
Preface 

T h e r e  often seems to be a division between the analog and digital worlds. Digital 
designers usually do not like to delve into analog, and analog designers tend to 
avoid the digital realm. The  two groups often do not even use the same buzz- 

words. 
Even though microprocessors have become increasingly faster and more cap- 

able, the real world remains analog in nature.  The  digital designers who a t tempt  
to control or measure  the real world must  somehow connect this analog environ- 
ment  to their digital machines. T h e r e  are books about analog design and books 
about microprocessor design. This book at tempts to get at the issues involved in 
connecting the two together.  

Someone said about my first book, Embedded Microprocessor Systems: Real World 
Design, that it needed more analog interfacing information. I felt that adding this 
material to that book would cause the book to lose focus. However,  the more  I 
thought  about it, the more I thought  that a book aimed at interfacing the real 
world to microprocessors could prove valuable. This book is the result. I hope it 
proves useful. 
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Introduction 

Modern electronic systems are increasingly digital: digital microprocessors, digi- 
tal logic, digital interfaces. Digital logic is easier to design and understand,  and it 
is much more flexible than the equivalent analog circuitry would be. As an 
example, imagine trying to implement any kind of sophisticated microprocessor 
with analog parts. Digital electronics lets the PC on your desk execute different 
programs at different times, perform complex calculations, and communicate by 
the World Wide Web. 

The  electronic world is nearly all digital, but the real world is not. The 
temperature  in your office is not just hot or cold, but varies over a wide range. 
You can use a thermometer  to determine what the temperature  is, but how do 
you convert the temperature  to a digital value for use in a microprocessor- 
controlled thermostat? The ignition control microprocessor in your car has to 
measure the engine speed to generate a spark at the right time. A microprocessor- 
controlled machining tool has to position the cutting bit in the right place to cut a 
piece of steel. 

This book provides coverage of practical control applications and gives some 
opamp examples; however, its focus is neither control theory nor opamp theory. 
Primarily, its coverage includes measurement  and control of analog quantities in 
embedded  systems that are required to interface with the real world. Whether  
measuring a signal from a satellite or the temperature  of a toaster, embedded 
systems must measure, analyze, and control analog values. That 's what this book 
is about--connect ing analog input and output  devices to microprocessors for 
embedded  applications 
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System Design 

Most embedded microprocessor designs involve processing some kind of input 
to produce some kind of output,  and one or both of these is usually analog. The 
digital portions of an analog system, such as the microprocessor-to-memory 
interface, are outside the scope of this book. However, there are some system 
considerations in any design that must interface to the real world, and these will 
be considered here. 

Dynamic Range 

Before a system can be designed, the dynamic range of the inputs and outputs 
must be known. The dynamic range defines the precision that must be applied to 
measuring the inputs or generating the outputs. This in turn drives other parts 
of the design, such as allowable noise and the precision that is required of the 
components.  

A simple microprocessor-based system might read an analog input voltage and 
convert it to a digital value (how this happens will be examined in Chapter  2). 
Dynamic: range is usually expressed in decibels (dB) because it is usually a 
measurement  of relative power or voltage. However, this does not cover all the 
things that a microprocessor-based system might want to measure. In simplest 
terms, the dynamic range can be thought  of as the largest value that must be 
measured compared to (or divided by) the smallest. In most cases, the essential 
number  that needs to be known is the number  of bits of precision required to 
measure or control something. 

As an example, say that we want to measure temperatures between 0 ~ and 
100 ~ If we want to measure with 1 ~ accuracy, we would need 100 discrete 
values to accomplish this. An 8-bit analog-to-digital converter (ADC) can divide an 
input voltage into 256 discrete values, so this system would need only 8 bits of 



precision. On the other hand, what if we want to measure the same temperature  
range with 0.1 ~ accuracy? Now we need 100/.1, or 1000 discrete values, and 
that means a 10-bit ADC (which can produce 1024 discrete values). 

Voltage Precision 

The  number  of bits required to measure our example tempera ture  range is 
dependent  on the range of what we are measuring ( temperature,  voltage, light 
intensity, pressure, etc.) and not on a specific voltage range. In fact, our 0-to- 
100 ~ range might be converted to a 0-to-5 volt swing or a 0-to-1 volt swing. In 
either case, the dynamic range that we have to measure is the same. However, the 
0-to-5 V range uses 19.5 mV steps (5v/256) for 1 ~ accuracy and 4.8 mV steps 
(5v/1024) for 0.1 ~ accuracy. If we use a 0-to-1V swing, we have step sizes of 
3.9 mV and 976 ~tV. This affects the ADC choices, the selection of opamps, and 
other considerations. These will be examined in more detail in later chapters. 
The  important  point is that the dynamic range of the system determines how 
many bits of precision are needed to measure or control something; how that 
range is translated into analog and then into digital values further  constrains the 
design. 

Calibration 

Dynamic range brings with it calibration issues. A certain dynamic range implies a 
certain number  of bits of precision. But real parts that are used to measure real- 
world things have real tolerances. A 10K resistor can be between 9900 and 
10,100 ohms if it has a 1% tolerance, or between 9990 and 10,010 ohms if it has 
0.1% tolerance. In addition, the resistance varies with temperature.  All the other 
parts in the system, including the sensors themselves, have similar variations. 
These will be addressed in more detail in Chapter  9, but for now the important 
thing from a system point of view is this: how will the required accuracy be 
achieved? 

For example, say we're still trying to measure that 0-to- 100 ~ temperature range. 
Measurement with 1 ~ accuracy may be achievable without adjustments. However, 
you might find that the 0.1 ~ figure requires some kind of calibration because you 
can't get a temperature sensor in your price range with that accuracy. You may have 
to include an adjustment in the design to compensate for this variation. 

The  need for a calibration step implies other things. Will the part  of the system 
with the temperature  sensor be part  of the board that contains the compensation? 
If not, how do you keep the two parts together once calibration is performed? 
And what if the field engineer has to change the sensor in the field? Will the 
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engineer  be able to do the calibration? Will it really be cheaper ,  in product ion,  

to add a calibration step to the assembly p rocedure  than to purchase  a more  

accurate sensor? 

In many cases in which an ad jus tment  is needed,  the result ing calibration 

parameters  can be calculated in software and stored. For example ,  you might  

br ing the system (or just  the sensor) to a known t empera tu re  and measure  the 

output .  You know that an ideal sensor should produce  an ou tput  voltage X for 

t empera tu re  T, but the real sensor produces  an ou tput  voltage Y for t empera tu re  

T. By measur ing  the ou tput  at several t empera tures ,  you can build up a table of 

information that relates the ou tpu t  of that specific sensor to t empera tu re .  This 

information can be stored in the microprocessor 's  memory .  When  the micropro-  

cessor reads the sensor, it looks in the m e m o r y  (or does a calculation) to deter-  

mine the actual t empera ture .  

You would want to look at storing this calibration with the sensor if it was not 

physically located with the microprocessor.  Tha t  way, the sensor could be chan- 

ged without recalibrating. Figure 1.1 shows three means of handl ing  this calibra- 

tion. In d iagram A, a microprocessor  connects to a remote  sensor via a cable. The  

microprocessor  stores the calibration information in its EEPROM or flash mem-  

ory. The  tradeoffs for this me thod  are: 

�9 Once the system is calibrated, the sensor has to stay with that microprocessor  

board.  If ei ther the sensor or the microprocessor  is changed,  the system has to 

be recalibrated. 
�9 If the sensor or microprocessor  is changed and recalibration is not per formed,  

the results will be incorrect, but  there is no way to know that the results are 

incorrect unless the microprocessor  has a means  to identify specific sensors. 

�9 Data for all the sensors can be stored in one place, requir ing less m e m o r y  than 

other  methods.  In addition, if the calibration is pe r fo rmed  by calculation 

instead of by table lookup, all sensors that are the same can use the same 

software routines, each sensor jus t  having different calibration constants. 

Diagram B in Figure 1.1 shows an alternative method  of handl ing a remote  

sensor, in which the EEPROM that contains the calibration data is located on the 

board with the sensor. This EEPROM could be a small IC that is accessed with an 
I2C or microwire interface (more about those in Chapter  2). The  tradeoffs here are: 

�9 Since each sensor carries its own calibration information,  sensors and micro- 

processor boards can be in te rchanged at will without affecting results. Spare 

sensors can be calibrated and stocked without having to be matched  to a specific 

system. 

�9 More memories  are required,  one for each sensor that needs calibration. 

Finally, d iagram C in Figure 1.1 takes this concept  a step fur ther ,  adding  a 

microcontrol ler  to the sensor board,  with the microcontrol ler  pe r fo rming  the 
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Figure 1.1 
Sensor calibration methods. 

calibration and storing calibration data in an internal EEPROM or flash memory.  

The  tradeoffs here are: 

�9 The re  are more  processors and more  f irmware to maintain. In some applica- 

tions with rigorous software documenta t ion  requi rements  (medical, military) 

this may be a significant deve lopment  cost. 
�9 No calibration effort is required by the main microprocessor.  For a given real- 

world condition such as t empera tu re  it will always get the same value, regard- 
less of the sensor output  variation. 

�9 I fa  sensor becomes unavailable or otherwise has to be changed in production, the 
change can be made t ransparent  to the main microprocessor code, with all the 

new characteristics of the new sensor handled in the remote microcontroller. 
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Another  factor to consider in calibration is the human  element. If a system 
requires calibration of a sensor in the field, does the field technician need arms 
twelve feet long to hold the calibration card in place and simultaneously reach the 

"ENTER" key on the keyboard? Should a switch be placed near the sensor so 
calibration can be accomplished without walking repeatedly a round  a table to hit 
a key or view the results on the display? Can the adjustment  process be automated  
to minimize the number  of manual  steps required? The  more  manual adjust- 

ments that are needed,  the more opportunit ies  there are for mistakes. 

Bandwidth 

Several years ago, I worked on an imaging application. This system was to 
capture data using a charge coupled device (CCD) image sensor. We were 
capturing 1024 pixels per scan. We had to capture items moving 150 inches 
per second at a resolution of 200 pixels per inch. Each pixel was converted with 
an 8-bit ADC, resulting in 1 byte per pixel. The  data rate was theretbre  

150 x 1024 x 200, or 30,720,000 bytes per second. 
We planned to use the VME bus as the basis for the system. Each scan from the 

CCD had to be read, normalized, filtered, and then converted to 1-bit-per-pixel 

monochrome.  During the meetings that were held to establish the system archi- 
tecture, one of the engineers insisted that we pass all the data th rough  the VME 
bus. In those days, the VME bus had a max imum bandwidth specification of 40 
megabytes per second, and very few systems could achieve the maximum theo- 
retical bandwidth.  The  bandwidth we needed looked like this: 

Read data from camera into system: 30.72 Mbytes/sec 

Pass data to normalizer: 30.72 Mbytes/sec 

Pass data to filter: 30.72 Mbytes/sec 

Pass data to monochrome  converter: 30.72 Mbytes/sec 

Pass monochrome  data to output:  3.84 Mbytes/sec 

If you add all this up, you get 126.72 Mbytes/sec, well beyond even the theore- 
tical capability of the VME bus back then. More recently, I worked on a similar 
imaging application that was implemented with digital signal processors (DSPs) 

and multiple PCI buses, and one of the PCI buses was near its max imum 
capability when all the features were added.  The  point is, know how much data 

you have to push a round  and what buses or data paths you are going to use. If 
you are using a s tandard interface such as Ethernet  or Firewire, be sure it will 
suppor t  the total bandwidth required. 
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Processor Throughput 

In many applications, the processor throughput  is an important consideration. In 
the imaging example just mentioned, most of the functionality was performed in 
hardware because the available microprocessors could not keep up. As processor 
speeds increase, more functionality is pushed into the software. There are several 
key factors that you must consider to determine your throughput  requirements. 

Interrupts 
How often must the interrupts occur, and how much processing must be performed 
in each interrupt service routine (ISR)? What is the maximum allowable latency for 
servicing an interrupt? Will interrupts need to be turned off for an extended length 
of time, and how will that affect the latency of other interrupts? You may find that 
you need two (or more) processors---one to handle high-speed interrupts with short 
latency requirements but low complexity processing needs, and another to handle 
low-rate interrupts with more complex processing requirements. 

Interfaces 
What must the system talk to? How will the data be passed around or get to the 
outside world? How much hardware support will there be for the interface and 
how much of the functionality will be performed in software? To take a simple 
example, an IZc interface that is implemented on a microcontroller by flipping 
bits in software will impact overall throughput  more than an IzC interface that is 
implemented in hardware. This issue will likely be related to the interrupt con- 
siderations, because the interface will probably use interrupts. (If you don't know 
what IZc is, it will be covered in Chapter 2.) 

Hardware Support 
An imaging application that has a direct memory access (DMA) controller to move 
large amounts of data around will not need as much processor horsepower as one 
that has to move the data in software. A processor that has to move the data in 
software but has some kind of block-move instruction in the hardware will 
probably be faster than one that has to have a series of instructions to construct 
a loop. Similarly, if the CPU has an on-chip floating point unit (FPU) coprocessor, 
then floating point operations will be much faster than they would be if they had 
to be executed in software. 
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Processing Requirements 
If you are working on an imaging application, having a processor move the data 
from one process (such as the camera interface logic) to another  (such as filtering 
logic) takes some degree of processing. If the processor has to actually implement 
the filtering algorithm in software, this takes a lot more processing horsepower. It 
is amazing how often systems are designed with little or no analysis of the amount  
of processing the CPU actually has to do. 

Operating System Requirements 
If you use an operating system (OS), how long will interrupts be turned off?. Is 
this compatible with the interrupt  latency requirements? What if the OS occa- 
sionally stops processing to spend a few seconds thrashing the hard disk? Will this 
cause data to be lost? Does the system have real-time requirements that will make 
a real-time operating system necessary? 

Language~Compiler 
If you plan to use an object-oriented language such as C++ ,  what happens when 
the CPU has to do garbage collection on the memory? Will data be lost? Does 
choosing this approach mean you have to go from a 100 MHz processor to a 
1 GHz processor just to keep the garbage collection interval short? 

A voiding Excess Speed 

Choosing a bus architecture and a processor that are fast enough to do the job is 
important,  but it can also be important  to avoid too much speed. It may not seem 
logical that you wouldn't  always want the fastest bus and the fastest microproces- 
sor, but there are applications where that is exactly the case. There  are two basic 
reasons for this: cost and electromagnetic compatibility (EMC). 

Cost 
The PC/104 standard defines mechanical and electrical characteristics of PC 
boards, optimized for embedded applications. PC/104 CPU boards come with 
the original PC/104 bus, which has electrical and timing characteristics similar to 
the ISA bus used in personal computers and is capable of data transfers in the 
5 Mbytes/sec range. Many CPU boards also have the PC/104 Plus bus, which has 
characteristics similar to the much faster (133 Mbytes/sec) PCI bus. Although it 
might seem that the faster bus is always preferred, it is often less expensive to 
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design a peripheral board for the PC/104 bus than for the PC/104 Plus. PC/104, 
due to the slower clock rates, allows longer traces and simpler logic. If you have a 
relatively large analog I/O board plugged into a PC/104 CPU board, the relaxed 
timing constraints of PC/104 may make layout easier. Many low-volume products 
simply do not sell enough units to justify the higher development costs associated 
with PC/104 Plus. Of course, this assumes that the PC/104 bus will support  the 
necessary data rates. Similar considerations apply to other buses, such as PCI and 
Compact PCI. 

EMC 

Almost every microprocessor-based design will have to undergo EMC testing 
before it can be sold in the United States or Europe. EMC regulations limit the 
amount  of energy the product  can emit, to prevent interference with other 
equipment  such as televisions and radios. Generally, the higher the clock rates 
are, the more emissions the equipment  generates. Current  EMC standards test 
radiated emissions in the frequency range between 30 MHz and 1 GHz. A pro- 
cessor running with a 6 MHz clock will not have any fundamental emissions in 
this range; the only frequencies in the test range will be those from the fifth and 
higher harmonics of the processor clock. The higher harmonics typically have 
less energy. On the other hand, a 33 MHz processor will produce energy in the 
test band from its fundamental frequency and higher. In addition, a faster 
processor clock rate means faster logic with faster edges and correspondingly 
higher energy in the harmonics. Although using a 6 MHz example in an era of 
2 GHz Pentiums may seem archaic, it does illustrate the point. EMC concerns are 
a valid reason to limit bus and processor speeds only to what is actually needed for 
the application. The caution here is not to limit the design too much. If the 
processor can just barely keep up with the application, there is no margin left 
to fix problems or add enhancements. 

Other System Considerations 

Peripheral Hardware 

An imaging system was having problems with lost data. This particular system 
buffered considerable image data on a hard disk drive. The problem was traced 
to the disk drive; the drive would just stop accepting data for a while and the 
image buffers would overflow. It turned out that this particular drive had a 
thermal compensation feature that required the on-drive CPU to "go away" for 
a few tens of milliseconds every so often. The application required continuous 
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access to the drive. Be sure the per ipheral  ha rdware  is compatible with your  

application and does not introduce problems. 

Shared Interfaces 

What  is the impact of shared interfaces? For example ,  if you are continuously 

buffering data from two different image cameras on two disk drives, a single IDE 

interface may not be fast enough.  You may need separate  IDE interfaces for the 

two drives so they can operate  independent ly ,  or you may need to go to an 

interface with higher  performance.  Similarly, will 10-baseT Ethernet  handle  all 
your  data, or will you need 100-baseT? Look at all the data on all the interfaces 

and make sure the bandwidth  you need is there. 

Task Priorities 

The  IBM PC architecture has been used for all kinds of applications. It is a 

wel l -documented s tandard with an enormous  n u m b e r  of compatible software 

packages available. But it has some drawbacks, including the non-real- t ime 
nature  of the s tandard Windows opera t ing system. You have probably experi-  

enced having your PC stop responding  for a few seconds while it thrashes the 

hard disk for some unknown reason. If you are typing a documen t  on a word 

processor,  this is a minor  a n n o y a n c e n w h a t e v e r  you typed is captured  (as long 

as it isn't too many characters) and shows up on the screen whenever  the 
opera t ing  system gets back to processing the keyboard.  What  happens  if you 

are gett ing a continuous s t ream of data from an audio or video device when 

this happens? If your  system isn't constructed to permi t  your  data s tream to 

have a high priority, some data may be lost. If  you are using a PC-like 
architecture,  be sure the hardware  and operat ing system software will suppor t  

the things you need to do. 

Hardware Requirements 

Do you need a floating-point processor to do calculations on the data you will be 

processing? If so, you won't  be able to use a simple 8-bit processor, you will need 

at least a 486-class machine.  Does the data rate require  a processor with a DMA 

controller to keep up? This limits your  potential CPU selections to jus t  a few. In 
some cases, you can make system adaptat ions that will lower hardware  costs, as 

the following example  will illustrate. 

Imagine  that you have a motor-dr iven wheel that produces  an in te r rupt  to 

your processor every 20 ~ of rotation (see Figure 1.2). The  motor  runs at varying 
speeds and the processor has to schedule some event, such as activating a solenoid 

to open a valve, some n u m b e r  of degrees  after the in te r rup t  occurs. The  20 ~ 
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Figure 1.2 
Rotating wheel timing. 

in terrupts  will occur 3.3 ms apar t  if the wheel spins at 1000 rpm,  and 666 ~tS apart  

if the wheel spins at 5000 rpm.  If the processor uses a t imer  to measure  the 
rotation speed (time between interrupts) ,  and if the t imer runs at 1 MHz, then 

the t imer  will increment  3300 counts between interrupts  at 1000 rpm,  and 666 

counts at 5000 rpm.  
Say that the CPU has to open our  hypothetical solenoid when the wheel has 

rotated 5 ~ past one of the interrupts ,  as shown in Figure 1.2. The  formula for 

calculating the t imer  value (how much must  be added  to the cur ren t  count  for a 

5 ~ delay) looks like this: 

T i m e r  increment  value = 
5 degrees  delay 

20 deg ree s / i n t e r rup t  
N u m b e r  of 

x t imer counts per  in terrupt  

So at 1000 rpm,  the 5 ~ delay is 825 t imer counts, and at 5000 rpm,  the delay is 

166 counts. The  problem with this approach in an e m b e d d e d  system is the need 
to divide by 20 in the formula. Division is a t ime-consuming task to perform in 

software, and this approach might  require that you choose a processor with 

hardware  divide instruction. 
If  we change our  m e a s u r e m e n t  system so that the 20 ~ divisions are divided into 

binary values, the math gets easier. Say that we decide to divide the 20 ~ divisions 

into 32 equal parts, each part  being 0.625 degrees.  We'll call these increments 

units jus t  so we have a name for them. The  5 ~ increment  is now 5/0.625 or 8 units. 

Now our  formula looks like this: 

T i m e r  increment  value = 
8 units N u m b e r  of 

32 units per in te r rupt  x t imer counts per  in terrupt  
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This gives us the same result as before (825 at 1000 rpm,  166 at 5000 rpm),  but  
division by 32 can be per formed with a simple shift operat ion instead of a 
complex software algorithm. A change like this may mean the difference between 
a simple 8-bit microcontroller and a more  complex and expensive microproces- 
sor. All we did was change from measur ing  degrees of rotation to measur ing  

something that is easier to calculate. 

Word Width 
If you are connecting a processor to a 12-bit ADC, you will probably want a 16-bit 
processor instead of an 8-bit processor. While you can per form 16-bit operat ions 
on an 8-bit CPU, it usually requires multiple instructions and has o ther  limita- 
tions. Unless the processor is simply passing the data on to some other  part  of the 
system, you will want to match the CPU to the devices with which it must  inter- 
face. Similarly, if you will be per forming  calculations to 32-bit accuracy, you will 
want to consider a CPU with at least 16-bit and probably 32-bit word width to 

make computat ion easier and faster. 

Interfaces 
Be sure that interface conditions that are unusual  but normal  don ' t  cause damage  
to any part  of the system. For instance, a microprocessor board may connect  to a 

motor  control board  with a cable. What happens  if the service engineer  leaves the 
cable unplugged  and turns the system on? Will the motors remain stationary, or 
will they run  out of control? Make sure that issues like this are addressed.  

Sample Rate and Aliasing 

Figure 1.3 shows a sinusoidal input  signal and an ADC that is sampling at a slower 
rate than the signal is changing. If the system measur ing this system assumed it 
was measur ing a sinusoid of some frequency, it would conclude that it was 
measur ing a sinusoid exactly half the frequency of the real input. This is called 
aliasing, and it can occur any time that the input  frequency is a multiple of the 

sample frequency. 
Also shown in Figure 1.3 is another  input  waveform that is not a sinusoid. In 

this case, the system doesn' t  assume it is sampling a sine, so it just  stores the 
samples as they are read. As you can see, the resulting pat tern of data values does 

not match the input  at all. 
Any system must be designed so that it can keep up with whatever it is 

measuring.  This includes the speed at which the ADC can collect samples and 
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Figure 1.3 
Aliasing. 

the speed at which the microprocessor can process them. If the input frequency 
will be greater than the measurement  capability of the system, there are three 
ways to handle it" 

1. Speed up the system to match the input. 
2. Filter out high-frequency components  with external hardware ahead of the 

ADC measuring the signal. 
3. Filter out or ignore high-frequency components in software. This sounds 

sillymhow do you filter something faster than you can measure? But if the 
valid input range is known, such as the number  of cars entering a parking lot 
over any given time, then bogus inputs may be detectable. In this example, any 
input frequency greater than a couple per second can be assumed to be the 
result of noise or a faulty sensormreal  cars don't  enter parking lots that fast. 

Good system design depends on choosing the right tradeoffs between proces- 
sor speed, system cost, and ease of manufacture. 
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Analog-to-Digital Converters 2 

Al though  this chap te r  is pr imar i ly  abou t  analog-to-digi tal  conver te r s  (ADCs), an 

u n d e r s t a n d i n g  of  digi tal- to-analog conver te r s  (DACs) is i m p o r t a n t  to u n d e r s t a n d -  

ing how ADCs work. F igure  2.1 shows a simple resistor  l adde r  with th ree  

switches. T h e  resistors are a r r a n g e d  in an R/2R conf igura t ion .  T h e  actual values 

of  the resistors are u n i m p o r t a n t ;  R could be 10 K or  100 K or  a lmost  any o the r  

value. Each switch, S0-$2,  can switch one  end  of  one  2R resistor  be tween  g r o u n d  

and  the r e fe rence  input  voltage, VR. T h e  Figure  shows what  h a p p e n s  when  

switch $2 is on (connected  to VR) and  S 1 and  $2 are O F F  (connec ted  to g round) .  

By calculat ing the resul t ing series/parallel  resistor  ne twork ,  the final o u t p u t  

voltage (VO) turns  out  to be 0.5 x VR. If  we similarly calculate VO for all the 

o the r  switch combinat ions ,  we get  this: 

S2 S l  SO Vo 

OFF OFF OFF 
OFF OFF ON 
OFF ON OFF 
OFF ON ON 
ON OFF OFF 
ON OFF ON 
ON ON OFF 
ON ON ON 

0 
0 .125  x VR (1 /8  x VR) 
0 .25 x VR (2 /8  x VR) 

0 .375  x VR (3 /8  x VR) 
0.5 x VR (4 /8  x VR) 

0 .625  x VR (5 /8  x VR) 
0 .75 x VR (6 /8  x VR) 

0 .875  x Vl:t (7 /8  x vR)  

If  the th ree  switches are  t rea ted  as a 3-bit digital word,  then  we can rewri te  the 

table as follows (using ON - 1, O F F  - 0)" 

E q u i v a l e n t  Logic  S ta te  S 0 - S 2  N U M E R I C  
S2 S 1 SO S2 S 1 SO EQUIV~T.~.WrT 

OFF OFF OFF 0 0 0 0 
OFF OFF ON 0 0 1 1 
OFF ON OFF 0 1 0 2 
OFF ON ON 0 1 1 3 
ON OFF OFF 1 0 0 4 
ON OFF ON 1 0 1 5 
ON ON OFF 1 1 0 6 
ON ON ON 1 1 1 7 
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The output  voltage is a representation of the switch value. Each additional 
table entry adds VR/8 to the total voltage. Or, put another  way, the output  voltage 
is equal to the binary, numeric value of S0-$2, times VR/8. This 3-switch DAC has 
8 possible states and each voltage step is VR/8. 

We could add another  R/2R pair and another  switch to the circuit, making a 4- 
switch circuit with 16 steps of VR/16 volts each. An 8-switch circuit would have 
256 steps of VR/256 volts each. Finally, we can replace the mechanical switches in 
the schematic with electronic switches to make a true DAC. 

ADCs 

The usual method of bringing analog inputs into a microprocessor is to use an 
ADC. An ADC accepts an analog input, a voltage or a current, and converts it to a 
digital word that can be read by a microprocessor. Figure 2.2 shows a simple 
ADC. This hypothetical part has two inputs: a reference and the signal to be 
measured. It has one output,  an 8-bit digital word that represents, in digital form, 
the input value. For the moment,  ignore the problem of getting this digital word 
into the microprocessor. 

INPUT 

REFERENCE VOLTAGE 

OUTPUT 
BITS (8) 

Vr = REFERENCE VOLTAGE 

V r  - 

l .U 
.8 Vr - 

O .6 Vr - 

I - -  
D .4 Vr - 
Z 

.2 Vr - 

I I I I I I I I 

32 64 96 128 160 192 224 255 

OUTPUT VALUE (DECIMAL) 

Figure 2.2 
S i m p l e  A D C .  
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Reference Voltage 

The  reference voltage is the m a x i m u m  value that the ADC can convert. Our  
example  8-bit ADC can convert  values from 0 V to the reference voltage. This 
voltage range is divided into 256 values, or steps. The  size of the step is given by: 

Reference Voltage 5 V 

256 256 
= 0.0195 V, or 19.5 mv 

This is the step size of the converter .  It also defines the converter 's  resolution. 

Output Word 

Our  8-bit converter  represents  the analog input  as a digital word. The  most 
significant bit of this word indicates whether  the input  voltage is greater  than half 
the reference (2.5 V, with a 5 V reference). Each succeeding bit represents  half of 
the previous bit, like this: 

Bit: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

Volts: 2.5 1.25 0.625 0.3125 0.156 0.078 0.039 0.0195 

So a digital word of 0010 1100 represents  this" 

Bit" Bit 7 B i t 6  B i t 5  B i t4  B i t3  B i t 2  Bi t1  Bit O 

Volts: 2.5 1.25 0.625 0.3125 0.156 0.078 0.039 0.0195 
Ou tpu t  Value 0 0 1 0 1 1 0 0 

Adding the voltages cor responding  to each bit, we get" 

0.625 + 0.156 + 0.078 - 0.859 volts 

Resolution 

The  resolution of an ADC is de te rmined  by the reference input  and the word 
width. The  resolution defines the smallest voltage change that can be measured 
by the ADC. As ment ioned earlier, the resolution is the same as the smallest step 
size, and can be calculated by dividing the reference voltage range by the number  
of possible conversion values. 

For the example  we've been using so far, an 8-bit ADC with a 5 V reference, the 
resolution is 0.0195 V (19.5 mv). This means that any input voltage below 19.5 mv 
will result in an output  of 0. Inpu t  voltages between 19.5 and 39 mv will result in 
an output  of 1. Between 39 mv and 58.6 mv, the output  will be 2. Resolution can 
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be improved by reducing the reference input. Changing from 5 V to 2.5 V gives a 
resolution of 2.5/256, or 9.7 mv. However, the maximum voltage that can be 
measured is now 2.5 V instead of 5 V. 

The  only way to increase resolution without changing the reference is to use an 
ADC with more bits. A 10-bit ADC using a 5 V reference has 21~ or 1024 possible 
output  codes. So the resolution is 5 V/1024, or 4.88 mv. 

Types of ADCs 

ADCs come in various speeds, use different interfaces, and provide differing 
degrees of accuracy. Three  types of ADCs are illustrated in Figure 2.3. 

Tracking ADC 

The tracking ADC has a comparator,  a counter,  and a digital-to-analog converter. 
The comparator  compares the input voltage to the DAC output  voltage. If the 
input is higher than the DAC voltage, the counter  counts up. If the input is lower 
than the DAC voltage, the counter  counts down. 

The  DAC input is connected to the counter  output. Say the reference vohage is 
5 V. This would mean that the converter could convert voltages between 0 V and 
5 V. If the most significant bit of the DAC input is "1 ," the output  voltage is 2.5 V. 
If the next bit is "1," 1.25 V is added, making the result 3.75 V. Each successive bit 
adds half the voltage of the previous bit, so the DAC input bits correspond to the 
following voltages: 

Bit: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

Volts: 2.5 1.25 0.625 0.3125 0.156 0.078 0.039 0.0195 

Figure 2.3 shows how the tracking ADC resolves an input voltage of 0.37 V. 
The counter  starts at zero, so the comparator  output  will be high. The  counter  
counts up once for every clock pulse, stepping the DAC output  voltage up. When 
the counter  passes the binary value that represents the input voltage, the com- 
parator  output  will switch and the counter  will count down. The  counter  will 
eventually oscillate around the value that represents the input voltage. 

The  primary drawback to the tracking ADC is speed- -a  conversion can take up 
to 256 clocks for an 8-bit output,  1024 clocks for a 10-bit value, and so on. In 
addition, the conversion speed varies with the input voltage. If the voltage in this 
example were 0.18 V, the conversion would take only half as many clocks as the 
0.37 V example. 
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The maximum clock speed of a tracking ADC depends on the propagation 
delay of the DAC and the comparator.  After every clock, the counter output  has 
to propagate through the DAC and appear at the output.  The comparator  then 
takes some amount  of time to respond to the change in DAC voltage, producing a 
new up/down control input to the counter. Tracking ADCs are not commonly 
available; in looking at the parts available from Analog Devices, Maxim, and Burr- 
Brown (all three are manufacturers of ADC components),  not one tracking ADC 
is shown. This only makes sense: a successive approximation ADC with the same 
number  of bits is faster. However, there is one case where a tracking ADC can be 
useful; if the input signal changes slowly with respect to the sampling clock, a 
tracking ADC may produce an output  in fewer clocks than a successive approxi- 
mation ADC. However, since there are no commercial tracking ADCs available, a 
tracking ADC would have to be built from discrete hardware. 

Flash ADC 

The flash ADC is the fastest type available. A flash ADC has one comparator  per 
voltage step. A 4-bit ADC will have 16 comparators, an 8-bit ADC will have 256 
comparators. One input of all the comparators is connected to the input to be 
measured. The other input of each comparator  is connected to one point in a 
string of resistors. As you move up the resistor string, each comparator  trips at a 
higher voltage. All of the comparator  outputs connect to a block of logic 
that determines the output  based on which comparators are low and which are 
high. 

The conversion speed of the flash ADC is the sum of the comparator  delays 
and the logic delay (the logic delay is usually negligible). Flash ADCs are very fast, 
but take enormous amounts of IC real estate to implement.  Because of the 
number  of comparators required, they tend to be power hogs, drawing significant 
current. A 10-bit flash ADC IC may use half an amp. 

Successive Approximation Converter 

The successive approximation converter is similar to the tracking ADC in that a 
DAC/counter drives one side of a comparator  and the input drives the other. The 
difference is that the successive approximation register performs a binary search 
instead of just counting up or down by one. As shown in Figure 2.3, say we start 
with an input of 3 V, using a 5 V reference. The successive approximation register 
would perform the conversion as follows: 

Set  MSB of SAR, DAC vo l t age  = 2.5 V 
C o m p a r a t o r  o u t p u t  h igh ,  so l eave  MSB se t  
Resu l t  = 1 0 0 0  0 0 0 0  
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Set  bi t  6 of SAR, DAC vo l t age  = 3 .75  V (2.5 + 1.25) 
C o m p a r a t o r  o u t p u t  low, r e s e t  bi t  6 
R e s u l t  = 1 0 0 0  0 0 0 0  

Set  b i t  5 of SAR, DAC vo l t age  = 3 . 1 2 5 V  (2.5 + 0 .625)  
C o m p a r a t o r  o u t p u t  low, r e s e t  bi t  5 
Resu l t  = 1 0 0 0  0 0 0 0  

Set  b i t  4 of SAR, DAC vo l t age  = 2 . 8 1 2 5 V  (2.5 + 0 . 3 1 2 5 )  
C o m p a r a t o r  o u t p u t  h igh,  l eave  bi t  4 se t  
Resu l t  = 1001 0 0 0 0  

Set  b i t  3 of SAR, DAC vo l t age  = 2 . 9 6 8 V  ( 2 . 8 1 2 5  + 0 . 1 5 6 2 5 )  
C o m p a r a t o r  o u t p u t  h igh,  l e ave  bi t  3 se t  
Resu l t  = 1001 1 0 0 0  

Set  b i t  2 of SAR, DAC vo l t age  = 3 .04  V (2 .968  + 0 . 0 7 8 1 2 5 )  
C o m p a r a t o r  o u t p u t  low, r e s e t  bi t  2 
Resu l t  = 1001 1 0 0 0  

Set  b i t  1 of SAR, DAC vo l t age  = 3 . 0 0 7 V  ( 2 . 8 1 2 5  + 0 .039)  
C o m p a r a t o r  o u t p u t  low, r e s e t  bi t  1 
R e s u l t  = 1001 1 0 0 0  

Set  b i t  0 of SAR, DAC vo l t age  = 2 . 9 8 8  V ( 2 . 8 1 2 5  + 0 . 0 1 9 5 )  
C o m p a r a t o r  o u t p u t  h igh,  l eave  bi t  0 se t  
F ina l  r e s u l t  = 1001 1001 

Using the 0-to-5 V, 8-bit DAC, this corresponds to: 

2.5 + 0.3125 + 0.15625 + 0.0195 or 2.988 volts 

This is not exactly 3 V, but it is as close as we can get with an 8-bit converter and 
a 5 V reference. 

An 8-bit successive approximation ADC can do a conversion in 8 clocks, 
regardless of the input voltage. More logic is required than for the tracking 
ADC, but the conversion speed is consistent and usually faster. 

Dual-Slope (Integrating) ADC 
A dual-slope converter (Figure 2.4) uses an integrator followed by a comparator, 
followed by counting logic. The integrator input is first switched to the input 
signal, and the integrator output  charges toward the input voltage. After a 
specified number  of clock cycles, the integrator input is switched to a reference 
voltage (VREF1 in Figure 2.4) and the integrator charges down toward this value. 

When the switch occurs to VREF 1, a counter is started, and it counts using the 
same clock that determined the original integration time. When the integrator 
output  falls past a second reference voltage (VREF2 in Figure 2.4), the compara- 
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INPUT 

VREF1 
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" o  

----------o 

INTEGRATOR 

7 VREF2 

COUNT 
AND 
CONTROL 
LOGIC 

OUTPUT 

SWITCH 

COUNTER 

I INPUT I VREFI ] 

ZERO I COUNTING 

INTEGRATION 
TIME 

VREF2 

Figure 2.4 
Dual-slope ADC. 

tor output  goes high, the counter stops, and the count represents the analog 
input voltage. Higher input voltages will allow the integrator to charge to a higher 
voltage during the input time, taking longer to charge down to VREF2, and 
resulting in a higher count at the output. Lower input voltages result in a lower 
integrator output  and a smaller count. 

A simpler integrating converter, the single-slope, runs the counter while charg- 
ing up and stops counting when a reference voltage is reached (instead of charg- 
ing tbr a specific time). However, the single-slope converter is affected by clock 
accuracy. The dual-slope design eliminates clock accuracy problems because the 
same clock is used for charging and incrementing the counter. Note that clock 
jitter or drift within a single conversion will affect accuracy. The dual-slope 
converter takes a relatively long time to perform a conversion, but the inherent  
tiltering action of the integrator eliminates noise. 

Sigma-Delta 
Betbre describing the sigma-delta converter, we need to look at how oversam- 
piing works, because it is key to unders tanding the sigma-delta architecture. 
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Figure 2.5 shows a noisy 3 V signal, with 0.2 V peak-to-peak of noise. As shown in 
the Figure, we can sample this signal at regular intervals. Four samples are shown 
in the Figure; by averaging these we can filter out the noise" 

(3.05 V + 3.1 V + 2.9 V + 2.95 V)/4 = 3 V 

Obviously this example is a little contrived, but it illustrates the point. If our 
system can sample the signal four times faster than data is actually needed, we can 
average four samples. If we can sample ten times faster, we can average ten samples 
for an even better result. The  more samples we can average, the closer we get to the 
actual input value. The catch, of course, is that we have to run the ADC faster than 
we actually need the data, and must have software to do the averaging. 

Figure 2.6 shows how a sigma-delta converter works. The  input signal 
passes through one side of a differential amp, through a low-pass filter (inte- 
grator), and on to a comparator.  The  output  of the comparator  drives a digital 
filter and a 1-bit DAC. The  DAC output  can switch between +V and - V .  In 
the example shown in Figure 2.6, the +V is 0.5 V, and the - V  is -0 .5  V. The 
output  of the DAC drives the other side of the differential amp, so the output  
of the differential amp is the difference between the input voltage and the 
DAC output. In the example shown, the input is 0.3 V, so the output  of the 
differential amp is either 0.8V (when the DAC output  is -0 .SV)  or - 0 . 2 V  
(when the DAC output  is 0.5 V). 

3V - 

2V - 

1V - 

3V SIGNAL WITH .2V P-P 

RANDOM NOISE 

3.05V 3.1V 2.9V 2.95V 

Figure 2.5 
Oversampling. 
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I I 

iI~-- 200/0 

80% 

INPUT LEVEL, .3V 

Figure 2.6 
Sigma-delta ADC. 

The output of the low-pass filter drives one side of the comparator, and the 
other side of the comparator is grounded. So any time the filter output is above 
ground, the comparator output will be high, and any time the filter output is 
below ground, the comparator output will be low. The thing to remember is that 
the circuit tries to keep the filter output at 0 V. 
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As shown in Figure 2.6, the duty cycle of the DAC output represents the 
input level; with an input of 0.3 V (80% of the -0 .5  to 0.5 V range), the DAC 
output has a duty cycle of 80%. The digital filter converts this signal to a binary 
digital value. 

The input range of the sigma-delta converter is the plus-and-minus DAC 
voltage. The example in Figure 2.6 uses 0.5 and -0.5  V for the DAC, so the input 
range is -0 .5  V to 0.5 V, or 1 V total. For + 1 V DAC outputs, the range would be 
+ 1 V, or 2 V total. 

The primary advantage of the sigma-delta converter is high resolution. 
Because the duty cycle feedback can be adjusted with a resolution of one clock, 
the resolution is limited only by the clock rate. Faster clock equals higher 
resolution. 

All of the other types of ADCs use some type of resistor ladder or string. In 
the flash ADC the resistor string provides a reference for each comparator. On the 
tracking and successive approximation ADCs, the ladder is part of the DAC in 
the feedback path. The problem with the resistor ladder is that the accuracy of the 
resistors directly affects the accuracy of the conversion result. Although modern 
ADCs use very precise, laser-trimmed resistor networks (or sometimes capacitor 
networks), there are still some inaccuracies in the resistor ladders. The sigma- 
delta converter does not have a resistor ladder; the DAC in the feedback path is a 
single-bit DAC, with the output swinging between the two reference endpoints. 
This provides a more accurate result. 

The primary disadvantage of the sigma-delta converter is speed. Because the 
converter works by oversampling the input, the conversion takes many clocks. 
For a given clock rate, the sigma-delta converter is slower than other converter 
types. Or, to put it another way, for a given conversion rate, the sigma-delta 
converter requires a faster clock. 

Another disadvantage of the sigma-delta converter is the complexity of the 
digital filter that converts the duty cycle information to a digital output word. 
Single-IC sigma-delta converters have become more commonly available with the 
ability to add a digital filter or DSP to the IC die. 

Half-Flash 

Figure 2.7 shows a block diagram of a half-flash converter. This example imple- 
ments an 8-bit ADC with 32 comparators instead of 256. The half-flash converter 
has a 4-bit (16 comparators) flash converter to generate the MSB of the result. 
The output of this flash converter then drives a 4-bit DAC to generate the voltage 
represented by the 4-bit result. The output of the DAC is subtracted from the 
input signal, leaving a remainder that is converted by another 4-bit flash to 
produce the LS 4 bits of the result. 
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/ [~ LSB OF RESULT 

(4 BITS) 

Figure 2.7 
Hal f - f lash conver te r .  

If the converter  shown in Figure 2.7 were a 0-5 V conver ter  convert ing a 3.1 V 

input,  then the conversion would look like this: 

U p p e r  flash converter  output  = 9 

DAC output  = 2.8125 V(9 x 16 x 19.53 mv) 

Subtracter  output  = 3.1 V - 2.8125 V = 0.2875 V 

Lower flash converter  output  = E (hex) 

Final result = 9E (hex), 158 (decimal) 

Half-flash converters  can also use three stages instead of two; a 12-bit converter  

might  have three stages of 4 bits each. The  result  of the MS 4 bits would be 

subtracted from the input  voltage and applied to the middle  4-bit state. The  result  

of the middle stage would be subtracted from its input  and applied to the least 

significant 4-bit stage. A half-flash converter  is slower than an equivalent flash 

converter ,  but uses fewer comparators ,  so it draws less current .  

ADC Comparison 

Figure 2.8 shows the range of resolutions available for integrating,  sigma-delta, 

successive approximat ion,  and flash converters.  The  m a x i m u m  conversion speed 

for each type also is shown. As you can see, the speed of available sigma-delta 

ADCs reaches into the range of the SAR ADCs, but  is not as fast as even the 
slowest flash ADCs. What  these charts do not show is tradeoffs between speed and 

accuracy. For instance, a l though you can get SAR ADCs that range from 8 to 16 
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ADC comparison. 

bits, you won't find the 16-bit version to be the fastest in a given family of parts. 
The fastest flash ADC won't be the 12-bit part, it will be a 6- or 8-bit part. 

These charts are snapshots of the current state of the technology. As CMOS 
processes have improved, SAR conversion times have moved from tens of micro- 
seconds to microseconds to tens of nanoseconds. Not all technology improvements 
affect all types of converters; CMOS process improvements speed up all families of 
converters, but the ability to put increasingly sophisticated DSP functionality on the 
ADC chip doesn't improve SAR converters. It does improve sigma-delta types. 

Sample and Hold 

ADC operation is straightforward when a DC signal is being converted. What 
happens when the signal is changing? Figure 2.9 shows a successive-approxima- 
tion ADC attempting to convert a changing input. When the ADC starts the 
conversion, the input voltage is 2.3 V. This should result in an output  code of 
117 (decimal) or 75 (hex). The SAR register sets the MSB, making the internal 
DAC voltage 2.5 V. Because the signal is below 2.5 V, the SAR resets bit 7 and sets 
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VOLTAGE AT END OF CONVERSION 
= 2.8V, COOE 143D (8FH) 

3v ~" 
, .  i 

VOLTAGE AT ~ [ i 
START OF 2V J 
CONVERSION I 
= 2.3V (COOE = 
117D, 7SH) 

IV 2.5 1.2.5 1.875 2.187S 2.34375 2.4218V 2.4609V 2.4804V DAC VOLTAGE 
01000000 01100000 0111 0000 0111 1000 0111 1100 0111 1110 0111 1111 SARREGISTER 

i v ~ f i v w | v w'" 

Figure 2.9 
ADC inaccuracy caused by a changing input. 

bit 6 on the next clock. The ADC "chases" the input signal, ending up with a final 
result of 12710(7F16). The actual vohage at the end of the conversion is 2.8 V, 
corresponding to a code of 14310(8F16). 

The final code out of the ADC (127d) corresponds to a voltage of 2.48 V. This 
is neither the starting voltage (2.3 V) nor the ending voltage (2.8 V). This example 
used a relatively fast input to show the effect; a slowly changing input has the 
same effect, but the error  will be smaller. One way to reduce these errors is to 
place a low-pass filter ahead of the ADC. The  filter parameters are selected to 
ensure that the ADC input does not change appreciably within a conversion cycle. 

Another way to handle changing inputs is to add a sample-and-hold (S/H) 
circuit ahead of" the ADC. Figure 2.10 shows how a sample-and-hold circuit 
works. The  S/H circuit has an analog (solid state) switch with a control input. 
When the switch is closed, the input signal is connected to the hold capacitor and 
the output  of the buffer follows the input. When the switch is open, the input is 
disconnected from the capacitor. 

Figure 2.10 shows the waveform for S/H operation. A slowly rising signal is 
connected to the S/H input. While the control signal is low (sample), the output  
follows the input. When the control signal goes high (hold), disconnecting the 
hold capacitor from the input, the output  stays at the value the input had when 
the S/H switched to hold mode. When the switch closes again, the capacitor 
charges quickly and the output  again follows the input. Typically, the S/H will 
be switched to hold mode just before the ADC conversion starts, and switched 
back to sample mode after the conversion is complete. 

In a perfect world, the hold capacitor would have no leakage and the buffer 
amplifier would have infinite input impedance,  so the output  would remain stable 
forever. In the real world, the hold capacitor will leak and the buffer amplifier 
input impedance is finite, so the output  level will slowly drift down toward 
ground as the capacitor discharges. 

Analog-to-Digital Converters 27 



INPUT SIGNAL 

SAMPLE/HOLD CONTROL 

INPUT SIGNAL 

OUTPUT VOLTAGE 

SAMPLE/HOLD CONTROL 
(0 = SAMPLE, 1 = HOLD) 

I 
I 
1 

BUFFER 

~ HOLD CAPACITOR 

TO ADC 

Figure 2.10 
S a m p l e - a n d - h o l d  c i rcui t .  

The ability of an S/H to maintain the output  in hold mode is dependent  on the 
quality of the hold capacitor, the characteristics of the buffer amplifier (primarily 
input impedance), and the quality of the sample-and-hold switch (real electronic 
switches have some leakage when open). The amount  of drift exhibited by the 
output  when in hold mode is called the droop rate, and is specified in millivolts per 
second, microvolts per microsecond, or millivolts per microsecond. 

A real S/H also has finite input impedance, because the electronic switch isn't 
perfect. This means that, in sample mode, the hold capacitor is charged through 
some resistance. This limits the speed with which the S/H can acquire an input. 
The time that the S/H must remain in sample mode in order  to acquire a full-scale 
input is called the acquisition time, and is specified in nanoseconds or micro- 
seconds. 

Because there is some impedance in series with the hold capacitor when 
sampling, the effect is the same as a low-pass R-C filter. This limits the maximum 
frequency the S/H can acquire. This is called the full power bandwidth, specified in 
kHz or MHz. 

As mentioned, the electronic switch is imperfect and some of the input signal 
appears at the output, even in hold mode. This is called feedthrougk, and is 
typically specified in dB. 

The output offset is the voltage difference between the input and the output. 
S/H datasheets typically show a hold mode offset and sample mode offset, in 
millivolts. 
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Real Parts 

Real ADC I Cs come with a few real-world limitations and some added  features. 

Input Levels 

The  examples so far have concentrated on ADCs with a 0-5 V input  range.  This is 
a common  range for real ADCs, but many of them operate  over a wider range of 
voltages. The  Analog Devices AD570 has a 10 V input  range.  The  part  can be 
configured so that this 10 V range is ei ther 0 to 10 V or -,5 V to +,5 V, using one 
pin. Of  course, having a negative input  voltage range implies that the ADC will 
need a negative voltage supply. Other  common input voltage ranges are +2.5 V 
and +3 V. 

With the t rend toward lower-powered devices and small consumer  equipment ,  
the t rend in ADC devices is to lower-voltage, single-supply operation.  Tradi t ional  
single-supply ADCs have opera ted  from +5 V and had an input  range between 
0 V and 5 V. Newer parts often operate  at 3.3 or 2.7 V, and have an input  range 
somewhere  between 0 V and the supply. 

Internal Reference 

Many ADCs provide an internal reference voltage. The  Analog Devices AD872 is 
a typical device with an internal 2.5 V reference. The  internal  reference voltage is 
b rough t  out to a pin and the reference input  to the device is also connected to a 
pin. To  use the internal reference, the two pins are connected together.  To  use 
your own external  reference, connect it to the reference input  instead of the 
internal reterence.  

Reference Bypassing 

Although the reference input  is usually high impedance  with low DC cur ren t  
requirements ,  many ADCs will draw cur ren t  from the reference briefly while a 
conversion is in process. This is especially true of successive approximat ion  ADCs, 
which draw a momenta ry  spike of cur ren t  each time the analog switch network is 
changed.  Consequently,  most ADCs require  that the reference input  be bypassed 
with a capacitor of 0.1 laf or so. 

Internal S/H 

Many ADCs, such as the Maxim MAX191, include an internal  S/H. An ADC with 
an internal  S/H may have a separate pin that controls whether  the S/H is in 
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sample or hold mode, or the switch to hold mode may occur automatically when a 
conversion is started. 

Microprocessor Interfacing 

Output Coding 
The examples used so far have been based on binary codes, where each bit in the 
result represents a voltage value and the sum of these voltages in the output  word 
is the analog input voltage value. Some ADCs produce 2's complement  outputs, 
where a negative voltage is represented by a negative 2's complement  value. A 
few ADCs output  values in BCD. Obviously this requires more bits for a given 
range; a 12-bit binary output  can represent values from 0 to 4095, but a 12-bit 
BCD output  can only represent values from 0 to 999. 

Parallel Interfaces 
ADCs come in a variety of interfaces, intended to operate with multiple proces- 
sors. Some parts include more than one type of interface to make them compat- 
ible with as many processor families as possible. 

The Maxim MAX 151 is a typical 10-bit ADC with an 8-bit "universal" parallel 
interface. As shown in Figure 2.11, the processor interface on the MAX 151 has 8 
data bits, a chip select (-CS), a read strobe (-RD), and a - B U S Y  output. The 
MAX 151 includes an internal S/H. On the falling edge o f -RD and -CS, the S/H is 
placed into hold mode and a conversion is started. I f -CS  a n d - R D  do not go low 
at the same time, the last falling edge starts a conversion. In most systems,-CS is 
connected to an address decode and will go low b e f o r e - R D .  As soon as the 
conversion starts, the ADC dr ives-BUSY low (active).-BUSY remains low until 
the conversion is complete. 

In the first mode of operation, which Maxim calls Slow Memory Mode, the 
processor waits, h o l d i n g - R D  and -CS low, until the conversion is complete. In 
such a system, the-BUSY signal would typically be connected to the processor-RDY 
o r - W A I T  signal. This holds the processor in a wait state until the conversion 
is complete. The maximum conversion time for the MAX151 is 2.5 ~ts. 

The second mode of operation is called ROM mode. In this mode the 
processor performs a read cycle, which places the S/H in hold mode and starts 
a conversion. During this read, the processor reads the results of the previous 
conversion. The -BUSY signal is not used to extend the read cycle. Instead,-B USY 
is connected to an interrupt,  or is polled by the processor to indicate 
when the conversion is complete. W h e n - B U S Y  goes high, the processor does 
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Maxim MAX151 interface. 

ano the r  read  to get the result  and  start a n o t h e r  conversion.  Al though  the data  

sheets refer  to two different  modes  of  opera t ion ,  the ADC works the same way 

in both cases: 

�9 Falling edge  o f - R D  a n d - C S  starts a convers ion 

�9 C u r r e n t  result  is available on bus after r ead  access t ime has e lapsed 
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�9 As long a s - R D  a n d - C S  stay low, cur rent  result remains available on bus 
�9 When  conversion completes, new conversion data is latched and available to the 

processor; i f - R D  a n d - C S  are still low, this data replaces result of previous 
conversion on bus 

The  MAX151 is designed to interface to most microprocessors.  Actually inter- 
facing to a specific processor requires analysis of the MAX 151 timing and how it 
relates to the microprocessor  timing. 

Data Access Time 

The  MAX151 specifies a max imum access time of 180 ns over the full tempera-  
ture range (see Figure 2.12). This means that the result of a conversion will be 
available on the bus no more than 180 ns after the falling edge o f -RD (assuming-CS 
is already low w h e n - R D  goes low). The  processor will need the data to be 
stable some time before the rising edge o f - R D .  If  there is a data bus buffer 
between the MAX151 and the processor, the propagat ion delay through the 
buffer must be included. This means that the processor bus cycle (the time tha t -RD 
is low) must  be at least as long as the access time of the MAX151, plus the 
processor data setup time, plus any bus buffer delays. 

-BUSY Output 

T h e - B U S Y  output  of the MAX151 goes low a m a x i m u m  of 200ns  after the 
falling edge o f - R D .  This is too long for the signal to directly drive most micro- 
processors if you want to use the slow memory  mode.  Most microprocessors 
require  that the RDY o r - W A I T  signal be driven low earlier than this in the bus 
cycle. Some require the wait request  signal to be low one clock a f t e r - R D  goes low. 
The  only solution to this problem is to artificially insert wait states to the bus cycle 
until t h e - B U S Y  signal goes low. Some microprocessors,  such as the 80188 
family, have internal wait-state generators  that can add wait states to a bus cycle. 
The  80188 wait-state genera tor  can be p r o g r a m m e d  to add 0, 1, 2, or 3 wait 
states. 

As shown in Figure 2.12, in Slow Memory mode t h e - B U S Y  signal goes high 
just before the new conversion result is available; according to the datasheet,  this 
time is a max imum of 50 ns. For some processors, this means that the wait request 
must be held active for an additional clock cycle a f t e r - B U S Y  goes high to ensure 
that the correct data is read at the end of the bus cycle. 

Bus Relinquish 

The  MAX151 has a m a x i m u m  bus relinquish time of 100 ns. This means that the 
MAX 151 can drive the data bus up to 100 ns after the -RD signal goes high. If the 
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processor tries to start another  cycle immediately after reading the MAX151 
result, this may result in bus contention. A typical example would be the 80186 
processor, which multiplexes the data bus with the address bus; at the start of a 
bus cycle the data bus is not tristated, but  the processor drives the address onto 
the data bus. If the MAX 151 is still driving the bus, this can result in an incorrect 
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bus address being latched. The solution to this problem is to add a data bus buffer 
between the MAX151 and the processor. The buffer inputs are connected to the 
MAX 151 data bus outputs, and the buffer outputs are connected to the processor 
data bus. The buffer is turned on w h e n - R D  a n d - C S  are both low, and turned off 
when either goes high. Although the MAX151 will continue to drive the buffer 
inputs, the outputs will be tristated and so will not conflict with the processor data 
bus. A buffer may also be required if you are interfacing to a microprocessor that 
does not multiplex the data lines but does have a very high clock rate. In this case, 
the processor may start the next cycle before the MAX151 has relinquished the 
bus. A typical example would be a fast 80960-family processor, which we will look 
at later in the chapter. 

Coupling 

The MAX151 has an additional specification, not found on some ADCs, that 
involves coupling of the bus control signals into the ADC. Because modern  ADCs 
are built as monolithic ICs, the analog and digital portions share some internal 
components  such as the power supply pins and the substrate on which the IC die 
is constructed. It is sometimes difficult to keep the noise generated by the micro- 
processor data bus and control signals from coupling into the ADC and affecting 
the result of a conversion. To minimize the effect of coupling, the MAX 151 has a 
specification that t h e - R D  signal be no more than 300 ns wide when using ROM 
mode. This prevents the rising edge o f - R D  from affecting the conversion. 

Delay between Conversions 

When the MAX151 S/H is in sampling mode the hold capacitor is connected to 
the input. This capacitance is about 150 pf. When a conversion starts, this capa- 
citot t is disconnected from the input. When a conversion ends, the capacitor is 
again connected to the input, and it must charge up to the value of the input pin 
before another  conversion can start. In addition, there is an internal 150ohm 
resistor in series with the input capacitor. Consequently, the MAX 151 specifies a 
delay between conversions of at least 500 ns if the source impedance driving the 
input is less than 509t. If the source impedance is more than 1 K~2, the delay must 
be at least 1.5 laS. This delay is the time from the rising edge o f - B U S Y  to the 
falling edge o f -RD.  

L SB Errors 

In theory, of course, an infinite amount  of time is required for the capacitor to 
charge up, because the charging curve is exponential and the capacitor never 
reaches the input voltage. In practice, the capacitor does stop charging. More 
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important ,  the capacitor only has to charge to within 1 bit (called 1 LSB) of the 
input voltage; for a 10 V converter  with a +4 V input  range, this is 8 V/1024, or 
7.8 mv. This is an important  concept that we will take a closer look at in Chapter  

9. To  simplify the concept, errors  that fall within one bit of resolution have no 
effect on conversion accuracy. The  other  side of that coin is that the accumulation 

of errors  (opamp offsets, gain errors,  etc.) cannot  exceed one bit of resolution or 
they will affect the result. 

Clocked Interfaces 

Interfacing the MAX 151 to a clocked bus, such as that implemented  on the Intel 
80960 family, is shown in Figure 2.13. Processors such as the 960 use a clock- 
synchronized bus without a - R D  strobe. Data is latched by the processor on a 
clock edge, ra ther  than on the rising edge of a control signal such a s -RD.  These 
buses are often implemented  on very fast processors and are usually capable of 
high-speed burst  operation. 

Shown in Figure 2.13 is a normal  bus cycle without wait states. This bus cycle 
would be accessing a memory  or peripheral  able to operate  at the full bus speed. 
The  address and status information is provided on one clock, and the CPU reads 
the data on the next clock. 

Following this cycle is an access to the MAX 151. As can be seen, the MAX 151 is 

much slower than the CPU, so the bus cycle must  be extended with wait states 
(either internally or externally generated).  This d iagram is an example; the actual 

number  of wait states that must be added depends  on the processor clock rate. 
The  bus relinquish time of the MAX 151 will interfere with the next CPU cycle, so 
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a buffer is necessary. Finally, because the CPU does not generate a - R D  signal, 
one must be synthesized by the logic that decodes the address bus and generates 
timing signals to memory  and peripherals.  The  normal  method of interfacing an 

ADC like this to a fast processor is to use the ROM mode. Slow Memory mode 
holds the CPU in a wait state for a long t imemthe  2.5 ]as conversion time of the 
MAX151 would be 82 clocks on a 33 MHz 80960. This is time that could be spent 

executing code. 

Serial Interfaces 

Many ADCs use a serial interface to connect to the microprocessor. This has the 
advantage of providing a processor- independent  interf~ace that does not affect 

processor wait states, bus hold times, or clock rates. The  primary disadvantage is 

speed, because the data must be transferred one bit at a time. 

