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PREFACE

This book is intended for a vibration course in an undergraduate

Mechanical Engineering curriculum. It is based on my lecture notes

of a course (ME370) that I have been teaching for many years at The

Pennsylvania State University (PSU), University Park. This vibration

course is a required core course in the PSU mechanical engineering

curriculum and is taken by junior-level or third-year students. Text-

books that have been used at PSU are as follows: Hutton (1981) and

Rao (1995, First Edition 1986). In addition, I have used the book by

Thomson and Dahleh (1993, First Edition 1972) as an important refer-

ence book while teaching this course. It will be a valid question if one

asks why I am writing another book when there are already a large

number of excellent textbooks on vibration since Den Hartog wrote

the classic book in 1956. One reason is that most of the books are

intended for senior-level undergraduate and graduate students. As a

result, our faculties have not found any book that can be called ideal

for our junior-level course. Another motivation for writing this book is

that I have developed certain unique ways of presenting vibration con-

cepts in response to my understanding of the background of a typical

undergraduate student in our department and the available time dur-

ing a semester. Some of the examples are as follows: review of selected

topics in mechanics; the description of the chapter on single-degree-

of-freedom (SDOF) systems in terms of equivalent mass, equivalent

stiffness, and equivalent damping; unified treatment of various forced

xiii
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response problems such as base excitation and rotating balance; intro-

duction of system thinking, highlighting the fact that SDOF analysis

is a building block for multi-degree-of-freedom (MDOF) and contin-

uous system analyses via modal analysis; and a simple introduction

of finite element analysis to connect continuous system and MDOF

analyses.

As mentioned before, there are a large number of excellent books

on vibration. But, because of a desire to include everything, many of

these books often become difficult for undergraduate students. In this

book, all the basic concepts in mechanical vibration are clearly iden-

tified and presented in a simple manner with illustrative and practi-

cal examples. I have also attempted to make this book self-contained

as much as possible; for example, materials needed from previous

courses, such as differential equation and engineering mechanics, are

presented. At the end of each chapter, exercise problems are included.

The use of MATLAB software is also included.

ORGANIZATION OF THE BOOK

In Chapter 1, the degrees of freedom and the basic elements of

a vibratory mechanical system are presented. Then the concepts

of equivalent mass, equivalent stiffness, and equivalent damping

are introduced to construct an equivalent single-degree-of-freedom

model. Next, the differential equation of motion of an undamped

SDOF spring–mass system is derived along with its solution. Then the

solution of the differential equation of motion of an SDOF spring–

mass–damper system is obtained. Three cases of damping levels –

underdamped, critically damped, and overdamped – are treated in

detail. Last, the concept of stability of an SDOF spring–mass–damper

system is presented.

In Chapter 2, the responses of undamped and damped SDOF

spring–mass systems are presented. An important example of input

shaping is shown. Next, the complete solutions of both undamped and
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damped spring–mass systems under sinusoidal excitation are derived.

Amplitudes and phases of steady-state responses are examined along

with force transmissibility, quality factor, and bandwidth. Then the

solutions to rotating unbalance and base excitation problems are pro-

vided. Next, the basic principles behind the designs of a vibrometer

and an accelerometer are presented. Last, the concept of equivalent

viscous damping is presented for nonviscous energy dissipation.

In Chapter 3, the techniques to compute the response of an SDOF

system to a periodic excitation are presented via the Fourier series

expansion. Then it is shown how the response to an arbitrary exci-

tation is obtained via the convolution integral and the unit impulse

response. Last, the Laplace transform technique is presented. The

concepts of transfer function, poles, zeros, and frequency response

function are also introduced.

In Chapter 4, mass matrix, stiffness matrix, damping matrix, and

forcing vector are defined. Then the method to compute the natural

frequencies and the mode shapes is provided. Next, free and forced

vibration of both undamped and damped two-degree-of-freedom sys-

tems are analyzed. Last, the techniques to design undamped and

damped vibration absorbers are presented.

In Chapter 5, the computation of the natural frequencies and the

mode shapes of discrete multi-degree-of-freedom and continuous sys-

tems is illustrated. Then the orthogonality of the mode shapes is

shown. The method of modal decomposition is presented for the com-

putation of both free and forced responses. The following cases of

continuous systems are considered: transverse vibration of a string,

longitudinal vibration of a bar, torsional vibration of a circular shaft,

and transverse vibration of a beam. Last, the finite element method is

introduced via examples of the longitudinal vibration of a bar and the

transverse vibration of a beam.
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EQUIVALENT

SINGLE-DEGREE-OF-FREEDOM

SYSTEM AND FREE VIBRATION

The course on Mechanical Vibration is an important part of the

Mechanical Engineering undergraduate curriculum. It is necessary

for the development and the performance of many modern engi-

neering products: automobiles, jet engines, rockets, bridges, electric

motors, electric generators, and so on. Whenever a mechanical sys-

tem contains storage elements for kinetic and potential energies, there

will be vibration. The vibration of a mechanical system is a contin-

ual exchange between kinetic and potential energies. The vibration

level is reduced by the presence of energy dissipation elements in the

system. The problem of vibration is further accentuated because of

the presence of time-varying external excitations, for example, the

problem of resonance in a rotating machine, which is caused by the

inevitable presence of rotor unbalance. There are many situations

where the vibration is caused by internal excitation, which is depen-

dent on the level of vibration. This type of vibration is known as self-

excited oscillations, for example, the failure of the Tacoma suspension

bridge (Billah and Scanlan, 1991) and the fluttering of an aircraft wing.

This course deals with the characterization and the computation of the

response of a mechanical system caused by time-varying excitations,

which can be independent of or dependent on vibratory response.

In general, the vibration level of a component of a machine has to

be decreased to increase its useful life. As a result, the course also

1



2 Vibration of Mechanical Systems

examines the methods used to reduce vibratory response. Further, this

course also develops an input/output description of a dynamic system,

which is useful for the design of a feedback control system in a future

course in the curriculum.

The book starts with the definition of basic vibration elements

and the vibration analysis of a single-degree-of-freedom (SDOF) sys-

tem, which is the simplest lumped parameter mechanical system and

contains one independent kinetic energy storage element (mass), one

independent potential energy storage element (spring), and one inde-

pendent energy dissipation element (damper). The analysis deals

with natural vibration (without any external excitation) and forced

response as well. The following types of external excitations are con-

sidered: constant, sinusoidal, periodic, and impulsive. In addition,

an arbitrary nature of excitation is considered. Then, these analyses

are presented for a complex lumped parameter mechanical system

with multiple degrees of freedom (MDOF). The design of vibration

absorbers is presented. Next, the vibration of a system with continu-

ous distributions of mass, such as strings, longitudinal bars, torsional

shafts, and beams, is presented. It is emphasized that the previous

analyses of lumped parameter systems serve as building blocks for

computation of the response of a continuous system that is governed

by a partial differential equation. Last, the fundamentals of finite ele-

ment analysis (FEA), which is widely used for vibration analysis of a

real structure with a complex shape, are presented. This presentation

again shows the application of concepts developed in the context of

SDOF and MDOF systems to FEA.

In this chapter, we begin with a discussion of degrees of freedom

and the basic elements of a vibratory mechanical system that are a

kinetic energy storage element (mass), a potential energy storage ele-

ment (spring), and an energy dissipation element (damper). Then,

an SDOF system with many energy storage and dissipation elements,

which are not independent, is considered. It is shown how an equiv-

alent SDOF model with one equivalent mass, one equivalent spring,
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and one equivalent damper is constructed to facilitate the derivation

of the differential equation of motion. Next, the differential equation

of motion of an undamped SDOF spring–mass system is derived along

with its solution to characterize its vibratory behavior. Then, the solu-

tion of the differential equation of motion of an SDOF spring–mass–

damper system is obtained and the nature of the response is exam-

ined as a function of damping values. Three cases of damping lev-

els, underdamped, critically damped, and overdamped, are treated in

detail. Last, the concept of stability of an SDOF spring–mass–damper

system is presented along with examples of self-excited oscillations

found in practice.

1.1 DEGREES OF FREEDOM

Degrees of freedom (DOF) are the number of independent coordinates

that describe the position of a mechanical system at any instant of time.

For example, the system shown in Figure 1.1.1 has one degree of free-

dom x, which is the displacement of the mass m1. In spite of the two

masses m1 and m2 in Figure 1.1.2, this system has only one degree of

freedom x because both masses are connected by a rigid link, and the

displacements of both masses are not independent. The system shown

in Figure 1.1.3 has two degrees of freedom x1 and x2 because both

masses m1 and m2 are connected by a flexible link or a spring, and the

displacements of both masses are independent.

Next, consider rigid and flexible continuous cantilever beams as

shown in Figures 1.1.4 and 1.1.5. The numbers of degrees of freedom

for rigid and flexible beams are 0 and ∞, respectively. Each contin-

uous beam can be visualized to contain an infinite number of point

masses. These point masses are connected by rigid links for a rigid

beam as shown in Figure 1.1.2, whereas they are connected by flexible

links for a flexible beam as shown in Figure 1.1.3. Consequently, there

is one degree of freedom associated with each of the point masses in

a flexible beam.
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1m

x

Massless
spring

DOF = 1

Figure 1.1.1 An SDOF system with a single mass

1m

x

2m

x

Rigid link
Massless 
spring

DOF = 1

Figure 1.1.2 An SDOF system with two masses

1m
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Massless
spring

Massless
spring

2=DOF

Figure 1.1.3 Two DOF systems with two masses

Point masses connected by rigid links

. . . . . . . 0=DOF

Rigid beam

Figure 1.1.4 A rigid beam fixed at one end

. . . . . . .
Point masses connected by flexible links

DOF = ∞

Flexible beam

Figure 1.1.5 A flexible beam fixed at one end
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m
(t)f

(t)x

Figure 1.2.1 A mass in pure translation

1.2 ELEMENTS OF A VIBRATORY SYSTEM

There are three basic elements of a vibratory system: a kinetic energy

storage element (mass), a potential energy storage element (spring),

and an energy dissipation element (damper). The description of each

of these three basic elements is as follows.

1.2.1 Mass and/or Mass-Moment of Inertia

Newton’s second law of motion and the expression of kinetic energy

are presented for three types of motion: pure translational motion,

pure rotational motion, and planar (combined translational and rota-

tional) motion.

Pure Translational Motion

Consider the simple mass m (Figure 1.2.1) which is acted upon by a

force f (t).

Applying Newton’s second law of motion,

mẍ = f (t) (1.2.1)

where

ẋ = dx
dt

and ẍ = d2x
dt2

(1.2.2a, b)

The energy of the mass is stored in the form of kinetic energy (KE):

KE = 1
2

mẋ2 (1.2.3)
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cv
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Figure 1.2.2 A mass in pure rotation

Pure Rotational Motion

Consider the mass m (Figure 1.2.2) which is pinned at the point O,

and acted upon by an equivalent external force feq and an equivalent

external moment σeq. This mass is undergoing a pure rotation about

the point O, and Newton’s second law of motion leads to

Ioθ̈ = −mgr sin θ + feq� + σeq (1.2.4)

where Io is the mass-moment of inertia about the center of rotation O,

θ is the angular displacement, and � is the length of the perpendicular

from the point O to the line of force.

The KE of the rigid body is

KE = 1
2

Ioθ̇
2 (1.2.5)

The potential energy (PE) of the rigid body is

PE = mg(r − r cos θ) (1.2.6)

Planar Motion (Combined Rotation and Translation)

of a Rigid Body

Consider the planar motion of a rigid body with mass m and the mass-

moment of inertia Ic about the axis perpendicular to the plane of

motion and passing through the center of mass C (Figure 1.2.3). Forces

fi , i = 1, 2, . . . , nf , and moments σi , i = 1, 2, . . . , nt, are acting on this
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cv
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Figure 1.2.3 Planar motion of a rigid body

rigid body. Let xc and yc be x- and y- coordinates of the center of

mass C with respect to the fixed x−y frame. Then, Newton’s second

law of motion for the translational part of motion is given by

mẍc =
∑

i

fxi (t) (1.2.7)

mÿc =
∑

i

fyi (t) (1.2.8)

where fxi and fyi are x- and y- components of the force fi . Newton’s

second law of motion for the rotational part of motion is given by

Icθ̈ = Icω̇ =
∑

i

σi (t) +
∑

i

σ c
fi

(1.2.9)

where σ c
fi

is the moment of the force fi about the center of mass C.

And, θ and ω are the angular position and the angular velocity of the

rigid body, respectively. The KE of a rigid body in planar motion is

given by

KE = 1
2

mv2
c + 1

2
Icω

2 (1.2.10)

where vc is the magnitude of the linear velocity of the center of mass,

that is,

v2
c = ẋ2

c + ẏ2
c (1.2.11)
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)(tf
)(t f Massless

2x1x
k

Figure 1.2.4 A massless spring in translation

Special Case: Pure Rotation about a Fixed Point

Note that the pure rotation of the rigid body (Figure 1.2.2) is a special

planar motion for which

vc = rω (1.2.12)

and Equation 1.2.10 leads to

KE = 1
2

(mr2 + Ic)ω2 (1.2.13)

Using the parallel-axis theorem,

Io = Ic + mr2 (1.2.14)

Therefore, Equation 1.2.5 is obtained for the case of a pure rotation

about a fixed point.

1.2.2 Spring

The spring constant or stiffness and the expression of PE are pre-

sented for two types of motion: pure translational motion and pure

rotational motion.

Pure Translational Motion

Consider a massless spring, subjected to a force f (t) on one end

(Figure 1.2.4). Because the mass of the spring is assumed to be zero,

the net force on the spring must be zero. As a result, there will be an

equal and opposite force on the other end. The spring deflection is the

difference between the displacements of both ends, that is,

spring deflection = x2 − x1 (1.2.15)



Equivalent Single-Degree-of-Freedom System and Free Vibration 9

Massless
Torque, σTorque, σ

2θ
1θ

Figure 1.2.5 A massless spring in rotation

and the force is directly proportional to the spring deflection:

f (t) = k(x2 − x1) (1.2.16)

where the proportionality constant k is known as the spring constant

or stiffness.

The PE of the spring is given by

PE = 1
2

k(x2 − x1)2 (1.2.17)

It should be noted that the PE is independent of the sign (extension

or compression) of the spring deflection, x2 − x1.

Pure Rotational Motion

Consider a massless torsional spring, subjected to a torque σ (t) on one

end (Figure 1.2.5). Because the mass of the spring is assumed to be

zero, the net torque on the spring must be zero. As a result, there will

be an equal and opposite torque on the other end. The spring deflec-

tion is the difference between angular displacements of both ends,

that is,

spring deflection = θ2 − θ1 (1.2.18)

and the torque is directly proportional to the spring deflection:

σ (t) = kt(θ2 − θ1) (1.2.19)

where the proportionality constant kt is known as the torsional spring

constant or torsional stiffness.

