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Preface

Wireless systems are offering a wide variety of services to an ever increasing num-
ber of users. Undeniably, this connectivity has contributed to enhancing the quality
of life. Though, the proliferation of wireless handheld devices and base stations led
to an alarming downside due to their environmental impact. In fact, the carbon foot-
print of the wireless communication infrastructure is reaching unprecedented levels.
This stimulated a global awareness about the need to reduce base stations energy con-
sumption. In order to make communication systems more eco-friendly and “greener”,
significant research work is being carried out at various aspects of base station design.
This includes, among other things, scaling of energy needs depending on the traffic
and network load, improving the ratio of quality of service to radiofrequency power,
and increasing the overall efficiency of the base station. A closer look at base stations
power consumption reflects that their overall efficiency can be significantly improved
by increasing that of the radio frequency front end and especially the power ampli-
fier. This would not only make communication systems greener but also reduce their
deployment and running costs in terms of capital expenditure (CAPEX) and opera-
tional expenditure (OPEX), and result in substantial financial benefits.
Technically, building power amplifiers with peak power efficiencies as high as 80%

has become feasible thanks to the development of new transistor technologies and
new classes of operation such as switching mode. However, getting such high effi-
ciencies from power amplifiers handling modern wireless communication systems is
a tricky challenge. In fact, and due to the nature of the highly varying envelop sig-
nals being transmitted, base station power amplification systems have to be highly
linear and meet the spectrum emission masks set by standardization and regulatory
authorities. This requires the use of linearization techniques, which virtually make
the power amplifier linear over its entire power range, thus allowing operation with
less power back-off, and hence resulting in higher efficiencies compared to what could
have been obtained from the same amplifier if no linearization was adopted. In this
context, digital predistortion has received tremendous attention from the industrial
and academic communities and incontestably appears to be the preferred technology
for base station power amplifier linearization.



xiv Preface

Conceptually, behavioral modeling and digital predistortion are intimately related.
They are often referred to as forward and reverse modeling, respectively. This book
focuses on the behavioral modeling and digital predistortion of wideband power
amplifiers and transmitters. It compiles a wide range of topics related to this theme.
The book is organized in 10 chapters, which can be organized into three parts.
Chapters 1–3 set the ground for the remainder of the book by introducing the
key parameters used to model and characterize the nonlinear behavior of wireless
transmitters in Chapter 1, classifying and discussing the theory of dynamic nonlinear
systems in Chapter 2, and providing a review of model performance evaluations
metrics in Chapter 3. The second part of the book, Chapters 4–7, is a thorough review
of behavioral models and predistortion functions that encompasses quasi-memoryless
models in Chapter 4, memory polynomial based models in Chapter 5, box-oriented
models in Chapter 6, and neural networks based models in Chapter 7. These
models are introduced and their specificities discussed. The last part of the book,
Chapters 8–10, is application oriented and provides comprehensive and insightful
information about the use, in an experimental environment, of the models described
earlier in the book. Chapter 8 covers the acquisition of the device-under-test (DUT)
input and output data and its processing prior to the model identification. Chapter 9
is devoted to baseband digital predistortion and its practical aspects. Chapter 10
concludes the book by exposing recent trends in behavioral modeling and digital
predistortion such as joint quadrature impairment compensation and digital predistor-
tion, as well as the predistortion of dual-band and multi-input multi-output (MIMO)
transmitters.
The book chapters are complemented with a software tool available through the

Wiley website (www.wiley.com/go/Ghannouchi/Behavioral) that implements several
of the topics discussed in the book and can be used to demonstrate these topics in a
more tangible way.

http://www.wiley.com/go/Ghannouchi/Behavioral
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1
Characterization of Wireless
Transmitter Distortions

1.1 Introduction

Wireless transmitters designed for modern communication systems are expected to
handle wideband amplitude and phase modulated signals with three major perfor-
mance metrics: linearity, bandwidth, and power efficiency. First, linearity requires the
minimization of distortions mainly caused by the transmitter’s radio frequency (RF)
analog circuitry in order to preserve the quality of the transmitted signal and avoid any
loss of information during the transmission process. Second, bandwidth is critical for
multi-carrier and multi-band communication systems. Moreover, wider bandwidths
are needed to accommodate higher data rates. Third, power efficiency is an impor-
tant consideration that affects the deployment and operating costs of communication
infrastructure as well as environmental impact.
In general, distortions refer to the alteration of the signal due to the imperfections of

the transmitter’s hardware. Distortions observed in wireless transmitters have various
origins such as frequency response distortions, harmonic distortions, amplitude and
phase distortions, and group delay distortions, in addition to modulator impairments
(including direct current (DC) offset, gain, and phase imbalance), and so on. Among
these distortions, the predominant ones are those due to the nonlinearity present in the
transmitter’s RF front end and mainly the RF power amplifier (PA). Indeed, wireless
transmitters are made of a cascade of several stages including digital-to-analog
conversion, modulation, frequency up-conversion, filtering, and amplification as
illustrated in Figure 1.1. Among these subsystems, the PA is identified as the major
source of nonlinear distortions. Thus, modeling and compensating for the transmitter
nonlinear distortions is often trimmed down to the modeling and compensation of
the PA’s nonlinearity.

Behavioral Modeling and Predistortion of Wideband Wireless Transmitters, First Edition.
Fadhel M. Ghannouchi, Oualid Hammi and Mohamed Helaoui.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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Figure 1.1 Simplified block diagram of a typical wireless transmitter

In the remainder of this chapter, the nonlinearity of RF PAs will be described and
major metrics used to quantify nonlinear distortions will be presented.

1.1.1 RF Power Amplifier Nonlinearity

The nonlinearity of the PA depends mainly on its class of operation and topology.
Classes of operation include the linear class A, the mildly nonlinear class AB, as well
as highly nonlinear classes such as C, D, and E. The topology refers to whether the
power amplification system is built using single-ended amplifiers or more advanced
architectures such as Doherty, linear amplification using nonlinear components
(LINC), envelope tracking, and so on. The design of power amplification systems is
always subject to the unavoidable antagonism between linearity and power efficiency
[1]. The objective is to design a power amplification system, or more generally, a
transmitter that meets the linearity requirements with the highest possible power
efficiency. The approach often consists of maximizing the power efficiency of the
amplification stage while maintaining its distortions to a reasonable amount that
can be compensated for at the system level using linearization techniques such as
feedforward or predistortion [2]. Figure 1.2 shows the measured gain and power
efficiency of a Gallium Nitride (GaN) based Doherty PA driven by a four-carrier
wideband code division multiple access (WCDMA) signal and operating around a
carrier frequency of 2140MHz. This figure clearly illustrates the power efficiency
versus linearity dilemma as low power efficiency is observed for low input power
levels when the amplifier is operating in its linear region where the gain is constant.
Conversely, higher power efficiency is obtained for large input power levels that drive
the amplifier into its nonlinear region.

1.1.2 Inter-Modulation Distortion and Spectrum Regrowth

Transmitters’ nonlinearity causes the appearance of unwanted frequency components
at the output of the transmitter. To better understand the effects of the transmitter’s
nonlinearity on the transmitted signal, the case of a two-tone signal passing through



Characterization of Wireless Transmitter Distortions 3

Figure 1.2 Gain and power efficiency characteristics of a power amplifier prototype

a third order memoryless nonlinear systems is considered in the example next. In this
case:

• The transmitter’s nonlinearity is modeled by a third order polynomial function
according to the following equation:

xout_Transmitter(t) = a ⋅ xin_Transmitter(t) + b ⋅ x2
in_Transmitter

(t) + c ⋅ x3
in_Transmitter

(t) (1.1)

where xin_Transmitter and xout_Transmitter are the time domain waveforms at the input and
the output of the transmitter, respectively. a, b, and c are the model coefficients.

• The input signal xin_Transmitter is a two-tone signal given by:

xin_Transmitter(t) = A1 ⋅ cos(𝜔1t) + A2 ⋅ cos(𝜔2t) (1.2)

where A1 and A2 are the magnitudes of each of the two tones, and 𝜔1 and 𝜔2 are
their angular frequencies with 𝜔2 > 𝜔1.

By combining Equations 1.1 and 1.2, the transmitter’s output for the two-tone input
signal can be expressed as:

xout_Transmitter(t)

=
[1
2
bA2

1 +
1
2
bA2

2

]
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+
[(

a + 3
4
cA2

1 +
3
4
cA2

2

)
⋅ A1 ⋅ cos(𝜔1t) +

(
a + 3

4
cA2

2 +
3
4
cA2

1

)
⋅ A2 ⋅ cos(𝜔2t)

]
+
[1
2
bA2

1 cos (2𝜔1t) +
1
2
bA2

2 cos(2𝜔2t)
]
+
[1
4
cA3

1 cos (3𝜔1t) +
1
4
cA3

2 cos(3𝜔2t)
]

+ [bA1A2 cos((𝜔2 − 𝜔1)t) + bA1A2 cos((𝜔2 + 𝜔1)t)]

+
[3
4
cA2

1A2 cos ((2𝜔1 − 𝜔2) t) +
3
4
cA1A

2
2 cos((2𝜔2 − 𝜔1)t)

]
+
[3
4
cA2

1A2 cos ((2𝜔1 + 𝜔2) t) +
3
4
cA1A

2
2 cos((2𝜔2 + 𝜔1)t)

]
(1.3)

To clearly separate the various frequency components present in the transmitter’s
output signal, Equation 1.3 can be re-arranged as:

xout_Transmitter(t) = {a ⋅ [A1 ⋅ cos(𝜔1t) + A2 ⋅ cos(𝜔2t)]}

+
{[(3

4
cA2

1 +
3
4
cA2

2

)
⋅ A1 ⋅ cos(𝜔1t)

]
+
[(3

4
cA2

2 +
3
4
cA2

1

)
⋅ A2 ⋅ cos(𝜔2t)

]}
+
{[3

4
cA2

1A2 cos ((2𝜔1 − 𝜔2) t)
]
+
[3
4
cA1A

2
2 cos ((2𝜔2 − 𝜔1) t)

]}
+
{[1

2
bA2

1 +
1
2
bA2

2

]
+ [bA1A2 cos((𝜔2 − 𝜔1)t)]

}
+
{1
2
b
[
A2
1 cos (2𝜔1t) + A2

2 cos(2𝜔2t)
]
+ [bA1A2 cos((𝜔2 + 𝜔1)t)]

}
+
{1
4
c
[
A3
1 cos (3𝜔1t) + A3

2 cos(3𝜔2t)
]

+3
4
cA1A2

[
A1 cos ((2𝜔1 + 𝜔2) t) + A2 cos((2𝜔2 + 𝜔1)t)

]}
(1.4)

In this latter equation, the term between the first brackets ({}) in the right hand
side represents the linearly amplified version of the input signal, while the second
term corresponds to the distortions introduced by the transmitter’s nonlinearity at the
fundamental frequencies (these are the same as the input signal’s frequencies). The
remaining terms describe the mixing and harmonic frequency products that either fall
in the close vicinity of the useful signal and thus cannot be removed by filtering, or
are away from the useful signal (around DC or the harmonics). The latter are less
critical as they can be removed by filtering the transmitter’s output signal. The fre-
quency domain representation of the transmitter’s input and output signals given by
Equations 1.2 and 1.4 are illustrated in Figure 1.3.
The frequency components present at the output of the nonlinear transmitter driven

by a two-tone input signal are summarized in Table 1.1. These can be categorized in
three groups:

• The useful signal: comprised of the linearly amplified fundamental frequency com-
ponents.
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• The unwanted signals that can be removed by filtering: these include the DC com-
ponents, the second and third order harmonics, second order inter-modulation dis-
tortions, as well as out-of-band third order inter-modulation distortions.

• The unwanted signals that cannot be filtered: this includes the distortions that
appear at the same frequencies as the input signal, and in-band third order
inter-modulation products that are too close to the fundamental components to
be filtered. For higher order nonlinear systems, additional even order in-band
inter-modulation products are observed in the close vicinity of the useful signal.

The analysis presented here can be generalized to an Nth order nonlinear model of
the transmitter. In such case, up to the Nth order harmonics and Nth order mixing
products will be generated at the output of the nonlinear transmitter [3, 4].
The study of PA and transmitter nonlinearities using two-tone and multi-tone

signals is commonly used for understanding the origins of inter-modulation distor-
tions for signals having discrete frequency spectrum components and can be used
to derive closed form expressions of these distortions under two-tone or multi-tone
input signals [5, 6]. Such results can be extrapolated to predict the behavior of the
nonlinear system when driven by communications and broadcasting signals having
characteristics comparable to that of synthetic multi-tone signals. However, when
practical communication signals are used, the input signal’s spectrum is continuous

Figure 1.3 Frequency domain output of a nonlinear transmitter driven by a two-tone signal

Table 1.1 Frequency components at the output of a nonlinear
transmitter for a two-tone input signal

Angular frequency Designation

0 DC components
𝜔1 and 𝜔2 Fundamental
2𝜔1 and 2𝜔2 Second harmonics
3𝜔1 and 3𝜔2 Third harmonics
𝜔2 − 𝜔1 and 𝜔2 + 𝜔1 Second order

inter-modulation products
2𝜔1 − 𝜔2 and 2𝜔2 − 𝜔1 In-band third order

inter-modulation products
2𝜔1 + 𝜔2 and 2𝜔2 + 𝜔1 Out-of-band third order

inter-modulation products
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Figure 1.4 Output spectrum of a nonlinear transmitter driven by a multi-carrier WCDMA signal

and the inter-modulation distortions appear as a spectrum regrowth around the
channel. Figure 1.4 presents the measured spectra at the output of a nonlinear
transmitter driven by a four-carrier WCDMA signal having a total bandwidth of
20MHz. This figure also reports the ideal output that would have been obtained if the
transmitter were linear. This figure shows that there is significant spectrum regrowth
that will create interferences with the adjacent channels. Such a transmitter does not
meet the spectrum emission mask of the WCDMA standard and unavoidably requires
linearization.

1.2 Impact of Distortions on Transmitter Performances

The nonlinearity of the PA depends on the input power level or equivalently on the
input signal’s amplitude. Thus, phasemodulated signals having constant envelopes are
not affected by the nonlinearity of the PA. Conversely, amplitude modulated signals
are distorted by the nonlinearities. Almost all modern communication and broad-
casting systems employ compact complex modulation schemes such as high order
quadrature amplitude modulations (16QAM, 64QAM, etc.) and advanced multiplex-
ing techniques, for example, orthogonal frequency division multiplexing (OFDM),
and code division multiple access (CDMA), which result in amplitude modulated
signals having strong envelope fluctuations. These signals are characterized by their
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peak-to-average power ratio (PAPR) that is given by:

PAPRdB = 10 × log10

(
Pmax,W

Pavg,W

)
= Pmax,dBm − Pavg,dBm (1.5)

where PAPRdB is the signal’s PAPR expressed in dB. Pmax,W and Pavg,W are the sig-
nal’s maximum and average power levels expressed in watts, respectively. Similarly,
Pmax,dBm and Pavg,dBm are the signal’s maximum and average power levels expressed
in dBm, respectively.
Typical PAPR values for modern communication systems are in the range of

10–13 dB. These can be reduced by several decibels using crest factor reduction
(CFR) techniques [7–9]. The PAPR of the signal and its probability distribution
functions are critical parameters that need to be considered when dealing with
amplifier and transmitter nonlinearities. Indeed, to linearly amplify high PAPR
signals without linearizing the amplifier, one must make sure that the maximum peak
power of the input signal to be amplified remains within the linear region of the PA.
This will impact the power efficiency of the system. To illustrate this concept of brute
force linear amplification graphically, the gain and drain efficiency characteristics
of a commercial PA are presented in Figure 1.5. In this figure, the gain and power
efficiency are reported as a function of the output power back-off (OPBO) that is
defined as:

OPBOdB = Pout,dBm − Pout,sat,dBm (1.6)

Figure 1.5 Gain and efficiency considerations in brute force linear amplification
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whereOPBOdB is the OPBO expressed in dB. Pout,dBm and Pout,sat,dBm refer to the dBm
values of the amplifier’s operating output power and the amplifier’s output power at
saturation, respectively.
According to the results of Figure 1.5, to ensure a linear behavior of the considered

amplifier, the maximum peak output power (Pout,max,dBm) should not exceed −7 dB
OPBO. Thus, the maximum average output power (Pout,avg,max,dBm) will be:

Pout,avg,max,dBm = Pout,max,dBm − PAPRdB (1.7)

In Equation 1.7, PAPRdB is the signal’s PAPR expressed in dB. In this example, the
signal’s PAPR is assumed to be 7 dB.
Given this restriction on the maximum operating average power of the amplifier,

the maximum average drain efficiency (𝜂avg,max) of the brute force linear amplifier
will be less than 10%. This noticeably low power efficiency represents the max-
imum efficiency achievable from this amplifier if operated without a linearization
technique. Conversely, if the same amplifier is used in conjunction with a linearization
technique, for example, using digital predistortion (DPD), it will be able to operate
linearly over its full output power range up to saturation. As graphically illustrated in
Figure 1.6, the maximum average output power of the amplifier will be higher, which
enables increased power efficiency. This example shows that by using linearization
techniques, the maximum efficiency of the amplifier can be raised from 8 to 23%,
which represents a substantial gain in power efficiency. It is worth mentioning that
the amplifier used in this graphical analysis is optimized for linearity. Though, if a

Figure 1.6 Gain and efficiency considerations in linearized power amplifiers
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power efficient amplifier prototype is considered, a more important efficiency gain
can be obtained with operating efficiencies of the PA in the range of 50%.
This brief discussion clearly shows the impact of distortions on the system effi-

ciency as they constrain the brute force amplifier to work with large back-off levels
to guarantee linear amplification. It also highlights the significant power efficiency
improvement that can be obtained by using a DPD technique.
The cascade of the PA and the digital predistorter will behave as a linear ampli-

fication system whose gain can be set by controlling the small signal gain of the
predistorter. It is a common misconception to think that the choice of the small signal
gain of the predistortion and thus the gain of the linearized amplifier will influence the
power efficiency performance of the linearized amplifier. Indeed, when seen as a func-
tion of the output power, the drain efficiency of the linearized amplifier will remain
quasi unchanged [10]. The impact of the gain normalization on the DPD performance
will be thoroughly discussed in Chapter 9.
These efficiency figures do not take into account the energy consumption of the

linearization circuitry. Typical DPD circuitry has a power consumption in the range
of a few watts. This power consumption needs to be taken into consideration when
calculating the overall efficiency of the linearized amplifier. Obviously, the use of
the predistortion technique for efficiency/linearity trade-off enhancement is a viable
solution only when the predistorter’s power consumption does not compromise the
overall efficiency of the linearized amplifiers. Accordingly, and as rule of thumb, DPD
is practically employed for PAswith output power that exceeds 10W: Though accurate
calculations can be made to decide on the suitability of DPD to improve the system
performance compared to the case of a brute force amplifier topology based on the
amplifier’s power capability, its efficiency, and the predistorter’s power consumption.

1.3 Output Power versus Input Power Characteristic

The output power versus input power (Pout vs. Pin) characteristic is commonly used
to characterize the transfer function of amplifiers. This characteristic relates the input
power of the device under test (DUT) at the fundamental frequency to its output power
at the same frequency. When both power levels are expressed in watts, the slope of the
Pout vs. Pin characteristic represents the linear gain of the system. Most commonly,
the power levels are expressed in dBm. In such case, the slope of the Pout vs. Pin
characteristic is equal to unity and the gain in dB corresponds to the y-intercept point
(i.e., the value of the output power for a 0 dBm input power).
In the absence of memory effects, the Pout vs. Pin characteristic appears as a one to

one mapping function that increases linearly with the input power. As the amplifier
is driven into its nonlinear region, a gain compression appears as the actual output
power becomes lower than the linearly amplified version of the input power. The
amount of compression introduced by the amplifier increases until it reaches the sat-
uration power. Figure 1.7 presents a sample Pout vs. Pin characteristic of an amplifier
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Figure 1.7 Sample output power versus input power characteristic

optimized for linearity. One can observe that the gain compression of the amplifier
becomes noticeable only a few dBs before the saturation for input power levels beyond
0 dBm. With amplifiers optimized for efficiency, the gain compression is observed
over a wider input power range starting from as early as 10 dB below the maximum
input power.
The Pout vs. Pin characteristic is straightforward to derive as it only requires scalar

measurements both at the input and output of the DUT. This can be performed using
a network analyzer or a set up that comprises a signal generation instrument and a
power measurement instrument such as a power meter or a spectrum analyzer. The
Pout vs. Pin characteristic can be measured under a wide range of drive signals such
as continuous wave (CW), multi-tone, or modulated signals.

1.4 AM/AM and AM/PM Characteristics

The Pout vs. Pin characteristic is a basic and incomplete means of characterizing non-
linear transmitters and PAs driven by modulated signals. Indeed, a more comprehen-
sive representation that includes amplitude as well as phase information is needed.
In the most general case, a dynamic nonlinear transmitter is fully described by a set
of four characteristics, namely the amplitude modulation to amplitude modulation
(AM/AM) characteristic, the amplitude modulation to phase modulation (AM/PM)
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characteristic, the phase modulation to phase modulation (PM/PM) characteristic, and
the phase modulation to amplitude modulation (PM/AM) characteristic. PA distor-
tions are amplitude dependant and phase modulated signals (having constant ampli-
tudes) are not affected by the PA distortions. Thus, PAs are mainly characterized
by their AM/AM and AM/PM characteristics. Conversely, transmitters might exhibit
PM/AM and PM/PM distortions that are mainly due to the gain and phase imbalances
in the frequency up-conversion stage and/or when the transmitter has a non-flat fre-
quency response over a bandwidth equal to that of the input signal. Contrary to the
AM/AM and AM/PM distortions generated by the unavoidably nonlinear behavior of
the PA, the PM/AM and PM/PM distortions can be minimized by a careful design of
the transmitter. So far, these have often been considered to have an insignificant impact
on the performance of a behavioral model or a digital predistorter. With the adoption
of multi-carriers and multi-band power amplification systems where the bandwidth of
the signal to be transmitted is large enough to observe on a non-flat frequency response
of the PA, the contribution of the PM/AM and PM/PM is becoming more significant
and their inclusion in next generation behavioral models and predistorters is becoming
inevitable.
Let’s consider a DUT driven by a modulated input signal. xin and xout refer to the

baseband complex waveforms corresponding to the DUT’s input and output signals,
respectively. The in-phase and quadrature components of the signals xin and xout are
defined as: {

xin = Iin + jQin

xout = Iout + jQout

(1.8)

Under the assumption that this DUT, to be modeled or equivalently linearized, does
not exhibit PM/AM and PM/PM distortions, its instantaneous complex gain, G, is
solely a function of the input signal’s magnitude and is given by:

G(|xin|) = |G(|xin|)| ⋅ G(|xin|) (1.9)

where |G(|xin|)| and G(|xin|) represent the magnitude and phase of the instantaneous
complex gain G(|xin|), respectively; and are expressed as a function of the input and
output complex baseband waveforms according to:

|G(|xin|)| = |xout|2|xin|2 =
I2out + Q2

out

I2in + Q2
in

(1.10)

G(|xin|) = xout − xin = tan−1
(
Qout

Iout

)
− tan−1

(
Qin

Iin

)
(1.11)

The AM/AM characteristic of the DUT is obtained by plotting the magnitude of its
instantaneous gain (|G(|xin|)|), typically expressed in dB, as a function of the DUT’s
instantaneous input power. It is also possible, though less conventional to report the
AM/AM characteristic as function of the DUT’s output power. Similarly, the AM/PM
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Figure 1.8 Sample AM/AM characteristic of a power amplifier

characteristic of the DUT is the one that reports the phase of the instantaneous gain
( G(|xin|) ), usually expressed in degrees, as a function of the DUT’s input or output
power. Sample AM/AM and AM/PM characteristics are reported in Figures 1.8 and
1.9, respectively. These figures provide insightful information about the nonlinear
behavior of the DUT. In fact, the shape of the AM/AM and AM/PM characteristics
provide information about how severe the nonlinearity of the DUT is. Similarly, the
dispersion of these two characteristics is a qualitative indication about the memory
effects of the device.

1.5 1 dB Compression Point

The 1 dB compression point is a figure of merit commonly used to characterize the
power capabilities of PAs along with their linearity. In the Pout vs. Pin characteristic,
the 1 dB compression point is the one for which the actual output power of the
amplifier is 1 dB lower than what it would have been if the amplifier was linear (and
having a gain equal to its small signal gain). This definition is illustrated graphically
in Figure 1.10, which reports the Pout vs. Pin characteristics of the actual and ideal
amplifier. The ideal amplifier characteristic represents the extrapolated version of the
linear portion of the actual amplifier’s Pout vs. Pin characteristic. This figure shows
that the 1 dB compression point can be defined either with respect to the input power
(P1dB,in in Figure 1.10) or with reference to the output power (P1dB,out in Figure 1.10).
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Figure 1.9 Sample AM/PM characteristic of a power amplifier

Though, the 1 dB compression point is commonly reported with respect to the output
power of the device.
Similarly, the 1 dB compression point can be defined from the AM/AM character-

istic. In this case, it corresponds to the power level for which the gain of the amplifier
is 1 dB lower than its small signal linear value. From the AM/AM characteristic, the
P1dB,in can be graphically determined as illustrated in Figure 1.11. If the small signal
gain of the amplifier is denoted as GSS, then the 1 dB compression point output power
(P1dB,out) can be obtained according to:

P1dB,out = P1dB,in + (GSS − 1) (1.12)

For a given DUT, the 1 dB compression point can vary depending on the test signal
(CW versus modulated signals). The 1 dB compression point concept can be extended
to the X-dB compression point. The X-dB compression point is defined in a way sim-
ilar to that of the 1-dB compression point but for a gain compression of X-dB rather
than 1 dB. Thus, the 3-dB compression point is the point of the Pout vs. Pin charac-
teristic for which the actual output power of the amplifier is 3 dB less than what it
would have been if the amplifier was linear; it is also the point of the AM/AM char-
acteristic for which the gain of the device is 3 dB lower than its small signal value.
The X-dB compression point can be used for the system level design of power ampli-
fication stages as well as building equation-based behavioral models in simulation
software.
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Figure 1.10 Graphical definition of the 1 dB compression point from Pout vs. Pin characteristic

Figure 1.11 Graphical definition of the 1 dB compression point from the AM/AM characteristic
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1.6 Third and Fifth Order Intercept Points

The 1 dB compression point characterizes the nonlinear behavior of PAs by only
considering the power at the fundamental frequency. However, as amplifiers are
driven deeper into their nonlinear regions, the amount of power generated at
harmonic and inter-modulation frequencies becomes more significant. The intercept
points are defined for odd order harmonics under a single-tone drive signal and
odd order inter-modulation products under a multi-tone drive signal as these odd
order harmonics and inter-modulation products fall within the close vicinity of the
fundamental signal frequency. Third order intercept points are commonly used while
fifth order intercepts points are used to a lesser extent. Higher order intercept points
are seldom used since the power level generated at their corresponding frequencies
is usually too low to have any significant impact on the behavior of the PA.
Figure 1.12 reports, for a sample amplifier driven by a two-tone test signal at fre-

quencies f1 and f2 (with f1 < f2) and having equal amplitudes, the output power at the
fundamental frequency (Pout,f1

) as a function of the total input power (Pin). In this same
figure, the output power of the lower third order inter-modulation product (Pout,2f1−f2 )
is also plotted as a function of the total input power. The linear portion of the Pout,f1
vs. Pin characteristic has a 1 : 1 slope. However, the linear portion of the Pout,2f1−f2 vs.
Pin characteristic has a 3 : 1 slope as it can be deduced from Equation 1.4.

Figure 1.12 Output power characteristics at the fundamental and third order inter-modulation
frequencies
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Figure 1.13 Graphical definition of the third order intercept point

The third order intercept point is defined as the intersection locus of the extrapolated
linear portion of the Pout,f1

vs. Pin and the Pout,2f1−f2 vs. Pin characteristics as illustrated
in Figure 1.13.When reported with respect to the input power, the third order intercept
point is referred to as the third order input intercept point (IIP3). Similarly, the third
order intercept point can be reported with respect to the output power. In such a case,
it is labeled as the third order output intercept point (OIP3). For solid state PAs, the
third order output intercept point is typically 10 dB higher than the output power at
the 1 dB compression point.
The fifth order intercept point is defined in the same way by considering the

extrapolated linear portions of the output power at the fundamental frequency and
the output power at the frequency corresponding to the fifth order inter-modulation
products (for example, Pout,3f1−2f2 ). In this case, the Pout,3f1−2f2 vs. Pin characteristic
will have a 5 : 1 slope.

1.7 Carrier to Inter-Modulation Distortion Ratio

The 1 dB compression point and the intercept points characterize the nonlinear behav-
ior of a PAwithout providing quantitative information about the amount of distortion it
generates when operated at a given output power level. The carrier to inter-modulation
distortion ratio (C/IMD) is a metric that quantifies the amount of distortion at the out-
put of a PA driven by a two-tone, or in a more general case, a multi-tone test signal.
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Figure 1.14 Graphical definition of the carrier to inter-modulation distortion ratio

It represents the ratio (in a linear scale) or equivalently the difference (in a logarith-
mic scale) between the power at the fundamental frequency (carrier) and the power
generated at an inter-modulation frequency. The C/IMD is expressed in decibels rel-
ative to the carrier (dBc).
For an amplifier driven by a two-tone test signal at frequencies f1 and f2 (with

f1 < f2), inter-modulation frequencies of interest commonly are the lower and upper
third order inter-modulations (2f1 − f2 and 2f2 − f1, respectively) and fifth order
inter-modulations (3f1 − 2f2 and 3f2 − 2f1, respectively). Figure 1.14 presents the
power spectrum (in dBm) at the output of a memoryless PA having a fifth order
nonlinearity and driven by a two-tone test signal at frequencies f1 and f2 (with
f1 < f2). This figure graphically defines the lower and upper carrier to third order
inter-modulation distortion ratios ( C

IMD3L
and C

IMD3U
, respectively) and those of the

fifth order.
In memoryless PAs, the lower and upper C/IMD ratios are equal as reported in

Figure 1.14. However, the stronger the memory effects of the amplifier are, the more
significant the C/IMD asymmetry will be. The study of the asymmetry between the
upper and lower C/IMDs provides an indication of the memory effects exhibited by
the PA.
For a memoryless PA, it is possible to predict the third order C/IMD based on the

operating output power and the third order intercept point of the device. Using the
illustration of Figure 1.13, one can graphically determine that:

C
IMD3

= Pout,f − Pout,IMD3 = 2 × (OIP3 − Pout,f ) (1.13)

where C
IMD3

is the carrier to third order inter-modulation distortion ratio and Pout,f

and Pout,IMD3 are the output power levels at the fundamental and third order
inter-modulation frequencies, respectively. OIP3 is the output power at the third
order intercept point.
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It is worth mentioning that the relation of Equation 1.13 is derived geometrically
from the definition of the third order intercept point and assumes that the output power
at both fundamental and third order inter-modulation frequencies is linear with respect
to the input power. Thus, its accuracy will decrease as the amplifier is driven deeper
into its nonlinear region where the output power characteristics at the fundamental and
third order inter-modulation frequencies deviate from their linear approximations.

1.8 Adjacent Channel Leakage Ratio

The adjacent channel leakage ratio (ACLR) is used to quantify, in the frequency
domain, the nonlinearity of PAs driven by modulated signals. It corresponds to the
filtered ratio of the mean power in the main channel to the filtered mean power in
an adjacent channel. This is a critical linearity parameter since the power generated
by the nonlinear distortions in the adjacent channels cannot be eliminated by filtering
and is perceived as interference when the adjacent channels are used for transmission.
Thus, the power generated in the adjacent channels is considered as an unwanted
emission that needs to be minimized and controlled. Accordingly, each communi-
cation standard stipulates, as part of the technical specifications of the transmitter
characteristics, the ACLR threshold (also known as the spectrum emission mask) for
base stations. A general illustration of the ACLR is illustrated in Figure 1.15, which

Figure 1.15 Graphical definition of the adjacent channel leakage ratio
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reports a sample spectra at the output of the nonlinear transmitter as a function of the
normalized frequency. The normalized frequency (fn) is defined according to:

fn =
f − f0
BW

(1.14)

where f and f0 are the absolute frequency and the carrier frequency, respectively. BW
represents the bandwidth of the signal.
Figure 1.15 shows that the channel power is calculated in a span that commonly

equals the signal bandwidth (BW) and is centered around a normalized frequency of 0
(or equivalently an absolute frequency of f0). It also shows the ACLR in the lower and
upper first adjacent channels (ACLR1_L and ACLR1_U, respectively), and the ACLR
in the lower and upper second adjacent channels (ACLR2_L and ACLR2_U, respec-
tively). For each channel, the ACLR calculation requires the definition of the offset
frequency that corresponds to the difference between the center of the main channel
and that of the considered adjacent channel, as well as the integration bandwidth over
which the power will be calculated in the considered adjacent channel.
The parameters used to calculate the ACLR are defined by the communication stan-

dards. These parameters include the main channel bandwidth, the adjacent channel
parameters (offset frequency and integration bandwidth), and the type and parameters
of the filter to be used to calculate the mean power.

1.9 Error Vector Magnitude

The error vector magnitude (EVM) is another measure used to quantify the nonlin-
ear distortions of RF PAs and transmitters. The EVM is defined in the constellation
domain and evaluates the deviation between the reference constellation point that
should have been obtained in absence of distortions and the actual constellation point
obtained in presence of distortions.
Transmitter distortions can be of three types: phase distortions, amplitude distor-

tions, and in the more general cases, simultaneous phase and amplitude distortions.
These three cases are illustrated in Figure 1.16 for the constellation diagram of aQPSK
(Quadrature Phase Shift Keying) modulation scheme. Phase distortion appears as a
rotation of the constellation points causing a phase error as shown in Figure 1.16a.
Conversely, amplitude distortions will cause a magnitude error between the ampli-
tudes of the vectors associated with the actual and reference constellation points as
depicted in Figure 1.16b. Amplitude and phase distortions will result in an error on
both the amplitude and phase of the vector associated with the demodulated con-
stellation point. The effects of simultaneous phase and amplitude distortions on the
constellation is illustrated in Figure 1.16c.
In the constellation domain, the error vector refers to the difference between the

actual vector of the demodulated constellation point (Sn) and the reference vector
associated with the corresponding reference constellation point (Sr,n) as shown in
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Figure 1.16 Effects of phase and amplitude distortions on the QPSK constellation. (a) Effects of phase
distortions. (b) Effects of amplitude distortions. (c) Effects of phase and amplitude distortions

Figure 1.17 Graphical definition of the error vector

Figure 1.17. The EVM refers to the magnitude of the error vector, which is differ-
ent from the error in the magnitudes except for the particular case where no phase
distortions occur.
Threshold EVM values are specified for each communication standard and the latest

technical specifications on the transmit modulation quality should be consulted. The
EVM is typically expressed in percentage and calculated as the square root of the ratio
of the mean power of the error vector to the mean reference power according to:
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EVM (%) =

√√√√√√√√√
1
N

N∑
i=1

|ei|2
1
N

N∑
i=1

|Sr,i|2 =

√√√√√√√√√
1
N

N∑
i=1

|Si − Sr,i|2
1
N

N∑
i=1

|Sr,i|2 (1.15)

where N is the number of samples in the waveform. Si and Sr,i are vectors associated
with the ith demodulated and reference constellation points, respectively. While ei is
the ith error vector between the demodulated and actual constellation points as defined
in Figure 1.17.
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2
Dynamic Nonlinear Systems

In Chapter 1 a description of a nonlinear system, the power amplifier, along with
the effects that it introduces to the communication signal, is presented. Characteris-
tics of this nonlinear system were also presented in detail along with the metrics to
quantify the amount of nonlinear distortion. In this chapter, dynamic nonlinear power
amplifiers will be introduced. First, the notion of memory in systems will be defined.
Then a classification of nonlinear power amplifier systems based on their amount of
memory will be provided. The origins of the linear and nonlinear memory effects and
their characteristics will be addressed. A general model based on the Volterra series
to model power amplifiers with memory effects will be introduced. Its pass-band time
domain representation and its baseband equivalent model will be also provided.

2.1 Classification of Nonlinear Systems

Memory in systems can be defined as the ability of a system to behave as a function of
values of the input signal that are different than the present value of the input signal.
Therefore, systems can be classified in two groups: memoryless systems and systems
with memory [1–4].

2.1.1 Memoryless Systems

In general, a system is said to be memoryless if its output at a given time to, y(to), is
a function of only the input value at to, x(to).
For practical considerations, every physical system is causal, which means that y(to)

cannot be a function of future values of x(to). Moreover, every physical system will
certainly introduce a certain delay to the input signal. Since this delay will not affect
the integrity of the signal, it can be assumed without loss of generality that a system is
memoryless if its output at a given time to, y(to), is a function of only one input value
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Figure 2.1 Example of an AM/AM and AM/PM curve for a memoryless system

x(to − 𝜏), where 𝜏 is the delay introduced by the system.

y(to) = f [x(to − 𝜏)] (2.1)

From Equation 2.1, it can be concluded that for similar values of input signal, the
corresponding outputs are similar as well. Therefore, the curve of the output signal
versus the input signal for a memoryless system is a single line. An example of such
a curve is shown in Figure 2.1.

2.1.2 Systems with Memory

In general, a system is said to have memory if its output at a given time to, y(to), is a
function of inputs other than x(to).
For practical considerations, given that every physical system is causal, this will

certainly introduce a certain delay 𝜏 to the input signal, it can be assumed without
loss of generality that a physical system has memory if its output at a given time to,
y(to), is a function of values of input signal preceding x(to − 𝜏).

y(to) = f [x(to − 𝜏), x(to − 𝜏 − 𝜏′)] (2.2)

where 𝜏′ may be any constant to show that the output can be also a function of any
other past samples of the input signal.
From Equation 2.2, it can be concluded that for similar values of input signal, the

corresponding outputs may be different. Therefore, the curve of the output signal ver-
sus the input signal for a system with memory is not a single line. An example of such
a curve is shown in Figure 2.2.
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Figure 2.2 Example of an AM/AM and AM/PM curve for a system with memory

2.2 Memory in Microwave Power Amplification Systems

All communication systems, in particular transmitters, have inherent nonlinearities
that limit their usefulness and range of applications. For example, the input power
level in microwave amplifiers must be kept below a certain level to ensure operation
in a region of sufficiently linear amplification. Ignoring this requirement leads to the
generation of significant intermodulation products caused by amplitude and phase
nonlinearities. The types of nonlinear systems can be briefly classified as:

• Nonlinear systems without memory
• Nonlinear systems effectively without memory
• Nonlinear systems with memory.

Each type of system produces distinct nonlinear effects. These three types of systems
and their effects are characterized in the following subsections [5–8].

2.2.1 Nonlinear Systems without Memory

Systems belonging to this category have the following three characteristics:

• The output instantaneously responds to the input
• The system does not have a frequency response
• There are no phase nonlinearities.

Nonlinearities without memory are sometimes called resistive nonlinearities.
Indeed, a nonlinear circuit without energy storage elements cannot possess memory.
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When such a system is driven with a narrow band amplitude modulated signal x̃(t) at
carrier frequency 𝜔 represented by:

x̃(t) = A(t) cos (𝜔t + 𝜃) (2.3)

where, A(t) is the envelope of the signal and 𝜃 is initial constant phase of the signal.
The output signal of the system includes an infinite number of harmonic components
and the bandpass component, ỹ(t), around 𝜔 can be described by:

ỹ(t) = G [A(t)]A(t) cos (𝜔t + 𝜃) (2.4)

where G [A(t)] represents the AM/AM (amplitude modulation to amplitude
modulation) conversion characteristics of the system and can be seen as an envelope-
dependent gain function.
A necessary requirement for inclusion in the memoryless category is that G [A(t)]

should not depend on frequency. In other words, the magnitude response of the system
is “flat” in the frequency domain. The effects of memoryless nonlinearities are:

• Generation of nonlinear amplitude distortion,
• Generation of harmonic frequencies and intermodulation products,
• A possible shift in the system’s DC operating point due to even-order distortions.

Examples of this type of nonlinearity are the piecewise-linear limiter and the ideal
comparator. An appropriate representation for such characteristics is the relatively
simple, classic power (Taylor) series; for this reason, series based formulations are
often used in nonlinear modeling of systems. It should be understood that no real sys-
tem can ever be truly without memory due to the always-present reactive (capacitive
and inductive) elements in any electronic circuits.

2.2.2 Weakly Nonlinear and Quasi-Memoryless Systems

Systems in this category exhibit nonlinear amplitude modulation to phase modula-
tion (AM/PM) conversion behavior and AM/AM conversion behavior. Furthermore,
both the nonlinear AM/AM and AM/PM characteristics of the system do not have a
measurable frequency dependency, due to either (or both) of the following causes:

• The input signals are limited to narrow band modulated signals around a carrier
frequency, 𝜔, around which no significant frequency response is observed for the
AM/AM and AM/PM behaviors of the system,

• The nonlinear transfer functions simply do not depend on frequency.

An important implication of this system requirement is that phase nonlinearities can
be present, but no frequency response is allowed. Such a system therefore represents
a cross domain between the memoryless system and a full-memory nonlinear system.
When such a system is driven with narrow band amplitude modulated signal, x̃(t), at
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carrier frequency 𝜔 represented by:

x̃(t) = A(t) cos[𝜔t + 𝜃(t)] (2.5)

The output signal of the system includes an infinite number of harmonic and inter-
modulation components and the bandpass component, ỹ(t), around𝜔 can be described
by:

ỹ(t) = G[A(t)]A(t) cos{𝜔t + 𝜃(t) + 𝜙G[A(t)]} (2.6)

where G[A(t)] represents the AM/AM conversion characteristic and 𝜙G[A(t)] is the
AM/PM conversion characteristic and both can be seen as an envelope-dependent
complex gain function.

2.2.3 Nonlinear System with Memory

This last category is the most general, as it includes the previous two categories as
special cases. All of the nonlinear effects of the previous two categories are still
present, but the additional property of frequency dependence in the AM/AM and
AM/PM coefficients may be observed.
When such a system is driven with narrow band amplitude modulated signal, x̃(t),

at carrier frequency 𝜔 represented by:

x̃(t) = A(t) cos[𝜔t + 𝜃(t)] (2.7)

The output signal of the system includes an infinite number of harmonic and inter-
modulation components and the bandpass component, ỹ(t), around𝜔 can be described
by:

ỹ(t) = G [A(t), 𝜔]A(t) cos{𝜔t + 𝜃(t) + 𝜙G[A(t), 𝜔]} (2.8)

Proper modeling requires that attention be paid to the frequency characteristics
of the nonlinearities. The Volterra series is an appropriate representation, although
frequency-dependent in-phase/quadrature models have been proposed.
Potential applications for nonlinear models incorporating memory include broad-

band amplifiers, where the input signal is spread over a wide frequency range. This
would include all TWTAs (Traveling Wave Tube Amplifiers) and SSPAs (solid-state
power amplifiers).

2.3 Baseband and Low-Pass Equivalent Signals

In practice, for modeling or analysis purposes of relatively low frequency modulated
signals, baseband signals are considered. Baseband signals have frequency spectra
concentrated near zero frequency. However, for wireless communications where, in
theory, the carrier frequency, fc, is relatively high in the gigahertz range, most of
the time pass-band signals are considered and used for the purpose of simulation of
wireless systems. Pass-band signals have frequency spectra concentrated around the
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carrier frequency. Baseband signals can be converted to pass-band signals through
down-conversion and vice versa through up-conversion [7, 8].
In wireless communication systems, a baseband signal is up-converted to a bandpass

signal by amplitude, phase, or frequencymodulation, so that it can be transmitted. The
amplitude and phase modulated bandpass signal can be described as:

x̃(t) = A(t) cos[𝜔ct + 𝜃(t)] (2.9)

where 𝜔c = 2𝜋fc is the angular carrier frequency and A(t) and 𝜃(t) are the amplitude
and phase signals that modulated the carrier, respectively.
The signal described in Equation 2.9 has an envelope bandwidth much lower than

the carrier frequency and is called a bandpass signal with center frequency, fc. Using
trigonometric identities, this signal can be written as:

x̃(t) = A(t) cos[𝜃(t)] cos(𝜔ct) − A(t) sin[𝜃(t)] sin(𝜔ct)

= I(t) cos(𝜔ct) − Q(t) sin(𝜔ct) (2.10)

where I(t) denotes the in-phase component and Q(t) is the quadrature component,
which are defined as:

I(t) = A(t) cos[𝜃(t)] (2.11)

Q(t) = A(t)sin[𝜃(t)] (2.12)

Equation 2.9 can be written in complex form as:

x̃(t) = Re[A(t)ej𝜔ctei𝜃(t)] = Re[x(t)ej𝜔ct] (2.13)

where x(t) is called the baseband signal or complex envelope and contains the same
information as the bandpass signal x̃(t) and can be represented as

x(t) = I(t) + jQ(t) = A(t)ei𝜃(t) (2.14)

On the receiver side, the baseband signal x(t) can be obtained from the bandpass
signal ỹ(t) through down conversion, demodulation, and following the channel equal-
ization process as shown in Figure 2.3. ỹ(t) represents the signal at the output of the
power amplifier/transmitter.

Figure 2.3 Pass-band and baseband signals
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2.4 Origins and Types of Memory Effects in Power Amplification
Systems

2.4.1 Origins of Memory Effects

Memory effects can be explained simply by the fact that the output of the system
exhibiting memory at any instant is a function not only of the corresponding
instantaneous input (after compensating for the system delay) but also of the inputs
at other instants (past instants for causal systems). This is an inherent characteristic
of energy-storing circuits or elements of the memory system. In the case of power
amplifiers, intrinsic, and extrinsic parasitic elements, matching network elements,
and the nature of the transistor junction might include energy-storing circuits or
elements that will result in memory effects.
Depending on the correlation with the nonlinearity of the transistor, one can classify

these memory effects into two categories [7, 11–15].

1. Linear memory effects, which are memory behaviors uncorrelated with the nonlin-
ear response of the power amplifier. They are generally representedmathematically
as a linear combination of the input signal at different time shifts. For instance, if
a system exhibits only linear memory effects, its output can be expressed as:

y(t) =
∑
i

hix(t − 𝜏i) (2.15)

This is the expression of finite impulse response filters, which are linear systems.
While power amplifiers are nonlinear systems, their output include two terms,

a linear term and a nonlinear term. The linear term represents a linear behavior
including linear memory effects.