SPl/Microwire 

SPI is a serial interface that uses a clock, chip select, data in, and data out bits. 
Data is read from a serial ADC a bit at a time (Figure 2.14). Each device on the SPI 

bus requires a s epa ra t e -CS  signal. 
The  Maxim MAX1242 is a typical SPI ADC. The  MAX1242 is a 10-bit succes- 

sive approximat ion ADC with an internal S/H, in an 8-pin package. Figure 2.15 
shows the MAX 1242 interface timing. The  falling edge of-CS starts a conversion, 
which takes a max imum of 7.5 ]as. W h e n - C S  goes low, the MAX1242 drives its 
data output  pin low. After the conversion is complete, the MAX1242 drives the 

data output  pin high. The  processor can then read the data a bit at a time by 
toggling the clock line and moni tor ing the MAX 1242 data output  pin. After the 
10 bits are read, the MAX 1242 provides two sub-bits, S 1 and SO. If further  clock 

transitions occur after the 13 clocks, the MAX 1242 outputs zeros. 
Figure 2.15 shows how a MAX1242 would be connected to a microcontroller 

with an on-chip SPI/Microwire interface. The  SCLK signal goes to the SPI 

SPI/MICROWIRE TIMING 

SCK _ _ _ _ ~ / - - - - ~  

DATA < >--- 

-cs ~ \  / ~  

Figure 2.14 
SPI bus. 

36 Analog Interfacing to Embedded Microprocessor Systems 



t 

s 8 ~
Z

 

<
 

z 
~

z_
~

 

~ 
~_ 

~
z 

~ 

~
8

 

"1
: 

o
~

 

~
x 

~
E

 

A
nalog-to-D

igital C
onverters 

37 



SCLK signal on the microcontroller,  and the MAX1242 D O U T  signal connects 
to the SPI data input  pin on the microcontroller.  One of the microcontroller 
port  bits generates t h e - C S  signal to the MAX1242. Note that t h e - C S  signal 
starts the conversion and must  remain low until the conversion is complete. 
This means that the SPI bus is unavailable for communicat ing  with other 
peripherals  until the conversion is finished and the result has been read. If 
there are in ter rupt  service routines that communicate  with SPI devices in the 
system, they must be disabled dur ing  the conversion. To  avoid this problem, 
the MAX1242 could communicate  with the microcontrol ler  over a dedicated 
SPI bus. This would use three more  pins on the microcontroller.  Since most 
microcontrollers that have on-chip SPI have only one, the second port  would 
have to be implemented  in software. 

Finally, it is possible to generate  an in ter rupt  to the microcontroller  when the 
ADC conversion is complete.  An extra connection is shown in Figure 2.15, from 
the MAX1242 D O U T  pin to an in ter rupt  on the microcontroller.  W h e n - C S  is 
low and the conversion is completed,  D O U T  will go high, in ter rupt ing  the 
microcontroller.  To  use this method,  the firmware must  disable or otherwise 
ignore the in ter rupt  except  when a conversion is in process. 

Another  ADC with an SPI-compatible interface is the Analog Devices AD7823. 
Like the MAX1242, the AD7823 uses three pins: SCLK, DOUT,  a n d - C O N V S T .  
The  AD7823 is an 8-bit successive approximat ion  ADC with internal S/H. A 
conversion is started on the falling edge o f - C O N V S T ,  and takes 5.5 ~ts. The  
rising edge o f - C O N V S T  enables the serial interface. 

Unlike the MAX1242, the AD7823 does not drive the data pin until the 
microcontroller  reads the result, so the SPI bus can be used to communicate  with 
other  devices while the conversion is in process. However,  there is no indication 
to the microprocessor when the conversion is comple t emthe  processor must  start 
the conversion, then wait until the conversion has had time to complete before 
reading the result. One way to handle this is with a regular  t imer interrupt;  on 
each interrupt ,  the result of the previous conversion is read and a new conversion 
is started. 

12C Bus 

The  I2C bus uses only two pins: SCL (SCLock) and SDA (SDAta). SCL is gener- 
ated by the processor to clock data into and out of the per ipheral  device. SDA is a 
bidirectional line that serially transmits all data into and out of the peripheral .  
The  SDA signal is open-collector, so several peripherals  can share the same two- 
wire bus. 

When sending data, the SDA signal is allowed to change only while SCL is in 
the low state. Transit ions on the SDA line while SCL is high are in terpreted as 
start and stop conditions. If SDA goes low while SCL is high, all peripherals  on 

38 Analog Interfacing to Embedded Microprocessor Systems 



the bus will interpret  this as a START condition. SDA going high while SCL is 
high is a STOP or END condition. Figure 2.16 illustrates a typical data transfer. 
The processor initiates the START condition and then sends the peripheral  
address, which is 7 bits long, and tells the devices on the bus which one is to be 
selected. This is followed by a read/write bit (1 for read, 0 for write). 

After the read/write bit, the processor programs the I/O pin connected to the 
SDA bit to be an input and clocks an acknowledge bit in. The  selected peripheral  
will drive the SDA line low to indicate that it has received the address and read/ 
write information. 

After the acknowledge bit, the processor sends another  address, which is the 
internal address within the peripheral  that the processor wants to access. The 
length of this field varies with the peripheral.  After this is another  acknowledge; 
then the data is sent. For a write operation, the processor clocks out 8 data bits, 
and for a read operation, the processor treats the SDA pin as an input and clocks 
in 8 bits. After the data comes another  acknowledge. 

Some peripherals permit  multiple bytes to be read or written in one transfer. 
The processor repeats the data/acknowledge sequence until all the bytes are 
transferred. The  peripheral  will increment its internal address after each transfer. 

One drawback to the I2C bus is speed- - the  clock rate is limited to about 
100 KHz. A newer Fast-mode I2C bus that operates to 400 Kbits/sec is also avail- 
able, and a high-speed mode that goes to 3.4 Mbits/sec is also available. High 
speed and fast-mode buses both support  a 10-bit address field so up to 1024 
locations can be addressed. High-speed and fast-mode devices are capable of 
operating in the older system, but older peripherals are not useable in a higher- 
speed system. The faster interfaces have some limitations, such as the need for 
active pullups and limits on bus capacitance. Of course, the faster modes 
of operation require hardware support  and are not suitable for a software- 
controlled implementation. 

A typical ADC that uses I2C is the Philips PCF8591. This part  includes both an 
ADC and a DAC. Like many I2C devices, the 8591 has three addressing pins" A0, 
A1, and A2. These can be connected to either "1" or "0" to select which address 
the device responds to. When the peripheral  address is decoded, the PCF8591 
will respond to address 100 lxxx, where xxx matches the value of the A2, A1, and 
A0 pins. This allows up to eight PCF8591 devices to share a single I2C bus. 

SMBus 

SMBus is a variation on I2C, defined by Intel in 1995. I2C is primarily defined by 
hardware and varies somewhat from one device to the next, but SMBus defines the 
bus as more of a network interfhce between a processor and its peripherals. The 
SMBus specification defines things such as powerdown operation of devices (no bus 
loading) and operating voltage range (3-5 V) that all devices must meet. The primary 
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difference between SMBus and I2C is that SMBus defines a standard set of read and 
write protocols, rather than leaving these specifics up to the I C manufacturers. 

Proprietary Serial Interfaces 

Some ADCs have propr ie tary  interfaces. The  Maxim MAX 1101 is a typical device. 
This is an 8-bit ADC that is optimized for interfacing to CCDs. The  MAX1101 
uses four pins: MODE, LOAD, DATA, and SCLK. The  MODE pin de termines  
whether  data is being written or read (1 = read, 0 = write). The  DATA pin is a 
bidirectional signal, the SCLK signal clocks data into and out of the device, and 
the LOAD pin is used after a write to clock the write data into the internal  
registers. The  clocked serial interface of the MAX1101 is similar to SPI, but  
because there is no chip select signal, multiple devices cannot  share the same 
data/clock bus. Each MAX1101 (or similar device) needs four signals from the 
processor for the interface. 

Many proprietary serial interfaces are intended for use with microcontrollers 
that have on-chip hardware  to implement  synchronous serial I/O. The  8031 family, 
for example,  has a serial interface that can be configured as either an asynchronous 
interface or as a synchronous interface. Many ADCs can connect directly to these 
types of microprocessors. The  problem with any serial interface on an ADC is that it 
limits conversion speed. In addition, the type of interface limits speed as well. 
Because every I2C exchange involves at least 20 bits, an I2C device will never be 
as fast as an equivalent SPI or proprietary device. For this reason, there are many 
more ADCs available with SPI/Microwire than with I2C interfaces. 

The  required th roughput  of the serial interface drives the design. If you need a 
conversion speed of 100,000 8-bit samples per  second and you plan to implement  
an SPI-type interface in software, then your processor will not be able to spend 
more than 1/(100,000 • 8) or 1.25~S transferr ing each bit. This may be imprac- 
tical if the processor has any other tasks to perform, so you may want to use an ADC 
with a parallel interface or choose a processor with hardware  support  for the SPI. 

As ment ioned in Chapter  1, the bandwidth of the bus must  be considered as well 
as the th roughput  of the processor. If there are multiple devices on the SPI bus, then 
you have to be sure the bus can support  the total t h roughpu t  required of all the 
devices. Of  course, the processor has to keep up with the overall data rate as well. 

Multichannel ADCs 

Many ADCs are available with multiple channelsmanywhere  from two to eight. The  
Analog Devices AD7824 is a typical device, with eight channels. The  AD7824 con- 
tains a single 8-bit ADC and an 8-channel analog multiplexer. The  microprocessor 
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interface to the AD7824 is similar to the Maxim MAX 151, but with the addition of 
three address lines (A0-A2) to select which channel  is to be converted. Like the 
MAX 151, the AD7824 may be used in a mode in which the microprocessor  starts 
a conversion and is placed into a wait state until the conversion is complete. The  
microprocessor can also start a conversion on any channel  (by reading data from 
that channel),  then wait for the conversion to complete and per form another  read 
to get the result. The  AD7824 also provides an in ter rupt  ou tput  that indicates 
when a conversion is complete. 

Internal Microcontroller ADCs 

Many microcontrollers contain on-chip ADCs. Typical devices include the Micro- 
chip PIC 167C7xx family and the Atmel AT90S4434. Most microcontroller  ADCs 
are successive approximat ion  because this gives the best t radeoff  between speed 
and I C real estate on the microcontroller  die. 

The  PIC16C7xx microcontrollers contain an 8-bit successive approximat ion 
ADC with analog input  multiplexers.  The  microcontrollers in this family have 
from four to eight channels. Internal  registers control which channel  is selected, 
start of conversion, and so on. Once an input  is selected, there is a settling time 
that must  elapse to allow the S/H capacitor to charge before the A/D conversion 
can start. The  software must  ensure  that this delay takes place. 

Reference Voltage 

The  Microchip devices allow you to use one input  pin as a reference voltage. This 
is normally tied to some kind of precision reference. The  value read from the A/D 
converter  after a conversion is" 

Digital w o r d -  (Vin /Vref )  x 256 

The  Microchip parts also permit  the reference voltage to be internally set to 
the supply voltage, which permits the reference input  pin to be another  analog 
input. In a 5 V system, this means that Vref  is 5 V. So measur ing  a 3.2 V signal 
would produce  the following result: 

Vin x 256 3.2V x 256 
Result - = = 1631o - A316 

Vref  5 V 
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However,  the result is d e p e n d e n t  on the value of the 5 V supply. If the supply 
voltage is high by 1%, it has a value of 5.05 V. Now the value of the A/D conver- 

sion will be: 

3.2 V x 256 

5 .05V 
= 16210 - A216 

So a 1% change in the supply voltage causes the conversion result to change 

by one count. Typical power supplies can vary by 2 or 3%, so power  supply 

variations can have a significant effect on the results. The  power supply ou tput  
can vary with loading, t empera ture ,  AC input  variations, and from one supply to 

the next. 
This brings up an issue that affects all ADC designs: the accuracy of the reference. 

The  Maxim MAX 1242, which we have already looked at, uses an internal reference. 
The  part  can convert inputs from 0 V to the reference voltage. The  reference is 

nominally 2.5 V, but it can vary between 2.47 V and 2.53 V. Convert ing a 2 V input 

at the extremes of the reference ranges gives the following result: 

At Vref  - 2.47 V, Result - 

At Vref  - 2.53 V, Result - 

2 V x 1024 

2.47 

2 V x 1024 

2.53 

= 82910 

= 8091o 

(Note: Multiplier is 1024 because the MAX1242 is a 10-bit converter .)  

So the variation in the reference voltage from part  to part  can result in an 

output  variation of 20 counts. 

Codecs 

The te rm codec has two meanings:  it is short  for compressor /decompressor ,  or for 

coder/decoder .  In general,  a codec (either type) will have two-way operat ion;  it 
can turn  analog signals into digital and vice-versa, or it can convert  to and from 

some compression standard.  
The  National Semiconductor  LM4546 is an audio codec in tended to imple- 

ment  the sound system in a personal  computer .  It contains an internal  18-bit ADC 

and DAC. It also includes much of the audio-processing circuitry needed  for 3D 

PC sound. The  LM4546 uses a serial interface to communica te  with its host 

processor. 
The  National TP3054 is a telecom-type codec, and includes ADC, DAC, filter- 

ing, and compand ing  circuitry. The  TP3054 also has a serial interface. 
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Interrupt Rates 

The MAX151 can perform a conversion every 3.3 las, or 300,000 conversions per 
second. Even a 33 MHz processor operating at one instruction per clock cycle can 
execute only 110 instructions in that time. The  interrupt  overhead of saving and 
restoring registers can be a significant portion of those instructions. 

In some applications, the processor does not need to process every conversion. 
An example would be a design in which the processor takes four samples, 
averages them, and then does something with the average. In cases like this, 
using a processor with DMA capability can reduce the in terrupt  overhead. The 
DMA controller is p rog rammed  to read the ADC at regular  intervals, based on a 
timer (the ADC has to be a type that starts a new conversion as soon as the 
previous result is read). After all the conversions are complete, the DMA con- 
troller interrupts the processor. The  accumulated ADC data is processed and the 
DMA controller is p rog rammed  to start the sequence over. Processors that in- 
clude on-chip DMA controllers include the 80186 and the 386EX. 

Dual-Function Pins on Microcontrollers 

If you work with microcontrollers, you sometimes find that you need more I/O 
pins than your microcontroller has. This is most often a problem when working 
with smaller devices, such as the 8-pin Atmel ATtiny parts, or the 20- and 28-pin 
Atmel AVR and Microchip PIC devices. In some cases, you can make an analog 
input double as an output  or make it handle two inputs. Figure 2.17A shows how 
an analog input can also control two outputs. In this case, the analog input is 
connected to a 2.5 V reference diode. A typical use for this design would be in an 
application where you are using the 5 V supply as the ADC reference, but you 
want to correct the readings for the actual supply value. A precise 2.5 V reference 
permits you to do this, because you know that the value of the reference should 
read as 80 (hex) if the power supply is exactly 5 V. 

The  pin on the microcontroller is also tied to the inputs of two comparators. A 
voltage divider sets the noninverting input of comparator  A at 3 V, and the 
inverting input of comparator  B at 2 V. By configuring the pin as an analog 
input, the reference value can be read. If the pin is then configured as a digital 
output  and set low, the output  of comparator  A will go low. If the pin is config- 
ured as a digital output  and set high, the output  of comparator  B will go low. Of 
course, this scheme works only if the comparator  outputs drive signals that 
never need to both be low at the same time. The  resistor values must be large 
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Figure 2.17 
Dual-function pins. 

enough that the microcontroller can source enough  current to drive the pin high. 
This technique will also work for a digital-only I/O pin; instead of  a 2.5 V 
reference, a pair of  resistors is used to hold the pin at 2.5 V when it is configured 
as an input. 
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Figure 2.17B shows how a single analog input can be used to read two switches. 
When both switches are open, the analog input will read 5 V. When switch S1 is 
closed, the analog input will read 3.9 V. When switch $2 is closed, the input will 
read 3.4 V, and when both switches are closed, the input will read 2.9 V. Instead 
of switches, you could also use this technique to read the state of open-collector or 
open-drain digital signals. 

Figure 2.17C shows how a thermistor or other variable-resistance sensor can 
be combined with an output. The microcontroller pin is p rogrammed as an 
analog input to read the temperature.  When the pin is p rogrammed as an output 
and driven high, the comparator output  will go low. To make this work, the 
operating temperature  range must be such that the voltage divider created by the 
thermistor and the pullup resistor never brings the analog input above 3 V. Like 
the example shown in 2.17A, this circuit works best if the output  is something that 
periodically changes state, so the software has a regular opportunity to read the 
analog input. 

Design Checklist 

�9 Be sure ADC bus interface is compatible with microprocessor timing. Pay 
particular attention to bus setup, hold, and min/max pulse width timings. 

�9 If using SPI and an ADC that requires the bus to be inactive during conversion, 
ensure that the system will work with this limitation or provide a separate SPI 
bus for the ADC. 

�9 If using an ADC that does not indicate when conversion is complete, ensure 
that software allows conversion to complete before reading result. 

�9 Be sure reference accuracy meets requirements of the design. 
�9 Bypass reference input as recommended by ADC manufacturer. 
�9 Be sure the processor can keep up with the conversion rate. 
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Sensors 3 

Sensors provide the window through which a microprocessor system can see what 
is happen ing  in the real world. In this chapter  we will take a look at various 
sensors, their applications, and how they interface to microprocessors. 

Temperature Sensors 

Tempera tu re  is one of the most common real-world characteristics that needs to 

be measured.  Many industrial processes, from steel manufactur ing to semicon- 
ductor  fabrication, depend  on temperature .  Some electronics products  need to 
measure their own temperature ,  such as computers  that moni tor  the t empera tu re  
of the CPU or motor  controllers that must know the tempera ture  of the power 
driver IC. 

Thermistors 

A thermistor  is a temperature-sensit ive resistor. Most thermistors have a negative 
tempera ture  coefficient (NTC), meaning that the resistance goes up as the tem- 

perature  goes down. Of  all passive t empera tu re  measurement  sensors, thermis- 
tors have the highest sensitivity (resistance change per degree of t empera tu re  

change). Thermis tors  do not have a linear temperature/resistance curve. 
Thermis tor  characteristics are dependen t  on the manufactur ing process and 

materials used. Often, many thermistors in a family will have similar character- 

istics and identical curves. The  resistance of the thermistors may vary by 10:1 or 
100:1, but the curves are the same. Such thermistors are typically characterized 
by the manufacturer  in a table that shows the ratio of resistance at a given 
tempera ture  to the resistance at 25 ~ Data for a typical NTC thermistor  family 
is shown in the following table. 
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Typical NTC Thermistor Data 

Temp o C R/R25 Temp o C R/R25 

-50  39.03 30 0.8276 
-40  21.47 40 0.6406 
-30  12.28 50 0.5758 
-20  7.28 60 0.4086 
-10  4.46 70 0.2954 

0 2.81 80 0.2172 
10 1.82 90 0.1622 
20 1.21 100 0.1229 
25 1 110 0.09446 

This data is for a Dale thermistor,  but it is typical for NTC thermistors in 
general. The  resistance is given as a ratio (R/R25). A thermistor  from this family 

with a resistance at 25 ~ (R25) of 10,000 ohms would have a resistance of 28.1 K 
at 0 ~ and a resistance of 4.086 K at 60 ~ Similarly, a thermistor  with R25 of 5 K 
would have a resistance of 14,050 ohms (5000 x 2.81) at 0 ~ 

Figure 3.1 shows how this thermis tor  curve looks graphically. As men- 
tioned, the res is tance/ temperature  curve is not linear. The  data for this 
thermis tor  is given in 10 ~ increments.  Some thermis tor  tables have 5 ~ or even 
1 o increments.  

In some cases, you need to know the tempera ture  between two points on the 

table. You can estimate this by using the curve, or you can calculate the resistance 
directly. The  formula for resistance looks like this: 

Rt 

R25 

B C D )  
= exp A + ~ + ~ - - ~ + ~ - ~  

Where  T - t empera ture  in degrees Kelvin, and A, B, C, and D are constants 
that depend  on the characteristics of the thermistor.  These  parameters  must  be 
supplied by the thermistor  manufacturer .  

Thermis tors  have a tolerance that limits their repeatability from one sample to 
the next. This tolerance typically ranges from 1% to 10%, depending  on the 
specific part  used. Some thermistors are designed to be interchangeable in 
applications where it is impractical to have an adjustment.  Such an application 
might include an ins t rument  in which the user or a field engineer  has to replace 
the thermistor  and has no independen t  means to calibrate it. These thermistors 

are available with accuracy a round  0.2 ~ 
Figure 3.2 shows a typical circuit that could be used to allow a microprocessor 

to measure tempera ture  using a thermistor.  A resistor (R1) pulls the thermistor 
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up to a reference voltage. This is typically the same as the ADC reference, so Vref 
would be 2.5 V if the ADC reference was 2.5 V. The  thermistor/resistor combina- 
tion makes a voltage divider, and the varying thermistor  resistance results in a 

varying voltage at the junction. The  accuracy of this circuit is dependen t  on the 
thermistor  tolerance, resistor tolerance, and reference accuracy. 

Because a thermistor is a resistor, passing current  th rough  it will generate heat. 
This is called self-heating. The  circuit designer must ensure that th~ pullup 

resistor (R1 in the diagram) is large enough  to prevent  excessive self-heating, 
or the system will end up measuring the thermistor  dissipation instead of the 
tempera ture  of whatever the thermistor  is attached to. 

The  amount  of power that the thermistor  has to dissipate to affect the tem- 
perature  is called the dissipation constant (D.C.), and is usually expressed in 

milliwatts. The  D.C. varies with the package the thermistor is provided in, the 
lead gauge (if a leaded device), type of encapsulating material (if the thermistor is 
encapsulated), and other factors. The  D.C. is the number  of milliwatts needed to 
raise the thermistor  tempera ture  1 ~ above ambient. The  amount  of self-heating 
allowed, and therefore the size of the limiting resistor, is dependen t  on the 
measurement  accuracy needed.  A system that is only measuring with an accuracy 
of + 5 ~ can tolerate more thermistor self-heating than a system that must  be 
accurate to +0.1  ~ The  formula for calculating the amount  of self-heating 
dissipation allowed for a design is: 

P = D.C. x Required accuracy, in ~ 

For instance, if the D.C. for our  example thermistor  was 2 mw/~ and we 

needed to measure tempera ture  with an accuracy of 0.5 ~ then the maximum 
allowable dissipation would be: 

2 mw/~ • 0.5~ = 1 mw 

Because there are other errors  and tolerances in the system, we would prob- 
ably want a little margin, so we might divide this by 2, giving 0.5 mw as the 
max imum self-heating dissipation. Note that this is the maximum self-heating 

dissipation we want to allow over the measurement  tempera ture  range. Say we 
are using our  example thermistor,  with an R25 of 10 K, and we want to measure 
tempera tures  from 0 ~ to 25 ~ At 25 ~ the thermistor resistance is 10 K. To 
limit dissipation to 0.5 mw using a 2.5 V Vref, the pullup resistor (R1 in Figure 

3.2) can be calculated as follows: 

Thermis tor  dissipation = 0.5 mw at 10 K 
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T h e r m i s t o r  voltage d rop  at this dissipation" P -  

C u r r e n t  t h r o u g h  the rmis to r  = 2.23 V / 1 0  K = 223 laa 

Voltage across pul lup  = 2.5 - 2.23 = 0.27 V 

Pullup ( m i n i m u m  value) = 0.27 V/223  laa = 1 2 1 0 n  

; v/0.0005 x 10,000 = 2.23 V 

Now, suppose  that  we want  to use this the rmis to r  f rom 0~  to 50~ T h e  

the rmis to r  resistance (from the table) at 50 ~ is 5758 Ft. Repea t ing  the p reced ing  

calculation for this resistance results in a m i n i m u m  pul lup resistance of  

2725 ohms.  Because the the rmis to r  resistance is lower at h igher  t empera tu re s ,  

the original 1210 o h m  value would cause too much  dissipation at those t empera -  

tures. 

Scaling 
Somet imes  it is necessary to shift an analog signal to put  it in the r ight  r ange  fbr 

an A/D conver te r  to use. Figure 3.3 shows such a situation. H e r e  we have a 

the rmis to r  that  is interfaced to an 8-bit, 0-to-5 V A/D conver ter ,  such as that  

found  on the Microchip 16C7x parts. We'll use the same the rmis to r  we've been  

using. T h e  fo rmula  for the voltage V1 is: 

V I =  
2.5 x Rth 

Rth + R1 

In Figure 3.3, R1 = 10 K. Using this equat ion  and  the r e s i s t ance / t empera tu re  

table for the thermis tor ,  we can calculate the value of  V1 for the t e m p e r a t u r e  

range  we are in teres ted in: 

Temp ~ Rth V1 

- l 0  44.6 K 2.04 V 
0 28.1 K 1.84 V 
10 18.2 K 1.61V 
25 10 K 1.25 V 
30 8.276 K 1.13 V 
40 6.406 K 0.976 V 
50 4.08 K 0.7244 V 
70 2.954 K 0.569 V 
100 1229 9t 0.273 V 

Now, say that  we want  to measu re  t e m p e r a t u r e  be tween  10 ~ and  40 ~ 

with an accuracy of  at least th ree  A/D steps per  deg ree  (or 0 .333~  
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Thermistor scaling. 

per ADC step). If we convert the range in the table to ADC values, we get 

this" 

1.61 
10 degrees" digital w o r d -  ---~-- x 2 5 6 -  82 

0.976 
40 degrees" digital w o r d - ~  x 256 = 49 

8 2 -  4 9 -  33 ADC counts, 40 ~  10 ~ = 30 ~ (span) 

33 counts 
= 1.1 ADC steps per degree  

30 degrees 

This is less than the resolution we wanted, so we have to scale the output.  This 
involves amplifying the signal so that the 10-to-40 degree range we're interested 
in spans the ADC voltage range. In this example,  the 10-to-40 span ranges from 
0.976 to 1.61 volts, a span of 0.634 V (1.61 - 0.976). We could make this a 5 V 
span by multiplying it by 5 V/0.634 V, or 7.88. The  result of such a multiplication 
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would be to make the 10-to-40 degree  voltage range between 7.67 and 12.67 
volts. This is a 5 V span, but it is outside the 0-to-5 volt range of the ADC. What is 
needed is both multiplication and scaling, which amplifies the signal and shifts it 
down to the ADC input range. 

The  schematic in Figure 3.3 shows how an opamp can be configured to per- 
form this function. We can calculate the output  voltage of the o p a m p  as follows: 
Writing equations for V2: 

V o - V 2  V r - V 2  V2 + = 
Rf Rh RL 

As long as the opamp is operat ing in the linear range, V1 - V2. So we can 
rewrite the preceding equation like this" 

V o -  V1 V r -  V1 V1 + = 
Rf Rh RL 

If we solve this equation for Vo, we get the following: 

Rf R f )  VrRf 
V o -  Vl 1 + ~ E + ~ - ~  Rh 

Rf R f )  V1 1 + ~ + ~  is the gain and VrRf . Rh is the offset 

Now we can apply this to the thermistor  we've been using as an example.  Say 

that we want the 10-to-40 degree range to fall between 0.5 V and 4.5 V at the 
ADC. This gives a little margin to accommodate  the need to use s tandard resistor 
values. This scaling will give an ADC range of 204 counts over a range of 30 

degrees,  or 6.8 counts per degree. So the 0 .634V swing of the output  must 
translate into a swing of 4.5-0.5, or 4 V. This is a gain of 4/0.634 or 6.3. We can 
write this in equation form as: 

Rf Rf 
6 . 3 -  1 + ~--~-t- R--- ~ 

If we just  multiply V 1 by 6.3, we get outputs  of 

0.976 x 6.3 -- 6.14 V 

1.61 x 6 . 3 -  10.143 V 
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So the span ( 1 0 . 1 4 -  6.14 = 4 V) is right, but now we need the offset. The 

offset is found by subtracting either of these voltages from the corresponding 

desired voltage: 

6.14 - 0.5 = 5.64V, or 1 0 . 1 4 -  4.5 = 5.64V 

(Both have to give the same result or something is wrong in the earlier 

calculations.) 
The  offset is given by Vr Rf/Rh, so we can write another  equation: 

5.64 = 
Vr x Rf 

Rh 

Now we can solve the simultaneous equations for gain 

(6.3 = 1 +  Rh /RL + Rf /Rh)  and offset (5.64 = VrRf /Rh)  for resistor values. 

The  example circuit uses a reference voltage, Vr, of 2.5 V, as shown on the 

schematic. Note that this is the reference voltage only for the thermistor  and 

opamp  circuit; the ADC still uses a 5 V reference. We have two equations and 

three resistors, so we have to choose the value of one resistor. Selecting 100 K for 

Rf, we have: 

100 K 100 K 100 K 
6 . 3 =  1 +  + ~ ;  5 . 6 4 = V r ~  

RL Rh Rh 

Since Vr = 2 5 then the second equation is" 5.64 - 250 K 
" '  Rh 

Solving these simultaneous equations we get: 

Rh = 44.32 K 

RL = 32.85 K 

The  next step is to choose s tandard resistor values; the nearest 1% values are 

44.2 K and 33.2 K. Plugging these values into the equation for Vo, we get a gain of 

6.27 and an offset of 5.65 V. We can make a chart showing the actual ADC result 

for each tempera ture  in the range: 

Temp o C Rth Opamp Output (Decimal) 

10 18.2 K 4.44 V 227 
25 1OK 2.18V 111 
30 8.276 K 1.44 V 74 
40 6.406 K 0.467 V 23 
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You need the chart because the thermistor isn't linear, so the software needs to 
know what ADC value to expect for a given temperature.  If this were a real 
application, we would probably calculate the chart in 1-degree increments. For 
this specific example, the opamp has to swing almost all the way between 5 V and 
ground,  so it must either operate from positive and negative voltages, or else a 
single-supply, 5V-only opamp with rail-to-rail output  capability would be 
needed. The accuracy of this circuit is (227 - 23)/30 ~ = 6.8 ADC steps per ~ 

Tolerance Stackup 

In any opamp application, there are gain variations caused by the tolerances of 
the components.  In the thermistor scaling application we just looked at, we 
selected standard 1% resistor values to produce the gain and scaling factors we 
wanted, then calculated the actual ADC values that would result from that circuit. 
But 1% resistors have a 1% tolerance, so they can vary by 1%. What happens in 
that case? We can calculate this for our example as follows. 

Result if Rh is 1% High (44.642 K Instead of 44.2 K) 

Rh = 44.2 K R h -  44.64 K 

Temp Rth Vo ADC Result Vo ADC Result 

10 18.2 K 4.44 V 227 4.48 229 
25 10K 2.18V 111 2.21 113 
30 8.276 K 1.44 V 74 1.47 75 
40 6.406 K 0.467 V 23 0.50 25 

What happens ifRh is high by 1% (= 44.64 K) and RL is low by 1% (= 32.868)? 

Result if Rh is 1% High and RL is 1% Low 

Rh, RL normal Rh high, RL low 

Temp Rth Vo ADC Result Vo ADC Result 

10 18.2 K 4.44 V 227 4.47 229 
25 10K 2.18V 111 2.19 112 
30 8.276 K 1.44 V 74 1.45 74 
40 6.406 K 0.467 V 23 0.478 24 

In a real application, you could use a spreadsheet to calculate the effects of all the 
resistors, including the thermistor itself. In this simple application, just varying Rh 
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and RL by 1% throws the result offby 5 counts at 10~ This may or may not be a 
problem, depending on the accuracy required. In a real application, you would 
probably want to use at least 0.1% resistors. This would give the following result. 

Result if Rh is 0.1% High, R1 and RL are 0.1% Low 

Rh, RL normal Rh high, RL low 

Temp Rth Vo ADC Result Vo ADC Result 

10 18.2 K 4.44 V 227 4.47 229 
25 10K 2.18V 111 2.19 112 
30 8.276 K 1.44 V 74 1.45 74 
40 6.406 K 0.467 V 23 0.478 24 

This is much closer to the ideal result. Other  factors that would need to be 
included in a real application would be the tolerance of the voltage reference and 
the tolerance of the thermistor  itself. 

Another  way to get this kind of accuracy is to calibrate the system after it is 
built. In many applications, this is not an option because the circuit boards  and/or 
thermistor  must  be field replaceable. However,  in cases where the equipment  is 
not field replaceable, or where the field technicians have an independen t  means 
to moni tor  the temperature ,  it is possible to let the software build a table of 
temperature-versus-ADC values. The re  must be some means to input  the actual 
t empera ture  (measured with the independen t  tool) so the software can construct 
the table. 

Resistance Temperature Detectors 

A resistance tempera ture  detector (RTD) is just  a wire that changes resistance 
with temperature .  Typical RTD materials include copper,  platinum, nickel, and 
nickel/iron alloy. An RTD element  can be a wire or a film, plated or sprayed onto 
a substrate such as ceramic. 

RTD resistance is specified at 0 ~ A typical plat inum RTD with 100 9t resist- 
ance at 0 ~ would have a resistance of 100.39 Ft at 1 ~ and a resistance of 119.4 Ft 
at 50 ~ The  tolerance of RTDs is better than thermistors. Typical tolerance for 
RTDs looks like this: 

�9 Platinum: 0.01% to 0.03% 
�9 Copper:  0.2% 
�9 Nickel and nickel/iron: 0.5% 

Aside from better tolerance and overall lower resistance, the interface to an 
RTD is similar to that for a thermistor.  
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Thermocouples 
A thermocouple is made by joining two dissimilar metals. Thomas Seebeck 
discovered in 1821 that when such a junction is heated, it generates a tiny voltage. 
The amount  of voltage is dependent  on which two metals are joined. Three  
common thermocouple combinations are iron-constantan (Type J), copper- 
constantan (Type T), and chromel-alumel (Type K). 

The voltage produced by a thermocouple junction is very small, typically only 
a few millivohs. A type K thermocouple changes only about 40 ~tV per ~ change 
in temperature;  to measure temperature with 0.1 ~ accuracy, the measurement  
system must be able to measure a 4 ~tV change. Because any two dissimilar metals 
will produce a thermocouple junction when joined, the connection point of the 
thermocouple to the measurement system will also act as a thermocouple. Figure 3.4 
shows this effect, where a thermocouple is connected to a board using copper. The 
wires leading to the amplifier could be either copper wires or the copper traces 
on a PCB. 

As shown in Figure 3.4, this effect can be minimized by placing the connections 
on an isothermal block, which is a good conductor of heat. This minimizes the 
temperature difference between the connection points and minimizes the error  
introduced by the connection junctions. A common method of compensating for 
the temperature  of the connection block is to place a diode or other semiconduc- 
tor on the isothermal block and measure the (temperature-sensitive) drop across 
the semiconductor junction. 
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The  amplifier used to increase the signal level from the thermocouple  is 
usually an ins t rumentat ion amp. The  gain required to measure  a thermocouple  
is typically in the range of 100 to 300, and any noise picked up by the thermo- 
couple will be amplified by the same amount .  An ins t rumentat ion amplifier 
rejects the common mode  noise in the thermocouple  wiring. 

Analog Devices makes a thermocouple  signal condit ioner,  the AD594/595, 
which is specifically in tended for interfacing to a thermocouple .  The  AD594/ 
595 does not use an external  semiconductor  junct ion to compensate  for connec- 
tion tempera ture ;  instead the par t  includes an internal junct ion that is expected 
to be the same t empera tu re  as the connection. Consequently,  the thermocouple  
connection must  be made  on the PC board,  close to the AD595/595 package. 

The  amplified thermocouple  signal may need scaling, just  like a thermistor,  to 
place it in a useable range for an ADC. Thermocouples  are relatively linear over a 
limited range of tempera tures ,  but  if the range of measu remen t  is wide, the 
software will need to compensate  for nonlinearities. T h e  formula for thermo- 
couple voltage is a polynomial,  just  like thermistor  resistance formula. 

Solid State 

The  simplest semiconductor  t empera tu re  sensor is a PN junction,  such as a signal 
diode or the base-emitter  junct ion of a transistor. If the cur ren t  th rough the 
forward-biased silicon PN junct ion is held constant, the forward drop decreases 
about 1.8 mv per  ~ The  Maxim MAX1617 is an IC that measures t empera ture  
using an external  transistor, such as a 2N3904, as a tempera ture-sens ing  element. 
The  transistor can be a discrete part, or it can be e m b e d d e d  in the die of an I C to 
measure  the IC tempera ture .  The  MAX1617 has a serial SMBus output.  

The  LM335 (Figure 3.5) from National Semiconductor  produces  an output  
voltage proport ional  to tempera ture .  The  LM135 produces  10mv per  degree 
Kelvin. At 0~ the ou tput  is 2.73 V, and at 100~ the ou tput  is 3.73 V. The  
LM335 operates with input  cur ren t  from 400 ~ta to 5 ma. 

The  National LM34 and LM35 sensors operate  from supply voltages between 
4 V and 20 V, and produce  a voltage output  that directly corresponds to voltage. 
The  LM35 produces a voltage of 500 mv at 50 ~ with an additional 10 mv for 
every additional ~ increase. The  LM34 is calibrated for Fahrenhei t  tempera-  
tures, and the LM35 for Centigrade.  The  outputs  of the LM34/LM35 can be 
connected directly to an ADC or to a comparator .  

The  National LM74 measures tempera tures  between - 5 5  ~ and + 150 ~ and 
communicates  with a microprocessor  via the serial SPI/Microwire interface. The  
LM74 output  is a 13-bit signed value. The  part  contains a t empera tu re  sensor and 
a sigma-delta converter.  It is available in 3.3 V or 5 V versions and comes in an 8- 
pin SMT package. The  National LM75 is similar to the LM74, but uses the IzC 
interface. The  LM75 has a nar rower  operat ing t empera tu re  range: - 5 5  ~ to 
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+ 125 ~ The  LM75 produces a 9-bit output  and includes a compara tor  that can 
indicate when the tempera ture  exceeds a limit. The  limit t empera tu re  can be 
p r o g r a m m e d  via the I2C bus. 

Optical Sensors 

Slotted Switches 

Figure 3.6 shows a slotted optical switch. An LED is mounted  in a plastic housing, 

facing a phototransistor.  A gap separates the two, so if something moves into the 
gap, it blocks the light path between the LED and the phototransistor.  Slotted 
switches are often used to detect motor  speed by placing a slotted wheel on the 
motor  shaft; as the shaft rotates, it alternately blocks and unblocks the light path. 

Another  use for slotted switches is as indicators when a door  or hood is open or 
closed. A flag on the door  drops into the slot and blocks the light when the door  is 
closed. A mechanical computer  mouse uses slotted optical switches as well (an 
optical mouse uses a different method  of sensing motion). 

Reflective Sensors 

Figure 3.7 shows a reflective sensor. A reflective sensor works the same way as a 

slotted switch, except that the phototransistor picks up reflected light from what- 
ever is in front of the switch. Most reflective sensors have a focal length, the 
opt imum distance at which the object to be measured should be placed, typically 
between 0.1 and 0.5 inches. A typical use for a reflective sensor is to detect motor 
motion by painting or anodizing the motor  shaft black, then having a strip of 
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Figure 3.7 
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reflective material on the shaft. As the shaft rotates, the sensor sees no reflection 
from the part of the shaft that is black, then high reflection from the reflective strip. 

Both types of optical sensors have some common  characteristics that must be 

taken into account when designing a system that uses them, as detailed in the 

following sections. 

Speed The phototransis tor  in any optical switch is fairly slow. This limits 
the maximum speed that can be detected. Typical numbers  are 8 ~ts turn-on time 
and 501as turn-off  time. This time is driven by the speed of the base-emitter 

junction.  

GaiB The LED and phototransistor  pair have a limited gain, usually less than 1. 

The  amount  of current  generated in the phototransis tor  collector for a given 
current  th rough the LED is called the current  transfer ratio (CTR). A typical CTR 
for a slotted switch is 0.1. This means that 10 ma of current  in the LED will result 
in 1 ma of current  in the collector. The  CTR is sometimes specified as a ratio, and 
sometimes specified in a table that shows the collector current  for various values 
of LED current.  The  CTR is dependen t  on the LED and phototransistor  char- 
acteristics, and can vary widely from one device to the next. 

The  current  transfer ratio has several implications when you want to interface 
a switch to a microprocessor system. First, if you want to connect the switch 

directly to a digital input  (Figure 3.8), the transistor output  has to swing between 
valid logic levels. To  ensure that the phototransis tor  saturates, the value of the 
pullup resistor is limited. For example,  if you are driving the LED with 10 ma and 
the CTR has a min imum value of 0.1, then the pullup resistor will be a round  
5000ohms.  A smaller resistor would provide better  noise immunity (lower im- 
pedance) and possibly faster speed, but wouldn ' t  work with all devices because 
the transistor would not be able to sink enough  cur ren t  to ensure a valid logic low 
level. To use a smaller pullup, you could use an optical switch with a higher  CTR, 

or drive the LED with more current.  
Optical switches are available with darl ington transistor outputs,  and these 

often have a CTR higher  than 1. However,  they are typically only 20% as fast as 

a single transistor output  and have a higher  saturation voltage. 
Reflective sensors also have a CTR. Because the sensor depends  on reflected 

light, the CTR is dependen t  on the type of surface used for testing and the 
distance of that surface from the sensor. The  CTR of a reflective sensor is 
normally established with a s tandard reflective surface, placed at the specified 
focal length from the sensor. For example,  the Q T  optoelectronics reflective 
sensors include the following statement: "Measured using an Eastman Kodak 
neutral white test card with 90% diffused reflectance as a reflecting surface." 

The  CTR of a reflective sensor varies from device to device, but also with your  
application. If your  sensor is aimed at a surface that switches between gray and 
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Optical switch digital output. 

black, you will not get the same CTR you get with the white reference used by the 
manufacturer .  Your design has to accommodate the actual CTR resulting from 
your  application of the sensor. One way to determine the range of CTR is to 

measure the CTR in your  application, then compare  that to the CTR of the same 
sensor using the same white reference used by the sensor manufacturer .  This will 
give you an idea of the CTR range you can expect to see. 

Because the CTR of an optical sensor has a wide range, you may want to 
connect the output  of the sensor to an ADC. This allows the system to look for 
changes in the output  level, ra ther  than depend ing  on the ability of the part to 
generate digital logic levels. The  price for this capability, of course, is the cost of 

adding an ADC and the slower speed caused by the time needed for ADC 
sampling. A compara tor  can also be used; it does not provide the flexibility of 

the ADC, but is faster and cheaper. The  threshold of the compara tor  can be 
adjusted to compensate  for circuit limitations, such as the relatively high satura- 
tion voltage of a darl ington output.  In addition, a compara tor  permits the use of 
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hysteresis (see Appendix  A) to avoid a noisy output  caused by the slow speed of 
the phototransistor.  

IR Problems 

Most slotted and reflective sensors use IR LEDs and phototransistors.  This means 
that the response of the part  may not be the same as it would be for something in 
the visible spectrum. Specifically, objects that are good at reflecting or blocking 
visible light may be less effective at IR wavelengths. IR is also susceptible to 
interference from fluorescent lights and sunlight. 

Figure 3.9 shows how driving the LED with a square wave signal can be 
combined with a filter to eliminate this type of interference. In this example,  
a source of ambient  light causes the phototransis tor  to have a constant DC offset, 
and the signal is super imposed on a 60 Hz signal from fluorescent lighting. By 
passing the output  of the transistor th rough  a tilter that is tuned to the original 
modulat ion frequency, these components  can be removed and the signal con- 
verted to digital. The  filter can be implemented  in hardware  or software. The  IR 
method  used in television remote  control uses a 40 kHz modulat ion technique 
(a high-speed photodiode is used in the receiver to get this kind of speed). 

Filtering such as this has some drawbacks. The  first is speed. Due to the turn- 
on and turn-off  times of the phototransistor ,  there  is a m a x i m u m  modulat ion 
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Figure 3.9 
Opt ical  sensor  f i l tering. 
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frequency that will workntyp ica l ly  a round  10 kHz. Because filtering the signal 
takes some time, it takes several cycles for a mechanical  change in whatever is 
being measured  to show up at the output .  So, while the sensor may be able to 
operate  at 10 kHz, the system may be able to handle a rate of only 1000 Hz or so. In 
the example  shown, if the ambient  light causes so much DC offset that the 
phototransis tor  saturates, no amount  of filtering will recover  the signal. 

Mechanical Instability 

Mechanical j i t ter can cause strange results with reflective sensors. I saw a system 
once that used a reflective sensor to look at a shiny strip on a flat black motor  shaft 
to count  rotations. The  output  of the sensor circuit genera ted  an in te r rupt  to a 
microprocessor.  Occasionally, the motor  would stop with the shiny strip right at 
the edge of the detection area for the sensor. Machine vibration would then 
genera te  enormous  numbers  of interrupts  to the processor,  effectively shutting 
it down. You could envision a similar situation with a slotted sensor, if the flag that 
in te r rup ted  the light path only partially obscured the phototransistor.  This could 
leave the phototransis tor  halfway on, causing an ambiguous  output.  

Reflective sensors have some additional considerations. Reflective sensors are 
frequently used to sense objects of differing types. A good example  would be 
paper  moving down a high-speed sorting mechanism. The  paper  has varying 
quality, color, and reflective properties.  The  sensor system must  be designed to 
handle all the types of material  used. What  if someone runs a flat black document  
down the transport? Does your  system have to detect it? 

Even when the mechanical system being measured  doesn ' t  change, reflective 
sensors can cause problems. Imagine that a sensor is measur ing  motor  speed by 
looking at a reflective strip on a flat black motor  shaft, as described in the 
preceding paragraphs .  What happens  if there is a scratch on the shaft, making 
another  tiny reflector? Will this confuse the system? Suppose a film of oil builds 
up on the shaft, diffusing light from the reflective strip or increasing the reflec- 
tivity of the black part. These  types of questions have to be answered. 

In some cases, you may have to add hardware  and/or  software to detect 
unusual  conditions. In the example  already ment ioned,  in which a reflective 
sensor genera ted  excessive interrupts ,  the software might  have a t imer that keeps 
track of the time between interrupts.  If  the sensor ISR is exited and immediately 
reentered ,  the ISR could disable the in ter rupt  and set a flag to tell the rest of the 
system that something is wrong. 

Open Sensors 
In systems where safety is an issue, be sure that a failed sensor doesn ' t  cause the 
system to operate  in an unsafe manner .  A typical example  would be a safety hood 
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that  mus t  be closed before the mach ine  can start. T h e  idea is that  all the danger -  
ous moving  parts  are u n d e r  the hood,  so if the hood  is closed you know the 

opera to r ' s  hands  are out  of the way. You could use a slotted optical switch and a 

flag that  blocks the light path  when  the hood  is closed. You then connect  the 

photo t rans i s tor  emi t te r  to g r o u n d  and  pull the collector up with a resistor. W h e n  
the flag is blocking the sensor,  the transistor  is off and  the ou tpu t  is high. 

T h e  p rob lem with this app roach  is that  an open  or d i sconnec ted  LED would 

a p p e a r  the same to the system as a closed hood.  T h e  system migh t  then try to start 

with the hood open.  In a case like this, use a flag that  unblocks the sensor  when  the 

hood  is closed. A bad LED then looks like an open  hood  and  every th ing  is safe. 

An even safer m e t h o d  would be to use two sensors, one that  is blocked when  

the hood  is open  and one that  is blocked when  the hood  is closed. T h e  machine  

isn't allowed to start unless both  sensors are in the correct  (safe) state. For the 

ul t imate  safety, use a flag that  has an opaque  strip and a t rans lucent  Strip. W h e n  

the hood  is closed, the opaque  strip passes t h r o u g h  the sensor  first, but  when the 

hood  is closed all the way, the t rans lucent  strip is blocking the sensor.  T h e  system 

looks for the signal to be comple te ly  blocked by the opaque  strip, p rovid ing  an 

"opaque  reference"  level. T h e n  it looks for the t rans lucent  strip, which only 
blocks par t  of  the light, giving a partial  output .  As soon as the signal changes  to 

indicate e i ther  the opaque  strip or no flag at all, the system assumes that  the hood  

is open.  This  protects  against  unsafe condit ions even if the photo t rans i s tor  is 

shor ted  or if someone  tries to defeat  the interlocks. 

Multiple Sensors 
In some systems, it is possible to control  mult iple  sensors with a single ADC or 

digital input.  In Figure 3.10, four optical sensors use one input  on the micro- 

processor.  Each sensor LED is connec ted  to a separa te  ou tput .  This  can be a por t  

ou tpu t  bit on the microprocessor  or a separa te  register.  Figure  3.10 shows an 8- 

bit register ,  with 4 bits used. All of the photo t rans is tor  emi t te rs  are g r o u n d e d ,  and 

the collectors are tied together ,  with a c o m m o n  pul lup  resistor. 

To  use this circuit, the LED for each optical sensor is t u r n e d  on one at a t ime, 

then  the c o m m o n  input  is read  (if an ADC is used,  a convers ion is p e r f o r m e d  and  

the result  is read).  After each read,  the LED is t u r n e d  off and  the next  LED is 

t u r n e d  on. This  approach  has some restrictions: 

�9 T h e  LEDs mus t  be left on long e n o u g h  for the photo t rans i s to r  to settle before 

the input  is read.  
�9 W h e n  an LED is t u rned  off, the next  r ead ing  mus t  not  be p e r f o r m e d  until the 

co r r e spond ing  photo t rans i s tor  has had t ime to tu rn  off. However ,  the next  

LED can be t u rned  on as soon as the cu r r en t  result  is read.  It is not  a p rob lem to 
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Figure 3.10 
Multiple optical sensors with a single output. 

have two LEDs and their  co r r e spond ing  phototransis tors  on at the same time, 

as long as no readings are taken in that state. 

�9 T h e r e  is a limit to the n u m b e r  of  transistors that can be paralleled this way, due 

to the leakage of the phototransis tors .  

�9 Finally, this scheme depends  on die fact that only one photo t rans is tor  is on at a 

t ime (because only one LED is on at a time). If ambient  light causes other  

photot ransis tors  to be partially on, the results will be ambiguous.  
You occasionally need to know if an LED in a sensor has failed. An example  

would be a situation in which you use a slotted switch to de te rmine  if a motor  is 

turning.  If the moto r  appears  to stop, you might  need to know whe the r  the motor  

is j a m m e d  or the sensor LED has failed (or been disconnected) so you can put  the 

correct  diagnostic message on the ope ra to r  panel. Figure 3.11 illustrates a simple 

way to detect  a failed LED. A c o m p a r a t o r  senses the voltage at the LED anode. 

When  the LED is on, it will have a voltage d rop  of a r o u n d  1.2 V (typical), so the 

c o m p a r a t o r  ou tpu t  will be high. If  the LED opens,  the voltage at the anode  will 

rise to V+.  (For this to work, V+  must  be greater  than 3 V.) The  circuit as shown 

is fbr an LED that is on all the time. You can also use this me thod  for a switched 

LED, but  take the voltage d rop  across the switching transistor into account  when 
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Figure 3.11 
Detect ing an open LED. 

selecting the reference voltage. Of  course, the compara tor  output  is valid only 
when the LED is tu rned  on. 

Although a disconnected LED is much more  likely than a shorted LED, you 
can add a second compara tor  to detect that condition. The  reference voltage 
would be a round  0.6 V and the software would declare an e r ror  if the voltage 
d r o p p e d  below the reference. 

Optical Isolators 

Figure 3.12 shows an optical isolator. The  optical isolator (called an optoisolator 
or optocoupler)  houses an LED and a phototransis tor  in a package like an IC. 
The  optical isolator is sea ledmthere  is no way to break the light path. The  optical 
isolator is not used to detect mechanical motion, but  to provide electrical isolation 
between two circuits. A common use for optical isolators is to isolate a high- 
voltage circuit from the microprocessor  that controls it. Musical In s t rumen t  
Digital Interface (MIDI) uses optical isolation to connect  synthesizers, computers ,  
and other  electronic musical instruments.  In this application, the use of optical 
isolators prevents  problems caused by different g round  potentials. 

Figure 3.12 shows how an optoisolator can be used to pass signals from one 
system to another .  The  g round  and power connections for the system may be 
completely separate. Even in a single system where  the grounds  are nominally the 
same, an optoisolator may be used to prevent  cur ren t  from flowing from one 
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Optoisolator. 

ground to the other. If one ground is particularly noisy, such as the ground for a 
pulse-width modulated (PWM) motor system, an optoisolator may be used to 
keep the motor noise out of the logic ground. 

Some optoisolators are available with logic outputs instead of phototransistor 
outputs. These devices typically place a logic gate inside the IC to convert the analog 
output into a digital level. Optoisolators have the same speed and gain issues that 
optical sensors have. The CTR of an optoisolator can be higher, typically in the 20% 
to 100% range, because the LED is closer to the phototransistor base. The speed of 
an optoisolator is usually better than for an optical switch. The common 4N35 
optoisolator has turn-on and turn-off times of 10 ~s each, so it can pass signals over 
10 Khz. However, as signals approach the limits of the optoisolator speed, the 
output signal looks less like the input. For high-speed isolation, a fast optoisolator 
is normally used. The 6N136 (Figure 3.13) is capable of speeds up to about 1 MHz. 
This part uses a photodiode coupled to a transistor to achieve high speed. 
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6N136. 

Discrete Optical Sensors 

A design occasionally calls for the use of discrete optical parts: an LED and a 
phototransistor.  These are usually infrared parts, like those in packaged optical 
switches. They are normally used to detect when a n  object is blocking the light 
between the LED and phototransistor,  but in places where the distance or width is 

too large for an optical switch. 
Discrete parts are connected and used the same way as an optical switch or 

optoisolator, but there are a few additional considerations. Because the distance 

between sensor and phototransis tor  is usually larger, the CTR is lower. The  
circuit of~en needs an adjustment  for LED current  or sensing threshold tbr 

reliable and repeatable operation. In some cases, a lens may be required on one 

of the parts to tbcus the light. 
Focusing is often a problem with discrete parts. This is especially true if the 

LED and phototransistor  are on separate mechanical assembl ies~ the  mechanical 

tolerance stackup can cause the LED and transistor to be misaligned. 
In a packaged optical switch, the LED and phototransistor  are matched to the 

same IR wavelength. Although most IR phototransistors and LEDs will work 
together,  these parts do operate  at different peak wavelengths in the I R range. 
When using discrete parts, it is best to select an LED and phototransis tor  that are 

designed tor the same IR range. If the parts have diftierent ranges, then an LED 
at one end of its range and a phototransis tor  at the other  end of its range may 

result in a system with significantly lower CTR. 
Figure 3.14 summarizes the three basic methods of interf~acing an optical 

sensor to a microprocessor. All of these show the LED always on with a current  
limiting resistor, and the phototransis tor  using a g rounded  emitter  and a pullup 
on the collector. All three methods  will also work with other  LED drive methods,  
such as using a microprocessor to turn the LED on and off. They  will also work 
with other  phototransistor  configurations, such as connecting the collector to the 
positive supply and sensing the vohage across a resistor connected from the 

emitter to ground.  
Figure 3.15 shows how optoisolators can be used to isolate a bidirectional 

signal between two systems. In the figure, an SPI device has a common  I/O pin, 
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Figure 3.14 
Interfacing optical sensors to a microprocessor. 

but the design calls for this device to be DC isolated from the microprocessor. 
Two optoisolators are used to provide the required isolation. The SPI output is 
buffered (to provide the required LED drive current) and the output of optoiso- 
lator U 1 produces an isolated, low output when the SPI device drives the I/O pin 
low. The output of U1 would be connected to an input pin or port bit on a 
microprocessor or microcontroller. 

The second optoisolator (U2) drives the common I/O pin low when the 
microprocessor drives its LED low. When the microprocessor is not driving data 
onto the I/O pin, it must leave this LED in the OFF state so that the SPI device can 
drive the pin. When the microprocessor drives the I/O pin low, the output 
optoisolator will follow the signal, so the microprocessor must ignore transitions 
on the output while it is driving the SPI device. Or, the return signal can be used 
to verify that the data is being correctly passed through to the SPI device. 
Although not shown in Figure 3.15, a second optocoupler and another micro- 
processor port pin would be needed to drive the SPI clock signal. 
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Figure 3.15 
Bidirectional signal buffering with optoisolators. 

Driving a bidirectional pin in this manner  requires that the controlling micro- 
processor use two port pins (one input, one output),  but it allows DC isolation of 
the peripheral device or system. In most cases, you will want to use high-speed 
optoisolators for an application like this. Either a diode/transistor or logic output  
optoisolators may be used, but optoisolator U2, which connects directly to the 
bidirectional pin, must have an open-collector output.  The pullup resistor on the 
bidirectional pin should be chosen to provide sufficient speed (avoiding excessive 
rise time) without exceeding the drive capability of the pin. If optoisolator U2 is a 
diode/transistor device, it must be driven with sufficient LED current  to ensure 
that the output  can pull the bidirectional pin to a logic low. 

CCDs 

CCDs directly convert light intensity to an  electrical value. CCDs are used in 
handheld camcorders, surveillance cameras, bar code readers, imaging systems, 
and any other place where a representation of an image is needed. 
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CCD Basics 

A CCD operates by accumulating charge on a semiconductor area. When photons 
fall on a CCD pixel array, the energy from the photons is absorbed by the silicon, 
causing an electron-hole pair to be formed. The number  of electron-hole pairs is 
directly related to the number  of photons that were absorbed, and so is directly 
related to the amount  of light. The longer that charge is allowed to accumulate, 
the more electron-hole pairs will be formed. The process of allowing light to fall 
on a CCD array for a particular time to accumulate charge is called integration, 
and the amount  of time that charge is allowed to accumulate is called the integra- 
tion time. 

The accumulated charge represents an electrostatic potential. It can be 
moved by applying voltages to the clock pins of the CCD, creating changing 
potential voltages that can push the electrostatic charge around. There are a 
number  of mechanisms to generate the needed voltages, all with different 
numbers of clock inputs and timing requirements. The essential point is that 
the CCD is configured as an analog shift register that passes the charges in one 
direction, from one cell to the next. At the end of the shift register is a sense 
node that converts the electrostatic charge to a voltage. Figure 3.16 illustrates 
the CCD process. 

The sense node is constructed using a floating gate. The output  of the sense 
node is directly proportional to the charge on this gate. To measure charge, the 
gate must first be drained of existing charge, which is performed with a reset 
transistor. 

The functions that must be performed in any CCD-based system consist of the 
following: 

�9 Provide phase clocks to control movement of the charges along the CCD shift 
register. This may require up to four input pins on the CCD, each with a clock 
signal of a different phase. 

�9 Reset the output  node prior to each measurement.  
�9 Read the analog output  voltage and convert it to a digital value using an 

ADC. 

Exposure Control 

What happens if too much light is accumulated on the CCD pixels? The result is 
saturation: all the pixels come out as full white. This happens if the light source 
that is illuminating the object to be scanned is too bright, or if the integration time 
is too long. Most modern CCDs provide exposure control, which is an input pin 
that allows the charge to be dumped  into the device substrate, preventing it from 
accumulating in the CCD. 
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C C D  opera t ion .  

Linear CCDs 

Linear (or line-scan) CCDs have a single line of pixels. They are used in applica- 
tions in which the object to be scanned is moving. The  CCD scans a single row of 
pixels. When the target moves one pixel's width, the CCD scans another  row of 

pixels. By assembling the rows of pixels, an image of the object may be built in 
memory.  Typical applications include any kind of imaging that involves moving 
objects along a track, such as packages on a conveyor belt or documents  moving 

down a transport.  Figure 3.17 illustrates this process, rFo keep this figure simple, 
an array of only 24 elements is shown; a real array typically has 512 to 4096 
elements. Linear CCDs can also be used where the object is motionless and the 
CCD array moves. Most computer  scanners work this way. A motor  moves the 

CCD array and the light source across the paper. 
In most applications, a lens is used to translate the image to the CCD array. For 

instance, in a document  imaging application, you might use an array that is 1 inch 

long and contains 1024 elements. If you are building a machine that a bank would 
use to scan checks, you might want to image documents  up to 5 inches in width. 
The  lens would have to perform a 5:1 reduction to scale the 5-inch document  
width down to the 1-inch array length. This would provide a resolution of 1024 

pixels/5 inches, or 204.8 pixels per inch. If you wanted higher resolution (more 
pixels per inch), you would have to either limit the application to shorter  docu- 
ments or use an array with more elements. 
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Figure  3.17 
Linear  C C D  imaging.  

Linear arrays are typically made  with one, two, or four outputs.  Multi-output 
arrays provide higher  speeds by providing more than one data channel at a time. 
If the 1024-element array that we just  looked at had two outputs,  pixels 0-511 

might be output  on channel 1, and pixels 512-1023 on channel 2. Or, all the even 
pixels (0, 2, 4 . . . .  1022) might be output  on channel 1 and the odd pixels (1, 3, 5, ... 

1023) on channel 2. If a single-channel array were capable of operation to 
15 MHz, an equivalent 2-channel array would be able to output  data at the same 
rate on each channel, for twice the total data rate. 