The PE of the torsional spring is given by

PE = 1
2

kt(θ2 − θ1)2 (1.2.20)
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)(tf

2x

)(t f

1x c

Massless

Mass

2x

)(tf

(a) (b)

Figure 1.2.6 (a) A massless damper in translation; (b) A mass attached to the right
end of the damper

It should be noted that the PE is independent of the sign of the spring

deflection, θ2 − θ1.

1.2.3 Damper

The damping constant and the expression of energy dissipation are

presented for two types of motion: pure translational motion and pure

rotational motion.

Pure Translational Motion

Consider a massless damper, subjected to force f (t) on one end

(Figure 1.2.6a). Because the mass of the damper is assumed to be

zero, the net force on the damper must be zero. As a result, there

will be an equal and opposite force on the other end, and the damper

force is directly proportional to the difference of the velocities of both

ends:

f (t) = c(ẋ2(t) − ẋ1(t)) (1.2.21)

where the proportionality constant c is known as the damping con-

stant. The damper defined by Equation 1.2.21 is also known as the

linear viscous damper.

If there is a mass attached to the damper at the right end (Fig-

ure 1.2.6b) with the displacement x2, the work done on the mass



Equivalent Single-Degree-of-Freedom System and Free Vibration 11

against the damping force for an infinitesimal displacement dx2 is

f (t)dx2 = f (t)
dx2

dt
dt = f (t)ẋ2dt (1.2.22)

The energy dissipated by the damper equals the work done on mass

against the damping force, that is, from Equation 1.2.22,

energy dissipated by the damper = f (t)ẋ2dt = c(ẋ2 − ẋ1)ẋ2dt

(1.2.23)
As an example, consider x1(t) = 0 and x2(t) = A sin(ωt − φ), where A

and φ are constants, and ω is the frequency of oscillation. In this case,

from Equation 1.2.23,

energy dissipated by the damper = cẋ2
2dt = cA2ω2 cos2(ωt − φ)dt

(1.2.24)
Substituting υ = ωt − φ into Equation 1.2.24,

energy dissipated by the damper = cA2ω cos2 υdυ (1.2.25)

As a result, the energy dissipated by the damper per cycle of oscilla-

tion is
2π∫

0

cA2ω cos2 υdυ = πcωA2 (1.2.26)

It should be noted that the energy dissipated by the viscous

damper per cycle of oscillation is proportional to the square of the

vibration amplitude.

Pure Rotational Motion

Consider a massless torsional damper, subjected to a torque σ (t) on

one end (Figure 1.2.7). Because the mass of the damper is assumed

to be zero, the net torque on the damper must be zero. As a result,

there will be an equal and opposite torque on the other end, and the

damper torque is directly proportional to the difference of the angular

velocities of both ends:

σ (t) = ct(θ̇2(t) − θ̇1(t)) (1.2.27)
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2θ
1θ

Torque, σTorque, σ

tc

Massless

Figure 1.2.7 A massless torsional damper

where the proportionality constant ct is known as the damping con-

stant. The damper defined by Equation 1.2.27 is also known as the

linear viscous damper.

If there is a mass attached to the damper at the right end with the

angular displacement θ2, the work done against the damping torque

for an infinitesimal displacement dθ2 is

σ (t)dθ2 = σ (t)
dθ2

dt
dt = σ (t)θ̇2dt (1.2.28)

The energy dissipated by the damper equals the work done on mass

against the damping torque, that is, from Equation 1.2.28,

energy dissipated by the damper = σ (t)θ̇2dt = ct(θ̇2 − θ̇1)θ̇2dt

(1.2.29)

The expression similar to Equation 1.2.26 can be derived for the

energy dissipated by the torsional viscous damper per cycle of oscilla-

tion.

1.3 EQUIVALENT MASS, EQUIVALENT STIFFNESS,

AND EQUIVALENT DAMPING CONSTANT FOR

AN SDOF SYSTEM

In this section, equivalent mass, equivalent stiffness, and equivalent

damping constant are derived for a rotor–shaft system, spring with
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Rotor with mass = m

Simply supported shaft

2

l

2

l

Figure 1.3.1 A rotor–shaft system

nonnegligible mass, parallel and series combinations of springs and

dampers, and a combined rotational and translational system.

1.3.1 A Rotor–Shaft System

Consider a rotor with mass m which is supported at the mid-span of a

simply supported shaft of length � (Figure 1.3.1). The mass of the shaft

is negligible in comparison with the mass of the rotor. For the purpose

of transverse vibration modeling, the shaft is considered as a simply

supported beam (Crandall et al., 1999). For a simply supported beam,

when a load P is applied at the mid-span (Figure 1.3.2), the deflection

δ of the shaft at the mid-span is obtained from the results provided in

Appendix A (Equation A.2) by

δ = P�3

48EI
(1.3.1)

where E and I are the Young’s modulus of elasticity and the area

moment of inertia, respectively.

P
δ

2

l

2

l

DeflectionSimply supported shaft

Figure 1.3.2 Deflection of a simply supported shaft
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m

3
48EI

l
keq =

)(tx

Massless

Figure 1.3.3 Equivalent SDOF system for a rotor–shaft system

Therefore, the equivalent stiffness of the shaft is defined as

keq = P
δ

= 48EI
�3

(1.3.2)

And, an equivalent SDOF system can be constructed as shown in

Figure 1.3.3, where x(t) is the displacement of the rotor mass.

1.3.2 Equivalent Mass of a Spring

Consider an SDOF system (Figure 1.3.4) in which the mass of the

spring ms is not negligible with respect to the main mass m.

m

eqk

)(tx

sm=
Spring-mass

dy

x&
l

y
x

l

&

y

y

yv
0

Figure 1.3.4 A spring–mass system with nonnegligible mass of spring
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Then, an equivalent system with a massless spring can be obtained

on the basis of the total KE. Let the length of the spring be �, and

assume that the mass of the spring is uniformly distributed over its

length. Then, the mass of a spring strip of the length dy will be

dmy = ms

�
dy (1.3.3)

To determine the KE, the velocity vy of the spring strip at a distance

y from the base of the spring must be known. But, we only have the

following information:

@y = 0, vy = 0 (1.3.4)

and

@y = �, vy = ẋ vy = ẋ (1.3.5)

The velocity at an intermediate point (0 < y < �) is not known. There-

fore, it is assumed that the velocity profile over the length of the spring

is linear as shown in Figure 1.3.4, that is,

vy = ẋ
�

y (1.3.6)

The KE of the spring strip of length dy at a distance y from the base

of the spring is

dKEs = 1
2

dmy(vy)2 (1.3.7)

Using Equations (1.3.3) and (1.3.7),

dKEs = 1
2

ms

�

(
ẋ
�

y
)2

dy (1.3.8)

Therefore, the total KE of the spring is given by

KEs =
�∫

0

1
2

ms

�

(
ẋ
�

y
)2

dy = 1
2

msẋ2

�3

�∫
0

y2dy = 1
2

ms

3
ẋ2 (1.3.9)
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3
sm

m +

eqk

Massless 
spring

)(t x

Figure 1.3.5 Equivalent SDOF system with a massless spring

Hence, the total KE of the system with a nonnegligible spring mass is

given by

KE = 1
2

mẋ2 + 1
2

ms

3
ẋ2 = 1

2
meqẋ2 (1.3.10)

where the equivalent mass meq is given by

meq = m + ms

3
(1.3.11)

And, the equivalent SDOF system can be created with a massless

spring and a mass meq as shown in Figure 1.3.5. The systems shown

in Figures 1.3.4 and 1.3.5 will have the same amount of KE under the

assumption of a linear velocity profile for the spring.

1.3.3 Springs in Series and Parallel

Springs in Series

Consider a series combination of massless springs with stiffnesses k1

and k2 (Figure 1.3.6).

1k 2k

1x x

)(tf

Massless Massless

Figure 1.3.6 Springs in series
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1k 2k)(t f )(tf )(tf )(tf

x1x
1x0

Figure 1.3.7 Free body diagrams for springs in series

The free body diagram of each spring is shown in Figure 1.3.7 for

which the following relationships can be written:

f (t) = k1x1 (1.3.12)

and

f (t) = k2(x − x1) (1.3.13)

It is important to note that both springs, which are in series, carry

the same amount of force. From Equations 1.3.12 and 1.3.13,

x1 = k2

k1 + k2
x (1.3.14)

Substituting Equation 1.3.14 into Equation 1.3.13,

f (t) = keqx (1.3.15)

where

keq = k1k2

k1 + k2
(1.3.16)

Here, keq is the equivalent stiffness and the system in Figure 1.3.6

can be replaced by a system with only one spring with the stiffness keq

as shown in Figure 1.3.8.

Equation 1.3.16 can also be written as

1
keq

= 1
k1

+ 1
k2

(1.3.17)

Springs in Parallel

Consider a parallel combination of massless springs with stiffnesses k1

and k2 (Figure 1.3.9).
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1k 2k

1x x

)(tf

Massless Massless

eqk )(tf

x
Massless

21

111

kkkeq
+=

≡

Figure 1.3.8 Equivalent system with only one spring for a series combination

The free body diagram of each spring is shown in Figure 1.3.10 for

which the following relationships can be written:

f1(t) = k1x (1.3.18)

f2(t) = k2x (1.3.19)

and

f (t) = f1(t) + f2(t) (1.3.20)

It is important to note that both springs, which are in parallel, undergo

the same amount of deflection. Substituting Equations 1.3.18 and 1.3.19

into Equation 1.3.20,

f (t) = keqx (1.3.21)

where

keq = k1 + k2 (1.3.22)

1k

Massless

2k

)(tf

x

Massless

Figure 1.3.9 A parallel combination of springs
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1k)(1 t f )(1 tf

x0

)(tf

)(1 tf

)(2 tf

2k)(2 t f )(2 tf

x0

Figure 1.3.10 Free body diagrams for springs in parallel

Here, keq is the equivalent stiffness and the system in Figure 1.3.9

can be replaced by a system with only one spring with the stiffness keq

as shown in Figure 1.3.11.

1.3.4 An SDOF System with Two Springs and Combined Rotational

and Translational Motion

Consider the system shown in Figure 1.3.12, in which a cylinder

rolls without slipping. The displacement of the cylinder’s center of

mass, marked as C, is denoted by the symbol x(t). Because of the

displacement x(t), the stepped pulley rotates by an amount θ(t). For a

small displacement x(t), from Figure 1.3.13,

θ(t) = x(t)
r2

(1.3.23)

eqk )(tf

xMassless

≡

21 kkkeq +=
1k

Massless

2k

)(tf

x

Massless

Figure 1.3.11 Equivalent system with only one spring for a parallel combination



20 Vibration of Mechanical Systems

2k

1k

Radius = r

Radius = 2r
Radius = 3r

Roll without slip

x

Cylinder with mass = m

C
Rigid link

Mass-moment of inertia = oI

o

x

θ

1x
Stepped 
pulley

 

Figure 1.3.12 An SDOF System with rotational and translational motion

Using Equation 1.2.10, the KE of the cylinder is given as

KEcyl = 1
2

mẋ2 + 1
2

Icω
2 (1.3.24)

where the mass-moment of inertia of the cylinder about C is

Ic = 1
2

mr2 (1.3.25)

and the angular velocity ω of the cylinder for rolling without slipping

is

ω = ẋ
r

(1.3.26)

Substituting Equations 1.3.25 and 1.3.26 into Equation 1.3.24,

KEcyl = 1
2

1.5mẋ2 (1.3.27)

The KE of the stepped pulley is

KEsp = 1
2

Ioω
2
sp (1.3.28)

where ωsp is the angular velocity of the stepped pulley. From Equation

1.3.23,

ωsp = θ̇ = ẋ
r2

(1.3.29)
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2 r

x

θ

θ

1x

3r

Figure 1.3.13 Displacement and equivalent rotation

Substituting Equation 1.3.29 into Equation 1.3.28,

KEsp = 1
2

Io

r2
2

ẋ2 (1.3.30)

From Equations 1.3.24 and 1.3.30, the total KE in the system is

KEtot = KEcyl + KEsp = 1
2

meqẋ2 (1.3.31)

where

meq = 1.5m + I0

r2
2

(1.3.32)

From Figure 1.3.12, the total PE in the system is

PEtot = 1
2

k1x2 + 1
2

k2x2
1 (1.3.33)

where from Figure 1.3.13,

x1 = r3θ (1.3.34)

Substituting Equation 1.3.34 into Equation 1.3.33 and using Equa-

tion 1.3.23,

PEtot = 1
2

keqx2 (1.3.35)

where

keq = k1 + k2

(
r3

r2

)2

(1.3.36)

Here, meq (Equation 1.3.32) and keq (Equation 1.3.36) are the

equivalent mass and the equivalent stiffness of the SDOF system
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05.1
r
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Figure 1.3.14 An SDOF system with a single spring and a single mass equivalent to
system in Figure 1.3.12

shown in Figure 1.3.12. And, the system shown in Figure 1.3.12 can

also be described as the equivalent SDOF (Figure 1.3.14).

1.3.5 Viscous Dampers in Series and Parallel

Dampers in Series

Consider a series combination of massless viscous dampers with

damping coefficients c1 and c2 (Figure 1.3.15).

The free body diagram of each damper is shown in Figure 1.3.16

for which the following relationships can be written:

f (t) = c1 ẋ1 (1.3.37)

f (t) = c2(ẋ − ẋ1) (1.3.38)

An important point to note here is that both dampers, which are in

series, carry the same amount of force. From Equations 1.3.37 and

1.3.38,

ẋ1 = c2

c1 + c2
ẋ (1.3.39)

Substituting Equation 1.3.39 into Equation 1.3.38,

f (t) = ceqẋ (1.3.40)

)(tf

x1x
1c 2c0

MasslessMassless

Figure 1.3.15 Dampers in series
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)(tf

1x

)(t f

0
1c

Massless

)(tf

x

)(tf

1x
2c

Massless

Figure 1.3.16 Free body diagrams for dampers in series

where

ceq = c1c2

c1 + c2
(1.3.41)

Here, ceq is the equivalent damping coefficient and the system in

Figure 1.3.15 can be replaced by a system with only one damper with

the coefficient ceq as shown in Figure 1.3.17. Equation 1.3.41 can also

be written as

1
ceq

= 1
c1

+ 1
c2

(1.3.42)

Dampers in Parallel

Consider a parallel combination of massless dampers with coefficients

c1 and c2 (Figure 1.3.18).

