
Preface

T h e r e often seems to be a division between the analog and digital worlds. Digital
designers usually do not like to delve into analog, and analog designers tend to
avoid the digital realm. The two groups often do not even use the same buzz-

words.
Even though microprocessors have become increasingly faster and more cap-

able, the real world remains analog in nature. The digital designers who a t tempt
to control or measure the real world must somehow connect this analog environ-
ment to their digital machines. T h e r e are books about analog design and books
about microprocessor design. This book at tempts to get at the issues involved in
connecting the two together.

Someone said about my first book, Embedded Microprocessor Systems: Real World
Design, that it needed more analog interfacing information. I felt that adding this
material to that book would cause the book to lose focus. However, the more I
thought about it, the more I thought that a book aimed at interfacing the real
world to microprocessors could prove valuable. This book is the result. I hope it
proves useful.

ix

Introduction

Modern electronic systems are increasingly digital: digital microprocessors, digi-
tal logic, digital interfaces. Digital logic is easier to design and understand, and it
is much more flexible than the equivalent analog circuitry would be. As an
example, imagine trying to implement any kind of sophisticated microprocessor
with analog parts. Digital electronics lets the PC on your desk execute different
programs at different times, perform complex calculations, and communicate by
the World Wide Web.

The electronic world is nearly all digital, but the real world is not. The
temperature in your office is not just hot or cold, but varies over a wide range.
You can use a thermometer to determine what the temperature is, but how do
you convert the temperature to a digital value for use in a microprocessor-
controlled thermostat? The ignition control microprocessor in your car has to
measure the engine speed to generate a spark at the right time. A microprocessor-
controlled machining tool has to position the cutting bit in the right place to cut a
piece of steel.

This book provides coverage of practical control applications and gives some
opamp examples; however, its focus is neither control theory nor opamp theory.
Primarily, its coverage includes measurement and control of analog quantities in
embedded systems that are required to interface with the real world. Whether
measuring a signal from a satellite or the temperature of a toaster, embedded
systems must measure, analyze, and control analog values. That 's what this book
is about--connect ing analog input and output devices to microprocessors for
embedded applications

xi

System Design

Most embedded microprocessor designs involve processing some kind of input
to produce some kind of output, and one or both of these is usually analog. The
digital portions of an analog system, such as the microprocessor-to-memory
interface, are outside the scope of this book. However, there are some system
considerations in any design that must interface to the real world, and these will
be considered here.

Dynamic Range

Before a system can be designed, the dynamic range of the inputs and outputs
must be known. The dynamic range defines the precision that must be applied to
measuring the inputs or generating the outputs. This in turn drives other parts
of the design, such as allowable noise and the precision that is required of the
components.

A simple microprocessor-based system might read an analog input voltage and
convert it to a digital value (how this happens will be examined in Chapter 2).
Dynamic: range is usually expressed in decibels (dB) because it is usually a
measurement of relative power or voltage. However, this does not cover all the
things that a microprocessor-based system might want to measure. In simplest
terms, the dynamic range can be thought of as the largest value that must be
measured compared to (or divided by) the smallest. In most cases, the essential
number that needs to be known is the number of bits of precision required to
measure or control something.

As an example, say that we want to measure temperatures between 0 ~ and
100 ~ If we want to measure with 1 ~ accuracy, we would need 100 discrete
values to accomplish this. An 8-bit analog-to-digital converter (ADC) can divide an
input voltage into 256 discrete values, so this system would need only 8 bits of

precision. On the other hand, what if we want to measure the same temperature
range with 0.1 ~ accuracy? Now we need 100/.1, or 1000 discrete values, and
that means a 10-bit ADC (which can produce 1024 discrete values).

Voltage Precision

The number of bits required to measure our example tempera ture range is
dependent on the range of what we are measuring (temperature, voltage, light
intensity, pressure, etc.) and not on a specific voltage range. In fact, our 0-to-
100 ~ range might be converted to a 0-to-5 volt swing or a 0-to-1 volt swing. In
either case, the dynamic range that we have to measure is the same. However, the
0-to-5 V range uses 19.5 mV steps (5v/256) for 1 ~ accuracy and 4.8 mV steps
(5v/1024) for 0.1 ~ accuracy. If we use a 0-to-1V swing, we have step sizes of
3.9 mV and 976 ~tV. This affects the ADC choices, the selection of opamps, and
other considerations. These will be examined in more detail in later chapters.
The important point is that the dynamic range of the system determines how
many bits of precision are needed to measure or control something; how that
range is translated into analog and then into digital values further constrains the
design.

Calibration

Dynamic range brings with it calibration issues. A certain dynamic range implies a
certain number of bits of precision. But real parts that are used to measure real-
world things have real tolerances. A 10K resistor can be between 9900 and
10,100 ohms if it has a 1% tolerance, or between 9990 and 10,010 ohms if it has
0.1% tolerance. In addition, the resistance varies with temperature. All the other
parts in the system, including the sensors themselves, have similar variations.
These will be addressed in more detail in Chapter 9, but for now the important
thing from a system point of view is this: how will the required accuracy be
achieved?

For example, say we're still trying to measure that 0-to- 100 ~ temperature range.
Measurement with 1 ~ accuracy may be achievable without adjustments. However,
you might find that the 0.1 ~ figure requires some kind of calibration because you
can't get a temperature sensor in your price range with that accuracy. You may have
to include an adjustment in the design to compensate for this variation.

The need for a calibration step implies other things. Will the part of the system
with the temperature sensor be part of the board that contains the compensation?
If not, how do you keep the two parts together once calibration is performed?
And what if the field engineer has to change the sensor in the field? Will the

2 Analog Interfacing to Embedded Microprocessor Systems

engineer be able to do the calibration? Will it really be cheaper , in product ion,

to add a calibration step to the assembly p rocedure than to purchase a more

accurate sensor?

In many cases in which an ad jus tment is needed, the result ing calibration

parameters can be calculated in software and stored. For example , you might

br ing the system (or just the sensor) to a known t empera tu re and measure the

output . You know that an ideal sensor should produce an ou tput voltage X for

t empera tu re T, but the real sensor produces an ou tput voltage Y for t empera tu re

T. By measur ing the ou tput at several t empera tures , you can build up a table of

information that relates the ou tpu t of that specific sensor to t empera tu re . This

information can be stored in the microprocessor 's memory . When the micropro-

cessor reads the sensor, it looks in the m e m o r y (or does a calculation) to deter-

mine the actual t empera ture .

You would want to look at storing this calibration with the sensor if it was not

physically located with the microprocessor. Tha t way, the sensor could be chan-

ged without recalibrating. Figure 1.1 shows three means of handl ing this calibra-

tion. In d iagram A, a microprocessor connects to a remote sensor via a cable. The

microprocessor stores the calibration information in its EEPROM or flash mem-

ory. The tradeoffs for this me thod are:

�9 Once the system is calibrated, the sensor has to stay with that microprocessor

board. If ei ther the sensor or the microprocessor is changed, the system has to

be recalibrated.
�9 If the sensor or microprocessor is changed and recalibration is not per formed,

the results will be incorrect, but there is no way to know that the results are

incorrect unless the microprocessor has a means to identify specific sensors.

�9 Data for all the sensors can be stored in one place, requir ing less m e m o r y than

other methods. In addition, if the calibration is pe r fo rmed by calculation

instead of by table lookup, all sensors that are the same can use the same

software routines, each sensor jus t having different calibration constants.

Diagram B in Figure 1.1 shows an alternative method of handl ing a remote

sensor, in which the EEPROM that contains the calibration data is located on the

board with the sensor. This EEPROM could be a small IC that is accessed with an
I2C or microwire interface (more about those in Chapter 2). The tradeoffs here are:

�9 Since each sensor carries its own calibration information, sensors and micro-

processor boards can be in te rchanged at will without affecting results. Spare

sensors can be calibrated and stocked without having to be matched to a specific

system.

�9 More memories are required, one for each sensor that needs calibration.

Finally, d iagram C in Figure 1.1 takes this concept a step fur ther , adding a

microcontrol ler to the sensor board, with the microcontrol ler pe r fo rming the

System Design 3

REMOTE
SENSOR # MICROPROCESSOR

EEPROM OR
FLASH MEMORY
WITH
CALIBRATION
CONSTANTS

REMOTE
SENSOR

EEPROM WITH
CALIBRATION
CONSTANTS

MICROPROCESSOR

SENSOR

MICROCONTROLLER
WITH EEPROM FOR
CALIBRATION
CONSTANTS

MICROPROCESSOR

Figure 1.1
Sensor calibration methods.

calibration and storing calibration data in an internal EEPROM or flash memory.

The tradeoffs here are:

�9 The re are more processors and more f irmware to maintain. In some applica-

tions with rigorous software documenta t ion requi rements (medical, military)

this may be a significant deve lopment cost.
�9 No calibration effort is required by the main microprocessor. For a given real-

world condition such as t empera tu re it will always get the same value, regard-
less of the sensor output variation.

�9 I fa sensor becomes unavailable or otherwise has to be changed in production, the
change can be made t ransparent to the main microprocessor code, with all the

new characteristics of the new sensor handled in the remote microcontroller.

4 Analog Interfacing to Embedded Microprocessor Systems

Another factor to consider in calibration is the human element. If a system
requires calibration of a sensor in the field, does the field technician need arms
twelve feet long to hold the calibration card in place and simultaneously reach the

"ENTER" key on the keyboard? Should a switch be placed near the sensor so
calibration can be accomplished without walking repeatedly a round a table to hit
a key or view the results on the display? Can the adjustment process be automated
to minimize the number of manual steps required? The more manual adjust-

ments that are needed, the more opportunit ies there are for mistakes.

Bandwidth

Several years ago, I worked on an imaging application. This system was to
capture data using a charge coupled device (CCD) image sensor. We were
capturing 1024 pixels per scan. We had to capture items moving 150 inches
per second at a resolution of 200 pixels per inch. Each pixel was converted with
an 8-bit ADC, resulting in 1 byte per pixel. The data rate was theretbre

150 x 1024 x 200, or 30,720,000 bytes per second.
We planned to use the VME bus as the basis for the system. Each scan from the

CCD had to be read, normalized, filtered, and then converted to 1-bit-per-pixel

monochrome. During the meetings that were held to establish the system archi-
tecture, one of the engineers insisted that we pass all the data th rough the VME
bus. In those days, the VME bus had a max imum bandwidth specification of 40
megabytes per second, and very few systems could achieve the maximum theo-
retical bandwidth. The bandwidth we needed looked like this:

Read data from camera into system: 30.72 Mbytes/sec

Pass data to normalizer: 30.72 Mbytes/sec

Pass data to filter: 30.72 Mbytes/sec

Pass data to monochrome converter: 30.72 Mbytes/sec

Pass monochrome data to output: 3.84 Mbytes/sec

If you add all this up, you get 126.72 Mbytes/sec, well beyond even the theore-
tical capability of the VME bus back then. More recently, I worked on a similar
imaging application that was implemented with digital signal processors (DSPs)

and multiple PCI buses, and one of the PCI buses was near its max imum
capability when all the features were added. The point is, know how much data

you have to push a round and what buses or data paths you are going to use. If
you are using a s tandard interface such as Ethernet or Firewire, be sure it will
suppor t the total bandwidth required.

System Design 5

Processor Throughput

In many applications, the processor throughput is an important consideration. In
the imaging example just mentioned, most of the functionality was performed in
hardware because the available microprocessors could not keep up. As processor
speeds increase, more functionality is pushed into the software. There are several
key factors that you must consider to determine your throughput requirements.

Interrupts
How often must the interrupts occur, and how much processing must be performed
in each interrupt service routine (ISR)? What is the maximum allowable latency for
servicing an interrupt? Will interrupts need to be turned off for an extended length
of time, and how will that affect the latency of other interrupts? You may find that
you need two (or more) processors---one to handle high-speed interrupts with short
latency requirements but low complexity processing needs, and another to handle
low-rate interrupts with more complex processing requirements.

Interfaces
What must the system talk to? How will the data be passed around or get to the
outside world? How much hardware support will there be for the interface and
how much of the functionality will be performed in software? To take a simple
example, an IZc interface that is implemented on a microcontroller by flipping
bits in software will impact overall throughput more than an IzC interface that is
implemented in hardware. This issue will likely be related to the interrupt con-
siderations, because the interface will probably use interrupts. (If you don't know
what IZc is, it will be covered in Chapter 2.)

Hardware Support
An imaging application that has a direct memory access (DMA) controller to move
large amounts of data around will not need as much processor horsepower as one
that has to move the data in software. A processor that has to move the data in
software but has some kind of block-move instruction in the hardware will
probably be faster than one that has to have a series of instructions to construct
a loop. Similarly, if the CPU has an on-chip floating point unit (FPU) coprocessor,
then floating point operations will be much faster than they would be if they had
to be executed in software.

6 Analog Interfacing to Embedded Microprocessor Systems

Processing Requirements
If you are working on an imaging application, having a processor move the data
from one process (such as the camera interface logic) to another (such as filtering
logic) takes some degree of processing. If the processor has to actually implement
the filtering algorithm in software, this takes a lot more processing horsepower. It
is amazing how often systems are designed with little or no analysis of the amount
of processing the CPU actually has to do.

Operating System Requirements
If you use an operating system (OS), how long will interrupts be turned off?. Is
this compatible with the interrupt latency requirements? What if the OS occa-
sionally stops processing to spend a few seconds thrashing the hard disk? Will this
cause data to be lost? Does the system have real-time requirements that will make
a real-time operating system necessary?

Language~Compiler
If you plan to use an object-oriented language such as C++ , what happens when
the CPU has to do garbage collection on the memory? Will data be lost? Does
choosing this approach mean you have to go from a 100 MHz processor to a
1 GHz processor just to keep the garbage collection interval short?

A voiding Excess Speed

Choosing a bus architecture and a processor that are fast enough to do the job is
important, but it can also be important to avoid too much speed. It may not seem
logical that you wouldn't always want the fastest bus and the fastest microproces-
sor, but there are applications where that is exactly the case. There are two basic
reasons for this: cost and electromagnetic compatibility (EMC).

Cost
The PC/104 standard defines mechanical and electrical characteristics of PC
boards, optimized for embedded applications. PC/104 CPU boards come with
the original PC/104 bus, which has electrical and timing characteristics similar to
the ISA bus used in personal computers and is capable of data transfers in the
5 Mbytes/sec range. Many CPU boards also have the PC/104 Plus bus, which has
characteristics similar to the much faster (133 Mbytes/sec) PCI bus. Although it
might seem that the faster bus is always preferred, it is often less expensive to

System Design 7

design a peripheral board for the PC/104 bus than for the PC/104 Plus. PC/104,
due to the slower clock rates, allows longer traces and simpler logic. If you have a
relatively large analog I/O board plugged into a PC/104 CPU board, the relaxed
timing constraints of PC/104 may make layout easier. Many low-volume products
simply do not sell enough units to justify the higher development costs associated
with PC/104 Plus. Of course, this assumes that the PC/104 bus will support the
necessary data rates. Similar considerations apply to other buses, such as PCI and
Compact PCI.

EMC

Almost every microprocessor-based design will have to undergo EMC testing
before it can be sold in the United States or Europe. EMC regulations limit the
amount of energy the product can emit, to prevent interference with other
equipment such as televisions and radios. Generally, the higher the clock rates
are, the more emissions the equipment generates. Current EMC standards test
radiated emissions in the frequency range between 30 MHz and 1 GHz. A pro-
cessor running with a 6 MHz clock will not have any fundamental emissions in
this range; the only frequencies in the test range will be those from the fifth and
higher harmonics of the processor clock. The higher harmonics typically have
less energy. On the other hand, a 33 MHz processor will produce energy in the
test band from its fundamental frequency and higher. In addition, a faster
processor clock rate means faster logic with faster edges and correspondingly
higher energy in the harmonics. Although using a 6 MHz example in an era of
2 GHz Pentiums may seem archaic, it does illustrate the point. EMC concerns are
a valid reason to limit bus and processor speeds only to what is actually needed for
the application. The caution here is not to limit the design too much. If the
processor can just barely keep up with the application, there is no margin left
to fix problems or add enhancements.

Other System Considerations

Peripheral Hardware

An imaging system was having problems with lost data. This particular system
buffered considerable image data on a hard disk drive. The problem was traced
to the disk drive; the drive would just stop accepting data for a while and the
image buffers would overflow. It turned out that this particular drive had a
thermal compensation feature that required the on-drive CPU to "go away" for
a few tens of milliseconds every so often. The application required continuous

8 Analog Interfacing to Embedded Microprocessor Systems

access to the drive. Be sure the per ipheral ha rdware is compatible with your

application and does not introduce problems.

Shared Interfaces

What is the impact of shared interfaces? For example , if you are continuously

buffering data from two different image cameras on two disk drives, a single IDE

interface may not be fast enough. You may need separate IDE interfaces for the

two drives so they can operate independent ly , or you may need to go to an

interface with higher performance. Similarly, will 10-baseT Ethernet handle all
your data, or will you need 100-baseT? Look at all the data on all the interfaces

and make sure the bandwidth you need is there.

Task Priorities

The IBM PC architecture has been used for all kinds of applications. It is a

wel l -documented s tandard with an enormous n u m b e r of compatible software

packages available. But it has some drawbacks, including the non-real- t ime
nature of the s tandard Windows opera t ing system. You have probably experi-

enced having your PC stop responding for a few seconds while it thrashes the

hard disk for some unknown reason. If you are typing a documen t on a word

processor, this is a minor a n n o y a n c e n w h a t e v e r you typed is captured (as long

as it isn't too many characters) and shows up on the screen whenever the
opera t ing system gets back to processing the keyboard. What happens if you

are gett ing a continuous s t ream of data from an audio or video device when

this happens? If your system isn't constructed to permi t your data s tream to

have a high priority, some data may be lost. If you are using a PC-like
architecture, be sure the hardware and operat ing system software will suppor t

the things you need to do.

Hardware Requirements

Do you need a floating-point processor to do calculations on the data you will be

processing? If so, you won't be able to use a simple 8-bit processor, you will need

at least a 486-class machine. Does the data rate require a processor with a DMA

controller to keep up? This limits your potential CPU selections to jus t a few. In
some cases, you can make system adaptat ions that will lower hardware costs, as

the following example will illustrate.

Imagine that you have a motor-dr iven wheel that produces an in te r rupt to

your processor every 20 ~ of rotation (see Figure 1.2). The motor runs at varying
speeds and the processor has to schedule some event, such as activating a solenoid

to open a valve, some n u m b e r of degrees after the in te r rup t occurs. The 20 ~

System Design 9

CPU INTERRUPT
FROM SENSOR
ON ROTATING
WHEEL

CPU HAS TO SCHEDULE
SOME EVENT TO
OCCUR SOME NUMBER
OF DEGREES AFTER
INTERRUPT

20 DEGREES
~1 OF ROTATION I~

TIMING MARKS ARE SPACED
20 DEGREES APART ON
WHEEL.

Figure 1.2
Rotating wheel timing.

in terrupts will occur 3.3 ms apar t if the wheel spins at 1000 rpm, and 666 ~tS apart

if the wheel spins at 5000 rpm. If the processor uses a t imer to measure the
rotation speed (time between interrupts) , and if the t imer runs at 1 MHz, then

the t imer will increment 3300 counts between interrupts at 1000 rpm, and 666

counts at 5000 rpm.
Say that the CPU has to open our hypothetical solenoid when the wheel has

rotated 5 ~ past one of the interrupts , as shown in Figure 1.2. The formula for

calculating the t imer value (how much must be added to the cur ren t count for a

5 ~ delay) looks like this:

T i m e r increment value =
5 degrees delay

20 deg ree s / i n t e r rup t
N u m b e r of

x t imer counts per in terrupt

So at 1000 rpm, the 5 ~ delay is 825 t imer counts, and at 5000 rpm, the delay is

166 counts. The problem with this approach in an e m b e d d e d system is the need
to divide by 20 in the formula. Division is a t ime-consuming task to perform in

software, and this approach might require that you choose a processor with

hardware divide instruction.
If we change our m e a s u r e m e n t system so that the 20 ~ divisions are divided into

binary values, the math gets easier. Say that we decide to divide the 20 ~ divisions

into 32 equal parts, each part being 0.625 degrees. We'll call these increments

units jus t so we have a name for them. The 5 ~ increment is now 5/0.625 or 8 units.

Now our formula looks like this:

T i m e r increment value =
8 units N u m b e r of

32 units per in te r rupt x t imer counts per in terrupt

10 Analog Interfacing to Embedded Microprocessor Systems

This gives us the same result as before (825 at 1000 rpm, 166 at 5000 rpm), but
division by 32 can be per formed with a simple shift operat ion instead of a
complex software algorithm. A change like this may mean the difference between
a simple 8-bit microcontroller and a more complex and expensive microproces-
sor. All we did was change from measur ing degrees of rotation to measur ing

something that is easier to calculate.

Word Width
If you are connecting a processor to a 12-bit ADC, you will probably want a 16-bit
processor instead of an 8-bit processor. While you can per form 16-bit operat ions
on an 8-bit CPU, it usually requires multiple instructions and has o ther limita-
tions. Unless the processor is simply passing the data on to some other part of the
system, you will want to match the CPU to the devices with which it must inter-
face. Similarly, if you will be per forming calculations to 32-bit accuracy, you will
want to consider a CPU with at least 16-bit and probably 32-bit word width to

make computat ion easier and faster.

Interfaces
Be sure that interface conditions that are unusual but normal don ' t cause damage
to any part of the system. For instance, a microprocessor board may connect to a

motor control board with a cable. What happens if the service engineer leaves the
cable unplugged and turns the system on? Will the motors remain stationary, or
will they run out of control? Make sure that issues like this are addressed.

Sample Rate and Aliasing

Figure 1.3 shows a sinusoidal input signal and an ADC that is sampling at a slower
rate than the signal is changing. If the system measur ing this system assumed it
was measur ing a sinusoid of some frequency, it would conclude that it was
measur ing a sinusoid exactly half the frequency of the real input. This is called
aliasing, and it can occur any time that the input frequency is a multiple of the

sample frequency.
Also shown in Figure 1.3 is another input waveform that is not a sinusoid. In

this case, the system doesn' t assume it is sampling a sine, so it just stores the
samples as they are read. As you can see, the resulting pat tern of data values does

not match the input at all.
Any system must be designed so that it can keep up with whatever it is

measuring. This includes the speed at which the ADC can collect samples and

System Design 1 1

SAMPLED
SIGNAL

DOTS INDICATE SAMPLED VOLTAGES

ADC SAMPLE
POINTS I I

RESULTING ~ ~ ~ , ~

ANOTHER
SAMPLED
WAVEFORM

WHATTHE
SYSTEM
REALLY
MEASURES

Figure 1.3
Aliasing.

the speed at which the microprocessor can process them. If the input frequency
will be greater than the measurement capability of the system, there are three
ways to handle it"

1. Speed up the system to match the input.
2. Filter out high-frequency components with external hardware ahead of the

ADC measuring the signal.
3. Filter out or ignore high-frequency components in software. This sounds

sillymhow do you filter something faster than you can measure? But if the
valid input range is known, such as the number of cars entering a parking lot
over any given time, then bogus inputs may be detectable. In this example, any
input frequency greater than a couple per second can be assumed to be the
result of noise or a faulty sensormreal cars don't enter parking lots that fast.

Good system design depends on choosing the right tradeoffs between proces-
sor speed, system cost, and ease of manufacture.

12 Analog Interfacing to Embedded Microprocessor Systems

Analog-to-Digital Converters 2

Al though this chap te r is pr imar i ly abou t analog-to-digi tal conver te r s (ADCs), an

u n d e r s t a n d i n g of digi tal- to-analog conver te r s (DACs) is i m p o r t a n t to u n d e r s t a n d -

ing how ADCs work. F igure 2.1 shows a simple resistor l adde r with th ree

switches. T h e resistors are a r r a n g e d in an R/2R conf igura t ion . T h e actual values

of the resistors are u n i m p o r t a n t ; R could be 10 K or 100 K or a lmost any o the r

value. Each switch, S0-$2, can switch one end of one 2R resistor be tween g r o u n d

and the r e fe rence input voltage, VR. T h e Figure shows what h a p p e n s when

switch $2 is on (connected to VR) and S 1 and $2 are O F F (connec ted to g round) .

By calculat ing the resul t ing series/parallel resistor ne twork , the final o u t p u t

voltage (VO) turns out to be 0.5 x VR. If we similarly calculate VO for all the

o the r switch combinat ions , we get this:

S2 S l SO Vo

OFF OFF OFF
OFF OFF ON
OFF ON OFF
OFF ON ON
ON OFF OFF
ON OFF ON
ON ON OFF
ON ON ON

0
0 .125 x VR (1 /8 x VR)
0 .25 x VR (2 /8 x VR)

0 .375 x VR (3 /8 x VR)
0.5 x VR (4 /8 x VR)

0 .625 x VR (5 /8 x VR)
0 .75 x VR (6 /8 x VR)

0 .875 x Vl:t (7 /8 x vR)

If the th ree switches are t rea ted as a 3-bit digital word, then we can rewri te the

table as follows (using ON - 1, O F F - 0)"

E q u i v a l e n t Logic S ta te S 0 - S 2 N U M E R I C
S2 S 1 SO S2 S 1 SO EQUIV~T.~.WrT

OFF OFF OFF 0 0 0 0
OFF OFF ON 0 0 1 1
OFF ON OFF 0 1 0 2
OFF ON ON 0 1 1 3
ON OFF OFF 1 0 0 4
ON OFF ON 1 0 1 5
ON ON OFF 1 1 0 6
ON ON ON 1 1 1 7

13

~
e

Y
"

e~
 r n.'r

O

o

o
O

c

I" I" I" I I ,
I

,,-<
~

[
',

or:

O

~

Hi,

II
0

e~

eY" 'q'O
r

r--

II
o>

'qtO
r

eY
'r

--!
I

e~

--I
!

,.-e
~

O

o Z

O

O

o Z

0 O

c Z

0

I" I" I" I"
~

c5
.oo

14
A

nalog Interfacing to E
m

bedded M
icroprocessor System

s

The output voltage is a representation of the switch value. Each additional
table entry adds VR/8 to the total voltage. Or, put another way, the output voltage
is equal to the binary, numeric value of S0-$2, times VR/8. This 3-switch DAC has
8 possible states and each voltage step is VR/8.

We could add another R/2R pair and another switch to the circuit, making a 4-
switch circuit with 16 steps of VR/16 volts each. An 8-switch circuit would have
256 steps of VR/256 volts each. Finally, we can replace the mechanical switches in
the schematic with electronic switches to make a true DAC.

ADCs

The usual method of bringing analog inputs into a microprocessor is to use an
ADC. An ADC accepts an analog input, a voltage or a current, and converts it to a
digital word that can be read by a microprocessor. Figure 2.2 shows a simple
ADC. This hypothetical part has two inputs: a reference and the signal to be
measured. It has one output, an 8-bit digital word that represents, in digital form,
the input value. For the moment, ignore the problem of getting this digital word
into the microprocessor.

INPUT

REFERENCE VOLTAGE

OUTPUT
BITS (8)

Vr = REFERENCE VOLTAGE

V r -

l .U
.8 Vr -

O .6 Vr -

I - -
D .4 Vr -
Z

.2 Vr -

I I I I I I I I

32 64 96 128 160 192 224 255

OUTPUT VALUE (DECIMAL)

Figure 2.2
S i m p l e A D C .

Analog-to-Digital Converters 15

Reference Voltage

The reference voltage is the m a x i m u m value that the ADC can convert. Our
example 8-bit ADC can convert values from 0 V to the reference voltage. This
voltage range is divided into 256 values, or steps. The size of the step is given by:

Reference Voltage 5 V

256 256
= 0.0195 V, or 19.5 mv

This is the step size of the converter . It also defines the converter 's resolution.

Output Word

Our 8-bit converter represents the analog input as a digital word. The most
significant bit of this word indicates whether the input voltage is greater than half
the reference (2.5 V, with a 5 V reference). Each succeeding bit represents half of
the previous bit, like this:

Bit: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Volts: 2.5 1.25 0.625 0.3125 0.156 0.078 0.039 0.0195

So a digital word of 0010 1100 represents this"

Bit" Bit 7 B i t 6 B i t 5 B i t4 B i t3 B i t 2 Bi t1 Bit O

Volts: 2.5 1.25 0.625 0.3125 0.156 0.078 0.039 0.0195
Ou tpu t Value 0 0 1 0 1 1 0 0

Adding the voltages cor responding to each bit, we get"

0.625 + 0.156 + 0.078 - 0.859 volts

Resolution

The resolution of an ADC is de te rmined by the reference input and the word
width. The resolution defines the smallest voltage change that can be measured
by the ADC. As ment ioned earlier, the resolution is the same as the smallest step
size, and can be calculated by dividing the reference voltage range by the number
of possible conversion values.

For the example we've been using so far, an 8-bit ADC with a 5 V reference, the
resolution is 0.0195 V (19.5 mv). This means that any input voltage below 19.5 mv
will result in an output of 0. Inpu t voltages between 19.5 and 39 mv will result in
an output of 1. Between 39 mv and 58.6 mv, the output will be 2. Resolution can

16 Analog Interfacing to Embedded Microprocessor Systems

be improved by reducing the reference input. Changing from 5 V to 2.5 V gives a
resolution of 2.5/256, or 9.7 mv. However, the maximum voltage that can be
measured is now 2.5 V instead of 5 V.

The only way to increase resolution without changing the reference is to use an
ADC with more bits. A 10-bit ADC using a 5 V reference has 21~ or 1024 possible
output codes. So the resolution is 5 V/1024, or 4.88 mv.

Types of ADCs

ADCs come in various speeds, use different interfaces, and provide differing
degrees of accuracy. Three types of ADCs are illustrated in Figure 2.3.

Tracking ADC

The tracking ADC has a comparator, a counter, and a digital-to-analog converter.
The comparator compares the input voltage to the DAC output voltage. If the
input is higher than the DAC voltage, the counter counts up. If the input is lower
than the DAC voltage, the counter counts down.

The DAC input is connected to the counter output. Say the reference vohage is
5 V. This would mean that the converter could convert voltages between 0 V and
5 V. If the most significant bit of the DAC input is "1 ," the output voltage is 2.5 V.
If the next bit is "1," 1.25 V is added, making the result 3.75 V. Each successive bit
adds half the voltage of the previous bit, so the DAC input bits correspond to the
following voltages:

Bit: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Volts: 2.5 1.25 0.625 0.3125 0.156 0.078 0.039 0.0195

Figure 2.3 shows how the tracking ADC resolves an input voltage of 0.37 V.
The counter starts at zero, so the comparator output will be high. The counter
counts up once for every clock pulse, stepping the DAC output voltage up. When
the counter passes the binary value that represents the input voltage, the com-
parator output will switch and the counter will count down. The counter will
eventually oscillate around the value that represents the input voltage.

The primary drawback to the tracking ADC is speed- -a conversion can take up
to 256 clocks for an 8-bit output, 1024 clocks for a 10-bit value, and so on. In
addition, the conversion speed varies with the input voltage. If the voltage in this
example were 0.18 V, the conversion would take only half as many clocks as the
0.37 V example.

Analog-to-Digital Converters 17

>

>
m

~~
,~

i
i

I
i

i

>
>

>
~

~
~

>
>

~czc
~,-~, ~_.

"
a:~

z-"

o
~

~,,>

~
E

"
u~

0
0
%
~

,-r~:

~r~ !

I
i

i
i

>
~

~
~

>
m

,--

I
i

r I
I

i0
g

-L
~

~
~

;
-

I'

d
~o

_z
~

_z

u
~

d
~

--
,u

.o2"

�9 1
C

l
n

_
<

18
A

nalog Interfacing to E
m

bedded M
icroprocessor System

s

The maximum clock speed of a tracking ADC depends on the propagation
delay of the DAC and the comparator. After every clock, the counter output has
to propagate through the DAC and appear at the output. The comparator then
takes some amount of time to respond to the change in DAC voltage, producing a
new up/down control input to the counter. Tracking ADCs are not commonly
available; in looking at the parts available from Analog Devices, Maxim, and Burr-
Brown (all three are manufacturers of ADC components), not one tracking ADC
is shown. This only makes sense: a successive approximation ADC with the same
number of bits is faster. However, there is one case where a tracking ADC can be
useful; if the input signal changes slowly with respect to the sampling clock, a
tracking ADC may produce an output in fewer clocks than a successive approxi-
mation ADC. However, since there are no commercial tracking ADCs available, a
tracking ADC would have to be built from discrete hardware.

Flash ADC

The flash ADC is the fastest type available. A flash ADC has one comparator per
voltage step. A 4-bit ADC will have 16 comparators, an 8-bit ADC will have 256
comparators. One input of all the comparators is connected to the input to be
measured. The other input of each comparator is connected to one point in a
string of resistors. As you move up the resistor string, each comparator trips at a
higher voltage. All of the comparator outputs connect to a block of logic
that determines the output based on which comparators are low and which are
high.

The conversion speed of the flash ADC is the sum of the comparator delays
and the logic delay (the logic delay is usually negligible). Flash ADCs are very fast,
but take enormous amounts of IC real estate to implement. Because of the
number of comparators required, they tend to be power hogs, drawing significant
current. A 10-bit flash ADC IC may use half an amp.

Successive Approximation Converter

The successive approximation converter is similar to the tracking ADC in that a
DAC/counter drives one side of a comparator and the input drives the other. The
difference is that the successive approximation register performs a binary search
instead of just counting up or down by one. As shown in Figure 2.3, say we start
with an input of 3 V, using a 5 V reference. The successive approximation register
would perform the conversion as follows:

Set MSB of SAR, DAC vo l t age = 2.5 V
C o m p a r a t o r o u t p u t h igh , so l eave MSB se t
Resu l t = 1 0 0 0 0 0 0 0

Analog-to-Digital Converters 19

Set bi t 6 of SAR, DAC vo l t age = 3 .75 V (2.5 + 1.25)
C o m p a r a t o r o u t p u t low, r e s e t bi t 6
R e s u l t = 1 0 0 0 0 0 0 0

Set b i t 5 of SAR, DAC vo l t age = 3 . 1 2 5 V (2.5 + 0 .625)
C o m p a r a t o r o u t p u t low, r e s e t bi t 5
Resu l t = 1 0 0 0 0 0 0 0

Set b i t 4 of SAR, DAC vo l t age = 2 . 8 1 2 5 V (2.5 + 0 . 3 1 2 5)
C o m p a r a t o r o u t p u t h igh, l eave bi t 4 se t
Resu l t = 1001 0 0 0 0

Set b i t 3 of SAR, DAC vo l t age = 2 . 9 6 8 V (2 . 8 1 2 5 + 0 . 1 5 6 2 5)
C o m p a r a t o r o u t p u t h igh, l e ave bi t 3 se t
Resu l t = 1001 1 0 0 0

Set b i t 2 of SAR, DAC vo l t age = 3 .04 V (2 .968 + 0 . 0 7 8 1 2 5)
C o m p a r a t o r o u t p u t low, r e s e t bi t 2
Resu l t = 1001 1 0 0 0

Set b i t 1 of SAR, DAC vo l t age = 3 . 0 0 7 V (2 . 8 1 2 5 + 0 .039)
C o m p a r a t o r o u t p u t low, r e s e t bi t 1
R e s u l t = 1001 1 0 0 0

Set b i t 0 of SAR, DAC vo l t age = 2 . 9 8 8 V (2 . 8 1 2 5 + 0 . 0 1 9 5)
C o m p a r a t o r o u t p u t h igh, l eave bi t 0 se t
F ina l r e s u l t = 1001 1001

Using the 0-to-5 V, 8-bit DAC, this corresponds to:

2.5 + 0.3125 + 0.15625 + 0.0195 or 2.988 volts

This is not exactly 3 V, but it is as close as we can get with an 8-bit converter and
a 5 V reference.

An 8-bit successive approximation ADC can do a conversion in 8 clocks,
regardless of the input voltage. More logic is required than for the tracking
ADC, but the conversion speed is consistent and usually faster.

Dual-Slope (Integrating) ADC
A dual-slope converter (Figure 2.4) uses an integrator followed by a comparator,
followed by counting logic. The integrator input is first switched to the input
signal, and the integrator output charges toward the input voltage. After a
specified number of clock cycles, the integrator input is switched to a reference
voltage (VREF1 in Figure 2.4) and the integrator charges down toward this value.

When the switch occurs to VREF 1, a counter is started, and it counts using the
same clock that determined the original integration time. When the integrator
output falls past a second reference voltage (VREF2 in Figure 2.4), the compara-

20 Analog Interfacing to Embedded Microprocessor Systems

INPUT

VREF1

I

I

" o

----------o

INTEGRATOR

7 VREF2

COUNT
AND
CONTROL
LOGIC

OUTPUT

SWITCH

COUNTER

I INPUT I VREFI]

ZERO I COUNTING

INTEGRATION
TIME

VREF2

Figure 2.4
Dual-slope ADC.

tor output goes high, the counter stops, and the count represents the analog
input voltage. Higher input voltages will allow the integrator to charge to a higher
voltage during the input time, taking longer to charge down to VREF2, and
resulting in a higher count at the output. Lower input voltages result in a lower
integrator output and a smaller count.

A simpler integrating converter, the single-slope, runs the counter while charg-
ing up and stops counting when a reference voltage is reached (instead of charg-
ing tbr a specific time). However, the single-slope converter is affected by clock
accuracy. The dual-slope design eliminates clock accuracy problems because the
same clock is used for charging and incrementing the counter. Note that clock
jitter or drift within a single conversion will affect accuracy. The dual-slope
converter takes a relatively long time to perform a conversion, but the inherent
tiltering action of the integrator eliminates noise.

Sigma-Delta
Betbre describing the sigma-delta converter, we need to look at how oversam-
piing works, because it is key to unders tanding the sigma-delta architecture.

Analog-to-Digital Converters 21

Figure 2.5 shows a noisy 3 V signal, with 0.2 V peak-to-peak of noise. As shown in
the Figure, we can sample this signal at regular intervals. Four samples are shown
in the Figure; by averaging these we can filter out the noise"

(3.05 V + 3.1 V + 2.9 V + 2.95 V)/4 = 3 V

Obviously this example is a little contrived, but it illustrates the point. If our
system can sample the signal four times faster than data is actually needed, we can
average four samples. If we can sample ten times faster, we can average ten samples
for an even better result. The more samples we can average, the closer we get to the
actual input value. The catch, of course, is that we have to run the ADC faster than
we actually need the data, and must have software to do the averaging.

Figure 2.6 shows how a sigma-delta converter works. The input signal
passes through one side of a differential amp, through a low-pass filter (inte-
grator), and on to a comparator. The output of the comparator drives a digital
filter and a 1-bit DAC. The DAC output can switch between +V and - V . In
the example shown in Figure 2.6, the +V is 0.5 V, and the - V is -0 .5 V. The
output of the DAC drives the other side of the differential amp, so the output
of the differential amp is the difference between the input voltage and the
DAC output. In the example shown, the input is 0.3 V, so the output of the
differential amp is either 0.8V (when the DAC output is -0 .SV) or - 0 . 2 V
(when the DAC output is 0.5 V).

3V -

2V -

1V -

3V SIGNAL WITH .2V P-P

RANDOM NOISE

3.05V 3.1V 2.9V 2.95V

Figure 2.5
Oversampling.

22 Analog Interfacing to Embedded Microprocessor Systems

CLOCK

INPUT

DIFFERENCE AMP

LOW-PASS
FILTER

[C ~ O R

1-BIT DAC
+V

?
-V

SIGMA-DELTA ADC

l
DIGITAL
FILTER . 8 ~, OUTPUT

FULL SCALE
RANGE,
-.5 TO +.5 V

1 -

.9 --

.8 --

.7 -

.6 -

.5

.4

.3

.2

.1

0

-.1

- .2

- .3

- .4

-.S

-.6

I I

iI~-- 200/0

80%

INPUT LEVEL, .3V

Figure 2.6
Sigma-delta ADC.

The output of the low-pass filter drives one side of the comparator, and the
other side of the comparator is grounded. So any time the filter output is above
ground, the comparator output will be high, and any time the filter output is
below ground, the comparator output will be low. The thing to remember is that
the circuit tries to keep the filter output at 0 V.

Analog-to-Digital Converters 23

As shown in Figure 2.6, the duty cycle of the DAC output represents the
input level; with an input of 0.3 V (80% of the -0 .5 to 0.5 V range), the DAC
output has a duty cycle of 80%. The digital filter converts this signal to a binary
digital value.

The input range of the sigma-delta converter is the plus-and-minus DAC
voltage. The example in Figure 2.6 uses 0.5 and -0.5 V for the DAC, so the input
range is -0 .5 V to 0.5 V, or 1 V total. For + 1 V DAC outputs, the range would be
+ 1 V, or 2 V total.

The primary advantage of the sigma-delta converter is high resolution.
Because the duty cycle feedback can be adjusted with a resolution of one clock,
the resolution is limited only by the clock rate. Faster clock equals higher
resolution.

All of the other types of ADCs use some type of resistor ladder or string. In
the flash ADC the resistor string provides a reference for each comparator. On the
tracking and successive approximation ADCs, the ladder is part of the DAC in
the feedback path. The problem with the resistor ladder is that the accuracy of the
resistors directly affects the accuracy of the conversion result. Although modern
ADCs use very precise, laser-trimmed resistor networks (or sometimes capacitor
networks), there are still some inaccuracies in the resistor ladders. The sigma-
delta converter does not have a resistor ladder; the DAC in the feedback path is a
single-bit DAC, with the output swinging between the two reference endpoints.
This provides a more accurate result.

The primary disadvantage of the sigma-delta converter is speed. Because the
converter works by oversampling the input, the conversion takes many clocks.
For a given clock rate, the sigma-delta converter is slower than other converter
types. Or, to put it another way, for a given conversion rate, the sigma-delta
converter requires a faster clock.

Another disadvantage of the sigma-delta converter is the complexity of the
digital filter that converts the duty cycle information to a digital output word.
Single-IC sigma-delta converters have become more commonly available with the
ability to add a digital filter or DSP to the IC die.

Half-Flash

Figure 2.7 shows a block diagram of a half-flash converter. This example imple-
ments an 8-bit ADC with 32 comparators instead of 256. The half-flash converter
has a 4-bit (16 comparators) flash converter to generate the MSB of the result.
The output of this flash converter then drives a 4-bit DAC to generate the voltage
represented by the 4-bit result. The output of the DAC is subtracted from the
input signal, leaving a remainder that is converted by another 4-bit flash to
produce the LS 4 bits of the result.

24 Analog Interfacing to Embedded Microprocessor Systems

INPUT
4-BIT
(I 6 COMPARATOR)
FLASH ADC

SUBTRACTER

RESULT

/
4-BIT ~ ,4
DAC /

I 4-BIT 1 (16 COMPARATOR)
FLASH ADC

14 [~ MSB OF RESULT
(4 BITS)

4
/ [~ LSB OF RESULT

(4 BITS)

Figure 2.7
Hal f - f lash conver te r .

If the converter shown in Figure 2.7 were a 0-5 V conver ter convert ing a 3.1 V

input, then the conversion would look like this:

U p p e r flash converter output = 9

DAC output = 2.8125 V(9 x 16 x 19.53 mv)

Subtracter output = 3.1 V - 2.8125 V = 0.2875 V

Lower flash converter output = E (hex)

Final result = 9E (hex), 158 (decimal)

Half-flash converters can also use three stages instead of two; a 12-bit converter

might have three stages of 4 bits each. The result of the MS 4 bits would be

subtracted from the input voltage and applied to the middle 4-bit state. The result

of the middle stage would be subtracted from its input and applied to the least

significant 4-bit stage. A half-flash converter is slower than an equivalent flash

converter , but uses fewer comparators , so it draws less current .

ADC Comparison

Figure 2.8 shows the range of resolutions available for integrating, sigma-delta,

successive approximat ion, and flash converters. The m a x i m u m conversion speed

for each type also is shown. As you can see, the speed of available sigma-delta

ADCs reaches into the range of the SAR ADCs, but is not as fast as even the
slowest flash ADCs. What these charts do not show is tradeoffs between speed and

accuracy. For instance, a l though you can get SAR ADCs that range from 8 to 16

Analog-to-Digital Converters 25

INTEGRATING

SIGMA-DELTA

SUCCESSlVE
APPROXIMATION

FLASH

! I

! I

I

I I

8 16
BITS OF RESOLUTION

I

24

INTEGRATING

SIGMA-DELTA

SUCCESSIVE
APPROXIMATION

FLASH

I

I I I I I I

10 100 1K 1OK lOOK 1M

I

i 1

I I

10M lOOM

MAX CONVERSION SPEED, HZ
(LOG SCALE)

F i g u r e 2 . 8
ADC comparison.

bits, you won't find the 16-bit version to be the fastest in a given family of parts.
The fastest flash ADC won't be the 12-bit part, it will be a 6- or 8-bit part.

These charts are snapshots of the current state of the technology. As CMOS
processes have improved, SAR conversion times have moved from tens of micro-
seconds to microseconds to tens of nanoseconds. Not all technology improvements
affect all types of converters; CMOS process improvements speed up all families of
converters, but the ability to put increasingly sophisticated DSP functionality on the
ADC chip doesn't improve SAR converters. It does improve sigma-delta types.

Sample and Hold

ADC operation is straightforward when a DC signal is being converted. What
happens when the signal is changing? Figure 2.9 shows a successive-approxima-
tion ADC attempting to convert a changing input. When the ADC starts the
conversion, the input voltage is 2.3 V. This should result in an output code of
117 (decimal) or 75 (hex). The SAR register sets the MSB, making the internal
DAC voltage 2.5 V. Because the signal is below 2.5 V, the SAR resets bit 7 and sets

26 Analog Interfacing to Embedded Microprocessor Systems

VOLTAGE AT END OF CONVERSION
= 2.8V, COOE 143D (8FH)

3v ~"
, . i

VOLTAGE AT ~ [i
START OF 2V J
CONVERSION I
= 2.3V (COOE =
117D, 7SH)

IV 2.5 1.2.5 1.875 2.187S 2.34375 2.4218V 2.4609V 2.4804V DAC VOLTAGE
01000000 01100000 0111 0000 0111 1000 0111 1100 0111 1110 0111 1111 SARREGISTER

i v ~ f i v w | v w'"

Figure 2.9
ADC inaccuracy caused by a changing input.

bit 6 on the next clock. The ADC "chases" the input signal, ending up with a final
result of 12710(7F16). The actual vohage at the end of the conversion is 2.8 V,
corresponding to a code of 14310(8F16).

The final code out of the ADC (127d) corresponds to a voltage of 2.48 V. This
is neither the starting voltage (2.3 V) nor the ending voltage (2.8 V). This example
used a relatively fast input to show the effect; a slowly changing input has the
same effect, but the error will be smaller. One way to reduce these errors is to
place a low-pass filter ahead of the ADC. The filter parameters are selected to
ensure that the ADC input does not change appreciably within a conversion cycle.

Another way to handle changing inputs is to add a sample-and-hold (S/H)
circuit ahead of" the ADC. Figure 2.10 shows how a sample-and-hold circuit
works. The S/H circuit has an analog (solid state) switch with a control input.
When the switch is closed, the input signal is connected to the hold capacitor and
the output of the buffer follows the input. When the switch is open, the input is
disconnected from the capacitor.

Figure 2.10 shows the waveform for S/H operation. A slowly rising signal is
connected to the S/H input. While the control signal is low (sample), the output
follows the input. When the control signal goes high (hold), disconnecting the
hold capacitor from the input, the output stays at the value the input had when
the S/H switched to hold mode. When the switch closes again, the capacitor
charges quickly and the output again follows the input. Typically, the S/H will
be switched to hold mode just before the ADC conversion starts, and switched
back to sample mode after the conversion is complete.

In a perfect world, the hold capacitor would have no leakage and the buffer
amplifier would have infinite input impedance, so the output would remain stable
forever. In the real world, the hold capacitor will leak and the buffer amplifier
input impedance is finite, so the output level will slowly drift down toward
ground as the capacitor discharges.

Analog-to-Digital Converters 27

INPUT SIGNAL

SAMPLE/HOLD CONTROL

INPUT SIGNAL

OUTPUT VOLTAGE

SAMPLE/HOLD CONTROL
(0 = SAMPLE, 1 = HOLD)

I
I
1

BUFFER

~ HOLD CAPACITOR

TO ADC

Figure 2.10
S a m p l e - a n d - h o l d c i rcui t .

The ability of an S/H to maintain the output in hold mode is dependent on the
quality of the hold capacitor, the characteristics of the buffer amplifier (primarily
input impedance), and the quality of the sample-and-hold switch (real electronic
switches have some leakage when open). The amount of drift exhibited by the
output when in hold mode is called the droop rate, and is specified in millivolts per
second, microvolts per microsecond, or millivolts per microsecond.

A real S/H also has finite input impedance, because the electronic switch isn't
perfect. This means that, in sample mode, the hold capacitor is charged through
some resistance. This limits the speed with which the S/H can acquire an input.
The time that the S/H must remain in sample mode in order to acquire a full-scale
input is called the acquisition time, and is specified in nanoseconds or micro-
seconds.

Because there is some impedance in series with the hold capacitor when
sampling, the effect is the same as a low-pass R-C filter. This limits the maximum
frequency the S/H can acquire. This is called the full power bandwidth, specified in
kHz or MHz.

As mentioned, the electronic switch is imperfect and some of the input signal
appears at the output, even in hold mode. This is called feedthrougk, and is
typically specified in dB.

The output offset is the voltage difference between the input and the output.
S/H datasheets typically show a hold mode offset and sample mode offset, in
millivolts.

28 Analog Interfacing to Embedded Microprocessor Systems

Real Parts

Real ADC I Cs come with a few real-world limitations and some added features.

Input Levels

The examples so far have concentrated on ADCs with a 0-5 V input range. This is
a common range for real ADCs, but many of them operate over a wider range of
voltages. The Analog Devices AD570 has a 10 V input range. The part can be
configured so that this 10 V range is ei ther 0 to 10 V or -,5 V to +,5 V, using one
pin. Of course, having a negative input voltage range implies that the ADC will
need a negative voltage supply. Other common input voltage ranges are +2.5 V
and +3 V.

With the t rend toward lower-powered devices and small consumer equipment ,
the t rend in ADC devices is to lower-voltage, single-supply operation. Tradi t ional
single-supply ADCs have opera ted from +5 V and had an input range between
0 V and 5 V. Newer parts often operate at 3.3 or 2.7 V, and have an input range
somewhere between 0 V and the supply.

Internal Reference

Many ADCs provide an internal reference voltage. The Analog Devices AD872 is
a typical device with an internal 2.5 V reference. The internal reference voltage is
b rough t out to a pin and the reference input to the device is also connected to a
pin. To use the internal reference, the two pins are connected together. To use
your own external reference, connect it to the reference input instead of the
internal reterence.

Reference Bypassing

Although the reference input is usually high impedance with low DC cur ren t
requirements , many ADCs will draw cur ren t from the reference briefly while a
conversion is in process. This is especially true of successive approximat ion ADCs,
which draw a momenta ry spike of cur ren t each time the analog switch network is
changed. Consequently, most ADCs require that the reference input be bypassed
with a capacitor of 0.1 laf or so.

Internal S/H

Many ADCs, such as the Maxim MAX191, include an internal S/H. An ADC with
an internal S/H may have a separate pin that controls whether the S/H is in

Analog-to-Digital Converters 29

sample or hold mode, or the switch to hold mode may occur automatically when a
conversion is started.

Microprocessor Interfacing

Output Coding
The examples used so far have been based on binary codes, where each bit in the
result represents a voltage value and the sum of these voltages in the output word
is the analog input voltage value. Some ADCs produce 2's complement outputs,
where a negative voltage is represented by a negative 2's complement value. A
few ADCs output values in BCD. Obviously this requires more bits for a given
range; a 12-bit binary output can represent values from 0 to 4095, but a 12-bit
BCD output can only represent values from 0 to 999.

Parallel Interfaces
ADCs come in a variety of interfaces, intended to operate with multiple proces-
sors. Some parts include more than one type of interface to make them compat-
ible with as many processor families as possible.

The Maxim MAX 151 is a typical 10-bit ADC with an 8-bit "universal" parallel
interface. As shown in Figure 2.11, the processor interface on the MAX 151 has 8
data bits, a chip select (-CS), a read strobe (-RD), and a - B U S Y output. The
MAX 151 includes an internal S/H. On the falling edge o f -RD and -CS, the S/H is
placed into hold mode and a conversion is started. I f -CS a n d - R D do not go low
at the same time, the last falling edge starts a conversion. In most systems,-CS is
connected to an address decode and will go low b e f o r e - R D . As soon as the
conversion starts, the ADC dr ives-BUSY low (active).-BUSY remains low until
the conversion is complete.

In the first mode of operation, which Maxim calls Slow Memory Mode, the
processor waits, h o l d i n g - R D and -CS low, until the conversion is complete. In
such a system, the-BUSY signal would typically be connected to the processor-RDY
o r - W A I T signal. This holds the processor in a wait state until the conversion
is complete. The maximum conversion time for the MAX151 is 2.5 ~ts.

The second mode of operation is called ROM mode. In this mode the
processor performs a read cycle, which places the S/H in hold mode and starts
a conversion. During this read, the processor reads the results of the previous
conversion. The -BUSY signal is not used to extend the read cycle. Instead,-B USY
is connected to an interrupt, or is polled by the processor to indicate
when the conversion is complete. W h e n - B U S Y goes high, the processor does

30 Analog Interfacing to Embedded Microprocessor Systems

-RD ~ -RD

-CS
MAXISI

DATA BUS
DBO-DB9

-BUSY

ADDRESS
DECODING
LOGIC

DATA BUS {10 BITS)

ADDRESS BUS

MICROPROCESSOR

SLOW MEMORY MODE

-CS

-RD

-BUSY

DATA

ROM MODE

-CS

-RD

-BUSY

DATA

- -~1 ~ ACCESSTIME

I I
Ii i

I I,
I

IL
I <

t
CONVERSION N
STARTS ON
FALLING EDGE
OF -RD

I

I

I

N - 1

ADC INDICATES
CONVERSION
COMPLETE BY
TAKING -BUSY
HIGH

I I

I I

I

t
CONVERSION N
STARTS ON
FALLING EDGE
OF -RD

ADC INDICATES
CONVERSION
COMPLETE BY
TAKING -BUSY
HIGH

NEW DATA IS AVAILABLE
SOME TIME AFTER
-BUSY GOES HIGH.

PROCESSOR PERFORMS
ANOTHER BUS CYCLE TO
READ DATA AND START
NEXT CONVERSION

Figure 2.11
Maxim MAX151 interface.

ano the r read to get the result and start a n o t h e r conversion. Al though the data

sheets refer to two different modes of opera t ion , the ADC works the same way

in both cases:

�9 Falling edge o f - R D a n d - C S starts a convers ion

�9 C u r r e n t result is available on bus after r ead access t ime has e lapsed

Analog-to-Digital Converters 31

�9 As long a s - R D a n d - C S stay low, cur rent result remains available on bus
�9 When conversion completes, new conversion data is latched and available to the

processor; i f - R D a n d - C S are still low, this data replaces result of previous
conversion on bus

The MAX151 is designed to interface to most microprocessors. Actually inter-
facing to a specific processor requires analysis of the MAX 151 timing and how it
relates to the microprocessor timing.

Data Access Time

The MAX151 specifies a max imum access time of 180 ns over the full tempera-
ture range (see Figure 2.12). This means that the result of a conversion will be
available on the bus no more than 180 ns after the falling edge o f -RD (assuming-CS
is already low w h e n - R D goes low). The processor will need the data to be
stable some time before the rising edge o f - R D . If there is a data bus buffer
between the MAX151 and the processor, the propagat ion delay through the
buffer must be included. This means that the processor bus cycle (the time tha t -RD
is low) must be at least as long as the access time of the MAX151, plus the
processor data setup time, plus any bus buffer delays.

-BUSY Output

T h e - B U S Y output of the MAX151 goes low a m a x i m u m of 200ns after the
falling edge o f - R D . This is too long for the signal to directly drive most micro-
processors if you want to use the slow memory mode. Most microprocessors
require that the RDY o r - W A I T signal be driven low earlier than this in the bus
cycle. Some require the wait request signal to be low one clock a f t e r - R D goes low.
The only solution to this problem is to artificially insert wait states to the bus cycle
until t h e - B U S Y signal goes low. Some microprocessors, such as the 80188
family, have internal wait-state generators that can add wait states to a bus cycle.
The 80188 wait-state genera tor can be p r o g r a m m e d to add 0, 1, 2, or 3 wait
states.

As shown in Figure 2.12, in Slow Memory mode t h e - B U S Y signal goes high
just before the new conversion result is available; according to the datasheet, this
time is a max imum of 50 ns. For some processors, this means that the wait request
must be held active for an additional clock cycle a f t e r - B U S Y goes high to ensure
that the correct data is read at the end of the bus cycle.

Bus Relinquish

The MAX151 has a m a x i m u m bus relinquish time of 100 ns. This means that the
MAX 151 can drive the data bus up to 100 ns after the -RD signal goes high. If the

32 Analog Interfacing to Embedded Microprocessor Systems

MAX151

i • - - ACCESS
TIME

I

--~I ~ ~ BUS RELINQUISH TIME
I I

i i I
I
, I
I I
I I
I !

(RESULT > ~
I I

__[~ ~ CPU REQUIRES STABLE DATA
SOME TIME BEFORE RISING
EDGE OF -RD (Ski'UP TIME)

ADDING A BUFFER TO REDUCE
BUS RELINQUISH TIME

DATA BUS

-RD

-CS

[

IN

EN

OUT

~BLE

-CS

-RD

-BUSY

DATA

TO OTHER PERIPHERALS

MICROPROCESSOR

DATA BUS

-CS ~ OUTPUTS
-RD

-CS

-RD

-BUFFER ENABLE

MAX151 DATA

CPU DATA

I I

I I

I I

< >

F i g u r e 2 . 1 2
M A X 1 5 1 da ta access and bus re l inqu ish t iming.

processor tries to start another cycle immediately after reading the MAX151
result, this may result in bus contention. A typical example would be the 80186
processor, which multiplexes the data bus with the address bus; at the start of a
bus cycle the data bus is not tristated, but the processor drives the address onto
the data bus. If the MAX 151 is still driving the bus, this can result in an incorrect

Analog-to-Digital Converters 33

bus address being latched. The solution to this problem is to add a data bus buffer
between the MAX151 and the processor. The buffer inputs are connected to the
MAX 151 data bus outputs, and the buffer outputs are connected to the processor
data bus. The buffer is turned on w h e n - R D a n d - C S are both low, and turned off
when either goes high. Although the MAX151 will continue to drive the buffer
inputs, the outputs will be tristated and so will not conflict with the processor data
bus. A buffer may also be required if you are interfacing to a microprocessor that
does not multiplex the data lines but does have a very high clock rate. In this case,
the processor may start the next cycle before the MAX151 has relinquished the
bus. A typical example would be a fast 80960-family processor, which we will look
at later in the chapter.

Coupling

The MAX151 has an additional specification, not found on some ADCs, that
involves coupling of the bus control signals into the ADC. Because modern ADCs
are built as monolithic ICs, the analog and digital portions share some internal
components such as the power supply pins and the substrate on which the IC die
is constructed. It is sometimes difficult to keep the noise generated by the micro-
processor data bus and control signals from coupling into the ADC and affecting
the result of a conversion. To minimize the effect of coupling, the MAX 151 has a
specification that t h e - R D signal be no more than 300 ns wide when using ROM
mode. This prevents the rising edge o f - R D from affecting the conversion.

Delay between Conversions

When the MAX151 S/H is in sampling mode the hold capacitor is connected to
the input. This capacitance is about 150 pf. When a conversion starts, this capa-
citot t is disconnected from the input. When a conversion ends, the capacitor is
again connected to the input, and it must charge up to the value of the input pin
before another conversion can start. In addition, there is an internal 150ohm
resistor in series with the input capacitor. Consequently, the MAX 151 specifies a
delay between conversions of at least 500 ns if the source impedance driving the
input is less than 509t. If the source impedance is more than 1 K~2, the delay must
be at least 1.5 laS. This delay is the time from the rising edge o f - B U S Y to the
falling edge o f -RD.

L SB Errors

In theory, of course, an infinite amount of time is required for the capacitor to
charge up, because the charging curve is exponential and the capacitor never
reaches the input voltage. In practice, the capacitor does stop charging. More

34 Analog Interfacing to Embedded Microprocessor Systems

important , the capacitor only has to charge to within 1 bit (called 1 LSB) of the
input voltage; for a 10 V converter with a +4 V input range, this is 8 V/1024, or
7.8 mv. This is an important concept that we will take a closer look at in Chapter

9. To simplify the concept, errors that fall within one bit of resolution have no
effect on conversion accuracy. The other side of that coin is that the accumulation

of errors (opamp offsets, gain errors, etc.) cannot exceed one bit of resolution or
they will affect the result.

Clocked Interfaces

Interfacing the MAX 151 to a clocked bus, such as that implemented on the Intel
80960 family, is shown in Figure 2.13. Processors such as the 960 use a clock-
synchronized bus without a - R D strobe. Data is latched by the processor on a
clock edge, ra ther than on the rising edge of a control signal such a s -RD. These
buses are often implemented on very fast processors and are usually capable of
high-speed burst operation.

Shown in Figure 2.13 is a normal bus cycle without wait states. This bus cycle
would be accessing a memory or peripheral able to operate at the full bus speed.
The address and status information is provided on one clock, and the CPU reads
the data on the next clock.

Following this cycle is an access to the MAX 151. As can be seen, the MAX 151 is

much slower than the CPU, so the bus cycle must be extended with wait states
(either internally or externally generated). This d iagram is an example; the actual

number of wait states that must be added depends on the processor clock rate.
The bus relinquish time of the MAX 151 will interfere with the next CPU cycle, so

CPU CAPTURES DATA
ON RISING EDGE OF
CLOCK

CLOCK ~ ~

-AS -'--X / \
ADDRESS, STATUS • X
SIGNALS

CPU DATA BUS (~ ~)

/-----k / - - - -k / - - - -k / - - - -k

I \ I \

X

MAX151 ACCESS \

MAX1S1 DATA BUS

<)

/

Y

NORMAL BUS CYCLE
Y

BUS CYCLE EXTENDED WITH WAIT STATES
TO ACCOMODATE MAX151 TIMING

, ?

WITHOUT A BUFFER,
MAX1S1 BUS RELINQUISH
TIME WILL INTERFERE
WITH NEXT CPU CYCLE

F i g u r e 2 .13
Interfacing to a c locked mic roprocessor bus.

Analog-to-Digital Converters 35

a buffer is necessary. Finally, because the CPU does not generate a - R D signal,
one must be synthesized by the logic that decodes the address bus and generates
timing signals to memory and peripherals. The normal method of interfacing an

ADC like this to a fast processor is to use the ROM mode. Slow Memory mode
holds the CPU in a wait state for a long t imemthe 2.5]as conversion time of the
MAX151 would be 82 clocks on a 33 MHz 80960. This is time that could be spent

executing code.

Serial Interfaces

Many ADCs use a serial interface to connect to the microprocessor. This has the
advantage of providing a processor- independent interf~ace that does not affect

processor wait states, bus hold times, or clock rates. The primary disadvantage is

speed, because the data must be transferred one bit at a time.

SPl/Microwire

SPI is a serial interface that uses a clock, chip select, data in, and data out bits.
Data is read from a serial ADC a bit at a time (Figure 2.14). Each device on the SPI

bus requires a s epa ra t e -CS signal.
The Maxim MAX1242 is a typical SPI ADC. The MAX1242 is a 10-bit succes-

sive approximat ion ADC with an internal S/H, in an 8-pin package. Figure 2.15
shows the MAX 1242 interface timing. The falling edge of-CS starts a conversion,
which takes a max imum of 7.5]as. W h e n - C S goes low, the MAX1242 drives its
data output pin low. After the conversion is complete, the MAX1242 drives the

data output pin high. The processor can then read the data a bit at a time by
toggling the clock line and moni tor ing the MAX 1242 data output pin. After the
10 bits are read, the MAX 1242 provides two sub-bits, S 1 and SO. If further clock

transitions occur after the 13 clocks, the MAX 1242 outputs zeros.
Figure 2.15 shows how a MAX1242 would be connected to a microcontroller

with an on-chip SPI/Microwire interface. The SCLK signal goes to the SPI

SPI/MICROWIRE TIMING

SCK _ _ _ _ ~ / - - - - ~

DATA < >---

-cs ~ \ / ~

Figure 2.14
SPI bus.

