware, there are the theoretical
restrictions implied by the comments and data sheets in the
manuals, but there are also the practical restrictions which
can only be found through working with the hardware at an
intimate level.

As most of the contemporary hardware is now API driven,
with hardware manuals only being presented to the engineers
responsible for graphics, audio, and media subsystems, it’s
tempting to start programming on a new piece of hardware
without thinking about the hardware at all. Most program-
mers working on big games in big studios don’t really know
what’s going on at the lower levels of the game engines they’re
working with, and to some extent that’s probably good as it
frees their mind to write more code, but there comes a point
in every developer’s life when they have to bite the bullet and
find out why their code is slow. Someday you’re going to be
five weeks from shipping and need to claw back five frames
a second on one level of the game which has been optimised
in every other area other than yours. When that day comes,
you’d better know why your code is slow, and to do that, you
have to have data and know what the hardware is doing when
it’s executing your code.

Some of the issues surrounding code performance are rele-
vant to all hardware configurations. Some are only pertinent
to configurations that have caches, or do write combining,
or have branch prediction, but some hardware configurations
have very special restrictions which can cause odd, but simple
to fix performance glitches caused by decisions made during
the chip’s design process. These glitches are the gotchas of
the hardware, and as such, need to be learnt in order to be
avoided.

When it comes to the overall design of console CPUs, the
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vendors needed to make decisions about what to include. The
XBox360 and the PS3 were RISC based, had low memory
speed, but were multi-core machines. These machines had a
set of considerations that remained somewhat misunderstood
by mainstream game developers right up to the end of their
lives. The current, and possibly future console generations
are now based on the Intel CPU instruction set, and there-
fore also, the Intel approach to CPU layout. Understanding
how your target device differs from the laptop or desktop x86
machines on which most programmers start their develop-
ment life can be highly illuminating. Bedroom programmers
aren’t so much a thing these days, but even those program-
mers usually have access to mobile hardware, which gives
them a taste of the difference between development hardware
and target platform, both in power and in how they interact
with the device. The future generations of consoles and other
devices may change the hardware considerations again, but
understanding that you need to consider the hardware can
sometimes only be learned by looking at historical data.

15.1 Sequential data

When you process your data in a sequence, you have a much
higher chance of a cache hit on reading in the data as it’s
often possible to predict loads. Making all your calculations
run from and write to sequential data not only helps hardware
with caches for reading but also when using hardware that
does write combining, which is most hardware at the time of
writing.

In theory, if you’re reading one byte at a time to do some-
thing, then you can almost guarantee the next byte will al-
ready be in cache the next 63 times you look. For a list of
floats, it works out as one memory load for 16 values. If you
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have an animation with less than 16 keys per bone, then you
can guarantee you will only need to load as many cache lines
as you have bones in order to find all the key indexes into your
arrays of transforms.

In practice, you will find this only applies if the process
you run doesn’t load in lots of other data to help process your
stream. That’s not to say that trying to organise your data
sequentially isn’t important, but it’s just as important to en-
sure the data being accessed is being accessed in patterns
which allow the processors to leverage the benefits of that
form. There is no point in making data sequential if all you are
going to do is use it so slowly that the cache fills up between
reads.

Sequential and independent data is also easier to split
among different processors as there is little to no chance of
evictions due to cache sharing. When your data is stored
sequentially, rather than randomly, you know where in mem-
ory the data is, and so you can dispatch tasks to work on
guaranteed unshared cache lines.

When multiple CPU cores compete to write to a particular
cache line, the cache mechanism has to handle keeping the
data consistent amongst all the cores. This is where a lot of
people would refer to the dreaded cache-flush, but the cache-
flush is a fallacy. What really happens is hardware dependent,
but generally, the cache circuitry has to maintain coherence,
so will have to do some heavy lifting to keep CPUs that write
and read from the same lines all working without a broken
memory model. Keeping things consistent is a big job and
can cause calls out to main memory. If the data is randomly
placed, such as when you allocate from a memory pool, or
directly from the heap, you cannot be sure what order the data
is in and can’t even guarantee you’re not asking two different
CPUs to work on the same cache line of data. It’s unlikely, but
as we move to very large numbers of CPUs, that probability
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looks more like certainty.

The data-oriented approach, even when you don’t use
structs of arrays, still maintains that sequential data is bet-
ter than random allocations. Not only is it good for the hard-
ware, it’s good for simplicity of code as it generally promotes
transforms rather than object-oriented messaging.

15.2 Deep pipes

CPUs execute instructions in pipelines. This is true of all
processors, however, the number of stages differs wildly.
For game developers, it’s important to remember that the
pipelined execution model affects all the CPUs they work on,
from the current generation of consoles such as Sony’s PS4
and Microsoft’s XBOX ONE, but also to handhelds such as the
Nintendo 3DS, the iPhones and Androids, and other devices.

Pipelines provide a way for CPUs to trade gains in speed
for latency and branch penalties. A non-pipelined CPU fin-
ishes every instruction before it begins the next, however, a
pipelined CPU starts instructions and doesn’t necessarily fin-
ish them until many cycles later.

You will find many CPUs will do a lot of work out of order
if they can, and the possibility of doing things out of order is
something worth striving for. Consider the well-known evil of
a linked list. The reason why the linked list is worse than an
array for lookups isn’t just to do with all the jumping around
in memory, but also the fact that it cannot start work on items
many steps ahead. If it was all about jumping around in mem-
ory, then an array of pointers to objects would also be around
the same cost, but in tests, it’s shown that when accessing
an array versus a linked list, the array of pointers to objects
comes out closer to the array for performance than you would
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expect if it was the mere pointer dereferencing that was the
cost. Instead, the cost stems from the fact that the next ele-
ment cannot be deduced without loading in the current ele-
ment. That is where the true cost lies. In the source code for
linked lists 16.2, the array lookup is clearly the fastest, but on
some hardware, the array of pointers approach, which offers
some of the benefits of a linked list, cuts the time to process
by more than 20%.

i5-4430 @ 3.00GHz

Average 24.35ms [Linked List Sum]

Average 19.03ms [Pointer Array Sum]

Average 4.37ms [Array Sum]

If you imagine a CPU as a factory, the idea is the equivalent
of the production line, where each worker has one job, rather
than each worker seeing and working on a product from start
to finish. A CPU is better able to process more data faster this
way because by increasing the latency, in well thought out
programs, you only add a few cycles to any processing dur-
ing prologue or epilogue. During the transform, latency can
be mitigated by doing more work on non-related data while
waiting for any dependencies. Because the CPUs have to do
a lot less per cycle, the cycles take less time, which is what
allows CPUs to get faster. What’s happening is that it still
takes just as long for a CPU to do an operation as it always
has (give or take), but because the operation is split up into a
lot of smaller stages, it is possible to do a lot more operations
per second as all of the separate stages can operate in paral-
lel, and any efficient code concentrates on doing this after all
other optimisations have been made.

When pipelining, the CPU consists of a number of stages,
firstly the fetch and decode stages, which in some hardware
are the same stage, then an execute stage which does the
actual calculation. This stage can take multiple cycles, but as
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long as the CPU has all the cycles covered by stages, it won’t
affect throughput. The CPU then finally stores the result in
the last stage, dropping the value back into the output register
or memory location.

With instructions having many stages, it can take many
cycles for them to complete, but because only one part of the
instruction is in use at each stage, a new instruction can be
loaded as soon as the first instruction has got to the second
stage. This pipelining allows us to issue many more instruc-
tions than we could otherwise, even though each instruc-
tion might have higher latency. This also saves on transistor
count, as more transistors are being used at any one time.
There is less waste. In the beginning, the main reason for this
was that the circuits would take a certain amount of time to
stabilise. Logic gates, in practice, don’t immediately switch
from one logic state to another. If you add in noise, reso-
nance, and manufacturing error, you can begin to see that
CPUs would have to wait quite a while between cycles, mas-
sively reducing the CPU frequency. This is why FPGAs cannot
easily run at GHz speeds, they are arrays of flexible gate sys-
tems, which means they suffer the most from stability prob-
lems, but amplified by the gates being located a long way from
each other, in the sense that they are not physically close like
logic circuits are inside an inflexible ASIC or production CPU.

Pipelines require that the instructions are ready. This can
be problematic if the data the instruction is waiting on is not
ready, or if the instruction is not loaded. If there is anything
stopping the instruction from being issued it can cause a stall,
or in the case of branching causing the instructions to be run,
then trashed as the pipeline is flushed ready to begin pro-
cessing the correct branch. If the instruction pointer is deter-
mined by some data value, it can mean a long wait while the
next instruction is loaded from main memory. If the next in-
struction is based on a conditional branch, then the branch
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has to wait on the condition, thus causing a number of in-
structions to begin processing when the branch could invali-
date all the work done so far. As well as instructions needing
to be nearby, the registers must already be populated, other-
wise, something will have to wait.