2. Nonlinear memory effects, which are memory behaviors mixed with the nonlin-
earity of the transistor. While the source of these memory effects may be linear
circuits, such as capacitors, for example, the combination of the memory effect of
these linear circuits with the nonlinear behavior of the transistor results in a term
in the output signal of the power amplifier that includes a nonlinear function of
different samples of the input signal at different instances.
The output of a nonlinear power amplifier can be expressed as:

y(t) =
∑
i

hix(t − 𝜏i)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

linear term including linear memory effects

+ fnonlinear[x(t − 𝜏1), … , x(t − 𝜏N)]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

nonlinear term including nonlinearity
and nonlinear memory effects

(2.16)

Memory effects can also be classified in two categories based on their origins
[7, 16–18]:

1. One can distinguish memory effects caused by the active device’s temperature
modulation. This category of memory effects is called electro-thermal or thermal
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memory effects. Given it is function of the temperature change in the junction of
the transistor, this category of memory effect has a long term effect and affects
narrow bandwidths of the signal spectrum.

2. The second category consists of electrical memory effects, which are produced by
the external terminations, including parasitic elements and matching networks of
the power amplifier. The properties of these terminations across the fundamental
frequency, baseband frequency, and all the harmonic frequencies shape the power
amplifier response around the carrier frequency.

In order to be able to analyze the memory effects and model them properly, it is
important to understand the different circuits in a power amplifier, their behaviors,
and their characteristics. In the following, for each origin of memory effects, these
circuits are modeled and explained. Their effect on the power amplifier behavior is
then discussed and compared with a memoryless behavior.

2.4.2 Electrical Memory Effects

The main origins of electrical memory effects are the transistor terminations, includ-
ing intrinsic and extrinsic parasitic elements, andmatching networks. In order to better
analyze the electrical memory effects, it is important to understand the impedance
termination in transistor amplifiers [19, 20].
Figure 2.4 shows a block diagram of a common source MESFET (Metal Semicon-

ductor Field Effect Transistor) amplifier. ZG_match is the impedance presented by the
input matching network, excluding the biasing network, to the source of the gate of
the transistor, ZG_bias is the impedance presented by the biasing network to the gate of
the transistor, and ZG_in is the impedance presented by looking at the gate of the tran-
sistor. Similarly, at the output of the transistor, the impedance presented by the drain

Figure 2.4 Block diagram of a common source MESFET amplifier showing the definition of the dif-
ferent impedances



Dynamic Nonlinear Systems 31

is ZD_in, the impedance presented by the biasing network is ZD_bias, and the impedance
presented by the loading or output matching network to the drain of the transistor is
ZDn_L. The impedances of gate and drain nodes can then be obtained by:

ZG = ZG_match∕∕ZG_bias∕∕ZG_in (2.17)

ZD = ZD_in∕∕ZD_bias∕∕ZD_L (2.18)

Given that the transistor impedances ZG_in and ZD_in vary as a function of the driving
signal power level and operating conditions of the transistor, the transistor will exhibit
a nonlinear behavior at the gate and drain levels. It can then be concluded that non-
linear power amplifiers may include more than one nonlinear element. The simplest
model of a nonlinear power amplifier will include:

1. A nonlinear block representing the gate voltage as a function of the input signal to
the power amplifier.

2. A nonlinear block representing the relationship between the gate voltage and drain
voltage.

Each of these two blocks also includes a frequency response that is due to the
transistor behavior variation versus frequency and matching network response ver-
sus frequency at the fundamental frequency and each of the harmonic frequencies.
The cascade of these nonlinear elements results in mixing the linear memory effects
(frequency responses around a carrier frequency or its harmonic) along with the non-
linear behaviors of the nonlinear elements. This mixing of linear memory effects and
nonlinear response will result in an output signal that includes nonlinearity along with
nonlinear memory effects around the fundamental carrier of the signal. These nonlin-
ear memory effects include products that are function of the frequency response of
the matching network and transistor not only at the fundamental frequency but also
around the different harmonic, which are translated to the fundamental frequency via
the nonlinear elements [14, 21, 22].
In order to understand this concept, one can simplify the modeling of the transistor

to a cascade of two nonlinear systems, G and H, each having linear memory in the
form of a frequency response at each of the fundamental and harmonic frequencies.
Figure 2.5 shows a block diagram of this cascade and illustrates the origins of the
intermodulation products at the output and how they are affected by the frequency
response of the system at the fundamental and harmonic frequencies. Each of the
two systems is modeled by a nonlinearity in the order of three and a set of frequency
responses around each of the fundamental and carrier frequencies (G0,G1,G2, andG3
are the frequency responses of G around the envelope, the fundamental, second and
third harmonics, respectively; andH0,H1,H2, andH3 are the frequency responses ofH
around the envelope, the fundamental, second, and third harmonics, respectively). The
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Figure 2.5 Modeling of nonlinear electrical memory effects in a cascade of two nonlinear systems

third order intermodulation products at the output of the system are the combination
of different products including products generated by:

• The third order nonlinearity of the first system, G, passed through the frequency
response H1 around the fundamental carrier frequency, of the second system, H.

• The second order mixing product of the fundamental output, and the envelope and
the second harmonic outputs of the first system, G, which also passes through the
frequency response, H2, around the second harmonic in the second system, H.

• The third order mixing product of the fundamental output of the first block, G,
which also passes through the frequency response,H3, around the second harmonic
in the second system, H.

This third intermodulation product at the output of the power amplifier is a function
of different nonlinearity orders including even nonlinearity orders and frequency
responses at the envelope frequency, the fundamental frequency, and different
harmonic frequencies.
If the signal bandwidth is W, and by only considering nonlinearities up to the third

order, the nonlinear memory effect is a transistor is affected by:

• The frequency response along a band ofW around DC frequency,
• The frequency response along a band ofW around the fundamental frequency,
• The frequency response along a band of 2W around the second harmonic frequency,

and
• The frequency response along a band of 3W around the third harmonic

frequency.



Dynamic Nonlinear Systems 33

For practical considerations, on one hand, the frequency responses around the
fundamental, second harmonic, and third harmonic frequencies are considered to
occur around the same fractional bandwidth and are generally insignificant for single
carrier and relatively narrowband applications. Their effect may be of importance
if multi-carrier and significantly wideband signals are considered. On the other
hand, the frequency response around DC frequency will have significant effect on
the memory even for relatively narrowband applications if no careful design of the
biasing circuit is carried out in order to maintain constant gate node impedance in
this frequency band.

2.4.3 Thermal Memory Effects

As it is indicated by its name, the thermal memory effect is caused by the electrother-
mal coupling in the power transistor. It is a function of the power dissipated in the
transistor, which directly affects the temperature of the transistor junction. As a result,
the characteristics of the transistor in terms of gain and output power capability change
versus these temperature variations. Given the fact that the temperature will vary more
slowly than the amplitude of the signal variation, the thermal memory effect mani-
fests and usually impacts the low frequency components of the signal below the MHz
range. To analyze the thermal memory effect in transistors, one should first analyze
the power dissipation and temperature change in the power amplifier circuit [23–26].
The power dissipation in a FET (Field Effect Transistor) operated in normal condi-

tions (gate current equals to zero) is provided by:

pdissipated(t) = vds(t) ⋅ ids(t) (2.19)

where vds(t) is the drain-source voltage and ids(t) is the drain current of the transistor.
In order to analyze the temperature variation in the transistor junction, thermal

impedance, Zth, is defined as the ratio between the temperature rise and heat flow from
the device. Figure 2.6a shows the heat dissipation in a power transistor, from the device
chip to the heat sink passing through the package of the device and circuit board.
Given that the heat dissipation from one stage to another is not instantaneous, a delay
and discharging behavior can be modeled. These effects will result in a non-purely
resistive thermal impedance model. In this model, thermal resistances, Rth, describe a
steady-state behavior of the temperature while thermal capacitances, Cth, describe the
dynamic behavior. Together, thermal resistors, Rth, and thermal capacitors, Cth, result
in modeling temperature variation with a giving rising and falling constant RthCth.
Using complex thermal impedances for each connection, this heat dissipation can

be modeled by a set of lumped elements forming a low-pass filter topology as shown
in Figure 2.6b. This modeling is in agreement with the expectations that we presented
earlier in this section, which consists of the fact that thermal memory effect affects
low frequency components of the signal. In practice, the low-pass filter topology will
have a bandwidth varying between 100 kHz and 1MHz depending on the nature of
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(a) (b)

Figure 2.6 Modeling of thermal memory effects in a power transistor. (a) Different temperatures defi-
nitions. (b) Circuit modeling of the temperature variation

the chip connection to the heat sink. The thermal memory effect then affects signal
frequency components lower than 1MHz.
Using the circuit modeling of Figure 2.6a, the temperature variation in the transistor

junction can then be given by:

ΔT = Tjunction − Tambiant = pdissipated ⋅ Zth (2.20)

More precisely, the thermal impedance may vary versus frequency and the dissi-
pated power has different frequency components. In fact, the dissipated power is the
product of two signals around DC and the fundamental frequency. Such product will
have components around DC, the envelope, the fundamental frequency, and second
harmonic. The products around the fundamental frequency and the second harmonic
are filtered out by the filter topology and only the DC and envelope components affect
the temperature variation of the power transistor junction. Equation 2.20 can then be
rewritten as:

ΔT = Tjunction − Tambient

= pdissipated (0 Hz) ⋅ Rth(0 Hz) + pdissipated (f1 − f2) ⋅ Zth(f1 − f2) (2.21)

where f1 and f2 are two different frequencies within the band of the modulated sig-
nal, pdissipated( f1 − f2) is the part of the envelope component of the dissipated power
corresponding the two different frequencies f1 and f2. Rth(0 Hz) and Zth(f1 − f2) are
the thermal resistor value at zero frequency and the thermal impedance at frequency
( f1 − f2); and pdissipated(0Hz) is the DC component of the power dissipation.
The temperature variation expression of Equation 2.21 includes two terms. The first

term is related to the DC dissipation and is frequency independent. The second term
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Figure 2.7 Simplified transistor thermal modeling

is function of the envelope dissipation and is frequency dependent, which means that
any change in the transistor characteristics due to the temperature variation results in
frequency dependent effects or memory effects.
Much research work has investigated the temperature variation in the power transis-

tor junction for different types of signals in order to model it and understand its effect
on the generation of thermal memory effects. These activities contributed to proper
modeling and linearization of the thermal memory effects. To understand better how
the junction temperature of the power transistor varies as a function of the input signal
and how this will affect the signal integrity, an analysis and modeling of the transistor
thermal behavior in the presence of a pulsed signal is given next [27].
First, given the fact that the thermal constants related to the heat sink dissipation,

Rth_heat sink, and Cth_heat sink, are too large compared to the package and chip thermal
constants, Rth_package, Cth_package, Rth_chip, and Cth_chip, the temperature of the heat sink,
Tth, is almost equal to the ambient temperature – and hence it can be considered inde-
pendent from signal variations. One can therefore ignore the effect of Rth_heat sink and
Cth_heat sink. Moreover, in order to further simplify the analysis, one can model the joint
effect of the heat dissipation in the chip and package by a set of an equivalent ther-
mal resistor Rth and an equivalent thermal capacitor Cth. This results in simplifying
the circuit in Figure 2.6b to the circuit in Figure 2.7. Using this simplified modeling
circuit for the junction temperature variation, the relationship between the junction
temperature Tjunction and the ambient temperature Tambient is given by:

𝜕Tjunction(t)
𝜕t

+ 1
RthCth

Tjunction(t) =
1

RthCth
[Rth ⋅ pdissipated(t) + Tambient] (2.22)

where pdissipated(t) defined in Equation 2.19 can also be expressed as a function of
the output power, PRF_out(t), and instantaneous power efficiency, 𝜂(t), of the power
amplifier by:

pdissipated(t) = [1 − 𝜂(t)] ⋅ PRF_out(t) (2.23)

Equation 2.22 is a first order non-homogenous differential equation that has a gen-
eral solution in the form of:

Tjunction(t) = C1e
− t
𝜏 + 1

𝜏
e−

t
𝜏 ∫

t

1
e
𝜉

𝜏 [Rth ⋅ pdissipated(𝜉) + Tambient]𝜕𝜉 (2.24)

where 𝜏 = RthCth and C1 is a constant that can be determined by initial conditions.
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(a)

(b)

Figure 2.8 Junction temperature variation for a step input. (a) Input signal variation versus time. (b)
Corresponding junction temperature variation versus time

If the driving signal in the power amplifier is a step input signal, as shown in
Figure 2.8a, the dissipated power follows a step signal shape as well (see Figure 2.8b)
and can be given by:

pdissipated(t) =

{
PH t > to
PL t < to

(2.25)

In this case, it can be easily shown that, if 𝜏 << to, the junction temperature expres-
sion in Equation 2.24 becomes:

Tjunction(t) = Tjunction,H + (Tjunction,L − Tjunction,H)e
− t−to

𝜏 ; t > to (2.26)

where Tjunction,L = RthPL + Tambient and Tjunction,H = RthPH + Tambient.
Using similar reasoning, and by noting that the mathematical formulation will be the

same independently from the sign of (PH − PL), it can be concluded that if the driving
input of transistor is a pulsed signal with period To >> 𝜏 as shown in Figure 2.9a, the
junction temperature will have the form of Figure 2.9b.
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(a)

(b)

Figure 2.9 Junction temperature variation for a pulsed input. (a) Input signal variation versus time. (b)
Corresponding junction temperature variation versus time

The junction temperature variation can be obtained from Equation 2.26 as follows:

ΔTjunction = Tjunction,H − Tjunction,L = Rth ⋅ΔPdisspated (2.27)

where ΔPdisspated = PH − PL is the maximum variation in the instantaneous power
dissipation in the transistor.
The variation in the junction temperature as a function of the signal level results

in changes in the power amplifier complex gain, which result in distortion related
to thermal memory effect. Indeed, Figure 2.10 shows the variation of the measured
complex gain versus the junction temperature for a power amplifier using a 90-W
LDMOS (Laterally Diffused Metal Oxide Semiconductor) transistor.
Higher temperatures result in lower gain. Therefore, in the case of a pulsed signal,

when transiting from a low to a high level, the junction temperature is low and the
gain is higher. During the high level cycle, the junction temperature rises exponen-
tially and the gain drops accordingly. Similarly, when transiting from a high level to
a low level, the junction temperature is high and the gain is low. During the low level
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(a)

(b)

Figure 2.10 Complex gain variation as a function of the junction temperature. (a) Gain in dB. (b) Phase
shift in degrees

cycle, the junction temperature drops exponentially and gain increases accordingly.
This behavior is shown in Figure 2.11, which shows how the output power is distorted
compared to the input power for a power amplifier with pulsed input. This distortion
is caused uniquely by thermal memory effects.

2.5 Volterra Series Models

After understanding the origins of memory effects, it is important to take them into
consideration when analyzing the effect of power amplifiers on signal linearity. These
effects are dependents on different factors related to the signal and power amplifier
characteristics.While electricalmemory effects are a function of the signal bandwidth,
thermal memory effects are a function of the amount of power dissipation in the power
amplifier and the cooling circuit used to dissipate the heat from this dissipated power.
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Figure 2.11 Generic block diagram for behavioral model performance assessment

On one side, if a signal with relatively narrow bandwidth is used such that the
responses of the amplifier and its matching networks around the envelope frequency
are considered constant over the bandwidth of the signal, the output signal of the power
amplifier is considered to have non-significant electrical memory effects. The electri-
cal memory effect can then be neglected without affecting the analysis of the power
amplifier behavior. In practice, if the signal has a bandwidth lower than 10MHz, a
careful power amplifier design guarantee nearly constant frequency response around
the envelope frequency, the fundamental, and the harmonics. In this case, the electrical
memory effect can be neglected.
On the other side, if the power amplifier’s junction temperature variation is small

enough so that its effect on the gain of the power amplifier is insignificant, the thermal
memory effect can be neglected. In practice, a temperature variation of few degrees
will not introduce significant changes in the power amplifier gain. Therefore, to have
negligible thermal memory effect, the variation in the power amplifier power dissipa-
tion defined in Equation 2.27 should satisfy:ΔPdisspated should be in the same order of
magnitude or smaller than 1

Rth
. This condition can be satisfied automatically for ideal

class A power amplifiers where ΔPdisspated is zero or for power amplifiers with low
power dissipation, for example, efficient switching mode power amplifiers.
If a power amplifier has negligible electrical and thermal memory effects, it can be

modeled using a nonlinear static model that does not have any memory effect. Often,
Taylor series are used for such modeling and the output of the power amplifier, xout(n),
can then be related to the input xin(n) by [3] and [22]:

xout(n) =
K∑
i=1

ai ⋅ x
i
in(n) (2.28)

However, if the bandwidth increases, the electrical memory effects can no longer
be neglected. Therefore, memory effects should be taken into consideration when
modeling power amplifiers. The Volterra series [23–25], can be used to accurately
characterize a dynamic nonlinear system including linearity and the different types
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of memory effect. In Volterra series models, the output signal is related to the input
signal as follows:

xout(n) =
K∑
k=1

M∑
i1=0

…
M∑

ip=0
hp(i1, … , ip)

k∏
j=1

xin(n − ij) (2.29)

where hp(i1, … , ip) are the parameters (kernels) of the Volterra model, K is the non-
linearity order of the model, and M is the memory depth. Each kernel of the Volterra
series models a given nonlinearity order and its corresponding memory effect. A k-th
order kernel includes all possible combinations of a product of k time shifts of the input
signal. Therefore, it includes all possible forms of memory effect and is considered
the most complete model to take into account linearity and any type of memory effect.
However, it results in a large number of coefficients that increases exponentially
with the degrees of the nonlinearity and memory depth of the system. The increase
in the number of coefficients increases the computational complexity of the model.
Therefore, in practice, the Volterra series model is limited to modeling systems with
low nonlinearity and memory orders. To overcome the computational complexity
of the Volterra series, different reductions of the Volterra series have been proposed
[32, 33]. These complexity reduced models will be described in the following
chapters.
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3
Model Performance Evaluation

3.1 Introduction

It is essential to accurately evaluate the performance of behavioral models and digital
predistorters. This is useful for the proper selection of their structure, especially with
the abundance of models that are available in the literature, as will be discussed in
Chapters 4–7. Moreover, performance evaluation metrics can be adopted to decide
on the model’s parameters and its dimensions. These metrics can be defined either in
the time or frequency domain.

This chapter is organized as follows. First, the focus will be on clearly distinguish-
ing between the behavioral modeling and digital predistortion (DPD) applications and
describing the specifics of each. Then, a variety of performance quantification metrics
that have been reported in the literature for power amplifier (PA) behavioral models
and digital predistorters will be thoroughly described. These are mainly categorized
into two classes: time domain metrics and frequency domain metrics. Finally, the
impact of memory effects on the performance assessment metrics is discussed and
static nonlinearity cancelation techniques are introduced along with their relevance to
behavior models and predistorter performance evaluation.

3.2 Behavioral Modeling versus Digital Predistortion

Behavioral modeling and predistortion are quite similar in various ways since most
of the steps needed to derive a behavioral model or a digital predistorter are identi-
cal and most of the model structures can consistently be applied either in behavioral
modeling or DPD applications. However, the performance evaluation of behavioral
models is quite different from that of digital predistorters. In fact, in behavioral mod-
eling, a structure is used to predict the output signal of the device under test (DUT)
when the same input signal is applied to both the model and the DUT. Thus, as illus-
trated in Figure 3.1, the performance evaluation of a behavioral model is based on
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Figure 3.1 Generic block diagram for behavioral model performance assessment

comparing the measured baseband discrete time output signal samples (ymeas(n)) with
those estimated by the model (yest(n)). The similarity between these two signals can be
evaluated using various metrics that are calculated either in the time domain or in the
frequency domain. Figure 3.1 includes a feedback path from the performance assess-
ment block back to the model. This is typically used to change the model structure or
adjust its parameters if the model performance is not satisfactory.

In DPD applications, the performances are often evaluated using the linearity mea-
sures described in Chapter 1, namely the adjacent channel leakage ratio (ACLR) and
the error vector magnitude (EVM) are calculated using the signal obtained at the
output of the linearized amplifier. The AM/AM (amplitude modulation to amplitude
modulation) and AM/PM (amplitude modulation to phase modulation) characteristics
of the linearized DUT can also be used to assess the performance of the digital predis-
torter. However, this approach results in qualitative rather than quantitative estimation
of the DPD performance since it only consists of visually examining the linearity of
the AM/AM and AM/PM characteristics of the linearized DUT or comparing these
curves to those measured on the DUT before linearization.

To evaluate digital predistorters’ performances, it is also possible to consider the
use of an approach similar to that employed to assess the performance of behavioral
models, especially if the predistortion function is derived using the indirect learning
technique in which the input and output signals of the predistorter can be derived from
the measured input and output signals of the DUT. As explained in the generic block
diagram of DPD systems of Figure 3.2, to ensure that the cascade made of the DUT
and the digital predistorter operate as a linear amplification system, the output sig-
nal of the linearized DUT (yLDUT(n)) should be a scaled replica of the predistorter’s
input signal (xDPD(n)), the ratio being equal to the gain (GL) of the linearized sys-
tem (DPD+DUT). Accordingly, the input of the predistorter can be derived from the

Figure 3.2 Generic block diagram of a digital predistortion system
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measured output of the DUT using:

xDPD(n) =
yLDUT(n)

GL
(3.1)

Thus, measuring the input and output waveforms of the DUT will provide data that
can be used for the training of the digital predistorter. Under such conditions, the syn-
thesis of the digital predistorter can be perceived as a modeling problem either by
considering the DPD as a standalone system as illustrated in Figure 3.3a or by con-
sidering the cascade of the DPD and DUT as displayed in Figure 3.3b. In Figure 3.3a,
the performance assessment metrics are evaluated using the output of the ideal DPD
and that of the DPD model to be identified. In this figure, the ideal DPD refers to a
hypothetical DPD system that will generate an output signal, yDPD_ideal(n), when its
input signal is xDPD(n). Based on the scheme of Figure 3.2, the output of the ideal
DPD is:

yDPD_ideal(n) = xDUT(n) (3.2)

Similarly, the performance of the DPD can be evaluated by considering the lin-
earized DUT system of Figure 3.3b. In this case, the linearized DUT system is made
of the DPD model and the actual DUT. Thus, the signal yLDUT_meas(n) corresponds to
the measured waveform at the output of the DUT when the DPD model is applied.
The signal yLDUT_ideal(n) represents the signal that should ideally be obtained at the
output of the linearized DUT when its input signal is xDPD(n). Obviously, the signals
yLDUT_ideal(n) and xDPD(n) are related according to:

yLDUT_ideal(n) = GL ⋅ xDPD(n) (3.3)

where GL is the linear gain of the linearized DUT.

xDPD(n)

xDPD (n)

yDPD_ideal (n)

yDPD_est (n)

yLDUT_meas (n)

yLDUT_ideal (n)

DPD
(ideal)

(a)

(b)

Performance
assessment

metric
calculation

Performance
assessment

metric
calculation

DPD
model

DPD
model DUT

Linear gain
(GL)

Figure 3.3 Generic block diagram for digital predistorter performance assessment (a) considering the
DPD and (b) considering the linearized DUT
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Figure 3.4 Common representation of model identification variables in time domain

In practice, evaluating the DPD performance using the approach of Figure 3.3b is
more reliable since the final aim of employing the DPD is to obtain a linear system in
which the input and output waveforms satisfy Equation 3.3.

The three cases described here for the definition of signals used to calculate the
performance assessment metrics of behavioral models and digital predistorters can be
cast in the common representation of Figure 3.4. In this figure, the input signal x(n) is
feeding both the systems to be modeled and its model. The output signal of the system
to be modeled represents the desired signal and is labeled ydesired(n), while the output
of the model corresponds to the estimated value of the desired signal and is designated
as yestimated(n).

3.3 Time Domain Metrics

The most straightforward approach for model performance assessment is to evaluate
its prediction error that corresponds to the discrepancy between the desired and esti-
mated output signals in the time domain. In fact, the model equation as well as the
input and output signals are naturally described in a time domain. Two time domain
metrics have been regularly utilized for the performance assessment of behavioral
models: the normalized mean square error (NMSE) and the memory effects model-
ing ratio (MEMR). These metrics, which are computed using the signal ydesired(n) and
yestimated(n) shown in Figure 3.4, are defined next.

3.3.1 Normalized Mean Square Error

The NMSE is commonly used for the performance assessment of behavioral models.
It is often expressed in decibels, and is defined according to:

NMSE = 10log10

⎛⎜⎜⎜⎜⎝

L∑
l=1

||ydesired(l) − yestimated(l)||2
L∑

l=1
|ydesired(l)|2

⎞⎟⎟⎟⎟⎠
(3.4)

where L refers to the length of each of the time domain waveforms ydesired(n) and
yestimated(n). The accuracy of a model is inversely proportional to the NMSE since a
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lower NMSE value indicates a superior model accuracy. Given that the power in the
adjacent channels is usually much lower than that in the in-band and that the NMSE
is calculated in the time domain where the contribution of these different bands is
blended, this metric mainly reflects the performance of the model and its accuracy in
the in-band region of the DUT output spectra [1, 2]. Thus, it is less sensitive for detect-
ing discrepancies between the desired and estimated signals in the adjacent channels
than in the in-band frequency range. Moreover, since memory effect contributions to
the behavior of the DUT are much less significant than that of the static distortions, the
NMSE metric applied in accordance with the setting of Figure 3.4 does not precisely
expose the ability of the model to mimic the memory effects of the DUT. Thus, in
behavioral modeling applications, the NMSE calculated from the signals at the out-
put of the DUT and its model is not a reliable approach to estimating the memory
depth of the system being modeled.

3.3.2 Memory Effects Modeling Ratio

The MEMR was proposed in [3], as an extension of the memory effects ratio (MER),
in order to quantify the ability of a model in predicting the memory effects of the DUT.
The MER measures the loss of accuracy resulting from describing a DUT having
memory effects using a memoryless model. The MER was defined, in [3], as:

MER = 10log10

⎛⎜⎜⎜⎜⎜⎝

√
L∑

l=1

|||ydesired(l) − yestimated_memoryless(l)
|||2√

L∑
l=1

|ydesired(l)|2
⎞⎟⎟⎟⎟⎟⎠

(3.5)

where L and ydesired(n) are those defined in Equation 3.4. yestimated_memoryless(n) is the
predicted output waveform of the DUT using a memoryless model.

According to Equation 3.5, the MER quantifies the modeling error when the mem-
oryless model is used. This error is made of two components. The first is attributed to
the residual error in modeling the static nonlinearity of the DUT, that is, the error that
would have been obtained if the DUT was memoryless. The second component of the
MER is due to error caused by the presence of the memory effects that are naturally
excluded from the memoryless model. Thus, the stronger the memory effects of the
DUT are, the larger the MER will be.

To evaluate the accuracy enhancement achieved by increasing the memory depth of
the model, it is useful to define the mth order error (em) that corresponds to the error
obtained when m samples of memory are taken into account in the model. The mth
order error is given by:

em(n) = ydesired(n) − yestimated_mth order(n) (3.6)

with yestimated_mth order(n) being the estimated signal at the output of the model when
its memory depth is set to m.
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Accordingly, the MEMR of a model with a memory depth m (MEMRm) is defined
as [3]:

MEMRm = 1 −

√
L∑

l=1
|em(l)|2√

L∑
l=1

|e0(l)|2
(3.7)

Based on Equation 3.6, the denominator of the ratio used to calculate the MEMRm
in Equation 3.7 is the Euclidean norm (also known as 2-norm) or the zeroth order
error (e0), which is simply the modeling error obtained using a memoryless model.
Thus, augmenting the memoryless model by adding more memory effects modeling
capabilities will result in better modeling accuracy and higher MEMR. Indeed,
the MEMR is lower bounded by the case where a memoryless model is used
(MEMR0 = 0), and upper bounded by the case where a model (including up to
mth order memory effects) is perfectly reproducing the memory effects of the DUT
(MEMRM = 1). The MEMR can also be expressed in dB using:

MEMRm_dB = 10log10

⎛⎜⎜⎜⎜⎜⎝
1 −

√
L∑

l=1
|em (l)|2√

L∑
l=1

|e0(l)|2
⎞⎟⎟⎟⎟⎟⎠

(3.8)

The MEMR can be applied to estimate the appropriate memory depth of the DUT.
However, the fact that static distortions prevail over the dynamic distortions renders
the reliability of this approach questionable for DUTs with strong memory effects
when applied directly to the measured and estimated waveforms as portrayed in
Figure 3.4. The use of the MEMR metric in conjunction with static distortions
cancelation techniques described in Section 3.5 can circumvent this problem.

3.4 Frequency Domain Metrics

Some performance assessment metrics are defined in the frequency domain. The main
motivation is to have a more accurate estimation of the model performance in the
adjacent channels since time domain signals are mainly dominated by the in-band
components. Major metrics that have been applied to the performance assessment of
PAs and transmitters behavioral models are described in the following subsections.

3.4.1 Frequency Domain Normalized Mean Square Error

The frequency domain NMSE (NMSEFD) is calculated as the ratio between the power
of the error signal between the desired and estimated output signals over that of the
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DUT’s output signal quantified over a specified bandwidth. The NMSEFD, is expressed
in dB, and is given by:

NMSEFD = 10log10

⎛⎜⎜⎜⎜⎝
∫

f=fstop

f=fstart

|E (f )|2df

∫
f=fstop

f=fstart

|Ydesired(f )|2df

⎞⎟⎟⎟⎟⎠
(3.9)

where Ydesired(f ) is the discrete time Fourier transform (DTFT) of the DUT’s output
signal ydesired(n). E(f ) is the DTFT of the error signal defined, using the signals of
Figure 3.4, as:

e(n) = ydesired(n) − yestimated(n) (3.10)

To have a comprehensive evaluation of the model performance over the entire fre-
quency range, the integration boundaries used in Equation 3.9 should represent the
limits of the output signal bandwidth. Typically if the DUT’s input signal has a band-
width BW in Hz, then the values of fstart and fstop are commonly considered to be:{

fstart = −5 × BW
2

fstop = +5 × BW
2

(3.11)

In such cases, a frequency range containing up to fifth order inter-modulation prod-
ucts is used as the integration bandwidth. This integration bandwidth can be adjusted
based on the inter-modulation products that need to be included in the NMSEFD cal-
culation. This should also take into consideration the observation bandwidth of the
signal ydesired(n) and thus the sampling rate at which this signal was acquired.

Typically, the frequency domain NMSE metric leads to results similar to that of
its time domain counterpart: Though it offers an extra degree of freedom that allows
for the adjustment of the integration bandwidth and consequently the inclusion or
exclusion of specific frequency components.

3.4.2 Adjacent Channel Error Power Ratio

The adjacent channel error power ratio (ACEPR) was proposed in [4]. This metric
makes it possible to quantify the prediction error of a model in various frequency
domain ranges, for example, in the adjacent channel and/or the alternate adjacent
channel. It can also be applied for the quantification of the error in the upper and
lower sides of the frequency spectrum around the center frequency. The ACEPR is
inspired by the adjacent channel power ratio metric and is calculated using:

ACEPR = 10log10

⎛⎜⎜⎜⎜⎜⎝
∫

f=fstop_adjL

f=fstart_adjL

|E (f )|2 ⋅ df + ∫
f=fstop_adjU

f=fstart_adjU

|E(f )|2 ⋅ df

∫
f=fstop_channel

f=fstart_channel

|Ydesired(f )|2 ⋅ df

⎞⎟⎟⎟⎟⎟⎠
(3.12)
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The frequency domain signals E(f ) and Ydesired(f ) are those defined for Equation 3.9.
fstart_channel and fstop_channel represent the integration limits of the signal channel. Simi-
larly, fstart_adjL and fstop_adjL refer to the integration limits of the lower adjacent channel.
fstart_adjU and fstop_adjU are the integration limits of the upper adjacent channel.

The key difference between the NMSEFD of Equation 3.9 and the ACEPR of
Equation 3.12 is in the integration bandwidths used to calculate the power of the
error signal and that of the DUT’s output signal. In fact, Equation 3.12 contrasts with
Equation 3.9 since the power of the DUT’s output signal and that of the error are
calculated over two distinct frequency ranges. First, the power of the output signal is
calculated by integrating the power of the signal Ydesired(f ) over the channel bandwidth
that corresponds to the input signal’s bandwidth. Moreover, the error signal’s power
is evaluated outside the main channel bandwidth. Indeed, in the primary definition
of the ACEPR metric, the power of the error signal was calculated over the upper
and lower adjacent channels using the center frequency and integration bandwidths
defined in the communication standard in a manner analogous to that described in
Chapter 1 for the ACLR calculation. Accordingly, this definition can be extended to
employ various integration bandwidths for the calculation of the error power. This
can include the estimation of the error power in the alternate adjacent channel or
in both the adjacent and alternate adjacent channels. This confers to the ACEPR
an enhanced flexibility to evaluate and compare model performances over specific
frequency ranges. Furthermore, compared to the NMSEFD, the ACEPR provides a
more precise estimate of the model performance in the out-of-band frequency range
encompassing the adjacent and alternate adjacent channels.

3.4.3 Weighted Error Spectrum Power Ratio

The weighted error spectrum power ratio (WESPR) is an extension of the ACEPR met-
ric described previously. It was introduced first in [5] as a generalization of the ACEPR
metric to any PA technology and any communication standard. As can be implied from
its designation, the WESPR is calculated by applying a weighting function, in the fre-
quency domain, to the error signal in order to control the relative importance of its
frequency content. The WESPR is formulated as follows:

WESPR = 10log10

⎛⎜⎜⎜⎜⎜⎝

I∑
i=1∫

f=fi_stop

f=fi_start

|W (f ) ⋅ E(f )|2 ⋅ df

S∑
s=1∫

f=fs_stop

f=fs_start

|Ydesired(f )|2 ⋅ df

⎞⎟⎟⎟⎟⎟⎠
(3.13)

In this latter equation, I is the number of frequency intervals over which the power of
the error signal (E(f )) is calculated. fi_start and fi_stop are the lower and upper integration
limits of the ith frequency band used to calculate the error signal’s power. Equivalently,
S is the number of frequency bands over which the desired signal’s power (Ydesired(f ))
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is calculated. fs_start and fs_stop are the lower and upper integration limits of the sth
frequency band used to calculate the desired signal’s power.

From Equation 3.13, it appears that the WESPR enhances the capabilities of the
ACEPR by controlling the frequency bands to be used in calculating the power of the
DUT’s output signal and that of the error signal between the model’s estimated out-
put and the DUT’s output. The WESPR is suitable for any type of signals especially
multi-carrier ones where two or more active signal channels are separated by off chan-
nels. In this case, the signal and error powers can be properly estimated by adequate
choice of the number of frequency bands and their corresponding power integration
bandwidths.

Two weighting functions were proposed with the WESPR metric [5]. In the first
function, based on hard thresholding, the weighting function magnitude is set to unity
for all frequencies. The integration bandwidths for the signal power and the error
power are then determined by comparing, at each frequency, the signal power to a
given threshold value. The frequency bands where the power of the input signal (x(n))
is greater than a specified threshold value constitute the S bands used to calculate
the output signal power, whereas the error power is calculated elsewhere, that is, in
the frequency bands where the power of the input signal is lower than the specified
threshold value.

The second weighting function is based on soft thresholding and is given by:

W(f ) =
max(|E(f )|)

max(|E(f )|) + |X(f )| (3.14)

where X(f ) is the DTFT of the DUT’s input signal x(n) as depicted in Figure 3.4.
Adopting the WESPR metric using the weighting function of Equation 3.14 leads to

a weighted error signal where most of the energy lies in the out-of-band frequencies.
Thus, this metric is suitable for accurately assessing the performance of behavioral
models and their ability to mimic the behavior of the DUT in the out-of-band spectrum
range.

3.4.4 Normalized Absolute Mean Spectrum Error

The three frequency domain metrics describe previously are based on the power inte-
gration of the error signal or a weighted version of it. Therefore, they all provide a
macroscopic metric that characterizes the model performance. The normalized abso-
lute mean spectrum error (NAMSE) circumvents this limitation by comparing, in the
frequency domain, the spectrum of the desired output signal (Ydesired(f )) and that of
the estimated output signal (Yestimated(f )). In [1], the NAMSE was defined as:

NAMSE = 10log10

[
meanf∈[fmin,fmax]

(||Ydesired (f ) − Yestimated(f )|||Ydesired(f )|
)]

(3.15)

Ydesired(f ) and Yestimated(f ) are the discrete-time Fourier transforms of the DUT’s
and the model’s output signals (ydesired(n) and yestimated(n)), respectively. fmin and fmax
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represent the limits of the frequency band over which the NAMSE is calculated. These
limits can be customized depending on whether the NAMSE needs to be evaluated
over the entire frequency range of the output signal spectrum or if it is desirable to
focus it on specific frequency ranges, such as those corresponding to the adjacent
channels or alternate adjacent channels.

Since it is derived from the frequency domain error, the NAMSE does not suffer from
the non homogeneous power levels throughout the frequency spectrum of the signal
and the significant variations of the power levels between the in-band and out-of-band
frequency regions. The NAMSE gives equal weight to frequency domain errors by
comparing the measured and predicted spectra without resorting to power integration.
This allows for a concentrated and accurate evaluation of the model performance in
the frequency domain.

3.5 Static Nonlinearity Cancelation Techniques

Behavioral models and digital predistorters currently in use inevitably take into
account memory effects in addition to the static distortions. However, the contribution
of memory effects to the overall behavior of the DUT is commonly much lower
than that of the static distortions. Thus, it turns out that, when derived directly from
the measured and estimated output waveforms (ydesired(n) and yestimated(n)) shown in
Figure 3.4, the metrics previously reported are dominated by the static nonlinearity.
They are consequently unable to accurately assess the ability of a model to predict the
memory effects exhibited by the DUT [6, 7]. Therefore, in order to emphasize
the memory effect modeling capabilities of a model, it is essential to cancel out
the distortions due to the static nonlinearity so that the system to be modeled only
includes memory effects. This can be achieved using either the static nonlinearity
pre-compensation technique [8] or the static nonlinearity post-compensation tech-
nique [7]. The static nonlinearity cancelation is mostly pertinent for the behavioral
modeling context. Yet, it can be applied to indirectly assess the performance of
digital predistorters by evaluating their ability to accurately synthesize the desired
predistorted signal. This is rarely used since predistorter performances are mostly
evaluated in terms of spectrum regrowth cancelation and signal quality according to
metrics such as the ACLR and EVM described in Chapter 1.

3.5.1 Static Nonlinearity Pre-Compensation Technique

The first attempt made to cancel the static nonlinearity of the DUT and that of its
model was based on the pre-compensation concept [8]. This consists of applying a
nonlinear function upstream of both the DUT and its model in order to eliminate their
static distortions as exposed in Figure 3.5. Obviously, the nonlinear function that needs
to be applied in the memoryless pre-compensator is none other than the memoryless
predistorter corresponding to the measured DUT behavior.
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Figure 3.5 Block diagram of the static nonlinearity pre-compensation technique

To further illustrate the advantage of the static nonlinearity cancelation technique,
we consider two cases of devices under test. A memoryless DUT is used in Figure 3.6,
while in Figure 3.7 the DUT has memory effects. The memoryless DUT is modeled
using a memoryless model. For the second DUT, two behavioral models were used
to mimic its transfer function: one memoryless model and one that includes memory
effects.

First, the spectrum measured at the output of this DUT as well as that predicted by
its memoryless behavioral model, in accordance with the setting of Figure 3.4, were
derived and are reported in Figure 3.6a. This figure shows that the model accurately
estimates the output spectrum of the DUT. Then, a memoryless pre-compensator was
derived and applied upstream of the DUT and its model following the scheme of
Figure 3.5. Figure 3.6b presents the spectra obtained at the output of the DUT and
its model after applying the memoryless pre-compensation technique. This clearly
reveals the quasi-perfect similarity between the spectra of the signals at the output of
the DUT and its model following memoryless pre-compensation.

The same test was repeated for a DUT exhibiting memory effects. The output sig-
nals of the DUT and its two models obtained before and after applying memoryless
pre-compensation are reported in Figure 3.7a,b, respectively. One can observe, from
the results of Figure 3.7a, that even though it does not take memory effects into
account, the memoryless model is able to predict with a fairly good accuracy the
spectrum at the output of the DUT. Indeed, by considering the frequency domain data
of Figure 3.7a, it is not possible to distinguish the performances of the memoryless
model from that of the model that includes memory effects. Conversely, after applying
memoryless pre-compensation to the DUT and both models, one can unmistakably
perceive the difference between both models’ performances. In fact, canceling out
the static nonlinearity allows for the evaluation of the model’s ability to track the
memory effects of the DUT. The spectra of Figure 3.7b demonstrate the ability of the
model that includes memory effects to predict the residual nonlinearity of the DUT
that is still present after applying memoryless pre-compensation. In contrast, the same
figure makes evident the limitations of the memoryless model since, after memory-
less pre-compensation, significant discrepancy is observed between the spectrum at
the output of the DUT and that of the memoryless model.

In view of the discussion here, it is clear that static nonlinearity pre-compensation
offers a valuable means of accurate assessment of behavioral models ability in
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Figure 3.6 Frequency domain performance of behavioral models (case of a memoryless DUT) (a)
before memoryless pre-compensation and (b) after memoryless pre-compensation
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Figure 3.7 Frequency domain performance of behavioral models (case of a DUT with memory) (a)
before memoryless pre-compensation and (b) after memoryless pre-compensation

predicting the memory effects of the DUT especially in the frequency domain.
The main disadvantage of this technique is that the synthesis of a memoryless
pre-compensation function is needed. This requires at least two sets of measure-
ments. First, measurements are needed to derive the pre-compensation function.
Then, additional measurements are needed to acquire the output signal of the system
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to be modeled after applying the pre-compensation function. This signal is denoted
ydesired_pre−compensated(n) in Figure 3.5.

3.5.2 Static Nonlinearity Post-Compensation Technique

To circumvent the need for the multiple measurements required when the memoryless
pre-compensation technique is employed for static nonlinearity cancelation and accu-
rate assessment of PAs behavioral models, the static nonlinearity post-compensation
technique was proposed [7]. The concept is similar to that of the memoryless
pre-compensation technique in the sense that the static nonlinear distortions are
eliminated from the DUT and its model, and the residual outputs are compared to
evaluate the fidelity of the model in predicting the memory effects of the DUT.
As illustrated in Figure 3.8, memoryless post-compensation consists of applying a
memoryless nonlinear function downstream of the DUT and its model in order to
cancel out the static nonlinearity present in both. The output signals obtained in
each branch (ydesired_post−compensated(n) and yestimated_post−compensated(n)) are then used to
assess the performances of the behavioral model.

To illustrate the usefulness of the memoryless post-compensation technique,
the tests performed to derive the results of Figures 3.6 and 3.7 in the case of the
memoryless pre-compensation technique were repeated using the memoryless
post-compensation approach.

First, a memoryless DUT was considered in Figure 3.9. The output spectra of this
DUT and its memoryless model are reported Figure 3.9a. Figure 3.9b presents the
spectra obtained after applying the memoryless post-compensation technique to the
DUT output as well as the model output as described in Figure 3.8. The conclu-
sions originating from the plots of Figure 3.9 are analogous to those derived in the
pre-compensation technique: in the absence of memory effects, the static distortions
cancelation technique does not provide any additional information about the accuracy
of the behavioral models.

In the second test, the case of a DUT having memory effects was considered.
Two of its models were identified. Deliberately, one of the models was memo-
ryless and the other had memory effects modeling capabilities. The spectra of
signals at the output of the DUT and its models depicted in Figure 3.10a tend to
suggest that both models are comparable in predicting the spectrum of the DUT’s
output signal. Nonetheless, significant disparity becomes visible after applying

Figure 3.8 Block diagram of the static nonlinearity post-compensation technique
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Figure 3.9 Frequency domain performance of behavioral models (case of a memoryless DUT) (a)
before memoryless post-compensation and (b) after memoryless post-compensation

the memoryless post-compensation technique to the output of the DUT and each
of its models as demonstrated by the spectra of Figure 3.10b. In fact, the spectra
of the post-compensated memoryless model output fails to predict the residual
distortions present in the post-compensated model’s output. On the other hand, the
post-compensated output spectrum of the model with memory effects precisely



58 Behavioral Modeling and Predistortion of Wideband Wireless Transmitters

Frequency (MHz)

P
ow

er
 S

pe
ct

ru
m

 D
en

si
ty

 (
dB

m
/H

z)

60

(a)

(b)

DUT
Memoryless Model
Model with Memory

40

20

0

−20

−40
2115 2125 2135 2145 2155 2165

Frequency (MHz)

P
ow

er
 S

pe
ct

ru
m

 D
en

si
ty

 (
dB

m
/H

z)

−10
DUT
Memoryless Model
Model with Memory

−30

−50

−70

−90

−110
2115 2125 2135 2145 2155 2165

Figure 3.10 Frequency domain performance of behavioral models (case of a DUT with memory) (a)
before memoryless post-compensation and (b) after memoryless post-compensation

matches the post-compensated output spectrum of the DUT. Accordingly, the
memoryless post-compensation technique permits the discernment of the model
performances.

The ability of the memoryless post-compensation technique in benchmarking
behavioral model performances, and more specifically their ability to accurately
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estimate the dynamic distortions caused by a DUT, is similar to that of the
pre-compensation technique. The major advantage is that the post-compensation
technique requires a unique set of measurements and can be implemented in a
software tool. In fact, once the waveforms at the input and output of a DUT are
acquired, the behavioral model synthesis as well as the post-compensation technique
can be done without requiring access to further measurements.

3.5.3 Memory Effect Intensity

The residual nonlinearity observed at the output of the post-compensator can be bene-
ficially used to quantify the memory effects of the DUT as well as its models. This can
be done using the memory effects intensity (MEI) metric [7]. The MEI is primarily
used to assess the linearizability of PA prototypes by evaluating the strength of their
memory effects that somehow reflect the ease of their predistortability. “Predistorta-
bility” refers to the ability of a power amplifier to be successfully linearized through
digital predistortion. Yet, the MEI can also be perceived as an additional metric that
can be employed to evaluate the accuracy of behavioral models by comparing its value
for the post-compensated DUT output and the post-compensated model output. It is
worth mentioning here that the MEI can also be derived from the output signals of a
DUT and its models when the memoryless pre-compensation technique is used.

Using the signal obtained at the output of the memoryless post-compensator of
Figure 3.8, the MEI is defined as the ratio between the signal power in the channel to
the power of the residual dynamic distortions in the adjacent channels and/or the alter-
nate adjacent channels [7]. Based on the sample spectrum illustrated in Figure 3.11,
the MEI in the adjacent channel (MEIAdjCha) and in the alternate adjacent channel
(MEIAltAdjCha) are defined by Equations 3.16 and 3.17, respectively.