36 Analog Interfacing to Embedded Microprocessor Systems

t

s 8 ~
Z

<

z
~

z_
~

~
~_

~
z

~

~
8

"1
:

o
~

~
x

~
E

A
nalog-to-D

igital C
onverters

37

SCLK signal on the microcontroller, and the MAX1242 D O U T signal connects
to the SPI data input pin on the microcontroller. One of the microcontroller
port bits generates t h e - C S signal to the MAX1242. Note that t h e - C S signal
starts the conversion and must remain low until the conversion is complete.
This means that the SPI bus is unavailable for communicat ing with other
peripherals until the conversion is finished and the result has been read. If
there are in ter rupt service routines that communicate with SPI devices in the
system, they must be disabled dur ing the conversion. To avoid this problem,
the MAX1242 could communicate with the microcontrol ler over a dedicated
SPI bus. This would use three more pins on the microcontroller. Since most
microcontrollers that have on-chip SPI have only one, the second port would
have to be implemented in software.

Finally, it is possible to generate an in ter rupt to the microcontroller when the
ADC conversion is complete. An extra connection is shown in Figure 2.15, from
the MAX1242 D O U T pin to an in ter rupt on the microcontroller. W h e n - C S is
low and the conversion is completed, D O U T will go high, in ter rupt ing the
microcontroller. To use this method, the firmware must disable or otherwise
ignore the in ter rupt except when a conversion is in process.

Another ADC with an SPI-compatible interface is the Analog Devices AD7823.
Like the MAX1242, the AD7823 uses three pins: SCLK, DOUT, a n d - C O N V S T .
The AD7823 is an 8-bit successive approximat ion ADC with internal S/H. A
conversion is started on the falling edge o f - C O N V S T , and takes 5.5 ~ts. The
rising edge o f - C O N V S T enables the serial interface.

Unlike the MAX1242, the AD7823 does not drive the data pin until the
microcontroller reads the result, so the SPI bus can be used to communicate with
other devices while the conversion is in process. However, there is no indication
to the microprocessor when the conversion is comple t emthe processor must start
the conversion, then wait until the conversion has had time to complete before
reading the result. One way to handle this is with a regular t imer interrupt; on
each interrupt , the result of the previous conversion is read and a new conversion
is started.

12C Bus

The I2C bus uses only two pins: SCL (SCLock) and SDA (SDAta). SCL is gener-
ated by the processor to clock data into and out of the per ipheral device. SDA is a
bidirectional line that serially transmits all data into and out of the peripheral .
The SDA signal is open-collector, so several peripherals can share the same two-
wire bus.

When sending data, the SDA signal is allowed to change only while SCL is in
the low state. Transit ions on the SDA line while SCL is high are in terpreted as
start and stop conditions. If SDA goes low while SCL is high, all peripherals on

38 Analog Interfacing to Embedded Microprocessor Systems

the bus will interpret this as a START condition. SDA going high while SCL is
high is a STOP or END condition. Figure 2.16 illustrates a typical data transfer.
The processor initiates the START condition and then sends the peripheral
address, which is 7 bits long, and tells the devices on the bus which one is to be
selected. This is followed by a read/write bit (1 for read, 0 for write).

After the read/write bit, the processor programs the I/O pin connected to the
SDA bit to be an input and clocks an acknowledge bit in. The selected peripheral
will drive the SDA line low to indicate that it has received the address and read/
write information.

After the acknowledge bit, the processor sends another address, which is the
internal address within the peripheral that the processor wants to access. The
length of this field varies with the peripheral. After this is another acknowledge;
then the data is sent. For a write operation, the processor clocks out 8 data bits,
and for a read operation, the processor treats the SDA pin as an input and clocks
in 8 bits. After the data comes another acknowledge.

Some peripherals permit multiple bytes to be read or written in one transfer.
The processor repeats the data/acknowledge sequence until all the bytes are
transferred. The peripheral will increment its internal address after each transfer.

One drawback to the I2C bus is speed- - the clock rate is limited to about
100 KHz. A newer Fast-mode I2C bus that operates to 400 Kbits/sec is also avail-
able, and a high-speed mode that goes to 3.4 Mbits/sec is also available. High
speed and fast-mode buses both support a 10-bit address field so up to 1024
locations can be addressed. High-speed and fast-mode devices are capable of
operating in the older system, but older peripherals are not useable in a higher-
speed system. The faster interfaces have some limitations, such as the need for
active pullups and limits on bus capacitance. Of course, the faster modes
of operation require hardware support and are not suitable for a software-
controlled implementation.

A typical ADC that uses I2C is the Philips PCF8591. This part includes both an
ADC and a DAC. Like many I2C devices, the 8591 has three addressing pins" A0,
A1, and A2. These can be connected to either "1" or "0" to select which address
the device responds to. When the peripheral address is decoded, the PCF8591
will respond to address 100 lxxx, where xxx matches the value of the A2, A1, and
A0 pins. This allows up to eight PCF8591 devices to share a single I2C bus.

SMBus

SMBus is a variation on I2C, defined by Intel in 1995. I2C is primarily defined by
hardware and varies somewhat from one device to the next, but SMBus defines the
bus as more of a network interfhce between a processor and its peripherals. The
SMBus specification defines things such as powerdown operation of devices (no bus
loading) and operating voltage range (3-5 V) that all devices must meet. The primary

Analog-to-Digital Converters 39

m

u
,i

u
_

Z

U

m

m

m

L,,,I
a

Z

<

0

U

~
"r

rr-,

,.,-z ~
 ~

w

Z

i11
q

~
,.,

o
,,

m
 ,

&

,,, a z w
 I _

_
7

"-6
)

.
.

m

~
E

o

~

4
0

A

nalog Interfacing to E
m

bedded M
icroprocessor System

s

difference between SMBus and I2C is that SMBus defines a standard set of read and
write protocols, rather than leaving these specifics up to the I C manufacturers.

Proprietary Serial Interfaces

Some ADCs have propr ie tary interfaces. The Maxim MAX 1101 is a typical device.
This is an 8-bit ADC that is optimized for interfacing to CCDs. The MAX1101
uses four pins: MODE, LOAD, DATA, and SCLK. The MODE pin de termines
whether data is being written or read (1 = read, 0 = write). The DATA pin is a
bidirectional signal, the SCLK signal clocks data into and out of the device, and
the LOAD pin is used after a write to clock the write data into the internal
registers. The clocked serial interface of the MAX1101 is similar to SPI, but
because there is no chip select signal, multiple devices cannot share the same
data/clock bus. Each MAX1101 (or similar device) needs four signals from the
processor for the interface.

Many proprietary serial interfaces are intended for use with microcontrollers
that have on-chip hardware to implement synchronous serial I/O. The 8031 family,
for example, has a serial interface that can be configured as either an asynchronous
interface or as a synchronous interface. Many ADCs can connect directly to these
types of microprocessors. The problem with any serial interface on an ADC is that it
limits conversion speed. In addition, the type of interface limits speed as well.
Because every I2C exchange involves at least 20 bits, an I2C device will never be
as fast as an equivalent SPI or proprietary device. For this reason, there are many
more ADCs available with SPI/Microwire than with I2C interfaces.

The required th roughput of the serial interface drives the design. If you need a
conversion speed of 100,000 8-bit samples per second and you plan to implement
an SPI-type interface in software, then your processor will not be able to spend
more than 1/(100,000 • 8) or 1.25~S transferr ing each bit. This may be imprac-
tical if the processor has any other tasks to perform, so you may want to use an ADC
with a parallel interface or choose a processor with hardware support for the SPI.

As ment ioned in Chapter 1, the bandwidth of the bus must be considered as well
as the th roughput of the processor. If there are multiple devices on the SPI bus, then
you have to be sure the bus can support the total t h roughpu t required of all the
devices. Of course, the processor has to keep up with the overall data rate as well.

Multichannel ADCs

Many ADCs are available with multiple channelsmanywhere from two to eight. The
Analog Devices AD7824 is a typical device, with eight channels. The AD7824 con-
tains a single 8-bit ADC and an 8-channel analog multiplexer. The microprocessor

Analog-to-Digital Converters 41

interface to the AD7824 is similar to the Maxim MAX 151, but with the addition of
three address lines (A0-A2) to select which channel is to be converted. Like the
MAX 151, the AD7824 may be used in a mode in which the microprocessor starts
a conversion and is placed into a wait state until the conversion is complete. The
microprocessor can also start a conversion on any channel (by reading data from
that channel), then wait for the conversion to complete and per form another read
to get the result. The AD7824 also provides an in ter rupt ou tput that indicates
when a conversion is complete.

Internal Microcontroller ADCs

Many microcontrollers contain on-chip ADCs. Typical devices include the Micro-
chip PIC 167C7xx family and the Atmel AT90S4434. Most microcontroller ADCs
are successive approximat ion because this gives the best t radeoff between speed
and I C real estate on the microcontroller die.

The PIC16C7xx microcontrollers contain an 8-bit successive approximat ion
ADC with analog input multiplexers. The microcontrollers in this family have
from four to eight channels. Internal registers control which channel is selected,
start of conversion, and so on. Once an input is selected, there is a settling time
that must elapse to allow the S/H capacitor to charge before the A/D conversion
can start. The software must ensure that this delay takes place.

Reference Voltage

The Microchip devices allow you to use one input pin as a reference voltage. This
is normally tied to some kind of precision reference. The value read from the A/D
converter after a conversion is"

Digital w o r d - (Vin /Vref) x 256

The Microchip parts also permit the reference voltage to be internally set to
the supply voltage, which permits the reference input pin to be another analog
input. In a 5 V system, this means that Vref is 5 V. So measur ing a 3.2 V signal
would produce the following result:

Vin x 256 3.2V x 256
Result - = = 1631o - A316

Vref 5 V

42 Analog Interfacing to Embedded Microprocessor Systems

However, the result is d e p e n d e n t on the value of the 5 V supply. If the supply
voltage is high by 1%, it has a value of 5.05 V. Now the value of the A/D conver-

sion will be:

3.2 V x 256

5 .05V
= 16210 - A216

So a 1% change in the supply voltage causes the conversion result to change

by one count. Typical power supplies can vary by 2 or 3%, so power supply

variations can have a significant effect on the results. The power supply ou tput
can vary with loading, t empera ture , AC input variations, and from one supply to

the next.
This brings up an issue that affects all ADC designs: the accuracy of the reference.

The Maxim MAX 1242, which we have already looked at, uses an internal reference.
The part can convert inputs from 0 V to the reference voltage. The reference is

nominally 2.5 V, but it can vary between 2.47 V and 2.53 V. Convert ing a 2 V input

at the extremes of the reference ranges gives the following result:

At Vref - 2.47 V, Result -

At Vref - 2.53 V, Result -

2 V x 1024

2.47

2 V x 1024

2.53

= 82910

= 8091o

(Note: Multiplier is 1024 because the MAX1242 is a 10-bit converter .)

So the variation in the reference voltage from part to part can result in an

output variation of 20 counts.

Codecs

The te rm codec has two meanings: it is short for compressor /decompressor , or for

coder/decoder . In general, a codec (either type) will have two-way operat ion; it
can turn analog signals into digital and vice-versa, or it can convert to and from

some compression standard.
The National Semiconductor LM4546 is an audio codec in tended to imple-

ment the sound system in a personal computer . It contains an internal 18-bit ADC

and DAC. It also includes much of the audio-processing circuitry needed for 3D

PC sound. The LM4546 uses a serial interface to communica te with its host

processor.
The National TP3054 is a telecom-type codec, and includes ADC, DAC, filter-

ing, and compand ing circuitry. The TP3054 also has a serial interface.

A nalog-to-Digital Converters 43

Interrupt Rates

The MAX151 can perform a conversion every 3.3 las, or 300,000 conversions per
second. Even a 33 MHz processor operating at one instruction per clock cycle can
execute only 110 instructions in that time. The interrupt overhead of saving and
restoring registers can be a significant portion of those instructions.

In some applications, the processor does not need to process every conversion.
An example would be a design in which the processor takes four samples,
averages them, and then does something with the average. In cases like this,
using a processor with DMA capability can reduce the in terrupt overhead. The
DMA controller is p rog rammed to read the ADC at regular intervals, based on a
timer (the ADC has to be a type that starts a new conversion as soon as the
previous result is read). After all the conversions are complete, the DMA con-
troller interrupts the processor. The accumulated ADC data is processed and the
DMA controller is p rog rammed to start the sequence over. Processors that in-
clude on-chip DMA controllers include the 80186 and the 386EX.

Dual-Function Pins on Microcontrollers

If you work with microcontrollers, you sometimes find that you need more I/O
pins than your microcontroller has. This is most often a problem when working
with smaller devices, such as the 8-pin Atmel ATtiny parts, or the 20- and 28-pin
Atmel AVR and Microchip PIC devices. In some cases, you can make an analog
input double as an output or make it handle two inputs. Figure 2.17A shows how
an analog input can also control two outputs. In this case, the analog input is
connected to a 2.5 V reference diode. A typical use for this design would be in an
application where you are using the 5 V supply as the ADC reference, but you
want to correct the readings for the actual supply value. A precise 2.5 V reference
permits you to do this, because you know that the value of the reference should
read as 80 (hex) if the power supply is exactly 5 V.

The pin on the microcontroller is also tied to the inputs of two comparators. A
voltage divider sets the noninverting input of comparator A at 3 V, and the
inverting input of comparator B at 2 V. By configuring the pin as an analog
input, the reference value can be read. If the pin is then configured as a digital
output and set low, the output of comparator A will go low. If the pin is config-
ured as a digital output and set high, the output of comparator B will go low. Of
course, this scheme works only if the comparator outputs drive signals that
never need to both be low at the same time. The resistor values must be large

44 Analog Interfacing to Embedded Microprocessor Systems

+SV

COMPARATOR A
1 OK

I ANALOG INPUT 4.7K
10K COMPARATOR B

LOW WHEN MICROCONTROLLER
PIN GOES LOW

+5V ~ [T

1 K I - ~ 2.SV 1 OK

T REF

ANALOG INPUT

$ 1 ~ _ _ ~

8.2K

S 2 ~ __{

4.7K

+SV

2.2K

$1 OPEN, S2 OPEN, Vl = SV
$1 CLOSED, S2 OPEN, Vl = 3.9V
$1 OPEN, $2 CLOSED, V1 = 3.4V
$1 CLOSED, $2 CLOSED, V1 = 2.9V
(VOLTAGES APPROXIMATE)

m

I ANALOG INPUT

+SV

+3V

~ THERMISTOR

COMPARATOR

Figure 2.17
Dual-function pins.

enough that the microcontroller can source enough current to drive the pin high.
This technique will also work for a digital-only I/O pin; instead of a 2.5 V
reference, a pair of resistors is used to hold the pin at 2.5 V when it is configured
as an input.

Analog-to-Digital Converters 45

Figure 2.17B shows how a single analog input can be used to read two switches.
When both switches are open, the analog input will read 5 V. When switch S1 is
closed, the analog input will read 3.9 V. When switch $2 is closed, the input will
read 3.4 V, and when both switches are closed, the input will read 2.9 V. Instead
of switches, you could also use this technique to read the state of open-collector or
open-drain digital signals.

Figure 2.17C shows how a thermistor or other variable-resistance sensor can
be combined with an output. The microcontroller pin is p rogrammed as an
analog input to read the temperature. When the pin is p rogrammed as an output
and driven high, the comparator output will go low. To make this work, the
operating temperature range must be such that the voltage divider created by the
thermistor and the pullup resistor never brings the analog input above 3 V. Like
the example shown in 2.17A, this circuit works best if the output is something that
periodically changes state, so the software has a regular opportunity to read the
analog input.

Design Checklist

�9 Be sure ADC bus interface is compatible with microprocessor timing. Pay
particular attention to bus setup, hold, and min/max pulse width timings.

�9 If using SPI and an ADC that requires the bus to be inactive during conversion,
ensure that the system will work with this limitation or provide a separate SPI
bus for the ADC.

�9 If using an ADC that does not indicate when conversion is complete, ensure
that software allows conversion to complete before reading result.

�9 Be sure reference accuracy meets requirements of the design.
�9 Bypass reference input as recommended by ADC manufacturer.
�9 Be sure the processor can keep up with the conversion rate.

46 Analog Interfacing to Embedded Microprocessor Systems

Sensors 3

Sensors provide the window through which a microprocessor system can see what
is happen ing in the real world. In this chapter we will take a look at various
sensors, their applications, and how they interface to microprocessors.

Temperature Sensors

Tempera tu re is one of the most common real-world characteristics that needs to

be measured. Many industrial processes, from steel manufactur ing to semicon-
ductor fabrication, depend on temperature . Some electronics products need to
measure their own temperature , such as computers that moni tor the t empera tu re
of the CPU or motor controllers that must know the tempera ture of the power
driver IC.

Thermistors

A thermistor is a temperature-sensit ive resistor. Most thermistors have a negative
tempera ture coefficient (NTC), meaning that the resistance goes up as the tem-

perature goes down. Of all passive t empera tu re measurement sensors, thermis-
tors have the highest sensitivity (resistance change per degree of t empera tu re

change). Thermis tors do not have a linear temperature/resistance curve.
Thermis tor characteristics are dependen t on the manufactur ing process and

materials used. Often, many thermistors in a family will have similar character-

istics and identical curves. The resistance of the thermistors may vary by 10:1 or
100:1, but the curves are the same. Such thermistors are typically characterized
by the manufacturer in a table that shows the ratio of resistance at a given
tempera ture to the resistance at 25 ~ Data for a typical NTC thermistor family
is shown in the following table.

47

Typical NTC Thermistor Data

Temp o C R/R25 Temp o C R/R25

-50 39.03 30 0.8276
-40 21.47 40 0.6406
-30 12.28 50 0.5758
-20 7.28 60 0.4086
-10 4.46 70 0.2954

0 2.81 80 0.2172
10 1.82 90 0.1622
20 1.21 100 0.1229
25 1 110 0.09446

This data is for a Dale thermistor, but it is typical for NTC thermistors in
general. The resistance is given as a ratio (R/R25). A thermistor from this family

with a resistance at 25 ~ (R25) of 10,000 ohms would have a resistance of 28.1 K
at 0 ~ and a resistance of 4.086 K at 60 ~ Similarly, a thermistor with R25 of 5 K
would have a resistance of 14,050 ohms (5000 x 2.81) at 0 ~

Figure 3.1 shows how this thermis tor curve looks graphically. As men-
tioned, the res is tance/ temperature curve is not linear. The data for this
thermis tor is given in 10 ~ increments. Some thermis tor tables have 5 ~ or even
1 o increments.

In some cases, you need to know the tempera ture between two points on the

table. You can estimate this by using the curve, or you can calculate the resistance
directly. The formula for resistance looks like this:

Rt

R25

B C D)
= exp A + ~ + ~ - - ~ + ~ - ~

Where T - t empera ture in degrees Kelvin, and A, B, C, and D are constants
that depend on the characteristics of the thermistor. These parameters must be
supplied by the thermistor manufacturer .

Thermis tors have a tolerance that limits their repeatability from one sample to
the next. This tolerance typically ranges from 1% to 10%, depending on the
specific part used. Some thermistors are designed to be interchangeable in
applications where it is impractical to have an adjustment. Such an application
might include an ins t rument in which the user or a field engineer has to replace
the thermistor and has no independen t means to calibrate it. These thermistors

are available with accuracy a round 0.2 ~
Figure 3.2 shows a typical circuit that could be used to allow a microprocessor

to measure tempera ture using a thermistor. A resistor (R1) pulls the thermistor

48 Analog Interfacing to Embedded Microprocessor Systems

81

RT

1 i i i ! !

-20 -10 0 10 20 30 40

TEMP, C

!

100

Figure 3.1
Thermis tor res is tance/ temperature curve.

+VREF

R1
RESISTOR

THERMISTOR / ~
TO ADC INPUT

Figure 3.2
Thermis tor circuit.

Sensors 49

up to a reference voltage. This is typically the same as the ADC reference, so Vref
would be 2.5 V if the ADC reference was 2.5 V. The thermistor/resistor combina-
tion makes a voltage divider, and the varying thermistor resistance results in a

varying voltage at the junction. The accuracy of this circuit is dependen t on the
thermistor tolerance, resistor tolerance, and reference accuracy.

Because a thermistor is a resistor, passing current th rough it will generate heat.
This is called self-heating. The circuit designer must ensure that th~ pullup

resistor (R1 in the diagram) is large enough to prevent excessive self-heating,
or the system will end up measuring the thermistor dissipation instead of the
tempera ture of whatever the thermistor is attached to.

The amount of power that the thermistor has to dissipate to affect the tem-
perature is called the dissipation constant (D.C.), and is usually expressed in

milliwatts. The D.C. varies with the package the thermistor is provided in, the
lead gauge (if a leaded device), type of encapsulating material (if the thermistor is
encapsulated), and other factors. The D.C. is the number of milliwatts needed to
raise the thermistor tempera ture 1 ~ above ambient. The amount of self-heating
allowed, and therefore the size of the limiting resistor, is dependen t on the
measurement accuracy needed. A system that is only measuring with an accuracy
of + 5 ~ can tolerate more thermistor self-heating than a system that must be
accurate to +0.1 ~ The formula for calculating the amount of self-heating
dissipation allowed for a design is:

P = D.C. x Required accuracy, in ~

For instance, if the D.C. for our example thermistor was 2 mw/~ and we

needed to measure tempera ture with an accuracy of 0.5 ~ then the maximum
allowable dissipation would be:

2 mw/~ • 0.5~ = 1 mw

Because there are other errors and tolerances in the system, we would prob-
ably want a little margin, so we might divide this by 2, giving 0.5 mw as the
max imum self-heating dissipation. Note that this is the maximum self-heating

dissipation we want to allow over the measurement tempera ture range. Say we
are using our example thermistor, with an R25 of 10 K, and we want to measure
tempera tures from 0 ~ to 25 ~ At 25 ~ the thermistor resistance is 10 K. To
limit dissipation to 0.5 mw using a 2.5 V Vref, the pullup resistor (R1 in Figure

3.2) can be calculated as follows:

Thermis tor dissipation = 0.5 mw at 10 K

50 Analog Interfacing to Embedded Microprocessor Systems

T h e r m i s t o r voltage d rop at this dissipation" P -

C u r r e n t t h r o u g h the rmis to r = 2.23 V / 1 0 K = 223 laa

Voltage across pul lup = 2.5 - 2.23 = 0.27 V

Pullup (m i n i m u m value) = 0.27 V/223 laa = 1 2 1 0 n

; v/0.0005 x 10,000 = 2.23 V

Now, suppose that we want to use this the rmis to r f rom 0~ to 50~ T h e

the rmis to r resistance (from the table) at 50 ~ is 5758 Ft. Repea t ing the p reced ing

calculation for this resistance results in a m i n i m u m pul lup resistance of

2725 ohms. Because the the rmis to r resistance is lower at h igher t empera tu re s ,

the original 1210 o h m value would cause too much dissipation at those t empera -

tures.

Scaling
Somet imes it is necessary to shift an analog signal to put it in the r ight r ange fbr

an A/D conver te r to use. Figure 3.3 shows such a situation. H e r e we have a

the rmis to r that is interfaced to an 8-bit, 0-to-5 V A/D conver ter , such as that

found on the Microchip 16C7x parts. We'll use the same the rmis to r we've been

using. T h e fo rmula for the voltage V1 is:

V I =
2.5 x Rth

Rth + R1

In Figure 3.3, R1 = 10 K. Using this equat ion and the r e s i s t ance / t empera tu re

table for the thermis tor , we can calculate the value of V1 for the t e m p e r a t u r e

range we are in teres ted in:

Temp ~ Rth V1

- l 0 44.6 K 2.04 V
0 28.1 K 1.84 V
10 18.2 K 1.61V
25 10 K 1.25 V
30 8.276 K 1.13 V
40 6.406 K 0.976 V
50 4.08 K 0.7244 V
70 2.954 K 0.569 V
100 1229 9t 0.273 V

Now, say that we want to measu re t e m p e r a t u r e be tween 10 ~ and 40 ~

with an accuracy of at least th ree A/D steps per deg ree (or 0 .333~

Sensors 51

Rth
OHMS

30K -

_

20K -

1OK -

_

VR, 2.SV

R1
1OK

1
THERMISTOR

Rth

TEMP Rth

-10 44.6K
0 28.1K

10 18 .2K ---
2S 10k
40 6.406K
50 5.758K
70 2.954K
1 O0 1.229K

RH
|

OUR APPLICATION USES ONLY
THIS RANGE (10 TO 40 DEGREES C)

,,

1'o ~o 3'o ~ ~o go ~o ~o ~ ~'oo'
TEMP

V1

_ V2 ~r

1 RL

RF
I I

I > VO
TO ADC INPUT

m
o

WE WANT THIS

SV

3V

I 1V

OV 1'o ~o
TEMP

Figure 3.3
Thermistor scaling.

per ADC step). If we convert the range in the table to ADC values, we get

this"

1.61
10 degrees" digital w o r d - ---~-- x 2 5 6 - 82

0.976
40 degrees" digital w o r d - ~ x 256 = 49

8 2 - 4 9 - 33 ADC counts, 40 ~ 10 ~ = 30 ~ (span)

33 counts
= 1.1 ADC steps per degree

30 degrees

This is less than the resolution we wanted, so we have to scale the output. This
involves amplifying the signal so that the 10-to-40 degree range we're interested
in spans the ADC voltage range. In this example, the 10-to-40 span ranges from
0.976 to 1.61 volts, a span of 0.634 V (1.61 - 0.976). We could make this a 5 V
span by multiplying it by 5 V/0.634 V, or 7.88. The result of such a multiplication

52 Analog Interfacing to Embedded Microprocessor Systems

would be to make the 10-to-40 degree voltage range between 7.67 and 12.67
volts. This is a 5 V span, but it is outside the 0-to-5 volt range of the ADC. What is
needed is both multiplication and scaling, which amplifies the signal and shifts it
down to the ADC input range.

The schematic in Figure 3.3 shows how an opamp can be configured to per-
form this function. We can calculate the output voltage of the o p a m p as follows:
Writing equations for V2:

V o - V 2 V r - V 2 V2 + =
Rf Rh RL

As long as the opamp is operat ing in the linear range, V1 - V2. So we can
rewrite the preceding equation like this"

V o - V1 V r - V1 V1 + =
Rf Rh RL

If we solve this equation for Vo, we get the following:

Rf R f) VrRf
V o - Vl 1 + ~ E + ~ - ~ Rh

Rf R f) V1 1 + ~ + ~ is the gain and VrRf . Rh is the offset

Now we can apply this to the thermistor we've been using as an example. Say

that we want the 10-to-40 degree range to fall between 0.5 V and 4.5 V at the
ADC. This gives a little margin to accommodate the need to use s tandard resistor
values. This scaling will give an ADC range of 204 counts over a range of 30

degrees, or 6.8 counts per degree. So the 0 .634V swing of the output must
translate into a swing of 4.5-0.5, or 4 V. This is a gain of 4/0.634 or 6.3. We can
write this in equation form as:

Rf Rf
6 . 3 - 1 + ~--~-t- R--- ~

If we just multiply V 1 by 6.3, we get outputs of

0.976 x 6.3 -- 6.14 V

1.61 x 6 . 3 - 10.143 V

Sensors 53

So the span (1 0 . 1 4 - 6.14 = 4 V) is right, but now we need the offset. The

offset is found by subtracting either of these voltages from the corresponding

desired voltage:

6.14 - 0.5 = 5.64V, or 1 0 . 1 4 - 4.5 = 5.64V

(Both have to give the same result or something is wrong in the earlier

calculations.)
The offset is given by Vr Rf/Rh, so we can write another equation:

5.64 =
Vr x Rf

Rh

Now we can solve the simultaneous equations for gain

(6.3 = 1 + Rh /RL + Rf /Rh) and offset (5.64 = VrRf /Rh) for resistor values.

The example circuit uses a reference voltage, Vr, of 2.5 V, as shown on the

schematic. Note that this is the reference voltage only for the thermistor and

opamp circuit; the ADC still uses a 5 V reference. We have two equations and

three resistors, so we have to choose the value of one resistor. Selecting 100 K for

Rf, we have:

100 K 100 K 100 K
6 . 3 = 1 + + ~ ; 5 . 6 4 = V r ~

RL Rh Rh

Since Vr = 2 5 then the second equation is" 5.64 - 250 K
" ' Rh

Solving these simultaneous equations we get:

Rh = 44.32 K

RL = 32.85 K

The next step is to choose s tandard resistor values; the nearest 1% values are

44.2 K and 33.2 K. Plugging these values into the equation for Vo, we get a gain of

6.27 and an offset of 5.65 V. We can make a chart showing the actual ADC result

for each tempera ture in the range:

Temp o C Rth Opamp Output (Decimal)

10 18.2 K 4.44 V 227
25 1OK 2.18V 111
30 8.276 K 1.44 V 74
40 6.406 K 0.467 V 23

54 Analog Interfacing to Embedded Microprocessor Systems

You need the chart because the thermistor isn't linear, so the software needs to
know what ADC value to expect for a given temperature. If this were a real
application, we would probably calculate the chart in 1-degree increments. For
this specific example, the opamp has to swing almost all the way between 5 V and
ground, so it must either operate from positive and negative voltages, or else a
single-supply, 5V-only opamp with rail-to-rail output capability would be
needed. The accuracy of this circuit is (227 - 23)/30 ~ = 6.8 ADC steps per ~

Tolerance Stackup

In any opamp application, there are gain variations caused by the tolerances of
the components. In the thermistor scaling application we just looked at, we
selected standard 1% resistor values to produce the gain and scaling factors we
wanted, then calculated the actual ADC values that would result from that circuit.
But 1% resistors have a 1% tolerance, so they can vary by 1%. What happens in
that case? We can calculate this for our example as follows.

Result if Rh is 1% High (44.642 K Instead of 44.2 K)

Rh = 44.2 K R h - 44.64 K

Temp Rth Vo ADC Result Vo ADC Result

10 18.2 K 4.44 V 227 4.48 229
25 10K 2.18V 111 2.21 113
30 8.276 K 1.44 V 74 1.47 75
40 6.406 K 0.467 V 23 0.50 25

What happens ifRh is high by 1% (= 44.64 K) and RL is low by 1% (= 32.868)?

Result if Rh is 1% High and RL is 1% Low

Rh, RL normal Rh high, RL low

Temp Rth Vo ADC Result Vo ADC Result

10 18.2 K 4.44 V 227 4.47 229
25 10K 2.18V 111 2.19 112
30 8.276 K 1.44 V 74 1.45 74
40 6.406 K 0.467 V 23 0.478 24

In a real application, you could use a spreadsheet to calculate the effects of all the
resistors, including the thermistor itself. In this simple application, just varying Rh

Sensors 55

and RL by 1% throws the result offby 5 counts at 10~ This may or may not be a
problem, depending on the accuracy required. In a real application, you would
probably want to use at least 0.1% resistors. This would give the following result.

Result if Rh is 0.1% High, R1 and RL are 0.1% Low

Rh, RL normal Rh high, RL low

Temp Rth Vo ADC Result Vo ADC Result

10 18.2 K 4.44 V 227 4.47 229
25 10K 2.18V 111 2.19 112
30 8.276 K 1.44 V 74 1.45 74
40 6.406 K 0.467 V 23 0.478 24

This is much closer to the ideal result. Other factors that would need to be
included in a real application would be the tolerance of the voltage reference and
the tolerance of the thermistor itself.

Another way to get this kind of accuracy is to calibrate the system after it is
built. In many applications, this is not an option because the circuit boards and/or
thermistor must be field replaceable. However, in cases where the equipment is
not field replaceable, or where the field technicians have an independen t means
to moni tor the temperature , it is possible to let the software build a table of
temperature-versus-ADC values. The re must be some means to input the actual
t empera ture (measured with the independen t tool) so the software can construct
the table.

Resistance Temperature Detectors

A resistance tempera ture detector (RTD) is just a wire that changes resistance
with temperature . Typical RTD materials include copper, platinum, nickel, and
nickel/iron alloy. An RTD element can be a wire or a film, plated or sprayed onto
a substrate such as ceramic.

RTD resistance is specified at 0 ~ A typical plat inum RTD with 100 9t resist-
ance at 0 ~ would have a resistance of 100.39 Ft at 1 ~ and a resistance of 119.4 Ft
at 50 ~ The tolerance of RTDs is better than thermistors. Typical tolerance for
RTDs looks like this:

�9 Platinum: 0.01% to 0.03%
�9 Copper: 0.2%
�9 Nickel and nickel/iron: 0.5%

Aside from better tolerance and overall lower resistance, the interface to an
RTD is similar to that for a thermistor.

56 Analog Interfacing to Embedded Microprocessor Systems

Thermocouples
A thermocouple is made by joining two dissimilar metals. Thomas Seebeck
discovered in 1821 that when such a junction is heated, it generates a tiny voltage.
The amount of voltage is dependent on which two metals are joined. Three
common thermocouple combinations are iron-constantan (Type J), copper-
constantan (Type T), and chromel-alumel (Type K).

The voltage produced by a thermocouple junction is very small, typically only
a few millivohs. A type K thermocouple changes only about 40 ~tV per ~ change
in temperature; to measure temperature with 0.1 ~ accuracy, the measurement
system must be able to measure a 4 ~tV change. Because any two dissimilar metals
will produce a thermocouple junction when joined, the connection point of the
thermocouple to the measurement system will also act as a thermocouple. Figure 3.4
shows this effect, where a thermocouple is connected to a board using copper. The
wires leading to the amplifier could be either copper wires or the copper traces
on a PCB.

As shown in Figure 3.4, this effect can be minimized by placing the connections
on an isothermal block, which is a good conductor of heat. This minimizes the
temperature difference between the connection points and minimizes the error
introduced by the connection junctions. A common method of compensating for
the temperature of the connection block is to place a diode or other semiconduc-
tor on the isothermal block and measure the (temperature-sensitive) drop across
the semiconductor junction.

AMPLIFIER

T H E ~ ~
JUNCTION ISOTHERMAL

BLOCK

OUTPUT VOLTAGE
TO ADC

<
THERMOCOUPLE
JUNCTION

I
V

i

+ |

- |

- Cu

+ Cu J
ISOTHERMAL AMPLIFIER
BLOCK

TEMPERATURE COMPENSATION

THERMAL
COMPENSATION
CIRCUIT

OUTPUT VOLTAGE
TO ADC

F i g u r e 3 . 4
Thermocouple.

Sensors 57

The amplifier used to increase the signal level from the thermocouple is
usually an ins t rumentat ion amp. The gain required to measure a thermocouple
is typically in the range of 100 to 300, and any noise picked up by the thermo-
couple will be amplified by the same amount . An ins t rumentat ion amplifier
rejects the common mode noise in the thermocouple wiring.

Analog Devices makes a thermocouple signal condit ioner, the AD594/595,
which is specifically in tended for interfacing to a thermocouple . The AD594/
595 does not use an external semiconductor junct ion to compensate for connec-
tion tempera ture ; instead the par t includes an internal junct ion that is expected
to be the same t empera tu re as the connection. Consequently, the thermocouple
connection must be made on the PC board, close to the AD595/595 package.

The amplified thermocouple signal may need scaling, just like a thermistor, to
place it in a useable range for an ADC. Thermocouples are relatively linear over a
limited range of tempera tures , but if the range of measu remen t is wide, the
software will need to compensate for nonlinearities. T h e formula for thermo-
couple voltage is a polynomial, just like thermistor resistance formula.

Solid State

The simplest semiconductor t empera tu re sensor is a PN junction, such as a signal
diode or the base-emitter junct ion of a transistor. If the cur ren t th rough the
forward-biased silicon PN junct ion is held constant, the forward drop decreases
about 1.8 mv per ~ The Maxim MAX1617 is an IC that measures t empera ture
using an external transistor, such as a 2N3904, as a tempera ture-sens ing element.
The transistor can be a discrete part, or it can be e m b e d d e d in the die of an I C to
measure the IC tempera ture . The MAX1617 has a serial SMBus output.

The LM335 (Figure 3.5) from National Semiconductor produces an output
voltage proport ional to tempera ture . The LM135 produces 10mv per degree
Kelvin. At 0~ the ou tput is 2.73 V, and at 100~ the ou tput is 3.73 V. The
LM335 operates with input cur ren t from 400 ~ta to 5 ma.

The National LM34 and LM35 sensors operate from supply voltages between
4 V and 20 V, and produce a voltage output that directly corresponds to voltage.
The LM35 produces a voltage of 500 mv at 50 ~ with an additional 10 mv for
every additional ~ increase. The LM34 is calibrated for Fahrenhei t tempera-
tures, and the LM35 for Centigrade. The outputs of the LM34/LM35 can be
connected directly to an ADC or to a comparator .

The National LM74 measures tempera tures between - 5 5 ~ and + 150 ~ and
communicates with a microprocessor via the serial SPI/Microwire interface. The
LM74 output is a 13-bit signed value. The part contains a t empera tu re sensor and
a sigma-delta converter. It is available in 3.3 V or 5 V versions and comes in an 8-
pin SMT package. The National LM75 is similar to the LM74, but uses the IzC
interface. The LM75 has a nar rower operat ing t empera tu re range: - 5 5 ~ to

58 Analog Interfacing to Embedded Microprocessor Systems

ADJ

+V

m

OUTPUT VOLTAGE

Figure 3.5
LM335.

+ 125 ~ The LM75 produces a 9-bit output and includes a compara tor that can
indicate when the tempera ture exceeds a limit. The limit t empera tu re can be
p r o g r a m m e d via the I2C bus.

Optical Sensors

Slotted Switches

Figure 3.6 shows a slotted optical switch. An LED is mounted in a plastic housing,

facing a phototransistor. A gap separates the two, so if something moves into the
gap, it blocks the light path between the LED and the phototransistor. Slotted
switches are often used to detect motor speed by placing a slotted wheel on the
motor shaft; as the shaft rotates, it alternately blocks and unblocks the light path.

Another use for slotted switches is as indicators when a door or hood is open or
closed. A flag on the door drops into the slot and blocks the light when the door is
closed. A mechanical computer mouse uses slotted optical switches as well (an
optical mouse uses a different method of sensing motion).

Reflective Sensors

Figure 3.7 shows a reflective sensor. A reflective sensor works the same way as a

slotted switch, except that the phototransistor picks up reflected light from what-
ever is in front of the switch. Most reflective sensors have a focal length, the
opt imum distance at which the object to be measured should be placed, typically
between 0.1 and 0.5 inches. A typical use for a reflective sensor is to detect motor
motion by painting or anodizing the motor shaft black, then having a strip of

Sensors 59

LED PHOTOTRANSISTOR

ELECTRICAL SCHEMATIC

Figure 3.6
Slotted optical switch.

MOUNTING SLOT

REFLECTIVE

TRANSISTOR

ELECTRICAL SCHEMATIC

Figure 3.7
Reflective optical sensor.

60 Analog Interfacing to Embedded Microprocessor Systems

reflective material on the shaft. As the shaft rotates, the sensor sees no reflection
from the part of the shaft that is black, then high reflection from the reflective strip.

Both types of optical sensors have some common characteristics that must be

taken into account when designing a system that uses them, as detailed in the

following sections.

Speed The phototransis tor in any optical switch is fairly slow. This limits
the maximum speed that can be detected. Typical numbers are 8 ~ts turn-on time
and 501as turn-off time. This time is driven by the speed of the base-emitter

junction.

GaiB The LED and phototransistor pair have a limited gain, usually less than 1.

The amount of current generated in the phototransis tor collector for a given
current th rough the LED is called the current transfer ratio (CTR). A typical CTR
for a slotted switch is 0.1. This means that 10 ma of current in the LED will result
in 1 ma of current in the collector. The CTR is sometimes specified as a ratio, and
sometimes specified in a table that shows the collector current for various values
of LED current. The CTR is dependen t on the LED and phototransistor char-
acteristics, and can vary widely from one device to the next.

The current transfer ratio has several implications when you want to interface
a switch to a microprocessor system. First, if you want to connect the switch

directly to a digital input (Figure 3.8), the transistor output has to swing between
valid logic levels. To ensure that the phototransis tor saturates, the value of the
pullup resistor is limited. For example, if you are driving the LED with 10 ma and
the CTR has a min imum value of 0.1, then the pullup resistor will be a round
5000ohms. A smaller resistor would provide better noise immunity (lower im-
pedance) and possibly faster speed, but wouldn ' t work with all devices because
the transistor would not be able to sink enough cur ren t to ensure a valid logic low
level. To use a smaller pullup, you could use an optical switch with a higher CTR,

or drive the LED with more current.
Optical switches are available with darl ington transistor outputs, and these

often have a CTR higher than 1. However, they are typically only 20% as fast as

a single transistor output and have a higher saturation voltage.
Reflective sensors also have a CTR. Because the sensor depends on reflected

light, the CTR is dependen t on the type of surface used for testing and the
distance of that surface from the sensor. The CTR of a reflective sensor is
normally established with a s tandard reflective surface, placed at the specified
focal length from the sensor. For example, the Q T optoelectronics reflective
sensors include the following statement: "Measured using an Eastman Kodak
neutral white test card with 90% diffused reflectance as a reflecting surface."

The CTR of a reflective sensor varies from device to device, but also with your
application. If your sensor is aimed at a surface that switches between gray and

Sensors 61

+v

10m

_

+V

_

PULLUP

LOGIC OUTPUT
TO DIGITAL CIRCUIT

DARLINGTON OUTPUT

Figure 3.8
Optical switch digital output.

black, you will not get the same CTR you get with the white reference used by the
manufacturer . Your design has to accommodate the actual CTR resulting from
your application of the sensor. One way to determine the range of CTR is to

measure the CTR in your application, then compare that to the CTR of the same
sensor using the same white reference used by the sensor manufacturer . This will
give you an idea of the CTR range you can expect to see.

Because the CTR of an optical sensor has a wide range, you may want to
connect the output of the sensor to an ADC. This allows the system to look for
changes in the output level, ra ther than depend ing on the ability of the part to
generate digital logic levels. The price for this capability, of course, is the cost of

adding an ADC and the slower speed caused by the time needed for ADC
sampling. A compara tor can also be used; it does not provide the flexibility of

the ADC, but is faster and cheaper. The threshold of the compara tor can be
adjusted to compensate for circuit limitations, such as the relatively high satura-
tion voltage of a darl ington output. In addition, a compara tor permits the use of

62 Analog Interfacing to Embedded Microprocessor Systems

hysteresis (see Appendix A) to avoid a noisy output caused by the slow speed of
the phototransistor.

IR Problems

Most slotted and reflective sensors use IR LEDs and phototransistors. This means
that the response of the part may not be the same as it would be for something in
the visible spectrum. Specifically, objects that are good at reflecting or blocking
visible light may be less effective at IR wavelengths. IR is also susceptible to
interference from fluorescent lights and sunlight.

Figure 3.9 shows how driving the LED with a square wave signal can be
combined with a filter to eliminate this type of interference. In this example,
a source of ambient light causes the phototransis tor to have a constant DC offset,
and the signal is super imposed on a 60 Hz signal from fluorescent lighting. By
passing the output of the transistor th rough a tilter that is tuned to the original
modulat ion frequency, these components can be removed and the signal con-
verted to digital. The filter can be implemented in hardware or software. The IR
method used in television remote control uses a 40 kHz modulat ion technique
(a high-speed photodiode is used in the receiver to get this kind of speed).

Filtering such as this has some drawbacks. The first is speed. Due to the turn-
on and turn-off times of the phototransistor , there is a m a x i m u m modulat ion

LED DRIVE

+V
+V

DRIVE SIGNAL

PULLUP

FILTER

jWLFLFL
OUTPUT SIGNAL

SIGNAL RIDES ON 60 HZ NOISE FROM
FLUORESCENT LIGHTING

~ DC OFFSET CAUSED BY
AMBIENT LIGHT

Figure 3.9
Opt ical sensor f i l tering.

Sensors 63

frequency that will workntyp ica l ly a round 10 kHz. Because filtering the signal
takes some time, it takes several cycles for a mechanical change in whatever is
being measured to show up at the output . So, while the sensor may be able to
operate at 10 kHz, the system may be able to handle a rate of only 1000 Hz or so. In
the example shown, if the ambient light causes so much DC offset that the
phototransis tor saturates, no amount of filtering will recover the signal.

Mechanical Instability

Mechanical j i t ter can cause strange results with reflective sensors. I saw a system
once that used a reflective sensor to look at a shiny strip on a flat black motor shaft
to count rotations. The output of the sensor circuit genera ted an in te r rupt to a
microprocessor. Occasionally, the motor would stop with the shiny strip right at
the edge of the detection area for the sensor. Machine vibration would then
genera te enormous numbers of interrupts to the processor, effectively shutting
it down. You could envision a similar situation with a slotted sensor, if the flag that
in te r rup ted the light path only partially obscured the phototransistor. This could
leave the phototransis tor halfway on, causing an ambiguous output.

Reflective sensors have some additional considerations. Reflective sensors are
frequently used to sense objects of differing types. A good example would be
paper moving down a high-speed sorting mechanism. The paper has varying
quality, color, and reflective properties. The sensor system must be designed to
handle all the types of material used. What if someone runs a flat black document
down the transport? Does your system have to detect it?

Even when the mechanical system being measured doesn ' t change, reflective
sensors can cause problems. Imagine that a sensor is measur ing motor speed by
looking at a reflective strip on a flat black motor shaft, as described in the
preceding paragraphs . What happens if there is a scratch on the shaft, making
another tiny reflector? Will this confuse the system? Suppose a film of oil builds
up on the shaft, diffusing light from the reflective strip or increasing the reflec-
tivity of the black part. These types of questions have to be answered.

In some cases, you may have to add hardware and/or software to detect
unusual conditions. In the example already ment ioned, in which a reflective
sensor genera ted excessive interrupts , the software might have a t imer that keeps
track of the time between interrupts. If the sensor ISR is exited and immediately
reentered , the ISR could disable the in ter rupt and set a flag to tell the rest of the
system that something is wrong.

Open Sensors
In systems where safety is an issue, be sure that a failed sensor doesn ' t cause the
system to operate in an unsafe manner . A typical example would be a safety hood

64 Analog Interfacing to Embedded Microprocessor Systems

that mus t be closed before the mach ine can start. T h e idea is that all the danger -
ous moving parts are u n d e r the hood, so if the hood is closed you know the

opera to r ' s hands are out of the way. You could use a slotted optical switch and a

flag that blocks the light path when the hood is closed. You then connect the

photo t rans i s tor emi t te r to g r o u n d and pull the collector up with a resistor. W h e n
the flag is blocking the sensor, the transistor is off and the ou tpu t is high.

T h e p rob lem with this app roach is that an open or d i sconnec ted LED would

a p p e a r the same to the system as a closed hood. T h e system migh t then try to start

with the hood open. In a case like this, use a flag that unblocks the sensor when the

hood is closed. A bad LED then looks like an open hood and every th ing is safe.

An even safer m e t h o d would be to use two sensors, one that is blocked when

the hood is open and one that is blocked when the hood is closed. T h e machine

isn't allowed to start unless both sensors are in the correct (safe) state. For the

ul t imate safety, use a flag that has an opaque strip and a t rans lucent Strip. W h e n

the hood is closed, the opaque strip passes t h r o u g h the sensor first, but when the

hood is closed all the way, the t rans lucent strip is blocking the sensor. T h e system

looks for the signal to be comple te ly blocked by the opaque strip, p rovid ing an

"opaque reference" level. T h e n it looks for the t rans lucent strip, which only
blocks par t of the light, giving a partial output . As soon as the signal changes to

indicate e i ther the opaque strip or no flag at all, the system assumes that the hood

is open. This protects against unsafe condit ions even if the photo t rans i s tor is

shor ted or if someone tries to defeat the interlocks.

Multiple Sensors
In some systems, it is possible to control mult iple sensors with a single ADC or

digital input. In Figure 3.10, four optical sensors use one input on the micro-

processor. Each sensor LED is connec ted to a separa te ou tput . This can be a por t

ou tpu t bit on the microprocessor or a separa te register. Figure 3.10 shows an 8-

bit register , with 4 bits used. All of the photo t rans is tor emi t te rs are g r o u n d e d , and

the collectors are tied together , with a c o m m o n pul lup resistor.

To use this circuit, the LED for each optical sensor is t u r n e d on one at a t ime,

then the c o m m o n input is read (if an ADC is used, a convers ion is p e r f o r m e d and

the result is read). After each read, the LED is t u r n e d off and the next LED is

t u r n e d on. This approach has some restrictions:

�9 T h e LEDs mus t be left on long e n o u g h for the photo t rans i s to r to settle before

the input is read.
�9 W h e n an LED is t u rned off, the next r ead ing mus t not be p e r f o r m e d until the

co r r e spond ing photo t rans i s tor has had t ime to tu rn off. However , the next

LED can be t u rned on as soon as the cu r r en t result is read. It is not a p rob lem to

Sensors 65

LATCH OR
REGISTER

DATA BUS

WRITE STROBE
FROM MICROPROCESSOR

+5

§

+5

§

TO MICROPROCESSOR DIGITAL INPUT
OR ADC INPUT

Figure 3.10
Multiple optical sensors with a single output.

have two LEDs and their co r r e spond ing phototransis tors on at the same time,

as long as no readings are taken in that state.

�9 T h e r e is a limit to the n u m b e r of transistors that can be paralleled this way, due

to the leakage of the phototransis tors .

�9 Finally, this scheme depends on die fact that only one photo t rans is tor is on at a

t ime (because only one LED is on at a time). If ambient light causes other

photot ransis tors to be partially on, the results will be ambiguous.
You occasionally need to know if an LED in a sensor has failed. An example

would be a situation in which you use a slotted switch to de te rmine if a motor is

turning. If the moto r appears to stop, you might need to know whe the r the motor

is j a m m e d or the sensor LED has failed (or been disconnected) so you can put the

correct diagnostic message on the ope ra to r panel. Figure 3.11 illustrates a simple

way to detect a failed LED. A c o m p a r a t o r senses the voltage at the LED anode.

When the LED is on, it will have a voltage d rop of a r o u n d 1.2 V (typical), so the

c o m p a r a t o r ou tpu t will be high. If the LED opens, the voltage at the anode will

rise to V+. (For this to work, V+ must be greater than 3 V.) The circuit as shown

is fbr an LED that is on all the time. You can also use this me thod for a switched

LED, but take the voltage d rop across the switching transistor into account when

66 Analog Interfacing to Embedded Microprocessor Systems

+V

t
3V

COMPARATOR

OUTPUT TO MICROPROCESSOR
LOW WHEN NO CURRENT
IS FLOWING IN LED

Figure 3.11
Detect ing an open LED.

selecting the reference voltage. Of course, the compara tor output is valid only
when the LED is tu rned on.

Although a disconnected LED is much more likely than a shorted LED, you
can add a second compara tor to detect that condition. The reference voltage
would be a round 0.6 V and the software would declare an e r ror if the voltage
d r o p p e d below the reference.

Optical Isolators

Figure 3.12 shows an optical isolator. The optical isolator (called an optoisolator
or optocoupler) houses an LED and a phototransis tor in a package like an IC.
The optical isolator is sea ledmthere is no way to break the light path. The optical
isolator is not used to detect mechanical motion, but to provide electrical isolation
between two circuits. A common use for optical isolators is to isolate a high-
voltage circuit from the microprocessor that controls it. Musical In s t rumen t
Digital Interface (MIDI) uses optical isolation to connect synthesizers, computers ,
and other electronic musical instruments. In this application, the use of optical
isolators prevents problems caused by different g round potentials.

Figure 3.12 shows how an optoisolator can be used to pass signals from one
system to another . The g round and power connections for the system may be
completely separate. Even in a single system where the grounds are nominally the
same, an optoisolator may be used to prevent cur ren t from flowing from one

Sensors 67

Vl IS REFERENCED TO THE GROUND FOR THE LED,
V2 IS REFERENCED TO THE GROUND FOR THE
PHOTOTRANSlSTOR

+V2
+Vl

LOGIC OUTPUT
TO DIGITAL CIRCUIT

THESE TWO GROUNDS MAY BE AT DIFFERENT
POTENTIALS. THEY CAN BE SEPARATED BY
HUNDREDS OF VOLTS

Figure 3.12
Optoisolator.

ground to the other. If one ground is particularly noisy, such as the ground for a
pulse-width modulated (PWM) motor system, an optoisolator may be used to
keep the motor noise out of the logic ground.

Some optoisolators are available with logic outputs instead of phototransistor
outputs. These devices typically place a logic gate inside the IC to convert the analog
output into a digital level. Optoisolators have the same speed and gain issues that
optical sensors have. The CTR of an optoisolator can be higher, typically in the 20%
to 100% range, because the LED is closer to the phototransistor base. The speed of
an optoisolator is usually better than for an optical switch. The common 4N35
optoisolator has turn-on and turn-off times of 10 ~s each, so it can pass signals over
10 Khz. However, as signals approach the limits of the optoisolator speed, the
output signal looks less like the input. For high-speed isolation, a fast optoisolator
is normally used. The 6N136 (Figure 3.13) is capable of speeds up to about 1 MHz.
This part uses a photodiode coupled to a transistor to achieve high speed.

68 Analog Interfacing to Embedded Microprocessor Systems

Vcc
1>

GND

Figure 3.13
6N136.

Discrete Optical Sensors

A design occasionally calls for the use of discrete optical parts: an LED and a
phototransistor. These are usually infrared parts, like those in packaged optical
switches. They are normally used to detect when a n object is blocking the light
between the LED and phototransistor, but in places where the distance or width is

too large for an optical switch.
Discrete parts are connected and used the same way as an optical switch or

optoisolator, but there are a few additional considerations. Because the distance

between sensor and phototransis tor is usually larger, the CTR is lower. The
circuit of~en needs an adjustment for LED current or sensing threshold tbr

reliable and repeatable operation. In some cases, a lens may be required on one

of the parts to tbcus the light.
Focusing is often a problem with discrete parts. This is especially true if the

LED and phototransistor are on separate mechanical assembl ies~ the mechanical

tolerance stackup can cause the LED and transistor to be misaligned.
In a packaged optical switch, the LED and phototransistor are matched to the

same IR wavelength. Although most IR phototransistors and LEDs will work
together, these parts do operate at different peak wavelengths in the I R range.
When using discrete parts, it is best to select an LED and phototransis tor that are

designed tor the same IR range. If the parts have diftierent ranges, then an LED
at one end of its range and a phototransis tor at the other end of its range may

result in a system with significantly lower CTR.
Figure 3.14 summarizes the three basic methods of interf~acing an optical

sensor to a microprocessor. All of these show the LED always on with a current
limiting resistor, and the phototransis tor using a g rounded emitter and a pullup
on the collector. All three methods will also work with other LED drive methods,
such as using a microprocessor to turn the LED on and off. They will also work
with other phototransistor configurations, such as connecting the collector to the
positive supply and sensing the vohage across a resistor connected from the

emitter to ground.
Figure 3.15 shows how optoisolators can be used to isolate a bidirectional

signal between two systems. In the figure, an SPI device has a common I/O pin,

Sensors 69

+V +V

z~

ULLUP

TO MICROPROCESSOR
PORT INPUT

SIMPLEST CIRCUIT

SCHMITT TRIGGER BUFFER MAY BE REQUIRED

LED CURRENT AND PHOTOTRANSISTOR PULLUP MUST
BE CALCULATED WITH CTR TO ENSURE LOGIC-LEVEL OUTPUT

IN SOME APPLICATIONS, REFLECTIVE SENSORS MAY NOT
HAVE SUFFICIENT CTR FOR THIS APPROACH

+V

l

+V

ULLUP

COMPARATOR

TO MICROPROCESSOR
PORT INPUT

REFERENCE VOLTAGE

+V +V

ULLUP

[ADC ~ TO MICROPROCESSOR

_

ALLOWS OPTICAL COMPONENTS TO WORK EVEN IF OUTPUT
IS NOT VALID LOGIC LEVELS

REFERENCE INPUT TO COMPARATOR CAN BE CHANGED WITH
POTENTIOMETER (MANUAL OR ELECTRONIC) TO ADJUST
SENSING THRESHOLD

MOST COMPLEX, COSTLY CIRCUIT

SLOWEST - EVERY MEASUREMENT REQUIRES AN ADC CONVERSION

MORE COMPLEX SYSTEM - SOFTWARE MUST PROCESS ADC RESULT

WORKS WITH WIDE RANGE OF SENSORS, CTRS, AND SENSED
OBJECTS

Figure 3.14
Interfacing optical sensors to a microprocessor.

but the design calls for this device to be DC isolated from the microprocessor.
Two optoisolators are used to provide the required isolation. The SPI output is
buffered (to provide the required LED drive current) and the output of optoiso-
lator U 1 produces an isolated, low output when the SPI device drives the I/O pin
low. The output of U1 would be connected to an input pin or port bit on a
microprocessor or microcontroller.

The second optoisolator (U2) drives the common I/O pin low when the
microprocessor drives its LED low. When the microprocessor is not driving data
onto the I/O pin, it must leave this LED in the OFF state so that the SPI device can
drive the pin. When the microprocessor drives the I/O pin low, the output
optoisolator will follow the signal, so the microprocessor must ignore transitions
on the output while it is driving the SPI device. Or, the return signal can be used
to verify that the data is being correctly passed through to the SPI device.
Although not shown in Figure 3.15, a second optocoupler and another micro-
processor port pin would be needed to drive the SPI clock signal.

70 Analog Interfacing to Embedded Microprocessor Systems

SPI
DEVICE

+5

PULLUP

BUFFER

+5 +5

pT~ CA C

% '
�9 y

+5

PULLUP

+5

OPTICAL l
<

I Z ~ A I I .,

! U2

OUTPUT TO MICROPROCESSOR

INPUT FROM MICROPROCESSOR
HIGH WHEN IDLE

Figure 3.15
Bidirectional signal buffering with optoisolators.

Driving a bidirectional pin in this manner requires that the controlling micro-
processor use two port pins (one input, one output), but it allows DC isolation of
the peripheral device or system. In most cases, you will want to use high-speed
optoisolators for an application like this. Either a diode/transistor or logic output
optoisolators may be used, but optoisolator U2, which connects directly to the
bidirectional pin, must have an open-collector output. The pullup resistor on the
bidirectional pin should be chosen to provide sufficient speed (avoiding excessive
rise time) without exceeding the drive capability of the pin. If optoisolator U2 is a
diode/transistor device, it must be driven with sufficient LED current to ensure
that the output can pull the bidirectional pin to a logic low.

CCDs

CCDs directly convert light intensity to an electrical value. CCDs are used in
handheld camcorders, surveillance cameras, bar code readers, imaging systems,
and any other place where a representation of an image is needed.

Sensors 71

CCD Basics

A CCD operates by accumulating charge on a semiconductor area. When photons
fall on a CCD pixel array, the energy from the photons is absorbed by the silicon,
causing an electron-hole pair to be formed. The number of electron-hole pairs is
directly related to the number of photons that were absorbed, and so is directly
related to the amount of light. The longer that charge is allowed to accumulate,
the more electron-hole pairs will be formed. The process of allowing light to fall
on a CCD array for a particular time to accumulate charge is called integration,
and the amount of time that charge is allowed to accumulate is called the integra-
tion time.

The accumulated charge represents an electrostatic potential. It can be
moved by applying voltages to the clock pins of the CCD, creating changing
potential voltages that can push the electrostatic charge around. There are a
number of mechanisms to generate the needed voltages, all with different
numbers of clock inputs and timing requirements. The essential point is that
the CCD is configured as an analog shift register that passes the charges in one
direction, from one cell to the next. At the end of the shift register is a sense
node that converts the electrostatic charge to a voltage. Figure 3.16 illustrates
the CCD process.

The sense node is constructed using a floating gate. The output of the sense
node is directly proportional to the charge on this gate. To measure charge, the
gate must first be drained of existing charge, which is performed with a reset
transistor.

The functions that must be performed in any CCD-based system consist of the
following:

�9 Provide phase clocks to control movement of the charges along the CCD shift
register. This may require up to four input pins on the CCD, each with a clock
signal of a different phase.

�9 Reset the output node prior to each measurement.
�9 Read the analog output voltage and convert it to a digital value using an

ADC.

Exposure Control

What happens if too much light is accumulated on the CCD pixels? The result is
saturation: all the pixels come out as full white. This happens if the light source
that is illuminating the object to be scanned is too bright, or if the integration time
is too long. Most modern CCDs provide exposure control, which is an input pin
that allows the charge to be dumped into the device substrate, preventing it from
accumulating in the CCD.

72 Analog Interfacing to Embedded Microprocessor Systems

CYCLE 1

CYCLE 2

CYCLE 3

CYCLE 4

CCD CELLS SENSE AMPLIFIER

J
- j

OUTPUT VOLTAGE

Figure 3.16
C C D opera t ion .

Linear CCDs

Linear (or line-scan) CCDs have a single line of pixels. They are used in applica-
tions in which the object to be scanned is moving. The CCD scans a single row of
pixels. When the target moves one pixel's width, the CCD scans another row of

pixels. By assembling the rows of pixels, an image of the object may be built in
memory. Typical applications include any kind of imaging that involves moving
objects along a track, such as packages on a conveyor belt or documents moving

down a transport. Figure 3.17 illustrates this process, rFo keep this figure simple,
an array of only 24 elements is shown; a real array typically has 512 to 4096
elements. Linear CCDs can also be used where the object is motionless and the
CCD array moves. Most computer scanners work this way. A motor moves the

CCD array and the light source across the paper.
In most applications, a lens is used to translate the image to the CCD array. For

instance, in a document imaging application, you might use an array that is 1 inch

long and contains 1024 elements. If you are building a machine that a bank would
use to scan checks, you might want to image documents up to 5 inches in width.
The lens would have to perform a 5:1 reduction to scale the 5-inch document
width down to the 1-inch array length. This would provide a resolution of 1024

pixels/5 inches, or 204.8 pixels per inch. If you wanted higher resolution (more
pixels per inch), you would have to either limit the application to shorter docu-
ments or use an array with more elements.

Sensors 73

MOVING OBJECT
ON CONVEYER BELT

/

IMAGE

/
LINEAR
CCD ARRAY

SCAN 1

ON BOX

!!lIIi]II!!
i l l i l l U i l l l

IIIIIIIIIII

~ - - BIT 0

<] BIT 23
RESULTING CCD SCANS

Figure 3.17
Linear C C D imaging.

Linear arrays are typically made with one, two, or four outputs. Multi-output
arrays provide higher speeds by providing more than one data channel at a time.
If the 1024-element array that we just looked at had two outputs, pixels 0-511

might be output on channel 1, and pixels 512-1023 on channel 2. Or, all the even
pixels (0, 2, 4 1022) might be output on channel 1 and the odd pixels (1, 3, 5, ...

1023) on channel 2. If a single-channel array were capable of operation to
15 MHz, an equivalent 2-channel array would be able to output data at the same
rate on each channel, for twice the total data rate.

The required data rate of a CCD array depends on the application. In our
document imaging example, if the documents are going by at 100 inches per
second, then the array will have to take a full scan (1024 pixels) 204.8 times per
inch. This works out to 204.8 x 100, or 20,480 scans per second. Because there are
1024 pixels per scan, the output rate is 20,480 x 1024, or 20.971 MHz. The ADCs
and analog buffers have to operate at this rate. The 20,480 scans/sec rate means that
the integration time is 48.8 ~ts. The CCD and lighting system must be selected to
provide sufficient image quality at that speed. Of course, a 2-output array would cut
the required processing rate in half, but would require twice as many ADCs.

74 Analog Interfacing to Embedded Microprocessor Systems

Most linear arrays have a "storage" area to which the charge is t ransferred after
integration is complete. Once the charge has been t ransferred to this storage
area, fur ther light integration will not affect the stored charge (but will affect the
"capture" array that is exposed to the light). This mechanism prevents the data
from changing while it is being shifted to the sense node.