15.3 Microcode: virtually function calls.

Current hardware doesn’t suffer from these issues, but some-
thing like it may come up again in the future, so it’s included
for posterity. It affected the generation of hardware in which
data-oriented design got its name, and there may be new
hardware with similar issues coming that we aren’t aware,
but it’s unlikely, as hardware vendors appear to be acting with
more caution.

To get around the limitations implicit in trying to increase
throughput, some instructions on RISC chips weren’t really
there. Instead, these virtual instructions were like function
calls, calls to macros that run a sequence of instructions.
These instructions were said to be microcoded, and in order
to run, they often need to commandeer the CPU for their en-
tire duration to maintain atomicity. Some functions were mi-
crocoded due to their infrequent use or relative cost to imple-
ment as an intrinsic instruction, some because of the spec,
and some because they don’t fit well with the pipelined ex-
ecution model. In all of these cases, a microcoded instruc-
tion caused a gap, called a bubble, in the pipeline, and that
was wasted execution time. In almost all cases, these mi-
crocoded instructions could be avoided, sometimes by chang-
ing command line parameters, sometimes by adjusting how
you solve a problem and sometimes by changing the problem
completely.
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15.4 Single Instruction Multiple Data

There are no current generation consoles that don’t have
SIMD of some sort. All commodity hardware now has some
kind of vector unit, and to some extent, as long as you work
within your boundaries, even hardware that doesn’t have
SIMD instructions, such as embedded microcontrollers, can
operate on multiple data. The idea behind SIMD is simple:
issue one command, and manipulate multiple pieces of data
in the same way at the same time. The most commonly ref-
erenced implementation of this is the vector units inherent
in all current generation hardware. With Intel CPUs, this is
the SSE and AVX instruction sets. In the XBox360 and PS3,
the AltiVec instructions on PPC, and the SPU instruction
set contained many instructions that operated on multiple
pieces of data at the same time, sometimes doing asymmet-
ric operations such as rotating, splatting, or reconfiguring
the vectors. On even older machines or simple machines
such as microcontrollers, the explicit instructions may not
exist, but in the world of bitwise logic, we’ve always had some
SIMD instructions hanging around as all the bitwise ops run
over multiple elements in a bit field of whatever native word
length. Consider some of the winners of the quickest bit
counting routines. My favourite is the purely SIMD style bit
counter given in listing 15.1.

The sad thing is, these days, most compilers will build you
a better bit counter if you write your code the dumb way, as on
some CPUs there are instructions to count bits, which leaves
all your clever code wasting time, while also being impenetra-
ble to read. In this case, be aware of your target hardware,
and the capabilities of your compiler, as you might be shooting
yourself in the foot.

So, look to your types, and see if you can add a bit of SIMD
to your development without even breaking out the vector in-
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1 uint32_t CountBitsClever( uint32_t v ) {

2 v = v - ((v >> 1) & 0x55555555); // reuse

input as temporary

3 v = (v & 0x33333333) + ((v >> 2) & 0x33333333); // temp

4 c = ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; // count

5 return c;

6 }

7

8 uint32_t CountBitsDumb( uint32_t in ) {

9 uint32_t numBits = 0;

10 while( in ) {

11 numBits += 1;

12 in &= in -1;

13 }

14 return numBits;

15 }

Listing 15.1: Counting bits functions

trinsics. Sometimes the compiler will beat you, other times
you can beat it. Start simple, find performance issues, use
your tools.

15.5 Predictable instructions

The biggest crime to commit in a deeply pipelined core is to
tell it to do loads of instructions, then once it’s almost done,
change your mind and start on something completely differ-
ent. This heinous crime is all too common, with control flow
instructions doing just that when they’re hard to predict, or
impossible to predict in the case of entirely random data, or
where the data pattern is known, but the architecture doesn’t
support that kind of pattern of branch predictions.

Most branch predictors will work great if you can provide
a 99% chance of the branch being taken the same way as last
time.
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15.6 How your hardware actually works

The hardware you work on is what you work on. Whatever
programming language you are using, the language is not the
platform you are programming for. You do not run code on
C++, you don’t even run code on a Java Virtual Machine. The
JVM is running on hardware, and being aware of the hard-
ware will help you decide how to access your data.

Even in languages very far removed from the hardware,
such as Python, considering the size of the cache, and what
memory must be accessed to fulfil an operation, will help you
formulate ideas to attempt in optimisation passes.

Your hardware doesn’t just include your CPU. It also in-
cludes your hard drives, flash ram, network card, input de-
vices and output devices. If you cannot handle the full pay-
load of a motion controller, and end up sending choppy or
incomplete data to a gesture recognition module, you’re going
to create a worse user experience than your competitor.

Learn how your hardware really works, how big each cache
is, what would cause memory to be dropped to disk, how long
it takes to send data to another machine, how many hops on
your protocol. Learn about the speed that information can,
and must flow, for the user experience to be within tolerances.

In VR, these tolerances are tight, in web development, less
so, but as mentioned in chapter 8 there is evidence to suggest
that 100ms increase in page load times can amount to a very
significant drop in sales. If every millisecond counts, why
aren’t you counting them?

In 2018, on a lot of CPUs, your lowest level cache is 32kb
for data, 32kb for instructions. For mobile, you can estimate
16kb for each. On some other CPUs, the cache is shared.
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The next levels up vary considerably, but generally bump to
256kb, then 4mb or more. The largest and fastest CPUs do
tend to have the largest caches, and the top of the range i9
series from Intel has over 20MB of cache in much of their
offering.



Chapter 16

Sourcecode

In many academic texts, the sourcecode is hard to find, or just
not available. In this book, much of the source is provided.
You can get a copy of the full source from GitHub, or rebuild
the tests yourself from the snippets provided in this chapter.
I have tried to not waste pages with any of the unnecessary
boilerplate that is required to run the tests, and include only
the code that is different in each of the sources. In effect,
providing you with what was meant to be tested in the first
place.

https://github.com/raspofabs/dodbooksourcecode
This repository contains the tests performed, the supporting
code, and the testing harness.

16.1 The basics

In this source, the idea is to test some of the straight forward
cases such as memory accesses in different patterns.

289

https://github.com/raspofabs/dodbooksourcecode
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1 void TestSummingSimple () {
2 int sum = 0;
3 for( int i = 0; i < ELEMENT_COUNT; ++i ) {
4 sum += a[i];
5 }
6 }
7 void TestSummingBackwards () {
8 int sum = 0;
9 for( int i = ELEMENT_COUNT -1; i >= 0; --i ) {

10 sum += b[i];
11 }
12 }
13 void TestSummingStrides () {
14 int sum = 0;
15 const int STRIDE = 16;
16 for( int offset = 0; offset < STRIDE; offset += 1 ) {
17 for( int i = offset; i < ELEMENT_COUNT; i += STRIDE ) {
18 sum += a[i];
19 }
20 }
21 }
22 template <int byte_limit >
23 void TestWriteRangeLimited () {
24 int mask = (byte_limit / sizeof( c[0] )) -1;
25 for( int i = 0; i != ELEMENT_COUNT *16; i+= 16 ) {
26 c[i&mask] = i;
27 }
28 }
29 void TestWriteSimple () {
30 for( int i = 0; i != ELEMENT_COUNT; ++i ) {
31 c[i] = i;
32 }
33 }
34 void TestWriteBackwards () {
35 for( int i = ELEMENT_COUNT -1; i >= 0; --i ) {
36 c[i] = i;
37 }
38 }
39 void TestWriteStrides () {
40 const int STRIDE = 16;
41 for( int offset = 0; offset < STRIDE; offset += 1 ) {
42 for( int i = offset; i < ELEMENT_COUNT; i += STRIDE ) {
43 c[i] = i;
44 }
45 }
46 }
47 void TestSimpleCopy () {
48 for( int i = 0; i < ELEMENT_COUNT; ++i ) {
49 c[i] = a[i];
50 }
51 }
52 void TestMultiRead () {
53 for( int i = 0; i < ELEMENT_COUNT; ++i ) {
54 c[i] = a[i] + b[i];
55 }
56 }
57 void TestMultiWrite () {
58 for( int i = 0; i < ELEMENT_COUNT; ++i ) {
59 c[i] = a[i];
60 d[i] = a[i];
61 }
62 }
63 void TestMultiBoth () {
64 for( int i = 0; i < ELEMENT_COUNT; ++i ) {
65 c[i] = a[i] + b[i];
66 d[i] = a[i] - b[i];
67 }
68 }
69
70 void TestWriteAndModifyPaired () {
71 for( int i = 0; i < ELEMENT_COUNT; i+=2 ) {
72 c[i] = c[i] + b[i];
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73 c[i+1] = b[i];
74 }
75 }
76 void TestWriteAndModifySeparate () {
77 const int HALF_ELEMENT_COUNT = ELEMENT_COUNT / 2;
78 for( int i = 0; i < HALF_ELEMENT_COUNT; ++i ) {
79 c[i] = c[i] + b[i];
80 c[i+HALF_ELEMENT_COUNT] = b[i];
81 }
82 }

Listing 16.1: Basic theory

16.2 Linked lists

In this source, the idea is to test and prove that linked lists
cost more than arrays because of the way they need memory
loads to continue their work, as opposed to just being slow
because of memory access.