MEIAdjCha = 10log10[PInBand(Ypost−compensated)]

− 10log10[PAdjCha(Ypost−compensated)] (3.16)

MEIAltAdjCha = 10log10[PInBand(Ypost−compensated)]

− 10log10[PAltAdjCha(Ypost−compensated)] (3.17)

where PInBand(Ypost−compensated), PAdjCha(Ypost−compensated), and PAltAdjCha(Ypost−compensated)
are the power of the signal ypost−compensated(n) in the in-band, adjacent channel, and
alternate adjacent channel frequency ranges respectively. Ypost−compensated is the DTFT
of the post-compensated signal ypost−compensated(n). This post-compensated signal
can be the post-compensated DUT’s output signal (ydesired_post−compensated(n)) or the
post-compensated model’s output signal (yestimated_post−compensated(n)) depending on
whether the memory effects are calculated for the DUT or its model.

Without loss of generality, the in-band signal power can be expressed as:

PInBand(Ypost−compensated) =
I∑

i=1
∫

fci+
BWi

2

fci−
BWi

2

Ypostcompensated(f ) ⋅ df (3.18)
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Figure 3.11 Graphical illustration of the MEI integration bandwidths

In Equation 3.18, I refers to the number of carriers in the signal ypost−compensated(n).
fci and BWi are the center frequency and the bandwidth of ith signal carrier of
ypost−compensated(n).

The formulation of Equation 3.18 is valid for any multi-carrier signal, especially
those with non-contiguous channels. In case of contiguous channels, the in-band
power expression can be simplified to:

PInBand(Ypost−compensated) = ∫
fc+

BWtot
2

fc−
BWtot

2

Ypostcompensated(f ) ⋅ df (3.19)

where fc and BWtot are the center frequency and the total bandwidth of the signal
ypost−compensated(n).

Similarly PAdjCha(Ypost−compensated) and PAltAdjCha(Ypost−compensated) are calculated
using:

PAdjCha(Ypost−compensated) = ∫
fc−

BWtot
2

fc−3 BWtot
2

Ypostcompensated(f ) ⋅ df

+ ∫
fc+3 BWtot

2

fc+
BWtot

2

Ypostcompensated(f ) ⋅ df (3.20)

PAltAdjCha(Ypost−compensated) = ∫
fc−3 BWtot

2

fc−5 BWtot
2

Ypostcompensated(f ) ⋅ df

+ ∫
fc+5 BWtot

2

fc+3 BWtot
2

Ypostcompensated(f ) ⋅ df (3.21)
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As illustrated in Figure 3.11, it possible to have significant residual distortions
in the in-band frequency region of the signal at the output of the memoryless
post-compensator. Specifically, these in-band inter-modulation distortions are
located in the frequency range between the signal carriers. This problem becomes
more pronounced as the spacing between the carriers is increased. In such conditions,
accurate MEI estimation requires the inclusion of the residual power caused by the
spectrum regrowth in the inter-carrier frequency range.

3.6 Discussion and Conclusion

In this chapter, key time-domain and frequency-domain metrics used for the perfor-
mance assessment of PA behavioral models were discussed. These metrics provide
coherent guidelines for the benchmarking of behavioral models with slightly varying
resolution and diverse ability to distinguish between models with performances that
might seem comparable at first glance. It was demonstrated that this ability to dis-
tinguish between models can be significantly compromised in the presence of mem-
ory effects since these are usually buried under the much stronger static distortions.
Memoryless distortions cancelation through pre- or post-compensation techniques
was introduced to address this limitation. Even though these alternatives for memory-
less distortions cancelation are conceptually equivalent, they have specific advantages
and disadvantages that were pointed out.

In conclusion, the performance assessment can be done in two steps. First the abil-
ity of a model to predict the memoryless behavior of the DUT can be evaluated using
NMSE, ACEPR, or WESPR metrics with the output signals defined in the block dia-
gram of Figure 3.4. Second, these same metrics as well as the MEMR can be applied
on the output signals defined in Figure 3.5 or 3.8 to estimate the memory effects mod-
eling aptitude of the behavioral model.

It is worth mentioning that the metrics and methods described here are not only
useful to compare between various models, but they can also be applied to determine
a model’s dimensions and its appropriate size. Model size estimation using perfor-
mance assessment metrics is an approach based strictly on approximations. Hence,
the model performance typically improves as the size of the model increases. This
improvement gets less and less important above a certain model size and determining
the exact model size from the NMSE or any of the other metrics curves is subjective
and often leads to an estimated size that is not optimal. Hybrid performance assess-
ment metrics that quantify the model complexity and accuracy have been proposed to
address the model sizing issue [9]. Furthermore, Akaike information criterion (AIC)
and Bayesian information criterion (BIC) based metrics were successfully applied to
select the optimal size of the model that minimizes the complexity while not jeopar-
dizing its accuracy [10].
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4
Quasi-Memoryless Behavioral
Models

4.1 Introduction

Devices used in communication systems, such as traveling-wave tubes (TWTs) and
solid-state power amplifiers (SSPAs), are usually described by analytical models
that typically involve solving a set of simultaneous, nonlinear, partial differential
equations by numerical methods. Unless some suitable simplifications can be made,
such detailed models are too complex and computationally demanding to be useful in
a system level simulation, where the nonlinear device is just one of many subsystems.

A higher-level model that converts an input waveform to (nearly) the correct out-
put waveform, without necessarily resorting to the fundamental physics of the device,
is needed. For linear systems, the transfer function is such a model. For nonlinear
systems, the nonlinearity is represented either as a functional relationship or in tab-
ular form for simulation applications. This representation is referred to as a behav-
ioral model. It is a black-box approach to system level modeling, which provides a
convenient mean of predicting system level performance without the computational
complexity of full circuit model simulations.

Behavioral models can generally be divided into three groups: memoryless models,
quasi-memoryless models, and behavioral models with memory. This chapter dis-
cusses how to model memoryless and quasi-memoryless nonlinear systems.

4.2 Modeling and Simulation of Memoryless/Quasi-Memoryless
Nonlinear Systems

Memoryless nonlinear systems, such as power amplifiers (PAs), are usually
sufficiently represented by the narrow-band AM/AM (amplitude modulation to
amplitude modulation) conversion function, as no AM/PM (amplitude modulation
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to phase modulation) conversion occurs in an ideal memoryless system. For a
quasi-memoryless nonlinear system with a memory-time constant in the order of the
period of the radio frequency (RF) carrier, the nonlinearity of the system is often
represented by a set of two AM/AM and AM/PM conversion functions. Usually,
AM/AM and AM/PM functions are measured by sweeping the power of an RF
single tone in the center frequency of the bandpass response of the system. Class
A or AB amplifiers driven by narrow-band signals around a carrier frequency are
typically assumed to behave as either a memoryless nonlinear system represented
by its AM/AM characteristics only, or a quasi-memoryless nonlinear system for
which complex representation of both AM/AM and AM/PM characteristics is
required [1–6]. The output of a memoryless/quasi-memoryless nonlinear system is a
function of the input signal at the present instant only. This implies that its transfer
characteristics are frequency independent.

In communication systems, the nonlinearities are usually generated and dominated
by devices such as nonlinear amplifiers. Of special interest are bandpass nonlinear
amplifiers used in wireless communication systems. These nonlinear devices or sub-
systems are most commonly modeled by quasi-memoryless nonlinearity that exhibits
nonlinear complex gain with both AM/AM and AM/PM conversions. These instan-
taneous representations are generally valid for bandpass signals that are considered
sufficiently narrow-band, and the transfer characteristic is essentially frequency inde-
pendent over the bandwidth of the signal.

Consider a narrowband signal, x̃(t), with a carrier frequency at fc:

x̃(t) = A(t) cos[2𝜋fct + 𝜃(t)] (4.1)

The characteristics of the nonlinear bandpass models are usually derived using
sinusoidal wave power sweep measurements. The output of memoryless bandpass
nonlinearity can be written as:

ỹ(t) = GA[A(t)]A(t) cos{2𝜋fct + 𝜃(t) + 𝜙G[A(t)]} (4.2)

where nonlinear gain GA[A(t)] and 𝜙G[A(t)] are referred to as the AM/AM and the
AM/PM conversion functions, respectively; and fc is the carrier frequency.

The complex envelope signals x(t) and y(t) associated with the RF signals x̃(t) and
ỹ(t), respectively, are given by:

x(t) = A(t)ej𝜃(t) (4.3)

y(t) = x(t)G[A(t)] = A(t)GA[A(t)]ej{𝜙G[A(t)]+𝜃(t)} (4.4)

Relations of the form given in Equation 4.2 characterize what is referred to as com-
plex envelope nonlinearity. In an envelope nonlinearity, the nonlinear part of the out-
put depends on the modulus A(t) of the input signal only and not on its phase. A typical
AM/AM and AM/PM characteristic of a TWTA (Traveling Wave Tube Amplifier) is
shown in Figure 4.1.

The behavioral model of the bandpass nonlinearity as formulated in Equation 4.2
can be represented in a block diagram, as shown in Figure 4.2. Figure 4.2a is a
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Figure 4.1 Illustration of the amplitude and phase transfer characteristics of an envelope nonlinearity
of a TWTA
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e j{ϕG[A(t)]}

e j(·)

Figure 4.2 Block diagram of the behavioral model for AM/AM and AM/PM envelope nonlinearity;
both A(t) and 𝜃(t) are functions of time. (a) Symbolic model at carrier frequency. (b) Explicit model at
complex envelope level

high-level symbolic block diagram illustrating the conceptual flow of the model,
while Figure 4.2b is a detailed block diagram explicitly showing the steps of
implementing the model.

An alternative model for the same nonlinear relationship can be obtained by using
the quadrature representation of bandpass systems. To demonstrate this, we can use
the complex analytic representation of the signal in Equation 4.1:

x(t) = A(t)ej[2𝜋fct+𝜃(t)] (4.5)

From Equation 4.5 the analytic output signal of the nonlinear memoryless system
has the form of:

y(t) = GA[A(t)]A(t)ej{2𝜋fct+𝜃(t)+𝜙G[A(t)]}

= GA[A(t)]A(t)ej{𝜙G[A(t)]}ej[2𝜋fct+𝜃(t)]

= {GI[A(t)] + jGQ[A(t)]}x(t) (4.6)
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GQ[A(t)]A(t)sin[2πfct + θ(t)]

GI[A(t)] + jGQ[A(t)]

In-phase nonlinearity
GI[A(t)]

Quadrature nonlinearity
GQ[A(t)]

Quadrature filter
(90° phase shifter)

GI[A(t)]

GQ[A(t)]

A(t)
x(t)

(a)

(b)

x̃(t) ỹ(t)

y(t)

|x(t)|

GI(∙)

GQ(∙)

j

Figure 4.3 Quadrature model of envelope quasi-memoryless nonlinearity. (a) Symbolic model at car-
rier frequency. (b) Explicit model at complex envelope level

The output of the envelope nonlinearity is then:

ỹ(t) = Re[y(t)]

= GI[ A(t)]A(t) cos[2𝜋fct + 𝜃(t)] − GQ[ A(t)]A(t) sin [2𝜋fct + 𝜃(t)] (4.7)

where:

GI[A(t)] = GA[A(t)] cos{𝜙G[A(t)]} (4.8)

GQ[A(t)] = GA[A(t)] sin{𝜙G[A(t)]} (4.9)

This alternative model for bandpass quasi-memoryless nonlinearity is shown in
Figure 4.3. Figure 4.3a is a high-level symbolic representation, while Figure 4.3b
shows explicit steps needed for implementing the model, which are similar to what
was shown in Figure 4.2. The significant point of this representation is that the
tandem AM/AM and AM/PM quasi-memoryless nonlinearity can be modeled by two
simple instantaneous amplitude nonlinearities, especially in communication systems
where the complex signal is often in quadrature form (I and Q) instead of polar (A
and 𝜃) form in most cases.

The envelope model of bandpass nonlinearity is a very attractive form for use in
simulations, as the carrier frequency, fc, is explicit and can, therefore, be easily trans-
formed to a low-pass equivalent model as will be demonstrated in the next section.

In this analysis, the simulator has three options with respect to the form in which
GA(⋅) and 𝜙G(⋅) are expressed. The simplest method is to construct GA(⋅) and
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𝜙G(⋅) as look-up tables (LUTs) indexed with the amplitude of the input signal.
This is the most commonly employed method; however, it requires relatively large
memory along with appropriate interpolation techniques [7]. The second option is
the use of analytical functions that best fit the measurements and the third option
employs neural networks. The last two methods may introduce some inaccuracy in
predicting the output of the system, but obviate the need for interpolation. These
three methods are discussed further in the following sections of this chapter and
Chapters 5–7.

4.3 Bandpass to Baseband Equivalent Transformation

If we consider x̃(t) and ỹ(t) as the bandpass (or RF) input and output signals of the
nonlinear system, respectively; x̃(t) can be written in the form of:

x̃(t) = A(t) cos[𝜔ct + 𝜃(t)] (4.10)

x̃(t) is considered the bandpass complex modulated signal centered on fc =
𝜔c

2𝜋
with

amplitude and phase modulated functions A(t) and 𝜃(t), respectively. This signal can
be representative most of the digital modulation schemes. The complex bandpass rep-
resentation of x̃(t) can be written as:

x(t) = A(t)ej[𝜔ct+𝜃(t)] = A(t)ej𝜔ctej𝜃(t) (4.11)

With x(t) = A(t)ej𝜃(t) the complex envelope of x̃(t), such that, x̃(t) is related to x(t)
by:

x̃(t) = Re[x(t)] = x(t) + x∗(t)
2

= x(t)ej𝜔ct + x∗(t)e−j𝜔ct

2
(4.12)

The RF bandpass output of the system can be related to the RF bandpass input signal
via polynomial series as follows:

ỹ(t) = f [x̃(t)] =
N∑

n=1

ãnx̃n(t) = ã1x̃1(t) + ã2x̃2(t) + · · · + ãN x̃N(t) (4.13)

Substituting Equation 4.12 into Equation 4.13, one can write:

ỹ(t) =
N∑

n=1

ãn

[
x (t) ej𝜔ct + x∗(t)e−j𝜔ct

2

]n

=
N∑

n=1

1
2n

ãn[x(t)ej𝜔ct + x∗(t)e−j𝜔ct]n (4.14)

One can expand this equation using the binomial theorem described by the following
equation:

(a + b)n =
n∑

k=0

an−kbk

(
n
k

)
(4.15)
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Substituting Equation 4.14 into Equation 4.15, one can write:

ỹ(t) =
N∑

n=1

1
2n

ãn

{
n∑

k=0

[
x (t) ej𝜔ct

]n−k[x∗(t)e−j𝜔ct]k
(

n
k

)}

=
N∑

n=1

1
2n

ãn

{
n∑

k=0

[x (t)]n−k[x∗(t)]k(ej𝜔ct)n−2k

(
n
k

)}
(4.16)

To derive the output bandpass signal ỹ(t), we extract only the terms centered on 𝜔c
from the inner summation of Equation 4.16.

Accordingly, one can obtain:

ỹ(t) =
N∑

n=1

1
2n

ãn{[x(t)]n−k[x∗(t)]k(ej𝜔ct)n−2k + [x(t)]n−k[x∗(t)]k(ej𝜔ct)n−2k}
(

n
k

)
(4.17)

The relationship between ỹ(t) and its complex envelope y(t) is:

ỹ(t) =
y(t)ej𝜔ct + y∗(t)e−j𝜔ct

2
(4.18)

Equating Equation 4.17 to Equation 4.18 term by term, one can obtain:

n − 2k = 1 →

{
k = n−1

2

n − k = n+1
2

(4.19)

Based on the above Equation, n must be odd.
This leads to:

ỹ(t) =
N∑

n=1
n odd

1
2n

ãn

{
[x (t)]

n+1
2 [x∗(t)]

n−1
2 (ej𝜔ct) + [x(t)]

n−1
2 [x∗(t)]

n+1
2 (e−j𝜔ct)

} (
n

n−1
2

)
(4.20)

Equation 4.20 can be written as:

ỹ(t) =
N∑

n=1
n odd

1
2n

ãn[|x(t)|n−1x(t)(ej𝜔ct) + |x(t)|n−1x∗(t)(e−j𝜔ct)]
(

n
n−1

2

)
(4.21)

By equating Equation 4.21 to Equation 4.18, one can obtain the output of the equiv-
alent low-pass baseband polynomial model, y(t), as a function of the complex input
envelope, x(t), as follows:

y(t) =
N∑

n=1
n odd

1
2n−1

(
n

n−1
2

)
ãn|x(t)|n−1x(t) (4.22)
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y(t) =
N∑

n=1
n odd

an|x(t)|n−1x(t) (4.23)

where an = 1
2n−1

(
n

n−1
2

)
ãn.

Therefore, we can directly obtain the complex envelope transfer characteristic T(t),
of the quasi-memoryless nonlinearity from Equation 4.23 as follows:

T(t) = GI(t) + jGQ(t) =
N∑

n=1
n odd

an|x(t)|n−1 (4.24)

Despite the fact that the equivalent low-pass model incorporates only odd terms, it
has been demonstrated that the inclusion of even terms in the sum can help reduce the
order of the polynomial needed to fit experimental data when identifying the model.

4.4 Look-Up Table Models

In various practical applications, the nonlinear characteristic is obtained experimen-
tally; and, an adequate analytical expression may not be easily obtained. These char-
acteristics are often depicted graphically, and the “model” for computer simulation
purposes is simply a tabular representation of the experimental data. The magnitudes
of the input signals and the corresponding outputs are stored in a LUT. The look-up
procedure takes the input value and does a search among the discrete table entries
to determine which entry is appropriate. Appropriate interpolation is used between
tabulated data points, whenever necessary.

4.4.1 Uniformly Indexed Loop-Up Tables

It was mentioned earlier that quasi-memoryless nonlinearity can be represented by
AM/AM and AM/PM conversion functions that depend only on the magnitude of the
envelope signal, thus, there is no need to model the system using two-dimensional
(2-D) LUTs due to the fact that the complex distortion is only function of the mag-

nitude of the input signal (
√

Iin
2 + Qin

2), and not the individual value of Iin and Qin.
Indeed, they can be modeled using two one-dimensional (1-D) real LUTs, one for the
amplitude distortion and the second for the phase distortion. The indexing parameter
of such LUT is the input signal level quantized over a finite number of levels called
the depth or length of the LUT. Figure 4.4 illustrates a linear 1-D complex LUT where
xin(n) and xout(n) are the LUT’s input and output discrete-time signal values, respec-
tively; A(n) designates the normalized and quantized amplitude of the complex input
signal and G[A(n)] is the complex looked-up gain value (output) for a given quantized
input signal magnitude value A(n). The maximum input signal amplitude is chosen so
that it corresponds to the saturation point of the nonlinear system being modeled.
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Figure 4.4 LUT for quasi-memoryless system modeling

Figure 4.5 Cartesian implementation of the LUT based model for quasi-memoryless nonlinearity

G[A(n)] = GI[A(n)] + jGQ[A(n)] (4.25)

The LUT based model can be implemented in practice using the scheme shown
in Figure 4.5 where the Iin(n) and Qin(n) signals are multiplied by the complex gain
value obtained from the LUT to generate the Iout(n) and Qout(n) values at the output
of model.

For a uniform LUT with N entries, the bin’s width (step) in the LUT-index domain
is equal to:

d =
Amax − Amin

N − 1
(4.26)

where Amax and Amin are the maximum and minimum discrete values of the quantized
indexing variable A.

Synthesis of LUT entries is carried out through the implementation of Equation 4.25
in a digital processor. Each entry in the LUT is assumed to be optimal at the midpoint
of its range.

4.4.2 Non-Uniformly Indexed Look-Up Tables

Since the behavior of the system is nonlinear and its complex gain distortion is func-
tion of the magnitude of the input signal, non-uniformly indexed LUTs are often used
to minimize the length of the table,

G[Ac(n)] = GI[Ac(n)] + jGQ[Ac(n)] (4.27)
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Figure 4.6 Non-uniform LUT architecture

where G[Ac(n)] is the complex gain of the quasi-memoryless nonlinearity stored as
entries of the LUT and indexed as function of Ac(n), which is given by:

Ac(n) = fm[A(n)]. (4.28)

The companding function fm[A(n)], relating the LUT index to the input signal ampli-
tude A(n) is shown in Figure 4.6. This function allows a better distribution of the LUT
entries over the whole dynamic range of the input signal, by enabling a denser distri-
bution of LUT bins in the input signal magnitude domain whenever the amplifier gain
variation changes rapidly over a given interval of the input drive level.

This function is equal to identity in the case of equally-spaced LUTs in terms of the
input signal voltage magnitude. For LUTs that are equally spaced in terms of input
signal power expressed in watts, the function fm is a square function. For LUTs that
are equally spaced in terms of input signal power expressed in dBm, the function fm
is a logarithmic function.

Figure 4.7 shows the values of the three companding/mapping functions (linear,
square, and log) relating the index of the LUT to the normalized input signal.

The accuracy of the LUT-based models is a function of the number of entries, N,
and the companding function, fm, selected. The intermodulation distortion attributed
to quantization noise generated by the LUT can be related to the derivative of the
companding function, fm[A(n)], at a given input drive level and the input signal
probability distribution function (pdf) as described in [8]. Therefore, for a given drive
signal with a given pdf, an optimal companding function can be obtained using the
methodology described in [8].

4.5 Generic Nonlinear Amplifier Behavioral Model

In a class AB amplifier, the DC power consumption, and small signal gain are func-
tions of the input signal power level. Also, the output power expressed in decibels,
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Figure 4.7 Companding functions for LUTs

Pout, is function of the input power, and the output phase, 𝜙out, is a function of the
input power, all of which can be related using the following equations [9]:

Pout = Pin + Gss − k log10

(
1 + 10

Pin+Gss−Psat
k

)
(4.29)

𝜙out = 𝜙in + 𝜇k log10

(
1 + 10

Pin+Gss−Psat
k

)
(4.30)

where,

Gss is the small signal gain of the amplifier expressed in decibels,
Psat is the output saturated power of the amplifier expressed in decibels,
𝜙in is the phase of the input signal,
k is a compression coefficient of the amplifier,
𝜇 is the phase sensitivity to the input power level, typically it is 5 degrees per dB of

compression for a single-ended amplifier.

The compression coefficient k can be estimated using the values of Psat and 1 dB
compression point, P1dB, for a given amplifier using the following equation:

Psat − P1dB = 1 − k log10

[
10

(
1
k

)
− 1

]
(4.31)
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Figure 4.8 Compression coefficient k as function of Psat and P1dB

A direct calculation of k is not possible, but the left hand side of the equation can be
estimated for different values of k, typically (1 − 10 dB) and by means of the curve
obtained one can estimate the value of k for a given measured difference between Psat
and P1dB. Figure 4.8 presents the characteristic curve of compression coefficient k
calculated from Equation 4.31.

4.6 Empirical Analytical Based Models

In the remainder of this chapter and for ease of notation, the time-dependent magni-
tude, and phase (A(t) and 𝜃(t), respectively) of the input signal x(t) will be denoted as
A and 𝜃, respectively.

4.6.1 Polar Saleh Model

In the polar representation, the output of a nonlinear amplifier can be described by the
expression given by of Equation 4.2. The well-known Saleh model [10], originally
developed to mimic the behavior of TWTAs, uses simple two-parameter functions
to model the AM/AM and AM/PM characteristics of nonlinear quasi-memoryless



74 Behavioral Modeling and Predistortion of Wideband Wireless Transmitters

systems. These functions GA(A) and 𝜙G(A) can be represented as:

GA(A) =
𝛼a

1 + 𝛽aA2
(4.32)

𝜙G(A) =
𝛼𝜙A2

1 + 𝛽𝜙A2
(4.33)

where GA(A) represents the AM/AM characteristic of the nonlinear amplifier and
𝜙G(A) represents the AM/PM characteristic of the nonlinear amplifier.

Appropriate selections for the model’s amplitude and phase coefficients (𝛼a, 𝛽a, 𝛼𝜙,
and 𝛽𝜙) can make the model suitable for SSPAs also.

Although this model is frequency-independent, it can be made frequency-dependent
by adding filters that mirror how the coefficients change with frequency leading to
frequency-dependent model coefficients 𝛼a( f ), 𝛽a( f ), 𝛼𝜙( f ), and 𝛽𝜙( f ).

The objective of modeling is to develop a block model that, under the same input
stimulus conditions as the measurements, will produce as closely as possible the mea-
sured AM/AM and AM/PM curves. The coefficients in Equations 4.32 and 4.33 are
usually determined by performing a least-squares fit between the predicted values by
the model and the actual values measured for the nonlinear system.

As an example, the set of parameters that closely matches a commercial TWTA’s
data [10] is presented in Figure 4.9. Figure 4.9 illustrates the input-output relationship
based on Equations 4.32 and 4.33, and Figure 4.10 illustrates the variation of the
complex gain as function of the drive level.

4.6.2 Cartesian Saleh Model

In the quadrature representation, the output of the quasi-memoryless nonlinear sys-
tem is represented by Equations 4.5–4.9. The in-phase and quadrature nonlinearities,
GI(A) and GQ(A), respectively, are given by:

GI(A) =
𝛼I

1 + 𝛽IA2
(4.34)

GQ(A) =
𝛼QA2

(1 + 𝛽QA2)2
(4.35)

As with the polar case, the coefficients in Equations 4.34 and 4.35 are also deter-
mined by a least-squares fit; and, it has been shown [10] that the resulting functions
provide excellent agreement with several sets of measured data from TWTAs.

Similarly, the model can be made frequency-dependent by adding filters that mirror
how the coefficients change with frequency leading to the frequency-dependent model
coefficients 𝛼I( f ), 𝛽I( f ), 𝛼Q( f ), and 𝛽Q( f ).
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Figure 4.9 Saleh model with parameters: 𝛼a = 2.1587, 𝛽a = 1.1517, 𝛼
𝜙
= 4.033, and 𝛽

𝜙
= 9.1040

Figure 4.10 Complex gain profile for Saleh model with parameters: 𝛼a = 2.1587, 𝛽a = 1.1517, 𝛼
𝜙
=

4.033, and 𝛽
𝜙
= 9.1040
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4.6.3 Frequency-Dependent Saleh Model

Until this point of the chapter, the models discussed consider the characteristics of
TWT amplifier as frequency independent. However, for broadband input signals
driving limited bandwidth TWTA and/or other components of the transmission
chain, a frequency-dependent model is required. In such case, the power and
frequency-dependent in-phase and quadrature nonlinearities, GI(A, f ) and GQ(A, f ),
respectively, are given by:

GI(A, f ) =
𝛼I( f )

1 + 𝛽I( f )A2
(4.36)

GQ(A, f ) =
𝛼Q( f )A2

[1 + 𝛽Q( f )A2]2
(4.37)

where 𝛼I( f ), 𝛽I( f ), 𝛼Q( f ), and 𝛽Q( f ) are determined by curve fitting at each frequency
while sweeping the amplitude of the input signal.

4.6.4 Ghorbani Model

The Ghorbani model is a quasi-memoryless analytically based model similar to the
Saleh model [11]. In the literature, this model has been stated as being more suitable
for SSPAs than the Saleh model. Considering the input and output signals given by
Equations 4.1 and 4.2, respectively, the Ghorbani model is described by the following
two expressions:

G(A) =
x1A(x2−1)

(1 + x3Ax2)
+ x4 (4.38)

𝜙G(A) =
y1Ay2

(1 + y3Ay2)
+ y4A (4.39)

where, G(A) and 𝜙G(A) are the AM/AM and AM/PM distortion functions, respec-
tively; and A refers to the magnitude of the input signal.

x1, x2, x3, and x4 are the model parameters for the AM/AM distortion function and
y1, y2, y3, and y4 are the model parameters for the AM/PM distortion function.

A modeling application of the Ghorbani model to a gallium arsenide field-effect
transistor (GaAsFET) based SSPA and characterized by sweeping single-tone power
led to the model coefficients given by [11]:⎧⎪⎪⎨⎪⎪⎩

x1 = 8.1081

x2 = 1.5413

x3 = 6.5202

x4 = −0.0718

and

⎧⎪⎪⎨⎪⎪⎩

y1 = 4.6645

y2 = 2.0965

y3 = 10.88

y4 = −0.003

For this (GaAsFET) SSPA, the Ghorbani model is shown in the Figure 4.11.
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Figure 4.11 Gain and phase profiles for Ghorbani model for GaAsFET SSPA

4.6.5 Berman and Mahle Phase Model

In [12], Berman and Mahle proposed a model suited to TWTAs for multiple access
communications satellite applications. This model only represents the AM/PM dis-
tortions that are given by the following form:

𝜙G(A) = k1(1 − e−k2A2) + k3A2 (4.40)

where A refers to the magnitude of the input signal and 𝜙G(A) is phase shift, relative
to the output phase in small signal conditions, introduced to the output signal by the
AM/PM distortion. The values for model coefficients k1, k2, and k3 are found through
optimization. Figure 4.12 presents the relative phase shift versus the normalized input
power characteristic calculated with Equation 4.40 for a TWTA. The values of the
coefficients used to generate Figure 4.12 are k1 = 0.372, k2 = 5.14, k3 = 0.27 [12].

4.6.6 Thomas–Weidner–Durrani Amplitude Model

Thomas, Weidner, and Durrani presented a method in [13] to model the normalized
amplitude’s nonlinearity in TWTAs. The mathematical expression for the model can
be given as:

M(A) = 10

𝛼

⎧⎪⎨⎪⎩cos
⎡⎢⎢⎣

log10

(
A
As

)
𝛽

⎤⎥⎥⎦−1

⎫⎪⎬⎪⎭ for A > Ac

M(A) = A for A ≤ Ac

(4.41)
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Figure 4.12 Phase shift transfer function characteristic of the Berman and Mahle model

where, here also A refers to the magnitude of the input signal, M(A) is the level
of the small-signal normalized output signal, As is the input saturation level, and
Ac is the input signal’s level where the compression starts. Model coefficients 𝛼
and 𝛽 are normally found by optimization to fit experimental data. In this model,
the phase distortion is modeled using the Berman and Mahle model given by
Equation 4.40.

Figure 4.13 shows the AM/AM and AM/PM characteristics for TWTA, where
AM/AM characteristic is obtained from Thomas–Weidnar–Durrani model and the
AM/PM characteristic is approximated using the Berman–Mahle model.

4.6.7 Limiter Model

The ideal limiter (clipping) model AM/AM relationship can be expressed as:

y(t) =
⎧⎪⎨⎪⎩

ysat

xsat
x (t) for |x(t)| < xsat

ysat for |x(t)| ≥ xsat

(4.42)

where x(t) and y(t) are the baseband input and output signals, respectively; xsat and
ysat are the input and output saturation (clipping) levels, respectively.
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Figure 4.13 AM/AM and AM/PM characteristics for TWTA modeled using the Thomas–Weidner–
Durrani model

The general limiter model baseband input-output relationship can be used for
resistive memoryless nonlinearity that has no phase distortion and it can be des-
cribed by:

y(t) =
ysat{

1 +
[

xsat|x(t)|
]s} 1

s

x(t) (4.43)

where ysat is the output saturation value, xsat is the input saturation value and s is
the compression shaping parameter. Note that s ≈ 0 corresponds to a soft limiter and
s ≈ ∞ corresponds to a hard limiter. Figure 4.14 shows the limiter characteristics for
different values of the parameter s.

4.6.8 ARCTAN Model

The general form of the ARCTAN (arctangent) bandpass input-output relationship
can be used for memoryless nonlinearity and it is described by:

y(t) = {𝛾1tan−1[𝛼1A] + 𝛾2tan−1[𝛼2A]}ej𝜃 (4.44)

where A and 𝜃 are the amplitude and phase of the input signal x(t) as defined in
Equation 4.1, respectively. 𝛾1, 𝛾2, 𝛼1, and 𝛼2 are the model coefficients. Figure 4.15
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Figure 4.14 Limiter characteristics

Figure 4.15 ARCTAN model characteristics
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depicts the AM/AM characteristics of the ARCTAN model for 𝛾1 = 8.0035 − j4.6116,
𝛾2 = −3.7717 + j12.0376, 𝛼1 = 2.2689, and 𝛼2 = 0.8234.

4.6.9 Rapp Model

The general form of the Rapp input-output relationship can be used for memoryless
nonlinearity and it is described by [14]:

y(t) =
Gss[

1 + ||| x(t)
xsat

|||2𝜎
] 1

2𝜎

x(t) (4.45)

where x(t) and y(t) are the model’s input and output signals, respectively. 𝜎 is a positive
smoothing factor, xsat is the input saturation value, and Gss is the small-signal gain.
Note than when 𝜎 ≈ 0, the model approaches the soft limiter’s behavior; and when
𝜎 ≈ ∞, it approaches the hard limiter behavior.

This model was found to be suitable for SSPAs. Figure 4.16 shows the characteristics
of the Rapp model for different values of 𝜎.

Figure 4.16 Rapp model characteristics for different smoothing factor 𝜎
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Figure 4.17 AM/AM and AM/PM characteristics of the White model

4.6.10 White Model

The White model has been proposed for baseband modeling of complex gain
nonlinearities [15]. The AM/AM and AM/PM functions of the model are shown in
Equations 4.46 and 4.47, respectively:

|y(t)| = a(1 − e−bA) + cAe−dA2
(4.46)

𝜙G(A) =

{
f
[
1 − e−g(A−h)] for A ≥ h

0 for A < h
(4.47)

where |y(t)| and A are the magnitudes of the output and input signals, respectively.
a, b, c, d, f , g, and h are the model coefficients. Figure 4.17 depicts a sample of the
output voltage and the phase shift predicted by the White model.

4.7 Power Series Models

4.7.1 Polynomial Model

A common characterization of complex nonlinearities, such as quasi-memoryless
PAs, is based on their AM/AM and AM/PM conversion characteristics. These
characteristics are frequently measured in a static manner using continuous wave
(CW) signals and network analyzer based setups. However, a more accurate PA
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characterization can be achieved by performing dynamic AM/AM and AM/PM
measurements using modulated signals and devoted setups as it will be discussed
in Chapter 8 [16–18]. To predict the spectral regrowth of such PAs, the complex
envelopes of the RF input and output signals can be related by:

y(t) = x(t)G(A) (4.48)

where A = |x(t)| and G(A) is the complex gain of the PA defined as:

G(A) = GA(A)ej𝜙G(A) (4.49)

where GA(A) is the magnitude of the complex gain G(A) and corresponds to the
AM/AM conversion. The phase of the complex gain G(A), 𝜙G(A), represents the
output phase shift and corresponds to the AM/PM conversion. The complex envelope
nonlinearity G(A) can be represented by a complex polynomial power series of a
finite order N such that:

y(t) =
N∑

k=1

ak |x(t)|k−1x(t) =
N∑

k=1

akΨP
k [x(t)] (4.50)

where ΨP
k [x(t)] = |x(t)|k−1x(t) are the basis functions of the polynomial model, and

ak are the model’s complex coefficients. Several polynomial based models have been
proposed for the modeling and predistortion of nonlinear PAs and transmitters. These
are thoroughly discussed in Chapter 5.

4.7.2 Bessel Function Based Model

Bessel function series approximation is employed to model the amplitude and phase
characteristics of memoryless nonlinear devices. It was found to be suitable for
TWTAs. The approximating expression is given by:

G = GI + jGQ =
N∑

k=1

akJ1(𝛼kA) (4.51)

where GI and GQ are the real and imaginary components of the actual measured
single unmodulated carrier envelope amplitude and phase transfer characteristics. In
Equation 4.51, ak are complex coefficients, J1(⋅) is a Bessel function of the first kind
[19]. 𝛼 is an arbitrary constant for scaling the input signal level depending on the over
drive of the nonlinear system under consideration, which can be calculated by:

𝛼 = 2𝜋10− X
20 (4.52)

where X is the overdrive power level in decibels.
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J1(𝛼kA) is a Bessel function of the first kind, which is defined by:

J1(𝛼kA) =
1∑

m=0

(−1)m

m!(m + 1)!

(
𝛼kA

2

)2m+1

(4.53)

The output of a Bessel series baseband complex envelope based behavioral model
can be expressed by the following equation:

yBP(t) =
N∑

k=1

akJ1(𝛼kA)x(t) =
N∑

k=1

akΨB1
k [x(t)] (4.54)

where yBP(t) is the complex envelope output using the Bessel polynomials, ak are
the complex coefficients of the model, x(t) is the baseband input signal, and A its
magnitude; and ΨB1

k [x(t)] = J1(𝛼kA)x(t) are the basis functions of the Bessel function
of the first kind based model.

4.7.3 Chebyshev Series Based Model

The output of the Chebyshev series complex envelope based model is described by
following equations:

G =
N∑

k=0

akTk(A)k−1 (4.55)

yCP(t) =
N∑

k=0

akTk(A)k−1x(t) =
N∑

k=0

akΨC
k [x(t)] (4.56)

where, ΨC
k [x(t)] are basis functions of the Chebyshev series based model. ak are the

complex coefficients of the model to be identified, x(t) is the baseband input signal,
and Tk(A) are the Chebyshev functions defined by the following equation:

Tk(A) = cos{k[cos−1(A)]} (4.57)

where T0(A) = 1; T1(A) = A; T2(A) = 2AT1(A) − T0(A); T3(A) = 2AT2(A) − T1(A),
and so on.

The basis functions, Tk(A), used in the model here are orthogonal in the interval
[−1, 1]. A modified set of Chebyshev functions, Tk(A2), has also been used in the
behavior modeling of nonlinear systems.

4.7.4 Gegenbauer Polynomials Based Model

The Gegenbauer complex polynomials were proposed in [20]. The output of this
model is related to the input through:

yGP(t) = G(A)x(t) =
N∑

k=1

akΨG
k [x(t)] (4.58)
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Table 4.1 First five Gegenbauer polynomial basis functions

C𝜆

0 (A) = 1

C𝜆

1 (A) = 2𝜆A

C𝜆

2 (A) = 2𝜆(𝜆 + 1)A2 − 𝜆

C𝜆

3 (A) =
4
3
𝜆(𝜆 + 1)(𝜆 + 2)A3 − 2𝜆(𝜆 + 1)A

C𝜆

4 (A) =
2
3
𝜆(𝜆 + 1)(𝜆 + 2)(𝜆 + 3)A4 − 2𝜆(𝜆 + 1)(𝜆 + 2)A2 − 1

2
𝜆(𝜆 + 1)

where, ak are the model’s complex coefficients, and ΨG
k [x(t)] are the basis functions

expressed with Gegenbauer polynomials according to:

ΨG
k [x(t)] = x(t)C𝜆

k−1(A) (4.59)

where 𝜆 is a signal dependent parameter that takes values in the interval [0.8, 0.9] for
typical wireless signals.

For k ≥ 2, the recurrence relation of Gegenbauer polynomials of the basis function
ΨG

k [x(t)] can be expressed as:

C𝜆

k (A) =
2
k
(k + 𝜆 − 1)AC𝜆

k−1(A) −
1
k
(k + 2𝜆 − 2)C𝜆

k−2(A) (4.60)

where C𝜆

0(A) = 1 and C𝜆

1(A) = 2𝜆A.
The Gegenbauer polynomials can be made orthogonal over the internal [−1, 1] by

applying the terms C𝜆

k (⋅) on A0 rather than A, where A0 is given by:

A0 = 2A − 𝛽 − 𝛼
𝛽 − 𝛼

(4.61)

with 𝛼 and 𝛽 defined such that A ∈ [𝛼, 𝛽].
Table 4.1 shows the first five Gegenbauer polynomials basis functions C𝜆

k (A).

4.7.5 Zernike Polynomials Based Model

The Zernike polynomials based envelope nonlinearity model was proposed in [21].
The output of this polynomial model is given by:

yZP(t) = G(A)x(t) =
N∑

k=1

akΨZ
k [x(t)] (4.62)

where, ak are the model’s complex coefficients, x(t) is the input signal and ΨZ
k [x(t)]

are the Zernike polynomials basis functions given by:

ΨZ
k [x(t)] =

𝛼∑
l=0

U(2l+𝛿)k|x(t)|2l+𝛿x(t) (4.63)
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Table 4.2 First nine basis functions ΨZ
k [x(t)]

k ΨZ
k [x(t)]

0 x(t)
1 x(t)|x(t)|
2 2x(t)|x(t)|2 − x(t)
3 3x(t)|x(t)|3 − 2x(t)|x(t)|
4 6x(t)|x(t)|4 − 6x(t)|x(t)|2 + x(t)
5 10x(t)|x(t)|5 − 12x(t)|x(t)|3 + 3x(t)|x(t)|
6 20x(t)|x(t)|6 − 30x(t)|x(t)|4 + 12x(t)|x(t)|2 − x(t)
7 35x(t)|x(t)|7 − 60x(t)|x(t)|5 + 30x(t)|x(t)|3 − 4x(t)|x(t)|
8 70x(t)|x(t)|8 − 140x(t)|x(t)|6 + 90x(t)|x(t)|4 − 20x(t)|x(t)|2 + x(t)

where 𝛼 = floor
(

k
2

)
and 𝛿 = mod(k, 2) with,

U(2l+𝛿)k =
⎧⎪⎨⎪⎩
(−1)𝛼−l (𝛼 + l + 𝛿)!

(𝛼 − l)!l!(l + 𝛿)!
for (2l + 𝛿) ≤ k

0 otherwise
. (4.64)

Table 4.2 shows the first nine basis functions ΨZ
k [x(t)].
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5
Memory Polynomial
Based Models

5.1 Introduction

Radio frequency (RF) power amplifiers and transmitters are considered to be dynamic
nonlinear systems that concurrently exhibit static nonlinearities as well as nonlinear
memory effects. Thus, the most comprehensive behavioral model that can be adopted
to fully model such systems is the Volterra series described in Chapter 2. However,
full Volterra series (which do not include any simplifying assumptions) are typically
difficult to manipulate and result in unrealistically large models that are not suitable
in practice.
The memory polynomial model represents a very compact version of the Volterra

series and has been widely applied in the behavioral modeling and predistortion of
power amplifiers and transmitters having memory effects. A wide assortment of struc-
tures based on the memory polynomial has been proposed for the modeling and pre-
distortion of RF power amplifiers and transmitters. Although the functions reported
in this chapter are commonly referred to as models, they can be seamlessly used in
both behavioral modeling and digital predistortion applications.
Figure 5.1 illustrates the two methodologies that can be recognized as the rationals

behind the development of a large number of memory polynomial based structures.
As shown in this figure, the memory polynomial model has low complexity but
relatively limited performance; whereas the Volterra series model has a higher com-
plexity but leads to better performance. Thus, the first approach in the development
of memory polynomial based models is aimed at reducing the number of coefficients
of the Volterra series, while maintaining satisfactory accuracy. Conversely, the
second approach consists in augmenting the memory polynomial model to improve
its performance with minimal increase in the model complexity. The goal is an ideal
model that combines both high performance and low complexity.

Behavioral Modeling and Predistortion of Wideband Wireless Transmitters, First Edition.
Fadhel M. Ghannouchi, Oualid Hammi and Mohamed Helaoui.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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Figure 5.1 Trends in single-box memory polynomial models development

5.2 Generic Memory Polynomial Model Formulation

Memory polynomial based models are commonly used as standalone single-boxmod-
els. However, they can also be part of two-box structures or in general multi-box
structures. In this chapter, the main focus is memory polynomial based single-box
models. Their implementation in two-box structures will be discussed in Chapter 6.
At this point, it is important to distinguish between the concept of a single-boxmodel

and a single-basis functionmodel. A single-boxmodel refers to a structure that is iden-
tified as a single function, in contrasts with a multi-boxmodel where the sub-functions
are determined successively. Thus, a single-box model can have more than one sin-
gle basis function as, for example, is the case in the generalized memory polynomial
model. This concept is further discussed in the subsequent sections of this chapter
where single-box multi-basis function models are described and their mathematical
formulations are derived.
All memory polynomial models can be formulated using the same generic linear

system given by:
y(n) = 𝛗(n) ⋅ A (5.1)

where y(n) is themodel’s baseband complex output sample at instant n,𝛗(n) is a vector
built using the baseband complex input signal samples according to the model’s basis
functions set, and A is the vector containing the model coefficients.
The formulation of Equation 5.1 is valid for all memory polynomial models, inde-

pendent of their type and the number of basis functions. The only difference is that
vector 𝛗(n) is defined depending on the model. It is important to notice here that all
memory polynomial models are linear with respect to their coefficients, which enables
the use of simple identification techniques.
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5.3 Memory Polynomial Model

Kim and Konstantinou proposed the memory polynomial model [1]. It can be
obtained by reducing the Volterra series model to its diagonal terms, that is, by
removing all cross-terms. The baseband complex output signal (yMP) of the memory
polynomial model is expressed as a function of its baseband complex input signal (x)
according to:

yMP(n) =
M∑

m=0

K∑
k=1

amk ⋅ x(n − m) ⋅ |x(n − m)|k−1 (5.2)

where amk represent the model’s coefficients; and K andM are the model’s nonlinear-
ity order and memory depth, respectively.
Equation 5.2 can be rewritten in the generic formulation of Equation 5.1

yMP(n) = 𝛗MP(n) ⋅A (5.3)

where 𝛗MP(n) and A are defined by:

𝛗MP(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x (n)
⋮

x(n) ⋅ |x(n)|K−1
x(n − 1)

⋮
x(n − 1) ⋅ |x(n − 1)|K−1

⋮
x(n −M) ⋅ |x(n −M)|K−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(5.4)

A =
[
a01 · · · a0K a11 · · · a1K · · · aMK

]T
(5.5)

where [⋅]T denotes the transpose operator. Based on Equation 5.2, the memory poly-
nomial model has two degrees of freedom since its dimension is defined by both the
nonlinearity order and the memory depth.
The block diagram of the memory polynomial model is shown in Figure 5.2. This

figure shows that the model can be seen as the combination of (M + 1) polynomial
functions, each of which is applied to a delayed version of the baseband complex
input sample, x(n).