The  required data rate of a CCD array depends on the application. In our 
document  imaging example, if the documents are going by at 100 inches per 
second, then the array will have to take a full scan (1024 pixels) 204.8 times per 
inch. This works out to 204.8 x 100, or 20,480 scans per second. Because there are 
1024 pixels per scan, the output  rate is 20,480 x 1024, or 20.971 MHz. The  ADCs 
and analog buffers have to operate at this rate. The  20,480 scans/sec rate means that 
the integration time is 48.8 ~ts. The  CCD and lighting system must be selected to 
provide sufficient image quality at that speed. Of  course, a 2-output array would cut 
the required processing rate in half, but would require twice as many ADCs. 
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Most linear arrays have a "storage" area to which the charge is t ransferred after 
integration is complete.  Once the charge has been t ransferred to this storage 
area, fur ther  light integration will not affect the stored charge (but will affect the 
"capture" array that is exposed to the light). This mechanism prevents  the data 
from changing while it is being shifted to the sense node. 

Color 

CCDs are not color sensors. They  produce  an output  that is propor t ional  to the 
amount  of light that strikes the array. The  CCD does not detect the color of the 
light, and CCDs do not typically respond to all colors equally. Color processing is 
normally per formed  by using three color filters, usually red,  green,  and blue. 
Figure 3.18 shows a linear array with a slide that has three color filters. To  take a 
color image, a scan is made with the red filter in place, then one with the green 
filter, then one with the blue. Of  course, the data rate for a color image is three 
times the data rate for a m o n o c h r o m e  image, and the software has to control a 
motor  or other  actuator to move the correct filter into position for the cur rent  
scan. 

An alternative to using a single CCD and three filters for color applications is to 
use three CCDs with three filters, as shown in Figure 3.19. A beam splitter 
provides the same image to three CCDs. The  problems with this approach  are 
that three CCDs are needed,  with their associated drivers and ADCs and the 
resulting difficulty in aligning the system. 

Trilinear CCDs 

There  are newer linear CCDs called trilinear CCDs that are designed for color 
(Figure 3.20). A trilinear CCD has three CCD elements on one CCD die, and each 
element  has a filter. This three-e lement  array eliminates the a l ignment  problems 
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Figure 3.18 
Color imaging with filters. 
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Figure 3.19 
Color imaging with a beam splitter. 

of the beam-splitter approach, and a single CCD with three arrays is less 
expensive than three single-line arrays of equivalent characteristics. Typical 
trilinear CCDs include the Kodak KLI series and the Sony ILX series. 

A trilinear array solves the alignment problem of using three individual CCDs, 
but still has three individual outputs that require three ADCs. The three arrays in 

RED 

GREEN 

i 
BLUE 

Figure 3.20 
Trilinear color CCD array. 
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a trilinear part  are side by side, but separated by some distance (Figure 3.21). In 
the Kodak KLI-2113 and the Sony ILX724, the pixel arrays are separated by a 
distance of 8 pixels. As shown in Figure 3.21, a given point on the image appears 
at one array in the CCD first (blue, in the Figure), at the middle array second, and 
finally at the last array. However, all three outputs of the CCD are active the 
entire time, meaning that the data is skewed in time. 

This problem can be fixed in software by taking the data from the buffers in an 
offset fashion; data from scan 0 of the blue buffer is combined with data from scan 
8 of the green buffer and scan 16 of the red buffer. Remember  that one scan is 
many bytes; for an array that is 1024 pixels long, each scan is separated by 1024 
bytes in memory.  

Another way to handle this problem, in hardware,  is to buffer the data in first 
in, first out memory (FIFO) and throw away the first 16 scans from the blue 
buffer and the first 8 scans from the green buffer. This ensures that the actual 
data is aligned and reduces the software overhead. 

This problem also has ramifications for the motion part of the system. If the 
speed of motion is not well controlled, the scans won't align in the buffers because 
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Figure 3.21 
Trilinear data alignment. 
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the actual position of the object with respect to the CCD won't  be what it should 
be. This is only a problem, of course, in systems that require all the scans to be 

well aligned. 

Color Processing 

The concepts of color processing are beyond the scope of this book. However,  it is 
safe to say that most applications that need color have to perform some proces- 

sing to get from raw CCD data to the actual image. In a monoc h rome  application, 
all the information needed  to manipulate or store the image is contained in the 
raw data. A monochrome  image is just  a black-and-white image of the object. The 
data from a color system has to have the three single-color data values combined 
to get the monochrome  information. For instance, a color CCD system that is 
looking at something blue might  produce a large value from the blue CCD, a 
smaller value from the green CCD, and zero from the red CCD. To get a 
monochrome  (light/dark) representation,  the data from the three CCDs has to 
be averaged or summed.  To  get color information, the software has to calculate 
the actual color of the target from the relative intensities of the three CCD 
outputs.  In short, a color system will produce  three times as much data as an 
equivalent monochrome  system, but may require more than three times as much 

processing capability. 

Area CCDs 

An area CCD is typically used where neither the target nor  the CCD is moved to 

take an image. As the name implies, an area CCD images a square or rectangular 
area. Area CCDs are used in camcorders and surveillance cameras, or in any 
imaging application where a "snapshot" is required of a stationary object. An area 
CCD could also be used in a motion system in which the motion isn't linear or isn't 

regular. 
A trilinear CCD is three linear CCD arrays side by side. An area CCD can be 

thought  of as a lot more  linear arrays side by side. A 512 x 512 area CCD would 

have 512 linear arrays of  512 pixels each. 
Unlike the trilinear CCD, the area CCD does not have one output  per linear 

CCD array. Instead, data is shifted a row at a time into an output  array and then 
shifted out a bit at a time. Obviously, the bit-at-a-time output  limits the rate at 

which the array can capture images. 
Some area arrays do not have the output  "storage" area of the linear CCD, so 

the light must be turned off, or a mechanical shutter must  be used to prevent  
continuous integration from occurring while the data is being read. Like the 

linear CCD, area CCDs are available with color outputs,  and the mechanism 
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works the same, with adjacent pixels picking up different colors that then have to 
be mixed by the software. 

Dark Reference 

One problem with CCDs is that the pixels will accumulate charge even in the 
dark. This has the effect of adding an offset to the output  of the CCD. Most CCDs 
include a few pixels at each end that are not used for imaging. These pixels are 
identical to the imaging pixel elements, but are shielded from light. The output  
from these elements is a result only of the non-light-induced charge accumulation 
in the device. In most systems, this is subtracted from the values of the light- 
gathering pixels to eliminate unwanted offsets in the result. The subtraction can 
be accomplished either by software or by capturing the dark value in a sample- 
and-hold and performing the subtraction before the ADC. 

Correlated Double Sampling 

One way to reduce the noise in the CCD result is to use correlated double 
sampling (CDS). As shown in Figure 3.22, CDS uses two sample-and-hold circuits. 
One S/H captures the CCD output  immediately after reset, when the CCD output  
is at the reset level. The other S/H captures the CCD output  when the charge 
value is present. A differential amplifier provides the difference between the two 
levels to the ADC. Of course, the timing logic that generates the CCD clocks must 
ensure that the two S/H circuits take samples at the appropriate times. 
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Another method to implement CDS is to couple the CCD output to the ADC 
input with a capacitor and use a clamp. The clamping circuit clamps the input to a 
fixed reference voltage when activated. This causes the capacitor to develop a DC 
bias that is equal to the difference between the reference voltage and the input 
signal (which is at the reset level). When the clamp is released, the ADC input will 
follow the CCD output, but with the offset added (until the charge bleeds off the 
capacitor). Typically, the signal will be clamped just before each pixel is read, 
restoring the DC offset on the capacitor. 

Nonuniformity 
Nonuniformity is the amount of variation between pixels in an array when they 
are exposed to the same light. In a linear array, it can result in bars of lighter or 
darker areas across the reconstructed image. There are several sources of non- 
uniformity inside the CCD, as well as lighting variations in a typical system. 
Lighting variations can be caused by an uneven light source or by things that 
affect the light path, such as reflections off a shiny object adjacent to the path that 
the target image takes. 

One way of minimizing the effect of nonuniformity is to normalize this output. 
As shown in Figure 3.23, this process consists of passing the output of the CCD 
through an ADC, then passing the output of the ADC through a programmable 
read-only memory (PROM) before passing it to the microprocessor. The PROM 
contains normalization information for each pixel position. The pixel data from 
the ADC comprises the high-order PROM address bits and the row number is the 
low address bits. The PROM contents consist of values that multiply the ADC 
output by the value needed to make the output uniform. If a given pixel has an 
output that is 85% of nominal, then the values for that pixel will be multiplied by 
1/85%, or 1.176. If the value out of the ADC is 25, then the value out of the PROM 
will be 29 (25 x 1.176). 

The data in the PROM comes from calibrating the system with a known target. 
In a document-processing application, the calibration might be done with a white 
document of known, uniform characteristics. Of course, if the CCD or the lighting 
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Figure 3.23 
CCD normalization. 
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is changed, the system has to be recalibrated. The PROM has to be as big as the 
number  of CCD pixels times the ADC resolution. A 1024-element CCD followed 
by an 8-bit ADC would require a PROM 256 x 1024 x 8 bits wide. The timing 
logic has to be sure that the low address (pixel number)  corresponds to the 
correct high address (converted pixel output). 

A PROM was used in Figure 3.23 to illustrate the principle; in practice you 
would normally want this table to be stored in RAM or flash memory so the 
microprocessor could modify it. You can implement  the same normalization 
technique in software if the microprocessor can keep up with the data rate. The 
microprocessor has to have a lookup table the same size as the PROM. For each 
sample, the pixel value is shifted to the left by however many bits are needed for 
the pixel number  (10 for a 1024-element array), added to the pixel number,  and 
then the result is used as an offset into the normalization lookup table. Of course, 
the table can be rearranged so that the pixel number  is the high address and the 
pixel value is the low address. 

Driving CCDs 

One final note about CCDs; many CCDs have unusual voltage requirements for 
the clocks, such as 6.5 V tbr a logic "1" and less than 0.1 V for a logic "0." Even 
inputs that are apparently CMOS logic levels may have very tight requirements, 
requiring the driver to operate very close to the supply rails. In addition, the CCD 
clock inputs have very high capacitance, often over 2000 pf. 

Because of these characteristics, the clock and reset inputs on most CCDs 
cannot be driven with standard logic. Many CCD manufacturers supply reference 
designs that indicate the types of drivers that are suitable. In many cases, drivers 
intended for driving high-power MOSFETs are suitable, because they are capable 
of delivering considerable current  into a large capacitance. Another possibility is 
to use a logic driver with multiple sections and parallel the individual gates to 
obtain more drive. 

CCD ADCs 

A number  of manufacturers make ADCs that are optimized for interfacing to 
CCDs. These often contain clamping circuitry to implement  CDS and some of 
these parts include three channels for interfacing to trilinear or other color 
arrays. Typical parts include the 3-channel Fairchild TMC1103, the TI VSP 
2000 and VST 3000 series, and the Maxim MAX1101. 

Sensors 81 



Magnetic Sensors 

Hall Effect Sensors 

Probably the simplest magnetic sensor to use in an embedded  application is a Hall 
effect sensor. Dr. Edwin Hall discovered the Hall effect in 1879. He discovered 
that if a magnetic field was placed perpendicular  to one face of a thin gold sheet in 

which a current  was flowing, a voltage would appear  across the sheet (Figure 
3.24). This voltage is proport ional  to the current  flowing in the sheet and the 
magnetic flux density. A Hall effect sensor is made from silicon, and the Hall 
voltage produced  in silicon is only a few microvolts per  volt per gauss. Conse- 

quently, a high-gain amplifier is required to bring the signal from the Hall 
e lement  to a useable range. Hall effect sensors integrate the amplifier into the 

same package as the sensor element. 
Hall effect sensors are available as sensors that produce  an output  proport ional  

to the magnetic field, or as switches that change state when the magnetic field 

exceeds a certain level. Analog Hall effect sensors are suited to applications in 
which you need to know how close a magnet  is to the sensormsuch as sensing 
whether  an oscillating arm is really moving. Hall effect switches are best for 
applications in which you just  need to know if a magnet  is near the sensor, such 

as sensing whether  a safety hood is closed or open. 
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Figure 3.24 
The Hall effect. 
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The output  of an analog Hall effect sensor can be connected to a comparator  or 
ADC like any other voltage-output sensor. One caution: some analog output  
sensors provide an output  that is proport ional  to the supply voltage. For an 
accurate, noise-free output  you must power the sensor from a noise-free, well- 
regulated supply. 

A typical analog Hall effect sensor will produce an output  that is halfway 
between the supply voltage and ground when no magnetic field is present. When 
a north pole is near the sensor, the voltage moves toward ground,  and when a 
south pole is near the sensor the voltage moves toward the positive supply. 

Hall effect switches produce a digital output  to indicate the presence of a 
magnetic field. They drive the output  active when a certain magnetic strength 
(the operate point) is sensed, then drive the output  inactive when the magnetic 
field drops below a certain level (the release point). There  is some hysteresis in 
the range, where the release point is less than the operate value. 

Hall effect switches come in two varieties: unipolar and bipolar, which are 
sometimes called nonlatching and latching. Bipolar switches have a positive 
(south pole) operate point and a negative (north pole) release point. Unipolar 
switches have a positive (south pole) operate point and a less-positive release 
point. The operate and release points vary with temperature.  Both bipolar and 
unipolar switches typically have an open-collector output  that has to be pulled up 
with an external resistor. 

Hall effect sensors are commonly available in three-lead packages similar to the 
TO-92 transistor package and in surface-mount packaging. The three leads are 
power, ground,  and output. Typical supply voltages are 5 to 10 V, although some 
sensors operate up to 30 V or more. When using a Hall effect sensor, remember  
to account for stray magnetic fields. If using a magnet  on, say, a rotating shaft, be 
sure that the magnet  doesn't  excessively magnetize the shaft itself, or this will 
affect the output  of the sensor. 

Remember  that the magnetic field falls off with the approximate square of the 
distance (approximate because the size and shape of the magnet, as well as 
surrounding magnetizable objects, affect the result). In any event, the output  of 
an analog Hall effect sensor may be linear with respect to the strength of the 
magnetic field, but it will not be linear with respect to distance. 

Geartooth Hall effect sensors include a magnet  and Hall effect sensor in one 
package. They are designed to measure rotation of a geared device by placing the 
sensor near the gear teeth (Figure 3.25). As each gear tooth moves past the 
sensor, it affects the magnetic field between the magnet  and the Hall effect sensor, 
causing an output  pulse to be generated. 

Clarostat makes a Hall effect potentiometer.  This device produces an output  
voltage that is proportional to the amount  of rotation of the shaft. It is ideal for 
applications where a control knob is required, but where the reliability of a 
resistive potentiometer is inadequate. 
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Geartooth Hall effect sensor. 

Linear Variable Differential Transformers 

The linear variable differential transformer (LVDT) consists of an excitation coil, two 
pickup coils, and a movable, magnetic core (Figure 3.26). The core provides coupling 
between the coils. The two pickup coils are connected in series opposed such that 
their fields oppose each other. When an AC signal is applied to the excitation coil, 
voltages are induced in the other two coils. If the movable core is centered, the two 
pickup coils will produce equal but opposite voltages, and the resulting output is zero. 
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Figure 3.26 
LVDT. 
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If the core is displaced toward one end, then one pickup coil will have more coupling 
with the excitation coil and will produce a larger output voltage. 

Variable Reluctance Sensors 

The variable reluctance sensor (VRS) consists of a coil and a magnet  (Figure 
3.27). When a shaft-mounted geartooth wheel moves past the sensor, the mag- 
netic field from the magnet  is disturbed, inducing a signal in the coil and 
permit t ing shaft speed to be measured.  The  VRS allows the speed of the gear- 

tooth wheel to be measured without requir ing any power to the sensor. In 
addition, no semiconductor  components  are required,  allowing the VRS to be 
used in places where the t empera ture  is too high for a Hall effect sensor, such as 
in an automobile engine block. 

In some applications, a tooth is left off the geartooth wheel, and the micro- 
processor software detects this condition to de termine  the reference position of 
the wheel. In other  applications, a second geartooth wheel, moun ted  on the same 
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Figure 3.27 
VRS. 
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shaft but having a different pattern or with a single tooth, can be used to identify 
the reference position. 

The output  of the VRS is typically amplified and passed to the microprocessor 
through a comparator  or directly to an ADC input. The output  amplitude from 
the VRS increases as the shaft speed goes up. For systems with a wide range of 
shaft speeds, it may be necessary to limit the voltage at the input amplifier with a 
zener or with diodes to the supply rails. 

The VRS produces a bipolar output,  with a negative component.  Single-supply 
systems should bias the VRS to half the supply voltage (Figure 3.27B) before 
amplifying the signal. Note that the bias point must be a low impedance at all the 
frequencies at which the VRS will operate, or the overall gain of the system will be 
reduced. This may mean that a fairly large bypass capacitor is needed if the shaft 
can turn at low speeds and a resistive divider is used to provide the bias. 

Motion~Acceleration Sensors 

Sometimes you need to measure acceleration or tilt or other motion. The obvious 
application is airbag deployment  in a car. However, there are other applications, 
such as sensing vibration that could indicate excessive bearing wear or an un- 
balanced load in a motor-driven application. 

Solid-state acceleration sensors use internal capacitors to measure this force 
(Figure 3.28). A micromachined movable beam and two fixed plates are used. 
The movable beam has a spring that keeps it centered between the two fixed 
plates when there is no acceleration. The two fixed plates are driven with a signal 
from an oscillator. The two plates get the same signal, but 180 ~ out of phase with 
each other. The resulting voltage at the movable beam is zero. When force is 
applied to the beam, it moves closer to one of the fixed plates. This causes the 
capacitance between the movable beam and that plate to be higher, and the 
capacitance between the beam and the other plate to be lower. The result is that 
the closer plate couples more signal into the beam and the farther plate couples 
less. The output  voltage is a function of the distance the beam was deflected. 

The Analog Devices ADXL202 is a typical acceleration sensor. The ADXL202 
is a 2-axis sensor that provides a digital output  instead of a voltage, suitable for 
connection to a microprocessor. The output  of the ADXL202 is a high period 
followed by a low period. The duty cycle of the output  indicates the acceleration. 
With 0g acceleration, the duty cycle is approximately 50%. The ADXL202 can 
measure acceleration from - 2  g to +2 g and the duty cycle of the outputs varies 
about 12% per g. External resistors set the frequency of the outputs and external 
capacitors provide filtering. 

Tilt can be measured with an acceleration sensor, as indicated in Figure 3.29. 
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Figure 3.28 
Sol id-s tate acce lera t ion  sensor .  

Switches 

Switches come in various types, including magnetically activated reed switches, 
interlock switches on doors, and pushbutton switches for people to use. Switches 
may seem too simple to include here. They are either closed or open, right? The 
answer, as with many things, is: it depends. 

Figure 3.30 illustrates a common way to connect a switch to a microprocessor. 
A pullup resistor takes the input high when the switch is open, and the switch 
grounds the input when it is closed. Also shown in the figure is the waveform 
produced at the input when the switch opens and closes. A mechanical switch will 
typically "bounce," making and breaking contact many times when opening and 
closing. This interval usually lasts several milliseconds. 

If the switch is used as a safety interlock on a door, the bounce may not be a 
problem. The software may simply check the state of the switch when the user 
tries to start the instrument,  and if the switch happens to be open, it won't let the 
motors start. If the operator has to close the door  before being able to reach the 
start button, then the switch will have stopped bouncing when the software 

checks. 
On the other hand, the switch might be used in an application in which you 

need to detect each time the switch is pressed. In this case, the contact bounce will 
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Figure 3.29 
M e a s u r i n g  ti l t  w i t h  a n  a c c e l e r a t i o n  s e n s o r .  

look like multiple switch presses to the software, and they must be filtered out. 
The algorithm usually looks like this: 

Detect  swi tch  c losure .  
Wai t  1 0 - 3 0  ms.  
If swi tch  still closed, t h e n  it w a s  a va l id  c losure .  Otherwise ,  ignore  it. 

The delay can be implemented with a delay loop or as part of a regular timer 
routine. When developing the delay, don't make it just barely enough for the sample 
switch. The contact bounce time will vary from switch to switch and as the switch ages. 

Switch contact resistance also can change with age. Switches with gold-plated 
contacts have low contact resistance, but the gold plating wears off eventually. 
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Switch bounce. 

Increased contact resistance means higher  voltage when the switch is closed, 
especially if the value of the pul lup resistor is small. 

Strata Gauges 

A strain gauge (Figure 3.31) consists of a conductor ,  such as a copper  trace 
pr inted on an insulator. The  resistance of the conductor  is de t e rmined  by its 
dimensions. If  the insulator holding the conductor  is compressed  or stretched, 
the conductor  will change its shape slightly and its resistance will change.  Strain 
gauges are characterized by very small resistance and even smaller resistance 
changes. The  advantage of a strain gauge is that it can be used to measure  force 
(such as the weight of a truck on a scale) without any "moving" parts. T h e  strain 
gauge is par t  of the structure of the scale, and while it flexes u n d e r  load, it does 
not have any rotating or sliding parts to wear out or break. Note that the flexible 
e lement  may be a pr inted circuit substrate or even an a luminum support ,  as long 
as the strain gauge element  itself is insulated. 

As shown in Figure 3.31, a strain gauge is typically sensed using a br idge 
circuit. In this example,  the ratio R1/R2 is the same as R3/Rs (Rs is the strain 
gauge resistance) when the strain gauge is unloaded.  In this condition, the ou tpu t  
voltage, VOUT,  is zero. If the strain gauge is de formed  and its resistance changes,  
the br idge becomes unbalanced,  the ratio of R1/R2 is no longer  the same as R3/Rs 
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Strain gauge. 

(Rs changed), and the output  voltage is nonzero. This voltage can be amplified 
and measured. The advantage of a bridge circuit like this one is that it filters out 
any noise (such as AC line ripple) on the input voltage. The output  voltage is 
dependent  on the input voltage, but variations in the input voltage don' t  affect 
the output. 

Due to the extremely low resistance of the strain gauge, the voltage out of the 
bridge must be amplified by a significant amount  before it is measured. A typical 
strain gauge might have a resistance of around 100 ohms, and in a practical 
application it might be necessary to sense resistance changes of 0.0002% of the 
nominal value. Strain gauges in various configurations are used to measure 
weight, force, and pressure. 

Semiconductor strain gauges with micromachined resistance elements etched 
into silicon also are available. The advantage of these parts is that the signal 
conditioning and amplification can be included on the part. 
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Time-Based Measurements 4 

In many microprocessor systems, it is preferable to use frequency to make 
measurements,  instead of measuring voltage or current  with an ADC. Reasons 
for using frequency measurement  include the following: 

�9 In systems with ground offsets, signals can be capacitively coupled or optically 
isolated to eliminate ground loops and other detrimental effects. 

�9 Noise that would be introduced on an analog signal sent down a long cable may 
be eliminated by transmitting a logic-level frequency signal instead. 

�9 Measuring frequency instead of analog values may allow a simpler micropro- 
cessor to be used, because an ADC is not required. 

In many cases, you can convert an analog input, such as temperature,  to a 
time-based signal that can be measured with a microprocessor. One IC that can 
do this is the Maxim MAX6576 (and a related part, the MAX6577). The 
MAX6576 is a 6-pin surface-mount (SOT-23) device that converts temperature  
to a square-wave output.  The period of the output  signal is proportional to 
temperature.  The MAX6576 has two pins that are tied high or low to select an 
output  range of 10, 40, 160, or 640 ItS per ~ K. 

Using frequency in this way permits a microprocessor to measure temperature  
with a single pin. The microprocessor software can perform this measurement  in 
several ways. In a microprocessor with capture capability, such as the microchip 
PIC 16C6x series, the sensor output  can be connected to the microprocessor input 
that is used for pulse capture. A simplified block diagram of such a capture system 
is shown in Figure 4.1. Here, a free-running, 16-bit counter  is captured by a 16- 
bit register when the input frequency changes from the low to high state. At the 
same time, a short pulse is generated to reset the counter. 

In the example shown in Figure 4.1, one period of the input is 90 ~ts and the 
second is 100 ~ts. In this case, the counter will count up 90 (decimal) counts for the 
first period and 100 (decimal) counts for the second period. The count is read by 
the microprocessor to determine the period and therefore the temperature.  
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Figure 4.1 
Frequency-based measurement  system. 

In some microcontrollers, the timer cannot be reset when an input capture 
occurs. In that case, the counter keeps running between interrupts. For instance, 
if a regular signal is applied to the capture input and it has a period equal to 100 
timer counts, then the first interrupt will result in a capture value of 100, the 
second will result in 200, the third will be 300, and so on. The firmware has to 
subtract the current count from the previous count to find the number of counts 
that occurred since the last interrupt. The code also has to adjust the count when 
the capture counter rolls over from its maximum value to zero. 

The code to implement a capture counter in this way would consist of setup 
code, interrupt service routine (ISR), and non-ISR code. The code has to per- 
form the following functions: 

Setup 

Program timer as input capture 

Program timer prescaler (if used) 

Program input capture edge (rising edge in this example) 

Program timer to generate interrupt on capture 

Capture interrupt logic (if the counter resets after capture) 

Read captured count from timer capture register 

Convert time to temperature (table lookup or algorithm) 

Capture interrupt logic (if the counter does not reset after capture) 

Read captured count from timer capture register 
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Subtract previous count from new count  

If  result negative, subtract previous count  from new count  + 10000 H 

Conver t  result to t empera tu re  (table lookup or algorithm) Store new count  as 
previous count for next in te r rupt  

Note: This code assumes a 16-bit counter .  If  the counter  is wider, the constant 
used to adjust a negative result is equal to the m a x i m u m  count value plus 1. For 
example,  a 20-bit t imer would use 100,000 H instead of 10,000 H. 

Another  way to handle the negative result situation is to p r o g r a m  the micro- 
controller  so that the t imer also generates  an in te r rup t  on rollover. T h e  code for 
the t imer rollover in ter rupt  sets a flag. When  the next  capture  in te r rup t  occurs, 
the in te r rup t  code reads the rollover flag, adjusts the calculated time, then resets 
the rollover flag. 

Microprocessors that do not have a capture  capability can per form a similar 
m e a s u r e m e n t  by letting a counter  f ree-run and connect ing the frequency signal 
to an in te r rupt  input. The  counter  can be an external  IC or an internal  counter  
that is clocked from a derivative of the microprocessor  clock. When  the in te r rup t  
occurs, the software reads and resets the counter.  This me thod  is slightly less 
accurate than the capture method,  due to variable in ter rupt  latency. In a system 
in which you don ' t  want other  in ter rupts  to affect latency of the measurement ,  
and where the microprocessor  has an non-maskable  in te r rupt  (NMI) input,  you 
can use that for the frequency input. 

If  the microcontroller  has timers that can be incremented  with an external  
signal, the frequency input  can be connected to one of those t imer inputs. T h e  
microprocessor  can then read the t imer on a regular  basis (based on a second 
t imer runn ing  from the microprocessor  clock) to get the n u m b e r  of counts that 
occurred  in the measu remen t  period. 

In t e r rup t  latency issues can be minimized by connect ing a per iod-based signal 
to a counter  that runs from the microprocessor  clock, but only counts when the 
input  is high (some microcontroller  counters  can be opera ted  in this mode).  T h e  
counter  will count up while the input  is high and hold the count  while the input  is 
low. The  microprocessor can read the count  any time the count  is low. As long as 
the microprocessor  reads the count  before the input  goes high again, the count  
will be accurate (Figure 4.2). 

Analog Devices makes a pair of t empera tu re  sensors, the TMP03  and 
TMP04,  that convert  t empera tu re  to a t ime-based output .  These  devices gen- 
erate an output  with a fixed high time and a low time that varies with 
tempera ture .  In other  words, both the per iod and frequency vary with tem- 
perature .  T e m p e r a t u r e  is measured  by calculating the ratio of the high to low 
periods. (The ratio is used to compensa te  for frequency variations caused by 
tempera ture . )  
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Figure  4.2 
Measur ing  per iod-based inputs with a f ree-running counter.  

Measuring Period versus Frequency 

I worked on one system in which an analog value was converted to frequency. 
The  sensor circuit converted a mechanical change to a slight frequency shift in an 
RF 'signal. The  frequency value for several sensors was captured using a PLD and 
then read by a microprocessor.  A block diagram of the capture system is shown in 
Figure 4.3. A counter  was incremented by the frequency input. Once every 
sample period, the count was captured in a register and read by the micropro- 
cessor. In this case, the counter  was never reset, but  was allowed to roll over from 
FFFF to 0000; the microprocessor took care of calculating the correct count when 

this happened.  
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Figure 4.3 
Frequency versus period measurement. 

In this system, we needed to detect frequency changes fairly quickly----on 
the order  of 2ms. Walking through an example, say that the frequency 
changes from 5 MHz to 5.005 MHz, and the sample interval is 2 ms. The results 
look like this" 

At 5.00 MHz" Count read by p r o c e s s o r - ~  

At 5.005 MHz" Count read by p r o c e s s o r -  

2 ms 

200 ns 
= 10,000 counts 

2 ms 

199.8 ns 
= 10, 010 counts 

So this change produces a change of 10 counts in the result. Getting more 
resolution (the ability to measure smaller frequency changes) requires going to 
a longer sampling period, or changing the circuit that generates the input 
frequency. 

Figure 4.3 also shows an alternative method for making the same measure- 
ment. Here, the input is divided by 10,000, producing a 500 Hz signal (at 
5.000 MHz input). This signal clocks a register with the contents of a free-running 
16-bit counter. The counter is incremented by a regular clock--10 M Hz in this 
example. Again, counter rollover is handled in software. Measuring the same 
frequency shift gives the following results: 
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At 5.00 MHz" Count read by p r o c e s s o r - ~  
10MHz 
500 Hz 

= 20,000 

At 5.005 MHz- Count read by processor = 
10 MHz 

500.5 Hz 
= 19,980 

These results amount to a 20-count difference. This approach requires more 
hardware and a higher frequency sampling clock. The sampling rate is not fixed, 
but is dependent  on the input frequency. However, this approach allows higher 
resolution without changing the sampling interval. More resolution is obtainable 
simply by increasing the sampling clock. In this case, going from 10 MHz to 
20 MHz would double the number  of counts for the same frequency change 
without changing the sample interval. Of course, you would need a larger coun- 
ter to hold the result. 

Mixing 

Figure 4.4 shows a variation on this approach that provides a greater output 
frequency shift for a given input change. The input frequency is passed through a 
frequency mixer with a 7 MHz offset frequency. The mixer produces as an output 
the two original frequencies, and the sum and difference frequencies. In this case, 
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Figure 4.4 
Using a frequency mixer to increase frequency shift. 
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the mixer outputs will be 5 MHz, 7 MHz (the input frequencies), 12 MHz (the 
sum), and 2 MHz (the difference). This output  is passed through a 2.5 MHz low- 
pass filter to remove everything but the 2 MHz difference frequency. This result 
is amplified and divided by 4000 to produce the same 500 Hz signal to the rest of 
the per iod-measurement  logic. 

Now if the 5 MHz input shifts to 5.005 MHz, the difference will be 7-5.005 or 
1.995 MHz. Divided by 4000, this is 498.75 Hz. If we measure the period with the 
same 10 MHz reference, we get this: 

At 5.000 MHz" Count  read by processor = 

At 5.005 MHz" Count  read by processor - 

10 MHz 

500 Hz 
= 20,000 

10 MHz 

498.75 Hz 
= 20,050 

Now instead of a 20-count difference we have a 50-count difference. Note 
that the frequency shift into the divide-by-4000 circuit is negative, where the 
original frequency shift was positive. This is due to the fact that the circuit 
uses high-side injection, mixing the 5 MHz input frequency with a higher 7 MHz 
frequency. If we had mixed the 5 MHz with 4MHz,  to get a 1 MHz differ- 
ence, then the output  frequency shift would have moved in the same direc- 
tion as the original input. The reason for using high-side injection in this 
example is because it makes the low-pass filter simpler. The farther the 
unwanted mixer frequencies are from the desired frequency, the easier they 
are to filter out. 

Although mixer theory and design are beyond the scope of this book, Figure 
4.4 shows a simple mixer that uses two diodes and could be used for two logic- 
level signals. Nearly any nonlinear device will work as a mixer to one degree or 
another. Off-the-shelf mixers are available, such as the Philips NE612. 

This example used a two-stage L/C low-pass filter. In some applications, you 
might want to use a more sophisticated filter or a bandpass filter. You could even 
use a DSP to perform the filtering in software, al though that is a significant 
increase in overall complexity. 

Although the mixer approach does multiply the frequency shift, making mea- 
surement  easier, it also has some drawbacks: 

�9 The mixer approach multiplies the frequency shift you want to measure, but  
also any other frequency shift. This includes drift caused by component  heat- 
ing, noise, and so forth. 

�9 The input frequency range has to be limited or it will end up being filtered 
out. If the 5 MHz input in Figure 4.4 shifted down to 4.5 MHz, the difference 
frequency would then be 2.5 MHz and would be filtered out by the low-pass 
filter. 
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�9 The design of the mixer and low-pass filter can be complicated. It is made worse 
if the amplitude of the input signal varies as well as the frequency. 

�9 Finally, the addition of another frequency (the injection frequency for mixing) 
complicates the circuit and may produce additional EMI. 

Voltage-to-Frequency Converters 

One means of converting an analog input to a time value is to use a voltage-to- 
frequency (V-F) converter. The block diagram of a V-F converter is shown in 
Figure 4.5. A comparator  drives a one-shot, which produces an output  pulse of 
a fixed width when triggered. On one side of the comparator,  a capacitor is 
charged through a constant current  source or disc~harged through a resistor, 
depending on the position of the (solid-state) switch. 

ONE-SHOT 

-• I ~  ONE-SHOT "ON" TIME 

ONE-SHOT OUTPUT [ ! I I I ! I I I 1 

_ 

INPUT VOLTAGE 

Figure 4.5 
Voltage-to-frequency converter operation. 
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Figure 4.5 also shows the waveform for operation of the V-F converter. With 
the input at some voltage, the capacitor is charged by the constant current source 
(providing a linear charging ramp) until the one-shot times out. The capacitor then 
discharges through resistor R1 until V- equals the input voltage. The comparator 
output will then go low, triggering the one-shot again. The charge time is always 
equal to the one-shot "on" time. When the input voltage changes level, the 
capacitor will charge up the same way as before, but now it discharges only down 
to the new voltage level. The next charge cycle pushes V- above the new input 
level, and the capacitor discharges down to this level. However, the discharge is 
through the resistor, which is an exponential curve, and it is discharging toward 
ground. Consequently, the discharge time at the new voltage is less than it was for 
the original voltage, and the resulting output LOW time is shorter, making the 
frequency higher. 

The accuracy of a V-F is dependent  on the accuracy of the current  source, the 
accuracy of the one-shot timing, and the accuracy of capacitor C 1. The one-shot 
"on" time is controlled by a resistor/capacitor combination, so these components 
are extremely important. Likewise, capacitor C1 and resistor R1 determine the 
output frequency. It is typical to use precision resistors and Teflon, polystyrene, 
or polypropylene capacitors in V-F circuits. On startup, the capacitor has to be 
charged from 0 V to the input voltage. The one-shot "on" time may be too short 
to ensure that this happens. Typically, the switch is left in the charge mode until 
V- reaches the input voltage. 

The LM231 from National Semiconductor is a typical V-F converter. This part 
uses an internal voltage reference to set the charging current; a resistor from an 
external pin to ground determines the current. The LM231 is capable of oper- 
ation from 1 Hz to 100 kHz. 

So far, we have looked at asynchronous V-F converters. Synchronous V-F con- 
verters work the same way, except that an external clock determines the "on" time that 
charges the capacitor. This makes the V-F characteristics independent of the resistor- 
capacitor combination in the asynchronous V-F one-shot. The same techniques 
described for other time-based inputs can be used to read the output of a V-F 
converter. 

Applications 
One application for a V-F converter is in cases where a sensor is operating from a 
different reference. For instance, a microprocessor system in one building might 
be monitoring the temperature of a process in a building some distance away. 
The grounds of the two buildings might be far enough apart to make a digital 
interface impractical. Instead of using an ADC, a voltage could be monitored with 
a V-F converter and an optocoupler could be used to isolate the sensor circuit 
from the microprocessor circuit (Figure 4.6). Only two wires are needed to 
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Figure 4.6 
Using a V-F converter to interface a remote sensor. 

transfer the analog value to the microprocessor. Of course, the optocoupler has to 
be capable of operating at the maximum frequency the V-F will generate. 

A V-F converter is also useful any time an analog signal needs to be transmitted 
over a wire that is electrically noisy. As long as the noise levels aren't large enough 
to affect the switching point (thereby affecting the frequency measured at the 
receiving end), the receiver will be able to extract valid data. 

Filtering 
Using a divider with a V-F converter (Figure 4.7) provides an automatic filtering 
function. Figure 4.7 shows a V-F connected to a microprocessor through a divide- 
by- 16 counter. The resulting frequency to the microprocessor will be the sum of 16 
cycles from the V-F. If the V-F input voltage is varying slightly, this will effectively 
filter the result. Of course, the faltering could also be performed in software. 

Clock Resolution and Range 

All of the methods we've looked at have one limitation: the sampling clock used to 
measure the period or frequency. If you have a sensor that can convert an analog signal 
to a period with an accuracy of 100 ns, but you're measuring the period with a 2 MHz 
(500 ns) clock, then 500 ns is all the accuracy you will ever get from the overall system. 

16 KHZ DIVIDE-BY-16 1 KHZ 
INPUT VOLTAGE ~ V-F CIRCUIT TO MICROPROCESSOR 

Figure 4.7 
V-F filtering with a divider. 
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Resolution and range are related. As an example, say that the MAX6576 
temperature  sensor ment ioned at the beginning of this chapter  is used with a 
range of 10 las per ~ The  temp sensor is connected to the interrupt  pin of a 
microcontroller, and a free-running counter  is used to measure the tempera ture  
(Figure 4.8). When an interrupt  occurs, the microcontroller reads the count and 
calculates the temperature.  If the MAX6576 is being used to measure tempera- 
ture from - 3 0  ~ to + 100 ~ the output  of the MAX6576 will range from about 
2400 microseconds to 3730 microseconds. Using a 5 MHz clock in the microcon- 
troller counter, when the interrupt  occurs the microcontroller will read a counter  
value that ranges from 12,000 counts to 18,650 counts. For this example, assume 
that the microcontroller does not have an input capture feature; it has to read the 
count and subtract the result from the previous value to get the number  of clocks 
that have occurred since the last interrupt.  

In an application like this, the microcontroller may have other interrupts or may 
have to disable interrupts for some functions. This will result in a varying latency 
from the time when the MAX6576 interrupt occurs until it is serviced. If the 
microcontroller has a maximum interrupt latency of 10 microseconds, the inaccur- 
acy of the overall system is the inaccuracy of the MAX6576 (ranging from 3.5 to 7.5 
degrees over its temperature  range) plus the microcontroller latency (1 degree). 

Say that a decision is made that the interrupt  rate from the MAX6576 is too 
high or that the interrupt  latency adds too much er ror  to the system. As a result, 
the MAX6576 is configured for 40 microseconds per  ~ Now the 10 las interrupt  
latency of the microcontroller only affects the accuracy by 0.25 degrees. However, 
this change has two other effects. 

MAX5676 

I I 

DEGREE K 

MICROCONTROLLER 

INTERRUPT 

I FREE- 
RUNNING - - - -D 

16-BIT 
COUNTER 

MICROCONTROLLER 
READS COUNT 
WHEN MAX5676 
INTERRUPT OCCURS 

5 MHZ CLOCK 

Figure 4.8 
M A X 6 5 7 6  appl icat ion. 
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First, the value read from the counter now ranges from 48,000 to 74,600. 
Because the counter is only 16 bits wide (maximum value 65,535), higher tem- 
peratures will cause the counter to overflow. The software will need to detect this 
condition, probably by programming the timer to generate an interrupt  on roll- 
over and setting a flag when this interrupt  occurs. This approach does, however, 
add to the overall interrupt  processing latency of the system. 

The second effect of changing the period of the MAX6576 output  is the time 
required to get a result. At the new setting, temperature  readings can be made 
only once every 9.6 ms (at - 3 0  ~ to 14.9 ms (at 100~ If the MAX6576 were 
configured for the slowest rate of 640 ~ts per ~ K, the time between readings would 
range from 0.15 seconds to 0.24 seconds. This may or may not be a problem, 
depending on your application. 

The clock resolution has to be matched to the frequency and resolution of the 
input signal. This may place some limits on your choice of microprocessors. For 
instance, some microcontrollers have an input capture capability that can only 
run at a submuhiple of the processor clock--say, 1/4 or 1/8 of the processor clock 
rate. So an 8 MHz processor of this type could measure an input period with an 
accuracy of only 500 ns or 1 las. This may be insufficient for your application. 

As mentioned in Chapter 1, range and resolution are important  in any analog 
system. When measuring analog quantities using time or period, the smallest 
interval that can be accurately measured is equivalent to the resolution, and the 
largest period that can be measured is equivalent to the range. An analysis of the 
measurement  accuracy and range is needed any time that frequency or period is 
used to measure analog values. 

Extending Accuracy with Limited Resolution 

Any time you measure the period of an event with a microprocessor, there is 
always a measurement  inaccuracy of plus or minus one clock. With normal 
measurement  techniques, you need many measurement  clocks per event to get 
an accurate measurement.  Events that last only a few measurement  clocks cannot 
be measured accurately. An example is shown in Figure 4.9, where an event that 
lasts for 2.5 interrupt  periods is measured by a microprocessor. In this case, the 
microprocessor would make the measurement  by counting the number  of inter- 
rupts that occur between the start and end of the event. As shown in the figure, 
the number  of interrupts that would occur ranges between 2 and 3, depending on 
when the event starts. It is impossible to tell what the actual length of the event is 
using a single measurement.  The figure shows the measurement  being made by 
counting interrupts from a regular timer; the same principle applies if the 
measurement  is made by reading the contents of a free-running timer. 
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I EVENT BEING MEASURED I <] 

I EVENT BEING MEASURED ] < ] ~  

IF EVENT OCCURS HERE, THE COUNT WILL 
BE THREE (THREE INTERRUPTS, A, B, AND C, 
OCCURRED BETWEEN THE START AND END 
OF THE EVENT) 

IF EVENT OCCURS HERE, THE COUNT WILL 
BE TWO (TWO INTERRUPTS, B AND C, OCCURRED 
BETWEEN THE START AND END OF THE EVENT) 

IF EVENT OCCURS HERE, THE COUNT WILL 
BE THREE (INTERRUPTS A, B, AND C) 

IF EVENT OCCURS HERE, THE COUNT WILL 
BE TWO (INTERRUPTS A AND B) 

Figure 4.9 
One clock ambiguity in measuring an event. 

Cases like this typically occur unde r  conditions such as the following" 

�9 A very short  event has to be measured  using a t imer with limited resolution. On 
many PCs and PC-compatible single-board computers ,  the fastest clock avail- 
able for making such measurements  is about  122 Its. 

�9 T h e  event being measured  is so short  that measur ing  it accurately would 
require  a very fast interrupt ,  using an excessive percentage of the CPU 
th roughput .  

�9 T h e  system has a t imer capable of opera t ing  with a faster clock, but it is needed  
for ano ther  function and cannot  be opera ted  at a high enough  clock rate to 
make accurate measurements .  

It is possible to make accurate measurements  in such circumstances. Each 
measurement  in Figure 4.9 will vary between 2 and 3 timer interrupts.  If  a large 
n u m b e r  of measurements  are made, the average value will represent  the actual 
time for the event. For this example,  about  50% of the measurements  will be 2 and 
about 50% will be 3. If  the length of the event was 2.75 timer in ter rupt  periods 
instead of 2.5, the percentage of values for 2 and 3 would be 25% and 75%, 
respectively. To make an accurate measurement  of a short event, you can take 
100 measurements ,  add them together,  and then divide the result by 100 (the 
number  of measurements).  The  result will be very close to 2.5. Interestingly, this 
measurement  method also works if the event durat ion is less than one clock period. 

Of  course, this requires floating point math to calculate such a result. However ,  
you could divide by 10 instead of 100 and get a result of 25. As long as an accuracy 
of one decimal position is adequate  for your  application, this approach  would 
work. If  you need more  accuracy but  don ' t  want to use floating-point math,  you 
could use a 16-bit integer to hold the number ,  leaving anywhere  from four to 
eight bits for the fractional port ion of the result. 
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To explain why this method works, it is probably easiest to use a value shorter 
than the measurement  clock. Say that the event is a square wave signal from a 
time-based sensor, and that the period of the signal is 4001~s. If it's being 
measured with a 1 ms interrupt,  then the period of the event is 40% of the 
in terrupt  period. If the leading edge of the sensor signal starts at some random 
time, there is a 40% chance that one measurement  clock will occur between the 
start and end of the sensor signal. There  may not be an in ter rupt  dur ing the 
sensor signal the first time that it is measured,  so the interrupt  count would be 
zero. However, if enough samples are taken, 40% of them will have a count of 1 
because one interrupt  will occur dur ing the sensor signal period. 

With an event duration longer than the clock period, the same principle 
applies. Using the 2.5 clock event mentioned earlier as an example,  there is a 
100% chance that two clocks will occur during the event. There  is a 50% chance 
that three clocks will occur. Again, if you average a large number  of samples, the 
result will be very close to the actual value. 

The  more samples you take with this method, the more accurate the result will 
be. Table 4.1 is a table of values showing the relationship between the number  of 
samples, the percentage of values, and the result calculated using this method. 

The  data in Table 4.1 was generated using the random number  function in 
Microsoft Excel (details are in Appendix D). As you can see, going from 100 to 1000 
samples greatly increases the accuracy. Although this method allows you to make 
time-based measurements with better accuracy than the measurement  clock would 
normally allow, there are some restrictions on making measurements this way. 

�9 The  event being measured cannot be synchronized in any way to the measure- 
ment  clock. This technique works only if the start time of the event with respect 
to the measurement  clock is random. However, the event can be a repetitive 
event, such as a regular  square wave. The  event can also be started and stopped 
in software, as long as the start and stop are not synchronized to the measure- 
ment  clock. 

Table 4.1 
Statistical Sampling Method Using 100 and 1000 Samples. 

Value 
Number of Number of Samples Number of Samples 
Samples Where Count = 2 Where Count = 3 

Calculated Result; 
Total of All Values 

Number of Samples 

2.25 100 67 33 2.33 
2.25 1000 740 260 2.26 
2.5 100 55 45 2.45 
2.5 1000 507 493 2.49 
2.8 100 13 87 2.87 
2.8 1000 188 812 2.81 
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�9 The system must be capable of doing division, although that can be simplified 
by using a binary number of samples (128, 1024, etc.). This allows the division 
to be a simple shift operation. 

�9 The duration of the event being measured must not change appreciably over 
the entire measurement interval. 

�9 The overall accuracy is limited by the number  of samples taken, the repeat- 
ability of the event being measured, and the accuracy of the measurement 
clock. For example, if you are making this type of measurement by counting 
interrupts, variations in interrupt latency will affect overall accuracy. 

�9 The measurement time is equal to the event period times the number of 
measurements. When the event period increases, the measurement time will 
go up by the amount of the increase times the total number  of measurements. 

Figure 4.10 shows two repetitive waveforms measured using this method. Both 
are square wave signals, such as might be produced by the MAX6576, so an event 
is defined as the time period from one rising edge to the next. For both wave- 
forms, the number of interrupts counted during the event period is noted below 
the event in the figure. Again, this example measures the event by counting 
interrupts; the same result would be obtained by reading a free-running timer. 

The frequency of the first waveform is 1.2 times the interrupt period. If you 
add up the number of interrupts detected (11) and divide by the number  of 
events (9), you get 1.22. This is a reasonably accurate measure of the event 
period, given that only 9 events are averaged. 

The frequency of the second waveform is 60% of the interrupt period. Adding 
up the number of interrupts detected (11) and dividing by the number  of events 
(19) yields 0.578. Again, this is a reasonable approximation of the actual value. 
More samples would produce a more accurate result. 

A typical application where this might be useful would be a refrigerator that 
measures temperature using a device such as the MAX6576. In a refrigerator, the 

MEASUREMENT 
INTERRUPT J J J J J J I l I I I 

EVENT BEING 
MEASURED I [ I L I I I ! I I I I ~ I i I i 

NUMBER OF 
CLOCKS PER 2 1 1 1 1 2 1 1 1 
EVENT 

EVENT BEING t MEASURED 

NUMBER OF 1 1 0 1 0 1 0 0 1 0 1 1 0 1 0 1 1 0 1 CLOCKS PER 
EVENT 

EVENT 1 

EVENT 2 

Figure 4.10 
Using averaging to measure repetitive events. 
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t empera tu re  typically does not change rapidly, so taking 100 or 1000 measure- 
ments  to get an accurate reading is not an unreasonable  thing to do. 

To  implement  this measu remen t  in software, you could either br ing the signal 
represen t ing  the event into the processor as an edge-sensitive in te r rup t  or poll it. 
If  you are measur ing  the event using a t imer interrupt ,  the t imer in te r rup t  ISR 
will typically increment  a counter.  T h e  event  in te r rupt  ISR in te r rupt  would reset 
the counter  at the start of the event  and read it at the end of an event. For a 
repetitive event, where the end of one event  is the start of the next, the event  code 
would reset the counter  immediately after reading it. The  value in the counter  is 
the n u m b e r  of t imer interrupts  that occurred since the start of the event inter- 
rupt.  

If  you are making the measu remen t  using a f ree- running counter ,  the event 
ISR would read the t imer at the start and end of the event, subtracting the 
starting value from the ending  value (accounting for rollover, if any) to calculate 
the period.  

As ment ioned  earlier, you can avoid complicated division by making  the 
n u m b e r  of samples a multiple of two. In many applications, you could avoid 
division altogether,  using just  the s u m m e d  measu remen t  values. For example,  if 
you are using a sensor where 0.6 measu remen t  clocks equals 25 degrees,  you 
could instead take 64 samples, sum the values, and structure the software to 
in terpre t  the sum (0.6 x 64 = 38) as 25 degrees.  

Finally, for repetitive events, such as a sensor with a regular ,  frequency-based 
output ,  you do not need to count  how many interrupts  occur per  event. You can 
instead count  how many interrupts  occur over a n u m b e r  of events. You can 
connect  the external  event signal so that  it increments  (or decrements)  a hard- 
ware counter ,  and then p rog ram the counter  to genera te  an in te r rup t  when a 
specific count  has expired.  This minimizes the n u m b e r  of event in terrupts  that 
must  be serviced, which is particularly useful if the event is very fast compared  to 
the processor ISR service time. 
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Output Control Methods 5 

Open-Loop Control 

The simplest form of control mechanism is an open-loop output. Open loop means 
that there is no feedback from the controlled device back to whatever is control- 
ling it. There is no indication of whether the device being controlled is actually 
doing what it is told to do. An example would be the vibrating motor in a pager or 
cell phone. Neither the user nor the instrument cares if the motor speed varies by 
10% or 20%. So the microprocessor can just send an on/off signal to the m o t o r w  
no feedback about the actual speed is needed. The actual motor speed will 
depend on the motor friction, battery voltage, and the condition of the motor 
brushes. Unlike this example motor, where actual speed is unimportant,  most 
microprocessor control applications will measure whatever is being controlled to 
ensure that the control action actually did what was expected. This requires 
feedback from the controlled device to the microprocessor. The remainder of 
this chapter will address feedback control systems. 

Negative Feedback and Control 

Figure 5.1 shows a simple control systemwan opamp. The opamp has very high 
gain, and by connecting the output to the inverting input, we introduce negative 
feedback. The opamp amplifies the difference between the inverting and non- 
inverting inputs. Say that the input and output are at 2 V. The difference between 
the input and the output is 0V, so the difference between the inverting and 
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INPUT VOLTAGE D 
~:> OUTPUT VOLTAGE 

Figure 5.1 
Simple control system: an opamp. 

noninverting inputs is also 0 V. The opamp, which amplifies this difference, has 
no difference to amplify. 

Now, if the input changes suddenly from 2 V to 2.1 V, there will be a difference 
between the two inputs-- the noninverting input is at 2.1 V, and the inverting 
input, still connected to the output, is at 2 V. The 0.1 V difference is amplified by 
the opamp, which starts to move the output toward a more positive voltage as 
soon as the output reaches 2.1 V, the difference between the two inputs is again 0, 
and the output stays at that voltage. 

If the temperature changes and the opamp output transistors change char- 
acteristics slightly, they might drift to a new voltage level. However, as soon as that 
happens, the opamp inputs see a difference, amplify it, and the output stabilizes 
at the input voltage again. The gain of an ideal opamp is just a very large integer. 
A real opamp, of course, has frequency limitations and other deviations from the 
ideal. 

Microprocessor-Based Systems 

Microprocessor-based control systems work the same way as the opamp. They 
control some real-world device, such as a heater or a motor, that attempts to make 
something (position, temperature,  etc.) match a desired value. The magic, of 
course, is in the gain function. Unlike our simple opamp example, a digital 
control system can produce an output that is a much more complex function of 
the input. The microprocessor can provide a control signal that is a function not 
only of the input and output, but of the history of the output, the rate of change, 
the type of load, and so on. 

One fact that sets microprocessor-based control systems apart from linear 
systems is that the microprocessor system is always a sampled system. This means 
that the microprocessor samples the output of the sensors at regular intervals. 
Any changes that happen between samples are lost. The sampling rate must be 
high enough to ensure that no information crucial to operation of the system falls 
between samples. This speed depends on the system, of course, and may range 
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Figure 5.2 
Simple microprocessor control system. 

from seconds or minutes for a slow system to tens of thousands of samples per  
second for something faster. 

Figure 5.2 shows a simple control system. Here,  a microprocessor turns a 
heater on and off via a MOSFET transistor. A thermistor is used to measure the 
tempera ture  of whatever the system is heating. The  microprocessor reads the 
tempera ture  and turns the heater on or off to maintain the correct temperature .  
The  desired temperature  is an input to the system. For now, we won't  worry 
about where that input comes from. 

On-Off Control 

The simplest control system is on-offcontrol,  sometimes called bang-bang control. 
The  microprocessor reads the temperature .  If the tempera ture  is low, the heater 
is turned on. If the temperature  is high, the heater is turned off. Figure 5.3 shows 
the equivalent control system using a comparator.  The  figure also shows what the 
typical response of such a system is. When the system starts, the heater  is cool. The  
microprocessor turns the heater on until the tempera ture  measured at the ther- 
mistor reaches the desired point. It then turns the heater off. When the tempera-  
ture drops below the setpoint, the heater  is turned on again and the heater 
tempera ture  goes back up. The  tempera ture  oscillates around the setpoint. 

Figure 5.3 shows the actual temperature  of the heater and the temperature  of 
the thermistor. As you can see, they don' t  quite match, either in time or in ampli- 
tude. When the heater is first turned on, it overshoots the setpoint by some amount, 
then oscillates around the desired temperature.  The  key reasons for this are: 
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Figure 5.3 
On-off control system. 

�9 The  coupling between the heater and the heated object is not perfect. The 
heater temperature must be higher than the object it is heating to be able to 
transfer heat into it. 

�9 The  object being heated has some thermal mass, so it doesn't heat up or cool 
down instantly. 

�9 There  is a time lag between the object reaching the setpoint temperature and 
the resistance of  the thermistor changing to match. This is because the coupling 
between the thermistor and whatever it is measuring is imperfect, and because 
the thermistor has a thermal mass (usually small, but not zero) and cannot 
change temperature instantly. 

�9 There  is a time lag between the point when the heater is turned on and the 
point where it actually heats up. When power to the heater is turned off, there is 
another time lag while the heater cools down. 
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The temperature  profile shown in Figure 5.3 is similar to that for a real system 
that I worked on once. The  heater control circuit could put  significant energy 
into the hea te r - -much  more than was needed to heat the object in question. The  
object being heated had fairly low mass, almost as low as the heater itself, so it 
heated quickly. In fact, the object being heated changed tempera ture  faster than 
the thermistor responded to tempera ture  changes. In the actual system, when the 
heater was turned on, it would overshoot the desired setpoint in just a few 
seconds, then stay off for 10 or 20 seconds while the tempera ture  came back 
down. After that, the oscillation around the setpoint was fairly large. I picked a 
particularly bad example to illustrate these concepts, but on-off control is not 
necessarily a bad means of controlling something if it is matched to the require- 
ments. On-off control works best in a situation where: 

�9 The  object being controlled does not respond quickly to changes in the con- 
trolling signal. 

�9 The  sensor that measures the state of the controlled object responds to changes 
much faster than the controlled object does. 

For the heater example, this would translate into a heater  that is heating a 
relatively large thermal mass (large compared to the available energy from the 
heater) and a thermistor that is well coupled to the heated object and that 
responds quickly to tempera ture  changes. The  placement of the thermistor can 
have significant impact on the performance.  In the actual system I just described, 
the thermistor was in contact with the heater on one side and with the heated 
object on the other (due to space constraints). This means that the output  was 
somewhere between the two temperatures.  On a system where the heated object 
has a large mass, this could mean that the setpoint t empera ture  might never be 
reached because the thermistor was reading a tempera ture  higher than the actual 
tempera ture  of the mass. 

The  furnace in your house is a good example of on-off control that works well. 
The  furnace is either on or off (in most houses). The  air in the house has a fairly 
large thermal mass, so the furnace can't change the tempera ture  quickly. The  
thermostat,  while slow compared to microprocessor speeds, closely follows the 
actual air tempera ture  in the house. 

The  disadvantage to this system is that the furnace is sized to the house and has 
limited ability to raise the temperature .  If the furnace has been off all day while 
the outside temperature  dropped,  then it will take some time to raise the tem- 
perature  to a comfortable level once the furnace is turned on. There  is no way to 
quickly add energy to the system. You could buy a furnace that is several times 
too big for the house so the house would heat quickly, but then you would have 
more overshoot and oscillation around the desired temperature .  

Some on-off control systems have a "dead band" where the output  will 
not change. This prevents excessive switching of the control mechanism. For 
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example, a temperature  control system might have a 1 ~ deadband, where the 
output  is not changed if the temperature  is within 1 ~ of the setpoint. If the heater 
is on, it won't go off until the temperature  is 1 ~ above the setpoint. The heater 
won't go back on until the temperature  is 1 ~ below the setpoint. In some systems, 
a dead band is part of the basic physics. For example, the thermostat  in most 
houses lags the actual temperature slightly, so the thermostat will sense the 
temperature  continuing to rise after it has reached setpoint and turned the heater 
off. In actuality, the thermostat  is just catching up with the actual room tempera- 
ture. 

Overshoot 

The heater example in Figure 5.3 had significant overshoot in the waveform. Not 
all systems will exhibit overshoot, and not all will exhibit it to the same degree. 
Typically, overshoot is a result of inertia or momentum in the system. In the 
heater example, the heater would continue to heat the load for some time after 
power was removed. In addition, because the heater was large with respect to the 
load and there was a lot of power applied to the heater, the heating time was 
much faster than the cooldown time. Some systems do not exhibit significant 
overshoot, or exhibit it in one direction only (while heating but not while cooling, 
for example). In addition to heaters, motors often exhibit overshoot when they 
are driving loads that have significant momentum.  

Proportional Control 

The next step up in complexity from an on-off design is proportional control. 
The concept behind proportional control is that you vary the amount  of control 
signal, based on the size of the difference between the actual condition and the 
desired condition. The difference between the actual and the desired value is 
called the error. The formula for calculating the control output  of a proportional 
controller is: 

Output  = G • e 

where G = gain, e = error  (setpoint--actual value). To go back to the opamp 
analogy, the proportional control system is like using an opamp with limited gain 
as the control mechanism instead of a comparator  (which is represented by very 
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large gain). The actual control mechanism can be a microprocessor-controlled 
analog system (using a DAC and amplifier) or a PWM technique. 

Figure 5.4 illustrates proportional control. The heater control is 100% on when 
the heater is cold, but as the heater temperature  approaches the setpoint, the 
amount  of control is reduced because the difference between the setpoint and the 
actual value is smaller. As you can see, the proportional  control system has less 
overshoot and less oscillation around the setpoint. Figure 5.4 shows the oscillation 
to be about half that of the on-off control system. The actual difference between 
an on-off control and a proportional control will depend on the system. 

Another advantage to proportional control is the ability to adjust the control signal 
based on the controlled object. If you are heating fluid flowing through a tube, you 
might use a larger proportion (larger gain) when the flow rate is higher. Denser fluids 
might require even more gain to ensure that the temperature is maintained. 