Color

CCDs are not color sensors. They produce an output that is propor t ional to the
amount of light that strikes the array. The CCD does not detect the color of the
light, and CCDs do not typically respond to all colors equally. Color processing is
normally per formed by using three color filters, usually red, green, and blue.
Figure 3.18 shows a linear array with a slide that has three color filters. To take a
color image, a scan is made with the red filter in place, then one with the green
filter, then one with the blue. Of course, the data rate for a color image is three
times the data rate for a m o n o c h r o m e image, and the software has to control a
motor or other actuator to move the correct filter into position for the cur rent
scan.

An alternative to using a single CCD and three filters for color applications is to
use three CCDs with three filters, as shown in Figure 3.19. A beam splitter
provides the same image to three CCDs. The problems with this approach are
that three CCDs are needed, with their associated drivers and ADCs and the
resulting difficulty in aligning the system.

Trilinear CCDs

There are newer linear CCDs called trilinear CCDs that are designed for color
(Figure 3.20). A trilinear CCD has three CCD elements on one CCD die, and each
element has a filter. This three-e lement array eliminates the a l ignment problems

CCD
COLOR FILTERS

Figure 3.18
Color imaging with filters.

Sensors 75

LIGHT FROM TARGET IMAGE

BEAM SPLITTER < ~ C D I (RED)

D' ~ CCD 2 (GREEN)

~ccD 3 (BLuE~

Figure 3.19
Color imaging with a beam splitter.

of the beam-splitter approach, and a single CCD with three arrays is less
expensive than three single-line arrays of equivalent characteristics. Typical
trilinear CCDs include the Kodak KLI series and the Sony ILX series.

A trilinear array solves the alignment problem of using three individual CCDs,
but still has three individual outputs that require three ADCs. The three arrays in

RED

GREEN

i
BLUE

Figure 3.20
Trilinear color CCD array.

76 Analog Interfacing to Embedded Microprocessor Systems

a trilinear part are side by side, but separated by some distance (Figure 3.21). In
the Kodak KLI-2113 and the Sony ILX724, the pixel arrays are separated by a
distance of 8 pixels. As shown in Figure 3.21, a given point on the image appears
at one array in the CCD first (blue, in the Figure), at the middle array second, and
finally at the last array. However, all three outputs of the CCD are active the
entire time, meaning that the data is skewed in time.

This problem can be fixed in software by taking the data from the buffers in an
offset fashion; data from scan 0 of the blue buffer is combined with data from scan
8 of the green buffer and scan 16 of the red buffer. Remember that one scan is
many bytes; for an array that is 1024 pixels long, each scan is separated by 1024
bytes in memory.

Another way to handle this problem, in hardware, is to buffer the data in first
in, first out memory (FIFO) and throw away the first 16 scans from the blue
buffer and the first 8 scans from the green buffer. This ensures that the actual
data is aligned and reduces the software overhead.

This problem also has ramifications for the motion part of the system. If the
speed of motion is not well controlled, the scans won't align in the buffers because

CCD ARRAYS (3)
BUFFERS IN MEMORY

BLUE GREEN RED

BLUE GREEN RED

IMAGE OF ITEM
MOVING PAST
CCD ARRAY

BUFFER FILL l DIRECTION

k ~r
ONE SCAN

LEADING EDGE
OF ITEM BEING
SCANNED

DIRECTION OF TRAVEL T
/

THE LEADING EDGE OF THE OBJECT BEING
SCANNED APPEARS AT THE BLUE ARRAY
FIRST, AT "HE GREEN ARRAY 8 SCANS
LATER, AND AT THE RED ARRAY 8 SCANS
AFTER THAT.

Figure 3.21
Trilinear data alignment.

Sensors 77

the actual position of the object with respect to the CCD won't be what it should
be. This is only a problem, of course, in systems that require all the scans to be

well aligned.

Color Processing

The concepts of color processing are beyond the scope of this book. However, it is
safe to say that most applications that need color have to perform some proces-

sing to get from raw CCD data to the actual image. In a monoc h rome application,
all the information needed to manipulate or store the image is contained in the
raw data. A monochrome image is just a black-and-white image of the object. The
data from a color system has to have the three single-color data values combined
to get the monochrome information. For instance, a color CCD system that is
looking at something blue might produce a large value from the blue CCD, a
smaller value from the green CCD, and zero from the red CCD. To get a
monochrome (light/dark) representation, the data from the three CCDs has to
be averaged or summed. To get color information, the software has to calculate
the actual color of the target from the relative intensities of the three CCD
outputs. In short, a color system will produce three times as much data as an
equivalent monochrome system, but may require more than three times as much

processing capability.

Area CCDs

An area CCD is typically used where neither the target nor the CCD is moved to

take an image. As the name implies, an area CCD images a square or rectangular
area. Area CCDs are used in camcorders and surveillance cameras, or in any
imaging application where a "snapshot" is required of a stationary object. An area
CCD could also be used in a motion system in which the motion isn't linear or isn't

regular.
A trilinear CCD is three linear CCD arrays side by side. An area CCD can be

thought of as a lot more linear arrays side by side. A 512 x 512 area CCD would

have 512 linear arrays of 512 pixels each.
Unlike the trilinear CCD, the area CCD does not have one output per linear

CCD array. Instead, data is shifted a row at a time into an output array and then
shifted out a bit at a time. Obviously, the bit-at-a-time output limits the rate at

which the array can capture images.
Some area arrays do not have the output "storage" area of the linear CCD, so

the light must be turned off, or a mechanical shutter must be used to prevent
continuous integration from occurring while the data is being read. Like the

linear CCD, area CCDs are available with color outputs, and the mechanism

78 Analog Interfacing to Embedded Microprocessor Systems

works the same, with adjacent pixels picking up different colors that then have to
be mixed by the software.

Dark Reference

One problem with CCDs is that the pixels will accumulate charge even in the
dark. This has the effect of adding an offset to the output of the CCD. Most CCDs
include a few pixels at each end that are not used for imaging. These pixels are
identical to the imaging pixel elements, but are shielded from light. The output
from these elements is a result only of the non-light-induced charge accumulation
in the device. In most systems, this is subtracted from the values of the light-
gathering pixels to eliminate unwanted offsets in the result. The subtraction can
be accomplished either by software or by capturing the dark value in a sample-
and-hold and performing the subtraction before the ADC.

Correlated Double Sampling

One way to reduce the noise in the CCD result is to use correlated double
sampling (CDS). As shown in Figure 3.22, CDS uses two sample-and-hold circuits.
One S/H captures the CCD output immediately after reset, when the CCD output
is at the reset level. The other S/H captures the CCD output when the charge
value is present. A differential amplifier provides the difference between the two
levels to the ADC. Of course, the timing logic that generates the CCD clocks must
ensure that the two S/H circuits take samples at the appropriate times.

CYCLE I

CCD OUTPUT

ME
I SIH 2 1

I SIH I I

DIFFERENTIAL
AMPLIFIER

RESET LEVEL

TO ADC

SAMPLE/HOLD 1 TAKES SAMPLE DURING RESET LEVEL
SAMPLE/HOLD 2 TAKES SAMPLE DURING CHARGE MEASUREMENT
OUTPUT TO ADC IS DIFFERENCE

F i g u r e 3 . 2 2
Cor re la ted doub le samp l ing .

Sensors 79

Another method to implement CDS is to couple the CCD output to the ADC
input with a capacitor and use a clamp. The clamping circuit clamps the input to a
fixed reference voltage when activated. This causes the capacitor to develop a DC
bias that is equal to the difference between the reference voltage and the input
signal (which is at the reset level). When the clamp is released, the ADC input will
follow the CCD output, but with the offset added (until the charge bleeds off the
capacitor). Typically, the signal will be clamped just before each pixel is read,
restoring the DC offset on the capacitor.

Nonuniformity
Nonuniformity is the amount of variation between pixels in an array when they
are exposed to the same light. In a linear array, it can result in bars of lighter or
darker areas across the reconstructed image. There are several sources of non-
uniformity inside the CCD, as well as lighting variations in a typical system.
Lighting variations can be caused by an uneven light source or by things that
affect the light path, such as reflections off a shiny object adjacent to the path that
the target image takes.

One way of minimizing the effect of nonuniformity is to normalize this output.
As shown in Figure 3.23, this process consists of passing the output of the CCD
through an ADC, then passing the output of the ADC through a programmable
read-only memory (PROM) before passing it to the microprocessor. The PROM
contains normalization information for each pixel position. The pixel data from
the ADC comprises the high-order PROM address bits and the row number is the
low address bits. The PROM contents consist of values that multiply the ADC
output by the value needed to make the output uniform. If a given pixel has an
output that is 85% of nominal, then the values for that pixel will be multiplied by
1/85%, or 1.176. If the value out of the ADC is 25, then the value out of the PROM
will be 29 (25 x 1.176).

The data in the PROM comes from calibrating the system with a known target.
In a document-processing application, the calibration might be done with a white
document of known, uniform characteristics. Of course, if the CCD or the lighting

PIXEL NUMBER
FROM TIMING LOGIC

CCD ADC

PROM

ADDR (HI)
ADDR (LO)

DATA [~ TO MICROPROCESSOR

Figure 3.23
CCD normalization.

80 Analog Interfacing to Embedded Microprocessor Systems

is changed, the system has to be recalibrated. The PROM has to be as big as the
number of CCD pixels times the ADC resolution. A 1024-element CCD followed
by an 8-bit ADC would require a PROM 256 x 1024 x 8 bits wide. The timing
logic has to be sure that the low address (pixel number) corresponds to the
correct high address (converted pixel output).

A PROM was used in Figure 3.23 to illustrate the principle; in practice you
would normally want this table to be stored in RAM or flash memory so the
microprocessor could modify it. You can implement the same normalization
technique in software if the microprocessor can keep up with the data rate. The
microprocessor has to have a lookup table the same size as the PROM. For each
sample, the pixel value is shifted to the left by however many bits are needed for
the pixel number (10 for a 1024-element array), added to the pixel number, and
then the result is used as an offset into the normalization lookup table. Of course,
the table can be rearranged so that the pixel number is the high address and the
pixel value is the low address.

Driving CCDs

One final note about CCDs; many CCDs have unusual voltage requirements for
the clocks, such as 6.5 V tbr a logic "1" and less than 0.1 V for a logic "0." Even
inputs that are apparently CMOS logic levels may have very tight requirements,
requiring the driver to operate very close to the supply rails. In addition, the CCD
clock inputs have very high capacitance, often over 2000 pf.

Because of these characteristics, the clock and reset inputs on most CCDs
cannot be driven with standard logic. Many CCD manufacturers supply reference
designs that indicate the types of drivers that are suitable. In many cases, drivers
intended for driving high-power MOSFETs are suitable, because they are capable
of delivering considerable current into a large capacitance. Another possibility is
to use a logic driver with multiple sections and parallel the individual gates to
obtain more drive.

CCD ADCs

A number of manufacturers make ADCs that are optimized for interfacing to
CCDs. These often contain clamping circuitry to implement CDS and some of
these parts include three channels for interfacing to trilinear or other color
arrays. Typical parts include the 3-channel Fairchild TMC1103, the TI VSP
2000 and VST 3000 series, and the Maxim MAX1101.

Sensors 81

Magnetic Sensors

Hall Effect Sensors

Probably the simplest magnetic sensor to use in an embedded application is a Hall
effect sensor. Dr. Edwin Hall discovered the Hall effect in 1879. He discovered
that if a magnetic field was placed perpendicular to one face of a thin gold sheet in

which a current was flowing, a voltage would appear across the sheet (Figure
3.24). This voltage is proport ional to the current flowing in the sheet and the
magnetic flux density. A Hall effect sensor is made from silicon, and the Hall
voltage produced in silicon is only a few microvolts per volt per gauss. Conse-

quently, a high-gain amplifier is required to bring the signal from the Hall
e lement to a useable range. Hall effect sensors integrate the amplifier into the

same package as the sensor element.
Hall effect sensors are available as sensors that produce an output proport ional

to the magnetic field, or as switches that change state when the magnetic field

exceeds a certain level. Analog Hall effect sensors are suited to applications in
which you need to know how close a magnet is to the sensormsuch as sensing
whether an oscillating arm is really moving. Hall effect switches are best for
applications in which you just need to know if a magnet is near the sensor, such

as sensing whether a safety hood is closed or open.

HALL EFFECT, NO MAGNETIC FIELD

-,,, \

ECTION OF CURRENT F

HALL EFFECT, MAGNETIC FIELD APPLIED

DIRECTION OF

! \
OtRECIION OF
MAGNETIC
FIELD

\
V = NONZERO

Figure 3.24
The Hall effect.

82 Analog Interfacing to Embedded Microprocessor Systems

The output of an analog Hall effect sensor can be connected to a comparator or
ADC like any other voltage-output sensor. One caution: some analog output
sensors provide an output that is proport ional to the supply voltage. For an
accurate, noise-free output you must power the sensor from a noise-free, well-
regulated supply.

A typical analog Hall effect sensor will produce an output that is halfway
between the supply voltage and ground when no magnetic field is present. When
a north pole is near the sensor, the voltage moves toward ground, and when a
south pole is near the sensor the voltage moves toward the positive supply.

Hall effect switches produce a digital output to indicate the presence of a
magnetic field. They drive the output active when a certain magnetic strength
(the operate point) is sensed, then drive the output inactive when the magnetic
field drops below a certain level (the release point). There is some hysteresis in
the range, where the release point is less than the operate value.

Hall effect switches come in two varieties: unipolar and bipolar, which are
sometimes called nonlatching and latching. Bipolar switches have a positive
(south pole) operate point and a negative (north pole) release point. Unipolar
switches have a positive (south pole) operate point and a less-positive release
point. The operate and release points vary with temperature. Both bipolar and
unipolar switches typically have an open-collector output that has to be pulled up
with an external resistor.

Hall effect sensors are commonly available in three-lead packages similar to the
TO-92 transistor package and in surface-mount packaging. The three leads are
power, ground, and output. Typical supply voltages are 5 to 10 V, although some
sensors operate up to 30 V or more. When using a Hall effect sensor, remember
to account for stray magnetic fields. If using a magnet on, say, a rotating shaft, be
sure that the magnet doesn't excessively magnetize the shaft itself, or this will
affect the output of the sensor.

Remember that the magnetic field falls off with the approximate square of the
distance (approximate because the size and shape of the magnet, as well as
surrounding magnetizable objects, affect the result). In any event, the output of
an analog Hall effect sensor may be linear with respect to the strength of the
magnetic field, but it will not be linear with respect to distance.

Geartooth Hall effect sensors include a magnet and Hall effect sensor in one
package. They are designed to measure rotation of a geared device by placing the
sensor near the gear teeth (Figure 3.25). As each gear tooth moves past the
sensor, it affects the magnetic field between the magnet and the Hall effect sensor,
causing an output pulse to be generated.

Clarostat makes a Hall effect potentiometer. This device produces an output
voltage that is proportional to the amount of rotation of the shaft. It is ideal for
applications where a control knob is required, but where the reliability of a
resistive potentiometer is inadequate.

Sensors 83

MAGNET I

HALL I
EFFECT I

FIELD GNETI

{> OUTPUT

Figure 3.25
Geartooth Hall effect sensor.

Linear Variable Differential Transformers

The linear variable differential transformer (LVDT) consists of an excitation coil, two
pickup coils, and a movable, magnetic core (Figure 3.26). The core provides coupling
between the coils. The two pickup coils are connected in series opposed such that
their fields oppose each other. When an AC signal is applied to the excitation coil,
voltages are induced in the other two coils. If the movable core is centered, the two
pickup coils will produce equal but opposite voltages, and the resulting output is zero.

OUTPUT V O L T A G E ~

EXCITATION

PICKUP | EXCITATION PICKUP
C O I L ~ COIL

I]
MOVABLE CORE

Figure 3.26
LVDT.

84 Analog Interfacing to Embedded Microprocessor System.s

If the core is displaced toward one end, then one pickup coil will have more coupling
with the excitation coil and will produce a larger output voltage.

Variable Reluctance Sensors

The variable reluctance sensor (VRS) consists of a coil and a magnet (Figure
3.27). When a shaft-mounted geartooth wheel moves past the sensor, the mag-
netic field from the magnet is disturbed, inducing a signal in the coil and
permit t ing shaft speed to be measured. The VRS allows the speed of the gear-

tooth wheel to be measured without requir ing any power to the sensor. In
addition, no semiconductor components are required, allowing the VRS to be
used in places where the t empera ture is too high for a Hall effect sensor, such as
in an automobile engine block.

In some applications, a tooth is left off the geartooth wheel, and the micro-
processor software detects this condition to de termine the reference position of
the wheel. In other applications, a second geartooth wheel, moun ted on the same

MAGNET

[COIL
~ t.'-'x g-",x z,'-x

I I I I OUTPUT
(2 WIRES)

OUTPUT WAVEFORM

I VRS
COIL

AMP
TO COMPARATOR
OR ADC INPUT

RESISTIVE DIVIDER, ZENER, OR OTHER
VOLTAGE REFERENCE TO BIAS VRS
SENSOR ABOVE GROUND

Figure 3.27
VRS.

Sensors 85

shaft but having a different pattern or with a single tooth, can be used to identify
the reference position.

The output of the VRS is typically amplified and passed to the microprocessor
through a comparator or directly to an ADC input. The output amplitude from
the VRS increases as the shaft speed goes up. For systems with a wide range of
shaft speeds, it may be necessary to limit the voltage at the input amplifier with a
zener or with diodes to the supply rails.

The VRS produces a bipolar output, with a negative component. Single-supply
systems should bias the VRS to half the supply voltage (Figure 3.27B) before
amplifying the signal. Note that the bias point must be a low impedance at all the
frequencies at which the VRS will operate, or the overall gain of the system will be
reduced. This may mean that a fairly large bypass capacitor is needed if the shaft
can turn at low speeds and a resistive divider is used to provide the bias.

Motion~Acceleration Sensors

Sometimes you need to measure acceleration or tilt or other motion. The obvious
application is airbag deployment in a car. However, there are other applications,
such as sensing vibration that could indicate excessive bearing wear or an un-
balanced load in a motor-driven application.

Solid-state acceleration sensors use internal capacitors to measure this force
(Figure 3.28). A micromachined movable beam and two fixed plates are used.
The movable beam has a spring that keeps it centered between the two fixed
plates when there is no acceleration. The two fixed plates are driven with a signal
from an oscillator. The two plates get the same signal, but 180 ~ out of phase with
each other. The resulting voltage at the movable beam is zero. When force is
applied to the beam, it moves closer to one of the fixed plates. This causes the
capacitance between the movable beam and that plate to be higher, and the
capacitance between the beam and the other plate to be lower. The result is that
the closer plate couples more signal into the beam and the farther plate couples
less. The output voltage is a function of the distance the beam was deflected.

The Analog Devices ADXL202 is a typical acceleration sensor. The ADXL202
is a 2-axis sensor that provides a digital output instead of a voltage, suitable for
connection to a microprocessor. The output of the ADXL202 is a high period
followed by a low period. The duty cycle of the output indicates the acceleration.
With 0g acceleration, the duty cycle is approximately 50%. The ADXL202 can
measure acceleration from - 2 g to +2 g and the duty cycle of the outputs varies
about 12% per g. External resistors set the frequency of the outputs and external
capacitors provide filtering.

Tilt can be measured with an acceleration sensor, as indicated in Figure 3.29.

86 Analog Interfacing to Embedded Microprocessor Systems

1 U 1
FIXED PLATES

MOVABLE BEAM ~

AMPLIFIER

OUTPUT

EQUIVALENT CIRCUIT

MOVABLE BEAM

DRIVE SIGNALS
PLATE 1

PLATE 2

Figure 3.28
Sol id-s tate acce lera t ion sensor .

Switches

Switches come in various types, including magnetically activated reed switches,
interlock switches on doors, and pushbutton switches for people to use. Switches
may seem too simple to include here. They are either closed or open, right? The
answer, as with many things, is: it depends.

Figure 3.30 illustrates a common way to connect a switch to a microprocessor.
A pullup resistor takes the input high when the switch is open, and the switch
grounds the input when it is closed. Also shown in the figure is the waveform
produced at the input when the switch opens and closes. A mechanical switch will
typically "bounce," making and breaking contact many times when opening and
closing. This interval usually lasts several milliseconds.

If the switch is used as a safety interlock on a door, the bounce may not be a
problem. The software may simply check the state of the switch when the user
tries to start the instrument, and if the switch happens to be open, it won't let the
motors start. If the operator has to close the door before being able to reach the
start button, then the switch will have stopped bouncing when the software

checks.
On the other hand, the switch might be used in an application in which you

need to detect each time the switch is pressed. In this case, the contact bounce will

Sensors 87

SENSOR
croP VIEW)

<] [~ DIRECTION OF MEASUREMENT

i I

SENSOR
! I

I
CIRCUIT BOARD

f
OUTPUT = 0

OUTPUT = .5G

OUTPUT = 1G

OUTPUT =-.SG

OUTPUT = - 1G

Figure 3.29
M e a s u r i n g ti l t w i t h a n a c c e l e r a t i o n s e n s o r .

look like multiple switch presses to the software, and they must be filtered out.
The algorithm usually looks like this:

Detect swi tch c losure .
Wai t 1 0 - 3 0 ms.
If swi tch still closed, t h e n it w a s a va l id c losure . Otherwise , ignore it.

The delay can be implemented with a delay loop or as part of a regular timer
routine. When developing the delay, don't make it just barely enough for the sample
switch. The contact bounce time will vary from switch to switch and as the switch ages.

Switch contact resistance also can change with age. Switches with gold-plated
contacts have low contact resistance, but the gold plating wears off eventually.

88 Analog Interfacing to Embedded Microprocessor Systems

VCC
LX

SWITCH

MICROPROCESSOR

PORT BIT

SWITCH OPEN/CLOSE WAVEFORM _ _ r U - l _ . J - U - l ~

CLOSED

LFLJ-L_B
OPEN CLOSED

Figure 3.30
Switch bounce.

Increased contact resistance means higher voltage when the switch is closed,
especially if the value of the pul lup resistor is small.

Strata Gauges

A strain gauge (Figure 3.31) consists of a conductor , such as a copper trace
pr inted on an insulator. The resistance of the conductor is de t e rmined by its
dimensions. If the insulator holding the conductor is compressed or stretched,
the conductor will change its shape slightly and its resistance will change. Strain
gauges are characterized by very small resistance and even smaller resistance
changes. The advantage of a strain gauge is that it can be used to measure force
(such as the weight of a truck on a scale) without any "moving" parts. T h e strain
gauge is par t of the structure of the scale, and while it flexes u n d e r load, it does
not have any rotating or sliding parts to wear out or break. Note that the flexible
e lement may be a pr inted circuit substrate or even an a luminum support , as long
as the strain gauge element itself is insulated.

As shown in Figure 3.31, a strain gauge is typically sensed using a br idge
circuit. In this example, the ratio R1/R2 is the same as R3/Rs (Rs is the strain
gauge resistance) when the strain gauge is unloaded. In this condition, the ou tpu t
voltage, VOUT, is zero. If the strain gauge is de formed and its resistance changes,
the br idge becomes unbalanced, the ratio of R1/R2 is no longer the same as R3/Rs

Sensors 89

I |
q

d

VIN

Rs V R2
STRAIN GAUGE 1

VOUT

$

~ _ R 3
R2 - Rs

F igure 3.31
Strain gauge.

(Rs changed), and the output voltage is nonzero. This voltage can be amplified
and measured. The advantage of a bridge circuit like this one is that it filters out
any noise (such as AC line ripple) on the input voltage. The output voltage is
dependent on the input voltage, but variations in the input voltage don' t affect
the output.

Due to the extremely low resistance of the strain gauge, the voltage out of the
bridge must be amplified by a significant amount before it is measured. A typical
strain gauge might have a resistance of around 100 ohms, and in a practical
application it might be necessary to sense resistance changes of 0.0002% of the
nominal value. Strain gauges in various configurations are used to measure
weight, force, and pressure.

Semiconductor strain gauges with micromachined resistance elements etched
into silicon also are available. The advantage of these parts is that the signal
conditioning and amplification can be included on the part.

90 Analog Interfacing to Embedded Microprocessor Systems

Time-Based Measurements 4

In many microprocessor systems, it is preferable to use frequency to make
measurements, instead of measuring voltage or current with an ADC. Reasons
for using frequency measurement include the following:

�9 In systems with ground offsets, signals can be capacitively coupled or optically
isolated to eliminate ground loops and other detrimental effects.

�9 Noise that would be introduced on an analog signal sent down a long cable may
be eliminated by transmitting a logic-level frequency signal instead.

�9 Measuring frequency instead of analog values may allow a simpler micropro-
cessor to be used, because an ADC is not required.

In many cases, you can convert an analog input, such as temperature, to a
time-based signal that can be measured with a microprocessor. One IC that can
do this is the Maxim MAX6576 (and a related part, the MAX6577). The
MAX6576 is a 6-pin surface-mount (SOT-23) device that converts temperature
to a square-wave output. The period of the output signal is proportional to
temperature. The MAX6576 has two pins that are tied high or low to select an
output range of 10, 40, 160, or 640 ItS per ~ K.

Using frequency in this way permits a microprocessor to measure temperature
with a single pin. The microprocessor software can perform this measurement in
several ways. In a microprocessor with capture capability, such as the microchip
PIC 16C6x series, the sensor output can be connected to the microprocessor input
that is used for pulse capture. A simplified block diagram of such a capture system
is shown in Figure 4.1. Here, a free-running, 16-bit counter is captured by a 16-
bit register when the input frequency changes from the low to high state. At the
same time, a short pulse is generated to reset the counter.

In the example shown in Figure 4.1, one period of the input is 90 ~ts and the
second is 100 ~ts. In this case, the counter will count up 90 (decimal) counts for the
first period and 100 (decimal) counts for the second period. The count is read by
the microprocessor to determine the period and therefore the temperature.

91

MICROPROCESSOR CLOCK
1 MHZ

FREQUENCY INPUT

FREE-RUNNING , ~ 16-E
/

COUNTER ' f l REG
(1 ~, BffS) RS i ,,

J PULSE LOGIC J<3

I

STER

FREQUENCY INPUT

OUTPUT TO
COUNTER RESET

9ous ~ loous -

FREQUENCY

Figure 4.1
Frequency-based measurement system.

In some microcontrollers, the timer cannot be reset when an input capture
occurs. In that case, the counter keeps running between interrupts. For instance,
if a regular signal is applied to the capture input and it has a period equal to 100
timer counts, then the first interrupt will result in a capture value of 100, the
second will result in 200, the third will be 300, and so on. The firmware has to
subtract the current count from the previous count to find the number of counts
that occurred since the last interrupt. The code also has to adjust the count when
the capture counter rolls over from its maximum value to zero.

The code to implement a capture counter in this way would consist of setup
code, interrupt service routine (ISR), and non-ISR code. The code has to per-
form the following functions:

Setup

Program timer as input capture

Program timer prescaler (if used)

Program input capture edge (rising edge in this example)

Program timer to generate interrupt on capture

Capture interrupt logic (if the counter resets after capture)

Read captured count from timer capture register

Convert time to temperature (table lookup or algorithm)

Capture interrupt logic (if the counter does not reset after capture)

Read captured count from timer capture register

92 Analog Interfacing to Embedded Microprocessor Systems

Subtract previous count from new count

If result negative, subtract previous count from new count + 10000 H

Conver t result to t empera tu re (table lookup or algorithm) Store new count as
previous count for next in te r rupt

Note: This code assumes a 16-bit counter . If the counter is wider, the constant
used to adjust a negative result is equal to the m a x i m u m count value plus 1. For
example, a 20-bit t imer would use 100,000 H instead of 10,000 H.

Another way to handle the negative result situation is to p r o g r a m the micro-
controller so that the t imer also generates an in te r rup t on rollover. T h e code for
the t imer rollover in ter rupt sets a flag. When the next capture in te r rup t occurs,
the in te r rup t code reads the rollover flag, adjusts the calculated time, then resets
the rollover flag.

Microprocessors that do not have a capture capability can per form a similar
m e a s u r e m e n t by letting a counter f ree-run and connect ing the frequency signal
to an in te r rupt input. The counter can be an external IC or an internal counter
that is clocked from a derivative of the microprocessor clock. When the in te r rup t
occurs, the software reads and resets the counter. This me thod is slightly less
accurate than the capture method, due to variable in ter rupt latency. In a system
in which you don ' t want other in ter rupts to affect latency of the measurement ,
and where the microprocessor has an non-maskable in te r rupt (NMI) input, you
can use that for the frequency input.

If the microcontroller has timers that can be incremented with an external
signal, the frequency input can be connected to one of those t imer inputs. T h e
microprocessor can then read the t imer on a regular basis (based on a second
t imer runn ing from the microprocessor clock) to get the n u m b e r of counts that
occurred in the measu remen t period.

In t e r rup t latency issues can be minimized by connect ing a per iod-based signal
to a counter that runs from the microprocessor clock, but only counts when the
input is high (some microcontroller counters can be opera ted in this mode). T h e
counter will count up while the input is high and hold the count while the input is
low. The microprocessor can read the count any time the count is low. As long as
the microprocessor reads the count before the input goes high again, the count
will be accurate (Figure 4.2).

Analog Devices makes a pair of t empera tu re sensors, the TMP03 and
TMP04, that convert t empera tu re to a t ime-based output . These devices gen-
erate an output with a fixed high time and a low time that varies with
tempera ture . In other words, both the per iod and frequency vary with tem-
perature . T e m p e r a t u r e is measured by calculating the ratio of the high to low
periods. (The ratio is used to compensa te for frequency variations caused by
tempera ture .)

Time-Based Measurements 93

PERIOD-BASED INPUT READ WITH FREE-RUNNING COUNTER

ANALOG INPUT
(REPRESENTED BY
PERIOD OF SIGNAL)
FREE-RUNNING
COUNTER
MICROPROCESSOR
INTERRUPT

MICROPROCESSOR
READS COUNTER

~ ! [~ J I ~

I I I l U l l U l I I I I l U l I I I I l U l I l U l U l I I I I I

VARIABLE INTERRUPT LATENCY
CAUSES JI1-FER IN RESULT
BECAUSE COUNTER KEEPS
INCREMENTING DURING
LATENCY.

PERIOD-BASED INPUT READ WITH COUNTER THAT
INCREMENTS ONLY WHILE GATE INPUT IS HIGH
(GATE CONNECTED TO PERIOD-BASED INPUT)

ANALOG INPUT
(REPRESENTED BY ~ J i I I
PERIOD OF SIGNAL)
FREE-RUNNING
COUNTER
MICROPROCESSOR
INTERRUPT

MICROPROCESSOR
READS COUNTER

VARIABLE INTERRUPT LATENCY
NO LONGER CAUSES JIn'ER BECAUSE
COUNT IS STABLE WHILE INPUT
IS LOW.

Figure 4.2
Measur ing per iod-based inputs with a f ree-running counter.

Measuring Period versus Frequency

I worked on one system in which an analog value was converted to frequency.
The sensor circuit converted a mechanical change to a slight frequency shift in an
RF 'signal. The frequency value for several sensors was captured using a PLD and
then read by a microprocessor. A block diagram of the capture system is shown in
Figure 4.3. A counter was incremented by the frequency input. Once every
sample period, the count was captured in a register and read by the micropro-
cessor. In this case, the counter was never reset, but was allowed to roll over from
FFFF to 0000; the microprocessor took care of calculating the correct count when

this happened.

94 Analog Interfacing to Embedded Microprocessor Systems

FREQUENCY-BASED MEASUREMENT

FREQUENCY-VARYING
INPUT

SAMPLE CLOCK J J

FREQUENCY INPUT

SAMPLE CLOCK

COUNTER R! ~ISTER] ~) TO MICROPROCESSOR

PERIOD-BASED MEASUREMENT

SAMPLE CLOCK
10 MHZ

FREQUENCY INPUT

16-01T FREE ~ REGISTER I RUNNING
COUNTER A

1 I
I SO0 HZ AT INPUT

FREQUENCY OF
S.(XX) MHZ

~) TO MICROPROCESSOR

Figure 4.3
Frequency versus period measurement.

In this system, we needed to detect frequency changes fairly quickly----on
the order of 2ms. Walking through an example, say that the frequency
changes from 5 MHz to 5.005 MHz, and the sample interval is 2 ms. The results
look like this"

At 5.00 MHz" Count read by p r o c e s s o r - ~

At 5.005 MHz" Count read by p r o c e s s o r -

2 ms

200 ns
= 10,000 counts

2 ms

199.8 ns
= 10, 010 counts

So this change produces a change of 10 counts in the result. Getting more
resolution (the ability to measure smaller frequency changes) requires going to
a longer sampling period, or changing the circuit that generates the input
frequency.

Figure 4.3 also shows an alternative method for making the same measure-
ment. Here, the input is divided by 10,000, producing a 500 Hz signal (at
5.000 MHz input). This signal clocks a register with the contents of a free-running
16-bit counter. The counter is incremented by a regular clock--10 M Hz in this
example. Again, counter rollover is handled in software. Measuring the same
frequency shift gives the following results:

Time-Based Measurements 95

At 5.00 MHz" Count read by p r o c e s s o r - ~
10MHz
500 Hz

= 20,000

At 5.005 MHz- Count read by processor =
10 MHz

500.5 Hz
= 19,980

These results amount to a 20-count difference. This approach requires more
hardware and a higher frequency sampling clock. The sampling rate is not fixed,
but is dependent on the input frequency. However, this approach allows higher
resolution without changing the sampling interval. More resolution is obtainable
simply by increasing the sampling clock. In this case, going from 10 MHz to
20 MHz would double the number of counts for the same frequency change
without changing the sample interval. Of course, you would need a larger coun-
ter to hold the result.

Mixing

Figure 4.4 shows a variation on this approach that provides a greater output
frequency shift for a given input change. The input frequency is passed through a
frequency mixer with a 7 MHz offset frequency. The mixer produces as an output
the two original frequencies, and the sum and difference frequencies. In this case,

J FREQ FREQUENCY INPUT M~XE
S MHZ NOMINAL

SAMPLE CLOCK
10 MI-IZ

2.5 MHZ LOWPASS
FILTER A

OFFSET FREQUENCY
7 MHZ

D

16-BIl"FREE J ~ REGISTER i RUNNING
COUNTER ^

r
J 500 HZ AT INPUT

FREQUENCY OF
S.000 MHZ

~) TO MICROPR(X:ESSOR

INPUT FREQ

OFFSET FREQ

A SIMPLE MIXER

Figure 4.4
Using a frequency mixer to increase frequency shift.

96 Analog Interfacing to Embedded Microprocessor Systems

the mixer outputs will be 5 MHz, 7 MHz (the input frequencies), 12 MHz (the
sum), and 2 MHz (the difference). This output is passed through a 2.5 MHz low-
pass filter to remove everything but the 2 MHz difference frequency. This result
is amplified and divided by 4000 to produce the same 500 Hz signal to the rest of
the per iod-measurement logic.

Now if the 5 MHz input shifts to 5.005 MHz, the difference will be 7-5.005 or
1.995 MHz. Divided by 4000, this is 498.75 Hz. If we measure the period with the
same 10 MHz reference, we get this:

At 5.000 MHz" Count read by processor =

At 5.005 MHz" Count read by processor -

10 MHz

500 Hz
= 20,000

10 MHz

498.75 Hz
= 20,050

Now instead of a 20-count difference we have a 50-count difference. Note
that the frequency shift into the divide-by-4000 circuit is negative, where the
original frequency shift was positive. This is due to the fact that the circuit
uses high-side injection, mixing the 5 MHz input frequency with a higher 7 MHz
frequency. If we had mixed the 5 MHz with 4MHz, to get a 1 MHz differ-
ence, then the output frequency shift would have moved in the same direc-
tion as the original input. The reason for using high-side injection in this
example is because it makes the low-pass filter simpler. The farther the
unwanted mixer frequencies are from the desired frequency, the easier they
are to filter out.

Although mixer theory and design are beyond the scope of this book, Figure
4.4 shows a simple mixer that uses two diodes and could be used for two logic-
level signals. Nearly any nonlinear device will work as a mixer to one degree or
another. Off-the-shelf mixers are available, such as the Philips NE612.

This example used a two-stage L/C low-pass filter. In some applications, you
might want to use a more sophisticated filter or a bandpass filter. You could even
use a DSP to perform the filtering in software, al though that is a significant
increase in overall complexity.

Although the mixer approach does multiply the frequency shift, making mea-
surement easier, it also has some drawbacks:

�9 The mixer approach multiplies the frequency shift you want to measure, but
also any other frequency shift. This includes drift caused by component heat-
ing, noise, and so forth.

�9 The input frequency range has to be limited or it will end up being filtered
out. If the 5 MHz input in Figure 4.4 shifted down to 4.5 MHz, the difference
frequency would then be 2.5 MHz and would be filtered out by the low-pass
filter.

Time-Based Measurements 97

�9 The design of the mixer and low-pass filter can be complicated. It is made worse
if the amplitude of the input signal varies as well as the frequency.

�9 Finally, the addition of another frequency (the injection frequency for mixing)
complicates the circuit and may produce additional EMI.

Voltage-to-Frequency Converters

One means of converting an analog input to a time value is to use a voltage-to-
frequency (V-F) converter. The block diagram of a V-F converter is shown in
Figure 4.5. A comparator drives a one-shot, which produces an output pulse of
a fixed width when triggered. On one side of the comparator, a capacitor is
charged through a constant current source or disc~harged through a resistor,
depending on the position of the (solid-state) switch.

ONE-SHOT

-• I ~ ONE-SHOT "ON" TIME

ONE-SHOT OUTPUT [! I I I ! I I I 1

_

INPUT VOLTAGE

Figure 4.5
Voltage-to-frequency converter operation.

98 Analog Interfacing to Embedded Microprocessor Systems

Figure 4.5 also shows the waveform for operation of the V-F converter. With
the input at some voltage, the capacitor is charged by the constant current source
(providing a linear charging ramp) until the one-shot times out. The capacitor then
discharges through resistor R1 until V- equals the input voltage. The comparator
output will then go low, triggering the one-shot again. The charge time is always
equal to the one-shot "on" time. When the input voltage changes level, the
capacitor will charge up the same way as before, but now it discharges only down
to the new voltage level. The next charge cycle pushes V- above the new input
level, and the capacitor discharges down to this level. However, the discharge is
through the resistor, which is an exponential curve, and it is discharging toward
ground. Consequently, the discharge time at the new voltage is less than it was for
the original voltage, and the resulting output LOW time is shorter, making the
frequency higher.

The accuracy of a V-F is dependent on the accuracy of the current source, the
accuracy of the one-shot timing, and the accuracy of capacitor C 1. The one-shot
"on" time is controlled by a resistor/capacitor combination, so these components
are extremely important. Likewise, capacitor C1 and resistor R1 determine the
output frequency. It is typical to use precision resistors and Teflon, polystyrene,
or polypropylene capacitors in V-F circuits. On startup, the capacitor has to be
charged from 0 V to the input voltage. The one-shot "on" time may be too short
to ensure that this happens. Typically, the switch is left in the charge mode until
V- reaches the input voltage.

The LM231 from National Semiconductor is a typical V-F converter. This part
uses an internal voltage reference to set the charging current; a resistor from an
external pin to ground determines the current. The LM231 is capable of oper-
ation from 1 Hz to 100 kHz.

So far, we have looked at asynchronous V-F converters. Synchronous V-F con-
verters work the same way, except that an external clock determines the "on" time that
charges the capacitor. This makes the V-F characteristics independent of the resistor-
capacitor combination in the asynchronous V-F one-shot. The same techniques
described for other time-based inputs can be used to read the output of a V-F
converter.

Applications
One application for a V-F converter is in cases where a sensor is operating from a
different reference. For instance, a microprocessor system in one building might
be monitoring the temperature of a process in a building some distance away.
The grounds of the two buildings might be far enough apart to make a digital
interface impractical. Instead of using an ADC, a voltage could be monitored with
a V-F converter and an optocoupler could be used to isolate the sensor circuit
from the microprocessor circuit (Figure 4.6). Only two wires are needed to

Time-Based Measurements 99

SENSOR SUPPLY VOLTAGE MICROPROCESSOR
SUPPLY VOLTAGE

MICROPROCESSOR

INPUT VOLTAGE

SENSOR GROUND

V-F

MICROPROCESSOR
GROUND

Figure 4.6
Using a V-F converter to interface a remote sensor.

transfer the analog value to the microprocessor. Of course, the optocoupler has to
be capable of operating at the maximum frequency the V-F will generate.

A V-F converter is also useful any time an analog signal needs to be transmitted
over a wire that is electrically noisy. As long as the noise levels aren't large enough
to affect the switching point (thereby affecting the frequency measured at the
receiving end), the receiver will be able to extract valid data.

Filtering
Using a divider with a V-F converter (Figure 4.7) provides an automatic filtering
function. Figure 4.7 shows a V-F connected to a microprocessor through a divide-
by- 16 counter. The resulting frequency to the microprocessor will be the sum of 16
cycles from the V-F. If the V-F input voltage is varying slightly, this will effectively
filter the result. Of course, the faltering could also be performed in software.

Clock Resolution and Range

All of the methods we've looked at have one limitation: the sampling clock used to
measure the period or frequency. If you have a sensor that can convert an analog signal
to a period with an accuracy of 100 ns, but you're measuring the period with a 2 MHz
(500 ns) clock, then 500 ns is all the accuracy you will ever get from the overall system.

16 KHZ DIVIDE-BY-16 1 KHZ
INPUT VOLTAGE ~ V-F CIRCUIT TO MICROPROCESSOR

Figure 4.7
V-F filtering with a divider.

1 O0 Analog Interfacing to Embedded Microprocessor Systems

Resolution and range are related. As an example, say that the MAX6576
temperature sensor ment ioned at the beginning of this chapter is used with a
range of 10 las per ~ The temp sensor is connected to the interrupt pin of a
microcontroller, and a free-running counter is used to measure the tempera ture
(Figure 4.8). When an interrupt occurs, the microcontroller reads the count and
calculates the temperature. If the MAX6576 is being used to measure tempera-
ture from - 3 0 ~ to + 100 ~ the output of the MAX6576 will range from about
2400 microseconds to 3730 microseconds. Using a 5 MHz clock in the microcon-
troller counter, when the interrupt occurs the microcontroller will read a counter
value that ranges from 12,000 counts to 18,650 counts. For this example, assume
that the microcontroller does not have an input capture feature; it has to read the
count and subtract the result from the previous value to get the number of clocks
that have occurred since the last interrupt.

In an application like this, the microcontroller may have other interrupts or may
have to disable interrupts for some functions. This will result in a varying latency
from the time when the MAX6576 interrupt occurs until it is serviced. If the
microcontroller has a maximum interrupt latency of 10 microseconds, the inaccur-
acy of the overall system is the inaccuracy of the MAX6576 (ranging from 3.5 to 7.5
degrees over its temperature range) plus the microcontroller latency (1 degree).

Say that a decision is made that the interrupt rate from the MAX6576 is too
high or that the interrupt latency adds too much er ror to the system. As a result,
the MAX6576 is configured for 40 microseconds per ~ Now the 10 las interrupt
latency of the microcontroller only affects the accuracy by 0.25 degrees. However,
this change has two other effects.

MAX5676

I I

DEGREE K

MICROCONTROLLER

INTERRUPT

I FREE-
RUNNING - - - -D

16-BIT
COUNTER

MICROCONTROLLER
READS COUNT
WHEN MAX5676
INTERRUPT OCCURS

5 MHZ CLOCK

Figure 4.8
M A X 6 5 7 6 appl icat ion.

Time-Based Measurements 101

First, the value read from the counter now ranges from 48,000 to 74,600.
Because the counter is only 16 bits wide (maximum value 65,535), higher tem-
peratures will cause the counter to overflow. The software will need to detect this
condition, probably by programming the timer to generate an interrupt on roll-
over and setting a flag when this interrupt occurs. This approach does, however,
add to the overall interrupt processing latency of the system.

The second effect of changing the period of the MAX6576 output is the time
required to get a result. At the new setting, temperature readings can be made
only once every 9.6 ms (at - 3 0 ~ to 14.9 ms (at 100~ If the MAX6576 were
configured for the slowest rate of 640 ~ts per ~ K, the time between readings would
range from 0.15 seconds to 0.24 seconds. This may or may not be a problem,
depending on your application.

The clock resolution has to be matched to the frequency and resolution of the
input signal. This may place some limits on your choice of microprocessors. For
instance, some microcontrollers have an input capture capability that can only
run at a submuhiple of the processor clock--say, 1/4 or 1/8 of the processor clock
rate. So an 8 MHz processor of this type could measure an input period with an
accuracy of only 500 ns or 1 las. This may be insufficient for your application.

As mentioned in Chapter 1, range and resolution are important in any analog
system. When measuring analog quantities using time or period, the smallest
interval that can be accurately measured is equivalent to the resolution, and the
largest period that can be measured is equivalent to the range. An analysis of the
measurement accuracy and range is needed any time that frequency or period is
used to measure analog values.

Extending Accuracy with Limited Resolution

Any time you measure the period of an event with a microprocessor, there is
always a measurement inaccuracy of plus or minus one clock. With normal
measurement techniques, you need many measurement clocks per event to get
an accurate measurement. Events that last only a few measurement clocks cannot
be measured accurately. An example is shown in Figure 4.9, where an event that
lasts for 2.5 interrupt periods is measured by a microprocessor. In this case, the
microprocessor would make the measurement by counting the number of inter-
rupts that occur between the start and end of the event. As shown in the figure,
the number of interrupts that would occur ranges between 2 and 3, depending on
when the event starts. It is impossible to tell what the actual length of the event is
using a single measurement. The figure shows the measurement being made by
counting interrupts from a regular timer; the same principle applies if the
measurement is made by reading the contents of a free-running timer.

102 Analog Interfacing to Embedded Microprocessor Systems

TIMER INTERRUPT i i I j
I EVENTBEING MEASURED] <~

I EVENT BEING MEASURED I <~

I EVENT BEING MEASURED I <]

I EVENT BEING MEASURED] <] ~

IF EVENT OCCURS HERE, THE COUNT WILL
BE THREE (THREE INTERRUPTS, A, B, AND C,
OCCURRED BETWEEN THE START AND END
OF THE EVENT)

IF EVENT OCCURS HERE, THE COUNT WILL
BE TWO (TWO INTERRUPTS, B AND C, OCCURRED
BETWEEN THE START AND END OF THE EVENT)

IF EVENT OCCURS HERE, THE COUNT WILL
BE THREE (INTERRUPTS A, B, AND C)

IF EVENT OCCURS HERE, THE COUNT WILL
BE TWO (INTERRUPTS A AND B)

Figure 4.9
One clock ambiguity in measuring an event.

Cases like this typically occur unde r conditions such as the following"

�9 A very short event has to be measured using a t imer with limited resolution. On
many PCs and PC-compatible single-board computers , the fastest clock avail-
able for making such measurements is about 122 Its.

�9 T h e event being measured is so short that measur ing it accurately would
require a very fast interrupt , using an excessive percentage of the CPU
th roughput .

�9 T h e system has a t imer capable of opera t ing with a faster clock, but it is needed
for ano ther function and cannot be opera ted at a high enough clock rate to
make accurate measurements .

It is possible to make accurate measurements in such circumstances. Each
measurement in Figure 4.9 will vary between 2 and 3 timer interrupts. If a large
n u m b e r of measurements are made, the average value will represent the actual
time for the event. For this example, about 50% of the measurements will be 2 and
about 50% will be 3. If the length of the event was 2.75 timer in ter rupt periods
instead of 2.5, the percentage of values for 2 and 3 would be 25% and 75%,
respectively. To make an accurate measurement of a short event, you can take
100 measurements , add them together, and then divide the result by 100 (the
number of measurements). The result will be very close to 2.5. Interestingly, this
measurement method also works if the event durat ion is less than one clock period.

Of course, this requires floating point math to calculate such a result. However ,
you could divide by 10 instead of 100 and get a result of 25. As long as an accuracy
of one decimal position is adequate for your application, this approach would
work. If you need more accuracy but don ' t want to use floating-point math, you
could use a 16-bit integer to hold the number , leaving anywhere from four to
eight bits for the fractional port ion of the result.

Time-Based Measurements 103

To explain why this method works, it is probably easiest to use a value shorter
than the measurement clock. Say that the event is a square wave signal from a
time-based sensor, and that the period of the signal is 4001~s. If it's being
measured with a 1 ms interrupt, then the period of the event is 40% of the
in terrupt period. If the leading edge of the sensor signal starts at some random
time, there is a 40% chance that one measurement clock will occur between the
start and end of the sensor signal. There may not be an in ter rupt dur ing the
sensor signal the first time that it is measured, so the interrupt count would be
zero. However, if enough samples are taken, 40% of them will have a count of 1
because one interrupt will occur dur ing the sensor signal period.

With an event duration longer than the clock period, the same principle
applies. Using the 2.5 clock event mentioned earlier as an example, there is a
100% chance that two clocks will occur during the event. There is a 50% chance
that three clocks will occur. Again, if you average a large number of samples, the
result will be very close to the actual value.

The more samples you take with this method, the more accurate the result will
be. Table 4.1 is a table of values showing the relationship between the number of
samples, the percentage of values, and the result calculated using this method.

The data in Table 4.1 was generated using the random number function in
Microsoft Excel (details are in Appendix D). As you can see, going from 100 to 1000
samples greatly increases the accuracy. Although this method allows you to make
time-based measurements with better accuracy than the measurement clock would
normally allow, there are some restrictions on making measurements this way.

�9 The event being measured cannot be synchronized in any way to the measure-
ment clock. This technique works only if the start time of the event with respect
to the measurement clock is random. However, the event can be a repetitive
event, such as a regular square wave. The event can also be started and stopped
in software, as long as the start and stop are not synchronized to the measure-
ment clock.

Table 4.1
Statistical Sampling Method Using 100 and 1000 Samples.

Value
Number of Number of Samples Number of Samples
Samples Where Count = 2 Where Count = 3

Calculated Result;
Total of All Values

Number of Samples

2.25 100 67 33 2.33
2.25 1000 740 260 2.26
2.5 100 55 45 2.45
2.5 1000 507 493 2.49
2.8 100 13 87 2.87
2.8 1000 188 812 2.81

104 Analog Interfacing to Embedded Microprocessor Systems

�9 The system must be capable of doing division, although that can be simplified
by using a binary number of samples (128, 1024, etc.). This allows the division
to be a simple shift operation.

�9 The duration of the event being measured must not change appreciably over
the entire measurement interval.

�9 The overall accuracy is limited by the number of samples taken, the repeat-
ability of the event being measured, and the accuracy of the measurement
clock. For example, if you are making this type of measurement by counting
interrupts, variations in interrupt latency will affect overall accuracy.

�9 The measurement time is equal to the event period times the number of
measurements. When the event period increases, the measurement time will
go up by the amount of the increase times the total number of measurements.

Figure 4.10 shows two repetitive waveforms measured using this method. Both
are square wave signals, such as might be produced by the MAX6576, so an event
is defined as the time period from one rising edge to the next. For both wave-
forms, the number of interrupts counted during the event period is noted below
the event in the figure. Again, this example measures the event by counting
interrupts; the same result would be obtained by reading a free-running timer.

The frequency of the first waveform is 1.2 times the interrupt period. If you
add up the number of interrupts detected (11) and divide by the number of
events (9), you get 1.22. This is a reasonably accurate measure of the event
period, given that only 9 events are averaged.

The frequency of the second waveform is 60% of the interrupt period. Adding
up the number of interrupts detected (11) and dividing by the number of events
(19) yields 0.578. Again, this is a reasonable approximation of the actual value.
More samples would produce a more accurate result.

A typical application where this might be useful would be a refrigerator that
measures temperature using a device such as the MAX6576. In a refrigerator, the

MEASUREMENT
INTERRUPT J J J J J J I l I I I

EVENT BEING
MEASURED I [I L I I I ! I I I I ~ I i I i

NUMBER OF
CLOCKS PER 2 1 1 1 1 2 1 1 1
EVENT

EVENT BEING t MEASURED

NUMBER OF 1 1 0 1 0 1 0 0 1 0 1 1 0 1 0 1 1 0 1 CLOCKS PER
EVENT

EVENT 1

EVENT 2

Figure 4.10
Using averaging to measure repetitive events.

Time-Based Measurements 105

t empera tu re typically does not change rapidly, so taking 100 or 1000 measure-
ments to get an accurate reading is not an unreasonable thing to do.

To implement this measu remen t in software, you could either br ing the signal
represen t ing the event into the processor as an edge-sensitive in te r rup t or poll it.
If you are measur ing the event using a t imer interrupt , the t imer in te r rup t ISR
will typically increment a counter. T h e event in te r rupt ISR in te r rupt would reset
the counter at the start of the event and read it at the end of an event. For a
repetitive event, where the end of one event is the start of the next, the event code
would reset the counter immediately after reading it. The value in the counter is
the n u m b e r of t imer interrupts that occurred since the start of the event inter-
rupt.

If you are making the measu remen t using a f ree- running counter , the event
ISR would read the t imer at the start and end of the event, subtracting the
starting value from the ending value (accounting for rollover, if any) to calculate
the period.

As ment ioned earlier, you can avoid complicated division by making the
n u m b e r of samples a multiple of two. In many applications, you could avoid
division altogether, using just the s u m m e d measu remen t values. For example, if
you are using a sensor where 0.6 measu remen t clocks equals 25 degrees, you
could instead take 64 samples, sum the values, and structure the software to
in terpre t the sum (0.6 x 64 = 38) as 25 degrees.

Finally, for repetitive events, such as a sensor with a regular , frequency-based
output , you do not need to count how many interrupts occur per event. You can
instead count how many interrupts occur over a n u m b e r of events. You can
connect the external event signal so that it increments (or decrements) a hard-
ware counter , and then p rog ram the counter to genera te an in te r rup t when a
specific count has expired. This minimizes the n u m b e r of event in terrupts that
must be serviced, which is particularly useful if the event is very fast compared to
the processor ISR service time.

106 Analog Interfacing to Embedded Microprocessor Systems

Output Control Methods 5

Open-Loop Control

The simplest form of control mechanism is an open-loop output. Open loop means
that there is no feedback from the controlled device back to whatever is control-
ling it. There is no indication of whether the device being controlled is actually
doing what it is told to do. An example would be the vibrating motor in a pager or
cell phone. Neither the user nor the instrument cares if the motor speed varies by
10% or 20%. So the microprocessor can just send an on/off signal to the m o t o r w
no feedback about the actual speed is needed. The actual motor speed will
depend on the motor friction, battery voltage, and the condition of the motor
brushes. Unlike this example motor, where actual speed is unimportant, most
microprocessor control applications will measure whatever is being controlled to
ensure that the control action actually did what was expected. This requires
feedback from the controlled device to the microprocessor. The remainder of
this chapter will address feedback control systems.

Negative Feedback and Control

Figure 5.1 shows a simple control systemwan opamp. The opamp has very high
gain, and by connecting the output to the inverting input, we introduce negative
feedback. The opamp amplifies the difference between the inverting and non-
inverting inputs. Say that the input and output are at 2 V. The difference between
the input and the output is 0V, so the difference between the inverting and

107

INPUT VOLTAGE D
~:> OUTPUT VOLTAGE

Figure 5.1
Simple control system: an opamp.

noninverting inputs is also 0 V. The opamp, which amplifies this difference, has
no difference to amplify.

Now, if the input changes suddenly from 2 V to 2.1 V, there will be a difference
between the two inputs-- the noninverting input is at 2.1 V, and the inverting
input, still connected to the output, is at 2 V. The 0.1 V difference is amplified by
the opamp, which starts to move the output toward a more positive voltage as
soon as the output reaches 2.1 V, the difference between the two inputs is again 0,
and the output stays at that voltage.

If the temperature changes and the opamp output transistors change char-
acteristics slightly, they might drift to a new voltage level. However, as soon as that
happens, the opamp inputs see a difference, amplify it, and the output stabilizes
at the input voltage again. The gain of an ideal opamp is just a very large integer.
A real opamp, of course, has frequency limitations and other deviations from the
ideal.

Microprocessor-Based Systems

Microprocessor-based control systems work the same way as the opamp. They
control some real-world device, such as a heater or a motor, that attempts to make
something (position, temperature, etc.) match a desired value. The magic, of
course, is in the gain function. Unlike our simple opamp example, a digital
control system can produce an output that is a much more complex function of
the input. The microprocessor can provide a control signal that is a function not
only of the input and output, but of the history of the output, the rate of change,
the type of load, and so on.

One fact that sets microprocessor-based control systems apart from linear
systems is that the microprocessor system is always a sampled system. This means
that the microprocessor samples the output of the sensors at regular intervals.
Any changes that happen between samples are lost. The sampling rate must be
high enough to ensure that no information crucial to operation of the system falls
between samples. This speed depends on the system, of course, and may range

108 Analog Interfacing to Embedded Microprocessor Systems

INPUT

ADC

MICROPROCESSOR

+V THERMISTOR OR
OTHER TEMPERATURE
SENSOR

HEATE ~

SOME KIND OF
MECHANICAL
CONNECTION AMPLIFIER
TO THE DEVICE
BEING HEATED

Figure 5.2
Simple microprocessor control system.

from seconds or minutes for a slow system to tens of thousands of samples per
second for something faster.

Figure 5.2 shows a simple control system. Here, a microprocessor turns a
heater on and off via a MOSFET transistor. A thermistor is used to measure the
tempera ture of whatever the system is heating. The microprocessor reads the
tempera ture and turns the heater on or off to maintain the correct temperature .
The desired temperature is an input to the system. For now, we won't worry
about where that input comes from.

On-Off Control

The simplest control system is on-offcontrol, sometimes called bang-bang control.
The microprocessor reads the temperature . If the tempera ture is low, the heater
is turned on. If the temperature is high, the heater is turned off. Figure 5.3 shows
the equivalent control system using a comparator. The figure also shows what the
typical response of such a system is. When the system starts, the heater is cool. The
microprocessor turns the heater on until the tempera ture measured at the ther-
mistor reaches the desired point. It then turns the heater off. When the tempera-
ture drops below the setpoint, the heater is turned on again and the heater
tempera ture goes back up. The tempera ture oscillates around the setpoint.

Figure 5.3 shows the actual temperature of the heater and the temperature of
the thermistor. As you can see, they don' t quite match, either in time or in ampli-
tude. When the heater is first turned on, it overshoots the setpoint by some amount,
then oscillates around the desired temperature. The key reasons for this are:

Output Control Methods 109

INPUT

FUNCTIONAL EQUIVALENT OF ON-OFF
CONTROL METHOD +V THERMISTOR OR

OTHER TEMPERATURE
SENSOR

HEATER

SOME KIND OF
MECHANICAL
CONNECTION
TO THE DEVICE

COMPARATOR BEING HEATED

L = HEATER OFF

_

AMPLIFIER

HEATER ON [OfF I ON I OFF I ON I OFF I ON 1 OFF I

~ ~ ~ - - ~ / / r ' , ~ / ~ . ~ ~ DESIREC) TEMPERATURE

ACTUAL HEATER TEMPERATURE

Figure 5.3
On-off control system.

�9 The coupling between the heater and the heated object is not perfect. The
heater temperature must be higher than the object it is heating to be able to
transfer heat into it.

�9 The object being heated has some thermal mass, so it doesn't heat up or cool
down instantly.

�9 There is a time lag between the object reaching the setpoint temperature and
the resistance of the thermistor changing to match. This is because the coupling
between the thermistor and whatever it is measuring is imperfect, and because
the thermistor has a thermal mass (usually small, but not zero) and cannot
change temperature instantly.

�9 There is a time lag between the point when the heater is turned on and the
point where it actually heats up. When power to the heater is turned off, there is
another time lag while the heater cools down.

1 10 Analog Interfacing to Embedded Microprocessor Systems

The temperature profile shown in Figure 5.3 is similar to that for a real system
that I worked on once. The heater control circuit could put significant energy
into the hea te r - -much more than was needed to heat the object in question. The
object being heated had fairly low mass, almost as low as the heater itself, so it
heated quickly. In fact, the object being heated changed tempera ture faster than
the thermistor responded to tempera ture changes. In the actual system, when the
heater was turned on, it would overshoot the desired setpoint in just a few
seconds, then stay off for 10 or 20 seconds while the tempera ture came back
down. After that, the oscillation around the setpoint was fairly large. I picked a
particularly bad example to illustrate these concepts, but on-off control is not
necessarily a bad means of controlling something if it is matched to the require-
ments. On-off control works best in a situation where:

�9 The object being controlled does not respond quickly to changes in the con-
trolling signal.

�9 The sensor that measures the state of the controlled object responds to changes
much faster than the controlled object does.

For the heater example, this would translate into a heater that is heating a
relatively large thermal mass (large compared to the available energy from the
heater) and a thermistor that is well coupled to the heated object and that
responds quickly to tempera ture changes. The placement of the thermistor can
have significant impact on the performance. In the actual system I just described,
the thermistor was in contact with the heater on one side and with the heated
object on the other (due to space constraints). This means that the output was
somewhere between the two temperatures. On a system where the heated object
has a large mass, this could mean that the setpoint t empera ture might never be
reached because the thermistor was reading a tempera ture higher than the actual
tempera ture of the mass.

The furnace in your house is a good example of on-off control that works well.
The furnace is either on or off (in most houses). The air in the house has a fairly
large thermal mass, so the furnace can't change the tempera ture quickly. The
thermostat, while slow compared to microprocessor speeds, closely follows the
actual air tempera ture in the house.

The disadvantage to this system is that the furnace is sized to the house and has
limited ability to raise the temperature . If the furnace has been off all day while
the outside temperature dropped, then it will take some time to raise the tem-
perature to a comfortable level once the furnace is turned on. There is no way to
quickly add energy to the system. You could buy a furnace that is several times
too big for the house so the house would heat quickly, but then you would have
more overshoot and oscillation around the desired temperature .

Some on-off control systems have a "dead band" where the output will
not change. This prevents excessive switching of the control mechanism. For

Output Control Methods 111

example, a temperature control system might have a 1 ~ deadband, where the
output is not changed if the temperature is within 1 ~ of the setpoint. If the heater
is on, it won't go off until the temperature is 1 ~ above the setpoint. The heater
won't go back on until the temperature is 1 ~ below the setpoint. In some systems,
a dead band is part of the basic physics. For example, the thermostat in most
houses lags the actual temperature slightly, so the thermostat will sense the
temperature continuing to rise after it has reached setpoint and turned the heater
off. In actuality, the thermostat is just catching up with the actual room tempera-
ture.

Overshoot

The heater example in Figure 5.3 had significant overshoot in the waveform. Not
all systems will exhibit overshoot, and not all will exhibit it to the same degree.
Typically, overshoot is a result of inertia or momentum in the system. In the
heater example, the heater would continue to heat the load for some time after
power was removed. In addition, because the heater was large with respect to the
load and there was a lot of power applied to the heater, the heating time was
much faster than the cooldown time. Some systems do not exhibit significant
overshoot, or exhibit it in one direction only (while heating but not while cooling,
for example). In addition to heaters, motors often exhibit overshoot when they
are driving loads that have significant momentum.

Proportional Control

The next step up in complexity from an on-off design is proportional control.
The concept behind proportional control is that you vary the amount of control
signal, based on the size of the difference between the actual condition and the
desired condition. The difference between the actual and the desired value is
called the error. The formula for calculating the control output of a proportional
controller is:

Output = G • e

where G = gain, e = error (setpoint--actual value). To go back to the opamp
analogy, the proportional control system is like using an opamp with limited gain
as the control mechanism instead of a comparator (which is represented by very

112 Analog Interfacing to Embedded Microprocessor Systems

large gain). The actual control mechanism can be a microprocessor-controlled
analog system (using a DAC and amplifier) or a PWM technique.

Figure 5.4 illustrates proportional control. The heater control is 100% on when
the heater is cold, but as the heater temperature approaches the setpoint, the
amount of control is reduced because the difference between the setpoint and the
actual value is smaller. As you can see, the proportional control system has less
overshoot and less oscillation around the setpoint. Figure 5.4 shows the oscillation
to be about half that of the on-off control system. The actual difference between
an on-off control and a proportional control will depend on the system.

Another advantage to proportional control is the ability to adjust the control signal
based on the controlled object. If you are heating fluid flowing through a tube, you
might use a larger proportion (larger gain) when the flow rate is higher. Denser fluids
might require even more gain to ensure that the temperature is maintained.