1 struct A {
2 int val;
3 int pad1;
4 int pad2;
5 int pad3;
6 };
7 struct Alink {
8 Alink *next;
9 int val;

10 int pad1;
11 int pad2;
12 int pad3;
13 };
14
15 A *aArray;
16 A ** aPointerArray;
17 Alink *aLinkedList;
18
19 const int ELEMENT_COUNT = 4 * 1024 * 1024;
20
21 void TestSumArray () {
22 int accumulator = 0;
23 for( int i = 0; i < ELEMENT_COUNT; i+=1 ) {
24 accumulator += aArray[i].val;
25 }
26 }
27 void TestSumArrayPointer () {
28 int accumulator = 0;
29 for( int i = 0; i < ELEMENT_COUNT; i+=1 ) {
30 accumulator += aPointerArray[i]->val;
31 }
32 }
33 void TestSumLinkedList () {
34 int accumulator = 0;
35 Alink *link = aLinkedList;
36 while( link != nullptr ) {
37 accumulator += link ->val;
38 link = link ->next;
39 }
40 }
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Listing 16.2: Linked Lists

16.3 Branch prediction

In this source, we’re looking for the effect of branch prediction.

1 // a1 and b1 are random.
2 // a2 and b2 are paired the same , but are sorted by the values in

a2
3
4 void TrivialRandomBranching () {
5 int sum =0;
6 for (int i = 0; i < ELEMENT_COUNT; i++) {
7 if( a1[i] > 128 ) {
8 sum += b1[i];
9 }

10 }
11 output_buffer = sum;
12 }
13 void TrivialSortedBranching () {
14 int sum =0;
15 for (int i = 0; i < ELEMENT_COUNT; i++) {
16 if( a2[i] > 128 ) {
17 sum += b2[i];
18 }
19 }
20 output_buffer = sum;
21 }
22 void RealisticRandomBranching () {
23 int sum =0;
24 for (int i = 0; i < ELEMENT_COUNT; i++) {
25 if( a1[i] > 128 ) {
26 sum += CalculateForHigh( a1[i], b1[i] );
27 } else {
28 sum += CalculateForLow( a1[i], b1[i] );
29 }
30 }
31 output_buffer = sum;
32 }
33 void RealisticSortedBranching () {
34 int sum =0;
35 for (int i = 0; i < ELEMENT_COUNT; i++) {
36 if( a2[i] > 128 ) {
37 sum += CalculateForHigh( a2[i], b2[i] );
38 } else {
39 sum += CalculateForLow( a2[i], b2[i] );
40 }
41 }
42 output_buffer = sum;
43 }

Listing 16.3: Branch prediction
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16.4 Cache size effect

In this source, we’re looking for how the size of the working
set hits the size of the cache.

1 void TestSummingSimple () {
2 int sum = 0;
3 for( int i = 0; i < ELEMENT_COUNT; ++i ) {
4 sum += a[i];
5 }
6 }
7 void TestSummingBackwards () {
8 int sum = 0;
9 for( int i = ELEMENT_COUNT -1; i >= 0; --i ) {

10 sum += a[i];
11 }
12 }
13 void TestSummingStrides () {
14 int sum = 0;
15 const int STRIDE = 16;
16 for( int offset = 0; offset < STRIDE; offset += 1 ) {
17 for( int i = offset; i < ELEMENT_COUNT; i += STRIDE ) {
18 sum += a[i];
19 }
20 }
21 }
22 template <int byte_limit >
23 void TestWriteRangeLimited () {
24 int mask = (byte_limit / sizeof( c[0] )) -1;
25 for( int i = 0; i < ELEMENT_COUNT *16; i+= 16 ) {
26 c[i&mask] = i;
27 }
28 }
29 template <int byte_limit >
30 void TestModifyRangeLimited () {
31 int mask = (byte_limit / sizeof( c[0] )) -1;
32 for( int i = 0; i < ELEMENT_COUNT *16; i+= 16 ) {
33 c[i&mask] += 1;
34 }
35 }

Listing 16.4: Cache vs working set

16.5 False sharing

In this source, we’re looking at the effect of false sharing.
1 template <int NUM_THREADS >
2 void TestFalseSharing () {
3 int sum =0;
4 int aligned_sum_store[NUM_THREADS] __attribute__ (( aligned (64)));
5
6 #pragma omp parallel num_threads(NUM_THREADS)
7 {
8 int me = omp_get_thread_num ();
9 aligned_sum_store[me] = 0;

10
11 //#pragma omp for
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12 for (int i = me; i < ELEMENT_COUNT; i += NUM_THREADS ) {
13 aligned_sum_store[me] += CalcValue( i );
14 }
15
16 #pragma omp atomic
17 sum += aligned_sum_store[me];
18 }
19 output_buffer = sum;
20 }
21
22
23 template <int NUM_THREADS >
24 void TestLocalAccumulator () {
25 int sum =0;
26
27 #pragma omp parallel num_threads(NUM_THREADS)
28 {
29 int me = omp_get_thread_num ();
30 int local_accumulator = 0;
31
32 //#pragma omp for
33 for (int i = me; i < ELEMENT_COUNT; i += NUM_THREADS ) {
34 local_accumulator += CalcValue( i );
35 }
36
37 #pragma omp atomic
38 sum += local_accumulator;
39 }
40 output_buffer = sum;
41 }
42
43 template <int NUM_THREADS >
44 void TestSplitLoad () {
45 int sum =0;
46 const int WORK_LOAD = ELEMENT_COUNT / NUM_THREADS;
47
48 #pragma omp parallel num_threads(NUM_THREADS)
49 {
50 int me = omp_get_thread_num ();
51 int local_accumulator = 0;
52
53 const int start = WORK_LOAD * me;
54 const int end = WORK_LOAD * (me+1);
55 //#pragma omp for
56 for (int i = start; i < end; ++i ) {
57 local_accumulator += CalcValue( i );
58 }
59
60 #pragma omp atomic
61 sum += local_accumulator;
62 }
63 output_buffer = sum;
64 }
65
66 void TestSinglethreaded () {
67 int sum =0;
68 // just one thread
69 {
70 int local_accumulator = 0;
71
72 for (int i = 0; i < ELEMENT_COUNT; i++) {
73 local_accumulator += CalcValue( i );
74 }
75
76 sum += local_accumulator;
77 }
78 output_buffer = sum;
79 }

Listing 16.5: False sharing
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16.6 Hot, cold, access

In this source, we’re looking at the effect of accessing hot and
cold data.

1 const int NUM_PARTICLES = 10000;
2 const int FRAMES_PER_SECOND = 60;
3 const int NUM_UPDATES = FRAMES_PER_SECOND * 10; // ten seconds of

particle updates at 60fps;
4 const float UPDATE_DELTA = 1000.0f / FRAMES_PER_SECOND; // delta

in ms
5
6 struct particle_buffer_Simple {
7 struct particle {
8 Vec3 pos;
9 Vec3 velocity;

10 float lifetime;
11 uint32_t colour;
12 float size;
13 uint32_t materialOrUVLookupData;
14 };
15 particle *p;
16 };
17 struct particle_buffer_HotColdSplit {
18 struct particle_hot {
19 Vec3 pos;
20 Vec3 velocity;
21 };
22 struct particle_cold {
23 float lifetime;
24 uint32_t colour;
25 float size;
26 uint32_t materialOrUVLookupData;
27 };
28 particle_hot *ph;
29 particle_cold *pc;
30 };
31 struct particle_buffer_ReadWriteSplit {
32 struct particle_read {
33 Vec3 velocity;
34 };
35 struct particle_write {
36 Vec3 pos;
37 };
38 struct particle_cold {
39 float lifetime;
40 uint32_t colour;
41 float size;
42 uint32_t materialOrUVLookupData;
43 };
44 particle_read *pr;
45 particle_write *pw;
46 particle_cold *pc;
47 };
48
49 void TestUpdateParticles_Simple () {
50 particle_buffer_Simple *pb = &gData ->pbSimple;
51 for( int u = 0; u < NUM_UPDATES; ++u ) {
52 float delta_time = pcg32_random_r_rangef (&rng , UPDATE_DELTA *