In some systems, the output  is the G x e, as shown earlier. In many systems, 
including the heater example in Figure 5.4, the actual proportional control 
equation looks like this: 

Output  = (G • e) + M 

The M is an offset, and is needed in systems where some power is required to 
keep whatever you are controlling at the desired value. For the heater example, 
the basic proportional equation will reduce the power as the heater approaches 
setpoint (G x e gets closer to zero), and the end result is that the temperature  will 
never get to the setpoint. However if the M offset is used, and if M is, say, 50% of 
the available heater power, then the system can reach the setpoint. The G x e 
term becomes an addition (if positive) or a subtraction (if negative) from the 
constant offset. As long as the system is cold, the G x e term will be very large, 
so the heater will operate at 100%. If the sum of G x e and the offset is greater 
than 100%, the output  is limited to 100%, because that is all the power the system 
can provide. As the heater approaches the setpoint, the G x e term will become 
smaller and the heater power will be reduced toward the 50% offset value. If the 
temperature overshoots the setpoint, the G x e term will become negative and 
the sum of G x e and 50% will be less than 50%, reducing output  power. If the 
sum is less than 0, then the output  is turned off unless a negative output  capability 
is available. An example of negative output  capability would be a system that can 
provide both heating and cooling capability. 

Note that M may have to change as the characteristics of the system change. If 
you are heating blocks of metal, a small block might be held at setpoint with only 
20% of the available heater power, but a large block might need 80% of available 
heater power. 

Designing a proportional control system is more complicated than designing 
an on-off control system. With an on-off control system, you have to live with 

Output Control Methods 113 



<
 

>
+

._w
-L

V
k_D

~ 

,=a 
*~" 

z z 

I" 

| uk) 

.) 

i > i > ) 

I 

>
+

---a'Z
.V

L
j-~

 
2

) 
O

f 
u

~
 

at: 

u
. 

/ 

u
~

 
u

~
 

2 ! t~
 

)~ 

J 
( ) ( ) ( ) 

0 L
_

 

0 0 

~._o 0 

114 
A

nalog Interfacing to E
m

bedded M
icroprocessor System

s 



whatever overshoot and oscillation you get. As the load changes, the overshoot 
and oscillation will change, but as long as you can put enough energy into the 
system to make it reach the setpoint, it will eventually get there. With a propor-  
tional control system, you have to adjust the gain and the offset to the application. 
Too much gain, and you end up with an on-off control. Too little gain, and you 
never reach the setpoint. Worse, a proportional control system might work on the 
prototypes, but if someone in the field puts the product  in an unheated out- 
building it might quit working in the winter. Proportional systems work best 
when the load is fixed or at least is known to the controlling processor. An 
example of a fixed load would be a heater that is always heating the same size 
and shape of plate. An example of a known load would be fluids, where the fluid 
flow rate and type vary, but the microprocessor always knows what they are. 

Note that some proportional systems do not need the offset term. For example, 
a motor application that is driving the motor to a certain position and then 
stopping would not need the offset. Instead, the output  value to the motor, which 
determines speed, would be the product  of the gain times the error. In this case, 
the error is the difference between the actual motor position and the desired 
motor position, and when the error  is zero the motor should stop. On the other 
hand, an application that requires the motor to hold a particular speed would 
require an offset because when the error  is zero (actual speed equals desired 
speed), power must still be applied to the motor to maintain this condition. 

In many cases, it is difficult to design a proportional control system that will 
reach the setpoint without oscillating. In most cases, the final value of the system 
(temperature,  speed, whatever) is somewhat below the setpoint value. The actual 
value reached is dependent  on the gain of the system, the offset, M (if used), and 
the size of the load. 

The problem with a proportional  control system is that it adjusts the control 
signal based on the difference between the measured point and the setpoint. 
There  is no mechanism to adjust the amount  of control based on conditions that 
the microprocessor doesn't  know about. If you are heating plates of metal, what 
happens if someone puts on a plate that is twice the mass of the average one? Or 
one that is made out of a luminum instead of copper? You could add a weight 
sensor to the system, but what if the difference is in the shape instead of the 
weight? A tall, skinny piece of metal will have different heating characteristics 
than one that just matches the surface area of the heater. 

There are similar problems with other control mechanisms. An automobile 
cruise control, for instance, has to handle things like headwinds, uphill and down- 
hill grades, and the decrease in horsepower caused by turning on the air condi- 
tioner. A proportional control system would have problems with these conditions, 
because the right amount  of throttle to apply going uphill in a strong headwind is 
different from the amount  needed under  the opposite set of conditions. 
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Proportional, Integral, Derivative Control 

A control method that handles conditions like this is called proportional, integral, 
derivative (PID). The basic concept behind PID control is to add another input to the 
system, that input being the history of what actually happened when the control was 
applied. In the cruise control example, instead of just applying the throttle based on 
the amount of difference between the current speed and the desired speed (propor- 
tional control), the control system can look at how the car responded to the last 
throttle change. Did the car accelerate more slowly than it was expected to? Then it 
must be driving uphill or into a headwind, and more throttle is needed. 

Figure 5.5 shows a block diagram of a PID control system. The difference 
between the actual value of whatever is being controlled and the setpoint is 
amplified. The derivative and integral of the amplified difference are summed 
with the amplified error to produce the output signal. 

I don't  want to write a book about calculus, nor do you want to read one. This 
book is about practical embedded control, so I want to focus on practical applica- 
tions. However, we need to take a look at the general formula for calculating the 
output of a PID controller, which is: 

Output = G ( e  + I f edt 
de) 

+D~-~- 

where G is the gain, e is the error (difference between setpoint and actual value), I 
is the amount of integral to apply, and D is the amount of derivative to apply. 

If I and D are zero, then the output is: 

G x e  

INPUT 'N UT'A AL' OA, N 1 
(ERROR, e) SUM 

FEEDBACK (ACTUAL VALUE) 

CONTROLLED 
OBJECT ] 

Figure 5.5 
PID control system. 
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which is the formula for a proport ional  controller. If  I and D are 0 and G is very 

large so that the output  always saturates in one direction or the other,  this 
describes an on-off controller. Like the proport ional  controller,  the PID control- 
ler may need to use an offset to which the PID term is added  or subtracted. 

The  things that set the PID controller apart  from the propor t ional  controller 
are the integral and derivative terms. These are time-based terms: the integral is 
an integral over some time period, and the derivative is the derivative between 
two time periods. Let's see what this means in practical terms. 

Almost any system has some kind of inertia. When  you turn on a heater, it gets 
hotter than whatever it is trying to heat (the load). It has to, or it will absorb heat 
from the load instead of t ransferr ing heat into it. When you turn the heater  off, it 
doesn' t  cool off immediately. Instead, its t empera ture  ramps down slowly. Until 

the heater  cools down to the same tempera ture  as the load, it will continue to raise 
the tempera ture  of the load. Figure 5.6 illustrates this. The  amount  of difference 
between the heater t empera ture  and the load tempera ture ,  and how fast each one 
heats up and cools off, is dependen t  on the mass, the amoun t  of energy applied to 
the heater, the coupling between the heater  and the mass, the shape of the mass, 
and so on. 

Figure 5.6 also shows the effect of a light load versus a heavy load on the same 
heater. If the heater is heating metal blocks, the heavy load might be a bigger 
block of metal or one that is more massive (steel versus a luminum,  for example). 

As you can see, the heavy load heats up and cools down more  slowly because it has 
more mass - -more  inertia. If we were looking at the speed of a car instead of a 
heater, the heavy load might be an uphill acceleration and the light load might be 
a downhill acceleration. 

Let's say that the heater is controlled by a propor t ional  system. Because the 

amount  of energy put into the heater is de te rmined  only by the difference 
between the desired tempera ture  and the actual tempera ture ,  the control signal 
will be the same for the light load as for the heavy load. This means that the light 
load will overshoot  the desired tempera ture  by a greater  amount .  Once the right 
tempera ture  is reached, there will be more oscillation (bigger t empera ture  
swings) a round  the setpoint. Accuracy of t empera tu re  is less precise than for a 
heavy load. 

Derivatives 

Adding a derivative term to the control equation allows better control. The  
derivative is a measure of how fast the e r ror  is changing. If the control system 

knows the size of the output  applied to the heater, the rate of change in the e r ror  
gives some indication of the size of the load. Mathematically, the derivative of a 
curve is the slope of a curve- - in  this case, the slope of the error .  Practically, it is 

the rate of change in the e r ror  (volts per millisecond or pounds  per second, or 
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Figure 5.6 
Inertia in a control system. 

whatever is being measured).  If the error term is decreasing, the curve has a 
negative slope and the derivative will be negative. If the error term is increasing, 
the derivative will be positive. If the error term doesn't change at all, then the 
slope and derivative are both 0. Note that any error, even a very large one, will 
have a derivative of  0 if the error doesn't change. The  original heater/load graph 
is shown in Figure 5.7, along with the resulting error term and the derivative 
term. 

If we make the gain smaller and then add the derivative to the Gain x error 
term, our proportional control system will handle varying loads better. When the 
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F igure  5 .7  
Derivative. 

load is heating rapidly (light load), the derivative has a large negative value, so the 
output (G x e + D x derivative) is smaller. Smaller output equals less heat, so the 
load heats up more slowly. If the load is heavy, the derivative will be less negative, 
less is subtracted, the output is larger, the heater gets hotter, and the load heats 
up faster. 

When the load temperature gets close to the setpoint, the gain term (G x e) 
becomes smaller. Lower heat also makes the derivative smaller, so there is less 
overshoot. When the load passes the setpoint temperature,  the derivative be- 
comes positive as the error term changes direction. This causes a larger positive 
value to be added to the gain term. The faster the load is cooling off, the larger 
the derivative is, and the less the output shrinks. 
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Figure 5.8 
Proportional gain and derivative. 

Figure 5.8 shows the result of a system using proportional gain and derivative. 
There  is a small overshoot followed by an oscillation around the setpoint. 
Depending on system characteristics, the overshoot may be small or zero, and 
the oscillation may die out as the system setdes on one value. As shown in the 
figure, the end result ( temperature,  in this case) is often a bit below the setpoint, 
just as with a proportional control system. This occurs because the gain isn't quite 
high enough to bring the temperature  up to the desired value without the 
derivative term. When the temperature  is near the setpoint, the slope of the 
error  change is small, so the derivative term is nearly 0. Figure 5.9 shows a 
gain/derivative system where the final error is a small constant value. 

FINAL OFFSET ERROR 

- -  DESIRED TEMPERATURE 

Figure 5.9 
Offset error. 

120 Analog Interfacing to Embedded Microprocessor Systems 



INTEGRAL 

One way to solve the problem of settling a small distance from the setpoint is to 
add an integral term. Mathematically, the integral is the area under  a curve. In 
practical terms, the integral is the sum (or accumulation) of the error term over a 
period of time. Figure 5.10 shows what the integral term looks like in graphic 
mode. Notice that, in this example, the integral never goes negative even though 
the error  term does go negative. If the error stayed negative for a long enough 
period of time, the integral would eventually become negative. 

Figure 5.11 shows the effect of the integral on the constant error in the 
proportional/derivative heater controller that we looked at earlier. When the 
system stabilizes with a small offset, the integral term begins to grow because it 
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Figure 5.10 
Integral. 
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Figure 5.11 
Effect of integral. 

is the accumulation of errors (in this case, if the temperature  is low, the error is 
positive and the integral grows to a positive value). Eventually the integral term 
becomes large enough to affect the output, pushing the temperature  toward the 
setpoint. 

Going back to the cruise control example, a proportional/derivative control 
mechanism might result in the car settling at 62 mph when the control was set on 
65. If the car spent enough time driving at 62, the integral term would eventually 
produce a large enough error  to push the speed up to the setpoint. 

Summarized PID 

The proportional part of a PID loop causes the output  to follow the input 
(setpoint). The derivative allows the output  to respond to rapidly changing inputs 
and to compensate for varying loads. The integral compensates for long-term 
errors. 

All the examples so far have shown a system with overshoot and some oscilla- 
tion around the setpoint. These waveforms are typical for a system with an 
unde rdamped  response. Figure 5.12 shows a critically damped response. Here, 
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Figure 5.12 
Critically damped system. 

the system rises rapidly to the setpoint but does not overshoot or oscillate when 
the setpoint is reached. In many systems, a small overshoot past the setpoint is an 
acceptable tradeoff for fast response. In other systems, no overshoot is acceptable, 
so a critically damped response is used. An example of this would be a cooling 
system that has to keep biological samples near freezing, but can't let the tem- 
perature dip below freezing or the samples will be permanently damaged. 

In classical control theory, the integral and derivative gains are times, not scalar 
(unitless) multipliers like the proportional gain. In a microprocessor-based system, 
the system is sampled at a regular interval and it may not be possible to set the 
integration time or derivative period to a specific value. However, by using a gain 
factor on the integral and derivative values, the integral and derivative time factors 
can be multiples of the sample period while still obtaining the same control results. 

Practical Considerations 

Although a PID loop can compensate for varying loads, it still must be tuned. 
Tuning is the process of selecting the parameters (coefficients) of the three terms. 
That is, how much of the integral and derivative terms should be added to the 
G x e term, and how large should G be? There  are a number  of ways to adjust 
these values, such as the Ziegler/Nichols method. The primary difficulty in 
adjusting the parameters of the PID loop is that adjusting one parameter affects 
the other two--the adjustments are not independent.  In addition, simulating the 
operational extremes of a real device is sometimes difficult. 

In general, the tuning procedure for a PID loop is to make the gain term (G) 
large enough to provide sufficient response speed. Then the derivative term (D) 
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is made large enough to decrease overshoot to acceptable levels and to make the 
system stable (no oscillation). Finally, the integral term (I) is made large enough 
to eliminate steady-state error. 

As an example, the Ziegler/Nichols method, mentioned above, uses the follow- 
ing steps: 

�9 Turn  off integral and derivative terms, making the controller a proportional- 
only controller. 

�9 Increase the proportional gain until the output  has a steady oscillation that does 
not increase or die out. Call this gain K. 

�9 Measure the period, P, of the oscillation. 
�9 Set the proportional gain (G) and the integral and derivative times (Ti, Td) 

according to the following: 
�9 If controller is to be proport ional  only, gain = 05 K. 
�9 If controller is to be proportional-integral,  G = 045 K, Ti = 1.2/P 
�9 If controller is to be PID, G = 06 K, Ti = 2/P, Td = P/8 

The result of this process will probably require additional adjustments to 
optimize performance. As mentioned earlier, the result of this process may be 
integral and/or derivative values that are not possible with the sampling clock. 
The integral and derivative gain must be adjusted to compensate for this. 

PID loop tuning sometimes runs into other problems, including the difficulty 
of making measurements.  Measuring the ability of a motor  controller to hold a 
specific speed may require hardware that is itself subject to error. In a refrigera- 
tion system, the cycle time may be several minutes or even hours. How long does 
the system have to run to detect a sustained oscillation for Ziegler/Nichols tuning? 
Problems like this can make control system design a challenge. 

Practical systems often do not function as well as their ideal models. Potential 
problems for a PID system include the following. 

Saturation 

It is possible to calculate an output  that the electromechanical system cannot 
possibly achieve. For instance, if someone places a huge block of very cold metal 
on our example heater, the system may calculate that an enormous amount  of 
current  is required to get to the right temperature.  This current  may be beyond 
the capability of the power supply and the heater. Or, the power supply may be 
large enough that the 100% ON condition will burn the heater out. 

Another problem with saturation involves the integral term. If the heater is 
ON 100% because the microprocessor wants more output  than the system can 
deliver, there will be an integral error  that will grow larger with time. Because the 
system cannot respond as quickly as it would in a nonsaturated condition, the 
integral error  may get very large. Once the setpoint is reached and the gain and 
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derivative terms stop applying control to the load, the integral term will cause the 
output  to continue to be driven in the same direction. This condition is called 

windup. Figure 5.13 shows how windup can affect the output.  
Saturation can also occur in a sensor; an example would be the scaled thermistor 

we looked at in an earlier chapter. It is possible for the temperature  in that case to 
be within the range of the thermistor, but for the opamp output  to be saturated 
because the temperature  is beyond the range we designed the circuit to handle. 

Software Considerations 

To avoid windup,  the software should artificially limit the integral bui ldup when a 
saturated output  (or saturated sensor) is detected. In addition, the software, 
unlike the theoretical mathematical model,  has registers of limited size. Care 
must be taken to ensure that the registers do not roll over when per forming  
mathematical calculations. In some cases, the integral is inhibited until the e r ror  is 
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Figure 5.13 
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within a certain percentage of the setpoint. This avoids building up a large 
integral term while the output  is ramping toward the setpoint. 

The derivative term in a PID design is the amount  of change in the error  over a 
specific unit of time. Because a microprocessor control system uses a regular 
sampling rate, the unit of time is usually the sample interval (or some multiple 
of the sample interval). The derivative is then calculated by subtracting two 
samples. Subtracting the error  at time n from the error  at time n 4- 1 gives the 
amount  of change in one time interval. To prevent noise problems, the software 
may average two or more successive samples. 

The integral is the sum of error  over a period of time. In a practical micro- 
processor system, the integral is calculated as the sum or average of several 
successive samples. Again, precautions must be taken against rollover and satura- 
tion when performing calculations. 

Time Delay 

One subject that we have mentioned without taking a close look at it is time delay. 
Our  example heater had some delays built in. These include: 

�9 The time it takes for the heater to respond to a control change; the temperature 
of the heater does not change instantly just because the control signal to it did 

�9 The time it takes the heat to be transferred to the load 
�9 The time it takes the thermistor to respond to changes in the load temperature 

All of these have the same effect on the control system--inaccuracy. The time 
from when a control change is applied until it registers in the sensor is called 
deadtime. If the microprocessor changes the control signal because the block is too 
cold, it takes a while for the heater to heat up, for the load to heat up, and for the 
thermistor to respond to the change. In the meantime, the microprocessor has 
sampled the thermistor many times, found that the temperature still isn't right, 
and pushed the output  even higher. Or, in an on-off control, the heater stays on 
well past the opt imum point for the right temperature,  resulting in overshoot and 
oscillation. In either case, the controller overcompensates for the error. Using 
PID control instead of just proport ional  control can reduce some of these effects, 
as we have already seen. However, in some cases, PID control can make a dead- 
time situation worse, such as when windup occurs. 

Compensating for deadtime usually involves predicting the effect of a control 
change and assuming that it will take place after the deadtime has elapsed. Once 
the real result of the change is available, a new change can be made that will 
correct for the difference between the theoretical result and the actual result. This 
process is called the Smith Predictor, and was originally modeled by Otto Smith in 
1957. Implementing this involves modeling the system to determine what the 
response will be. 
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Discontinuous Inputs 
Many systems suffer from the application of sudden input changes that make a 
pure PID or even a proportional system impractical. A heater may be subject to 
having water splashed on it. This will rapidly cool down the heater and may be 
impossible to handle by tuning the PID loop. How do you predict how much 
water will be splashed on the heater? How do you predict that the user will 
suddenly remove the load? 

Another example of sudden load changes is in automobile voltage regulators. 
If the driver suddenly switches off the car's headlights, the load on the electrical 
system is instantly reduced (called load dumping). The voltage produced by the 
alternator suddenly jumps  up to a larger value because the alternator tries to 
produce the same power output  but at a lower amperage.  In a case like this, you 
don't  want the system to respond along a PID curve- -you want it to recognize the 
event and respond immediately. The typical way to handle an input change like 
this is to cut off the PWM output  and let the system "coast" until things stabilize. 
The key thing here is to be sure the integral and/or derivative values don' t  result 
in an erroneous output  when the control is reinitiated. You may have to reset or 
otherwise modify these values when a sudden input change occurs. 

Special Requirements 

Many systems that require PID control must handle specific inputs. A cruise control 
system may need to go to a quiescent state, resetting the integral and derivative 
values, when the driver hits the brake. The automobile voltage regulator may need 
to operate differently, with different PID parameters, at different motor speeds. A 
heater may have a differing ON time PWM power limitation for heating different 
materials. The software must ensure that all these special requirements are met, 
and that a change from one state to another (such as from one heated material to 
another) does not cause the PID loop to be confused. You don't  want to use an 
integral value calculated using one set of PID parameters to generate an output 
when the PID parameters change. When PID parameters are changed for any 
reason, the software needs to reset or otherwise adjust the accumulated values. 

Motor Control 

So far we have used heaters as the primary example for control system operation, 
because they are easy to understand. The control methods described in this 
chapter apply to motors as well, but there are some additional complications 
when motors are involved. Figure 5.14 shows a PID loop controlling a motor. 
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Figure 5.14 
PID motor control. 

The input to the system is a digital word that indicates the desired position. The 
motor position is an analog quantity (number of  degrees of  shaft rotation or 
something similar) but is measured as a digital quantity (number of  encoder 
pulses). A counter counts up when the motor rotates one way and counts down 
when the motor rotates the other way. The  output of  this motor position counter 
is compared to the desired position. The difference is the error. This is exactly the 
same as the error in an analog control system, except that it is a digital word. The 
PID portion of  the controller uses the error (and the history of  the error) to 
calculate the new output value. 

Figure 5.15 shows a round carousel with eight sample positions. This carousel 
might be used to rotate samples under a sampling arm for a chemical or medical 
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Figure 5.15 
Rotating carousel. 
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sampling application, or it might be continuously rotated under  a camera or 
other optical sensor in an automated image processing system. The  carousel is 
driven with an internal gear (not shown), which matches a gear on the motor 
shaft with the motor underneath .  One revolution of the carousel takes dozens of 
revolutions of the motor. A gap in the carousel and a corresponding slotted 
optical switch tells the controlling microprocessor when the carousel is at the 
home position. The  motor shaft has an optical encoder for feedback to the 
microprocessor. 

Constant Speed 
The  simplest case for this system is continuous rotation. The  carousel is rotated at 
a constant speed, which may be required for synchronization with the optical 
pickup or camera. The  control loop (proportional or PID) maintains the motor 
velocity. The  slotted switch would typically be used to verify that the carousel is 
following the motor - - in  other words, that there isn't a stripped gear or some 
other mechanical malfunction. 

The  control system would ramp the motor  up and hold it at a constant speed 
(Figure 5.16) until commanded  to stop. Let's say that there are 100 motor  
revolutions per carousel revolution, and that the motor  uses a 500-line encoder  
(500 encoder  counts per  revolution of the motor  shaft). Figure 5.16 doesn' t  have 
enough resolution to show all the encoder  counts, so the relative spacing between 
encoder  pulses is shown--as if the picture were displaying every 100th count or 
something similar. 
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Figure 5.16 
Motor ramps up and holds constant speed. 
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The motor control software (or the controller, if a packaged motor control IC 
is used) will typically check the velocity on a regular basis (a specific number of 
clocks from an internal reference clock). There is no point in designing the 
system so that the sample interval is shorter than the PWM frequency (if PWM 
is used). In fact, such a system would tend to be unstable, because a new PWM 
duty cycle would be assigned before the previous one had a chance to take effect. 

Instead of sampling at a regular interval, you could check the count of an 
internal free-running counter on every encoder pulse, or every fourth pulse, or 
something similar. The time from the previous encoder pulse is measured, and if 
the velocity is low the control output is increased (more motor current). Figure 
5.17 shows a simplified diagram of both measurement methods. In fixed-time 
sampling, all timing is synchronized to the sampling clock, which is usually a 
multiple of the PWM clock. The potential drawback is shown in the detail area; if 
the encoder pulse occurs just before the sample clock, the count will differ by 1 
from the count that results if the encoder pulse occurs immediately after the 
sample clock. The actual amount  of motor shaft rotation in both cases is almost 
identical, but the system will see a difference of 1 count. 

The fixed-count sampling method, which samples after a fixed number of 
encoder pulses (3, in Figure 5.17), avoids this problem and can give better 
precision in the result. The catch is that the time measurement counter has to 
run at a fairly high clock rate and may have to be many bits wide to handle slow 
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motor  speeds. In addition, use of fixed-count sampling means  that the sampling 
interval is no longer  synchronized to the PWM f r e q u e n c y I t h e  sample frequency 
varies with motor  speed. For this reason, fixed-time sampling is more  common.  

If  you use fixed-count sampling, you should include some kind of t imeout  to 
detect a stalled motor.  If the motor  stalls, no encoder  counts will be genera ted  
and no sampling will occur. Whichever  sampling method  is used, the carousel in 
our  example  will run at a constant speed, with some fluctuation depend ing  on the 
type of control and the control parameters .  Because the home position occurs 
once every revolution of the carousel, and this is 100 motor  rotations, then the 
home position indication will occur once every 50,000 motor  revolutions 
(500 encoder  counts revolution x 100 motor  revolutions/carousel revolution). 
So if the first pulse occurs at count  10,000, the next pulse will occur at count  
60,000 (usually plus or minus 1). So to check that the carousel is following the 
motor,  the software could open a "window" and look for the pulse a round  count  
60,000, 110,000, and so on. 

Eventually, the counters that keep track of position will overflow, and the 
software (or controller IC) has to take this into account in controlling the speed. 

Positioning 
The  case of our  carousel in a sampling system is a bit more  complex.  The  carousel 
does not rotate continuously, but moves to a fixed position and stops with one of 
the sample positions unde r  the sampling arm. After the sampling probe has taken 
a sample of the contents, the carousel is rotated to the next  position. 

T h e  typical waveform for this type of move is shown in Figure 5.18. The  motor  
ramps up to some velocity, just  like in the continuous rotation example,  then runs 
at a constant speed, then ramps  down and stops in the correct  position (correct 
encoder  count). The  difficulty is in t iming all this so that the final position is 
correct. A PID motion controller that is used in a positioning application usually 
has two loops operat ing together  in parallel. The  PID loop controls motor  
cur ren t  to achieve the correct velocity. The  input  to the PID loop is the velocity 
setpoint. A second loop creates the trapezoidal waveform by passing velocity 
setpoint values to the velocity control PID loop. 

Figure 5.19 shows a simple d iagram of such a control system. This is typical of 
the position-control functionality in a motor  control IC such as the LM628/9. In 
this figure, the velocity genera tor  block is separate from the microprocessor,  as it 
would be in a self-contained motion control I C. If  you were writing software for a 
microprocessor  or DSP to directly control a motor,  the velocity genera tor  and 
PID loops would be software functions. T h e  position control loop generates 
position commands  to the P ID loop. This is the same position c o m m a n d  that 
was an input  to the PID loop in Figure 5.14. Tha t  figure shows a simplified table 
of position values for a move of 80,555 steps, which is a bit over 161 revolutions of 
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the motor  shaft for a 500-count encoder.  Notice that the position initially in- 
creases 5 steps per  sample interval, then 10, then 20, and so on. This acceleration 
profile is reversed when the motor  is stopping. 

Software Considerations 

The PID loop controls motor  position. In many designs, having a critically 
damped  waveform is crucial. Remember  that this is a mechanical system---over- 
shoot may result in broken parts. 

The  problem of offset in a PID loop, where the final position is just  slightly 
different from the desired position, can cause a unique problem in a motor  
control application. There  is usually a plus or minus 1 count  ambiguity in any 
digital system. If the final motor  position is different from the setpoint by 1 or 2 
counts, and if the integral port ion of the PID loop is too small, the system may 
draw excessive current  and overheat  the motor  and/or  controller. This is because 
the propor t ional  part  of the loop is trying to nudge  the motor  that final step or 
two to get the right position, but  it can't generate quite enough  current  to do so. 
Instead of the motor  current  going off at the end of the move, it stays on. This can 
be a real problem in systems that have a lot of inertia or some kind of detent  to 
overcome when starting, as the current  can be relatively high. In addition, in a 
DC motor ,  this continuous current  is not shared over all the motor  windings, 
because the motor  isn't rotating. 

If the system is such that an integral term cannot be set to correct this problem 
(possibly because the load when stopped isn't known), then the software should 
detect this condition and shut off the motor  output.  If your application needs 
holding current  (say, to keep a vertical arm from falling), then reprogram the 
setpoint position to the actual position. Notice that the position generator  does 
not know what the motor  position is. It is assumed that the PID loop will be able to 
meet the acceleration requested by the position generator.  In a system with variable 
loads, the software may need to reduce the acceleration when the load is large. 

Predictive Control 

PID control is effective when controlling a single-input process that is fairly 
consistent. The  drawbacks to PID are that it has to be tuned to a particular 
process; if the process changes appreciably, the PID parameters  must  be read- 
justed to provide good control. In addition, a PID loop is not usually effective in 
controlling systems with multiple input  parameters ,  especially if the parameters  
interact. An example would be a control system for t empera ture  and humidity,  
where the tempera ture  affects relative humidi ty  and vice versa. 
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To handle these conditions, some form of predictive control can be used. 
There  are several variations on predictive control, such as model predictive 
control (MPC) and nonlinear model predictive control (NMPC). All model pre- 
dictive control algorithms start with a model of the response of the system. This 
model is used to predict system behavior over some time period. The response 
prediction might span a single sample interval or the response delay of the 
system, if there is one. A control output is generated, the response is measured, 
and a new prediction is made for the next time interval. Some predictive systems 
adjust the parameters (typically gains) of the mathematical model as the system 
operates, so that the model more closely matches the actual system response. 

Generally, the model for a predictive control system is a mathematical repre- 
sentation of the response, and so predictive control is often impractical for small 
microcontroller-based systems. The system model can be a table of values, but if 
there are multiple inputs, the number of tables can quickly grow beyond the 
available memory. 

The model for a predictive control system can be generated by analyzing the 
electrical and mechanical components to determine their response, or by empiri- 
cal testing. Either method has drawbacks; an analytical solution may be difficult to 
obtain and empirical testing may be difficult to perform, especially in a system 
where some control values may cause physical damage. 

Measuring and Analyzing Control Loops 

Development of a control system often requires that the control inputs and out- 
puts be measured. This may be necessary to set the parameters for a PID loop or 
to debug a system that isn't functioning properly. Figure 5.20A shows a control 
system with monitoring hardware attached. The monitoring hardware measures 
the ADC output and the resulting control output. 

The monitoring hardware in a system like this could be a logic analyzer that 
captures every read from the ADC and every write to the amplifier (the amplifier 
may be a linear or PWM output device). The idea is to capture the inputs and see 
what output the control system generates as a result. If a logic analyzer is used, 
the resulting data can be time-tagged and stored to disk, or sent over a network 
connection to a computer. There,  it can be plotted or captured in a spreadsheet 
for analysis. 

If you are debugging a problem in a control system, the logic analyzer may also 
accept other inputs that will allow you to trigger when the error occurs and see 
what the control system was doing just before that time. Instead of a logic 
analyzer, a relatively slow system might be analyzed using a PC and plug-in 
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Monitoring a control system. 

boards to make a data acquisition system. National Instruments makes several 
types of data acquisition boards and software that can be used for this purpose. 

Another approach to monitoring is to add microprocessor code that outputs 
the sensor readings and resulting control values to a serial port or some other 
output mechanism. This approach requires less analysis of the resulting data, but 
it assumes that the software is working properly. For instance, this approach 
won't catch a problem that occurs if the software generates the correct control 
output value, but a software race condition prevents that value from actually 
being written to the PWM controller. The output will not reflect what the soft- 
ware thinks (and tells the world via the diagnostic output) is happening. 

Combined Logic Analyzer/DSO 
One problem with both the software and logic-analyzer approach to monitoring 
the system parameters is that the digital values may not represent the analog 
inputs. If a problem occurs because the ADC reference voltage varies too much 
with temperature, neither of these approaches will detect it because the ADC 
outputs look correct and the system responds to the ADC output correctly. 
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Figure 5.20B shows the addit ion of a digital storage oscilloscope (DSO) to the 
original setup. The  DSO monitors  the actual sensor signal while the logic analyzer 
monitors  the ADC output  and the resulting control output .  T h e  DSO trigger is 
coupled to the logic analyzer t r igger ou tput  (or vice versa) so that the data on the 
two ins t ruments  can be correlated.  Using a logic analyzer with an integrated DSO 
simplifies the data correlat ion process. 

Whe the r  you ou tput  moni tor ing  data using software or use external  equip- 
ment  such as a logic analyzer, it is a good idea to provide the necessary compon- 
ents for moni tor ing early in the design. This may mean adding  a header  to the 
board  for connection of a logic analyzer, or leaving one por t  bit on a microcon- 
troller available to indicate in te r rup t  entry and exit. 

Measuring Motor Parameters 

Measur ing the effects of PID loop changes in a heater  is fairly ea syByou  just 
moni tor  the thermistor  and display the results on a DSO, or use an ADC to 
convert  the results to digital values and capture  them with a computer .  A motor  
is more  difficult to tune. T h e r e  is no direct indication of speed; you have to 
measure  the time between encoder  pulses to de te rmine  how fast the motor  is 
turning.  

Figure 5.21 shows the block diagram of two simple circuits that can be used as 
an aid for tuning motor  parameters .  Figure 5.21A shows a circuit that measures 
the per iod between encoder  pulses. A clock increments  a counter .  Each encoder  
pulse latches the count  into a register and resets the counter .  The  counter  can use 
synchronous or asynchronous  reset, a l though the reset logic obviously has to 
match the counter  characteristics. 

T h e  output  of the register can be connected to a logic analyzer so the speed 
data can be captured,  or it can connect to the input  of a DAC to provide a voltage 
that corresponds  to speed; the resulting waveform can be viewed on a DSO. Some 
logic analyzers provide a chart  mode  that allows state data to be viewed like a 
DSO. Or, the captured  data can be saved to disk, input  to a spreadsheet  on a 
computer ,  and viewed/manipulated there. 

T h e  sample clock and counter  width depend  on the resolution needed and the 
motor /encoder  characteristics. I f  your  motor  runs at 2000 rpm (33.3 rev/sec) and 
uses a 500-line encoder,  then the time between encoder  pulses is: 

500 x 33.33 
or 60 las 

If  you want to use an 8-bit measu remen t  and you want this speed to be 250 
counts, then you need a clock of 250/60 ~ts, or 4.167 MHz. 
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Motor - t im ing  ana lys is  aid. 

If  the slowest mo to r  speed you want  to measure  is 100 rpm,  then the encoder  

pulses will occur at a rate of 833 Hz, so the coun te r  will accumulate  5000 counts 

be tween encoder  pulses, and  you will need  a coun te r  that  is 13 bits wide. For this 

application, a 13-bit coun te r  will p reven t  overflow at the slowest speed and still 

allow 8-bit resolut ion at the highest  speed. 
In this example,  the coun te r  resets to 0 and counts  up,  so a larger  count  

co r responds  to a slower moto r  speed. To  make the coun t  p ropor t iona l  to mo to r  

speed (larger count  = h igher  speed),  you can ei ther  invert  the coun te r  ou tputs  

or use a down-coun te r  that  resets to all ls instead of  to 0s. 

Figure 5.21B shows an identical circuit, but  with the encoder  and reference clock 

inputs reversed. This circuit measures  the frequency of the encoder  pulses. Using 

the same 100-to-5000 rpm motor  with the same 500-line encoder ,  a 10 ms sampling 
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clock will give a count of 8 at 100 rpm and a count of 166 at 2000 rpm. The  output  of 

this circuit can also be connected to a logic analyzer or DAC/DSO combination. Of  

course, either circuit can be implemented with discrete logic or in a PLD. 

Commercial Software 

There  are software packages that can aid in tuning PID loops. Examples are 

Wintune from BestSoft (www.bestsoft.com) and a PID analysis package from 
National Ins t ruments  (www.ni.com). 

PID Software Examples 

Following are some pseudocode examples for a simple PID controller, with 
various options implemented.  

Basic PID Loop 

R e a d  i n p u t  ( a c t u a l  pos i t i on ,  speed ,  t e m p ,  w h a t e v e r )  f r o m  s e n s o r ,  s a v e  
a s  C u r r e n t V a l u e .  

E r r o r  = T a r g e t V a l u e  - C u r r e n t V a l u e  

D e r i v a t i v e  = E r r o r -  P r e v i o u s E r r o r V a l u e  

I n t e g r a l  = I n t e g r a l  + E r r o r  

C o n t r o l V a l u e  = K1 " I n t e g r a l  + K 2 " D e r i v a t i v e  + K 3 " E r r o r  
P r e v i o u s E r r o r V a l u e  = E r r o r  ( fo r  u s e  w i t h  n e x t  s a m p l e )  

O u t p u t  C o n t r o l V a l u e  to c o n t r o l  h a r d w a r e  

Def in i t i ons :  

K1 = I n t e g r a l  g a i n  

K2  = D e r i v a t i v e  g a i n  

K3  = E r r o r  g a i n  

I n t e g r a l  = I n t e g r a l  t e r m  

D e r i v a t i v e  - D e r i v a t i v e  t e r m  

E r r o r  = E r r o r  t e r m ,  s e t p o i n t  m i n u s  a c t u a l  v a l u e  r e a d  f r o m  s e n s o r  

T a r g e t V a l u e  = Se tpo in t ,  t h e  d e s i r e d  i n p u t  

C u r r e n t V a l u e  = C u r r e n t  v a l u e  r e a d  f r o m  s e n s o r  

P r e v i o u s E r r o r V a l u e  = The  v a l u e  of E r r o r  f r o m  t h e  p r e v i o u s  s a m p l e  
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Note that  Error,  Derivative, and Integral  must  be stored in such a way that  

they can be negative values. This means floating point, 2's complemen t  integers,  
or some o ther  method.  In this implementa t ion ,  the derivative is simply the 

current  e r ror  minus the previous error ,  which is a measure  of how fast the e r ror  

is changing.  Technically, the derivative is the change that occurs over time; 

however,  since the system samples at a regular  interval, the derivative can be 

approx imated  as the difference between two successive samples. The  integral  is 

just  the sum of previous e r ror  values so far. 

Antiwindup 
Adding ant iwindup for the integral te rm looks like this: 

R e a d  i n p u t  f r o m  s e n s o r ,  s a v e  a s  C u r r e n t V a l u e .  

E r r o r  = T a r g e t V a l u e  - C u r r e n t V a l u e  

D e r i v a t i v e  = e r r o r  - P r e v i o u s E r r o r V a l u e  

I n t e g r a l  = I n t e g r a l  + E r r o r  

If I n t e g r a l  > M a x i m l l m W r l t e g r a l V a l u e ,  t h e n  

I n t e g r a l  = M a x i m ~ l m I n t e g r a l V a l u e .  

C o n t r o l V a l u e  = 
K1 " I n t e g r a l  + K 2 " D e r i v a t i v e  + K 3 " E r r o r  

P r e v i o u s E r r o r V a l u e  = E r r o r ( f o r  u s e  w i t h  n e x t  s a m p l e )  

O u t p u t  C o n t r o l V a l u e  to c o n t r o l  h a r d w a r e  

Def in i t ion :  

M a x i m ~ l m T u t e g r a l V a l u e = m a x i m u m  v a l u e  of i n t e g r a l  t e r m ;  r e p r e -  

s e n t s  1 0 0  % 

An alternative method,  which inhibits the integral  unless the output  is within a 
specific range of the setpoint looks like this: 

R e a d  i n p u t  f r o m  s e n s o r ,  s a v e  a s  C u r r e n t V a l u e .  

E r r o r  = T a r g e t V a l u e  - C u r r e n t V a l u e  

D e r i v a t i v e  = e r r o r  - P r e v i o u s E r r o r V a l u e  

If  a b s o l u t e  v a l u e  of E r r o r  < I n t e g r a l B a n d  
I n t e g r a l  = I n t e g r a l  + E r r o r  

E l se  I n t e g r a l  = 0. 
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C o n t r o l V a l u e  = 

K 1 * I n t e g r a l  + K 2 * D e r i v a t i v e  + K 3 * E r r o r  

P r e v i o u s E r r o r V a l u e  = E r r o r ( f o r  u s e  w i t h  n e x t  s a m p l e )  

O u t p u t  C o n t r o l V a l u e  to c o n t r o l  h a r d w a r e  

Def in i t ion :  

I n t e g r a l  B a n d  = t h e  r a n g e  of  e r r o r  v a l u e s  f o r  w h i c h  t h e  i n t e g r a l  calcu-  

l a t i o n  is e n a b l e d .  No te  t h a t  I n t e g r a l B a n d  c a n  be  a c o n s t a n t  o r  a f r a c t i o n  

of t h e  s e t p o i n t .  

Filtering Noisy Input 

You might  have a situation in which the sensor input  is noisy. In this case, you 

may not want to use each sample as-is because an e r roneous  value for Control- 

Value might  be calculated. In such a case, you may want  to average multiple 
samples. The  following code will average 8 samples together  and then process 

that average as a new sample.  Note that this only generates  a new output  once for 

every 8 samples. To genera te  a new ou tpu t  ten times per  second, the code would 

actually have to sample 80 times per  second. 

R e a d  i n p u t  f r o m  s e n s o r ,  a d d  to C u r r e n t V a l u e .  

I n c r e m e n t  S a m p l e C o u n t e r  

If  S a m p l e C o u n t e r  = 8, 
[ 
S a m p l e C o u n t e r  = 0 

C u r r e n t V a l u e  = C u r r e n t V a l u e / 8  

E r r o r  = T a r g e t V a l u e  - C u r r e n t V a l u e  
D e r i v a t i v e  = e r r o r  - P r e v i o u s E r r o r V a l u e  

I n t e g r a l  = I n t e g r a l  + E r r o r  

C o n t r o l V a l u e  = K1 " I n t e g r a l  + K 2 " D e r i v a t i v e  + K 3 * E r r o r  

P r e v i o u s E r r o r V a l u e  = E r r o r  

O u t p u t  C o n t r o l V a l u e  to c o n t r o l  h a r d w a r e  
C u r r e n t V a l u e  = 0 ( r e s e t  to  z e r o  so n e x t  a c c ~ l m u l a t i o n  c a n  s t a r t )  

To simplify the code, you might not do the division of CurrentValue by 8. Instead, 
you can work with the sum, which avoids division. If the division value happens to be 

a nonbinary value, this can be a significant time savings on small microcontrollers 
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without a divide instruction. Of  course, this means all the terms derived from 

CurrentValue  are also larger by a factor of 8. Be sure overflows don ' t  occur. 

Preventing Out-of-Bounds Control Output 
Th e  following code will p reven t  the control  ou tpu t  f rom exceeding  the m a x i m u m  

that the system can handle  (say, to avoid b u r n i n g  out  a hea te r  element) .  

R e a d  i n p u t  f r o m  s e n s o r ,  s a v e  a s  C u r r e n t V a l u e .  

E r r o r  = T a r g e t V a l u e  - C u r r e n t V a l u e  

D e r i v a t i v e  = e r r o r  - P r e v i o u s E r r o r V a l u e  

I n t e g r a l  = I n t e g r a l  + E r r o r  

N e w  c o n t r o l  v a l u e  = K1 " i n t e g r a l  + K 2 " D e r i v a t i v e  + K 3 " E r r o r  

If  n e w  C o n t r o l V a l u e  > M a x i m ~ l m C o n t r o l V a l u e ,  

C o n t r o l V a l u e  = M a x i m u r n C o n t r o l V a l u e  

Se t  M a x i m n m P o w e r E x c e e d e d  f lag .  

P r e v i o u s E r r o r V a l u e  = E r r o r  

O u t p u t  C o n t r o l V a l u e  to  c o n t r o l  h a r d w a r e  

In this code, if the m a x i m u m  power  is exceeded,  the new Cont ro lValue  is 

l imited to the m a x i m u m  value, and  a flag is set ( M a x i m u m P o w e r E x c e e d e d )  to tell 

the code that  the event  has occurred.  This  flag might  be processed by a separate  

piece of  code that notifies the ope ra to r  of  an e r ro r  or  even shuts down the system. 

Preventing Out-of-Bounds Average Output 
In some cases, the m a x i m u m  allowable control  value is not  a specific value, but  an 

accumulat ion of value over time. For example ,  a hea ter  may not  b u r n  out  if too 

much  cu r ren t  is appl ied for a few sampl ing intervals, but  it might  b u r n  out  if a 

total power  rat ing is exceeded  for more  than a second. T h e  following code adds 

an array,  AvgPwrArray,  which contains 10 elements.  Each e l emen t  in the array is 

the o u t p u t  value for one sample interval; added  toge ther  and  divided by 10, they 

r ep resen t  the average power  over  the last 10 samples. 

R e a d  i n p u t  f r o m  s e n s o r ,  s a v e  a s  C u r r e n t V a l u e .  

E r r o r  = T a r g e t V a l u e  - C u r r e n t V a l u e  

D e r i v a t i v e  = e r r o r  - P r e v i o u s E r r o r V a l u e  

I n t e g r a l  = I n t e g r a l  + E r r o r  
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C o n t r o l V a l u e  = K l * I n t e g r a l  + K 2 * D e r i v a t i v e + K 3 * E r r o r  

A v e r a g e P o w e r  = s u m  of v a l u e s  in  A v g P w r A r r a y  [0] t h r o u g h  

A v g P w e r A r r a y  [9] 

If  A v e r a g e P o w e r  > M a x i x n u m & l l o w a b l e P o w e r  ~ 10, 

Se t  M a x i m u m P o w e r E x c e e d e d  f lag.  

C o n t r o l V a l u e  = 
M a x i m u m / k l l o w a b l e P o w e r  - A v e r a g e P o w e r  + A v g P w r A r r a y  [0] 

If C o n t r o l V a l u e  < 0, C o n t r o l V a l u e  = 0 

(The  f o l l o w i n g  d i s c a r d s  t h e  o l d e s t  v a l u e  in  A v g P w r A r r a y [ 0 ]  a n d  

m a k e s  r o o m  f o r  t h e  n e w e s t )  
F o r  A v g P w r A r r a y [ 0  t h r o u g h  8], A v g P w r A r r a y  [n] = 

A v g P w r A r r a y  In + 1 ] 

A v g P w r A r r a y  [9] = C o n t r o l V a l u e  

P r e v i o u s E r r o r V a l u e  = E r r o r  
O u t p u t  C o n t r o l V a l u e  to  c o n t r o l  h a r d w a r e  

The  line 

C o n t r o l V a l u e  = 
M a x i m u m  A l l o w a b l e P o w e r  - A v e r a g e P o w e r  + A v g P w r A r r a y [ 0 ]  

calculates ControlValue as the m a x i m u m  value that will br ing the average below 

the m a x i m u m  value after the next  sample interval. The  reason AvgPwrArray[0] is 
used is that it is the oldest sample and will be replaced in the array by the new 

ControlValue.  If  the result is negative, then ControlValue is set to zero. Note that, 

in your  system, the value that produces  zero ou tpu t  may not actually be zero. 

This pseudocode f ragment  moves all the array values a round  to make room 
for a new value; a faster method  (but not as easily unders tood)  is to use a pointer  

that wraps from the end to the beginning of the array and allows the new value to 

overwrite the oldest value. 

Implementing These Examples 
Each of these examples has illustrated one basic principle. You can, of course, 

combine these methods  as needed.  Initialization is not shown in these exam- 
ples. You will typically need to initialize the variables when the p rogram starts 

or any time events cause the cur ren t  values to be invalid. These  examples are 
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based on the assumption that the sensor input  and control output  are upda ted  
on a periodic, regular  basis. You will typically implement  this with an interrupt.  

Implemen t ing  these examples in a microcontrol ler  is often more  difficult than 
on a larger microprocessor.  Microcontrollers,  especially 8-bit microcontrollers,  
often do not have good mechanisms to handle  negative values, multiplication, or  
division. You can sometimes get a round  these problems by using binary values. 
For example,  when averaging values to filter out  noise, always filter 2, 4, 8, or 
some other  binary n u m b e r  of samples. This allows the division to be simple shift 
operations.  If  you are using a microcontrol ler  that does not handle  2's comple- 
ment  subtraction very well, you can make each variable a 2-byte (or 2-word) 
value. The  first value is the unsigned value of the variable. The  second variable 
is a flag to indicate whether  the variable is positive or negative. T h e  software looks 
at the flag before using the variable, and ei ther  adds or subtracts the variable 
based on the flag value. 

Things to Remember M Control Design 

�9 T h e  accuracy of the system is only as good as the ability of the m e a s u r e m e n t  
sensor to measure  the actual output .  A thermis tor  that measures  the tempera-  
ture  of the heater  will not provide as precise control as one that measures  the 
actual t empera tu re  of the heated object. This is especially t rue of a PID con- 
troller, which bases all the control parameters  on the sensor input.  If  you are 
measur ing  the wrong thing, a higher-precision sensor will just  give you wrong 
answers with more  decimal places. 

�9 T ime  delays can be in t roduced not only by the object you are controlling, but  by 
the measu remen t  sensor. A slowly respond ing  thermis tor  can introduce as 
much  delay as the rest of the system. 

�9 Size the processor to the application. It is easy to design a mathematical  model  
of a control system and simulate it with a 2 GHz, 64-bit desktop computer .  
Implemen t ing  the model,  in real time, on an 8-bit processor with only a few 
kilobytes of code space can be much more  difficult. For example,  if your  
algori thm requires  complex math,  be sure the target  CPU can per form it. If  it 
can't, you may have to resort  to lookup tables. 

�9 If  you do have to resort  to lookup tables or something  similar in a real applica- 
tion, be sure there is sufficient memory  for it. It doesn ' t  take very many 256- 
byte tables to fill the memory  of most small microcontrollers.  

�9 Have some plan for analyzing and debugging  the finished design, and include 
whatever  hardware  and software are necessary. 
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Solenoids, Relays, and Other 
Analog Outputs 6 

Solenoids 

A solenoid is an electromagnet  that activates a mechanical function, such as a 
plunger.  Solenoids are used to latch safety covers closed so they can't  be opened  
while a machine is in operation,  or to unlock the doors in your  car when you push 
the keyless entry button on the remote.  Solenoids can open and close valves in 
industrial processes or push the record head against the tape in a tape player. 

Solenoids come in many shapes and sizes, and are capable of exert ing a force 
from less than an ounce to several pounds.  The re  are two basic varieties: contin- 

uous duty and pulse duty. Cont inuous-duty  solenoids are designed to be ener- 
gized all the time. An application such as holding a safety cover closed would use a 
cont inuous-duty solenoid. A pulse-duty solenoid might be used for the doors  in 
your  car. Pulse-duty solenoids will overheat  if left energized all the t imemthey  are 

designed for intermittent operation.  A pulse-duty solenoid allows a high-force 
solenoid to be smaller and cheaper  because continuous operat ion is not a concern. 

Relays 

A relay is a solenoid that operates electrical contacts. When the relay is energized, 
the contacts are shorted or opened,  just  like a mechanical switch. 

Interfacing to Solenoids and Relays 

For the sake of simplicity, this section will address relays, but the same considerations 
apply to solenoids. Figure 6.1A shows a relay as it might be connected to a micro- 

processor. A single bit is used to turn the relay on and off. The figure shows an NPN 
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Relay control and clamping. 

transistor connected to a port bit on the processor; you could also use a MOSFET. 
Some microprocessors have outputs that are capable of sinking sufficient current to 
activate a relay, as long as the relay is operating from the same voltage as the processor. 

Because the relay or solenoid is activated by a coil, there is a flyback voltage 
that occurs when the drive transistor is turned off and the magnetic field collapses 
in the coil. This voltage can reach high enough levels to damage the drive 
transistor. Figure 6.1B shows how a diode can be used to clamp the voltage across 
the coil to safe levels. When the transistor turns on, activating the relay, the diode 
is reverse biased. When the transistor turns off, the top end of  the coil is tied to 
the drive voltage, so a voltage spike appears at the lower end (transistor collector). 
As soon as this voltage reaches the supply voltage plus one diode drop (about 
0.6 V for a silicon diode), the diode conducts. 

There are two considerations when using a diode clamp on a relay. The first is 
that the energy in the coil doesn't just disappear. It has to go somewhere, and it 
gets dumped into the positive supply through the diode. This results in a current 
surge into the supply. For this reason, the supply needs to be well bypassed. If the 
relay is on a board that is some distance from the power supply, there may be a 
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noise spike on the ground as well. The second problem with this technique is that 
it slows the release time down. 

Figure 6.2 shows a method that can be used to speed up the relay release by 
using a zener diode. When the transistor is turned on and the relay pulls in, the 
normal diode keeps current from flowing through the zener. When the transistor 
turns  o f f  a n d  the  flyback p u l s e  occurs ,  the  n o r m a l  d i o d e  is f orward  b iased  a n d  the  

zener is reverse biased. The result is that the transistor collector voltage is 
clamped at the zener voltage plus one diode drop above the positive supply. Of 
course, the resulting voltage has to be lower than the transistor breakdown 
voltage or damage will result. Typical numbers for a generic 6 V relay with no 
clamp, a diode clamp, and two zener clamps are as follows: 

Clamp Open time 
n o n e  1 ms 
12 V zener 1.5 ms 
6 V zener 2.2 ms 
d iode  5.5 ms 

These numbers were obtained by switching off the relay coil and measuring 
the time until the contacts open. You can see that the higher the flyback voltage is 
allowed to rise, the faster the field dissipates and the faster the contacts open. 

Tranzorbs can also be used to clamp a relay or solenoid. A Tranzorb is a zener- 
like device that is used for clamping high-energy transients. A Tranzorb clamps at 
the same voltage in both directions, so no blocking diode is needed. 

Pick/Hold 

The DC current drawn by a relay has to be high enough to pull the relay contact 
from one end of its travel to the other. However, the current needed to hold that 
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position is much lower--typically 50% of the pull-in (or pick) voltage. In many 
cases, a smaller power supply can be used if the current is reduced once the relay 
contacts are pulled in, especially if several relays are to be activated at once. In 
addition, using a lower hold current decreases the release time, because there is 
less energy stored in the coil when the relay is turned off. 

Figure 6.3A shows a simple method for reducing the hold current once a relay 
is picked. An electrolytic capacitor in parallel with a resistor is in series with the 
collector of the drive transistor. When the transistor turns on, the capacitor looks 
like a low impedance and the full current is drawn through the relay coil. As the 
capacitor charges up, the current through the coil is reduced until eventually the 
current through the coil is limited by the resistor. 

The drawbacks to this circuit are two. First, the capacitor tends to be large 
because it has to supply current to the coil until the contacts pull in. Second, the 
resistor dissipates power and, depending on the size of the relay, may have to be a 
large power resistor. It may get hot in operation. 

Figure 6.3B shows an alternative means of implementing a pick/hold circuit. 
This circuit requires two outputs from the controlling microprocessor. Input  2 is 
driven high to pick the relay. After a short delay (implemented in software), Input 
1 is driven high and Input 2 is driven low. This holds the relay closed. This circuit 
eliminates the capacitor, but still requires a resistor and takes two outputs from 
the microprocessor, as well as some additional software. 

Figure 6.3C shows how the relay can be controlled by chopping the current with 
PWMmturning it on and off. The ON input goes high to pull the relay in. After a 
delay (again, implemented in software), the HOLD input goes high. The relay 
current is now the time-average of the chopping waveform; if the waveform is 50% 
high and 50% low, the average current through the coil will be half the pick current. 

An alternative version of this method can be implemented if you are using a 
microcontroller with PWM outputs (Figure 6.3D). You drive the relay with a 
single transistor from the PWM output. To pull the relay in, you program the 
output to be 90% or 100% on. After the relay pulls in, you switch to 50% or some 
other PWM ratio to reduce the current. 

Figure 6.3E shows how two PNP transistors can be used to implement pick~old 
if two power supply voltages are available. To pull the relay in, Input 1 is driven 
high and transistor Q2 turns on, applying voltage v2 to the coil. After the relay pulls 
in, Input 2 is driven high and Input 1 is driven low. V2 is higher than V 1. V2 might 
be 12 V (for a 12 V relay) and V1 might be 8 V or 6 V. Note that the transistors in 
this circuit must be driven from a source that can withstand the supply voltages. 

Finally, you can avoid timing the pick/hold function if there is an extra set of 
contacts on the relay. You can use one set of contacts for whatever you are 
controlling, and the second set of contacts to switch between pick and hold. This 
has the advantage of always having the correct timing, because the circuit doesn't 
change from pick to hold until the contacts have actually pulled in. 
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Heaters 

A heater  is driven much the same as a solenoid, usually using a transistor. Most 

heaters have negligible inductance, so the clamping diodes are not necessary. In 
most cases, heaters are controlled by a feedback loop, with a t empera ture  sensor 
mounted  somewhere  to measure the tempera ture .  Figure 6.4 shows a typical 
t empera ture  control loop using a microprocessor.  The  heater  is moun ted  on 
whatever is to be heated, along with some kind of t empera ture  sensor. The  
microprocessor turns the heater  on and off to control the temperature .  

Open Heater 

What happens  if the heater  opens up? You get no heat. How do you detect it? 
Figure 6.5 shows a means to detect an open heater  condition. A resistor (R1) is 
connected across the control MOSFET to ground.  R1 is much larger than the 
heater resistance--at  least ten times larger. When the heater  is off, the junct ion  of 

the heater,  MOSFET, and R1 will go almost to +V because the resistance of the 
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heater  is much less than the R1 divider. The  output  of the compara to r  is low. 
However,  if the heater  is open,  there is no resistance to +V, so R1 pulls the 
noninver t ing compara tor  input  to g round  and the output  of the compara tor  is 

high. 
I f  the compara tor  used cannot  handle an input  that goes all the way to the 

supply rail, you can either run  the compara tor  from a higher  voltage than the 
heater,  or make R1 a voltage divider and moni tor  the voltage at the tap to 

reduce the voltage at the compara tor  input. If  you use the voltage divider, the 
reference voltage has to be proport ional ly  lower as well. Of  course, you can 
only check for an open heater  when the heater  is tu rned  off, so the software 
has to synchronize the test with heater  operation.  In addition, if the heater  is 
ever 100% on, the microprocessor must  occasionally turn it off to check for 

heater  failure. 

Open Sensor 
What happens  if the t empera ture  sensor in a heater  system opens up? For 
most sensors (NTC thermistor,  solid-state sensor, thermocouple)  this condition 
looks like a very cold temperature .  This can be a disaster because the micro- 

processor will leave the heater  on 100%, at tempting to reach the target tem- 
perature .  There  are several ways to handle  this condition. In software, you can 
moni tor  the amount  of time the heater  is on and declare an e r ror  if it stays on 
for an unreasonable  amount  of  time. This only works if your  system can ensure 
that no damage will result before the e r ror  is detected. If the normal  operat ing 
t empera tu re  range is limited, you can detect an out-of-bounds cold condition 

as an open. 
Figure 6.6 shows a circuit that I used in a design. This is the scaling circuit that 

we looked at in an earlier chapter,  to amplify and scale an NTC thermistor  to the 
0-5 V range needed by an ADC. In this case, the operat ing range was between 
about  30~ and 50~ I couldn ' t  just  d, eclare a low tempera tu re  as an error ,  

because room tempera ture  (about 25 ~ is outside the measuremen t  range, but it 
is a valid tempera ture  until the system heats up. 

What  I did was add a second opamp,  wired as a buffer (no gain, no scaling) 
and connect the input to the thermistor.  The  output  went to a second ADC 

channel. If the thermistor  opens,  voltage V1 will go to the reference voltage, 
2.5 V. In this system, 2.5 V corresponds  to a t empera ture  below 0~ outside 
the allowable range of operat ion for the instrument.  So the microprocessor  
used the scaled/amplified signal to measure  temperature ,  and moni tored  the 
unscaled signal for a voltage greater  than about 2 V to detect an open ther- 

mistor. 
If  you don ' t  have a second ADC channel,  the same thing can be implemented  

with a comparator .  In this case, one side of the compara tor  would connect  to the 
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thermistor and the other side would connect to a 2 V reference. The  output  of the 
comparator  then goes to a digital input that can be monitored by the micropro- 
cessor. 

RTD Heater 

The  RTD heater is a special type of heater that is composed of an RTD material, 
usually iron-nickel. The  heater element  doubles as the thermistor. These heaters 
are often printed onto a high-temperature ,  flexible backing. Because a thermistor 
is not required, overall system cost can be lower. 

Figure 6.7A shows a method of driving an RTD heater. A MOSFET transistor 
controls the heater, and the transistor is driven by the microprocessor. The 
resistance of the heater element is related to its temperature.  When the heater 
is on, the current  through it is given by: 

V+ 

Rs + Rh 

where Rh is the heater resistance and Rs is the value of the sense resistor. By 
measuring the voltage across the sense resistor with a differential amplifier, the 
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value of the heater resistance can be determined.  The  catch is that the heater  has 
to be on for the tempera ture  to be measured.  

Figure 6.7B shows a means to use an RTD heater and measure tempera ture  
with the heater off. A P-channel MOSFET switches the high side of the heater 
to V+ to turn the heater on. When the heater is off, diode D 1 supplies a lower, 
well-regulated measurement  voltage to the heater. For a 24 V heater, a typical 
measurement  voltage might be 2.5 V. The  measurement  voltage must be small 
enough to prevent  any significant heating. 