In some systems, the output is the G x e, as shown earlier. In many systems,
including the heater example in Figure 5.4, the actual proportional control
equation looks like this:

Output = (G • e) + M

The M is an offset, and is needed in systems where some power is required to
keep whatever you are controlling at the desired value. For the heater example,
the basic proportional equation will reduce the power as the heater approaches
setpoint (G x e gets closer to zero), and the end result is that the temperature will
never get to the setpoint. However if the M offset is used, and if M is, say, 50% of
the available heater power, then the system can reach the setpoint. The G x e
term becomes an addition (if positive) or a subtraction (if negative) from the
constant offset. As long as the system is cold, the G x e term will be very large,
so the heater will operate at 100%. If the sum of G x e and the offset is greater
than 100%, the output is limited to 100%, because that is all the power the system
can provide. As the heater approaches the setpoint, the G x e term will become
smaller and the heater power will be reduced toward the 50% offset value. If the
temperature overshoots the setpoint, the G x e term will become negative and
the sum of G x e and 50% will be less than 50%, reducing output power. If the
sum is less than 0, then the output is turned off unless a negative output capability
is available. An example of negative output capability would be a system that can
provide both heating and cooling capability.

Note that M may have to change as the characteristics of the system change. If
you are heating blocks of metal, a small block might be held at setpoint with only
20% of the available heater power, but a large block might need 80% of available
heater power.

Designing a proportional control system is more complicated than designing
an on-off control system. With an on-off control system, you have to live with

Output Control Methods 113

<

>
+

._w
-L

V
k_D

~

,=a
*~"

z z

I"

| uk)

.)

i > i >)

I

>
+

---a'Z
.V

L
j-~

2

)
O

f
u

~

at:

u
.

/

u
~

u

~

2 ! t~

)~

J
() () ()

0 L
_

0 0

~._o 0

114
A

nalog Interfacing to E
m

bedded M
icroprocessor System

s

whatever overshoot and oscillation you get. As the load changes, the overshoot
and oscillation will change, but as long as you can put enough energy into the
system to make it reach the setpoint, it will eventually get there. With a propor-
tional control system, you have to adjust the gain and the offset to the application.
Too much gain, and you end up with an on-off control. Too little gain, and you
never reach the setpoint. Worse, a proportional control system might work on the
prototypes, but if someone in the field puts the product in an unheated out-
building it might quit working in the winter. Proportional systems work best
when the load is fixed or at least is known to the controlling processor. An
example of a fixed load would be a heater that is always heating the same size
and shape of plate. An example of a known load would be fluids, where the fluid
flow rate and type vary, but the microprocessor always knows what they are.

Note that some proportional systems do not need the offset term. For example,
a motor application that is driving the motor to a certain position and then
stopping would not need the offset. Instead, the output value to the motor, which
determines speed, would be the product of the gain times the error. In this case,
the error is the difference between the actual motor position and the desired
motor position, and when the error is zero the motor should stop. On the other
hand, an application that requires the motor to hold a particular speed would
require an offset because when the error is zero (actual speed equals desired
speed), power must still be applied to the motor to maintain this condition.

In many cases, it is difficult to design a proportional control system that will
reach the setpoint without oscillating. In most cases, the final value of the system
(temperature, speed, whatever) is somewhat below the setpoint value. The actual
value reached is dependent on the gain of the system, the offset, M (if used), and
the size of the load.

The problem with a proportional control system is that it adjusts the control
signal based on the difference between the measured point and the setpoint.
There is no mechanism to adjust the amount of control based on conditions that
the microprocessor doesn't know about. If you are heating plates of metal, what
happens if someone puts on a plate that is twice the mass of the average one? Or
one that is made out of a luminum instead of copper? You could add a weight
sensor to the system, but what if the difference is in the shape instead of the
weight? A tall, skinny piece of metal will have different heating characteristics
than one that just matches the surface area of the heater.

There are similar problems with other control mechanisms. An automobile
cruise control, for instance, has to handle things like headwinds, uphill and down-
hill grades, and the decrease in horsepower caused by turning on the air condi-
tioner. A proportional control system would have problems with these conditions,
because the right amount of throttle to apply going uphill in a strong headwind is
different from the amount needed under the opposite set of conditions.

Output Control Methods 115

Proportional, Integral, Derivative Control

A control method that handles conditions like this is called proportional, integral,
derivative (PID). The basic concept behind PID control is to add another input to the
system, that input being the history of what actually happened when the control was
applied. In the cruise control example, instead of just applying the throttle based on
the amount of difference between the current speed and the desired speed (propor-
tional control), the control system can look at how the car responded to the last
throttle change. Did the car accelerate more slowly than it was expected to? Then it
must be driving uphill or into a headwind, and more throttle is needed.

Figure 5.5 shows a block diagram of a PID control system. The difference
between the actual value of whatever is being controlled and the setpoint is
amplified. The derivative and integral of the amplified difference are summed
with the amplified error to produce the output signal.

I don't want to write a book about calculus, nor do you want to read one. This
book is about practical embedded control, so I want to focus on practical applica-
tions. However, we need to take a look at the general formula for calculating the
output of a PID controller, which is:

Output = G (e + I f edt
de)

+D~-~-

where G is the gain, e is the error (difference between setpoint and actual value), I
is the amount of integral to apply, and D is the amount of derivative to apply.

If I and D are zero, then the output is:

G x e

INPUT 'N UT'A AL' OA, N 1
(ERROR, e) SUM

FEEDBACK (ACTUAL VALUE)

CONTROLLED
OBJECT]

Figure 5.5
PID control system.

1 16 Analog Interfacing to Embedded Microprocessor Systems

which is the formula for a proport ional controller. If I and D are 0 and G is very

large so that the output always saturates in one direction or the other, this
describes an on-off controller. Like the proport ional controller, the PID control-
ler may need to use an offset to which the PID term is added or subtracted.

The things that set the PID controller apart from the propor t ional controller
are the integral and derivative terms. These are time-based terms: the integral is
an integral over some time period, and the derivative is the derivative between
two time periods. Let's see what this means in practical terms.

Almost any system has some kind of inertia. When you turn on a heater, it gets
hotter than whatever it is trying to heat (the load). It has to, or it will absorb heat
from the load instead of t ransferr ing heat into it. When you turn the heater off, it
doesn' t cool off immediately. Instead, its t empera ture ramps down slowly. Until

the heater cools down to the same tempera ture as the load, it will continue to raise
the tempera ture of the load. Figure 5.6 illustrates this. The amount of difference
between the heater t empera ture and the load tempera ture , and how fast each one
heats up and cools off, is dependen t on the mass, the amoun t of energy applied to
the heater, the coupling between the heater and the mass, the shape of the mass,
and so on.

Figure 5.6 also shows the effect of a light load versus a heavy load on the same
heater. If the heater is heating metal blocks, the heavy load might be a bigger
block of metal or one that is more massive (steel versus a luminum, for example).

As you can see, the heavy load heats up and cools down more slowly because it has
more mass - -more inertia. If we were looking at the speed of a car instead of a
heater, the heavy load might be an uphill acceleration and the light load might be
a downhill acceleration.

Let's say that the heater is controlled by a propor t ional system. Because the

amount of energy put into the heater is de te rmined only by the difference
between the desired tempera ture and the actual tempera ture , the control signal
will be the same for the light load as for the heavy load. This means that the light
load will overshoot the desired tempera ture by a greater amount . Once the right
tempera ture is reached, there will be more oscillation (bigger t empera ture
swings) a round the setpoint. Accuracy of t empera tu re is less precise than for a
heavy load.

Derivatives

Adding a derivative term to the control equation allows better control. The
derivative is a measure of how fast the e r ror is changing. If the control system

knows the size of the output applied to the heater, the rate of change in the e r ror
gives some indication of the size of the load. Mathematically, the derivative of a
curve is the slope of a curve- - in this case, the slope of the error . Practically, it is

the rate of change in the e r ror (volts per millisecond or pounds per second, or

Output Control Methods 117

HEATER TURNED OFF
EVEN THOUGH HEATER IS TURNED OFF,
TEMPERATURE OF LOAD
CONTINUES TO RISE UNTIL HEATER

~:z TEMPERATURE FALLS PAST LOAD
TEMPERATURE.

OF HEATER z~ t TEMPERATURE OF OBJECT
BEING HEATED (LOAD)

HEATER INERTIA

LIGHT LOAD

?
OF HEATER HEAVY LOAD

LIGHT LOAD VERSUS HEAVY LOAD

Figure 5.6
Inertia in a control system.

whatever is being measured). If the error term is decreasing, the curve has a
negative slope and the derivative will be negative. If the error term is increasing,
the derivative will be positive. If the error term doesn't change at all, then the
slope and derivative are both 0. Note that any error, even a very large one, will
have a derivative of 0 if the error doesn't change. The original heater/load graph
is shown in Figure 5.7, along with the resulting error term and the derivative
term.

If we make the gain smaller and then add the derivative to the Gain x error
term, our proportional control system will handle varying loads better. When the

1 18 Analog Interfacing to Embedded Microprocessor Systems

DERIVATIVE ~ J POSITIVE
ZERO
NEGATIVE

ERROR
J

J
POSITIVE
ZERO
NEGATIVE

? t
OF HEATER

DESIRED TEMPERATURE

TEMPERATURE OF OBJECT
BEING HEATED (LOAD)

F igure 5 .7
Derivative.

load is heating rapidly (light load), the derivative has a large negative value, so the
output (G x e + D x derivative) is smaller. Smaller output equals less heat, so the
load heats up more slowly. If the load is heavy, the derivative will be less negative,
less is subtracted, the output is larger, the heater gets hotter, and the load heats
up faster.

When the load temperature gets close to the setpoint, the gain term (G x e)
becomes smaller. Lower heat also makes the derivative smaller, so there is less
overshoot. When the load passes the setpoint temperature, the derivative be-
comes positive as the error term changes direction. This causes a larger positive
value to be added to the gain term. The faster the load is cooling off, the larger
the derivative is, and the less the output shrinks.

Output Control Methods 119

DESIRED TEMPERATURE

Figure 5.8
Proportional gain and derivative.

Figure 5.8 shows the result of a system using proportional gain and derivative.
There is a small overshoot followed by an oscillation around the setpoint.
Depending on system characteristics, the overshoot may be small or zero, and
the oscillation may die out as the system setdes on one value. As shown in the
figure, the end result (temperature, in this case) is often a bit below the setpoint,
just as with a proportional control system. This occurs because the gain isn't quite
high enough to bring the temperature up to the desired value without the
derivative term. When the temperature is near the setpoint, the slope of the
error change is small, so the derivative term is nearly 0. Figure 5.9 shows a
gain/derivative system where the final error is a small constant value.

FINAL OFFSET ERROR

- - DESIRED TEMPERATURE

Figure 5.9
Offset error.

120 Analog Interfacing to Embedded Microprocessor Systems

INTEGRAL

One way to solve the problem of settling a small distance from the setpoint is to
add an integral term. Mathematically, the integral is the area under a curve. In
practical terms, the integral is the sum (or accumulation) of the error term over a
period of time. Figure 5.10 shows what the integral term looks like in graphic
mode. Notice that, in this example, the integral never goes negative even though
the error term does go negative. If the error stayed negative for a long enough
period of time, the integral would eventually become negative.

Figure 5.11 shows the effect of the integral on the constant error in the
proportional/derivative heater controller that we looked at earlier. When the
system stabilizes with a small offset, the integral term begins to grow because it

ERROR

f
POSITIVE
ZERO
NEGATIVE

J

Integrals

OF HEATER

POSITIVE
ZERO
NEGATIVE

DESIRED TEMPERATURE

TEMPERATURE OF OBJECT
BEING HEATED (LOAD)

Figure 5.10
Integral.

Output Control Methods 121

INTEGRAL

WITH INTEGRAL TERM,
ERROR IS EVENTUALLY
ELIMINA

WITHOUT INTEGRAL TERM,
ERROR REMAINS CONSTANT

DESIRED TEMPERATURE

?

Figure 5.11
Effect of integral.

is the accumulation of errors (in this case, if the temperature is low, the error is
positive and the integral grows to a positive value). Eventually the integral term
becomes large enough to affect the output, pushing the temperature toward the
setpoint.

Going back to the cruise control example, a proportional/derivative control
mechanism might result in the car settling at 62 mph when the control was set on
65. If the car spent enough time driving at 62, the integral term would eventually
produce a large enough error to push the speed up to the setpoint.

Summarized PID

The proportional part of a PID loop causes the output to follow the input
(setpoint). The derivative allows the output to respond to rapidly changing inputs
and to compensate for varying loads. The integral compensates for long-term
errors.

All the examples so far have shown a system with overshoot and some oscilla-
tion around the setpoint. These waveforms are typical for a system with an
unde rdamped response. Figure 5.12 shows a critically damped response. Here,

122 Analog Interfacing to Embedded Microprocessor Systems

SETPOINT

Figure 5.12
Critically damped system.

the system rises rapidly to the setpoint but does not overshoot or oscillate when
the setpoint is reached. In many systems, a small overshoot past the setpoint is an
acceptable tradeoff for fast response. In other systems, no overshoot is acceptable,
so a critically damped response is used. An example of this would be a cooling
system that has to keep biological samples near freezing, but can't let the tem-
perature dip below freezing or the samples will be permanently damaged.

In classical control theory, the integral and derivative gains are times, not scalar
(unitless) multipliers like the proportional gain. In a microprocessor-based system,
the system is sampled at a regular interval and it may not be possible to set the
integration time or derivative period to a specific value. However, by using a gain
factor on the integral and derivative values, the integral and derivative time factors
can be multiples of the sample period while still obtaining the same control results.

Practical Considerations

Although a PID loop can compensate for varying loads, it still must be tuned.
Tuning is the process of selecting the parameters (coefficients) of the three terms.
That is, how much of the integral and derivative terms should be added to the
G x e term, and how large should G be? There are a number of ways to adjust
these values, such as the Ziegler/Nichols method. The primary difficulty in
adjusting the parameters of the PID loop is that adjusting one parameter affects
the other two--the adjustments are not independent. In addition, simulating the
operational extremes of a real device is sometimes difficult.

In general, the tuning procedure for a PID loop is to make the gain term (G)
large enough to provide sufficient response speed. Then the derivative term (D)

Output Control Methods 123

is made large enough to decrease overshoot to acceptable levels and to make the
system stable (no oscillation). Finally, the integral term (I) is made large enough
to eliminate steady-state error.

As an example, the Ziegler/Nichols method, mentioned above, uses the follow-
ing steps:

�9 Turn off integral and derivative terms, making the controller a proportional-
only controller.

�9 Increase the proportional gain until the output has a steady oscillation that does
not increase or die out. Call this gain K.

�9 Measure the period, P, of the oscillation.
�9 Set the proportional gain (G) and the integral and derivative times (Ti, Td)

according to the following:
�9 If controller is to be proport ional only, gain = 05 K.
�9 If controller is to be proportional-integral, G = 045 K, Ti = 1.2/P
�9 If controller is to be PID, G = 06 K, Ti = 2/P, Td = P/8

The result of this process will probably require additional adjustments to
optimize performance. As mentioned earlier, the result of this process may be
integral and/or derivative values that are not possible with the sampling clock.
The integral and derivative gain must be adjusted to compensate for this.

PID loop tuning sometimes runs into other problems, including the difficulty
of making measurements. Measuring the ability of a motor controller to hold a
specific speed may require hardware that is itself subject to error. In a refrigera-
tion system, the cycle time may be several minutes or even hours. How long does
the system have to run to detect a sustained oscillation for Ziegler/Nichols tuning?
Problems like this can make control system design a challenge.

Practical systems often do not function as well as their ideal models. Potential
problems for a PID system include the following.

Saturation

It is possible to calculate an output that the electromechanical system cannot
possibly achieve. For instance, if someone places a huge block of very cold metal
on our example heater, the system may calculate that an enormous amount of
current is required to get to the right temperature. This current may be beyond
the capability of the power supply and the heater. Or, the power supply may be
large enough that the 100% ON condition will burn the heater out.

Another problem with saturation involves the integral term. If the heater is
ON 100% because the microprocessor wants more output than the system can
deliver, there will be an integral error that will grow larger with time. Because the
system cannot respond as quickly as it would in a nonsaturated condition, the
integral error may get very large. Once the setpoint is reached and the gain and

124 Analog Interfacing to Embedded Microprocessor Systems

derivative terms stop applying control to the load, the integral term will cause the
output to continue to be driven in the same direction. This condition is called

windup. Figure 5.13 shows how windup can affect the output.
Saturation can also occur in a sensor; an example would be the scaled thermistor

we looked at in an earlier chapter. It is possible for the temperature in that case to
be within the range of the thermistor, but for the opamp output to be saturated
because the temperature is beyond the range we designed the circuit to handle.

Software Considerations

To avoid windup, the software should artificially limit the integral bui ldup when a
saturated output (or saturated sensor) is detected. In addition, the software,
unlike the theoretical mathematical model, has registers of limited size. Care
must be taken to ensure that the registers do not roll over when per forming
mathematical calculations. In some cases, the integral is inhibited until the e r ror is

POSITIVE
INTEGRAL - ZERO

NEGATIVE

\
\

\

"2~

HOW THE SYSTEM WOULD
RESPOND IF THE INTEGRAL
TERM WAS NOT AFFECTING
THE OUTPUT

Figure 5.13
Windup.

. DESIRED TEMPERATURE

z~- - - TEMPERATURE OF OBJECT
BEING HEATED (LOAD)

Output Control Methods 125

within a certain percentage of the setpoint. This avoids building up a large
integral term while the output is ramping toward the setpoint.

The derivative term in a PID design is the amount of change in the error over a
specific unit of time. Because a microprocessor control system uses a regular
sampling rate, the unit of time is usually the sample interval (or some multiple
of the sample interval). The derivative is then calculated by subtracting two
samples. Subtracting the error at time n from the error at time n 4- 1 gives the
amount of change in one time interval. To prevent noise problems, the software
may average two or more successive samples.

The integral is the sum of error over a period of time. In a practical micro-
processor system, the integral is calculated as the sum or average of several
successive samples. Again, precautions must be taken against rollover and satura-
tion when performing calculations.

Time Delay

One subject that we have mentioned without taking a close look at it is time delay.
Our example heater had some delays built in. These include:

�9 The time it takes for the heater to respond to a control change; the temperature
of the heater does not change instantly just because the control signal to it did

�9 The time it takes the heat to be transferred to the load
�9 The time it takes the thermistor to respond to changes in the load temperature

All of these have the same effect on the control system--inaccuracy. The time
from when a control change is applied until it registers in the sensor is called
deadtime. If the microprocessor changes the control signal because the block is too
cold, it takes a while for the heater to heat up, for the load to heat up, and for the
thermistor to respond to the change. In the meantime, the microprocessor has
sampled the thermistor many times, found that the temperature still isn't right,
and pushed the output even higher. Or, in an on-off control, the heater stays on
well past the opt imum point for the right temperature, resulting in overshoot and
oscillation. In either case, the controller overcompensates for the error. Using
PID control instead of just proport ional control can reduce some of these effects,
as we have already seen. However, in some cases, PID control can make a dead-
time situation worse, such as when windup occurs.

Compensating for deadtime usually involves predicting the effect of a control
change and assuming that it will take place after the deadtime has elapsed. Once
the real result of the change is available, a new change can be made that will
correct for the difference between the theoretical result and the actual result. This
process is called the Smith Predictor, and was originally modeled by Otto Smith in
1957. Implementing this involves modeling the system to determine what the
response will be.

126 Analog Interfacing to Embedded Microprocessor Systems

Discontinuous Inputs
Many systems suffer from the application of sudden input changes that make a
pure PID or even a proportional system impractical. A heater may be subject to
having water splashed on it. This will rapidly cool down the heater and may be
impossible to handle by tuning the PID loop. How do you predict how much
water will be splashed on the heater? How do you predict that the user will
suddenly remove the load?

Another example of sudden load changes is in automobile voltage regulators.
If the driver suddenly switches off the car's headlights, the load on the electrical
system is instantly reduced (called load dumping). The voltage produced by the
alternator suddenly jumps up to a larger value because the alternator tries to
produce the same power output but at a lower amperage. In a case like this, you
don't want the system to respond along a PID curve- -you want it to recognize the
event and respond immediately. The typical way to handle an input change like
this is to cut off the PWM output and let the system "coast" until things stabilize.
The key thing here is to be sure the integral and/or derivative values don' t result
in an erroneous output when the control is reinitiated. You may have to reset or
otherwise modify these values when a sudden input change occurs.

Special Requirements

Many systems that require PID control must handle specific inputs. A cruise control
system may need to go to a quiescent state, resetting the integral and derivative
values, when the driver hits the brake. The automobile voltage regulator may need
to operate differently, with different PID parameters, at different motor speeds. A
heater may have a differing ON time PWM power limitation for heating different
materials. The software must ensure that all these special requirements are met,
and that a change from one state to another (such as from one heated material to
another) does not cause the PID loop to be confused. You don't want to use an
integral value calculated using one set of PID parameters to generate an output
when the PID parameters change. When PID parameters are changed for any
reason, the software needs to reset or otherwise adjust the accumulated values.

Motor Control

So far we have used heaters as the primary example for control system operation,
because they are easy to understand. The control methods described in this
chapter apply to motors as well, but there are some additional complications
when motors are involved. Figure 5.14 shows a PID loop controlling a motor.

Output Control Methods 127

SETPO4NT PosmoN

COUNTER]
INCREMENTS ON
FORWARD MOTION,
DECREMENTS ON
REVERSE MOTION

I COMPARE
ACTUAL
PosmoN
TO SETPOINT

ERROR I~ PID
CALCULATION

CALCULATES
NEW OUTPUT
BASED ON
ERROR AND
PID PARAMETERS

AMPUFIER,
PWM OR
ANALOG

SHAFT
ENCOOER

Figure 5.14
PID motor control.

The input to the system is a digital word that indicates the desired position. The
motor position is an analog quantity (number of degrees of shaft rotation or
something similar) but is measured as a digital quantity (number of encoder
pulses). A counter counts up when the motor rotates one way and counts down
when the motor rotates the other way. The output of this motor position counter
is compared to the desired position. The difference is the error. This is exactly the
same as the error in an analog control system, except that it is a digital word. The
PID portion of the controller uses the error (and the history of the error) to
calculate the new output value.

Figure 5.15 shows a round carousel with eight sample positions. This carousel
might be used to rotate samples under a sampling arm for a chemical or medical

CAROUSEL

SAMPLING PROBE
OR OPTICAL
SENSOR

(

SAMPLE LOCATIONS (8)

?

OPTICAL SWITCH DRIVE MOTOR

Figure 5.15
Rotating carousel.

128 Analog Interfacing to Embedded Microprocessor Systems

sampling application, or it might be continuously rotated under a camera or
other optical sensor in an automated image processing system. The carousel is
driven with an internal gear (not shown), which matches a gear on the motor
shaft with the motor underneath . One revolution of the carousel takes dozens of
revolutions of the motor. A gap in the carousel and a corresponding slotted
optical switch tells the controlling microprocessor when the carousel is at the
home position. The motor shaft has an optical encoder for feedback to the
microprocessor.

Constant Speed
The simplest case for this system is continuous rotation. The carousel is rotated at
a constant speed, which may be required for synchronization with the optical
pickup or camera. The control loop (proportional or PID) maintains the motor
velocity. The slotted switch would typically be used to verify that the carousel is
following the motor - - in other words, that there isn't a stripped gear or some
other mechanical malfunction.

The control system would ramp the motor up and hold it at a constant speed
(Figure 5.16) until commanded to stop. Let's say that there are 100 motor
revolutions per carousel revolution, and that the motor uses a 500-line encoder
(500 encoder counts per revolution of the motor shaft). Figure 5.16 doesn' t have
enough resolution to show all the encoder counts, so the relative spacing between
encoder pulses is shown--as if the picture were displaying every 100th count or
something similar.

ENCODER OUTPUT I I I I •••
SLOFrED

SWITCH I I I

VELOCITY T

FINAL SPEED

AC~LERATION

~

Figure 5.16
Motor ramps up and holds constant speed.

Output Control Methods 129

The motor control software (or the controller, if a packaged motor control IC
is used) will typically check the velocity on a regular basis (a specific number of
clocks from an internal reference clock). There is no point in designing the
system so that the sample interval is shorter than the PWM frequency (if PWM
is used). In fact, such a system would tend to be unstable, because a new PWM
duty cycle would be assigned before the previous one had a chance to take effect.

Instead of sampling at a regular interval, you could check the count of an
internal free-running counter on every encoder pulse, or every fourth pulse, or
something similar. The time from the previous encoder pulse is measured, and if
the velocity is low the control output is increased (more motor current). Figure
5.17 shows a simplified diagram of both measurement methods. In fixed-time
sampling, all timing is synchronized to the sampling clock, which is usually a
multiple of the PWM clock. The potential drawback is shown in the detail area; if
the encoder pulse occurs just before the sample clock, the count will differ by 1
from the count that results if the encoder pulse occurs immediately after the
sample clock. The actual amount of motor shaft rotation in both cases is almost
identical, but the system will see a difference of 1 count.

The fixed-count sampling method, which samples after a fixed number of
encoder pulses (3, in Figure 5.17), avoids this problem and can give better
precision in the result. The catch is that the time measurement counter has to
run at a fairly high clock rate and may have to be many bits wide to handle slow

ENCODER

SAMPLING I 1

FIXED TIME SAMPLING
IF THE SECOND ENCODER PULSE OCCURS
LIKE THIS, THE POSITION SINCE THE LAST
PULSE WILL BE 6.

I I

1

IF THE SECOND ENCODER PULSE OCCURS
LIKE THIS, THE POSITION SINCE THE LAST
PULSE WILL BE 7.

I I

FIXED COUNT SAMPLING

ENCODER I I I I I 1 I I I 1

COUNTER
INCREMENT

I l l l l l l l l l i l i l

SAMPLING l I 1 1
COUNT AT
SAMPLE
INTERVAL

2S 16 16

F i g u r e 5 . 1 7
Motor sampl ing .

130 Analog Interfacing to Embedded Microprocessor Systems

motor speeds. In addition, use of fixed-count sampling means that the sampling
interval is no longer synchronized to the PWM f r e q u e n c y I t h e sample frequency
varies with motor speed. For this reason, fixed-time sampling is more common.

If you use fixed-count sampling, you should include some kind of t imeout to
detect a stalled motor. If the motor stalls, no encoder counts will be genera ted
and no sampling will occur. Whichever sampling method is used, the carousel in
our example will run at a constant speed, with some fluctuation depend ing on the
type of control and the control parameters . Because the home position occurs
once every revolution of the carousel, and this is 100 motor rotations, then the
home position indication will occur once every 50,000 motor revolutions
(500 encoder counts revolution x 100 motor revolutions/carousel revolution).
So if the first pulse occurs at count 10,000, the next pulse will occur at count
60,000 (usually plus or minus 1). So to check that the carousel is following the
motor, the software could open a "window" and look for the pulse a round count
60,000, 110,000, and so on.

Eventually, the counters that keep track of position will overflow, and the
software (or controller IC) has to take this into account in controlling the speed.

Positioning
The case of our carousel in a sampling system is a bit more complex. The carousel
does not rotate continuously, but moves to a fixed position and stops with one of
the sample positions unde r the sampling arm. After the sampling probe has taken
a sample of the contents, the carousel is rotated to the next position.

T h e typical waveform for this type of move is shown in Figure 5.18. The motor
ramps up to some velocity, just like in the continuous rotation example, then runs
at a constant speed, then ramps down and stops in the correct position (correct
encoder count). The difficulty is in t iming all this so that the final position is
correct. A PID motion controller that is used in a positioning application usually
has two loops operat ing together in parallel. The PID loop controls motor
cur ren t to achieve the correct velocity. The input to the PID loop is the velocity
setpoint. A second loop creates the trapezoidal waveform by passing velocity
setpoint values to the velocity control PID loop.

Figure 5.19 shows a simple d iagram of such a control system. This is typical of
the position-control functionality in a motor control IC such as the LM628/9. In
this figure, the velocity genera tor block is separate from the microprocessor, as it
would be in a self-contained motion control I C. If you were writing software for a
microprocessor or DSP to directly control a motor, the velocity genera tor and
PID loops would be software functions. T h e position control loop generates
position commands to the P ID loop. This is the same position c o m m a n d that
was an input to the PID loop in Figure 5.14. Tha t figure shows a simplified table
of position values for a move of 80,555 steps, which is a bit over 161 revolutions of

Output Control Methods 131

ENCODEROUTPUT , , , , ,,,,,,,,,,,,,,,,,~,,,,~,,,,,,, , , ~ , ,

LIMIT VELOCITY

DECEL ATION

F i g u r e 5 . 1 8
T r a p e z o i d a l m o t o r m o v e .

POSITION
MICROPROCESSOR CONTROL

LOOP

ISSUES COMMANDS SENDS POSITION
LIKE "GO TO INFORMATION TO
POSITION X USING PID CONTROLLER
ACCELERATION Y"

VELOCITY I

CONTROLLER

CONTROLS MOTOR
PosmoN BY
CONTROLLING
CURRENT; USES
MOTOR ENCODER
PULSES TO
CALCULATE
POSITION

SHAFT ENCODER

GENERATOR
MOTOR

CONVERTS MOTOR
CURRENT AMPLITUDE
FROM PID LOOP INTO
PWM DUTY CYCLE

TYPICAL POSITON VALUES
FOR A 500-LINE ENCODER,
MOVING 80555 STEPS,
GENERATED AT REGULAR
INTERVALS

o (START)
5
10
2O
4O
8O
160
24O
320
4OO
48O

80520
80540
80550
80555
80560

t ACCELERATING

t CONSTANT SPEED

t DECELERATING

F i g u r e 5 . 1 9
M o t o r pos i t ion -cont ro l b lock d i a g r a m .

132 Analog Interfacing to Embedded Microprocessor Systems

the motor shaft for a 500-count encoder. Notice that the position initially in-
creases 5 steps per sample interval, then 10, then 20, and so on. This acceleration
profile is reversed when the motor is stopping.

Software Considerations

The PID loop controls motor position. In many designs, having a critically
damped waveform is crucial. Remember that this is a mechanical system---over-
shoot may result in broken parts.

The problem of offset in a PID loop, where the final position is just slightly
different from the desired position, can cause a unique problem in a motor
control application. There is usually a plus or minus 1 count ambiguity in any
digital system. If the final motor position is different from the setpoint by 1 or 2
counts, and if the integral port ion of the PID loop is too small, the system may
draw excessive current and overheat the motor and/or controller. This is because
the propor t ional part of the loop is trying to nudge the motor that final step or
two to get the right position, but it can't generate quite enough current to do so.
Instead of the motor current going off at the end of the move, it stays on. This can
be a real problem in systems that have a lot of inertia or some kind of detent to
overcome when starting, as the current can be relatively high. In addition, in a
DC motor , this continuous current is not shared over all the motor windings,
because the motor isn't rotating.

If the system is such that an integral term cannot be set to correct this problem
(possibly because the load when stopped isn't known), then the software should
detect this condition and shut off the motor output. If your application needs
holding current (say, to keep a vertical arm from falling), then reprogram the
setpoint position to the actual position. Notice that the position generator does
not know what the motor position is. It is assumed that the PID loop will be able to
meet the acceleration requested by the position generator. In a system with variable
loads, the software may need to reduce the acceleration when the load is large.

Predictive Control

PID control is effective when controlling a single-input process that is fairly
consistent. The drawbacks to PID are that it has to be tuned to a particular
process; if the process changes appreciably, the PID parameters must be read-
justed to provide good control. In addition, a PID loop is not usually effective in
controlling systems with multiple input parameters , especially if the parameters
interact. An example would be a control system for t empera ture and humidity,
where the tempera ture affects relative humidi ty and vice versa.

Output Control Methods 133

To handle these conditions, some form of predictive control can be used.
There are several variations on predictive control, such as model predictive
control (MPC) and nonlinear model predictive control (NMPC). All model pre-
dictive control algorithms start with a model of the response of the system. This
model is used to predict system behavior over some time period. The response
prediction might span a single sample interval or the response delay of the
system, if there is one. A control output is generated, the response is measured,
and a new prediction is made for the next time interval. Some predictive systems
adjust the parameters (typically gains) of the mathematical model as the system
operates, so that the model more closely matches the actual system response.

Generally, the model for a predictive control system is a mathematical repre-
sentation of the response, and so predictive control is often impractical for small
microcontroller-based systems. The system model can be a table of values, but if
there are multiple inputs, the number of tables can quickly grow beyond the
available memory.

The model for a predictive control system can be generated by analyzing the
electrical and mechanical components to determine their response, or by empiri-
cal testing. Either method has drawbacks; an analytical solution may be difficult to
obtain and empirical testing may be difficult to perform, especially in a system
where some control values may cause physical damage.

Measuring and Analyzing Control Loops

Development of a control system often requires that the control inputs and out-
puts be measured. This may be necessary to set the parameters for a PID loop or
to debug a system that isn't functioning properly. Figure 5.20A shows a control
system with monitoring hardware attached. The monitoring hardware measures
the ADC output and the resulting control output.

The monitoring hardware in a system like this could be a logic analyzer that
captures every read from the ADC and every write to the amplifier (the amplifier
may be a linear or PWM output device). The idea is to capture the inputs and see
what output the control system generates as a result. If a logic analyzer is used,
the resulting data can be time-tagged and stored to disk, or sent over a network
connection to a computer. There, it can be plotted or captured in a spreadsheet
for analysis.

If you are debugging a problem in a control system, the logic analyzer may also
accept other inputs that will allow you to trigger when the error occurs and see
what the control system was doing just before that time. Instead of a logic
analyzer, a relatively slow system might be analyzed using a PC and plug-in

134 Analog Interfacing to Embedded Microprocessor Systems

MICROPROCESSOR
INPUT

I POWER]
I AMPLIFIER

 ool o o o o

MONITORING HARDWARE

I L~176
AMPLIFIER

INPUT
MICROPROCESSOR

[A.MPUFIER

I
I oo
LOGIC ANALYZER DSO

AMPLIFIER

Figure 5.20
Monitoring a control system.

boards to make a data acquisition system. National Instruments makes several
types of data acquisition boards and software that can be used for this purpose.

Another approach to monitoring is to add microprocessor code that outputs
the sensor readings and resulting control values to a serial port or some other
output mechanism. This approach requires less analysis of the resulting data, but
it assumes that the software is working properly. For instance, this approach
won't catch a problem that occurs if the software generates the correct control
output value, but a software race condition prevents that value from actually
being written to the PWM controller. The output will not reflect what the soft-
ware thinks (and tells the world via the diagnostic output) is happening.

Combined Logic Analyzer/DSO
One problem with both the software and logic-analyzer approach to monitoring
the system parameters is that the digital values may not represent the analog
inputs. If a problem occurs because the ADC reference voltage varies too much
with temperature, neither of these approaches will detect it because the ADC
outputs look correct and the system responds to the ADC output correctly.

Output Control Methods 135

Figure 5.20B shows the addit ion of a digital storage oscilloscope (DSO) to the
original setup. The DSO monitors the actual sensor signal while the logic analyzer
monitors the ADC output and the resulting control output . T h e DSO trigger is
coupled to the logic analyzer t r igger ou tput (or vice versa) so that the data on the
two ins t ruments can be correlated. Using a logic analyzer with an integrated DSO
simplifies the data correlat ion process.

Whe the r you ou tput moni tor ing data using software or use external equip-
ment such as a logic analyzer, it is a good idea to provide the necessary compon-
ents for moni tor ing early in the design. This may mean adding a header to the
board for connection of a logic analyzer, or leaving one por t bit on a microcon-
troller available to indicate in te r rup t entry and exit.

Measuring Motor Parameters

Measur ing the effects of PID loop changes in a heater is fairly ea syByou just
moni tor the thermistor and display the results on a DSO, or use an ADC to
convert the results to digital values and capture them with a computer . A motor
is more difficult to tune. T h e r e is no direct indication of speed; you have to
measure the time between encoder pulses to de te rmine how fast the motor is
turning.

Figure 5.21 shows the block diagram of two simple circuits that can be used as
an aid for tuning motor parameters . Figure 5.21A shows a circuit that measures
the per iod between encoder pulses. A clock increments a counter . Each encoder
pulse latches the count into a register and resets the counter . The counter can use
synchronous or asynchronous reset, a l though the reset logic obviously has to
match the counter characteristics.

T h e output of the register can be connected to a logic analyzer so the speed
data can be captured, or it can connect to the input of a DAC to provide a voltage
that corresponds to speed; the resulting waveform can be viewed on a DSO. Some
logic analyzers provide a chart mode that allows state data to be viewed like a
DSO. Or, the captured data can be saved to disk, input to a spreadsheet on a
computer , and viewed/manipulated there.

T h e sample clock and counter width depend on the resolution needed and the
motor /encoder characteristics. I f your motor runs at 2000 rpm (33.3 rev/sec) and
uses a 500-line encoder, then the time between encoder pulses is:

500 x 33.33
or 60 las

If you want to use an 8-bit measu remen t and you want this speed to be 250
counts, then you need a clock of 250/60 ~ts, or 4.167 MHz.

136 Analog Interfacing to Embedded Microprocessor Systems

CLOCK

MOTOR
ENCODER
PULSES

COUNTER

RESET RESET
LOGIC

REGISTER

MOTOR
ENCODER
PULSES

CLOCK

COUNTER

RESET RESET
LOGIC

REGISTER

)

Figure 5.21
Motor - t im ing ana lys is aid.

If the slowest mo to r speed you want to measure is 100 rpm, then the encoder

pulses will occur at a rate of 833 Hz, so the coun te r will accumulate 5000 counts

be tween encoder pulses, and you will need a coun te r that is 13 bits wide. For this

application, a 13-bit coun te r will p reven t overflow at the slowest speed and still

allow 8-bit resolut ion at the highest speed.
In this example, the coun te r resets to 0 and counts up, so a larger count

co r responds to a slower moto r speed. To make the coun t p ropor t iona l to mo to r

speed (larger count = h igher speed), you can ei ther invert the coun te r ou tputs

or use a down-coun te r that resets to all ls instead of to 0s.

Figure 5.21B shows an identical circuit, but with the encoder and reference clock

inputs reversed. This circuit measures the frequency of the encoder pulses. Using

the same 100-to-5000 rpm motor with the same 500-line encoder , a 10 ms sampling

Output Control Methods 137

clock will give a count of 8 at 100 rpm and a count of 166 at 2000 rpm. The output of

this circuit can also be connected to a logic analyzer or DAC/DSO combination. Of

course, either circuit can be implemented with discrete logic or in a PLD.

Commercial Software

There are software packages that can aid in tuning PID loops. Examples are

Wintune from BestSoft (www.bestsoft.com) and a PID analysis package from
National Ins t ruments (www.ni.com).

PID Software Examples

Following are some pseudocode examples for a simple PID controller, with
various options implemented.

Basic PID Loop

R e a d i n p u t (a c t u a l pos i t i on , speed , t e m p , w h a t e v e r) f r o m s e n s o r , s a v e
a s C u r r e n t V a l u e .

E r r o r = T a r g e t V a l u e - C u r r e n t V a l u e

D e r i v a t i v e = E r r o r - P r e v i o u s E r r o r V a l u e

I n t e g r a l = I n t e g r a l + E r r o r

C o n t r o l V a l u e = K1 " I n t e g r a l + K 2 " D e r i v a t i v e + K 3 " E r r o r
P r e v i o u s E r r o r V a l u e = E r r o r (fo r u s e w i t h n e x t s a m p l e)

O u t p u t C o n t r o l V a l u e to c o n t r o l h a r d w a r e

Def in i t i ons :

K1 = I n t e g r a l g a i n

K2 = D e r i v a t i v e g a i n

K3 = E r r o r g a i n

I n t e g r a l = I n t e g r a l t e r m

D e r i v a t i v e - D e r i v a t i v e t e r m

E r r o r = E r r o r t e r m , s e t p o i n t m i n u s a c t u a l v a l u e r e a d f r o m s e n s o r

T a r g e t V a l u e = Se tpo in t , t h e d e s i r e d i n p u t

C u r r e n t V a l u e = C u r r e n t v a l u e r e a d f r o m s e n s o r

P r e v i o u s E r r o r V a l u e = The v a l u e of E r r o r f r o m t h e p r e v i o u s s a m p l e

138 Analog Interfacing to Embedded Microprocessor Systems

Note that Error, Derivative, and Integral must be stored in such a way that

they can be negative values. This means floating point, 2's complemen t integers,
or some o ther method. In this implementa t ion , the derivative is simply the

current e r ror minus the previous error , which is a measure of how fast the e r ror

is changing. Technically, the derivative is the change that occurs over time;

however, since the system samples at a regular interval, the derivative can be

approx imated as the difference between two successive samples. The integral is

just the sum of previous e r ror values so far.

Antiwindup
Adding ant iwindup for the integral te rm looks like this:

R e a d i n p u t f r o m s e n s o r , s a v e a s C u r r e n t V a l u e .

E r r o r = T a r g e t V a l u e - C u r r e n t V a l u e

D e r i v a t i v e = e r r o r - P r e v i o u s E r r o r V a l u e

I n t e g r a l = I n t e g r a l + E r r o r

If I n t e g r a l > M a x i m l l m W r l t e g r a l V a l u e , t h e n

I n t e g r a l = M a x i m ~ l m I n t e g r a l V a l u e .

C o n t r o l V a l u e =
K1 " I n t e g r a l + K 2 " D e r i v a t i v e + K 3 " E r r o r

P r e v i o u s E r r o r V a l u e = E r r o r (f o r u s e w i t h n e x t s a m p l e)

O u t p u t C o n t r o l V a l u e to c o n t r o l h a r d w a r e

Def in i t ion :

M a x i m ~ l m T u t e g r a l V a l u e = m a x i m u m v a l u e of i n t e g r a l t e r m ; r e p r e -

s e n t s 1 0 0 %

An alternative method, which inhibits the integral unless the output is within a
specific range of the setpoint looks like this:

R e a d i n p u t f r o m s e n s o r , s a v e a s C u r r e n t V a l u e .

E r r o r = T a r g e t V a l u e - C u r r e n t V a l u e

D e r i v a t i v e = e r r o r - P r e v i o u s E r r o r V a l u e

If a b s o l u t e v a l u e of E r r o r < I n t e g r a l B a n d
I n t e g r a l = I n t e g r a l + E r r o r

E l se I n t e g r a l = 0.

Output Control Methods 139

C o n t r o l V a l u e =

K 1 * I n t e g r a l + K 2 * D e r i v a t i v e + K 3 * E r r o r

P r e v i o u s E r r o r V a l u e = E r r o r (f o r u s e w i t h n e x t s a m p l e)

O u t p u t C o n t r o l V a l u e to c o n t r o l h a r d w a r e

Def in i t ion :

I n t e g r a l B a n d = t h e r a n g e of e r r o r v a l u e s f o r w h i c h t h e i n t e g r a l calcu-

l a t i o n is e n a b l e d . No te t h a t I n t e g r a l B a n d c a n be a c o n s t a n t o r a f r a c t i o n

of t h e s e t p o i n t .

Filtering Noisy Input

You might have a situation in which the sensor input is noisy. In this case, you

may not want to use each sample as-is because an e r roneous value for Control-

Value might be calculated. In such a case, you may want to average multiple
samples. The following code will average 8 samples together and then process

that average as a new sample. Note that this only generates a new output once for

every 8 samples. To genera te a new ou tpu t ten times per second, the code would

actually have to sample 80 times per second.

R e a d i n p u t f r o m s e n s o r , a d d to C u r r e n t V a l u e .

I n c r e m e n t S a m p l e C o u n t e r

If S a m p l e C o u n t e r = 8,
[
S a m p l e C o u n t e r = 0

C u r r e n t V a l u e = C u r r e n t V a l u e / 8

E r r o r = T a r g e t V a l u e - C u r r e n t V a l u e
D e r i v a t i v e = e r r o r - P r e v i o u s E r r o r V a l u e

I n t e g r a l = I n t e g r a l + E r r o r

C o n t r o l V a l u e = K1 " I n t e g r a l + K 2 " D e r i v a t i v e + K 3 * E r r o r

P r e v i o u s E r r o r V a l u e = E r r o r

O u t p u t C o n t r o l V a l u e to c o n t r o l h a r d w a r e
C u r r e n t V a l u e = 0 (r e s e t to z e r o so n e x t a c c ~ l m u l a t i o n c a n s t a r t)

To simplify the code, you might not do the division of CurrentValue by 8. Instead,
you can work with the sum, which avoids division. If the division value happens to be

a nonbinary value, this can be a significant time savings on small microcontrollers

140 Analog Interfacing to Embedded Microprocessor Systems

without a divide instruction. Of course, this means all the terms derived from

CurrentValue are also larger by a factor of 8. Be sure overflows don ' t occur.

Preventing Out-of-Bounds Control Output
Th e following code will p reven t the control ou tpu t f rom exceeding the m a x i m u m

that the system can handle (say, to avoid b u r n i n g out a hea te r element) .

R e a d i n p u t f r o m s e n s o r , s a v e a s C u r r e n t V a l u e .

E r r o r = T a r g e t V a l u e - C u r r e n t V a l u e

D e r i v a t i v e = e r r o r - P r e v i o u s E r r o r V a l u e

I n t e g r a l = I n t e g r a l + E r r o r

N e w c o n t r o l v a l u e = K1 " i n t e g r a l + K 2 " D e r i v a t i v e + K 3 " E r r o r

If n e w C o n t r o l V a l u e > M a x i m ~ l m C o n t r o l V a l u e ,

C o n t r o l V a l u e = M a x i m u r n C o n t r o l V a l u e

Se t M a x i m n m P o w e r E x c e e d e d f lag .

P r e v i o u s E r r o r V a l u e = E r r o r

O u t p u t C o n t r o l V a l u e to c o n t r o l h a r d w a r e

In this code, if the m a x i m u m power is exceeded, the new Cont ro lValue is

l imited to the m a x i m u m value, and a flag is set (M a x i m u m P o w e r E x c e e d e d) to tell

the code that the event has occurred. This flag might be processed by a separate

piece of code that notifies the ope ra to r of an e r ro r or even shuts down the system.

Preventing Out-of-Bounds Average Output
In some cases, the m a x i m u m allowable control value is not a specific value, but an

accumulat ion of value over time. For example , a hea ter may not b u r n out if too

much cu r ren t is appl ied for a few sampl ing intervals, but it might b u r n out if a

total power rat ing is exceeded for more than a second. T h e following code adds

an array, AvgPwrArray, which contains 10 elements. Each e l emen t in the array is

the o u t p u t value for one sample interval; added toge ther and divided by 10, they

r ep resen t the average power over the last 10 samples.

R e a d i n p u t f r o m s e n s o r , s a v e a s C u r r e n t V a l u e .

E r r o r = T a r g e t V a l u e - C u r r e n t V a l u e

D e r i v a t i v e = e r r o r - P r e v i o u s E r r o r V a l u e

I n t e g r a l = I n t e g r a l + E r r o r

Output Control Methods 141

C o n t r o l V a l u e = K l * I n t e g r a l + K 2 * D e r i v a t i v e + K 3 * E r r o r

A v e r a g e P o w e r = s u m of v a l u e s in A v g P w r A r r a y [0] t h r o u g h

A v g P w e r A r r a y [9]

If A v e r a g e P o w e r > M a x i x n u m & l l o w a b l e P o w e r ~ 10,

Se t M a x i m u m P o w e r E x c e e d e d f lag.

C o n t r o l V a l u e =
M a x i m u m / k l l o w a b l e P o w e r - A v e r a g e P o w e r + A v g P w r A r r a y [0]

If C o n t r o l V a l u e < 0, C o n t r o l V a l u e = 0

(The f o l l o w i n g d i s c a r d s t h e o l d e s t v a l u e in A v g P w r A r r a y [0] a n d

m a k e s r o o m f o r t h e n e w e s t)
F o r A v g P w r A r r a y [0 t h r o u g h 8], A v g P w r A r r a y [n] =

A v g P w r A r r a y In + 1]

A v g P w r A r r a y [9] = C o n t r o l V a l u e

P r e v i o u s E r r o r V a l u e = E r r o r
O u t p u t C o n t r o l V a l u e to c o n t r o l h a r d w a r e

The line

C o n t r o l V a l u e =
M a x i m u m A l l o w a b l e P o w e r - A v e r a g e P o w e r + A v g P w r A r r a y [0]

calculates ControlValue as the m a x i m u m value that will br ing the average below

the m a x i m u m value after the next sample interval. The reason AvgPwrArray[0] is
used is that it is the oldest sample and will be replaced in the array by the new

ControlValue. If the result is negative, then ControlValue is set to zero. Note that,

in your system, the value that produces zero ou tpu t may not actually be zero.

This pseudocode f ragment moves all the array values a round to make room
for a new value; a faster method (but not as easily unders tood) is to use a pointer

that wraps from the end to the beginning of the array and allows the new value to

overwrite the oldest value.

Implementing These Examples
Each of these examples has illustrated one basic principle. You can, of course,

combine these methods as needed. Initialization is not shown in these exam-
ples. You will typically need to initialize the variables when the p rogram starts

or any time events cause the cur ren t values to be invalid. These examples are

142 Analog Interfacing to Embedded Microprocessor Systems

based on the assumption that the sensor input and control output are upda ted
on a periodic, regular basis. You will typically implement this with an interrupt.

Implemen t ing these examples in a microcontrol ler is often more difficult than
on a larger microprocessor. Microcontrollers, especially 8-bit microcontrollers,
often do not have good mechanisms to handle negative values, multiplication, or
division. You can sometimes get a round these problems by using binary values.
For example, when averaging values to filter out noise, always filter 2, 4, 8, or
some other binary n u m b e r of samples. This allows the division to be simple shift
operations. If you are using a microcontrol ler that does not handle 2's comple-
ment subtraction very well, you can make each variable a 2-byte (or 2-word)
value. The first value is the unsigned value of the variable. The second variable
is a flag to indicate whether the variable is positive or negative. T h e software looks
at the flag before using the variable, and ei ther adds or subtracts the variable
based on the flag value.

Things to Remember M Control Design

�9 T h e accuracy of the system is only as good as the ability of the m e a s u r e m e n t
sensor to measure the actual output . A thermis tor that measures the tempera-
ture of the heater will not provide as precise control as one that measures the
actual t empera tu re of the heated object. This is especially t rue of a PID con-
troller, which bases all the control parameters on the sensor input. If you are
measur ing the wrong thing, a higher-precision sensor will just give you wrong
answers with more decimal places.

�9 T ime delays can be in t roduced not only by the object you are controlling, but by
the measu remen t sensor. A slowly respond ing thermis tor can introduce as
much delay as the rest of the system.

�9 Size the processor to the application. It is easy to design a mathematical model
of a control system and simulate it with a 2 GHz, 64-bit desktop computer .
Implemen t ing the model, in real time, on an 8-bit processor with only a few
kilobytes of code space can be much more difficult. For example, if your
algori thm requires complex math, be sure the target CPU can per form it. If it
can't, you may have to resort to lookup tables.

�9 If you do have to resort to lookup tables or something similar in a real applica-
tion, be sure there is sufficient memory for it. It doesn ' t take very many 256-
byte tables to fill the memory of most small microcontrollers.

�9 Have some plan for analyzing and debugging the finished design, and include
whatever hardware and software are necessary.

Output Control Methods 143

Solenoids, Relays, and Other
Analog Outputs 6

Solenoids

A solenoid is an electromagnet that activates a mechanical function, such as a
plunger. Solenoids are used to latch safety covers closed so they can't be opened
while a machine is in operation, or to unlock the doors in your car when you push
the keyless entry button on the remote. Solenoids can open and close valves in
industrial processes or push the record head against the tape in a tape player.

Solenoids come in many shapes and sizes, and are capable of exert ing a force
from less than an ounce to several pounds. The re are two basic varieties: contin-

uous duty and pulse duty. Cont inuous-duty solenoids are designed to be ener-
gized all the time. An application such as holding a safety cover closed would use a
cont inuous-duty solenoid. A pulse-duty solenoid might be used for the doors in
your car. Pulse-duty solenoids will overheat if left energized all the t imemthey are

designed for intermittent operation. A pulse-duty solenoid allows a high-force
solenoid to be smaller and cheaper because continuous operat ion is not a concern.

Relays

A relay is a solenoid that operates electrical contacts. When the relay is energized,
the contacts are shorted or opened, just like a mechanical switch.

Interfacing to Solenoids and Relays

For the sake of simplicity, this section will address relays, but the same considerations
apply to solenoids. Figure 6.1A shows a relay as it might be connected to a micro-

processor. A single bit is used to turn the relay on and off. The figure shows an NPN

145

+V

I N.~ ~
A I~CAY

INPUT

+V

INPUT ~ ~

1

INPUT SIGNAL

OUTPUT VOLTAGE

+V
VC.COLLECTORVOt.TAGE

GND

INPUT SIGNAL

OUTPUTVOLTAGE

+V
VC. COLLECTOR VOLTAGE

GND

I
!

~-- PULL-IN TIME

• ~ RELEASE TIME

I ' ,
I

I

FLYBACK
VOLTAGE

J,

R E ~ TIME CONSIOERABLY
LONGER THAN FOR CIRCUIT
WITHOUT SNUBBER

I :
w
!

r - - -

" ~ - - PULL-IN TIME

FLYBACK VOLTAGE CLAMPED
TO 0.6V ABOVE SUPPLY VOLTAGE

Figure 6.1
Relay control and clamping.

transistor connected to a port bit on the processor; you could also use a MOSFET.
Some microprocessors have outputs that are capable of sinking sufficient current to
activate a relay, as long as the relay is operating from the same voltage as the processor.

Because the relay or solenoid is activated by a coil, there is a flyback voltage
that occurs when the drive transistor is turned off and the magnetic field collapses
in the coil. This voltage can reach high enough levels to damage the drive
transistor. Figure 6.1B shows how a diode can be used to clamp the voltage across
the coil to safe levels. When the transistor turns on, activating the relay, the diode
is reverse biased. When the transistor turns off, the top end of the coil is tied to
the drive voltage, so a voltage spike appears at the lower end (transistor collector).
As soon as this voltage reaches the supply voltage plus one diode drop (about
0.6 V for a silicon diode), the diode conducts.

There are two considerations when using a diode clamp on a relay. The first is
that the energy in the coil doesn't just disappear. It has to go somewhere, and it
gets dumped into the positive supply through the diode. This results in a current
surge into the supply. For this reason, the supply needs to be well bypassed. If the
relay is on a board that is some distance from the power supply, there may be a

146 Analog Interfacing to Embedded Microprocessor Systems

noise spike on the ground as well. The second problem with this technique is that
it slows the release time down.

Figure 6.2 shows a method that can be used to speed up the relay release by
using a zener diode. When the transistor is turned on and the relay pulls in, the
normal diode keeps current from flowing through the zener. When the transistor
turns o f f a n d the flyback p u l s e occurs , the n o r m a l d i o d e is f orward b iased a n d the

zener is reverse biased. The result is that the transistor collector voltage is
clamped at the zener voltage plus one diode drop above the positive supply. Of
course, the resulting voltage has to be lower than the transistor breakdown
voltage or damage will result. Typical numbers for a generic 6 V relay with no
clamp, a diode clamp, and two zener clamps are as follows:

Clamp Open time
n o n e 1 ms
12 V zener 1.5 ms
6 V zener 2.2 ms
d iode 5.5 ms

These numbers were obtained by switching off the relay coil and measuring
the time until the contacts open. You can see that the higher the flyback voltage is
allowed to rise, the faster the field dissipates and the faster the contacts open.

Tranzorbs can also be used to clamp a relay or solenoid. A Tranzorb is a zener-
like device that is used for clamping high-energy transients. A Tranzorb clamps at
the same voltage in both directions, so no blocking diode is needed.

Pick/Hold

The DC current drawn by a relay has to be high enough to pull the relay contact
from one end of its travel to the other. However, the current needed to hold that

+V

4~
+V rJl INPUT SIGNAL

I ~ OUTPUT OUTPUT VOLTAGE
!

I RELAY

INPUT

"2"

+V
VC, COLLECTOR VOLTAGE

GND

- '~ ~'- PULL-IN TIME

RELEASE T1ME LONGER
THAN CIRCUIT WTTHOUT

~ ANY CLAMPING, BUT
SHORTER THAN FOR

I SINGLE DIODE SNUBBER
!

i
I

J

- I FLYBACK VOLTAGIE CLAMPED
TO +V PLUS ZENER VOLTAGE

Figure 6.2
Using a zener clamp to speed up relay release time.

Solenoids, Relays, and Other Analog Outputs 147

position is much lower--typically 50% of the pull-in (or pick) voltage. In many
cases, a smaller power supply can be used if the current is reduced once the relay
contacts are pulled in, especially if several relays are to be activated at once. In
addition, using a lower hold current decreases the release time, because there is
less energy stored in the coil when the relay is turned off.

Figure 6.3A shows a simple method for reducing the hold current once a relay
is picked. An electrolytic capacitor in parallel with a resistor is in series with the
collector of the drive transistor. When the transistor turns on, the capacitor looks
like a low impedance and the full current is drawn through the relay coil. As the
capacitor charges up, the current through the coil is reduced until eventually the
current through the coil is limited by the resistor.

The drawbacks to this circuit are two. First, the capacitor tends to be large
because it has to supply current to the coil until the contacts pull in. Second, the
resistor dissipates power and, depending on the size of the relay, may have to be a
large power resistor. It may get hot in operation.

Figure 6.3B shows an alternative means of implementing a pick/hold circuit.
This circuit requires two outputs from the controlling microprocessor. Input 2 is
driven high to pick the relay. After a short delay (implemented in software), Input
1 is driven high and Input 2 is driven low. This holds the relay closed. This circuit
eliminates the capacitor, but still requires a resistor and takes two outputs from
the microprocessor, as well as some additional software.

Figure 6.3C shows how the relay can be controlled by chopping the current with
PWMmturning it on and off. The ON input goes high to pull the relay in. After a
delay (again, implemented in software), the HOLD input goes high. The relay
current is now the time-average of the chopping waveform; if the waveform is 50%
high and 50% low, the average current through the coil will be half the pick current.

An alternative version of this method can be implemented if you are using a
microcontroller with PWM outputs (Figure 6.3D). You drive the relay with a
single transistor from the PWM output. To pull the relay in, you program the
output to be 90% or 100% on. After the relay pulls in, you switch to 50% or some
other PWM ratio to reduce the current.

Figure 6.3E shows how two PNP transistors can be used to implement pick~old
if two power supply voltages are available. To pull the relay in, Input 1 is driven
high and transistor Q2 turns on, applying voltage v2 to the coil. After the relay pulls
in, Input 2 is driven high and Input 1 is driven low. V2 is higher than V 1. V2 might
be 12 V (for a 12 V relay) and V1 might be 8 V or 6 V. Note that the transistors in
this circuit must be driven from a source that can withstand the supply voltages.

Finally, you can avoid timing the pick/hold function if there is an extra set of
contacts on the relay. You can use one set of contacts for whatever you are
controlling, and the second set of contacts to switch between pick and hold. This
has the advantage of always having the correct timing, because the circuit doesn't
change from pick to hold until the contacts have actually pulled in.

148 Analog Interfacing to Embedded Microprocessor Systems

T
A t ti,

J-c,
HOt.D

CLOCK
ru 'u1u 'u-

INPUT

il
INPUT 2

PICK

INPUT I
HI~.D

+v

T ~
c t

INPUT 1
PICK

o o
RELAY OPEN

HOI.D (CHOPPED) INPUT 2
HOtD

o v lis-

PiC~

+ L lil
E ~-

F i g u r e 6 . 3

Pick/hold.

Heaters

A heater is driven much the same as a solenoid, usually using a transistor. Most

heaters have negligible inductance, so the clamping diodes are not necessary. In
most cases, heaters are controlled by a feedback loop, with a t empera ture sensor
mounted somewhere to measure the tempera ture . Figure 6.4 shows a typical
t empera ture control loop using a microprocessor. The heater is moun ted on
whatever is to be heated, along with some kind of t empera ture sensor. The
microprocessor turns the heater on and off to control the temperature .

Open Heater

What happens if the heater opens up? You get no heat. How do you detect it?
Figure 6.5 shows a means to detect an open heater condition. A resistor (R1) is
connected across the control MOSFET to ground. R1 is much larger than the
heater resistance--at least ten times larger. When the heater is off, the junct ion of

the heater, MOSFET, and R1 will go almost to +V because the resistance of the

Solenoids, Relays, and Other Analog Outputs 149

ADC

MICROPROCESSOR

"~L oTH ETHR#I~OR#R~ TURE

I SOME KINDOF
I~ I MECHANICAL - -
" i " CONNECTION
/ TO THE DEVICE

BEING HEATED

I MOSFET

Figure 6.4
Microprocessor-controlled heater.

+V

L
1

HEATER E]
r-]

Q1

I NMOSF

.

+V
2

R1

COMPARATOR

TO Q 1/HEATER JUNCTION

VOLTAGE DIVIDER
REDUCES VOLTAGE
TO COMPARATOR

I

Figure 6.5
Detecting an open heater.

150 Analog Interfacing to Embedded Microprocessor Systems

heater is much less than the R1 divider. The output of the compara to r is low.
However, if the heater is open, there is no resistance to +V, so R1 pulls the
noninver t ing compara tor input to g round and the output of the compara tor is

high.
I f the compara tor used cannot handle an input that goes all the way to the

supply rail, you can either run the compara tor from a higher voltage than the
heater, or make R1 a voltage divider and moni tor the voltage at the tap to

reduce the voltage at the compara tor input. If you use the voltage divider, the
reference voltage has to be proport ional ly lower as well. Of course, you can
only check for an open heater when the heater is tu rned off, so the software
has to synchronize the test with heater operation. In addition, if the heater is
ever 100% on, the microprocessor must occasionally turn it off to check for

heater failure.

Open Sensor
What happens if the t empera ture sensor in a heater system opens up? For
most sensors (NTC thermistor, solid-state sensor, thermocouple) this condition
looks like a very cold temperature . This can be a disaster because the micro-

processor will leave the heater on 100%, at tempting to reach the target tem-
perature . There are several ways to handle this condition. In software, you can
moni tor the amount of time the heater is on and declare an e r ror if it stays on
for an unreasonable amount of time. This only works if your system can ensure
that no damage will result before the e r ror is detected. If the normal operat ing
t empera tu re range is limited, you can detect an out-of-bounds cold condition

as an open.
Figure 6.6 shows a circuit that I used in a design. This is the scaling circuit that

we looked at in an earlier chapter, to amplify and scale an NTC thermistor to the
0-5 V range needed by an ADC. In this case, the operat ing range was between
about 30~ and 50~ I couldn ' t just d, eclare a low tempera tu re as an error ,

because room tempera ture (about 25 ~ is outside the measuremen t range, but it
is a valid tempera ture until the system heats up.

What I did was add a second opamp, wired as a buffer (no gain, no scaling)
and connect the input to the thermistor. The output went to a second ADC

channel. If the thermistor opens, voltage V1 will go to the reference voltage,
2.5 V. In this system, 2.5 V corresponds to a t empera ture below 0~ outside
the allowable range of operat ion for the instrument. So the microprocessor
used the scaled/amplified signal to measure temperature , and moni tored the
unscaled signal for a voltage greater than about 2 V to detect an open ther-

mistor.
If you don ' t have a second ADC channel, the same thing can be implemented

with a comparator . In this case, one side of the compara tor would connect to the

Solenoids, Relays, and Other Analog Outputs 151

VR, 2.5V

o-
T _ w L>

RF

~> OPEN SENSE
TO ADC INPUT 2

D vo
TO ADC INPUT 1

Figure 6.6
Detecting an open thermistor.

thermistor and the other side would connect to a 2 V reference. The output of the
comparator then goes to a digital input that can be monitored by the micropro-
cessor.

RTD Heater

The RTD heater is a special type of heater that is composed of an RTD material,
usually iron-nickel. The heater element doubles as the thermistor. These heaters
are often printed onto a high-temperature , flexible backing. Because a thermistor
is not required, overall system cost can be lower.