0.9f, UPDATE_DELTA * 1.1f );
53 for( int i = 0; i < NUM_PARTICLES; ++i ) {
54 particle_buffer_Simple :: particle *p = pb->p+i;
55 p->pos += p->velocity * delta_time;
56 }
57 }
58 }
59 void TestUpdateParticles_HotColdSplit () {
60 particle_buffer_HotColdSplit *pb = &gData ->pbHotCold;
61 for( int u = 0; u < NUM_UPDATES; ++u ) {
62 float delta_time = pcg32_random_r_rangef (&rng , UPDATE_DELTA *

0.9f, UPDATE_DELTA * 1.1f );



296 CHAPTER 16. SOURCECODE

63 for( int i = 0; i < NUM_PARTICLES; ++i ) {
64 particle_buffer_HotColdSplit :: particle_hot *p = pb->ph+i;
65 p->pos += p->velocity * delta_time;
66 }
67 }
68 }
69 void TestUpdateParticles_ReadWriteSplit () {
70 particle_buffer_ReadWriteSplit *pb = &gData ->pbReadWrite;
71 for( int u = 0; u < NUM_UPDATES; ++u ) {
72 float delta_time = pcg32_random_r_rangef (&rng , UPDATE_DELTA *

0.9f, UPDATE_DELTA * 1.1f );
73 for( int i = 0; i < NUM_PARTICLES; ++i ) {
74 particle_buffer_ReadWriteSplit :: particle_read *pr = pb->pr+i

;
75 particle_buffer_ReadWriteSplit :: particle_write *pw = pb->pw+

i;
76 pw->pos += pr->velocity * delta_time;
77 }
78 }
79 }

Listing 16.6: Hot Cold

16.7 Key lookup

In this source, we’re looking at how using cache lines more
effectively can improve something as fundamental as a lookup
by key.

1 int SECONDSOFANIMATION = 10;
2 static const int NUM_QUERIES = 1000;
3 static const int NUM_NODES = 145;
4 static int minFrameRate = 10;
5 static int maxFrameRate = 15;
6 static const float RATIO_OF_NON_SCALING = 0.85f;
7
8 // basic animation key lookup
9 struct FullAnimKey {

10 float time;
11 Vec3 translation;
12 Vec3 scale;
13 Vec4 rotation; // sijk quaternion
14 };
15 struct FullAnim {
16 int numKeys;
17 FullAnimKey *keys;
18 FullAnimKey GetKeyAtTimeBinary( float t ) {
19 int l = 0, h = numKeys -1;
20 int m = (l+h) / 2;
21 while( l < h ) {
22 if( t < keys[m].time ) {
23 h = m-1;
24 } else {
25 l = m;
26 }
27 m = (l+h+1) / 2;
28 }
29 return keys[m];
30 }
31 FullAnimKey GetKeyAtTimeLinear( float t ) {
32 int i = 0;
33 while( i < numKeys ) {
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34 if( keys[i].time > t ) {
35 --i;
36 break;
37 }
38 ++i;
39 }
40 if( i < 0 )
41 return keys [0];
42 return keys[i];
43 }
44 };
45
46 // looking up keys by time
47 struct DataOnlyAnimKey {
48 Vec3 translation;
49 Vec3 scale;
50 Vec4 rotation; // sijk quaternion
51 };
52 struct DataOnlyAnim {
53 int numKeys;
54 float *keyTime;
55 DataOnlyAnimKey *keys;
56 DataOnlyAnimKey GetKeyAtTimeBinary( float t ) {
57 int l = 0, h = numKeys -1;
58 int m = (l+h) / 2;
59 while( l < h ) {
60 if( t < keyTime[m] ) {
61 h = m-1;
62 } else {
63 l = m;
64 }
65 m = (l+h+1) / 2;
66 }
67 return keys[m];
68 }
69 DataOnlyAnimKey GetKeyAtTimeLinear( float t ) {
70 int i = 0;
71 while( i < numKeys ) {
72 if( keyTime[i] > t ) {
73 --i;
74 break;
75 }
76 ++i;
77 }
78 if( i < 0 )
79 return keys [0];
80 return keys[i];
81 }
82 };
83 struct ClumpedAnim {
84 int numKeys;
85 float *keyTime;
86 DataOnlyAnimKey *keys;
87 static const int numPrefetchedKeyTimes = (64- sizeof(int)-sizeof(

float*)-sizeof(DataOnlyAnimKey *))/sizeof(float);
88 static const int keysPerLump = 64/ sizeof(float);
89 float firstStage[numPrefetchedKeyTimes ];
90 DataOnlyAnimKey GetKeyAtTimeBinary( float t ) {
91 for( int start = 0; start < numPrefetchedKeyTimes; ++ start ) {
92 if( firstStage[start] > t ) {
93 int l = start*keysPerLump;
94 int h = l + keysPerLump;
95 h = h > numKeys ? numKeys : h;
96 return GetKeyAtTimeBinary( t, l, h+1 );
97 }
98 }
99 return GetKeyAtTimeBinary( t, numPrefetchedKeyTimes*

keysPerLump , numKeys );
100 }
101 DataOnlyAnimKey GetKeyAtTimeBinary( float t, int l, int h ) {
102 int m = (l+h) / 2;
103 while( l < h ) {
104 if( t < keyTime[m] ) {
105 h = m-1;
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106 } else {
107 l = m;
108 }
109 m = (l+h+1) / 2;
110 }
111 return keys[m];
112 }
113 DataOnlyAnimKey GetKeyAtTimeLinear( float t ) {
114 for( int start = 0; start < numPrefetchedKeyTimes; ++ start ) {
115 if( firstStage[start] > t ) {
116 int l = start*keysPerLump;
117 int h = l + keysPerLump;
118 h = h > numKeys ? numKeys : h;
119 return GetKeyAtTimeLinear( t, l );
120 }
121 }
122 return GetKeyAtTimeLinear( t, numPrefetchedKeyTimes*

keysPerLump );
123 }
124 DataOnlyAnimKey GetKeyAtTimeLinear( float t, int startIndex ) {
125 int i = startIndex;
126 while( i < numKeys ) {
127 if( keyTime[i] > t ) {
128 --i;
129 break;
130 }
131 ++i;
132 }
133 if( i < 0 )
134 return keys [0];
135 return keys[i];
136 }
137 };
138
139 struct HierarchyOutputData {
140 struct NodeData {
141 Vec3 translation;
142 Vec3 scale;
143 Vec4 rotation; // sijk quaternion
144 };
145 NodeData nodeData[NUM_NODES ];
146 };
147 template <typename AnimType >
148 struct TestHierarchy {
149 AnimType animForNode[NUM_NODES ];
150 void SetupNode( int node , const AnimData &ad ) {
151 FromData( animForNode[node], ad );
152 }
153 HierarchyOutputData GetAtTBinary( float t ) {
154 HierarchyOutputData hod;
155 for( int i = 0; i < NUM_NODES; ++i ) {
156 auto keyData = animForNode[i]. GetKeyAtTimeBinary( t );
157 hod.nodeData[i]. translation = keyData.translation;
158 hod.nodeData[i]. rotation = keyData.rotation;
159 hod.nodeData[i].scale = keyData.scale;
160 }
161 return hod;
162 }
163 HierarchyOutputData GetAtTLinear( float t ) {
164 HierarchyOutputData hod;
165 for( int i = 0; i < NUM_NODES; ++i ) {
166 auto keyData = animForNode[i]. GetKeyAtTimeLinear( t );
167 hod.nodeData[i]. translation = keyData.translation;
168 hod.nodeData[i]. rotation = keyData.rotation;
169 hod.nodeData[i].scale = keyData.scale;
170 }
171 return hod;
172 }
173 };
174
175 void TestFullAnimBinary () {
176 for( auto t : gData ->queries ) {
177 HierarchyOutputData hod = gData ->fullAnimHierarchy.

GetAtTBinary(t);
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178 memcpy( (void*)&output_data , &hod , sizeof( output_data ) );
179 }
180 }
181 void TestFullAnimLinear () {
182 for( auto t : gData ->queries ) {
183 HierarchyOutputData hod = gData ->fullAnimHierarchy.

GetAtTLinear(t);
184 memcpy( (void*)&output_data , &hod , sizeof( output_data ) );
185 }
186 }
187 void TestDataOnlyBinary () {
188 for( auto t : gData ->queries ) {
189 HierarchyOutputData hod = gData ->dataOnlyHierarchy.

GetAtTBinary(t);
190 memcpy( (void*)&output_data , &hod , sizeof( output_data ) );
191 }
192 }
193 void TestDataOnlyLinear () {
194 for( auto t : gData ->queries ) {
195 HierarchyOutputData hod = gData ->dataOnlyHierarchy.