5.4 Variants of the Memory Polynomial Model

5.4.1 Orthogonal Memory Polynomial Model

One of the major drawbacks of the memory polynomial model is the ill-conditioning
of its data matrix that needs to be constructed when identifying the model coefficients.
To better illustrate this aspect, let’s rewrite Equation 5.3 for L samples (where L
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Figure 5.2 Block diagram of the memory polynomial model

refers to the length of the data set used to identify the memory polynomial model
coefficients): ⎡⎢⎢⎢⎣

yMP (n)
yMP(n − 1)

⋮
yMP(n − L + 1)

⎤⎥⎥⎥⎦ = 𝚯MP(n,L) ⋅ A (5.6)

where the data matrix 𝚯MP(n,L) is given by:

𝚯MP(n, L) =
⎡⎢⎢⎢⎣

𝛗MP (n)
𝛗MP(n − 1)

⋮
𝛗MP(n − L + 1)

⎤⎥⎥⎥⎦ (5.7)

where 𝛗MP(n) is as defined in Equation 5.4.
The nature of the memory polynomial model introduces a significant amount of

correlation in the data matrix, 𝚯MP(n, L), especially between the elements of each
row (𝛗MP). Moreover, a lesser degree of correlation is also present between the
various rows of 𝚯MP(n,L), due to the inherent correlation of the signal’s consecutive
samples. The correlation of the data matrix results in an ill-conditioning problem that
makes the linear system of Equation 5.6 vulnerable to disturbances [2] and numerical
instability [3, 4]. This problem gets even more pronounced as the nonlinearity order
of the model is increased.
To alleviate the ill-conditioning problem described here, the orthogonal memory

polynomial model was proposed [3]. In this model, a new set of orthogonal basis
functions is used. The basis functions are derived for signals whose magnitudes
are uniformly distributed in the of range [0, 1]. When used with standard compliant
communication signals that have a different distribution function such as Raleigh
distribution, the advantage of the orthogonal memory polynomial model in terms of
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condition number reduction, is significantly decreased. However, it still compares
favorably with the memory polynomial model, as it achieves moderate condition
number reduction for comparable performance and implementation complexity.
The output (yOMP) of the orthogonal memory polynomial model is related to its input

(x) according to:

yOMP(n) =
M∑

m=0

K∑
k=1

amk ⋅ 𝜓k[x(n − m)] (5.8)

where amk, K, andM are as defined for Equation 5.2, and 𝜓k[x(n − m)] represents the
basis function of the orthogonal memory polynomial model and is defined as:

𝜓k[x(n − m)] =
k∑
l=1

(−1)l+k ⋅ (k + l)!
(l − 1)!(l + 1)!(k − l)!

⋅ |x(n − m)|l−1 ⋅ x(n − m) (5.9)

The orthogonal memory polynomial model can be re-written in the generic formu-
lation of Equation 5.1 as:

yOMP(n) = 𝛗OMP(n) ⋅ A (5.10)

where A is the model coefficients’ vector defined as in Equation 5.5. However, in this
case, the data vector 𝛗OMP(n) is expressed, using the orthogonal memory polynomial
basis function defined in Equation 5.9, by:

𝛗OMP(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜓1 [x (n)]
⋮

𝜓K[x(n)]
𝜓1[x(n − 1)]

⋮
𝜓K[x(n − 1)]

⋮
𝜓K[x(n −M)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(5.11)

Figure 5.3 presents the block diagram of the orthogonal memory polynomial model.
This shows that themodel structure is similar to that of thememory polynomial model,
and that the only difference lies in the expression of the basis functions adopted. Alter-
nate orthogonal basis functions, such as Zernike polynomials [5, 6] and Gegenbauer
polynomials [7], have also been proposed for the modeling and predistortion of power
amplifiers and transmitters exhibiting memory effects.

5.4.2 Sparse-Delay Memory Polynomial Model

The memory polynomial model of Equation 5.2 employs polynomial functions that
are applied to the current input sample, x(n), as well as allM preceding samples from
x(n − 1) up to x(n −M). However, all these past terms can be cumbersome, especially
when long-term memory effects are being modeled or when the sampling rate of the
signal is relatively high and requires a large number of past samples to cover the



94 Behavioral Modeling and Predistortion of Wideband Wireless Transmitters

Figure 5.3 Block diagram of the orthogonal memory polynomial model

memory depth of the system being modeled. This motivated the development of the
sparse-delay memory polynomial model [8]. In this model, only a specific subset of
the preceding samples is taken into account to calculate the output signal. Thus, the
output (ySDMP) of the sparse-delay memory polynomial model is given as a function
of its input (x) by:

ySDMP(n) =
MSD∑
i=0

K∑
k=1

aik ⋅ x(n − mi) ⋅ |x(n − mi)|k−1 (5.12)

where aik and K represents the model’s coefficients and nonlinearity order, respec-
tively; andMSD is the number of history terms used to build the sparse-delay memory
polynomial model.
According to the description previously, MSD ≤ M (where M is the memory depth

of the system being modeled) and mi ∈ [0,M]. The sparse-delay memory polynomial
model can be re-written using the generic formulation of Equation 5.1:

ySDMP(n) = 𝛗SDMP(n) ⋅A (5.13)

where A is the model coefficients’ vector defined as in Equation 5.5. According to
Equation 5.12, the data vector 𝛗SDMP(n) of the sparse-delay memory polynomial
model is:

𝛗SDMP(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x (n)
⋮

x(n) ⋅ |x(n)|K−1
x(n − m1)

⋮
x(n − m1) ⋅ |x(n − m1)|K−1

⋮
x(n − mMSD

) ⋅ |x(n − mMSD
)|K−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(5.14)
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Figure 5.4 Block diagram of the sparse-delay memory polynomial model

Figure 5.4 shows the block diagram of the sparse-delay memory polynomial
model. This model is very similar to the memory polynomial model, except that
only a subset of branches is used. The sparse-delay memory polynomial model
reduces the complexity of the memory polynomial model by decreasing the number
of coefficients present in the model. However, additional complexity is introduced
since the sparse-delay memory polynomial model requires the determination of the
pertinent delay terms that must be kept in the model and the superfluous terms that
can be discarded.

5.4.3 Exponentially Shaped Memory Delay Profile Memory Polynomial
Model

The memory polynomial based shaped delay (MPSD) model was presented in [9]. In
this model, each branch is assigned a different memory depth to include both thermal
and electrical memory effects of the system. Hence, the delay is an exponential
function rather than a uniform function in which equal delay steps is incorporated
in all the branches. The mathematical representation of the MPSD model is given in
Equation 5.15:

yMPSD(n) =
M∑

m=0

K∑
k=1

amk ⋅ x(n − Δm,k) ⋅ |x(n − Δm,k)|k−1 (5.15)

where the delay values are defined as:

Δm,k =

{
0 m = 0

avg + Δ0e
−𝛼k m ≠ 0

(5.16)

In Equation 5.16, Δ0 is the maximum delay, 𝛼 is a coefficient describing the expo-
nential decrease of the memory depth value, and avg is the average delay value that
is related to the drain-source average channel length. The value the parameter avg of
depends on the average power applied to the transistor.
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Figure 5.5 Block diagram of the non-uniform memory polynomial model

The advantage of theMPSDmodel is that there is no need to keep adding branches as
in MP model in order to increase the over-all memory depth of the model. In contrast,
if a higher delay value is needed in the memory polynomial model with unit delay,
extra delay branches are needed, resulting in much greater complexity. The MPSD
model extraction requires the calculation of delay coefficients and the model coeffi-
cients extraction simultaneously. Experimental validation of this model demonstrated
that as the value ofM is changed from 0 to 3 the accuracy of the model is substantially
enhanced [9].

5.4.4 Non-Uniform Memory Polynomial Model

In the memory polynomial model described by Equation 5.2, all (M + 1) polynomial
functions have equal nonlinearity orders. This provides the model with a uniform
structure. In the non-uniform memory polynomial (NUMP) model, the nonlinearity
orders of the branches are unequal, as illustrated in Figure 5.5. By incorporating inde-
pendent nonlinearity orders for each branch, Equation 5.2 becomes:

yNUMP(n) =
M∑

m=0

Km∑
k=1

amk ⋅ x(n − m) ⋅ |x(n − m)|k−1 (5.17)

where amk andM represents the model’s coefficients and memory depth, respectively;
and, Km refers to the nonlinearity order of the (m + 1)th branch (associated with the
input samples x(n − m)) of the non-uniform memory polynomial model.
Taking into account the fact that the nonlinearity order decays for samples associated

with deepermemory indices, it is possible to trim down thememory polynomialmodel
by reducing the nonlinearity order of each branch using the following constraint:{

K0 = K

for mi and mj ∈ [0,M] , if mi ≥ mj then Kmi
≤ Kmj

(5.18)
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where K andM are the nonlinearity order of the uniform memory polynomial model
and its memory depth, respectively.
The generic formulation of Equation 5.1 can also be used for the non-uniformmem-

ory polynomial model as:

yNUMP(n) = 𝛗NUMP(n) ⋅ A (5.19)

where A is the model coefficients’ vector defined as in Equation 5.5. According to
Equation 5.17, the data vector 𝛗NUMP(n) of the non-uniform memory polynomial
model is:

𝛗NUMP(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x (n)
⋮

x(n) ⋅ |x(n)|K0−1

x(n − 1)
⋮

x(n − 1) ⋅ |x(n − 1)|K1−1

⋮
x(n −M) ⋅ |x(n −M)|KM−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(5.20)

The non-uniform memory polynomial model results in a substantial decrease in the
number of coefficients compared to the memory polynomial model [10, 11]. This
complexity reduction is more important for wideband applications, where thememory
depth of the system is increased.

5.4.5 Unstructured Memory Polynomial Model

The sparse-delay memory polynomial model and the non-uniform memory polyno-
mial model aim both at reducing the total number of coefficients in the memory
polynomial model. While in the case of sparse-delay memory polynomial model the
selection of the subset of branches is not straightforward, the minimization of the
nonlinearity orders used in the non-uniform memory polynomial model can be auto-
mated by implementing the criterion of Equation 5.18. The concept of pruning the
memory polynomial model can be further extended by simultaneously minimizing
the nonlinearity order in each branch as well as the subset of branches to be used.
In general, one can minimize the number of coefficients of the memory polynomial
model by selecting a subset of coefficients in an unstructured manner using advanced
algorithms such as genetic algorithms [12], particle swarm optimization [13], or the
adaptive basis function concept [14].
The sparse-delay, the non-uniform, and the unstructured memory polynomial

models are considered to be complexity reduced versions of the memory polynomial
model. However, the complexity reduction obtained by decreasing the number
of coefficients in the model is often accompanied by degradation in the model
performance. A trade-off is thus needed in order to reduce the complexity of the
model while keeping its performance within a reasonable tolerance range.
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Figure 5.6 Structure of memory polynomial model variants

Figure 5.6 shows an example that illustrates the difference between the struc-
ture of the memory polynomial model and that of its three complexity reduced
versions. The memory polynomial model shown in this figure has a memory
depth of M = 3 and a nonlinearity order of K = 5. In the sparse-delay memory
polynomial model, only the polynomial branches corresponding to memory depths
of mi ∈ {0, 2, 3} are kept. However, in each of these branches, the nonlinearity order
is kept unchanged (K = 5). In the non-uniform memory polynomial model, all four
branches are kept; however, the nonlinearity order of the branches are customized
(K0 = 5, K1 = 4, K2 = 2, K3 = 1). Finally, in the unstructured memory polynomial
model, a subset of coefficients is selected.

5.5 Envelope Memory Polynomial Model

The envelope memory polynomial model, which was introduced in [15], employs a
basis function different from that of the memory polynomial model, that is, x(n) ⋅



Memory Polynomial Based Models 99

Figure 5.7 Block diagram of the envelope memory polynomial model

|x(n − m)|k−1 rather than x(n − m) ⋅ |x(n − m)|k−1. In the envelope memory polyno-
mial model, the output signal (yEMP) is related to the input signal (x) by:

yEMP(n) =
M∑

m=0

K∑
k=1

amk ⋅ x(n) ⋅ |x(n − m)|k−1 (5.21)

where amk are the model’s coefficients; and,M and K are the memory depth and non-
linearity order, respectively.
The block diagram of the envelope memory polynomial model as described in

Equation 5.21 is shown in Figure 5.7.
Similarly to the previous memory polynomial models, the envelope memory poly-

nomial model can be reformulated according to the generic equation of Equation 5.1
as follows:

yEMP(n) = 𝛗EMP(n) ⋅A (5.22)

where A is the model coefficients’ vector defined as in Equation 5.5.
By combining Equations 5.21 and 5.22, the data vector, 𝛗EMP(n), of the envelope

memory polynomial model can be defined as:

𝛗EMP(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x (n)
⋮

x(n) ⋅ |x(n)|K−1
x(n)
⋮

x(n) ⋅ |x(n − 1)|K−1
⋮

x(n) ⋅ |x(n −M)|K−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(5.23)

Contrary to thememory polynomial model, the envelopememory polynomial model
does not require access to the complex values of the previous input samples, that is,



100 Behavioral Modeling and Predistortion of Wideband Wireless Transmitters

x(n − 1) through x(n −M). This is a major difference between the two models. Taking
this aspect into consideration, Equation 5.21 can be written as:

yEMP(n) = x(n) ⋅
M∑

m=0

K∑
k=1

amk ⋅ |x(n − m)|k−1 (5.24)

It is possible to reformulate Equation 5.24 of the envelope memory polynomial
model as a complex gain based model according to:

yEMP(n) = x(n) ⋅ G(|x(n)|, |x(n − 1)|, · · · , |x(n −M)|) (5.25)

In Equation 5.25, the instantaneous gain of the envelope memory polynomial model
is given by:

G(|x(n)|, |x(n − 1)|, · · · , |x(n −M)|) = M∑
m=0

K∑
k=1

amk ⋅ |x(n − m)|k−1 (5.26)

An alternate representation of the envelope memory polynomial shown in Figure 5.7
is presented in Figure 5.8, where the model is built using a complex gain multiplier
structure. This implementation makes the envelope memory polynomial model highly
attractive for memory effect compensation using RF digital predistortion systems. In
fact, in such systems the designer has access to the RF signal. Accordingly, the instan-
taneous gain of the envelope memory polynomial model can be built by sensing the
amplitude of the input samples using an envelope detector without having to demod-
ulate these RF signals to recover their complex baseband versions.

Figure 5.8 Complex gain based representation of the envelope memory polynomial model
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The envelope memory polynomial model performance is comparable to that of the
memory polynomial model for mildly nonlinear systems. Moreover, the complexity
of both models is identical for a given nonlinearity order andmemory depth. However,
the envelope memory polynomial performance is worse for highly nonlinear systems
than that of the memory polynomial model. Although this might impact the use of the
envelope memory polynomial as a standalone model, its implementation in hybrid
multi-basis function models is highly attractive, as will be discussed in Section 5.7.

5.6 Generalized Memory Polynomial Model

The memory polynomial models presented so far are considered as single basis
function models. The generalized memory polynomial model is built by augmenting
the memory polynomial model with additional basis functions, which introduces
cross-terms that result from combining the instantaneous complex signal with leading
and lagging terms [16]. The output (yGMP) of the generalized memory polynomial
model is related to its input (x) by:

yGMP(n) =
Ma∑
m=0

Ka∑
k=1

amk ⋅ x(n − m) ⋅ |x(n − m)|k−1
+

Mb∑
m=0

Kb∑
k=2

P∑
p=1

bmkp ⋅ x(n − m) ⋅ |x(n − m − p)|k−1
+

Mc∑
m=0

Kc∑
k=2

Q∑
q=1

cmkq ⋅ x(n − m) ⋅ |x(n − m + q)|k−1 (5.27)

The output (yGMP) of the generalized memory polynomial model is composed of
three polynomial functions. The first is applied to time-aligned input signal samples,
and has a nonlinearity order and memory depth of Ka and Ma, respectively. The sec-
ond polynomial function is applied to the complex input signal and lagging values
of its envelope. This polynomial function introduces cross-terms between the input
signal and its lagging envelope terms up to the Pth order with a nonlinearity order of
Kb and a memory depth of Mb. Similarly, cross-terms between the input signal and
the leading envelope terms up to the Qth order are introduced through the third poly-
nomial function. The nonlinearity order and memory depth of the leading cross-terms
polynomial are Kc and Mc, respectively. In Equation 5.27, amk, bmkp, and cmkq are the
coefficients of the memory polynomial functions applied on the aligned terms, and
the lagging and leading cross-terms, respectively.
Typically, the nonlinearity orders and memory depths of the polynomial functions

associated with the leading and lagging cross-terms (Kb, Mb, Kc, and Mc) are signif-
icantly less than that of the memory polynomial function applied to the time-aligned
signal and its envelope (Ka andMa). Furthermore, the orders of the lagging and leading
cross-terms (P and Q, respectively) that need to be taken into account by the model
are commonly relatively low.
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The block diagram of the generalized memory polynomial model is presented in
Figure 5.9. This figure clearly illustrates that the generalized memory polynomial
model can be perceived as a memory polynomial model augmented with the com-
bination of P + Q memory polynomial functions, P of which are associated with the
lagging cross-terms, and Q of which are associated with the leading cross-terms.
The generalized memory polynomial model can be described by the generic formu-

lation of Equation 5.1 as:
yGMP(n) = 𝛗GMP(n) ⋅ A (5.28)

where A is the model coefficients’ vector and 𝛗GMP(n) is the data vector associated
with the generalized memory polynomial model. Since the generalized memory
polynomial model uses a set of three basis functions, the coefficients as well as the data

(a)

(b)

Figure 5.9 Block diagram of the generalized memory polynomial model. (a) Generalized memory
polynomial model. (b) Time-aligned terms memory polynomial
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(c)

Figure 5.9 (c) Lagging cross-terms memory polynomial

vectors A and 𝛗GMP(n), can be built by concatenating three vectors. A is defined as:

A =
⎡⎢⎢⎣
Aaligned

Alagging

Aleading

⎤⎥⎥⎦ (5.29)

with
Aaligned =

[
a01 · · · a0Ka

a11 · · · a1Ka
· · · aMaKa

]T
(5.30)

Alagging =
[
b021 · · · b02P b031 · · · b03P · · · bMbKbP

]T
(5.31)

Aleading =
[
c021 · · · c02Q c031 · · · c03Q · · · cMcKcQ

]T
(5.32)
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(d)

Figure 5.9 (d) Leading cross-terms memory polynomial

Similarly, by combining Equations 5.27 and 5.28, it is possible to write the data
vector 𝛗GMP(n) as:

𝛗GMP(n) =
[
𝛗aligned (n) 𝛗lagging(n) 𝛗leading(n)

]
(5.33)

where 𝛗aligned(n) represents the data vector constructed using the basis function asso-
ciated with the signal and its aligned envelope terms, and 𝛗lagging(n) and 𝛗leading(n)
are the data vector made of the signal and its lagging and leading envelope terms,
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respectively. These data vectors are given by:

𝛗aligned(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x (n)
⋮

x(n) ⋅ |x(n)|Ka−1

x(n − 1)
⋮

x(n − 1) ⋅ |x(n − 1)|Ka−1

⋮
x(n −Ma) ⋅ |x(n −Ma)|Ka−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(5.34)

𝛗lagging(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x (n) ⋅ |x(n − 1)|
⋮

x(n) ⋅ |x(n − P)|
x(n) ⋅ |x(n − 1)|2

⋮
x(n) ⋅ |x(n − P)|2

⋮
x(n −Mb) ⋅ |x(n −Mb − P)|Kb−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(5.35)

𝛗leading(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x (n) ⋅ |x(n + 1)|
⋮

x(n) ⋅ |x(n + Q)|
x(n) ⋅ |x(n + 1)|2

⋮
x(n) ⋅ |x(n + Q)|2

⋮
x(n −Mc) ⋅ |x(n −Mc + Q)|Kc−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(5.36)

The generalized memory polynomial model is attractive when the device under
test (DUT) exhibits strong nonlinear memory effects. In such conditions, the gen-
eralized memory polynomial outperforms the memory polynomial model; and, the
additional complexity associatedwith the generalizedmemory polynomial is justified.
However, when linear memory effects are present both models lead to comparable
performances.
By introducing cross-terms, the generalized memory polynomial model is posi-

tioned between the memory polynomial model and the Volterra series, in terms of
complexity and performance. It is perceived as a practical alternative to the compu-
tationally heavy Volterra series when strong memory effects are present, especially
for multi-carrier non-contiguous signals in which off-carriers are present between the
on-carriers being used to transmit the signal.
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Figure 5.10 Measured spectra at the output of a Doherty amplifier linearized using the memory poly-
nomial and the generalized memory polynomial DPDs

Figure 5.10 presents the spectra measured at the output of a Doherty power ampli-
fier linearized using the memory polynomial and the generalized memory polynomial
model. This figure illustrates the superiority of the generalized memory polynomial
model in reducing the spectral regrowth at the output of the DUT, especially in the
vicinity of the carriers.

5.7 Hybrid Memory Polynomial Model

The hybrid memory polynomial model is conceptually similar to the generalized
memory polynomial model in the sense that both augment the memory polynomial
model through the inclusion of cross-terms. The hybrid memory polynomial model
consists of the parallel arrangement of a memory polynomial model and an envelope
memory polynomial model as illustrated in Figure 5.11 [17]. Thus, the equation
relating the input (x) of the hybrid memory polynomial model to its output (yHMP) is:

yHMP(n) =
M∑

m=0

K∑
k=1

amk ⋅ x(n − m) ⋅ |x(n − m)|k−1
+

Me∑
m=1

Ke∑
k=2

bmk ⋅ x(n) ⋅ |x(n − m)|k−1 (5.37)

where amk and bmk are the model’s coefficients associated with the memory polyno-
mial and envelope memory polynomial functions; K and M represent the memory
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Figure 5.11 Block diagram of the hybrid memory polynomial model

polynomial’s function nonlinearity order and the memory depth, respectively; and,
equivalently,Ke andMe represent those of the envelope memory polynomial function.
The hybrid memory polynomial model is built using two basis functions; and thus

Equation 5.37 can be rewritten as:

yHMP(n) = 𝛗HMP(n) ⋅ A (5.38)

where the vector coefficients’ A and the data vector 𝛗HMP(n) are defined by:

A =
[
AMP
AEnvMP

]
(5.39)

with
AMP =

[
a01 · · · a0K a11 · · · a1K · · · aMK

]T
(5.40)

AEnvMP =
[
b12 · · · b1Ke

b22 · · · b2Ke
· · · bMeKe

]T
(5.41)
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and
𝛗HMP(n) =

[
𝛗MP (n) 𝛗EnvMP(n)

]
(5.42)

with

𝛗MP(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x (n)
⋮

x(n) ⋅ |x(n)|K−1
x(n − 1)

⋮
x(n − 1) ⋅ |x(n − 1)|K−1

⋮
x(n −M) ⋅ |x(n −M)|K−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(5.43)

𝛗EnvMP(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x (n) ⋅ |x(n − 1)|
⋮

x(n) ⋅ |x(n − 1)|Ke−1

x(n) ⋅ |x(n − 2)|
⋮

x(n) ⋅ |x(n − 2)|Ke−1

⋮
x(n) ⋅ |x(n −Me)|Ke−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(5.44)

The hybrid memory polynomial model combines the memory polynomial model
and the envelope memory polynomial model to produce a more robust model with
enhanced performances, as illustrated in Figure 5.12.
Furthermore, it can be observed that the hybrid memory polynomial model is built

using a specific subset of the generalized memory polynomial cross-terms. In fact,
it only includes cross-terms made of the actual signal sample and its lagging enve-
lope samples. These are expected to be the predominant cross-terms among all those
embedded in the generalized memory polynomial model. This explains the fact that
the hybrid memory polynomial model often leads to performances comparable to that
of the generalized memory polynomial with a reduced number of coefficients.

5.8 Dynamic Deviation Reduction Volterra Model

Various approaches have been proposed to prune the Volterra series model into more
compact versions that combine high performance and low complexity, in order to
enable its practical use in power amplifier behavioral modeling and predistortion
applications. The pruning can be based on the near-diagonality concept [18], the
dynamic deviation reduction concept [19], or the radial pruning concept [20].
These versions of the Volterra series include considerably more cross-terms than
the generalized and the hybrid memory polynomial models, as they allow for the
interaction of several samples having various times indices.
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(a)

(b)

Figure 5.12 Predicted spectra at the output of a power amplifier using the memory polynomial, the
envelope memory polynomial, and the hybrid memory polynomial models. (a) Full spectrum and (b)
zoomed version
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The generalized and hybrid memory polynomial models only include cross-terms
where two samples having different indices are multiplied. For example, in the gen-
eralized memory polynomial model of Equation 5.27, x(n − m) is coupled with x(n −
m − p) in the lagging cross-terms, and x(n − m) is combined with x(n − m + q) for the
leading cross-terms. Similarly, in the hybrid memory polynomial model described
by Equation 5.37, x(n) and x(n − m) are used in the envelope memory polynomial
terms.
The dynamic deviation reduction Volterra model limits the interaction between

cross-terms to a maximum of r samples at different time delays. As described in [19],
the rth-order dynamic deviation reduction Volterra (DDRV) model is given by:

yDDRV(n) =
K∑
k=1

hk,0(0, · · · , 0) ⋅ xk(n)

+
K∑
k=1

{
k∑

r=1

[
xk−r (n)

M∑
m1=1

· · ·
M∑

mr=mr−1

hk,r(0, · · · , 0,m1, · · · ,mr) ⋅
r
Π
i=1

x(n − mi)

]}
(5.45)

where hk,r(j1, · · · , jk) represents the kth-order Volterra kernel where the first (k − r)
indices are 0; and K and M are the model’s nonlinearity order and memory depth,
respectively.
First and second order dynamic deviation reduction based Volterra models are com-

monly used. Compared to these, higher order models do not show significant perfor-
mance enhancement that justify the associated complexity increase. First and second
order dynamic deviation reduction Volterra models are given by Equations 5.46 and
5.47, respectively:

yDDRV,1(n) =
K∑
k=1

hk,0(0, · · · , 0) ⋅ xk(n)

+
K∑
k=1

[
xk−1 (n)

M∑
m=1

hk,1(0, · · · , 0,m) ⋅ x(n − m)

]
(5.46)

yDDRV,2(n) =
K∑
k=1

hk,0(0, · · · , 0) ⋅ xk(n)

+
K∑
k=1

[
xk−1 (n)

M∑
m=1

hk,1(0, · · · , 0,m) ⋅ x(n − m)

]

+
K∑
k=2

[
xk−2 (n)

M∑
m1=1

M∑
m2=m1

hk,2(0, · · · , 0,m1,m2) ⋅ x(n − m1) ⋅ x(n − m2)

]
(5.47)
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5.9 Comparison and Discussion

In this chapter, widely used memory polynomial based single-box behavioral models
and digital predistorter structures are described. The use of these structures as part of
a multi-box model is discussed in Chapter 6.
Table 5.1 presents the parameters and total number of coefficients of these mod-

els. As reported in this table, the memory polynomial model requires the knowledge
of the model dimension and the selection of two parameters (nonlinearity order and

Table 5.1 Comparison between memory polynomial models’ complexity

Model Equations Parameters Total number of
coefficients

Memory Polynomial/
Orthogonal Memory
Polynomial

5.2
5.8

K: nonlinearity order
M: memory depth

K × (M + 1)

Sparse-Delay Memory
Polynomial

5.12 K: nonlinearity order
mi for i ∈ [1,MSD]: sparse

delay values

K ×MSD

Non-Uniform Memory
Polynomial

5.17 M: memory depth
Km for m ∈ [0,M]:

nonlinearity order of the
mth branch

M∑
m=0

Km

Envelope Memory
Polynomial

5.21 K: nonlinearity order
M: memory depth

K × (M + 1)

Generalized Memory
Polynomial

5.27 (Ka,Ma), (Kb,Mb), and
(Kc,Mc): nonlinearity order
and memory depth of the
aligned terms, lagging and
leading cross-terms
polynomials, respectively

Ka × (Ma + 1)
+ P × (Kb − 1) × (Mb + 1)
+Q × (Kc − 1) × (Mc + 1)

P and Q: order of the lagging
and leading cross-terms,
respectively

Hybrid Memory
Polynomial

5.37 (K,M) and (Ke,Me):
nonlinearity order and
memory depth of the
memory polynomial and
envelope memory
polynomial sub-function,
respectively

K × (M + 1) + (Ke − 1) ×
Me

First Order Dynamic
Deviation Reduction
Volterra

5.46 K: nonlinearity order
M: memory depth

K × (M + 1)

Second Order Dynamic
Deviation Reduction
Volterra

5.47 K: nonlinearity order
M: memory depth

(
K + (K−1) × M

2

)
× (M +

1)
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memory depth) before identifying the model coefficients. The number of parameters
increases up to eight in the case of the generalized memory polynomial model. Accu-
rate determination of these parameters to avoid an oversized model or poor perfor-
mance is an important but not a straightforward task. In fact, a higher number of
coefficients in the model imply that more resources needed for the coefficients iden-
tification, as well as the model implementation.
Information theory based techniques have been applied to determine the parame-

ters of the memory polynomial model [21, 22]. Empirical approaches, in which the
parameters (e.g., nonlinearity order and memory depth) are increased or swept until
satisfactory performances are obtained, can be used to estimate the parameters of the
model [23]. However, these become unpractical for models with cross-terms.
Prior knowledge of the DUT or simplifying assumptions can reduce the number of

parameters to be estimated. For example, in the hybrid memory polynomial, a rea-
sonable assumption would be to force both memory depths to be equal. Similarly, in
the case of the generalized memory polynomial, the memory depth and nonlinearity
order of the memory polynomials associated with the leading and lagging cross-terms
can be made equal. Such assumptions may result in slightly oversized models but are
necessary for the selection of the model parameters.
Each of the memory polynomial and envelope memory polynomial models uses a

single basis function. This leads to satisfactory performance when weakly nonlinear
memory effects are present in the DUT. As the contribution of nonlinear memory
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Figure 5.13 Comparison between memory polynomial based models. (a) Weakly nonlinear memory
effects, (b) mildly nonlinear memory effects, and (c) strongly nonlinear memory effects
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effects gets stronger, the performances of these single basis function models tend to
degrade. This justifies the use of more comprehensive models that include cross-terms
and thus involve a higher number of coefficients.
Figure 5.13 compares the performance and complexity of the memory polynomial

models discussed in this chapter depending on the types of memory effects present in
the system being modeled or linearized. A best model that suits any power amplifier
cannot be claimed; rather, for each power amplifier, there is the best model that leads
to satisfactory accuracy with the lowest possible number of parameters.
The classification provided in Figure 5.13 can be used as a guideline for the selection

of the appropriate memory polynomial based behavioral model and digital predis-
torter. Metrics such as memory effect intensity can be used to determine the strength
of the system’s memory effects and steer the choice.
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6
Box-Oriented Models

6.1 Introduction

Various behavioralmodeling techniques have been introduced and detailed in previous
chapters. Chapter 5 explains polynomial based modeling and compensation of non-
linear distortions introduced by PAs with reasonably large memory effects. It has been
shown that these polynomial models result in high performance. However, implemen-
tation of these models results in hardware complexity as these models yield a large
number of coefficients. Hence, low complexity is essential for the design of behavioral
models and their hardware implementation.
In this chapter, box-/block-orientedmodels that model the dynamic nonlinear effects

of the PA are explained. These models aim to reduce the complexity and enhance the
numerical stability of the system. The box-oriented models tend to reduce the number
of coefficients required to compute the model and improve the matrix conditioning
and dispersion coefficient.

6.2 Hammerstein and Wiener Models

Earlier behavioral models, such as the Saleh model, model the static nonlinear
behavior of PAs and do not consider the important memory effects that have gained
enormous importance, due to the increasing bandwidth. In this section, two simple
box-oriented models for modeling the nonlinear behavior of PAs are described.
These models – the Wiener model and the Hammerstein model – represent a class of
two-block models where one block accounts for the static nonlinear behavior of the
PA, while the other deals with the linear memory effects in the system.

Behavioral Modeling and Predistortion of Wideband Wireless Transmitters, First Edition.
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© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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Figure 6.1 Block diagram of the Wiener model

6.2.1 Wiener Model

The Wiener model [1–3] is a concatenation of a linear finite impulse response (FIR)
filter and a memoryless nonlinear function, such as the one implemented by a look-up
table (LUT), as shown in Figure 6.1. For an input xin(n), the output of the model,
yW(n), is given by [1]:

yW(n) = GW[|xW (n)|] ⋅ xW (n) (6.1)

where GW[|xW (n)|] = GWi + jGWq is the complex memoryless instantaneous gain
function of the Wiener model implemented in the LUT model; and, xW(n) is the
output of the FIR filter:

xW(n) =
M∑

m=0
am ⋅ xin(n − m) (6.2)

where xin(n) is the input to the system, m indicates the memory of the filter and am are
the coefficients of the filter, and M is the memory depth.
The construction and identification of the Wiener model requires the removal

of dispersion in the transmitter due to the memory effects through extraction of
static nonlinearity. This is achieved by fitting the AM/AM (amplitude modulation
to amplitude modulation) and AM/PM (amplitude modulation to phase modulation)
characteristics of the device under test using a memoryless model by employing
one of the identification techniques described in Chapter 8. In this model, the mem-
oryless AM/AM and AM/PM characteristics are often represented using look-up
tables.
As mentioned in previous chapters, the PA exhibits memory effects. In order to

identify these memory effects, the knowledge of the input signal, that is, xin(n)
and xW(n), is required. However, due to the lack of knowledge of xW(n) during
transmitter characterization, yW (n) can be used to initialize the time of xin(n). The
identification and modeling of these memory effects is also important in behavioral
modeling. This is achieved by using an FIR filter. Equations 6.3–6.5 in the form
of Equation 5.1 shows the matrix representation of Equation 6.2, which can be
written as:

XW = Xin ⋅ A (6.3)

A =
[
a0 · · · aM

]T
(6.4)
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Xin =
⎡⎢⎢⎣

x (n)
⋮

x(n −M)

⎤⎥⎥⎦
T

(6.5)

The weights of the filter,A, can be determined by the recursive least squares method
[3, 4]. The aim of themethod is the reduction of the error between x(n) and x′(n), which
is defined as:

e(n)= x′(n) − x(n) (6.6)

where x′(n) is the value of the FIR filter at a particular instance.

6.2.2 Hammerstein Model

The Hammerstein model [1, 3] is a combination of a nonlinear memoryless function
(such as the one implemented by a LUT) and a linear filter, respectively. Mathemati-
cally, such a model takes the following form [1]:

yH(n) =
M∑

m=0
am ⋅ xH(n − m) (6.7)

where

xH(n) = GH[|xin(n)|] ⋅ xin(n) (6.8)

where xin(n) is the input to the system and yH(n) is the estimated output; xH(n), am, and
GH[|xin(n)|] are the output of the first box (LUT model), the coefficients of the FIR
filter and the complexmemoryless instantaneous gain of the LUTmodel, respectively;
and,M is the memory depth of the filter.
The identification procedure of the model parameters is similar to that of theWiener

model (the LUT model is identified first, and then the filter coefficients). The model
structure is shown in Figure 6.2. The dynamic exponentially weightedmoving average
method has been employed in the literature [3], to de-embed the static nonlinearity of
the PA where the weight factor 𝛽 is given by:

𝛽 =
𝛽0{

𝜆 + (1 − 𝜆)
|xin(n)|max − |xin(n)||xin(n)|max − |xin(n)|min

}p (6.9)

here 𝛽0 is a constant weight factor and lies between 0 and 1; while, p controls the vari-
ation speed of the weighting factor with respect to the input; and 𝜆 is the adjustment
factor. As with the Wiener model, the coefficients of the model can be extracted using
the recursive least squares method.
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Figure 6.2 Block diagram of the Hammerstein model

6.3 Augmented Hammerstein and Weiner Models

It has been widely shown in the literature that the transmitter exhibits memory effects
caused by electrical and thermal dispersion effects, which cannot be ignored in real
systems [3]. The various causes of the electrical memory effects have been discussed
in [3]. A behavioral model should, therefore, include both linear and nonlinear mem-
ory effects for proper modeling and compensation of the dynamic PA nonlinearity.

6.3.1 Augmented Wiener Model

The augmented Wiener model is an extended version of the Wiener model (which
uses linear filters) that aims to add a nonlinear memory effect component into the
system. In this architecture, a parallel filter branch is added to the linear FIR filter, in
which the input is multiplied by its magnitude to form a weak nonlinear filter. This
model takes into account the memory effects more appropriately and results in better
accuracy than the conventional Wiener model. The block diagram of this extended
model is shown in Figure 6.3.
The new output, xAW(n), of the parallel filters can be described by:

xAW(n) =
M1∑

m1=0
hm1

⋅ xin(n − m1)

+
M2∑

m2=0
km2

⋅ xin(n − m2) ⋅ |xin(n − m2)| (6.10)

Figure 6.3 Augmented Wiener model
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Figure 6.4 Augmented Hammerstein model

where M1 and M2 are the memory depth of the first and second filter, respectively;
and, hm1

and km2
are the filter responses.

When Equation 6.10 is compared to Equation 6.2, the effect of the additional FIR
filter can be seen. As mentioned earlier, additional memory has been added to the
system in order to capture the nonlinear dynamic behavior of the PAmore accurately:

yAW(n) = GAW(|xAW(n)|) ⋅ xAW(n) (6.11)

yAW is the output of the model and GAW is the gain of the static nonlinear function
modeled by the LUT. The recursive least squares method can also be used in the
augmented Wiener model to extract the model parameters. Experimental results for
the augmented Wiener model have been presented in [3], where it was shown that the
augmented model can predict the memory effects better than the conventional model.

6.3.2 Augmented Hammerstein Model

The augmented Hammerstein model [5] is similar to the augmented Wiener model,
but with two parallel branches of the LUT and FIR filters, as shown in Figure 6.4. The
output of the LUT box, xAH(n), and the total model output, yAH(n), is:

xAH(n) = GAH(|xin(n)|) ⋅ xin(n) (6.12)

yAH(n) =
M1∑

m1=0
hm1

⋅ xAH(n − m1)

+
M2∑

m2=0
km2

⋅ xAH(n − m2) ⋅ |xAH(n − m2)| (6.13)

yAH is the output of the model and GAH is the gain of the static nonlinear function
modeled by the LUT; and, where M1 and M2 are the memory depth of the first and
second filters, respectively. hm1

and km2
are the filter responses.



120 Behavioral Modeling and Predistortion of Wideband Wireless Transmitters

6.4 Three-Box Wiener–Hammerstein Models

6.4.1 Wiener–Hammerstein Model

The Wiener–Hammerstein model [6] is a combination of the Wiener and Hammer-
stein models. It is a three-block model, where the LUT block is surrounded by two
FIR filters. This is shown in Figure 6.5.
The output of the static nonlinear function, F(⋅), is given by:

uWH(n) = F[xWH(n)] =
N∑
i=1

bi ⋅ xWH(n).|xWH(n)|i−1. (6.14)

Here, N and bi are the nonlinearity order and the coefficients of the nonlinear function
F(⋅), respectively. The outputs of the two FIR filters, that is, xWH(n) and yWH(n), are
given by:

xWH(n) =
M1∑

m1=0
hm1

⋅ xin(n − m1) (6.15)

and

yWH(n) =
M2∑

m2=0
km2

⋅ uWH(n − m2) (6.16)

M1 and M2 are the memory depths of the two FIR filters respectively; while, hm1
and

km2
are the filter responses.

6.4.2 Hammerstein–Wiener Model

The Hammerstein–Wiener model [6] is a combination of the Hammerstein model and
theWiener model. It is also a three-block model, but the FIR filter block is surrounded
by two static nonlinear functions, namely F(⋅) and G(⋅), as shown in Figure 6.6.
The output of the FIR filter block is given by:

uHW(n) =
M∑

m=0
hm ⋅ xHW(n − m) (6.17)

whereM and hm are the memory depth and coefficients of the filter, respectively. The
outputs of the two nonlinear functions are given by:

xHW(n) = F[xin(n)] =
N1∑
i=1

ai ⋅ xin(n) ⋅ |xin(n)|i−1, (6.18)

yHW(n) = G[uHW(n)] =
N2∑
j=1

bj ⋅ uHW(n) ⋅ |uHW(n)|j−1 (6.19)

here, N1 and N2 are the nonlinearity orders of the nonlinear functions F(⋅) and G(⋅),
respectively; and ai and bj are the coefficients of the nonlinear functions F(⋅) and



Box-Oriented Models 121

Figure 6.5 Wiener–Hammerstein model

Figure 6.6 Hammerstein–Wiener model

G(⋅), respectively. In order to maintain uniqueness in the estimation procedure, the
first coefficients of the nonlinear function blocks should be kept fixed [6, 7]. This
non-uniqueness in the solution comes from the fact that the gain of the system can be
arbitrarily divided among the blocks.
Implementation of the model can be done by using the mesh adaptive direct

search (MADS) algorithm [6] or the Nelder–Mead algorithm [8]. An analysis of
the Hammerstein–Wiener model implementation has been provided in [6], where
the authors applied the model by adopting a two-step approach using the MADS
algorithm for faster implementation of the model.
The Hammerstein–Wiener model is first divided into a Hammerstein model (the

first two blocks) and a static nonlinear function (the third block); and, the parameters
of the static nonlinear function are initialized and used as the initial guess for the
Hammerstein model. The current output of the Hammerstein model then serves to
update the output nonlinearity for the next iteration. Linear least squares methods are
then used to minimize the output error. Finally, the MADS algorithm is used to reduce
the output error, by using the parameters of the Hammerstein model.

6.4.3 Feedforward Hammerstein Model

The feedforward Hammerstein model [9], as demonstrated in Figure 6.7, adds robust-
ness and enhances the performance of the model by adding more filters to the archi-
tecture, which consists of a signal cancelation (SC) loop and a distortion injection
(DI) loop. The SC loop is a conventional Hammerstein model for modeling the lin-
ear memory effects. However, with the addition of the DI loop, the extended model
now accounts for the nonlinear dynamic effects of the PA and is thus more capable of
modeling a PA than conventional architectures.
The distortion cancelation loop is composed of a parallel combination of FIR filters.

The total model output is given by:

yFFH(n) = ySC(n) + yDI(n) (6.20)
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Figure 6.7 Feedforward Hammerstein model

where yFFH(n) is the total output of the model; and, ySC(n) and yDI(n) are the outputs
of the SC loop and the DI loop, respectively.
The output of the LUT block, with a gain GFH , is given by:

xLUT(n) = GFH(|xin(n)|) ⋅ xin(n). (6.21)

The outputs of the SC loop and DI loop are given by:

ySC(n) =
M1∑

m1=0
am1

⋅ xLUT(n − m1), (6.22)

yDI(n) =
M2∑

m2=0

K∑
k=0

bm2k
⋅ xFFH(n − m2) ⋅ |xFFH(n − m2)|k (6.23)

where am1
and bm2k

represent the coefficients of the FIR filters, M1 and M2 represent
the memory depths of the blocks, and k is the nonlinearity index of the DI block.
Equations 6.21–6.23 can be combined and written in the matrix/vector form given in
Equation 5.1.
The coefficients of the model can be obtained by using the least squares approach.

Detailed implementation of the architecture, identification process, and experimen-
tal results are provided in [9]. It is shown that the feedforward Hammerstein model
performs better than the memory polynomial (MP), Hammerstein, and augmented
Hammerstein models. Its complexity is decreased compared to the MP model, but is
higher than the Hammerstein and augmented Hammerstein models.
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6.5 Two-Box Polynomial Models

6.5.1 Models’ Descriptions

A two-block model for the modeling and digital predistortion (DPD) of PAs has been
proposed [10], for the purpose of reducing the complexity of the system. One of the
blocks is a MP based model, while the other is a LUT model. Different arrangements
of the blocks lead to the following twin-nonlinear two-box (TNTB) models:

• Forward-cascaded polynomial model: In the forward twin-nonlinear two-box
model (FTNTB), the LUT is placed before the MP function, as shown in
Figure 6.8a.

• Backward-cascaded polynomial model: In the backward twin-nonlinear two-box
model (BTNTB), the LUT is placed after the MP function, as shown in Figure 6.8b.

• Parallel-cascaded polynomial model: In the parallel twin-nonlinear two-box model
(PTNTB), the LUT and MP functions are placed parallel to each other, as shown
in Figure 6.8c.

The MP model is one type of polynomial that can be used to mimic the dynamic
nonlinear behavior of a PA: other polynomial models, such as the Volterra series,
can also be used instead of the MP block. Similarly, the LUT is used to model the
memoryless nonlinear behavior of the PA; however, other memoryless polynomial
functions can be used instead.

(a)

(b)

(c)

Figure 6.8 Twin nonlinear twin box models. (a) Forward TNTB model, (b) reverse TNTB model, and
(c) parallel TNTB model
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6.5.2 Identification Procedure

Asmentioned earlier, TNTBmodels have an advantage over conventional polynomial
models, as they reduce the complexity of the system. The reason for this is that the
highly nonlinear memoryless behavior and the mildly nonlinear memory effects are
modeled separately, thereby decreasing the number of coefficients. The identification
procedure for the coefficients is composed of two steps:

1. The coefficients for the nonlinear memoryless behavior (modeled by an LUT) of
the device under test are obtained.

2. The coefficients for the dynamic nonlinear behavior (modeled by a MP) are then
obtained.

The proposed model has been tested with a 300-watt Doherty PA and a four-carrier
WCDMA (Wideband Code Division Multiple Access) 1001 test signal [10]. It was
shown that the complexity of the system was reduced by 50%, while improving the
normalized mean square error (NMSE) by 2 dB.

6.6 Three-Box Polynomial Models

With increasing developments in technology, many models have been proposed to
improve the performance of the DPD models. Two such techniques that also reduce
the complexity of the system, which is also an important attribute of a behavioral
modeling system, are presented in this section: the parallel LUT, MP, envelope mem-
ory polynomial (PLUME) method, and the three-layered biased memory polynomial
(TLBMP) model for the compensation of PAs’ nonlinear effects. The comparative
results published in open literature has shown that these methods performmuch better
than conventional methods.

6.6.1 Parallel Three-Blocks Model: PLUME Model

The PLUMEmodel [11] is a three-block model composed of a LUT block, MP block,
and an envelope memory polynomial (EMP) block. This architecture, as shown in
Figure 6.9, provides better performance than the conventional MP model. It also pro-
vides more flexibility so that other polynomial models, such as variants of the MP
model, can also be used instead of the blocks used in [11].
The method provided in the first block is a memoryless nonlinear function, that can

be implemented using a LUT. The second block is a MP model given by Equation 5.2
as reiterated in Equation 6.24:

yMP(n) =
M∑

m=0

K∑
k=1

amk ⋅ xin(n − m) ⋅ |xin(n − m)|k−1 (6.24)

M and K indicate the memory depth and the nonlinearity order of the model respec-
tively. The third block is an envelope MP block given by Equation 5.21, which is
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Figure 6.9 PLUME model

restated as in Equation 6.25:

yEMP(n) =
M∑

m=0

K∑
k=1

bmk ⋅ xin(n) ⋅ |xin(n − m)|k−1. (6.25)

The modeling identification of yMP and yEMP can be considered as a linear identifi-
cation problem:

YPLUME =
[
𝚯MP 𝚯EMP

]
⋅ A = 𝚯PLUME ⋅ A (6.26)

where A is the vector of coefficients, which can be obtained by using the linear least
squares method and can be given by:

A = (𝚯H
PLUME

𝚯PLUME)−1 ⋅𝚯H
PLUME

⋅YPLUME (6.27)

Experimental validation was provided in [11] for a Doherty PA with a peak power
of 300W operating in the frequency range of 2110–2170MHz. The test signal was
a 20MHz WCDMA 1001 signal. It was shown that the PLUME model had a better
performance than the conventional MP model (Section 5.3) and the PTNTB model
discussed in Section 6.5 and a similar performance to that of the generalizedMPmodel
(Section 5.6). However, the major advantage of the PLUME model is the reduction
in the complexity of the system in terms of number of coefficients, which makes it
highly suitable for implementation in a field-programmable gate array (FPGA).