Figure 6.7A shows a method of driving an RTD heater. A MOSFET transistor
controls the heater, and the transistor is driven by the microprocessor. The
resistance of the heater element is related to its temperature. When the heater
is on, the current through it is given by:

V+

Rs + Rh

where Rh is the heater resistance and Rs is the value of the sense resistor. By
measuring the voltage across the sense resistor with a differential amplifier, the

152 Analog Interfacing to Embedded Microprocessor Systems

INPUT

+v

r- HEATER

E
m

RS
SENSE
RESISTOR

QI

NMOSFET

m

] �9 ,

I

TO ADC

INPUT

+V2

+V

I PMOSFET

D1 q
DIODE

HEATER

E

SENSE
RESISTOR

n

TO ADC

Figure 6.7
RTD heater.

Solenoids, Relays, and Other Analog Outputs 153

value of the heater resistance can be determined. The catch is that the heater has
to be on for the tempera ture to be measured.

Figure 6.7B shows a means to use an RTD heater and measure tempera ture
with the heater off. A P-channel MOSFET switches the high side of the heater
to V+ to turn the heater on. When the heater is off, diode D 1 supplies a lower,
well-regulated measurement voltage to the heater. For a 24 V heater, a typical
measurement voltage might be 2.5 V. The measurement voltage must be small
enough to prevent any significant heating.

An alternative to this approach is to eliminate the sense resistor, use the N-
channel, low-side switching MOSFET, and use a large-value resistor in parallel
with the MOSFET. The voltage across this resistor is then measured to determine
the heater resistance. The problem with this approach is that the measurement
resistor must be significantly larger than the RTD resistance, so there is little
change in voltage with temperature.

Finally, some MOSFET transistors have a fourth lead that provides a fraction
of the current passed through the MOSFET itself. By connecting a resistor from
this lead to ground, a voltage is developed that is proportional to the current in
the device. This can be used to measure the heater resistance when the heater is
on. International Rectifier makes a line of MOSFETS, called SENSEFETS, with
this feature.

RTD heaters have some drawbacks. The first drawback is the tolerance of the
heater element itself. Unlike RTD sensors, RTD heaters are usually sprayed or
sputtered onto some kind of flexible substrate. Consequently, they have a typical
tolerance of about 10%, although some vendors will allow you to specify 5%
tolerance at additional cost.

Another problem with RTD heaters is that the tempera ture measurement is
dependen t on the supply voltage. A 24 V supply with 5% tolerance results in a 5%
variation in tempera ture measurement (compared to actual temperature) . You
can get a round this problem by using a separate ADC channel to measure the
actual supply voltage and correct the RTD measurement value. This typically
means using a voltage divider to bring the heater supply voltage down to a range
the ADC can handle.

When using an RTD circuit, you can measure only when the heater is on or off
(depending on which type of circuit you use), but not both. If using a measure-
when-on circuit, you have to turn the heater on momentari ly to get a measure-
ment, so you can't get a 0% duty cycle. If you are using the measure-when-off
circuit, you have to turn it off occasionally, so you can't get a 100% duty cycle. In
either case, the software has to synchronize temperature measuremeht with the
correct heater state (ON or OFF).

Finally, when you use an RTD heater, you are measuring the tempera ture of
the heating element, not the object you are trying to heat. If you have good
thermal contact between the two, this may not be an issue. However, if the

154 Analog Interfacing to Embedded Microprocessor Systems

thermal contact is poor or, worse, varies dur ing operation, the results you get
may be a poor representat ion of the actual conditions.

Coolers

A solid-state (Peltier) cooler consists of a series of PN junctions, usually fabricated
from bismuth telluride, that can draw heat from one side and exhaust heat on the
other side. A Peltier cooler can be controlled much like a heater, using a ther-
mistor to measure the temperature . PWM can be used, a l though to avoid thermal
stress on the semiconductor elements, a min imum PWM frequency is usually
recommended . The min imum is typically a round 2 kHz.

One concern with a Peltier cooler is, what happens if the thermistor opens?
Unlike with a heater, you won't overcool anything, but the cooler will never turn

on. If you are trying to keep medical samples cold, this can ruin them. If your
application calls for a cooling t empera tu re above the lower limit of the thermistor,
you can use the same technique as for a heater the rmis to rwlooking for an out-of-
bounds condition on the temperature . If you will be operat ing the cooler near the
ends of the thermistor range, you may need a second thermistor in the system so
you can verify that everything is working. In some cases, you might be able to use
a PTC thermistor, which has a positive temperature/resis tance curve.

Fans

Cooling fans may seem like m u n d a n e things. You turn them on and off when the
power goes on and off, right? Actually, you do occasionally find a need to control
or moni tor fan operation. For instance, you might want to control fan speed to
limit noise in a system.

If your system has multiple cooling fans, you might not need all the fans all the

time, so you can make the system quieter by turning off the ones that aren ' t
needed. As the tempera ture goes up, you can turn fans on, increasing the cooling
(and the noise level). DC fans can be controlled by a MOSFET transistor. Some
fans can be speed modulated by using PWM techniques, but be sure your fan will
operate this way. Some fans use electronic controllers that don ' t like PWM inputs.

In many systems you need to moni tor the fan to be sure it is operat ing because
fans tend to have a high failure rate relative to other parts of the electronics. In
fact, you can make a case for the concept that if you don ' t need to moni tor the fan,
then you don ' t need a fan. Or, the corollary is that if you need a fan to keep things

from overheating, then you must moni tor it to be sure it is working.
The re are several ways to moni tor fan operation. One is simply to put a

semiconductor tempera ture sensor somewhere in the electronics and see if things

Solenoids, Relays, and Other Analog Outputs 155

overheat. Another way is to use an airflow sensor near the fan to sense if air is
really moving. Some fans include an internal sensor that generates a pulse at least
once per revolution.

Figure 6.8 shows a typical circuit for a fan with an internal sensor. An optical (or
Hall effect) sensor output is pulled up to the fan's supply voltage with a resistor.
The voltage out is limited with a zener diode to 4.7 V. The intent is that this will
connect to the timer input of a microprocessor so that the speed can be measured.

Another way to use this is to connect it to one side of a set/reset flip-flop. The
other input to the flip-flop is connected to a port bit or decoded address strobe so
the microprocessor can reset it. Finally, the output of the flip-flop is connected to
a digital input on the processor.

In operation, the microprocessor will periodically check the input and clear the

output . If the fan is running, it will eventually (in a few milliseconds) set the flip-
flop again. This does not measure fan speed, but it does give an indication that
the fan is running.

+V

~ PULLUP

DI
4.7V

.

OUTPUT

TO FAN TACH

TO RESET PULSE
FROM MICROPROCESSOR

S Q

R

FAN TACH I I 1

RESET FROM PROCESSOR I

FLIP-FLOP OUTPUT I I 1

TO MICROPROCESSOR

Figure 6.8
Fan tach.

156 Analog Interfacing to Embedded Microprocessor Systems

One problem with built-in fan tachs is that they have to run from the fan
supply voltage (+V in Figure 6.8). The output is clamped with a zener. But what
happens if the fan is plugged in while power is on and the +V and output
connections are made before the ground connection is made (Figure 6.9)?
Because the zener ground is floating, you instantly get the fan power supply
(typically 24 V) applied to the digital input that is monitoring the fan tach. This
can damage the device. (I've seen it happen.)

If you use a fan with this type of tach, it is a good idea to add a zener on the
board where the fan plugs in to prevent such damage. The added zener will be in
parallel with the zener in the fan circuit, so it will not affect normal operation, but it
will prevent overvoltage if the fan is connected or disconnected with the power on.

LEDs

LEDs are simple, right? You put a current-limiting resistor in series with the LED
and connect it between the positive supply and ground. In many cases, that is
adequate. But this can cause problems in other situations. Figure 6.10 illustrates
such a case. Here, the LED operates from an unregulated supply. You might do
this in a battery-operated system in which you want the LEDs to remain off so
they don' t drain the battery when the AC power is removed. In this example, the
DC supply has AC ripple from the full-wave rectifier in the supply. The LED

PULLUP

D1
4.7V

IF THESE TWO CONNECTIONS
MAKE FIRST, THE V+
VOLTAGE APPEARS AT THE
TACH INPUT TO THE
CONTROL CIRCUIT

V+ FROM POWER
SUPPLY, FOR FAN

FAN TACH_,

SIGNAL ~ D2
4.7V

GROUND "J

CONNECTOR

ADDING A ZENER TO
THE CONTROL
CIRCUITRY PREVENTS
THIS PROBLEM

Figure 6.9
Protecting against fan-tach overvoltage.

Solenoids, Relays, and Other Analog Outputs 157

+9V +5V

R2
R1 RESISTOR

ESISTOR

LED TO TRANSISTOR

TO MICROPROCESSOR ADC

9V

9V SUPPLY RIPPLE

Figure 6.10
LED ripple.

current will follow this ripple, and the result will show up on the phototransistor
output and in the ADC results.

One way to prevent this problem is to drive the LED with a constant current.
Figure 6.11 shows a simple circuit that will provide a constant current to the LED.
The opamp will keep the voltage a~zross the sense resistor equal to the input
voltage. The current through the LED is given by:

INPUT VOLTAGE
ILED -- SENSE RESISTOR

So if the input voltage is 2.5 V and the sense resistor is 250 ohms, then the LED
current will be 10 ma. The precision of this current control is dependent on the
transistor gain, the input voltage tolerance, and the tolerance of the sense resistor.

158 Analog Interfacing to Embedded Microprocessor Systems

INPUT VOLTAGE

+9V +SV

R2
R1 RESISTOR RESISTOR

LED TO TRANSISTOR

�9 Q1 ~ NPN

TO MICROPROCESSOR ADC

Figure 6.11
LED constant-current drive.

This circuit requires that the opamp operate from positive and negative supplies,
or from a single-supply opamp that can drive its output to within 0.6 V of ground.

The input voltage that sets the LED current can be connected to a fixed
voltage, such as a reference diode. Figure 6.12 shows how a microprocessor can
turn the LED on and off. When ON, the LED operates at a constant current,
determined by the diode voltage. The microprocessor port output must be able to
source current to the reference diode, so a low-current reference should be used
here. The reference diode voltage must be less than the voltage on the micro-
processor port bit when in the high state.

RESISTOR i D2

REFERENCE DIODE

+gV +SV

RI RESISTOR ESISTOR

LED 0 TRANSISTOR

RESISTOR

~NSE RESISTOR

Figure 6.12
LED constant-current drive with microprocessor control.

Solenoids, Relays, and Other Analog Outputs 159

Optoisolator Outputs
Optoisolators were shown in Chapter 3. Optoisolators can be used to isolate an
external input from your microprocessor circuit. They can also be used to gen-
erate an output that is isolated from an external circuit. The LED of an optoiso-
lator is driven the same way as any other LED. You need to ensure that there is
sufficient current through the LED to turn on the output transistor. The output
current is determined by multiplying the LED current by the CTR of the opto-
isolator. To ensure that the circuit will always work, use the minimum CTR
specified by the manufacturer.

In cases where the output is driving another logic input, you typically do not
need a small-value pull-up resistor on the output transistor, so you can select
something reasonable (4.7 K or 1 K) and provide enough LED current to ensure
that the output transistor saturates. Or, use an optoisolator with a logic-level
output and ensure that sufficient LED current is provided to switch the output.

In addition to transistor and logic outputs, optoisolators are also available with
triac outputs. These are typically used to turn on large power triacs or SCRs for
switching AC power. They provide a simple means to turn on an AC semicon-
ductor while isolating the microprocessor from the AC voltage.

Driving Multiple LEDs
Sometimes you need to drive multiple LEDs from a single input; for example,
you may need to turn on multiple optocouplers or optical switches at the same
time. Figure 6.13 shows a method that is sometimes tried: hooking the LEDs in
parallel with a single limiting resistor. This doesn't work reliably. The LEDs have a
forward voltage drop, usually 1-2 V. However, this is dependent on temperature

Figure 6.13
Multiple LEDs in parallel.

Z ~ D 2
LED

+V

RI
RESISTOR

1 Z ~ D1
LED

_

160 Analog Interfacing to Embedded Microprocessor Systems

and the specific LED, so one LED tends to hog most of the current. The circuit in
Figure 6.14, with one limiting resistor per LED, is more reliable. Mso shown is a
constant current driver for multiple LEDs, with the LEDs wired in series. The
supply voltage for the series connection has to be higher than the forward drop of
all the LEDs plus the sense resistor voltage. Of co'urse, with this arrangement, if
one LED opens, they all quit working. However, using a series connection and

+V
ZX

RESISTOR

___Zx~ D1
LED

+V

R2
RESISTOR

LED

MULTIPLE
INDEPENDENT
LEDS

INPUT VOLTAGE

MULTIPLE
SERIES
LEDS,
CONSTANT
CURRENT
DRIVE

+V

S

RI
RESISTOR

Z ~ D3
LED

Z ~ D2
LED

Z ~ DI
LED

I
SENSE RESISTOR

Figure 6.14
Multiple series LEDs.

Solenoids, Relays, and Other Analog Outputs 161

driving with a constant current provides more uniform illumination in cases
where that is important.

Figure 6.15 illustrates a method that can be used to drive multiple LEDs with a
single pull-up resistor. In t.his circuit, each LED is turned on one at a time (by
driving the corresponding port bit low), so the differing forward drops do not
cause a problem.

DACs

As discussed in Chapter 2, DACs convert a digital word to a corresponding analog
voltage (or current). A DAC is at the heart of most ADCs. Other applications for a
DAC range from controlling the reference to a voltage comparator to simulating a
sine wave. I used a DAC in an unusual application years ago in a piece of military
gear that was replacing older equipment. The original equipment had an analog
signal that controlled a horizontal situation indicator (a meter) in an aircraft. We
were performing these functions in software, so the DAC, under software control,
generated the voltage to drive the analog meter.

The Analog Devices AD7801 is a typical 8-bit, voltage-output DAC. The micro-
processor interface consists of 8 data bits, a - W R signal and a -CS signal. Data is
written to the device by toggl ing-WR while --CS is low. The AD7801 can operate
at voltages from 2.7 to 5.5 volts. The part also has a - C L R pin that, when low,
loads the DAC with all 0s.

MICROPROCESSOR ,~
PORT BITS (3).
ONE PER LED.
ONLY ONE PORT
BIT LOW AT A
TIME.

+V

R1
RESISTOR

, , ~ D1 D2 D3
LED LED LED

Figure 6.15
Multiple multiplexed LEDs.

162 Analog Interfacing to Embedded Microprocessor Systems

T h e output of the AD7801 can swing from g round to the positive rail. The
reference for the device can be either the positive supply or an external reference
voltage. The ou tput can source or sink several milliamps.

Like ADCs, DACs are available with both parallel and serial interfaces. The
Analog Devices AD5300 is an 8-bit DAC with a rail-to-rail ou tput and an SPI-
compatible interface. Like the AD7801, the AD5300 can operate with supply
voltages from 2.7 to 5.5 volts.

Specialized DACs
DACs designed for special applications are also available. The Analog Devices
ADV7120 is a triple 8-bit video DAC designed for video use. The part contains
three DACs for the RGB (red green blue) video signals. The ADV7120 also has
SYNC and BLANK inputs that force all three outputs to the sync and blanking
levels, respectively (Figure 6.16). Other specialized DACs include audio parts with
built-in volume control and mute functions, and DACs that are optimized for use
in voice transmission systems such as telephones.

Digital Potentiometers

Although a DAC can provide a voltage or cur ren t ou tpu t for control, sometimes a
design calls for a variable resistance. Typical examples would be a volume or tone
control in a stereo or gain control in an opamp circuit. In these cases, a digital
potent iometer is often the ideal solution. Like a DAC, a digital potent iometer
takes a digital word from a microprocessor, but it converts the word to a resist-
ance instead of to a voltage.

T h e Analog Devices AD5220 is a typical digital po ten t iometer (Figure 6.17). It
comes in an 8-pin package, ei ther DIP or surface mount , and in resistance ranges

/

VEL
BLANKING LEVEL

I SYNC LEVEL

Figure 6.16
Video levels.

Solenoids, Relays, and Other Analog Outputs 163

U/D (PIN 2)

CLK (PIN 1)

-CS (PIN 7)

CONTROL
LOGIC m

V+ I(PIN 8)

GND (PIN4)

A (PIN 3)

WIPER (PIN s)

B (PIN 6)

TIMING:

CLK

U/D

-CS

FALLING EDGE
CLOCKS COUNTER $

\ / \ /

k, J k,

WHEN U/D IS HIGH,
CLOCKING MOVES
WIPER TOWARD
TERMINAL "A".

\ / \ /

WHEN U/D IS LOW,
CLOCKING MOVES
WIPER TOWARD WHEN -CS IS HIGH,
TERMINAL "B". CLOCK IS IGNORED.

F i g u r e 6 .17
Analog Devices AD5220.

of 10K, 50K, and 100K. It can operate at voltages from 3.3V to 5V. The
AD5220 simulates a three-terminal potentiometer with two terminals (A and B)
and a wiper (W). An internal 7-bit counter is decoded to determine one of 128
positions for the wiper.

The AD5220 inputs consist of a clock (CLK), a chip select signal (-CS), and an
up/down control pin (U/D). W h e n - C S is low, the device is selected, and falling
edges on the CLK signal will move the wiper. Clocking with the U/D pin high
moves the wiper toward terminal A (away from terminal B), and clocking with the
U/D pin low moves the wiper toward terminal B (away from A). To use the
AD5220 with a microprocessor, the clock input could be connected to a decoded
write strobe and the U/D connected to a microprocessor data line. Assuming data
line DO is used, to move the wiper toward terminal A, the processor would write
to the AD5220 address with a "1," and to move the wiper the other way the
processor would write a "0."

A mechanical potentiometer can be connected without concern about the
absolute voltages on the pins, as long as the dissipation of the device is not

164 Analog Interfacing to Embedded Microprocessor Systems

exceeded. A digital potentiometer has some limitations because it uses analog
switches to connect to taps on a solid-state resistor. The AD5220 resistor terminals
(A, B, and W) cannot be driven above the positive supply or below ground. The
AD5220 would not work as a volume control in the circuit shown in Figure 6.18A
because the coupling capacitor causes the A terminal to swing below ground. In
Figure 6.18B, a resistor, the same value as the AD5220 resistance, biases the A
terminal at 2.5 V, half the supply voltage. In this circuit, the AD5220 potentio-
meter connections will remain within the 0-5 V operating range of the part, as
long as the audio input signal amplitude doesn't exceed 5 V peak to peak (p-p).

An alternative connection is also shown in Figure 6.18, with two biasing
resistors at the B terminal of the AD5220. A bypass capacitor places the B
terminal at AC ground without affecting the DC level. This configuration has
the advantage that the biasing resistors don't load the signal input, but the bypass
capacitor must be large enough that it looks like a low impedance at all frequencies
of interest. For audio applications, this typically means an electrolytic capacitor.

If the amplifier were a single-supply opamp, the AD5220 could be placed in
the feedback network to control the gain. Because an opamp will not drive the
resistor terminals beyond the supply rails, no biasing resistors are needed. Of
course, biasing resistors may still be needed to keep the opamp inputs between
the rails.

A

FROM MICROPROCESSOR { [~

AMPLIFIER

I -

AUDIO INPUT ~1 +I V RESISTANCE EQUALS
ADS220 RESISTANCE

§ ADS22O B

C O N T R O L

FROM MICROPROCESSOR CLK LOGIC " - -
i

AMPUFIER

1 _-5
.

-1
T m

Figure 6.18
Digital potentiometer biasing to keep inputs between the supply rails.

Solenoids, Relays, and Other Analog Outputs 165

The Analog Devices AD5203 is a quad digital potentiometer with an SPI-like
serial interface. The AD5203 potentiometers each have 64 positions and have the
same voltage range limitations as the AD5220 (0 V to the positive supply). The
AD5203 comes in 24-pin DIP and surface-mount packages. The AD5203 has a
shutdown feature; by bringing the SHDN pin low, all four potentiometer wipers
are taken to the B terminal. When SHDN goes high again, the wipers resume
their previous position. A typical application for this would be a mute function in
a stereo.

One issue with digital potentiometers that does not occur with mechanical
potentiometers is power-up operation. A mechanical potentiometer will stay in
its last position when power is turned off, unless someone changes it. On power-
up, the AD5203 wipers go to their center position. This may not be the position
you want, and it probably isn't the position it was last in. The only way to ensure
that the digital pot remembers its position is to use nonvolatile storage. On
power-up, the software looks up the last position of each pot and sets the pot
accordingly. The software also needs to ensure that the power-up state of the
potentiometer doesn't damage whatever it is controlling.

Potentiometers that retain their setting when power is turned off are available.
Xicor makes a series of EEPOT devices with SPI, I2C, and increment/decrement
interfaces. The EEPOT series of parts contain an EEPROM and remember their
settings when power is removed.

Analog Switches

An analog switch can be thought of as a solid-state relay allowing a microproces-
sor to open or close a switch between two points. An analog switch is faster and
smaller than a relay, does not have contact bounce, and consumes considerably
less current.

Figure 6.19A shows the symbol for an analog switch and the internal construc-
tion. Inside the switch, an N-channel MOSFET is connected in parallel with a P-
channel MOSFET. Control circuitry turns both MOSFETs on or turns both of
them off. When both MOSFETs are on, current can flow in either direction, from
IN to OUT or from OUT to IN. The OUT and IN pin labeling is arbitrary; the
analog switch will work the same if the two pins are swapped.

Figure 6.19 shows the analog switch as having V+ and V- inputs; in practice,
some switches can operate from a single positive supply voltage and ground (V-
connected to ground, in other words). Some switches require a third voltage
input equal to the logic supply voltage.

166 Analog Interfacing to Embedded Microprocessor Systems

ON/OFF CONTROL ~

j

l
~--~ OUT

ON/OFF CONTROL

V- V+

CONTROL LOGIC]

OUT

Figure 6.19
Analog switch.

SIGNAL INPUT

CONTROL SIGNALS
FROM
MICROPROCESSOR

R2

! I
! J I ~ ! i j

R3

_

Practical Parts

Although an analog switch can be thought of as a solid-state relay, there are some
differences. For instance, the contacts of a relay are completely isolated from the

coil. You can switch hundreds of volts with no danger of the voltage reaching the

Solenoids, Relays, and Other Analog Outputs 167

microprocessor circuits. An analog switch requires power supplies for the switch-
ing transistors, so the voltage on the input and output pins cannot exceed the V+
and V - voltages. If the input or output pin is connected to a voltage outside this
range, the switch can be destroyed due to excessive current flow between the out-
of-range voltage and one of the supply voltages.

Some analog switches are fault protected, permitting the input and output pins
to exceed the supply voltage. Note that they won't switch voltages outside the
supply range, but they won't be damaged if that condition occurs. This feature is
intended for applications in which the supply voltage may be turned off while the
signals that the switch is controlling (such as audio signals from external equip-
ment) are still present. Typical parts include the Maxim MAX4511 and
MAX4512.

Because the analog switch is constructed using MOSFETs, there is some finite
ON resistance for the switch, equal to the drain-to-source resistance of the
transistors. Early analog switches had ON resistance values of a few hundred
ohms; modern parts can be less than an ohm.

The turn-on and turn-off time of an analog switch is specified as Ton and Toff
and usually ranges from a few tens of nanoseconds to a few microseconds.

Applications
Analog switches can be used to control the gain of an opamp circuit, as shown in
Figure 6.19C. In Figure 6.19C two feedback resistors (R1 and R2) are selected by
an external microcontroller to adjust the gain. Three gain values can be selected:
R1, R2, and R1 in parallel with R2. Note that the analog switches must be
supplied from a voltage that exceeds the maximum input and output voltages
that will be applied to them. This typically means the supply voltages of the
opamp, because the opamp output can go to the supply rails on power-up or if
both switches are open. In actual operation, once power has been applied and the
circuit is stable, the switch supply voltages would only need to be a little bit more
than the maximum input signal voltage on the noninverting opamp input.

Multiplexers
Figure 6.20 shows a 4:1 analog multiplexer. An analog multiplexer consists of two
or more analog switches with one common contact (labeled Y on the diagram).
The control inputs select which switch is closed, and therefore which of the inputs
(X1-X4) are connected to signal Y.

Analog multiplexers have the same operating characteristics as analog switches
with respect to input voltage range, ON resistance, and switching time. A typical
application for an analog multiplexer would be to select the audio input source
for a sound system.

168 Analog Interfacing to Embedded Microprocessor Systems

Xl

X2

X3
X4

CONTROL
INPUTS

CONTROL CIRCUIT

I

- - y

Figure 6.20
Analog multiplexer.

T h e Maxim MAX349 is a single 8-to-1 analog mult iplexer with an SPI inter-
face. T h e MAX350 is a dual 4-to-1 analog mult iplexer , also with an SPI interface.

Solenoids, Relays, and Other Analog Outputs 169

Motors 7

Motors are key components of many e m b e d d e d systems because they provide a
means to control the real world. Motors are used for everything from the vibrator
in a vibrating pager to moving the a rm of a large industrial robot. All motors work
on the same principles of e lectromagnet ism, and all function by applying power
to an e lec t romagnet in some form or another . We won't spend our time on
magnetic theory here. Instead, we will look at the basic motor types and their
applications in e m b e d d e d systems.

Stepper Motors

Stepper motors come in three flavors: pe rmanen t -magne t , variable-reluctance,
and hybrid. Figure 7.1 shows a cross-sectional view of a variable-reluctance (VR)
s tepper motor. The VR stepper has a soft iron rotor with teeth and a wound
stator. As cur ren t is applied to two opposing stator coils (the two "B" coils in the
figure), the rotor is pulled into a l ignment with these two coils. As the next pair of
coils is energized, the rotor advances to the next position.

The p e r m a n e n t magnet (PM) s tepper has a rotor with al ternat ing nor th and
south poles (Figure 7.2). As the coils are energized, the rotor is pulled around.
This figure shows a single coil to illustrate the concept, but a real s tepper would
have stator windings su r round ing the rotor. T h e PM stepper has more torque
than an equivalent VR stepper.

The hybrid s tepper essentially adds teeth to a p e r m a n e n t magne t motor,
resulting in better coupling of the magnet ic field into the rotor and more precise
movement . In a hybrid stepper, the rotor is split into two parts, an u p p e r and
lower (Figure 7.3). One half is the nor th side of the magnet and one is the south.
The teeth are offset so that when the teeth of one magne t are lining up with the
mating teeth on the stator, the teeth on the o ther magne t are lining up with the

171

SOFT IRON CORE

0

Figure 7.1
Variable-reluctance stepper.

J

Figure 7.2
Permanent magnet stepper.

172 Analog Interfacing to Embedded Microprocessor Systems

MAGNET

@ m N S ~

I

N S

Figure 7.3
Hybrid stepper.

grooves in the stator (in the side view in Figure 7.3, the tops of the teeth are

crosshatched for clarity). Some hybrid steppers have more than one stack of
magnets for more torque.

Bipolar versus Unipolar

All steppers work by creating a rotating magnetic field in the stator, to which the
rotor aligns itself. There are two types of stator winding methods for s tepper
motors: bipolar and unipolar. Bipolar windings use field coils with no common
connections. The coils must be driven independent ly to reverse the direction of
motor flow and rotate the motor. Unipolar motors use coils with centertaps. The
centertap is usually connected to the positive supply, and the individual coils are
g rounded (through transistors) to drive the motor. Figure 7.4 shows the differ-
ence between bipolar and unipolar motors. Each time the field is changed in a
bipolar motor or a different coil is tu rned on in a unipolar motor , the motor shaft
steps to the next rotation position. Typical step sizes for a s tepper are 7.5 ~ or 15 ~
A 7.5 ~ stepper will have 360/7.5 or 48 steps per revolution. The step size depends
on the number of rotor and stator teeth.

Resonance

When a s tepper motor rotates, it aligns the rotor with the magnetic field of the
stator. In a real motor, the rotor has some inertia and is moving when it reaches

Motors 173

DRIVE
LOGIC

BIPOLAR

A2

B2

A f

B f

WAVEFORM
FORWARD ROTA'nON

COIL A

COIL 8 ~ 1
J I J I

I I I I

VOLTAGE A1 [ov] .v J ov I +v] ov J
VOLTAGE A2 [+v I ov l § l ov I § I

VOLTAGE B1 [+v ! ov I +v J ov] +v]
VOLTAGE B2 [ov] +v J ov J +v [ov J

UNIPOLAR

Yl

Q1

A

V2

DRIVE V3
LOGIC . ~ Q3

B

V4

WAVEFORM
REVERSE ROTATION

COILA I I t I ~

COIL B I I I

Figure 7.4
Bipolar versus unipolar operation.

the ideal alignment, so it overshoots the final position. Because it is now out of
al ignment with the magnetic field, it "bounces" back and overshoots in the other
direction. This continues, with smaller oscillations, until the rotor finally stops.
Figure 7.5 illustrates this. The frequency at which the rotor oscillates depends on
the motor characteristics (rotor mass and construction, for instance) and the load.
If the motor is connected to a load that looks like a flywheel (a mechanical shutter
in an optical system, for example), resonance may be more of a problem than it is
with an unloaded motor. A load with a lot of friction, such as a belt-driven pulley,
has a damping effect that will reduce resonance (unless the belt is connected to a
flywheel).

Many stepper motors exhibit a sudden loss of torque when operating at certain
step rates. This occurs when the step rate coincides with the oscillation frequency
of the rotor. The torque can change enough to cause missed steps and loss of
synchronization. There may be more than one band of step rates that cause this
effect (because the motor has more than one resonant frequency). In a design that
uses only one step rate, these frequency bands (usually fairly narrow) can be
avoided by simply picking a step rate that is not a problem.

174 Analog Interfacing to Embedded Microprocessor Systems

Figure 7.5
Step motor ringing.

In a design in which the step rate has to vary, the system may need to be
characterized to identify the problem frequencies. T h e software may then need to
avoid opera t ing the motor at these step rates. When accelerating a s tepper up to a
particular speed, the software may have to accelerate rapidly th rough these
problem areas (Figure 7.6). This is particularly t rue if the acceleration r amp is
fairly slow, which would otherwise cause the step rate to spend some time in the

resonance area.

Half-Stepping
As was already ment ioned, the rotor in a s tepper motor aligns itself to the
magnetic field genera ted by applying voltage to the stator coils. Figure 7.7 shows
a simple s tepper with a single pair of ro tor poles and two stator coils. Say that coil
A is energized, and the rotor aligns itself to magnet A with the nor th pole up
(position 1), as shown in the figure. If coil A is tu rned off and B is energized, the
rotor will rotate until the nor th pole is at position 3. Now if coil B is tu rned off and
coil A is energized but in the reverse direction of what it was before, the ro tor will
go to position 5. Finally, if coil A is t u rned off and coil B is energized with the
reverse of its original polarity, the rotor will move to position 7. This sequence is

called one-phase-on drive.
Say that instead of energizing one magne t at a time, we energize coils A and B

at the same time. T h e rotor will move to position 2, halfway between magnets A
and B. If we then reverse the cur ren t t h rough coil A, the rotor will move to
position 4. If we reverse B, the rotor moves to position 6, and, finally, if we
reverse A again the rotor moves to position 8. Each of these methods generates a

Motors 17 5

LOSS OF TORQUE DUE TO RESONANCE

RESONANCE

STEP RATE

SPEED

ACCELERATING A STEPPER
THROUGH RESONANCE

/ /

RESONANCE ~ j ~ WHAT THE ACCELERATION WOULD
LOOK LIKE IF THERE WERE NO
RESONANCE FREQUENCY

TIME

Figure 7.6
Step motor resonance.

full step of the rotor (in this case, 45 ~ per step), but the actual position is different
for the two drive methods. If we combine the two, we can half-step the rotor:

A+, B off: position 1

A+, B+: position 2

A off, B+: position 3

A - , B+: position 4

In this simple example, half-stepping permits a step angle of 22.5 ~ as opposed
to 45 ~ for a full step. The same principle applies to a real motor with several rotor
teeth. A motor with a 15 ~ full step can be half-stepped in 7.5 ~ increments.

Figure 7.8 shows all three drive methods. Half-stepping provides smoother
rotation and more precise control. It is impor tant to note, though, that for the
positions where only one phase is energized (positions 1, 3, 5, 7), the coils need
more current to get the same torque. This is because there is only one coil
(electromagnet) pulling the rotor. Switching from two coils to one coil reduces
the torque by approximately 30%, so two coils have about 140% of the torque of a

176 Analog Interfacing to Embedded Microprocessor Systems

T
COIL

A

1
N

2

o

Figure 7.7
Half-stepping.

single coil. You can compensate for this loss of torque by increasing the coil
current by 140% when driving a single coil.

Microstepping
If you examine the drive waveform for half-stepping a motor , you can see that it
looks like a pair of digitized sine signals, offset by 90 ~ When the rotor is at
position 1, coil A is at the m a x i m u m voltage and coil B is at m i n i m u m voltage.
At position 3, coil A is off and coil B is at max im u m voltage. For half-stepping,
each coil has three possible drive values: positive drive, off, and negative drive.

If the rotor is at position 1 and coil B is energized slightly, the rotor will rotate
toward position 3. If the current th rough coil A is gradually decreased as the
current th rough coil B is increased, the rotor will slowly move toward position 3,
where it ends up when the current in coil A is zero and the cur rent in coil B is
maximum. If coil A and B are driven with sine signals that are offset by 90 ~ the
motor will rotate smoothly. Figure 7.9 shows the discrete drive waveform with the
equivalent sine/cosine drive and the cor responding rotor positions. A s tepper can
actually be driven this way.

Motors 177

COIL A

COIL B

ROTOR
POSITION

ONE PHASE ON
+DRIVE
OFF i I I I -DRIVE

I I +DRIVE
i I OFF

-DRIVE

1 3 5 7

COIL A

COIL B

ROTOR
POSITION

TWO PHASE ON
+DRIVE

-DRIVE

+DRIVE
J l OFF

-DRIVE

2 4 6 8

COIL A

COIL B

ROTOR
POSITION

HALF-STEP

J [I ~ +DRIVE
l I OFF

-DRIVE

I [+DRIVE
I OFF

-DRIVE

1 2 3 4 5 6 7 8

F i g u r e 7 . 8
Hal f -s tep dr ive w a v e f o r m s .

If the drive signals are generated from a DAC, the motor can be moved to
discrete points between the normal step or half-step positions. This is called
microstepping. It provides finer control of shaft position, but at the expense of
more expensive analog drive circuitry. The actual resolution obtainable by micro-
stepping depends on the resolution of the DAC, the torque of the motor, and the
load. For instance, say the motor is very close to position 2 and you want to
microstep it to position 2. If the load is too large, you may find that you have to
apply more torque than you wanted to to move it, and then it may overshoot the
position and stop in the wrong place.

178 Analog Interfacing to Embedded Microprocessor Systems

COILA

COIL B

HALF-STEP DIGITAL DRIVE

I I +DRIVE
I I OFF

-DRIVE

I I +DRIVE
! I OFF

-DRIVE
ROTOR
POSITION 1 2 3 4 5 6 7 8

COILA

MICROSTEP SINE/COSINE DRIVE
f ~ , ~ f ~ +DRIVE

j OFF

-DRIVE

+DRIVE
oFF COIL B ~ ~ . / , ,

~DR~V E
ROTOR
POSITION 1 2 3 4 5 6 7 8

Figure 7.9
Microstepping.

If you do need to perform small steps, you can use a bigger motor that can
overcome the load. In some cases, this may be a lower-cost solution than other
possibilities, such as a geared DC motor. Microstepping also reduces resonance
problems because the motor does not receive discrete steps, so the mechanical
r inging is less likely to occur. In a real application, a high-precision DAC is not
usually needed because the s tepper will not respond to very small changes in the
drive waveform. Typical microstep increments are 1/3 to 1/16 of a full step. In
other words, using a 10-bit DAC to microstep a s tepper motor will not provide
any practical advantage over using an 8-bit DAC.

Driving Steppers
The coils of a bipolar stepper are typically driven with an H-bridge circuit. Figure
7.10 shows a circuit that will drive both coils in a two-coil bipolar stepper. This
circuit consists of a pair of N-channel MOSFETs and a pair of P-channel MOS-
FETs for each coil. When input "A" is high, transistors Q1 and Q3 are turned on
and current flows from the positive supply, through Q1, through the motor
winding, through Q3, and to ground. When "A" is low and "B" is high, Q2 and

Motors 179

c

+V

Q2

+V

D2

D1

+V +V

COIL A

Q3 EN
[

_

+V +V +V +V

TQS Q8

COIL B
- (Y)'5'~ [~ v Q7

1~5 D8

_ .

Figure 7.10
H-bridge circuit.

Q4 are on and current through the motor winding is reversed. The circuit for the
other coil works the same way.

The diodes, D l-D8, protect the transistors against the coil flyback voltage when
the transistors are turned off. The motor shaft is rotated by applying drive voltage
to each input in the proper sequence.

Cross-Conduction

One common problem for designers who want to build their own H-bridge circuits
from discrete transistors is cross-conduction, also known as shoot-through. This is

180 Analog Interfacing to Embedded Microprocessor Systems

the condition that occurs when the upper and lower transistors on the same side of
the coil turn on at the same time. In the example in the previous section, this would
be transistors Q1 and Q2 or Q3 and Q4. If Q1 and Q2 turn on at the same time,
there will be a very low impedance between the supply voltage and g r o u n d m
effectively a short. This usually destroys one or both transistors. In a high-power
circuit, the results can be quite dramatic, with blue sparks and pieces of transistor
flying across the room.

Shoot-through can be caused (again going back to the same example) by
bringing inputs "A" and "B" high at the same time. As shown in Figure 7.1 1, it
can also be caused by bringing one input high while simultaneously taking the
other input low. If one of the transistors in the bridge turns off a little more slowly
than the others turn on, the result will be momentary shoot-through. It may not
be enough to destroy the part, but over time it can cause premature failure. Or,

A D o

/ E>

+V +V

Q1 CURRENT PATH
I IF Q1 AND Q2 D2

ARE BOTH ON

v

COIL A

fYYY~

+V

D3

Z - D4

+V

Q4

I

Q3

I

m
_

SHOOT-THROUGH CAUSED
BY SLOW TRANSISTOR

INPUTA

INPUT B

Q1 TURNOFF

Q2 TURNON

I
I
J l

i \ ,
I I

THIS OVERLAP CAN CAUSE SHOOT-THROUGH

PREVENTING SHOOT-THROUGH

INPUTA

INPUT B
I

, I I
I i

-~ ~- "DEAD.ME" DE~Y MUST EXCEE~
MAXIMUM TRANSISTOR TURNOFF
TIME

F i g u r e 7 . 1 1
S h o o t - t h r o u g h .

Motors 181

worse, the problem may show up only at high or low temperatures, making
failures that only happen in the field.

The usual method to avoid shoot-through is to introduce a short delay between
turning off one side of the H-bridge and turning on the other. The delay must be
long enough to allow both transistors to turn off before the other pair turns on.

I saw a design once (Figure 7.12) that used optocouplers to provide isolation
between the motor-control circuitry and the driving circuitry. The problem was
that optocouplers have a wide variation in turn-on/turn-off times. In production,
the only way to make the circuit work reliably was to hand-select optocouplers
that had similar characteristics. If the operating temperature varies widely, it is
possible that a circuit like this can fail in the field.

If you drive an H-bridge directly from the port outputs of a microcontroller,
be sure to take power-up conditions into account. Until they are initialized, the
port bits of most microcontrollers are floating. Depending on whether the H-
bridge logic sees this condition as logical "1" or "0," it can turn on both sides of the
br idge and cause shoot-through. Be sure everything comes up in a safe condition
and add pull-ups to the port pins if necessary. If the H-bridge drive inputs cannot
be guaranteed during power-up, use a power supply for the stepper motor that
has the ability to be disabled with a shutdown input.

Keep the motor power off until everything on the control side is stable. It may
be tempting to depend on the microprocessor getting out of reset and getting its
port bits set to the right state before the motor power supply comes up to a high
enough voltage to do any damage. This is a risky approach, as a faulty processor
may never get the ports set up right. If you use an emulator for debugging, there
may be a considerable delay between applying power and getting the ports set up
correctly. And what happens if you turn the power on but you forget to plug the

A ~

+V +V

C>

+V +V +V

I I COIL A
f Y Y ~

-to, I

+V

Q3 [

o

Figure 7.12
Shoot-through caused by optoisolator delay.

182 Analog Interfacing to Embedded Microprocessor Systems

emulator in? You could destroy the entire prototype setup. This can be a real
problem if there is only one of them. The safest route is to ensure that the power-
up state of the processor can't do any damage.

Shoot-through can also be caused by the driver transistors themselves. Figure
7.13 shows one half of an H-bridge driver constructed with MOSFET transistors.
MOSFETs have a fairly high capacitance between the gate terminal and both of
the other terminals (source and drain). In the figure, the capacitance is repre-
sented by the capacitance C, between the gate and drain of Q2. This capacitance is
usually on the order of a few tens of picofarads for a typical MOSFET used in a
motor application.

If transistor Q1 turns on to apply voltage to one side of the motor (the
transistor opposite Q2, not shown, on the other side of the bridge would turn
on as well), there will be a voltage spike at the junction of the drains of Q 1 and Q2.
This voltage spike will be coupled to the gate of Q2 by the capacitance C. If the
impedance of the device driving the gate of Q2 is high enough, the voltage spike
may be enough to turn on Q2 and cause shoot-through. Remember that the
voltage on the motor may be 24 V, 36 V, or more, and the gate of Q2 may need
only a few volts to turn on. So even if the signal is significantly attenuated, it still

A

I -

1
C T

I

I i
[~:>~OUTPUT RESISTANCE

OF DRIVER

+V

i I To,
Q2

I

INPUT A

Q1/Q2 JUNCTION

Q2 GATE

/

THIS SPIKE IS CAUSED BY THE SIGNAL ON THE
DRAIN BEING COUPLED INTO THE GATE BY
THE GATE-DRAIN CAPACITANCE (C). IT CAN
TURN ON Q2 MOMENTARILY, CAUSING
SHOOT-THROUGH.

Figure 7.13
Shoot-through caused by MOSFET capacitance.

Motors 183

may be able to turn on the MOSFET. This problem can be minimized by ensuring

that the impedance of the driver is low; if a series resistor is used to limit current
flow into the gate in case of transistor failure, make the value as small as possible.

Minimize trace lengths between the MOSFET and the driver device.

Current Sensing

Many designs need to sense the cur ren t th rough the s tepper motor coils. The
usual method for doing this is to place a small-value precision resistor in series

with the g round lead of the dr iver circuit (Figure 7.14). When the motor is turned

on, the cur ren t th rough the winding must pass th rough the sense resistor to

reach ground. This develops a voltage across the resistor that can be amplified

and sensed with an opamp amplifier. The amplifier output can be connected to

an ADC so it can be read by a microprocessor, or it can connect to one side of a
compara to r for digital detection of an overcurrent condition.

To avoid stealing excessive power from the motor winding, the sense resistor is

usually small, on the order of 19t or less. Even a lf l resistor will take a watt in a
motor drive circuit that uses one amp. This is a watt of power that is wasted as

heat. Generally, you want to make the sense resistor as small as possible without
making sensing difficult. As already ment ioned, Internat ional Rectifier makes a

series of MOSFETs known as SENSEFETs with an extra pin that mirrors a
fraction of the transistor current . This can be used for cur ren t sensing.

A

+V +V +V +V

t_ ARE BOTH ON

-t 1
SENSE RESISTOR

OPAMP CIRCUIT TO AMPLIFY SENSE VOLTAGE

Figure 7.14
H-bridge current sensing.

184 Analog Interfacing to Embedded Microprocessor Systems

Motor Drive ICs

There are a n u m b e r of ICs that can control and drive s tepper motors. The L6201

from SGS-Thompson is a typical part. The L6201 can drive motors up to 5 A with
supply voltages up to 48 V. The L6201 includes internal flyback protection diodes
and includes a thermal shutdown that turns the motors off if the part overheats.
The L6201 is available in DIP, SMT, and multiwatt packages.

The LM 18200 from National is another motor driver IC. This part includes a

pin that provides a thermal warning when the device is about to overheat. Unlike
the L6201, the LMD18200 does not require a sense resistor in the g round
connection of the driver transistors. Instead, the LMD18200 has a separate pin
that mirrors the current in the H-bridge. This pin (CURRENT SENSE O U T P U T

in Figure 7.15) typically carries 377 ~tA per amp of current in the bridge. If a
motor winding draws 2 amps, and a 4.99 K resistor is connected from the current
sense pin to ground, then the voltage developed across the resistor will be:

377 x 10 -6 • 2 x 4 9 9 0 - 3.76 V

The current sense output pin can be connected directly to an ADC or com-
parator input.

L6201 (I I-LEAD MULTIWAI-r PACKAGE)

> ENABLE
> SENSE

> VREF
> BOOT2

> IN2
D > GND

> IN1
> BOOT1

> OUT1
> V+

> OUT2

LMD18200 (I I-LEAD MULTIWAI-r PACKAGE)

11

190 >

1 >

BOOTSTRAP 2
OUTPUT 2
THERMAL FLAG
CURRENT SENSE OUTPUT
GROUND
V+
PWM INPUT
BRAKE INPUT
DIRECTION INPUT
OUTPUT 1
BOOTSTRAP 1

Figure 7.15
L6201 and L M D 1 8 2 0 0 m u l t i w a t t p a c k a g e s .

Motors 185

Chopper Control

Torque in a stepper motor is controlled by adjusting the current through the
windings. Because the winding is an inductor, applying voltage to the coil doesn't
cause the current to change instantly (Figure 7.16). As the current in the coil
increases, torque increases. So, if we want to have a particular torque, it takes a
while to get there once voltage is applied. However, as shown in Figure 7.16, if we
operate at a higher voltage (V2 in the figure), we get to the original torque value
much more quickly because the current increases along an exponential curve.
The problem is that we end up with too much current in the winding because the
current keeps climbing past the torque we wanted.

One way of generating torque faster is to use a higher drive voltage to get fast
current buildup, but turn off the voltage to the coil when the current reaches the
desired value. The chopper circuit in Figure 7.17 illustrates a way to do this. The
voltage from the sense resistor (amplified if necessary) is applied to one input of a
comparator. The other side of the comparator connects to a reference voltage
that sets the drive current.

A chopper oscillator~ typically operating from 20 kHz to 200 kHz (depending
on the motor and driver characteristics) sets a flip-flop. The output of the flip-flop
enables the H-bridge outputs. When the flip-flop output is low, the H-bridge is
disabled, even if one of the control inputs is high.

When voltage is applied to the coil and the current builds to the desired level,
the voltage across the sense resistor becomes greater than the comparator refer-
ence, and the comparator output goes low. This turns off the flip-flop and
disables the H-bridge until the next oscillator pulse occurs. As long as the current
is less than the desired level, the H-bridge will remain enabled.

The circuit shown in Figure 7.17 illustrates the concept. In practice, the
comparator reference voltage could be fixed, or it could come from a micropro-

Vl
VOLTAGE AT H-BRIDGE OUTPUT I !
(VOLTAGE ACROSS MOTOR COIL)

CURRENT THROUGH MOTOR COIL f

f
I

I

I

TAKES THIS LONG FOR
THE CURRENT TO REACH

LEVEL THE SAME LEVEL

Figure 7.16
Coil current as a function of supply voltage.

186 Analog Interfacing to Embedded Microprocessor Systems

INPUT A
INPUT B

ENABLE

H-BRIDGE

D

SENSE RESISTOR

COMPARATOR OSCILLATOR

_f
WHERE THE CURRENT WOULD
END UP WITHOUT CHOPPING

WHERE THE CURRENT ENDS UP

Figure 7.17
Chopper control of coil current.

cessor-controlled DAC. This would permit software control of the current and
therefore the torque. This would allow a stepper motor to be used in an applica-
tion with varying loads, as long as the microprocessor knows approximately what
the load is. It could also be used to compensate for the torque variation between a
single-coil and two-coil drive when half-stepping, or to generate the varying
signals needed for microstepping.

The chopping frequency has to be high enough to be significantly greater than
the maximum step rate of the motor, but low enough that the t~ansistors can
respond. If the chopping frequency is too high, the drive transistors will spend
too much time in the linear region (during the turn-on and turn-off times) and
will dissipate significant power (see appendix B).

The chopper oscillator and comparator could be eliminated and this entire
function could be performed in software. A regular interrupt at the chopping
frequency would be used as a time base. Each time the interrupt occurred, the
microprocessor would examine the sense resistor voltage (via an ADC) and
either enable or disable the H-bridge. Of course, the processor must be able to
service interrupts at the chopping frequency, which would limit that frequency
in a practical design. Using a microprocessor just to chop a single motor would
probably be overkill, but it might be cost-effective to use a single micropro-
cessor to control several motors if all motors were chopped with the same
clock.

Motors 187

Control Method and Resonance

Stepper motors driven with constant current drive (chopped or analog) are more
likely to have resonance problems at low step rates. Using half-stepping or
microstepping can usually overcome these problems. Of course, going from a
simple on-off H-bridge to a DAC-controlled microstepping scheme is a large step
in system complexity.

Steppers that are driven with constant voltage are more likely to have reson-
ance problems at higher step rates. Half-stepping and microstepping will not
solve these problems. However, a load with a significant damping effect (such as a
high-friction load) reduces resonance effects overall. If your application calls for
high step rates and a load that doesn' t provide much damping, use constant
cur ren t drive and half-stepping or microstepping to avoid low-frequency reson-
ance problems. What is a high step rate? It depends on the motor, but will
generally be in the range above 200 to 500 steps/sec.

Linear Drive

If you don ' t want to use chopping to get a constant cur ren t drive, you can use a
circuit like that shown in Figure 7.18. In this circuit, a power opamp, capable of
controlling the cur rent required by the motor coils, drives the top of the coil. The
voltage across the sense resistor (amplified if necessary) drives the inverting input
of the opamp. The opamp will a t tempt to keep the motor cur ren t equal to the
reference voltage.

REFERENCE VOLTAGE

POWER
OPAMP

m

MOTOR COIL

ENSE RESISTOR

_

Figure 7.18
Linear constant-current drive.

188 Analog Interfacing to Embedded Microprocessor Systems

A circuit like this is electrically quieter than the chopper, but it is much less
efficient. The power opamp will dissipate considerable power because it will
carry the same current as the motor coil and will usually have a significant
voltage drop. The power dissipated by the opamp at any time is given by
where V is the supply voltage, Vm is the motor coil voltage, and I is the coil
current.

A linear drive like this requires a negative supply voltage. It is possible to build
a bridge driver using two opamps that operates from a positive supply and works
like the H-bridge, driving one side of the coil positive or negative with respect to
the other.

The L297 (Figure 7.19) from SGS-Thompson is a stepper-controller IC. It
provides the on-off drive signals to an H-bridge driver such as the L6201 or to a
discrete transistor driver design. The L297 controls current in the motor wind-
ings using chopping. It has an internal oscillator, comparators, and chopping
logic. The oscillator frequency can be set by using an external resistor/capacitor or
an external clock. The chopping clock is also used to time turn-on and turn-off of
the phases to prevent shoot-through.

The L297 provides [bur phase outputs (ABCD) and two inhibit outputs for
chopping (INH1, INH2). An open-collector HOME signal goes low when the
L297 phase outputs are at the home position (ABCD = 0101). The L297 can
control a stepper in half or full steps.

FROM
MICROPROCESSOR

STEP [~

DIRECTION [~

RESET [~

CONTROL [~

ENABLE

HALF/FULL I~

HOME <]

+S

I CI.
LC

I osc I

I

R/C
DETERMINES T
CHOPPER
OSCILLATOR
FREQUENCY

tOPPING]
~GIC

I

DA

I>B
I>c

I>c

I> F~-2

TO
POWER
DRIVER
CIRCUIT

~> TO CURRENT
SENSE
RESISTORS

VOLTAGE REFERENCE
TO SET CURRENT
LEVEL

Figure 7.19
SGS-Thompson L297.

Motors 189

DC Motors

Figure 7.20 shows a cross-section of a DC motor, sometimes referred to as a
pe rmanen t magnet DC (PMDC) motor. A DC motor consists of a pe rmanen t
magnet stator and a wound rotor. Connection to the rotor windings is made with

brushes, which make contact with a commuta tor that is affixed to but insulated
from the shaft. When power is applied, the rotor rotates to align its magnetic field

with the stator. Just as the field is aligned, the commuta to r sections that had been
in contact with the brushes break contact and the adjacent commuta tor sections
make contact. This causes the polarity of the windings to reverse. The rotor then

tries to align its new magnetic field with the stator. The rotor rotates because the
brushes keep changing the winding polarity. The example shown in Figure 7.20

has four rotor arms, four brushes, and four commuta to r contacts. Some high-
performance DC motors do not use wound rotors, but instead print the rotor

winding as traces on a printed circuit. This provides a very low-inertia motor,

capable of high acceleration.
DC motors do not lose synchronization as s tepper motors do. If the load

increases, the motor speed decreases until the motor eventually stalls and stops
turning. DC motors are typically used in embedded systems with position en-
coders that tell the microprocessor what the motor position is. Encoders will be

covered in detail later in this chapter.
A DC motor is typically driven with an H-bridge, like a bipolar stepper.

However, a DC motor requires only one bridge circuit, because there are only

two connections to the motor windings. DC motors will typically operate at higher

speeds than equivalent s tepper motors.

MAGNET

ROTOR

COMMUTATOR

BRUSH

Figure 7.20
Cross-section of PMDC motor.

190 Analog Interfacing to Embedded Microprocessor Systems

Driving DC Motors

Like steppers, DC motors can be driven with an on-off chopped H-br idge or by

an analog driver such as a power opamp. However, where a s tepper motor

typically uses an analog drive or chopped PWM signal to control motor current ,
the DC motor driver design does not usually depend on cur ren t control. Instead,

the DC motor controller provides sufficient cur ren t to meet a part icular accel-

eration curve (as measured by the encoder feedback). If the motor has a larger-

than-normal load, then the driver circuit will increase the cur ren t to force the

motor to the correct speed. In other words, the DC motor controller increases or
decreases the cur ren t to maintain a part icular speed. Speed is moni tored , not

motor current . DC motor control circuits do sometimes sense cur ren t in the H-

bridge, but it is usually to detect an overcur ren t condition, such as occurs when
the motor stalls.

Figure 7.21 shows a typical DC motor operat ion with two different loads. The

motor accelerates to a constant speed, runs for a certain time, then decelerates
back to a stop. With light loading, the motor cur ren t profile is lower than with

higher loading. However, the controller applies sufficient cur ren t to the motor to

produce the required speed/t ime curve regardless of motor load. For this reason,

DC motors are usually bet ter for applications with large load variations.

MOTOR CURRENT
LOW LOAD

SAME MOVE BUT
HIGHER MOTOR LOAD

$

MOTOR
SPEED l

TIME

Figure 7.21
DC motor operat ion with dif ferent loads.

Motors 191

One feature of DC motors is the ability to brake them. If you manually turn the
shaft of a DC motor, you get a small generator. If you short the terminals of a DC
motor, it becomes difficult to turn the shaft because of the electromotive force
(EMF) the motor generates when it turns. If you short the motor terminals while
the motor is running, it quickly comes to a halt. This is called dynamic braking.

Figure 7.22 shows the H-bridge we've looked at before, but with a modifica-
tion. Here, we have separated the motor control inputs so we can turn each
transistor on and off separately. If we take inputs "A" and "D" high at the same
time, transistors Q1 and Q3 both turn on and the motor turns in one direction. If
"B" and "C" are both high, the other pair turns on and the motor turns in the
opposite direction.

Now, suppose the motor is turning and inputs "B" and "D" go low, then inputs
"A" and "C" are both driven high. This turns on transistors Q1 and Q4. One side
of the motor will be more positive than the other; let's say it is the left side for this
example. Current will flow from the positive supply, through Q4, through the
motor winding, through D2, and back to the positive supply. The motor is
effectively shorted out by Q4 and D2. This will stop the motor quickly. If the
right side of the motor is the positive one, the current will flow through Q1 and
D3. If we drive inputs "B" and "D" high instead of"A" and "C," we get the same
effect, with the current flowing through Q3/D1 or Q2/D4.

Many motor H-bridge ICs include braking capability. These include the L6201
and LMD 18200. The L6201 has two inputs to control the two halves of the bridge
circuit. If both inputs are brought to the same level (high or low), the driver will
brake the motor. The LMD 18200 has a separate input signal for braking.

Braking can be used to stop a motor quickly, or to hold it in position. One
limitation on dynamic braking as a holding force is that there will be no braking

A Do

B I>

c Do

+V +V +V +V

"A" AND "C" INPUTS Q4
[]~5 Q1 BOTH HIGH

I L

2 ~ D4

"B" AND "D" INPUTS
BOTH HIGH

o !>

Figure 7.22
DC motor braking.

192 Analog Interfacing to Embedded Microprocessor Systems

until the EMF genera ted by the mo to r exceeds the forward d rop of the diode in
the braking circuit.

T h e r e are ICs that provide a mo to r drive subsystem for DC motors; we will

examine this subject after covering brushless DC motors and encoders .

Brushless DC Motors

Figure 7.23 shows a cross-section ofa brushless DC motor. This looks very much like

a s tepper motor, and in fact a brushless DC motor works much the same way. The

stator in this motor consists of three coils (A1/A2, B l/B2, and C 1/C2). The coils are

connected in a three-phase a r rangement , with a common center point. A brushless

DC motor is more efficient than a brushed DC motor of the same size. This is

because the coils in a brushless DC motor are attached to the case (instead of to

the rotor), so it is easier to get the heat generated in the windings out of the motor.

A brushless DC moto r functions essentially as a DC motor , but without the

brushes. Instead of mechanical commuta t ion , the brushless DC moto r requires

that the drive electronics provide commuta t ion . A brushless DC moto r can be

dr iven with a sine signal, but is more typically dr iven with a switched DC signal.

Figure 7.24 illustrates both drive waveforms. For sinusoidal drive, the cu r ren t can

be control led with a c h o p p e r circuit, or a l inear drive can be used. Because the

�9

A2

ELECTRICAL CONNECTION

A2 AI ~ COILA

COIL B ~ 1 COIL C

COMMON

Figure 7.23
Brushless DC motor.

Motors 193

COIL A

COIL B

COIL C

COIL A

COIL B

COIL C

i l I i ! HIGH(SOURCING)
l l l ! OFF

LOW (SINKING)

[I [i HIGH (SOURCING)

l ! I ! OFF

LOW (SINKING)

~ 1 ! ! I 1 HiGH r
I I [I OFF

LOW (SINKING)

Figure 7.24
Brushless DC motor waveform.

coil positions are 120 ~ apart, the sinusoidal drive waveforms for the coils are 120 ~
apart. The sum of the currents in the three coils is 0. For the switched DC
waveform, there are always two phases on (one high, one low), and the third
phase is floating (off).

Note that if you use a sinusoidal drive, the dr iver does not need a negative
supply; the sinusoid can swing between g round and a positive voltage (or for that
matter , between two different positive voltages). If the drive goes from 0 V to 5 V,
when all three coils are at the same voltage there is no cur rent flowing. So the
midpoint between the two drive voltages (in this case, 2.5 V) can be picked as a
"virtual ground."

For digital drive, the driver circuitry for a brushless DC motor is simpler than for
a s tepper or brushed DC motor. Because each phase is either high, low, or off (high

194 Analog Interfacing to Embedded Microprocessor Systems

impedance), an H-bridge is not needed. Instead, the driver circuitry can just be a
totem pole output. Figure 7.25 illustrates how two MOSFETs can be used to drive a
brushless DC motor. The inputs to this circuit could come from a controller I C or

a microprocessor. Note that flyback protection diodes are needed in this circuit.
A brushless DC motor usually has at least one Hall-effect sensor (and more-

typically three) to indicate position. However, it is possible to drive a brushless DC
motor without any sensors. If you look at the digital drive waveforms in Figure

7.24, you will see that there are always two phases that are on (either positive or
negative drive) and one that is off. The moving rotor will generate a voltage in the
coil that is not driven. This voltage will cross zero once dur ing the OFF period,

and can be sensed to indicate the rotor position. Note that the voltage being
measured is the voltage across the unused coilmin other words, the difference

between the coil connection and the common connection point for all the coils.

DRIVE I [~

LEVEL
TRANSLATORS,

BUFFERS $
DRIVE 2

DRIVE I DRIVE 2 COIL DRIVE

V+

l IO , P-MOSFET

V+
Z~

/ D2

I
ENSE RESlSTOR

0 0 OFF
0 I LOW
I 0 HIGH
I I ILLEGAL-- CAUSES

CROSS-CONDUCTION

DI

NOTE: QI TURNS ON WHEN INPUT I = I, Q2 TURNS
ON WHEN INPUT 2 = I.

TO MOTOR COIL

Figure 7.25
B r u s h l e s s D C m o t o r dr ive.

Motors 195

Figure 7.26 shows a sensorless drive configuration for a brushless DC motor.
This circuit brings the common connection point of the three motor coils back to
the ADC circuitry as a reference. This is not always necessary; however, this
technique can reduce the noise in the measurement . If the common point cannot
be used as a reference, it could be connected to a fourth ADC channel and the
value subtracted from the sensed coil in software. If the common point isn't
b rought out of the motor, you can calculate its value in software if the micro-

processor is powerful enough. If the processor isn't powerful enough to perform
the calculation in real time, you can calculate the values and put them in a lookup
table.

When using the sensorless technique with a microprocessor, you will find that

there are noise spikes on the sensed coil when the transistors switch on and off.
You can filter this out with capacitors on the sense line, as shown in Figure 7.26,
or you can just ignore the samples from the sensed winding dur ing this interval.

COIL A

COIL B

COIL C

I ! I ! 1-'- H,GH (SOURC,NG)
OFF

I ! I i
LOW (SINKING)

1 1 I I H,GH (SOURC,NG)
I 1 I i OFF

LOW(S,NKING)

HIGH (SOURCING)
- I i I i I oFF

I 1 I !
LOW (SINKING)

I T t COIL B OFF, COIL B VOLTAGE SENSED
COIL C OFF, COIL C VOLTAGE SENSED
COIL A OFF, COIL A VOLTAGE SENSED

MOTOR

DRIVER

I R1 R2 R3

P,f.F

R4 C1 RS C2 R6 L C3

_

RESISTORS (Rt-R6) ARE A VOLTAGE DMDER,
TO BRING THE PHASE VOLTAGE INTO
THE ADC RANGE.

CAPACITORS (C1-C3) FILTER MOTOR
PWM NOISE OUT OF THE MEASUREMENT.

MICROPROCESSOR

F i g u r e 7 . 2 6
S e n s o r l e s s b r u s h l e s s D C m o t o r d r i v e .

196 Analog Interfacing to Embedded Microprocessor Systems

There are a number of brushless DC motor drivers that can take advantage of
sensorless, EMF-based position sensing. The Philips TDA5140 will drive motors
up to about 8A and can use either a sensor or sensorless driving.

Encoders

PMDC and brushless DC motors are usually used in e m b e d d e d systems with an
encoder attached to the shaft. This provides feedback to the microprocessor as to
motor position. A typical encoder is shown in Figure 7.27. In this scheme, four
magnets are placed a round the shaft of the motor and a Hall-effect sensor is
placed on the case. The Hall-effect sensor will p roduce tour pulses per revolution
of the motor shaft.

Four pulses per rotation of the motor shaft is sufficient to regulate motor speed
for a low-resolution application such as a cooling fan. If the motor is geared, so
that it takes many revolutions of the motor shaft to produce one revolution of the
(geared) output shaft, then this type of encoder is also suitable for more precise
applications. However, for cases where you need accurate information about the
position of the motor shaft within a single rotation, an optical encoder is normally
used.

Figure 7.28 shows a simple optical encoder . A glass disk is pr in ted with opaque
marks, 16 in this example. The glass disk is at tached to the motor shaft and a
slotted optical switch straddles the edges of the disk. Every time an opaque spot
passes th rough the slotted switch, the phototransis tor turns off and a pulse is
generated. This encoder will p roduce 16 pulses for every rotation of the motor
shaft. The controller can count pulses to de termine the angle of the motor shaft
and the number of revolutions.

HALL-EFFECT SENSOR

c.,.s,:

~ ~---- HALL-EFFECT SENSOR

MAGNETS (4)

OUTPUT
WAVEFORM] I ~ 1 I I I I

ONE
, REVOLUTION

I I I

I

F i g u r e 7 .27
Hal l-ef fect motor shaft encoder .