The free body diagram of each damper is shown in Figure 1.3.19

for which the following relationships can be written:

f1(t) = c1 ẋ (1.3.43)

f2(t) = c2 ẋ (1.3.44)

)(tf

x1x
1c 2c0

MasslessMassless

)(tf

x

21

21
cc

cc
ceq +=

Massless

≡

Figure 1.3.17 Equivalent system with only one damper for a series combination
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)(tf

x

Massless Massless

Massless

1c

2c

Figure 1.3.18 A parallel combination of dampers

and

f (t) = f1(t) + f2(t) (1.3.45)

An important point to note here is that both dampers, which are in par-

allel, have the same velocity. Substituting Equations 1.3.43 and 1.3.44

into Equation 1.3.45,

f (t) = ceqẋ (1.3.46)

where

ceq = c1 + c2 (1.3.47)

)(1 tf

x

)(1 t f

0
1c

Massless

)(2 tf

x

)(2 tf

0
2c

Massless

)(tf

x

Massless

)(1 tf

)(2 tf

Figure 1.3.19 Free body diagrams for dampers in parallel
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)(tf

x

Massless Massless

Massless

1c

2c

)(tf

x
21 ccceq +=

Massless

≡

Figure 1.3.20 Equivalent system with only one damper for a parallel combination

Here, ceq is the equivalent damping constant and the system in Fig-

ure 1.3.18 can be replaced by a system with only one damper with the

coefficient ceq as shown in Figure 1.3.20.

1.4 FREE VIBRATION OF AN UNDAMPED

SDOF SYSTEM

This section deals with the derivation and the solution of the differ-

ential equation of motion of an undamped SDOF system. The solu-

tion of the differential equation of motion is used to characterize the

nature of free vibration.

1.4.1 Differential Equation of Motion

Consider an SDOF spring–mass system with equivalent spring stiff-

ness keq and equivalent mass meq (Figure 1.4.1). First, consider the

system with the unstretched spring (Figure 1.4.1). As we let the mass

be under gravity, the spring will deflect due to the weight. There will

be a static equilibrium configuration where the net force on the mass

will be zero. The free body diagram is shown in Figure 1.4.2, where

� is the static deflection or the deflection of the spring in the static

equilibrium configuration. For the static equilibrium condition,

keq� = meqg (1.4.1)
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Perturbed from static equilibrium

Zero P.E.

P.E. = Potential energy

Figure 1.4.1 An undamped SDOF spring–mass system

Let the displacement x(t) be a perturbation from the static equilib-

rium (Figure 1.4.1). From the free body diagram in Figure 1.4.2 (Per-

turbed from Static Equilibrium),

net force in x-direction = −keq(x + �) + meqg (1.4.2)

Newton’s second law of motion states that

Net force in x-direction = mass × acceleration (1.4.3)

Therefore,

−keq(x + �) + meqg = meqẍ (1.4.4)

eqm eqm

Δeqk

gmeq

))(( txkeq +Δ

gmeq

Static 
equilibrium

Perturbed from static equilibrium

Figure 1.4.2 Free body diagrams
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eqm

Perturbed from static equilibrium

)(txkeq

Figure 1.4.3 Equivalent free body diagram after canceling keq� and meqg

Using Equation 1.4.1,

meqẍ + keqx = 0 (1.4.5)

The same differential equation is obtained by neglecting the weight

meqg and the spring force keq� as well. The resulting free body dia-

gram is shown in Figure 1.4.3, and

net force in x-direction = −keqx (1.4.6)

Newton’s second law of motion yields

−keqx = meqẍ (1.4.7)

Energy Approach

The KE of the system (perturbed from static equilibrium in Fig-

ure 1.4.1 is given by

U = 1
2

meqẋ2 (1.4.8)

and the PE is given by

P = 1
2

keq(x + �)2 − meqg(x + �) (1.4.9)

The total energy is

T = U + P = 1
2

meqẋ2 + 1
2

keq(x + �)2 − meqg(x + �) (1.4.10)

Since there is no sink (damping) or source (external force) of energy,

the total energy T is a constant. Therefore,

dT
dt

= 0 (1.4.11)
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From Equations 1.4.10 and 1.4.11,

1
2

meq2ẋẍ + 1
2

keq2(x + �)ẋ − meqgẋ = 0 (1.4.12)

or

(meqẍ + keqx + keq� − meqg)ẋ = 0 (1.4.13)

Because of the static equilibrium condition in Equation 1.4.1,

(meqẍ + keqx)ẋ = 0 (1.4.14)

As ẋ(t) is not zero for all t,

meqẍ + keqx = 0 (1.4.15)

The same differential equation of motion can be obtained by writing

the PE as

P = 1
2

keqx2 (1.4.16)

Note that the contributions of the weight mg and the corresponding

static deflection � have been simultaneously neglected.

The total energy is given by

T = U + P = 1
2

meqẋ2 + 1
2

keqx2 (1.4.17)

The condition in Equation 1.4.11 yields

(meqẍ + keqx)ẋ = 0 (1.4.18)

Therefore,

meqẍ + keqx = 0 (1.4.19)

Example 1.4.1: A Horizontal Rigid Bar

Consider the system shown in Figure 1.4.4a, in which a rigid bar,

pinned at point A, and is supported by springs with stiffnesses k1 and

k2 which are located at distances a and b from the pin A, respectively.

Under the gravity, the bar will rotate to be in the static equilibrium
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A
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2k

1k

θ

Static equilibrium
A

(a) (b)

Figure 1.4.4 (a) A horizontal bar with an unstretched spring; (b) Perturbation from
static equilibrium configuration

configuration. Let θ(t) be the small angular displacement of the bar

from the static equilibrium position (Figure 1.4.4b). The free body dia-

gram of the bar is shown in Figure 1.4.5. Note that the weight of the

bar and spring forces due to static deflections (in static equilibrium

configuration) have not been included as they cancel out. It should

also be noted that the spring deflections with respect to static equi-

librium configurations are calculated for a small angular displacement

and are found (Figure 1.4.6) to be bθ and aθ for springs with stiffnesses

k2 and k1, respectively.

Net torque about point A in θ direction = −k1aθa−k2bθb (1.4.20)

Applying Newton’s second law of motion,

net torque about point A in θ direction = IAθ̈ (1.4.21)

θbk2

θak2

AR

θ

Static equilibrium

Figure 1.4.5 Free body diagram for a horizontal bar
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b

bθ θ θ
a

aθ

Figure 1.4.6 Spring displacements for a horizontal bar

From Equations 1.4.20 and 1.4.21, the differential equation of motion

is

IAθ̈ + (k1a2 + k2b2)θ = 0 (1.4.22)

Energy Method

KE,U = 1
2

IAθ̇2 (1.4.23)

PE,P = 1
2

k1(aθ)2 + 1
2

k2(bθ)2 (1.4.24)

The total energy is

T = U + P = 1
2

IAθ̇2 + 1
2

k1(aθ)2 + 1
2

k2(bθ)2 (1.4.25)

The condition of a constant value of the total energy yields

dT
dt

= 0 ⇒ IAθ̈ + (k1a2 + k2b2)θ = 0 (1.4.26)

Example 1.4.2: A Vertical Rigid Bar

Consider the rigid bar of mass m in the vertical configuration (Fig-

ure 1.4.7a). This bar is pinned at the point A, and is connected to

a spring with the stiffness k at a distance b from the point A. The

center of the gravity of the bar C, is located at a distance a from the

pin A.

Let θ(t) be the small angular displacement of the bar (Fig-

ure 1.4.7b). The free body diagram of the bar is shown in Figure 1.4.8a,

where RA is the reaction force at the point A. The geometry associ-

ated with the angular displacement is shown in Figure 1.4.8b, where

the angle θ(t) has been magnified for the sake of clarity. The spring
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Figure 1.4.7 (a) Vertical bar in static equilibrium; (b) Vertical bar perturbed from
static equilibrium

deflection is b sin θ , which is approximated as bθ for a small θ . Taking

moment about the point A,

−kbθb cos θ − mga sin θ = IAθ̈ (1.4.27)

where IA is the mass-moment of inertia about A. For a small θ , sin θ ≈
θ and cos θ ≈ 1.

Therefore,

IAθ̈ + (mga + kb2)θ = 0 (1.4.28)

a

θ

θsina

θcosa

)cos1( θ−a

θsinb

b

C

Magnified θ

a

A

mg

 kb

θ
θ

a

AR

(a) (b)

Figure 1.4.8 (a) Free body diagram for vertical rigid bar; (b) Geometry associated
with Figure 1.4.8a
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Note that the weight of the bar mg, is included here because it

does not cause any spring deflection in the vertical static equilibrium

configuration.

Energy Method

KE,U = 1
2

IAθ̇2 (1.4.29)

PE,P = mga(1 − cos θ) + 1
2

k(bθ)2 (1.4.30)

In Equation 1.4.30, 1 − cos θ is almost equal to zero as cos θ ≈ 1.

However, 1 − cos θ is not negligible in comparison with θ2, which is

also quite small. Therefore, cos θ ≈ 1 should not be used in Equa-

tion 1.4.30.

The total energy is given by

T = 1
2

IAθ2 + mga(1 − cos θ) + 1
2

k(bθ)2 (1.4.31)

Because the total energy is a constant,

dT
dt

= [IAθ̈ + mga sin θ + kb2θ ]θ̇ = 0 (1.4.32)

Using sin θ ≈ θ , Equation 1.4.32 yields

IAθ̈ + (mga + kb2)θ = 0 (1.4.33)

Example 1.4.3: Inclined Spring

Consider a mass with an inclined massless spring with the stiffness k

(Figure 1.4.9). The inclination of the spring is represented by the angle

α. When the displacement of the mass m is x, the length of the spring

changes from � to � + δ (Figure 1.4.10). From the cosine law,

cos(π − α) = �2 + x2 − (� + δ)2

2�x
(1.4.34)
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Figure 1.4.9 A mass connected with an inclined spring

After some algebra,

(� + δ)2 = �2
[

1 + 2
x
�

cos α + x2

�2

]
(1.4.35)

Assume that x/� 	 1. In this case, the term (x/�)2 can be neglected

and

� + δ = �
[
1 + 2

x
�

cos α
]0.5

(1.4.36)

Using the binomial expansion (Appendix B) and neglecting higher-

order terms,

� + δ ∼= �
[
1 + x

�
cos α

]
(1.4.37)

Therefore,

δ ∼= x cos α (1.4.38)

The spring force kδ will be directed at an angle β (Figure 1.4.10).

Applying Newton’s second law in the x-direction,

−kδ cos β = mẍ (1.4.39)

α
x

l
δ+lα

x

l
δ+l

m

δk
β

Figure 1.4.10 Free body diagram for system in Figure 1.4.9
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Because x/� 	 1, cos β ∼= cos α. Hence Equations 1.4.38 and 1.4.39

lead to

mẍ + (k cos2 α)x = 0 (1.4.40)

Therefore, the equivalent stiffness of the spring is

keq = k cos2 α (1.4.41)

1.4.2 Solution of the Differential Equation of Motion Governing

Free Vibration of an Undamped Spring–Mass System

Assume that (Boyce and DiPrima, 2005)

x(t) = Dest (1.4.42)

where D and s are to be determined. Substituting Equation 1.4.42 into

the differential equation of motion in Equation 1.4.19,

(meqs2 + keq)Dest = 0 (1.4.43)

Here, D is not zero for a nontrivial solution. Therefore, for Equa-

tion 1.4.43 to be true for all time t,

meqs2 + keq = 0 (1.4.44)

This is called the characteristic equation. The roots of this equation

are

s1 = jωn and s2 = − jωn (1.4.45a, b)

where j = √−1 is the imaginary number and

ωn =
√

keq

meq
(1.4.46)

The general solution of the differential Equation 1.4.19 is expressed

as

x(t) = D1e jωnt + D2e− jωnt (1.4.47)
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where D1 and D2 are constants. Recall the well-known trigonometric

identity,

e± jωnt = cos ωnt ± j sin ωnt (1.4.48)

Using Equation 1.4.48, Equation 1.4.47 leads to

x(t) = (D1 + D2) cos ωnt + j(D1 − D2) sin ωnt (1.4.49)

It can be shown that D1 and D2 are complex conjugates. Therefore,

both (D1 + D2) and j(D1 − D2) will be real numbers. Denote

A1 = D1 + D2 and B1 = j(D1 − D2) (1.4.50a, b)

Equation 1.4.49 is written as

x(t) = A1 cos ωnt + B1 sin ωnt (1.4.51)

The coefficients A1 and B1 depend on initial conditions x(0) and ẋ(0).

It is easily seen that

A1 = x(0) (1.4.52)

Differentiating Equation 1.4.51,

ẋ(t) = −ωnA1 sin ωnt + ωnB1 cos ωnt (1.4.53)

Substituting t = 0 in Equation 1.4.53,

B1 = ẋ(0)
ωn

(1.4.54)

Equation 1.4.51 is written as

x(t) = x(0) cos ωnt + ẋ(0)
ωn

sin ωnt (1.4.55)

Alternatively, Equation 1.4.55 can also be expressed as

x(t) = A sin(ωnt + ψ) (1.4.56)

where A and ψ are determined as follows:

x(t) = A sin(ωnt + ψ) = A sin ψ cos ωnt + Acos ψ sin ωnt (1.4.57)
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Comparing Equations 1.4.55 and 1.4.57,

A sin ψ cos ωnt + Acos ψ sin ωnt = x(0) cos ωnt + ẋ(0)
ωn

sin ωnt

(1.4.58)

Equating coefficients of cos ωnt and sin ωnt on both sides,

A sin ψ = x(0) (1.4.59)

Acos ψ = ẋ(0)
ωn

(1.4.60)

Squaring Equations 1.4.59 and 1.4.60 and then adding them,

A2 sin2 ψ + A2 cos2 ψ = (x(0))2 +
(

ẋ(0)
ωn

)2

(1.4.61)

Using the fact that sin2 ψ + cos2 ψ = 1,

A =
√

(x(0))2 +
(

ẋ(0)
ωn

)2

(1.4.62)

Dividing Equation 1.4.59 by Equation 1.4.60,

ψ = tan−1
[
ωnx(0)

ẋ(0)

]
(1.4.63)

It should be noted that the value of A is taken to be positive. Further-

more, there is a single solution for the angle ψ . The quadrant in which

the angle ψ lies is determined by the signs of the numerator ωnx(0)

and the denominator ẋ(0). For example, if ωnx(0) = 1 and ẋ(0) = −1,

ψ = tan−1
[+1
−1

]
= 3π

4
rad (1.4.64)

In summary, the free vibration of an undamped spring–mass system is

given by

x(t) = A sin(ωnt + ψ); A > 0 (1.4.65)
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Figure 1.4.11 Free response of an undamped SDOF spring–mass system

where

ωn =
√

keq

meq
; A = +

√
(x(0))2 +

(
ẋ(0)
ωn

)2

; and ψ = tan−1
[
ωnx(0)

ẋ(0)

]
(1.4.66a, b, c)

The free vibration of an undamped SDOF system is purely sinu-

soidal with the amplitude A and the frequency ωn (Equation 1.4.65

and Figure 1.4.11). This frequency (ωn) is called the natural fre-

quency, which is an intrinsic property of the SDOF spring–mass sys-

tem. Denoting Newton as N, meter as m, kilogram as kg, the unit of

ωn is derived as follows:

unit of ωn =
√

unit of keq

unit of meq
=
√

Nm−1

kg
=
√

kg − m − sec−2 −m−1

kg

= sec−1 = rad/sec (1.4.67)
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Figure 1.4.12 A diver on a spring board

Note that the radian (rad) has been inserted in Equation 1.4.67

as it is a dimensionless quantity. The time-period of oscillation (Tp),

which is the time required to complete one full cycle (= 2π rad) of

oscillation is shown in Figure 1.4.11 and expressed as

Tp = 2π

ωn
(1.4.68)

Using the fact that one cycle = 2π rad, the frequency of oscillation (f )

can also be expressed in the units of cycles/sec as follows:

f = ωn

2π
= 1

Tp
cycles/sec (1.4.69)

The unit of cycles/sec is called Hertz (Hz).