An alternative to this approach is to eliminate the sense resistor, use the N- 
channel, low-side switching MOSFET, and use a large-value resistor in parallel 
with the MOSFET. The  voltage across this resistor is then measured to determine 
the heater  resistance. The  problem with this approach is that the measurement  
resistor must be significantly larger than the RTD resistance, so there is little 
change in voltage with temperature.  

Finally, some MOSFET transistors have a fourth lead that provides a fraction 
of the current  passed through the MOSFET itself. By connecting a resistor from 
this lead to ground,  a voltage is developed that is proportional to the current  in 
the device. This can be used to measure the heater resistance when the heater is 
on. International Rectifier makes a line of MOSFETS, called SENSEFETS, with 
this feature. 

RTD heaters have some drawbacks. The  first drawback is the tolerance of the 
heater element itself. Unlike RTD sensors, RTD heaters are usually sprayed or 
sputtered onto some kind of flexible substrate. Consequently, they have a typical 
tolerance of about 10%, although some vendors will allow you to specify 5% 
tolerance at additional cost. 

Another problem with RTD heaters is that the tempera ture  measurement  is 
dependen t  on the supply voltage. A 24 V supply with 5% tolerance results in a 5% 
variation in tempera ture  measurement  (compared to actual temperature) .  You 
can get a round this problem by using a separate ADC channel to measure the 
actual supply voltage and correct the RTD measurement  value. This typically 
means using a voltage divider to bring the heater supply voltage down to a range 
the ADC can handle. 

When using an RTD circuit, you can measure only when the heater is on or off 
(depending on which type of circuit you use), but not both. If using a measure- 
when-on circuit, you have to turn the heater on momentari ly to get a measure- 
ment, so you can't get a 0% duty cycle. If you are using the measure-when-off 
circuit, you have to turn it off occasionally, so you can't get a 100% duty cycle. In 
either case, the software has to synchronize temperature  measuremeht  with the 
correct heater state (ON or OFF). 

Finally, when you use an RTD heater, you are measuring the tempera ture  of 
the heating element, not the object you are trying to heat. If you have good 
thermal contact between the two, this may not be an issue. However, if the 
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thermal contact is poor  or, worse, varies dur ing  operation,  the results you get 
may be a poor  representat ion of the actual conditions. 

Coolers 

A solid-state (Peltier) cooler consists of  a series of PN junctions,  usually fabricated 
from bismuth telluride, that can draw heat from one side and exhaust  heat on the 
other  side. A Peltier cooler can be controlled much like a heater, using a ther- 
mistor to measure the temperature .  PWM can be used, a l though to avoid thermal  
stress on the semiconductor  elements, a min imum PWM frequency is usually 
recommended .  The  min imum is typically a round  2 kHz. 

One concern with a Peltier cooler is, what happens  if the thermistor  opens? 
Unlike with a heater, you won't  overcool anything, but the cooler will never turn 

on. If you are trying to keep medical samples cold, this can ruin them. If your  
application calls for a cooling t empera tu re  above the lower limit of the thermistor,  
you can use the same technique as for a heater  the rmis to rwlooking  for an out-of- 
bounds  condition on the temperature .  If  you will be operat ing the cooler near  the 
ends of the thermistor  range, you may need a second thermistor  in the system so 
you can verify that everything is working. In some cases, you might be able to use 
a PTC thermistor,  which has a positive temperature/resis tance curve. 

Fans 

Cooling fans may seem like m u n d a n e  things. You turn them on and off when the 
power goes on and off, right? Actually, you do occasionally find a need to control 
or moni tor  fan operation. For instance, you might want to control fan speed to 
limit noise in a system. 

If your  system has multiple cooling fans, you might  not need all the fans all the 

time, so you can make the system quieter  by turning off the ones that aren ' t  
needed.  As the tempera ture  goes up, you can turn fans on, increasing the cooling 
(and the noise level). DC fans can be controlled by a MOSFET transistor. Some 
fans can be speed modulated by using PWM techniques, but be sure your  fan will 
operate  this way. Some fans use electronic controllers that don ' t  like PWM inputs. 

In many systems you need to moni tor  the fan to be sure it is operat ing because 
fans tend to have a high failure rate relative to other  parts of the electronics. In 
fact, you can make a case for the concept that if you don ' t  need to moni tor  the fan, 
then you don ' t  need a fan. Or, the corollary is that if you need a fan to keep things 

from overheating,  then you must moni tor  it to be sure it is working. 
The re  are several ways to moni tor  fan operation. One is simply to put  a 

semiconductor  tempera ture  sensor somewhere  in the electronics and see if things 
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overheat.  Another  way is to use an airflow sensor near the fan to sense if air is 
really moving. Some fans include an internal sensor that generates a pulse at least 
once per revolution. 

Figure 6.8 shows a typical circuit for a fan with an internal sensor. An optical (or 
Hall effect) sensor output  is pulled up to the fan's supply voltage with a resistor. 
The  voltage out is limited with a zener diode to 4.7 V. The  intent is that this will 
connect  to the timer input  of a microprocessor so that the speed can be measured.  

Another  way to use this is to connect it to one side of a set/reset flip-flop. The  
other  input  to the flip-flop is connected to a port  bit or decoded address strobe so 
the microprocessor can reset it. Finally, the output  of the flip-flop is connected to 
a digital input  on the processor. 

In operation, the microprocessor  will periodically check the input  and clear the 

output .  If the fan is running,  it will eventually (in a few milliseconds) set the flip- 
flop again. This does not measure  fan speed, but  it does give an indication that 
the fan is running.  
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One problem with built-in fan tachs is that they have to run from the fan 
supply voltage (+V in Figure 6.8). The output  is clamped with a zener. But what 
happens if the fan is plugged in while power is on and the +V and output  
connections are made before the ground connection is made (Figure 6.9)? 
Because the zener ground is floating, you instantly get the fan power supply 
(typically 24 V) applied to the digital input that is monitoring the fan tach. This 
can damage the device. (I've seen it happen.) 

If you use a fan with this type of tach, it is a good idea to add a zener on the 
board where the fan plugs in to prevent such damage. The added zener will be in 
parallel with the zener in the fan circuit, so it will not affect normal operation, but it 
will prevent overvoltage if the fan is connected or disconnected with the power on. 

LEDs 

LEDs are simple, right? You put  a current-limiting resistor in series with the LED 
and connect it between the positive supply and ground.  In many cases, that is 
adequate. But this can cause problems in other situations. Figure 6.10 illustrates 
such a case. Here, the LED operates from an unregulated supply. You might do 
this in a battery-operated system in which you want the LEDs to remain off so 
they don' t  drain the battery when the AC power is removed. In this example, the 
DC supply has AC ripple from the full-wave rectifier in the supply. The LED 
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current  will follow this ripple, and the result will show up on the phototransistor 
output  and in the ADC results. 

One way to prevent this problem is to drive the LED with a constant current. 
Figure 6.11 shows a simple circuit that will provide a constant current  to the LED. 
The opamp will keep the voltage a~zross the sense resistor equal to the input 
voltage. The current  through the LED is given by: 

INPUT VOLTAGE 
ILED -- SENSE RESISTOR 

So if the input voltage is 2.5 V and the sense resistor is 250 ohms, then the LED 
current  will be 10 ma. The precision of this current  control is dependent  on the 
transistor gain, the input voltage tolerance, and the tolerance of the sense resistor. 
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�9 Q1 ~ NPN 

TO MICROPROCESSOR ADC 

Figure 6.11 
LED constant-current drive. 

This circuit requires that the opamp operate from positive and negative supplies, 
or from a single-supply opamp that can drive its output  to within 0.6 V of  ground.  

The  input voltage that sets the LED current can be connected to a fixed 
voltage, such as a reference diode. Figure 6.12 shows how a microprocessor can 
turn the LED on and off. When ON, the LED operates at a constant current, 
determined by the diode voltage. The  microprocessor port output must be able to 
source current to the reference diode, so a low-current reference should be used 
here. The  reference diode voltage must be less than the voltage on the micro- 
processor port bit when in the high state. 

RESISTOR i D2 

REFERENCE DIODE 

+gV +SV 

RI RESISTOR ESISTOR 

LED 0 TRANSISTOR 

RESISTOR 

~NSE RESISTOR 

Figure 6.12 
LED constant-current drive with microprocessor control. 
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Optoisolator Outputs 
Optoisolators were shown in Chapter  3. Optoisolators can be used to isolate an 
external input from your microprocessor circuit. They can also be used to gen- 
erate an output  that is isolated from an external circuit. The LED of an optoiso- 
lator is driven the same way as any other LED. You need to ensure that there is 
sufficient current  through the LED to turn on the output  transistor. The output  
current  is determined by multiplying the LED current  by the CTR of the opto- 
isolator. To ensure that the circuit will always work, use the minimum CTR 
specified by the manufacturer.  

In cases where the output  is driving another  logic input, you typically do not 
need a small-value pull-up resistor on the output  transistor, so you can select 
something reasonable (4.7 K or 1 K) and provide enough LED current  to ensure 
that the output  transistor saturates. Or, use an optoisolator with a logic-level 
output  and ensure that sufficient LED current  is provided to switch the output. 

In addition to transistor and logic outputs, optoisolators are also available with 
triac outputs. These are typically used to turn on large power triacs or SCRs for 
switching AC power. They provide a simple means to turn on an AC semicon- 
ductor while isolating the microprocessor from the AC voltage. 

Driving Multiple LEDs 
Sometimes you need to drive multiple LEDs from a single input; for example, 
you may need to turn on multiple optocouplers or optical switches at the same 
time. Figure 6.13 shows a method that is sometimes tried: hooking the LEDs in 
parallel with a single limiting resistor. This doesn't work reliably. The LEDs have a 
forward voltage drop, usually 1-2 V. However, this is dependent  on temperature 

Figure 6.13 
Multiple LEDs in parallel. 
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and the specific LED, so one LED tends to hog most of the current. The circuit in 
Figure 6.14, with one limiting resistor per LED, is more reliable. Mso shown is a 
constant current driver for multiple LEDs, with the LEDs wired in series. The 
supply voltage for the series connection has to be higher than the forward drop of 
all the LEDs plus the sense resistor voltage. Of co'urse, with this arrangement, if 
one LED opens, they all quit working. However, using a series connection and 

+V 
ZX 

RESISTOR 

___Zx~ D1 
LED 

+V 

R2 
RESISTOR 

LED 

MULTIPLE 
INDEPENDENT 
LEDS 

INPUT VOLTAGE 

MULTIPLE 
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+V 

S 

RI 
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Z ~  D3 
LED 

Z ~  D2 
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Z ~  DI 
LED 

I 
SENSE RESISTOR 

Figure 6.14 
Multiple series LEDs. 
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driving with a constant current provides more uniform illumination in cases 
where that is important. 

Figure 6.15 illustrates a method that can be used to drive multiple LEDs with a 
single pull-up resistor. In t.his circuit, each LED is turned on one at a time (by 
driving the corresponding port bit low), so the differing forward drops do not 
cause a problem. 

DACs 

As discussed in Chapter 2, DACs convert a digital word to a corresponding analog 
voltage (or current). A DAC is at the heart of most ADCs. Other applications for a 
DAC range from controlling the reference to a voltage comparator to simulating a 
sine wave. I used a DAC in an unusual application years ago in a piece of military 
gear that was replacing older equipment. The original equipment had an analog 
signal that controlled a horizontal situation indicator (a meter) in an aircraft. We 
were performing these functions in software, so the DAC, under software control, 
generated the voltage to drive the analog meter. 

The Analog Devices AD7801 is a typical 8-bit, voltage-output DAC. The micro- 
processor interface consists of 8 data bits, a - W R  signal and a -CS signal. Data is 
written to the device by toggl ing-WR while --CS is low. The AD7801 can operate 
at voltages from 2.7 to 5.5 volts. The part also has a - C L R  pin that, when low, 
loads the DAC with all 0s. 

MICROPROCESSOR ,~ 
PORT BITS (3). 
ONE PER LED. 
ONLY ONE PORT 
BIT LOW AT A 
TIME. 

+V 

R1 
RESISTOR 

, , ~  D1 D2 D3 
LED LED LED 

Figure 6.15 
Multiple multiplexed LEDs. 
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T h e  output  of the AD7801 can swing from g round  to the positive rail. The  
reference for the device can be either the positive supply or an external  reference 
voltage. The  ou tput  can source or sink several milliamps. 

Like ADCs, DACs are available with both parallel and serial interfaces. The  
Analog Devices AD5300 is an 8-bit DAC with a rail-to-rail ou tput  and an SPI- 
compatible interface. Like the AD7801, the AD5300 can operate  with supply 
voltages from 2.7 to 5.5 volts. 

Specialized DACs 
DACs designed for special applications are also available. The  Analog Devices 
ADV7120 is a triple 8-bit video DAC designed for video use. The  part  contains 
three DACs for the RGB (red green blue) video signals. The  ADV7120 also has 
SYNC and BLANK inputs that force all three outputs  to the sync and blanking 
levels, respectively (Figure 6.16). Other  specialized DACs include audio parts with 
built-in volume control and mute  functions, and DACs that are optimized for use 
in voice transmission systems such as telephones.  

Digital Potentiometers 

Although a DAC can provide a voltage or cur ren t  ou tpu t  for control, sometimes a 
design calls for a variable resistance. Typical examples  would be a volume or tone 
control in a stereo or gain control in an opamp circuit. In these cases, a digital 
potent iometer  is often the ideal solution. Like a DAC, a digital potent iometer  
takes a digital word from a microprocessor,  but  it converts the word to a resist- 
ance instead of to a voltage. 

T h e  Analog Devices AD5220 is a typical digital po ten t iometer  (Figure 6.17). It 
comes in an 8-pin package, ei ther DIP or surface mount ,  and in resistance ranges 

/ 

VEL 
BLANKING LEVEL 

I . . . .  SYNC LEVEL 

Figure 6.16 
Video levels. 
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F i g u r e  6 .17  
Analog Devices AD5220.  

of 10K, 50K, and 100K. It can operate at voltages from 3.3V to 5V. The 
AD5220 simulates a three-terminal potentiometer  with two terminals (A and B) 
and a wiper (W). An internal 7-bit counter is decoded to determine one of 128 
positions for the wiper. 

The AD5220 inputs consist of a clock (CLK), a chip select signal (-CS), and an 
up/down control pin (U/D). W h e n - C S  is low, the device is selected, and falling 
edges on the CLK signal will move the wiper. Clocking with the U/D pin high 
moves the wiper toward terminal A (away from terminal B), and clocking with the 
U/D pin low moves the wiper toward terminal B (away from A). To use the 
AD5220 with a microprocessor, the clock input could be connected to a decoded 
write strobe and the U/D connected to a microprocessor data line. Assuming data 
line DO is used, to move the wiper toward terminal A, the processor would write 
to the AD5220 address with a "1," and to move the wiper the other way the 
processor would write a "0." 

A mechanical potentiometer  can be connected without concern about the 
absolute voltages on the pins, as long as the dissipation of the device is not 
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exceeded. A digital potentiometer has some limitations because it uses analog 
switches to connect to taps on a solid-state resistor. The AD5220 resistor terminals 
(A, B, and W) cannot be driven above the positive supply or below ground. The 
AD5220 would not work as a volume control in the circuit shown in Figure 6.18A 
because the coupling capacitor causes the A terminal to swing below ground. In 
Figure 6.18B, a resistor, the same value as the AD5220 resistance, biases the A 
terminal at 2.5 V, half the supply voltage. In this circuit, the AD5220 potentio- 
meter connections will remain within the 0-5 V operating range of the part, as 
long as the audio input signal amplitude doesn't exceed 5 V peak to peak (p-p). 

An alternative connection is also shown in Figure 6.18, with two biasing 
resistors at the B terminal of the AD5220. A bypass capacitor places the B 
terminal at AC ground without affecting the DC level. This configuration has 
the advantage that the biasing resistors don't  load the signal input, but the bypass 
capacitor must be large enough that it looks like a low impedance at all frequencies 
of interest. For audio applications, this typically means an electrolytic capacitor. 

If the amplifier were a single-supply opamp, the AD5220 could be placed in 
the feedback network to control the gain. Because an opamp will not drive the 
resistor terminals beyond the supply rails, no biasing resistors are needed. Of 
course, biasing resistors may still be needed to keep the opamp inputs between 
the rails. 

A 

FROM MICROPROCESSOR { [ ~  

AMPLIFIER 

_I_ - 

AUDIO INPUT ~1 +I V RESISTANCE EQUALS 
ADS220 RESISTANCE 

§ ADS22O B 

C O N T R O L  

FROM MICROPROCESSOR CLK LOGIC " - - 
i 

AMPUFIER 

_1_ _-5 
. 

-1 
T m 

Figure 6.18 
Digital potentiometer biasing to keep inputs between the supply rails. 
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The Analog Devices AD5203 is a quad digital potentiometer with an SPI-like 
serial interface. The AD5203 potentiometers each have 64 positions and have the 
same voltage range limitations as the AD5220 (0 V to the positive supply). The 
AD5203 comes in 24-pin DIP and surface-mount packages. The AD5203 has a 
shutdown feature; by bringing the SHDN pin low, all four potentiometer wipers 
are taken to the B terminal. When SHDN goes high again, the wipers resume 
their previous position. A typical application for this would be a mute function in 
a stereo. 

One issue with digital potentiometers that does not occur with mechanical 
potentiometers is power-up operation. A mechanical potentiometer will stay in 
its last position when power is turned off, unless someone changes it. On power- 
up, the AD5203 wipers go to their center position. This may not be the position 
you want, and it probably isn't the position it was last in. The only way to ensure 
that the digital pot remembers its position is to use nonvolatile storage. On 
power-up, the software looks up the last position of each pot and sets the pot 
accordingly. The software also needs to ensure that the power-up state of the 
potentiometer doesn't damage whatever it is controlling. 

Potentiometers that retain their setting when power is turned off are available. 
Xicor makes a series of EEPOT devices with SPI, I2C, and increment/decrement 
interfaces. The EEPOT series of parts contain an EEPROM and remember  their 
settings when power is removed. 

Analog Switches 

An analog switch can be thought of as a solid-state relay allowing a microproces- 
sor to open or close a switch between two points. An analog switch is faster and 
smaller than a relay, does not have contact bounce, and consumes considerably 
less current. 

Figure 6.19A shows the symbol for an analog switch and the internal construc- 
tion. Inside the switch, an N-channel MOSFET is connected in parallel with a P- 
channel MOSFET. Control circuitry turns both MOSFETs on or turns both of 
them off. When both MOSFETs are on, current can flow in either direction, from 
IN to OUT or from OUT to IN. The OUT and IN pin labeling is arbitrary; the 
analog switch will work the same if the two pins are swapped. 

Figure 6.19 shows the analog switch as having V+ and V- inputs; in practice, 
some switches can operate from a single positive supply voltage and ground (V- 
connected to ground, in other words). Some switches require a third voltage 
input equal to the logic supply voltage. 
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Practical Parts 

Although an analog switch can be thought  of as a solid-state relay, there are some 
differences. For instance, the contacts of a relay are completely isolated from the 

coil. You can switch hundreds  of volts with no danger  of the voltage reaching the 
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microprocessor circuits. An analog switch requires power supplies for the switch- 
ing transistors, so the voltage on the input and output pins cannot exceed the V+ 
and V -  voltages. If the input or output pin is connected to a voltage outside this 
range, the switch can be destroyed due to excessive current flow between the out- 
of-range voltage and one of the supply voltages. 

Some analog switches are fault protected, permitting the input and output pins 
to exceed the supply voltage. Note that they won't switch voltages outside the 
supply range, but they won't be damaged if that condition occurs. This feature is 
intended for applications in which the supply voltage may be turned off while the 
signals that the switch is controlling (such as audio signals from external equip- 
ment) are still present. Typical parts include the Maxim MAX4511 and 
MAX4512. 

Because the analog switch is constructed using MOSFETs, there is some finite 
ON resistance for the switch, equal to the drain-to-source resistance of the 
transistors. Early analog switches had ON resistance values of a few hundred 
ohms; modern parts can be less than an ohm. 

The turn-on and turn-off time of an analog switch is specified as Ton and Toff 
and usually ranges from a few tens of nanoseconds to a few microseconds. 

Applications 
Analog switches can be used to control the gain of an opamp circuit, as shown in 
Figure 6.19C. In Figure 6.19C two feedback resistors (R1 and R2) are selected by 
an external microcontroller to adjust the gain. Three gain values can be selected: 
R1, R2, and R1 in parallel with R2. Note that the analog switches must be 
supplied from a voltage that exceeds the maximum input and output voltages 
that will be applied to them. This typically means the supply voltages of the 
opamp, because the opamp output can go to the supply rails on power-up or if 
both switches are open. In actual operation, once power has been applied and the 
circuit is stable, the switch supply voltages would only need to be a little bit more 
than the maximum input signal voltage on the noninverting opamp input. 

Multiplexers 
Figure 6.20 shows a 4:1 analog multiplexer. An analog multiplexer consists of two 
or more analog switches with one common contact (labeled Y on the diagram). 
The control inputs select which switch is closed, and therefore which of the inputs 
(X1-X4) are connected to signal Y. 

Analog multiplexers have the same operating characteristics as analog switches 
with respect to input voltage range, ON resistance, and switching time. A typical 
application for an analog multiplexer would be to select the audio input source 
for a sound system. 
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Figure 6.20 
Analog multiplexer. 

T h e  Maxim MAX349 is a single 8-to-1 analog mult iplexer  with an SPI inter- 
face. T h e  MAX350 is a dual 4-to-1 analog mult iplexer ,  also with an SPI interface. 
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Motors 7 

Motors are key components  of many e m b e d d e d  systems because they provide a 
means to control the real world. Motors are used for everything from the vibrator 
in a vibrating pager  to moving the a rm of a large industrial robot. All motors  work 
on the same principles of e lectromagnet ism,  and all function by applying power 
to an e lec t romagnet  in some form or another .  We won't  spend our  time on 
magnetic theory here. Instead, we will look at the basic motor  types and their 
applications in e m b e d d e d  systems. 

Stepper Motors 

Stepper  motors come in three flavors: pe rmanen t -magne t ,  variable-reluctance, 
and hybrid.  Figure 7.1 shows a cross-sectional view of a variable-reluctance (VR) 
s tepper  motor.  The  VR stepper  has a soft iron rotor  with teeth and a wound  
stator. As cur ren t  is applied to two opposing stator coils (the two "B" coils in the 
figure), the rotor  is pulled into a l ignment  with these two coils. As the next  pair of 
coils is energized,  the rotor  advances to the next  position. 

The  p e r m a n e n t  magnet  (PM) s tepper  has a rotor  with al ternat ing nor th  and 
south poles (Figure 7.2). As the coils are energized,  the rotor  is pulled around.  
This figure shows a single coil to illustrate the concept,  but  a real s tepper  would 
have stator windings su r round ing  the rotor.  T h e  PM stepper  has more  torque 
than an equivalent VR stepper.  

The  hybrid s tepper  essentially adds teeth to a p e r m a n e n t  magne t  motor,  
resulting in better  coupling of the magnet ic  field into the rotor  and more  precise 
movement .  In a hybrid stepper,  the rotor  is split into two parts, an u p p e r  and 
lower (Figure 7.3). One half is the nor th  side of the magnet  and one is the south. 
The  teeth are offset so that when the teeth of one magne t  are lining up with the 
mating teeth on the stator, the teeth on the o ther  magne t  are lining up with the 
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Variable-reluctance stepper. 
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Figure 7.2 
Permanent magnet stepper. 
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Figure 7.3 
Hybrid stepper. 

grooves in the stator (in the side view in Figure 7.3, the tops of the teeth are 

crosshatched for clarity). Some hybrid steppers have more  than one stack of 
magnets  for more torque. 

Bipolar versus Unipolar 

All steppers work by creating a rotating magnetic field in the stator, to which the 
rotor  aligns itself. There  are two types of stator winding methods  for s tepper  
motors: bipolar and unipolar.  Bipolar windings use field coils with no common  
connections. The  coils must  be driven independent ly  to reverse the direction of 
motor  flow and rotate the motor.  Unipolar  motors use coils with centertaps. The  
centertap is usually connected to the positive supply, and the individual coils are 
g rounded  ( through transistors) to drive the motor.  Figure 7.4 shows the differ- 
ence between bipolar and unipolar  motors. Each time the field is changed in a 
bipolar motor  or a different coil is tu rned  on in a unipolar  motor ,  the motor  shaft 
steps to the next rotation position. Typical step sizes for a s tepper  are 7.5 ~ or 15 ~ 
A 7.5 ~ stepper will have 360/7.5 or 48 steps per  revolution. The  step size depends  
on the number  of rotor  and stator teeth. 

Resonance 

When a s tepper  motor  rotates, it aligns the rotor  with the magnetic field of the 
stator. In a real motor,  the rotor  has some inertia and is moving when it reaches 
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Figure 7.4 
Bipolar versus unipolar operation. 

the ideal alignment,  so it overshoots the final position. Because it is now out of 
al ignment with the magnetic field, it "bounces" back and overshoots in the other 
direction. This continues, with smaller oscillations, until the rotor finally stops. 
Figure 7.5 illustrates this. The  frequency at which the rotor oscillates depends  on 
the motor characteristics (rotor mass and construction, for instance) and the load. 
If the motor is connected to a load that looks like a flywheel (a mechanical shutter 
in an optical system, for example),  resonance may be more of  a problem than it is 
with an unloaded motor. A load with a lot of  friction, such as a belt-driven pulley, 
has a damping  effect that will reduce resonance (unless the belt is connected to a 
flywheel). 

Many stepper motors exhibit a sudden loss of  torque when operating at certain 
step rates. This occurs when the step rate coincides with the oscillation frequency 
of  the rotor. The torque can change enough to cause missed steps and loss of  
synchronization. There may be more than one band of  step rates that cause this 
effect (because the motor has more than one resonant frequency). In a design that 
uses only one step rate, these frequency bands (usually fairly narrow) can be 
avoided by simply picking a step rate that is not a problem. 
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Figure 7.5 
Step motor ringing. 

In a design in which the step rate has to vary, the system may need to be 
characterized to identify the problem frequencies. T h e  software may then need to 
avoid opera t ing  the motor  at these step rates. When  accelerating a s tepper  up to a 
particular speed, the software may have to accelerate rapidly th rough  these 
problem areas (Figure 7.6). This is particularly t rue if the acceleration r amp  is 
fairly slow, which would otherwise cause the step rate to spend some time in the 

resonance area. 

Half-Stepping 
As was already ment ioned,  the rotor  in a s tepper  motor  aligns itself to the 
magnetic field genera ted  by applying voltage to the stator coils. Figure 7.7 shows 
a simple s tepper  with a single pair of ro tor  poles and two stator coils. Say that  coil 
A is energized,  and the rotor  aligns itself to magnet  A with the nor th  pole up 
(position 1), as shown in the figure. If  coil A is tu rned  off and B is energized,  the 
rotor  will rotate until the nor th  pole is at position 3. Now if coil B is tu rned  off and 
coil A is energized but  in the reverse direction of what it was before, the ro tor  will 
go to position 5. Finally, if coil A is t u rned  off and coil B is energized with the 
reverse of its original polarity, the rotor  will move to position 7. This sequence is 

called one-phase-on drive. 
Say that instead of energizing one magne t  at a time, we energize coils A and B 

at the same time. T h e  rotor  will move to position 2, halfway between magnets  A 
and B. If  we then reverse the cur ren t  t h rough  coil A, the rotor  will move to 
position 4. If  we reverse B, the rotor  moves to position 6, and, finally, if we 
reverse A again the rotor  moves to position 8. Each of these methods  generates  a 
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Figure 7.6 
Step motor resonance. 

full step of the rotor (in this case, 45 ~ per  step), but  the actual position is different 
for the two drive methods.  If we combine the two, we can half-step the rotor: 

A+, B off: position 1 

A+, B+: position 2 

A off, B+: position 3 

A - ,  B+: position 4 

In this simple example,  half-stepping permits a step angle of 22.5 ~ as opposed 
to 45 ~ for a full step. The same principle applies to a real motor  with several rotor 
teeth. A motor  with a 15 ~ full step can be half-stepped in 7.5 ~ increments.  

Figure 7.8 shows all three drive methods.  Half-stepping provides smoother  
rotation and more precise control. It is impor tant  to note, though,  that for the 
positions where only one phase is energized (positions 1, 3, 5, 7), the coils need 
more current  to get the same torque. This is because there is only one coil 
(electromagnet) pulling the rotor. Switching from two coils to one coil reduces 
the torque by approximately 30%, so two coils have about 140% of the torque of a 
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Figure 7.7 
Half-stepping. 

single coil. You can compensate  for this loss of torque by increasing the coil 
current  by 140% when driving a single coil. 

Microstepping 
If you examine the drive waveform for half-stepping a motor ,  you can see that it 
looks like a pair of digitized sine signals, offset by 90 ~ When  the rotor  is at 
position 1, coil A is at the m a x i m u m  voltage and coil B is at m i n i m u m  voltage. 
At position 3, coil A is off and coil B is at max im u m  voltage. For half-stepping, 
each coil has three possible drive values: positive drive, off, and negative drive. 

If  the rotor  is at position 1 and coil B is energized slightly, the rotor  will rotate 
toward position 3. If the current  th rough  coil A is gradually decreased as the 
current  th rough  coil B is increased, the rotor  will slowly move toward position 3, 
where it ends up when the current  in coil A is zero and the cur rent  in coil B is 
maximum.  If coil A and B are driven with sine signals that are offset by 90 ~ the 
motor  will rotate smoothly. Figure 7.9 shows the discrete drive waveform with the 
equivalent sine/cosine drive and the cor responding  rotor  positions. A s tepper  can 
actually be driven this way. 
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If the drive signals are generated from a DAC, the motor can be moved to 
discrete points between the normal step or half-step positions. This is called 
microstepping. It provides finer control of shaft position, but at the expense of 
more expensive analog drive circuitry. The actual resolution obtainable by micro- 
stepping depends on the resolution of the DAC, the torque of the motor, and the 
load. For instance, say the motor is very close to position 2 and you want to 
microstep it to position 2. If the load is too large, you may find that you have to 
apply more torque than you wanted to to move it, and then it may overshoot the 
position and stop in the wrong place. 
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Figure 7.9 
Microstepping. 

If you do need to perform small steps, you can use a bigger motor that can 
overcome the load. In some cases, this may be a lower-cost solution than other 
possibilities, such as a geared DC motor. Microstepping also reduces resonance 
problems because the motor  does not receive discrete steps, so the mechanical 
r inging is less likely to occur. In a real application, a high-precision DAC is not 
usually needed because the s tepper  will not respond  to very small changes in the 
drive waveform. Typical microstep increments  are 1/3 to 1/16 of a full step. In 
other  words, using a 10-bit DAC to microstep a s tepper  motor  will not provide 
any practical advantage over using an 8-bit DAC. 

Driving Steppers 
The coils of a bipolar stepper are typically driven with an H-bridge circuit. Figure 
7.10 shows a circuit that will drive both coils in a two-coil bipolar stepper. This 
circuit consists of a pair of N-channel MOSFETs and a pair of P-channel MOS- 
FETs for each coil. When input "A" is high, transistors Q1 and Q3 are turned on 
and current  flows from the positive supply, through Q1, through the motor 
winding, through Q3, and to ground.  When "A" is low and "B" is high, Q2 and 
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Figure 7.10 
H-bridge circuit. 

Q4 are on and current  through the motor winding is reversed. The circuit for the 
other coil works the same way. 

The diodes, D l-D8, protect the transistors against the coil flyback voltage when 
the transistors are turned off. The motor  shaft is rotated by applying drive voltage 
to each input in the proper  sequence. 

Cross-Conduction 

One common problem for designers who want to build their own H-bridge circuits 
from discrete transistors is cross-conduction, also known as shoot-through. This is 
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the condition that occurs when the upper and lower transistors on the same side of 
the coil turn on at the same time. In the example in the previous section, this would 
be transistors Q1 and Q2 or Q3 and Q4. If Q1 and Q2 turn on at the same time, 
there will be a very low impedance between the supply voltage and g r o u n d m  
effectively a short. This usually destroys one or both transistors. In a high-power 
circuit, the results can be quite dramatic, with blue sparks and pieces of transistor 
flying across the room. 

Shoot-through can be caused (again going back to the same example) by 
bringing inputs "A" and "B" high at the same time. As shown in Figure 7.1 1, it 
can also be caused by bringing one input high while simultaneously taking the 
other input low. If one of the transistors in the bridge turns off a little more slowly 
than the others turn on, the result will be momentary shoot-through. It may not 
be enough to destroy the part, but over time it can cause premature failure. Or, 
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worse, the problem may show up only at high or low temperatures,  making 
failures that only happen in the field. 

The usual method to avoid shoot-through is to introduce a short delay between 
turning off one side of the H-bridge and turning on the other. The delay must be 
long enough to allow both transistors to turn off before the other pair turns on. 

I saw a design once (Figure 7.12) that used optocouplers to provide isolation 
between the motor-control circuitry and the driving circuitry. The problem was 
that optocouplers have a wide variation in turn-on/turn-off  times. In production, 
the only way to make the circuit work reliably was to hand-select optocouplers 
that had similar characteristics. If the operating temperature  varies widely, it is 
possible that a circuit like this can fail in the field. 

If you drive an H-bridge directly from the port outputs of a microcontroller, 
be sure to take power-up conditions into account. Until they are initialized, the 
port bits of most microcontrollers are floating. Depending on whether the H- 
bridge logic sees this condition as logical "1" or "0," it can turn on both sides of the 
br idge and cause shoot-through. Be sure everything comes up in a safe condition 
and add pull-ups to the port pins if necessary. If the H-bridge drive inputs cannot 
be guaranteed during power-up, use a power supply for the stepper motor that 
has the ability to be disabled with a shutdown input. 

Keep the motor power off until everything on the control side is stable. It may 
be tempting to depend on the microprocessor getting out of reset and getting its 
port bits set to the right state before the motor power supply comes up to a high 
enough voltage to do any damage. This is a risky approach, as a faulty processor 
may never get the ports set up right. If you use an emulator for debugging, there 
may be a considerable delay between applying power and getting the ports set up 
correctly. And what happens if you turn the power on but you forget to plug the 
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Figure 7.12 
Shoot-through caused by optoisolator delay. 

182 Analog Interfacing to Embedded Microprocessor Systems 



emulator in? You could destroy the entire prototype setup. This can be a real 
problem if there is only one of them. The safest route is to ensure that the power- 
up state of the processor can't do any damage. 

Shoot-through can also be caused by the driver transistors themselves. Figure 
7.13 shows one half of an H-bridge driver constructed with MOSFET transistors. 
MOSFETs have a fairly high capacitance between the gate terminal and both of 
the other terminals (source and drain). In the figure, the capacitance is repre- 
sented by the capacitance C, between the gate and drain of Q2. This capacitance is 
usually on the order of a few tens of picofarads for a typical MOSFET used in a 
motor application. 

If transistor Q1 turns on to apply voltage to one side of the motor (the 
transistor opposite Q2, not shown, on the other side of the bridge would turn 
on as well), there will be a voltage spike at the junction of the drains of Q 1 and Q2. 
This voltage spike will be coupled to the gate of Q2 by the capacitance C. If the 
impedance of the device driving the gate of Q2 is high enough, the voltage spike 
may be enough to turn on Q2 and cause shoot-through. Remember that the 
voltage on the motor may be 24 V, 36 V, or more, and the gate of Q2 may need 
only a few volts to turn on. So even if the signal is significantly attenuated, it still 
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Figure 7.13 
Shoot-through caused by MOSFET capacitance. 
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may be able to turn on the MOSFET.  This problem can be minimized by ensuring 

that the impedance  of the driver is low; if a series resistor is used to limit current  
flow into the gate in case of transistor failure, make the value as small as possible. 

Minimize trace lengths between the MOSFET and the driver device. 

Current Sensing 

Many designs need to sense the cur ren t  th rough  the s tepper  motor  coils. The 
usual method  for doing this is to place a small-value precision resistor in series 

with the g round  lead of the dr iver  circuit (Figure 7.14). When  the motor  is turned 

on, the cur ren t  th rough  the winding must  pass th rough  the sense resistor to 

reach ground.  This develops a voltage across the resistor that can be amplified 

and sensed with an opamp  amplifier. The  amplifier output  can be connected to 

an ADC so it can be read by a microprocessor,  or it can connect  to one side of a 
compara to r  for digital detection of an overcurrent  condition. 

To avoid stealing excessive power  from the motor  winding, the sense resistor is 

usually small, on the order  of 19t or less. Even a lf l  resistor will take a watt in a 
motor  drive circuit that uses one amp.  This is a watt of power  that is wasted as 

heat. Generally, you want to make the sense resistor as small as possible without 
making sensing difficult. As already ment ioned,  Internat ional  Rectifier makes a 

series of MOSFETs known as SENSEFETs with an extra pin that mirrors a 
fraction of the transistor current .  This can be used for cur ren t  sensing. 
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Figure 7.14 
H-bridge current sensing. 
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Motor Drive ICs 

There  are a n u m b e r  of ICs that can control and drive s tepper  motors. The  L6201 

from SGS-Thompson is a typical part. The  L6201 can drive motors up to 5 A with 
supply voltages up to 48 V. The  L6201 includes internal flyback protection diodes 
and includes a thermal shutdown that turns the motors off if the part  overheats. 
The  L6201 is available in DIP, SMT, and multiwatt packages. 

The  LM 18200 from National is another  motor  driver IC. This part  includes a 

pin that provides a thermal warning when the device is about to overheat.  Unlike 
the L6201, the LMD18200 does not require a sense resistor in the g round  
connection of the driver transistors. Instead, the LMD18200 has a separate pin 
that mirrors  the current  in the H-bridge. This pin (CURRENT SENSE O U T P U T  

in Figure 7.15) typically carries 377 ~tA per  amp of current  in the bridge. If a 
motor  winding draws 2 amps, and a 4.99 K resistor is connected from the current  
sense pin to ground,  then the voltage developed across the resistor will be: 

377 x 10 -6 • 2 x 4 9 9 0 -  3.76 V 

The  current  sense output  pin can be connected directly to an ADC or com- 
parator  input. 
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L6201 and  L M D 1 8 2 0 0  m u l t i w a t t  p a c k a g e s .  
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Chopper Control 

Torque in a stepper motor  is controlled by adjusting the current  through the 
windings. Because the winding is an inductor, applying voltage to the coil doesn't 
cause the current to change instantly (Figure 7.16). As the current in the coil 
increases, torque increases. So, if we want to have a particular torque, it takes a 
while to get there once voltage is applied. However, as shown in Figure 7.16, if we 
operate at a higher voltage (V2 in the figure), we get to the original torque value 
much more quickly because the current  increases along an exponential curve. 
The problem is that we end up with too much current  in the winding because the 
current  keeps climbing past the torque we wanted. 

One way of generating torque faster is to use a higher drive voltage to get fast 
current  buildup, but turn off the voltage to the coil when the current reaches the 
desired value. The chopper  circuit in Figure 7.17 illustrates a way to do this. The 
voltage from the sense resistor (amplified if necessary) is applied to one input of a 
comparator.  The other side of the comparator  connects to a reference voltage 
that sets the drive current. 

A chopper  oscillator~ typically operating from 20 kHz to 200 kHz (depending 
on the motor  and driver characteristics) sets a flip-flop. The output  of the flip-flop 
enables the H-bridge outputs. When the flip-flop output  is low, the H-bridge is 
disabled, even if one of the control inputs is high. 

When voltage is applied to the coil and the current  builds to the desired level, 
the voltage across the sense resistor becomes greater than the comparator refer- 
ence, and the comparator  output  goes low. This turns off the flip-flop and 
disables the H-bridge until the next oscillator pulse occurs. As long as the current 
is less than the desired level, the H-bridge will remain enabled. 

The circuit shown in Figure 7.17 illustrates the concept. In practice, the 
comparator  reference voltage could be fixed, or it could come from a micropro- 
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Figure 7.16 
Coil current as a function of supply voltage. 
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Chopper  control  of coil current.  

cessor-controlled DAC. This would permit software control of the current and 
therefore the torque. This would allow a stepper motor to be used in an applica- 
tion with varying loads, as long as the microprocessor knows approximately what 
the load is. It could also be used to compensate for the torque variation between a 
single-coil and two-coil drive when half-stepping, or to generate the varying 
signals needed for microstepping. 

The chopping frequency has to be high enough to be significantly greater than 
the maximum step rate of the motor, but low enough that the t~ansistors can 
respond. If the chopping frequency is too high, the drive transistors will spend 
too much time in the linear region (during the turn-on and turn-off times) and 
will dissipate significant power (see appendix B). 

The chopper oscillator and comparator could be eliminated and this entire 
function could be performed in software. A regular interrupt at the chopping 
frequency would be used as a time base. Each time the interrupt occurred, the 
microprocessor would examine the sense resistor voltage (via an ADC) and 
either enable or disable the H-bridge. Of course, the processor must be able to 
service interrupts at the chopping frequency, which would limit that frequency 
in a practical design. Using a microprocessor just to chop a single motor would 
probably be overkill, but it might be cost-effective to use a single micropro- 
cessor to control several motors if all motors were chopped with the same 
clock. 
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Control Method and Resonance 

Stepper  motors driven with constant current  drive (chopped or analog) are more 
likely to have resonance problems at low step rates. Using half-stepping or 
microstepping can usually overcome these problems. Of  course, going from a 
simple on-off H-bridge to a DAC-controlled microstepping scheme is a large step 
in system complexity. 

Steppers that are driven with constant voltage are more  likely to have reson- 
ance problems at higher  step rates. Half-stepping and microstepping will not 
solve these problems. However,  a load with a significant damping  effect (such as a 
high-friction load) reduces resonance effects overall. If your  application calls for 
high step rates and a load that doesn' t  provide much damping,  use constant 
cur ren t  drive and half-stepping or microstepping to avoid low-frequency reson- 
ance problems. What  is a high step rate? It depends  on the motor,  but will 
generally be in the range above 200 to 500 steps/sec. 

Linear Drive 

If you don ' t  want to use chopping  to get a constant cur ren t  drive, you can use a 
circuit like that shown in Figure 7.18. In this circuit, a power  opamp,  capable of 
controlling the cur rent  required  by the motor  coils, drives the top of the coil. The  
voltage across the sense resistor (amplified if necessary) drives the inverting input 
of the opamp.  The  opamp will a t tempt  to keep the motor  cur ren t  equal to the 
reference voltage. 
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Figure 7.18 
Linear constant-current drive. 
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A circuit like this is electrically quieter than the chopper, but it is much less 
efficient. The power opamp will dissipate considerable power because it will 
carry the same current as the motor coil and will usually have a significant 
voltage drop. The power dissipated by the opamp at any time is given by 
where V is the supply voltage, Vm is the motor coil voltage, and I is the coil 
current. 

A linear drive like this requires a negative supply voltage. It is possible to build 
a bridge driver using two opamps that operates from a positive supply and works 
like the H-bridge, driving one side of the coil positive or negative with respect to 
the other. 

The L297 (Figure 7.19) from SGS-Thompson is a stepper-controller IC. It 
provides the on-off drive signals to an H-bridge driver such as the L6201 or to a 
discrete transistor driver design. The L297 controls current in the motor wind- 
ings using chopping. It has an internal oscillator, comparators, and chopping 
logic. The oscillator frequency can be set by using an external resistor/capacitor or 
an external clock. The chopping clock is also used to time turn-on and turn-off of  
the phases to prevent shoot-through. 

The L297 provides [bur phase outputs (ABCD) and two inhibit outputs for 
chopping (INH1, INH2). An open-collector HOME signal goes low when the 
L297 phase outputs are at the home position (ABCD = 0101). The L297 can 
control a stepper in half or full steps. 
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Figure 7.19 
SGS-Thompson L297. 
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DC Motors 

Figure 7.20 shows a cross-section of a DC motor,  sometimes referred to as a 
pe rmanen t  magnet  DC (PMDC) motor.  A DC motor  consists of a pe rmanen t  
magnet  stator and a wound  rotor. Connection to the rotor  windings is made with 

brushes,  which make contact with a commuta tor  that is affixed to but insulated 
from the shaft. When  power is applied, the rotor rotates to align its magnetic field 

with the stator. Just  as the field is aligned, the commuta to r  sections that had been 
in contact with the brushes break contact and the adjacent commuta tor  sections 
make contact. This causes the polarity of the windings to reverse. The  rotor  then 

tries to align its new magnetic field with the stator. The  rotor  rotates because the 
brushes keep changing the winding polarity. The  example shown in Figure 7.20 

has four rotor  arms, four brushes, and four commuta to r  contacts. Some high- 
performance DC motors  do not use wound rotors, but instead print  the rotor 

winding as traces on a printed circuit. This provides a very low-inertia motor, 

capable of high acceleration. 
DC motors do not lose synchronization as s tepper  motors do. If the load 

increases, the motor  speed decreases until the motor  eventually stalls and stops 
turning. DC motors are typically used in embedded  systems with position en- 
coders that tell the microprocessor what the motor  position is. Encoders will be 

covered in detail later in this chapter.  
A DC motor  is typically driven with an H-bridge,  like a bipolar stepper. 

However,  a DC motor  requires only one bridge circuit, because there are only 

two connections to the motor  windings. DC motors will typically operate at higher 

speeds than equivalent s tepper motors. 
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Figure 7.20 
Cross-section of PMDC motor. 
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Driving DC Motors 

Like steppers,  DC motors can be driven with an on-off chopped  H-br idge or by 

an analog driver such as a power  opamp.  However,  where a s tepper  motor  

typically uses an analog drive or chopped  PWM signal to control motor  current ,  
the DC motor  driver design does not usually depend  on cur ren t  control. Instead,  

the DC motor  controller provides sufficient cur ren t  to meet  a part icular  accel- 

eration curve (as measured  by the encoder  feedback). If  the motor  has a larger- 

than-normal  load, then the driver circuit will increase the cur ren t  to force the 

motor  to the correct speed. In other  words, the DC motor  controller increases or 
decreases the cur ren t  to maintain a part icular  speed. Speed is moni tored ,  not 

motor  current .  DC motor  control circuits do sometimes sense cur ren t  in the H- 

bridge, but it is usually to detect an overcur ren t  condition, such as occurs when 
the motor  stalls. 

Figure 7.21 shows a typical DC motor  operat ion with two different loads. The  

motor  accelerates to a constant speed, runs for a certain time, then decelerates 
back to a stop. With light loading, the motor  cur ren t  profile is lower than with 

higher  loading. However,  the controller  applies sufficient cur ren t  to the motor  to 

produce  the required  speed/t ime curve regardless of motor  load. For this reason, 

DC motors  are usually bet ter  for applications with large load variations. 
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Figure 7.21 
DC motor  operat ion with dif ferent loads. 
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One feature of DC motors is the ability to brake them. If you manually turn the 
shaft of a DC motor, you get a small generator.  If you short the terminals of a DC 
motor, it becomes difficult to turn the shaft because of the electromotive force 
(EMF) the motor generates when it turns. If you short the motor terminals while 
the motor is running,  it quickly comes to a halt. This is called dynamic braking. 

Figure 7.22 shows the H-bridge we've looked at before, but with a modifica- 
tion. Here,  we have separated the motor control inputs so we can turn each 
transistor on and off separately. If we take inputs "A" and "D" high at the same 
time, transistors Q1 and Q3 both turn on and the motor turns in one direction. If 
"B" and "C" are both high, the other pair turns on and the motor turns in the 
opposite direction. 

Now, suppose the motor is turning and inputs "B" and "D" go low, then inputs 
"A" and "C" are both driven high. This turns on transistors Q1 and Q4. One side 
of the motor will be more positive than the other; let's say it is the left side for this 
example. Current  will flow from the positive supply, through Q4, through the 
motor winding, through D2, and back to the positive supply. The  motor  is 
effectively shorted out by Q4 and D2. This will stop the motor quickly. If the 
right side of the motor is the positive one, the current  will flow through Q1 and 
D3. If we drive inputs "B" and "D" high instead of"A" and "C," we get the same 
effect, with the current  flowing through Q3/D1 or Q2/D4. 

Many motor H-bridge ICs include braking capability. These include the L6201 
and LMD 18200. The  L6201 has two inputs to control the two halves of the bridge 
circuit. If both inputs are brought  to the same level (high or low), the driver will 
brake the motor. The  LMD 18200 has a separate input signal for braking. 

Braking can be used to stop a motor quickly, or to hold it in position. One 
limitation on dynamic braking as a holding force is that there will be no braking 
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Figure 7.22 
DC motor braking. 
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until the EMF genera ted  by the mo to r  exceeds the forward  d rop  of the diode in 
the braking circuit. 

T h e r e  are ICs that provide  a mo to r  drive subsystem for DC motors;  we will 

examine  this subject after covering brushless DC motors  and  encoders .  

Brushless DC Motors 

Figure 7.23 shows a cross-section ofa  brushless DC motor.  This looks very much like 

a s tepper  motor,  and in fact a brushless DC motor  works much the same way. The  

stator in this motor  consists of three coils (A1/A2, B l/B2, and C 1/C2). The  coils are 

connected in a three-phase a r rangement ,  with a common  center  point. A brushless 

DC motor  is more  efficient than a brushed DC motor  of the same size. This is 

because the coils in a brushless DC motor  are attached to the case (instead of to 

the rotor), so it is easier to get the heat generated in the windings out of the motor.  

A brushless DC moto r  functions essentially as a DC motor ,  but  without  the 

brushes.  Instead of mechanical  commuta t ion ,  the brushless DC moto r  requires  

that the drive electronics provide  commuta t ion .  A brushless DC moto r  can be 

dr iven with a sine signal, but  is more  typically dr iven with a switched DC signal. 

Figure 7.24 illustrates both  drive waveforms. For sinusoidal drive, the cu r ren t  can 

be control led with a c h o p p e r  circuit, or  a l inear drive can be used. Because the 
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Brushless DC motor. 
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Figure 7.24 
Brushless DC motor waveform. 

coil positions are 120 ~ apart,  the sinusoidal drive waveforms for the coils are 120 ~ 
apart.  The  sum of the currents  in the three coils is 0. For the switched DC 
waveform, there are always two phases on (one high, one low), and the third 
phase is floating (off). 

Note that if you use a sinusoidal drive, the dr iver  does not need a negative 
supply; the sinusoid can swing between g round  and a positive voltage (or for that 
matter ,  between two different positive voltages). If  the drive goes from 0 V to 5 V, 
when all three coils are at the same voltage there  is no cur rent  flowing. So the 
midpoint  between the two drive voltages (in this case, 2.5 V) can be picked as a 
"virtual ground."  

For digital drive, the driver circuitry for a brushless DC motor  is simpler than for 
a s tepper or brushed DC motor. Because each phase is either high, low, or off (high 
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impedance), an H-bridge is not needed. Instead, the driver circuitry can just  be a 
totem pole output.  Figure 7.25 illustrates how two MOSFETs can be used to drive a 
brushless DC motor.  The inputs to this circuit could come from a controller I C or 

a microprocessor. Note that flyback protection diodes are needed in this circuit. 
A brushless DC motor  usually has at least one Hall-effect sensor (and more-  

typically three) to indicate position. However,  it is possible to drive a brushless DC 
motor  without any sensors. If you look at the digital drive waveforms in Figure 

7.24, you will see that there are always two phases that are on (either positive or 
negative drive) and one that is off. The  moving rotor  will generate  a voltage in the 
coil that is not driven. This voltage will cross zero once dur ing  the OFF period,  

and can be sensed to indicate the rotor  position. Note that the voltage being 
measured is the voltage across the unused coilmin other  words, the difference 

between the coil connection and the common connection point for all the coils. 
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B r u s h l e s s  D C  m o t o r  dr ive.  
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Figure 7.26 shows a sensorless drive configuration for a brushless DC motor. 
This circuit brings the common connection point of the three motor  coils back to 
the ADC circuitry as a reference. This is not always necessary; however, this 
technique can reduce the noise in the measurement .  If the common point cannot 
be used as a reference, it could be connected to a fourth ADC channel and the 
value subtracted from the sensed coil in software. If the common point isn't 
b rought  out of the motor,  you can calculate its value in software if the micro- 

processor is powerful enough.  If the processor isn't powerful enough  to perform 
the calculation in real time, you can calculate the values and put them in a lookup 
table. 

When using the sensorless technique with a microprocessor,  you will find that 

there are noise spikes on the sensed coil when the transistors switch on and off. 
You can filter this out with capacitors on the sense line, as shown in Figure 7.26, 
or you can just  ignore the samples from the sensed winding dur ing  this interval. 
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There  are a number  of brushless DC motor  drivers that can take advantage of 
sensorless, EMF-based position sensing. The  Philips TDA5140 will drive motors 
up to about  8A and can use either a sensor or sensorless driving. 

Encoders 

PMDC and brushless DC motors are usually used in e m b e d d e d  systems with an 
encoder  attached to the shaft. This provides feedback to the microprocessor  as to 
motor  position. A typical encoder  is shown in Figure 7.27. In this scheme, four 
magnets are placed a round  the shaft of the motor  and a Hall-effect sensor is 
placed on the case. The  Hall-effect sensor will p roduce  tour pulses per  revolution 
of the motor  shaft. 

Four  pulses per  rotation of the motor  shaft is sufficient to regulate motor  speed 
for a low-resolution application such as a cooling fan. If the motor  is geared,  so 
that it takes many revolutions of the motor  shaft to produce  one revolution of the 
(geared) output  shaft, then this type of encoder  is also suitable for more  precise 
applications. However,  for cases where  you need accurate information about the 
position of the motor  shaft within a single rotation, an optical encoder  is normally 
used. 

Figure 7.28 shows a simple optical encoder .  A glass disk is pr in ted with opaque 
marks, 16 in this example.  The  glass disk is at tached to the motor  shaft and a 
slotted optical switch straddles the edges of the disk. Every time an opaque spot 
passes th rough the slotted switch, the phototransis tor  turns off and a pulse is 
generated.  This encoder  will p roduce  16 pulses for every rotation of the motor  
shaft. The  controller can count  pulses to de termine  the angle of the motor  shaft 
and the number  of revolutions. 
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F i g u r e  7 .27  
Hal l-ef fect  motor  shaft  encoder .  
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Figure 7.28 
Simple motor encoder glass disk. 

This simple encoder has one major drawback, common to the simple Hall- 
effect encoder--how do you tell which way the motor is turning? Figure 7.29 
shows a practical encoder arrangement that provides direction information. This 
encoder still uses a glass disk with opaque stripes, but now there are two slotted 
switches, located next to each other. The opaque stripe is wider than the distance 
between the switches. As the opaque stripe moves under  switch A, the output 
(channel A) goes high. As the opaque stripe moves under  switch B, that output 
(channel B) goes high. As the motor shaft continues to rotate, the stripe clears 
switch A and its output goes low, followed by switch B. 

If the motor reverses direction, switch B is covered first, followed by switch A. 
So this two-channel encoder (called a quadrature encoder) provides information 
on position, speed, and direction. Typical encoders of this type produce between 
50 and 1000 pulses per revolution of the motor shaft. 

Encoders are also available with an index output, which uses a third encoder 
and a single opaque stripe closer to the center of the disk. As shown in Figure 
7.29, there is a single index stripe, so only one pulse is produced per revolution of 
the shaft. This allows the system to know the absolute starting position of the 
motor shaft, for cases in which this is important. 

Figure 7.30 shows the pattern for a section of an absolute encoder. The 
absolute encoder encodes the opaque stripes in a binary fashion so that the 
absolute position is always known. Of course, this requires as many slotted 
switches and stripe rings as there are bits of resolution. The figure shows the 
outer four rings; an encoder with 6 rings would require 6 switches and would 
divide one revolution into 64 unique codes. An encoder that provides 1024 
unique positions would require 10 switches and 10 concentric rings on the 
encoder disk. Absolute position encoders are extremely expensive. Their primary 
use is in systems where the position of the motor shaft needs to be known at 
power-up. 
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Practical quadrature encoder. 

DC Motor Controller ICs 

There  are ICs that are designed for the control of DC motors. The LM628/ 
LM629 from National Semiconductor are typical devices. Figure 7.31 shows 
how these two devices would work in a system. The  LM628 has an 8-bit or 12- 
bit output  word (selectable) for driving the motor through an analog interface 
using a DAC. The LM629 has PWM outputs for driving a motor, using PWM, 
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Figure 7.30 
Absolute position shaft encoder. 
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Figure 7.31 
National Semiconductor LM628/LM629. 

through an H-bridge. Both parts use a similar microprocessor interface. There is 
an 8-bit data bus, READ and WRITE signals, a chip select, a reset, and a register 
select signal. The LM628/9 also provides an interrupt output to the micropro- 
cessor. The  motor interface includes the output (PWM or DAC) and an input for 
a two-channel quadrature encoder.  There is also an input for an index pulse from 
the encoder if the encoder provides one; this input is optional and need not be 
used. 
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When connected to a DAC and power opamp  (LM628) or an H-bridge driver 

(LM629), the LM628/9 provides a complete motor  control subsystem. The  micro- 
processor issues a series of commands  such as "move to position x with accelera- 

tion y," and the LM628/9 will execute a trapezoidal move, accelerating the motor  
to a particular speed, holding that speed, then decelerating the motor  to a stop at 
the right position. (The "position" is a count of encoder  pulses, maintained in a 
32-bit register.) 

The  LM628/9 uses two addresses. One address is a command  address and the 
other  is for data. A command  sequence starts with an 8-bit command  opcode,  
written to the command  register by the microprocessor.  This is followed by 
anywhere  from 0 to 14 bytes of data, either read from or written to the data 
register. The  commands  for the LM628/9 are as follows: 

Command Opcode Data following 

Reset 00 None 
Select 8-bit DAC output 05 None 
Select 12-bit DAC output 06 None 
Define home 02 None 
Set index position 03 None 
Interrupt on error I B 2 bytes, written 
Stop on error IA 2 bytes, written 
Set breakpoint, absolute 20 4 bytes, written 
Set breakpoint, relative 21 4 bytes, written 
Mask interrupts 1C 2 bytes, written 
Reset interrupts 1D 2 bytes, written 
Load filter parameters 1E 2 to 10 bytes, written 
Update filter 04 None 
Load trajectory 1F 2 to 14 bytes, written 
Start motion 01 None 
Read signals register 0C 2 bytes, read 
Read index position 09 4 bytes, read 
Read desired position 08 4 bytes, read 
Read real position 0A 4 bytes, read 
Read desired velocity 07 4 bytes, read 
Read real velocity 0B 2 bytes, read 
Read integration sum 0D 2 bytes, read 

The  LM628/9 index input is intended for use with an encoder  that provides an 
index output.  The  LM628/9 can capture the encoder  position count and store it 
in a separate register when the index pulse occurs. However,  the index input 
does not have to be connected to an encoder  output.  I have used the LM628/9 

index input to indicate other  conditions. For instance, in one system we had a 
rotating carousel that was connected to the motor  shaft via a gearbox. It took 
many revolutions of the motor  to produce  one revolution of the carousel. We did 
not need to know when the motor  shaft reached a specific position, but we did 

need to know when the carousel reached its home position. So the sensor (slotted 
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switch) that indicated when the carousel was at home was connected to the index 
input. 

One caution if you use this technique: the LM628/9 responds to the index 
input when both the encoder channels are low, so the sensor output  has to be low 
while both encoder channels are low. To avoid multiple index capture events 
from a single sensor input signal, be sure the index input to the LM628/9 occurs 
for only one encoder cycle, regardless of how long the actual sensor input lasts. In 
the actual application, a small CPLD handled the index inputs for multiple 
LM629s. Figure 7.32 shows how the timing worked. 

The interrupt  output  can be asserted for any combination of various condi- 
tions, including a breakpoint,  index pulse, wraparound,  position error,  or com- 
mand error. The software determines which conditions generate an interrupt,  by 
setting a mask byte in the LM628/9. The interrupt  output  is level sensitive and 
true when high. When using the LM628/9 motor controller, there are some 
software considerations: 

�9 The position registers in the device have a limited size" 32 bits for the LM628/9. 
This means that if enough forward movements are made, or if the motor 
continuously rotates, the registers will eventually overflow. The software must 
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take this condition into account. This is especially true if the software uses, say, 
64-bit math. It would be possible, in software, to add an offset to a current  
position and get an answer that is greater  than 32 bits: for example,  CO 17B390 
(hex) plus 40000000 (hex) results in a result larger than 32 bits and cannot be 
stored in the LM628/9 registers. 

�9 When using the index input, the LM629 will capture the count. This becomes, 
in effect, the "zero" or "home" position of the motor,  and all moves are relative 
to that position. However,  the 32-bit position counter  is not reset by the index. 
So the software must offset moves from the index position. 