6.6.2 Three Layered Biased Memory Polynomial Model

The TLBMP model [12] is a cascade of two static polynomial models and a dynamic
polynomial model, as illustrated in Figure 6.10.
For input signal xin(n), the output of the first block is given by:

x1(n) =
K1∑
k1=1

ak1 ⋅ xin(n) ⋅ |xin(n)|k1−1 (6.28)
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Figure 6.10 Three layered biased memory polynomial model

where ak1 are the coefficients of the first block and K1 is its nonlinearity order. Simi-
larly, the output of the second block, which takes x1(n) as the input, is given by:

x2(n) =
K2∑
k2=1

bk2 ⋅ x1(n) ⋅ |x1(n)|k2−1 + bias (6.29)

where bk2 are the coefficients of the second block and K2 is its nonlinearity order. The
final output of the model is given by:

yTLBMP(n) =
K3∑
k3=1

M∑
m=0

ck3m ⋅ x2(n − m) ⋅ |x2(n − m)|k3−1 (6.30)

where ck3m are the coefficients of the third block and K3 and M are its nonlinearity
order and memory depth, respectively.
In matrix notation, these equations (6.28–6.30) can be written in a similar way to

Equation 5.1 as:

X𝟏 = Xin ⋅A (6.31)

X2 = X1 ⋅ B (6.32)

and
YTLBMP = X2 ⋅ C (6.33)

where

Xin =
⎡⎢⎢⎢⎣

xin (n) xin(n)|xin(n)| · · · xin(n)|xin(n)|K1−1

xin(n − 1) xin(n − 1)|xin(n − 1)| · · · xin(n − 1)|xin(n − 1)|K1−1

⋮ ⋮ ⋮ ⋮
xin(n − N) xin(n − N)|xin(n − N)| · · · xin(n − N)|xin(n − N)|K1−1

⎤⎥⎥⎥⎦ (6.34)

X1 =
⎡⎢⎢⎢⎣
1 x1 (n) · · · x1(n)|x1(n)|K2−1

1 x1(n − 1) · · · x1(n − 1)|x1(n − 1)|K2−1

⋮ ⋮ ⋮ ⋮
1 x1(n − N) · · · x1(n − N)|x1(n − N)|K2−1

⎤⎥⎥⎥⎦ (6.35)
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X2 =
⎡⎢⎢⎢⎣

x2 (n) x2(n)|x2(n)|K3−1 · · · x2(n −M)|x2(n −M)|K3−1

x2(n − 1) x2(n − 1)|x2(n − 1)|K3−1 · · · x2(n − 1 −M)|x2(n − 1 −M)|K3−1

⋮ ⋮ ⋮ ⋮
x2(n − N) x2(n − N)|x2(n − N)|K3−1 · · · x2(n − N −M)|x2(n − N −M)|K3−1

⎤⎥⎥⎥⎦
(6.36)

and

YTLBMP =
⎡⎢⎢⎢⎣

yTLBMP (n)
yTLBMP(n − 1)

⋮
yTLBMP(n − N)

⎤⎥⎥⎥⎦ (6.37)

where A, B, and C are the vectors of the coefficients for each block. Further details
on the definitions and formulations of the matrices and vectors in these equations are
provided in [12]. These coefficients can be obtained using the linear least squares
method, similar to the PLUME model.
Experimental validation has been conducted for a Doherty PA and a class AB PA;

and, the TLBMP model exhibited a better performance than the conventional MP and
orthogonal MP models (Section 5.4.1), while reducing the complexity significantly
in terms of the number of coefficients and the number of operations to compute the
models.

6.6.3 Rational Function Model for Amplifiers

Another important polynomial model that can be used for compensation of PA nonlin-
earity is the rational function model. Rational functions are universal approximators
and can be used for the estimation and detection of signals, such as radar signals [13].
A rational polynomial is the ratio of two polynomials given by:

yRF(n) =

J∑
j=0

aj ⋅ x
j(n)

K∑
k=0

bk ⋅ xk(n)
. (6.38)

Here, J and K are the nonlinearity orders of the numerator and denominator, respec-
tively. An absolute-term denominator rational function (ADRF) is given by [14]:

yADRF(n) =

M1∑
m1=0

J∑
j=0

am1j
⋅ x(n − m1) ⋅ |x(n − m1)|2j

1 +
M2∑

m2=0

K∑
k=0

bm2k
⋅ x(n − m2) ⋅ |x(n − m2)|2k+1

(6.39)

This model includes memory in the system represented byM1 ,M2, J, and K are the
nonlinearity orders; and, am1j

and bm2k
are the coefficients of the model.



128 Behavioral Modeling and Predistortion of Wideband Wireless Transmitters

The method proposed in [14] uses a dynamic rational function (DRF) with a
memoryless flexible order denominator (MFOD) as expressed in Equation 6.40.
The DRF-MFOD model was shown to have the best performance compared to
the conventional MP based model and the ADRF model [15]. In addition, the
DFR-MFOD model described by Equation 6.40 is less complex and has fewer
number of parameters than the ADRF model.

yDRF_MFOD(n) =

M∑
m=0

J∑
j=0

amj ⋅ x(n − m) ⋅ |x(n − m)|j
1 +

K∑
k=0

bk ⋅ x(n) ⋅ |x(n)|k . (6.40)

Here,M represents thememory depth, amj and bk are the coefficients of themodel; and,
J and K are the nonlinearity orders of the numerator and denominator, respectively.

6.7 Polynomial Based Model with I/Q and DC Impairments

The previous sections focus mainly on the issue of PA nonlinearity. However, there
are other imperfections related to various components of a transmitter. As mentioned
earlier, the output, yPA(n), of the PA for a given input, xin(n), can be given by:

yPA(n) =
M∑

m=0

K∑
k=1

amk ⋅ xin(n − m) ⋅ |xin(n − m)|k−1. (6.41)

Here, M represents the memory depth and k is the nonlinearity index.
In actual transmitters, in addition to the nonlinearity caused by the PA, there are

other problems that affect its performance. One such issue is the in-phase (I) and
quadrature phase (Q) imbalance caused during the up-conversion of the input signal,
giving rise to mirror frequency imaging and DC offset mainly due to carrier leakage
[15]. Mathematically, the output of an I/Q modulator is given by [15]:

yI∕Q(n) =
M∑

m=0
am ⋅ xin(n − m) +

M∑
m=0

am ⋅ x∗
in
(n − m) + dc (6.42)

where M is the memory present in the system and dc represents the dc offset. The
second term in Equation 6.42 represents the image caused by the imbalance.
There are various methods that deal with imperfections in transmitters; two

of which – the parallel Hammerstein based model and a generalized two-box
model – are discussed in the following subsections.
There are other methods that mitigate various imperfections of transmitters. The

Volterra series has been used to consider the effect of I/Q imbalance [16]. However,
due to the large number of coefficients, the model bears very high complexity. A ratio-
nal function based model for the joint alleviation of PA nonlinearity effects and I/Q
imbalance has been proposed in [17].
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Figure 6.11 Parallel Hammerstein basedmodel for the alleviation of PA nonlinearity and I/Q imbalance

6.7.1 Parallel Hammerstein (PH) Based Model for the Alleviation
of Various Imperfections in Direct Conversion Transmitters

The parallel Hammerstein based model proposed in [18], shown in Figure 6.11, is
a joint model that compensates for various imperfections in a transmitter. Prior to
this model, a serial configuration based architecture that considered the effect of I/Q
imbalance was presented. However, the drawback of the model was that the PA com-
pensation and I/Q impairment compensation had to be processed separately. The joint
model [18] converts this serial architecture into a parallel configuration using indirect
learning architecture for parameter extraction, resulting in a single-step estimation.
The serial-to-parallel conversion is detailed in [16, 18, 15]:

yPA+IQ(n) =
M∑

m=0

K1∑
k1=1

amk ⋅ xin(n − m) ⋅ |xin(n − m)|k1−1
+

K2∑
k2=1

bmk ⋅ x
∗
in(n − m) ⋅ |x∗in(n − m)|k2−1 + dc. (6.43)

Here, M represents the memory index, k1 and k2 are the nonlinearity indices, respec-
tively; and dc represents the local oscillator leakage.

6.7.2 Two-Box Model with I/Q and DC Impairments

A generalized two-box model, inspired by the FTNTB model, was proposed in [15]
for the mitigation of PA distortions and I/Qmodulator imperfections. The first block is
composed of dual parallel branches of Volterra series, while the second block is a static
nonlinear function. The block diagram of the two-box model is shown in Figure 6.12.
xin(n) is the input to the system, x(n) is the output of the nonlinear FIR filters, while

yPA+IQ(n) is the final output of the system. The dual parallel branch Volterra series
consists of only the second order cross-terms and is mathematically represented as:
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Figure 6.12 Two-box model with I/Q and DC impairments

x(n) =

[
M∑

m=0
am ⋅ xin (n − m) +

M∑
m=0

J∑
j=0

amj ⋅ xin(n − m) ⋅ |xin(n − m − j)|]

+

[
M∑

m=0
bm ⋅ x∗

in
(n − m) +

M∑
m=0

J∑
j=0

bmj ⋅ x
∗
in(n − m) ⋅ |xin(n − m − j)|] + dc

(6.44)

where am, bm, amj, and bmj represent the model coefficients, M is the memory depth
of the system, and J is the time delay of the envelope of the input signal |x(⋅)|. The
final output of the model is given by:

yPA+IQ(n) = x(n)H(|x(n)|) (6.45)

whereH(⋅) is the complex static/memoryless gain of the LUTmodel. The coefficients
of the model can be obtained using the least squares approach.
The two-box model reduces the complexity of the system more than the parallel

Hammerstein model.
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7
Neural Network Based Models

7.1 Introduction

Recently, the technique of artificial neural networks (NNs) has drawn the attention
of researchers in the field of power amplifier (PA) modeling due to its successful
implementation and favorable results in pattern recognition, signal processing, system
identification, and control [1–4]. As a result of its adaptive nature and its universal
approximation capability [5–9], the NN approach has been investigated as one of
the modeling and predistortion techniques for PAs and transmitters [5–14]. Differ-
ent NN topologies and training algorithms that also take into account memory effects
have been proposed. NN models can be either static (i.e., memoryless) or dynamic. A
static NN model can be augmented to take into account memory effects and derive a
dynamic model suitable for broadband nonlinear transmitters; such a model is often
designated as a time-delay neural network (TDNN) [1, 3, 14].
This chapter presents major static and dynamic NN-based behavioral models and

offers a comparison of different NN topologies and training algorithms that can be
used for the identification of both forward and reverse models of nonlinear PAs and
transmitters.

7.2 Basics of Neural Networks

NNs have been widely used as powerful tools for modeling nonlinear dynamic sys-
tems [15, 16]. The application of NNs to system modeling and identification is moti-
vated by their universal approximation property, where a feedforward network with
a finite number of neurons in a single hidden layer functions as universal approxi-
mator with a predetermined activation function. Like biological neural structures, the
most basic component of a NN is the neuron. Each neuron consists of one output and
one or multiple inputs. Each input is multiplied by a weight before entering the corre-
sponding neuron. Theweighted inputs are combinedwith reference to a bias/threshold
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Figure 7.1 Block diagram of a typical L-layer feedforward neural network

value to calculate an intermediary output and the output of the neuron is calculated by
applying an activation function to the intermediary output. Usually a sigmoid function
is employed as an activation function in NNs.
Each set of neurons with the corresponding weights, bias, and activation function

forms a layer. A layer receives all its inputs either from a preceding layer or directly
from the external input in the case of the first layer. The output of a given neuron
excites the succeeding layer’s neurons as input (after modified by weights) or exits the
NN as the final output to the external environment. If multiple layers are connected
one after another, the intermediate layers that are between the input layer and the
output layer are called the “hidden layers.”
Recently, multilayer NNs, also called feedforward neural networks (FFNNs), have

been used for modeling nonlinear memoryless transceivers and radio channels, such
as traveling wave tube amplifiers (TWTAs) [6]. A typical L-layer andN-neuron FFNN
is shown in Figure 7.1. In this figure, wl

ij represents the synaptic weight between the
output of neuron j at layer (l − 1) and the input of neuron i at layer l; netli is the output
value of neuron i at layer l after applying the bias/threshold bli; and, O

l
i is the value of

the output of neuron i at layer l after the application of activation function f .
In the FFNN model, the first layer has a single input that corresponds to the input

signal x(k) and N outputs. Conversely, the output layer has N inputs and a single
output that represents the NN’s output y(k). Intermediate layers have each N inputs
and N outputs. The jth output of the lth layer (Ol

j) is modified by a set of weights
wl+1
ij to generate the jth contribution at the input of the ith neuron of the (l + 1)th layer

as depicted in Figure 7.1. All N inputs of the ith neuron of the (l + 1)th layer are
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combined along with a bias bl+1i to generate the kth sample of the output of the ith
neuron of the (l + 1)th layer [netl+1i (k)]. This neuron’s output is applied at the input of
the activation function (f ) to generate the kth sample of the output of the ith neuron
of the (l + 1)th layer [Ol+1

i (k)]. The output of each layer is again modified by another
set of weights before propagating to the next layer or feeding the final output.
For the FFNN in Figure 7.1, the operation of the NN can be summarized for the ith

neuron (i = 1, · · · ,N) of the lth layer as:

Ol
i(k) = f [netli(k)] for l = 1, · · · , L − 1 (7.1)

where ⎧⎪⎪⎨⎪⎪⎩

net1i (k) = w1
i1 ⋅ x(k) + b1i

netli(k) =
N∑
j=1

wl
ij ⋅ O

l−1
j (k) + bli for l = 2, · · · , L − 1

. (7.2)

The output of the FFNN becomes:

y(k) =
N∑
j=1

wL
1j ⋅ O

L−1
j (k) + bL1. (7.3)

In Equation 7.1, the function f represents the activation function of the NN model.
Common activation functions include the tan-sigmoid hyperbolic tangent, the
log-sigmoid, Gaussian, and linear. These functions are illustrated in Figure 7.2.

Figure 7.2 Most common activation functions used in artificial neural network
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The standard back-propagation training algorithm [1] can be employed to train the
FFNN. Once an FFNN is trained, it becomes the model of the system under con-
sideration. FFNN models have been shown to outperform the classic analytical and
behavioral models discussed in Chapter 4 for TWT PAs [17, 18]. The NN architec-
tures formodeling nonlinear behavior of PAs can be categorized into twomajor groups
depending on the existence of memory in the network:

1. Static NN models.
2. Dynamic NN models.

As the names suggest, static models characterize the static or memoryless nonlin-
earity, whereas the dynamic nonlinearity or the nonlinearity with memory is charac-
terized by dynamic NN models. The complex static NN models can be categorized in
three main architecture classes:

1. Single-Input Single-Output Feedforward Neural Network (SISO-FFNN)
2. Dual-Input Dual-Output Feedforward Neural Network (DIDO-FFNN) or Real val-

ued neural network (RVNN).
3. Dual-Input Dual-Output Coupled Cartesian based Neural Network (DIDO-

CC-NN)

Similarly, complex dynamic NN models can be classified in three main architecture
classes as follows:

1. Complex Time Delay Recurrent Neural Network (CTDRNN).
2. Complex Time Delay Neural Network (CTDNN).
3. Real Valued Time delay Recurrent Neural Network (RVTDRNN).
4. Real Valued Time Delay Neural Network (RVTDNN), also named as the Real

Valued Focused Time Delay Neural Network (RVFTDNN).

Figure 7.3 illustrates the classification of NNs based structures that have been used
for PAs behavioral modeling and predistortion. This chapter mainly focuses on the
dynamic NN models, especially RVTDRNN and RVFTDNN. A high level perfor-
mance comparison analysis is also presented later in the chapter.
The use of NN models in TWT PA modeling has the following advantages:

• They allow for the approximation of complicated nonlinearities that cannot be well
modeled by conventional analytical based models.

• In addition to the relatively small number of parameters required by NN models,
they can be implemented in parallel processing schemes, which reduce computa-
tional time.

• FFNNmodels are adaptive in nature; therefore, a change in the TWT characteristics
can be tracked relatively with ease.
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Figure 7.3 Classification of neural networks structures for power amplifiers modeling and predistortion
applications

• NN models ensure good mathematical properties such as accurate asymptotic
behavior approximation and ensure continuity of response.

7.3 Neural Networks Architecture for Modeling of Complex
Static Systems

7.3.1 Single-Input Single-Output Feedforward Neural Network
(SISO-FFNN)

To model complex static systems, three NN-based architectures can be adopted. The
most basic structure proposed is a SISO-FFNN utilizing complex input/output signals
[6], as illustrated in Figure 7.4. In this architecture, a complex input is modified
with a set of complex valued weights before entering the input layer. The output
of each neuron goes to the next layer of neurons and modified again with another
set of complex weights and biases before it gets added in the final layer to obtain
final output. Each neuron neuronli consists of complex input, complex weights, bias,
and activation function. This architecture introduces complex valued weights and
activation functions, which usually result in cumbersome calculations and divergence
when training the network. The input-output relationship of this model can be
expressed as:

Cout(k) =
N∑
j=1

zL1j ⋅ O
L−1
j (k) + bL1 (7.4)

where the output of the of any neuron at an intermediate layer can be calculated using
the same scheme described by Equations 7.1 and 7.2. The main difference here is that
the synaptic weights (zlij), the biases (bli), as well as the activation functions (f ), are
complex valued.
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Figure 7.4 Single-input single-output feedforward neural network

7.3.2 Dual-Input Dual-Output Feedforward Neural Network (DIDO-FFNN)

The second architecture proposed to model complex static systems is based on
splitting the complex data stream into two components, which are then processed
separately using two real-valued feedforward neural networks (RVFFNNs) as
shown in Figure 7.5 and proposed in [7] and [8]. The RVFFNN is similar to a
typical complex FFNN but only takes real values for inputs. In the polar based
architecture, the complex input signal Cin is first decomposed into its polar (Ain,Φin)
components. In architecture, the magnitude Ain and phase Φin of the input signal
feed the input of the first and second real valued NNs, respectively. Similarly, in
the Cartesian based architecture of this model, the signal is first decomposed into
its Cartesian components (Iin,Qin). Then, the real or in-phase Iin and imaginary or
quadrature-phase Qin parts of the input signal feed the input of the first and second
real-valued NNs, respectively. Finally, the outputs of both real-valued FFNNs are
recombined to construct the complex output signal. Thus, this can be seen as a
dual-input dual-output (DIDO) polar or Cartesian based architecture.
The DIDO polar based FFNN architecture utilizes two uncoupled NNs that

attempt to capture the AM/AM (amplitude modulation to amplitude modulation)
and AM/PM (amplitude modulation to phase modulation) responses separately. The
main drawback of this topology is the asynchronous convergence of the separate
phase and amplitude FFNNs, where both NNs do not converge to an optimal
model at same time, leading to over- or under-training of one NN. In the Cartesian
based DIDO-FFNN architecture, separate real valued FFNNs are used to model the
in-phase (I) and quadrature-phase (Q) components of the system’s output signal.
This approach takes advantage of the availability of the I and Q components, but it is
also prone to asynchronous convergence between the I and Q sub-models of the NN.
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Figure 7.5 Block diagram of dual-input dual-output feedforward neural network applied on the polar
components

7.3.3 Dual-Input Dual-Output Coupled Cartesian Based Neural Network
(DIDO-CC-NN)

To avoid asynchronous convergence of the DIDO polar or Cartesian based FFNN,
the DIDO-CC-NN was proposed in [14]. As depicted in Figure 7.6, the structure of
this model decomposes the complex input signal Cin into its Cartesian components
(Iin,Qin), which are then simultaneously fed to two separate RVFFNNs. The major
difference with the previous models is that in this case, both Cartesian components in
the input layer are coupled with both NNs. Finally, the outputs of two RVFFNNs are
recombined to obtain the complex output signal.
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Figure 7.6 Dual-input dual-output coupled Cartesian based neural network

The three architectures described in this section have been found to be effective,
to various extents, for the forward modeling of systems with strong static nonlinear-
ity; they all fall short of expectations when the system exhibits strong dynamics and
memory effects.

7.4 Neural Networks Architecture for Modeling of Complex Dynamic
Systems

To account for the presence of memory effects, dynamic neural structures have been
proposed in the literature. These dynamic NNs structures can be sub-divided into two
categories according to the nature of their architecture:
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1. NNs architectures without feedback such as the CTDNNs, and RVFTDNNs.
2. NNs architectures with feedback such as CTDRNNs and RVTDRNNs.

These major dynamic models are discussed in the following subsections.

7.4.1 Complex Time-Delay Recurrent Neural Network (CTDRNN)

One of the most popular NN models is the CTDRNN model, which utilizes feedfor-
ward and feedback signal propagating schemes [5, 14]. An illustration of a typical
feedback CTDRNN is shown in Figure 7.7.
In this architecture, the input signal is fed to the input layer through a set tapped

delay lines (TDLs) containing p branches. A tapped delayed feedback of the output is
also fed to the input layer. The feedback path TDLs are made of q branches. Both input
sets, including the (p + 1) delayed samples associated with the input signal x(k) and
the q delayed samples of the output signal y(k), are fed to the first layer’s N neurons
using synaptic weights and biases. An activation function is applied and the outputs
of each neuron are again scaled with complex weights. Finally the weighted outputs
are added together to obtain the final output.

Figure 7.7 Block diagram of a two-layer complex time-delay recurrent neural network (CTDRNN)
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CTDRNNs use single-input single-output (SISO) complex architecture and hence
suffer from cumbersome calculations and divergence when training the network. The
dynamics of the system and memory effects are considered by taking into account
the previous input and output samples, x(k − 1) through x(k − p) and y(k − 1) to
y(k − q), respectively; where p and q represent the memory depth of the system. The
input–output relationship of the CTDRNN model is given as:

y = fCTDRNN[Xin_CTDRNN(k, p, q)] (7.5)

where the input vector of the NN at instant k is:

Xin_CTDRNN(k, p, q) = [x(k), x(k − 1), · · · , x(k − p), y(k − 1), y(k − 2), · · · , y(k − q)]
(7.6)

Thus the network can be seen as having (p + 1 + q) complex inputs. Furthermore,
the addition of the feedback delay between the inputs and outputs of the network
increases the computational complexity and, often, negatively impacts the training
and convergence of the network.

7.4.2 Complex Time-Delay Neural Network (CTDNN)

The complex time-delay neural network (CTDNN) is a simplified version of previ-
ously described dynamic model where the feedback path of the model is omitted
and make this model a complex non-recurrent FFNN model. This model is shown
in Figure 7.8.
The complex input x(k) is delayed p times with tapped delay line making p + 1

inputs. Unlike the previous architecture, this architecture doesn’t depend on the pre-
vious values of the output. The input–output relationship of the CTDNN model can
be obtained as:

y = fCTDNN[Xin_CTDNN(k, p)] (7.7)

where the input vector of the NN at instant k is:

Xin_CTDNN(k, p) = [x(k), x(k − 1), · · · , x(k − p)]. (7.8)

7.4.3 Real Valued Time-Delay Recurrent Neural Network (RVTDRNN)

Real-valued time-delay recurrent neural network (RVTDRNN) model was introduced
from the inspiration of CTDRNN where the complex signal is decomposed into
two real valued components (I,Q) and fed to two real valued TDRNNs (time-delay
recurrent neural networks). The major difference between the RVTDRNN and the
CTDRNN is that the RVTDRNN is structured to take advantage of the availability of
I and Q components of the complex baseband signal waveforms. Furthermore, the
training process of the RVTDRNN becomes significantly faster with the use of real
weights instead of the complex weights as in the TDRNN.
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Figure 7.8 Block diagram of complex time delay neural network (CTDNN)

In this architecture, shown in Figure 7.9, the input and output signals’ in-phase and
quadrature components, (Iin,Qin) and (Iout,Qout), are delayed with TDLs for p and q
times, respectively. Therefore, the order of the input vector for RVTDRNN at any
moment of the training sequence is 2(p + 1 + q)-by-1 including past samples of the
input and output signals [12]. Here, p and q are the memory orders of the input and
feedback signals, respectively. The input expression is given as,

Xin_RVTDRNN(k, p, q)

=
[

Iin (k) , Iin(k − 1), · · · , Iin(k − p),Qin(k),Qin(k − 1), · · · ,Qin(k − p)
Iout(k − 1), Iout(k − 2), · · · , Iout(k − q),Qout(k − 1),Qout(k − 2), · · · ,Qout(k − q)

]
(7.9)

The in-phase and quadrature-phase components of the output signal, Iout and Qout,
respectively; are given by:

Iout(k) = fI[Xin_RVTDRNN(k, p, q)] (7.10)

Qout(k) = fQ[Xin_RVTDRNN(k, p, q)] (7.11)

where f1 and f2 are activation functions modeled by RVRNN (real valued recurrent
neural network).
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Figure 7.9 Block diagram of a three-layer real valued time delay recurrent neural network
(RVTDRNN)

7.4.4 Real Valued Time-Delay Neural Network (RVTDNN)

This model is obtained through adding TDLs to the FFNN structure. The RVTDNN
was proposed in [14] and has been found to be effective in modeling strongly dynamic
nonlinear systems, such as wideband PAs and wireless transmitters. This model has
also been designated as a real value focused time-delay neural network (RVFTDNN)
[12]. As illustrated in Figure 7.10, RVFTDNN architecture is based on the previously
discussed static DIDO-CC-NN architecture and taking further into account the mem-
ory effects and assuming that the output of the amplifier depends only on the present
and 2p past input values, but not on the network’s output values.
Figure 7.10 shows a three-layer RVFTDNN with two real inputs (Iin and Qin), and

two real outputs (Iout and Qout). The inputs Iin and Qin are both delayed by p samples;
using two sets of TDLs. The first set of TDLs is made of p branches and is applied on
the in-phase component of the input signal (Iin), while the second set of TDLs is also
made of p branches and is applied to the quadrature-phase component of the input
signal (Qin). Here, p represents the memory depths of the system and the length of the
input vectors are 2( p + 1)-by-1. The delayed response is achieved by using a plurality
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Figure 7.10 Block diagram of a three-layer real valued focused time-delay neural network

of unit delay operators(z−1), where the unit delay operator yields to the delayed sample
x(k − 1) when operating on sample x(k).The input-output relationship for this model
with n neurons and two layers can be written as,

Iout(k) = fI[Iin(k), Iin(k − 1), · · · , Iin(k − p),Qin(k),Qin(k − 1), · · · ,Qin(k − p)]
(7.12)

Qout(k) = fQ[Iin(k), Iin(k − 1), · · · , Iin(k − p),Qin(k),Qin(k − 1), · · · ,Qin(k − p)]
(7.13)

At any time instant k, the output value of neuron n of layer l is given by:

netln(k) =
N∑
j=1

wl
njO

l−1
j (k) + bln (7.14)

where wl
nj is the synaptic weight between the output of neuron j at layer (l − 1) and

the input of neuron n at layer l, bln refers to the bias applied to the neuron n at layer l,
and Ol−1

j (k) is the output, at time instant k, of the neuron and j at layer (l − 1). Ol−1
j (k)

is given by:
Ol−1

j (k) = f [netl−1j (k)]. (7.15)

The synaptic weights wl
ij, between the output of neuron j at layer (l − 1) and the

input of neuron i at layer l, are chosen such that the output values of all neurons lie
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at the transition between the linear and saturated parts of the sigmoidal activation
function, f , when no initial knowledge of the weights are assumed. Very high values
of initial weights can drive the NN into the saturation part of the activation function,
which will slow down the learning process. Conversely, very small initial values may
lead the network to operate in the flat region, stopping the training for that neuron
[1]. To avoid extreme values of −1 and 1 for the activation function, the weights are
initialized randomly within the interval of [−0.8, 0.8]. Gradually, weights converge to
their optimal values as the training proceeds. The hidden layers are fully connected,
as shown in Figure 7.10.
The output of any layer works as an input for the next layer. Thus, Equation 7.14

is applicable for all neurons (n = 1, · · · ,N) and all layers except the final one (l =
1, · · · ,L − 1). For the final layer,

⎧⎪⎪⎨⎪⎪⎩
Iout (k) =

N∑
j=1

wL−1
1j OL−1

j (k) + bl1

Qout(k) =
N∑
j=1

wL−1
2j OL−1

j (k) + bl2.

(7.16)

The output layer has a purely linear activation function (sometimes referred to as
a purelin function), which sums up the outputs of hidden neurons and linearly maps
them to the output. The activation function, f , for the two hidden layers can be chosen
as one of the functions depicted in Figure 7.2. It is worth noting that when the memory
depth is zero (i.e., p = 0), the two TDLs are eliminated and in this case the RVFTDNN
architecture is reduced to a RVFFNN architecture.
Training is carried out in batch modes, supervised with a back-propagation algo-

rithm. Detailed descriptions of the back-propagation algorithm are given in [1, 16,
19, 20]. To summarize, two passes are made during one ensemble of iterations (com-
monly referred to as an epoch which can include tens to hundreds of actual iterations):
a forward propagation and a backward propagation. During the forward propagation,
the cost function is calculated by:

E = 1
2K

K∑
k=1

{[Iout(k) −
⌢
Iout(k)]2 + [Qout(k) −

⌢
Qout(k)]2} (7.17)

where Iout(k) and Qout(k) are the desired model outputs representing the Cartesian
components of the system’s complex output; and

⌢
Iout(k) and

⌢
Qout(k) are their predicted

values by the actual NN model.
Based on the error signal given by Equation 7.17, a backward computation is per-

formed to adjust the synaptic weights of the network in layer l according to:

wl
nj(k + 1) = wl

nj(k) + Δwl
nj(k) (7.18)

In Equation 7.18, wl
nj(k) and wl

nj(k + 1) denote the values of the synaptic weight
wl
nj during the training step at instants k and (k + 1), respectively; and Δwl

nj(k) is the
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adjustment applied to modify the value of the synaptic weight wl
nj(k) to obtain its new

value at instant (k + 1). Δwl
nj(k) is calculated, at instant k, using the one-dimensional

Levenberg–Marquardt (LM) algorithm [20]. The LM algorithm was found to be the
most appropriate among various algorithms for its fast convergence properties, as
shown in the next section. The whole procedure is carried out until the desired per-
formance is met, or the NN fails the validation procedure by drifting away from the
generalization criterion [1, 16, 21, 22].
Due to their dynamic modeling capability, the RVRNN and RVFTDNN are consid-

ered as good candidates among all the other NN topologies for the dynamic modeling
and linearization based on digital predistortion techniques for PAs and transmitters.
In [12], the performance of the RVFTDNN was benchmarked against the RVRNN

for a Doherty PA prototype driven by multi-carrier WCDMA signal. Each model had
two hidden layers and the number of neurons in each of these layers was decided
through the same optimization process. The output layer of each model contained
two linear neurons. The ability of the models to predict the magnitude and phase of
the output signal are reported in Figures 7.11 and 7.12, respectively. Both figures
illustrate the superior performance of the RVFTDNN as it can accurately predict the
output signal’s magnitude and phase.

7.5 Training Algorithms

Another key factor for an NN is the learning algorithm used, which influences the
speed, accuracy, and generalization during the learning process. Among the most pop-
ular training algorithms that have been widely used for NNs, one can find:

• The Broyden–Fletcher–Goldfarb–Shanno quasi-Newton algorithm (BFGS).
• The Powell–Beale conjugate gradient algorithm (CGB).
• The Fletcher–Powell conjugate gradient algorithm (CGF).
• The Polak–Ribiere conjugate gradient algorithm (CGP).
• The gradient descent with adaptive learning rate algorithm (GDA).
• The gradient descent with momentum algorithm (GDM).
• The momentum and adaptive learning rule algorithm (GDX).
• The Levenberg–Marquardt algorithm (LM).
• The one-step secant algorithm (OSS).
• The resilient back-propagation algorithm (RP).
• The scaled conjugate gradient algorithm (SCG).

The GDA, GDX, GDM, and RP algorithms are first order optimization techniques
that ignore second order and higher terms to provide a solution with less memory
consumption for adaptive applications. Second order optimization techniques, such as
BFGS, LM, and conjugate gradient techniques, take Hessian matrix information into
account to achieve faster convergence, but have much higher memory requirements
[21–25].
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Figure 7.11 Predicted output voltage magnitude of a Doherty power amplifier prototype. (a) RVRNN
model and (b) RVFTDNN model [12]. ©2009 IEEE. Reprinted, with permission, from Rawat et al.,
“Adaptive digital predistortion of wireless power amplifiers/transmitters using dynamic real-valued
focused time delay line neural networks,” IEEE Transactions on Microwave Theory and Techniques,
Jan. 2010
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Figure 7.12 Predicted output voltage phase of a Doherty power amplifier prototype. (a) RVRNNmodel
and (b) RVFTDNN model [12]. ©2009 IEEE. Reprinted, with permission, from Rawat et al., “Adaptive
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In [12], several of these algorithms were applied for to build a RVFTDNN
based digital predistorter of a Doherty amplifier prototype driven by multi-carrier
communication signals. The comparative analysis of their performance in terms of
convergence speed and mean squared error performance is reported in Figure 7.13.
The results illustrate the advantage of the LM algorithm in terms of speed as it
converges in only few epochs, which is much faster than the other tested algorithms
that require at least 100 epochs to converge. Furthermore, the plots in Figure 7.13
show that the LM algorithm leads to better modeling accuracy than the other learning
algorithms.

7.6 Conclusion

In this chapter, a review of the NN-based models for behavioral modeling and dig-
ital predistortion of wireless transmitters was presented. Discussion of the various
structures for NN models for addressing static and dynamic systems, their pros and
cons and the appropriate implementation was presented. The performance of RVRNN
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and RVFTDNN architectures was compared using experimental results. It was shown
that the RVFTDNN architecture is an appropriate architecture for addressing mem-
ory effects and nonlinear distortion of wireless transmitters. The RVRNN architecture
was not able to outperform the RVFTDNN in spite of its complexity.
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8
Characterization and Identification
Techniques

8.1 Introduction

In the previous chapters, a thorough review of behavioral models proposed for the
modeling and predistortion of wideband power amplifiers (PAs) and transmitters was
presented. All these models can be seen as mathematical functions for which a set
of coefficients needs to be identified. These coefficients are derived, using identifica-
tion techniques, from measurements data acquired through the characterization of the
device under test (DUT). Thus, the validity of a behavioral model and its accuracy will
greatly depend, among others, on the characterization step. In fact, since the behav-
ioral model coefficients are calculated solely from input and output measured data,
the obtained model is able to take into consideration only the effects that are observed
during the characterization step. For example, if measurements are performed with a
test signal for which a DUT has a memoryless behavior, then a model derived from
these measurements will be unable to predict the memory effects that will be present
in the DUT if a wider bandwidth signal is used. This is true even if the model structure
incorporates memory effects (such as the memory polynomial model). The accuracy
of the model also depends on the model structure that is adopted and its ability to
mimic all aspects of the observed behavior. As matter of fact, if the DUT exhibits
memory effects during the measurements, the appropriate model structure should be
used to ensure that the model reproduces these memory effects. For instance, a mem-
oryless model cannot predict the memory effects of the DUT even if it is identified
using measurements that include memory effects.
Accordingly, choosing the adequate model structure is certainly required but defi-

nitely not enough to guarantee accurate behavioral modeling and high performance
digital predistortion (DPD). To better recognize the factors affecting the performance
of a behavior model, the flow chart of behavioral modeling and DPD processes
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Figure 8.1 Flow chart of behavioral modeling and digital predistortion processes

is illustrated in Figure 8.1. First, the type of the drive signal to be used in the
characterization of the DUT is selected. This encompasses continuous wave (CW),
two-tones, multi-tones, as well as standard compliant and synthetic test signals. Then,
the measurement data are acquired at the input and the output of the DUT. The raw
measurements need to be processed to de-embed the signals from the measurement
reference planes to the DUT reference planes. Next, the behavioral model and/or
digital predistorter structure is selected, its parameters (i.e., nonlinearity order,
memory depth,… ) defined, and its coefficients identified. Finally, the performance
of the behavioral model and/or digital predistorter is assessed. The performance
of a behavioral model is evaluated by comparing the predicted and the measured
output signals of the DUT and quantifying the similarity between these two signals
using the metrics defined in Chapter 3. The performance of a digital predistorter is
quantified in frequency domain by the adjacent channel leakage ratio measured at
the output of the linearized DUT, and in modulation domain by evaluating the error
vector magnitude at the output of the linearized DUT. Based on the performance
of the model/DPD, the model parameters can be adjusted, or if needed, a different
model structure can be selected.
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This chapter focuses on the types of test signals that can be used to characterize
the behavior of power amplifiers and wireless transmitters, and the impact of these
test signals on the observed behavior of the DUT. Emphasis is then given to the use
of standard compliant test signals and the steps required for processing the measured
data under such conditions, as well as the identification techniques that can be applied
to calculate the model coefficients.

8.2 Test Signals for Power Amplifier and Transmitter
Characterization

A variety of test signals have been proposed for the characterization of power
amplifiers and wireless transmitters. Historically, continuous wave signals were
initially used to derive the power dependent gain of the DUT. Later, two-tone and
then multi-tone signals were applied. These test signals are more advanced than the
continuous wave signal and present fertile ground for analytical derivations of power
amplifiers’ and transmitters’ nonlinear behavior. Finally, realistic standard compliant
test signals were utilized for accurate characterization and predistortion of power
amplifiers and transmitters.
At this point, it is useful to illustrate a generic block diagram of the experimental

setup used for the characterization of power amplifiers’ and transmitters’ nonlinear
behavior. As depicted in Figure 8.2, such a measurement system typically consists
of a stimulus generator, a pre-amplifier, the DUT, an output attenuator, and a signal
acquisition system. The stimulus generator synthesizes the test signal to be used dur-
ing the DUT characterization. If needed, a pre-amplifier can be used to adjust the
signal level in order to ensure appropriate power levels at the input of the DUT while
operating the signal generator in its optimal power range. An attenuator is used at the
output of the DUT to condition the power level of the output signal within the dynamic
range of the signal acquisition instrument that will be used to collect the output signal.
Depending on the type of measurements used, the nature of the instruments used for
the stimulus generation and the output signal acquisition can vary.

8.2.1 Characterization Using Continuous Wave Signals

Continuous wave test signals are commonly employed during the design process of
power amplifiers. Their use was thus naturally extended to the characterization of

Figure 8.2 Generic block diagram of experimental setup for power amplifiers characterization
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power amplifiers and transmitters nonlinearity. A CW signal is fully defined by two
parameters: its frequency and power level. Thus, to characterize the power dependent
nonlinear behavior of power amplifiers, the experimental approach requires sweeping
the power level of the continuous wave test signal. At the output of the DUT, scalar
measurements using a spectrum analyzer or a power meter, for example, can be per-
formed to derive the AM/AM (amplitude modulation to amplitude modulation) char-
acteristic of the DUT. In order to capture both theAM/AMand theAM/PM (amplitude
modulation to phase modulation) characteristics of the DUT, complex measurements
of both the magnitude and phase are needed. Typical continuous wave measurements
of power amplifiers’ complex gain can be performed using a vector network analyzer.
Even though the experimental setup and the test procedure involved during the

characterization of power amplifiers’ nonlinear behavior using continuous wave test
signals are straightforward, the use of such test signals is undeniably a rudimentary
approach that has several limitations. First, this characterization can lead to thermal
and bias effects that are mainly stimulated by the nature of the test signal rather than
the behavior of the DUT [1]. Furthermore, the continuous wave signal has no inher-
ent bandwidth and accordingly does not provide accurate insight on the DUT dynamic
behavior when driven by modulated signals. In fact, for a continuous wave input sig-
nal, the nonlinearity of the power amplifier or transmitter causes in-band distortions
at the fundamental frequency and out-of-band distortions at the harmonics. The lim-
itation of continuous wave based power amplifiers’ characterization for behavioral
modeling and predistortion was recognized in [2] back in 1989, where it was reported
that limited linearity enhancement on two-tone inter-modulations is obtained when
the predistortion function is derived from continuous wave based measurements.

8.2.2 Characterization Using Two-Tone Signals

Due to the deficient nature of the continuous wave signal spectrum, no
inter-modulation distortions are present at the output of the nonlinear power
amplifier. Thus, a stimulus having a richer spectral content and significant amplitude
variation should be applied to excite the nonlinearities and the dynamics of the
system, and thus provide a more comprehensive description of the DUT nonlinearity.
In this context, the two-tone test signal can be used for the characterization of
bandpass nonlinearities as those exhibited by power amplifiers and transmitters [3].
In two-tone test signals, one can control the power level of each tone as well as

their relative phase shift. Most importantly, a key aspect of the two-tone stimuli is
the frequency separation between the two tones that confers to the signal an inherent
bandwidth. The spacing between the two tones was used to investigate the memory
effects exhibited by the DUT [4–6]. Indeed, in the presence of memory effects, the
magnitudes of the inter-modulation distortion products present at the output of the
DUT are found to be dependent on the tone spacing that represents the modulation
bandwidth of this test signal. This can be observed experimentally by maintaining a
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constant power level at the input of the DUT and measuring the third and fifth order
inter-modulation distortions levels while varying the tone spacing. Also, asymmetry in
the inter-modulation distortion products is observed when memory effects are present
in the DUT [7].
However, to maintain the superiority of two-tone based characterization over con-

tinuous wave based measurements, it is essential to observe both the AM/AM and
AM/PM characteristics of the DUT. This is a major challenge associated with the use
of two-tone test signals for power amplifier and transmitter characterization applica-
tions. Several experimental setups have been proposed in the literature [4, 8, 9]. These
require a reference inter-modulation generator in addition to two signal generators and
two spectrum analyzers [8, 9]. However, with the advancement of test and measure-
ment systems, an experimental setup employing an arbitrary waveform generator and
a spectrum analyzer having demodulation capabilities was proposed in [4]. The arbi-
trary waveform generator is applied for accurate generation of amplitude and phase
aligned two-tone test signal. The output signal is demodulated using a vector signal
analyzer (spectrum analyzer with a built-inmodulation analysis feature), and then pro-
cessed to extract the magnitudes and phases of all relevant frequency components of
the output signal. This technique is more accurate than those based on the use of ref-
erence inter-modulation generator as it enables the extraction of magnitude and phase
information not only for the third order in-band inter-modulation products but also
for higher order (fifth and even seventh orders) in-band inter-modulation products.

8.2.3 Characterization Using Multi-Tone Signals

The multi-tone test signal is a further enhancement to the two-tone stimulus signal
described in the previous section. Indeed, compared to continuous wave and two-tone
test signals, multi-tone signals better approximate the frequency content of modern
communication signals. The similarity between the behavior of the DUT for a modu-
lated signal excitation and for a multi-tone excitation has been thoroughly investigated
in the literature [10–12]. The main conclusion is that special care needs to be taken
while engineering multi-tone excitation signals to ensure that they will emulate a
behavior of the DUT that is similar to what it would have been for a modulated signal
having equal bandwidth and average power.
A multi-tone excitation is determined by the number of tones it contains, their spac-

ing (or equivalently the total bandwidth of the excitation signal), in addition to the
relative magnitudes and phases of the tones. The selection of the two first parameters
is somehow straightforward. In fact, to approximate a predefined modulated signal, it
is obvious that the multi-tone excitation needs to have the same bandwidth. Having
defined the bandwidth of the multi-tone excitation, the number of tones can be derived
such that the multi-tone excitation has enough resolution in frequency domain. Alter-
nately, a desired tone spacing can be defined and then the required number of tones
calculated. The most challenging task in the design of multi-tone excitations for the
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characterization of power amplifiers’ and transmitters’ nonlinear behavior is the selec-
tion of the tones’ magnitudes and phases. In [10], the ability of multi-tone signals with
constant and/or random amplitude and phase spectra to generate accurate behavioral
models was assessed. The same type of multi-tone signals was used to predict the
ACPR (Adjacent Channel Power Ratio) at the output of a power amplifier driven by
a modulated signal in [11]. These studies demonstrated that the use of multi-tone test
signals can lead to overestimation or underestimation of the spectrum regrowth caused
by the DUT when driven by modulated signals, and that it is recommended to gener-
ate the multi-tone signal using random distribution for the phases. Guidelines for the
optimal design of the amplitudes and phases vectors of multi-tone stimuli that better
approximate modulated signals were reported in [12].
Accordingly, carefully designed multi-tone signals can be applied to predict the

behavior of nonlinear power amplifiers under modulated test signals. In this type
stimulus, the optimization of the tones’ phases affects the time domain signal and
can significantly change its peak to average power ratio and shape the probability
density function of its magnitude to match that of the standard compliant test signal.
This will result in good agreement between the responses of the nonlinear DUT to the
multi-tone signal and its modulated counterpart.

8.2.4 Characterization Using Modulated Signals

The characterization of power amplifiers’ and transmitters’ nonlinear behavior using
the modulated signal that will be handled by the system in normal mode of operation
and during the linearization step is undeniably the most accurate and reliable approach
that will lead to satisfactory modeling and linearization performances. The use of
the complex baseband waveforms for the characterization of nonlinear amplifiers and
transmitters was initially proposed in [13]. The adoption of this approach was made
possible thanks to the development of arbitrary waveform generation and vector signal
analysis capabilities in test and measurement instruments, and their ability to cope
with the bandwidth requirements of communication signals.
The characterization of power amplifiers’ and transmitters’ nonlinear behavior using

modulated signals consists of acquiring the input and output baseband waveforms
associated with the bandpass RF (radio frequency) input and output signals of the
DUT [14]. This can be implemented according to either of the two schemes depicted
in Figure 8.3. In the first scheme illustrated in Figure 8.3a, the input and output RF
signals of the power amplifier are acquired and processed to extract the corresponding
basebandwaveforms that will be used for to identify the behavioral model and/or DPD
function. In the second scheme reported in Figure 8.3b, the digital waveform used to
build the amplifier’s RF input signal is considered as the complex baseband input
waveform of the DUT, while the complex baseband output waveform is measured at
the output of the DUT. In this case, the reference plane for the input signal measure-
ment is shifted from the input of the power amplifier to the input of the digital to analog
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(a)

(b)

Figure 8.3 Block diagram of experimental setup for nonlinear behavior characterization through com-
plex baseband waveforms measurements. (a) PA only characterization and (b) analog front-end and PA
characterization

converter of the signal generator. Thus, the characterization data encompasses the
effects of power amplifier as well as all the preceding analog components of the signal
generator or equivalently the RF front end. Accordingly, the main difference between
the two measurement practices described here is that the first only characterizes the
power amplifier, and thus might have limited performance in DPD context when the
signal generation path from the output of the digital predistorter up to the input signal
measurement reference plane contains some imperfections. Indeed, such imperfec-
tions are not included in the observation path and thus cannot be compensated for.
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Conversely, in the second case, the imperfections of the RF front end are embedded
in the measurement data and therefore are compensated for.