Example 1.4.4: A Diving Board

Consider a springboard, which is pinned at the point A and is sup-

ported by a spring with stiffness k (Figure 1.4.12). Let the mass-

moment of inertia of the board about the point A be IA. A person

of mass mp is standing at the edge of the board in static equilib-

rium. Suddenly, this person jumps from the board and the board starts

vibrating.
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Figure 1.4.13 New static equilibrium for the diving board

When the person leaves the board, there will be a new static

equilibrium configuration. Let the new static equilibrium configura-

tion be at an angle θ0 from the original static equilibrium position

(Figure 1.4.13). Then,

kaθ0a = mpg� (1.4.70)

or,

θ0 = mpg�

ka2
(1.4.71)

From the results in Example 1.4.1, the differential equation of motion

(after the person jumps) will be

IAθ̈ + ka2θ = 0 (1.4.72)

Therefore, the undamped natural frequency will be

ωn =
√

ka2

IA
(1.4.73)

The initial conditions will be

θ(0) = θ0 and θ̇(0) = 0 (1.4.74)

Hence, from Equation 1.4.65,

θ(t) = θ0 sin ωnt (1.4.75)
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Figure 1.5.1 Spring–mass–damper system

1.5 FREE VIBRATION OF A VISCOUSLY

DAMPED SDOF SYSTEM

This section deals with the derivation and the solution of the differ-

ential equation of motion of a viscously damped SDOF system. The

solution of the differential equation of motion is used to characterize

the nature of free vibration for different values of damping.

1.5.1 Differential Equation of Motion

A viscously damped SDOF system is shown in Figure 1.5.1. At the

static equilibrium, the velocity of the mass is zero; therefore, the

damper does not provide any force, and Equation 1.4.1, meqg = keq�,

still holds. From the free body diagram in Figure 1.5.2 (Perturbed

from Static Equilibrium),

net force in x-direction = −keqx − ceqẋ (1.5.1)

From Newton’s second law of motion,

−keqx − ceqẋ = meqẍ (1.5.2)
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Figure 1.5.2 Free body diagram of the spring–mass–damper system

or

meqẍ + ceqẋ + keqx = 0 (1.5.3)

Equation 1.5.3 is the governing differential equation of motion.

1.5.2 Solution of the Differential Equation of Motion Governing

Free Vibration of a Damped Spring–Mass System

Assume that (Boyce and DiPrima, 2005)

x(t) = Dest (1.5.4)

where D and s are to be determined. Substituting Equation 1.5.4 into

Equation 1.5.3,

(meqs2 + ceqs + keq)Dest = 0 (1.5.5)

Here, D is not zero for a nontrivial solution. Therefore, for Equation

1.5.5 to be true for all time t,

meqs2 + ceqs + keq = 0 (1.5.6)

Roots of the quadratic Equation 1.5.6 are given by

s1,2 =
−ceq ±

√
c2

eq − 4keqmeq

2meq
(1.5.7)
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The value of c2
eq − 4keqmeq has a direct influence on the nature of

the solution or the response. Roots are complex conjugates when

c2
eq − 4keqmeq < 0, whereas they are real numbers for c2

eq − 4keqmeq ≥
0. The critical damping cc is defined as the value of ceq for which

c2
eq − 4keqmeq = 0 (1.5.8)

From Equation 1.5.8, the expression for the critical damping coeffi-

cient cc is obtained as

cc = 2
√

keqmeq = 2meqωn (1.5.9)

Then, the damping ratio ξ is defined as

ξ = ceq

cc
(1.5.10)

Now, Equation 1.5.7 is written as

s1,2 = − ceq

2meq
±
√(

ceq

2meq

)2

− keq

meq
(1.5.11)

where

ceq

2meq
= ceq

cc

cc

2meq
= ξωn (1.5.12)

Equation 1.5.11 is written as

s1,2 = −ξωn ±
√

ξ 2ω2
n − ω2

n = −ξωn ± ωn

√
ξ 2 − 1 (1.5.13)

Three cases of damping are defined as follows:

a. Underdamped (0 < ξ < 1 or 0 < ceq < cc)

b. Critically damped (ξ = 1 or ceq = cc)

c. Overdamped (ξ > 1 or ceq > cc)

Case I: Underdamped (0 < ξ < 1 or 0 < ceq < cc)

In this case, the roots (s1 and s2) are complex conjugates. From Equa-

tion 1.5.13,

s1,2 = −ξωn ± jωn

√
1 − ξ 2 (1.5.14)
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or,

s1 = −ξωn + jωd and s2 = −ξωn − jωd (1.5.15a, b)

where

ωd = ωn

√
1 − ξ 2 (1.5.16)

The general solution is expressed as

x(t) = D1es1t + D2es2t = e−ξωnt(D1e jωd t + D2e− jωd t) (1.5.17)

where D1 and D2 are constants. Similar to the solution procedure for

an undamped spring–mass system, the following well-known trigono-

metric identity is again used:

e± jωd t = cos ωdt ± j sin ωdt (1.5.18)

Therefore, Equation 1.5.17 leads to

x(t) = e−ξωnt(A1 cos ωdt + B1 sin ωdt) (1.5.19)

where A1 and B1 are real numbers defined by Equations 1.4.50a,b. To

determine A1 and B1, initial conditions x(0) and ẋ(0) are used. First,

x(0) = A1 (1.5.20)

Differentiating Equation 1.5.19,

ẋ(t) = e−ξωnt(−ωdA1 sin ωdt + ωdB1 cos ωdt)

−ξωne−ξωnt(A1 cos ωdt + B1 sin ωdt) (1.5.21)

At t = 0,

ẋ(0) = ωdB1 − ξωnA1 (1.5.22)

Using Equation 1.5.20,

B1 = ẋ(0) + ξωnx(0)
ωd

(1.5.23)
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Alternatively, Equation 1.5.19 can be written as

x(t) = e−ξωntA sin(ωdt + ψ) (1.5.24)

To determine the amplitude A and the phase ψ in terms of A1 and B1,

Equations 1.5.19 and 1.5.24 are compared to yield

A sin(ωdt + ψ) = A1 cos ωdt + B1 sin ωdt (1.5.25)

or

A sin ψ cos ωdt + Acos ψ sin ωdt = A1 cos ωdt + B1 sin ωdt (1.5.26)

Equating the coefficients of cos ωdt and sin ωdt on both sides,

A sin ψ = A1 (1.5.27)

Acos ψ = B1 (1.5.28)

Therefore, following derivations in Section 1.4,

A =
√

[x(0)]2 +
[

ẋ(0) + ξωnx(0)
ωd

]2

(1.5.29)

ψ = tan−1
[

ωd x(0)
ẋ(0) + ξωnx(0)

]
(1.5.30)

Summary: The free vibration of an underdamped (0 < ξ < 1 or 0 <

ceq < cc) spring–mass–damper system is given by

x(t) = Ae−ξωnt sin(ωdt + ψ); A > 0 (1.5.31)

where ωd , A, and ψ are given by Equations 1.5.16, 1.5.29, and 1.5.30.

The free response of an underdamped system is shown in Fig-

ure 1.5.3. Compared to free vibration of an undamped system in Fig-

ure 1.4.11, the following observations are made:

a. Amplitude is exponentially decaying and lim x(t) → 0 as t → ∞.

b. The natural frequency of the damped system is ωd , which is smaller

than the undamped natural frequency ωn. The time period of the

free response of an underdamped system is 2π/ωd , which will be

larger than that of the undamped system.
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Figure 1.5.3 Free response of an underdamped SDOF system

c. Unlike a pure sinusoidal function, the half-way point in a period of

underdamped free response does not correspond to zero velocity,

when the starting point of a period is taken to be zero velocity

condition. This point is expressed in Figure 1.5.3 by the following

relationship: α �= β.

Case II: Critically Damped (ξ = 1 or ceq = cc)

In this case, the roots (s1 and s2) are negative real numbers and equal.

From Equation 1.5.13,

s1 = s2 = −ωn (1.5.32)

Therefore, the general solution (Boyce and DiPrima, 2005) of the dif-

ferential Equation 1.5.3 will be

x(t) = A1es1t + B1tes1t = A1e−ωnt + B1te−ωnt (1.5.33)
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where A1 and B1 are constants. At t = 0,

x(0) = A1 (1.5.34)

Differentiating Equation 1.5.33,

ẋ(t) = −ωnA1e−ωnt − ωnB1te−ωnt + B1e−ωnt (1.5.35)

At t = 0,

ẋ(0) = −ωnA1 + B1 (1.5.36)

Using Equation 1.5.34,

B1 = ẋ(0) + ωnx(0) (1.5.37)

Therefore, from Equation 1.5.33,

x(t) = x(0)e−ωnt + [ẋ(0) + ωnx(0)]te−ωnt (1.5.38)

The response of a critically damped system is nonoscillatory as shown

in Figure 1.5.4. Furthermore, lim x(t) → 0 as t → ∞.

Case III: Overdamped (ξ > 1 or ceq > cc)

From Equation 1.5.13, both roots s1 and s2 are negative real numbers.

s1 = −ξωn + ωn

√
ξ 2 − 1 < 0 (1.5.39)

s2 = −ξωn − ωn

√
ξ 2 − 1 < 0 (1.5.40)

And, the general solution of the differential Equation 1.5.3 will be

x(t) = A1es1t + B1es2t (1.5.41)

where A1 and B1 are constants. At t = 0,

x(0) = A1 + B1 (1.5.42)

Differentiating Equation 1.5.41,

ẋ(t) = A1s1es1t + B1s2es2t (1.5.43)
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Figure 1.5.4 Free responses of underdamped, critically damped, and overdamped
SDOF systems

At t = 0,

ẋ(0) = A1s1 + B1s2 (1.5.44)

Solving Equations 1.5.42 and 1.5.44,

A1 = s2x(0) − ẋ(0)
s2 − s1

(1.5.45)

and

B1 = −s1x(0) + ẋ(0)
s2 − s1

(1.5.46)

The free response of an overdamped system is also nonoscillatory

as shown in Figure 1.5.4. Furthermore, lim x(t) → 0 as t → ∞.

Comparing responses of underdamped, critically damped, and

overdamped systems, it is seen in Figure 1.5.4 that the free response

of a critically damped system decays at the fastest rate. In other
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words, the rate of decay of free response of a critically damped system

is higher than that of an overdamped system. This result is counterin-

tuitive as a higher value of damping is expected to be associated with

a higher rate of energy loss and therefore a higher value of the decay

rate of free response. To understand this result, locations of charac-

teristic roots s1 and s2 are plotted in Figure 1.5.5 as ξ is increased

from 0 to ∞. The following information is used for the construction of

Figure 1.5.5:

a. For ξ = 0,

s1 = + jωn and s2 = − jωn (1.5.47)

b. For 0 < ξ < 1,

s1 = −ξωn + jωn

√
1 − ξ 2 and s2 = −ξωn − jωn

√
1 − ξ 2

(1.5.48)

The real part (RP) and the imaginary part (IP) of s1 and s2 are as

follows:

RP = −ξωn and IP = ±ωn

√
1 − ξ 2 (1.5.49)
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Therefore,

RP2 + IP2 = ξ 2ω2
n + ω2

n(1 − ξ 2) = ω2
n (1.5.50)

This is the equation of a circle with the radius ωn and the center

at the origin of the complex plane. Since RP is negative, the roots

move along the semicircle in the left half of the complex plane as

ξ varies from 0 to 1 (Figure 1.5.5).

c. For ξ = 1,

s1 = s2 = −ωn (1.5.51)

d. For ξ > 1,

s1 = −ξωn + ωn

√
ξ 2 − 1 < 0 (1.5.52)

s2 = −ξωn − ωn

√
ξ 2 − 1 < 0 (1.5.53)

Note that

|s1| < ωn , |s2| > ωn (1.5.54)

Equation 1.5.41 is rewritten as

x(t) = A1e−|s1|t + B1e−|s2|t (1.5.55)

Because |s2| > |s1| for an overdamped system, the term with e−|s2|t

dies at a rate faster than the term with e−|s1|t. As a result, the domi-

nant term in Equation 1.5.55 is the one with e−|s1|t. The critically

damped system decays at the rate of e−ωnt. Since |s1| < ωn, the

decay rate of an overdamped system is slower than that of a criti-

cally damped system.

Example 1.5.1: A Rigid Bar Supported by a Spring and a Damper

Consider a rigid bar of length �, which is pinned at the point A and is

supported by a spring with the stiffness k and a damper with the coef-

ficient c (Figure 1.5.6). The mass of the bar is m and is concentrated at

its right end as shown in Figure 1.5.6.
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Figure 1.5.6 Rigid bar with a spring and a damper

The free body diagram is shown in Figure 1.5.7 for a small angu-

lar displacement θ from its static equilibrium position, where RA is

the unknown reaction force at the point A. Taking moment about the

point A,

−kaθa − c�1θ̇�1 = IAθ̈ (1.5.56)

where IA is the mass-moment of inertia of the bar about A. Here,

IA = m�2 (1.5.57)

Substituting Equation 1.5.57 into Equation 1.5.56,

m�2θ̈ + c�2
1θ̇ + ka2θ = 0 (1.5.58)

Therefore,

meq = m�2; keq = ka2; and ceq = c�2
1 (1.5.59)

θ1lc

kaθ
m

θ
l

21 lll +=

a

1l

AR
A

small θ

Figure 1.5.7 Free body diagram of a rigid bar in Figure 1.5.6
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The undamped natural frequency is

ωn =
√

keq

meq
= a

�

√
k
m

(1.5.60)

The critical damping for this system is

cc = 2
√

keqmeq = 2�a
√

km (1.5.61)

Consider the following numerical values:

m = 1 kg, c = 20 N − sec/m, a = 0.4 m, �1 = 0.5 m, and � = 1 m

Case I: If the stiffness k = 100 N/m,

cc = 2�a
√

km = 8 N − sec/m

As a result, c > cc and the system is overdamped. The damping

ratio ξ = 2.5 and the damped natural frequency is not defined.