GetAtTLinear(t);
196 memcpy( (void*)&output_data , &hod , sizeof( output_data ) );
197 }
198 }
199 void TestClumpedBinary () {
200 for( auto t : gData ->queries ) {
201 HierarchyOutputData hod = gData ->clumpedHierarchy.GetAtTBinary

(t);
202 memcpy( (void*)&output_data , &hod , sizeof( output_data ) );
203 }
204 }
205 void TestClumpedLinear () {
206 for( auto t : gData ->queries ) {
207 HierarchyOutputData hod = gData ->clumpedHierarchy.GetAtTLinear

(t);
208 memcpy( (void*)&output_data , &hod , sizeof( output_data ) );
209 }
210 }

Listing 16.7: Key lookup

16.8 Matrix transpose

In this source, we’re looking at how you can improve memory
throughput for an algorithm that has to touch memory in a
bad pattern.

1 const int MATRIX_SIZE = 1024;
2 struct LargeMatrix {
3 float m[MATRIX_SIZE * MATRIX_SIZE ];
4 };
5 struct Data {
6 LargeMatrix from , to;
7 };
8 Data *gData;
9

10 void TestTranspose_ReadRows () {
11 float *in = &(gData ->from.m[0]);
12 float *out = &(gData ->to.m[0]);
13 for( int j = 0; j < MATRIX_SIZE; j++ ) {
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14 for( int i = 0; i < MATRIX_SIZE; i++ ) {
15 out[i*MATRIX_SIZE+j]=in[j*MATRIX_SIZE+i];
16 }
17 }
18 }
19 void TestTranspose_ReadColumns () {
20 float *in = &(gData ->from.m[0]);
21 float *out = &(gData ->to.m[0]);
22 for( int i = 0; i < MATRIX_SIZE; i++ ) {
23 for( int j = 0; j < MATRIX_SIZE; j++ ) {
24 out[i*MATRIX_SIZE+j]=in[j*MATRIX_SIZE+i];
25 }
26 }
27 }
28 template <int block_size >
29 void TestTranspose_RowBlock () {
30 float *in = &(gData ->from.m[0]);
31 float *out = &(gData ->to.m[0]);
32 for (int bj = 0; bj < MATRIX_SIZE; bj += block_size) {
33 for (int bi = 0; bi < MATRIX_SIZE; bi += block_size) {
34 int imax = bi + block_size; imax = imax < MATRIX_SIZE ? imax

: MATRIX_SIZE;
35 int jmax = bj + block_size; jmax = jmax < MATRIX_SIZE ? jmax

: MATRIX_SIZE;
36 for (int j = bj; j < jmax; ++j) {
37 for (int i = bi; i < imax; ++i) {
38 out[i*MATRIX_SIZE+j] = in[j*MATRIX_SIZE+i];
39 }
40 }
41 }
42 }
43 }
44 template <int block_size >
45 void TestTranspose_ColumnBlock () {
46 float *in = &(gData ->from.m[0]);
47 float *out = &(gData ->to.m[0]);
48 for (int bi = 0; bi < MATRIX_SIZE; bi += block_size) {
49 for (int bj = 0; bj < MATRIX_SIZE; bj += block_size) {
50 int imax = bi + block_size;
51 int jmax = bj + block_size;
52 // these cause an overflow assumption warning on newer gcc

compilers (found on 6.3.0)
53 //imax = imax < MATRIX_SIZE ? imax : MATRIX_SIZE;
54 //jmax = jmax < MATRIX_SIZE ? jmax : MATRIX_SIZE;
55 for (int i = bi; i < imax; ++i) {
56 for (int j = bj; j < jmax; ++j) {
57 out[i*MATRIX_SIZE+j] = in[j*MATRIX_SIZE+i];
58 }
59 }
60 }
61 }
62 }
63 template <int block_size >
64 void TestTranspose_WriteBlock () {
65 float *in = &(gData ->from.m[0]);
66 float *out = &(gData ->to.m[0]);
67 for (int bj = 0; bj < MATRIX_SIZE; bj += block_size) {
68 int jmax = bj + block_size; jmax = jmax < MATRIX_SIZE ? jmax :

MATRIX_SIZE;
69 for (int i = 0; i < MATRIX_SIZE; ++i) {
70 for (int j = bj; j < jmax; ++j) {
71 out[i*MATRIX_SIZE+j] = in[j*MATRIX_SIZE+i];
72 }
73 }
74 }
75 }
76 template <int read_block , int write_block >
77 void TestTranspose_RowBlock2 () {
78 float *in = &(gData ->from.m[0]);
79 float *out = &(gData ->to.m[0]);
80 for (int bi = 0; bi < MATRIX_SIZE; bi += read_block) {
81 for (int bj = 0; bj < MATRIX_SIZE; bj += write_block) {
82 int imax = bi + read_block; imax = imax < MATRIX_SIZE ? imax
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: MATRIX_SIZE;
83 int jmax = bj + write_block; jmax = jmax < MATRIX_SIZE ?

jmax : MATRIX_SIZE;
84 for (int i = bi; i < imax; ++i) {
85 for (int j = bj; j < jmax; ++j) {
86 out[i*MATRIX_SIZE+j] = in[j*MATRIX_SIZE+i];
87 }
88 }
89 }
90 }
91 }

Listing 16.8: Matrix transpose

16.9 Modifying memory

In this source, we’re looking at how the size of elements and
how many you affect at once, can affect the throughput of
your code.

1 const int BUFFER_SIZE = 1024 * 1024; // in bytes
2
3 template <typename T, size_t NumToParallelModify >
4 void TestParallelModifyTemplate () {
5 T *modify_buffer_ptr = (T*)(void*)c;
6 T temp[NumToParallelModify ];
7 const size_t TOTAL_ELEMENTS = BUFFER_SIZE / sizeof(T);
8 for( size_t i = 0; i < TOTAL_ELEMENTS; i+= NumToParallelModify )

{
9 for( size_t j = 0; j < NumToParallelModify; ++j ) {

10 temp[j] = modify_buffer_ptr[i+j];
11 temp[j] += i+j;
12 modify_buffer_ptr[i+j] = temp[j];
13 }
14 }
15 }
16 template <typename T, size_t NumToParallelModify >
17 void TestBatchModifyTemplate () {
18 T *modify_buffer_ptr = (T*)(void*)c;
19 T temp[NumToParallelModify ];
20 const size_t TOTAL_ELEMENTS = BUFFER_SIZE / sizeof(T);
21 for( size_t i = 0; i < TOTAL_ELEMENTS; i+= NumToParallelModify )

{
22 for( size_t j = 0; j < NumToParallelModify; ++j ) {
23 temp[j] = modify_buffer_ptr[i+j];
24 }
25 for( int j = 0; j < NumToParallelModify; ++j ) {
26 temp[j] += i+j;
27 }
28 for( int j = 0; j < NumToParallelModify; ++j ) {
29 modify_buffer_ptr[i+j] = temp[j];
30 }
31 }
32 }
33 void TestParallelModify64Bytes () {
34 uint8_t *modify_buffer_ptr = (uint8_t *)(void*)c;
35 uint8_t temp [64];
36 for( int i = 0; i < BUFFER_SIZE; i+=64 ) {
37 for( int j = 0; j < 64; ++j ) {
38 temp[j] = modify_buffer_ptr[i+j];
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39 temp[j] += i+j;
40 modify_buffer_ptr[i+j] = temp[j];
41 }
42 }
43 }

Listing 16.9: Modifying memory

16.10 SIMD

In this source, we’re trialling some SIMD to solve a particle
update.