�9 The  fact that the LM628/9 uses two addresses (command and data) means that 
there is the potential for a race condition. If an interrupt  occurs in the middle of 
a command  sequence and the ISR also communicates with the LM628/629, the 
original command  will be corrupted.  An example would be an in ter rupt  that 
notifies the processor that the index pulse has occurred. If  the ISR reads the 
index position, and the in ter rupt  happens  in the middle of another  command,  
the non-ISR code will get garbage data. Figure 7.33 illustrates this. To  avoid 
this condition, the software should disable interrupts  a round  non-ISR code (or 
interruptible ISR code) that accesses the LM628/9. 

These restrictions are typical and are not unique to the LM628/9. There  are 
other motor  controller ICs available, and all have their quirks. The  MC2300 series 
from Precision Motion Devices (PMD) is a two-chip set that can control up to four 

brushless DC motors. These parts can control two-phase or three-phase brushless 
motors and can provide several motion profiles. The  MC2300 can provide a digital 
word for a DAC/amplifier driver, or PWM outputs for an H-bridge. 

The  MC2100 series, also from PMD, is a two-chip set for brushed DC motors. 

Like the MC2300, the MC2100 parts support  one to four motors, have 32-bit 
position registers, and support  multiple types of motion profiles. Both of the 
PMD devices are based on a fast DSP that performs the actual motor  manipulation. 

The  Agilent HCTL-1100 is a single-motor controller with a 24-bit encoder  
counter  and PWM or 8-bit digital outputs.  The  HCTL-1100 does not use an 
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address- and data-register scheme, but instead multiplexes the address signals 
with 6 of the 8 data lines. 

Software Controllers 

In some cases, a DC motor might be directly controlled by a microcontroller, 
using software, instead of using an off-the-shelf controller such as the LM628. 
Reasons for this include the following: 

�9 Cost: An off-the-shelf controller must be coupled with a microprocessor any- 
way, so why not do away with the controller and just use the processor? 

�9 Simplicity: In an off-the-shelf controller, you pay for all the generalized func- 
tionality that the part provides. If you need only slow speeds, simple controls, 
and limited features, you may be able to implement them in software. 

�9 Flexibility: You can design the control algorithms to your requirements, in- 
stead of just modifying PID parameters. You can also make very deep position 
registers, 64 or 128 bits for specialized applications. 

�9 Custom design: If your system has special requirements,  such as special sensors 
or a move-to-stop-and-apply-pressure for x milliseconds, you can implement 
this because you will develop and control the algorithms. 

If you decide to roll your own controller, there are a few things to consider. 
The processor has to be fast enough to keep up with whatever processing 
demands are required. This means also servicing encoder interrupts in a 
timely fashion. In a software-based controller, the encoder on a DC motor 
typically connects to one or more interrupt inputs. Figure 7.34 illustrates this. 
One method of handling interrupts is to let one channel ("A" in the figure) 
generate an edge-sensitive interrupt  to the microcontroller. When the inter- 
rupt  occurs, the microcontroller reads the state of the other encoder channel 
("B" in the figure). If channel B is low, motor motion is forward, and if "B" is 
high, motion is reversed. For forward motion, the software-maintained position 
register would be incremented, and for backward motion the register would be 
decremented.  

As shown in Figure 7.34, if there is enough latency between the rising edge of 
channel "A" and the state of the ISR, channel B may have changed states and the 
wrong result will be calculated by the firmware. If you implement a motor 
controller with a system like this, be sure that your interrupt  latency never allows 
this condition to occur, even at maximum motor speed. 

It is a good idea to make the interrupt a timer input if one is available. As 
described in Chapter 4, the timer can be set one count before rollover, and the 
encoder input will cause the timer to roll over and generate an interrupt. If an 
interrupt  is missed, the timer count will be 0001 instead of 0000 (for a timer that 
increments starting from FFFF) and the missed interrupt can be detected. The 
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system as shown in Figure 7.34 will have only 1/4 the resolution of a typical system 
using a motor  controller IC, because it captures new position information on only 

one encoder  edge (rising edge of "A") instead of on all four edges. You could 
compensate  for this by using an encoder  with more  lines, but that could cost as 
much as a motor  controller IC. You can double the resolution of this circuit by 
connecting both encoder  channels to interrupts  on the microcontroller.  Most 
microcontrollers permit  you to read the state of an in ter rupt  input as if it were 
a port  pin. When an interrupt  occurs, the software reads the state of the other  

input  to determine motor  direction. 
Finally, to get the same resolution as a motor  controller IC, you could add an 

external PLD that generates interrupts  on any input  transition. This would also 

let you filter the signals to eliminate spurious edges if necessary. 
Another  way to get higher  resolution in a microprocessor-based controller is to 

use a microcontroller that can generate interrupts  on either clock edge. The  
Microchip PIC16C series has an in ter rupt-on-change feature that can generate  

an in ter rupt  when selected pins change state. 
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Tradeoffs between Motors 

The  tradeoffs between DC motors,  brushless DC motors,  and steppers are as 
follows: 

�9 Stepper  motors require no encoder  and no feedback system to determine 

motor  position. The  position of the shaft is de te rmined  by the controller, which 
produces step pulses to the motor.  However, this can also be a disadvantage. If  
the load is too high, the s tepper  may stall and there is no feedback to repor t  that 
condition to the controller. A system using a DC motor  with an encoder  can tell 
when this condition occurs. 

�9 Steppers have no brushes, so they produce  less EMI. 

�9 A stepper can produce  full torque at standstill, if the windings are energized. 
This can provide the ability to hold the rotor  in a specific position. 

�9 A stepper can produce  very low rotation speed with no loss of torque. A DC 
motor  loses torque at very low speeds because of lower current .  

�9 DC motors deliver more torque at higher speeds than equivalent steppers. 
�9 Because there is no feedback, a stepper-based system has no means to compen- 

sate for mechanical backlash. 

�9 Brushless DC motors require electronic commutat ion,  which is more complex 
than the drive required for brushed  DC motors. However,  the availability of 
driver I Cs for brushless DC motors makes this less of a concern. 

Without  feedback, there is no way to know if a s tepper is really doing what it is 
told to do. Consequently,  s tepper  motors are typically used where the load is 
constant or at least is always known. An example would be s tepping the read/write 

head mechanism in a floppy disk drive. The  load in this application is fairly 
constant. If  the load varies greatly dur ing  operation,  a s tepper  may stall out or 
it may overshoot  the desired position when trying to stop. 

If the load varies but is known, a stepper may be useable by reducing the drive 
current when the load is low and increasing the current when the drive is high. An 
example of a known load would be a system that has to move something, but some- 
times just has to position the motor into the correct position when there is no load. On 
the other hand, if the %omething" that is being moved varies greatly in mass, friction, 

and so on, then the load isn't really known and a stepper may not be the best choice. 
When the load varies a lot, and especially if the load isn't known to the controller, a DC 
motor with an encoder is usually a better choice than a stepper. The encoder allows 
the controller to increase the current if the speed and/or position are not correct. 

One way to achieve the benefits of the s tepper and the encoder/feedback DC 
motor  is to add an encoder  to a stepper. This provides most of the advantages of 
both systems, but at higher  cost. The  maximum speed of such a system will still be 
slower than an equivalent DC motor,  however. 
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Power-Up Issues 

One problem with DC motors is what happens when power is applied. We've 
already looked at the issues sur rounding the power-up state of microcontroller 
outputs. There  are similar issues sur rounding any DC motor design, including 
designs that use packaged controllers. 

Typically, the logic that controls the motor H-bridge or analog amplifier 

operates from 5 V or 3.3 V. The motor power supply may be 12 V, 24 V, or even 
50 V. If the motor power supply comes up first, the inputs to the H-bridge or 
amplifier may be in an invalid state and the motor may jerk momentarily. In a 
system with a limited range of motion, such as a robotic arm, the motor  may slam 
up against whatever limits the travel. This can be hard on the mechanical com- 
ponents and gears connected to the motor  shaft. A DC motor can apply consider- 
able torque in this condit ion--i t  is equivalent to a 100% PWM duty cycle. 

The best way to eliminate this problem is to ensure that the motor power supply 
comes on after the logic supply is on and everything is stable. Some multiple-output 
power supplies have an inhibit input for the high-voltage output that can be used for 
this purpose. But how do you control the inhibit signal if the power supplies come up 
together? The logic supply is not available to power the logic that inhibits the motor 
supply. Some supplies have a low voltage (5 V or 12 V) output that comes up before 
all the other supplies and is intended for precisely this purpose. This auxiliary output 
is usually designed to supply minimal current (< 100 ma). In some cases, you can just 
connect the inhibit input on the motor supply to a pull-up resistor from the auxiliary 
supply (to inhibit the motor supply) and then pull the inhibit input to ground when 

the logic electronics is stable. Figure 7.35 illustrates a one-transistor approach to this. 
If the motor power supply cannot be controlled in this way, it may be necessary 

to inhibit the H-bridge in some manner,  possibly by using a gate between the 
PWM output  of the controller and the PWM input to the H-bridge. Of course, the 
gate logic has to operate from the motor supply or another supply that is stable 

when the motor voltage is. 
Figure 7.36 shows a method I used in such a situation. The system used a 

National LMD18200 H-bridge. The LMD18200 has a brake input that is nor- 
mally used for braking the motor. In this application we weren't  using braking, so 
the brake input pin was available. When the 24 V motor supply is turned on and 
the 5 V supply is not yet on, the MOSFET is turned off (because the gate is low). A 
resistor pulls the MOSFET drain up to +24 V, but the voltage is clamped to 4.7 V 
by a zener diode. This voltage is recognized as a logic HIGH by the LMD 18200, 
which brakes the motor and prevents motion. Some time after +5 V comes up 
(delay determined by R/C values at gate of MOSFET), the MOSFET gate goes 
high, the MOSFET turns off, and the motors can operate normally. 
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Figure 7.35 
Motor  inhibit using auxi l iary power  supply  and power  supply  inhibit. 
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Figure 7.36 
Motor  inhibit circuit for LMD18200 .  
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Motor Torque 

How do you know if the motor  you have chosen is powerful enough  for the 
application? How do you know if you've picked a motor  that is too big, adding 
unnecessary cost to the system? Motors are specified with a particular torque, the 
amoun t  of force they can exert. The  Pacific Scientific 4 N series of b rushed  DC 
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motors is specified with torque ranging from 55 to 163oz-in (0.39-1.15 N-m), 
depend ing  on the model. These values are at some specific rated cur ren tm6.8  to 
14.1 amps in this case. There  is also a maximum current  that the motor  can 
withstand momentarily.  The  torque determines how much force the motor  can 
exert and therefore how fast it can accelerate a load to a given speed. 

Staff Torque 

The stall torque is the torque that the motor  will generate  if the rotor  is locked so 
that it can't turn. 

Back EMF 

When you spin a coil of wire in a magnetic field, you generate  electricitymthis is 
how the generator  in a car works. A DC motor  is a coil of wire spinning in a 
magnetic field. When operat ing the motor  generates a DC voltage, a back EMF, 

that voltage opposes the voltage applied to make it move. The  faster the motor  
spins, the more back EMF is generated.  

Torque versus Speed 

The torque of a DC motor  falls off with speed. This is due to several factors, 
including the back EMF. This limits the max imum speed of a DC motor  in a 
practical application and the max imum torque it can generate  at a given speed. 

A Real-World Stepper Application 

A final example will serve to illustrate certain real-time concepts and bringing 

together  some of the concepts described in this chapter.  Figure 7.37 shows a 
microcontroller controlling a five-phase s tepper  motor.  This circuit is a simplified 

diagram of an actual application that I designed. In this circuit, the microcon- 
troller directly controls the high- and low-side driver transistors for the five 

s tepper phases. This motor  controlled an agitator that mixes the contents of 
bottles for a medical application. The  gate drive logic allowed the microcontroller 
to turn  either transistor in the pair on or off, allowing the phase to be driven high, 
driven low, or allowed to float. 

The  PWM output  is wrapped back a round  to another  timer, which generates 
an interrupt .  This causes an in terrupt  every T states, where T is the value in the 
second timer. This in ter rupt  rate is the step rate of the motor;  larger values o f T  
result in a slower step rate and higher  values o f T  result in a faster step rate. By 
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Figure 7.37 
Five-phase stepper motor system. 

clocking the step rate timer from the PWM timer, the circuit ensures that changes 
to the output state occur while the drive transistors are turned off. 

This circuit has several requirements.  

�9 When the door is closed, the microcontroller will ramp the stepper up to a 
predetermined speed. If the user opens the door, the interlock switch opens 
and the stepper ramps down. 

�9 Motor current is controlled by the duty cycle of  the PWM output, which chops 
the current in the low-side MOSFETs. Motor current is increased as speed 
increases to ensure that sufficient torque is maintained. 

�9 When the motor stops, it must stop in a specific position to allow the operator to 
add and remove bottles. 

�9 The  microcontroller has to monitor motor current, shutting down the motor 
and generating a fault output if excessive current is drawn. An internal ADC is 
used for this purpose.  

�9 The  position sensor generates a pulse once per revolution; the microcontroller 
has to count steps from the position sensor pulse to the stopping position. A 
fault output is generated if a full revolution is made without a pulse from the 
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position sensor. The  motor  continues to operate  in that case, but the s topping 
position will be undefined and the external system displays a message for the 
operator.  

�9 The motor  has to be ramped  up when starting because the stepper motor  will 
stall if the full step rate is applied while the motor  is s tanding still. 

�9 The motor  must  not start until the motor  supply voltage is present.  If the motor  
supply voltage fails, the motor  must stop until the voltage is restored. This is 
handled by providing the motor  supply voltage to one of the microcontroller  
analog inputs via a voltage divider. The  microcontrol ler  will not start motor  
operation until the motor  voltage is present.  

�9 Finally, another  t imer generates a t imeout  every five milliseconds for deboun-  
cing the interlock. This t imer does not generate  an interrupt ,  but is polled by 
the main loop. This is to ensure that the step rate in ter rupt  is serviced imme- 
diately, while the PWM output  still has the transistors off. If the debounce t imer 
were to generate  an interrupt,  the code would sometimes be executing the 
debounce in ter rupt  routine when the step rate in ter rupt  occurred,  and this 
would delay servicing the step rate interrupt .  

The system state is based on what the motor  is doing: 

�9 Stopped 
�9 Ramping up to speed 
�9 Ramping down to stop 
�9 Running  constant speed 
�9 Seeking stop position 
�9 Overcurrent  (fault condition, requires power cycle to clear) 
�9 Bad voltage (motor  drive voltage not present) 

Firmware 

The firmware executes a continuous loop, servicing various functions as needed.  
A simplified description of the various routines follows. 
The logic for the main loop looks like this: 

If in ter rupt  flag is set, update  speed and current .  

If 5-millisec0nd t imer times out, debounce interlocks. 

If position sensor pulse occurs, reset position count. 

Update motor  state. 

If PWM active, start ADC conversion. 

If ADC conversion complete, process motor  current .  

If position count  passes one revolution, set position fault. 
~ 
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Speed and current  update  logic is as follows: 

If motor  Ramping  Up, 

Decrease speed t imer value (increases speed). 

Increase PWM duty cycle (increases motor  current) .  

If speed t imer value = terminal  value, change motor  mode to Running 

Constant  Speed. 

If motor  Ramping  Down, 

Increase speed t imer value (decreases speed). 

Decrease PWM duty cycle (decreases motor  current) .  

If speed t imer value = minimum,  change motor  mode to Stopped and turn 

off PWM output .  

Motor state update  logic is: 

If motor  drive voltage not present  and motor  mode not Overcurrent ,  set 

motor  mode to Bad Voltage. 

If motor  drive voltage present  and motor  state - Bad Voltage, 
set motor  mode  to Stopped. 

If door  open and motor  Running  Constant  Speed and no position sensor 
fault, change motor  state to Seeking Stop Position. 

If door  open and motor  Running  Constant Speed and position sensor fault, 
change motor  state to Ramping Down. 

If door  open and motor  Seeking Stop Position and position count  is at 
r ampdown  point, change motor  state to Ramping  Down. 

If door closed and motor stopped, start PWM and change motor state to 

Ramping Up. 

Switch debounce logic is: 

If interlock indicates door  closed and if door  state indicates door  open, 
increment  debounce  counter  1 and clear debounce  counter  2. 

If debounce counter  1 = debounce  value, change door  state to closed. 

If interlock indicates door  open and if door  state indicates door  closed, 
increment  debounce  counter  2 and clear debounce  counter  1. 

If debounce counter  2 = debounce value, change door  state to open. 

Motor cur rent  uses the following logic: 

If motor  cur ren t  exceeds overcur ren t  threshold,  stop PWM, set motor  to 
Overcurrent ,  set fault output.  
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In te r rup t  routine (step rate interrupt)  logic is as follows: 

Generate the next step in the sequence to the drive transistors (uses a 
lookup table). 

Set a flag to indicate that the in terrupt  occurred. 

Increment  the position count. 

As ment ioned in the pseudocode,  the in ter rupt  routine uses a lookup table. 
The  table contains bits for each high-side and low-side transistor; a 1 turns the 
transistor on and a 0 turns the transistor off. Each entry in the table is the value 
needed to advance the motor  to the next step in rotation. The  key real-time 
requi rement  for this design is fast, repeatable update  of the motor  phases. To 
accomplish this, some tradeoffs were made, such as making the switch debounce 
timer polled instead of letting it generate  an interrupt.  

Debugging outputs  from the microcontroller  included a port  bit that was set at 
the start of the main routine and cleared at the end. Another  port  bit was set at the 
entry to the ISR and cleared just  before exiting the ISR. Because most port  bits 
were used in the design, these two bits were shared with bits used for in-circuit 
p rogramming.  
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Electromagnetic Interference 8 

Electromagnetic interference (EMI) can be a problem in many designs. EMI is 
broadly divided into two types: what your equipment  does to the world around 
you, and what the world around you does to your equipment.  The first type is 
called interference, and the second type is called susceptibility. Of course, suscept- 
ibility effects are caused by interference from somewhere else and vice-versa. If 
you've ever placed a television too close to an operating computer,  you've prob- 
ably seen both: the clocks in the computer  create interference that results in snow 
on the screen of the television. 

This chapter will not focus on interference generated by your equipment,  
except where that interference is self-generated. We will concentrate on suscept- 
ibilitymwhat causes it and what you can do about it. 

Ground Loops 

The term EMI usually conjures images of high-frequency signals interfering with 
normal circuit operation. However, errors also can be caused by simple AC and 
DC circuits. The classical case of a ground loop occurs when you have two return 
paths for ground current  and one carries more current  than the other. Figure 8.1 
illustrates a microprocessor system connected to an external sensor system. The 
microprocessor ground is connected through its power supply back to the build- 
ing ground.  The sensor system is also connected to the building ground,  on a 
different circuit. Let's say that the sensor ground is shared with some large AC 
load, such as an air conditioner. 

In theory, there is no current  flowing in an AC safety ground,  but in some cases 
this current  is not really zero. When the AC load is operating, the voltage at the 
sensor circuit ground is different from the voltage at the microprocessor circuit 
ground.  The result is a ground-loop current  flowing through the ground in the 
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F i g u r e  8.1 
Ground  loop. 

cable connecting the sensor circuit to the microprocessor circuit. Ground loops 
like this can cause measurement  errors or even damage to the electronics. If the 
potential difference between the grounds gets large enough, it can even burn 
open the ground connections between the systems. I have seen driver electronics 
destroyed when a large load (an air conditioner) switched on in a case like this. 
The  resulting ground surge pulled one end of an interconnected system several 
volts away from the other and blew out the driver I Cs. 

In the circuit shown, the ground current  would probably be an AC current, 
causing an AC error.  A similar situation can occur with DC currents if the DC 
grounds vary. This situation can also occur with two computers that are con- 
nected together with a cable (such as RS-232) but are plugged into different AC 
branches. The  ground connection that causes a ground loop between two systems 
does not have to be a ground wire in a signal cable. A shielded cable can cause 
ground loops if the shield is connected to the chassis of both systems. 

If you are designing a system that involves components that operate from 
differing line voltages (such as a 208V, three-phase machine controlled by a 
110 V computer),  you might consider using Ethernet  between the two systems. 
Although you may not need the speed of Ethernet,  the transformer-coupled 
cabling eliminates common grounds and most AC ground-induced failures. An- 
other option is to use a fiber-optic interface, which has no electrical connection. If 
one end of the system is too simple to make a high-speed interface feasible (such 
as a design that uses a microcontroller), you could use an optically isolated serial 
interface. You can either buy off-the-shelf RS-232 isolators or define your own 
optical isolation scheme. 

Finally, in some cases, you might be able to specify that one of your system 
components  must have its own safety ground. In large systems that typically 
require an electrician to come out and wire power, this may be feasible. In the 
208 V/110 V example, you would specify that the 208 V equipment  have its own 
safety ground (not shared with anything else in the building). This doesn't  protect 
your equipment  from ground spikes on the 110 V line, but it will provide some 
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protection from voltage surges caused by large industrial equipment  such as air 
conditioners. Of  course this solution is only as good as the building grounds  
themselves; in an older building, you may have to improve the g round ing  where 

the power enters the building to avoid problems. 
Figure 8.2 shows a simple system that is similar to one I worked on. Here,  a 

microprocessor-based system was connected via a cable to a sensor board that had 
several things on it, among  them a thermistor.  In this case, the thermistor  

amplification circuitry was on the microprocessor  board,  but the thermistor  was 

located remotely, where the tempera ture  needed  to be measured.  
Say that the thermistor signal to the microprocessor is on the o rder  of 

10 m v p e r  ~ The  thermistor  is at room tempera tu re  (25 ~ so the thermistor  
signal is 250 mv. The  problem with this circuit is that the thermistor  connects to 
g round  on the sensor circuit board. The  sensor signal back to the microprocessor  
board is a single wire, and there is a single g round  wire between the sensor circuit 
board and the microprocessor circuit. If  the sensor circuit draws any significant 
current,  there will be a DC offset between the microprocessor board and the 

sensor circuit. This introduces an offset to the thermistor  signal, affecting the 

tempera ture  measurement .  
Figure 8.3 shows the same circuit, but with resistances in all the lines. These  

resistors represent  the sum of the wire resistance and contact resistance in the 
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Figure 8.2 
Thermistor system. 
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Figure 8.3 
Thermistor circuit with wiring resistance shown. 
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Figure 8.4 
Thermistor circuit with separate ground. 

connectors. Say that the total resi'stance in the ground wire is 1 ohm. If the sensor 
circuit draws 50 ma, then the drop across the ground wire is 50 ma x 1 ohm, or 
50mv. 

The  result of this is that the thermistor signal, which is 250 mv at the sensor 
board, becomes 300mv at the microprocessor boa rd - - an  error  of 5 ~ If the 
sensor circuit also controls an output,  such as a heater  that shares the same 
ground,  then the thermistor signal will j ump  every time the heater is on. This is 
due to the increased voltage drop across the wiring when the heater turns on and 
draws current.  The  microprocessor will respond as if the temperature  had actu- 
ally changed. In addition, the error  will vary with the current  drawn by the sensor 
circuit, which in turn varies with components  from different manufacturing lots, 
and so forth. 

The  solution to this problem is shown in Figure 8.4. Another wire is added to 
the cable, providing a separate return for the thermistor signal. The  thermistor is 
no longer connected to ground on the sensor circuit board. The  added wire can 
be connected to ground on the microprocessor board, or it can be connected to 
one side of a differential amplifier. Either way, there is no significant current  
flowing in that wire, so the voltage offset (and the corresponding error) is mini- 
mal. Of  course, this solution requires another  wire in the cable and another  pin 
on the connector. 

In general, it is a good idea to avoid sharing grounds when using any remote, 
low-level voltage source. Thermistors  and millivolt-level signals should have 
separate grounds to avoid problems with IR drop in the wiring. 

Motor Current 

Figure 8.5 shows a motor control circuit in which a motor  controller drives a 
PWM driver. The connection to the PWM driver includes the control signals and 
the ground return. The  problem with this approach is that there will be a current  
spike every time the PWM driver turns on. Because some of the PWM ground 
current  flows back through the controller ground circuit, the current  spike will 
result in a small voltage spike on the controller ground.  If this voltage is large 
enough,  the controller logic may interpret  it as a level change on the control 
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P W M  moto r  control ler.  

signals coming in. In addition, any ADCs on the controller board will see a 
variation in the ground level, which may affect their accuracy. 

This approach can be made to work if the return path has sufficiently low 
impedance so that the voltage excursions on the ground are minimal. However, if 
the motor draws significant current and you are also trying to measure anything 
with millivolt accuracy, it may be impossible to get the grounds quiet enough with 
this arrangement.  

Another approach to this design is shown in Figure 8.6, where the logic supply 
and motor supply have separate returns connected together at the power supplies. 
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Figure 8.6 
Motor  cont ro l le r  wi th separa te  grounds.  
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This point is usually the chassis connection point. This arrangement  fixes the 
original problem because all the PWM current is now forced to flow through the 
motor return, but it introduces a potential new problem. If the wiring resistance is 
too high, the PWM current spike may cause the PWM controller to see invalid logic 
inputs as its ground varies with respect to the controller ground. The solution to 
this is to ensure that both grounds are low-impedance connections. For the motor 
side, this may mean very large wire gauges or even wire braid. In other words, the 
wire size may need to be selected to minimize EMI, not just to ensure that it can 
handle the motor current. 

Motor grounding and noise issues often arise because the system aspects of 
grounding were ignored. In a large piece of equipment  with subsystems designed 
by different teams of people, the grounding is often not consistent. One subsys- 
tem may have a connection between its logic re turn and chassis ground,  introduc- 
ing a ground loop because the chassis ground is repeated elsewhere. In a system 
such as this, it is a good idea to consider the grounding as a separate system, 
designed and managed to minimize EMI issues. 

Self-Induced Current Errors 

If you have a system controlling multiple motors, you can induce ground-offset 
problems in software. If the software turns on all the motors at once, the resulting 
current  surge can yank the ground far enough to cause problems, even if the 
ground impedance is fairly low. The  solution to this is to sequence motor startup 
so that the motors don't  all start at once, and limit the number  of motors that are 
on at one time (where possible) to reduce the total current  drawn. In cases where 
motor current  causes noise in the system that affects ADC measurements,  take the 
ADC readings when motors are off. This will minimize ground-noise-induced 
errors. 

Electrostatic Discharge 

Electrostatic discharge (ESD) is the electric spark you sometimes get when you 
walk across a carpet on a cold, dry day and touch a metal doorknob. This type of 
high-voltage discharge can destroy electronic circuits. ESD typically has a large 
amount  of high-frequency energy because of the short, pulselike nature of the 
discharge. Circuits can often be protected against ESD by adding ferrite beads or 
EMI filters in series with the affected inputs. 

Just like ordinary ground loops, ESD can get into your circuits via the grounds. 
ESD can affect circuits with grounds that are otherwise excellent for carrying 
their intended current  because the ESD energy is high frequency. A good ground 
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at DC is not necessarily a good (low-impedance) ground at RF frequencies. In 
fact, one way to find grounding problems is to use an artificial ESD generator and 
zap the chassis of your equipment.  The circuits most affected (or most often 
affected) are often those with grounding problems. 

Self-Induced ESD 

Any time you have a motor-driven system with belts, pulleys, plastic gears, or 
other insulating, moving components,  you have the potential for self-induced 
ESD. Depending on the materials used, a belt running  over a pulley can be an 
excellent Van DeGraff generator. Figure 8.7 illustrates a practical system that I 
worked on that had serious self-induced ESD problems. A plastic band heater was 
wrapped partway around a rotating drum. Objects to be heated were guided 
under  the heater, and the pressure between the heater and the drum performed 
a sealing action. The problem was that, somewhere between the prototype and 
production, someone discovered that they could get better heat transfer by 
changing the d rum material from a conductive to a nonconductive plastic. The 
result was that, under  the right conditions, you could draw a spark a quarter-inch 
long from the back of the heater band. This caused serious problems with the 
electronics, including random resets of the microprocessor. If you have rotating 
drums, pulleys, belts, or other elements, be careful of the materials you choose. 

ESD Protection 

Figure 8.8 shows how diodes can be used for ESD protection. In Figure 8.8A, two 
diodes are used to protect an input line against ESD. Diode D1 prevents the 
signal from rising more than one diode drop above the supply voltage. Diode D2 
prevents the signal from falling more than one diode drop below ground.  The 
problem with this approach is that the connections to power and ground have 
some impedance, and the diodes may be slow to turn on, relative to the rise-time 

BAND HEATER 

Figure 8.7 
Self-induced ESD from insulating, rotating drum. 
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of the ESD pulse. Figure 8.8B shows how the addition of a resistor in series with 
the signal provides some protection against these effects; because of the capaci- 
tance in the circuit, the resistor limits the risetime of the ESD pulse at the junction 
of the two diodes. In circuits where a resistor cannot be used, a ferrite bead will 
often work just as well. 

The protection diodes themselves must also be able to handle the ESD energy. 
Where does the ESD energy go? To the place that is often overlookedmthe 
power supplies. The ESD energy will travel through the diodes to either ground 
or power. If there is insufficient bypassing of the supply or if the PCB traces have 
too much impedance, the device connected to the input may survive the ESD, but 
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something else may be affected (Figure 8.6E). Most designs use power and 
ground planes on the PCB, which minimizes this problem, but if you have power 
or ground traces, be careful about ESD effects. Similarly, if the board with the 
diodes is at the end of a cable, it is possible for the ESD to yank the board ground 
around, damaging whatever the board is connected to. 

Many of these effects can be minimized with the addition of ferrite beads on 
the power and signal cables. Of course, you have to consider what the beads will 
do to the intended signals as well--adding beads to a high-speed video cable may 
fix the ESD problem, but it will also probably attenuate the desired video signal. 

In some cases you cannot clamp to the power supply because even that is too 
much voltage. A typical example would be an opamp circuit, operating from 
+12 V, that is driving a logic-level output. Although the opamp will normally 
not drive the output  beyond the limits of the logic circuitry, an ESD pulse that is 
clamped to the 12 rails might. An excursion beyond the logic supply voltage could 
cause latch-up in the logic. 

Figure 8.8C shows how zener diodes can be used to clamp the signal to some 
voltage less than the supply rails. Finally, Figure 8.8D shows how a resistor 
divider and filter capacitor can clamp the voltage; the capacitor must be large 
enough to absorb the ESD energy without an appreciable voltage change. This 
may require a low-value capacitor, a round .01 ~f, in parallel with a larger electro- 
lytic. The smaller capacitor responds quickly to the ESD pulse, compensating for 
the limited high-frequency performance of the electrolytic. This technique has 
the added advantage that the incoming ESD is clamped to ground  if the power 
supply is turned off. 

When adding ESD protection, take system considerations into account. Adding 
protection diodes to the inputs may prevent damage when ESD occurs, but the 
system may still see an erroneous input. What will the system do in this case? It 
may be necessary to perform some filtering in software to ignore transient con- 
ditions on the inputs. In some cases, you might actually want to reset the system 
under  certain interference conditions. This may require the addition of a watch- 
dog timer to the microprocessor. 
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High-Precision Applications 9 

In this chapter  we will look at high-precision applications. High precision is not an 
easy term to define, but for our  purposes,  we will say that it is any application that 
requires more  than 10 bits of accuracy. 

A requ i rement  for high precision usually stems from one of two places: a need 
to measure  very small values, or a need to measure  a wide dynamic range.  High 
precision typically translates into more  resolution: a 12- or 16-bit ADC instead of 
an 8- or 10-bit part. However,  added  resolution brings new problems. A 10-bit 
ADC with a 5 V range has a resolution of 4.88 mv per  ADC step. A 12-bit ADC has 
a resolution of 1.2 mv per  step. Just  to pick one example ,  a signal fluctuation of 
3 mv will cause at most a plus or minus 1 count  variation in a 10-bit sys tem--  
which amounts  to 2 or 3 counts at 12 bits and 10 counts at 16 bits. 

Some of the errors  in high-precision applications can be caused by the opamps  
in the circuit. Figure 9.1 shows a simple noninver t ing  opamp  configuration. We 
can write the basic opamp equation like this: 

V o  = A v ( V +  - V _ )  

where Vo is the output  voltage, Av is the opamp open loop gain, V+ is the voltage at 
the noninvert ing opamp input, and V_ is the voltage at the inverting opamp input. 

Because V+ pin is connected to the input,  V 1, and V_ is a voltage divider with 
Vo and ground:  

g Vo x R1 

R 2 + R 1  

substituting these values into the basic opamp equat ion makes the following 
equation: 

V o - A v ( V 1 - V ~  
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Figure 9.1 
Non inve r t i ng  o p a m p  circuit .  

Expanding leads to 

Vo(R1 + R2) - (Av x V1 x R 1 ) +  (Av x V1 x R 2 ) -  (Av x Vo x R1) 

Solving for Vo is performed in the following equation: 

A v x V 1  xR1  A v x V 1  x R 2  
V o =  + 

R1 + R2 + (Av x R1) R1 + R2 + (Av x R1) 

Dividing both terms on the right by Av/Av is performed in the following 
equation" 

V l x R 1  .V1 x R 2  
V o =  + 

R1 R2 R1 R2 
~-~v -}- ~vv + R1 ~--~v + ~vv + R1 

If Av is very large, we are left with 

V1 x R 2  
Vo - V1 + or 

R1 
V o = V 1  1 + 

This is the equation normally used for the transfer function of a noninverting 
amplifier. However, it was derived by assuming that Av is large enough to make 
anything divided by Av in the previous equation effectively zero. What happens in 
a practical opamp? The LM318, a low-power opamp, has a gain that ranges from 
50,000 to over 200,000. Suppose we have a noninverting amplifier with 
R1 = 10 K and R2 = 50K, and V1 is 1.2 V. Using the ideal equations we get an 
output  voltage of 

( V o = V 1  l+R-i-  = 1.2V 1+1--0-~/ = 7 . 2 V  
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Now, if the opamp is an LM318 with a gain of 100,000, and using the nonideal  
equation, we get this: 

A v x V 1  x R 1  A v x V 1  •  
V o -  + 

R I + R 2 + ( A v •  R I + R 2 + ( A v x R 1 )  

100 ,000x  1 . 2 V x  10k 100 ,000x  1 . 2 V x 5 0 k  = + 
10K + 50K + (100,000 x 10k) 10K + 50k + (100,000 x 10K) 

-- 7.199568V 

This is close to the ideal 7.2 V result, but  it is off by 432 ~tv. This e r ror  would 
not be a problem in an 8-bit, 0-5 V system, but  it is 5 steps in a 16-bit ADC system. 
The problem gets worse with higher  closed-loop gain. Suppose that R2 is 110 K 
(gain = 12) and the input is 0.6v. The ideal ou tpu t  is still 7.2 V. The actual ou tpu t  
with a gain of 100,000 is 7.199136, which is 864 tav from the ideal value. 

Input Offset Voltage 

In an ideal opamp,  the ou tpu t  will be 0 any time both inputs are at the same 
voltage. In a real opamp,  the internal transistors are not precisely matched and 
may not be at exactly the same tempera tu re .  This produces an input  offset 
voltage. The  input  offset voltage of an opamp  is defined as the voltage that must  
be applied across the inputs to produce  0 volts at the output .  To see the effect of 
input offset voltage on an opamp,  we will look at the noninver t ing amplifier 
again. The equation for the output ,  when taking offset voltage into account is 

Vo - Av(V+ - V_ + Vx), 

where Vx is the input  offset voltage. Adding this new term into the original 
opamp equations gives 

V ~  A v (  V1 V ~  ) 
- R 1  + R 2  + V x  

Solving the equations for Vo, and assuming that Av is very large, we get 

V1 x R2 V x x R2 
V o -  V 1 + + Vx + 

R1 R1 
o r V o - ( V l + V x )  I+R-i -  

As you can see, the offset voltage is multiplied by the same gain factor as the 
input voltage is (including the effects of real, versus ideal, values of Av). The  effect 
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is to introduce an er ror  term into the output.  If we use the LM318 opamp again, 
we find that the data sheet shows an input offset voltage of 4 mv (typical) to 10 mv 
(maximum). Using the max imum offset and a gain of 6, we get an output  offset of 
6 x 10 mv, or 60 mv. This is three ADC steps, or 2 bits of imprecision, in an 8-bit, 
0-5 V system. In a 16-bit system, it is 786 steps or 9 bits of imprecision! Clearly, 
the LM318 is not suitable for a high-precision application. 

To be fair, the LM318 is an excellent example to illustrate the offset voltage 
problem, but it is an older part, originally designed for high speed and low 
power, not high precision. A better part  for precision designs is the Maxim 
MAX400, with a max imum offset voltage of 10 12 v. In our  circuit with a gain of 
10, the MAX400 input  offset voltage would produce  an output  er ror  of only 
6012 v. This is less than 1 bit of er ror  even in a 16-bit, 0-5 V system. 

Input Resistance 

O p a mp  designs usually assume that the current  flowing into the opamp inputs is 
zero because the input  impedance is infinite. A real opamp has some current  
flowing into the inputs because the impedance is finite. The LM318 data sheet 
specifies an input resistance from 0.5 Mf~ (minimum) to 3 Mft (typical). Just  for 
simplicity, we will assume that the source driving the noninvert ing input has a low 
enough impedance that the current  is negligible. This will allow us to examine the 
inverting input only. 

Figure 9.2 shows the effect of input  resistance, Ri, from the inverting to 
noninvert ing inputs. If we assume that the input resistance is equal to the typical 
value, 3 Mf~, then the opamp output  equation looks like this: 

R1 

1 , 

INPUT RESISTANCE 

V1 

R2 

V+ Vo 

Figure 9.2 
Opamp input resistance. 
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g o  
R1Ri + R2Ri 

R 1Ri + R2 R 1 + R2 Ri 

Av 
+ R1Ri 

IfAv is very large, then the/AV term goes to zero, the Ri term cancels out, and 
the result is equal to the ideal equation. So the effect of input resistance is 
dependent  on the open-loop gain of the opamp. 

The input impedance range of the LM318 is fairly low as opamps go; the 
MAX400 has an input resistance at least 30 Mft. Clearly, choosing a better opamp 
will alleviate errors caused by input resistance. Another approach is to change the 
impedances; changing to smaller resistors for Rf and R1 will reduce the error 
caused by input resistance. Of course, this increases the output  current  of the 
opamp and may affect other parts of the circuit. 

We ignored the input resistance of the noninverting input in this example. If 
the application calls for connecting the opamp input to a high-impedance source, 
then the input resistance of the noninverting input must be taken into account; it 
has the effect of making a voltage divider with the resistance of the source. 

Frequency Characteristics 

Figure 9.3 shows an approximate,  typical, gain-versus-frequency plot for the 
LM318. The open-loop gain falls off with increasing frequency, approaching 
0 dB (gain of 1) at around 10 MHz. As shown before, using actual gain versus 
ideal gain for the LM318 resulted in a noninverting amplifier with an ideal gain of 
6 having an actual gain of 5.99964 (7.199568/1.2). Using the chart in Figure 9.3 to 
estimate the open-loop gain, we find that it falls from 100,000 at 0 Hz to 3000 at 
1 kHz, and to 500 at 10 kHz. If we plug this into the output  equation for a 1.2 V 
input signal, we get the following results: 

�9 Output  voltage at 0 Hz = 7.199568 V(gain = 5.99) 
�9 Output  voltage at 1 kHz = 7.185 V(gain = 5.98) 
�9 Output  voltage at 10 kHz = 7.115 V(gain = 5.93) 

Even with an 8-bit system, there are 2 bits of error at 10 kHz. The frequency 
characteristics of an opamp affect the accuracy in high-precision applications. The 
effects get worse with higher gain; if the same opamp has an ideal gain of 60 
instead of 6 (R1/R2 = 10 K/599 K), then the gain falls to 59.688 at 1 kHz and 
54.28 at 10 kHz. 
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Figure 9.3 
LM318 gain versus f requency.  

Temperature Effects in Resistors 

T h e  value of  a resistor changes  with t e m p e r a t u r e .  T h e  relat ionship between 

resistance and  t e m p e r a t u r e  is def ined as the t e m p e r a t u r e  coefficient (TC) and is 

specified in parts  per  million per  deg ree  cent igrade  (ppm/~ Typical  t empera-  

ture  coefficients for film resistors range  f rom 2 5 p p m / ~  to 100ppm/~  The  

formula  for calculating the t e m p e r a t u r e  coefficient is as follows: 

TC - R2 - R1 x l  0 6 
(T2 - T1)R1 

where  TC - t e m p e r a t u r e  coefficient, T2 - t e m p e r a t u r e  2, T1 - t e m p e r a t u r e  1, 

R 2 -  resistance at t e m p e r a t u r e  2, and R1 - r e s i s t a n c e  at t e m p e r a t u r e  1. To  find 

the new resistance at a new t e m p e r a t u r e ,  we can r e a r r a n g e  the equat ion to look 

like this: 

T C •  • ( T 2 - T 1 )  
R2 = + R1 

10 6 
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Using the noninver t ing opamp circuit we've been looking at, suppose that the 
resistors have a 100 ppm tempera tu re  coefficient, and the resistors have nominal  
value at 25 ~ If the 10 K resistor is next to a power  IC that raises the tempera-  
ture of the resistor by 10 ~ what happens? Using the preceding equation, we get 
a new resistance of 10,010 ohms. This changes the (ideal) opamp gain from 6 to 
5.995. The  output  voltage goes from 7.2 to 7.194 vol tsmno appreciable effect on 
the 8-bit system we've been looking at, but  a 1-bit e r ro r  in a 10-bit system, and a 
2-bit e r ro r  in a 12-bit system. 

This example  is a bit contrived to illustrate the point, because one resistor is 
considerably hotter  than the other.  This example  does point out that things such 
as circuit-board layout (how close the 10 K resistor is to a power  IC) can also affect 
accuracy. Moving the 10 K resistor farther  from the hot componen t  could reduce 
this specific error.  You could also see this kind of e r ro r  if the two resistors had 
different t empera tu re  coefficients. Using resistors with lower t empera tu re  coeffi- 
cients will reduce t empera tu re - induced  errors  overall. 

Voltage References 

All ADC systems require  some kind of voltage reference. All voltage references 
have some nominal  value, but they also have a tolerance that specifies how much 
they can vary from this value. Because references are semiconductor  devices, they 
are susceptible to t empera tu re  effects as well. 

The  LM336A-2.5 is a 2.5 V reference diode that is used much like a zener  is 
used (Figure 9.4). When  opera ted  within its specified cur ren t  range and at 25 ~ 
it has a voltage range between 2.44 and 2.54 volts (the B version has a wider 
range). If an LM336 is used as a refierence to measure  voltage with an 8-bit ADC, 
an input  of 1 V will result in an output  value between 100 (at 2.54 V) and 104 (at 
2.44 V). In a 10-bit system, the same 1 V input  will result in an output  value 
between 403 and 419. 

Figure 9.4 shows what happens  in an ADC system using an LM336 with 
nominal,  maximum,  and min imum values. At an input  voltage of 0, the ou tpu t  
code will be 0. As the measured  voltage rises, the code read from the ADC 
diverges from the nominal value by a constant percentage.  

Unlike a zener, which has two leads, the LM336 has three leads. Figure 9.4 
shows how the third lead can be used to adjust the voltage of the device. In the 
circuit shown, the adjustment  range will be about  120 mv. Of  course, this requires 
a manual  adjustment  in the system. 

Compensat ion for the voltage variation could also be accomplished in software. 
I r a  known, precise voltage is applied to the system, the soitware can calculate 
what the offset is. In the example  we just  looked at, if 1.000 V is applied to a 10-bit 
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Figure 9.4 
LM336 vol tage reference. 

ADC using an LM336 reference, the output  value will be 409 if the LM336 is at 
exactly 2.5 V. If the output  is 419, then the software knows that the LM336 
voltage is low and that all results should be multiplied by 409/419 or 0.976. If 
the result is 403, then the results should be multiplied by 1.014. 

Of course, many systems cannot implement  floating-point calculations, but the 
same thing can be accomplished with a 1024-entry table. Each value read from 
the ADC is used as an index into the table to get the corrected value. This has the 
advantage of requiring the calculation to be made only once, when the table is 
created, but at the expense of memory usage. Such a scheme requires a calibra- 
tion step after the product  is built, and nonvolatile storage to hold the results. As 
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with any such calibration scheme, field replacement  of parts means that the field 
engineer  either must be able to calibrate the system, or the calibration values 
(microprocessor and/or memory) must be changed if the part  of the system 
containing the reference is changed. 

Microcontroller-based designs often do not have any leftover pins to tell the 
CPU when to operate normally and when to capture a calibration value. If your 
design uses a pin as an output,  you can pull it up with a resistor and use a switch 
or shunt j u m p e r  to ground it. On power-up, the software checks the pin. If the 
pin is high, it is p rogrammed  as an output  and the normal code is executed. If the 
pin is low, it has been externally g rounded  and the code executes the calibration 
function. 

The  LM336 voltage also varies with temperature ,  typically 30mv over the 
range from - 5 5  ~ to +125 ~ This drift has the same effect on the result as 
the voltage tolerance, but it is tempera ture  dependent .  

More precise voltage references are available. The  Maxim MAX6225 is a 2.5 V 
reference with a voltage range between 2.499 V and 2.501 V at 25 ~ The  part  is 
available in different versions with tempera ture  coefficients as low as 2 ppm/~ 
The  MAX6225 also has the capability to add a potent iometer  that allows adjust- 
ment  of the voltage range by about 30 to 50 mv. 

Temperature Effects in General 

As was already mentioned, the opamp offset voltage varies with temperature ,  
resistor values vary with temperature ,  and other components  vary with tem- 
perature,  including voltage references for ADCs and opamp biasing. All of 
these errors accumulate in one direction or another,  affecting the overall 
result. 

If the components  for a particular high-precision subsystem can be collected in 
one place, such as one corner of a circuit board, it may be possible to compensate 
for them in software. You can do this by placing a tempera ture  sensor near the 
high-precision part of the circuit. The  system can then be calibrated at various 
temperatures,  with the software maintaining a table of actual ADC results for a 
known input at each temperature.  

Say you are measuring some input voltage generated by a sensor. You could 
apply a precise voltage to the input of your high-precision measurement  system 
and then put the system in an environmental  chamber  where you can control the 
temperature.  The  microprocessor measures the input voltage, then measures the 
temperature.  The  result is placed into a table. At each tempera ture  point and 
each input voltage point, a new table entry is made. The  results are stored in some 
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kind of nonvolatile memory,  such as EEPROM. In operation, every time the 
system makes a measurement,  it also reads the temperature and looks up the 
actual input value that corresponds to that measurement  value at that tempera- 
ture. If there are a lot of data points, the table will get very large, so you may want 
to calculate the compensation value instead of using a table. To make use of this 
technique, you must be able to do the following: 

�9 Ensure that all the high-precision parts of the circuit and the temperature 
sensor can be collected into one area and are at the same temperature.  This 
may require potting the parts or using a fan. The non-high-precision parts, 
such as the microprocessor, do not need to be controlled in this way. 

�9 The software must have sufficient storage or th roughput  to build a table or 
calculate compensation values. 

�9 Provide precise inputs and hold the temperature  during calibration. The 
results are only as good as the input value and the temperature control. The 
example just mentioned used a simple voltage monitor to illustrate the concept. 
In some systems, such as something that measures light or sound, providing 
precise inputs may be problematical. 

�9 If any components in the high-precision part of the circuit produce significant 
self-heating, such as power dissipated in a resistor, the results will be less 
precise. 

This technique does not lend itself to large production volumes, due to the 
need to calibrate every system. And if the sensor is remote, temperature effects 
at the sensor cannot be compensated this way (but a second temperature 
sensor mounted with the remote input sensor would permit such compensa- 
tion). 

Noise and Grounding 

Figure 9.5A shows a high-resolution ADC and a crystal-controlled oscillator. 
When the oscillator output  switches, current flows through the oscillator 
ground connection back to the power supply. Because the ground connection 
will never have zero impedance, the ground connection for the ADC will have 
a voltage "spike." The size of this voltage pulse will depend on the impedance 
of the ground connection and the amount  of current  produced in the ground 
by the oscillator. The higher the resolution of the ADC, the lower this voltage 
can be and still cause problems. Even if the ADC is too slow to respond to the 
individual voltage spikes, the average variation can result in noise in the ADC 
output.  Figure 9.5B shows how the grounding arrangement  can be changed to 
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Figure 9.5 
Ground  noise. 

minimize this error. The oscillator has a separate connection back to the power 
supply. This is typically implemented with a separate ground plane for the 
analog circuitry, connected to the digital ground plane either at the ADC 
ground pin or at the point where the power supply connects to the board. 
A single-point connection minimizes the amount  of digital current  that can flow 
in the analog ground plane. 

This example used an ADC, but the same principles apply to DACs, sample- 
and-hold circuits, and opamps. Most high-precision circuits will need a separate 
ground plane for analog signals. Sometimes multiple analog ground planes, for 
different analog sections, are required. 

Finally, some ground noise immunity can often be gained simply by amplifying 
the signal you are trying to measure. If you are measuring with a 12-bit ADC, 
going from 0-to-100 mv to 0-to-2.5 V changes the ADC step size from 24.4 ~v to 
610 ~ v. With a 100 mv range, a ground offset or noise signal of 24.4 ~tv will result 
in a 1-bit error  in the result. With a 2.5 V range, the noise/offset has to reach 
610 ~t v to produce a 1-bit error. Of course, any noise or offsets that appear on the 
inputs will be scaled by the same amount,  but any noise added to the signal after 
the scaling (such as ground noise on the ADC) will not. 
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Printed Circuit Board Layout 

The layout of the printed circuit board (PCB) is important in any analog system. 
Poor board layout can result in ground loops and noise. As resolution goes up, 
these add more to the error. 

PCB Grounding 

This has been mentioned already, but you generally want to avoid having any 
current flowing in the analog ground except what is associated with the analog 
signals. If digital signals flow through the analog ground, they will induce noise 
on the grounds of the analog parts such as the opamps and ADCs. In some cases, 
you have to supply power to a PCB at the end of a cable. The cable resistance can 
cause significant offset in low-level analog signals if the current is high. For high- 
resolution applications, use a separate analog ground plane and add a separate 
analog ground to the cable. This means at least one extra pin on the connector, 
but it minimizes the offset caused by DC currents. 

Some noise coupling into analog systems comes from capacitive coupling 
between traces. Run analog traces at right angles or at 45 ~ to digital traces. Use 
two analog ground planes and sandwich the analog traces between them. If an 
analog trace must run next to a digital trace, move it as far away as possible and 
run a ground trace between them. 

An ADC must have both analog and digital sections, and many ADCs have both 
an analog and a digital ground pin. Keeping digital noise out of the analog part of 
the circuit is a key factor in high-precision designs. Many ADC data sheets say to 
connect the analog ground to the digital ground at the digital ground pin. But 
what do you do if your design requires two ADCs? You can't have two single- 
point connections to a single ground plane. 

Figure 9.6 shows two ways of handling this. In Figure 9.6A, a board has a 
digital ground plane and two analog ground planes. Each analog ground plane 
has a single-point connection to the digital ground plane. This approach will 
work if the two analog sections have no common connections. 

Figure 9.6B shows a method you can use if the two analog sections have some 
common signals such as a common ground. A single analog ground plane is tied 
to the digital plane at one point. In this arrangement  you will typically connect the 
ADC digital grounds to the digital ground plane, not to the analog ground plane. 

Power Supplies 

An analog circuit sometimes has to be designed into a circuit board for a standard 
bus, such as PC/104 or VME. The power supplies on these buses are often not 
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Multiple analog devices on a single PCB. 

suitable for analog components.  They are often noisy, and you don't always get 
the voltages you need. Many computer systems, such as PC/104, operate with 5 V 
only, or with 5 V and 12 V only. 

In some cases, you can fix a noisy supply by adding LC filters, as shown in 
Figure 9.7A. The inductor and capacitor must be selected to filter out the power- 
supply switching frequency, which is usually in the tens of  kilohertz. In some 
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DC-DC converters in analog circuits. 

applications you need different voltages than the voltage supplied on the bus to 
which you're interfacing. An analog input that has to accept + 12 V inputs but is 
operating from a 5 V only system is a typical example. Figure 9.7B shows how 
DC-DC converters can be used to produce additional voltages. Because the DC- 
DC converter is a switching supply, you may need to filter these outputs. 

It is also possible to completely isolate the analog subsystem from the digital 
system to which it interfaces. Figure 9.7C shows the use of DC-DC converters with 
isolated outputs and an analog ground that is separate from the digital ground. 
This system might include a precision analog front-end and an ADC to convert 
the analog signals to digital. Optical isolators are used to communicate between 

238 Analog Interfacing to Embedded Microprocessor Systems 



the analog and digital systems, making noise management easier and avoiding 
the possibility of ground loops between the two systems. You can minimize the 
number  of optical isolators needed by using a serial interface such as SPI and 
using the bidirectional technique described in Chapter 3. Note that when you are 
testing and debugging such a system, your test equipment should not connect the 
two grounds together or you may introduce noise problems. An example of this 
would be the use of a dual-channel oscilloscope with the two probes grounded to 
the two different grounds. 

Statistical Tolerancing 

When determining the worst-case range of values in an analog circuit, you can 
use the specified extreme limits of the parts to guarantee a good design. If you are 
using 1% resistors, assume that the actual resistor values your manufacturing line 
receives will span the full range and that a worst-case stackup will occur even- 
tually. This results in the safest design, but it may result in unnecessary complica- 
tion. For instance, calculating the worst-case tolerance stackup may result in a 
design that requires manual adjustment. 

Most components you use in your design will not have an equal probability of 
occurring in every value. In most cases, the distribution of values will fit some 
variation of the normal (bell) curve. If you are using 1% resistors, you will find 
that most of the resistors you get are closer to the nominal value and very few 
resistors differ from nominal by 1%. How wide the spread is depends on the 
process used by the manufacturer. 

If you are calculating tolerance stackup for a circuit containing multiple parts, 
the probability of getting all the values skewed at the ends of their respective 
ranges is small. The more parts there are, the smaller this probability is. You can 
estimate the percentage of circuits that will be out of tolerance by taking into 
account the tolerance ranges and distributions of all the parts in that specific 
circuit. There are simple statistical methods for determining the resulting spread 
of values, such as the sum-of-squares method. A more complex analysis such as a 
Monte Carlo simulation can be performed using statistical software packages. 

Statistical tolerancing depends on the parts that go into the tolerance stackup 
having distributions across their ranges and also depends on the distribution of 
one part not affecting the distribution of another part. Therefore,  to make 
statistical tolerancing work, the following things must be true: 

The components you are combining must be independent. For instance, if you 
have two resistors of the same value, it is very possible that, in production, they 
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will come from the same manufacturing batch and therefore may be very close 
to each other in value. These could not be considered independent  parts. 
The  components  you are tolerancing should have some reasonably normal 
distribution. For example, suppose that you are using a voltage reference diode 
and suppose that the manufacturer  selects out the ones that are very close to the 
nominal value for sale at a higher price under  a different part  number .  The 
parts you will be left with will not be normally distributed, but will be skewed 
toward the ends of the tolerance band. 

When you have finished the calculations, you will have an estimate for the 
range of values that will be produced in your circuit as a result of the range of 
component  values that go into it. You can calculate what percentage of the parts 
will fall outside the acceptable limits. Then  you have to make a decision. 

�9 If you are building an inexpensive board, you may be able to throw away any 
boards that are outside specification. This, of course, implies a way to measure 
the assembled circuits so you know when one is outside spec. 

�9 If you are building an expensive board costing hundreds  or thousands of 
dollars, it may not be feasible to throw away any bad boards. In that case, you 
have to decide whether statistical tolerancing is worth the cost. For example, 
you may have to choose between reworking 4% of your boards and having a 
manual  adjustment on all of them. Which is cheaper in terms of manufacturing 
and support  costs? 

In making these decisions, true worst-case tolerancing is always the safest 
approach.  However, statistical methods often give acceptable results at lower 
cost. 

Supply-Based References 

This book has used as examples supply-based references such as an internal 
microprocessor ADC that has the +5 V supply as a reference voltage. For 
consistency, this chapter has done the same thing in many cases. However, 
in a real-world high-precision application, it is rare to find a logic supply used 
as a reference. In most systems, the logic supply is noisy and is not regulated 
well enough to serve as a reference for ADCs or opamps. Again, it was used 
here so that the examples would be consistent with those found elsewhere in 
the book. 
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Summary 

To summarize, in a high-precision application you need to consider the effects of 
all the following factors: 

�9 Opamp open-loop gain 
�9 Opamp input offset voltage 
�9 Opamp input resistance 
�9 Opamp frequency/gain roll-off 
�9 Temperature  effects in resistors 
�9 Temperature  effects in voltage references 
�9 Grounding 
�9 PCB layout 
�9 The possibility of isolating the high-precision part of the system 
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Standard Interfaces 10 

Most embedded  systems interface to sensors and output  devices directly. However,  
there are a couple of standard interfaces used in industrial applications. Devices 
meeting these specifications are usually attached to an industrial compute r  (indus- 
trial PC) or a programmable  logic controller (PLC). They  are briefly covered here, 
because the embedded  designer may run  into them somewhere along the way. 

IEEE 1451.2 

The  IEEE 1451.2 is an open s tandard  that provides a s tandard  interface for 
sensors and actuators. IEEE 1451.2 defines the electrical and interface protocol. 
IEEE 1451 sensors and actuators contain an e m b e d d e d  microprocessor  on a 
module  called a Smart  T ransduce r  Interface Module (STIM). T h e  STIM micro- 
processor handles the physical interface to the sensors and the s tandard  interface 
to the controlling system. Each STIM can contain up to 255 sensors or actuators. 

Electrical 

IEEE 1451 is a 10-wire, synchronous, serial interface. Signals include +5 V, ground,  
data-in and data-out lines, a clock, an interrupt ,  and other  signals. IEEE 1451 
STIMs are hot swappable, meaning they can be inserted and removed with power 
applied. Each IEEE 1451 STIM can suppor t  multiple transducers or actuators. 

Transducer Electronic Data Sheets 

IEEE 1451 specifies that each STIM have a t ransducer  electronic data sheet 
(TEDS) This tells the controlling system certain parameters  about  the t ransducers  
on the module,  including uppe r  and lower range limits, warm-up  time, calibra- 
tion information,  and timing information.  T h e  specification also includes 

243 



additional TEDS parameters  that are optional, some that are sensor specific, and 
some that are reserved for future extensions to the standard.  

Standard Units 

Informat ion  passed from an IEEE 1451 STIM must be in s tandard  units. The  
actual sensor may be measur ing  tempera ture ,  voltage, cur ren t  pressure,  velocity, 
or any other  real-world parameter .  Whatever  is being measured  is converted to a 
s tandard  unit  before it is t ransmit ted to the controlling processor via the IEEE 
1451 interface. The  IEEE 1451 s tandard  permits sensors to suppor t  the following 
units: 

�9 Length (in meters) 
�9 Mass (in kilograms) 
�9 T ime  (in seconds) 
�9 Cur ren t  (in amps) 
�9 T e m p e r a t u r e  (degrees kelvin) 
�9 Amount  of substance (mole) 
�9 Luminous  intensity (candela) 
�9 Plane angle (radians) 
�9 Solid angle (meters 2) 

Whatever  unit the sensor measures  in must  be converted to these s tandard 
units. A sensor may be measur ing  speed in miles per  hour  or furlongs per 
fortnight,  but  it must  be converted by the STIM microprocessor  to meters  per 
second before transmission over the IEEE 1451 interface. 

When  the controlling processor reads sensor data from an IEEE 1451 sensor, 
what gets t ransmit ted is a string of exponents ,  one for each of these values. The  
velocity-measuring example  just  given would output  a positive exponen t  for 
meters  and a negative exponen t  for seconds, making a meters/second result. All 
the other  exponents  would be 0 (anything to the 0 power, except  0, is 1). The  
s tandard  also provides for digital data from a sensor or to an actuator. 

Although this method  complicates the software in the STIM microprocessor,  it 
provides a s tandard interface for the controlling processor. In theory,  any IEEE 
1451 STIM can be attached to any IEEE 1451 controller and it will work. 

4-20  ma Current Loop 

T h e  4 - 2 0 m a  s tandard (Figure 10.1) uses the same pair of wires to power a 
remote  sensor and to read the result. The  controlling microprocessor,  usually 
an industrial PC or other  industrial computer ,  provides a voltage on a pair of 
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Figure 10.1 
4 - 2 0  ma current  loop. 

wires. The controller also senses the current  in the wires. The sensor converts 
whatever it is measuring (temperature,  velocity, etc.) to a current  value. The 
sensor draws 4 ma at one end of its measurement  range, and 20 ma at full scale. 