Case II: If the stiffness k = 900 N/m,

cc = 2�a
√

km = 24 N − sec/m

As a result, c < cc and the system is underdamped. The damping

ratio ξ = 0.833 and the damped natural frequency ωd = ωn

√
1 − ξ 2 =

5.5277 rad/sec.

1.5.3 Logarithmic Decrement: Identification of Damping Ratio from

Free Response of an Underdamped System (0 < ξ < 1)

Let us assume that two successive peak displacements in the response

of an underdamped system are known. If the first known peak dis-

placement occurs at t = t1 (Figure 1.5.8), Equation 1.5.31 yields

x(t1) = x1 = Ae−ξωnt1 sin(ωdt1 + ψ) (1.5.62)
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Figure 1.5.8 Free vibration of an underdamped system (illustration of log decrement)

Let the second peak displacement be at t = t2 (Figure 1.5.8).

From Equation 1.5.31,

x(t2) = x2 = Ae−ξωnt2 sin(ωdt2 + ψ) (1.5.63)

From the characteristic of free underdamped response,

t2 = t1 + 2π

ωd
(1.5.64)

As a result,

sin(ωdt2 + ψ) = sin(ωdt1 + ψ + 2π) = sin(ωdt1 + ψ) (1.5.65)

Dividing Equation 1.5.62 by Equation 1.5.63 and using Equa-

tions 1.5.64–1.5.65,

x1

x2
= eξωn(t2−t1) = e

2πξωn
ωd (1.5.66)
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Using the fact that ωd = ωn

√
1 − ξ 2 (Equation 1.5.16),

x1

x2
= e

2πξ√
1−ξ2 (1.5.67)

The ratio of the two successive amplitudes only depends on the damp-

ing ratio ξ , that is, it is independent of the undamped natural fre-

quency ωn. Taking natural logarithm of Equation 1.5.67 with respect

to the base e,

ln
x1

x2
= 2πξ√

1 − ξ 2
(1.5.68)

The natural logarithm of two successive amplitudes or peak displace-

ments is known as the logarithmic decrement δ, that is,

δ = ln
x1

x2
(1.5.69)

Therefore, from Equations 1.5.68 and 1.5.69,

δ = 2πξ√
1 − ξ 2

(1.5.70)

For a small ξ ,
√

1 − ξ 2 ≈ 1 and from Equation 1.5.70,

ξ = δ

2π
(1.5.71)

In general, Equation 1.5.70 is directly solved to yield

ξ = δ√
(2π)2 + δ2

(1.5.72)

The approximation Equation 1.5.71 is found to be valid for ξ ≤ 0.2 or

equivalently δ ≤ 0.4π .

Since ratio of two successive amplitudes only depends on the

damping ratio,

x1

x2
= x2

x3
= · · · = xm−1

xm
= xm

xm+1
(1.5.73)
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Figure 1.5.9 Free response of an underdamped system for a small damping ratio

where xi+1 is the amplitude after i cycles of oscillation, i =
1, 2, . . . , m − 1, m (Figure 1.5.9). Therefore,

x1

xm+1
= x1

x2

x2

x3
· · · xm−1

xm

xm

xm+1
(1.5.74)

Using Equation 1.5.73,

x1

xm+1
=
(

x1

x2

)m

(1.5.75)

Taking natural logarithms of both sides of Equation 1.5.75 and using

the definition of logarithmic decrement Equation 1.5.69,

ln
x1

xm+1
= ln

(
x1

x2

)m

= m ln
x1

x2
= mδ (1.5.76)

Therefore, the logarithmic decrement δ can also be computed by the

following relationship:

δ = 1
m

ln
x1

xm+1
(1.5.77)
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Figure 1.5.10 A tennis racket and a ball

where xm+1 is the amplitude after m cycles of oscillation. The expres-

sion in Equation 1.5.77 is useful for low values of the damping ratio

ξ for which the difference between the two successive amplitudes can

be so small that they may not be accurately differentiable by a mea-

suring instrument, that is, the expression in Equation 1.5.69 may not

accurately predict the value of the logarithmic decrement. But, if one

considers the amplitude after a certain number of cycles of oscillation,

for example, m = 7 in Figure 1.5.9, the difference between x1 and xm+1

can be quite significant. As a result, the ratio of x1 and xm+1 can be

estimated quite accurately via a measuring instrument and Equation

1.5.77 can lead to an accurate value of δ and the damping ratio ξ using

Equation 1.5.72.

Example 1.5.2: Vibration of a Tennis Racket

A tennis ball hits the tennis racket (Figure 1.5.10) and imparts a veloc-

ity of 1.5 m/sec to the racket tip. The natural frequency and the damp-

ing ratio of the tennis racket (Oh and Yum, 1986) are given to be

31.45 Hz and 0.0297, respectively. Determine the maximum displace-

ment of the racket tip.

Solution

Given: ωn = 31.45 Hz = 197.606 rad/sec, ξ = 0.0297, x(0) = 0, and

ẋ(0) = 1.5 m/sec

Therefore, ωd = ωn

√
1 − ξ 2 = 197.519 rad/sec
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For an underdamped system, the free response is described by

Equations 1.5.29–1.5.31:

x(t) = Ae−ξωnt sin(ωdt + ψ)

where

A =
√

[x(0)]2 +
[

ẋ(0) + ξωnx(0)
ωd

]2

= ẋ(0)
ωd

= 0.0076 m

and

ψ = tan−1
[

ωd x(0)
ẋ(0) + ξωnx(0)

]
= 0

Therefore,

x(t) = Ae−ξωnt sin(ωdt)

For the maximum displacement,

ẋ(t) = Ae−ξωntωd cos(ωdt) + A(−ξωn)e−ξωnt sin(ωdt) = 0

Let t∗ be the time corresponding to the maximum displacement.

Then,

tan(ωdt∗) = ωd

ξωn
=
√

1 − ξ 2

ξ
= 33.6652

Therefore,

ωdt∗ = 1.541 rad

or

t∗ = 1.541
ωd

= 0.0078 sec

The maximum displacement is computed as

x(t∗) = 0.0076 e−0.0297×197.606×0.0078 sin(1.541) = 0.0073 m
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Figure 1.5.11 Measured free vibration of a damped spring–mass system (displacement
in mm)

Example 1.5.3: Damping Ratio and Undamped Natural Frequency

from Free Response

For the free vibration of an SDOF system (Figure 1.5.11), the

amplitudes 1.403 mm and 1.326 mm are measured at 1.242 sec and

12.734 sec, respectively. Find the undamped natural frequency ωn and

the damping ratio ξ .

The number of cycles of oscillation between two measured ampli-

tudes is 9. Hence, the time period of damped oscillation is

Td = 12.734 − 1.242
9

= 1.2769 sec

Therefore,

ωd = 2π

Td
= 4.9207 rad/sec

From Equation 1.5.77, the logarithmic decrement δ is

δ = 1
9
�n

1.403
1.326

= 0.0063
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From Equation 1.5.72,

ξ = δ√
(2π)2 + δ2

= 0.001

Here, (2π)2 + δ2 ∼= (2π)2. Therefore, the approximation in Equa-

tion 1.5.71 can also be used.

1.6 STABILITY OF AN SDOF SPRING–

MASS–DAMPER SYSTEM

The stability of a linear SDOF spring–mass–damper system refers to

the nature of the free vibration caused by nonzero initial conditions

in the absence of any external excitation. There are three possible

situations:

a. Stable: The free vibration response dies out as time goes to infinity,

that is, (x(t) → 0 as t → ∞)

b. Marginally Stable/Unstable: The response remains bounded but

nonzero as time goes to infinity.

c. Unstable: The response becomes unbounded as the time goes to

infinity, that is, (x(t) → ∞ as t → ∞)

As shown in Section 1.5.2, the characteristic of the free response is

governed by est term, where s is a root of the characteristic Equa-

tion 1.5.6:

meqs2 + ceqs + keqs = 0 (1.6.1)

In general, a root s is represented as a complex number:

s = sR + jsI ; j =
√

−1 (1.6.2)

where sR and sI are real and imaginary parts of s. For a purely

real root, sI = 0. Similarly, for a purely imaginary root, sR = 0. From

Equation 1.6.2,

est = e(sR+ jsI )t = esRt(cos(sI t) + j sin(sI t)) (1.6.3)
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Because cosine and sine terms are bounded between −1 and +1,

the sign of the real part sR will determine whether the response will

die out, remain nonzero and bounded, or grow to be unbounded as

t → ∞. The system will be stable, marginally stable/unstable, and

unstable when sR < 0 (left half of the complex plane, Figure 1.6.1),

sR = 0 (imaginary axis of the complex plane, Figure 1.6.1), and sR > 0

(right half of the complex plane, Figure 1.6.1), respectively. This fact

can be summarized as follows:

a. The spring–mass–damper system will be stable, provided both

roots are located in the left half (excluding imaginary axis) of the

complex plane.

b. The spring–mass–damper system will be marginally stable/

unstable, provided at least one root is on the imaginary axis, and

no root is in the right half of the complex plane.

c. The spring–mass–damper system will be unstable, provided one

root is in the right half of the complex plane.

Equation 1.6.1 is a second-order polynomial or a quadratic equa-

tion. The roots of this equation can be easily calculated, and therefore

their locations in the complex plane can be easily determined to evalu-

ate the stability of the system. The necessary and sufficient conditions

for the stability in the context of the quadratic Equation 1.6.1 are as

follows:

a. None of the coefficients vanishes.

b. All coefficients must have the same sign.



60 Vibration of Mechanical Systems

k

a

b

cg

A

c θka

mg

θ

A

b

AR

θsmall

RA: Reaction force

θ&ca

Static 
equilibrium

Figure 1.6.2 Inverted pendulum and free body diagram

Since meq > 0, necessary and sufficient conditions for stability are

ceq > 0 (1.6.4)

and

keq > 0 (1.6.5)

In other words, a spring–mass–damper system is guaranteed to be sta-

ble, provided both equivalent damping and equivalent stiffness are

positive.

Example 1.6.1: Inverted Pendulum (Negative Stiffness)

Consider an inverted pendulum which is supported by a spring with

the stiffness k, located at a distance a from the pivot point A (Fig-

ure 1.6.2). The mass of the pendulum is m and the center of gravity is

located at a distance b from the pivot point A.

Let θ be the clockwise small rotation of the bar from its static equi-

librium configuration. Taking moment about the point A,

−kaθa + mgbθ − caθ̇a = IAθ̈ (1.6.6)

where IA is the mass-moment of inertia of bar about the point A. Rear-

ranging Equation 1.6.6,

IAθ̈ + ca2θ̇ + (ka2 − mgb)θ = 0 (1.6.7)
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Figure 1.6.3 Wind across a cable with a circular cross section

The equivalent stiffness keq for the system is

keq = ka2 − mgb (1.6.8)

The equivalent stiffness keq is negative if

k <
mgb
a2

(1.6.9)

When the condition in Equation 1.6.9 is satisfied, the vertical static

equilibrium configuration is unstable.

Example 1.6.2: Galloping of Transmission Lines During Winter

(Negative Damping)

There are long electric transmission cables (Den Hartog, 1956), which

have circular cross sections. Assume that there is also a cross wind

with the velocity va and the cable is undergoing a small trans-

verse oscillation. Let vc be the instantaneous cable velocity, which is

directed downwards as shown in Figure 1.6.3. The cable will experi-

ence the relative wind velocity vr , and the effective aerodynamic force

fa on the cable will be along the direction of the relative velocity vr .

The vertical component of this aerodynamic force is in the direction

opposite to the downward velocity of the cable. In other words, the

aerodynamic force opposes the cable motion, and as a result, aero-

dynamic forces dissipate energy and the equivalent damping ceq is

positive.

During the winter season in certain regions, there is an ice for-

mation and effective cross section of the cable becomes noncircular
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Figure 1.6.4 Wind across an ice-coated cable

as shown in Figure 1.6.4. In this case, the aerodynamic force can also

be downwards when the velocity of the cable is downward. In other

words, the wind will further strengthen the downward motion of the

cable, and as a result, aerodynamic forces add energy to the system

and the equivalent damping ceq is negative.

Example 1.6.3: Galloping of a Square Prism (Negative Damping)

Consider a square prism with the mass m, which is subjected to a cross

wind with the velocity va (Figure 1.6.5). The width and the height of

the prism are w and h, respectively. The displacement of the prism

with respect to the static equilibrium position is denoted by x(t). For

a small velocity ẋ, the vertical component of the aerodynamic force

fav(t) is given by (Thompson, 1982)

fav(t) = 1
2
ρvawhβ ẋ (1.6.10)

where ρ is the air density. The constant β has been experimentally

found to be a positive number. The differential equation of motion is

easily derived to be

mẍ + cẋ + kx = fav(t) (1.6.11)

Substituting Equation 1.6.10 into Equation 1.6.11,

mẍ + (c − cn)ẋ + kx = 0 (1.6.12)
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Figure 1.6.5 Wind across a square prism

where

cn = 1
2
ρvawhβ (1.6.13)

When c < cn, the equivalent damping is negative and system

becomes unstable.

EXERCISE PROBLEMS

P1.1 Consider the SDOF system shown in Figure P1.1. All the shafts

and the connections among them are massless. The material of the

shaft is steel. Also,

m1 = 1.1 kg, m2 = 1.4 kg, mb = 2.1 kg

The stiffness k is half of the cantilever beam stiffness.
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Find the equivalent mass and the equivalent stiffness with respect

to the displacement x.

0.4 m

k

0.8 m 0.4 m

0.9 m

x

dia. = 1 cm

dia. = 2 cm

dia. = 3 cm

mb
m2

m1
Midspan

Figure P1.1 A combination of beams and a rigid bar

P1.2 Find the equivalent mass of a spring under the assumption that

the velocity distribution along the length of the spring is parabolic.

P1.3 Consider the cantilever beam with mass m and length � (Fig-

ure P1.3). Obtain the equivalent mass of the cantilever beam under

the assumption that the beam deflection is y(z) = x
2 [1 − cos(πz

�
)].

z0=z
l=z

)(tx

Figure P1.3 A cantilever beam

P1.4 An object with mass m and rectangular cross section A is floating

in a liquid with mass density ρ (Figure P1.4). Derive the governing
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differential equation of motion, and obtain the natural frequency of

the system.

Liquid level

Floating object

x

Figure P1.4 A floating object

P1.5 An L-shaped bracket hinged at point A is supported by two

springs with stiffnesses k1 and k2 (Figure P1.5). The mass of the

bracket is m and is uniformly distributed.

2k

Hinge

2l

1l
1a

2a

A

1k

Figure P1.5 L-shaped bracket supported by springs

Find the equivalent mass, the equivalent stiffness and the natural

frequency of the system.

P1.6 The mass of a complex-shaped object is 3 kg. When this object is

suspended like a pendulum (Figure P1.6), its frequency of oscillation

is 30 cycles/min. The center of mass is at a distance of 0.2 m from the

pivot point A.