1 const int NUM_PARTICLES = 10000;
2 const int FRAMES_PER_SECOND = 60;
3 const int NUM_UPDATES = FRAMES_PER_SECOND * 10; // ten seconds of

particle updates at 60fps;
4
5 const float UPDATE_DELTA = 1000.0f / FRAMES_PER_SECOND; // delta

in ms
6
7 struct particle_buffer_AoS {
8 struct particle {
9 float x,y,z,vx,vy ,vz,t;

10 };
11 particle *p;
12 float gravity;
13 particle_buffer_AoS () {
14 p = (particle *) malloc( sizeof(particle) * NUM_PARTICLES );
15 }
16 };
17
18 struct particle_buffer {
19 float *posx , *posy , *posz;
20 float *vx , *vy, *vz;
21 float gravity;
22 particle_buffer () {
23 posx = (float*) aligned_alloc( 32, sizeof(float) *

NUM_PARTICLES );
24 // ...
25 vz = (float*) aligned_alloc( 32, sizeof(float) * NUM_PARTICLES

);
26 }
27 };
28
29 void SimpleUpdateParticlesAoS( particle_buffer_AoS *pb, float

delta_time ) {
30 float g = pb->gravity;
31 float gd2 = g * delta_time * delta_time * 0.5f;
32 float gd = g * delta_time;
33 for( int i = 0; i < NUM_PARTICLES; ++i ) {
34 particle_buffer_AoS :: particle *p = pb->p+i;
35 p->x += p->vx * delta_time;
36 p->y += p->vy * delta_time + gd2;
37 p->z += p->vz * delta_time;
38 p->vy += gd;
39 }
40 }
41
42 void SimpleUpdateParticles( particle_buffer *pb, float delta_time

) {
43 float g = pb->gravity;
44 float gd2 = g * delta_time * delta_time * 0.5f;
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45 float gd = g * delta_time;
46 for( int i = 0; i < NUM_PARTICLES; ++i ) {
47 pb->posx[i] += pb->vx[i] * delta_time;
48 pb->posy[i] += pb->vy[i] * delta_time + gd2;
49 pb->posz[i] += pb->vz[i] * delta_time;
50 pb->vy[i] += gd;
51 }
52 }
53 void SliceUpdateParticles( particle_buffer *pb, float delta_time )

{
54 float g = pb->gravity;
55 float gd2 = g * delta_time * delta_time * 0.5f;
56 float gd = g * delta_time;
57 for( int i = 0; i < NUM_PARTICLES; ++i ) {
58 pb->posx[i] += pb->vx[i] * delta_time;
59 }
60 for( int i = 0; i < NUM_PARTICLES; ++i ) {
61 pb->posy[i] += pb->vy[i] * delta_time + gd2;
62 pb->vy[i] += gd;
63 }
64 for( int i = 0; i < NUM_PARTICLES; ++i ) {
65 pb->posz[i] += pb->vz[i] * delta_time;
66 }
67 }
68 #if __SSE__
69 void SIMD_SSE_UpdateParticles( particle_buffer *pb, float

delta_time ) {
70 float g = pb->gravity;
71 float f_gd = g * delta_time;
72 float f_gd2 = pb->gravity * delta_time * delta_time * 0.5f;
73
74 // delta_time
75 __m128 mmd = _mm_setr_ps( delta_time , delta_time , delta_time ,

delta_time );
76 // gravity * delta_time
77 __m128 mmgd = _mm_load1_ps( &f_gd );
78 // gravity * delta_time * delta_time * 0.5f
79 __m128 mmgd2 = _mm_load1_ps( &f_gd2 );
80
81 __m128 *px = (__m128 *)pb->posx;
82 __m128 *py = (__m128 *)pb->posx;
83 __m128 *pz = (__m128 *)pb->posz;
84 __m128 *vx = (__m128 *)pb->vx;
85 __m128 *vy = (__m128 *)pb->vy;
86 __m128 *vz = (__m128 *)pb->vz;
87
88 int iterationCount = NUM_PARTICLES / 4;
89 for( int i = 0; i < iterationCount; ++i ) {
90 __m128 dx = _mm_mul_ps(vx[i], mmd );
91 __m128 dy = _mm_add_ps( _mm_mul_ps(vy[i], mmd ), mmgd2 );
92 __m128 dz = _mm_mul_ps(vz[i], mmd );
93 __m128 newx = _mm_add_ps(px[i], dx);
94 __m128 newy = _mm_add_ps(py[i], dy);
95 __m128 newz = _mm_add_ps(pz[i], dz);
96 __m128 newvy = _mm_add_ps(vy[i], mmgd);
97 _mm_store_ps (( float*)(px+i), newx);
98 _mm_store_ps (( float*)(py+i), newy);
99 _mm_store_ps (( float*)(pz+i), newz);

100 _mm_store_ps (( float*)(vy+i), newvy);
101 }
102 }
103 void SIMD_SSE_UpdateParticlesSliced( particle_buffer *pb, float

delta_time ) {
104 float g = pb->gravity;
105 float f_gd = g * delta_time;
106 float f_gd2 = pb->gravity * delta_time * delta_time * 0.5f;
107
108 // delta_time
109 __m128 mmd = _mm_setr_ps( delta_time , delta_time , delta_time ,

delta_time );
110 // gravity * delta_time
111 __m128 mmgd = _mm_load1_ps( &f_gd );
112 // gravity * delta_time * delta_time * 0.5f
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113 __m128 mmgd2 = _mm_load1_ps( &f_gd2 );
114
115 __m128 *px = (__m128 *)pb->posx;
116 __m128 *py = (__m128 *)pb->posx;
117 __m128 *pz = (__m128 *)pb->posz;
118 __m128 *vx = (__m128 *)pb->vx;
119 __m128 *vy = (__m128 *)pb->vy;
120 __m128 *vz = (__m128 *)pb->vz;
121
122 int iterationCount = NUM_PARTICLES / 4;
123 for( int i = 0; i < iterationCount; ++i ) {
124 __m128 dx = _mm_mul_ps(vx[i], mmd );
125 __m128 newx = _mm_add_ps(px[i], dx);
126 _mm_store_ps (( float*)(px+i), newx);
127 }
128 for( int i = 0; i < iterationCount; ++i ) {
129 __m128 dy = _mm_add_ps( _mm_mul_ps(vy[i], mmd ), mmgd2 );
130 __m128 newy = _mm_add_ps(py[i], dy);
131 __m128 newvy = _mm_add_ps(vy[i], mmgd);
132 _mm_store_ps (( float*)(py+i), newy);
133 _mm_store_ps (( float*)(vy+i), newvy);
134 }
135 for( int i = 0; i < iterationCount; ++i ) {
136 __m128 dz = _mm_mul_ps(vz[i], mmd );
137 __m128 newz = _mm_add_ps(pz[i], dz);
138 _mm_store_ps (( float*)(pz+i), newz);
139 }
140 }
141 #endif
142
143 #if __AVX__
144 void SIMD_AVX_UpdateParticles( particle_buffer *pb, float

delta_time ) {
145 float g = pb->gravity;
146 float f_gd = g * delta_time;
147 float f_gd2 = pb->gravity * delta_time * delta_time * 0.5f;
148
149 // delta_time
150 __m256 mm256d = _mm256_set1_ps( delta_time );
151 // gravity * delta_time
152 __m256 mm256gd = _mm256_set1_ps( f_gd );
153 // gravity * delta_time * delta_time * 0.5f
154 __m256 mm256gd2 = _mm256_set1_ps( f_gd2 );
155
156 __m256 *px = (__m256 *)pb->posx;
157 __m256 *py = (__m256 *)pb->posx;
158 __m256 *pz = (__m256 *)pb->posz;
159 __m256 *vx = (__m256 *)pb->vx;
160 __m256 *vy = (__m256 *)pb->vy;
161 __m256 *vz = (__m256 *)pb->vz;
162
163 int iterationCount = NUM_PARTICLES / 8;
164 for( int i = 0; i < iterationCount; ++i ) {
165 __m256 dx = _mm256_mul_ps(vx[i], mm256d );
166 __m256 dy = _mm256_add_ps( _mm256_mul_ps(vy[i], mm256d ),

mm256gd2 );
167 __m256 dz = _mm256_mul_ps(vz[i], mm256d );
168 __m256 newx = _mm256_add_ps(px[i], dx);
169 __m256 newy = _mm256_add_ps(py[i], dy);
170 __m256 newz = _mm256_add_ps(pz[i], dz);
171 __m256 newvy = _mm256_add_ps(vy[i], mm256gd);
172 _mm256_store_ps (( float*)(px+i), newx);
173 _mm256_store_ps (( float*)(py+i), newy);
174 _mm256_store_ps (( float*)(pz+i), newz);
175 _mm256_store_ps (( float*)(vy+i), newvy);
176 }
177 }
178 #endif

Listing 16.10: SIMD particles
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16.11 Speculative waste

In this source, we’re looking at the effect of speculative reads
on performance.