8.2.5 Characterization Using Synthetic Modulated Signals

Synthetic test signals have also been proposed for the characterization of RF power
amplifiers and transmitters in behavioral modeling and predistortion applications.
These signals tend to emulate the behavior that the DUT would exhibit with the mod-
ulated test signal generated according to communication standards, while reducing
the complexity associated with the identification process [15–17] or improving its
robustness [18]. In [16], triangular chirp signal was applied for the training step of the
behavioral modeling and DPD of a power amplifier driven by an OFDM (orthogonal
frequency division multiplexing) test signal. Compared to a predistorter trained with
the same OFDM signal, the adoption of the chirp test signal during the DPD learn-
ing process led to comparable linearization performance in terms of spectral regrowth
with a significantly lower calibration time and computational load [16]. Furthermore,
it was reported that the use of the chirp signal for the predistorter training in OFDM
driven power amplifiers can lead to better linearization performance than the case
where the predistorter training is done using multi-tone test signals [17].
In [18], the problem of the ill-conditioning of the data matrix in memory poly-

nomial model was circumvented by the proper design of the test signal. This sig-
nal is built by controlling the probability distribution function (pdf) of the real and
imaginary components of the baseband waveform. A generalized Gaussian distri-
bution was proposed to generate a CDMA (code division multiple access)-like test
signal that has a parameterized probability density function optimized for a minimum
condition number of the autocorrelation matrix. It was demonstrated that such sig-
nal tackles the ill-conditioning problem present in memory polynomial models and
improves the robustness of the model identification. Similar to the chirp signal, the
parameterized-pdf synthetic test signal was found to lead to DPD performance similar
to that obtained when the actual modulated signal is used for the predistorter training.

8.2.6 Discussion: Impact of Test Signal on the Measured AM/AM
and AM/PM Characteristics

The AM/AM and AM/PM characteristics of power amplifiers and transmitters
are quite sensitive to the type of drive signal and to its characteristics. In [14],
the AM/AM and AM/PM characteristics of a power amplifier prototype were
derived for three different excitations signals: a continuous wave, an eight-tone,
and a WCDMA (wideband code division multiple access) signal. As illustrated in
Figure 8.4, there is significant discrepancy between the characteristics measured
with the modulated signal and those measured with the continuous wave signal.
However, the multi-tone test signal leads to closer prediction of the DUT nonlinear
characteristics. This corroborates the conclusions mentioned in the previous
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sub-sections according to which the use of the modulated signal is more appropriate
for accurate characterization of the DUT’s nonlinear behavior.
A closer look at the sensitivity of power amplifiers’ and transmitters’ dynamic

nonlinear behavior to the excitation signal reveals that even for a given type of
modulated signals, such as CDMA or OFDM, for example, the signal characteristics
might noticeably impact the response of the DUT. The characteristics of modulated
signals mainly include their average power, bandwidth, and statistics. To describe
the statistics of modern communication signals, the complementary cumulative
distribution function (CCDF) is widely adopted. The CCDF provides a thorough
portrayal of the signal statistics by depicting for each power level above the average
power of the signal and the percentage of time the signal power is at or above that
value. For a given communication standard, the CCDF curves of all signals are quite
similar and variations only occur toward the tail of the curve as the peak to average
power ratios of the signals vary. However, these changes are imperceptible by the
power amplifier since the CCDF disparity occurs for signal samples with very low
probability. The measured memoryless AM/AM and AM/PM characteristics of a
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power amplifier prototype driven by single carrier WCDMA signals having various
peak to average power ratios are reported in Figure 8.5. In these measurements, the
bandwidth as well as the average power of the test signals were kept unchanged
and only the signal’s PAPR (peak-to-average power ratio) was varied. These results
confirm the unnoticeable effects, on the nonlinear behavior of power amplifiers
and transmitters, of peak to average power ratio variations in signals of the same
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standard [19]. However, it is important to mention that any inconsistency in the
CCDF characteristics of excitation signals will lead to different nonlinear behaviors
of the DUT even if the PAPRs of these signals are comparable. This is the main
reason that calls for the careful engineering of multi-tone test signals with particular
attention to the distribution of their phases.
Another parameter of the modulated test signal is its average power. The behavior of

power amplifiers is sensitive to variations in the average power of the input signal as
investigated in [19]. Figure 8.6 depicts the memoryless AM/AM and AM/PM charac-
teristics of a Doherty power amplifier prototype measured for single carrier WCDMA
waveforms having different peak to average power ratios and average powers. The
average power of each signal was set such that the DUT is operated over its entire
power range up to but not beyond its saturation. Accordingly, for each signal, the
DUT was driven at an output power back-off that is equal to the signal’s peak to aver-
age power ratio. The substantial changes in the measured characteristics, especially
the AM/AM ones, reveal the dependency of power amplifiers’ and transmitters’ non-
linear behavior to the average power of the drive signal. This dependency can be solely
attributed to the average power variation since no changes in theDUT nonlinearitywas
observed when the same signals were applied at constant average power (Figure 8.5).
Similarly, the nonlinear behavior of power amplifiers and transmitters depend on the
signal’s bandwidth, which has a considerable impact on the memory effects generated
by the DUT. As the drive signal bandwidth increases, the memory effects exhibited by
the DUT become more pronounced. This translates into more significant dispersion
in the measured AM/AM and AM/PM [20]. Figure 8.7 illustrates an example of the
influence of the signal bandwidth on the measured AM/AM characteristics of a PA
using LTE (Long-Term Evolution) signals having similar average power but different
bandwidths. Similar effect is observed in the AM/PM characteristics.

8.3 Data De-Embedding in Modulated Signal Based Characterization

The raw measured data needs to be processed to extract the corresponding signals at
the input and output reference planes of the DUT. This data processing is twofold:
power adjustment and time alignment. The power adjustment is straightforward and
consists of compensating for the amplifications and mainly attenuations incurred by
the signal between the measurement planes and the DUT reference planes.
The time alignment is a critical task in the de-embedding process of the measured

data. In fact, the measured output signal is a time delayed nonlinearly amplified ver-
sion of the input signal. The delay between the measured input and output wave-
forms is associated with the signal propagation time through the DUT. Figure 8.8
shows the characterization results of a power amplifier driven by an LTE signal before
delay compensation. The time domain waveforms of Figure 8.8a clearly reveal the
delay between the input and output waveforms. Extracting the AM/AM characteristic
of the DUT from these time misaligned waveforms leads to the results reported in
Figure 8.8b. This figure illustrates the detrimental effect of the residual delay between
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the input and output waveforms used to generate the AM/AM characteristic of the
DUT. Indeed, the time misalignment appears as a dispersion in the AM/AM curve
of the DUT. Similar observation can be made for the AM/PM characteristic. This
dispersion can be explained by the fact that the delay between the input and output
waveforms causes the output sample at index n to heavily depend on the input sample
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at index n − D where D represents the delay value in terms of the number of samples.
Accordingly, time misalignment between the input and output waveforms appears as
additional “memory effects.” Thus, it manifests in the AM/AM and AM/PM charac-
teristics as a dispersion similar to that observed when memory effects are present.
The widely adopted approach for the estimation and compensation of the propa-

gation delay between the input and output waveforms of the DUT is based on the
cross-covariance between these two waveforms [21]. The cross-covariance between
the measured input and output waveforms (x(n) and y(n), respectively) is given by:

Cxy(d) =

⎧⎪⎪⎨⎪⎪⎩

N−d−1∑
n=0

(
x (n + d) − x

)
(y∗(n) − y∗) for d ≥ 0

N−d−1∑
n=0

(x∗(n − d) − x∗)(y(n) − y) for d < 0

(8.1)

where N represents the number of data samples, in each of the waveforms, used to
estimate the propagation delay. x∗(n) and y∗(n) denote the complex conjugate of the
complex waveforms x(n) and y(n), respectively. x and y are the averages of the wave-
forms x(n) and y(n), respectively, and are defined according to:

⎧⎪⎪⎨⎪⎪⎩
x = 1

N

N−1∑
n=0

x (n)

y = 1
N

N−1∑
n=0

y(n)

(8.2)

Equation 8.1 estimates the delay between the input and output waveforms in terms
of number of samples. The delay corresponds to the value of d for which Cxy is max-
imum. However, given the typical sampling rates used for the acquisition of these
waveforms, the resulting delay resolution is usually in the range of several nanosec-
onds. In fact, a sampling rate of 100MHz corresponds to a delay resolution of 10 ns.
Thus, performing the delay alignment process using the original sampling frequency
of the measured waveforms is generally referred to as coarse delay alignment as it
results in a substantial residual delay. The data of Figure 8.8 was acquired at a sam-
pling rate of 245.76MHz that corresponds to delay resolution in the range of 4.08 ns.
The input and output waveforms obtained after performing the coarse delay alignment
technique are presented in Figure 8.9a, and the AM/AM characteristic derived from
these alignedwaveforms is reported in Figure 8.9b. Compared to what was observed in
Figure 8.8, it is clear that the delay alignment allows for the elimination of most of the
dispersion present in the AM/AM characteristic derived from the raw measured data.
In [21], it was revealed that a sub-sample resolution is needed during the delay

estimation and compensation process in order to fully eliminate the effects of the
time misalignment between the measured input and output waveforms. This is per-
formed by applying the delay estimation technique described by Equation 8.1 on
the oversampled version of the input and output waveforms. Accordingly, the raw
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Figure 8.9 PA characterization results after coarse delay compensation. (a) Time domain waveforms
and (b) AM/AM characteristic

data used to derive the results of Figure 8.8 were oversampled with a ratio of 25,
and then the delay estimation and compensation was performed using the oversam-
pled waveforms. The results are summarized in Figure 8.10 showing both the time
domain waveforms and the corresponding AM/AM characteristic of the DUT. This
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Figure 8.10 PA characterization results after fine delay compensation. (a) Time domain waveforms
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figure demonstrates the effectiveness of the sub-sample delay resolution as further
noticeable reduction in the dispersion of the AM/AM characteristic is obtained in
comparison with the results of Figure 8.9. This justifies the usefulness of this approach
often labeled fine delay alignment and regularly used in power amplifier behavioral
modeling and predistortion applications.
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The delay estimation can be performed in a single step by applying Equation 8.1
on the oversampled input and output waveforms. Authors in [22] proposed a low
complexity approach in which a coarse delay alignment is first done using the input
and output waveforms at their original sampling rates, and then a fine delay alignment
using oversampled shorter versions of these waveforms is applied to eliminate the
sub-sample residual delay. Further techniques for complexity reduction in the delay
estimation and compensation process have been reported for the case of memory poly-
nomial based models in [23, 24]. In fact, it was demonstrated that it is possible to
maintain the behavioral model and predistorter performances in presence of coarse
delay alignment (and thus sub-sample residual delay). For the case of behavioral mod-
eling, this can be achieved by underestimating the delay (rounding the coarse delay
expressed in terms of number of samples to the lower nearest integer) and increasing
the memory depth of the model by 1 [23]. Likewise, the digital predistorter perfor-
mance is preserved if the coarse delay is overestimated (by rounding it to the higher
nearest integer) and the memory depth of the predistorter is increased by 1 [24].

8.4 Identification Techniques

After delay compensation, the measured data still lead to dispersion in the AM/AM
and AM/PM of the power amplifier. This dispersion is the result of the contribution
of:

• Frequency response and memory effects in the PA circuitry, and
• Noise in the measurement setup and the DUT.

These dispersion behaviors may affect the quality of the model identification con-
siderably and therefore their effect should be considered in the identification process.
While a simple time or statistical averaging can minimize the effect of the white noise
in the measurement set-up, the effect of the dispersion caused by memory effects
cannot be minimized by these methods. Such averaging will result in non-smooth
AM/AM and AM/PM curves, which are different from the actual static response of
the power amplifier when characterized using CW signals. More elaborate averaging
techniques can be used for the extraction of the static nonlinearity. This is needed
for memoryless modeling or de-embedding of the static nonlinearity from dynamic
nonlinearities for box-oriented modeling.

8.4.1 Moving Average Techniques

In the first step, the AM/AM and AM/PM of the power amplifier or nonlinear trans-
mitter are plotted using the measured data after compensating for the delay in the
transmission and feedback paths. These plots include significant dispersion caused by
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the dynamic response of the system (frequency response and memory effects) along
with the effect of noise generated by the DUT and the measurement set up.
The next step consists of isolating the static nonlinear behavior from the dynamic

effect causing the dispersion. Such operation is achieved using averaging. This oper-
ation consists of reducing the dispersion by averaging the gain and phase values for
the same input power. This statistical averaging will eliminate the dispersion caused
by noise and will remove the dispersion caused by memory effects. It consists first
of sorting all the samples of the measured AM/AM and AM/PM data according to
the power of the input signal. Then, a statistical average is applied for the data with
the same input power. Each of the obtained AM/AM and AM/PM curves becomes a
single line with no dispersion in it. However, this line is not smooth and does not rep-
resent accurately the static nonlinearity of the system. It includes residual dispersive
behavior that is averaged statistically. If such curve were to be used to de-embed the
static nonlinearity from the dynamic response (frequency response) for box oriented
models, modeling will not be accurate.
In a final step, a moving average algorithm can be used to remove the residual dis-

persive behavior from the statically averaged signal.
Different moving average algorithms were proposed in the literature to smooth the

AM/AM and AM/PM characteristics of power amplifiers. In [21, 25, 26], Liu et al.
propose to use the following algorithm for the moving average:

ĝ(n) = 𝛼 ⋅ g(n) + (1 − 𝛼)ĝ(n − 1) (8.3)

where g(n) is the power-sorted and time-averaged gain at the input of the moving aver-
age block, ĝ(n) is the output of the moving average algorithm, n refers to the index of
the gain value in the power-sorted gain vector, and 𝛼 is a weighting factor that should
take a value between 0 and 1. In the simplest situation, 𝛼 can be constant. However, Liu
et al. stated that given the significant dispersion in the AM/AM and AM/PM charac-
teristics of wideband power amplifiers, a fixed weighting factor along the full dynamic
range of the signal often leads to a poor moving average quality. Indeed, if 𝛼 is large
(close to 1), the output of the moving average algorithm is very close to its input; a
very small amount of averaging is applied to the signal and the output is not properly
smoothed. Contrarily, if 𝛼 is small (close to 0), the output will be smoothed but may
result in an incorrect traces due to the average error propagation. Liu et al. proposed
to use an exponentially weighted moving average, in which the value of 𝛼 is changing
to adapt to the changes in the AM/AM and AM/PM characteristics. More precisely, in
the proposed weighted moving average algorithm, 𝛼 is a function of the input power,
that is, 𝛼 = F[|x2(n)|].
In [27, 28], authors propose to use a more dynamic moving average algorithm. This

moving average algorithm can be represented by the following equations:

g̃(n) = ĝ(n − 1) + x(n) − x(n − 1)
x(n + 1) − x(n − 1)

⋅ [g(n + 1) − ĝ(n − 1)] (8.4)

ĝ(n) = 𝜆(n) ⋅ g(n) + [1 − 𝜆(n)]g̃(n) (8.5)
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In this algorithm, the averaging is done in two steps. The first step consists of a
static moving average where the resulting signal g̃(n) is an average between the future
sample of the input signal, g(n + 1), and the past sample of the moving average block
output, ĝ(n − 1). The constant weighting factor is only a function of the step size
of power, making the resulting signal g̃(n) a linear interpolation between g(n + 1) and
ĝ(n − 1). The second step consists of a dynamic moving average where the output sig-
nal ĝ(n) is provided by a dynamically weighted average between g̃(n) and the present
sample of the input signal g(n). 𝜆(n) is the regression factor, which can take values
between 0 and 1. For values close to 1, small changes are applied to the output signal
and therefore non smoothed curve is obtained. Kwan et al. [28, 29] showed that choos-
ing values of 𝜆(n) proportional to the second derivative of the gain function (AM/AM
or AM/PM) leads often to better averaging performance.

8.4.2 Model Coefficient Extraction Techniques

In Chapters 4, 5, and 6, the different power amplifier models with andwithout memory
were introduced and formulated mathematically. Depending on their mathematical
formulation, each block of thesemodels can be classified in either of the two following
categories:

• Look-up table based blocks, where the nonlinear function is implemented using
look-up tables. These look-up tables are built using measured data in order to
include information on the nonlinear behavior of the block. In this case, no
coefficients need to be extracted for modeling. The model identification consists of
building the look-up table content, which is obtained from processing the measured
data as shown in the previous sections of this chapter. This operation includes the
delay compensation, data de-embedding, and moving average techniques.

• Equation based blocks, where the block is modeled by an equation relating the out-
put signal of the block to its input signal. Such an equation can model nonlinearity
(e.g., memoryless polynomial), memory effects (e.g., finite impulse response filter
in Weiner model), or the joint effects of memory and nonlinearity (e.g., memory
polynomial). This equation has a certain form and includes coefficients that are
device dependent. In this case, the model identification consists of extracting these
coefficients.

In this section, we will present the general formulation for an equation based model
and discuss the most frequently used algorithms for coefficient extraction.
If we consider thememory polynomial model, the output is represented as a function

of the input signal using the equation below as was shown in Equation 5.2:

y(n) =
M∑

m=0

K∑
k=1

amk ⋅ x(n − m) ⋅ |x(n − m)|k−1 (8.6)
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where y(n) is the model’s baseband complex output sample at instant n and
x(n − m) is the model’s baseband complex input sample at instant n − m. It was
shown in Chapter 5 that this representation can be rewritten in vector format as:

y(n) = 𝛗MP(n) ⋅ A (8.7)

where 𝛗MP(n) is a vector built using the baseband complex input signal samples x(n −
m) according to the model’s basis functions set, and A is the vector containing the
model coefficients. These are given by:

𝛗MP(n) = [x(n) · · · x(n) ⋅ |x(n)|K−1 x(n − 1) · · · x(n − 1)⋅|x(n − 1)|K−1 · · · x(n −M) ⋅ |x(n −M)|K−1] (8.8)

A =
[
a01 · · · a0K a11 · · · a1K · · · aMK

]T
(8.9)

where []T denotes the transpose operator.
For a set of N samples, this vector representation can then be rewritten in matrix

format as follows:
y = X ⋅ A (8.10)

where y = [y(n) y(n − 1) · · · y(n − N + 1)]T is the vector of N samples of the output
signal, and X is a matrix whose rows are delayed versions of 𝛗MP(n). It is given by:

X = [𝛗MP(n) 𝛗MP(n − 1) · · ·𝛗MP(n − N + 1)]T

=
⎡⎢⎢⎢⎣

x (n) · · · x(n) ⋅ |x(n)|K−1 x(n − 1) · · · x(n − 1) ⋅ |x(n − 1)|K−1
x(n − 1) · · · x(n − 1) ⋅ |x(n − 1)|K−1 x(n − 2) · · · x(n − 2) ⋅ |x(n − 2)|K−1

⋮ … ⋮ ⋮ … ⋮
x(n − N + 1) · · · x(n − N + 1) ⋅ |x(n − N + 1)|K−1 x(n − N) · · · x(n − N) ⋅ |x(n − N)|K−1

· · · x (n −M) ⋅ |x(n −M)|K−1
· · · x(n −M − 1) ⋅ |x(n −M − 1)|K−1
… ⋮
· · · x(n −M − N + 1) ⋅ |x(n −M − N + 1)|K−1

⎤⎥⎥⎥⎦
(8.11)

This matrix formulation can be carried out for any polynomial based model or block
of a multi-box model. The only change that will occur from one model to another will
be in the matrix composition of the data matrix, X. Given the matrix formulation of
the model, the coefficients identification corresponds to calculating the vector A. If
the matrix X was invertible, the coefficients identification would be given by:

A = X−1 ⋅ y. (8.12)

However, this is not the case, and the system provided by Equation 8.10 corresponds
to an over-determined system. An approximate solution to the coefficients extraction
can be obtained by minimizing the mean squared error, e, given by:

e = ‖y − XA‖2. (8.13)
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One approach that is commonly used to solve for this problem consists of computing
the Moore–Penrose pseudo-inverse of the matrix X given by [30–32]:

pinv(X) = (XTX)−1XT . (8.14)

The coefficients will then be calculated using:

A = pinv(X) ⋅ y. (8.15)

This technique allows for a good estimation of the model coefficients by minimizing
the error using least squares criterion. It also offers relatively good stability and con-
vergence performance. However, the main drawback is the computational complexity.
Indeed, it requires amatrix inversion alongwithmatricesmultiplications. Even though
singular value decomposition (SVD) is used to facilitate the matrix inversion cal-
culation, the resulting complexity prevent the use of this technique in continuously
adaptive and online linearization.
In order to reduce the computational complexity, adaptive filtering algorithms can

be used to replace the SVD algorithm. One can classify these algorithms into two
different classes:

1. The stochastic gradient family, which includes the least-mean-squares (LMSs)
algorithm and its variations such as the normalized LMS algorithm, the leaky LMS
algorithm, and so on.

2. The recursive least-squares (RLSs) family, which includes the RLSs algorithm
and its variations such as the QR decomposition based recursive least-square
(QR-RLS) and the exponentially-weighted RLS.

The concept of adaptive filtering consists of calculating iteratively the model output
using the instantaneous error and with an objective of minimizing the power of this
error, or in other words, minimizing the mean squared error. For PA behavioral mod-
eling, the process is conceptually a system identification problem where the model
intends to replicate the system (PA) behavior. In this case, the system and the model
have the same input x(n) and the adaptive filter output is an estimate of the model out-
put, ŷ(n). The desired output of the filter (d(n)) is therefore the output of the system:

d(n) = y(n) (8.16)

and the modeling error is therefore the difference between the output of the adaptive
filter and the output of the system:

e(n) = d(n) − ŷ(n) = d(n) − 𝛗x(n) ⋅ A(n) (8.17)

where 𝛗x(n) is a vector built using the baseband complex input signal samples x(n −
m) according to the model’s basis functions set. For example, in the case of memory
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polynomial, this vector is 𝛗x(n) is given by:

𝛗x(n) = 𝛗MP(n) =[x(n) · · · x(n) ⋅ |x(n)|K−1 x(n − 1) · · ·

x(n − 1) ⋅ |x(n − 1)|K−1 · · · x(n −M) ⋅ |x(n −M)|K−1] (8.18)

and A(n) is the vector containing the adaptive filter coefficients at instant n. A block
diagram of the concept of system identification is presented in Figure 8.11.
In the case of DPD, the problem is cast as a reverse modeling of power amplifiers.

In this case, the post-inverse is identified and used for predistortion purpose. In this
case, the gain normalized output of the system (PA), y(n)∕G, where G is the linear
gain of the PA is used as the input of the adaptive filter. The adaptive filter provides
at its output an estimate, ŷ(n), of the input signal to the PA, x(n). The desired output
of the filter is therefore the delayed version of the input of the system:

d(n) = x(n − 𝛽) (8.19)

and the modeling error is therefore the difference between the output of the adaptive
filter and the input of the system:

e(n) = d(n) − ŷ(n) = d(n) − 𝛗y(n) ⋅ A(n) (8.20)

where 𝛗y(n) is a vector built using the baseband complex output signal samples of the
system, y(n − m), according to the model’s basis functions set. For example, in the
case of memory polynomial, this vector is given by:

𝛗y(n) = 𝛗MP(n) = [y(n) · · · y(n) ⋅ |y(n)|K−1 y(n − 1) · · · y(n − 1) ⋅ |y(n − 1)|K−1 · · ·
y(n −M) ⋅ |y(n −M)|K−1] (8.21)

and A(n) is the vector containing the adaptive filter coefficients at instant n. A block
diagram of the concept of system identification is presented in Figure 8.12.

Figure 8.11 Block diagram of the system identification concept in adaptive filtering
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Figure 8.12 Block diagram of the system reverse modeling concept in adaptive filtering

In general, one can formulate the problems of model identification and reverse mod-
eling using the general equation of the error:

e(n) = d(n) − ŷ(n) = d(n) − 𝛗(n) ⋅A(n) (8.22)

where 𝛗(n) can be 𝛗x(n) or 𝛗y(n), according to the case, whether it is system identifi-
cation or reverse modeling, respectively. The objective here is to minimize the mean
squared error with regards to A(n):

J[A(n)] = E[e2(n)] (8.23)

where E[x] is the expectation of x.
Using the steepest descent algorithm, the gradient of this quantity can be shown to

be equal to:

g = 𝜕J(A)
dA

= −2E[𝛗T (n)e(n)] = −2E[𝛗T(n)d(n) − 𝛗T(n)𝛗(n)A] (8.24)

which can be written as:
g = −2p + 2RA (8.25)

where p = E[𝛗T (n)d(n)] is the inter-correlation vector and R = E[𝛗T (n)𝛗(n)] is the
autocorrelation matrix. If the coefficient vector is updated as follows:

A(n + 1) = A(n) − 𝜇

2
g(n) = A(n) + 𝜇E[𝛗T(n)e(n)] (8.26)

where 𝜇 is a constant representing the adaptation step size, the value of J decreases
from one iteration to the next and eventually the algorithmwill converge to the optimal
solution, which corresponds to the coefficients of the least squares solution:

Aopt = R−1p (8.27)

In practice, the values of p and R cannot be exactly determined, neither can be
the expectation E[𝛗T(n)e(n)]. In the stochastic gradient family and the recursive least
square family, these deterministic quantities are approximated by estimates.
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In the following, an example of use of the adaptive filtering algorithms, LMS and
RLS, in the modeling or reverse modeling of power amplifiers will be discussed.

8.4.2.1 The LMS Algorithm

The concept of the LMS algorithm consists of getting the simplest estimates R̂ and p̂
for the autocorrelation matrix R and the intercorrelation vector p, respectively, which
are the instantaneous estimates given by:

R̂(n) = 𝛗T (n)𝛗(n) (8.28)

p̂(n) = 𝛗T (n)d(n) (8.29)

The different steps of the algorithm can then be summarized in the following
equations:

• Initialization steps:
A(0) = 𝟎 (8.30)

• nth iteration:

ŷ(n) = 𝛗(n) ⋅ A(n) (8.31)

e(n) = d(n) − ŷ(n) (8.32)

A(n + 1) = A(n) + 𝜇𝛗T(n)e(n) (8.33)

where 𝜇 is a constant that represents the adaptation step size. In practice, this
constant has to be carefully chosen in order to guarantee the convergence of the
algorithm.

8.4.2.2 The RLS Algorithm

The concept of the RLS algorithm consists of estimating the adaptive filter coefficients
in order to minimize the least squares criteria given by:

J[A(n)] =
n∑
i=0

𝜆
n−i[d(i) − 𝛗(i)A(n)] (8.34)

where 𝜆 is constant factor that represents the degree of dependence from previous
iterations (0≪ 𝜆 < 1). It is often called the forgetting factor. In this case, the estimates
for the autocorrelation matrix R and the intercorrelation vector p are more realistic
for large values of n. They are given by:

p̂(n) =
n∑
i=0

𝜆
n−i𝛗T (i)d(i) ≈ p(n) (8.35)
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R̂(n) =
n∑
i=0

𝜆
n−i𝛗T (i)𝛗(i) ≈ R(n) (8.36)

From the previous two equations, one can write:

R(n) = 𝜆R(n − 1) + 𝛗T(n)𝛗(n) (8.37)

p(n) = 𝜆p(n − 1) + 𝛗T (n)d(n) (8.38)

If we note the inverse of the autocorrelation matrix by:

Q(n) = R−1(n) (8.39)

Then, it can be shown that the inverse of the autocorrelation matrix can be calculated
recursively as follows:

Q(n) = 𝜆
−1Q(n − 1) −

𝜆−2Q(n − 1)𝛗T (n)𝛗(n)Q(n − 1)
1 + 𝜆−1𝛗(n)Q(n − 1)𝛗T(n)

(8.40)

With the estimates of Equations 8.35 and 8.36, the algorithm should converge very
close to the optimal solution, which corresponds to the coefficients of the least squares
solution:

Aopt = R−1p (8.41)

The different steps of the algorithm can be summarized in the following equations:

• Initialization steps:

A(0) = 𝟎 (8.42)

Q(0) = 𝛿
−1I (8.43)

where 𝛿 > 0 is an initialization constant and I is the identity matrix.
• nth iteration:

k(n) =
𝜆−1Q(n − 1)𝛗T(n)

1 + 𝜆−1𝛗(n)Q(n − 1)𝛗T(n)
(8.44)

e(n) = d(n) − 𝛗T (n)h(n − 1) (8.45)

h(n) = h(n − 1) + k(n)e∗(n) (8.46)

Q(n) = 𝜆
−1Q(n − 1) − 𝜆−1k(n)𝛗(n)Q(n − 1) (8.47)

where 0≪ 𝜆 < 1 and 𝜆 is the forgetting factor.

In general, the stochastic gradient family has lower computational complexity but
poorer residual error performance than the recursive least squares family and therefore
is less used in nonlinear systems modeling. More detailed information about these
algorithms can be obtained in references on adaptive filtering [33–35].
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8.5 Robustness of System Identification Algorithms

Each of the previously described identification algorithms is dependent on some crite-
ria to converge. A careful choice of the parameters is necessary to ensure convergence
of the algorithm. In the following, a description of the conditions for convergence for
each of these algorithmswill be provided alongwith a comparison through an example
of robustness, expected performance in terms of amount of residual error, convergence
time, and computation complexity for these algorithms.

8.5.1 The LS Algorithm

Given the least-squares (LS) algorithm is a non-iterative algorithm, it has no need for
parameter initialization. Therefore, its convergence is independent from such step.
However, this algorithm involves the inversion of the autocorrelation matrix XTX,
which has a size of L × L, where L is the number of themodel coefficients. The number
of multiplications required for this inversion is in the order of O(L3).
The computational complexity is not the in only challenge using the LS algorithm.

The stability of implementation is also a major challenge. Indeed, it was shown that
the autocorrelation matrix XTX is ill-conditioned resulting in significantly large ratio
between the highest and lowest eigenvalues. As a result, this matrix is almost singular
and its inverse cannot be computed with enough accuracy [36, 37]. It is important to
mention that this ill-conditioning problem is intensified with large nonlinear orders of
the model. Therefore, the modeling accuracy cannot keep improving indefinitely as
the nonlinearity order of the model increases. A tradeoff between the matrix condi-
tioning and the number of coefficients for the model has to be considered in order to
achieve the lowest residual errors.
Finally, the LS algorithm, when not faced with an ill-conditioning problem, is

expected to provide the optimal solution in the terms of least squares criterion
without any additional residual errors and therefore is expected to result in the lowest
possible J for a given model.

JLS ≈ Jmin (8.48)

8.5.2 The LMS Algorithm

In the LMS algorithm described in the previous section, the parameter 𝜇 is a constant
that represents the adaptation step size. For small values of 𝜇, the convergence is
slow and several iterations are needed for the algorithm to converge. If 𝜇 increases,
the convergence becomes faster but the risk of divergence can increase. It has been
shown that a practical value of 𝜇 that guarantees convergence of the LMS algorithm
has to satisfy:

0 < 𝜇 <
2

L𝜎2
(8.49)
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where L is the number of the adaptive filter coefficients and 𝜎2 is the variance of the
input signal to the adaptive filter.
The LMS algorithm is very simple. It requires only 2L + 1 multiplications and 2L

additions per iteration. However, it requires a larger number of iterations than the RLS
algorithm to converge and often results in higher residual errors. In fact, the residual
error in LMS algorithm can be shown to be equal to [33]:

JLMS ≈ Jmin ⋅
(
1 + 𝜇

2
L𝜎2

)
(8.50)

From Equation 8.50, one can deduce that the LMS algorithm performance depends
on the signal statistics.

8.5.3 The RLS Algorithm

In the RLS algorithm described in the previous section, the parameter 𝜆 is a constant
that represents the forgetting factor or the degree of dependence from previous itera-
tions or memory of the algorithm. If 𝜆 gets very close to 1, the memory becomes large,
which will enhance its performance in terms of residual error and make it get closer to
that of the LS algorithm. However, this will result in slow convergence. Decreasing the
value of 𝜆 makes the convergence faster but reduces the accuracy of the algorithm. It
was shown that, in order to achieve accurate and relatively fast convergence of the RLS
algorithmwith minimal residual error, it is practically preferable to select 𝜆, such that:

𝜆 > 1 − 1
3L

(8.51)

where L is the number of the adaptive filter coefficients.
The RLS algorithm can therefore result in estimates of the model coefficients that

have accuracy very close to that of the LS algorithm while avoiding the computational
complexity associatedwith thematrix inversion needed in the LS algorithm. The num-
ber of multiplications required by the RLS algorithms is in the order of O(L2), which
is higher than the computation complexity of the LMS algorithm but significantly
lower than the computation complexity in the LS algorithm. The residual error in
RLS algorithm can be shown to be equal to [33]:

JRLS ≈ Jmin ⋅
(
1 + 1 − 𝜆

2
L
)

(8.52)

From the previous equation, it is clear that the residual error in RLS can be very
close to the residual error in LS algorithm if the forgetting factor gets very close to 1.
More importantly, contrary to residual error in LMS, this residual error is independent
from the statistical characteristics of the signal itself.
In the following, an example of applying the three coefficient identification algo-

rithms, LS, RLS, and LMS, for identifying a memory polynomial model is provided
to compare these algorithms in terms of normalized mean squared error and time to
convergence. In this example, the memory polynomial model was used for reverse
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Table 8.1 Performance comparison of LS, RLS, and LMS algorithms

LS LMS RLS

Residual normalized mean squared error (dB) −42.5 −31.2 −41.7
Convergence time (iterations) – 350 200

modeling a power amplifier (DPD synthesis). The model has a nonlinearity order
equal to 12 and memory depth equal to 3. The comparison is summarized in Table 8.1
[38]. The poor performance of LMS algorithm can be attributed to two factors: (i) the
high nonlinearity order used for the model which is 12 results in a very high dispersion
in the values of the model coefficients; (ii) the correlated nature of signal’s samples.

8.6 Conclusions

In this chapter, practical aspects for power amplifier modeling, including character-
ization and identification techniques, were presented. It was shown that the power
amplifier behavior is significantly affected by the signal statistical characteristics.
Therefore, for better model accuracy, it is preferable to characterize the power ampli-
fier using a modulated signal with similar characteristics to the model that will be used
for the power amplifier. While such a characterization method achieves better model-
ing accuracy than using a continuous wave or multi-tone characterization, the use of a
modulated signal in the characterization process requires involving more complicated
identification techniques compared to a continuous wave characterization.
Two different classes of identification techniques were presented. The first class

consists of moving average algorithms used to separate the static nonlinearity from
the dynamic behavior of the power amplifier. These algorithms are used to identify
memoryless models including look-up table based models or equation based models.
The moving average algorithms are also used in the identification of box oriented
models that include static nonlinear box(es) within the model.
The second class of model identification is used for the identification of equation

based models including the family of memory polynomial based models and their
variations. Three different algorithms for the identification of the model coefficients
were presented and compared in terms of quality of estimation quantified with the
normalized mean squared of the residual error, the robustness of convergence, the
computational complexity, and the speed of convergence.
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9
Baseband Digital Predistortion

9.1 The Predistortion Concept

The ultimate aim of studying power amplifier (PA) distortions is to design appropriate
predistorters that will compensate for these distortions and ensure linear amplification
of the signal to be transmitted. In Chapter 3, the similarities between behavioral mod-
eling and digital predistortion (DPD) were briefly introduced. Various mathematical
formulations that can be used to implement behavioral models as well as digital pre-
distorters were thoroughly discussed in Chapters 4–7. Chapter 8 exposed the common
steps of the behavioral modeling and DPD processes with a focus on the identification
techniques employed for the synthesis of the model or predistorter function. In this
chapter, the specificities of DPD are addressed. Although the analysis is carried out in
this chapter for the case of a PA, the concepts and results still hold in the case where the
transmitter’s analog front end is part of the device under test (DUT) to be linearized.
Conceptually, predistortion consists in implementing a nonlinear function upstream

of the PA complementary to that of the amplifier to be linearized. Accordingly, the
cascade made of the predistorter and the PA will operate as a linear amplification
system as illustrated in the simplified block diagram of Figure 9.1. This figure also
depicts sample amplitude modulation to amplitude modulation (AM/AM) and ampli-
tude modulation to phase modulation (AM/PM) characteristics of the predistorter,
the PA and the linearized power amplifier (LPA). The objective is to have a constant
complex gain over the entire operating power range of the linearized amplifier. The
power transfer characteristics of the predistorter, the PA and the LPA of Figure 9.1
are reported in Figure 9.2. This latter figure clearly illustrates that the predistorter is
designed to generate a gain expansion that will compensate for the gain compression
commonly observed in PAs. Since some class AB PAs as well as Doherty amplifiers
tend to exhibit a gain expansion followed by a gain compression in their AM/AM
characteristics, the predistorter has to compensate for these and thus must produce a
gain compression followed by a gain expansion.

Behavioral Modeling and Predistortion of Wideband Wireless Transmitters, First Edition.
Fadhel M. Ghannouchi, Oualid Hammi and Mohamed Helaoui.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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Figure 9.1 Simplified block diagram of predistortion system and corresponding gain characteristics of
each block

Figure 9.2 Power transfer characteristics involved in a predistortion system
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Figure 9.3 Power transfer characteristics in predistortion systems

A rudimentary numerical example that illustrates the predistortion concept is given
in Figure 9.3 in which the input and output powers as well as the gains of a nonlinear
PA and its predistorter are presented. This figure also includes the input and output
power levels as well as the gain of the resulting linearized PA. In this case, the PA is
assumed to have a small signal gain of 20 dB and a saturation output power in the range
of 23 dBm. Even though this example considers a memoryless PA that does not cause
AM/PM distortions, the same concept can be extended to include phase distortions
and memory effects. As shown in Figure 9.3, a gain compression is observed in the
PA characteristic for input power levels of 1 dBm and above. To compensate for this,
the predistortion function introduces a complementary gain expansion. It is important
to note here that the maximum input power of the predistorter is 3 dBm while the
maximum input power of the PA is 7 dBm. Typically, when the input power of the
DPD exceeds 3 dBm, clipping will occur in order to avoid overdriving the PA. The
saturation input power of the DPD is determined by the saturation output power, or
equivalently, the saturation input power of the PA and the gain of the linearized PA.
This aspect will be further discussed in the DPD normalization gain section.
To ensure linear amplification, for a given output power of the PA at instant

n (Pout_PA(n)), the required power level at the input of the predistorter (Pin_PD(n)) can
be determined by:

Pin_PD(n) = Pout_PA(n) − |GLPA| (9.1)

where GLPA is the desired complex power gain of the linearized amplifier.
The output power of the predistorter (Pout_PD(n)) is simply the input power of the

PA (Pin_PA(n)):
Pout_PD(n) = Pin_PA(n). (9.2)

Thus, the input-output power characteristic of the predistorter can be easily
obtained from that of the PA by normalizing the output gain of the amplifier using
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the desired linear gain and then swapping the input and output data as demonstrated
by Equations 9.1 and 9.2.
Since the input and output powers of the amplifier are related through its instanta-

neous gain (GPA(n)) according to:

Pout_PA(n) = Pin_PA(n) + |GPA(n)| (9.3)

then, the predistorter’s input power can be expressed as a function of the PA input
power using:

Pin_PD(n) = Pin_PA(n) + |GPA(n)| − |GLPA|. (9.4)

Thus, it is possible to express the instantaneous gain of the predistorter from the
measured characteristics of the PA by combining Equations 9.1–9.4. This leads to:|GPD(n)| = Pout_PD(n) − Pin_PD(n) = |GLPA| − |GPA(n)|. (9.5)

When AM/PM distortions are present, the phase distortions caused by the predis-
torter ( GPD(n) ) are:

GPD(n) = GLPA − GPA(n) (9.6)

GLPA and GPA(n) are the AM/PM distortions of the linearized PA and the PA, respec-
tively.
In summary, once the AM/AM and AM/PM characteristics of the amplifier are mea-

sured, the AM/AM and AM/PM characteristics of the corresponding predistorter can
be determined using Equations 9.4, 9.5, and 9.6. Having these desired predistorter
characteristics, the models described in the previous chapters can be applied to accu-
rately fit this dataset.

9.2 Adaptive Digital Predistortion

The effectiveness of DPD systems in canceling the distortions present at the output
of PAs and transmitters extensively depends on the match between the predistorter’s
nonlinear characteristics and that of the DUT to be linearized. Since the nonlinearity
exhibited by the DUT varies with time due to changes in the drive signal, aging, or
drifts, it is essential to continuously update the predistortion function to maintain the
linear operation of the system made of the predistorter and the DUT. Adaptive digital
predistorters can be implemented either in closed loop or open loop configuration.
This classification depends on the location of the predistortion function with respect
to the adaptation loop.

9.2.1 Closed Loop Adaptive Digital Predistorters

In closed loop adaptive digital predistorters, the predistortion function is located inside
the adaptation loop used to update the predistortion function coefficients.
The functional block diagram of closed loop DPD systems is depicted in Figure 9.4.

The signal at the input of the digital predistorter (xin_DPD(n)) and that at the output of
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Figure 9.4 Closed loop adaptive digital predistortion system

the PA (xout_PA(n)) are used to compute the error signal of the closed loop DPD system
(eCL_DPD(n)) defined by:

eCL_DPD(n) = xin_DPD(n) −
xout_PA(n)
GLPA

(9.7)

where GLPA is the gain of the linearized PA.
The adaptive algorithm is then used to minimize this error signal and ensure that the

amplifier’s output signal is a scaled replica of the predistorter’s input signal.
This concept is also known as “model the reference adaptive system” (MRAS) in

control theory. Closed loop DPD systems employ the direct learning technique to
identify the predistorter’s coefficients. The direct learning refers to the method used
to update the predistorter’s coefficients by considering the input and output signals
of the linearized PA made of the cascade of the predistorter and the amplifier [1,
2]. Closed loop predistorters usually exhibit slow convergence and high computa-
tional complexity since there is no direct relation between the error signal and the
predistorter’s coefficients. They are also prone to divergence if the PA is driven into
saturation, which will cause the adaptive algorithm to repeatedly and unsuccessfully
try to increase the output power of the predistorter to correct for the uncorrectable
saturation induced distortions.

9.2.2 Open Loop Adaptive Digital Predistorters

DPD can bemade adaptive without having to encompass the digital predistorter within
the adaptation loop. Such systems are commonly referred to as open loop adaptive
digital predistorters. A basic block diagram of open loop DPD systems is illustrated
in Figure 9.5. In the open loop adaptiveDPD system, the signals at the input and output
of the PA are used to compute the DPD function update. This gives rise to two possible
alternatives. In the first, the amplifier’s model is identified and then the DPD function
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Figure 9.5 Open loop adaptive digital predistortion system

is built by inverting this model. Whereas in the second approach, the predistortion
function is directly derived by calculating the post-inverse of the amplifier.
The two variants of open loop adaptive DPD systems are depicted in Figure 9.6.

In Figure 9.6a, a direct learning scheme is used to identify the model of the PA.
The inverse of this model, which represents the desired predistortion function, is
then calculated. This technique is suitable for memoryless systems where one-to-one

(a)

(b)

Figure 9.6 Open loop adaptive digital predistortion system implementations (a) direct learning archi-
tecture and (b) indirect learning architecture
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mapping exists in the PA model. However, the presence of memory effects makes the
amplifier model inversion very complicated and subject to substantial fitting errors.
To get around the need for calculating the inverse function of the PA model, the

second variant of open loop adaptive DPD systems, illustrated in Figure 9.6b, identi-
fies the post-inverse of the amplifier’s nonlinearity by swapping its input and output
signals. A copy of the post-inverse function is then used to predistort the input signal
(xin_DPD(n)). The essence of this technique is based on the work of Schetzen on the
theory of the pth order inverses of nonlinear systems where it was established that the
pth order pre-inverse of a system is identical to its pth order post-inverse [3]. This is
true under the assumption that up to the pth order nonlinear components are generated
by the amplifier. This assumption is realistic and valid for PAs since high order non-
linear components have negligible contributions to the PA’s behavior. This variant of
open loop adaptive DPD, commonly used in adaptive digital predistorters, is referred
to as the indirect learning technique [4, 5].

9.3 The Predistorter’s Power Range in Indirect
Learning Architectures

The major limitation in indirect learning architecture is that deriving the predistorter
function by swapping the input and output data of the amplifier leads to a reduced
power range of the predistorter when compared to that of the amplifier. To better
illustrate this problem, let us consider a PA prototype to be linearized over its entire
power range up to saturation. This analysis also holds if the amplifier is intended to
be linearized only up to a certain output power lower than its saturation power. The
power transfer characteristic of the considered PA prototype is reported in Figure 9.7.
To simplify the calculations without restricting their validity, the PA’s power trans-
fer characteristic is reported after normalization by its small signal gain. The DPD’s
power transfer characteristic, as well as that of the linearized amplifier, is shown in the
same figure. Here, the DPD was designed to have a 0 dB small signal gain and lead
to a linearized amplifier gain equal to the PA’s small signal gain (|GLPA| = |GSS_PA|).
In the remainder of this chapter, all gain and power values are expressed in dB and
dBm units, respectively. The signal to be transmitted has a peak to average power ratio
equal to PAPRSig.
It can be observed from the power transfer characteristics of the PA and its DPD

that:

• The maximum power level at the predistorter’s input is Pin_max _DPD. This power
level can deduced from the PA’s saturation point using:

Pin_max _DPD = Pin_sat_PA − GCsat_PA (9.8)

Pin_sat_PA and GCsat_PA are the PA’s input power level and gain compression at sat-
uration, respectively. These are shown in Figure 9.7.
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Figure 9.7 Power transfer characteristics of a PA and its predistorter

• The maximum average power level at the predistorter’s input (Pin_avg_max _DPD).
This represents the highest average power that can be applied at the DPD input
without causing clipping. This power level depends on the signal’s PAPR (PAPRSig)
and is related to the predistorter’s maximum power level (Pin_max _DPD) by:

Pin_avg_max _DPD = Pin_max _DPD − PAPRSig. (9.9)

Accordingly, the maximum average power that can be applied at the input of the PA
during the linearization step is:

Pin_avg_max _PA_Lin ≃ Pin_avg_max _DPD = Pin_sat_PA − GCsat_PA − PAPRSig. (9.10)

In this latter equation, it is assumed that the DPD does not introduce average power
variations as mentioned in the case of the constant average power technique.
In contrast, to linearize the PA over its entire power range, its average input power

during the characterization step should be:

Pin_avg_max _PA_Cha = Pin_sat_PA − PAPRSig. (9.11)

Based on this, it appears that it is not possible to characterize the PA over its entire
power range while operating it at the same average input power that will be applied
during the linearization steps. To overcome this drawback of the indirect learning
architecture, the constant average power technique, the constant peak power technique
or the synergetic CFR (crest factor reduction)/DPD technique can be utilized.
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9.3.1 Constant Peak Power Technique

One alternative that can be adopted to characterize theDUT over its entire power range
is to adjust the power level of the input signal during the characterization step in order
to drive the DUT over its entire power range. In this case, the average power of the
DUT’s input signal during the characterization step will be given by Equation 9.11.
Conversely, during the linearization step, once the predistortion function is applied,
the average power at the DUT’s input will be equal to that given by Equation 9.10.
Combining Equations 9.8–9.11, it possible to estimate the average power variation

at the input of the PA between the characterization and linearization steps. As a rule
of thumb, this average power variation is expected to be in the range of the gain com-
pression exhibited by the PA at peak power. In this case, since the PA is operated up
to saturation,

Pin_avg_PA_Charac − Pin_avg_PA_Lin ≃ GCsat_PA. (9.12)

Such average power variation at the input of the PAwill cause a change in its behavior.
Consequently, a mismatch between the DPD nonlinearity and that of the PA will be
noticed. Thus, iterative PA characterization and DPD synthesis procedures might be
required to attain convergence, that is, the average power at the input of the PA remains
quasi-unchanged between the characterization and the linearization steps.
This technique is referred to as the constant peak power technique since the PA is

continuously driven up to its saturation power either during the characterization or the
linearization steps.