Motors 197

r- 3
I I I ~ SLOTTED SWITCH

i d
~ ENCODER DISK

i i

Figure 7.28
Simple motor encoder glass disk.

This simple encoder has one major drawback, common to the simple Hall-
effect encoder--how do you tell which way the motor is turning? Figure 7.29
shows a practical encoder arrangement that provides direction information. This
encoder still uses a glass disk with opaque stripes, but now there are two slotted
switches, located next to each other. The opaque stripe is wider than the distance
between the switches. As the opaque stripe moves under switch A, the output
(channel A) goes high. As the opaque stripe moves under switch B, that output
(channel B) goes high. As the motor shaft continues to rotate, the stripe clears
switch A and its output goes low, followed by switch B.

If the motor reverses direction, switch B is covered first, followed by switch A.
So this two-channel encoder (called a quadrature encoder) provides information
on position, speed, and direction. Typical encoders of this type produce between
50 and 1000 pulses per revolution of the motor shaft.

Encoders are also available with an index output, which uses a third encoder
and a single opaque stripe closer to the center of the disk. As shown in Figure
7.29, there is a single index stripe, so only one pulse is produced per revolution of
the shaft. This allows the system to know the absolute starting position of the
motor shaft, for cases in which this is important.

Figure 7.30 shows the pattern for a section of an absolute encoder. The
absolute encoder encodes the opaque stripes in a binary fashion so that the
absolute position is always known. Of course, this requires as many slotted
switches and stripe rings as there are bits of resolution. The figure shows the
outer four rings; an encoder with 6 rings would require 6 switches and would
divide one revolution into 64 unique codes. An encoder that provides 1024
unique positions would require 10 switches and 10 concentric rings on the
encoder disk. Absolute position encoders are extremely expensive. Their primary
use is in systems where the position of the motor shaft needs to be known at
power-up.

198 Analog Interfacing to Embedded Microprocessor Systems

OPTICAL OPTICAL
ENCODER ENCODER

DIRECTION \ EDGE OF DISK
OF ROTATION

WAVEFORM

CHANNEL A

CHANNEL B

REVERSE
ROTATION

CHANNEL A

CHANNEL B

I I

I I

INDEX STRIPE
(ONLY ONE)

INDEX
DETECTOR OPTICAL

" ~ ENCODER
B

OPTICAL
ENCODER
A

L /
/ OPAQUE STRIPE

DIRECTION
OF ROTATION

Figure 7.29
Practical quadrature encoder.

DC Motor Controller ICs

There are ICs that are designed for the control of DC motors. The LM628/
LM629 from National Semiconductor are typical devices. Figure 7.31 shows
how these two devices would work in a system. The LM628 has an 8-bit or 12-
bit output word (selectable) for driving the motor through an analog interface
using a DAC. The LM629 has PWM outputs for driving a motor, using PWM,

Motors 199

Figure 7.30
Absolute position shaft encoder.

MICROPROCESSOR

< 8 Brrs

LM628

INDEX
DATA ENCODER
BUS

READ

WRITE OUTPUT

CS

REG
SELECT

RESET

INTERRUPT

OPTIONAl

SHAFT
ENCODER

@

POWER MOTOR
OPAMP

MICROPROCESSOR

LM629

INDEX
DATA

) BUS ENCODER

READ

b WRITE ON/OFF

(~ CS DIR

REG
SELECT

RESET

INTERRUPT

SHAFT
OPTIONAL ENCODER

Figure 7.31
National Semiconductor LM628/LM629.

through an H-bridge. Both parts use a similar microprocessor interface. There is
an 8-bit data bus, READ and WRITE signals, a chip select, a reset, and a register
select signal. The LM628/9 also provides an interrupt output to the micropro-
cessor. The motor interface includes the output (PWM or DAC) and an input for
a two-channel quadrature encoder. There is also an input for an index pulse from
the encoder if the encoder provides one; this input is optional and need not be
used.

200 Analog Interfacing to Embedded Microprocessor Systems

When connected to a DAC and power opamp (LM628) or an H-bridge driver

(LM629), the LM628/9 provides a complete motor control subsystem. The micro-
processor issues a series of commands such as "move to position x with accelera-

tion y," and the LM628/9 will execute a trapezoidal move, accelerating the motor
to a particular speed, holding that speed, then decelerating the motor to a stop at
the right position. (The "position" is a count of encoder pulses, maintained in a
32-bit register.)

The LM628/9 uses two addresses. One address is a command address and the
other is for data. A command sequence starts with an 8-bit command opcode,
written to the command register by the microprocessor. This is followed by
anywhere from 0 to 14 bytes of data, either read from or written to the data
register. The commands for the LM628/9 are as follows:

Command Opcode Data following

Reset 00 None
Select 8-bit DAC output 05 None
Select 12-bit DAC output 06 None
Define home 02 None
Set index position 03 None
Interrupt on error I B 2 bytes, written
Stop on error IA 2 bytes, written
Set breakpoint, absolute 20 4 bytes, written
Set breakpoint, relative 21 4 bytes, written
Mask interrupts 1C 2 bytes, written
Reset interrupts 1D 2 bytes, written
Load filter parameters 1E 2 to 10 bytes, written
Update filter 04 None
Load trajectory 1F 2 to 14 bytes, written
Start motion 01 None
Read signals register 0C 2 bytes, read
Read index position 09 4 bytes, read
Read desired position 08 4 bytes, read
Read real position 0A 4 bytes, read
Read desired velocity 07 4 bytes, read
Read real velocity 0B 2 bytes, read
Read integration sum 0D 2 bytes, read

The LM628/9 index input is intended for use with an encoder that provides an
index output. The LM628/9 can capture the encoder position count and store it
in a separate register when the index pulse occurs. However, the index input
does not have to be connected to an encoder output. I have used the LM628/9

index input to indicate other conditions. For instance, in one system we had a
rotating carousel that was connected to the motor shaft via a gearbox. It took
many revolutions of the motor to produce one revolution of the carousel. We did
not need to know when the motor shaft reached a specific position, but we did

need to know when the carousel reached its home position. So the sensor (slotted

Motors 201

switch) that indicated when the carousel was at home was connected to the index
input.

One caution if you use this technique: the LM628/9 responds to the index
input when both the encoder channels are low, so the sensor output has to be low
while both encoder channels are low. To avoid multiple index capture events
from a single sensor input signal, be sure the index input to the LM628/9 occurs
for only one encoder cycle, regardless of how long the actual sensor input lasts. In
the actual application, a small CPLD handled the index inputs for multiple
LM629s. Figure 7.32 shows how the timing worked.

The interrupt output can be asserted for any combination of various condi-
tions, including a breakpoint, index pulse, wraparound, position error, or com-
mand error. The software determines which conditions generate an interrupt, by
setting a mask byte in the LM628/9. The interrupt output is level sensitive and
true when high. When using the LM628/9 motor controller, there are some
software considerations:

�9 The position registers in the device have a limited size" 32 bits for the LM628/9.
This means that if enough forward movements are made, or if the motor
continuously rotates, the registers will eventually overflow. The software must

CHANNEL A AND CHANNEL B
INPUTS FROM MOTOR
SHAFT ENCODER
INDEX SIGNALFROM I LOGIC I I~
CAROUSEL HOME
SENSOR

ENCODER

INDEX

LM629

SENSOR INPUT I
TO LOGIC

ENCODER J i I I ! I I ! i I I I
CHANNEL A

ENCODER -7 ! I I I I I I I 1 I I
CHANNEL B

INDEX OUTPUT
TO LM629

I J

LOGIC ENSURES THAT ONLY ONE INDEX PULSE
IS GENERATED TO LM629, REGARDLESS OF
HOW LONG SENSOR INPUT REMAINS ACTIVE.

I I - -

F i g u r e 7 . 3 2
L M 6 2 8 / L M 6 2 9 index t iming.

202 Analog Interfacing to Embedded Microprocessor Systems

take this condition into account. This is especially true if the software uses, say,
64-bit math. It would be possible, in software, to add an offset to a current
position and get an answer that is greater than 32 bits: for example, CO 17B390
(hex) plus 40000000 (hex) results in a result larger than 32 bits and cannot be
stored in the LM628/9 registers.

�9 When using the index input, the LM629 will capture the count. This becomes,
in effect, the "zero" or "home" position of the motor, and all moves are relative
to that position. However, the 32-bit position counter is not reset by the index.
So the software must offset moves from the index position.

�9 The fact that the LM628/9 uses two addresses (command and data) means that
there is the potential for a race condition. If an interrupt occurs in the middle of
a command sequence and the ISR also communicates with the LM628/629, the
original command will be corrupted. An example would be an in ter rupt that
notifies the processor that the index pulse has occurred. If the ISR reads the
index position, and the in ter rupt happens in the middle of another command,
the non-ISR code will get garbage data. Figure 7.33 illustrates this. To avoid
this condition, the software should disable interrupts a round non-ISR code (or
interruptible ISR code) that accesses the LM628/9.

These restrictions are typical and are not unique to the LM628/9. There are
other motor controller ICs available, and all have their quirks. The MC2300 series
from Precision Motion Devices (PMD) is a two-chip set that can control up to four

brushless DC motors. These parts can control two-phase or three-phase brushless
motors and can provide several motion profiles. The MC2300 can provide a digital
word for a DAC/amplifier driver, or PWM outputs for an H-bridge.

The MC2100 series, also from PMD, is a two-chip set for brushed DC motors.

Like the MC2300, the MC2100 parts support one to four motors, have 32-bit
position registers, and support multiple types of motion profiles. Both of the
PMD devices are based on a fast DSP that performs the actual motor manipulation.

The Agilent HCTL-1100 is a single-motor controller with a 24-bit encoder
counter and PWM or 8-bit digital outputs. The HCTL-1100 does not use an

MICROPROCESSOR WRITES 04 (READ REAL POSITION)
TO COMMAND REGISTER AND READS ONE BYTE OF
THE 4-BYTE POSITION VALUE

COMMAND REGISTER ~

DATA REGISTER ~ D:O:q II

INDEX INTERRUPT z~
OCCURS HERE

AFTER INTERRUPT, NON-ISR CODE GETS CONTROL
AGAIN AND A1-FEMPTS TO READ REMAINING 3 BYTES
OF POSITION DATA, BUT GETS INVALID RESULT

m:~:q ~:~:q m:~:q n ~:~:q ~:~:q ~:~

Y
ISR CODE ISSUES COMMAND 09 (READ INDEX POSITION)
AND READS FOUR BYTES OF DATA.

F i g u r e 7 . 3 3

LM628/LM629 interrupt timing.

Motors 203

address- and data-register scheme, but instead multiplexes the address signals
with 6 of the 8 data lines.

Software Controllers

In some cases, a DC motor might be directly controlled by a microcontroller,
using software, instead of using an off-the-shelf controller such as the LM628.
Reasons for this include the following:

�9 Cost: An off-the-shelf controller must be coupled with a microprocessor any-
way, so why not do away with the controller and just use the processor?

�9 Simplicity: In an off-the-shelf controller, you pay for all the generalized func-
tionality that the part provides. If you need only slow speeds, simple controls,
and limited features, you may be able to implement them in software.

�9 Flexibility: You can design the control algorithms to your requirements, in-
stead of just modifying PID parameters. You can also make very deep position
registers, 64 or 128 bits for specialized applications.

�9 Custom design: If your system has special requirements, such as special sensors
or a move-to-stop-and-apply-pressure for x milliseconds, you can implement
this because you will develop and control the algorithms.

If you decide to roll your own controller, there are a few things to consider.
The processor has to be fast enough to keep up with whatever processing
demands are required. This means also servicing encoder interrupts in a
timely fashion. In a software-based controller, the encoder on a DC motor
typically connects to one or more interrupt inputs. Figure 7.34 illustrates this.
One method of handling interrupts is to let one channel ("A" in the figure)
generate an edge-sensitive interrupt to the microcontroller. When the inter-
rupt occurs, the microcontroller reads the state of the other encoder channel
("B" in the figure). If channel B is low, motor motion is forward, and if "B" is
high, motion is reversed. For forward motion, the software-maintained position
register would be incremented, and for backward motion the register would be
decremented.

As shown in Figure 7.34, if there is enough latency between the rising edge of
channel "A" and the state of the ISR, channel B may have changed states and the
wrong result will be calculated by the firmware. If you implement a motor
controller with a system like this, be sure that your interrupt latency never allows
this condition to occur, even at maximum motor speed.

It is a good idea to make the interrupt a timer input if one is available. As
described in Chapter 4, the timer can be set one count before rollover, and the
encoder input will cause the timer to roll over and generate an interrupt. If an
interrupt is missed, the timer count will be 0001 instead of 0000 (for a timer that
increments starting from FFFF) and the missed interrupt can be detected. The

204 Analog Interfacing to Embedded Microprocessor Systems

WAVEFORM

CHANNEL A

CHANNEL B

REVERSE
ROTATION

CHANNEL A

CHANNEL B

CH A

CH B

I

.... I J

I J

THIS ISR IS OK - - COMPLETES
BEFORE CHANNEL B CHANGES
STATE

t

M!CROCONTROLLER

INTR PWM H-BRIDGE

SCHMITT-TRIGGER BUFFERS

I I

THIS ISR IS NOT OK - - CHANNEL
B HAS CHANGED STATE, AND
IT WILL APPEAR THAT MOTOR
MOTION IS REVERSED

F i g u r e 7 . 3 4
Encoder interrupt to microcontroller.

system as shown in Figure 7.34 will have only 1/4 the resolution of a typical system
using a motor controller IC, because it captures new position information on only

one encoder edge (rising edge of "A") instead of on all four edges. You could
compensate for this by using an encoder with more lines, but that could cost as
much as a motor controller IC. You can double the resolution of this circuit by
connecting both encoder channels to interrupts on the microcontroller. Most
microcontrollers permit you to read the state of an in ter rupt input as if it were
a port pin. When an interrupt occurs, the software reads the state of the other

input to determine motor direction.
Finally, to get the same resolution as a motor controller IC, you could add an

external PLD that generates interrupts on any input transition. This would also

let you filter the signals to eliminate spurious edges if necessary.
Another way to get higher resolution in a microprocessor-based controller is to

use a microcontroller that can generate interrupts on either clock edge. The
Microchip PIC16C series has an in ter rupt-on-change feature that can generate

an in ter rupt when selected pins change state.

Motors 205

Tradeoffs between Motors

The tradeoffs between DC motors, brushless DC motors, and steppers are as
follows:

�9 Stepper motors require no encoder and no feedback system to determine

motor position. The position of the shaft is de te rmined by the controller, which
produces step pulses to the motor. However, this can also be a disadvantage. If
the load is too high, the s tepper may stall and there is no feedback to repor t that
condition to the controller. A system using a DC motor with an encoder can tell
when this condition occurs.

�9 Steppers have no brushes, so they produce less EMI.

�9 A stepper can produce full torque at standstill, if the windings are energized.
This can provide the ability to hold the rotor in a specific position.

�9 A stepper can produce very low rotation speed with no loss of torque. A DC
motor loses torque at very low speeds because of lower current .

�9 DC motors deliver more torque at higher speeds than equivalent steppers.
�9 Because there is no feedback, a stepper-based system has no means to compen-

sate for mechanical backlash.

�9 Brushless DC motors require electronic commutat ion, which is more complex
than the drive required for brushed DC motors. However, the availability of
driver I Cs for brushless DC motors makes this less of a concern.

Without feedback, there is no way to know if a s tepper is really doing what it is
told to do. Consequently, s tepper motors are typically used where the load is
constant or at least is always known. An example would be s tepping the read/write

head mechanism in a floppy disk drive. The load in this application is fairly
constant. If the load varies greatly dur ing operation, a s tepper may stall out or
it may overshoot the desired position when trying to stop.

If the load varies but is known, a stepper may be useable by reducing the drive
current when the load is low and increasing the current when the drive is high. An
example of a known load would be a system that has to move something, but some-
times just has to position the motor into the correct position when there is no load. On
the other hand, if the %omething" that is being moved varies greatly in mass, friction,

and so on, then the load isn't really known and a stepper may not be the best choice.
When the load varies a lot, and especially if the load isn't known to the controller, a DC
motor with an encoder is usually a better choice than a stepper. The encoder allows
the controller to increase the current if the speed and/or position are not correct.

One way to achieve the benefits of the s tepper and the encoder/feedback DC
motor is to add an encoder to a stepper. This provides most of the advantages of
both systems, but at higher cost. The maximum speed of such a system will still be
slower than an equivalent DC motor, however.

206 Analog Interfacing to Embedded Microprocessor Systems

Power-Up Issues

One problem with DC motors is what happens when power is applied. We've
already looked at the issues sur rounding the power-up state of microcontroller
outputs. There are similar issues sur rounding any DC motor design, including
designs that use packaged controllers.

Typically, the logic that controls the motor H-bridge or analog amplifier

operates from 5 V or 3.3 V. The motor power supply may be 12 V, 24 V, or even
50 V. If the motor power supply comes up first, the inputs to the H-bridge or
amplifier may be in an invalid state and the motor may jerk momentarily. In a
system with a limited range of motion, such as a robotic arm, the motor may slam
up against whatever limits the travel. This can be hard on the mechanical com-
ponents and gears connected to the motor shaft. A DC motor can apply consider-
able torque in this condit ion--i t is equivalent to a 100% PWM duty cycle.

The best way to eliminate this problem is to ensure that the motor power supply
comes on after the logic supply is on and everything is stable. Some multiple-output
power supplies have an inhibit input for the high-voltage output that can be used for
this purpose. But how do you control the inhibit signal if the power supplies come up
together? The logic supply is not available to power the logic that inhibits the motor
supply. Some supplies have a low voltage (5 V or 12 V) output that comes up before
all the other supplies and is intended for precisely this purpose. This auxiliary output
is usually designed to supply minimal current (< 100 ma). In some cases, you can just
connect the inhibit input on the motor supply to a pull-up resistor from the auxiliary
supply (to inhibit the motor supply) and then pull the inhibit input to ground when

the logic electronics is stable. Figure 7.35 illustrates a one-transistor approach to this.
If the motor power supply cannot be controlled in this way, it may be necessary

to inhibit the H-bridge in some manner, possibly by using a gate between the
PWM output of the controller and the PWM input to the H-bridge. Of course, the
gate logic has to operate from the motor supply or another supply that is stable

when the motor voltage is.
Figure 7.36 shows a method I used in such a situation. The system used a

National LMD18200 H-bridge. The LMD18200 has a brake input that is nor-
mally used for braking the motor. In this application we weren't using braking, so
the brake input pin was available. When the 24 V motor supply is turned on and
the 5 V supply is not yet on, the MOSFET is turned off (because the gate is low). A
resistor pulls the MOSFET drain up to +24 V, but the voltage is clamped to 4.7 V
by a zener diode. This voltage is recognized as a logic HIGH by the LMD 18200,
which brakes the motor and prevents motion. Some time after +5 V comes up
(delay determined by R/C values at gate of MOSFET), the MOSFET gate goes
high, the MOSFET turns off, and the motors can operate normally.

Motors 207

LOGIC SIGNAL TO R2
ENABLE MOTOR SUPPLY !]
1 = SUPPLY ON RES

+SV AUX

R1
RES

Q1
NPN

TO INHIBIT ON MOTOR SUPPLY
+SV = INHIBIT,
OV = NORMAL OPERATION

Figure 7.35
Motor inhibit using auxi l iary power supply and power supply inhibit.

+24V

+SV R1
RES

L..

7
_

Figure 7.36
Motor inhibit circuit for LMD18200 .

4.7V

D> TO LMD18200
BRAKE INPUT

ZENER

Motor Torque

How do you know if the motor you have chosen is powerful enough for the
application? How do you know if you've picked a motor that is too big, adding
unnecessary cost to the system? Motors are specified with a particular torque, the
amoun t of force they can exert. The Pacific Scientific 4 N series of b rushed DC

208 Analog Interfacing to Embedded Microprocessor Systems

motors is specified with torque ranging from 55 to 163oz-in (0.39-1.15 N-m),
depend ing on the model. These values are at some specific rated cur ren tm6.8 to
14.1 amps in this case. There is also a maximum current that the motor can
withstand momentarily. The torque determines how much force the motor can
exert and therefore how fast it can accelerate a load to a given speed.

Staff Torque

The stall torque is the torque that the motor will generate if the rotor is locked so
that it can't turn.

Back EMF

When you spin a coil of wire in a magnetic field, you generate electricitymthis is
how the generator in a car works. A DC motor is a coil of wire spinning in a
magnetic field. When operat ing the motor generates a DC voltage, a back EMF,

that voltage opposes the voltage applied to make it move. The faster the motor
spins, the more back EMF is generated.

Torque versus Speed

The torque of a DC motor falls off with speed. This is due to several factors,
including the back EMF. This limits the max imum speed of a DC motor in a
practical application and the max imum torque it can generate at a given speed.

A Real-World Stepper Application

A final example will serve to illustrate certain real-time concepts and bringing

together some of the concepts described in this chapter. Figure 7.37 shows a
microcontroller controlling a five-phase s tepper motor. This circuit is a simplified

diagram of an actual application that I designed. In this circuit, the microcon-
troller directly controls the high- and low-side driver transistors for the five

s tepper phases. This motor controlled an agitator that mixes the contents of
bottles for a medical application. The gate drive logic allowed the microcontroller
to turn either transistor in the pair on or off, allowing the phase to be driven high,
driven low, or allowed to float.

The PWM output is wrapped back a round to another timer, which generates
an interrupt . This causes an in terrupt every T states, where T is the value in the
second timer. This in ter rupt rate is the step rate of the motor; larger values o f T
result in a slower step rate and higher values o f T result in a faster step rate. By

Motors 209

INTER:LOCK SWITCH

MOTION SENSOR

~ CLOCK

T=*F.A , ~ U U ~ I I I

PW~E OUTPUT g~TS I ,~._= J i

STT.P RATE
VARIES WITH TIMER VALUE

FOR SENSING MOTOR I 1
SUPPLY VOLTAGE ~ 1

MK:ROCONTROLLER 1 ~ I

j t
(CURRENT SENS~G) CURRENT

+24V

~ TO

(G~'nEI

PHASE DRIVER DETAILS U
(ONE PIER MOTOR PHASE) J _

CONTROL
FROM

M~R(X2ONTROU.ER

PWM INl~q" FROM
MICROCONlltOU.ER

MOTOR

Figure 7.37
Five-phase stepper motor system.

clocking the step rate timer from the PWM timer, the circuit ensures that changes
to the output state occur while the drive transistors are turned off.

This circuit has several requirements.

�9 When the door is closed, the microcontroller will ramp the stepper up to a
predetermined speed. If the user opens the door, the interlock switch opens
and the stepper ramps down.

�9 Motor current is controlled by the duty cycle of the PWM output, which chops
the current in the low-side MOSFETs. Motor current is increased as speed
increases to ensure that sufficient torque is maintained.

�9 When the motor stops, it must stop in a specific position to allow the operator to
add and remove bottles.

�9 The microcontroller has to monitor motor current, shutting down the motor
and generating a fault output if excessive current is drawn. An internal ADC is
used for this purpose.

�9 The position sensor generates a pulse once per revolution; the microcontroller
has to count steps from the position sensor pulse to the stopping position. A
fault output is generated if a full revolution is made without a pulse from the

210 Analog Interfacing to Embedded Microprocessor Systems

position sensor. The motor continues to operate in that case, but the s topping
position will be undefined and the external system displays a message for the
operator.

�9 The motor has to be ramped up when starting because the stepper motor will
stall if the full step rate is applied while the motor is s tanding still.

�9 The motor must not start until the motor supply voltage is present. If the motor
supply voltage fails, the motor must stop until the voltage is restored. This is
handled by providing the motor supply voltage to one of the microcontroller
analog inputs via a voltage divider. The microcontrol ler will not start motor
operation until the motor voltage is present.

�9 Finally, another t imer generates a t imeout every five milliseconds for deboun-
cing the interlock. This t imer does not generate an interrupt , but is polled by
the main loop. This is to ensure that the step rate in ter rupt is serviced imme-
diately, while the PWM output still has the transistors off. If the debounce t imer
were to generate an interrupt, the code would sometimes be executing the
debounce in ter rupt routine when the step rate in ter rupt occurred, and this
would delay servicing the step rate interrupt .

The system state is based on what the motor is doing:

�9 Stopped
�9 Ramping up to speed
�9 Ramping down to stop
�9 Running constant speed
�9 Seeking stop position
�9 Overcurrent (fault condition, requires power cycle to clear)
�9 Bad voltage (motor drive voltage not present)

Firmware

The firmware executes a continuous loop, servicing various functions as needed.
A simplified description of the various routines follows.
The logic for the main loop looks like this:

If in ter rupt flag is set, update speed and current .

If 5-millisec0nd t imer times out, debounce interlocks.

If position sensor pulse occurs, reset position count.

Update motor state.

If PWM active, start ADC conversion.

If ADC conversion complete, process motor current .

If position count passes one revolution, set position fault.
~

Motors 21 1

Speed and current update logic is as follows:

If motor Ramping Up,

Decrease speed t imer value (increases speed).

Increase PWM duty cycle (increases motor current) .

If speed t imer value = terminal value, change motor mode to Running

Constant Speed.

If motor Ramping Down,

Increase speed t imer value (decreases speed).

Decrease PWM duty cycle (decreases motor current) .

If speed t imer value = minimum, change motor mode to Stopped and turn

off PWM output .

Motor state update logic is:

If motor drive voltage not present and motor mode not Overcurrent , set

motor mode to Bad Voltage.

If motor drive voltage present and motor state - Bad Voltage,
set motor mode to Stopped.

If door open and motor Running Constant Speed and no position sensor
fault, change motor state to Seeking Stop Position.

If door open and motor Running Constant Speed and position sensor fault,
change motor state to Ramping Down.

If door open and motor Seeking Stop Position and position count is at
r ampdown point, change motor state to Ramping Down.

If door closed and motor stopped, start PWM and change motor state to

Ramping Up.

Switch debounce logic is:

If interlock indicates door closed and if door state indicates door open,
increment debounce counter 1 and clear debounce counter 2.

If debounce counter 1 = debounce value, change door state to closed.

If interlock indicates door open and if door state indicates door closed,
increment debounce counter 2 and clear debounce counter 1.

If debounce counter 2 = debounce value, change door state to open.

Motor cur rent uses the following logic:

If motor cur ren t exceeds overcur ren t threshold, stop PWM, set motor to
Overcurrent , set fault output.

212 Analog Interfacing to Embedded Microprocessor Systems

In te r rup t routine (step rate interrupt) logic is as follows:

Generate the next step in the sequence to the drive transistors (uses a
lookup table).

Set a flag to indicate that the in terrupt occurred.

Increment the position count.

As ment ioned in the pseudocode, the in ter rupt routine uses a lookup table.
The table contains bits for each high-side and low-side transistor; a 1 turns the
transistor on and a 0 turns the transistor off. Each entry in the table is the value
needed to advance the motor to the next step in rotation. The key real-time
requi rement for this design is fast, repeatable update of the motor phases. To
accomplish this, some tradeoffs were made, such as making the switch debounce
timer polled instead of letting it generate an interrupt.

Debugging outputs from the microcontroller included a port bit that was set at
the start of the main routine and cleared at the end. Another port bit was set at the
entry to the ISR and cleared just before exiting the ISR. Because most port bits
were used in the design, these two bits were shared with bits used for in-circuit
p rogramming.

Motors 213

Electromagnetic Interference 8

Electromagnetic interference (EMI) can be a problem in many designs. EMI is
broadly divided into two types: what your equipment does to the world around
you, and what the world around you does to your equipment. The first type is
called interference, and the second type is called susceptibility. Of course, suscept-
ibility effects are caused by interference from somewhere else and vice-versa. If
you've ever placed a television too close to an operating computer, you've prob-
ably seen both: the clocks in the computer create interference that results in snow
on the screen of the television.

This chapter will not focus on interference generated by your equipment,
except where that interference is self-generated. We will concentrate on suscept-
ibilitymwhat causes it and what you can do about it.

Ground Loops

The term EMI usually conjures images of high-frequency signals interfering with
normal circuit operation. However, errors also can be caused by simple AC and
DC circuits. The classical case of a ground loop occurs when you have two return
paths for ground current and one carries more current than the other. Figure 8.1
illustrates a microprocessor system connected to an external sensor system. The
microprocessor ground is connected through its power supply back to the build-
ing ground. The sensor system is also connected to the building ground, on a
different circuit. Let's say that the sensor ground is shared with some large AC
load, such as an air conditioner.

In theory, there is no current flowing in an AC safety ground, but in some cases
this current is not really zero. When the AC load is operating, the voltage at the
sensor circuit ground is different from the voltage at the microprocessor circuit
ground. The result is a ground-loop current flowing through the ground in the

215

120V AC
SAFETY GROUND

BRANCH I

SAFETY GROUND
BRANCH 2

POWER
SUPPLY

+V
GN MICROPROCESSOR

GROUND SIGNAL

SENSOR

F i g u r e 8.1
Ground loop.

cable connecting the sensor circuit to the microprocessor circuit. Ground loops
like this can cause measurement errors or even damage to the electronics. If the
potential difference between the grounds gets large enough, it can even burn
open the ground connections between the systems. I have seen driver electronics
destroyed when a large load (an air conditioner) switched on in a case like this.
The resulting ground surge pulled one end of an interconnected system several
volts away from the other and blew out the driver I Cs.

In the circuit shown, the ground current would probably be an AC current,
causing an AC error. A similar situation can occur with DC currents if the DC
grounds vary. This situation can also occur with two computers that are con-
nected together with a cable (such as RS-232) but are plugged into different AC
branches. The ground connection that causes a ground loop between two systems
does not have to be a ground wire in a signal cable. A shielded cable can cause
ground loops if the shield is connected to the chassis of both systems.

If you are designing a system that involves components that operate from
differing line voltages (such as a 208V, three-phase machine controlled by a
110 V computer), you might consider using Ethernet between the two systems.
Although you may not need the speed of Ethernet, the transformer-coupled
cabling eliminates common grounds and most AC ground-induced failures. An-
other option is to use a fiber-optic interface, which has no electrical connection. If
one end of the system is too simple to make a high-speed interface feasible (such
as a design that uses a microcontroller), you could use an optically isolated serial
interface. You can either buy off-the-shelf RS-232 isolators or define your own
optical isolation scheme.

Finally, in some cases, you might be able to specify that one of your system
components must have its own safety ground. In large systems that typically
require an electrician to come out and wire power, this may be feasible. In the
208 V/110 V example, you would specify that the 208 V equipment have its own
safety ground (not shared with anything else in the building). This doesn't protect
your equipment from ground spikes on the 110 V line, but it will provide some

216 Analog Interfacing to Embedded Microprocessor Systems

protection from voltage surges caused by large industrial equipment such as air
conditioners. Of course this solution is only as good as the building grounds
themselves; in an older building, you may have to improve the g round ing where

the power enters the building to avoid problems.
Figure 8.2 shows a simple system that is similar to one I worked on. Here, a

microprocessor-based system was connected via a cable to a sensor board that had
several things on it, among them a thermistor. In this case, the thermistor

amplification circuitry was on the microprocessor board, but the thermistor was

located remotely, where the tempera ture needed to be measured.
Say that the thermistor signal to the microprocessor is on the o rder of

10 m v p e r ~ The thermistor is at room tempera tu re (25 ~ so the thermistor
signal is 250 mv. The problem with this circuit is that the thermistor connects to
g round on the sensor circuit board. The sensor signal back to the microprocessor
board is a single wire, and there is a single g round wire between the sensor circuit
board and the microprocessor circuit. If the sensor circuit draws any significant
current, there will be a DC offset between the microprocessor board and the

sensor circuit. This introduces an offset to the thermistor signal, affecting the

tempera ture measurement .
Figure 8.3 shows the same circuit, but with resistances in all the lines. These

resistors represent the sum of the wire resistance and contact resistance in the

l DC POWER 1
MICROPROCESSOR- GROUND SENSOR
BASED SYSTEM THERMISTOR SIGNAL CIRCUIT GROUND

I
THERMISTOR

Figure 8.2
Thermistor system.

MICROPROCESSOR-
BASED SYSTEM

50 ma

I DC POWER I t vl]
I SO m SENSOR 0y GROUND I l GROUND

~300 mvTHERMISTOR SIGNAL 250 my I CIRCUIT
I J I
RESISTANCE

l OF WIRE l AND CONTACTS

SHOULD BE 250 mv,
IS ACTUALLY 300 mv AMPLIFIED THERMISTOR

VOLTAGE = 250 mv

(~ THERMISTOR

Figure 8.3
Thermistor circuit with wiring resistance shown.

Electromagnetic Interference 217

MICROPROCESSOR-
BASED SYSTEM

DC POWER

GROUND

THERMISTOR SIGNAL
THERMISTOR RETURN

SENSOR
CIRCUIT

I J (~ THERMISTOR

I

Figure 8.4
Thermistor circuit with separate ground.

connectors. Say that the total resi'stance in the ground wire is 1 ohm. If the sensor
circuit draws 50 ma, then the drop across the ground wire is 50 ma x 1 ohm, or
50mv.

The result of this is that the thermistor signal, which is 250 mv at the sensor
board, becomes 300mv at the microprocessor boa rd - - an error of 5 ~ If the
sensor circuit also controls an output, such as a heater that shares the same
ground, then the thermistor signal will j ump every time the heater is on. This is
due to the increased voltage drop across the wiring when the heater turns on and
draws current. The microprocessor will respond as if the temperature had actu-
ally changed. In addition, the error will vary with the current drawn by the sensor
circuit, which in turn varies with components from different manufacturing lots,
and so forth.

The solution to this problem is shown in Figure 8.4. Another wire is added to
the cable, providing a separate return for the thermistor signal. The thermistor is
no longer connected to ground on the sensor circuit board. The added wire can
be connected to ground on the microprocessor board, or it can be connected to
one side of a differential amplifier. Either way, there is no significant current
flowing in that wire, so the voltage offset (and the corresponding error) is mini-
mal. Of course, this solution requires another wire in the cable and another pin
on the connector.

In general, it is a good idea to avoid sharing grounds when using any remote,
low-level voltage source. Thermistors and millivolt-level signals should have
separate grounds to avoid problems with IR drop in the wiring.

Motor Current

Figure 8.5 shows a motor control circuit in which a motor controller drives a
PWM driver. The connection to the PWM driver includes the control signals and
the ground return. The problem with this approach is that there will be a current
spike every time the PWM driver turns on. Because some of the PWM ground
current flows back through the controller ground circuit, the current spike will
result in a small voltage spike on the controller ground. If this voltage is large
enough, the controller logic may interpret it as a level change on the control

218 Analog Interfacing to Embedded Microprocessor Systems

MOTOR
CONTROLLER

CONTROL PWM
GND DRIVER

DC MOTOR

+V GROUND +V GROUND

LOGIC SUPPLY MOTOR SUPPLY

Figure 8.5
P W M moto r control ler.

signals coming in. In addition, any ADCs on the controller board will see a
variation in the ground level, which may affect their accuracy.

This approach can be made to work if the return path has sufficiently low
impedance so that the voltage excursions on the ground are minimal. However, if
the motor draws significant current and you are also trying to measure anything
with millivolt accuracy, it may be impossible to get the grounds quiet enough with
this arrangement.

Another approach to this design is shown in Figure 8.6, where the logic supply
and motor supply have separate returns connected together at the power supplies.

MOTOR
CONTROLLER

PWM
DRIVER

DC MOTOR

+V GROUND +V GROUND

LOGIC SUPPLY MOTOR SUPPLY

Figure 8.6
Motor cont ro l le r wi th separa te grounds.

Electromagnetic Interference 219

This point is usually the chassis connection point. This arrangement fixes the
original problem because all the PWM current is now forced to flow through the
motor return, but it introduces a potential new problem. If the wiring resistance is
too high, the PWM current spike may cause the PWM controller to see invalid logic
inputs as its ground varies with respect to the controller ground. The solution to
this is to ensure that both grounds are low-impedance connections. For the motor
side, this may mean very large wire gauges or even wire braid. In other words, the
wire size may need to be selected to minimize EMI, not just to ensure that it can
handle the motor current.

Motor grounding and noise issues often arise because the system aspects of
grounding were ignored. In a large piece of equipment with subsystems designed
by different teams of people, the grounding is often not consistent. One subsys-
tem may have a connection between its logic re turn and chassis ground, introduc-
ing a ground loop because the chassis ground is repeated elsewhere. In a system
such as this, it is a good idea to consider the grounding as a separate system,
designed and managed to minimize EMI issues.

Self-Induced Current Errors

If you have a system controlling multiple motors, you can induce ground-offset
problems in software. If the software turns on all the motors at once, the resulting
current surge can yank the ground far enough to cause problems, even if the
ground impedance is fairly low. The solution to this is to sequence motor startup
so that the motors don't all start at once, and limit the number of motors that are
on at one time (where possible) to reduce the total current drawn. In cases where
motor current causes noise in the system that affects ADC measurements, take the
ADC readings when motors are off. This will minimize ground-noise-induced
errors.

Electrostatic Discharge

Electrostatic discharge (ESD) is the electric spark you sometimes get when you
walk across a carpet on a cold, dry day and touch a metal doorknob. This type of
high-voltage discharge can destroy electronic circuits. ESD typically has a large
amount of high-frequency energy because of the short, pulselike nature of the
discharge. Circuits can often be protected against ESD by adding ferrite beads or
EMI filters in series with the affected inputs.

Just like ordinary ground loops, ESD can get into your circuits via the grounds.
ESD can affect circuits with grounds that are otherwise excellent for carrying
their intended current because the ESD energy is high frequency. A good ground

220 Analog Interfacing to Embedded Microprocessor Systems

at DC is not necessarily a good (low-impedance) ground at RF frequencies. In
fact, one way to find grounding problems is to use an artificial ESD generator and
zap the chassis of your equipment. The circuits most affected (or most often
affected) are often those with grounding problems.

Self-Induced ESD

Any time you have a motor-driven system with belts, pulleys, plastic gears, or
other insulating, moving components, you have the potential for self-induced
ESD. Depending on the materials used, a belt running over a pulley can be an
excellent Van DeGraff generator. Figure 8.7 illustrates a practical system that I
worked on that had serious self-induced ESD problems. A plastic band heater was
wrapped partway around a rotating drum. Objects to be heated were guided
under the heater, and the pressure between the heater and the drum performed
a sealing action. The problem was that, somewhere between the prototype and
production, someone discovered that they could get better heat transfer by
changing the d rum material from a conductive to a nonconductive plastic. The
result was that, under the right conditions, you could draw a spark a quarter-inch
long from the back of the heater band. This caused serious problems with the
electronics, including random resets of the microprocessor. If you have rotating
drums, pulleys, belts, or other elements, be careful of the materials you choose.

ESD Protection

Figure 8.8 shows how diodes can be used for ESD protection. In Figure 8.8A, two
diodes are used to protect an input line against ESD. Diode D1 prevents the
signal from rising more than one diode drop above the supply voltage. Diode D2
prevents the signal from falling more than one diode drop below ground. The
problem with this approach is that the connections to power and ground have
some impedance, and the diodes may be slow to turn on, relative to the rise-time

BAND HEATER

Figure 8.7
Self-induced ESD from insulating, rotating drum.

Electromagnetic Interference 221

ESD INPUT

ESD INPUT
R1
I
RES

+S

DIODE

DIODE

+S

DIODE

DIODE

IC OR OTHER
SEMICONDUCTOR

IC OR OTHER
SEMICONDUCTOR

E
MOST OF THE ESD ENERGY
RETURNS TO SUPPLY ~,

PATH MAY ALLOW I
SOME ENERGY TO I
REACH ANOTHER I

DEVICE SOME
U BEING OTHER

PROTECTED DEVICE
BY DIODES

ESD INPUT ~ D1
DIODE D2

DIODE

D3
ZENER D4

ZENER
1 D

.

IC OR OTHER
SEMICONDUCTOR

ESD INPUT IC OR OTHER

R1, R2 DETERMINE CLAMP VOLTAGE.
C1 ABSORBS ESD ENERGY

D2 CLAMPS NEGATIVE EXCURSIONS
TO GROUND, BUT A SIMILAR

m DIVIDER/CAPACITOR ARRANGEMENT
COULD BE USED TO CLAMP TO A
NEGATIVE VOLTAGE

Figure 8.8
ESD protection.

of the ESD pulse. Figure 8.8B shows how the addition of a resistor in series with
the signal provides some protection against these effects; because of the capaci-
tance in the circuit, the resistor limits the risetime of the ESD pulse at the junction
of the two diodes. In circuits where a resistor cannot be used, a ferrite bead will
often work just as well.

The protection diodes themselves must also be able to handle the ESD energy.
Where does the ESD energy go? To the place that is often overlookedmthe
power supplies. The ESD energy will travel through the diodes to either ground
or power. If there is insufficient bypassing of the supply or if the PCB traces have
too much impedance, the device connected to the input may survive the ESD, but

222 Analog Interfacing to Embedded Microprocessor Systems

something else may be affected (Figure 8.6E). Most designs use power and
ground planes on the PCB, which minimizes this problem, but if you have power
or ground traces, be careful about ESD effects. Similarly, if the board with the
diodes is at the end of a cable, it is possible for the ESD to yank the board ground
around, damaging whatever the board is connected to.

Many of these effects can be minimized with the addition of ferrite beads on
the power and signal cables. Of course, you have to consider what the beads will
do to the intended signals as well--adding beads to a high-speed video cable may
fix the ESD problem, but it will also probably attenuate the desired video signal.

In some cases you cannot clamp to the power supply because even that is too
much voltage. A typical example would be an opamp circuit, operating from
+12 V, that is driving a logic-level output. Although the opamp will normally
not drive the output beyond the limits of the logic circuitry, an ESD pulse that is
clamped to the 12 rails might. An excursion beyond the logic supply voltage could
cause latch-up in the logic.

Figure 8.8C shows how zener diodes can be used to clamp the signal to some
voltage less than the supply rails. Finally, Figure 8.8D shows how a resistor
divider and filter capacitor can clamp the voltage; the capacitor must be large
enough to absorb the ESD energy without an appreciable voltage change. This
may require a low-value capacitor, a round .01 ~f, in parallel with a larger electro-
lytic. The smaller capacitor responds quickly to the ESD pulse, compensating for
the limited high-frequency performance of the electrolytic. This technique has
the added advantage that the incoming ESD is clamped to ground if the power
supply is turned off.

When adding ESD protection, take system considerations into account. Adding
protection diodes to the inputs may prevent damage when ESD occurs, but the
system may still see an erroneous input. What will the system do in this case? It
may be necessary to perform some filtering in software to ignore transient con-
ditions on the inputs. In some cases, you might actually want to reset the system
under certain interference conditions. This may require the addition of a watch-
dog timer to the microprocessor.

Electromagnetic Interference 223

High-Precision Applications 9

In this chapter we will look at high-precision applications. High precision is not an
easy term to define, but for our purposes, we will say that it is any application that
requires more than 10 bits of accuracy.

A requ i rement for high precision usually stems from one of two places: a need
to measure very small values, or a need to measure a wide dynamic range. High
precision typically translates into more resolution: a 12- or 16-bit ADC instead of
an 8- or 10-bit part. However, added resolution brings new problems. A 10-bit
ADC with a 5 V range has a resolution of 4.88 mv per ADC step. A 12-bit ADC has
a resolution of 1.2 mv per step. Just to pick one example , a signal fluctuation of
3 mv will cause at most a plus or minus 1 count variation in a 10-bit sys tem--
which amounts to 2 or 3 counts at 12 bits and 10 counts at 16 bits.

Some of the errors in high-precision applications can be caused by the opamps
in the circuit. Figure 9.1 shows a simple noninver t ing opamp configuration. We
can write the basic opamp equation like this:

V o = A v (V + - V _)

where Vo is the output voltage, Av is the opamp open loop gain, V+ is the voltage at
the noninvert ing opamp input, and V_ is the voltage at the inverting opamp input.

Because V+ pin is connected to the input, V 1, and V_ is a voltage divider with
Vo and ground:

g Vo x R1

R 2 + R 1

substituting these values into the basic opamp equat ion makes the following
equation:

V o - A v (V 1 - V ~

225

v1

R1

_

R2
I I

Vo

Figure 9.1
Non inve r t i ng o p a m p circuit .

Expanding leads to

Vo(R1 + R2) - (Av x V1 x R 1) + (Av x V1 x R 2) - (Av x Vo x R1)

Solving for Vo is performed in the following equation:

A v x V 1 xR1 A v x V 1 x R 2
V o = +

R1 + R2 + (Av x R1) R1 + R2 + (Av x R1)

Dividing both terms on the right by Av/Av is performed in the following
equation"

V l x R 1 .V1 x R 2
V o = +

R1 R2 R1 R2
~-~v -}- ~vv + R1 ~--~v + ~vv + R1

If Av is very large, we are left with

V1 x R 2
Vo - V1 + or

R1
V o = V 1 1 +

This is the equation normally used for the transfer function of a noninverting
amplifier. However, it was derived by assuming that Av is large enough to make
anything divided by Av in the previous equation effectively zero. What happens in
a practical opamp? The LM318, a low-power opamp, has a gain that ranges from
50,000 to over 200,000. Suppose we have a noninverting amplifier with
R1 = 10 K and R2 = 50K, and V1 is 1.2 V. Using the ideal equations we get an
output voltage of

(V o = V 1 l+R-i- = 1.2V 1+1--0-~/ = 7 . 2 V

226 Analog Interfacing to Embedded Microprocessor Systems

Now, if the opamp is an LM318 with a gain of 100,000, and using the nonideal
equation, we get this:

A v x V 1 x R 1 A v x V 1 •
V o - +

R I + R 2 + (A v • R I + R 2 + (A v x R 1)

100 ,000x 1 . 2 V x 10k 100 ,000x 1 . 2 V x 5 0 k = +
10K + 50K + (100,000 x 10k) 10K + 50k + (100,000 x 10K)

-- 7.199568V

This is close to the ideal 7.2 V result, but it is off by 432 ~tv. This e r ror would
not be a problem in an 8-bit, 0-5 V system, but it is 5 steps in a 16-bit ADC system.
The problem gets worse with higher closed-loop gain. Suppose that R2 is 110 K
(gain = 12) and the input is 0.6v. The ideal ou tpu t is still 7.2 V. The actual ou tpu t
with a gain of 100,000 is 7.199136, which is 864 tav from the ideal value.

Input Offset Voltage

In an ideal opamp, the ou tpu t will be 0 any time both inputs are at the same
voltage. In a real opamp, the internal transistors are not precisely matched and
may not be at exactly the same tempera tu re . This produces an input offset
voltage. The input offset voltage of an opamp is defined as the voltage that must
be applied across the inputs to produce 0 volts at the output . To see the effect of
input offset voltage on an opamp, we will look at the noninver t ing amplifier
again. The equation for the output , when taking offset voltage into account is

Vo - Av(V+ - V_ + Vx),

where Vx is the input offset voltage. Adding this new term into the original
opamp equations gives

V ~ A v (V1 V ~)
- R 1 + R 2 + V x

Solving the equations for Vo, and assuming that Av is very large, we get

V1 x R2 V x x R2
V o - V 1 + + Vx +

R1 R1
o r V o - (V l + V x) I+R-i -

As you can see, the offset voltage is multiplied by the same gain factor as the
input voltage is (including the effects of real, versus ideal, values of Av). The effect

High-Precision Applications 227

is to introduce an er ror term into the output. If we use the LM318 opamp again,
we find that the data sheet shows an input offset voltage of 4 mv (typical) to 10 mv
(maximum). Using the max imum offset and a gain of 6, we get an output offset of
6 x 10 mv, or 60 mv. This is three ADC steps, or 2 bits of imprecision, in an 8-bit,
0-5 V system. In a 16-bit system, it is 786 steps or 9 bits of imprecision! Clearly,
the LM318 is not suitable for a high-precision application.

To be fair, the LM318 is an excellent example to illustrate the offset voltage
problem, but it is an older part, originally designed for high speed and low
power, not high precision. A better part for precision designs is the Maxim
MAX400, with a max imum offset voltage of 10 12 v. In our circuit with a gain of
10, the MAX400 input offset voltage would produce an output er ror of only
6012 v. This is less than 1 bit of er ror even in a 16-bit, 0-5 V system.

Input Resistance

O p a mp designs usually assume that the current flowing into the opamp inputs is
zero because the input impedance is infinite. A real opamp has some current
flowing into the inputs because the impedance is finite. The LM318 data sheet
specifies an input resistance from 0.5 Mf~ (minimum) to 3 Mft (typical). Just for
simplicity, we will assume that the source driving the noninvert ing input has a low
enough impedance that the current is negligible. This will allow us to examine the
inverting input only.

Figure 9.2 shows the effect of input resistance, Ri, from the inverting to
noninvert ing inputs. If we assume that the input resistance is equal to the typical
value, 3 Mf~, then the opamp output equation looks like this:

R1

1 ,

INPUT RESISTANCE

V1

R2

V+ Vo

Figure 9.2
Opamp input resistance.

228 Analog Interfacing to Embedded Microprocessor Systems

g o
R1Ri + R2Ri

R 1Ri + R2 R 1 + R2 Ri

Av
+ R1Ri

IfAv is very large, then the/AV term goes to zero, the Ri term cancels out, and
the result is equal to the ideal equation. So the effect of input resistance is
dependent on the open-loop gain of the opamp.

The input impedance range of the LM318 is fairly low as opamps go; the
MAX400 has an input resistance at least 30 Mft. Clearly, choosing a better opamp
will alleviate errors caused by input resistance. Another approach is to change the
impedances; changing to smaller resistors for Rf and R1 will reduce the error
caused by input resistance. Of course, this increases the output current of the
opamp and may affect other parts of the circuit.

We ignored the input resistance of the noninverting input in this example. If
the application calls for connecting the opamp input to a high-impedance source,
then the input resistance of the noninverting input must be taken into account; it
has the effect of making a voltage divider with the resistance of the source.

Frequency Characteristics

Figure 9.3 shows an approximate, typical, gain-versus-frequency plot for the
LM318. The open-loop gain falls off with increasing frequency, approaching
0 dB (gain of 1) at around 10 MHz. As shown before, using actual gain versus
ideal gain for the LM318 resulted in a noninverting amplifier with an ideal gain of
6 having an actual gain of 5.99964 (7.199568/1.2). Using the chart in Figure 9.3 to
estimate the open-loop gain, we find that it falls from 100,000 at 0 Hz to 3000 at
1 kHz, and to 500 at 10 kHz. If we plug this into the output equation for a 1.2 V
input signal, we get the following results:

�9 Output voltage at 0 Hz = 7.199568 V(gain = 5.99)
�9 Output voltage at 1 kHz = 7.185 V(gain = 5.98)
�9 Output voltage at 10 kHz = 7.115 V(gain = 5.93)

Even with an 8-bit system, there are 2 bits of error at 10 kHz. The frequency
characteristics of an opamp affect the accuracy in high-precision applications. The
effects get worse with higher gain; if the same opamp has an ideal gain of 60
instead of 6 (R1/R2 = 10 K/599 K), then the gain falls to 59.688 at 1 kHz and
54.28 at 10 kHz.

High-Precision Applications 229

GAIN (db)

120

100

90

80

70

60

50

40

30

20

10

0 I

10 100 IK IOK lOOK IM IOM

FREQUENCY (Hz, LOG SCALE)

Figure 9.3
LM318 gain versus f requency.

Temperature Effects in Resistors

T h e value of a resistor changes with t e m p e r a t u r e . T h e relat ionship between

resistance and t e m p e r a t u r e is def ined as the t e m p e r a t u r e coefficient (TC) and is

specified in parts per million per deg ree cent igrade (ppm/~ Typical t empera-

ture coefficients for film resistors range f rom 2 5 p p m / ~ to 100ppm/~ The

formula for calculating the t e m p e r a t u r e coefficient is as follows:

TC - R2 - R1 x l 0 6
(T2 - T1)R1

where TC - t e m p e r a t u r e coefficient, T2 - t e m p e r a t u r e 2, T1 - t e m p e r a t u r e 1,

R 2 - resistance at t e m p e r a t u r e 2, and R1 - r e s i s t a n c e at t e m p e r a t u r e 1. To find

the new resistance at a new t e m p e r a t u r e , we can r e a r r a n g e the equat ion to look

like this:

T C • • (T 2 - T 1)
R2 = + R1

10 6

230 Analog Interfacing to Embedded Microprocessor Systems

Using the noninver t ing opamp circuit we've been looking at, suppose that the
resistors have a 100 ppm tempera tu re coefficient, and the resistors have nominal
value at 25 ~ If the 10 K resistor is next to a power IC that raises the tempera-
ture of the resistor by 10 ~ what happens? Using the preceding equation, we get
a new resistance of 10,010 ohms. This changes the (ideal) opamp gain from 6 to
5.995. The output voltage goes from 7.2 to 7.194 vol tsmno appreciable effect on
the 8-bit system we've been looking at, but a 1-bit e r ro r in a 10-bit system, and a
2-bit e r ro r in a 12-bit system.

This example is a bit contrived to illustrate the point, because one resistor is
considerably hotter than the other. This example does point out that things such
as circuit-board layout (how close the 10 K resistor is to a power IC) can also affect
accuracy. Moving the 10 K resistor farther from the hot componen t could reduce
this specific error. You could also see this kind of e r ro r if the two resistors had
different t empera tu re coefficients. Using resistors with lower t empera tu re coeffi-
cients will reduce t empera tu re - induced errors overall.

Voltage References

All ADC systems require some kind of voltage reference. All voltage references
have some nominal value, but they also have a tolerance that specifies how much
they can vary from this value. Because references are semiconductor devices, they
are susceptible to t empera tu re effects as well.

The LM336A-2.5 is a 2.5 V reference diode that is used much like a zener is
used (Figure 9.4). When opera ted within its specified cur ren t range and at 25 ~
it has a voltage range between 2.44 and 2.54 volts (the B version has a wider
range). If an LM336 is used as a refierence to measure voltage with an 8-bit ADC,
an input of 1 V will result in an output value between 100 (at 2.54 V) and 104 (at
2.44 V). In a 10-bit system, the same 1 V input will result in an output value
between 403 and 419.

Figure 9.4 shows what happens in an ADC system using an LM336 with
nominal, maximum, and min imum values. At an input voltage of 0, the ou tpu t
code will be 0. As the measured voltage rises, the code read from the ADC
diverges from the nominal value by a constant percentage.

Unlike a zener, which has two leads, the LM336 has three leads. Figure 9.4
shows how the third lead can be used to adjust the voltage of the device. In the
circuit shown, the adjustment range will be about 120 mv. Of course, this requires
a manual adjustment in the system.

Compensat ion for the voltage variation could also be accomplished in software.
I r a known, precise voltage is applied to the system, the soitware can calculate
what the offset is. In the example we just looked at, if 1.000 V is applied to a 10-bit

High-Precision Applications 231

+V

R1
ULL-UP

LM336-2.5

2.5V

1OK

+V

R1
ULL-UP

LM336-2.5

m

VOLTAGE ADJUSTMENT

2.5V

Figure 9.4
LM336 vol tage reference.

ADC using an LM336 reference, the output value will be 409 if the LM336 is at
exactly 2.5 V. If the output is 419, then the software knows that the LM336
voltage is low and that all results should be multiplied by 409/419 or 0.976. If
the result is 403, then the results should be multiplied by 1.014.

Of course, many systems cannot implement floating-point calculations, but the
same thing can be accomplished with a 1024-entry table. Each value read from
the ADC is used as an index into the table to get the corrected value. This has the
advantage of requiring the calculation to be made only once, when the table is
created, but at the expense of memory usage. Such a scheme requires a calibra-
tion step after the product is built, and nonvolatile storage to hold the results. As

232 Analog Interfacing to Embedded Microprocessor Systems

with any such calibration scheme, field replacement of parts means that the field
engineer either must be able to calibrate the system, or the calibration values
(microprocessor and/or memory) must be changed if the part of the system
containing the reference is changed.

Microcontroller-based designs often do not have any leftover pins to tell the
CPU when to operate normally and when to capture a calibration value. If your
design uses a pin as an output, you can pull it up with a resistor and use a switch
or shunt j u m p e r to ground it. On power-up, the software checks the pin. If the
pin is high, it is p rogrammed as an output and the normal code is executed. If the
pin is low, it has been externally g rounded and the code executes the calibration
function.

The LM336 voltage also varies with temperature , typically 30mv over the
range from - 5 5 ~ to +125 ~ This drift has the same effect on the result as
the voltage tolerance, but it is tempera ture dependent .

More precise voltage references are available. The Maxim MAX6225 is a 2.5 V
reference with a voltage range between 2.499 V and 2.501 V at 25 ~ The part is
available in different versions with tempera ture coefficients as low as 2 ppm/~
The MAX6225 also has the capability to add a potent iometer that allows adjust-
ment of the voltage range by about 30 to 50 mv.

Temperature Effects in General

As was already mentioned, the opamp offset voltage varies with temperature ,
resistor values vary with temperature , and other components vary with tem-
perature, including voltage references for ADCs and opamp biasing. All of
these errors accumulate in one direction or another, affecting the overall
result.

If the components for a particular high-precision subsystem can be collected in
one place, such as one corner of a circuit board, it may be possible to compensate
for them in software. You can do this by placing a tempera ture sensor near the
high-precision part of the circuit. The system can then be calibrated at various
temperatures, with the software maintaining a table of actual ADC results for a
known input at each temperature.

Say you are measuring some input voltage generated by a sensor. You could
apply a precise voltage to the input of your high-precision measurement system
and then put the system in an environmental chamber where you can control the
temperature. The microprocessor measures the input voltage, then measures the
temperature. The result is placed into a table. At each tempera ture point and
each input voltage point, a new table entry is made. The results are stored in some

High-Precision Applications 233

kind of nonvolatile memory, such as EEPROM. In operation, every time the
system makes a measurement, it also reads the temperature and looks up the
actual input value that corresponds to that measurement value at that tempera-
ture. If there are a lot of data points, the table will get very large, so you may want
to calculate the compensation value instead of using a table. To make use of this
technique, you must be able to do the following:

�9 Ensure that all the high-precision parts of the circuit and the temperature
sensor can be collected into one area and are at the same temperature. This
may require potting the parts or using a fan. The non-high-precision parts,
such as the microprocessor, do not need to be controlled in this way.

�9 The software must have sufficient storage or th roughput to build a table or
calculate compensation values.

�9 Provide precise inputs and hold the temperature during calibration. The
results are only as good as the input value and the temperature control. The
example just mentioned used a simple voltage monitor to illustrate the concept.
In some systems, such as something that measures light or sound, providing
precise inputs may be problematical.

�9 If any components in the high-precision part of the circuit produce significant
self-heating, such as power dissipated in a resistor, the results will be less
precise.

This technique does not lend itself to large production volumes, due to the
need to calibrate every system. And if the sensor is remote, temperature effects
at the sensor cannot be compensated this way (but a second temperature
sensor mounted with the remote input sensor would permit such compensa-
tion).

Noise and Grounding

Figure 9.5A shows a high-resolution ADC and a crystal-controlled oscillator.
When the oscillator output switches, current flows through the oscillator
ground connection back to the power supply. Because the ground connection
will never have zero impedance, the ground connection for the ADC will have
a voltage "spike." The size of this voltage pulse will depend on the impedance
of the ground connection and the amount of current produced in the ground
by the oscillator. The higher the resolution of the ADC, the lower this voltage
can be and still cause problems. Even if the ADC is too slow to respond to the
individual voltage spikes, the average variation can result in noise in the ADC
output. Figure 9.5B shows how the grounding arrangement can be changed to

234 Analog Interfacing to Embedded Microprocessor Systems

HIGH-RESOLUTION
ADC

CRYSTAL
OSCILLATOR

TO POWER SUPPLY
GROUND

HIGH-RESOLUTION
ADC

CRYSTAL
OSCILLATOR

ANALOG GROUND

TO POWER SUPPLY ~'/ DIGITAL GROUND
\

Figure 9.5
Ground noise.

minimize this error. The oscillator has a separate connection back to the power
supply. This is typically implemented with a separate ground plane for the
analog circuitry, connected to the digital ground plane either at the ADC
ground pin or at the point where the power supply connects to the board.
A single-point connection minimizes the amount of digital current that can flow
in the analog ground plane.

This example used an ADC, but the same principles apply to DACs, sample-
and-hold circuits, and opamps. Most high-precision circuits will need a separate
ground plane for analog signals. Sometimes multiple analog ground planes, for
different analog sections, are required.

Finally, some ground noise immunity can often be gained simply by amplifying
the signal you are trying to measure. If you are measuring with a 12-bit ADC,
going from 0-to-100 mv to 0-to-2.5 V changes the ADC step size from 24.4 ~v to
610 ~ v. With a 100 mv range, a ground offset or noise signal of 24.4 ~tv will result
in a 1-bit error in the result. With a 2.5 V range, the noise/offset has to reach
610 ~t v to produce a 1-bit error. Of course, any noise or offsets that appear on the
inputs will be scaled by the same amount, but any noise added to the signal after
the scaling (such as ground noise on the ADC) will not.

High-Precision Applications 235

Printed Circuit Board Layout

The layout of the printed circuit board (PCB) is important in any analog system.
Poor board layout can result in ground loops and noise. As resolution goes up,
these add more to the error.

PCB Grounding

This has been mentioned already, but you generally want to avoid having any
current flowing in the analog ground except what is associated with the analog
signals. If digital signals flow through the analog ground, they will induce noise
on the grounds of the analog parts such as the opamps and ADCs. In some cases,
you have to supply power to a PCB at the end of a cable. The cable resistance can
cause significant offset in low-level analog signals if the current is high. For high-
resolution applications, use a separate analog ground plane and add a separate
analog ground to the cable. This means at least one extra pin on the connector,
but it minimizes the offset caused by DC currents.

Some noise coupling into analog systems comes from capacitive coupling
between traces. Run analog traces at right angles or at 45 ~ to digital traces. Use
two analog ground planes and sandwich the analog traces between them. If an
analog trace must run next to a digital trace, move it as far away as possible and
run a ground trace between them.

An ADC must have both analog and digital sections, and many ADCs have both
an analog and a digital ground pin. Keeping digital noise out of the analog part of
the circuit is a key factor in high-precision designs. Many ADC data sheets say to
connect the analog ground to the digital ground at the digital ground pin. But
what do you do if your design requires two ADCs? You can't have two single-
point connections to a single ground plane.

Figure 9.6 shows two ways of handling this. In Figure 9.6A, a board has a
digital ground plane and two analog ground planes. Each analog ground plane
has a single-point connection to the digital ground plane. This approach will
work if the two analog sections have no common connections.

Figure 9.6B shows a method you can use if the two analog sections have some
common signals such as a common ground. A single analog ground plane is tied
to the digital plane at one point. In this arrangement you will typically connect the
ADC digital grounds to the digital ground plane, not to the analog ground plane.

Power Supplies

An analog circuit sometimes has to be designed into a circuit board for a standard
bus, such as PC/104 or VME. The power supplies on these buses are often not

236 Analog Interfacing to Embedded Microprocessor Systems

ANALOG GROUND PLANE 1

SINGLE-POINT CONNECTION

DIGITAL GROUND PLANE

ANALOG GROUND PLANE 2

SINGLE-POINT CONNECTION

r--1
1223

I J

I>

!-~ [:]

ANALOG GROUND PLANE

DIGITAL GROUND PLANE

SINGLE-POINT CONNECTION - ~ o

[2:3 E:3
| 'j

E:3 (223
| J
i r a !

Figure 9.6
Multiple analog devices on a single PCB.

suitable for analog components. They are often noisy, and you don't always get
the voltages you need. Many computer systems, such as PC/104, operate with 5 V
only, or with 5 V and 12 V only.