Because the 4-20 ma loop is differential, the system is suitable for sensors that 
are removed from the controller by quite a distance. Any common-mode  noise is 
ignored by the current measurement  circuit. One drawback to this method is the 
need for a pair of wires and sensing circuitry for every sensor in the system. 

Fieldbus 

Fieldbus is a digital, serial, two-way communications system that interconnects 
measurement  and control equipment  such as sensors, actuators, and controllers. 
Conceptually, Fieldbus provides a means to replace point-to-point connectivity of 
4-20 ma sensors with a mut idrop connection that can communicate with multiple 
sensors over a single communication path (Figure 10.2). The Fieldbus specifica- 
tion describes a layered model, including the physical connection layer, a data 
link layer, and application layers. 

Fieldbus uses twisted-pair wiring. A single pair of wires provides both power 
and data communication. Fieldbus devices draw power from the wiring, just as 
4--20 ma devices do. Data transmission is performed by changing the current drawn 
by the transmitting device; the current  swing between 0 and 1 is 20 ma. The data 
rate is 31250 bits per second using Manchester encoding. Manchester encoding 
always has a transition in the middle of the bit; one of the advantages of Man- 
chester encoding is that the average DC value of the signal pair is zero because the 
bits are always high for 50% of the bit period and low for 50% of the period. The 
relatively low data rate permits very long cabling runs, which is important  in large 
factory and plant control environments.  Figure 10.2 shows Manchester encoding 
for one and zero bits, and for a bit string of 0110. 

Fieldbus communication uses a combination of polling and token passing. Bus 
masters poll devices on the bus for information, and a Fieldbus device can 
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Figure 10.2 
Fieldbus. 

transmit only when polled. If the bus has multiple masters, control of the bus is 

managed  by a "token" that is "owned" by one master at a time. When a master is 
finished using the bus, it sends a message to the next master, handing  off control 
of the bus to that master. 

Available Fieldbus peripherals match those available in 4-20 ma format, and 
include such devices as pressure sensors, t empera ture  sensors, flow measurement  
sensors, and controllable valves. 
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Analog Toolbox 11 

This chapter contains some miscellaneous topics and topics that pull together 
multiple concepts from preceding chapters. 

Microcontroller Supply and Reference 

Chapter 2 mentioned the effect that supply voltage can have when used as a 
reference for microcontroller-based analog inputs. In many cases, you can 
minimize these effects by referencing your analog inputs to the supply voltage. 
Figure 11.1A shows a thermistor connected to an analog input and using a 
pull-up to a precision reference voltage. At first glance, it might appear that 
this is a very accurate design because the precision reference gives a repeatable 
voltage versus temperature at the analog input. The problem with this design 
is that the microcontroller is measuring the temperature using the supply 
voltage as a reference, so the overall accuracy is only as good as the micro- 
controller supply voltage. 

Figure 1 1.1B shows the same circuit, but with the thermistor referenced to the 
microcontroller supply. This provides a more repeatable result. If the thermistor 
is 10 K and R1 is 10 K, for example, the analog input to the microcontroller will 
always sense half the supply voltage regardless of what the supply voltage actually 
is. This method will work only if the analog input can be made to follow the 
supply voltage. This essentially means that the output being measured by the 
microcontroller is referenced to the supply. Note that just powering the sensor or 
sensor circuit from the microcontroller supply may not be sufficient. If the sensor 
circuit has its own internal reference that controls the output value, it will 
produce the same output regardless of variations in the supply voltage. 

An alternative compensation method, for cases in which the input is independ- 
ent of the microcontroller supply voltage, is shown in Figure 11.1C. In this 

247 



PRECISION 

+2. ~R1 +Iv I vcc 
MICROCONTROLLER 

ANALOG INPUT 

THERMISTOR 

INPUT BEING MEASURED 

VCC 

MICROCONTROLLER 

ANALOG INPUT 1 
ANALOG INPUT 2 

REFERENCE DIODE 

Rth 
THERMISTOR 

+V 

R1 

. 

VCC 

MICROCONTROLLER 

ANALOG INPUT 

Figure 11.1 
Microcontroller supply reference. 

figure, a second analog input is used to measure the value of  a precision reference 
diode. Of course, the microcontroller must have at least two analog inputs to take 
advantage of  this technique. In operation, the microcontroller would use the 
reference diode to determine the error caused by the supply voltage. For exam- 
ple, if the reference diode is 2.5 V and the supply voltage is 5 V, the reference 
diode will produce a value of 8016 (128 decimal) when the voltage is converted 
(assume the internal ADCs are 8 bits). If the supply is 4.8 V, the reference diode 
will convert to a value of  8516 (133 decimal). The microcontroller can use this 
value to correct the values from the independent  input. In this case, the values 
read from that input will be multiplied by 128/133, or 0.96, to get the correct 
reading. Note, though, that the overall accuracy is only as good as the combined 
accuracy of the reference diode and whatever reference the external input is 
using. Finally, to make use of this technique, the microcontroller must have 
sufficient throughput to make the required calculations and memory to hold 
the math algorithms; this may be a problem on some small microcontrollers. 
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Resistor Networks 

Some applications need better repeatability than you can get with standard 1% 
resistors, but don't need the level of precision (and cost) of going to 0.1% 
resistors. Sometimes you can gain an advantage by using resistor networks. 
Resistor networks are typically specified with the same resistance tolerances as 
discrete resistors: 0.1%, 1%, and 5%. However, the matching between resistors 
within the same network is often twice as good as the absolute resistance 
accuracy. If your circuit uses multiple resistors of the same value, you can 
often get better accuracy by using a resistor network rather than discrete parts. 
Note, though, that this works only for resistors in the same package; it doesn't 
work across packages. 

Figure 11.2 shows a simple voltage divider. This circuit might be used to bring 
an analog input that swings between 0 and 8 V down to the 0 to 5 V range used by 
a microcontroller analog input. In the figure, both resistors are 10 K. Ideally, the 
output voltage would be half the input voltage. However, if the resistors are 1% 
discrete parts, the output voltage may not be exactly half the input. 

Say that R1 is high by 1% and equals 10,100 ohms, and R2 is low by 1% and 
equals 9900 ohms. The output is given by the following equation: 

INPUT • 
R2 

R1 + R1 
= INPUT x 0.495 

which is incorrect by 1%, the tolerance of the resistors. 
Now, say that R1 and R2 are resistors that are in the same resistor network 

package. The specified resistance is 1%, but the part-to-part variation is 0.5%. If R1 
is high by 1%, it will be 10,100 ohms, as before. However, because parts within the 

INPUT 

R1 
1OK 

OUTPUT 

Figure 11.2 
Resistor voltage divider. 
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network package can only vary by 0.5%, R2 cannot be less than 10,049.5. As a 
result, the output  will be 

INPUT x 
R2 

R1 + R1 
-- INPUT x 0.4987 

which is within 0.25% of the ideal value. 

Multiple Input Control 

In some cases a system will have multiple inputs. For example, you might be 
controlling a telescope that is taking pictures of clouds. For some reason (perhaps 
to protect sensitive optics coatings), you don' t  want to aim the telescope at the sun 
(Figure 11.3). In this case, one of the inputs would be the position of the sun, 
probably determined by the date and time of day. You would also have as inputs 
the telescope's current position and the desired position. 

This is a good example of a two-input problem, because the position of the sun 
is not fixed. You can't just use a table to look up the move path because the 
position of the sun varies. To move the telescope without crossing the path of the 
sun, you can take two approaches. 

The first approach is to calculate the direct path, determine that it crosses 
the sun's path, then calculate a new path that just misses the sun. This is 
illustrated in Figure 11.3A and 11.3B. This calculation may be complicated and 
time-consuming, especially on a microcontroller or other system with limited 
capability. 

A simpler approach is to calculate the position of the sun and then calculate a 
path that remains as far as possible from the sun. One way to do this is to divide 
the telescope range into a grid of, say, 8 or 16 regions. When calculating the move 
path, any region overlapped by the sun is avoided. A typical example is shown in 
Figure 11.3C. Figure 11.3D shows how the move area can be subdivided into 16 
regions. 

Another alternative would be to find a sunless path to the perimeter of the 
motion circle, and then determine which way to move around the circle to avoid 
the sun. In the example shown, either direction would work, but if the sun were 
on the perimeter of the motion circle, the direction would have to be deter- 
mined. 

You could make the path decision table driven by having two move paths from 
any region to any other region. One path would be a straight line and the other 
path would avoid any region in common with the first path. In this way, you could 
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Figure 11.3 
Telescope pointing example. 

determine a safe path by checking the straight line move for "interference" from 
the sun. If the straight line path goes through a region containing the sun, just 
pick the other path. Once in the target region, calculate a straight line move to the 
desired point. This method has the advantage of minimizing calculation require- 
ments for simple processors. 

The foregoing assumes that the system requirements don't include taking 
photos of any region containing the sun. If you did have to take photos right 
next to the sun, you could make the regions smaller or you could have multiple 
paths from any region to any other, arriving at the destination from different 
directions. 
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Although the telescope example is very specific, the general principles are 
applicable to many similar multiple input problems, such as 

�9 Muhihead fluid pipetting systems in which the pipettes can interfere with each 
other 

�9 A heating system in which the maximum safe heater power depends on a fluid level 
�9 A stepper motor with resonance points that depend on the load 
�9 A valve control system in which valve closing/opening speed depends on fluid 

viscosity and flow ratemvariable closing/opening time might be required to 
avoid "water hammer" or similar effects 

�9 A heater or cooler system in which the intent is to quickly get the target to a 
specific temperature  and where the amount  of heating or cooling applied 
depends on the size and initial temperature  of the target 

Another example of multiple input systems is the need to adjust system para- 
meters based on an input. In Chapter 5, a heater example was mentioned. In this 
example, the proportional (or PID) control had an offset. This offset had to be 
adjusted for varying loads and ambient conditions. A large load or very cold ambient 
temperature might need a larger offset to maintain the temperature. In a case like 
this, additional sensors may be needed to measure these parameters. The system 
could calculate parameters such as the offset and/or gain, or a set of tables could be 
used to select the values based on the values of the additional input parameters. 

AC Control 

Some designs require control of AC power to turn on lights, motors, heaters, or 
other AC devices. The simplest method of controlling such devices is with solid- 
state relays (SSRs), as shown in Figure 11.4. An SSR consists of an optoisolator 
driving an SCR or triac. The internal optoisolator is selected by the manufacturer 
to ensure that it will be capable of driving the SCR or triac. Some SSRs have 
heatsink plates on the back that need to be bolted to a metal chassis or heatsink to 
avoid overheating the SSR. 

In many cases you need to perform zero crossing switching. This consists of 
switching the load only when the AC signal crosses zero (Figure 11.5). If the AC 
signal is switched when the voltage is not zero, then the load will see a sudden 
jump  in the applied voltage instead of a smooth sine wave. This can damage some 
loads. In addition, the fast rising edge causes considerable EMI. Finally, in some 
cases, the load will draw excessive current if the AC voltage is suddenly applied 
and the value of the voltage isn't zero. You can get solid-state relays that have zero 
crossing built in. These parts include circuitry that turns on the SCR or triac only 
when the AC voltage is zero. 
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In some cases, you need to perform the zero crossing detection in software. 
Figure 11.5C shows a way to do this; an optoisolator is connected, with a current 
limiting resistor, across the AC line. Each time the AC voltage goes through zero, 
the optoisolator turns off and an interrupt is generated to the microprocessor. All 
switching of external AC loads is performed in the ISR. Typically, to get fast 
response, the software outside the ISR will set flags or semaphores to determine 
what AC outputs should be turned on. The ISR reads the flags and switches the 
appropriate outputs on; the ISR does not do whatever processing is required to 
determine what should be off or on, it just switches the outputs. This provides 
minimum latency between the interrupt  and the output  switch. 

Note the external diode across the optoisolator LED. This diode conducts 
during the negative half of the AC cycle, preventing excessive reverse voltage 
across the optoisolator LED. 

Voltage Monitors and Supervisory Circuits 

A number  of ICs are available that provide voltage monitoring functions for 
microprocessor circuits. An example is the Texas Instruments TL7770. The 
TL7770 has two voltage comparators that can monitor either of two voltage 
inputs. Generally, these devices work by asserting a microprocessor reset when 
the supply voltage reaches some predefined value (1 V for the TL7770), and then 
remove the reset when the monitored voltage has been above a preset threshold 
for some predefined period of time. This ensures that the microprocessor is held 
in reset until the supply voltages are stable. 

Although many supervisory ICs are intended for monitoring multiple micro- 
processor supplies, they can be used to monitor other voltages as well. Typically, 
one input would be used to monitor the microprocessor supply and the other 
would be used to monitor a higher voltage such as that used to drive a motor. In 
some cases, you will need to use resistive voltage dividers to bring the voltage you 
want to monitor within the range of the supervisory I C. 

Driving Bipolar Transistors 

A bipolar transistor is often used as an output  driver for a microprocessor. Figure 
11.6A illustrates how a transistor can be used. When the microcontroller output  
pin is high, it sources current  into the transistor base and the transistor turns on. 
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Driving bipolar transistors. 

When the output is low, the transistor turns off. The  requirements for driving a 
bipolar transistor from the output of  a microcontroller are 

�9 Voltage output from the microcontroller must be high enough  to turn the 
transistor on, typically greater than 0.8 V. 

�9 Current into the base of the transistor must be high enough to saturate the 
transistor. 

�9 Current into the base of the transistor must be limited to a value that will avoid 
damage to the transistor. 

�9 Low-output voltage of the microcontroller output must be low enough  to 
ensure that the transistor turns off. This is typically not a problem unless the 
output must sink significant current. 

The  current into the base of the transistor is calculated as 

Logic high v o l t a g e -  transistor Vbe 

Base resistor 
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(In the figure, R1 is the base resistor.) The logic high voltage is the value of the 
output  voltage for the logic used. It may vary with the load, so a logic output  that 
nominally swings to the supply may deliver less voltage if it cannot supply ade- 
quate current. The transistor base-emitter voltage, Vbe, is typically 0.6 V to 0.8 V. 

Whether  the transistor can pull its collector close enough to ground to function 
as a logic output  depends on the load and the base drive. The maximum collector 
current  is approximately equal to the base current  times the current  gain of the 
transistor, up to the point at which the transistor saturates. A signal transistor 
might have a gain of 100, so a few ma of base current  can switch a few hundred 
ma of collector current. A large power transistor may only have a gain of 10 or 20, 
so it is difficult to drive them directly from the microcontroller outputs- - there  
isn't enough gain to ensure that the transistor is saturated when driving a high- 
current  load. Consequently, driving very high current  loads typically requires a 
signal transistor driving the base of a larger power transistor. 

The simplest approach to using bipolar transistors is to set the base current at 
half or less of the maximum rated base current. If this does not provide sufficient 
collector current  for your application, or if you calculate the required base 
current  and find that it exceeds what the microcontroller can produce, then 
you are trying to switch too much current. Use another  type of driver. 

Finally, remember  that the gain of transistors tends to vary quite a bit from one 
lot to the next, so don' t  build a circuit that depends on very high gain transistors 
unless you are willing to sort them in production. 

Logic Level Translation 
Bipolar transistors provide a convenient means to pass signals between two 
systems at different supply voltages. Figure 11.6B shows a transistor used to 
connect a 5 V microcontroller and a 3.3 V external system. The collector of the 
transistor is pulled up on the 3.3 V system through a resistor. 

Switching Speed 
One problem with driving bipolar transistors directly from the output  of a 
microcontroller (or other logic) is speed. When the transistor is saturated, the 
base-emitter junction exhibits a characteristic known as stored charge. This, in 
effect, acts as a capacitor, making the transistor slow to turn off when the logic 
input goes low. In addition, the output  of the transistor circuit (the collector) does 
not have an active pull-up to force the output  high. Instead, a resistor pulls the 
output  high when the transistor turns off. Consequently, the risetime of the 
output  is dependent  on the transistor switching speed and the capacitance in 
the collector circuit. If the transistor is connected to another board via a long 
cable, this capacitance can be significant. 
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The turn-on and turn-off speed of the transistor can be improved with the 
addition of a capacitor across the base resistor, as shown in Figure 11.6C. The 
capacitor is a low impedance when the logic output  is changing states, rapidly 
charging or discharging the base circuit. A typical value for this capacitor is 
220 pf, although larger values may be needed for large transistors. 

The collector risetime can be reduced by reducing the value of the pull-up 
resistor. However, smaller resistor values increase supply current  drain and 
transistor dissipation. Also, a smaller pull-up resistor means more base current  
is needed to ensure that the transistor will be saturated. These techniques will 
make a transistor circuit switch faster, but a discrete transistor design will never be 
as fast as a driver or interface IC designed for a specific application. Bipolar 
transistors find primary use in controlling currents or voltages beyond the cap- 
ability of the microcontroller/microprocessor itself. 

High-Side Switches 
In some cases, you need to pull an output  up instead of clamping it to ground.  
Figure 11.6D shows a PNP transistor used in this way. The PNP is wired with the 
emitter connected to the positive supply voltage (the NPN had the emitter 
grounded),  so pulling the base toward ground turns the transistor on. The 
resistor between the base and emitter of the transistor ensures that the base goes 
all the way to the supply, turning the transistor completely off, in case the 
microcontroller output  doesn't  quite swing all the way. 

The same considerations apply as for the NPN transistor in terms of the base 
current. The base current  in this case is at maximum when the microcontroller 
output  is low. 

In some cases, you need to supply current  from a higher supply voltage than 
the microcontroller is using. For instance, a 5 V or 3.3 V microcontroller may 
need to switch the 12 V supply to a motor. Figure 11.6E shows how a PNP and 
NPN can be used together for this. The NPN transistor isolates the microcon- 
troller from the high voltage on the base of the PNP transistor. 

Driving MOSFETs 

Like bipolar transistors, MOSFETs also provide a means to control voltages and 
currents outside the range of the microcontroller. The simplest MOSFET drive is 
shown in Figure 11.7A. Here, a microcontroller output  directly drives the MOSFET 
gate. When the microcontroller output is high, the MOSFET is turned on and 
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sinks current .  When the microcontroller output  is low, the MOSFET is turned 
off. T h e  key points to r e m e m b e r  in driving a MOSFET in this way are 

�9 The output  voltage of the microcontroller must be greater than the MOSFET gate- 
to-source threshold voltage or the MOSFET will not turn on. This is more of a 
problem with 3 V logic than with 5 V logic, but either logic voltage requires the use 
ofa MOSFET with a logic-level threshold voltage. If necessary, a pull-up resistor can 
be added to the logic signal to ensure that it goes all the way to the supply voltage. 

�9 The  M O S F E T  has significant gate-to-source and gate-to-drain capacitance, 
shown as Cgs and Cgd in the figure. Generally, the larger the MOSFET,  the 
greater  this capacitance is. If the M O S F E T  is driving a signal that can have large 
voltage spikes, such as an inductive load, sufficient voltage can be coupled back 
into the microcontroller  to damage  the outputs.  

�9 The  MOSFET turn-on time is limited by the speed at which the gate-to-source 
voltage rises. This in turn is de te rmined  by how quickly the microcontrol ler  can 
charge up the gate-source capacitance. Many microcontrol ler  outputs  have very 
limited output  cur rent  capability. If  the MOSFET turn-on time is too long and 
the switching frequency is high, the M O S F E T  will dissipate excessive power as it 
transitions from cutoff to saturation. 

�9 If a pull-up resistor is needed to ensure  adequate  turn-on voltage, the turn-on 
time of the MOSFET will be limited to the risetime of the pull-up resistor in 
combination with the gate-source capacitance of the MOSFET.  Because the 
cur ren t  sinking capability of the microcontrol ler  output  limits the size of the 
pull-up resistor, the switching speed of the MOSFET is also limited by the same 
cur ren t  sink capability. 

Many of these problems can be eliminated by using a MOSFET driver IC, as 
shown in Figure 11.7B. In this circuit, a Maxim MAX5048 is used to drive the 
MOSFET. The  MAX5048 provides logic level inputs and can operate on supply 
voltages up to 12.6 V. The  MAX5048 has separate sourcing (P-channel) and sinking 
(N-channel) outputs. In the figure, resistor R1 is not needed. If R1 were not used, the 
P output  and N output  would be tied together and to the gate of the FET. R 1 in series 
with the P output  limits the risetime of the gate, and thereby the turn-on time of the 
FET. If the gate of the FET is connected to the P output  instead of to the N output, 
then R1 will limit the fall time of the gate and thereby the turn-off time of the FET. 

High-Side Switching 
In some cases, you want to source cur ren t  instead of sinking current .  The  
simplest way to do this is with a P-channel MOSFET,  as shown in Figure 11.7C. 
In this circuit, the MAX5048 is used to drive the P-channel ou tpu t  transistor. 
Note that the P-channel MOSFET has the source connected to the positive supply 
and the gate must  be driven toward g round  to turn the transistor on. 
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The problem with P-channel MOSFETs is that they tend to be more expensive 
than equivalent N-channel MOSFETs and they usually have a higher ON resist- 
ance, causing the transistor to dissipate more power when turned on. In some 
applications, the gate-to-source capacitance can couple the load voltage into the 
MOSFET gate, turning it on when it should be off. This typically occurs with 
inductive loads or when there is another transistor pulling the load to ground 
when the P-channel MOSFET is off. For these reasons, N-channel MOSFETs are 
usually preferred for high-side switching applications. 

The primary difficulty in using an N-channel MOSFET for high-side switching is 
the gate drive voltage. To turn the N-channel MOSFET on, the gate must be driven 
higher than the source; because the source is connected to the load in a high side 
application, this means the gate must be driven higher than the positive supply 
voltage. 

In most cases, the MOSFET is used to drive the load from the highest voltage 
available in the system, so there is no higher voltage available to drive the 
MOSFET gate. You have two choices in this case: you can use a bootstrap 
MOSFET driver or you can add a DC-DC converter. 

The DC-DC converter is the simplest solution, as shown in Figure 11.7D. You 
add a DC-DC converter to the board and use a MOSFET driver IC. The output  of 
the DC-DC converter must not exceed the maximum gate-source voltage, or the 
MOSFET may be damaged. In the figure, a DC-DC converter with a 16 V output  
produces the gate drive voltage for a driver IC. The gate of the MOSFET will 
switch between ground and 16 V, and the load will switch between ground and 
12 V. Note that the gate drive voltage cannot exceed the gate-to-source break- 
down voltage, which is typically 18 V for a MOSFET. 

A boostrap MOSFET driver IC can also drive a high-side MOSFET, as shown 
in Figure 11.7E. A bootstrap driver uses a capacitor (external to the IC) that is 
charged up to the supply voltage when the load is low. If the circuit is being used 
to drive a high-side switch, with no low-side driver, the capacitor charges through 
the load. If the circuit is being used to drive a pair of MOSFETs, one providing 
high-side drive and one providing low-side drive, the capacitor charges through 
the low-side MOSFET when it is turned on. 

When the high-side driver is turned on, the bootstrap capacitor is switched 
so that it drives the gate of the MOSFET above the supply voltage to turn it 
on. Typically, the bootstrap capacitor is much larger than the gate-source 
capacitance of the MOSFET, so the voltage across the capacitor does not drop 
very far when driving the MOSFET gate. However, once the high-side MOSFET 
is turned on, there is no longer a charging path for the bootstrap 
capacitor, so it will eventually discharge. For this reason, bootstrap circuits 
are normally used in applications in which the MOSFET is continuously switch- 
ing. If you need to turn the MOSFET on and leave it on, you will need a DC- 
DC converter or some similar method. 
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Reading Negative Voltages 

Sometimes you need to read and convert a negative voltage with an ADC that 
operates only from ground and a positive supply. Sometimes the only way to 
accomplish this is to use an opamp, powered from both positive and negative 
supplies, to shift the signal to a range the ADC can use. 

Figure 11.8 shows a simple resistor voltage divider that will accomplish the 
same thing, with some limitations. In the figure, the input is a sine signal that 
swings between - 2  V and +2 V, being read by a microcontroller that operates 
from +5 V and ground. Using a voltage divider (R1 and R2) brings the signal 
within the 0-5 V range of the microcontroller ADC input. With the values used in 
the figure, the signal swing is 1.5 V to 3.5 V. There are a few limitations on this 
technique: 

�9 The voltage divider essentially acts as a resistive pull-up to the supply voltage. 
This may affect the input signal. 

�9 The voltage swing is reduced; in the figure, a 4 V P-P signal is reduced to 2 V P-P 
at the microcontroller ADC input. 

�9 Large resistors may be needed to avoid loading the input signal source. Large 
resistors, coupled with the input capacitance of the microcontroller, limit the 
speed. 

�9 If the input can occasionally go negative enough to bring the microcontroller 
input below ground, the microcontroller may be destroyed. The maximum 
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Figure 11.8 
Res is t i ve  d iv ider  for  read ing  nega t i ve  input  s igna ls .  
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signal excursion must be known, or a diode, as shown in the figure, must be 
used to clamp the signal to ground. 

�9 The actual voltage produced at the microcontroller input is dependent  on both 
the input signal voltage and the supply voltage. Variations in the supply voltage 
will affect the ADC reading. 

Example Control System 

To illustrate some of the principles described in previous chapters, an example 
control system was developed. This concept system is easy to build and is useful 
for experimenting with control concepts. Figure 1 1.9 shows a block diagram of 
the system. The control system is simulated with an inexpensive lamp coupled to 
an infrared phototransistor. The lamp and phototransistor are held in place with 
a length of heatshrink or other opaque tubing. 

A PWM circuit is used to control the current through the lamp. The prototype 
used for the examples here operated at about 14 kHz. An analog control could 
also be used, with a DAC followed by an opamp capable of delivering sufficient 
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Figure 11.9 
Simulation system block diagram. 
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current  to the bulb. The  ADC was an 8-bit converter,  with an output  value of 0 
representing 0 V and a value of 255 represent ing 5 V. 

The system is controlled by a PC, although the same a r rangement  could be 
controlled by a microcontroller or single-board computer .  Using a PC is less 
precise than using a more hardware-oriented approach, because the sampling 
rate in a PC will vary with operating system activity. However, it is close enough to 
make a useful experimentat ion tool. For the examples used here, the code was 
written in Python. The  actual Python code is shown in Appendix D. 

This simple a r rangement  provides a good simulation of a control system. The  
lamp filament is, in effect, a heater. The  lamp filament does not heat up instantly 
and the phototransistor is relatively slow, so the combination has many of the 
characteristics of a real heater or motor ar rangement .  

In Figure 11.9, R2 is shown with dashed connections. R2 is installed in parallel 
with R1 to simulate an external load, as will be described later. 

Note that this is a reversed control system--a  higher control value results in a 
lower ADC value because a hotter filament results in more phototransistor cur- 
rent. 

Figure 11.10A shows the step response of the system. This waveform was 
created by starting with a PWM value of 1 (just barely turning the lamp on) and 
then changing to a PWM value of 250 (almost 100% on) and sampling the 
resulting voltage from the phototransistor once per millisecond. Note that the 
lamp has a short delay before it starts heating, then a rapid heating period, then a 
slower curve as it approaches its final temperature .  This data was plotted using 
Microsoft Excel. 

Figure 11.10B shows the reverse of the positive step. Here,  the PWM value was 
set to 250 and the output  was allowed to settle for one second. The  PWM was then 
turned off and the output  was measured once per millisecond. The result is an 
exponential curve as the lamp filament cools. This asymmetrical characteristic of 
the system is typical of many real-world environments.  

Figure 11.10C shows the characterization of the system with respect to the 
control value. This curve was made by applying 16 equally spaced control 
values from 1 to 241, allowing the output  to settle, and measuring the ADC 
result. 

On-Off (Bang-Bang) Control 

An on-off control is illustrated in Figure 11.11A. The  setpoint for this example 
was 100, corresponding to about 1.95 V at the phototransistor collector. Note 
the oscillation around the setpointmit ranges from 98 to 112, a range of 0.3 
volts, or 15% of the setpoint value. The  oscillation is not centered a round the 
setpoint, but is skewed toward the high values. This occurs because the control 
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Figure 11.10 
Simulation system characterization. 
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On-off control examples. 
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response is not s y m m e t r i c a l n t h e  filament cools down more  quickly than it 
heats up. 

Figure 11.11B shows an on-off control with a setpoint of 150. The re  is less 
oscillation at this setpoint; a control system that is not linear across its range will 
exhibit characteristics like this. Figure 11.11C shows an on-off control with a 
setpoint of 100 and a sampling interval of 4 ms. Note the size of the oscillation; 
the sampling interval has a significant effect on the result. 

Figure 11.12 shows an on-off control starting with the PWM full on and using a 
setpoint of 150. Unlike the case that started with the PWM off, there is significant 
overshoot  past the setpoint; the lamp filament cools down more  easily than it 
heats up, so there is more  m o m e n t u m  in that direction. 

Proportional Control 

Figure 11.13A shows a proport ional  control with a setpoint of 150 (about 2.9 
volts) and a gain of 2. Using the input- to-output  characterization curve, an offset 
of 200 was selected for this setpoint. The  equation for the control value is 
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Figure 11.12 
On-off control, starting with PWM 100% on. 
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Control output  = 200 + (ADC value - setpoint) x Gain 

If control output  > 254, control output  = 254. 

If control output  < 1, control output  -- 1. 

The  last two statements limit the control value to the 8-bit range of the 
system. 

At a gain of 2, the system stabilizes with an output  around 145. Figure 11.13B 
shows a proport ional  control, but starting at the top of the range (100% PWM) 
and using a gain of 20. This time the result makes it to the setpoint of 150, but 
with significant oscillation. Note the overshoot as the signal passes through 150; 
like the on-off example, this is caused by the asymmetrical nature of the heater 
and the additional gain. If the gain is reduced,  the overshoot can be eliminated, 
but the result ends up below the setpoint (150). Although a graph is not shown for 
this condition, at a gain of 10, the waveform overshoots just slightly and then 
settles down to oscillate between 149 and 150. 

Figure 11.13C shows a proportional system with a gain of 10, setpoint of 150, 
and an offset of 100. The  lower offset results in a final result between 157 and 
158. As you can see, the gain and offset both affect the final result in a propor-  
tional system. However, the proportional control is still better than open-loop 
control, because an open-loop control value of 100 results in an ADC value of 222 
(see the characterization chart). 

Figure 11.14 shows the proportional system with a setpoint of 150, gain of 10, 
and a load of 47 K (R2) in parallel with the 22 K collector resistor (R1). There  is a 
small overshoot as the output  passes 150, then the output  settles down to oscillate 
between 152 and 153. Note that the addition of a load caused a pe rmanen t  offset 
in the ou tpu t - - the  proportional system was unable to completely compensate for 
the effects of the added load. 

PID 

Figure 11.15A shows a simple PID control. The  parameters  are 

�9 Proportional gain = 2 
�9 Derivative gain - 2 
�9 Integral gain = 2 
�9 Setpoint = 150 

To prevent  integral windup, the integral is held at zero until the ADC result is 
within 10% of the setpoint. As you can see, there is a little overshoot and then 
the output  settles down to values of 150 and 151. Figure 11.15B shows the 
integral and derivative terms. Note that changes (edges) in the integral waveform 
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Figure 11.14 
Proportional control with load. 

correspond to a positive and negative transition in the derivative waveform, 
because the derivative is measur ing the amoun t  that the er ror  changed from 
the previous sample. 

Figure 11.16A shows what happens  if the derivative gain is set to 40; a high- 
frequency oscillation occurs, a l though it is centered on the setpoint. In Figure 
11.16B, the derivative gain is set to 2 again, and the integral gain is set to 40. This 
condition causes an oscillation between about 135 and 172, and at a lower 
frequency than the oscillation caused by the large derivative value. This is typical 
of PID control systems--excessive derivative gain and excessive integral gain both 
cause oscillation, but  the oscillation caused by the integral gain is at a lower 
frequency. 

Figure 11.17A shows the following conditions: 

�9 Proport ional  gain = 4 
�9 Derivative gain = 2 
�9 Integral gain = 2 
�9 Setpoint = 150 
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Figure 11.15 
PID control with integral and derivative waveforms. 

The result is a very smooth waveform with good control at the setpoint. The 
waveform in Figure 11.17B uses the same parameters,  but adds a 47 K resistor 
(R2) in parallel with the 22 K resistor R1. The  important thing to note here is that 
the final value still reaches the setpoint, although there is a "knee" in the wave- 
form around sample 37. 
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PID control with large derivative and integral values. 
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PID control with load. 
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Proportional-Integral Control 

Figure 11.18 shows a proportional-integral control only, with proportional gain 
= 4 and integral gain = 0.1. The waveform overshoots to 140, which is past the 
value of 145 that was reached with the proportional-only control, but the integral 
eventually brings the result up to the target value of 150. 
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Figure 11.18 
Proportional-integral control. 
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Appendix A 
Opamp Basics 

The opamp is a very high-gain amplifier with two inputs and an output. One input is called 
the inverting input (V_), and the other input is called the noninverting input (V+). The 
fbrmula for the output (Vo) is given by: 

Vo = Av(V+-V_) 

where Av is the gain of the opamp (usually very high--over 100,000) and V_ and V+ are 
the voltages at the inverting and noninverting input pins. 

Opamp Configurations 

Figure A.1 shows four opamp configurations: a buffer, inverting amplifier, noninverting 
amplifier, and differential amplifier. We analyze these in the following sections. 

Buffer 
For the buffer configuration, the output (Vo) is connected to the inverting input (V_), and 
the input signal is applied to the noninverting input (V+). We can write the basic opamp 
equations like this: 

Vo = Av(V+-V_) 

where Av is the open loop gain of the opamp. Because Vo is connected to V_: 

V o = V _  

The input voltage, V1, is applied to the noninverting input, V+, so we can rewrite the 
basic opamp equation like this: 
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Figure A.1 
O p a m p  conf igurat ions.  

V o - A v ( V + - V _ ) ;  V o - A v ( V I - V o )  

Solving for Vo we get 

g o  ~ 
Av VI 

1 + A v  

Dividing by Av, we get 

g o  
VI 

1 
- - + 1  
Av 

1 
If Av is very large, the ~vv term approaches zero, leaving Vo = V 1. 
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Inverting Amplifier 
Starting with the basic o p a m p  equation: 

Vo = Av(V+ - V_) 

In this case, the noninver t ing  pin is g rounded ,  so V+ is zero. V_ is at the junct ion of a 
voltage divider made  up of  RI and R2. So we can write an equat ion for V_ as 

V_ ( V o -  V1)R1 
= + V I  

R2 + R1 

Substituting this into the basic o p amp  equation: 

Vo = A v (  - ( V ~  V1)R1 
\ R2 + R1 

+vl) 
Solving for Vo, we get: 

g o  
-Av  x VI x R2 

R2 + R1 + AvR2 

Dividing the right side by Av/Av: 

g o  
- V 1  x R2 

R2 R1 
A---~ + ~--~v + R1 

R2 R1 
If Av is very large, the ~ and ~ terms are very small, leaving Vo = 

-R2/R1 is the gain of  the inverting configuration.  

- V 1  x R 2  

R1 

Noninverting Configuration 
The formula for the noninver t ing  configuration is 

Vo = Av(V+ - V_) 

The  V+ pin is connected to the input,  V1. The  V_ pin is a voltage divider with Vo and 
ground:  

V _  z - -  
V o x R l  

R 2 + R 1  
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Substituting these values into the basic opamp equation: 

V o = A v ( V 1 - V ~ 2 1 5  

Expanding: 

Vo(R1 + R2) = (Av x V1 x R 1 ) +  (Av x V1 • R 2 ) -  (Av x Vo x R1) 

Solving for Vo: 

A v •  •  A v x V 1  x R2 
V o =  + 

R I + R 2 + ( A v •  R I + R 2 + ( A v •  

Dividing both terms on the right by Av/Av: 

V1 • R1 V1 • R2 
V o =  + 

R1 R2 R1 R2 
A--~- + ~-~-v + R1 ~-~v + ~-V-V + R1 

If Av is very large, we are left with 

V o = V I + ~  
V1 •  

R1 

( R2) 
or V o = V l  1 + ~ -  

Differential Amplifier 
The differential amplifier is a combination of the inverting and noninvert ing configura- 
tions. V+ and V_ are both voltage dividers, so we can write the equations for them like this: 

V (Vo - V2)R3 V 1 • R2 
- = R f + R 3  + V 2  V+ = R I + R 2  

Substituting into the basic opamp equation: 

1 x R 2  ( V o - V 2 ) R 3  ) 
V o = A v  l + R 2 -  R f + R 3  + V 2  

Expanding and solving for Vo: 

Vo - Av 
(V1RfR2 + V1R2R3) - (V2RfRL + V2RfR2) 

R1Rf + R2R3 + R2Rf + R2 R3 + AvR3R 1 + AvR2R3 
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Dividing the right fraction by Av/Av and allowing Av to be very large: 

g o  
V1R2Rf + V1R2R3 - (V2Rf RL + V2RfR2) 

R 1 R3 + R2R3 

( Rf) _ V 1  •  1+  V2 
- R 1  + R 2  

If R2 = RF and R1 = R3, then we get 

Rf 

R3 

Rf 
Vo = (V1 - V2)R---3 

So the differential amplifier multiplies the difference between the inputs by the gain, 
Rf/R3. If a voltage divider was not used on the noninverting input, and V+ was connected 
to the V 1 input, the output would be 

Rf )  Rf 
V o - V 1  1+~--~ -V2R--- ~ 

Without the voltage divider on the noninverting input, the gain for V 1 is greater  than 
the gain for V2. With the voltage divider, if V1 = V2, Vo will be 0. Without the divider, this 
is not the case. 

General Opamp Design Equations 

In general, an opamp that is operating in the linear range (where the output  is not 
saturated) will have some kind of feedback from the output to the inverting input, or some 
kind of inverted teedback from the output to the noninverting input. This is the case for 
most opamp applications. Because the feedback path allows the output to control one of 
the inputs, you can make the following simplification: 

V + = V _  

Note that this applies only when the opamp output is not saturated. We can analyze the 
foregoing examples using this relationship to simplify the process. 

Inverting Amplifier 
V_ is a voltage divider between Vo and the input, V1. Because V+ = 0, we can write the 

equations like this: 

V_ = V + = 0 = ( V ~  
R1 + R 2  
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Rearranging and solving for Vo: 

Vo = - V l  
R2 
R1 

Noninverting Amplifier 

V _ = V + = V I = ~  
Vo x R1 

R1 + R 2 '  
V o = V 1  1 + 

Differential Amplifier 

V+ VI • R2 ( V o -  V2)R3 
= R 1  + R 2 ;  V _ =  R f + R 3  + V 2  

V1 x R2 ( V o -  V2)R3 
V_ = V _ ;  ~ =  

R1 + R 2  R f + R 3  

Expanding and solving for Vo, we get: 

V o =  V I ~  
( Re) Re R2 1 + - V 2 ~  

R1 + R2 ~ R3 

We get the same result in all cases, but using the V+ = V_ relationship is usually easier�9 

Nonresistive Elements 

So far, we have looked only at resistors in the opamp circuit. It is possible to use other 
elements such as capacitors and inductors to produce frequency-dependent circuits. The 
equations work the same way, with the following cautions: 

�9 You must substitute impedances, using complex numbers,  to calculate the output�9 
�9 The frequency characteristics and roll-off of the opamp must be taken into considera- 

tion. 

�9 Be sure that the inputs of the opamp are not driven beyond their specified limits or the 
equations will no longer apply�9 Because of energy storage, such as flyback voltage in an 
inductor, you may get voltages with capacitor/inductor circuits that would not be possible 
with a resistive-only circuit. 

�9 Similarly, you can't cause the output to go beyond its limits, either in voltage or speed. 
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Reversing the Inputs 

In some applications, you need to reverse the inputs of the opamp. Figure A.2 shows a case 
like this. Here, an opamp drives an NPN transistor (Q1) through a current-limiting 
resistor, R1. The transistor collector drives a resistive load. You might use a circuit like 
this if the load draws more current  than the opamp can sink. 

In this circuit, the junction of Q1 and the load is connected to the noninverting input of 
the opamp, and the input is connected to the inverting input. This might look like the 
opamp is operating open loop, but it really isn't. The function of the inverting and 
noninverting inputs is switched because Q1 acts as an inverting amplifier. In this case, 
the opamp acts as a follower, with the junction of Q1 and the load following the input 
voltage. 

Instead of a transistor, you could have another opamp, connected as an inverting 
amplifier, in the feedback path and the result would be the same. The point is that to 
make an opamp linear, you can use the noninverting input as the feedback pin and some 
kind of signal inversion between that and the output. Some opamps have both inverting 
and noninverting outputs, which can simplify the design of circuits like this. 

Comparators 

Figure A.3 shows an opamp connected as a comparator. An input signal is applied to the 
inverting input, and a fixed reference voltage is applied to the noninverting input. Say that 

INPUT VOLTAGE I> 

+v 

LOAD 
RES 

Figure A.2 
Reversing opamp inputs. 
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REFERENCE D 

INPUT VOLTAGE D 
I]:> OUTPUT 

OUTPUT 

INPUT VOLTAGE 

REFERENCE VOLTAGE 

Figure A.3 
Comparator operation. 

the opamp supply voltages are +5 V and ground, and that the reference voltage is 2.5 V 
and the input voltage is 1 V. The general equation for the output of an opamp is 

Vo = Av(V+ - V_) 

If our opamp has a voltage gain of 100,000, then the output will be 

100000(2.5 - 1) or 150000 volts. 

Of course, the opamp cannot produce an output voltage anywhere close to that value, 
so the output pin goes to the positive supply (+5 V), or as close as it can get, considering 
the saturation voltage of the output. 

Now suppose the input changes to 4 V. Doing the same calculation results in an output 
voltage o f -  150,000 volts. Again, the opamp goes as far as it can, which is the negative 
supply voltage, 0 V. 

The function of a comparator is to make the output high when the inverting input is less 
than the noninverting input, and to make the output low when the inverting input is 
greater than the noninverting input. Comparators are typically used to sense when an 
input voltage is greater than or less than a fixed threshold, providing a digital (high/low) 
indication of that condition. 
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Although an opamp can be used as a comparator,  it is more typical to use a comparator 
IC. These parts are essentially opamps, but they are optimized for use as comparators. 
They typically have lower gain than an opamp, but much greater speed. They often have 
open-collector outputs, so the output voltage swing can be different from the positive 
supply voltage. For instance, the comparator may operate from + 12 V and ground, but the 
open-collector output may be pulled to +5 V or +3.3 V with a resistor, making a logic- 

compatible digital output. 

Hysteresis 

What happens to the comparator output if the two inputs are very close together? Figure 
A.4 illustrates this condition. As the input rises slowly through the reference voltage, the 
difference between the inputs becomes small enough that the gain of the comparator  
cannot drive the output to the rail. As a result, the device becomes linear and the output 

ramps down instead of switching quickly. 
Another problem, also shown in Figure A.4, is the effect of a slowly changing input with 

noise. When the difference between the input and the reference is small, low-amplitude noise 
on the input can cause the output to switch several times between the high and low states. If the 
comparator output is an interrupt input to a micropr(xzessor, this can cause real problems. 

OUTPUT 

I 
UT 

~ OUTPUT 

INPUTVOLTAGE 

REFERENCE VOLTAGE 

INPUT 

REFERENCE 

L ~ ~  OUTPUT 

EFFECT OF SLOW, NOISY INPUT ON OUTPUT 

Figure A.4 
Comparator with slowly changing input. 
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One way to avoid the problems associated with slowly changing inputs is to add hysteresis 
to the circuit. Figure A.5 shows the same comparator circuit from Figure A.4 with hysteresis 
added. A resistor, R2, is connected to the noninverting input and the output. A second 
resistor is connected between the reference voltage and the noninverting input. Say that the 
comparator operates with a supply voltage of 5 V and ground. The input voltage starts at 1 V, 
as before, with a reference voltage of 2.5 V. The output will be high, so the voltage on the V+ 
pin will be determined by the voltage divider created by R1 and R2. This voltage is: 

( g o -  gr) x R1 
V+ = + Vr 

R1 + R 2  

R2 
I J 
lOOK 

REFERENCE I~ Vr ; .. 
1K o 

INPUT VOLTAGE D:> 
OUTPUT 

OUTPUT I I 

" ~  REFERENCE VOLTAGE 

INPUT VOLTAGE 

SWITCH POINT WHEN OUTPUT HIGH 

SWITCH POINT WHEN OUTPUT LOW 

V+ 

Vo 

THE TIME IT TAKES FOR V+ TO SWITCH TO 
THE NEW VALUE DEPENDS ON THE SLEW 
SPEED OF THE OUTPUT AND THE CAPACITANCE 
AT THE V+ PIN. 

INPUT 

WHAT HAPPENS AT THE SWITCH POINT 

Figure A.5 
Comparator with hysteresis. 
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For Vo high (5 V), Vr = 2.5 V, R1 = 1 K, and R2 = 100 K, V+ = 2.5247 V. So the out- 
put will not switch until the input reaches 2.5247 V. Once the input reaches this value, the 
output starts to change state. Since V+ is dependent  on Vo, it will change values as V,, 
changes. When Vo reaches its final value (0 V), V+ will have a new value. R 1 and R2 are still 
voltage dividers between V,, and V+, but now V,, is 0 V. So if we calculate the new value for 
V+, we get 2.475 V. The input has to cross through this value to get the output to switch 
back high. However, we got this value because the input reached the original value of 
2.5247 V, so the input would have to swing 0.049 V (2.5247 - 2.475) to make the output 
switch. This circuit has a hysteresis of 0.049 V. Any noise on the input with an amplitude 
smaller than this will not affect the output. 

The advantages of hysteresis are: 

�9 Faster switching. Once the output starts to change state, the V+ input is "pulled" through 
the region where the limited gain makes the device linear. This change in V+ accelerates 
the change in Vo, which in turn changes V+, and so on. 

�9 Better noise immunity. Noise on the input has to exceed the hysteresis value before it will 
affect the output. 

�9 Circuit performance in the linear region is less dependent  on device-to-device variations 
in the gain of the comparator IC. 

Hysteresis does have some drawbacks. Because the comparator output  does not switch 
instantly, there is still some time when the response of the comparator is linear and when 
noise on the inputs can affect the outputs. This time is dependent  on the speed of the 
comparator (propagation delay and output slew rate) and the capacitance on the non- 
inverting input. In general, though, hysteresis significantly reduces the amount  of time the 
comparator spends in the linear region. Another drawback to hysteresis is that the switch- 
point is no longer fixed, but varies with Vo and with the tolerances of resistors R1 and R2. 

Some comparators have built-in hysteresis of a few millivolts. However, using external 
resistors permits the hysteresis levels to be set as required by the application. 

Instrumentation Amplifiers 

One problem with normal opamps is that the input impedance of a practical circuit is 
limited. Although the input impedance of the opamp itself is very high, the input impe- 
dance of a closed-loop circuit such as a differential amplifier is limited by the resistors. For 
instance, the input impedance of an inverting amplifier circuit is equal to the value of the 
input resistor. In some applications, high-input impedance is needed, while retaining the 
noise-rejecting differential amplification of the differential amplifier. "l'he instrumentation 
amplifier provides this capability. Figure A.6 shows an instrumentation amplifier circuit 
using three opamps. The input impedance of the instrumentation amplifier is equal to the 
input impedance of the two input opamps. 

Instrumentation amplifiers do not need to be built from discrete opamps and resistors, 
but are available as discrete ICs. For example, the AD624 from Analog Devices is available 
in a 16-pin package. The AD624 can be p rogrammed for a gain of 1, 100, 200,500, or 1000 
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Figure A.6 
I ns t rumen ta t i on  ampl i f ier .  

by connecting various pins on the package together. An integrated instrumentation am- 
plifier uses laser-trimmed resistors, providing very good matching and excellent accuracy. 
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Appendix B 
Pulse Width Modulation 

Pulse width modulat ion (PWM) is a means of providing digital control of the current  in a 

device such as a motor,  heater, or even an audio speaker. PWM replaces analog techniques 

to provide more efficiency in computer-control led systems. 

Why PWM? 

A typical analog driver looks like the one in Figure B.1. A power device such as a high- 

current  opamp provides driving current  to a heater. In this case, the heater  has a resistance 

of 18ohms,  so the current  at 12 V is 667 ma. An input voltage determines  the voltage 

across the heater and therefore the amount  of heat generated.  Presumably, the control 
electronics is able to measure the tempera ture  of the system and adjust the input voltage 

accordingly, but that is not important  to this discussion. 
To drive a heater  like this with a power opamp,  you would need a power supply voltage 

of a round  16 V, because the opamp output  can't go all the way to the supply voltage. Let's 
say that the supply voltage is 16 V and the input voltage is 6 V. The  output  voltage will also 

be 6 V, so the current  th rough the heater  is V/R, or 6 V/15 ~2, or 400 ma. This is a power 

dissipation of (P - I x E) 6 x 0.4, or 2.4 watts. 
The  opamp,  operat ing with a supply voltage of 16 V, has to supply the 400 ma current  

to the heater. But since the supply is 16 V and the heater  voltage is 6 V, the remaining 
voltage (16 V -  6 V = 10 V) is d ropped  across the opamp output  stage. This means the 

opamp is dissipating 10 V x 400 ma or 4 watts. Unless it has a good heatsink, it may get 

hotter  than the heater. 
The  total dissipation in this circuit is the sum of the opamp dissipation plus the heater  

dissipation. This is 2.4 watts plus 4 watts or 6 watts. (You can also find this by multiplying 
the power-supply voltage by the total power-supply current:  16 V x 400 ma = 6.4 W). The  

following table shows the power dissipated for various input /heater  voltages: 
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F i g u r e  B.1 
Heate r  wi th  ana log  driver. 

Input Current Heater Opamp Total 
Voltage Dissipation Dissipat ion Dissipation 

2 133 ma 
3 200 ma 
4 270 ma 
5 333 ma 
6 400 ma 
7 466 ma 
8 533 ma 
9 600 ma 
0 667 ma 
1 733 ma 
2 800 ma 

0.267 w 
O.6w 
1.067 w 
1.667 w 
2 .4w 
3.267 w 
4.27 w 
5 .4w 
6.667 w 
8.067w 
9 .6w 

1.87 w 
2.6w 
3.2w 
3.67 w 
4 w  
4.2w 
4.27 w 
4 .2w 
4 w  
3.67w 
3.2w 

2.14w 
3.2w 
4.27 w 
5.34w 
6.4w 
7.47w 
8.54w 
9.6w 
0.67 w 
1.74w 
2 .8w 
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Figure B.2 graphs the dissipation of the opamp and the heater as a function of input 
(heater) voltage. The  power dissipated for both devices is the product  of the heater  current  
and the voltage across the device. In the case of the opamp,  the power is dissipated in the 
output  transistors that drive the heater. The  worst-case power dissipation for the opamp 
occurs when the output  is at half the supply voltage (8 V). Even though the heater  in this 
application never dissipates more than 9.6W, the power supply must be capable of 
delivering at least 12.8 W. 

A PWM-based control method is illustrated in Figure B.3. This circuit uses the 
same 16 V supply as the analog circuit, but the control electronics turns the heater  on 
and off by switching the control transistor on and off (a bipolar transistor is shown; a 
MOSFET also could be used). The timing diagram shows how the PWM circuit works. 
In the first interval shown, the transistor collector is low, so the heater is on for 66% 
of the PWM interval. The heater is off for 33% of the PWM interval. The  heater  
current  dur ing the ON time is 16V/159t,  or 1.0667 amps. However, the heater  will 
respond to the time average of the current  flowing through it, so the equivalent 
current  for the purpose of generating heat is 1.0667amps x 66% (the ON time), or 

0.711 amps. 
In the second part of the timing diagram, the PWM is ON for 33% of the interval and off 

for 66%. The  heater current  during the ON time is still 1.0667 amps, but the time- 
averaged current  is 1.0667 x 33%, or 0.355 amps. To achieve a particular t ime-averaged 
current,  we can use the following equations: 

1 4  - 

12 - 

10 - 

POWER 
(w) 8 -  
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2 - 

TOTAL 
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~--- OPAMP 
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! I I I I I I I I I I 1 
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INPUT VOLTAGE 
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F i g u r e  B . 2  

Power dissipation in heater and analog d r i v e r .  
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Figure B.3 
Heater  wi th PWM driver. 

Ion = Vs /R 

It = Ion •  

Pay = Vs x Ion • Ton 

where  

�9 Ion is the hea te r  c u r r e n t  d u r i n g  the ON time 

�9 Vs is the supply voltage 

�9 R is the hea te r  resistance 

�9 It is the t ime-averaged  c u r r e n t  

�9 Ton is the ON time, exp re s sed  as a decimal  (33% = 0.33) 

�9 Pav is the average  dissipation 

We can make  a table of  the ON time percen tages  r equ i r ed  to get the same time- 

ave raged  cu r r en t  as the original  ana log  dr iver  used to get a specific a m o u n t  of heat.  
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Original Input Original Original Heater 
Voltage Current Dissipation 

Percent ON Time 
for Same Dissipation 

2 133 ma 0.267 W 1.5% 
3 200ma 0.6W 3.5% 
4 270 ma 1.067 W 6.25% 
5 333 ma 1.667 W 9.7% 
6 400 ma 2.4 W 14% 
7 466 ma 3.267 W 19% 
8 533 ma 4.27 W 25% 
9 600 ma 5.4 W 31.6% 

10 667 ma 6.667 W 39% 
11 733 ma 8.067 W 47% 
12 800 ma 9.6 W 56% 

The  function of the PWM control circuitry is to turn the input  voltage into a duty 
cycle. This specific example  never  uses a PWM ON time greater  than 56%. This is 
because the power supply is 16 V, the same as the analog example,  and our  application 
never needs more  than 9.6 W. If we had a 100% ON time, the dissipation would be 17 
watts. 

The  total dissipation in a theoretical PWM circuit is exactly the same as the dissipation in 
the load. This is because the control transistor, when OFF, dissipates no power  because the 
cur ren t  th rough  it is 0. When ON, the transistor dissipates no power  because the voltage 
drop  across it is 0. In either case E • I = 0. A real transistor has very close to zero current  
when OFF, but doesn ' t  quite have zero volts across it when ON. 

We'll take a look at real parts later. For now, we will treat the transistor as ideal. Because 
the power  dissipated in a PWM circuit is all dissipated in the load (the heater ,  in this case), 
the power  supply needs to supply only what is actually n e e d e d - - n o t h i n g  is wasted in the 
driver. In our  example,  this means we only need a 9.6 W power  supply, instead of the 
12.8 W supply needed  for the analog drive circuit we looked at originally. 

Both the analog and PWM examples  used a 16V power  supply. We could use a 
different voltage, say, 18 V. In this case, the dissipation in the opam p  and total dissipation 
would be greater  for any given input  voltage. The  heater  dissipation would be the same, 
however,  because the opamp holds the heater  voltage at the input  voltage, regardless of 
what the supply voltage is. As long as the supply voltage is high enough  that the opamp 
ou tpu t  can follow the input, the power  dissipated in the heater  is i ndependen t  of the 
supply voltage. This means we could use an unregula ted  supply for the analog driver. The  
unregula ted  supply would have significant ripple at the power-line frequency,  but the 
o p a m p  would compensate  for that. 

The  PWM driver, on the o ther  hand,  is very d e p e n d e n t  on supply voltage. If  the supply 
voltage is raised to 18 V, the PWM duty cycle has to be lower to get the same average heater  
dissipation. Consequently,  to achieve the same accuracy as the o p a m p  circuit, the PWM 
circuit would need one of the following: 

Appendix B 291 



. A well-regulated power supply, so the dissipation at any given PWM duty cycle is known 
�9 A means to measure the supply voltage and compensate for variations 
�9 A means to measure the output (heat and/or dissipation) and adjust the duty cycle accordingly 

In a real application, there is typically some feedback from whatever is being controlled 
(heater temperature, motor speed, etc.), so the software can adjust the duty cycle to com- 
pensate for power-supply variations without knowing the actual power-supply value. In this 
case, the power-supply voltage variation becomes another variable in the system, just like a 
varying load. In some applications, it may be necessary to measure the supply. A heater 
without feedback, for instance, might use a 50% duty cycle to get 50 ~ temperature, or a 
75% duty cycle to get 75 ~ If there is no feedback to indicate the actual current flowing 
through the load when the transistor is ON, then the software may need to measure the 
supply voltage with an ADC and adjust the duty cycle to compensate for supply variations. 

To make PWM work, the PWM frequency has to be high enough so that the load 
responds to the average current  flowing through it. For a large heater that is controlling 
the temperature  of, say, an engine block, you might get by with a PWM frequency less than 
100 Hz. For a high-speed DC motor, you might need a PWM frequency of 50 kHz. 

Real Parts 

Now we'll take a look at a real transistor. A real power transistor, when ON, has a 
saturation voltage across the collector-emitter. This can be as high as a couple of volts. A 
MOSFET transistor has an ON resistance that results in a voltage drop. In both cases, the 
voltage drop across the transistor is dependent  on the current. 

Say that our example PWM transistor has a voltage drop of 1 V. For this discussion, we'll 
pretend that the drop is independent  of current. The result of this voltage drop is that the 
transistor dissipates some power when ON. In addition, less voltage is available across the 
heater. In this case, when the transistor is ON, the 1 V collector-emitter voltage (1 V) is 
subtracted from the supply voltage (16 V), leaving 15 V across the heater. Consequently, 
the heater now has a current  of 15 V/15 ft, or 1 amp, when the transistor is ON. The lower 
voltage available to the heater has exactly the same effect on the PWM duty cycle as a lower 
supply voltage would; a slightly longer PWM ON percentage is required to achieve the 
same average heater dissipation. 

When the transistor is turned on, it dissipates one watt (1 amp x I volt). Just like the 
heater, the transistor temperature  will respond to the time-average of the power. When 
the heater is ON 33% of the time, the average transistor dissipation will be 0.33 W, and 
when the heater is ON 66% of the time, the average transistor dissipation will be 0.66 W. 

Frequency Limitations 

A real transistor dissipates power when it is on. It also dissipates power when it is switching. 
Figure B.4 illustrates this. The digital control signal that turns the transistor ON or OFF is 
nearly instantaneous (as far as the transistor is concerned). However, the transistor itself 
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Figure B.4 
PWM switching dissipation. 

takes some time to turn ON, and when the control input  changes state, the transistor takes 

some time to turn OFF. During the turn-on and turn-off  times, the transistor dissipates 

power, just  like an analog driver does. This limits the max imum PWM frequency that can 
be used. The  higher  the PWM frequency is, the higher  the percentage of time that the 

transistor spends in the intermediate  state, where it dissipates the most power. If the PWM 
frequency is high enough,  the transistor will never turn completely OFF or ON, and will 

dissipate significant power. 

Resolution Limitations 

A PWM system is typically implemented  with a digital counter  that generates the PWM 

frequency. A second counter  or logic that decodes the frequency counter  is used to 
de termine  the period. For example,  a PWM signal might be generated using an 8-bit 

counter,  which can divide the clock by 256. If the input is 1 MHz, then the output  will be 

1 MHz/256, or 3906.25 Hz. 
Because this theoretical clock has 256 discrete periods, then the smallest step size we can 

have in the PWM output  is 1/256. If the PWM output  is set to be ON when the counter  is in 

states 0 through 99 and OFF for states 100 through 255, then we have a duty cycle of 

100/256, or 39.06%. If we change this to ON for states 0-100 and OFF for states 101-255, 

then the new duty cycle is I01/256, or 39.4%. The  change is 0.39%, or 1/256. 
This characteristic limits the precision with which a PWM-based controller can adjust its 

output.  A linear system has nearly infinite control accuracy. Like any digital system, a PWM 

controller has a limited resolution. Of course, an analog controller whose input comes from 
a microprocessor-controlled DAC has the same limitation. But the number  of bits of 

resolution has to be taken into account when designing a PWM-based controller. 

One way a round  the resolution problem is to modulate  the output.  If our  example 
system is ON [;or states 0-99 for one PWM cycle, and ON for states 0-100 on the next 

PWM cycle, then the average is half of the PWM resolution. By using 0-99 for two cycles 

and 0-100 for one, you can get three times the original resolution. But, as you would 

expect, there are a couple of catches: 

�9 The  microprocessor (or whatever is controlling the PWM output)  has to change the 

output  duty cycle on every PWM cycle. The  duty cycle can't just  be set to a particular 
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value and left that way until a change is needed.  This can significantly increase the 
processing demand  on the microprocessor. 

�9 The  PWM frequency has to be selected so that the load does not respond to the 
individual PWM pulses, but only to the average. If the PWM output  is modula ted on a 

cycle-by-cycle basis, the PWM frequency must be selected so that the load does not 

respond to the modulat ion frequency. Otherwise, a ripple will be seen in the load 
response. 