9.3.2 Constant Average Power Technique

In this technique, the average power applied at the input of the predistorter during
the characterization step (DPD OFF) is the same as that to be applied at the input
of the predistorter during the linearization step (DPD ON). The concept is described
here assuming that the predistorter’s input and output signals have the same average
power. A detailed study of the predistorter’s gain effect of the system performance is
reported in Section 9.4. This will establish that optimal performance is obtained when
there is no average power variation through the predistorter.
The average power of the signal to be applied at the input of the predistorter during

the linearization step was calculated in Equation 9.8. If during the characterization
step the test signal is applied at the input of the DUT with an average power of
Pin_avg_max _DPD, the PA will not be characterized over its entire power range but only
up to an input power level equal to Pin_max _DPD, which is several dBs lower than the
PA’s input saturation power (as previously derived in Equation 9.8). Consequently,
the predistortion function derived from these measurements will not be defined over
the required power range. To get around this shortcoming, the measured AM/AM and
AM/PM characteristics of the PA can be extrapolated to approximate its behavior over
the input power range spanning from Pin_max _DPD to Pin_sat_PA. If needed, a second
iteration of the PA characterization and DPD synthesis procedure can be performed.
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In this iteration, and due to the gain expansion cause by the DPD, the PA will operate
almost over its entire power range and thus the DPD function can be fully defined and
the need for extrapolating the measured data will be alleviated.
Operating the amplifier at the same average power during the predistortion process

ensures that its nonlinear characteristics remain quasi-unchanged and thus a perfect
match between the DPD nonlinear characteristic and that of the PA will be obtained.
The major drawback of this technique is related to the extrapolation of the PA data
over the remainder of the power range. This extrapolation is straightforward in the
case of look-up table models but becomes challenging in the presence of memory
effects and the use of analytical models.

9.3.3 Synergetic CFR and DPD Technique

The constant peak power technique described above is not suitable for implementation
in field deployed systems since it requires increasing the operating average power
during the characterization step that is not realistic in such systems. On the other
hand, the constant average power technique is viable for practical implementations but
suffers from the extrapolation problem highlighted previously. The synergetic crest
factor reduction and DPD technique was proposed, in [6], as a possible alternative
to the constant average power technique that takes advantage of the co-existence of
crest factor reduction and DPD modules in communication systems. The synergetic
CFR/DPD technique is actually a constant average power technique in which the need
for extrapolation is neatly dodged.
In this technique, the crest factor reduction is deliberately turned off during the PA

characterization step. This allows for the identification of the predistortion function
over the required power range. Then, during the linearization step, the crest factor
reduction is turned on along with the DPD function. The thoughtful choice of using a
high PAPR signal during the characterization step and a low PAPR signal during the
linearization step eliminates the need for extrapolating themeasured data as is required
in the constant average power technique. The synergetic CFR/DPD technique can be
perceived as a joint constant average power/constant peak power technique. In fact, the
peak power at the input of the PA is almost maintained between the characterization
and linearization steps due to the complementary actions of CFR and DPD on the
signal’s PAPR.

9.4 Small Signal Gain Normalization

The predistorter’s AM/AM and AM/PM characteristics are derived from that of the
DUT using Equations 9.4–9.6. These equations require the selection of the gain of
the linearized amplifier GLPA. This gain is applied to normalize the measured gain
of the PA and define the small signal complex gain of the digital predistorter. Thus,
this gain is referred to as normalization gain or linearized PA gain. The phase of the
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normalization gain is used to derive the AM/PM characteristic of the predistorter. The
selection of the phase of the normalization gain is not critical for the performance
of the predistorter as its variation only introduces a phase shift in the predistorted
signal. Conversely, the choice of the magnitude of the normalization gain has a direct
impact on predistorter performance. This is even more important when the AM/AM
characteristic of the PA presents a gain expansion prior to the compression region or
when the gain of the amplifier varies over a wide range as is the case of amplifiers
biased in deep class AB.
Considering a typical power transfer characteristic of a PA, digital predistorters

are commonly designed such that the linearized PA has the same gain as the PA.
This implies that the DPD has a 0 dB small signal gain. This scenario is depicted
in Figure 9.8, which shows the power transfer characteristics of a sample amplifier
before and after linearization along with the AM/AM characteristic of the correspond-
ing DPD.
For the study of the normalization gain importance in DPD, it is essential to focus

on the following key power levels that are pointed out in Figure 9.8:

• Pin_sat_PA: the amplifier’s input power level at saturation.
• Pout_sat_PA: the amplifier’s output power level at saturation.
• Pin_sat_DPD: the predistorter’s input power level at saturation.
• GSS_DPD: the small signal gain of the predistorter.
• Gsat_DPD: the predistorter’s gain at saturation.

Based on Equation 9.5, the magnitude of the predistorter’s small signal gain is
defined as: |GSS_DPD| = |GLPA| − |GSS_PA| (9.13)

where GSS_PA is the amplifier’s small signal gain.
The predistorter’s input power and gain at saturation can be expressed as a func-

tion of the amplifier’s output power and gain at saturation (Pout_sat_PA and Gsat_PA,
respectively) and the linearized amplifier gain (GLPA) according to:

Pin_sat_DPD = Pout_sat_PA − |GLPA| (9.14)

and
Gsat_DPD = Pin_sat_PA − Pin_sat_DPD = |GLPA| − |Gsat_PA| (9.15)

The two latter equations describe how theAM/AMcharacteristics of theDPD evolve
as the gain of the linearized amplifier is varied. Indeed, both Pin_sat_DPD and Gsat_DPD
can be controlled by adjusting the gain of the linearized amplifier (GLPA). Thus, it is
possible to design a plurality of predistorters having various power transfer character-
istics by changing the normalization gain. The impact of the normalization gain on the
DPD’s AM/AM characteristics and the power transfer characteristic of the linearized
amplifier is reported in Figure 9.9. This figure clearly shows that the maximum power
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Figure 9.9 (c) LDUT power transfer characteristics

level at the predistorter’s input as well as the predistorter gain characteristics vary as
a function of the normalization gain. However, the maximum power levels at the out-
put of the predistorter and the linearized amplifier are unchanged and are persistently
equal to Pin_sat_PA and Pout_sat_PA, respectively.
The impact of the predistorter’s normalization gain on the linearized amplifier per-

formances was thoroughly discussed in [7, 8]. In fact, as demonstrated in the analysis
previously, the DPD gain is tightly related to the normalization gain. The presence of a
power gain through the predistorter induces average power variation between its input
and output signal. In the indirect learning technique, this average power variation will
cause the operating conditions of the PA to change between the characterization and
linearization steps. Since the behavior of PAs is commonly sensitive to average power
variations of the input signal, a mismatch between the predistorter’s nonlinear func-
tion and that of the PA will be observed. This will in turn limit the performance of the
DPD and its ability to cancel the amplifier’s distortions.
The variations of the signal’s power between the input and the output of a sample

digital predistorter are reported in Figure 9.10 as a function of the DPD’s normaliza-
tion gain. All predistorters were derived using the same model and parameters. The
only difference is in the normalization gain used to derive the DPD characteristics.
In this figure, each curve corresponds to a constant average power at the input of
the predistorter. The variation of the signal’s average power through the predistorter
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Figure 9.10 Effects of gain normalization on the average power variation through a digital
predistorter

(ΔPavg_DPD) is defined as:

ΔPavg_DPD = |Pout_avg_DPD − Pin_avg_DPD| (9.16)

Pin_avg_DPD and Pout_avg_DPD correspond to the average power of the signals at the input
and output of the predistorter, respectively.
The results presented in Figure 9.10 reveal that the average power variation through

the predistorter can be controlled by appropriate selection of the normalization gain.
For each operating average power, the optimal normalization gain is the one that leads
to a minimal average power variation. Ideally, this average power variation should be
0 dB, however, in practice PA behavior is not sensitive to average power variations of
up to 0.5 dB or even 1 dB in some cases.
The various digital predistorters derived in Figure 9.10 for the−7dBm average input

power were applied to linearize the corresponding PA prototype. In these tests, the
PA was driven by a two-carrier wideband code division multiple access (WCDMA)
signal. The adjacent channel power ratios (ACPRs) at the output of a linearized PA
prototype were measured for each digital predistorter. These measurement results are
conveyed in Figure 9.11 as a function of the average power variation through the
DPD. This figure confirms that the best DPD performance, corresponding to the low-
est ACPR at the output of the linearized amplifier, is obtained when the average power
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Figure 9.11 Effects of the average power variation through digital predistorter on the ACPR of a lin-
earized power amplifier prototype [7]. ©2009 IEEE. Reprinted, with permission, from O. Hammi and F.
M. Ghannouchi, “Power alignment of digital predistorters for power amplifiers linearity optimization,”
IEEE Transactions on Broadcasting, Mar. 2009

variation through the DPD is the lowest. Most importantly, this figure shows that
significant deterioration in the DPD performance with up to 10 dB ACPR degrada-
tion can be observed as the average power variation through the DPD increases. For
example, the spectra at the output of the same PA prototype were measured using two
digital predistorters having identicalmodels and parameters. The first DPD, referred to
as conventional DPD, was derived by using the common practice according to which
the normalization gain is equal to the PA’s small signal gain (GLPA = GSS_PA). Con-
versely, the second DPD, labeled 0 dB average power gain, was extracted by setting
the normalization gain to its optimal value that minimizes the average power variation
through the DPD. The spectra measured at the output of the PA using each of these
predistorters as well as the one measured before applying the DPD are depicted in
Figure 9.12. This corroborates the ACPR results and clearly displays the importance
of the normalization gain optimization.
In order to counteract the DPD performance degradation following average power

variation through the DPD, two approaches can be considered [7]. First, the DPD
extraction procedure, including the PA characterization step, can be repeated iter-
atively until cancelation of the average power variation through the DPD occurs.
Alternately, the DPD synthesis step can be repeated by adjusting the normalization
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Figure 9.12 Effects of the DPD normalization gain on the output spectra of a linearized power amplifier
prototype [7]. ©2009 IEEE. Reprinted, with permission, from O. Hammi and F. M. Ghannouchi, “Power
alignment of digital predistorters for power amplifiers linearity optimization,” IEEE Transactions on
Broadcasting, Mar. 2009

gain in order to minimize the average power variation through the predistorter. A
low complexity algorithm for the optimization of the DPD normalization gain was
proposed in [8].
Varying the normalization gain of the DPD produces a change in the gain of the lin-

earized DUT. Thus, it could be mistakenly expected that this would impact the power
efficiency of the linearized PA. In fact, the normalization gain does not affect the PA’s
efficiency characteristics. Thus, the drain efficiency of the PA will remain unchanged.
However, since the linearized amplifier’s gain varies, the power added efficiency of
the linearized PA will theoretically vary. Though, this variation is marginal [7]. For
example, for a DUT having a drain efficiency of 50% and a gain of 30 dB; the power
added efficiency variation is in the range of 0.2% if the normalization gain changes
by 6 dB, which exceeds by far any reasonable variation of the normalization gain.

9.5 Digital Predistortion Implementations

9.5.1 Baseband Digital Predistortion

The predistortion concept for radio frequency (RF) PA linearization can be imple-
mented either in an analog or a digital domain. With the continuous improvements in
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Figure 9.13 Baseband digital predistortion system implementation

terms of speed and capabilities of digital signal processing units, baseband DPD is the
most commonly adopted predistortion architecture. Typical implementation of a base-
band DPD system is illustrated in Figure 9.13. In this system, the baseband waveform
is obtained at the output of a pulse shaping filter following data and source coding and
mapping. The predistortion function is applied, in the digital domain, on this baseband
waveform. The predistorted signal is then converted to an analog signal that will be
up-converted and then fed to the power amplification stage. At the output of the PA,
a coupler is used to feed back a fraction of the amplified signal. This feedback signal
is down-converted, digitized, and then used to update the DPD function. This update
can be done using either the direct learning or, most commonly, the indirect learning
technique described in Section 9.2.
In the system implementation depicted in Figure 9.13, the input and output signals

used to build the DPD function are the digital waveform at the predistorter output and
the digitized version of the PA’s output signal, respectively. This implies that any dis-
tortions or impairments present in the transmission path between the digital to analog
converter and the output of the PA are part of the observation and can consequently
be counteracted within the digital predistorter.
The popularity and widespread use of baseband DPD are mainly attributed to its

flexibility in implementing any type of predistortion function with excellent accuracy.
Thismakes it possible tomeet the highly demanding linearity specifications ofmodern
communication systemswhile using power efficient amplifiers. Indeed, when properly
designed, baseband digital predistorters can compensate for the distortions of highly
nonlinear amplifiers.
The feedback path maintains, ideally, a perfect match between the predistorter’s and

the PA’s nonlinear functions. Moreover, the inclusion of memory effects using any of
the models described in the previous chapters is straightforward since the baseband
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digital predistorter operates on the digital waveform. A full access to the complex
samples is thus required, which might be an issue if the predistorter is needed for
a system configuration where only the PA’s RF (radio frequency) input and output
signals are available.
The major limitation of baseband DPD is related to the bandwidth requirements of

the signal generation and observation paths: Predistorting the signal to be transmitted
results in bandwidth expansion. As a rule of thumb, one can expect the bandwidth of
the predistorted signal to be five times wider than that of the signal before applying
the predistortion function. Thus, baseband DPD sets severe bandwidth requirements
on the digital to analog converters of the signal transmission path. Similar bandwidth
requirements also apply to the analog to digital converters of the feedback path. How-
ever, this is not restricted to the case of baseband DPD and is also applied to the
RF DPD.
In a research and development environment where the main task is to synthesize

novel DPD functions or evaluate the linearizability of PA prototypes, the baseband
DPD system of Figure 9.13 can be reproduced using a typical experimental setup
that includes a vector signal generator and a vector signal analyzer as illustrated in
Figure 9.14. The vector signal generator performs the functionalities of digital to
analog converters as well as the RF front-end components of Figure 9.13 up to but
excluding the power amplification system. These functionalities are digital to ana-
log conversion, frequency up-conversion, and bandpass filtering. The vector signal
analyzer is equivalent to the feedback path shown in Figure 9.13, and encompasses
down-conversion and digitization steps. A computer is utilized to download the input
signal waveforms into the vector signal generator and acquire the output signal wave-
forms from the vector signal analyzer. Software based algorithms are used to syn-
thesize the DPD function and apply it to the input signal waveform to generate its
predistorted version.

Figure 9.14 Measurement based digital predistortion test bed
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9.5.2 RF Digital Predistortion

RF predistortion is a viable alternative to baseband DPD when the baseband digi-
tal waveform of the input signal is not accessible. RF predistortion is often imple-
mented in an analog domain using diodes [9–12], or by controlling the complex gain
of the driver stages [13]. In [14], a hybrid RF DPD system was introduced. In this
system, the predistortion function is derived in the digital domain and applied on
the RF analog signal through a vector modulator. This mixture between the analog
and digital domain confers to this technique its hybrid character. As illustrated in
Figure 9.15, the RF input and output signals of the PA are acquired through two iden-
tical down-conversion and digitization paths. This provides access to the baseband
complex waveforms corresponding to the RF bandpass signals present at the input and
output of the PA. These signals are used to identify the predistortion function using
the open loop post-inverse based technique. A copy of the predistortion function is
uploaded in the DPD module. A fraction of the RF input signal is applied at the input
of an envelope detector, which provides the DPD with the instantaneous envelope of
the RF signal. The corresponding predistortion coefficients are then applied through
the complex multiplier to the RF input signal. In the main path, a delay line is used to
align the input signal with the corresponding correction coefficients and compensate
for the delay through the envelope detection path and the predistorter.
The main constraint in the RF DPD technique lies in the fact that only the envelope

information of the signal to be transmitted is available and not its complex value as
it is the case in baseband DPD. This restricts the functions that can be applied in RF
DPD to either a look-up table structure [15–17] or an envelope memory polynomial
based function [18].

Figure 9.15 Hybrid RF digital predistortion system
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9.6 The Bandwidth and Power Scalable Digital
Predistortion Technique

As wireless communication systems evolve, the bandwidth of the signals to be han-
dled by the PA and the RF front end keeps increasing. For example, in LTE-advanced
(Long-Term Evolution-A) systems, the signal bandwidth can reach up to 100MHz
using carrier aggregation technique. This will emulate strong memory effects in the
PA and calls for the use of DPD systems with a large number of coefficients. Cou-
pled with the need for a fast predistortion function update due to the rapid changes
in the bandwidth and power of signals to be transmitted, this situation calls for the
development of appropriate DPD structures that are suitable for quick updates.
Based on the sensitivity of PA distortions to the characteristics of the drive signal,

scalable digital predistorters have been proposed in [19]. These predistorters can be
scaled with respect to the signal’s average power and/or its bandwidth. In fact, as men-
tioned in Chapter 8, static distortions of PAs aremainly affected by the signal’s average
power, while the signal’s bandwidth impacts the memory effects. This observation can
be favorably applied in two-box based structures such as the twin-nonlinear two-box
models described in Chapter 6 by making the memoryless sub-function of the model
dependent on the signal’s average power. The dynamic distortion sub-function of the
model is then employed to track the variations of the signal bandwidth and is also used
to compensate for residual distortions due to the mismatch between the memoryless
nonlinear predistortion function and the DUT. Appropriate adaptation procedures can
be applied to minimize the number of predistorter coefficients to be updated following
changes in the drive signal characteristics.
Figure 9.16 presents a block diagram of the conventional reverse twin-nonlinear

two-box based predistorter as well as its version proposed for implementing the power
and bandwidth scalable digital predistorters as reported in [19]. The conventional
reverse twin-nonlinear two-box model is considered as a single entity when it comes
to the coefficients update, that is, the PA characterization data will be used to update
both sub-functions of the model. Conversely, in the scalable version of this model,
the update procedure is different. The memoryless nonlinear function that is com-
monly implemented using a LUT in the conventional reverse twin-nonlinear two-box
model is replaced by a memoryless LUT bank in the scalable predistortion system.
This memoryless LUT bank contains a plurality of memoryless LUTs that are indexed
by the average power of the drive signal. The number of LUTs to be included in the
LUT bank depends on the sensitivity of the PA’s behavior to the variations of the sig-
nal’s average power. However, this resolution is not critical for the performance of the
predistorter as the residual nonlinearities will be removed by the dynamic distortion
sub-functions of the predistorter.
The signals at the input of the memoryless nonlinear sub-function of the predistorter

and at the output of the PA are used to derive the dynamic nonlinear function of the
predistorter. This second box is frequently implemented using the memory polyno-
mial model. The parameters of this sub-function, namely the nonlinearity order and
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Figure 9.16 Digital predistortion system update. (a) Conventional approach and (b) bandwidth and
power scalable approach

memory depth, are selected based on the bandwidth of the test signal. The placement
of a dynamic nonlinear predistortion function is such that the signals used to derive it
encompass the LUT predistorter and the nonlinear amplifier. Thus, it will compensate
for all residual distortions due to possible mismatches between the static predistor-
tion sub-function and the amplifier’s nonlinear behavior. The bandwidth and power
scalable DPD system was demonstrated to achieve the same performance as its con-
ventional counterpart while requiring the update of up to 50% fewer coefficients [19].

9.7 Summary

In this chapter, the predistortion concept was introduced and various aspects related to
the synthesis and implementation of digital predistortion functions were thoroughly
discussed. The distinction between adaptive, open loop, and closed loop predistortion
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systems was illustrated and the advantages and drawbacks of each of these approaches
highlighted. Then, the predistorter’s power range issue observed in the widely adopted
indirect learning approach was covered. It was shown that, to extend the power range
over which the predistorter’s function is defined, three approaches might be consid-
ered. The concept of each of these approaches was introduced and their pros and
cons pointed out before a thorough analysis of the effects of the small signal gain
normalization in the predistorter synthesis process was carried out.
Later in the chapter, the system level architectures of baseband, as well as RF dig-

ital predistorters, were presented. Scalability of digital predistortion systems, which
ensures their fast and resource efficient adaptation in modern wireless application,
was then discussed and an example of a system level concept that enables bandwidth
and power scalability of the digital predistorter was exposed.
This chapter complements the previous chapters as it illustrates how the various

models presented, as well as identification and characterization techniques, can be
used to build the digital predistortion function and complete the process. It also sets
the ground for the next chapter in which advanced topics related to multi-band and
multiple-input multiple-output power amplification systems are presented.

References

[1] Gonzalez-Serrano, F.J., Murillo-Fuentes, J.J. and Artes-Rodriguez, A. (2001) GCMAC-based pre-
distortion for digital modulations. IEEE Transactions on Communications, 49 (9), 1679–1689.

[2] Zhou, D. and DeBrunner, V.E. (2007) Novel adaptive nonlinear predistorters based on the direct
learning algorithm. IEEE Transactions on Signal Processing, 55 (1), 120–133.

[3] Schetzen, M. (1976) Theory of pth-order inverses of nonlinear systems. IEEE Transactions on
Circuits and Systems, 23 (5), 285–291.

[4] Eun, C. and Powers, E.J. (1997) A new Volterra predistorter based on the indirect learning archi-
tecture. IEEE Transactions on Signal Processing, 45 (1), 223–227.

[5] Ding, L., Zhou, G.T., Morgan, D.R. et al. (2004) A robust digital baseband predistorter constructed
using memory polynomials. IEEE Transactions on Communications, 52 (1), 159–165.

[6] Hammi, O., Carichner, S., Vassilakis, B. andGhannouchi, F.M. (2008) Synergetic crest factor reduc-
tion and baseband digital predistortion for adaptive 3G Doherty power amplifier linearizer design.
IEEE Transactions on Microwave Theory and Techniques, 56 (11), 2602–2608.

[7] Hammi, O. and Ghannouchi, F.M. (2009) Power alignment of digital predistorters for power ampli-
fiers linearity optimization. IEEE Transactions on Broadcasting, 55 (1), 109–114.

[8] Hammi, O., Boumaiza, S. and Ghannouchi, F.M. (2007) On the robustness of digital predistor-
tion function synthesis and average power tracking for highly nonlinear power amplifiers. IEEE
Transactions on Microwave Theory and Techniques, 55 (6), 1382–1389.

[9] P. Chan-Wang, F. Beauregard, G. Carangelo, and F. M. Ghannouchi, An independently controllable
AM/AM and AM/PM predistortion linearizer for cdma2000 multicarrier applications. Proceedings
2001 IEEE Radio and Wireless Conference (RAWCON), Waltham, MA, August 2001, pp. 53–56,
2001.

[10] S. Rezaei, M. S. Hashmi, B. Dehlaghi, and F. M. Ghannouchi, A systematic methodology to design
analog predistortion linearizer for dual inflection power amplifiers. Digest 2011 IEEEMTT-S Inter-
national Microwave Symposium (IMS), Baltimore, MD, June 2011, pp. 1–4, 2011.

[11] Gupta, N., Tombak, A. and Mortazawi, A. (2004) A predistortion linearizer using a tunable res-
onator. IEEE Microwave and Wireless Components Letters, 14 (9), 431–433.



208 Behavioral Modeling and Predistortion of Wideband Wireless Transmitters

[12] Hu, X., Wang, G., Wang, Z.C. and Luo, J.R. (2011) Predistortion linearization of an X-Band TWTA
for communications applications. IEEE Transactions on Electron Devices, 58 (6), 1768–1774.

[13] Son, K.Y., Koo, B. and Hong, S. (2012) A CMOS power amplifier with a built-in RF predistorter for
handset applications. IEEE Transactions onMicrowave Theory and Techniques, 60 (8), 2571–2580.

[14] E. G. Jeckeln, F. Beauregard, M. A. Sawan, and F. M. Ghannouchi, Adaptive baseband/RF pre-
distorter for power amplifiers through instantaneous AM-AM and AM-PM characterization using
digital receivers. Digest 2000 IEEE MTT-S International Microwave Symposium (IMS), Boston,
MA, June 2000, pp. 489–492, 2000.

[15] Boumaiza, S., Jing, L., Jaidane-Saidane, M. and Ghannouchi, F.M. (2004) Adaptive digital/RF
predistortion using a nonuniform LUT indexing function with built-in dependence on the amplifier
nonlinearity. IEEE Transactions on Microwave Theory and Techniques, 52 (12), 2670–2677.

[16] Jeckeln, E.G., Ghannouchi, F.M. and Sawan, M.A. (2004) A new adaptive predistortion technique
using software-defined radio and DSP technologies suitable for base station 3G power amplifiers.
IEEE Transactions on Microwave Theory and Techniques, 52 (9), 2139–2147.

[17] Woo, W., Miller, M.D. and Kenney, J.S. (2005) A hybrid digital/RF envelope predistortion lin-
earization system for power amplifiers. IEEE Transactions on Microwave Theory and Techniques,
53 (1), 229–237.

[18] Hammi, O., Ghannouchi, F.M. and Vassilakis, B. (2008) A compact envelope-memory polyno-
mial for RF transmitters modeling with application to baseband and RF-digital predistortion. IEEE
Microwave and Wireless Components Letters, 18 (5), 359–361.

[19] Hammi, O., Kwan, A. and Ghannouchi, F.M. (2013) Bandwidth and power scalable digital pre-
distorter for compensating dynamic distortions in RF power amplifiers. IEEE Transactions on
Broadcasting, 59 (3), 520–527.



10
Advanced Modeling and Digital
Predistortion

In previous chapters, behavioral modeling and digital predistortion (DPD) have
been discussed for conventional wireless transmitters consisting of a one-branch
single-input single-output (SISO) transmitter having a signal in one frequency band.
Such transmitter architectures do not cope with the increasing demand for high data
rates. Therefore, the newest wireless communication standards propose the use of
more advanced transmitters architectures that take advantage of the space diversity in
a multi-input multi-output (MIMO) system in order to increase the transmission data
rate; or that offer a better use of the wireless spectrum by transmitting concurrently in
multiple bands for different standards (concurrent multi-standard transmission) or for
the same standards (carrier-aggregated transmission). In both cases, multiple paths are
considered in the power amplification systems, where each path has its own nonlinear
characteristics, which makes the modeling of the nonlinear behavior more complex.
In addition, the interaction between the paths makes the increase in complexity expo-
nential and the modeling efforts much harder. The present chapter will address the
efforts made in modeling and linearizing these advanced transmitter topologies. First,
MIMO transmitters’ models will be investigated. Then, the concurrent multi-band
transmission will be modeled and solutions for its linearization will be presented.

10.1 Joint Quadrature Impairment and Nonlinear Distortion
Compensation Using Multi-Input DPD

As described in Chapter 9, the DPD consists of placing a nonlinear module, the predis-
torter, in front of the radio frequency (RF) transmitter. This predistorter has a transfer
function that is the inverse nonlinear response of the RF transmitter or power amplifier
(PA). In order to extract the transmitter or PA nonlinear distortions, a feedback loop is
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needed to acquire the signal from the output of the PA, compare it to the input signal
to the transmitter, and estimate the linear and nonlinear distortions. Therefore, the per-
formance of the predistortion can be affected by linear distortions and imperfections
in the transmitter and/or feedback paths. These linear distortions and imperfections
are mainly due to the gain and phase imbalances and carrier leakages in quadrature
modulator and demodulator. As a consequence, the inverse function of the PA cannot
be accurately estimated and a significant residual error is obtained after linearization
if these linear distortions are not taken into account.
These issues of PA linearization and quadrature imbalance compensation have been

widely studied over the recent years. Until recently, most of the methods proposed
thus far have addressed these two different problems separately [1–9]. Such an
approach makes the proposed solution not practical to implement since access to both
the quadrature modulator and the amplifier outputs are required. Only a few recently
published papers have proposed models and techniques to address both issues
jointly and simultaneously [10–14]. In the following, the quadrature imbalance
problem and its effects on the quality of predistortion are investigated, first. Then, the
multi-input models used for joint compensation of quadrature imbalance and DPD
are summarized, and their performances analyzed and compared.

10.1.1 Modeling of Quadrature Modulator Imperfections

Quadrature imbalance is conventionally modeled using cross-coupled gains to
account for the imbalance of the in-phase (I) and quadrature (Q) branches. Four
filters hI10, h

I
11, h

Q
10, and hQ11 in four different channels, composed of two straight I

and Q channels and two cross-coupling channels, are used to model the quadrature
imbalance [13]. Figure 10.1 shows the structure of the model for quadrature imbal-
ance using four real filters. The baseband representation of the output signal from the
modulator suffering from gain and phase imbalance can be expressed as follows:

ymod(n) = ymod_I(n) + jymod_Q(n) (10.1)

where

ymod_I(n) = hI10 xI(n) + hI11 xQ(n) (10.2)

ymod_Q(n) = hQ10 xQ(n) + hQ11 xI(n) (10.3)

and ymod_I(n) and ymod_Q(n) are the in-phase and quadrature components of the signal
at the output of the modulator, respectively; and xI(n) and xQ(n) are the in-phase and
quadrature components of the baseband input signal, respectively.
The quadrature modulator baseband model can then be represented in its complex

envelope format by:
ymod(n) = hIxI(n) + hQ xQ(n) (10.4)
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Figure 10.1 Modeling of the I/Q modulator’s imbalance

where hI = hI10 + jhQ11 and hQ = hI11 + jhQ10 are the complex coefficients of the models
that are applied to the in-phase and quadrature components of the input signal, respec-
tively.

10.1.2 Dual-Input Polynomial Model for Memoryless Joint Modeling
of Quadrature Imbalance and PA Distortions

If the bandwidth of the signal is small enough so that one can ignore the memory
effects in the transmitter, the discrete-time equivalent baseband of the signal at the
output of the modulator suffering from gain and phase imbalance can be expressed as:

ymod(n) = hI10 xI(n) + hI11xQ(n) + j[hQ10 xQ(n) + hQ11xI(n)]. (10.5)

In the case of memoryless modeling, the common model used for PAs is the poly-
nomial model [15, 16], where the output of the amplifier can be expressed as:

y(n) =
K∑
k=1
k odd

Hk|ymod(n)|k−1ymod(n). (10.6)

In Equation 10.6, ymod(n) is the baseband equivalent of the signal at the output of the
quadrature modulator, which is the input to the PA; and y(n) is the equivalent baseband
of the signal at the output of the PA.K is the nonlinearity order of the amplifier’s model
and Hk represent the complex coefficients of the amplifier’s model.
By replacing the expression of ymod(n) given in Equation 10.5, in the expression of

the polynomial model of the PA given in Equation 10.6, the baseband equivalent of
the signal at the output of the PA can be expressed as follows:

y(n) =
K∑
k=1
k odd

Hk|hI10xI(n) + hI11 xQ(n) + j[hQ10xQ(n) + hQ11 xI(n)]|k−1
× {hI10xI(n) + hI11 xQ(n) + j[hQ10xQ(n) + hQ11 xI(n)]}. (10.7)
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Equation 10.7 can be developed and rearranged for the odd order nonlinear terms
[13]. After rearrangement, the relationship between the complex envelope of the signal
at the input of the modulator and the complex envelope signal at the output of the PA
can be written as:

y(n) = yI(n) + jyQ(n) (10.8)

with

yI(n) =
K∑
k=1
k odd

k∑
r=0

HI
kr [xI(n)]

k−r [xQ(n)]r (10.9)

and

yQ(n) =
K∑
k=1
k odd

k∑
r=0

HQ
kr [xQ(n)]

k−r [xI(n)]r (10.10)

where HI
kr and HQ

kr are the real coefficients of the dual-input polynomial model
related to the in-phase and quadrature components of the signal at the input of the
RF front-end, respectively.

10.1.3 Dual-Input Memory Polynomial for Joint Modeling of Quadrature
Imbalance and PA Distortions Including Memory Effects

Equations 10.9 and 10.10 include only themodeling of the PA’s static nonlinearity and
the static quadrature imbalance of the modulator. No memory effects are considered
in this model. To extend this model and include the memory effects of both the PA
and the quadrature modulator, the baseband equivalent model of the cascaded RF
front-end including the PA and the quadrature modulator will then be given by:

y(n) =
M∑

m=0

K∑
k=1
k odd

k∑
r=0

Hkr(m) [xI(n − m)]k−r [xQ(n − m)] r (10.11)

where Hkr(m) = HI
kr(m) + jHQ

kr(m) are the complex coefficients of the dual-input
memory polynomial model, M is the memory depth of this model and K is its
nonlinearity order.
The polynomial model described by Equation 10.6 contains only nonlinearity

terms of odd orders. It has been shown, however, that including even-order terms in
this model reduces the modeling error and improves its accuracy for both forward
and reverse modeling of PAs [17]. The dual-input memory polynomial model of
Equation 10.11 can be modified to include even-order nonlinearity terms and to
include a dc term H00, which models the carrier leakage in the quadrature modulator.
The final expression of the dual-input memory polynomial model is then:

y(n) =
M∑

m=0

K∑
k=0

k∑
r=0

Hkr(m) [xI(n − m)]k−r [xQ(n − m)] r. (10.12)
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Figure 10.2 Dual-input nonlinear model for the joint effects of quadrature impairments and PA
nonlinearities

This formulation is able to model concurrently the nonlinearity and memory effects
introduced by the PA, as well as the dynamic gain and phase imbalance and the car-
rier leakage in the quadrature modulator. Figure 10.2 shows the block diagram of the
dual-input memory polynomial model.

10.1.4 Dual-Branch Parallel Hammerstein Model for Joint Modeling
of Quadrature Imbalance and PA Distortions with Memory

The quadrature impairments in terms of gain and phase imbalance, which were mod-
eled in Section 10.1.1 using a set of four filters applied to the in-phase and quadrature
components, can also be modeled by two complex filters, G1 and G2, where each of
them takes a complex signal as input. The input to G1 is the original or non-conjugate
complex envelope signal to be fed to the quadrature modulator and the input to G2 is
the conjugate of this complex envelope signal [10, 11, 18, 19]. It can easily be shown
that the inverse model (predistorter) of this system has a structure similar to that of
the forward model.
The PA nonlinearity can be corrected with any of the predistortion functions pre-

sented in the previous chapters. In [11], a Hammerstein model is used. The joint
compensation of the quadrature modulator impairments and PA nonlinearity can then
be obtained by cascading the Hammerstein predistorter and the quadrature impair-
ment compensation block, where the predistorter is placed first. Figure 10.3 shows

Figure 10.3 Block diagram of a linear and nonlinear distortion compensation composed of a cascade
of a Hammerstein PA predistorter and a quadrature imbalance compensator [11]
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the block diagram of a quadrature modulator impairment and PA nonlinear distortion
compensation model as proposed in [11].
If the quadrature imbalance and the PA nonlinear distortions are known, such a

model can be implemented. However, in practice, such information is not available
beforehand and therefore a joint estimation is required. Since the filters of the PA
predistorter and quadrature modulator impairment compensation block are in cascade,
their joint estimation is not straightforward. In order to be able to achieve a joint esti-
mation of the different coefficients of the model, the structure of Figure 10.3 can be
modified from a cascade to a parallel structure, enabling one-step joint estimation of
all the parameters using linear LS techniques, without any extra RF hardware.
This transformation can be achieved in different steps as described in [11]. First, for

each branch of the parallel Hammerstein (PH) model, the quadrature compensation is
added to the frequency response of that branch, as shown in Figure 10.4a. As shown
in Figure 10.4b, the two frequency responses are merged together; Hp(z) and G1(z)
are merged in the non-conjugate path while H∗

p (z) and G2(z) are merged together in

(a)

(b)

(c)

Figure 10.4 Concept of transforming a single-branch serial structure (cascade of a Hammerstein PA
predistorter and a quadrature imbalance compensator) to a parallel dual-branch parallel Hammerstein
structure: (a) the original structure of the digital predistorter and quadrature imbalance compensator in
one branch of the PH model; (b) the modified structure after merging the frequency dependent LTI parts;
and (c) the final structure after splitting the static nonlinearity between the conjugate and non-conjugate
branches
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Figure 10.5 Detailed block diagram of a parallel dual-branch parallel Hammerstein structure

the conjugate path to obtain the following transfer functions:

Fp(z) = Hp(z)G1(z) (10.13)

Fp(z) = H∗
p (z)G2(z) (10.14)

where p ∈ IP, IP = {1, 2, 3, … ,P} is the set of used polynomial orders, and P is the
number of branches considered in the Hammerstein model.
Then, as depicted in Figure 10.4c, the final structure of the cascade obtained by

splitting the static nonlinearity part of the predistorter function represented by a poly-
nomial, 𝜓p[x(n)] =

∑
k∈IP

akp|x(n)|k−1x(n), between the non-conjugate and a conjugate

branches, resulting in a parallel connection of two PH predistorters with summed out-
puts. The time domain analysis of this model is explained in the following equations:

fP[x(n)] =
P∑

p=1
fp,n ⊗𝜓p[x(n)] (10.15)

f P[x∗(n)] =
P∑

p=1
f p,n ⊗𝜓p[x∗(n)] (10.16)

where (.)∗ is the complex conjugate operator; ⊗ is the convolution sum operator;
and fp,n and f p,n are the impulse responses of the transfer functions FP(z) and FP(z),
respectively.
Finally, the local oscillator (LO) leakage is compensated for by a constant added to

the signal at the output of the joint linearization architecture. This constant is named
c′; and the entire block diagram of the joint compensation becomes then as depicted
in Figure 10.5.
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The mathematical expression for the input-output relationship of the parallel-
Hammerstein-based model, assuming a finite impulse response (FIR) for the linear
time invariant (LTI) blocks, can be expressed as:

y(n) =
P∑

p=1

Qp∑
q=0

𝛼p,q𝜓p[x(n − q)] +
P∑

p=1

Q′
p∑

q=0
𝛼
′
p,q𝜓p[x∗(n − q)] + c′ (10.17)

where Qp is the order of the FIR block in the pth non-conjugate branch, andQp
′ is the

order of the FIR block in the pth conjugate branch, 𝛼p,q and 𝛼
′
p,q are the coefficients of

the FIR filters Fp(z) and Fp(z), respectively; and c′ is a constant term used to represent
the dc offset of the modulator.

10.1.5 Dual-Conjugate-Input Memory Polynomial for Joint Modeling
of Quadrature Imbalance and PA Distortions Including Memory
Effects

In Equation 10.17, the function 𝜓p represents the static nonlinearity and can be imple-
mented either by a polynomial function, a look-up-table, or any memoryless model.
The model described by Equation 10.17 can be generalized by using a memory poly-
nomial model instead of the memoryless nonlinear function. Part of the system’s
memory is then compensated by this memory polynomial function while residual
memory and quadrature imbalance distortion are compensated by the two filters in
the non-conjugate and conjugate paths. The signal at the output of proposed model
can then be written as follows:

y(n) =
P∑

p=1

Qp∑
q=0

K∑
k=1

𝛼p,q,kx(n − q)|x(n − q)|k−1
+

P∑
p=1

Q′
p∑

q=0

K∑
k=1

𝛼
′
p,q,kx

∗(n − q)|x∗(n − q)|k−1 + c′ (10.18)

where x(n), x∗(n), and y(n) are the input, conjugate of the input and output complex
envelop signals, respectively; and c′ is a constant term used to represent the dc offset
of the modulator[12]. Figure 10.6 describes the concept of the dual-conjugate-input
memory polynomial model of Equation 10.18.

10.2 Modeling and Linearization of Nonlinear MIMO Systems

10.2.1 Impairments in MIMO Systems

Crosstalk is the coupling effect between two or more signals sources. Such cou-
pling results in interference between the different signals. In the case of MIMO
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Figure 10.6 Detailed block diagram of the dual-conjugate-input memory polynomial structure

transmitters, crosstalk is the result of coupling between signals in separate paths.
In MIMO configurations where the various paths use the same operating carrier
frequency, crosstalk results in problematic interference between the paths. This
crosstalk would be more significant in integrated circuit (IC) designs, where the
physical distance between the signal paths is small and their perfect isolation is not
possible.
One can categorize crosstalk in MIMO transmitters in two different categories: lin-

ear or antenna crosstalk and nonlinear crosstalk. The crosstalk is said to be linear if it
can be modeled using linear functions of the interfering signals and the desired signal.
In fact, if the signal affected by cross-coupling from other signal paths does not pass
through a nonlinear system, the crosstalk can be modeled by a linear function and is
considered as linear crosstalk. However, if the cross-coupled signal passes through a
nonlinear system, the crosstalk includes nonlinear terms of the cross-coupling and can
only be modeled using nonlinear equations. In this case, it is said nonlinear crosstalk.
Since the PA is the main source of nonlinearity in wireless transmitters, crosstalk that
occurs in the transmitter circuit before the PA is themain source of nonlinear crosstalk,
while any crosstalk taking place after the PA is considered as linear crosstalk [20, 21].
Figure 10.7 shows a block diagram of a typical MIMO transmitter and illustrates the
previously mentioned two types of crosstalk.

10.2.1.1 Linear or Antenna Crosstalk

Linear crosstalk in MIMO transmitters can be defined as the leakage between the dif-
ferent branches after the PAs. Most of this type of leakage can occur at the antenna as
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Figure 10.7 Linear and nonlinear crosstalks in MIMO transmitters

part of the transmitted signal from one antenna element is captured by another antenna
element. For the analysis next, a system containing two branches is considered. This
analysis can be extended to the case where a larger number of antennas are used.
Linear crosstalk is usually modeled as follows:

v = Ay (10.19)

where y =
[
y1 y2

]T
is a vector of the baseband equivalents, y1 and y2, of the two sig-

nals at input of the transmitting antennas; v =
[
v1 v2

]T
is a vector of the baseband

equivalents, v1 and v2, of the two signals at the output of the transmitting antennas;

and A =
[
1 𝛼
𝛽 1

]
is a matrix modeling the antennas’ linear crosstalk. In the case of

a symmetric crosstalk, 𝛼 and 𝛽 are equal. However, when no crosstalk is present,
𝛼 = 𝛽 = 0.
Equation 10.19 can be written in a linear system format as follows:{

v1 = y1 + 𝛼y2
v2 = 𝛽y1 + y2

(10.20)

It can be observed from Equation 10.20 that the signals v1 and v2 obtained at the
output of the first and second antenna, respectively, after crosstalk are linear functions
of the input signals to the transmitting antennas, y1 and y2. The compensation for
the effect of the antenna linear crosstalk is performed generally at the receiver side
concurrently with the compensation of the linear crosstalk that is generated by the
channel [22–25].
The composite linear crosstalk generated at the transmitter and receiver antennas and

by the channel can be shown to have similar model. Figure 10.8 shows a block diagram
illustrating a 2× 2 MIMO system with three different types of linear crosstalk:

• The transmitting antennas crosstalk, modeled by the matrix A,

• The channel crosstalk, modeled by the matrix H =
[
h11 h12
h21 h22

]
, and
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Figure 10.8 Linear crosstalk model in MIMO configuration

• The receiving antennas crosstalk, modeled by the matrix B.

The overall linear crosstalk can then be modeled as follows:

w = (BHA)y + Bn (10.21)

where w =
[
w1 w2

]T
is a vector of the baseband equivalents, w1 and w2, of the two

signals at output of the receiving antennas; and n is a vector that represents the addi-
tive white Gaussian noise (AWGN) in the different paths. The uncorrelated received
signal, wun, can be obtained by inverting the matrix BHA as follows:

wun = (BHA)−1w

wun = y + (HA)−1n (10.22)

The uncorrelated received signal represents an estimation of the original signal y
and an additional noise component. From Equation 10.22, it can be observed that:

• This method assumes that the matrix BHA is invertible; otherwise, the compensa-
tion for the linear crosstalk will not be possible.

• The crosstalks in the transmitter’s antennas and in the MIMO channel may degrade
the performance of the MIMO system since they increase the effect of noise as
illustrated in the last term of Equation 10.22 [26].

• If the matrix B is invertible, the noise is not affected by the receiver’s antennas
crosstalk and so is the performance of the MIMO system.