1 struct B {
2 int height;
3 bool isClockwise;
4 };
5 struct A {
6 bool canStandOnOneLeg;
7 bool hasTheirOwnHair;
8 bool ownsADog;
9 bool isOwnedByACat;

10
11 // cached "has B info"
12 bool isCached25 : 1;
13 bool isCached50 : 1;
14 bool isCached75 : 1;
15 bool isCached95 : 1;
16 bool isCached99 : 1;
17 bool hasBInfo;
18 bool isTall;
19 };
20 static std::map <int ,B> BInfoMap;
21 static std::vector <A> AInfoVec;
22 static const int NUM_IN_TEST = 128 * 1024;
23 void Setup() {
24 Timer t;
25 for( int i = 0; i < NUM_IN_TEST; ++i ) {
26 A a;
27 a.canStandOnOneLeg = pcg32_random_r_probability (&rng , 0.99f);
28 //...
29 a.isOwnedByACat = pcg32_random_r_probability (&rng , 0.42f);
30 a.isCached25 = pcg32_random_r_probability (&rng , 0.25f);
31 // ...
32 a.isCached99 = pcg32_random_r_probability (&rng , 0.99f);
33 a.hasBInfo = pcg32_random_r_probability (&rng , 0.25f);
34 if( a.hasBInfo ) {
35 B b;
36 b.height = pcg32_random_r_range (&rng , 150, 200);
37 b.isClockwise = pcg32_random_r_probability (&rng , 0.5f);
38 BInfoMap[i] = b;
39 a.isTall = b.height > 185;
40 }
41 AInfoVec.push_back( a );
42 }
43 }
44
45 std::pair <int ,int > Simple () {
46 int good = 0;
47 int taller = 0;
48 for( int i = 0; i < NUM_IN_TEST; ++i ) {
49 A &a = AInfoVec[i];
50 if( a.canStandOnOneLeg && a.hasTheirOwnHair ) {
51 good += 1;
52 if( BInfoMap.find( i ) != BInfoMap.end() ) {
53 if( BInfoMap[i]. height > 185 ) {
54 taller += 1;
55 }
56 }
57 }
58 }
59 return std::pair <int ,int >(good ,taller);
60 }
61 std::pair <int ,int > Bool() {
62 int good = 0;
63 int taller = 0;
64 for( int i = 0; i < NUM_IN_TEST; ++i ) {
65 A &a = AInfoVec[i];
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66 if( a.canStandOnOneLeg && a.hasTheirOwnHair ) {
67 good += 1;
68 if( a.hasBInfo ) {
69 if( BInfoMap[i]. height > 185 ) {
70 taller += 1;
71 }
72 }
73 }
74 }
75 return std::pair <int ,int >(good ,taller);
76 }
77 std::pair <int ,int > CachedBool50 () {
78 int good = 0;
79 int taller = 0;
80 for( int i = 0; i < NUM_IN_TEST; ++i ) {
81 A &a = AInfoVec[i];
82 if( a.canStandOnOneLeg && a.hasTheirOwnHair ) {
83 good += 1;
84 if( a.isCached50 ) {
85 if( a.hasBInfo ) {
86 if( BInfoMap[i]. height > 185 ) {
87 taller += 1;
88 }
89 }
90 } else {
91 if( BInfoMap.find( i ) != BInfoMap.end() ) {
92 if( BInfoMap[i]. height > 185 ) {
93 taller += 1;
94 }
95 }
96 }
97 }
98 }
99 return std::pair <int ,int >(good ,taller);

100 }
101 std::pair <int ,int > Cached () {
102 int good = 0;
103 int taller = 0;
104 for( int i = 0; i < NUM_IN_TEST; ++i ) {
105 A &a = AInfoVec[i];
106 if( a.canStandOnOneLeg && a.hasTheirOwnHair ) {
107 good += 1;
108 if( a.hasBInfo && a.isTall ) {
109 taller += 1;
110 }
111 }
112 }
113 return std::pair <int ,int >(good ,taller);
114 }
115 std::pair <int ,int > PartiallyCached25 () {
116 int good = 0;
117 int taller = 0;
118 for( int i = 0; i < NUM_IN_TEST; ++i ) {
119 A &a = AInfoVec[i];
120 if( a.canStandOnOneLeg && a.hasTheirOwnHair ) {
121 good += 1;
122 if( a.isCached25 ) {
123 if( a.hasBInfo && a.isTall ) {
124 taller += 1;
125 }
126 } else {
127 if( BInfoMap.find( i ) != BInfoMap.end() ) {
128 if( BInfoMap[i]. height > 185 ) {
129 taller += 1;
130 }
131 }
132 }
133 }
134 }
135 return std::pair <int ,int >(good ,taller);
136 }
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Listing 16.11: Speculative Waste

16.12 Finite State Machines

These are the source files for testing the finite state machine
variants.

1 namespace FSMSimple {
2 enum State {
3 S_sleeping ,
4 S_hunting ,
5 S_eating ,
6 S_exploring ,
7 };
8 struct Machine {
9 State state;

10 float sleepiness;
11 float hunger;
12 float huntTimer;
13 float eatTimer;
14 };
15 struct Data {
16 Machine machine[NUM_MACHINES ];
17 Data() {
18 pcg32_random_t rng;
19 pcg32_srandom_r (&rng , 1234, 5678);
20 for( int m = 0; m < NUM_MACHINES; ++m ) {
21 Machine &M = machine[m];
22 M.state = S_sleeping;
23 M.sleepiness = pcg32_random_r_rangef (&rng , 0.0f, 0.2f );
24 M.hunger = pcg32_random_r_rangef (&rng , 0.5f, 0.9f );
25 M.huntTimer = HUNTING_TIME;
26 M.eatTimer = 0.0f;
27 }
28 }
29 void Update( float deltaTime ) {
30 for( int m = 0; m < NUM_MACHINES; ++m ) {
31 Machine &M = machine[m];
32 switch( M.state ) {
33 case S_sleeping:
34 {
35 M.hunger += deltaTime * SLEEP_HUNGER;
36 M.sleepiness += deltaTime * SLEEP_SLEEP;
37 if( M.sleepiness <= 0.0f ) {
38 M.sleepiness = 0.0f;
39 if( M.eatTimer > 0.0f ) {
40 M.state = S_eating;
41 } else {
42 if( M.hunger > HUNGER_TRIGGER ) {
43 M.state = S_hunting;
44 M.huntTimer = HUNTING_TIME;
45 } else {
46 M.state = S_exploring;
47 }
48 }
49 }
50 } break;
51 case S_hunting:
52 {
53 M.hunger += deltaTime * HUNT_HUNGER;
54 M.sleepiness += deltaTime * HUNT_SLEEP;
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55 M.huntTimer -= deltaTime;
56 if( M.huntTimer <= 0.0f ) {
57 M.eatTimer = EATING_TIME;
58 if( M.sleepiness > SLEEP_TRIGGER ) {
59 M.state = S_sleeping;
60 } else {
61 M.state = S_eating;
62 }
63 } else {
64 }
65 } break;
66 case S_eating:
67 {
68 M.hunger += deltaTime * EAT_HUNGER;
69 M.sleepiness += deltaTime * EAT_SLEEP;
70 M.eatTimer -= deltaTime;
71 if( M.sleepiness > SLEEP_TRIGGER ) {
72 M.state = S_sleeping;
73 } else {
74 if( M.eatTimer <= 0.0f ) {
75 if( M.hunger > HUNGER_TRIGGER ) {
76 M.state = S_hunting;
77 M.huntTimer = HUNTING_TIME;
78 } else {
79 M.state = S_exploring;
80 }
81 }
82 }
83 } break;
84 case S_exploring:
85 {
86 M.hunger += deltaTime * EXPLORE_HUNGER;
87 M.sleepiness += deltaTime * EXPLORE_SLEEP;
88 if( M.hunger > HUNGER_TRIGGER ) {
89 M.state = S_hunting;
90 M.huntTimer = HUNTING_TIME;
91 }
92 else {
93 if( M.sleepiness > SLEEP_TRIGGER ) {
94 M.state = S_sleeping;
95 }
96 }
97 } break;
98 }
99 }

100 }
101 };
102 }

Listing 16.12: Finite State Machine - Simple

1 namespace FSMOOState {
2 struct State;
3 struct Machine {
4 State *state = nullptr;
5 float sleepiness;
6 float hunger;
7 float huntTimer;
8 float eatTimer;
9 inline void UpdateState( State *newState );

10 inline ~Machine ();
11 };
12 struct State {
13 virtual State * Update( Machine &M, float deltaTime ) = 0;
14 virtual const char * GetName () { return "Base"; }
15 };
16 struct Sleeping final : public State {
17 State * Update( Machine &M, float deltaTime ) override;
18 const char * GetName () override { return "Sleeping"; }
19 };
20 struct Hunting final : public State {
21 State * Update( Machine &M, float deltaTime ) override;
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22 const char * GetName () override { return "Hunting"; }
23 };
24 struct Eating final : public State {
25 State * Update( Machine &M, float deltaTime ) override;
26 virtual const char * GetName () override { return "Eating"; }
27 };
28 struct Exploring final : public State {
29 State * Update( Machine &M, float deltaTime ) override;
30 const char * GetName () override { return "Exploring"; }
31 };
32 Sleeping m_commonSleeping;
33 Hunting m_commonHunting;
34 Eating m_commonEating;
35 Exploring m_commonExploring;
36 struct Data {
37 Machine machine[NUM_MACHINES ];
38 Data() {
39 pcg32_random_t rng;
40 pcg32_srandom_r (&rng , 1234, 5678);
41 for( int m = 0; m < NUM_MACHINES; ++m ) {
42 Machine &M = machine[m];
43 M.state = &m_commonSleeping;
44 M.sleepiness = pcg32_random_r_rangef (&rng , 0.0f, 0.2f );
45 M.hunger = pcg32_random_r_rangef (&rng , 0.5f, 0.9f );
46 M.huntTimer = HUNTING_TIME;
47 M.eatTimer = 0.0f;
48 }
49 }
50 void Update( float deltaTime ) {
51 for( int m = 0; m < NUM_MACHINES; ++m ) {
52 Machine &M = machine[m];
53 State *newState = M.state ->Update( M, deltaTime );
54 M.UpdateState(newState);
55 }
56 }
57 int StateObjectToStateIndex( State *s ) {
58 if( strcmp( s->GetName (), m_commonSleeping.GetName () ) == 0