In some cases, you can fix a noisy supply by adding LC filters, as shown in
Figure 9.7A. The inductor and capacitor must be selected to filter out the power-
supply switching frequency, which is usually in the tens of kilohertz. In some

High-Precision Applications 237

FROM COMPUTER SUPPLY

5V DC

m

TO ANALOG COMPONENTS

SV DC
LOGIC

SUPPLY

CONVERTER

[,
CONVERTER ANALOG VOLTAGE (-)

_

+
LOGIC

GROUND

ANALOG SYSTEM

I

~:-oc § ANALOG VO,TAG~ (-,-)
CONVERTER _} o

1 ~ 121

i U

i i :l ~ CONVERTER ANALOG VOLTAGE (-)

ANALOG
GROUND

OPTICAL
ISOLATORS

DIGITAL
SYSTEM

Figure 9.7
DC-DC converters in analog circuits.

applications you need different voltages than the voltage supplied on the bus to
which you're interfacing. An analog input that has to accept + 12 V inputs but is
operating from a 5 V only system is a typical example. Figure 9.7B shows how
DC-DC converters can be used to produce additional voltages. Because the DC-
DC converter is a switching supply, you may need to filter these outputs.

It is also possible to completely isolate the analog subsystem from the digital
system to which it interfaces. Figure 9.7C shows the use of DC-DC converters with
isolated outputs and an analog ground that is separate from the digital ground.
This system might include a precision analog front-end and an ADC to convert
the analog signals to digital. Optical isolators are used to communicate between

238 Analog Interfacing to Embedded Microprocessor Systems

the analog and digital systems, making noise management easier and avoiding
the possibility of ground loops between the two systems. You can minimize the
number of optical isolators needed by using a serial interface such as SPI and
using the bidirectional technique described in Chapter 3. Note that when you are
testing and debugging such a system, your test equipment should not connect the
two grounds together or you may introduce noise problems. An example of this
would be the use of a dual-channel oscilloscope with the two probes grounded to
the two different grounds.

Statistical Tolerancing

When determining the worst-case range of values in an analog circuit, you can
use the specified extreme limits of the parts to guarantee a good design. If you are
using 1% resistors, assume that the actual resistor values your manufacturing line
receives will span the full range and that a worst-case stackup will occur even-
tually. This results in the safest design, but it may result in unnecessary complica-
tion. For instance, calculating the worst-case tolerance stackup may result in a
design that requires manual adjustment.

Most components you use in your design will not have an equal probability of
occurring in every value. In most cases, the distribution of values will fit some
variation of the normal (bell) curve. If you are using 1% resistors, you will find
that most of the resistors you get are closer to the nominal value and very few
resistors differ from nominal by 1%. How wide the spread is depends on the
process used by the manufacturer.

If you are calculating tolerance stackup for a circuit containing multiple parts,
the probability of getting all the values skewed at the ends of their respective
ranges is small. The more parts there are, the smaller this probability is. You can
estimate the percentage of circuits that will be out of tolerance by taking into
account the tolerance ranges and distributions of all the parts in that specific
circuit. There are simple statistical methods for determining the resulting spread
of values, such as the sum-of-squares method. A more complex analysis such as a
Monte Carlo simulation can be performed using statistical software packages.

Statistical tolerancing depends on the parts that go into the tolerance stackup
having distributions across their ranges and also depends on the distribution of
one part not affecting the distribution of another part. Therefore, to make
statistical tolerancing work, the following things must be true:

The components you are combining must be independent. For instance, if you
have two resistors of the same value, it is very possible that, in production, they

High-Precision Applications 239

will come from the same manufacturing batch and therefore may be very close
to each other in value. These could not be considered independent parts.
The components you are tolerancing should have some reasonably normal
distribution. For example, suppose that you are using a voltage reference diode
and suppose that the manufacturer selects out the ones that are very close to the
nominal value for sale at a higher price under a different part number . The
parts you will be left with will not be normally distributed, but will be skewed
toward the ends of the tolerance band.

When you have finished the calculations, you will have an estimate for the
range of values that will be produced in your circuit as a result of the range of
component values that go into it. You can calculate what percentage of the parts
will fall outside the acceptable limits. Then you have to make a decision.

�9 If you are building an inexpensive board, you may be able to throw away any
boards that are outside specification. This, of course, implies a way to measure
the assembled circuits so you know when one is outside spec.

�9 If you are building an expensive board costing hundreds or thousands of
dollars, it may not be feasible to throw away any bad boards. In that case, you
have to decide whether statistical tolerancing is worth the cost. For example,
you may have to choose between reworking 4% of your boards and having a
manual adjustment on all of them. Which is cheaper in terms of manufacturing
and support costs?

In making these decisions, true worst-case tolerancing is always the safest
approach. However, statistical methods often give acceptable results at lower
cost.

Supply-Based References

This book has used as examples supply-based references such as an internal
microprocessor ADC that has the +5 V supply as a reference voltage. For
consistency, this chapter has done the same thing in many cases. However,
in a real-world high-precision application, it is rare to find a logic supply used
as a reference. In most systems, the logic supply is noisy and is not regulated
well enough to serve as a reference for ADCs or opamps. Again, it was used
here so that the examples would be consistent with those found elsewhere in
the book.

240 Analog Interfacing to Embedded Microprocessor Systems

Summary

To summarize, in a high-precision application you need to consider the effects of
all the following factors:

�9 Opamp open-loop gain
�9 Opamp input offset voltage
�9 Opamp input resistance
�9 Opamp frequency/gain roll-off
�9 Temperature effects in resistors
�9 Temperature effects in voltage references
�9 Grounding
�9 PCB layout
�9 The possibility of isolating the high-precision part of the system

High-Precision Applicatwns 241

Standard Interfaces 10

Most embedded systems interface to sensors and output devices directly. However,
there are a couple of standard interfaces used in industrial applications. Devices
meeting these specifications are usually attached to an industrial compute r (indus-
trial PC) or a programmable logic controller (PLC). They are briefly covered here,
because the embedded designer may run into them somewhere along the way.

IEEE 1451.2

The IEEE 1451.2 is an open s tandard that provides a s tandard interface for
sensors and actuators. IEEE 1451.2 defines the electrical and interface protocol.
IEEE 1451 sensors and actuators contain an e m b e d d e d microprocessor on a
module called a Smart T ransduce r Interface Module (STIM). T h e STIM micro-
processor handles the physical interface to the sensors and the s tandard interface
to the controlling system. Each STIM can contain up to 255 sensors or actuators.

Electrical

IEEE 1451 is a 10-wire, synchronous, serial interface. Signals include +5 V, ground,
data-in and data-out lines, a clock, an interrupt , and other signals. IEEE 1451
STIMs are hot swappable, meaning they can be inserted and removed with power
applied. Each IEEE 1451 STIM can suppor t multiple transducers or actuators.

Transducer Electronic Data Sheets

IEEE 1451 specifies that each STIM have a t ransducer electronic data sheet
(TEDS) This tells the controlling system certain parameters about the t ransducers
on the module, including uppe r and lower range limits, warm-up time, calibra-
tion information, and timing information. T h e specification also includes

243

additional TEDS parameters that are optional, some that are sensor specific, and
some that are reserved for future extensions to the standard.

Standard Units

Informat ion passed from an IEEE 1451 STIM must be in s tandard units. The
actual sensor may be measur ing tempera ture , voltage, cur ren t pressure, velocity,
or any other real-world parameter . Whatever is being measured is converted to a
s tandard unit before it is t ransmit ted to the controlling processor via the IEEE
1451 interface. The IEEE 1451 s tandard permits sensors to suppor t the following
units:

�9 Length (in meters)
�9 Mass (in kilograms)
�9 T ime (in seconds)
�9 Cur ren t (in amps)
�9 T e m p e r a t u r e (degrees kelvin)
�9 Amount of substance (mole)
�9 Luminous intensity (candela)
�9 Plane angle (radians)
�9 Solid angle (meters 2)

Whatever unit the sensor measures in must be converted to these s tandard
units. A sensor may be measur ing speed in miles per hour or furlongs per
fortnight, but it must be converted by the STIM microprocessor to meters per
second before transmission over the IEEE 1451 interface.

When the controlling processor reads sensor data from an IEEE 1451 sensor,
what gets t ransmit ted is a string of exponents , one for each of these values. The
velocity-measuring example just given would output a positive exponen t for
meters and a negative exponen t for seconds, making a meters/second result. All
the other exponents would be 0 (anything to the 0 power, except 0, is 1). The
s tandard also provides for digital data from a sensor or to an actuator.

Although this method complicates the software in the STIM microprocessor, it
provides a s tandard interface for the controlling processor. In theory, any IEEE
1451 STIM can be attached to any IEEE 1451 controller and it will work.

4-20 ma Current Loop

T h e 4 - 2 0 m a s tandard (Figure 10.1) uses the same pair of wires to power a
remote sensor and to read the result. The controlling microprocessor, usually
an industrial PC or other industrial computer , provides a voltage on a pair of

244 Analog Interfacing to Embedded Microprocessor Systems

PC OR OTHER
CONTROLLER

4-20 ma
SENSOR

CONTROLLER MEASURES
CURRENT IN LOOP

Figure 10.1
4 - 2 0 ma current loop.

wires. The controller also senses the current in the wires. The sensor converts
whatever it is measuring (temperature, velocity, etc.) to a current value. The
sensor draws 4 ma at one end of its measurement range, and 20 ma at full scale.

Because the 4-20 ma loop is differential, the system is suitable for sensors that
are removed from the controller by quite a distance. Any common-mode noise is
ignored by the current measurement circuit. One drawback to this method is the
need for a pair of wires and sensing circuitry for every sensor in the system.

Fieldbus

Fieldbus is a digital, serial, two-way communications system that interconnects
measurement and control equipment such as sensors, actuators, and controllers.
Conceptually, Fieldbus provides a means to replace point-to-point connectivity of
4-20 ma sensors with a mut idrop connection that can communicate with multiple
sensors over a single communication path (Figure 10.2). The Fieldbus specifica-
tion describes a layered model, including the physical connection layer, a data
link layer, and application layers.

Fieldbus uses twisted-pair wiring. A single pair of wires provides both power
and data communication. Fieldbus devices draw power from the wiring, just as
4--20 ma devices do. Data transmission is performed by changing the current drawn
by the transmitting device; the current swing between 0 and 1 is 20 ma. The data
rate is 31250 bits per second using Manchester encoding. Manchester encoding
always has a transition in the middle of the bit; one of the advantages of Man-
chester encoding is that the average DC value of the signal pair is zero because the
bits are always high for 50% of the bit period and low for 50% of the period. The
relatively low data rate permits very long cabling runs, which is important in large
factory and plant control environments. Figure 10.2 shows Manchester encoding
for one and zero bits, and for a bit string of 0110.

Fieldbus communication uses a combination of polling and token passing. Bus
masters poll devices on the bus for information, and a Fieldbus device can

Standard Interfaces 245

TWISTED-PAIR WIRING

.o~ ~ II o~v,c~ I MASTER

o v,c !

MANCHESTER ENCODING:

o I

t
CENTER
OF BIT

! I I I
I o I , I~ I o I

Figure 10.2
Fieldbus.

transmit only when polled. If the bus has multiple masters, control of the bus is

managed by a "token" that is "owned" by one master at a time. When a master is
finished using the bus, it sends a message to the next master, handing off control
of the bus to that master.

Available Fieldbus peripherals match those available in 4-20 ma format, and
include such devices as pressure sensors, t empera ture sensors, flow measurement
sensors, and controllable valves.

246 Analog Interfacing to Embedded Microprocessor Systems

Analog Toolbox 11

This chapter contains some miscellaneous topics and topics that pull together
multiple concepts from preceding chapters.

Microcontroller Supply and Reference

Chapter 2 mentioned the effect that supply voltage can have when used as a
reference for microcontroller-based analog inputs. In many cases, you can
minimize these effects by referencing your analog inputs to the supply voltage.
Figure 11.1A shows a thermistor connected to an analog input and using a
pull-up to a precision reference voltage. At first glance, it might appear that
this is a very accurate design because the precision reference gives a repeatable
voltage versus temperature at the analog input. The problem with this design
is that the microcontroller is measuring the temperature using the supply
voltage as a reference, so the overall accuracy is only as good as the micro-
controller supply voltage.

Figure 1 1.1B shows the same circuit, but with the thermistor referenced to the
microcontroller supply. This provides a more repeatable result. If the thermistor
is 10 K and R1 is 10 K, for example, the analog input to the microcontroller will
always sense half the supply voltage regardless of what the supply voltage actually
is. This method will work only if the analog input can be made to follow the
supply voltage. This essentially means that the output being measured by the
microcontroller is referenced to the supply. Note that just powering the sensor or
sensor circuit from the microcontroller supply may not be sufficient. If the sensor
circuit has its own internal reference that controls the output value, it will
produce the same output regardless of variations in the supply voltage.

An alternative compensation method, for cases in which the input is independ-
ent of the microcontroller supply voltage, is shown in Figure 11.1C. In this

247

PRECISION

+2. ~R1 +Iv I vcc
MICROCONTROLLER

ANALOG INPUT

THERMISTOR

INPUT BEING MEASURED

VCC

MICROCONTROLLER

ANALOG INPUT 1
ANALOG INPUT 2

REFERENCE DIODE

Rth
THERMISTOR

+V

R1

.

VCC

MICROCONTROLLER

ANALOG INPUT

Figure 11.1
Microcontroller supply reference.

figure, a second analog input is used to measure the value of a precision reference
diode. Of course, the microcontroller must have at least two analog inputs to take
advantage of this technique. In operation, the microcontroller would use the
reference diode to determine the error caused by the supply voltage. For exam-
ple, if the reference diode is 2.5 V and the supply voltage is 5 V, the reference
diode will produce a value of 8016 (128 decimal) when the voltage is converted
(assume the internal ADCs are 8 bits). If the supply is 4.8 V, the reference diode
will convert to a value of 8516 (133 decimal). The microcontroller can use this
value to correct the values from the independent input. In this case, the values
read from that input will be multiplied by 128/133, or 0.96, to get the correct
reading. Note, though, that the overall accuracy is only as good as the combined
accuracy of the reference diode and whatever reference the external input is
using. Finally, to make use of this technique, the microcontroller must have
sufficient throughput to make the required calculations and memory to hold
the math algorithms; this may be a problem on some small microcontrollers.

248 Analog Interfacing to Embedded Microprocessor Systems

Resistor Networks

Some applications need better repeatability than you can get with standard 1%
resistors, but don't need the level of precision (and cost) of going to 0.1%
resistors. Sometimes you can gain an advantage by using resistor networks.
Resistor networks are typically specified with the same resistance tolerances as
discrete resistors: 0.1%, 1%, and 5%. However, the matching between resistors
within the same network is often twice as good as the absolute resistance
accuracy. If your circuit uses multiple resistors of the same value, you can
often get better accuracy by using a resistor network rather than discrete parts.
Note, though, that this works only for resistors in the same package; it doesn't
work across packages.

Figure 11.2 shows a simple voltage divider. This circuit might be used to bring
an analog input that swings between 0 and 8 V down to the 0 to 5 V range used by
a microcontroller analog input. In the figure, both resistors are 10 K. Ideally, the
output voltage would be half the input voltage. However, if the resistors are 1%
discrete parts, the output voltage may not be exactly half the input.

Say that R1 is high by 1% and equals 10,100 ohms, and R2 is low by 1% and
equals 9900 ohms. The output is given by the following equation:

INPUT •
R2

R1 + R1
= INPUT x 0.495

which is incorrect by 1%, the tolerance of the resistors.
Now, say that R1 and R2 are resistors that are in the same resistor network

package. The specified resistance is 1%, but the part-to-part variation is 0.5%. If R1
is high by 1%, it will be 10,100 ohms, as before. However, because parts within the

INPUT

R1
1OK

OUTPUT

Figure 11.2
Resistor voltage divider.

Analog Toolbox 249

network package can only vary by 0.5%, R2 cannot be less than 10,049.5. As a
result, the output will be

INPUT x
R2

R1 + R1
-- INPUT x 0.4987

which is within 0.25% of the ideal value.

Multiple Input Control

In some cases a system will have multiple inputs. For example, you might be
controlling a telescope that is taking pictures of clouds. For some reason (perhaps
to protect sensitive optics coatings), you don' t want to aim the telescope at the sun
(Figure 11.3). In this case, one of the inputs would be the position of the sun,
probably determined by the date and time of day. You would also have as inputs
the telescope's current position and the desired position.

This is a good example of a two-input problem, because the position of the sun
is not fixed. You can't just use a table to look up the move path because the
position of the sun varies. To move the telescope without crossing the path of the
sun, you can take two approaches.

The first approach is to calculate the direct path, determine that it crosses
the sun's path, then calculate a new path that just misses the sun. This is
illustrated in Figure 11.3A and 11.3B. This calculation may be complicated and
time-consuming, especially on a microcontroller or other system with limited
capability.

A simpler approach is to calculate the position of the sun and then calculate a
path that remains as far as possible from the sun. One way to do this is to divide
the telescope range into a grid of, say, 8 or 16 regions. When calculating the move
path, any region overlapped by the sun is avoided. A typical example is shown in
Figure 11.3C. Figure 11.3D shows how the move area can be subdivided into 16
regions.

Another alternative would be to find a sunless path to the perimeter of the
motion circle, and then determine which way to move around the circle to avoid
the sun. In the example shown, either direction would work, but if the sun were
on the perimeter of the motion circle, the direction would have to be deter-
mined.

You could make the path decision table driven by having two move paths from
any region to any other region. One path would be a straight line and the other
path would avoid any region in common with the first path. In this way, you could

250 Analog Interfacing to Embedded Microprocessor Systems

~ SIRED PosmoN OF TELESCOPE

l, , . o o":2'o:'2o2o;2 , ?

y L . / ~ ' - ' ~ TELEscOPE RAN6E OF MOTION

" CURRENT POSITION OF TELESCOPE

ESIRED POSITION OF TELESCOPE

~ CURRENT POSITION OF TELESCOPE

DESIRED POSITION OF TELESCOPE

CURRENT POSITION OF SUN

THIS PATH IS EASIER
TO CALCULATE

TELESCOPE RANGE OF MOTION

CURRENT POSITION OF TELESCOPE

S

9

6 7

10 11

\
8

12 /

Figure 11.3
Telescope pointing example.

determine a safe path by checking the straight line move for "interference" from
the sun. If the straight line path goes through a region containing the sun, just
pick the other path. Once in the target region, calculate a straight line move to the
desired point. This method has the advantage of minimizing calculation require-
ments for simple processors.

The foregoing assumes that the system requirements don't include taking
photos of any region containing the sun. If you did have to take photos right
next to the sun, you could make the regions smaller or you could have multiple
paths from any region to any other, arriving at the destination from different
directions.

Analog Toolbox 251

Although the telescope example is very specific, the general principles are
applicable to many similar multiple input problems, such as

�9 Muhihead fluid pipetting systems in which the pipettes can interfere with each
other

�9 A heating system in which the maximum safe heater power depends on a fluid level
�9 A stepper motor with resonance points that depend on the load
�9 A valve control system in which valve closing/opening speed depends on fluid

viscosity and flow ratemvariable closing/opening time might be required to
avoid "water hammer" or similar effects

�9 A heater or cooler system in which the intent is to quickly get the target to a
specific temperature and where the amount of heating or cooling applied
depends on the size and initial temperature of the target

Another example of multiple input systems is the need to adjust system para-
meters based on an input. In Chapter 5, a heater example was mentioned. In this
example, the proportional (or PID) control had an offset. This offset had to be
adjusted for varying loads and ambient conditions. A large load or very cold ambient
temperature might need a larger offset to maintain the temperature. In a case like
this, additional sensors may be needed to measure these parameters. The system
could calculate parameters such as the offset and/or gain, or a set of tables could be
used to select the values based on the values of the additional input parameters.

AC Control

Some designs require control of AC power to turn on lights, motors, heaters, or
other AC devices. The simplest method of controlling such devices is with solid-
state relays (SSRs), as shown in Figure 11.4. An SSR consists of an optoisolator
driving an SCR or triac. The internal optoisolator is selected by the manufacturer
to ensure that it will be capable of driving the SCR or triac. Some SSRs have
heatsink plates on the back that need to be bolted to a metal chassis or heatsink to
avoid overheating the SSR.

In many cases you need to perform zero crossing switching. This consists of
switching the load only when the AC signal crosses zero (Figure 11.5). If the AC
signal is switched when the voltage is not zero, then the load will see a sudden
jump in the applied voltage instead of a smooth sine wave. This can damage some
loads. In addition, the fast rising edge causes considerable EMI. Finally, in some
cases, the load will draw excessive current if the AC voltage is suddenly applied
and the value of the voltage isn't zero. You can get solid-state relays that have zero
crossing built in. These parts include circuitry that turns on the SCR or triac only
when the AC voltage is zero.

252 Analog Interfacing to Embedded Microprocessor Systems

+

DC
CONTROL

INPUT

I

|

|

I L URRENT
LIMITING

ESlSTOR / ~ ~ /

. o[Y
OPTICAL TRIAC

|

TRIAC

|
OR TRANSISTOR

AC
SWITCH

TERMINALS

Figure 11.4
SSR.

AC
A IN

MICROPROCESSOR OUTPUT
LOW LEVEL APPLIES POWER
TO LOAD

LO

V+

LOGIC V+
CURRENT-LIMmNG
RESISTOR

R?

AC ~

•
THIS EXTERNAL DIODE
PREVENTS BREAKDOWN
OF THE OPTOISOLATOR
LED DURING REVERSE
VOLTAGE

I R?
PULLUP

TO MICROPROCESSOR
INTERRUPT

+120V

B ov

- 120V

ZERO CROSSINGS

Figure 11.5
SSR control.

Analog Toolbox 253

In some cases, you need to perform the zero crossing detection in software.
Figure 11.5C shows a way to do this; an optoisolator is connected, with a current
limiting resistor, across the AC line. Each time the AC voltage goes through zero,
the optoisolator turns off and an interrupt is generated to the microprocessor. All
switching of external AC loads is performed in the ISR. Typically, to get fast
response, the software outside the ISR will set flags or semaphores to determine
what AC outputs should be turned on. The ISR reads the flags and switches the
appropriate outputs on; the ISR does not do whatever processing is required to
determine what should be off or on, it just switches the outputs. This provides
minimum latency between the interrupt and the output switch.

Note the external diode across the optoisolator LED. This diode conducts
during the negative half of the AC cycle, preventing excessive reverse voltage
across the optoisolator LED.

Voltage Monitors and Supervisory Circuits

A number of ICs are available that provide voltage monitoring functions for
microprocessor circuits. An example is the Texas Instruments TL7770. The
TL7770 has two voltage comparators that can monitor either of two voltage
inputs. Generally, these devices work by asserting a microprocessor reset when
the supply voltage reaches some predefined value (1 V for the TL7770), and then
remove the reset when the monitored voltage has been above a preset threshold
for some predefined period of time. This ensures that the microprocessor is held
in reset until the supply voltages are stable.

Although many supervisory ICs are intended for monitoring multiple micro-
processor supplies, they can be used to monitor other voltages as well. Typically,
one input would be used to monitor the microprocessor supply and the other
would be used to monitor a higher voltage such as that used to drive a motor. In
some cases, you will need to use resistive voltage dividers to bring the voltage you
want to monitor within the range of the supervisory I C.

Driving Bipolar Transistors

A bipolar transistor is often used as an output driver for a microprocessor. Figure
11.6A illustrates how a transistor can be used. When the microcontroller output
pin is high, it sources current into the transistor base and the transistor turns on.

254 Analog Interfacing to Embedded Microprocessor Systems

MICROCONTROLLER

OUTPUT BIT

+V

I LOAD

/ _ ~ Q 1

MICROCONTROLLER

OUTPUT BIT

SUPPLY VOLTIGE

MICROCONTROLLER

OUTPUT BIT

+3.3V

I t R2
A

I I SUPPLY VOLTAGE

I I

t COMMON GROUND
__L ' , _1_
SV SYSTEM I 3.3V SYSTEM I

R2
VCC U Q1

R1 1 PNP OUTPUT BIT ~ -

._~_LOAD

R2
VCC

OUTPUT BIT

LOAD SUPPLY VOLTAGE

I R3 Q2

LOAD

.

Figure 11.6
Driving bipolar transistors.

When the output is low, the transistor turns off. The requirements for driving a
bipolar transistor from the output of a microcontroller are

�9 Voltage output from the microcontroller must be high enough to turn the
transistor on, typically greater than 0.8 V.

�9 Current into the base of the transistor must be high enough to saturate the
transistor.

�9 Current into the base of the transistor must be limited to a value that will avoid
damage to the transistor.

�9 Low-output voltage of the microcontroller output must be low enough to
ensure that the transistor turns off. This is typically not a problem unless the
output must sink significant current.

The current into the base of the transistor is calculated as

Logic high v o l t a g e - transistor Vbe

Base resistor

Analog Toolbox 255

(In the figure, R1 is the base resistor.) The logic high voltage is the value of the
output voltage for the logic used. It may vary with the load, so a logic output that
nominally swings to the supply may deliver less voltage if it cannot supply ade-
quate current. The transistor base-emitter voltage, Vbe, is typically 0.6 V to 0.8 V.

Whether the transistor can pull its collector close enough to ground to function
as a logic output depends on the load and the base drive. The maximum collector
current is approximately equal to the base current times the current gain of the
transistor, up to the point at which the transistor saturates. A signal transistor
might have a gain of 100, so a few ma of base current can switch a few hundred
ma of collector current. A large power transistor may only have a gain of 10 or 20,
so it is difficult to drive them directly from the microcontroller outputs- - there
isn't enough gain to ensure that the transistor is saturated when driving a high-
current load. Consequently, driving very high current loads typically requires a
signal transistor driving the base of a larger power transistor.

The simplest approach to using bipolar transistors is to set the base current at
half or less of the maximum rated base current. If this does not provide sufficient
collector current for your application, or if you calculate the required base
current and find that it exceeds what the microcontroller can produce, then
you are trying to switch too much current. Use another type of driver.

Finally, remember that the gain of transistors tends to vary quite a bit from one
lot to the next, so don' t build a circuit that depends on very high gain transistors
unless you are willing to sort them in production.

Logic Level Translation
Bipolar transistors provide a convenient means to pass signals between two
systems at different supply voltages. Figure 11.6B shows a transistor used to
connect a 5 V microcontroller and a 3.3 V external system. The collector of the
transistor is pulled up on the 3.3 V system through a resistor.

Switching Speed
One problem with driving bipolar transistors directly from the output of a
microcontroller (or other logic) is speed. When the transistor is saturated, the
base-emitter junction exhibits a characteristic known as stored charge. This, in
effect, acts as a capacitor, making the transistor slow to turn off when the logic
input goes low. In addition, the output of the transistor circuit (the collector) does
not have an active pull-up to force the output high. Instead, a resistor pulls the
output high when the transistor turns off. Consequently, the risetime of the
output is dependent on the transistor switching speed and the capacitance in
the collector circuit. If the transistor is connected to another board via a long
cable, this capacitance can be significant.

256 Analog Interfacing to Embedded Microprocessor Systems

The turn-on and turn-off speed of the transistor can be improved with the
addition of a capacitor across the base resistor, as shown in Figure 11.6C. The
capacitor is a low impedance when the logic output is changing states, rapidly
charging or discharging the base circuit. A typical value for this capacitor is
220 pf, although larger values may be needed for large transistors.

The collector risetime can be reduced by reducing the value of the pull-up
resistor. However, smaller resistor values increase supply current drain and
transistor dissipation. Also, a smaller pull-up resistor means more base current
is needed to ensure that the transistor will be saturated. These techniques will
make a transistor circuit switch faster, but a discrete transistor design will never be
as fast as a driver or interface IC designed for a specific application. Bipolar
transistors find primary use in controlling currents or voltages beyond the cap-
ability of the microcontroller/microprocessor itself.

High-Side Switches
In some cases, you need to pull an output up instead of clamping it to ground.
Figure 11.6D shows a PNP transistor used in this way. The PNP is wired with the
emitter connected to the positive supply voltage (the NPN had the emitter
grounded), so pulling the base toward ground turns the transistor on. The
resistor between the base and emitter of the transistor ensures that the base goes
all the way to the supply, turning the transistor completely off, in case the
microcontroller output doesn't quite swing all the way.

The same considerations apply as for the NPN transistor in terms of the base
current. The base current in this case is at maximum when the microcontroller
output is low.

In some cases, you need to supply current from a higher supply voltage than
the microcontroller is using. For instance, a 5 V or 3.3 V microcontroller may
need to switch the 12 V supply to a motor. Figure 11.6E shows how a PNP and
NPN can be used together for this. The NPN transistor isolates the microcon-
troller from the high voltage on the base of the PNP transistor.

Driving MOSFETs

Like bipolar transistors, MOSFETs also provide a means to control voltages and
currents outside the range of the microcontroller. The simplest MOSFET drive is
shown in Figure 11.7A. Here, a microcontroller output directly drives the MOSFET
gate. When the microcontroller output is high, the MOSFET is turned on and

Analog Toolbox 257

o ..1,.-

!
!

"T"

~i,,
~ il,,

o

I

Z

'
1~I, --41,

o
o

o
z

o
o

T

r~

,~
'o

!
i

0

o
~

c-"

LIJ
LI_

,,.z
,... :;

o L
_

r

258
Analog Interfacing to Em

bedded M
icroprocessor System

s

sinks current . When the microcontroller output is low, the MOSFET is turned
off. T h e key points to r e m e m b e r in driving a MOSFET in this way are

�9 The output voltage of the microcontroller must be greater than the MOSFET gate-
to-source threshold voltage or the MOSFET will not turn on. This is more of a
problem with 3 V logic than with 5 V logic, but either logic voltage requires the use
ofa MOSFET with a logic-level threshold voltage. If necessary, a pull-up resistor can
be added to the logic signal to ensure that it goes all the way to the supply voltage.

�9 The M O S F E T has significant gate-to-source and gate-to-drain capacitance,
shown as Cgs and Cgd in the figure. Generally, the larger the MOSFET, the
greater this capacitance is. If the M O S F E T is driving a signal that can have large
voltage spikes, such as an inductive load, sufficient voltage can be coupled back
into the microcontroller to damage the outputs.

�9 The MOSFET turn-on time is limited by the speed at which the gate-to-source
voltage rises. This in turn is de te rmined by how quickly the microcontrol ler can
charge up the gate-source capacitance. Many microcontrol ler outputs have very
limited output cur rent capability. If the MOSFET turn-on time is too long and
the switching frequency is high, the M O S F E T will dissipate excessive power as it
transitions from cutoff to saturation.

�9 If a pull-up resistor is needed to ensure adequate turn-on voltage, the turn-on
time of the MOSFET will be limited to the risetime of the pull-up resistor in
combination with the gate-source capacitance of the MOSFET. Because the
cur ren t sinking capability of the microcontrol ler output limits the size of the
pull-up resistor, the switching speed of the MOSFET is also limited by the same
cur ren t sink capability.

Many of these problems can be eliminated by using a MOSFET driver IC, as
shown in Figure 11.7B. In this circuit, a Maxim MAX5048 is used to drive the
MOSFET. The MAX5048 provides logic level inputs and can operate on supply
voltages up to 12.6 V. The MAX5048 has separate sourcing (P-channel) and sinking
(N-channel) outputs. In the figure, resistor R1 is not needed. If R1 were not used, the
P output and N output would be tied together and to the gate of the FET. R 1 in series
with the P output limits the risetime of the gate, and thereby the turn-on time of the
FET. If the gate of the FET is connected to the P output instead of to the N output,
then R1 will limit the fall time of the gate and thereby the turn-off time of the FET.

High-Side Switching
In some cases, you want to source cur ren t instead of sinking current . The
simplest way to do this is with a P-channel MOSFET, as shown in Figure 11.7C.
In this circuit, the MAX5048 is used to drive the P-channel ou tpu t transistor.
Note that the P-channel MOSFET has the source connected to the positive supply
and the gate must be driven toward g round to turn the transistor on.

Analog Toolbox 259

The problem with P-channel MOSFETs is that they tend to be more expensive
than equivalent N-channel MOSFETs and they usually have a higher ON resist-
ance, causing the transistor to dissipate more power when turned on. In some
applications, the gate-to-source capacitance can couple the load voltage into the
MOSFET gate, turning it on when it should be off. This typically occurs with
inductive loads or when there is another transistor pulling the load to ground
when the P-channel MOSFET is off. For these reasons, N-channel MOSFETs are
usually preferred for high-side switching applications.

The primary difficulty in using an N-channel MOSFET for high-side switching is
the gate drive voltage. To turn the N-channel MOSFET on, the gate must be driven
higher than the source; because the source is connected to the load in a high side
application, this means the gate must be driven higher than the positive supply
voltage.

In most cases, the MOSFET is used to drive the load from the highest voltage
available in the system, so there is no higher voltage available to drive the
MOSFET gate. You have two choices in this case: you can use a bootstrap
MOSFET driver or you can add a DC-DC converter.

The DC-DC converter is the simplest solution, as shown in Figure 11.7D. You
add a DC-DC converter to the board and use a MOSFET driver IC. The output of
the DC-DC converter must not exceed the maximum gate-source voltage, or the
MOSFET may be damaged. In the figure, a DC-DC converter with a 16 V output
produces the gate drive voltage for a driver IC. The gate of the MOSFET will
switch between ground and 16 V, and the load will switch between ground and
12 V. Note that the gate drive voltage cannot exceed the gate-to-source break-
down voltage, which is typically 18 V for a MOSFET.

A boostrap MOSFET driver IC can also drive a high-side MOSFET, as shown
in Figure 11.7E. A bootstrap driver uses a capacitor (external to the IC) that is
charged up to the supply voltage when the load is low. If the circuit is being used
to drive a high-side switch, with no low-side driver, the capacitor charges through
the load. If the circuit is being used to drive a pair of MOSFETs, one providing
high-side drive and one providing low-side drive, the capacitor charges through
the low-side MOSFET when it is turned on.

When the high-side driver is turned on, the bootstrap capacitor is switched
so that it drives the gate of the MOSFET above the supply voltage to turn it
on. Typically, the bootstrap capacitor is much larger than the gate-source
capacitance of the MOSFET, so the voltage across the capacitor does not drop
very far when driving the MOSFET gate. However, once the high-side MOSFET
is turned on, there is no longer a charging path for the bootstrap
capacitor, so it will eventually discharge. For this reason, bootstrap circuits
are normally used in applications in which the MOSFET is continuously switch-
ing. If you need to turn the MOSFET on and leave it on, you will need a DC-
DC converter or some similar method.

260 Analog Interfacing to Embedded Microprocessor Systems

Reading Negative Voltages

Sometimes you need to read and convert a negative voltage with an ADC that
operates only from ground and a positive supply. Sometimes the only way to
accomplish this is to use an opamp, powered from both positive and negative
supplies, to shift the signal to a range the ADC can use.

Figure 11.8 shows a simple resistor voltage divider that will accomplish the
same thing, with some limitations. In the figure, the input is a sine signal that
swings between - 2 V and +2 V, being read by a microcontroller that operates
from +5 V and ground. Using a voltage divider (R1 and R2) brings the signal
within the 0-5 V range of the microcontroller ADC input. With the values used in
the figure, the signal swing is 1.5 V to 3.5 V. There are a few limitations on this
technique:

�9 The voltage divider essentially acts as a resistive pull-up to the supply voltage.
This may affect the input signal.

�9 The voltage swing is reduced; in the figure, a 4 V P-P signal is reduced to 2 V P-P
at the microcontroller ADC input.

�9 Large resistors may be needed to avoid loading the input signal source. Large
resistors, coupled with the input capacitance of the microcontroller, limit the
speed.

�9 If the input can occasionally go negative enough to bring the microcontroller
input below ground, the microcontroller may be destroyed. The maximum

INPUT SIGNAL

2V

OV

-2V

+SV

3.5V
R1
1OK 2.5V

1.5V

R2
1OK

II
i

n

+SV

MICROCONTROLLER
ADC INPUT

D1 I
DIODE
CLAMP
(IF NEEDED - SEE TEXT)

Figure 11.8
Res is t i ve d iv ider for read ing nega t i ve input s igna ls .

Analog Toolbox 261

signal excursion must be known, or a diode, as shown in the figure, must be
used to clamp the signal to ground.

�9 The actual voltage produced at the microcontroller input is dependent on both
the input signal voltage and the supply voltage. Variations in the supply voltage
will affect the ADC reading.

Example Control System

To illustrate some of the principles described in previous chapters, an example
control system was developed. This concept system is easy to build and is useful
for experimenting with control concepts. Figure 1 1.9 shows a block diagram of
the system. The control system is simulated with an inexpensive lamp coupled to
an infrared phototransistor. The lamp and phototransistor are held in place with
a length of heatshrink or other opaque tubing.

A PWM circuit is used to control the current through the lamp. The prototype
used for the examples here operated at about 14 kHz. An analog control could
also be used, with a DAC followed by an opamp capable of delivering sufficient

CONTROL PC EW W W,OE

i(I LAMP VOLTAGE

+SV

LAMP R1 RES
(~ 12V'25ma LFJ 22K Y

PH RANSISTOR
3

J, c]

LAMP PHOTOTRANSISTOR

OPAQUE HEATSHRINK
OR OTHER TUBING

Figure 11.9
Simulation system block diagram.

262 Analog Interfacing to Embedded Microprocessor Systems

current to the bulb. The ADC was an 8-bit converter, with an output value of 0
representing 0 V and a value of 255 represent ing 5 V.

The system is controlled by a PC, although the same a r rangement could be
controlled by a microcontroller or single-board computer . Using a PC is less
precise than using a more hardware-oriented approach, because the sampling
rate in a PC will vary with operating system activity. However, it is close enough to
make a useful experimentat ion tool. For the examples used here, the code was
written in Python. The actual Python code is shown in Appendix D.

This simple a r rangement provides a good simulation of a control system. The
lamp filament is, in effect, a heater. The lamp filament does not heat up instantly
and the phototransistor is relatively slow, so the combination has many of the
characteristics of a real heater or motor ar rangement .

In Figure 11.9, R2 is shown with dashed connections. R2 is installed in parallel
with R1 to simulate an external load, as will be described later.

Note that this is a reversed control system--a higher control value results in a
lower ADC value because a hotter filament results in more phototransistor cur-
rent.

Figure 11.10A shows the step response of the system. This waveform was
created by starting with a PWM value of 1 (just barely turning the lamp on) and
then changing to a PWM value of 250 (almost 100% on) and sampling the
resulting voltage from the phototransistor once per millisecond. Note that the
lamp has a short delay before it starts heating, then a rapid heating period, then a
slower curve as it approaches its final temperature . This data was plotted using
Microsoft Excel.

Figure 11.10B shows the reverse of the positive step. Here, the PWM value was
set to 250 and the output was allowed to settle for one second. The PWM was then
turned off and the output was measured once per millisecond. The result is an
exponential curve as the lamp filament cools. This asymmetrical characteristic of
the system is typical of many real-world environments.

Figure 11.10C shows the characterization of the system with respect to the
control value. This curve was made by applying 16 equally spaced control
values from 1 to 241, allowing the output to settle, and measuring the ADC
result.

On-Off (Bang-Bang) Control

An on-off control is illustrated in Figure 11.11A. The setpoint for this example
was 100, corresponding to about 1.95 V at the phototransistor collector. Note
the oscillation around the setpointmit ranges from 98 to 112, a range of 0.3
volts, or 15% of the setpoint value. The oscillation is not centered a round the
setpoint, but is skewed toward the high values. This occurs because the control

Analog Toolbox 263

A!

30O

B

100

0 10 20 30 40 so 60 70 80 go 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 2.50

(nu)

I !1 21 31 41 s1 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251

Time (ms)

150

17 33 49 6S 81 97 113 129 145 161 177 193 209 22S 241

Tlme (ms)

Figure 11.10
Simulation system characterization.

264 Analog Interfacing to Embedded Microprocessor Systems

3OO

11 21 31 41 S1 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 2.31 241 2.51

Tllme (ms)

.

11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251

(ms)

2SO

2OO

100

. , ,

11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251

Time Irns)

Figure 11.11
On-off control examples.

Analog Toolbox 265

response is not s y m m e t r i c a l n t h e filament cools down more quickly than it
heats up.

Figure 11.11B shows an on-off control with a setpoint of 150. The re is less
oscillation at this setpoint; a control system that is not linear across its range will
exhibit characteristics like this. Figure 11.11C shows an on-off control with a
setpoint of 100 and a sampling interval of 4 ms. Note the size of the oscillation;
the sampling interval has a significant effect on the result.

Figure 11.12 shows an on-off control starting with the PWM full on and using a
setpoint of 150. Unlike the case that started with the PWM off, there is significant
overshoot past the setpoint; the lamp filament cools down more easily than it
heats up, so there is more m o m e n t u m in that direction.

Proportional Control

Figure 11.13A shows a proport ional control with a setpoint of 150 (about 2.9
volts) and a gain of 2. Using the input- to-output characterization curve, an offset
of 200 was selected for this setpoint. The equation for the control value is

180

160

140

120

IO0

0

~ 8o

11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251

Time (ms)

Figure 11.12
On-off control, starting with PWM 100% on.

266 Analog Interfacing to Embedded Microprocessor Systems

11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251

Time(ms)

!

i 11 21 31 41 $1 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251

11me(ms)

t
150

,C

11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251

Figure 11.13
Proportional control.

Analog Toolbox 267

Control output = 200 + (ADC value - setpoint) x Gain

If control output > 254, control output = 254.

If control output < 1, control output -- 1.

The last two statements limit the control value to the 8-bit range of the
system.

At a gain of 2, the system stabilizes with an output around 145. Figure 11.13B
shows a proport ional control, but starting at the top of the range (100% PWM)
and using a gain of 20. This time the result makes it to the setpoint of 150, but
with significant oscillation. Note the overshoot as the signal passes through 150;
like the on-off example, this is caused by the asymmetrical nature of the heater
and the additional gain. If the gain is reduced, the overshoot can be eliminated,
but the result ends up below the setpoint (150). Although a graph is not shown for
this condition, at a gain of 10, the waveform overshoots just slightly and then
settles down to oscillate between 149 and 150.

Figure 11.13C shows a proportional system with a gain of 10, setpoint of 150,
and an offset of 100. The lower offset results in a final result between 157 and
158. As you can see, the gain and offset both affect the final result in a propor-
tional system. However, the proportional control is still better than open-loop
control, because an open-loop control value of 100 results in an ADC value of 222
(see the characterization chart).

Figure 11.14 shows the proportional system with a setpoint of 150, gain of 10,
and a load of 47 K (R2) in parallel with the 22 K collector resistor (R1). There is a
small overshoot as the output passes 150, then the output settles down to oscillate
between 152 and 153. Note that the addition of a load caused a pe rmanen t offset
in the ou tpu t - - the proportional system was unable to completely compensate for
the effects of the added load.

PID

Figure 11.15A shows a simple PID control. The parameters are

�9 Proportional gain = 2
�9 Derivative gain - 2
�9 Integral gain = 2
�9 Setpoint = 150

To prevent integral windup, the integral is held at zero until the ADC result is
within 10% of the setpoint. As you can see, there is a little overshoot and then
the output settles down to values of 150 and 151. Figure 11.15B shows the
integral and derivative terms. Note that changes (edges) in the integral waveform

268 Analog Interfacing to Embedded Microprocessor Systems

300

250

200

150

1 0 0

, w w , w w , , w , w , , , w , , i , , , w , , ,

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 2 0 1 2 1 1 2 2 1 2 3 1 2 4 1 2 5 1

Time (ms)

Figure 11.14
Proportional control with load.

correspond to a positive and negative transition in the derivative waveform,
because the derivative is measur ing the amoun t that the er ror changed from
the previous sample.

Figure 11.16A shows what happens if the derivative gain is set to 40; a high-
frequency oscillation occurs, a l though it is centered on the setpoint. In Figure
11.16B, the derivative gain is set to 2 again, and the integral gain is set to 40. This
condition causes an oscillation between about 135 and 172, and at a lower
frequency than the oscillation caused by the large derivative value. This is typical
of PID control systems--excessive derivative gain and excessive integral gain both
cause oscillation, but the oscillation caused by the integral gain is at a lower
frequency.

Figure 11.17A shows the following conditions:

�9 Proport ional gain = 4
�9 Derivative gain = 2
�9 Integral gain = 2
�9 Setpoint = 150

Analog Toolbox 269

150

.
11 21 31 41 51 61 71 81 91 101 111 121 1,31 141 151 161 171 181 191 201 211 221 231 241 251

(ms)

~> 0 / r ~ / k r~A A^A A A A A A

' ! ~ ~ ~ v l ,~aLr~ ~$1a~161 71 81 gl 101 111 121

V ~

I~I~ATWE
�9 . , , - ^ , ~ . , . % , , . �9 A ,~ ^ ,

�9 v , w vv , y , ,

131 141 151 161 171 181 191 201 211 J21 231 241 251

T ime (ms)

Figure 11.15
PID control with integral and derivative waveforms.

The result is a very smooth waveform with good control at the setpoint. The
waveform in Figure 11.17B uses the same parameters, but adds a 47 K resistor
(R2) in parallel with the 22 K resistor R1. The important thing to note here is that
the final value still reaches the setpoint, although there is a "knee" in the wave-
form around sample 37.

270 Analog Interfacing to Embedded Microprocessor Systems

:~ 150

11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 2S1

Time (ms)

~. ~so

11 21 31 41 $1 61 71 81 91 101 111 121 131 141 1S1 161 171 181 191 201 211 221 231 241 251

Time (ms)

Figure 11.16
PID control with large derivative and integral values.

Analog Toolbox 271

250

200

A ~ 150

100

V - -

. , �9 , , , , , �9 , , , , �9 , , , , ,

11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251

Time (ms)

300

250

200

S ~ ,~

N o t e d igh t 'knee'

. , , , , , , , ,

11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251

(ms)

Figure 11.17
PID control with load.

272 Analog Interfacing to Embedded Microprocessor Systems

Proportional-Integral Control

Figure 11.18 shows a proportional-integral control only, with proportional gain
= 4 and integral gain = 0.1. The waveform overshoots to 140, which is past the
value of 145 that was reached with the proportional-only control, but the integral
eventually brings the result up to the target value of 150.

s
�9 > ;so

t

.

11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 2.21 231 2.41 251

T ~ (ms)

Figure 11.18
Proportional-integral control.

Analog Toolbox 273

Appendix A
Opamp Basics

The opamp is a very high-gain amplifier with two inputs and an output. One input is called
the inverting input (V_), and the other input is called the noninverting input (V+). The
fbrmula for the output (Vo) is given by:

Vo = Av(V+-V_)

where Av is the gain of the opamp (usually very high--over 100,000) and V_ and V+ are
the voltages at the inverting and noninverting input pins.

Opamp Configurations

Figure A.1 shows four opamp configurations: a buffer, inverting amplifier, noninverting
amplifier, and differential amplifier. We analyze these in the following sections.

Buffer
For the buffer configuration, the output (Vo) is connected to the inverting input (V_), and
the input signal is applied to the noninverting input (V+). We can write the basic opamp
equations like this:

Vo = Av(V+-V_)

where Av is the open loop gain of the opamp. Because Vo is connected to V_:

V o = V _

The input voltage, V1, is applied to the noninverting input, V+, so we can rewrite the
basic opamp equation like this:

275

BUFFER

Yr

INVERTING AMPLIFIER
R2

; - : i

NONINVER~NG AMPLIFIER
R1 R2

-- V- ~
Y't

DIFFERENTIAL AMPLIFIER

t

Figure A.1
O p a m p conf igurat ions.

V o - A v (V + - V _) ; V o - A v (V I - V o)

Solving for Vo we get

g o ~
Av VI

1 + A v

Dividing by Av, we get

g o
VI

1
- - + 1
Av

1
If Av is very large, the ~vv term approaches zero, leaving Vo = V 1.

276 Appendix A

Inverting Amplifier
Starting with the basic o p a m p equation:

Vo = Av(V+ - V_)

In this case, the noninver t ing pin is g rounded , so V+ is zero. V_ is at the junct ion of a
voltage divider made up of RI and R2. So we can write an equat ion for V_ as

V_ (V o - V1)R1
= + V I

R2 + R1

Substituting this into the basic o p amp equation:

Vo = A v (- (V ~ V1)R1
\ R2 + R1

+vl)
Solving for Vo, we get:

g o
-Av x VI x R2

R2 + R1 + AvR2

Dividing the right side by Av/Av:

g o
- V 1 x R2

R2 R1
A---~ + ~--~v + R1

R2 R1
If Av is very large, the ~ and ~ terms are very small, leaving Vo =

-R2/R1 is the gain of the inverting configuration.

- V 1 x R 2

R1

Noninverting Configuration
The formula for the noninver t ing configuration is

Vo = Av(V+ - V_)

The V+ pin is connected to the input, V1. The V_ pin is a voltage divider with Vo and
ground:

V _ z - -
V o x R l

R 2 + R 1

Appendix A 277

Substituting these values into the basic opamp equation:

V o = A v (V 1 - V ~ 2 1 5

Expanding:

Vo(R1 + R2) = (Av x V1 x R 1) + (Av x V1 • R 2) - (Av x Vo x R1)

Solving for Vo:

A v • • A v x V 1 x R2
V o = +

R I + R 2 + (A v • R I + R 2 + (A v •

Dividing both terms on the right by Av/Av:

V1 • R1 V1 • R2
V o = +

R1 R2 R1 R2
A--~- + ~-~-v + R1 ~-~v + ~-V-V + R1

If Av is very large, we are left with

V o = V I + ~
V1 •

R1

(R2)
or V o = V l 1 + ~ -

Differential Amplifier
The differential amplifier is a combination of the inverting and noninvert ing configura-
tions. V+ and V_ are both voltage dividers, so we can write the equations for them like this:

V (Vo - V2)R3 V 1 • R2
- = R f + R 3 + V 2 V+ = R I + R 2

Substituting into the basic opamp equation:

1 x R 2 (V o - V 2) R 3)
V o = A v l + R 2 - R f + R 3 + V 2

Expanding and solving for Vo:

Vo - Av
(V1RfR2 + V1R2R3) - (V2RfRL + V2RfR2)

R1Rf + R2R3 + R2Rf + R2 R3 + AvR3R 1 + AvR2R3

278 Appendix A

Dividing the right fraction by Av/Av and allowing Av to be very large:

g o
V1R2Rf + V1R2R3 - (V2Rf RL + V2RfR2)

R 1 R3 + R2R3

(Rf) _ V 1 • 1+ V2
- R 1 + R 2

If R2 = RF and R1 = R3, then we get

Rf

R3

Rf
Vo = (V1 - V2)R---3

So the differential amplifier multiplies the difference between the inputs by the gain,
Rf/R3. If a voltage divider was not used on the noninverting input, and V+ was connected
to the V 1 input, the output would be

Rf) Rf
V o - V 1 1+~--~ -V2R--- ~

Without the voltage divider on the noninverting input, the gain for V 1 is greater than
the gain for V2. With the voltage divider, if V1 = V2, Vo will be 0. Without the divider, this
is not the case.

General Opamp Design Equations

In general, an opamp that is operating in the linear range (where the output is not
saturated) will have some kind of feedback from the output to the inverting input, or some
kind of inverted teedback from the output to the noninverting input. This is the case for
most opamp applications. Because the feedback path allows the output to control one of
the inputs, you can make the following simplification:

V + = V _

Note that this applies only when the opamp output is not saturated. We can analyze the
foregoing examples using this relationship to simplify the process.

Inverting Amplifier
V_ is a voltage divider between Vo and the input, V1. Because V+ = 0, we can write the

equations like this:

V_ = V + = 0 = (V ~
R1 + R 2

Appendix A 279

Rearranging and solving for Vo:

Vo = - V l
R2
R1

Noninverting Amplifier

V _ = V + = V I = ~
Vo x R1

R1 + R 2 '
V o = V 1 1 +

Differential Amplifier

V+ VI • R2 (V o - V2)R3
= R 1 + R 2 ; V _ = R f + R 3 + V 2

V1 x R2 (V o - V2)R3
V_ = V _ ; ~ =

R1 + R 2 R f + R 3

Expanding and solving for Vo, we get:

V o = V I ~
(Re) Re R2 1 + - V 2 ~

R1 + R2 ~ R3

We get the same result in all cases, but using the V+ = V_ relationship is usually easier�9

Nonresistive Elements

So far, we have looked only at resistors in the opamp circuit. It is possible to use other
elements such as capacitors and inductors to produce frequency-dependent circuits. The
equations work the same way, with the following cautions:

�9 You must substitute impedances, using complex numbers, to calculate the output�9
�9 The frequency characteristics and roll-off of the opamp must be taken into considera-

tion.

�9 Be sure that the inputs of the opamp are not driven beyond their specified limits or the
equations will no longer apply�9 Because of energy storage, such as flyback voltage in an
inductor, you may get voltages with capacitor/inductor circuits that would not be possible
with a resistive-only circuit.

�9 Similarly, you can't cause the output to go beyond its limits, either in voltage or speed.

280 Append/x A

Reversing the Inputs

In some applications, you need to reverse the inputs of the opamp. Figure A.2 shows a case
like this. Here, an opamp drives an NPN transistor (Q1) through a current-limiting
resistor, R1. The transistor collector drives a resistive load. You might use a circuit like
this if the load draws more current than the opamp can sink.

In this circuit, the junction of Q1 and the load is connected to the noninverting input of
the opamp, and the input is connected to the inverting input. This might look like the
opamp is operating open loop, but it really isn't. The function of the inverting and
noninverting inputs is switched because Q1 acts as an inverting amplifier. In this case,
the opamp acts as a follower, with the junction of Q1 and the load following the input
voltage.

Instead of a transistor, you could have another opamp, connected as an inverting
amplifier, in the feedback path and the result would be the same. The point is that to
make an opamp linear, you can use the noninverting input as the feedback pin and some
kind of signal inversion between that and the output. Some opamps have both inverting
and noninverting outputs, which can simplify the design of circuits like this.

Comparators

Figure A.3 shows an opamp connected as a comparator. An input signal is applied to the
inverting input, and a fixed reference voltage is applied to the noninverting input. Say that

INPUT VOLTAGE I>

+v

LOAD
RES

Figure A.2
Reversing opamp inputs.

Appendix A 281

REFERENCE D

INPUT VOLTAGE D
I]:> OUTPUT

OUTPUT

INPUT VOLTAGE

REFERENCE VOLTAGE

Figure A.3
Comparator operation.

the opamp supply voltages are +5 V and ground, and that the reference voltage is 2.5 V
and the input voltage is 1 V. The general equation for the output of an opamp is

Vo = Av(V+ - V_)

If our opamp has a voltage gain of 100,000, then the output will be

100000(2.5 - 1) or 150000 volts.

Of course, the opamp cannot produce an output voltage anywhere close to that value,
so the output pin goes to the positive supply (+5 V), or as close as it can get, considering
the saturation voltage of the output.

Now suppose the input changes to 4 V. Doing the same calculation results in an output
voltage o f - 150,000 volts. Again, the opamp goes as far as it can, which is the negative
supply voltage, 0 V.

The function of a comparator is to make the output high when the inverting input is less
than the noninverting input, and to make the output low when the inverting input is
greater than the noninverting input. Comparators are typically used to sense when an
input voltage is greater than or less than a fixed threshold, providing a digital (high/low)
indication of that condition.

282 Appendix A

Although an opamp can be used as a comparator, it is more typical to use a comparator
IC. These parts are essentially opamps, but they are optimized for use as comparators.
They typically have lower gain than an opamp, but much greater speed. They often have
open-collector outputs, so the output voltage swing can be different from the positive
supply voltage. For instance, the comparator may operate from + 12 V and ground, but the
open-collector output may be pulled to +5 V or +3.3 V with a resistor, making a logic-

compatible digital output.

Hysteresis

What happens to the comparator output if the two inputs are very close together? Figure
A.4 illustrates this condition. As the input rises slowly through the reference voltage, the
difference between the inputs becomes small enough that the gain of the comparator
cannot drive the output to the rail. As a result, the device becomes linear and the output

ramps down instead of switching quickly.
Another problem, also shown in Figure A.4, is the effect of a slowly changing input with

noise. When the difference between the input and the reference is small, low-amplitude noise
on the input can cause the output to switch several times between the high and low states. If the
comparator output is an interrupt input to a micropr(xzessor, this can cause real problems.

OUTPUT

I
UT

~ OUTPUT

INPUTVOLTAGE

REFERENCE VOLTAGE

INPUT

REFERENCE

L ~ ~ OUTPUT

EFFECT OF SLOW, NOISY INPUT ON OUTPUT

Figure A.4
Comparator with slowly changing input.

Appendix A 283

One way to avoid the problems associated with slowly changing inputs is to add hysteresis
to the circuit. Figure A.5 shows the same comparator circuit from Figure A.4 with hysteresis
added. A resistor, R2, is connected to the noninverting input and the output. A second
resistor is connected between the reference voltage and the noninverting input. Say that the
comparator operates with a supply voltage of 5 V and ground. The input voltage starts at 1 V,
as before, with a reference voltage of 2.5 V. The output will be high, so the voltage on the V+
pin will be determined by the voltage divider created by R1 and R2. This voltage is:

(g o - gr) x R1
V+ = + Vr

R1 + R 2

R2
I J
lOOK

REFERENCE I~ Vr ; ..
1K o

INPUT VOLTAGE D:>
OUTPUT

OUTPUT I I

" ~ REFERENCE VOLTAGE

INPUT VOLTAGE

SWITCH POINT WHEN OUTPUT HIGH

SWITCH POINT WHEN OUTPUT LOW

V+

Vo

THE TIME IT TAKES FOR V+ TO SWITCH TO
THE NEW VALUE DEPENDS ON THE SLEW
SPEED OF THE OUTPUT AND THE CAPACITANCE
AT THE V+ PIN.

INPUT

WHAT HAPPENS AT THE SWITCH POINT

Figure A.5
Comparator with hysteresis.

284 Appendix A

For Vo high (5 V), Vr = 2.5 V, R1 = 1 K, and R2 = 100 K, V+ = 2.5247 V. So the out-
put will not switch until the input reaches 2.5247 V. Once the input reaches this value, the
output starts to change state. Since V+ is dependent on Vo, it will change values as V,,
changes. When Vo reaches its final value (0 V), V+ will have a new value. R 1 and R2 are still
voltage dividers between V,, and V+, but now V,, is 0 V. So if we calculate the new value for
V+, we get 2.475 V. The input has to cross through this value to get the output to switch
back high. However, we got this value because the input reached the original value of
2.5247 V, so the input would have to swing 0.049 V (2.5247 - 2.475) to make the output
switch. This circuit has a hysteresis of 0.049 V. Any noise on the input with an amplitude
smaller than this will not affect the output.

The advantages of hysteresis are:

�9 Faster switching. Once the output starts to change state, the V+ input is "pulled" through
the region where the limited gain makes the device linear. This change in V+ accelerates
the change in Vo, which in turn changes V+, and so on.

�9 Better noise immunity. Noise on the input has to exceed the hysteresis value before it will
affect the output.

�9 Circuit performance in the linear region is less dependent on device-to-device variations
in the gain of the comparator IC.

Hysteresis does have some drawbacks. Because the comparator output does not switch
instantly, there is still some time when the response of the comparator is linear and when
noise on the inputs can affect the outputs. This time is dependent on the speed of the
comparator (propagation delay and output slew rate) and the capacitance on the non-
inverting input. In general, though, hysteresis significantly reduces the amount of time the
comparator spends in the linear region. Another drawback to hysteresis is that the switch-
point is no longer fixed, but varies with Vo and with the tolerances of resistors R1 and R2.

Some comparators have built-in hysteresis of a few millivolts. However, using external
resistors permits the hysteresis levels to be set as required by the application.

Instrumentation Amplifiers

One problem with normal opamps is that the input impedance of a practical circuit is
limited. Although the input impedance of the opamp itself is very high, the input impe-
dance of a closed-loop circuit such as a differential amplifier is limited by the resistors. For
instance, the input impedance of an inverting amplifier circuit is equal to the value of the
input resistor. In some applications, high-input impedance is needed, while retaining the
noise-rejecting differential amplification of the differential amplifier. "l'he instrumentation
amplifier provides this capability. Figure A.6 shows an instrumentation amplifier circuit
using three opamps. The input impedance of the instrumentation amplifier is equal to the
input impedance of the two input opamps.

Instrumentation amplifiers do not need to be built from discrete opamps and resistors,
but are available as discrete ICs. For example, the AD624 from Analog Devices is available
in a 16-pin package. The AD624 can be p rogrammed for a gain of 1, 100, 200,500, or 1000

Appendix A 285

R5
---t I

-T
DIFFERENTIAL
INPUT

+

R2

R1 =R3
R3 I R4 = R6

R5 = R7

OUTPUT

Figure A.6
I ns t rumen ta t i on ampl i f ier .

by connecting various pins on the package together. An integrated instrumentation am-
plifier uses laser-trimmed resistors, providing very good matching and excellent accuracy.

286 Appendix A

Appendix B
Pulse Width Modulation

Pulse width modulat ion (PWM) is a means of providing digital control of the current in a

device such as a motor, heater, or even an audio speaker. PWM replaces analog techniques

to provide more efficiency in computer-control led systems.

Why PWM?

A typical analog driver looks like the one in Figure B.1. A power device such as a high-

current opamp provides driving current to a heater. In this case, the heater has a resistance

of 18ohms, so the current at 12 V is 667 ma. An input voltage determines the voltage

across the heater and therefore the amount of heat generated. Presumably, the control
electronics is able to measure the tempera ture of the system and adjust the input voltage

accordingly, but that is not important to this discussion.
To drive a heater like this with a power opamp, you would need a power supply voltage

of a round 16 V, because the opamp output can't go all the way to the supply voltage. Let's
say that the supply voltage is 16 V and the input voltage is 6 V. The output voltage will also

be 6 V, so the current th rough the heater is V/R, or 6 V/15 ~2, or 400 ma. This is a power

dissipation of (P - I x E) 6 x 0.4, or 2.4 watts.
The opamp, operat ing with a supply voltage of 16 V, has to supply the 400 ma current

to the heater. But since the supply is 16 V and the heater voltage is 6 V, the remaining
voltage (16 V - 6 V = 10 V) is d ropped across the opamp output stage. This means the

opamp is dissipating 10 V x 400 ma or 4 watts. Unless it has a good heatsink, it may get

hotter than the heater.
The total dissipation in this circuit is the sum of the opamp dissipation plus the heater

dissipation. This is 2.4 watts plus 4 watts or 6 watts. (You can also find this by multiplying
the power-supply voltage by the total power-supply current: 16 V x 400 ma = 6.4 W). The

following table shows the power dissipated for various input /heater voltages:

287

CONTROL INPUT

i
]HEATER

[I 5 OHMS
I

L

1

CURRENT.5
(A)

.4

1 I I I I 1 I 1 1 I 1 I

1 2 3 4 5 6 7 8 9 10 11 12

VOLTAGE

F i g u r e B.1
Heate r wi th ana log driver.

Input Current Heater Opamp Total
Voltage Dissipation Dissipat ion Dissipation

2 133 ma
3 200 ma
4 270 ma
5 333 ma
6 400 ma
7 466 ma
8 533 ma
9 600 ma
0 667 ma
1 733 ma
2 800 ma

0.267 w
O.6w
1.067 w
1.667 w
2 .4w
3.267 w
4.27 w
5 .4w
6.667 w
8.067w
9 .6w

1.87 w
2.6w
3.2w
3.67 w
4 w
4.2w
4.27 w
4 .2w
4 w
3.67w
3.2w

2.14w
3.2w
4.27 w
5.34w
6.4w
7.47w
8.54w
9.6w
0.67 w
1.74w
2 .8w

288 Appendix B

Figure B.2 graphs the dissipation of the opamp and the heater as a function of input
(heater) voltage. The power dissipated for both devices is the product of the heater current
and the voltage across the device. In the case of the opamp, the power is dissipated in the
output transistors that drive the heater. The worst-case power dissipation for the opamp
occurs when the output is at half the supply voltage (8 V). Even though the heater in this
application never dissipates more than 9.6W, the power supply must be capable of
delivering at least 12.8 W.