In some microcontrollers, the PWM frequency and duty cycle can be varied. The  period 

is typically varied by adjusting the rollover point of the period timer. This also affects 

resolution. If you are using the same 8-bit PWM timer just discussed, using the full 256 
counts provides a 3906 Hz PWM clock. If you need a faster clock, you can program the 

period timer to roll over at 100 counts. This will provide a 10 KHz PWM clock. However, 

the best resolution now available for changes in PWM output  is 1% instead of 0.39%. This is 
an important  consideration when selecting PWM hardware.  If you need a specific fre- 

quency of operation, you need to calculate the available resolution using that frequency, 
not using the max imum timer count. Or, you may have to adjust the microprocessor clock 
to provide the correct frequency and resolution. 

Power-Supply Considerations 

When using PWM, the average current  drawn from the power supply is equal to the 

average used by the load. In the heater  example we've already looked at, the maximum 
power used is 9.6 W, and the average current  is 800 ma. However, the current  when the 

heater  is on is 1.0667 amps. The  power supply must be capable of delivering this current  
for the heater  to work properly. In most cases, this can be accomplished with a sufficient 

amount  of capacitance on the power-supply output.  If the board with the PWM controller 

is powered from a supply that is some distance away, the resistance of the cabling may 
cause ripple at the PWM frequency on the power supply. In such a case, it may be 

necessary to have additional capacitance, not at the power supply, but at the board with 
the PWM circuit. 

PWM and EMI 

One disadvantage to using PWM is the additional EMI that is produced.  In the heater 
example,  the linear controller used a current  that varied with the control voltage, but was 
constant if the control voltage did not change. The  PWM controller will produce a heater 

current  of 1.0667 amps every time the switching transistor turns on. Regardless of the 

average heater  power, there will be a 1.0667 amp current  spike at the PWM frequency. If 
the wiring to the system has significant resistance or inductance, this will result in a supply 

voltage variation that follows the PWM waveform. For this reason, PWM systems should 

use large wires or wide PCB traces, or some method  of minimizing the impedance of the 

power supply connections. Where  there are low-level sensors, such as thermistor or 
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thermocouple signals, use separate grounds for those devices so that the voltage drop 
caused by the PWM signal does not affect the readings. 

In addition to the current and voltage excursion caused by the PWM switch, the 
inductance in the system will ring when the transistor turns on. This will produce radiation 
at the resonant frequency(s) of the wiring. To minimize the ringing, it is often desirable to 
control the turn-on edge of the PWM switch. There  are MOSFET drivers that limit the 
edge rate of the signal going to the gate for exactly this reason. In a simpler system without 
a MOSFET driver, you can limit the switching time by adding a small resistor (100 ohms to 
1 K) in series with the MOSFET gate lead. This resistor, in combination with the MOSFET 
capacitance, produces a slower edge. The tradeoffis increased MOSFET power dissipation 
because the transistor spends more time in the linear region. Using the resistor also gives 
less repeatable results because the actual switching time is based on the transistor capaci- 

tance, which can vary from one device to the next. 

Audio Applications 

PWM techniques were originally developed to improve efficiency and reduce heating in 
control applications. However, PWM has been applied to audio amplifiers as well. A block 
diagram of an audio PWM amplifier is shown in Figure B.5. An audio amplifier using 
PWM is reli~rred to as a class D amplifier. The Philips TDA8920 is a typical class D power 
amplifier IC, with two 50 W audio amplifiers operat ing at up to 90% efficiency. Class D 
audio amplifiers typically switch at hundreds  of kHz to avoid influencing the audio 
output  with the PWM frequency. The advantages of PWM for audio applications are 
the same as for any other application: better driver efficiency, smaller power supplies, 

and less heating. 

AUDIO IN 

AMP, 
DRIVE 
LOGIC 

V+ 

V- 

LI/C I FILTER PWM SWITCHING 
FREQUENCY, LEAVING ONLY 
AUDIO AT SPEAKER 

c1 

i 
SPEAKER 

Figure B.5 
PWM audio amplif ier. 
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PWM Hardware 

Figure B.6 shows how a typical microcontroller-based PWM might be implemented. An 8- 
bit down-counter is loaded with the value in an 8-bit register (the period register). The 
counter starts counting at this value and counts down toward zero. A second register, the 
duty cycle register, contains another 8-bit value. When the count equals the value in the 
duty cycle register (determined by the 8-bit comparator), the PWM output goes high. The 
PWM output stays high until the count value is less than the duty cycle value. This happens 
when the counter rolls over from 00 to FF. The counter rollover output detects this 
condition and reloads the counter with the value in the period register again. 

Note that a real microcontroller would have considerable additional logic to ensure that 
the PWM output would not have spurious pulses on it when the counter changes value, 
and to synchronize everything with the clock. In addition, registers would be provided for 
other functions, such as starting and stopping the timer and selecting PWM versus normal 
mode. 

MICROPROCESSOR 
DATA 
BUS 

WRITE PERIOD 

CLOCK 

WRITE DUTY CYCLE 

8-BIT DOWN-COUNTER 

8-BIT REGISTER [ LD ROLLOVER 

B 

PERIOD 

D~D7 QO-Q7 DO-D7 QO-Q7 

/% 

8-BIT REGISTER 
D E 

IT COMPARATOR 

2S6 x 
COUNT 

y 
0 

PWM OUTPUT J ~  ~ J~ - -  

ROLLOVER I l I 

PWM OUTPUT 

Figure B.6 
PWM Hardware. 
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The circuit shown could be used to implement  a PWM output  with a period up to 256 
clocks and a duty cycle from 1/256 to 100%. Figure B.6 also shows how the timing works. 
The counter  value is shown as a continuous line, although it of course decrements in steps. 
The value X on the graph is the value in the period register, which is where the counter 

starts counting when it is reloaded. The value Y on the graph represents the value in the 
duty cycle register. Note that if the duty cycle value is greater  than the period value, the 
PWM output  will never go high. This sort of scenario is possible on many microcontrollers 

with PWM outputs. 
This particular hardware configuration was selected to make the explanation easy. 

There  are a number  of variations on this, including up-counters instead of down-counters, 
and timers that count in both directions, setting the PWM output  when counting up past 
the duty cycle value and resetting when counting down past the duty cycle value. Some 
microcontrollers can only provide a few fixed periods, based on specific divisors of the 

system clock. 

P WM So ftware 

Although hardware configurations may vary, most hardware PWM controllers have cer- 

tain things in common: 

�9 A register to set the duty cycle 
�9 A register to set the period (sometimes very limited) 

�9 A way to start and stop the timer 
�9 A way to enable interrupts from the timer 
�9 A way to set the PWM clock source and/or frequency 

In general, the software procedure  to set up PWM is to initialize all the registers, start 

the timer, and enable the timer interrupt  (if necessary). Once the timer is running,  the 
software must update the duty cycle (and, if appropriate,  the period) as system require- 

ments dictate. 
In some cases, the PWM timer generates an interrupt  to the microprocessor. When the 

interrupt  occurs, the software updates the period and/or duty cycle. On some microcon- 

trollers, the PWM timer does not allow you to select a 0% or 100% duty cycle. This may 
happen,  for example, if you are using the full 256-count period; there may be no value you 
can put into the duty cycle register that will not result in a pulse on the output.  In that 

situation, 0% output  is not possible. 
In a case like that, you may have to stop the timer and directly manipulate the output  bit 

to get either the 0% or 100% duty cycle. In most microcontrollers, the PWM outputs are 
shared with bit-oriented I/O ports, so such manipulation is possible. However, because 
time interrupts will not occur while the timer is stopped, another  method must be used to 
ensure that updates occur. One method, if the microcontroller supports it, is to let the 

PWM timer continue to run and generate interrupts, but to disable the PWM output.  
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Appendix C 
Useful URLs 

Semiconductors 

www.analog.com; Analog devices 
www.atmel.com; Atmel 
www.burr-brown.com; Burr-Brown 
www.clarostat.com; Clarostat--optical and Hall efti~ct sensors 
www.dalsa.com; DalsaPCCDs 
www.fairchild-ic.com; Fairchild 
www.honeywell.com; Honeywell--Hall effect sensors 
www.maxim-ic.com; Maxim 
www.microchip.com; Microchip 
www.mot-sps.com; Motorola semiconductors 
www.nsc.com; National Semiconductor 
www.pmdcorp.com; Performance Motion DevicesPmotor control ICs 
www.sel.sony.com/semi; Sony semiconductors--CCDs 
www.ti.com; Texas Instruments 
www.xicor.com; Xicor 

Motors 

www.bodine-electric.com; Bodine Electric--DC, brushless, stepper 
www.eadmotors.com; Eastern Air Devices--DC, brushless, stepper 
www.maxonmotor.com; Maxon motors--DC 
www.micromo.com; Microchip 
www.orientalmotor.com; Oriental Motors~DC, brushless 
www.pacsci.com; Pacific Scientific--DC, brushless, stepper 
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Other 

www.guardian-electric.com; Guardian relays/solenoids 
www.liteon.com; Liteon optoelectronics 
www.omron.com; Omron relays 
www.optoswitch.com; Clarostat optoelectronics 
www.qtopto.com; QT optoelectronics 
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Appendix D 
Python Code for Chapter 11; 
Excel Data for Chapter 4 

Following is the Python code used to genera te  the various waveforms in Chap te r  11 using 

the light bulb/phototransis tor  simulator.  External  routines PWM and ADCREAD write 

values to the PWM control ler  and read data from the ADC that is connected  to the 

phototransis tor  collector. All code uses the Python "time" module  to implemen t  delays. 

The  hardware  communicates  with the host PC using a 115,200 baud  serial link, so an 

open-source  serial module  also was used. To  avoid confusion, those details are left out  of 

these examples,  which include only the port ions of  the code necessary to illustrate the 
control mechanism. 

All of these examples  print  the waveform array to a console window. This was copied 

and pasted into Microsoft Word  so it could be edi ted into a column format  (the values in 

the Python ou tpu t  were separated by commas) and the result ing co lumn of data was then 

pasted into Excel for plotting. 

If you are unfamiliar with Python, you can find informat ion on the In te rne t  

at www.python.org.  All these code fragments  take 256 samples and write the ADC 

input  values to an array called "waveform' .  A real application, of  course, would run  
continuously. 

Code for step test: 

P W M ( 2 5 4 )  # PWM fu l l  on 

c o u n t  = 0 # Loop  c o u n t e r  

t i m e  = c lock(  ) 

w h i l e  c o u n t  < 2 5 6 :  

w h i l e  c lock(  ) - t i m e  < .001 :  p a s s  

t i m e  = c lock(  ) 

adc  = A D C R E A D ( ) .  

w a v e f o r m ,  a p p e n d ( o r d ( a d c )  ) 

c o u n t  + = 1 

# D e l a y  1 m s  

# R e a d  ADC 

# A p p e n d  r e s u l t  to  w a v e f o r m  a r r a y  
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P W M ( 1 )  

p r i n t  w a v e f o r m  

# T u r n  PWM off  

# P r i n t  w a v e f o r m  to c o n s o l e  

Code to produce  negative step: 

P W M ( 2 5 0 )  # ful l  on  

# Le t  o u t p u t  s t a b i l i z e  fo r  1 .5 sec.  

t i m e  = c lock(  ) 

w h i l e  c lock(  ) -  t i m e  < 1.5: p a s s  # d e l a y  1 sec  

c o u n t  = 0 # Loop c o u n t e r  

t i m e  = c lock(  ) 

P W M ( 1 )  # ful l  off  

w h i l e  c o u n t  < 2 5 6 :  

t i m e  = c lock(  ) 

w h i l e  c lock ( ) - t i m e  < . 001 :  p a s s  

a d c  = ADCREAD( ) 

w a v e f o r m . a p p e n d ( o r d ( a d c ) )  

c o u n t  + = 1 

# D e l a y  1 m s  

# R e a d  ADC 

# A p p e n d  r e s u l t  to  w a v e f o r m  a r r a y  

# P r i n t  r e s u l t .  

p r i n t  w a v e f o r m  

Code for on/off (bang-bang) control: 

s e t p o i n t  = 100  

c o u n t  = 0 

w a v e f o r m  = [ ] 

c o n t r o l  = [] 

# Loop c o u n t e r  

# W a v e f o r m  r e s u l t  a r r a y  

# C o n t r o l  o u t p u t  a r r a y  

# Note:  To t e s t  c o n t r o l  s t a r t i n g  w i t h  PWM ful l  on,  

# u n c o m m e n t  t h e  f o l l o w i n g  two  P y t h o n  s t a t e m e n t s .  

# T h e s e  t u r n  t h e  o u t p u t  ful l  on  a n d  w a i t  1 sec: 

# PWM ( 2 5 0 )  

# w h i l e  c lock(  ) - s t a r t t i m e  ( 1: p a s s  

t i m e  = c lock(  ) 

# Note:  To i l l u s t r a t e  e f f ec t  of s a m p l i n g  r a t e  on  t h e  r e s u l t ,  

# c h a n g e  t h e  d e l a y  v a l u e  f r o m  .001  to s o m e t h i n g  e l s e . . 0 0 4  

# g i v e s  a 4 m s  s a m p l e  r a t e .  

w h i l e  c o u n t  ( 2 5 6 :  

w h i l e  c lock(  ) - t i m e  ( .001:  p a s s  # D e l a y  1 m s  

t i m e  = c lock(  ) 

a dc  = ADCREAD( ) # R e a d  ADC 
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a d c i n t  = o r d  ( a d c )  

w a v e f o r m . a p p e n d  ( a d c i n t )  

# C o n v e r t  r e s u l t  to  i n t e g e r  

# I f  r e s u l t  < s e t p o i n t ,  t u r n  P W M  off .  

# if  r e s u l t  > s e t p o i n t ,  t u r n  P W M  o n  ful l .  

i f  a d c i n t  < s e t p o i n t :  

P W M  ( 1 )  

c o n t r o l . a p p e n d  ( 0 )  

e l se :  

P W M  ( 2 5 0 )  

c o n t r o l . a p p e n d  ( 1 )  

# ( a d c i n t  > =  s e t p o i n t )  

c o u n t  + = 1 

# T e s t  d o n e ,  t u r n  P W M  off .  

P W M  ( 1 )  

# P r i n t  r e s u l t .  

p r i n t  w a v e f o r m  

Propor t iona l  control :  

s e t p o i n t  = 1 5 0  

o f f s e t  = 2 0 0  

g a i n  = 10  

c o u n t  = 0 

w a v e f o r m  = [1 

c o n t r o l  = []  

# Note :  To t e s t  c o n t r o l  s t a r t i n g  w i t h  P W M  fu l l  on ,  

# u n c o m m e n t  t h e  f o l l o w i n g  t w o  P y t h o n  s t a t e m e n t s .  

# T h e s e  t u r n  t h e  o u t p u t  fu l l  o n  a n d  w a i t  1 sec :  

# P W M  ( 2 5 4 )  

# w h i l e  c l o c k  ( ) - s t a r t t i m e  < 1: p a s s  

t i m e  = c l o c k (  ) 

w h i l e  c o u n t  < 2 5 6 :  

w h i l e  c l o c k (  ) - t i m e  < . 0 0 1 :  p a s s  

t i m e  = c l o c k (  ) 

a d c  = A D C R E A D (  ) 

a d c i n t  = o r d  ( a d c )  

w a v e f o r m . a p p e n d  ( a d c i n t )  

# W a i t  1 m s  

# R e a d  ADC r e s u l t  

# C o n v e r t  r e s u l t  to  i n t e g e r  

# S a v e  i n p u t  v a l u e  in  a r r a y  
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# I n  t h e  f o l l o w i n g  code,  u s e  adc  v a l u e -  s e t p o i n t  

# b e c a u s e  c o n t r o l  is n e g a t i v e  ( b i g g e r  P W M  v a l u e  = s m a l l e r  

# a d c  r e s u l t )  

# L i m i t  r e s u l t  to  r a n g e  1 - 2 5 4 .  

o u t p u t  = o f f s e t  + ( a d c i n t  - s e t p o i n t ) *  g a i n  

if  o u t p u t  < 1 : o u t p u t  = 1 

if  o u t p u t  > 2 5 4  : o u t p u t  = 2 5 4  

P W M  ( o u t p u t )  

c o n t r o l . a p p e n d  ( o u t p u t )  # S a v e  c o n t r o l  v a l u e  in  a r r a y  

c o u n t  + = 1 

# T e s t  d o n e ,  t u r n  P W M  off. 

P W M  ( 1 )  

# P r i n t  r e s u l t .  

p r i n t  w a v e f o r m  

PID control  example :  

s e t p o i n t  = 1 5 0  

o f f s e t  = 2 0 0  

# PID loop  g a l x ~  

# No te  t h a t  i n t e g r a l  a n d  d e r i v a t i v e  a r e  b o t h  c a l c u l a t e d  o v e r  a s i n g l e  

# s a m p l e  i n t e r v a l .  If  a d i f f e r e n t  s a m p l i n g  i n t e r v a l  is u s e d ,  t h e n  

# t h e  s a m e  g a i n  v a l u e s  wi l l  p r o d u c e  d i f f e r e n t  r e s u l t s .  

GI = 2 # I n t e g r a l  g a i n  

GD = 2 # D e r i v a t i v e  g a i n  

GP = 4 # P r o p o r t i o n a l  g a i n  

d e r i v a t i v e  = 0 

i n t e g r a l  = 0 

c o u n t  = 0 

w a v e f o r m  = [ ] 

c o n t r o l  = [ ] 
I = [ ]  

D = [ ]  

# A r r a y  to  s a v e  ADC r e s u l t s  

# A r r a y  to  s a v e  c o n t r o l  o u t p u t  r e s u l t s  

# A r r a y  to  s a v e  c a l c u l a t e d  i n t e g r a l  v a l u e s  

# A r r a y  to  s a v e  c a l c u l a t e d  d e r i v a t i v e  v a l u e s  

p r e v e r r  = 0 # i n i t i a l i z e  v a l u e  of  p r e v  e r r o r  

# U s e d  i n  c a l c u l a t i n g  d e r i v a t i v e  

# Note :  To t e s t  c o n t r o l  s t a r t i n g  w i t h  P W M  fu l l  on ,  

# u n c o m m e n t  t h e  f o l l o w i n g  t w o  P y t h o n  s t a t e m e n t s .  
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# T h e s e  t u r n  t h e  o u t p u t  fu l l  on  a n d  w a i t  1 sec:  

# P W M ( 2 5 4 )  

# w h i l e  c lock(  ) - s t a r t t i m e  < 1: p a s s  

t i m e  = c lock(  ) 

w h i l e  c o u n t  < 2 5 5 :  

w h i l e  c lock(  ) - t i m e  < .001:  p a s s  

t i m e  = c lock(  ) 

a d c  = A D C ~ (  ) 

a d c i n t  = o r d ( a d c )  

w a v e f o r m ,  a p p e n d ( a d c i n t )  

# D e l a y  1 m s  

# R e a d  ADC r e s u l t  

# C o n v e r t  r e s u l t  to  i n t e g e r  

# S a v e  i n p u t  v a l u e  in  a r r a y  

# C a l c u l a t e  e r r o r .  No te  t h a t  a d o - s e t p o i n t  is u s e d  

# i n s t e a d  of  s e t p o i n t -  adc .  T h i s  is b e c a u s e  

# c o n t r o l  is r e v e r s e d -  b ig  c o n t r o l  v a l u e  = l i t t le  o u t p u t  

e r r o r  = a d c i n t -  s e t p o i n t  

# C a l c u l a t e  d e r i v a t i v e  a s  c u r r e n t  e r r o r -  p r e v  e r r o r  

d e r i v a t i v e  = e r r o r -  p r e v e r r  

p r e v e r r  = e r r o r  # F o r  n e x t  p a s s  t h r o u g h  loop  

D . a p p e n d  ( d e r i v a t i v e )  

# I f  e r r o r  l e s s  t h a n  10% of  s e t p o i n t ,  c a l c u l a t e  i n t e g r a l  a s  

# i n t e g r a l  + e r r o r .  I f  e r r o r  g r e a t e r  t h a n  10% of  s e t p o i n t ,  

# s e t  i n t e g r a l  to  0. Th i s  l i m i t s  i n t e g r a l  w i n d u p .  

if  e r r o r  < s e t p o i n t / 1 0  : i n t e g r a l  = i n t e g r a l  + e r r o r  

e lse :  i n t e g r a l  = 0 

I. a p p e n d ( i n t e g r a l )  

# C a l c u l a t e  n e w  o u t p u t  v a l u e ,  l i m i t i n g  r e s u l t  to  r a n g e  1 - 2 5 4 .  

o u t p u t  = o f f s e t  + ( e r r o r * G P )  + ( d e r i v a t i v e * G D )  + ( i n t e g r a l * G I )  

if  o u t p u t  < 1 : o u t p u t  = 1 

if o u t p u t  > 2 5 4  : o u t p u t  = 2 5 4  

P W M ( o u t p u t )  

c o n t r o l . a p p e n d ( o u t p u t )  

c o u n t  + = 1 

# T e s t  done ,  t u r n  P W M  off. 

P W M  ( 1 )  

# P r i n t  r e s u l t .  

p r i n t  w a v e f o r m  
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Table 4.1 was generated using a Microsoft Excel spreadsheet.  The  spreadsheet  was 

configured as follows: 

�9 Column A: 1000 rows containing: Rand( ) (generates 1000 random numbers)  

�9 Column B: 1000 rows containing: Value + Ax 

�9 Column C: 1000 rows containing: TRUNC(Bx,  0) 
�9 Column D: 1000 rows containing: IF(Cx = 3, 1, 0) (Puts 1 in the cell if Cx = 3, 0 in the 

cell if Cx = 4) 

To calculate the result for 100 samples, the first 100 values in column C were added 

together  and the result divided by 100. For 1000 samples, all the values in column C were 

added  together and divided by 1000. 
Note: In all cases, the "x" in the cells corresponds to the row number .  For example,  cell 

C4 contains: TRUNC(B4,0).  
"Value" in column B was the value of the event being measured:  2.25, 2.5, and 2.8 in 

Table 4.1. 
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Glossary 

ADC (analog-to-digital converter): A circuit that converts an analog value, usually 
voltage, to a digital value. 

CDS (correlated double sampling): A method of compensating for noise in a CCD 
system by subtracting two samples. The first sample is taken immediately after 
reset, when the CCD output  voltage is at the reset level, and the second sample is 
taken when the CCD charge output  is present. 

Closed-loop gain: The gain of a circuit with feedback components  added. For an 
opamp circuit, this means that the feedback loop to one of the inputs is closed with 
resistors or other components.  Closed-loop gain may be an integer number,  or it 
may be an equation that is dependent  on frequency, time, or other factors. Closed- 
loop gain can apply to a simple one-IC opamp circuit or to a complex system that 
includes a microprocessor in the feedback loop. Closed-loop gain in any real system 
has limitations such as supply voltage or the capability of the output  driving 
components. 

Codec: Depending on usage, codec is short for compressor/decompressor and refers 
to a device, system, or software that compresses or decompresses data. An example 
would be an IC that converts to and from the JPEG image-compression format. In 
the telecom industry, codec is short for coder/decoder and is a device that converts 
from digital to analog and back. 

Cross Conduction (see Shoot-through): A condition that occurs when an incorrect 
pair of transistors turns on in an H-bridge. This condition usually results in low 
impedance between the two supply voltages. 

DAC (digital-to-analog converter): A circuit that converts a digital value to an analog 
value. 

Dynamic range: The range of values that a system must measure or control. Con- 
ceptually, the maximum value divided by the smallest increment. 

EMC (electromagnetic compatibility): Generally refers to compatibility with the 
various electromagnetic interference standards, such as those issued by the FCC 
(Federal Communications Commission) in the United States or by the IEC in the 
European community. 
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EMI (electromagnetic interference): A general term for any kind of interference in an 
electronic circuit that is caused by any electromagnetic effect. EMI includes RF, 
ESD, and magnetic interference effects. 

Encoder: On a motor, an encoder attaches to the motor shaft and produces output 
signals that indicate motor position. The  encoder may produce a series of pulses 
indicating a certain degree of rotation or an absolute indication of shaft position. 

ESD (electrostatic discharge): An arc that is created when electricity flows between 
two charged objects. The  spark you get when you walk across a carpet on a dry day 
and touch a doorknob. 

Hall effect: Discovered by Dr. Edwin Hall in 1879. It refers to the voltage that appears 
across a conductor if it is placed in a magnetic field while a current is passed through it. 

Hall  effect sensor: A semiconductor sensor that measures magnetic fields using the 
Hall effect. 

Index: In a shaft-position encoder, an output  that indicates when the shaft has 
reached a predetermined position, usually occurring once per revolution. 

Integration t ime (CCD): The  amount  of time that light is allowed to fall (charge is 
allowed to accumulate) on a CCD array before readout. 

LVDT (linear variable differential transformer): A linear position sensor that uses a 
movable core and balanced coils. 

Open- loop gain: The  gain of a circuit (typically an opamp) with no feedback compon- 
ents added. The  open-loop gain of an opamp is high, usually in the tens or 
hundreds  of thousands. 

Pelt ier cooler: A solid-state cooler using the Peltier effect. 

PID (Proportional/Integral/Derivative) control: A control method that determines 
the new output  of a system by using the difference between the desired value and 
the actual value (proportional term), the rate of change (derivative term), and the 
accumulation of the error  over time (integral term). 

PWM (pulse-width modulation):  A means of controlling the current  through a device 
by applying an on-off waveform with a current  that is higher than the desired 
current.  The  device responds to the time average of the current  through it, so the 
ratio of on to off time in the waveform determines the effective current  value. 

Reference voltage: In an ADC or DAC circuit, the voltage that establishes the conver- 
sion range. In a comparator  circuit, the voltage at one input that is compared to the 
other  input to determine if the output  is high or low. 

RTD (resistance temperature detector): A conductor that is used to measure tem- 
perature  by measuring resistance change. 

Sample and hold (S/H): A circuit that stores a voltage value so it can be measured. 
Typically used with an ADC to stabilize the input value during measurement .  

Shoot-through (see Cross conduction): A condition that occurs when an incorrect 
pair of transistors turns on in an H-bridge. This condition usually results in low 
impedance between the two supply voltages. 
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Strain gauge: A sensor that measures  mechanical  strain, such as weight, by measur ing  
the resistance change in a conductor  due  to the change  in cross-sectional area. 

Thermistor: A resistive c o m p o n e n t  that changes  resistance with t empera tu re .  

T h e r m o c o u p l e :  A t e m p e r a t u r e  sensor that measures  the voltage genera ted  at the 
junct ion of two dissimilar metals. 

Torque: The  a m o u n t  of force a motor  can apply to its shaft. T h e  formula  for torque  is: 

Force x Momen t  Arm = T o r q u e  

T o r q u e  is measured  in foot-pounds,  inch-pounds,  ounce-inches,  or 

Newton-meters  (metric). 

8.85 inch-pounds = 1 Newton-mete r  

1 foot-pound = 12 inch-pounds  

16 ounce-inches = 1 inch-pound 

1 Newton - 1 k i logram-meter  per  second squared 

VRS (variable reluctance sensor): A sensor that  uses a magne t  and a coil to sense 
rotation of  a toothed wheel. The  teeth on the wheel p roduce  changes in the 
magnet ic  field from the magnet ,  inducing an AC voltage on the coil. 

V-F (voltage-to-frequency) conver ter :  A circuit that genera tes  an ou tpu t  f requency 
that varies with an input  voltage. 
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1 LSB, 35 
2-channel arrays, 74 
2's complement outputs, 30 
4-20ma current loop, 244-245 
4N35 optoisolator, 68 
6N 136 optoisolator, 68 
8031 family, 39 
80186 processor bus contention, 

33-34 

A 

Absolute encoders, 198 
AC power control, 252,254 
Acceleration sensors. See motion/ 

acceleration sensors 
Accumulation of errors, 35, 122 
Accuracy, extending with limited 

resolution, 102-106 
Acquisition time, 28 
AD594/595, 58 
ADCs (analog-to-digital converters), 

13-15,307 
2's complement outputs, 30 
accuracy of reference, 43 
CCDs (charge coupled devices), 81 
comparing types of, 25-26 
controlling multiple sensors, 65-67 
dual-slope (integrating) ADCs, 20-21 
flash ADCs, 19 
half-flash converter, 24-25 
Hall effect sensors, 83 
high-resolution, 234-235 
12 bus, 38-39 
input levels, 29 
interfacing to fast processor, 36 
internal microcontroller, 42-43 
internal reference voltage, 29 

internal S/H (sample-and-hold) circuit, 
29-30 

interrupt rates, 44 
lower-voltage, single-supply operation, 

29 
low-pass filter ahead of, 27 
microprocessor interfacing, 30-35 
multichannel, 41-42 
output coding, 30 
output values in BCD, 30 
output word, 16 
parallel interfaces, 30-32 
proprietary interfaces, 39 
reference bypassing, 29 
reference voltage, 16 
resistor ladder or string, 24 
resolution, 16-17 
serial interfaces, 36-41 
S/H (sample-and-hold circuit), 26-30 
sigma-delta converter, 21-24 
single-slope converter, 21 
SMBus, 39, 41 
SPI/Microwire, 36, 38 
successive approximation converter, 

19-20 
tracking ADCs, 17, 19 
types, 17-25 

Agilent HCTL-1100 controller IC, 203-204 
Aliasing, 11-12 
Analog Devices AD570, 29 
Analog Devices AD872, 29 
Analog Devices AD5203, 166 
Analog Devices AD5220, 163-165 
Analog Devices AD7801, 162-163 
Analog Devices AD7823, 38 
Analog Devices AD7824, 41-42 
Analog Devices ADV7120, 163 
Analog Devices ADXL202, 86 

311 



Analog Devices Web site, 299 
Analog Hall effect sensors, 82 
Analog multiplexers, 168-169 
Analog signal transmitted over electrically 

noisy wire, 100 
Analog switches, 166-168 
Applications, high-precision, 225-227 
Area CCDs (charge coupled devices), 78-79 
Arrays, 74-77 
Asynchronous V-F converters, 99 
Atmel AT90S4434, 42 
Atmel ATtiny parts, 44 
Atmel AVR devices, 44 
Atmel Web site, 299 

B 

Back EMF, 209 
Bandpass filter, 97 
Bandwidth, 5 
Bang-bang control. See On-off control 
BestSoft Web site, 138 
Bipolar Hall effect switches, 83 
Bipolar stepper motors, 173, 179-180 
Bipolar transistors, 254-257 
Bodine Electric Web site, 299 
Brushless DC motors 

compared to other types of motors, 206 
digital drive, 194-195 
drive electronics providing commutation, 

193-195 
electronic commutation, 206 
Hall-effect sensor, 195 
operation of, 193 
sensorless, 195-196 
sinusoidal drive, 193-195 

Burr-Brown Web site, 299 
Bus architecture, 7-8 
Bus contention, 33-34 
Bus cycle without wait states, 35 

12 

Calibrating system with known target, 
80-81 

Calibration 
calculating with software, 3 
compensation for, 2-3 
EEPROM containing, 3 
human element, 5 
measurement, 2-5 
microcontroller performing, 3-4 
storing, 3 

Camcorders and Area CCDs, 78 
Capacitors 

LSB errors, 34-35 
supplying current to coil, 148 
time required to charge up, 34 
V-F (voltage-to-frequency converters), 

98-99 
Capture counter, 91-93 
CCD array, 73-74 
CCDs (charge coupled devices), 71 

ADCs (analog-to-digital converters), 81 
area, 78-79 
basics, 72 
calibrating system with known target, 

80-81 
CDS (correlated double sampling), 79-80 
clock and reset inputs, 81 
color, 75 
color processing, 78 
dark reference, 79 
driving, 81 
electrostatic potential, 72 
exposure control, 72 
functions, 72 
integration, 72 
integration time, 72 
lighting variations, 80 
linear, 73-75 
nonuniformity, 80-81 
normalizing output, 80 
operation, 72 
reducing noise, 79-80 
sense node, 72 
trilinear, 75-78 
voltage requirements, 81 

CDS (correlated double sampling), 79-80, 
307 

Chopper circuit, 186 
Chopper control, 186--187 
Chopper oscillator, 186-187 
Chromel-alumel (Type K) thermocouples, 

57 
Circuits 

electrical isolation between, 67 
high-side injection, 97 

Clarostat Optoelectronics Web site, 300 
Clarostat Web site, 299 
Class D amplifier, 295 
Clock resolution, 100-102 
Clocked interfaces, 35-36 
Closed-loop gain, 307 
Codecs, 43, 307 
Color and Trilinear CCDs (charge coupled 

devices), 75-78 
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Combined logic analyzer/DSO, 135-136 
Commercial software for tuning PID loops, 

138 
Comparators, 17, 19-21, 23 

Hall effect sensors, 83 
hysteresis, 283-285 
opamp, 281-283 
open heater condition, 149, 151 
optical sensors, 62-63 
V-F (voltage-to-frequency converters), 

98-99 
Components 

safety ground, 216-217 
tolerance stackup, 55-56 

Continuous-duty solenoids, 145 
Control design, 143 
Control loops, measuring and analyzing, 

134-143 
Control systems 

combined logic analyzer/DSO, 135-136 
debugging problems, 134 
hardware monitoring, 134-143 
inaccuracy, 126 
logic analyzer, 134 
monitoring, 134-135 
motor control, 127-133 
on-off control, 109-112 
overshoot, 112 
PID controls, 116-127 
predictive controls, 133-134 
proportional controls, 112-115 

Controls, open-loop, 107 
Coolers 

fans, 155-157 
solid-state (Peltier), 155 

Copper-constantant (Type T) 
thermocouples, 57 

Counters 
incremented by frequency input, 94 
motor control, 128 
overflowing, 102 

Cross-conduction, 180-184, 307 
CTR (current transfer ratio), 61 
Current chopping, 148 

O 

DACs (digital-to-analog converters), 13-15, 
17, 162-163, 307 

Dale thermistor, 48 
Dalsa Web site, 299 
Darlington transistor outputs, 61 
Data access time, 32 

dB (decibels), 1 
D.C. (dissipation constant), 50 
DC motors 

ability to brake, 192-193 
analog driver, 191 
brushless, 193-197 
compared to other types of motors, 206 
control circuits, 191 
controller ICs, 199-204 
current control, 191 
driving, 191 
dynamic braking, 192-193 
encoders, 197-198 
H-bridge driving, 190-193 
higher loading, 191 
light loading, 191 
power-up issues, 207-209 
software controllers, 204-205 
speed, 209 
synchronization, 190 
torque, 206 

Deadtime, 126 
Derivative term and PID controls, 126 
Differential amp, 22 
Differential amplifier equation, 280 
Digital potentiometers, 163-166 
Discrete optical sensors, 69-71 
Discrete parts, 69 
DMA controller reading ADC at regular 

intervals, 44 
Driving 

bipolar transistors, 254-257 
CCDs (charge coupled devices), 81 

Droop rate, 28 
DSO (digital storage oscilloscope), 135-136 
DSP filtering in software, 97 
Dual-function pins on microcontrollers, 

44-46 
Dual-slope (integrating) ADCs, 20-21 
Dynamic braking, 192-193 
Dynamic range, 1-2, 307 

E 

Eastern Air Devices Web site, 299 
EEPROM, containing calibration data, 3 
Electrical and IEEE 1451.2 standard, 243 
EMC (electromagnetic compatibility), 8 
EMI (electromagnetic interference), 308 

ground loops, 215-220 
interference, 215 
PWM (pulse width modulation), 294 
susceptibility, 215 
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Encoders, 197-198, 206, 308 
Errors, 112-113 

accumulation of, 122 
motor control, 128 
proportional controls, 115 

ESD (electrostatic discharge), 220, 308 
protection, 221-223 
self-induced, 221 

Ethernet between systems, 216 
Events 

accurate measurement short, 103-104 
duration longer than clock period, 104 
duration not changing, 105 
ISR interrupt, 106 
measuring nonsynchronized to 

measurement clock, 104 
period increases, 105 
repeatability, 105 
repetitive, 104, 106 

Example control system, 262 
on-off (bang-bang) control, 263, 266 
PID controls, 268-272 
proportional controls, 266-268 
proportional-integral control, 273 

Excel data for Chapter 4, 306 

F 

Failed LED, 66-67 
Fairchild TMC 1103, 81 
Fairchild Web site, 299 
Fans 

built-in tachs, 157 
controlling speed, 155 
electronic controllers, 155 
monitoring, 155-156 
MOSFET transistors, 155 
optical (or Hall effect) sensor output, 156 
set/reset flip-flop, 156 

Feedthrough, 28 
Ferrite beads, 223 
Fieldbus, 245-246 
FIFOs (first in, first out memory), 77 
Filtering 

noisy input, 140-141 
slotted switches, 63 
V-F converters, 100 

Flash ADCs (analog-to-digital converters), 
19, 24 

Floating-point math, 103 
Frequency 

detecting changes quickly, 95 
high-precision applications, 229 

input range, 97 
measurements, 91 
measuring versus period, 94-95 
sampling clock, 100-102 

Frequency mixer, 96-97 
Frequency shifts, 96-98 
Full power bandwidth, 28 

G 
Geartooth Hall effect sensors, 83 
Ground loops, 215 

damaging electronics, 216 
measurement errors, 216 
motor current, 218-220 
self-induced current errors, 220 

Grounding and high-precision 
applications, 234--235 

Guardian Relays/Solenoids Web site, 300 

14 

Half-flash converters, 24--25 
Half-stepping stepper motors, 175-177 
Hall, Edwin, 82 
Hall effect, 82-83,308 
Hall effect potentiometer, 83 
Hall effect sensors, 82-83, 195,308 
Hall effect switches, 82-83 
Hanson Motors Web site, 299 
Hardware 

peripherals, 8-9 
PWM (pulse width modulation), 296-297 
requirements, 9-11 
system adaptions to lower costs, 9-11 
throughput requirements support, 6 

H-bridge circuits, 179 
braking capability, 192 
cross-conduction, 180 
enabling and disabling, 187 
power-up conditions, 182-183 

Heaters 
detecting open heater condition, 149, 

151 
driven by transistor, 149 
open sensor, 151-152 
RTD heaters, 152, 154-155 

High-precision applications 
frequency characteristics, 229 
grounding, 234-235 
input offset voltage, 227-228 
input resistance, 228-229 
noise, 234-235 
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opamps causing errors, 225-227 
printed circuit board layout, 236-239 
statistical tolerancing, 239-240 
supply-based references, 240 
temperature effects in general, 233-234 
temperature effects in resistors, 230-231 
voltage references, 231-233 

High-side injection, 97 
High-side switches, 257 
High-side switching, 259-260 
Hold capacitor, 27-28 
Honeywell Web site, 299 
Hybrid stepper motors, 171-173 
Hysteresis, 283-285 

I x bus, 38-39 
IEEE 1451.2 standard 

electrical, 243 
standard units, 244 
TEDS (transducer electronic data sheets), 

243-244 
Index, 308 
Inertia, 117 
Input 

dynamic range, 1-2 
frequency greater than measurement 

capability, 12 
frequency range, 97 
multiple controls, 250-252 
offset voltage, 227-228 
resistance and high-precision 

applications, 228-229 
voltage and V-F (vohage-to-frequency 

converters), 99 
Instrumentation amplifiers, 285-286 
Integral terms 

pseudocode example, 139-140 
saturation, 124-125 

Integrals, 121-122 
Integration, 72 
Integration time, 72,308 
Integrator, 20-21 
Interfaces 

shared, 9 
system design, 11 
throughput requirements, 6 

Interference, 215 
Internal microcontroller ADCs, 42-43 
Internal reference voltage, 29 
Internal S/H (sample-and-hold circuit), 

29-30 

Interrupt rates, 44 
Interrupts 

repetitive events, 106 
throughput requirements, 6 

Inverting amplifier equation, 279-280 
Iron-constantan (Type J) thermocouples, 57 
ISR (interrupt service routine), 6, 92 

R" 

Kodak KLI series, 76 
Kodak KLI-2113, 77 

L 

L297 stepper-controller I C, 189 
L6201 IC, 185, 192 
L/C low-pass filter, 97 
LEDs 

current-limiting resistor in series, 157 
driving multiple, 160-162 
driving with constant current, 158-159 
hooking in parallel with one limiting 

resistor, 160-161 
input voltage, 159 
optoisolator outputs, 160 
unregulated supply, 157-158 

Linear arrays, 74 
color filters, 75 
nonunitormity, 80 

Linear CCDs (charge coupled devices), 73-75 
Line-scan CCDs (charge coupled devices). 

See linear CCDs 
Liteon Optoelectronics Web site, 300 
LM231, 99 
LM335, voltage proportional to 

temperature, 58 
LM336 reterence, 231-233 
LM336A-2.5 reference diode, 231 
LM628/9 controller IC, 199-204 
LM1820IC, 185 
LMD 18200 H-bridge, 192,207 
Low-pass filter, 97-98 
LVDTs (linear variable differential 

transtormers), 84-85,308 

M 

Magnetic sensors 
Hall effect sensors, 82-83 
LVDTs (linear variable differential 

transformers), 84-85 
VRSs (variable reluctance sensors), 85-86 
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MAX 350, 169 
MAX6576, 101-102 
MAX6576 temperature sensor, 101 
MAX6577, 91 
Maxim MAX 151 

adding data bus buffer before 
processor, 34 

bus cycle extended with wait states, 35 
bus relinquish time, 32-34 
-BUSY output, 32 
clocked interfaces, 35-36 
coupling of bus control signals, 34 
data access time, 32 
delay between conversions, 34 
internal S/H (sample-and-hold circuit), 

3O 
interrupt rates, 44 
microprocessor interface, 32 
minimizing effect of coupling, 34 
parallel interface, 30 
ROM mode, 30-32 
sampling mode, 34 
Slow Memory Mode, 30 

Maxim MAX 191, 29 
Maxim MAX349, 169 
Maxim MAX 1101, 39, 81 
Maxim MAX1242, 36, 38, 43 
Maxim MAX 1617, 58 
Maxim MAX5048, 259 
Maxim MAX6225 reference, 233 
Maxim MAX6576, 91 
Maxim Web site, 299 
Maxon Motors Web site, 299 
MC2100 series controller IC, 203 
MC2300 series controller IC, 203 
Measurement 

1 ~ accuracy, 2 
calibration, 2-5 
clock accuracy, 105 
frequency, 91 
input frequency greater than capacity, 12 
number of bits of precision required, 1-2 
time-based, 91 
tolerances, 2 

Measuring 
analyzing control loops and, 134-143 
motor parameters; 136-138 
period versus frequency, 94-95 

Mechanical potentiometers, 164-166 
Microchip 16C7x parts, 51 
Microchip PIC devices, 44 
Microchip PIC 16C series, 205 
Microchip PIC 167C7xx family, 42 
Microchip Web site, 299 

Microcontrollers 
binary values, 143 
division, 143 
dual-function pins on, 44-46 
input capture capability, 102 
multiplication, 143 
negative values, 143 
on-chip hardware to implement 

synchronous serial I/O, 39 
performing calibration, 3-4 
proprietary serial interfaces, 39 
with PWM outputs, 148 
supply and reference, 247-248 
timers incremented with external 

signal, 93 
Microprocessor interface, 32 
Microprocessor-based systems, 1, 108-109 
Microprocessors 

buffer, 34 
connecting switch to, 87 
deadtime, 126 
extending accuracy with limited 

resolution, 102-106 
gain function, 108 
interfacing, 30-35 
interfacing to solenoids and relays, 

145-146 
internal wait-state generators, 32 
interrupt latency issues, 93 
measuring temperature using 

thermistor, 48, 50 
NMI (non-maskable interrupt) input, 93 
RDY or-WAIT signal, 32 
sampling output of sensors, 108 
sampling rate, 108-109 
slow memory mode, 32 
without capture capability, 93 

Microsoft Excel, random number function, 
104 

Microstepping stepper motors, 177-179 
MIDI (Musical Instrument Digital 

Interface) optical isolation, 67 
Mixer, complicated design of, 98 
Mixing and time-based measurement, 

96-98 
Monitoring control systems, 134-135 
Monochrome images, 78 
MOSFETs, 109, 146 

driving, 257-260 
gate-to-source and gate-to-drain 

capacitance, 259 
high-side switching, 259-260 
not turning on, 259 
turn-on time, 259 
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Motion/acceleration sensors, 86-89, 87-89 
Motor control 

checking count of internal free-running 
counter, 130 

checking velocity, 130 
constant speed, 129-131 
control loop, 129 
counters, 128 
error, 128 
fixed-count sampling method, 130-131 
indicating desired position, 128-129 
positioning, 131, 133 
slotted switch, 129 
software considerations, 133 
timeout to detect stalled, 131 

Motorola Semiconductors Web site, 299 
Motors 

current and ground loops, 218-220 
DC motors, 190-205 
measuring parameters, 136-137 
rotor, 173-174 
stepper motors, 171-189 
torque, 208-209 
tuning parameters, 136 

MPC (model predictive control), 134 
Multichannel ADCs, 41--42 
Multi-output arrays, 74 
Multiple input control, 250-252 
Multiple optical sensors, 65-67 
Multiplexers, 168-169 

/V 

National LM34 and LM35 sensors, 58 
National LM74, 58 
National LM75, 58-59 
National Semiconductor LM4546, 43 
National Semiconductor Web site, 299 
National TP3054 telecom-type codec, 43 
N-channel MOSFET, 260 
Negative feedback and control, 107-108 
Negative voltages, reading, 261-262 
NMI (non-maskable interrupt) input, 93 
NMPC (nonlinear model predictive 

control), 134 
Noise and high-precision applications, 

234-235 
Noninverting amplifier equation, 280 
Nonuniformity CCDs (charge coupled 

devices), 80-81 
NPN transistor, 145-146 
NTC (negative temperature coefficient), 47 
NTC thermistors, 48, 151-152 

0 

Offset voltage and high-precision 
applications, 227 

Omron Relays Web site, 300 
On-chip ADCs (analog-to-digital 

converters), 42 
On-chip hardware to implement 

synchronous serial I/O 
microcontrollers, 39 

One-phase-on drive, 175 
On-off (bang-bang) control, 263, 266 

coupling, 110 
dead band, 111-112 
optimum conditions, 111 
oscillation, 113, 115 
overshoot, 113, 115 
thermal mass, 110 
time lag, 110 

Opamps 
buffer configuration, 275-277 
calculating output voltage, 53 
causing errors, 225-227 
comparators, 281-283 
design equations, 279-280 
deviations from ideal, 108 
differential amplifier configuration, 

278-279 
differential amplifier equation, 280 
equation, 225-227 
frequency limitations, 108 
input impedance, 228 
input resistance, 228-229 
instrumentation amplifiers, 285-286 
inverting amplifier equation, 279-280 
negative feedback, 107-108 
noninverting amplifier equation, 280 
noninverting configuration, 277-278 
nonresistive elements, 280 
reversing inputs, 281 

()pen heater condition, 149, 151 
Open sensors, 64-65, 151-152 
Open-loop controls, 107 
Open-loop gain, 308 
Operating system requirements and 

throughput, 7 
Optical encoders, 197 
Optical isolators, 67-68 
Optical sensors 

comparator, 62-63 
connecting output to ADC, 62 
discrete, 69-71 
failed LED, 66-67 
interfacing to microprocessor, 69 
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Optical sensors (continued) 
IR problems, 63--64 
mechanical instability, 64 
multiple, 65-67 
open sensors, 64-65 
optical isolators, 67-68 
reflective sensors, 59-63 
slotted switches, 59 

Optocouplers, 67-68, 182 
Optoisolators, 67-68 

driving multiple, 160-162 
isolating bidirectional signal between two 

systems, 69-71 
LEDs, 160 
transistor and logic outputs, 160 
triac outputs, 160 

Oriental Motors Web site, 299 
Oscillators, crystal-controlled, 234-235 
Out-of-bounds controls, 141-142 
Output 

coding, 30 
dynamic range, 1-2 
offset, 28 
voltage, 13-15 

Output word and ADCs, 16 
Oversampling, 21-22 

P 

Pacific Scientific Web site, 299 
Parallel interfaces and ADCs, 30-32 
PC/104 Plus bus, 7-8 
PCB grounding, 236 
P-channel MOSFET, 259-260 
Peltier cooler, 308 
Performance Motion Devices Web site, 299 
Periods 

measuring versus frequency, 94-95 
sampling clock, 100-102 

Peripherals, 8-9, 39 
Permanent-magnet stepper motors, 171 
Phillips TDA5140, 197 
PIC 15C6x series, 91 
Pick/hold circuit and solenoids, 147-148 
PID analysis package, 138 
PID (proportional, integral, derivative) 

controls, 116, 308 
amount of change in one time interval, 

126 
antiwindup for integral term, 139-140 
block diagram, 116 
deadtime, 126 
derivative term, 126 
derivatives, 117-120 

difficulty of making measurements, 124 
discontinuous inputs, 127 
drawbacks, 133 
effectiveness, 133 
filtering noisy input, 140-141 
formula for calculating output, 116-117 
handling specific inputs, 127 
inertia, 117 
integral and derivative gains, 123 
integrals, 121-122, 126 
light load versus a heavy load, 117 
motor control, 127-133 
offset, 117, 133 
oscillation, 120 
overshoot, 119-120 
practical considerations, 123-124 
preventing out-of-bounds average 

output, 141-I 42 
preventing out-of-bounds control 

output, 141 
proportional gain and derivative, 120 
pseudocode examples, 138-143 
saturation, 124-125 
software considerations, 125-126 
special requirements, 127 
summarized, 122-123 
terms, 117 
time delays, 126 
tuning, 123-124 
velocity setpoint, 131, 133 

PID loop 
measuring effects of changes, 136 
pseudocode examples, 138-140 

PMDC (Permanent magnet DC) motor DC 
Motors, 190 

PN junction, 58 
Positioning motor control, 131, 133 
Potentiometers 

mechanical, 166 
Potentiometers, digital and mechanical, 

163-166  
Power supplies and printed circuit board 

layout, 236-239 
Printed circuit board layout 

PCB grounding, 236 
power supplies, 236-239 

Processing requirements and throughput, 7 
Processor 

avoiding excess speed, 7-8 
clock-synchronized bus, 35 
cost, 7-8 
EMC (electromatic compatibility), 8 
hardware divide instruction, 10 
throughput, 6-7 
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Products and EMC regulations, 8 
Proportional controls, 266-268 

adjusting control signal, 113, 115 
adjusting gain and offset, 115 
conditional problems, 115 
equation, 113 
error, 112-113, 115 
handling varying loads better, 118 
known load, 115 
negative output capability, 113 
oscillation around setpoint, 113 
overshoot, 113 
reaching setpoint without oscillating, 115 
without offset, 115 

Proportional-integral control, 273 
Proprietary serial interfaces, 39, 41 
Pulse-duty solenoids, 145 
PWM (pulse width modulation), 308 

audio applications, 295 
EMI, 294 
hardware, 296-297 
power-supply considerations, 294 
resolution limitations, 293-294 
software, 297 

Python code for Chapter 11,301-305 

O 
QT optoelectronics reflective sensors, 61 
QT optoelectronics Web site, 300 
Quad digital potentiometer, 166 
Quadrature encoder, 198 

/:/ 

Random number function, 104 
Range, 100-102 
Reading negative voltages, 261-262 
Reference voltage, 16, 42-43,308 
References 

bypassing, 29 
reducing input, 17 

Reflective sensors 
adding hardware and/or software to 

detect unusual conditions, 64 
CTR (current transfer ratio), 61-62 
focal length, 59 
gain, 61--63 
I R problems, 63-64 
mechanical instability, 64 
mechanical jitter, 64 
sensing objects of differing types, 64 
speed, 61 

Refrigerators and temperature, 105-160 
Relays, 145 

chopping current, 148 
clamping, 147 
DC current drawn by, 147-148 
diode camp usage, 146-147 
extra set of contacts on, 148 
flyback voltage, 146-147 
interfacing to, 145-147 

Repetitive events, 104, 106 
Resistance 

RTD heaters, 152, 154 
temperature, 2 

Resistor ladder, 24 
Resistor networks, 249-250 
Resistor voltage divider, 261 
Resistors 

dissipating power, 148 
standard values, 54 
temperature effects, 230-231 

Resolution 
ADCs (analog-to-digital converters), 

16-17 
extending with limited, 102-106 
improving, 1 6-17 

Resonance and stepper motors, 173-175, 
188 

ROM mode, 36 
Rotor and stepper motors, 173-174 
RTD (resistance temperature detectors), 

56, 308 
RTD heaters 

drawbacks, 154 
driving, 152, 154 
measure-when-off circuit, 154 
measure-when-on circuit, 154 
measuring temperature of heating 

element, 154-155 
measuring temperature with heater off, 

154 
resistance, 152, 154 
sense resistor, 152, 154 
temperature measurement dependent 

on supply voltage, 154 
thermistors, 152 
tolerance, 154 

$ 

Safety and failed sensors, 64-65 
Sample rate, 11-12 
Sampling clock, higher frequency, 96 
Saturation, 124-125 
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Scaling output for temperature sensors and 
thermistors, 51-55 

Seebeck, Thomas, 57 
Self-heating, 50 
Self-induced current errors, 220 
Self-induced ESD (electrostatic discharge), 

221 
Semiconductor strain gauges, 90 
Sense resistor 

RTD heaters, 152, 154 
stepper motors, 184 

SENSEFETS, 154 
Sensors 

magnetic, 82-86 
motion/acceleration, 86-89 
open, 151-152 
operating from different reference, 

99-100 
optical, 59-71 
saturation, 125 
temperature, 47-59 

Serial interfaces 
ADCs (analog-to-digital converters), 

36-41 
12 bus, 38-39 
proprietary, 41 
SMBus, 39, 41 
SPI/Microwire, 36, 38 
TP3054, 43 

Setpoint, settling small distance from, 
121-122 

Set/reset flip-flop, 156 
S/H (sample-and-hold circuits), 308 

acquisition time, 28 
CDS (correlated double sampling), 

79-80 
finite input impedance, 28 
full power bandwidth, 28 
hold capacitor, 27-28 
internal, 29-30 
maintaining output in hold 

mode, 28 
output offset, 28 
waveform, 27 

Shared interfaces, 9 
Shoot-through, 180-184, 308 
Sigma-delta converter 

accuracy, 24 
comparator, 23 
complexity of digital filter, 24 
differential amp, 22 
high resolution, 24 
input range, 24 
speed, 24 

Single-channel arrays, 74 
Single-slope converter, 21 
Sinusoidal input signal, 11 
Slotted switches, 59 

CTR (current transfer ratio), 61 
current transfer ratio, 61 
Darlington transistor outputs, 61 
filtering, 63 
gain, 61-63 
IR problems, 63-64 
motor control, 129 
speed, 61 

Slow Memory mode, 36 
SMBus, 39, 41 
Smith, Otto, 126 
Smith Predictor, 126 
Software 

artificially limiting integral buildup, 
125-126 

motor control considerations, 133 
PID considerations, 125-126 
PWM (pulse width modulation), 297 
registers of limited size, 125 

Software controllers and DC motors, 
204-205 

Solenoids 
clamping, 147 
DC current drawn by, 147-148 
driven by transistor, 149 
flyback voltage, 146-147 
interfacing to, 145-147 
pick/hold circuit, 147-148 

Solid state temperature sensors, 58-59 
Solid-state acceleration sensors, 86 
Solid-state (Peltier) coolers, 155 
Solid-state sensor, detecting open, 151-152 
Sony ILX series, 76 
Sony ILX724 
Sony Semiconductors Web site, 299 
Specialized DACs (digital-to-analog 

converters), 163 
SPI/Microwire, 36, 38 
SPI/Microwire interface, 58 
SSRs (solid-state relays), 252 
Stall torque, 209 
Standard interfaces 

4-20ma current loop, 244-245 
Fieldbus, 245-246 
IEEE 1451.2, 243-244 

Statistical tolerancing, 239-240 
Stepper DC motors, 206 
Stepper motors 

analog driver, 191 
bipolar versus unipolar windings, 173 
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chopper control, 186-187 
constant current drive, 188 
control method, 188 
cross-conduction, 180-184 
current sensing, 184 
driving, 179-180 
firmware, 211-213 
half-stepping, 175-177, 188 
hybrid, 171-173 
interrupt routine logic, 213 
linear drive, 188-189 
main loop logic, 211 
microstepping, 177-179, 188 
motor current logic, 212 
motor drive I Cs, 185 
one-phase-on drive, 175 
permanent-magnet, 171 
ramping down, 212 
real-world application, 209-213 
resonance, 173-175, 188 
rotor, 173-174 
sense resistor, 184 
speed and current update logic, 212 
state update logic, 212 
sudden loss of torque, 174-175 
switch debounce logic, 212 
torque, 186-187 
variable-reluctance, 171 

Stored charge, 256 
Strain gauges, 89-90, 309 
Successive approximation ADCs, 42 

changing signals, 26-27 
reference bypassing, 29 
resistor ladder, 24 

Successive approximation converter, 19-20 
Successive approximation register, 19-20 
Summarized PID, 122-123 
Supply-based references, 240 
Surface-mount (SOT-23) device, 91 
Surface-mount packaging, 83 
Surveillance cameras and area CCDs, 78 
Susceptibility, 215 
Switches 

analog, 166-169 
bounce, 87-88 
contact resistance, 88-89 
detecting press of, 87-88 
motion/acceleration sensors, 87-89 
types, 87 

Synchronous V-F converters, 99 
System design 

aliasing, 11-12 
avoiding speed, 7-8 
bandwidth, 5 

calibration, 2-5 
dynamic range, 1-2 
hardware requirements, 9-11 
interfaces, 11 
peripheral hardware, 8-9 
processor throughput, 6-7 
sample rate, 11-12 
shared interfaces, 9 
task priorities, 9 
word width, 11 

Systems 
capable of division, 105 
Ethernet between, 216 
inertia, 117 
microprocessor-based, 108-109 

7" 

Task priorities, 9 
TEDS (transducer electronic data sheets), 

243-244 
Temperature,  47 

converting to time-based output, 93 
general effects, 233-234 
refrigerators, 105-160 
relating output of sensor to, 3 
resistance, 2 
thermistor measurement of, 48, 50 

Temperature control loop, 149 
Temperature sensors 

converting temperature to time-based 
output, 93 

PN junction, 58 
RTD (resistance temperature detectors), 

56 
scaling output, 51-55 
solid state, 58-59 
thermistors, 47-51 
thermocouples, 57-58 
tolerance stackup, 55-56 

Temperature-sensitive resistor, 47 
Texas Instruments Web site, 299 
Thermal mass and on-off control, 110 
Thermistors, 109, 309 

characteristics, 47 
D.C. (dissipation constant), 50 
generating heat, 50 
limiting repeatability, 48 
measuring temperature, 48, 50 
NTC (negative temperature coefficient), 

47 
placement and performance, 111 
resistance, 47-48, 51 

Index 321 



Thermistors (continued) 
RTD heaters, 152 
scaling output, 51-55 
self-heating, 50 
sensitivity, 47 
tables, 48 
thermal mass, 110 
tolerance, 48, 56 

Thermocouple signal conditioner, 58 
Thermocouples, 57-58, 151-152, 309 
Throughput requirements, 6-7 
TI VSP 2000, 81 
Time delays and PID controls, 126 
Time-based measurement 

capture counter, 91-93 
clock resolution, 100-102 
extending accuracy with limited 

resolution, 102-106 
interrupt latency issues, 93 
mixing, 96-98 
period versus frequency, 94-95 
range, 100-102 
V-F (voltage-to-frequency converters), 

98-100 
Timers, 93, 103 
TMP03, 93 
TMP04, 93 
Tolerance, 2, 154 
Tolerance stackup, 55-56, 239-240 
Torque, 208-209, 309 
Tracking ADC (analog-to-digital 

converter), 17, 19, 24 
Transistors, 292-293 
Tranzorbs, 147 
Trilinear arrays, 76-77 
Trilinear CCDs (charge coupled devices) 

linear CCD arrays, 78 
skewed data, 77-78 
three-element array, 75-76 

Tuning PID loops, 138 
Two-channel encoders, 198 

O 

Unipolar Hall effect switches, 83 
Unipolar stepper motors, 173 

It 

Van DeGraff generator, 221 
Variable-reluctance stepper motors, 

171 
V-F (voltage-to-frequency converters), 

98-100, 309 
Voltage, 254 
Voltage divider, 261-262 
Voltage precision, 2 
Voltage references 

high-precision applications, 231-233 
tolerance, 56 

VRSs (variable reluctance sensors), 85-86, 
309 

VST 3000 series, 81 

W 

Wintune Web site, 138 
Word width, 11 

X 

Xicor Web site, 299 

Z 

Zener diodes, 147, 223 
Zero crossing switching, 252-254 
Ziegler/Nichols method, 123-124 
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