)
59 return 0;
60 if( strcmp( s->GetName (), m_commonHunting.GetName () ) == 0 )
61 return 1;
62 if( strcmp( s->GetName (), m_commonEating.GetName () ) == 0 )
63 return 2;
64 if( strcmp( s->GetName (), m_commonExploring.GetName () ) == 0

)
65 return 3;
66 return -1;
67 }
68 };
69 // inlines
70 inline void Machine :: UpdateState( State *newState ) {
71 if( newState ) {
72 state = newState;
73 }
74 }
75 inline Machine ::~ Machine () {
76 state = nullptr;
77 }
78 State * Sleeping :: Update( Machine &M, float deltaTime ) {
79 M.hunger += deltaTime * SLEEP_HUNGER;
80 M.sleepiness += deltaTime * SLEEP_SLEEP;
81 if( M.sleepiness <= 0.0f ) {
82 M.sleepiness = 0.0f;
83 if( M.eatTimer > 0.0f ) {
84 return &m_commonEating;
85 } else {
86 if( M.hunger > HUNGER_TRIGGER ) {
87 M.huntTimer = HUNTING_TIME;
88 return &m_commonHunting;
89 } else {
90 return &m_commonExploring;
91 }
92 }
93 }
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94 return nullptr;
95 }
96 State * Hunting :: Update( Machine &M, float deltaTime ) {
97 M.hunger += deltaTime * HUNT_HUNGER;
98 M.sleepiness += deltaTime * HUNT_SLEEP;
99 M.huntTimer -= deltaTime;

100 if( M.huntTimer <= 0.0f ) {
101 M.eatTimer = EATING_TIME;
102 if( M.sleepiness > SLEEP_TRIGGER ) {
103 return &m_commonSleeping;
104 } else {
105 return &m_commonEating;
106 }
107 }
108 return nullptr;
109 }
110 State * Eating :: Update( Machine &M, float deltaTime ) {
111 M.hunger += deltaTime * EAT_HUNGER;
112 M.sleepiness += deltaTime * EAT_SLEEP;
113 M.eatTimer -= deltaTime;
114 if( M.sleepiness > SLEEP_TRIGGER ) {
115 return &m_commonSleeping;
116 } else {
117 if( M.eatTimer <= 0.0f ) {
118 if( M.hunger > HUNGER_TRIGGER ) {
119 M.huntTimer = HUNTING_TIME;
120 return &m_commonHunting;
121 } else {
122 return &m_commonExploring;
123 }
124 }
125 }
126 return nullptr;
127 }
128 State * Exploring :: Update( Machine &M, float deltaTime ) {
129 M.hunger += deltaTime * EXPLORE_HUNGER;
130 M.sleepiness += deltaTime * EXPLORE_SLEEP;
131 if( M.hunger > HUNGER_TRIGGER ) {
132 M.huntTimer = HUNTING_TIME;
133 return &m_commonHunting;
134 } else {
135 if( M.sleepiness > SLEEP_TRIGGER ) {
136 return &m_commonSleeping;
137 }
138 }
139 return nullptr;
140 }
141 }

Listing 16.13: Finite State Machine - Object-oriented

1 namespace FSMTableState {
2 struct Machine {
3 float sleepiness;
4 float hunger;
5 float huntTimer;
6 float eatTimer;
7 };
8 typedef std::vector <Machine > MachineVector;
9 struct Data {

10 MachineVector sleeps;
11 MachineVector hunts;
12 MachineVector eats;
13 MachineVector explores;
14 Data() {
15 pcg32_random_t rng;
16 pcg32_srandom_r (&rng , 1234, 5678);
17 for( int m = 0; m < NUM_MACHINES; ++m ) {
18 Machine M;
19 M.sleepiness = pcg32_random_r_rangef (&rng , 0.0f, 0.2f );
20 M.hunger = pcg32_random_r_rangef (&rng , 0.5f, 0.9f );
21 M.huntTimer = HUNTING_TIME;
22 M.eatTimer = 0.0f;
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23 sleeps.push_back( M );
24 }
25 }
26 void Update( float deltaTime ) {
27 MachineVector pendingSleep;
28 MachineVector pendingHunt;
29 MachineVector pendingEat;
30 MachineVector pendingExplore;
31 {
32 for( MachineVector :: iterator iter = sleeps.begin(); iter

!= sleeps.end(); ) {
33 Machine &M = *iter;
34 M.hunger += deltaTime * SLEEP_HUNGER;
35 M.sleepiness += deltaTime * SLEEP_SLEEP;
36 if( M.sleepiness <= 0.0f ) {
37 M.sleepiness = 0.0f;
38 if( M.eatTimer > 0.0f ) {
39 pendingEat.push_back(M);
40 } else {
41 if( M.hunger > HUNGER_TRIGGER ) {
42 M.huntTimer = HUNTING_TIME;
43 pendingHunt.push_back(M);
44 } else {
45 pendingExplore.push_back(M);
46 }
47 }
48 *iter = sleeps.back(); sleeps.pop_back ();
49 } else {
50 ++iter;
51 }
52 }
53 for( MachineVector :: iterator iter = hunts.begin (); iter !=

hunts.end(); ) {
54 Machine &M = *iter;
55 M.hunger += deltaTime * HUNT_HUNGER;
56 M.sleepiness += deltaTime * HUNT_SLEEP;
57 M.huntTimer -= deltaTime;
58 if( M.huntTimer <= 0.0f ) {
59 M.eatTimer = EATING_TIME;
60 if( M.sleepiness > SLEEP_TRIGGER ) {
61 pendingSleep.push_back(M);
62 } else {
63 pendingEat.push_back(M);
64 }
65 *iter = hunts.back(); hunts.pop_back ();
66 } else {
67 ++iter;
68 }
69 }
70 for( MachineVector :: iterator iter = eats.begin(); iter !=

eats.end(); ) {
71 Machine &M = *iter;
72 M.hunger += deltaTime * EAT_HUNGER;
73 M.sleepiness += deltaTime * EAT_SLEEP;
74 M.eatTimer -= deltaTime;
75 if( M.sleepiness > SLEEP_TRIGGER ) {
76 pendingSleep.push_back(M);
77 *iter = eats.back(); eats.pop_back ();
78 } else {
79 if( M.eatTimer <= 0.0f ) {
80 if( M.hunger > HUNGER_TRIGGER ) {
81 M.huntTimer = HUNTING_TIME;
82 pendingHunt.push_back(M);
83 } else {
84 pendingExplore.push_back(M);
85 }
86 *iter = eats.back(); eats.pop_back ();
87 } else {
88 ++iter;
89 }
90 }
91 }
92 for( MachineVector :: iterator iter = explores.begin(); iter

!= explores.end(); ) {
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93 Machine &M = *iter;
94 M.hunger += deltaTime * EXPLORE_HUNGER;
95 M.sleepiness += deltaTime * EXPLORE_SLEEP;
96 if( M.hunger > HUNGER_TRIGGER ) {
97 M.huntTimer = HUNTING_TIME;
98 pendingHunt.push_back(M);
99 *iter = explores.back(); explores.pop_back ();

100 } else {
101 if( M.sleepiness > SLEEP_TRIGGER ) {
102 pendingSleep.push_back(M);
103 *iter = explores.back(); explores.pop_back ();
104 } else {
105 ++iter;
106 }
107 }
108 }
109 }
110 sleeps.insert( sleeps.end(), pendingSleep.begin (),

pendingSleep.end() );
111 hunts.insert( hunts.end(), pendingHunt.begin (), pendingHunt.

end() );
112 eats.insert( eats.end(), pendingEat.begin(), pendingEat.end

() );
113 explores.insert( explores.end(), pendingExplore.begin (),

pendingExplore.end() );
114 }
115 };
116 }

Listing 16.14: Finite State Machine - Table based
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