Find the mass-moment of inertia of the object about its center of

mass.
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of
mass

0.2 m

Figure P1.6 Complex-shaped object as a pendulum

P1.7 An uniform rigid bar of length � = 50 cm and mass m = 7 kg is

hinged at one end (Figure P1.7). At the other end, this bar is suddenly

attached to a massless spring with stiffness k = 1, 000 N/m. Derive an

expression for the angular oscillation of the bar.

k

g

A

l

Figure P1.7 A uniform rigid bar

P1.8 A cylinder of mass m2 rolls without slipping inside the box with

mass m1 (Figure P1.8). Derive the equivalent mass and the stiffness of

the system.
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Figure P1.8 A cylinder inside a box

P1.9 Consider the gear shaft system in Figure P1.9. The length and

the diameter of shaft A are 50 cm and 4 cm, respectively. Similarly, the

length and the diameter of shaft B are 60 cm and 3 cm, respectively.

Masses of gears A and B are 1.5 kg and 0.5 kg, respectively. The gear

ratio is 2.

Shaft A

Shaft B

Gear A

Gear B

Figure P1.9 Gear shaft system

Assuming that the shaft material is steel, determine the equivalent

mass and the equivalent stiffness with respect to the angular displace-

ment of gear A. What is the natural frequency?

P1.10 An object with mass = 500 kg is attached to a table with four

steel legs of diameter = 0.015 m and length = 0.1 m (Figure P1.10).

a. Derive the differential equation for vibration of the object in verti-

cal direction.

b. Determine the natural frequency of vibration.

c. What is the maximum possible amplitude of vibration so that the

maximum vibratory stress in each table leg is less than 70% of the
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Figure P1.10 An object on the table

yield point stress? For this maximum amplitude, plot the allowable

region of initial displacement and the initial velocity of the object.

d. Develop a MATLAB program to solve the governing differen-

tial equation. Compare the solution from your program to that

obtained analytically for an allowable initial displacement and the

initial velocity determined in part (c).

P1.11 A tank (Figure P1.11) with mass m1 = 2, 000 kg fires a cannon

with mass m2 = 2 kg and velocity = 10 m/sec. The recoil mechanism

consists of a spring with stiffness = 11,000 N/m, and a damper. There

are three possible values of the damping coefficient: 0.2cc, cc, and 1.5cc

where cc is the critical damping.

k

c

Cannon

Tank

Figure P1.11 A tank with recoil mechanism

a. For each value of the damping constant, determine the time

required to come back to the original firing position. Validate your

analytical results via comparison with results from numerical inte-

gration of the solution of the differential equation via MATLAB.
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b. What will be your recommendation regarding the choice of the

damping coefficient? Explain your answer.

P1.12 Consider the system shown in Figure P1.12a, where m = 10 kg,

�1 = 35 cm, and � = 50 cm.

A record of free vibration is shown in Figure 1.12b. Find the values

of the spring constant k and the damping coefficient c.

P1.13 Consider a spring–mass system (Figure P1.13) where the mass

is on a surface with the coefficient of friction μ. Assuming that the

initial displacement of the mass is x(0), determine the expression for

the displacement x(t).

k
m

x
Coulomb friction

Figure P1.13 Frictionally damped spring mass system

P1.14 Consider a simple electromagnetic suspension system shown in

Figure P1.14.

0h )(tx

mg

I

mf

Figure P1.14 An electromagnetic suspension system

The electromagnetic force fm is given by

fm = α
I2

h2
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where I and h are the coil current and the air gap, respectively. The

constant α = μ0N2Ap where μ0, N, and Ap are the air permeability,

the number of coil turns, and the face area per single pole of the mag-

net, respectively. Let h0 be the desired air gap. Then, the current I0 is

calculated from the following static equilibrium condition:

α
I2

0

h2
0

= mg

Let x(t) be the dynamic displacement of the mass with respect

to the static equilibrium position. Derive the differential equation of

motion and determine the stability of system. Show that the dynamic

characteristic of this system is equivalent to that of an inverted

pendulum.

P1.15 Consider the system in Figure P1.15. Determine the natural fre-

quencies when the mass m is constrained to move along x and y direc-

tions, respectively.

α β

2k
1k

x

y

m

Figure P1.15 Mass supported by two inclined springs



2

VIBRATION OF A

SINGLE-DEGREE-OF-FREEDOM

SYSTEM UNDER CONSTANT AND

PURELY HARMONIC EXCITATION

First, responses of undamped and damped single-degree-of-freedom

(SDOF) spring–mass systems are presented in the presence of a con-

stant external force. An important example of input shaping is shown.

Using the input shaping procedure, the system settles to a steady

state in a finite time in spite of a low level of damping. Next, com-

plete solutions of both undamped and damped spring–mass systems

under sinusoidal excitation are derived. Amplitudes and phases of

the steady-state responses are derived along with force transmissi-

bility, quality factor, and bandwidth. These results are fundamen-

tal tools for machine design. Then, solutions to rotating unbalance

and base excitation problems are provided. Next, the basic principles

behind the designs of vibration measuring instruments (vibrometer

and accelerometer) are presented. Last, the concept of equivalent vis-

cous damping is presented for nonviscous energy dissipation.

2.1 RESPONSES OF UNDAMPED AND DAMPED SDOF

SYSTEMS TO A CONSTANT FORCE

Consider a damped SDOF system subjected to a force f (t) (Fig-

ure 2.1.1). Using the free body diagram in Figure 2.1.1,

net force in x-direction = −keqx − ceqẋ + f (t) (2.1.1)

72



Vibration of an SDOF System under Constant and Purely Harmonic Excitation 73

eqm

eqk

)(t x

eqc

)(tf

eqm

)(txkeqxceq &

)(tf

Figure 2.1.1 An SDOF spring–mass–damper system subjected to external excitation

Applying Newton’s second law of motion,

−keqx − ceqẋ + f (t) = meqẍ (2.1.2)

Therefore, the differential equation of motion is

meqẍ + ceqẋ + keqx = f (t) (2.1.3)

Let the force f (t) be a step function as shown in Figure 2.1.2.

From Equation 2.1.3, the differential equation of motion for a step

forcing function is

meqẍ + ceqẋ + keqx = f0; t ≥ 0 (2.1.4)

0f

t

)(tf

0

Figure 2.1.2 A step forcing function
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The solution of Equation 2.1.4 is composed of two parts:

x(t) = xh(t) + xp(t) (2.1.5)

where xh(t) is the homogeneous solution satisfying

meqẍh + ceqẋh + keqxh = 0 (2.1.6)

and xp(t) is a particular solution satisfying

meqẍp + ceqẋp + keqxp = f0 (2.1.7)

To determine the particular solution xp(t), it is assumed that

xp(t) = x0, a constant (2.1.8)

Substituting Equation 2.1.8 into Equation 2.1.7,

meqẍ0 + ceqẋ0 + keqx0 = f0 (2.1.9)

Since x0 is a constant, ẋ0 = 0 and ẍ0 = 0. Therefore,

x0 = f0

keq
(2.1.10)

Therefore, from Equation 2.1.5,

x(t) = xh(t) + f0

keq
(2.1.11)

where the homogeneous part xh(t) depends on the amount of damping

as discussed in Sections 1.4 and 1.5.

Case I: Undamped (ξ = 0) and Underdamped (0 < ξ < 1)

From Equation 1.5.19,

xh(t) = e−ξωnt(A1 cos ωdt + B1 sin ωdt) (2.1.12)

From Equation 2.1.11,

x(t) = e−ξωnt(A1 cos ωdt + B1 sin ωdt) + f0

keq
(2.1.13)
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At t = 0,

x(0) = A1 + f0

keq
⇒ A1 = x(0) − f0

keq
(2.1.14)

Differentiating Equation 2.1.13,

ẋ(t) = e−ξωnt(−ωdA1 sin ωdt + ωdB1 cos ωdt)

− ξωn e−ξωnt(A1 cos ωdt + B1 sin ωdt) (2.1.15)

At t = 0,

ẋ(0) = ωdB1 − ξωnA1 (2.1.16)

Using Equation 2.1.14,

B1 = ẋ(0) + ξωn(x(0) − f0/keq)
ωd

(2.1.17)

With zero initial conditions (x(0) = 0 and ẋ(0) = 0), Equations 2.1.14

and 2.1.17 yield

A1 = − f0

keq
(2.1.18)

B1 = −ξωn

ωd

f0

keq
= −χ

f0

keq
(2.1.19)

where

χ = ξ√
1 − ξ 2

(2.1.20)

For zero initial conditions,

x(t) = f0

keq
[1 − e−ξωnt cos ωdt − e−ξωntχ sin ωdt]; t ≥ 0 (2.1.21)

Case II: Critically Damped (ξ = 1 or ceq = cc)

From Equation 1.5.33,

xh(t) = A1e−ωnt + B1te−ωnt (2.1.22)
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From Equation 2.1.11,

x(t) = A1e−ωnt + B1te−ωnt + f0

keq
(2.1.23)

At t = 0,

x(0) = A1 + f0

keq
⇒ A1 = x(0) − f0

keq
(2.1.24)

Differentiating Equation 2.1.23,

ẋ(t) = −ωnA1e−ωnt − ωnB1te−ωnt + B1e−ωnt (2.1.25)

At t = 0,

ẋ(0) = −ωnA1 + B1 (2.1.26)

Using Equation 2.1.24,

B1 = ẋ(0) + ωn

(
x(0) − f0

keq

)
(2.1.27)

For zero initial conditions (x(0) = 0 and ẋ(0) = 0), substitution of

Equations 2.1.24 and 2.1.27 into Equation 2.1.23 yields

x(t) = f0

keq
[1 − e−ωnt − ωnte−ωnt]; t ≥ 0 (2.1.28)

Case III: Overdamped (ξ > 1 or ceq > cc)

From Equations 1.5.39 and 1.5.40, both characteristic roots s1 and s2

are negative real numbers,

s1 = −ξωn + ωn

√
ξ 2 − 1 < 0 (2.1.29)

s2 = −ξωn − ωn

√
ξ 2 − 1 < 0 (2.1.30)

From Equation 1.5.41,

xh(t) = A1es1t + B1es2t (2.1.31)
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From Equation 2.1.11,

x(t) = A1es1t + B1es2t + f0

keq
(2.1.32)

At t = 0,

x(0) = A1 + B1 + f0

keq
(2.1.33)

Differentiating Equation 2.1.32,

ẋ(t) = A1s1es1t + B1s2es2t (2.1.34)

At t = 0,

ẋ(0) = A1s1 + B1s2 (2.1.35)

Solving Equations 2.1.33 and 2.1.35,

A1 = s2(x(0) − f0/keq) − ẋ(0)
s2 − s1

(2.1.36)

and

B1 = −s1(x(0) − f0/keq) + ẋ(0)
s2 − s1

(2.1.37)

For zero initial conditions (x(0) = 0 and ẋ(0) = 0), substitution of

Equations 2.1.36 and 2.1.37 into Equation 2.1.32 yields

x(t) = f0

keq

[
1 − s2

s2 − s1
es1t + s1

s2 − s1
es2t
]

; t ≥ 0 (2.1.38)

where s1 and s2 are given by Equations 2.1.29 and 2.1.30.

Finally, it should be noted that

xh(t) → 0 as t → ∞ (2.1.39)

for any damping ceq > 0 or ξ > 0. Therefore, in the steady state (t →
∞), from Equation 2.1.11

xss = f0

keq
(2.1.40)
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Figure 2.1.3 Response to the unit step forcing function with zero initial conditions

The step responses (Equations 2.1.21, 2.1.28, and 2.1.38) are plotted

in Figure 2.1.3 for zero initial conditions.

Example 2.1.1: Robot Vibration

Consider a single link robot manipulator with a rigid link but with a

flexible revolute joint (Figure 2.1.4a). The length of the link and the

torsional stiffness of the joint are � and kt, respectively.

 (a)     (b) 

θ

θtk−
payloadwithoutequilibriumStatic

m

l

A

lmg

t

)(th

0

Torque

Figure 2.1.4 (a) A robot with a payload; and (b) Torque due to sudden payload
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Figure 2.1.5 Angular oscillation of a robot arm

When the gripper suddenly gets a payload of mass m, the robot

link undergoes a torque that is a step function h(t) (Figure 2.1.4). The

differential equation of motion is

IAθ̈ + ktθ = h(t) (2.1.41)

where θ(t) is measured from the static equilibrium configuration with-

out the payload, and IA is the mass-moment of inertia of the link with

the payload about the joint axis A. Initial conditions are θ(0) = 0 and

θ̇(0) = 0. Using Equation 2.1.21 with ξ = 0,

θ(t) = θ0(1 − cos ωnt); t ≥ 0 (2.1.42)

where

θ0 = mg�

kt
(2.1.43)

It should be noted that θ0 represents the new static equilibrium

configuration. The response (Figure 2.1.5) clearly indicates that the

robot arm will sustain a nondecaying oscillation of magnitude θ0 about
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Figure 2.1.6 A staircase forcing function

the new static equilibrium configuration after it suddenly grips a pay-

load of mass m.

Example 2.1.2: Input Shaping (Singer and Seering, 1990)

Consider an underdamped spring–mass–damper SDOF system

(Figure 2.1.1), which is subjected to the force f (t) shown in Fig-

ure 2.1.6. Assume that the initial conditions are zeros.

The differential equation of motion is

meqẍ + ceqẋ + keqx = f (t) (2.1.44)

To determine the response x(t), the force f (t) is expressed as

f (t) = f1(t) + f2(t) (2.1.45)

where f1(t) and f2(t) are shown in Figure 2.1.7.

Using Equation 2.1.21, the response due to f1(t) will be

x1(t) = a1

keq
[1 − e−ξωnt cos ωdt − e−ξωntχ sin ωdt]; t ≥ 0 (2.1.46)

t0

1a

1t

)(1 tf

t0

12 aa −

1t

)(2 tf

Figure 2.1.7 Components of staircase forcing function in Figure 2.1.6
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Similarly, using Equation 2.1.21, the response due to f2(t) will be

x2(t) = a2 − a1

keq
[1 − e−ξωn(t−t1) cos ωd(t − t1)

− e−ξωn(t−t1)χ sin ωd(t − t1)]; t ≥ t1 (2.1.47)

It is obvious that x2(t) = 0 for t ≤ t1. Using the principle of super-

position,

x(t) = x1(t) + x2(t) (2.1.48)

Substituting Equations 2.1.46 and 2.1.47 into Equation 2.1.48 and after

some algebra,

x(t) = a2

keq
− e−ξωnt

keq
(α sin ωdt + β cos ωdt); t ≥ t1 (2.1.49)

where

α = a1χ + eξωnt1 (a2 − a1)(sin ωdt1 + χ cos ωdt1) (2.1.50)

β = a1 + eξωnt1 (a2 − a1)(cos ωdt1 − χ sin ωdt1) (2.1.51)

It should be noted that α = 0 and β = 0 when

t1 = π

ωd
and a1 = a2

1 + q
(2.1.52a,b)

where

q = e
− ξπ√

1−ξ2 (2.1.53)

When t1 and a1 are chosen according to Equation 2.1.52,

x(t) = a2

keq
for t > t1 (2.1.54)

In other words, the system reaches its steady state in a finite time t1
without any oscillation, even when the damping is zero or almost zero.