10.2.1.2 Nonlinear Crosstalk

As defined at the beginning of this section, the nonlinear crosstalk inMIMO systems is
generated by any cross-coupling between the MIMO paths that occurs before the PA.
Such nonlinear crosstalk can be caused by several factors, the most important of them
are the leakage of the RF signals through the common LO path due to non-perfect
isolation of mixers [27], and the RF signals cross-coupling due to interferences in
the chipset. Several techniques have been proposed in the literature to reduce this
coupling such as buffering the LO paths [27], grounded guard ring [28], deep trench
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[28, 29], porous silicon trench [30], silicon-on-insulator (SOI) substrate [28], and high
resistivity substrate obtained by the proton bombardment [31]. However, the possibil-
ity to apply these techniques and their effectiveness in improving isolation are mainly
dependent on the fabrication process and the type of design. While for a given design
and a given process, some of these techniques are able tominimize the crosstalk, resid-
ual crosstalk effects remain in the system and are not completely removed. Crosstalk
residual values in commercial MIMO chip-sets can be as high as 10 dB. Therefore,
modeling this phenomenon and analyzing its effects on signal quality and on the lin-
earization process are of significant importance.
If the transmitters do not include predistortion, as shown in Figure 10.7, their out-

puts, with the effect of crosstalk, can be modeled as:

y1 = f1(x1 + 𝛼x2)

y2 = f2(𝛽x1 + x2) (10.23)

where x1 and x2 are the MIMO transmitter inputs, y1 and y2 are the MIMO transmitter
outputs, and f1(⋅) and f2(⋅) are functions representing the nonlinear responses of each
of the transmitter’s two branches. Since these functions are nonlinear, this crosstalk is
said to be nonlinear and thus matrix inversion technique cannot be used to compensate
for it. Moreover, it was shown, in [21], that this nonlinear crosstalk impacts the quality
of the predistortion algorithm since the complex envelope of each RF signal at the
input of the PAs is changed by the cross-coupling [21].
Figure 10.9 shows a block diagram of a MIMO transmitter that has nonlinear

crosstalk and that uses DPD to compensate for the nonlinearity of the PAs. In the
first path, the coefficients of the DPD function, g1(⋅), are extracted using the digital
baseband signal at the input of the first transmitting branch, z1, taken at the output of

Figure 10.9 Conventional digital predistortion in the presence of nonlinear crosstalk in a MIMO
transmitter
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the DPD function and the complex envelope equivalent signal, y1, at the output the
first branch taken at the output of its PA. Similarly, in the second path, the coefficients
DPD function, g2(⋅), are estimated using the complex baseband waveforms at the
input and output of this branch (z2 and y2, respectively). Since the nonlinear crosstalk
occurs before the nonlinear response of each path, prior to the amplification, the
output of the PA in each path is a nonlinear function of both inputs and can be
expressed by replacing in Equation 10.23 the input signals (x1 and x2) by their
predistorted versions (z1 and z2, respectively) to take into account the presence of the
DPD functions (g1 and g2, respectively). Accordingly,

y1 = f1(z1 + 𝛼z2)

y2 = f2(𝛽z1 + z2) . (10.24)

If the predistortion function g1(⋅) was exactly the inverse of f1(⋅), then it should be
dependent on the two signals, x1 and x2 since the output of f1(⋅) is function of z1 and
z2 simultaneously. However, for conventional predistortion models as were presented
in the previous chapters, the input signal of g1(⋅) is only a function of x1. As a result,
the signal at the output of the first branch’s PA can be written as:

y1 = f1[g1(x1) + 𝛼z2] ≠ G1x1 (10.25)

and, similarly, the signal at output of the PA of the transmitter’s second branch can be
written as:

y2 = f2[g2(x2) + 𝛼z1] ≠ G2x2 (10.26)

where G1 and G2 are the small signal gain of the transmitter’s first and second
branches.
Thus, using the previously mentioned linearization approach, the output of each

branch cannot be only function of its corresponding input, and therefore no accurate
linearization can be achieved. One can conclude that the nonlinear crosstalk deterio-
rates the performance of conventional DPD and a better model should be used for the
modeling and linearization of MIMO systems in which nonlinear crosstalk is present.
In the remaining part of this section, most important MIMO transmitters’ behavioral
models that account for nonlinear crosstalk will be discussed.

10.2.2 Crossover Polynomial Model for MIMO Transmitters

In the previous chapters, it was shown that the nonlinearity of PAs can be modeled
using a polynomial model in the memoryless case and a memory polynomial to com-
pensate for nonlinear distortions and memory effects. For a given PA, the pass-band
memoryless polynomial model can be written as:

ỹ(t) =
K∑
k=1

hkx̃
k(t) (10.27)
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where x̃(t) and ỹ(t) are the pass-band signals at the input and output of the PA,
respectively; and K is the polynomial order. The baseband equivalent of this model
relating the complex envelope of the input signal, x(n), to the complex envelope
of the output signal, y(n), is given in Equation 4.50 and is provided here for
convenience:

y(n) =
K∑
k=1

ak|x(n)|k−1x(n). (10.28)

In the case of MIMO system with nonlinear crosstalk, in order to take into account
the dependence of each PA nonlinear behavior on the input signals of different paths,
the memoryless polynomial model of Equation 10.28 can be extended so that the
output of each of the two branches is the summation of different polynomial functions
of each input. In the case of a dual-input system, the crossover model is then given as
follows [21]:

y1(n) =
K11∑
k=1

a11,k|x1(n)|k−1x1(n) + K12∑
k=1

a12,k|x2(n)|k−1x2(n)
y2(n) =

K21∑
k=1

a21,k|x1(n)|k−1x1(n) + K22∑
k=1

a22,k|x2(n)|k−1x2(n) (10.29)

where K11, K12, K21, and K22 represent the nonlinearity orders of the crossover model;
and a11,k, a12,k, a21,k, and a22,k are the crossover model’s coefficients.
While each output in the crossovermodel is a function of both input signals x1(n) and

x2(n), this model makes the approximation that there is no effect of one input signal
on the nonlinear function applied to the other signal, which is not true in practice. The
crossover model lacks the ability to predict any nonlinear cross-term, which results in
sub-optimal modeling and linearization performances.

10.2.3 Dual-Input Nonlinear Polynomial Model for MIMO Transmitters

In order to take into account the effect of one branch’s input signal on the nonlin-
ear function applied to the other branch’s input signal, the polynomial model should
include nonlinear cross-terms of the two signals. A tensor product is used in the
dual-input nonlinear polynomial model to create these cross-terms. The equation for
this model in the pass-band format is given by:

ỹ(t) = h1x̃(t) + h2[x̃(t)⊗ x̃(t)] + · · · + hK[x̃(t)⊗ · · ·⊗ x̃(t)] (10.30)

where x̃(t) =
[
x̃1 (t)
x̃2(t)

]
, x̃1(t), and x̃2(t) are the pass-band input signals of the first and

second branches, respectively; hk = [hk,1, hk,2, … … hk,2k ]where hk,j represent the
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model coefficients, and⊗ is used to denote the Kronecker product defined as:

[
a1
a2

]
⊗

[
b1
b2

]
=
⎡⎢⎢⎢⎣
a1b1
a1b2
a2b1
a2b2

⎤⎥⎥⎥⎦ . (10.31)

In Equation 10.30, ỹ(t) refers to the pass-band output of one of the two branches.
Because of symmetry, one can only analyze the output of one branch, without loss
of generality. For easiness of notation of the output signal, the index of the branch is
dropped in the remaining analyses of the MIMO system.
This model includes all the cross-terms between x̃1 and x̃2. Therefore, the dual-input

nonlinear polynomial is able to model the effects of nonlinear crosstalk more accu-
rately along with the PA’s nonlinearity. Although the accuracy of the model is
improved, the complexity of the problem is dramatically increased as the number of
model coefficients increases exponentially with the polynomial order. Moreover, it
can be easily shown that because of the Kronecker product, many cross-terms are
repeated, which results in unnecessary complexity increase.

10.2.4 MIMO Transmitters Nonlinear Multi-Variable Polynomial Model

In order to reduce the complexity of the model described in the previous section, a
tradeoff between modeling accuracy and complexity should be considered. The non-
linear multi-variable polynomial model was proposed to achieve such trade-off [32].
This multi-variable polynomial model maintains all the possible cross-term products
between the different input signals. It reduces the complexity of the dual-input poly-
nomial model by removing the duplicated terms generated by the Kronecker product.
For example, when k = 2, the cross-terms generated by the second order nonlinearity
are x̃1x̃2 and x̃2x̃1. Even though these terms have different coefficients in the dual-input
nonlinear polynomial model, they are in fact similar and can be merged together in
one term having only one coefficient. Similarly, one can show that when K increases,
while the number of coefficients increases exponentially in the dual-input polyno-
mial model, the number of coefficient reduction obtained by using the multi-variable
polynomial model also increases considerably. The same concept can be applied if
the number of branches of the MIMO transmitter is higher than two. In the follow-
ing, a mathematical formulation of the multi-variable polynomial model will be given
first for a dual-input MIMO system. Then, this model will be generalized for higher
number of inputs.

10.2.4.1 Dual-Input Memoryless Model

In the case of a dual-input MIMO transmitter with nonlinear crosstalk, the
multi-variable polynomial model in its pass-band format can be expressed for the
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output of the first branch as follows:

ỹ1(t) =
K∑
k=1

k∑
r=0

hkr[x̃1(t)]k−r[x̃2(t)]r (10.32)

This model includes all the cross-terms between x̃1(t) and x̃2(t) signals that have a
nonlinearity order smaller or equal to the maximum linearity order, K. The output of
the other branch can be obtained similarly by swapping x̃1(t) with the input, x̃2(t), of
the other branch. In the following analysis of the 2 × 2 and N × N MIMO, to avoid
redundancy, the analysis will be detailed only for the first branch. Without loss of
generality, the index of the output signal is removed.
The baseband version of the multi-variable polynomial model should include only

the baseband equivalent of the terms that have a frequency component around the
carrier frequency. Therefore, nonlinear terms with even order nonlinearity are not con-
sidered in the basebandmodel and only odd-order nonlinear terms aremaintained. The
baseband memoryless multi-variable polynomial model is given by:

y(n) =
K∑
k=1
k odd

k∑
r=0

akr

k−r∑
k1=0

r∑
k2=0

k1+k2=
k−1
2

Ck1
k−r Ck2

r |x1(n)|2k1 |x2(n)|2k2 ⋅ [x1(n)]k−r−2k1 [x2(n)]r−2k2

(10.33)

where akr =
1

2k−1
hkr and C

p
m =

(
m
p

)
= m !

(m − p) !p !
.

The expression in Equation 10.33 can be developed into a matrix form as follows:

y = Xx𝟏 , x𝟐 ⋅ A (10.34)

where y = [y(1) · · · y(M)]T is an M × 1 vector representing M samples of the
output signal, A = [a1,0 a1,1 · · · ak,0 · · · ak,k · · · aK,0 · · · aK,K]T is a P × 1

vector of the polynomial coefficients for odd values of k and P =
K∑
k=1
k odd

(k + 1).

Xx𝟏 , x𝟐 = [𝛃𝟏 , 𝟎x𝟏 , x𝟐
𝛃𝟏 , 𝟏x𝟏 , x𝟐

· · · 𝛃K , 𝟎
x𝟏 , x𝟐

· · · 𝛃K ,K
x𝟏 , x𝟐

] is an M × P matrix, such that
𝛃k , rx𝟏 , x𝟐 = {𝛽k,r[x1(1), x2(1)] · · · 𝛽k,r[x1(M), x2(M)]}T is an M × 1 vector where 𝛽k,r is
defined as:

𝛽
k,r[x1(n), x2(n)] =

k−r∑
k1=0

r∑
k2=0

k1+k2=
k−1
2

Ck1
k−r C

k2
r |x1(n)|2k1 |x2(n)|2k2 [x1(n)]k−r−2k1 [x2(n)]r−2k2

(10.35)
with x𝟏 = [x1(1) x1(2) · · · x1(M)]T and x𝟐 = [x2(1) x2(2) · · · x2(M)]T ,
which are theM × 1 vectors representingM samples of the baseband input signals.
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10.2.4.2 N-Input Memoryless Model

The dual-input multi-variable memoryless polynomial model can be extended to the
N × NMIMO case, where the pass-band representation is given by:

ỹ =
K∑
k=1

k∑
r1=0

k−r1∑
r2=0

…
k−(r1+r2+···+rN−2)∑

rN−1=0
hk,r1,···,rN−1 x̃

k−(r1+r2+···+rN−1)
1 x̃r12 … x̃rN−1N (10.36)

where x̃i(t) and ỹ(t) representing the ith input and the first output pass-band signals,
respectively, are replaced by x̃i and ỹ, respectively, for easiness of representation.
The equivalent baseband model can be shown to have the form:

y =
K∑
k=1
k odd

k∑
r1=0

k−r1∑
r2=0

· · ·
k−(r1+r2+···+rN−2)∑

rN−1=0
ak,r1,···,rN−1

k−R∑
k1=0

· · ·

rN−1∑
kN=0

k1+k2+···+kN=
k−1
2

Ck1
k−R · · ·C

kN
rN−1

|x1|2k1 · · · |xN|2kN xk−R−2k11 xr1−2k22 · · · xrN−1−2kNN (10.37)

where R = r1 + r2 + · · · + rN−1 and ak,r1, ,···,rN−1 =
1

2k−1
hk,r1,···,rN−1 .

Here also xi(n), (i = 1 to N), and y(n) representing the ith input and the first output
baseband signals, respectively, are replaced by xi and y, respectively, for easiness of
representation.
Equation 10.37 can be expressed in matrix form:

y = Xx𝟏 , … , xN ⋅ A (10.38)

where y =
[
y (1) · · · y(M)

]T
is anM × 1 vector representingM samples of the output

signal of the first branch, A = [a1,···,0 · · · a1,1,···,0 · · · · · · aK,0,···,0 · · · aK,K,···,K]T is
a P × 1 vector of the polynomial coefficients for the first branch and P is the total
number of coefficients of the N-input memoryless multi-variable polynomial model.
Xx1,···,xN = [𝛃1,0,···,0x1,···,xN 𝛃1,1,···,0x1,···,xN · · · 𝛃K,K,···,0x1,···,xN · · · 𝛃K,K,···,Kx1,···,xN ] is an M × P vector where

𝛃k,r1,···,rN−1x1,···,xN = {𝛽k,r1,···,rN−1[x1(1), · · · , xN(1)] · · · 𝛽k,r1,···,rN−1[x1(M), · · · , xN(M)]}T and is
anM × 1 vector with 𝛽k,r1,···,rN−1 is defined as:

𝛽
k,r1,···,rN−1[x1, x2, · · · , xN] =

k−R∑
k1=0

· · ·
rN−1∑
kN=0

k1+k2+···+kN=
k−1
2

Ck1
k−R · · ·C

kN
rN−1

|x1|2k1 · · · |xN|2kN
xk−R−2k11 xr1−2k22 · · · xrN−1−2kNN (10.39)

In Equation 10.39, the sample indices are removed for easiness and xi(m) is replaced
by xi.
xn = [xn(1), xn(2), · · · , xn(M)]T is anM × 1 vector representingM samples of the nth

input signal.
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10.2.4.3 N-Input Memory Model

Similar to the SISO transmitter case, when signals bandwidths in a MIMO transmitter
are wide, PAs exhibit memory effects. Consequently, PAs and transmitters modeling
and predistortion should consider these memory effects along with the nonlinear-
ity of PAs. Including the memory terms in the N-input multi-variable memoryless
polynomial model of Equation 10.37, this model can be extended for the memory
case. The N-input memory polynomial model expression is then given by:

y(m) =
K∑
k=1
k odd

k∑
r1=0

· · ·
k−(r1+···+rN−2)∑

rN−1=0

Q∑
q=0

aqk,r1,···,rN−1

k−R∑
k1=0

· · ·

rN−1∑
kN=0

k1+k2+···+kN=
k−1
2

Ck1
k−R · · ·C

kN
rN−1

|x1(m − q)|2k1 |x2(m − q)|2k2 · · · |xN(m − q)|2kN
⋅ [x1(m − q)]k−R−2k1[x2(m − q)]r1−2k2 · · · [xN(m − q)]rN−1−2kN (10.40)

where xn(m) is themth sample of the input signal to the nth path of the MIMO system,
y(m) is the output signal of the first branch, and Q is the number of delay taps used
for the inclusion of the memory effects.
Defining xnq = [01×q xn(1) · · · xn(M − q)]T as the M × 1 shifted input vector and,
A = [a01,0,···,0 · · · a

0
K,K,···,K · · · aQ1,0,···,0 · · · a

Q
K,K,···,K]

T as the P(Q + 1) × 1 vector of the
polynomial coefficients, and P is the total number of coefficient of the N-input
multi-variable memory polynomial model, Equation 10.40 can be rewritten in a
matrix format as:

y = Xx1,···,xN ⋅A (10.41)

where

Xx1,···,xM =
[
𝛃0x1,···,xN · · · 𝛃qx1,···,xN · · · 𝛃Qx1,···,xN

]
𝛃qx1,···,xM =

[
𝛽1q · · · 𝛽kq · · · 𝛽Kq

]
,

𝛽
kq =

[
𝜃
k,0,···,0
q

(
x1q, · · · , xnq, · · · , xNq

)
· · · 𝜃k,k,···,kq (x1q, · · · , xnq, · · · , xNq)

]
,

𝜃
k,r1,···,rN−1
q =

k−R∑
k1=0

· · ·
rN−1∑
kN=0

k1+···+kN=
k−1
2

Ck1
k−R · · ·C

kN
rN−1 |x1(m − q) |2k1 · · · |xN(m − q) |2kN

× [x1(m − q)]k−R−2k1[x2(m − q)]r1−2k2 · · · [xN(m − q)]rN−1−2kN ,

and
R = r1 + r2 + · · · + rN−1 .
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10.3 Modeling and Linearization of Dual-Band Transmitters

Wireless communication systems are rapidly evolving to satisfy the increasing
demand for data rates. Multi-band and multi-standard wireless communication
systems have caught the attention of recent research activities as a cost effective
solution for higher data rates and more optimal use of the frequency spectrum. In
such systems, the same RF front end is used for the transmission of two or several
wireless communication signals at different carrier frequencies concurrently. While
this approach allows better use of the frequency spectrum and better use of the
hardware, the concurrent transmission accentuates the distortion problems in the
nonlinear components of the transmitter, mainly the PA. Indeed, in addition to
the inter-modulation products, cross-band modulation and intra-band modulation
products are generated in the multi-band transmission case. Therefore, conventional
DPD techniques, such as the Volterra DPD [33–35] or memory polynomial DPD
[4, 5] for linearizing each band separately, are not able to fully compensate for the
distortions in these multi-band systems.
In order to compensate for these complex distortion terms, one can use conven-

tional DPDs and sample the multi-band signals as a wideband signal. However, this
solution is not practical since it will put stringent requirements on the speed of the
digital-to-analog converters and analog-to-digital converters. Amulti-band DPD tech-
nique in which each band’s signal is captured and digitized separately, while intending
to model all the inter-modulation, intra-modulation, and cross-modulation terms, is
then of great importance for the adoption of multi-band transmission architectures.
Such objective motivated the recent research activities to propose new DPD architec-
tures suitable for the linearization of multi-band transmitters [36–41]. Two classes
of techniques have been proposed. The first class, proposed in [36], consists of a
frequency-selective predistortion technique where two independent DPD functions
are used in order to alleviate the use of a wideband DPD model, and the nonlinear
behavior of the PA is characterized using a large-signal network analyzer. In [41],
the frequency selective predistortion technique was extended to include the effects
of third and fifth order inter-modulation products. The effectiveness of adding the
higher order inter-modulation products on the DPD linearization is investigated for
narrow-spaced input signals in dual-band and tri-band cases. In the second class of
multi-band DPD systems, dynamic characterization using the actual signals that are
sent to the PA is adopted, and a multi-input DPD architecture that takes as the input
the baseband equivalent of the signals in each band, are proposed. The first attempt
to model and linearize multi-band transmitters using a dynamic characterization was
provided in [37, 38]. In these works, a multi-dimensional memory polynomial DPD
is proposed to linearize a widely spaced dual-band PA transmitter. Additional mod-
eling and reverse modeling using multi-input DPD architectures based on Volterra
series [42–44] had been proposed to improve the linearization performance and to
reduce the model complexity. This section will focus on the latter class of multi-band
predistortion systems as they are more suitable for implementation in field deployed
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systems due to the nature of the signals used in the characterization step of frequency
selective multi-band DPD systems.

10.3.1 Generalization of the Polynomial Model to the Dual-Band Case

The nonlinearity in concurrent dual-band PAs results in more complex distortions than
in the single band case due to the cross-modulation products between the two bands,
which results in in-band and out-of-band inter-modulation products [38, 39].
Figure 10.10 shows the power spectral densities (PSDs) at the input and output of

a concurrent dual-band PA. The input signals for the upper and lower bands were
two-tone signals with different spacing. In the output signal, one can distinguish two
different parts of the spectrum:

• The in-band inter-modulation and cross-modulation products: These products fall
within the useful bands of each of the two signals and therefore should be present
in the low-pass equivalent model of the PA.

• The out-of-band inter-modulation products: These products fall outside the useful
bands and therefore can be ignored.

The distortion products generated by each band are shown with continuous arrows
having the same width used to represent the signal in that band. For examples, the
continuous thin arrows shown in Figure 10.10 show the signal around the angular fre-
quency 𝜔1 and its contribution to the distortion products in-band. This contribution
includes the in-band inter-modulation products that fall around the carrier angular
frequency 𝜔1 and the cross-modulation products that fall around the carrier angular
frequency 𝜔2 of the second band. This illustration demonstrates that both signals con-
tribute to the low-pass equivalent of the PA nonlinear behavior around each of the
carrier frequencies. Therefore, even if modeled or linearized separately, each band
behavior has to be a function of the signals present in the two bands. A more complex
multi-input model is therefore required for the characterization and linearization of
concurrent dual-band transmitters.

Figure 10.10 Effect of power amplifier nonlinearity on concurrent dual-band transmission
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One approach consists of having the dual-band model/DPD composed of two
cells, one for each communication band. Each cell has a dual-input that consists
of the signals to be transmitted in each of the two bands. This guarantees that the
characterization of each band includes the in-band inter-modulation and cross-
modulation products. In order to better analyze the behavior of dual-band non-
linear distortion in PAs, we are considering the case of approximating the PA
behavior to a general memoryless pass-band nonlinear model, which was given by
Equation 10.27.
In case of a multi-band transmission, the input of the pass-band model is given by:

x̃(t) =
B∑

b=1
Re[xb(t)ej𝜔bt] (10.42)

where 𝜔b is the angular carrier frequency, xb(t) is the complex envelope of the band-
pass signal, x̃b(t) = Re[xb(t)ej𝜔bt], present in the bth band; and B is the total number
of bands in the concurrent multi-band transmission.
In the following analysis, a dual-band transmission is considered. This analysis can

be extended to any number of bands. In the case of a dual-band transmission, the
pass-band signal at the input of the transmitter is given by:

x̃(t) = x̃1(t) + x̃2(t) =
2∑

b=1
Re[xb(t)ej𝜔bt]. (10.43)

The pass-band signal at the output of the concurrent dual-band PA, ỹ(t), can be
calculated by plugging the expression of the input signal of Equation 10.43 into the
expression of the output given in Equation 10.27. After manipulation, the expression
of the output signal, ỹ(t), can be derived as shown in Equation 10.44. Details of the cal-
culation can be obtained in [43, 45]. Here for easiness of notation, the time argument
(t) is removed:

ỹ =
K−1∑
k=0

k∑
r=0

k−r∑
k1=0

r∑
k2=0

1
2k
akrC

r
kC

k1
k−r Ck2

r ⋅ [(x1|x1|2k1 |x2|2k2) ⋅ ej𝜔1t

+ (x2|x1|2k1 |x2|2k2) ⋅ ej𝜔2t

+ (x1∗x22|x1|2(k1−1)|x2|2k2) ⋅ ej(2𝜔2−𝜔1)t

+ (x12x2∗|x1|2k1|x2|2(k2−1)) ⋅ ej(2𝜔1−𝜔2)t

+ (x1∗
2x2

3|x1|2(k1−2)|x2|2k2) ⋅ ej(3𝜔2−2𝜔1)t + · · ·] (10.44)

where Ck
n =

n!
k!(n−k)!

is the binomial coefficient n choose k.
This general equation has components around the two carrier frequencies 𝜔1 and𝜔2

along with other higher-order inter-modulation products.



230 Behavioral Modeling and Predistortion of Wideband Wireless Transmitters

If the case of concurrent dual-band transmission, the frequency spacing between
the two carrier frequencies 𝜔1 and 𝜔2 can be considered large enough, so that the
inter-band third-order inter-modulation products around (2𝜔2 − 𝜔1) and (2𝜔1 − 𝜔2)
and further higher order inter-band inter-modulation products can be considered
out-of-band and therefore can be filtered out. In the baseband representation, these
terms are removed and only the in-band inter-modulation and cross-modulation
products are kept. The complex envelope of the output signal around each of the two
carriers is then given by:

y1 =
K−1∑
k=0

k∑
r=0

k−r∑
k1=0

r∑
k2=0

1
2k−1

a(1)kr C
r
kC

k1
k−r Ck2

r ⋅ (x1|x1|2k1 |x2|2k2) (10.45)

y2 =
K−1∑
k=0

k∑
r=0

k−r∑
k1=0

r∑
k2=0

1
2k−1

a(2)kr C
r
kC

k1
k−r Ck2

r ⋅ (x2|x2|2k1 |x1|2k2) (10.46)

It is important to note that, theoretically, the coefficients a(1)kr and a(2)kr are identical
and are equal to akr. However, because the PA behavior is different in each band, in
practice, these coefficients are different and for this reason, different notations are
used here. It is also important to note that the output signal in each band is a func-
tion of the two input signals and, more precisely, includes cross-terms with different
nonlinearity orders while maintaining the same phase as the complex envelope of that
corresponding band. Finally, it is important to mention that while for behavioral mod-
eling only odd order nonlinearity terms are included, it was shown that in the case
of DPD, including even-order terms can improve the linearization performance [17].
In general, Equations 10.45 and 10.46 can be expressed in their general form includ-
ing even and odd terms and rearranging all the terms with the same form together as
follows:

y1 =
K−1∑
k=0

k∑
r=0

A(1)
kr ⋅ (x1|x1|k−r|x2|r) (10.47)

y2 =
K−1∑
k=0

k∑
r=0

A(2)
kr ⋅ (x2|x2|k−r|x1|r) (10.48)

where A(1)
kr and A(2)

kr are the model coefficients, which are function of sets of a(1)kr and
a(2)kr , respectively.

10.3.2 Two-Dimensional (2-D) Memory Polynomial Model for Dual-Band
Transmitters

The memoryless pass-band model can be further generalized to include the memory
effects exhibited by the dual-band PA. Starting from a memory polynomial pass-band
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model given by:

ỹ(n) =
M∑

m=0

K∑
k=1

hk,mx̃
k(n − m) (10.49)

where N and M are the nonlinearity order and the memory order of the model,
respectively. Using similar analysis as in the memoryless case, a 2-D MP baseband
equivalent model can be developed for behavioral modeling or predistortion of the
dual-band transmitter [37]. Similar to the memoryless dual-band model, this memory
model is composed of two cells, one for each band. The model estimated outputs are
given by the following equations:

y1(n) =
K−1∑
k=0

k∑
r=0

M∑
m=0

A(1)
k,r,mx1(n − m)|x1(n − m)|k−r|x2(n − m)|r (10.50)

y2(n) =
K−1∑
k=0

k∑
r=0

M∑
m=0

A(2)
k,r,mx2(n − m)|x2(n − m)|k−r|x1(n − m)|r (10.51)

where y1(n) and y2(n) are the complex envelopes, estimated by the baseband 2-Dmem-
ory polynomial model, of the output signals in the two bands centered around the two
fundamental frequencies 𝜔1 and 𝜔2, respectively; x1(n) and x2(n) are baseband com-
plex envelopes of the input signals in the two bands; and A(1)

k,r,m and A(2)
k,r,m are the model

coefficients for the two bands.
Similar to the memoryless case, in the case of the 2-D memory polynomial model,

the output signal in each band includes cross-terms with different nonlinearity orders
while maintaining the same phase as the complex envelope of that corresponding
band. Therefore, it has no information of the phase of the input signal in the other
band. Consequently, for a given band, the model cannot account for the variations and
effects attributed to the phase of the other band. In order to account for such effects,
a Volterra based multi-band model is needed.

10.3.3 Phase-Aligned Multi-Band Volterra DPD

A truncated Volterra series can be used to model the nonlinearity and memory effects
in a single-band PA as was described in Chapter 2. The expression of the pass-band
Volterra series model limited to the third order nonlinearity and a finite memory depth
is given by:

ỹ(n) =
M1∑
m=0

a(1)m x̃(n − m) +
M2∑
l=0

M1∑
m=0

a(2)l,mx̃(n − l)x̃(n − m)

+
M3∑
p=0

M2∑
l=0

M1∑
m=0

a(3)p,l,mx̃(n − p)x̃(n − l)x̃(n − m) (10.52)
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where x̃(n) and ỹ(n) are the pass-band input and output signals, respectively; a(i)… are
the Volterra kernels for nonlinearity of order i and different delay lengths; andMj are
the memory depths of the model. Here, the continuous time representation for the
pass-band model that was used in Chapter 2 is replaced by a discrete time represen-
tation in order to illustrate more clearly the memory effects observed in the baseband
model. This discrete time representation of the pass-band model will be used in the
remaining of this section.
This Volterra series model is complex since its number of coefficients increases

exponentially with the degree of nonlinearity and memory depth of the system. There-
fore, this model cannot be used for systems with high order nonlinearity or memory
depths as very high number of coefficients are not practical to extract. To reduce the
complexity issue in the Volterra series model, different variants of this model were
proposed [1, 2, 35, 46–48]. In the following analysis, one complexity-reduced variant,
the simplified Volterra model, is used. This model is given by:

ỹ(n) = ỹna(n) + ỹa(n) (10.53)

where ỹna(n) is the part of the output signal that includes the nonlinearity termswith no
phase alignment, and ỹa(n) is the part of the output signal that includes the nonlinearity
terms with phase alignment.
By separating the non-aligned and aligned terms, this variant offers more freedom

in modeling the mildly nonlinear phase-aligned terms with a low-order nonlinearity
and sufficiently high order memory depth, while keeping acceptable high order non-
linearity for modeling the non-aligned term. As a result, lesser number of coefficients
is needed and better modeling accuracy is achieved. Moreover, separate identification
of the non-aligned part’s coefficients and the aligned part’s coefficients reduces the
complexity of the identification procedure [2, 46].
The non-aligned function ỹna(n) can be expressed by a power series as follows:

ỹna(n) =
Mn∑
m=0

Kn∑
k=1

a(k)m x̃k(n − m) (10.54)

where a(k)m , Mn, and Kn are the coefficients, the memory order and the nonlinearity
order of the pass-band non-aligned function. The mildly nonlinear aligned function
ỹa(n) can be expressed by a dynamic Volterra filter, where only the bi-dimensional
second-order cross-terms (i.e., the products with two different time delays and with
arbitrary order of nonlinearities) are kept [48]. Its expression is given by:

ỹa(n) =
Ka∑
k=1

k−1∑
r=0

M1−1∑
m=0

M2−1∑
l=m+1

a(k,r)l,m x̃r(n − l)x̃k−r(n − m) (10.55)
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where M1 and M2 are the memory depths of the second-order cross-terms, Ka is the
nonlinearity order, and a(k,r)l,m are the coefficients of the bandpass phase-aligned func-
tion.
Therefore, the total output of the simplified Volterra model in the single-band case

is given by:

ỹ(n) =
Mn∑
m=0

Kn∑
k=1

a(k)m x̃k(n − m) +
Ka∑
k=1

k−1∑
r=0

M1−1∑
m=0

M2−1∑
l=m+1

a(k,r)l,m x̃r(n − l)x̃k−r(n − m) (10.56)

The non-aligned component yna(n) of the baseband output signal is a memory poly-
nomial function of the input signal. Its generalization to the dual-band case is similar
to the dual-band memory polynomial model given in Equations 10.50 and 10.51.
The generalization of this non-aligned component yna(n) to the dual-band case is
given by:

yna,1(n) =
Mn∑
m=0

Kn−1∑
k=0

k∑
r=0

A(1)
m,k,rx1(n − m)|x1(n − m)|k−r|x2(n − m)|r (10.57)

yna,2(n) =
Mn∑
m=0

Kn−1∑
k=0

k∑
r=0

A(2)
m,k,rx2(n − m)|x2(n − m)|k−r|x1(n − m)|r (10.58)

where A(i)
m,k,r is the set of baseband coefficients of the non-aligned part yna,i(n) around

angular frequency 𝜔i, and i∈ {1, 2}.
For the aligned part, substituting the dual-band input expression of x̃(n) given by

Equation 10.43 in Equation 10.55, the aligned function ỹa(n) will be given as:

ỹa(n) =
Ka∑
k=1

k−1∑
r=0

M1−1∑
m=0

M2−1∑
l=m+1

a(k,r)l,m ⋅ [x̃1(n − m) + x̃2(n − m)]k−r ⋅ [x̃1(n − l) + x̃2(n − l)]r

(10.59)

To derive the pass-band model from the baseband equivalent model, only terms
located around the two fundamental frequencies 𝜔1 and 𝜔2 in the expression of the
pass-band alignedmodel are considered. Other terms can be filtered out. The baseband
equivalent of the aligned function of Equation 10.59 can be obtained after manipula-
tion as shown in Equation 10.60 below. Details of the calculation for more simplified
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cases can be found in [45, 49].

ya,i(n)

=
M1−1∑
m=0

M2−1∑
l=m+1

⎧⎪⎨⎪⎩𝜓
(i)
0,l,m[x1(n), x2(n)] ⋅

Ka−1∑
r1+r2+r3+r4=1

r3+r4≠0
A(i,r1,r2,r3,r4)
0,l,m ⋅ F(m,l,r1,r2,r3,r4)[x1(n), x2(n)]

⎫⎪⎬⎪⎭
+
M1−1∑
m=0

M2−1∑
l=m+1

{
𝜓

(i)
1,l,m[x1(n), x2(n)] ⋅

Ka−1∑
r1+r2+r3+r4=0

A(i,r1,r2,r3,r4)
1,l,m ⋅ F(m,l,r1,r2,r3,r4)[x1(n), x2(n)]

}

+
7∑
j=2

M1−1∑
m=0

M2−1∑
l=m+1

{
𝜓

(i)
j,l,m[x1(n), x2(n)] ⋅

Ka−3∑
r1+r2+r3+r4=0

A(i,r1,r2,r3,r4)
j,l,m ⋅ F(m,l,r1,r2,r3,r4)[x1(n), x2(n)]

}
(10.60)

where A(i,r1,r2,r3,r4)
j,l,m are the set of baseband coefficients of the aligned part ya,i(n) around

angular frequency 𝜔i, and i∈ {1, 2}.
F(m,l,r1,r2,r3,r4)[x1(n), x2(n)] is the compound envelope function given by:

F(m,l,r1,r2,r3,r4)[x1(n), x2(n)] = |x1(n − m)|r1|x2(n − m)|r2|x1(n − l)|r3 |x2(n − l)|r4
(10.61)

and 𝜓 (i)
j,l,m[x1(n), x2(n)] are the phase alignment functions given for i= 1 by:

𝜓
(1)
0,l,m[x1(n), x2(n)] = x1(n − m)

𝜓
(1)
1,l,m[x1(n), x2(n)] = x1(n − l)

𝜓
(1)
2,l,m[x1(n), x2(n)] = x21(n − m)x∗1(n − l)

𝜓
(1)
3,l,m[x1(n), x2(n)] = x1(n − m)x∗2(n − l)x2(n − m) (10.62)

𝜓
(1)
4,l,m[x1(n), x2(n)] = x1(n − m)x∗2(n − m)x2(n − l)

𝜓
(1)
5,l,m[x1(n), x2(n)] = x21(n − l)x∗1(n − m)

𝜓
(1)
6,l,m[x1(n), x2(n)] = x1(n − l)x∗2(n − l)x2(n − m)

𝜓
(1)
7,l,m[x1(n), x2(n)] = x1(n − l)x∗2(n − m)x2(n − l)
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Similar expression can be obtained for i= 2 as follows:

𝜓
(2)
0,l,m[x1(n), x2(n)] = x2(n − m)

𝜓
(2)
1,l,m[x1(n), x2(n)] = x2(n − l)

𝜓
(2)
2,l,m[x1(n), x2(n)] = x22(n − m)x∗2(n − l)

𝜓
(2)
3,l,m[x1(n), x2(n)] = x2(n − m)x∗1(n − l)x1(n − m) (10.63)

𝜓
(2)
4,l,m[x1(n), x2(n)] = x2(n − m)x∗1(n − m)x1(n − l)

𝜓
(2)
5,l,m[x1(n), x2(n)] = x22(n − l)x∗2(n − m)

𝜓
(2)
6,l,m[x1(n), x2(n)] = x2(n − l)x∗1(n − l)x1(n − m)

𝜓
(2)
7,l,m[x1(n), x2(n)] = x2(n − l)x∗1(n − m)x1(n − l)

Similarly to the memoryless and memory polynomial based models, the pass-band
Volterra model has no even-order terms. However, it was shown that even-order
terms can be added to the expression of the baseband equivalent model in order
to enhance the basis set, thus reducing the modeling error especially in the DPD
case [17].
Therefore, the baseband equivalent output waveforms of the phase-aligned

dual-band Volterra model are obtained from Equations 10.57, 10.58, and 10.60 as
follows:

y1(n) = yna,1(n) + ya,1(n) (10.64)

y2(n) = yna,2(n) + ya,2(n) (10.65)

where y1(n) and y2(n) are the baseband equivalent waveforms of the signals at the
output of the dual-band power amplifier estimated by the phase-aligned dual-band
Volterra model around the fundamental frequencies 𝜔1 and 𝜔2, respectively.

10.4 Application of MIMO and Dual-Band Models in Digital
Predistortion

In order to provide an idea on the expected linearization performance of the different
models discussed in this chapter, this sub-section presents some typical measurement
results of linearized PAs first in the case of a MIMO system with nonlinear crosstalk
then in the case of concurrent dual-band transmission.
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10.4.1 Linearization of MIMO Systems with Nonlinear Crosstalk

The measurement results showing the performance of the crossover MIMO DPD in
the presence of crosstalk are given in the presence of nonlinear crosstalk. First, the
effect of crosstalk on the quality of linearization using conventional memory polyno-
mial is shown in Figure 10.11. This figure shows the spectrum of the output signal
from one PA branch of a MIMO system in different scenarios:

1. No linearization is applied to reduce the PA nonlinear distortion,
2. Conventional memory polynomial predistortion is applied for MIMO system in

the presence of:
a. No crosstalk;
b. −40 dB nonlinear crosstalk;
c. −30 dB nonlinear crosstalk;
d. −20 dB nonlinear crosstalk.

From this figure, one can conclude that conventional memory polynomial performs
well only in the absence of crosstalk. The higher the crosstalk value, the worse is the
performance of the predistortion and therefore the higher is the residual distortion
observed at the output of the linearized amplifier.
The performance of the crossover MIMO predistortion is analyzed in Figure 10.12

and Table 10.1 and compared to conventional memory polynomial linearization for a
MIMO transmitter having −20 dB nonlinear crosstalk. Figure 10.12 shows the plots

Figure 10.11 Performance of conventional single-input single-output linearization in the presence of
nonlinear crosstalk in MIMO systems [21]. ©2009 IEEE. Reprinted, with permission, from S. A. Bas-
sam et al., “Crossover digital predistorter for the compensation of crosstalk and nonlinearity in MIMO
transmitters,” IEEE Transactions on Microwave Theory and Techniques, May 2009
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Figure 10.12 Performance of MIMO DPD in the presence of nonlinear crosstalk in MIMO systems
[21]. ©2009 IEEE. Reprinted, with permission, from S. A. Bassam et al., “Crossover digital predis-
torter for the compensation of crosstalk and nonlinearity in MIMO transmitters,” IEEE Transactions on
Microwave Theory and Techniques, May 2009

Table 10.1 EVM and ACPR performance of MIMO DPD compared to
conventional single-band linearization in the presence of nonlinear crosstalk in
MIMO systems [21]

Scenario EVM (dB) ACPR in 5MHz
offset (dBc)

Without DPD and −20 dB nonlinear
crosstalk

−20.15 40.66

Conventional DPD and −20 dB
nonlinear crosstalk

−21.22 43.31

Crossover MIMO DPD and −20 dB
nonlinear crosstalk

−49.71 56.81

Conventional DPD and without
nonlinear crosstalk

−53.69 58.23

of the power spectrum of a wideband code division multiple access (WCDMA) signal
at the output of the MIMO transmitter for the following four cases:

• no DPD and −20 dB crosstalk;
• conventional memory polynomial and −20 dB crosstalk;
• crossover MIMO DPD and −20 dB crosstalk; and
• conventional memory polynomial predistortion and no crosstalk.
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The measured results show that the crossover MIMO DPD effectively compensates
for the combined transmitter nonlinearity and the nonlinear crosstalk in the MIMO
transmitter resulting in the lowest residual spectral regrowth among the cases with
nonlinear crosstalk. Such residual spectral regrowth is almost equal to the one of the
case of memory polynomial performance when no crosstalk is present.
Table 10.1 summarizes the performance comparison between the crossover MIMO

predistortion and the conventional memory polynomial predistortion in terms
of ACPR (Adjacent Channel Power Ratio) and error vector magnitude (EVM).
Around 16 dB improvement in ACPR is obtained for the crossover MIMO DPD,
which is comparable performance to the memory polynomial when no crosstalk is
considered and more than 13 dB better than conventional memory polynomial in
the presence of the same crosstalk level. Similarly, in terms of EVM, the crossover
MIMO predistorter reduced the error down to −50 dB compared to −53 dB for
conventional memory polynomial with no crosstalk and −21 dB for conventional
memory polynomial with −20 dB crosstalk.

10.4.2 Linearization of Concurrent Dual-Band Transmitters Using a 2-D
Memory Polynomial Model

Example of validation of the performance of the 2-D memory polynomial model in
the linearization of concurrent dual-band transmission is provided in this section.
A dual-band signal composed of an orthogonal frequency division multiplexing
(OFDM) signal of bandwidth 10MHz centered around a carrier frequency equal
to 1.9GHz and a WCDMA signal of 5MHz bandwidth centered around a carrier
frequency equals to 2GHz is used for the validation. This dual-band signal is predis-
torted using the 2-D memory polynomial model and then sent through a dual-band
PA. The results are summarized in Figure 10.13 and Table 10.2. Figure 10.13 shows
the frequency spectra of the nonlinearized and linearized signals in each of the two
bands. The 2-D memory polynomial DPD was able to reduce the spectral regrowth
caused by the PA nonlinearity around each of the two bands. More than 10 dB
reduction is observed in the first band with the OFDM signal while almost 20 dB
improvement is observed in the second band with the WCDMA signal. Table 10.2
summarizes the performance of the linearization using 2-D memory polynomial in
terms of residual normalized mean squared error (NMSE) and in terms of ACPR.
Compared to the case where no predistortion is used, the NMSE was improved when
using the 2-D memory polynomial by more than 10 dB in the lower band and more
than 15 dB in the second band, while the ACPR was improved by more than 10 dB
in the lower band and by almost 15 dB in the upper band to reach about −55 dBc in
both cases. These results show that the 2-D memory polynomial model, when used
as a predistorter model, is able to correct for most of the in-band inter-modulation
and cross-modulation products generated by the PA when driven by a dual-band
signal.
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Figure 10.13 Performance of 2-D-DPD linearization in the presence of concurrent dual-band trans-
mission (a) band I with a 10MHz OFDM signal (©2009 IEEE. Reprinted, with permission, from S.
A. Bassam et al., “2-D digital predistortion (2-D-DPD) architecture for concurrent dual-band transmit-
ters,” IEEE Transactions on Microwave Theory and Techniques, Oct. 2011) and (b) band II with a 5MHz
WCDMA signal (©2009 IEEE. Reprinted, with permission, from S. A. Bassam et al., “2-D digital predis-
tortion (2-D-DPD) architecture for concurrent dual-band transmitters,” IEEE Transactions onMicrowave
Theory and Techniques, Oct. 2011) [21, 37].
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Table 10.2 NMSE and ACPR performance of 2-D-DPD compared to
conventional single-band linearization in the case of concurrent dual-band
transmission [37]

Signal Without
linearization

With
linearization

Residual NMSE WiMAX (lower band) −30.04 dB −41.05 dB
WCDMA (upper band) −26.19 dB −42.51 dB

ACPR WiMAX (lower band) −45.0 dBc −55.8 dBc
WCDMA (upper band) −38.3 dBc −54.6 dB

10.4.3 Linearization of Concurrent Tri-Band Transmitters Using 3-D
Phase-Aligned Volterra Model

The 3-D phase-aligned Volterra predistorter was validated for the linearization of a
wideband PA driven by three signals concurrently. The tri-band signal is composed of
the following:

1. a two-carrier LTE signal of bandwidth 8MHz sent at the lower frequency band
around 1.842GHz;

2. a one-carrier LTE signal of bandwidth 5MHz located at the middle frequency band
around 1.960GHz; and

3. a three-carrier LTE signal with the middle carrier turned off (carrier configuration
101) and a total bandwidth of 14MHz was applied in the upper frequency band
around 2.140GHz.

The tri-band power amplification system was linearized using a 3-D memory poly-
nomial predistorter and a 3-D phase-aligned Volterra predistorter. The results are
summarized in Figure 10.14 and Table 10.3. Figure 10.14 shows the frequency spec-
tra of the signal without predistortion, with 3-Dmemory polynomial predistortion and
with 3-D phase-aligned Volterra series predistortion in each of the three bands. It can
be concluded that both predistortion models reduce the spectral regrowth consider-
ably compared to the nonlinearized case, with the Volterra based model offering extra
few decibels reduction since it includes additional cross-terms that are not present in
the 3-D memory polynomial. The ACPR performances are summarized in Table 10.3.
These results confirm that the 3-D phase-aligned Volterra model performs slightly bet-
ter that the 3-D memory polynomial model in the linearization of the tri-band system.
The obtained ACPR values using the Volterra based model are around −45 dBc for
the lower band, −50 dBc for the middle band, and −55 dBc for the upper band in
the case of the 3-D phase-aligned Volterra series model. The two models were used
with approximately the same number of coefficients; 105 coefficients for the memory
polynomial based model versus 126 coefficients for the Volterra based model.
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Figure 10.14 Performance of 3-D phase-aligned Volterra DPD linearization in the presence of concur-
rent tri-band-band transmission and comparison with the 3-D memory polynomial DPD (a) band I; (b)
band II; and (c) band III [44]. ©2009 IEEE. Reprinted, with permission, from M. Younes et al., “Lin-
earization of concurrent tri-band transmitters using 3-D phase-aligned pruned Volterra model,” IEEE
Transactions on Microwave Theory and Techniques, Dec. 2013
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Table 10.3 ACPR performance of 2-D-DPD compared to conventional single-band linearization in
the case of concurrent dual-band transmission [44]

Linearization
technique

Lower
band (dBc)

Middle
band (dBc)

Upper
band (dBc)

ACPR I (5MHz) No DPD −34.5 −35.1 −37.8
3-D memory polynomial DPD −45.1 −50.0 −55.0
3-D phase aligned Volterra DPD −46.0 −50.6 −56.5

ACPR II (10MHz) No DPD −35.6 −35.0 −39.5
3-D memory polynomial DPD −43.2 −47.0 −55.1
3-D phase aligned Volterra DPD −45.6 −49.7 −57

ACPR III (15MHz) No DPD −39.5 −38.8 −43.6
3-D memory polynomial DPD −45.8 −50.3 −56.1
3-D phase aligned Volterra DPD −48.5 −53.6 −57.5
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