A PWM-based control method is illustrated in Figure B.3. This circuit uses the
same 16 V supply as the analog circuit, but the control electronics turns the heater on
and off by switching the control transistor on and off (a bipolar transistor is shown; a
MOSFET also could be used). The timing diagram shows how the PWM circuit works.
In the first interval shown, the transistor collector is low, so the heater is on for 66%
of the PWM interval. The heater is off for 33% of the PWM interval. The heater
current dur ing the ON time is 16V/159t, or 1.0667 amps. However, the heater will
respond to the time average of the current flowing through it, so the equivalent
current for the purpose of generating heat is 1.0667amps x 66% (the ON time), or

0.711 amps.
In the second part of the timing diagram, the PWM is ON for 33% of the interval and off

for 66%. The heater current during the ON time is still 1.0667 amps, but the time-
averaged current is 1.0667 x 33%, or 0.355 amps. To achieve a particular t ime-averaged
current, we can use the following equations:

1 4 -

12 -

10 -

POWER
(w) 8 -

6 -

4 -

2 -

TOTAL

<} HEATER

~--- OPAMP

J
! I I I I I I I I I I 1

I 2 3 4 5 6 7 8 9 10 11 12

INPUT VOLTAGE
(HEATER VOLTAGE)

F i g u r e B . 2

Power dissipation in heater and analog d r i v e r .

Appendix B 289

PWM
CIRCUIT

+16V

]
I
[

CONTROL INPUT

I HEATER
15 OHMS

I

TRANSISTOR COLLECTOR
OV = HEATER ON

PWM PERIOD ~ l
oN ro~ ON OFF ON OFF ON

l I I 1

HEATER ON 33%, OFF 66%
3 (

HEATER ON 66%, OFF 33%

Figure B.3
Heater wi th PWM driver.

Ion = Vs /R

It = Ion •

Pay = Vs x Ion • Ton

where

�9 Ion is the hea te r c u r r e n t d u r i n g the ON time

�9 Vs is the supply voltage

�9 R is the hea te r resistance

�9 It is the t ime-averaged c u r r e n t

�9 Ton is the ON time, exp re s sed as a decimal (33% = 0.33)

�9 Pav is the average dissipation

We can make a table of the ON time percen tages r equ i r ed to get the same time-

ave raged cu r r en t as the original ana log dr iver used to get a specific a m o u n t of heat.

290 Appendix B

Original Input Original Original Heater
Voltage Current Dissipation

Percent ON Time
for Same Dissipation

2 133 ma 0.267 W 1.5%
3 200ma 0.6W 3.5%
4 270 ma 1.067 W 6.25%
5 333 ma 1.667 W 9.7%
6 400 ma 2.4 W 14%
7 466 ma 3.267 W 19%
8 533 ma 4.27 W 25%
9 600 ma 5.4 W 31.6%

10 667 ma 6.667 W 39%
11 733 ma 8.067 W 47%
12 800 ma 9.6 W 56%

The function of the PWM control circuitry is to turn the input voltage into a duty
cycle. This specific example never uses a PWM ON time greater than 56%. This is
because the power supply is 16 V, the same as the analog example, and our application
never needs more than 9.6 W. If we had a 100% ON time, the dissipation would be 17
watts.

The total dissipation in a theoretical PWM circuit is exactly the same as the dissipation in
the load. This is because the control transistor, when OFF, dissipates no power because the
cur ren t th rough it is 0. When ON, the transistor dissipates no power because the voltage
drop across it is 0. In either case E • I = 0. A real transistor has very close to zero current
when OFF, but doesn ' t quite have zero volts across it when ON.

We'll take a look at real parts later. For now, we will treat the transistor as ideal. Because
the power dissipated in a PWM circuit is all dissipated in the load (the heater , in this case),
the power supply needs to supply only what is actually n e e d e d - - n o t h i n g is wasted in the
driver. In our example, this means we only need a 9.6 W power supply, instead of the
12.8 W supply needed for the analog drive circuit we looked at originally.

Both the analog and PWM examples used a 16V power supply. We could use a
different voltage, say, 18 V. In this case, the dissipation in the opam p and total dissipation
would be greater for any given input voltage. The heater dissipation would be the same,
however, because the opamp holds the heater voltage at the input voltage, regardless of
what the supply voltage is. As long as the supply voltage is high enough that the opamp
ou tpu t can follow the input, the power dissipated in the heater is i ndependen t of the
supply voltage. This means we could use an unregula ted supply for the analog driver. The
unregula ted supply would have significant ripple at the power-line frequency, but the
o p a m p would compensate for that.

The PWM driver, on the o ther hand, is very d e p e n d e n t on supply voltage. If the supply
voltage is raised to 18 V, the PWM duty cycle has to be lower to get the same average heater
dissipation. Consequently, to achieve the same accuracy as the o p a m p circuit, the PWM
circuit would need one of the following:

Appendix B 291

. A well-regulated power supply, so the dissipation at any given PWM duty cycle is known
�9 A means to measure the supply voltage and compensate for variations
�9 A means to measure the output (heat and/or dissipation) and adjust the duty cycle accordingly

In a real application, there is typically some feedback from whatever is being controlled
(heater temperature, motor speed, etc.), so the software can adjust the duty cycle to com-
pensate for power-supply variations without knowing the actual power-supply value. In this
case, the power-supply voltage variation becomes another variable in the system, just like a
varying load. In some applications, it may be necessary to measure the supply. A heater
without feedback, for instance, might use a 50% duty cycle to get 50 ~ temperature, or a
75% duty cycle to get 75 ~ If there is no feedback to indicate the actual current flowing
through the load when the transistor is ON, then the software may need to measure the
supply voltage with an ADC and adjust the duty cycle to compensate for supply variations.

To make PWM work, the PWM frequency has to be high enough so that the load
responds to the average current flowing through it. For a large heater that is controlling
the temperature of, say, an engine block, you might get by with a PWM frequency less than
100 Hz. For a high-speed DC motor, you might need a PWM frequency of 50 kHz.

Real Parts

Now we'll take a look at a real transistor. A real power transistor, when ON, has a
saturation voltage across the collector-emitter. This can be as high as a couple of volts. A
MOSFET transistor has an ON resistance that results in a voltage drop. In both cases, the
voltage drop across the transistor is dependent on the current.

Say that our example PWM transistor has a voltage drop of 1 V. For this discussion, we'll
pretend that the drop is independent of current. The result of this voltage drop is that the
transistor dissipates some power when ON. In addition, less voltage is available across the
heater. In this case, when the transistor is ON, the 1 V collector-emitter voltage (1 V) is
subtracted from the supply voltage (16 V), leaving 15 V across the heater. Consequently,
the heater now has a current of 15 V/15 ft, or 1 amp, when the transistor is ON. The lower
voltage available to the heater has exactly the same effect on the PWM duty cycle as a lower
supply voltage would; a slightly longer PWM ON percentage is required to achieve the
same average heater dissipation.

When the transistor is turned on, it dissipates one watt (1 amp x I volt). Just like the
heater, the transistor temperature will respond to the time-average of the power. When
the heater is ON 33% of the time, the average transistor dissipation will be 0.33 W, and
when the heater is ON 66% of the time, the average transistor dissipation will be 0.66 W.

Frequency Limitations

A real transistor dissipates power when it is on. It also dissipates power when it is switching.
Figure B.4 illustrates this. The digital control signal that turns the transistor ON or OFF is
nearly instantaneous (as far as the transistor is concerned). However, the transistor itself

292 Appendix B

TRANSISTOR
CONTROL
SIGNAL I I

TRANSISTOR
COLLECTOR
VOLTAGE

Figure B.4
PWM switching dissipation.

takes some time to turn ON, and when the control input changes state, the transistor takes

some time to turn OFF. During the turn-on and turn-off times, the transistor dissipates

power, just like an analog driver does. This limits the max imum PWM frequency that can
be used. The higher the PWM frequency is, the higher the percentage of time that the

transistor spends in the intermediate state, where it dissipates the most power. If the PWM
frequency is high enough, the transistor will never turn completely OFF or ON, and will

dissipate significant power.

Resolution Limitations

A PWM system is typically implemented with a digital counter that generates the PWM

frequency. A second counter or logic that decodes the frequency counter is used to
de termine the period. For example, a PWM signal might be generated using an 8-bit

counter, which can divide the clock by 256. If the input is 1 MHz, then the output will be

1 MHz/256, or 3906.25 Hz.
Because this theoretical clock has 256 discrete periods, then the smallest step size we can

have in the PWM output is 1/256. If the PWM output is set to be ON when the counter is in

states 0 through 99 and OFF for states 100 through 255, then we have a duty cycle of

100/256, or 39.06%. If we change this to ON for states 0-100 and OFF for states 101-255,

then the new duty cycle is I01/256, or 39.4%. The change is 0.39%, or 1/256.
This characteristic limits the precision with which a PWM-based controller can adjust its

output. A linear system has nearly infinite control accuracy. Like any digital system, a PWM

controller has a limited resolution. Of course, an analog controller whose input comes from
a microprocessor-controlled DAC has the same limitation. But the number of bits of

resolution has to be taken into account when designing a PWM-based controller.

One way a round the resolution problem is to modulate the output. If our example
system is ON [;or states 0-99 for one PWM cycle, and ON for states 0-100 on the next

PWM cycle, then the average is half of the PWM resolution. By using 0-99 for two cycles

and 0-100 for one, you can get three times the original resolution. But, as you would

expect, there are a couple of catches:

�9 The microprocessor (or whatever is controlling the PWM output) has to change the

output duty cycle on every PWM cycle. The duty cycle can't just be set to a particular

Appendix B 293

value and left that way until a change is needed. This can significantly increase the
processing demand on the microprocessor.

�9 The PWM frequency has to be selected so that the load does not respond to the
individual PWM pulses, but only to the average. If the PWM output is modula ted on a

cycle-by-cycle basis, the PWM frequency must be selected so that the load does not

respond to the modulat ion frequency. Otherwise, a ripple will be seen in the load
response.

In some microcontrollers, the PWM frequency and duty cycle can be varied. The period

is typically varied by adjusting the rollover point of the period timer. This also affects

resolution. If you are using the same 8-bit PWM timer just discussed, using the full 256
counts provides a 3906 Hz PWM clock. If you need a faster clock, you can program the

period timer to roll over at 100 counts. This will provide a 10 KHz PWM clock. However,

the best resolution now available for changes in PWM output is 1% instead of 0.39%. This is
an important consideration when selecting PWM hardware. If you need a specific fre-

quency of operation, you need to calculate the available resolution using that frequency,
not using the max imum timer count. Or, you may have to adjust the microprocessor clock
to provide the correct frequency and resolution.

Power-Supply Considerations

When using PWM, the average current drawn from the power supply is equal to the

average used by the load. In the heater example we've already looked at, the maximum
power used is 9.6 W, and the average current is 800 ma. However, the current when the

heater is on is 1.0667 amps. The power supply must be capable of delivering this current
for the heater to work properly. In most cases, this can be accomplished with a sufficient

amount of capacitance on the power-supply output. If the board with the PWM controller

is powered from a supply that is some distance away, the resistance of the cabling may
cause ripple at the PWM frequency on the power supply. In such a case, it may be

necessary to have additional capacitance, not at the power supply, but at the board with
the PWM circuit.

PWM and EMI

One disadvantage to using PWM is the additional EMI that is produced. In the heater
example, the linear controller used a current that varied with the control voltage, but was
constant if the control voltage did not change. The PWM controller will produce a heater

current of 1.0667 amps every time the switching transistor turns on. Regardless of the

average heater power, there will be a 1.0667 amp current spike at the PWM frequency. If
the wiring to the system has significant resistance or inductance, this will result in a supply

voltage variation that follows the PWM waveform. For this reason, PWM systems should

use large wires or wide PCB traces, or some method of minimizing the impedance of the

power supply connections. Where there are low-level sensors, such as thermistor or

294 Appendix B

thermocouple signals, use separate grounds for those devices so that the voltage drop
caused by the PWM signal does not affect the readings.

In addition to the current and voltage excursion caused by the PWM switch, the
inductance in the system will ring when the transistor turns on. This will produce radiation
at the resonant frequency(s) of the wiring. To minimize the ringing, it is often desirable to
control the turn-on edge of the PWM switch. There are MOSFET drivers that limit the
edge rate of the signal going to the gate for exactly this reason. In a simpler system without
a MOSFET driver, you can limit the switching time by adding a small resistor (100 ohms to
1 K) in series with the MOSFET gate lead. This resistor, in combination with the MOSFET
capacitance, produces a slower edge. The tradeoffis increased MOSFET power dissipation
because the transistor spends more time in the linear region. Using the resistor also gives
less repeatable results because the actual switching time is based on the transistor capaci-

tance, which can vary from one device to the next.

Audio Applications

PWM techniques were originally developed to improve efficiency and reduce heating in
control applications. However, PWM has been applied to audio amplifiers as well. A block
diagram of an audio PWM amplifier is shown in Figure B.5. An audio amplifier using
PWM is reli~rred to as a class D amplifier. The Philips TDA8920 is a typical class D power
amplifier IC, with two 50 W audio amplifiers operat ing at up to 90% efficiency. Class D
audio amplifiers typically switch at hundreds of kHz to avoid influencing the audio
output with the PWM frequency. The advantages of PWM for audio applications are
the same as for any other application: better driver efficiency, smaller power supplies,

and less heating.

AUDIO IN

AMP,
DRIVE
LOGIC

V+

V-

LI/C I FILTER PWM SWITCHING
FREQUENCY, LEAVING ONLY
AUDIO AT SPEAKER

c1

i
SPEAKER

Figure B.5
PWM audio amplif ier.

Appendix B 295

PWM Hardware

Figure B.6 shows how a typical microcontroller-based PWM might be implemented. An 8-
bit down-counter is loaded with the value in an 8-bit register (the period register). The
counter starts counting at this value and counts down toward zero. A second register, the
duty cycle register, contains another 8-bit value. When the count equals the value in the
duty cycle register (determined by the 8-bit comparator), the PWM output goes high. The
PWM output stays high until the count value is less than the duty cycle value. This happens
when the counter rolls over from 00 to FF. The counter rollover output detects this
condition and reloads the counter with the value in the period register again.

Note that a real microcontroller would have considerable additional logic to ensure that
the PWM output would not have spurious pulses on it when the counter changes value,
and to synchronize everything with the clock. In addition, registers would be provided for
other functions, such as starting and stopping the timer and selecting PWM versus normal
mode.

MICROPROCESSOR
DATA
BUS

WRITE PERIOD

CLOCK

WRITE DUTY CYCLE

8-BIT DOWN-COUNTER

8-BIT REGISTER [LD ROLLOVER

B

PERIOD

D~D7 QO-Q7 DO-D7 QO-Q7

/%

8-BIT REGISTER
D E

IT COMPARATOR

2S6 x
COUNT

y
0

PWM OUTPUT J ~ ~ J~ - -

ROLLOVER I l I

PWM OUTPUT

Figure B.6
PWM Hardware.

296 Appendix B

The circuit shown could be used to implement a PWM output with a period up to 256
clocks and a duty cycle from 1/256 to 100%. Figure B.6 also shows how the timing works.
The counter value is shown as a continuous line, although it of course decrements in steps.
The value X on the graph is the value in the period register, which is where the counter

starts counting when it is reloaded. The value Y on the graph represents the value in the
duty cycle register. Note that if the duty cycle value is greater than the period value, the
PWM output will never go high. This sort of scenario is possible on many microcontrollers

with PWM outputs.
This particular hardware configuration was selected to make the explanation easy.

There are a number of variations on this, including up-counters instead of down-counters,
and timers that count in both directions, setting the PWM output when counting up past
the duty cycle value and resetting when counting down past the duty cycle value. Some
microcontrollers can only provide a few fixed periods, based on specific divisors of the

system clock.

P WM So ftware

Although hardware configurations may vary, most hardware PWM controllers have cer-

tain things in common:

�9 A register to set the duty cycle
�9 A register to set the period (sometimes very limited)

�9 A way to start and stop the timer
�9 A way to enable interrupts from the timer
�9 A way to set the PWM clock source and/or frequency

In general, the software procedure to set up PWM is to initialize all the registers, start

the timer, and enable the timer interrupt (if necessary). Once the timer is running, the
software must update the duty cycle (and, if appropriate, the period) as system require-

ments dictate.
In some cases, the PWM timer generates an interrupt to the microprocessor. When the

interrupt occurs, the software updates the period and/or duty cycle. On some microcon-

trollers, the PWM timer does not allow you to select a 0% or 100% duty cycle. This may
happen, for example, if you are using the full 256-count period; there may be no value you
can put into the duty cycle register that will not result in a pulse on the output. In that

situation, 0% output is not possible.
In a case like that, you may have to stop the timer and directly manipulate the output bit

to get either the 0% or 100% duty cycle. In most microcontrollers, the PWM outputs are
shared with bit-oriented I/O ports, so such manipulation is possible. However, because
time interrupts will not occur while the timer is stopped, another method must be used to
ensure that updates occur. One method, if the microcontroller supports it, is to let the

PWM timer continue to run and generate interrupts, but to disable the PWM output.

Appendix B 297

Appendix C
Useful URLs

Semiconductors

www.analog.com; Analog devices
www.atmel.com; Atmel
www.burr-brown.com; Burr-Brown
www.clarostat.com; Clarostat--optical and Hall efti~ct sensors
www.dalsa.com; DalsaPCCDs
www.fairchild-ic.com; Fairchild
www.honeywell.com; Honeywell--Hall effect sensors
www.maxim-ic.com; Maxim
www.microchip.com; Microchip
www.mot-sps.com; Motorola semiconductors
www.nsc.com; National Semiconductor
www.pmdcorp.com; Performance Motion DevicesPmotor control ICs
www.sel.sony.com/semi; Sony semiconductors--CCDs
www.ti.com; Texas Instruments
www.xicor.com; Xicor

Motors

www.bodine-electric.com; Bodine Electric--DC, brushless, stepper
www.eadmotors.com; Eastern Air Devices--DC, brushless, stepper
www.maxonmotor.com; Maxon motors--DC
www.micromo.com; Microchip
www.orientalmotor.com; Oriental Motors~DC, brushless
www.pacsci.com; Pacific Scientific--DC, brushless, stepper

299

Other

www.guardian-electric.com; Guardian relays/solenoids
www.liteon.com; Liteon optoelectronics
www.omron.com; Omron relays
www.optoswitch.com; Clarostat optoelectronics
www.qtopto.com; QT optoelectronics

300 Appendix C

Appendix D
Python Code for Chapter 11;
Excel Data for Chapter 4

Following is the Python code used to genera te the various waveforms in Chap te r 11 using

the light bulb/phototransis tor simulator. External routines PWM and ADCREAD write

values to the PWM control ler and read data from the ADC that is connected to the

phototransis tor collector. All code uses the Python "time" module to implemen t delays.

The hardware communicates with the host PC using a 115,200 baud serial link, so an

open-source serial module also was used. To avoid confusion, those details are left out of

these examples, which include only the port ions of the code necessary to illustrate the
control mechanism.

All of these examples print the waveform array to a console window. This was copied

and pasted into Microsoft Word so it could be edi ted into a column format (the values in

the Python ou tpu t were separated by commas) and the result ing co lumn of data was then

pasted into Excel for plotting.

If you are unfamiliar with Python, you can find informat ion on the In te rne t

at www.python.org. All these code fragments take 256 samples and write the ADC

input values to an array called "waveform' . A real application, of course, would run
continuously.

Code for step test:

P W M (2 5 4) # PWM fu l l on

c o u n t = 0 # Loop c o u n t e r

t i m e = c lock()

w h i l e c o u n t < 2 5 6 :

w h i l e c lock() - t i m e < .001 : p a s s

t i m e = c lock()

adc = A D C R E A D () .

w a v e f o r m , a p p e n d (o r d (a d c))

c o u n t + = 1

D e l a y 1 m s

R e a d ADC

A p p e n d r e s u l t to w a v e f o r m a r r a y

301

P W M (1)

p r i n t w a v e f o r m

T u r n PWM off

P r i n t w a v e f o r m to c o n s o l e

Code to produce negative step:

P W M (2 5 0) # ful l on

Le t o u t p u t s t a b i l i z e fo r 1 .5 sec.

t i m e = c lock()

w h i l e c lock() - t i m e < 1.5: p a s s # d e l a y 1 sec

c o u n t = 0 # Loop c o u n t e r

t i m e = c lock()

P W M (1) # ful l off

w h i l e c o u n t < 2 5 6 :

t i m e = c lock()

w h i l e c lock () - t i m e < . 001 : p a s s

a d c = ADCREAD()

w a v e f o r m . a p p e n d (o r d (a d c))

c o u n t + = 1

D e l a y 1 m s

R e a d ADC

A p p e n d r e s u l t to w a v e f o r m a r r a y

P r i n t r e s u l t .

p r i n t w a v e f o r m

Code for on/off (bang-bang) control:

s e t p o i n t = 100

c o u n t = 0

w a v e f o r m = []

c o n t r o l = []

Loop c o u n t e r

W a v e f o r m r e s u l t a r r a y

C o n t r o l o u t p u t a r r a y

Note: To t e s t c o n t r o l s t a r t i n g w i t h PWM ful l on,

u n c o m m e n t t h e f o l l o w i n g two P y t h o n s t a t e m e n t s .

T h e s e t u r n t h e o u t p u t ful l on a n d w a i t 1 sec:

PWM (2 5 0)

w h i l e c lock() - s t a r t t i m e (1: p a s s

t i m e = c lock()

Note: To i l l u s t r a t e e f f ec t of s a m p l i n g r a t e on t h e r e s u l t ,

c h a n g e t h e d e l a y v a l u e f r o m .001 to s o m e t h i n g e l s e . . 0 0 4

g i v e s a 4 m s s a m p l e r a t e .

w h i l e c o u n t (2 5 6 :

w h i l e c lock() - t i m e (.001: p a s s # D e l a y 1 m s

t i m e = c lock()

a dc = ADCREAD() # R e a d ADC

302 Appendix D

a d c i n t = o r d (a d c)

w a v e f o r m . a p p e n d (a d c i n t)

C o n v e r t r e s u l t to i n t e g e r

I f r e s u l t < s e t p o i n t , t u r n P W M off .

if r e s u l t > s e t p o i n t , t u r n P W M o n ful l .

i f a d c i n t < s e t p o i n t :

P W M (1)

c o n t r o l . a p p e n d (0)

e l se :

P W M (2 5 0)

c o n t r o l . a p p e n d (1)

(a d c i n t > = s e t p o i n t)

c o u n t + = 1

T e s t d o n e , t u r n P W M off .

P W M (1)

P r i n t r e s u l t .

p r i n t w a v e f o r m

Propor t iona l control :

s e t p o i n t = 1 5 0

o f f s e t = 2 0 0

g a i n = 10

c o u n t = 0

w a v e f o r m = [1

c o n t r o l = []

Note : To t e s t c o n t r o l s t a r t i n g w i t h P W M fu l l on ,

u n c o m m e n t t h e f o l l o w i n g t w o P y t h o n s t a t e m e n t s .

T h e s e t u r n t h e o u t p u t fu l l o n a n d w a i t 1 sec :

P W M (2 5 4)

w h i l e c l o c k () - s t a r t t i m e < 1: p a s s

t i m e = c l o c k ()

w h i l e c o u n t < 2 5 6 :

w h i l e c l o c k () - t i m e < . 0 0 1 : p a s s

t i m e = c l o c k ()

a d c = A D C R E A D ()

a d c i n t = o r d (a d c)

w a v e f o r m . a p p e n d (a d c i n t)

W a i t 1 m s

R e a d ADC r e s u l t

C o n v e r t r e s u l t to i n t e g e r

S a v e i n p u t v a l u e in a r r a y

Appendix D 303

I n t h e f o l l o w i n g code, u s e adc v a l u e - s e t p o i n t

b e c a u s e c o n t r o l is n e g a t i v e (b i g g e r P W M v a l u e = s m a l l e r

a d c r e s u l t)

L i m i t r e s u l t to r a n g e 1 - 2 5 4 .

o u t p u t = o f f s e t + (a d c i n t - s e t p o i n t) * g a i n

if o u t p u t < 1 : o u t p u t = 1

if o u t p u t > 2 5 4 : o u t p u t = 2 5 4

P W M (o u t p u t)

c o n t r o l . a p p e n d (o u t p u t) # S a v e c o n t r o l v a l u e in a r r a y

c o u n t + = 1

T e s t d o n e , t u r n P W M off.

P W M (1)

P r i n t r e s u l t .

p r i n t w a v e f o r m

PID control example :

s e t p o i n t = 1 5 0

o f f s e t = 2 0 0

PID loop g a l x ~

No te t h a t i n t e g r a l a n d d e r i v a t i v e a r e b o t h c a l c u l a t e d o v e r a s i n g l e

s a m p l e i n t e r v a l . If a d i f f e r e n t s a m p l i n g i n t e r v a l is u s e d , t h e n

t h e s a m e g a i n v a l u e s wi l l p r o d u c e d i f f e r e n t r e s u l t s .

GI = 2 # I n t e g r a l g a i n

GD = 2 # D e r i v a t i v e g a i n

GP = 4 # P r o p o r t i o n a l g a i n

d e r i v a t i v e = 0

i n t e g r a l = 0

c o u n t = 0

w a v e f o r m = []

c o n t r o l = []
I = []

D = []

A r r a y to s a v e ADC r e s u l t s

A r r a y to s a v e c o n t r o l o u t p u t r e s u l t s

A r r a y to s a v e c a l c u l a t e d i n t e g r a l v a l u e s

A r r a y to s a v e c a l c u l a t e d d e r i v a t i v e v a l u e s

p r e v e r r = 0 # i n i t i a l i z e v a l u e of p r e v e r r o r

U s e d i n c a l c u l a t i n g d e r i v a t i v e

Note : To t e s t c o n t r o l s t a r t i n g w i t h P W M fu l l on ,

u n c o m m e n t t h e f o l l o w i n g t w o P y t h o n s t a t e m e n t s .

304 Appendix D

T h e s e t u r n t h e o u t p u t fu l l on a n d w a i t 1 sec:

P W M (2 5 4)

w h i l e c lock() - s t a r t t i m e < 1: p a s s

t i m e = c lock()

w h i l e c o u n t < 2 5 5 :

w h i l e c lock() - t i m e < .001: p a s s

t i m e = c lock()

a d c = A D C ~ ()

a d c i n t = o r d (a d c)

w a v e f o r m , a p p e n d (a d c i n t)

D e l a y 1 m s

R e a d ADC r e s u l t

C o n v e r t r e s u l t to i n t e g e r

S a v e i n p u t v a l u e in a r r a y

C a l c u l a t e e r r o r . No te t h a t a d o - s e t p o i n t is u s e d

i n s t e a d of s e t p o i n t - adc . T h i s is b e c a u s e

c o n t r o l is r e v e r s e d - b ig c o n t r o l v a l u e = l i t t le o u t p u t

e r r o r = a d c i n t - s e t p o i n t

C a l c u l a t e d e r i v a t i v e a s c u r r e n t e r r o r - p r e v e r r o r

d e r i v a t i v e = e r r o r - p r e v e r r

p r e v e r r = e r r o r # F o r n e x t p a s s t h r o u g h loop

D . a p p e n d (d e r i v a t i v e)

I f e r r o r l e s s t h a n 10% of s e t p o i n t , c a l c u l a t e i n t e g r a l a s

i n t e g r a l + e r r o r . I f e r r o r g r e a t e r t h a n 10% of s e t p o i n t ,

s e t i n t e g r a l to 0. Th i s l i m i t s i n t e g r a l w i n d u p .

if e r r o r < s e t p o i n t / 1 0 : i n t e g r a l = i n t e g r a l + e r r o r

e lse : i n t e g r a l = 0

I. a p p e n d (i n t e g r a l)

C a l c u l a t e n e w o u t p u t v a l u e , l i m i t i n g r e s u l t to r a n g e 1 - 2 5 4 .

o u t p u t = o f f s e t + (e r r o r * G P) + (d e r i v a t i v e * G D) + (i n t e g r a l * G I)

if o u t p u t < 1 : o u t p u t = 1

if o u t p u t > 2 5 4 : o u t p u t = 2 5 4

P W M (o u t p u t)

c o n t r o l . a p p e n d (o u t p u t)

c o u n t + = 1

T e s t done , t u r n P W M off.

P W M (1)

P r i n t r e s u l t .

p r i n t w a v e f o r m

Appendix D 305

Table 4.1 was generated using a Microsoft Excel spreadsheet. The spreadsheet was

configured as follows:

�9 Column A: 1000 rows containing: Rand() (generates 1000 random numbers)

�9 Column B: 1000 rows containing: Value + Ax

�9 Column C: 1000 rows containing: TRUNC(Bx, 0)
�9 Column D: 1000 rows containing: IF(Cx = 3, 1, 0) (Puts 1 in the cell if Cx = 3, 0 in the

cell if Cx = 4)

To calculate the result for 100 samples, the first 100 values in column C were added

together and the result divided by 100. For 1000 samples, all the values in column C were

added together and divided by 1000.
Note: In all cases, the "x" in the cells corresponds to the row number . For example, cell

C4 contains: TRUNC(B4,0).
"Value" in column B was the value of the event being measured: 2.25, 2.5, and 2.8 in

Table 4.1.

306 Appendix D

Glossary

ADC (analog-to-digital converter): A circuit that converts an analog value, usually
voltage, to a digital value.

CDS (correlated double sampling): A method of compensating for noise in a CCD
system by subtracting two samples. The first sample is taken immediately after
reset, when the CCD output voltage is at the reset level, and the second sample is
taken when the CCD charge output is present.

Closed-loop gain: The gain of a circuit with feedback components added. For an
opamp circuit, this means that the feedback loop to one of the inputs is closed with
resistors or other components. Closed-loop gain may be an integer number, or it
may be an equation that is dependent on frequency, time, or other factors. Closed-
loop gain can apply to a simple one-IC opamp circuit or to a complex system that
includes a microprocessor in the feedback loop. Closed-loop gain in any real system
has limitations such as supply voltage or the capability of the output driving
components.

Codec: Depending on usage, codec is short for compressor/decompressor and refers
to a device, system, or software that compresses or decompresses data. An example
would be an IC that converts to and from the JPEG image-compression format. In
the telecom industry, codec is short for coder/decoder and is a device that converts
from digital to analog and back.

Cross Conduction (see Shoot-through): A condition that occurs when an incorrect
pair of transistors turns on in an H-bridge. This condition usually results in low
impedance between the two supply voltages.

DAC (digital-to-analog converter): A circuit that converts a digital value to an analog
value.

Dynamic range: The range of values that a system must measure or control. Con-
ceptually, the maximum value divided by the smallest increment.

EMC (electromagnetic compatibility): Generally refers to compatibility with the
various electromagnetic interference standards, such as those issued by the FCC
(Federal Communications Commission) in the United States or by the IEC in the
European community.

307

EMI (electromagnetic interference): A general term for any kind of interference in an
electronic circuit that is caused by any electromagnetic effect. EMI includes RF,
ESD, and magnetic interference effects.

Encoder: On a motor, an encoder attaches to the motor shaft and produces output
signals that indicate motor position. The encoder may produce a series of pulses
indicating a certain degree of rotation or an absolute indication of shaft position.

ESD (electrostatic discharge): An arc that is created when electricity flows between
two charged objects. The spark you get when you walk across a carpet on a dry day
and touch a doorknob.

Hall effect: Discovered by Dr. Edwin Hall in 1879. It refers to the voltage that appears
across a conductor if it is placed in a magnetic field while a current is passed through it.

Hall effect sensor: A semiconductor sensor that measures magnetic fields using the
Hall effect.

Index: In a shaft-position encoder, an output that indicates when the shaft has
reached a predetermined position, usually occurring once per revolution.

Integration t ime (CCD): The amount of time that light is allowed to fall (charge is
allowed to accumulate) on a CCD array before readout.

LVDT (linear variable differential transformer): A linear position sensor that uses a
movable core and balanced coils.

Open- loop gain: The gain of a circuit (typically an opamp) with no feedback compon-
ents added. The open-loop gain of an opamp is high, usually in the tens or
hundreds of thousands.

Pelt ier cooler: A solid-state cooler using the Peltier effect.

PID (Proportional/Integral/Derivative) control: A control method that determines
the new output of a system by using the difference between the desired value and
the actual value (proportional term), the rate of change (derivative term), and the
accumulation of the error over time (integral term).

PWM (pulse-width modulation): A means of controlling the current through a device
by applying an on-off waveform with a current that is higher than the desired
current. The device responds to the time average of the current through it, so the
ratio of on to off time in the waveform determines the effective current value.

Reference voltage: In an ADC or DAC circuit, the voltage that establishes the conver-
sion range. In a comparator circuit, the voltage at one input that is compared to the
other input to determine if the output is high or low.

RTD (resistance temperature detector): A conductor that is used to measure tem-
perature by measuring resistance change.

Sample and hold (S/H): A circuit that stores a voltage value so it can be measured.
Typically used with an ADC to stabilize the input value during measurement .

Shoot-through (see Cross conduction): A condition that occurs when an incorrect
pair of transistors turns on in an H-bridge. This condition usually results in low
impedance between the two supply voltages.

308 Glossary

Strain gauge: A sensor that measures mechanical strain, such as weight, by measur ing
the resistance change in a conductor due to the change in cross-sectional area.

Thermistor: A resistive c o m p o n e n t that changes resistance with t empera tu re .

T h e r m o c o u p l e : A t e m p e r a t u r e sensor that measures the voltage genera ted at the
junct ion of two dissimilar metals.

Torque: The a m o u n t of force a motor can apply to its shaft. T h e formula for torque is:

Force x Momen t Arm = T o r q u e

T o r q u e is measured in foot-pounds, inch-pounds, ounce-inches, or

Newton-meters (metric).

8.85 inch-pounds = 1 Newton-mete r

1 foot-pound = 12 inch-pounds

16 ounce-inches = 1 inch-pound

1 Newton - 1 k i logram-meter per second squared

VRS (variable reluctance sensor): A sensor that uses a magne t and a coil to sense
rotation of a toothed wheel. The teeth on the wheel p roduce changes in the
magnet ic field from the magnet , inducing an AC voltage on the coil.

V-F (voltage-to-frequency) conver ter : A circuit that genera tes an ou tpu t f requency
that varies with an input voltage.

Glossary 309

Index

1 LSB, 35
2-channel arrays, 74
2's complement outputs, 30
4-20ma current loop, 244-245
4N35 optoisolator, 68
6N 136 optoisolator, 68
8031 family, 39
80186 processor bus contention,

33-34

A

Absolute encoders, 198
AC power control, 252,254
Acceleration sensors. See motion/

acceleration sensors
Accumulation of errors, 35, 122
Accuracy, extending with limited

resolution, 102-106
Acquisition time, 28
AD594/595, 58
ADCs (analog-to-digital converters),

13-15,307
2's complement outputs, 30
accuracy of reference, 43
CCDs (charge coupled devices), 81
comparing types of, 25-26
controlling multiple sensors, 65-67
dual-slope (integrating) ADCs, 20-21
flash ADCs, 19
half-flash converter, 24-25
Hall effect sensors, 83
high-resolution, 234-235
12 bus, 38-39
input levels, 29
interfacing to fast processor, 36
internal microcontroller, 42-43
internal reference voltage, 29

internal S/H (sample-and-hold) circuit,
29-30

interrupt rates, 44
lower-voltage, single-supply operation,

29
low-pass filter ahead of, 27
microprocessor interfacing, 30-35
multichannel, 41-42
output coding, 30
output values in BCD, 30
output word, 16
parallel interfaces, 30-32
proprietary interfaces, 39
reference bypassing, 29
reference voltage, 16
resistor ladder or string, 24
resolution, 16-17
serial interfaces, 36-41
S/H (sample-and-hold circuit), 26-30
sigma-delta converter, 21-24
single-slope converter, 21
SMBus, 39, 41
SPI/Microwire, 36, 38
successive approximation converter,

19-20
tracking ADCs, 17, 19
types, 17-25

Agilent HCTL-1100 controller IC, 203-204
Aliasing, 11-12
Analog Devices AD570, 29
Analog Devices AD872, 29
Analog Devices AD5203, 166
Analog Devices AD5220, 163-165
Analog Devices AD7801, 162-163
Analog Devices AD7823, 38
Analog Devices AD7824, 41-42
Analog Devices ADV7120, 163
Analog Devices ADXL202, 86

311

Analog Devices Web site, 299
Analog Hall effect sensors, 82
Analog multiplexers, 168-169
Analog signal transmitted over electrically

noisy wire, 100
Analog switches, 166-168
Applications, high-precision, 225-227
Area CCDs (charge coupled devices), 78-79
Arrays, 74-77
Asynchronous V-F converters, 99
Atmel AT90S4434, 42
Atmel ATtiny parts, 44
Atmel AVR devices, 44
Atmel Web site, 299

B

Back EMF, 209
Bandpass filter, 97
Bandwidth, 5
Bang-bang control. See On-off control
BestSoft Web site, 138
Bipolar Hall effect switches, 83
Bipolar stepper motors, 173, 179-180
Bipolar transistors, 254-257
Bodine Electric Web site, 299
Brushless DC motors

compared to other types of motors, 206
digital drive, 194-195
drive electronics providing commutation,

193-195
electronic commutation, 206
Hall-effect sensor, 195
operation of, 193
sensorless, 195-196
sinusoidal drive, 193-195

Burr-Brown Web site, 299
Bus architecture, 7-8
Bus contention, 33-34
Bus cycle without wait states, 35

12

Calibrating system with known target,
80-81

Calibration
calculating with software, 3
compensation for, 2-3
EEPROM containing, 3
human element, 5
measurement, 2-5
microcontroller performing, 3-4
storing, 3

Camcorders and Area CCDs, 78
Capacitors

LSB errors, 34-35
supplying current to coil, 148
time required to charge up, 34
V-F (voltage-to-frequency converters),

98-99
Capture counter, 91-93
CCD array, 73-74
CCDs (charge coupled devices), 71

ADCs (analog-to-digital converters), 81
area, 78-79
basics, 72
calibrating system with known target,

80-81
CDS (correlated double sampling), 79-80
clock and reset inputs, 81
color, 75
color processing, 78
dark reference, 79
driving, 81
electrostatic potential, 72
exposure control, 72
functions, 72
integration, 72
integration time, 72
lighting variations, 80
linear, 73-75
nonuniformity, 80-81
normalizing output, 80
operation, 72
reducing noise, 79-80
sense node, 72
trilinear, 75-78
voltage requirements, 81

CDS (correlated double sampling), 79-80,
307

Chopper circuit, 186
Chopper control, 186--187
Chopper oscillator, 186-187
Chromel-alumel (Type K) thermocouples,

57
Circuits

electrical isolation between, 67
high-side injection, 97

Clarostat Optoelectronics Web site, 300
Clarostat Web site, 299
Class D amplifier, 295
Clock resolution, 100-102
Clocked interfaces, 35-36
Closed-loop gain, 307
Codecs, 43, 307
Color and Trilinear CCDs (charge coupled

devices), 75-78

312 Index

Combined logic analyzer/DSO, 135-136
Commercial software for tuning PID loops,

138
Comparators, 17, 19-21, 23

Hall effect sensors, 83
hysteresis, 283-285
opamp, 281-283
open heater condition, 149, 151
optical sensors, 62-63
V-F (voltage-to-frequency converters),

98-99
Components

safety ground, 216-217
tolerance stackup, 55-56

Continuous-duty solenoids, 145
Control design, 143
Control loops, measuring and analyzing,

134-143
Control systems

combined logic analyzer/DSO, 135-136
debugging problems, 134
hardware monitoring, 134-143
inaccuracy, 126
logic analyzer, 134
monitoring, 134-135
motor control, 127-133
on-off control, 109-112
overshoot, 112
PID controls, 116-127
predictive controls, 133-134
proportional controls, 112-115

Controls, open-loop, 107
Coolers

fans, 155-157
solid-state (Peltier), 155

Copper-constantant (Type T)
thermocouples, 57

Counters
incremented by frequency input, 94
motor control, 128
overflowing, 102

Cross-conduction, 180-184, 307
CTR (current transfer ratio), 61
Current chopping, 148

O

DACs (digital-to-analog converters), 13-15,
17, 162-163, 307

Dale thermistor, 48
Dalsa Web site, 299
Darlington transistor outputs, 61
Data access time, 32

dB (decibels), 1
D.C. (dissipation constant), 50
DC motors

ability to brake, 192-193
analog driver, 191
brushless, 193-197
compared to other types of motors, 206
control circuits, 191
controller ICs, 199-204
current control, 191
driving, 191
dynamic braking, 192-193
encoders, 197-198
H-bridge driving, 190-193
higher loading, 191
light loading, 191
power-up issues, 207-209
software controllers, 204-205
speed, 209
synchronization, 190
torque, 206

Deadtime, 126
Derivative term and PID controls, 126
Differential amp, 22
Differential amplifier equation, 280
Digital potentiometers, 163-166
Discrete optical sensors, 69-71
Discrete parts, 69
DMA controller reading ADC at regular

intervals, 44
Driving

bipolar transistors, 254-257
CCDs (charge coupled devices), 81

Droop rate, 28
DSO (digital storage oscilloscope), 135-136
DSP filtering in software, 97
Dual-function pins on microcontrollers,

44-46
Dual-slope (integrating) ADCs, 20-21
Dynamic braking, 192-193
Dynamic range, 1-2, 307

E

Eastern Air Devices Web site, 299
EEPROM, containing calibration data, 3
Electrical and IEEE 1451.2 standard, 243
EMC (electromagnetic compatibility), 8
EMI (electromagnetic interference), 308

ground loops, 215-220
interference, 215
PWM (pulse width modulation), 294
susceptibility, 215

Index 313

Encoders, 197-198, 206, 308
Errors, 112-113

accumulation of, 122
motor control, 128
proportional controls, 115

ESD (electrostatic discharge), 220, 308
protection, 221-223
self-induced, 221

Ethernet between systems, 216
Events

accurate measurement short, 103-104
duration longer than clock period, 104
duration not changing, 105
ISR interrupt, 106
measuring nonsynchronized to

measurement clock, 104
period increases, 105
repeatability, 105
repetitive, 104, 106

Example control system, 262
on-off (bang-bang) control, 263, 266
PID controls, 268-272
proportional controls, 266-268
proportional-integral control, 273

Excel data for Chapter 4, 306

F

Failed LED, 66-67
Fairchild TMC 1103, 81
Fairchild Web site, 299
Fans

built-in tachs, 157
controlling speed, 155
electronic controllers, 155
monitoring, 155-156
MOSFET transistors, 155
optical (or Hall effect) sensor output, 156
set/reset flip-flop, 156

Feedthrough, 28
Ferrite beads, 223
Fieldbus, 245-246
FIFOs (first in, first out memory), 77
Filtering

noisy input, 140-141
slotted switches, 63
V-F converters, 100

Flash ADCs (analog-to-digital converters),
19, 24

Floating-point math, 103
Frequency

detecting changes quickly, 95
high-precision applications, 229

input range, 97
measurements, 91
measuring versus period, 94-95
sampling clock, 100-102

Frequency mixer, 96-97
Frequency shifts, 96-98
Full power bandwidth, 28

G
Geartooth Hall effect sensors, 83
Ground loops, 215

damaging electronics, 216
measurement errors, 216
motor current, 218-220
self-induced current errors, 220

Grounding and high-precision
applications, 234--235

Guardian Relays/Solenoids Web site, 300

14

Half-flash converters, 24--25
Half-stepping stepper motors, 175-177
Hall, Edwin, 82
Hall effect, 82-83,308
Hall effect potentiometer, 83
Hall effect sensors, 82-83, 195,308
Hall effect switches, 82-83
Hanson Motors Web site, 299
Hardware

peripherals, 8-9
PWM (pulse width modulation), 296-297
requirements, 9-11
system adaptions to lower costs, 9-11
throughput requirements support, 6

H-bridge circuits, 179
braking capability, 192
cross-conduction, 180
enabling and disabling, 187
power-up conditions, 182-183

Heaters
detecting open heater condition, 149,

151
driven by transistor, 149
open sensor, 151-152
RTD heaters, 152, 154-155

High-precision applications
frequency characteristics, 229
grounding, 234-235
input offset voltage, 227-228
input resistance, 228-229
noise, 234-235

314 Index

opamps causing errors, 225-227
printed circuit board layout, 236-239
statistical tolerancing, 239-240
supply-based references, 240
temperature effects in general, 233-234
temperature effects in resistors, 230-231
voltage references, 231-233

High-side injection, 97
High-side switches, 257
High-side switching, 259-260
Hold capacitor, 27-28
Honeywell Web site, 299
Hybrid stepper motors, 171-173
Hysteresis, 283-285

I x bus, 38-39
IEEE 1451.2 standard

electrical, 243
standard units, 244
TEDS (transducer electronic data sheets),

243-244
Index, 308
Inertia, 117
Input

dynamic range, 1-2
frequency greater than measurement

capability, 12
frequency range, 97
multiple controls, 250-252
offset voltage, 227-228
resistance and high-precision

applications, 228-229
voltage and V-F (vohage-to-frequency

converters), 99
Instrumentation amplifiers, 285-286
Integral terms

pseudocode example, 139-140
saturation, 124-125

Integrals, 121-122
Integration, 72
Integration time, 72,308
Integrator, 20-21
Interfaces

shared, 9
system design, 11
throughput requirements, 6

Interference, 215
Internal microcontroller ADCs, 42-43
Internal reference voltage, 29
Internal S/H (sample-and-hold circuit),

29-30

Interrupt rates, 44
Interrupts

repetitive events, 106
throughput requirements, 6

Inverting amplifier equation, 279-280
Iron-constantan (Type J) thermocouples, 57
ISR (interrupt service routine), 6, 92

R"

Kodak KLI series, 76
Kodak KLI-2113, 77

L

L297 stepper-controller I C, 189
L6201 IC, 185, 192
L/C low-pass filter, 97
LEDs

current-limiting resistor in series, 157
driving multiple, 160-162
driving with constant current, 158-159
hooking in parallel with one limiting

resistor, 160-161
input voltage, 159
optoisolator outputs, 160
unregulated supply, 157-158

Linear arrays, 74
color filters, 75
nonunitormity, 80

Linear CCDs (charge coupled devices), 73-75
Line-scan CCDs (charge coupled devices).

See linear CCDs
Liteon Optoelectronics Web site, 300
LM231, 99
LM335, voltage proportional to

temperature, 58
LM336 reterence, 231-233
LM336A-2.5 reference diode, 231
LM628/9 controller IC, 199-204
LM1820IC, 185
LMD 18200 H-bridge, 192,207
Low-pass filter, 97-98
LVDTs (linear variable differential

transtormers), 84-85,308

M

Magnetic sensors
Hall effect sensors, 82-83
LVDTs (linear variable differential

transformers), 84-85
VRSs (variable reluctance sensors), 85-86

Index 315

MAX 350, 169
MAX6576, 101-102
MAX6576 temperature sensor, 101
MAX6577, 91
Maxim MAX 151

adding data bus buffer before
processor, 34

bus cycle extended with wait states, 35
bus relinquish time, 32-34
-BUSY output, 32
clocked interfaces, 35-36
coupling of bus control signals, 34
data access time, 32
delay between conversions, 34
internal S/H (sample-and-hold circuit),

3O
interrupt rates, 44
microprocessor interface, 32
minimizing effect of coupling, 34
parallel interface, 30
ROM mode, 30-32
sampling mode, 34
Slow Memory Mode, 30

Maxim MAX 191, 29
Maxim MAX349, 169
Maxim MAX 1101, 39, 81
Maxim MAX1242, 36, 38, 43
Maxim MAX 1617, 58
Maxim MAX5048, 259
Maxim MAX6225 reference, 233
Maxim MAX6576, 91
Maxim Web site, 299
Maxon Motors Web site, 299
MC2100 series controller IC, 203
MC2300 series controller IC, 203
Measurement

1 ~ accuracy, 2
calibration, 2-5
clock accuracy, 105
frequency, 91
input frequency greater than capacity, 12
number of bits of precision required, 1-2
time-based, 91
tolerances, 2

Measuring
analyzing control loops and, 134-143
motor parameters; 136-138
period versus frequency, 94-95

Mechanical potentiometers, 164-166
Microchip 16C7x parts, 51
Microchip PIC devices, 44
Microchip PIC 16C series, 205
Microchip PIC 167C7xx family, 42
Microchip Web site, 299

Microcontrollers
binary values, 143
division, 143
dual-function pins on, 44-46
input capture capability, 102
multiplication, 143
negative values, 143
on-chip hardware to implement

synchronous serial I/O, 39
performing calibration, 3-4
proprietary serial interfaces, 39
with PWM outputs, 148
supply and reference, 247-248
timers incremented with external

signal, 93
Microprocessor interface, 32
Microprocessor-based systems, 1, 108-109
Microprocessors

buffer, 34
connecting switch to, 87
deadtime, 126
extending accuracy with limited

resolution, 102-106
gain function, 108
interfacing, 30-35
interfacing to solenoids and relays,

145-146
internal wait-state generators, 32
interrupt latency issues, 93
measuring temperature using

thermistor, 48, 50
NMI (non-maskable interrupt) input, 93
RDY or-WAIT signal, 32
sampling output of sensors, 108
sampling rate, 108-109
slow memory mode, 32
without capture capability, 93

Microsoft Excel, random number function,
104

Microstepping stepper motors, 177-179
MIDI (Musical Instrument Digital

Interface) optical isolation, 67
Mixer, complicated design of, 98
Mixing and time-based measurement,

96-98
Monitoring control systems, 134-135
Monochrome images, 78
MOSFETs, 109, 146

driving, 257-260
gate-to-source and gate-to-drain

capacitance, 259
high-side switching, 259-260
not turning on, 259
turn-on time, 259

316 Index

Motion/acceleration sensors, 86-89, 87-89
Motor control

checking count of internal free-running
counter, 130

checking velocity, 130
constant speed, 129-131
control loop, 129
counters, 128
error, 128
fixed-count sampling method, 130-131
indicating desired position, 128-129
positioning, 131, 133
slotted switch, 129
software considerations, 133
timeout to detect stalled, 131

Motorola Semiconductors Web site, 299
Motors

current and ground loops, 218-220
DC motors, 190-205
measuring parameters, 136-137
rotor, 173-174
stepper motors, 171-189
torque, 208-209
tuning parameters, 136

MPC (model predictive control), 134
Multichannel ADCs, 41--42
Multi-output arrays, 74
Multiple input control, 250-252
Multiple optical sensors, 65-67
Multiplexers, 168-169

/V

National LM34 and LM35 sensors, 58
National LM74, 58
National LM75, 58-59
National Semiconductor LM4546, 43
National Semiconductor Web site, 299
National TP3054 telecom-type codec, 43
N-channel MOSFET, 260
Negative feedback and control, 107-108
Negative voltages, reading, 261-262
NMI (non-maskable interrupt) input, 93
NMPC (nonlinear model predictive

control), 134
Noise and high-precision applications,

234-235
Noninverting amplifier equation, 280
Nonuniformity CCDs (charge coupled

devices), 80-81
NPN transistor, 145-146
NTC (negative temperature coefficient), 47
NTC thermistors, 48, 151-152

0

Offset voltage and high-precision
applications, 227

Omron Relays Web site, 300
On-chip ADCs (analog-to-digital

converters), 42
On-chip hardware to implement

synchronous serial I/O
microcontrollers, 39

One-phase-on drive, 175
On-off (bang-bang) control, 263, 266

coupling, 110
dead band, 111-112
optimum conditions, 111
oscillation, 113, 115
overshoot, 113, 115
thermal mass, 110
time lag, 110

Opamps
buffer configuration, 275-277
calculating output voltage, 53
causing errors, 225-227
comparators, 281-283
design equations, 279-280
deviations from ideal, 108
differential amplifier configuration,

278-279
differential amplifier equation, 280
equation, 225-227
frequency limitations, 108
input impedance, 228
input resistance, 228-229
instrumentation amplifiers, 285-286
inverting amplifier equation, 279-280
negative feedback, 107-108
noninverting amplifier equation, 280
noninverting configuration, 277-278
nonresistive elements, 280
reversing inputs, 281

()pen heater condition, 149, 151
Open sensors, 64-65, 151-152
Open-loop controls, 107
Open-loop gain, 308
Operating system requirements and

throughput, 7
Optical encoders, 197
Optical isolators, 67-68
Optical sensors

comparator, 62-63
connecting output to ADC, 62
discrete, 69-71
failed LED, 66-67
interfacing to microprocessor, 69

Index 317

Optical sensors (continued)
IR problems, 63--64
mechanical instability, 64
multiple, 65-67
open sensors, 64-65
optical isolators, 67-68
reflective sensors, 59-63
slotted switches, 59

Optocouplers, 67-68, 182
Optoisolators, 67-68

driving multiple, 160-162
isolating bidirectional signal between two

systems, 69-71
LEDs, 160
transistor and logic outputs, 160
triac outputs, 160

Oriental Motors Web site, 299
Oscillators, crystal-controlled, 234-235
Out-of-bounds controls, 141-142
Output

coding, 30
dynamic range, 1-2
offset, 28
voltage, 13-15

Output word and ADCs, 16
Oversampling, 21-22

P

Pacific Scientific Web site, 299
Parallel interfaces and ADCs, 30-32
PC/104 Plus bus, 7-8
PCB grounding, 236
P-channel MOSFET, 259-260
Peltier cooler, 308
Performance Motion Devices Web site, 299
Periods

measuring versus frequency, 94-95
sampling clock, 100-102

Peripherals, 8-9, 39
Permanent-magnet stepper motors, 171
Phillips TDA5140, 197
PIC 15C6x series, 91
Pick/hold circuit and solenoids, 147-148
PID analysis package, 138
PID (proportional, integral, derivative)

controls, 116, 308
amount of change in one time interval,

126
antiwindup for integral term, 139-140
block diagram, 116
deadtime, 126
derivative term, 126
derivatives, 117-120

difficulty of making measurements, 124
discontinuous inputs, 127
drawbacks, 133
effectiveness, 133
filtering noisy input, 140-141
formula for calculating output, 116-117
handling specific inputs, 127
inertia, 117
integral and derivative gains, 123
integrals, 121-122, 126
light load versus a heavy load, 117
motor control, 127-133
offset, 117, 133
oscillation, 120
overshoot, 119-120
practical considerations, 123-124
preventing out-of-bounds average

output, 141-I 42
preventing out-of-bounds control

output, 141
proportional gain and derivative, 120
pseudocode examples, 138-143
saturation, 124-125
software considerations, 125-126
special requirements, 127
summarized, 122-123
terms, 117
time delays, 126
tuning, 123-124
velocity setpoint, 131, 133

PID loop
measuring effects of changes, 136
pseudocode examples, 138-140

PMDC (Permanent magnet DC) motor DC
Motors, 190

PN junction, 58
Positioning motor control, 131, 133
Potentiometers

mechanical, 166
Potentiometers, digital and mechanical,

163-166
Power supplies and printed circuit board

layout, 236-239
Printed circuit board layout

PCB grounding, 236
power supplies, 236-239

Processing requirements and throughput, 7
Processor

avoiding excess speed, 7-8
clock-synchronized bus, 35
cost, 7-8
EMC (electromatic compatibility), 8
hardware divide instruction, 10
throughput, 6-7

318 Index

Products and EMC regulations, 8
Proportional controls, 266-268

adjusting control signal, 113, 115
adjusting gain and offset, 115
conditional problems, 115
equation, 113
error, 112-113, 115
handling varying loads better, 118
known load, 115
negative output capability, 113
oscillation around setpoint, 113
overshoot, 113
reaching setpoint without oscillating, 115
without offset, 115

Proportional-integral control, 273
Proprietary serial interfaces, 39, 41
Pulse-duty solenoids, 145
PWM (pulse width modulation), 308

audio applications, 295
EMI, 294
hardware, 296-297
power-supply considerations, 294
resolution limitations, 293-294
software, 297

Python code for Chapter 11,301-305

O
QT optoelectronics reflective sensors, 61
QT optoelectronics Web site, 300
Quad digital potentiometer, 166
Quadrature encoder, 198

/:/

Random number function, 104
Range, 100-102
Reading negative voltages, 261-262
Reference voltage, 16, 42-43,308
References

bypassing, 29
reducing input, 17

Reflective sensors
adding hardware and/or software to

detect unusual conditions, 64
CTR (current transfer ratio), 61-62
focal length, 59
gain, 61--63
I R problems, 63-64
mechanical instability, 64
mechanical jitter, 64
sensing objects of differing types, 64
speed, 61

Refrigerators and temperature, 105-160
Relays, 145

chopping current, 148
clamping, 147
DC current drawn by, 147-148
diode camp usage, 146-147
extra set of contacts on, 148
flyback voltage, 146-147
interfacing to, 145-147

Repetitive events, 104, 106
Resistance

RTD heaters, 152, 154
temperature, 2

Resistor ladder, 24
Resistor networks, 249-250
Resistor voltage divider, 261
Resistors

dissipating power, 148
standard values, 54
temperature effects, 230-231

Resolution
ADCs (analog-to-digital converters),

16-17
extending with limited, 102-106
improving, 1 6-17

Resonance and stepper motors, 173-175,
188

ROM mode, 36
Rotor and stepper motors, 173-174
RTD (resistance temperature detectors),

56, 308
RTD heaters

drawbacks, 154
driving, 152, 154
measure-when-off circuit, 154
measure-when-on circuit, 154
measuring temperature of heating

element, 154-155
measuring temperature with heater off,

154
resistance, 152, 154
sense resistor, 152, 154
temperature measurement dependent

on supply voltage, 154
thermistors, 152
tolerance, 154

$

Safety and failed sensors, 64-65
Sample rate, 11-12
Sampling clock, higher frequency, 96
Saturation, 124-125

Index 319

Scaling output for temperature sensors and
thermistors, 51-55

Seebeck, Thomas, 57
Self-heating, 50
Self-induced current errors, 220
Self-induced ESD (electrostatic discharge),

221
Semiconductor strain gauges, 90
Sense resistor

RTD heaters, 152, 154
stepper motors, 184

SENSEFETS, 154
Sensors

magnetic, 82-86
motion/acceleration, 86-89
open, 151-152
operating from different reference,

99-100
optical, 59-71
saturation, 125
temperature, 47-59

Serial interfaces
ADCs (analog-to-digital converters),

36-41
12 bus, 38-39
proprietary, 41
SMBus, 39, 41
SPI/Microwire, 36, 38
TP3054, 43

Setpoint, settling small distance from,
121-122

Set/reset flip-flop, 156
S/H (sample-and-hold circuits), 308

acquisition time, 28
CDS (correlated double sampling),

79-80
finite input impedance, 28
full power bandwidth, 28
hold capacitor, 27-28
internal, 29-30
maintaining output in hold

mode, 28
output offset, 28
waveform, 27

Shared interfaces, 9
Shoot-through, 180-184, 308
Sigma-delta converter

accuracy, 24
comparator, 23
complexity of digital filter, 24
differential amp, 22
high resolution, 24
input range, 24
speed, 24

Single-channel arrays, 74
Single-slope converter, 21
Sinusoidal input signal, 11
Slotted switches, 59

CTR (current transfer ratio), 61
current transfer ratio, 61
Darlington transistor outputs, 61
filtering, 63
gain, 61-63
IR problems, 63-64
motor control, 129
speed, 61

Slow Memory mode, 36
SMBus, 39, 41
Smith, Otto, 126
Smith Predictor, 126
Software

artificially limiting integral buildup,
125-126

motor control considerations, 133
PID considerations, 125-126
PWM (pulse width modulation), 297
registers of limited size, 125

Software controllers and DC motors,
204-205

Solenoids
clamping, 147
DC current drawn by, 147-148
driven by transistor, 149
flyback voltage, 146-147
interfacing to, 145-147
pick/hold circuit, 147-148

Solid state temperature sensors, 58-59
Solid-state acceleration sensors, 86
Solid-state (Peltier) coolers, 155
Solid-state sensor, detecting open, 151-152
Sony ILX series, 76
Sony ILX724
Sony Semiconductors Web site, 299
Specialized DACs (digital-to-analog

converters), 163
SPI/Microwire, 36, 38
SPI/Microwire interface, 58
SSRs (solid-state relays), 252
Stall torque, 209
Standard interfaces

4-20ma current loop, 244-245
Fieldbus, 245-246
IEEE 1451.2, 243-244

Statistical tolerancing, 239-240
Stepper DC motors, 206
Stepper motors

analog driver, 191
bipolar versus unipolar windings, 173

320 Index

chopper control, 186-187
constant current drive, 188
control method, 188
cross-conduction, 180-184
current sensing, 184
driving, 179-180
firmware, 211-213
half-stepping, 175-177, 188
hybrid, 171-173
interrupt routine logic, 213
linear drive, 188-189
main loop logic, 211
microstepping, 177-179, 188
motor current logic, 212
motor drive I Cs, 185
one-phase-on drive, 175
permanent-magnet, 171
ramping down, 212
real-world application, 209-213
resonance, 173-175, 188
rotor, 173-174
sense resistor, 184
speed and current update logic, 212
state update logic, 212
sudden loss of torque, 174-175
switch debounce logic, 212
torque, 186-187
variable-reluctance, 171

Stored charge, 256
Strain gauges, 89-90, 309
Successive approximation ADCs, 42

changing signals, 26-27
reference bypassing, 29
resistor ladder, 24

Successive approximation converter, 19-20
Successive approximation register, 19-20
Summarized PID, 122-123
Supply-based references, 240
Surface-mount (SOT-23) device, 91
Surface-mount packaging, 83
Surveillance cameras and area CCDs, 78
Susceptibility, 215
Switches

analog, 166-169
bounce, 87-88
contact resistance, 88-89
detecting press of, 87-88
motion/acceleration sensors, 87-89
types, 87

Synchronous V-F converters, 99
System design

aliasing, 11-12
avoiding speed, 7-8
bandwidth, 5

calibration, 2-5
dynamic range, 1-2
hardware requirements, 9-11
interfaces, 11
peripheral hardware, 8-9
processor throughput, 6-7
sample rate, 11-12
shared interfaces, 9
task priorities, 9
word width, 11

Systems
capable of division, 105
Ethernet between, 216
inertia, 117
microprocessor-based, 108-109

7"

Task priorities, 9
TEDS (transducer electronic data sheets),

243-244
Temperature, 47

converting to time-based output, 93
general effects, 233-234
refrigerators, 105-160
relating output of sensor to, 3
resistance, 2
thermistor measurement of, 48, 50

Temperature control loop, 149
Temperature sensors

converting temperature to time-based
output, 93

PN junction, 58
RTD (resistance temperature detectors),

56
scaling output, 51-55
solid state, 58-59
thermistors, 47-51
thermocouples, 57-58
tolerance stackup, 55-56

Temperature-sensitive resistor, 47
Texas Instruments Web site, 299
Thermal mass and on-off control, 110
Thermistors, 109, 309

characteristics, 47
D.C. (dissipation constant), 50
generating heat, 50
limiting repeatability, 48
measuring temperature, 48, 50
NTC (negative temperature coefficient),

47
placement and performance, 111
resistance, 47-48, 51

Index 321

Thermistors (continued)
RTD heaters, 152
scaling output, 51-55
self-heating, 50
sensitivity, 47
tables, 48
thermal mass, 110
tolerance, 48, 56

Thermocouple signal conditioner, 58
Thermocouples, 57-58, 151-152, 309
Throughput requirements, 6-7
TI VSP 2000, 81
Time delays and PID controls, 126
Time-based measurement

capture counter, 91-93
clock resolution, 100-102
extending accuracy with limited

resolution, 102-106
interrupt latency issues, 93
mixing, 96-98
period versus frequency, 94-95
range, 100-102
V-F (voltage-to-frequency converters),

98-100
Timers, 93, 103
TMP03, 93
TMP04, 93
Tolerance, 2, 154
Tolerance stackup, 55-56, 239-240
Torque, 208-209, 309
Tracking ADC (analog-to-digital

converter), 17, 19, 24
Transistors, 292-293
Tranzorbs, 147
Trilinear arrays, 76-77
Trilinear CCDs (charge coupled devices)

linear CCD arrays, 78
skewed data, 77-78
three-element array, 75-76

Tuning PID loops, 138
Two-channel encoders, 198

O

Unipolar Hall effect switches, 83
Unipolar stepper motors, 173

It

Van DeGraff generator, 221
Variable-reluctance stepper motors,

171
V-F (voltage-to-frequency converters),

98-100, 309
Voltage, 254
Voltage divider, 261-262
Voltage precision, 2
Voltage references

high-precision applications, 231-233
tolerance, 56

VRSs (variable reluctance sensors), 85-86,
309

VST 3000 series, 81

W

Wintune Web site, 138
Word width, 11

X

Xicor Web site, 299

Z

Zener diodes, 147, 223
Zero crossing switching, 252-254
Ziegler/Nichols method, 123-124

322 Index