Note that the input command a2, t > 0, will yield a sustained oscilla-

tion as shown in Figure 2.1.5. Hence, by shaping the input command

as shown in Figure 2.1.6, the system reaches the steady state without

any vibration.
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Figure 2.2.1 An undamped spring–mass system subjected to sinusoidal excitation

2.2 RESPONSE OF AN UNDAMPED SDOF SYSTEM TO

A HARMONIC EXCITATION

Consider an undamped SDOF system subjected to a sinusoidal exci-

tation with the amplitude f0 and the frequency ω0. Using the free body

diagram in Figure 2.2.1,

net force in x-direction = −keqx + f0 sin ωt (2.2.1)

Applying Newton’s second law of motion,

−keqx + f0 sin ωt = meqẍ (2.2.2)

Therefore, the differential equation of motion is

meqẍ + keqx = f0 sin ωt (2.2.3)

The solution of Equation 2.2.3 is composed of two parts:

x(t) = xh(t) + xp(t) (2.2.4)

where xh(t) is the homogeneous solution satisfying

meqẍh + keqxh = 0 (2.2.5)
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and xp(t) is a particular solution satisfying

meqẍp + keqxp = f0 sin ωt (2.2.6)

The homogeneous solution in Equation 2.2.5 is

xh(t) = A1 cos ωnt + B1 sin ωnt (2.2.7)

where A1 and B1 are constants. And,

ωn =
√

keq

meq
(2.2.8)

The form of the particular solution is dependent on whether the exci-

tation frequency ω equals the natural frequency ωn.

Case I: ω �= ωn

xp(t) = A sin ωt (2.2.9)

where A can be positive or negative. To determine A, Equation 2.2.9

is substituted into Equation 2.2.6,

(−ω2meq + keq)A sin ωt = f0 sin ωt (2.2.10)

Equating coefficients of sin ωt on both sides,

(−ω2meq + keq)A = f0 (2.2.11)

or

A = f0

keq − ω2meq
(2.2.12)

or

A
f0/keq

= 1
1 − r2

(2.2.13)

where r is the frequency ratio defined as

r = ω

ωn
(2.2.14)
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Note that f0/keq is the steady-state deflection when a constant (ω = 0

or r = 0) force f0 is applied. A constant force corresponds to ω = 0 or

r = 0.

From Equations 2.2.4, 2.2.7, and 2.2.9, the total solution will be

x(t) = A1 cos ωnt + B1 sin ωnt + A sin ωt (2.2.15)

At t = 0,

x(0) = A1 (2.2.16)

Differentiating Equation 2.2.15,

ẋ(t) = −A1ωn sin ωnt + B1ωn cos ωnt + Aω cos ωt (2.2.17)

At t = 0,

ẋ(0) = B1ωn + Aω (2.2.18)

Solving Equation 2.2.18,

B1 = ẋ(0) − Aω

ωn
(2.2.19)

Substituting Equations 2.2.16 and 2.2.19 into Equation 2.2.15,

x(t) = x(0) cos ωnt + ẋ(0) − Aω

ωn
sin ωnt + A sin ωt (2.2.20)

where the amplitude A is given by Equation 2.2.13.

Case II: ω = ωn (Resonance)

In this case, the form of the particular integral Equation 2.2.9 is not

valid. Note that the expression in Equation 2.2.9 is already repre-

sented by the homogeneous solution in Equation 2.2.7 when ω = ωn.

If the form given in Equation 2.2.9 was valid, Equation 2.2.13 would

yield A = ∞ at ω = ωn; that is, the displacement would become infi-

nite from any finite initial displacement as soon as the external force

is applied, which is physically impossible.
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The particular integral for ω = ωn is

xp(t) = Ar t cos ωt (2.2.21)

Differentiating Equation 2.2.21 twice,

ẍp(t) = −2Arω sin ωt − Ar tω2 cos ωt (2.2.22)

Substituting Equations 2.2.21 and 2.2.22 into Equation 2.2.6,

−2Ar meqω sin ωt − Ar tmeqω
2 cos ωt + Ar tkeq cos ωt = f0 sin ωt

(2.2.23)

Because keq = meqω
2
n = meqω

2,

−2Ar meqω sin ωt = f0 sin ωt (2.2.24)

Equating coefficients of sin ωt on both sides,

−2Ar meqωn = f0 (2.2.25)

or

Ar = − f0

2meqωn
= − f0ωn

2keq
(2.2.26)

From, 2.2.7, and 2.2.21, the total solution will be

x(t) = A1 cos ωnt + B1 sin ωnt + Ar t cos ωnt (2.2.27)

At t = 0,

x(0) = A1 (2.2.28)

Differentiating Equation 2.2.27,

ẋ(t) = −A1ωn sin ωnt + B1ωn cos ωnt − Ar tωn sin ωnt + Ar cos ωnt

(2.2.29)

At t = 0,

ẋ(0) = B1ωn + Ar (2.2.30)
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Figure 2.2.2 Responses at excitation frequencies ω = 0.5ωn, ωn, 1.5ωn, and 0.9ωn

with zero initial conditions

or

B1 = ẋ(0) − Ar

ωn
(2.2.31)

Substituting Equations 2.2.28 and 2.2.31 into Equation 2.2.27,

x(t) = x(0) cos ωnt + ẋ(0) − Ar

ωn
sin ωnt + Ar t cos ωt (2.2.32)

where Ar is given by Equation 2.2.26.

Example 2.2.1: Responses at Different Excitation Frequencies with

Zero Initial Conditions

In Figure 2.2.2, responses are plotted for different values of excitation

frequencies ω with zero initial conditions (x(0) = 0 and ẋ(0) = 0).
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Case I: ω �= ωn

With zero initial conditions, Equation 2.2.20 yields

x(t) = −Aω

ωn
sin ωnt + A sin ωt (2.2.33)

where A is given by Equation 2.2.13. When ω = 0.5ωn and ω = 1.5ωn,

responses contain both the frequencies ω and ωn (Figure 2.2.2). When

ω is close to ωn, for example, ω = 0.9ωn, the response exhibits a beat-

ing phenomenon (Figure 2.2.2) which can be explained by expressing

Equation 2.2.33 as

x(t) = A(sin ωt − sin ωnt) − A
ω − ωn

ωn
sin ωnt (2.2.34)

or

x(t) = 2A sin(0.5(ω − ωn)t) cos(0.5(ω + ωn)t) − A
ω − ωn

ωn
sin ωnt

(2.2.35)

The second term on the right-hand side of Equation 2.2.35 is small.

Ignoring this term,

x(t) = 2A sin(0.5(ω − ωn)t) cos(0.5(ω + ωn)t) (2.2.36)

Equation 2.2.36 can be interpreted as the response with the frequency

0.5(ω + ωn) with the time-varying amplitude. The frequency of the

amplitude variation is 0.5(ω − ωn), as found in Figure 2.2.2, and is

much less than 0.5(ω + ωn).

Case II: ω = ωn

With zero initial conditions, Equation 2.2.32 yields

x(t) = −Ar

ωn
sin ωnt + Ar t cos ωt (2.2.37)

Using Equation 2.2.26,

x(t) = f0

2keq
sin ωnt − f0ωn

2keq
t cos ωt (2.2.38)

It is obvious that the second term on the right-hand side of Equa-

tion 2.2.38 will be dominant after some time t. This will be true for a
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Figure 2.3.1 A damped SDOF spring–mass system subjected to sinusoidal excitation

large ωn even for a small time t. In other words, for a large ωn and/or

after some time t,

x(t) ≈ − f0ωn

2keq
t cos ωt (2.2.39)

The response in Figure 2.2.2 is described by Equation 2.2.39, in which

the amplitude of vibration grows to infinity in a linear manner with

respect to time. From the structural integrity point of view, the bad

news is that the amplitude of vibration grows to infinity. But, the good

news is that it takes time for the amplitude to build up to infinity, and

there is time to save the structure from catastrophic failure. This fact

is used in determining the rate at which a rotor shaft must be acceler-

ated past its resonant speed (or critical speed ) when the desired rotor

speed is greater than the critical speed.

2.3 RESPONSE OF A DAMPED SDOF SYSTEM TO A

HARMONIC EXCITATION

Consider a damped SDOF system subjected to a sinusoidal excitation

with the amplitude f0 and the frequency ω (Figure 2.3.1). Using the



Vibration of an SDOF System under Constant and Purely Harmonic Excitation 89

free body diagram in Figure 2.3.1,

net force in x-direction = −keqx − ceqẋ + f0 sin ωt (2.3.1)

Applying Newton’s second law of motion,

−keqx − ceqẋ + f0 sin ωt = meqẍ (2.3.2)

Therefore, the differential equation of motion is

meqẍ + ceqẋ + keqx = f0 sin ωt (2.3.3)

The solution of Equation 2.3.3 is composed of two parts:

x(t) = xh(t) + xp(t) (2.3.4)

where xh(t) is the homogeneous solution satisfying

meqẍh + ceqẋh + keqxh = 0 (2.3.5)

and xp(t) is a particular solution satisfying

meqẍp + ceqẋp + keqxp = f0 sin ωt (2.3.6)

Particular Solution

Assume that

xp(t) = A sin(ωt − φ) (2.3.7)

Substituting Equation 2.3.7 into Equation 2.3.6,

−meqω
2A sin(ωt − φ) + ceqωAcos(ωt − φ)

+ keqA sin(ωt − φ) = f0 sin ωt (2.3.8)

or

(keq − meqω
2)A sin(ωt − φ) + ceqωAcos(ωt − φ) = f0 sin ωt (2.3.9)

or

(keq − meqω
2)A[sin ωt cos φ − cos ωt sin φ]

+ ceqωA[cos ωt cos φ + sin ωt sin φ] = f0 sin ωt (2.3.10)
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or

[(keq − meqω
2)Acos φ + ceqωA sin φ] sin ωt

+ [ceqωAcos φ − (keq − meqω
2)A sin φ] cos ωt = f0 sin ωt (2.3.11)

Equating coefficients of sin ωt and cos ωt on both sides,

(keq − meqω
2)Acos φ + ceqωA sin φ = f0 (2.3.12a)

and

ceqωAcos φ − (keq − meqω
2)A sin φ = 0 (2.13.12b)

Representing Equations 2.3.12a and 2.3.12b in matrix form,[
keq − ω2meq ceqω

ceqω −(keq − ω2meq)

][
Acos φ

A sin φ

]
=
[

f0

0

]
(2.3.13)

or [
Acos φ

A sin φ

]
=
[

keq − ω2meq ceqω

ceqω −(keq − ω2meq)

]−1 [
f0

0

]
(2.3.14)

or [
Acos φ

A sin φ

]
= 1

�

[
−(keq − ω2meq) −ceqω

−ceqω +(keq − ω2meq)

][
f0

0

]
(2.3.15)

where

� = −(keq − ω2meq)2 − (ceqω)2 (2.3.16)

From Equation 2.3.15,

Acos φ = (keq − ω2meq)f0

(keq − ω2meq)2 + (ceqω)2
(2.3.17)

and

A sin φ = ceqωf0

(keq − ω2meq)2 + (ceqω)2
(2.3.18)
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Using Equations 2.3.17 and 2.3.18,

A =
√

(Acos φ)2 + (A sin φ)2 = + f0√
(keq − ω2meq)2 + (ceqω)2

(2.3.19)

and

tan φ = A sin φ

Acos φ
= ceqω

(keq − ω2meq)
(2.3.20)

Dividing the numerators and denominators of Equations 2.3.19 and

2.3.20 by keq,

A =
f0

keq√(
1 − ω2 meq

keq

)2
+
(

ceqω

keq

)2
(2.3.21)

and

tan φ =
ceqω

keq

1 − ω2 meq

keq

(2.3.22)

Now,

ω2 meq

keq
= ω2

ω2
n

= r2 (2.3.23)

ceqω

keq
= ccξω

keq
= 2meqωnξω

keq
= 2ξ

ω

ωn
= 2ξr (2.3.24)

Substituting Equations 2.3.23 and 2.3.24 into Equations 2.3.21 and

2.3.22,

A
f0/keq

= 1√
(1 − r2)2 + (2ξr)2

(2.3.25)

and

tan φ = 2ξr
1 − r2

(2.3.26)

where r is the frequency ratio defined as

r = excitation frequency
natural frequency

= ω

ωn
(2.3.27)
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Case I: Underdamped (0 < ξ < 1 or 0 < ceq < cc)

From Equation 1.5.19,

xh(t) = e−ξωnt(A1 cos ωdt + B1 sin ωdt) (2.3.28)

From Equations 2.3.4, 2.3.28, and 2.3.7,

x(t) = e−ξωnt(A1 cos ωdt + B1 sin ωdt) + A sin(ωt − φ) (2.3.29)

At t = 0,

x(0) = A1 − A sin φ ⇒ A1 = x(0) + A sin φ (2.3.30)

Differentiating Equation 2.3.29,

ẋ(t) = e−ξωnt(−ωdA1 sin ωdt + ωdB1 cos ωdt)

− ξωne−ξωnt(A1 cos ωdt + B1 sin ωdt) + ωAcos(ωt − φ) (2.3.31)

At t = 0,

ẋ(0) = ωdB1 − ξωnA1 + ωAcos φ (2.3.32)

Using Equation 2.3.30,

B1 = ẋ(0) + ξωn(x(0) + A sin φ) − ωAcos φ

ωd
(2.3.33)

The total response x(t) = xh(t) + xp(t) is shown in Figure 2.3.2 for ξ =
0.04 and ξ = 0.5.

Case II: Critically Damped (ξ = 1 or ceq = cc)

From Equation 1.5.33,

xh(t) = A1e−ωnt + B1te−ωnt (2.3.34)

From Equations 2.3.4, 2.3.34, and 2.3.7,

x(t) = A1e−ωnt + B1te−ωnt + A sin(ωt − φ) (2.3.35)

At t = 0,

x(0) = A1 − A sin φ ⇒ A1 = x(0) + A sin φ (2.3.36)
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Figure 2.3.2 Response (x(0) = f0/keq and ẋ(0) = 0) for ξ = 0.04, 0.5, 1, and 1.5

Differentiating Equation 2.3.35,

ẋ(t) = −ωnA1e−ωnt − ωnB1te−ωnt + B1e−ωnt + ωAcos(ωt − φ)

(2.3.37)

At t = 0,

ẋ(0) = −ωnA1 + B1 + ωAcos φ (2.3.38)

Using Equation 2.3.36,

B1 = ẋ(0) + ωn(x(0) + A sin φ) − ωAcos φ (2.3.39)

The total response x(t) = xh(t) + xp(t) is shown in Figure 2.3.2 for

ξ = 1.
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Case III: Overdamped (ξ > 1 or ceq > cc)

From Equation 1.5.41,

xh(t) = A1es1t + B1es2t (2.3.40)

where

s1 = −ξωn + ωn

√
ξ 2 − 1 < 0 (2.3.41)

s2 = −ξωn − ωn

√
ξ 2 − 1 < 0 (2.3.42)

Therefore, from Equations 2.3.40 and 2.3.7,

x(t) = A1es1t + B1es2t + A sin(ωt − φ) (2.3.43)

At t = 0,

x(0) = A1 + B1 − A sin φ (2.3.44)

Differentiating Equation 2.3.43,

ẋ(t) = A1s1es1t + B1s2es2t + ωAcos(ωt − φ) (2.3.45)

At t = 0,

ẋ(0) = A1s1 + B1s2 + ωAcos φ (2.3.46)

Solving Equations 2.3.44 and 2.3.46,

A1 = s2(x(0) + A sin φ) − (ẋ(0) − ωAcos φ)
s2 − s1

(2.3.47)

and

B1 = −s1(x(0) + A sin φ) + (ẋ(0) − ωAcos φ)
s2 − s1

(2.3.48)

The total response x(t) = xh(t) + xp(t) is shown in Figure 2.3.2 for

ξ > 1.
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2.3.1 Steady State Response

For all cases of damping ceq > 0 or ξ > 0 (Equations 2.3.28, 2.3.34, and

2.3.40)

xh(t) → 0 as t → ∞ (2.3.49)

Therefore, the homogeneous part xh(t) is also called “transient

response.” In the steady state (t → ∞),

x(t) = xh(t) + xp(t) → xp(t) as t → ∞ (2.3.50)

Therefore, the particular integral xp(t) is also called the steady state

response xss(t) :

xss(t) = A sin(ωt − φ) (2.3.51)

where (from Equations 2.3.25 and 2.3.26),

A
f0/keq

= 1√
(1 − r2)2 + (2ξr)2

(2.3.52)

and

tan φ = 2ξr
1 − r2

(2.3.53)

Note that A is the amplitude of the steady state response. And φ is

the phase of the steady state response which is the angle by which the

steady state response lags behind the forcing function.

Amplitude (A) and phase (φ) are plotted in Figures 2.3.3 and 2.3.4

as functions of the frequency ratio r for different values of the damp-

ing ratio ξ . For all values of the damping ratio ξ , A → 0 as r → ∞.

Near resonance condition, the amplitude can be very large, particu-

larly for a small value of the damping.

To find the peak amplitude, Equation 2.3.52 is differentiated with

respect to r,

keq

f0

dA
dr

= −1
2

[(1 − r2)2 + (2ξr)2]−
3
2 [2(1 − r2)(−2r) + (2ξ)22r ]

(2.3.54)
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The condition for the maximum value of the amplitude A is

dA
dr

= 0 (2.3.55)

Therefore, from Equations 2.3.54 and 2.3.55,

−(1 − r2) + 2ξ 2 = 0 (2.3.56)

or

r =
√

1 − 2ξ 2 provided ξ ≤ 1√
2

= 0.707 (2.3.57)

Equation 2.3.57 yields the frequency ratio at which the amplitude is

maximum.

The corresponding peak amplitude (Ap) is given by

Ap

f0/keq
= 1

2ξ
√

1 − ξ 2
; ξ ≤ 0.707 (2.3.58)
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It should be noted that the maximum value of the amplitude occurs at

r = 0 for ξ > 0.707.

For the phase plot (Figure 2.3.4), two important points should be

noted:

a. The phase angle φ = 90◦ at ω = ωn for all values of damping ratios

greater than zero. In other words, the phase angle φ of a damped

(ξ > 0) system is always 90◦ when the excitation frequency ω

equals the undamped natural frequency ωn of the system.

b. The phase angles φ of an undamped (ξ = 0) system are 0◦ and 180◦

for ω < ωn and ω > ωn, respectively. In other words, the phase

angle φ changes abruptly from 0◦ to 180◦ across ω = ωn. It should

be noted that the phase angle φ of an undamped system is not

defined for ω = ωn, as A sin(ωt − φ) is not the particular integral

in this case.
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blade

)(tx )(tx
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(b)

Figure 2.3.5 Turbine blade subjected to sinusoidal excitation

Example 2.3.1: Steady State Response of a Turbine Blade

Consider a turbine blade, which is subjected to a sinusoidal force

f0 sin ωt (Figure 2.3.5a). For an assumed displacement shape of

the turbine blade (Figure 2.3.5b), the equivalent SDOF system is

shown in Figure 2.3.6, where meq = 0.0114 kg and keq = 430,000 N/m

(Griffin and Sinha, 1985). Assuming that the damping ratio ξ = 0.01

and the force amplitude f0 = 1 N, determine the steady state ampli-

tudes and the phases for the following values of frequency ratio: 0.4,

0.95, 1, and 2. Also, plot the response with zero initial conditions for

each frequency ratio.

eqc

eqm

eqk

)(tx

f sin ωt0

Figure 2.3.6 Equivalent SDOF model for the turbine blade
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Solution

f0

keq
= 2.3256 × 10−6 m

ωn =
√

keq

meq
= 6,141.6 rad/sec

a. r = 0.4

A = f0/keq√
(1 − r2)2 + (2ξr)2

= 2.7684 × 10−6 m

φ = tan−1 2ξr
1 − r2

= tan−1 0.008
0.84

= 0.0095 rad

b. r = 0.95

A = f0/keq√
(1 − r2)2 + (2ξr)2

= 2.3412 × 10−5 m

φ = tan−1 2ξr
1 − r2

= tan−1 0.019
0.0975

= 0.1925 rad

c. r = 1

A = f0/keq√
(1 − r2)2 + (2ξr)2

= 1.1628 × 10−4 m

φ = tan−1 2ξr
1 − r2

= tan−1 0.02
0

= π

2
rad

d. r = 2

A = f0/keq√
(1 − r2)2 + (2ξr)2

= 7.7512 × 10−7 m

φ = tan−1 2ξr
1 − r2

= tan−1 0.04
−3

= 3.1283 rad

For each frequency ratio, the response is computed with zero

initial conditions (Equation 2.3.29). The steady state response and

the excitation force are plotted together in Figure 2.3.7, primarily to
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Figure 2.3.7 Steady state vibration of a turbine blade

see the phase relationships. For r = 1, the excitation force is maxi-

mum when x(t) = 0 and ẋ(t) > 0. This confirms that the steady state

response lags behind the forcing function by 90◦.

The subplot for r = 0.95 in Figure 2.3.7 is re-plotted in Figure 2.3.8,

where it is estimated that

ωn�t ∼= 0.20 rad

where �t is the time difference for peaks of excitation and steady state

response to occur. Therefore,

ω�t ∼= ω

ωn
0.20 rad = 0.19 rad

This is the phase difference between the excitation and the steady

state response. Also, the excitation peak occurs before the response

peak. Therefore, the steady state response lags behind the excitation
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by 0.19 rad, which matches well with the theoretical result. The slight

difference between the numerical and the theoretical result is due to

approximations involved in obtaining ωn�t from the plot.

2.3.2 Force Transmissibility

When a force is applied to the mass, it is important to determine the

force transmitted to the support. Therefore, free body diagrams are

constructed for mass, spring, and damper in Figure 2.3.1. From these

free body diagrams in Figure 2.3.9,

force transmitted to the support = keq(x + �) + ceqẋ

= mg + keqx + ceqẋ (2.3.59)

The time-varying part of the force transmitted to the support is given

by

fT(t) = keqx + ceqẋ (2.3.60)
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eqm
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xceq &

xceq &

mgf sin ωt0

(x + Δ)

(x + Δ)

keq

keq

Support

Figure 2.3.9 Free body diagram of each element in Figure 2.3.1

In the steady state, the force transmitted to the support is obtained by

substituting Equation 2.3.51 into Equation 2.3.60,

fT(t) = keqA sin(ωt − φ) + ceqωAcos(ωt − φ) = fT0 sin(ωt − ψ )

(2.3.61)

where

ψ = φ − θ (2.3.62)

fT0 = A
√

k2
eq + c2

eqω
2 (2.3.63a)

and

tan θ = ceqω

keq
(2.3.63b)

Substituting Equation 2.3.52 into Equation 2.3.63a, and using Equa-

tion 2.3.24,

fT0

f0
=

√
1 + (2ξr)2√

(1 − r2)2 + (2ξr)2
(2.3.64)
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Figure 2.3.10 Force transmissibility as a function of frequency ratio

Using Equations 2.3.62, 2.3.24, and 2.3.26,

ψ = φ − θ = tan−1 2ξr
1 − r2

− tan−1 2ξr = tan−1 2ξr3

1 + r2(4ξ 2 − 1)
(2.3.65)

Since f0 and fT0 are, respectively, the amplitudes of the applied sinu-

soidal force and the time-varying part of the force transmitted to the

support, the ratio fT0/f0 is known as the force transmissibility, which

is plotted in Figure 2.3.10 as a function of the frequency ratio r for

many values of the damping ratio ξ . As the applied force and the

time-varying part of the force transmitted to the support are f0 sin ωt

and fT0 sin(ωt − ψ) respectively, ψ is the phase angle by which the

transmitted force lags behind the applied force. The phase angle ψ

has been plotted in Figure 2.3.11 as a function of the frequency ratio r

for many values of the damping ratio ξ .
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It is often desired to select the spring stiffness and the damping

coefficient such that the force transmissibility is as small as possible,

but never greater than one. To determine the frequency ratio at which

fT0/f0 is one, from Equation 2.3.64,

√
1 + (2ξr)2√

(1 − r2)2 + (2ξr)2
= 1 (2.3.66)

Squaring both sides of Equation 2.3.66,

1 + (2ξr)2

(1 − r2)2 + (2ξr)2
= 1 (2.3.67)

After some algebra, Equation 2.3.67 yields

r2(r2 − 2) = 0 (2.3.68)
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Solving Equation 2.3.68,

r = 0 or r =
√

2 (2.3.69)

Therefore, the force transmissibility equals one at r = 0 and r =√
2 for all values of the damping ratio. In Figure 2.3.10, it can also be

seen that the force transmissibility is greater than one for 0 < r <
√

2,

whereas it is less than one for r >
√

2. Further, for r >
√

2, the force

transmissibility increases as the damping ratio increases. Therefore, a

support system, that is, the spring stiffness and the damping constant,

should be designed such that r >
√

2 and the damping constant c is as

small as possible. For r >
√

2,

ω

ωn
>

√
2 ⇒ ω2

n <
ω2

2
⇒ keq <

meqω
2

2
(2.3.70)

In general, a design guideline is to choose small values for the

spring stiffness and the damping constant. Rubber pads are often used

to minimize the force transmitted to the support because rubber mate-

rial has small values for the stiffness and the damping constant.

Example 2.3.2: Force Transmitted to Turbine Blade Support

For the frequency ratio = 1, find the steady state force transmitted to

the support of the turbine blade in Example 2.3.1.

Solution

Here, r = 1 and ξ = 0.01.

fT0 = f0

√
1 + (2ξr)2√

(1 − r2)2 + (2ξr)2
= f0

√
1 + 1

(2ξ)2
= 50.01 N

ψ = tan−1 2ξr3

1 + r2(4ξ 2 − 1)
= tan−1 1

2ξ
= 1.5508 rad

The steady state force transmitted to the support is

fT(t) = fT0 sin(ωt − ψ) = 50.01 sin(6141.6t − 1.5508) N
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2.3.3 Quality Factor and Bandwidth

Here, two widely used terms, quality factor (Q) and bandwidth, are

defined.

Quality Factor

The amplitude Ar at r = 1 is obtained from Equation 2.3.52,

Ar

f0/keq
= 1

2ξ
(2.3.71)

For the definition of quality factor, it is important to determine the

frequency ratios where the values of A are 1/
√

2 times the amplitude

Ar (Figure 2.3.12). Using Equations 2.3.52 and 2.3.71, the amplitude

ratio (A/Ar ) is determined and set equal to 1/
√

2 for this purpose:

A
Ar

= 2ξ√
(1 − r2)2 + (2ξr)2

= 1√
2

(2.3.72)

Squaring both sides of Equation 2.3.72,

(r2)2 − (2 − 4ξ 2)r2 + (1 − 8ξ 2) = 0 (2.3.73)
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Solving this quadratic equation in r2,

r2 = (1 − 2ξ 2) ± 2ξ
√

1 − ξ 2 (2.3.74)

For a small ξ ,
√

1 − ξ 2 ≈ 1 and 1 − 2ξ 2 ≈ 1, that is,

r2 ≈ 1 ± 2ξ (2.3.75)

Using binomial expansion (Appendix B),

r ≈ (1 ± 2ξ)
1
2 = 1 ± ξ ± higher power terms of ξ (2.3.76)

Neglecting higher powers of ξ , frequencies ω1 and ω2 where the

values of A/(f0/keq) are 1/
√

2 times the value at r = 1 can be approx-

imated for small ξ as

r1 = ω1

ωn
= 1 − ξ (2.3.77)

r2 = ω2

ωn
= 1 + ξ (2.3.78)

The quality factor Q is defined as

Q = ωn

ω2 − ω1
(2.3.79)

From Equations 2.3.77–2.3.79,

Q = 1
2ξ

(2.3.80)

A higher value of Q implies a lower value of the damping ratio ξ and

vice versa.

Bandwidth

The bandwidth of a system is defined as the frequency below which

the steady state amplitude is above 1/
√

2 (= 0.707) times the steady

state amplitude at zero frequency or the steady state amplitude under

constant force, for example (Figure 2.3.13).

The bandwidth is a measure of the frequency range for which the

system responds strongly to the forcing function.
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The bandwidth (frequency) is obtained by setting

A
f0/keq

= 1√
(1 − r2)2 + (2ξr)2

= 1√
2

(2.3.81)

Squaring both sides of Equation 2.3.81, the following quadratic equa-

tion in r2 is obtained:

(r2)2 − (2 − 4ξ 2)r2 − 1 = 0 (2.3.82)

Solving Equation 2.3.82,

r2 = (2 − 4ξ 2) ±
√

(2 − 4ξ 2)2 + 4
2

(2.3.83)

The negative sign in front of the square root sign in Equation 2.3.83

will lead to a negative value of r2, which is meaningless. Therefore,

the positive sign in front of the square root sign is chosen to obtain

r2 = 1 − 2ξ 2 +
√

4ξ 4 − 4ξ 2 + 2 (2.3.84)



Vibration of an SDOF System under Constant and Purely Harmonic Excitation 109

1.6 

1.4 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

0
0 1 2 3 4 5

0.707

Damping ratio (ξ)

B
an

dw
id

th
/ω

n

Figure 2.3.14 Bandwidth versus damping ratio

Therefore,

bandwidth
ωn

=
√

1 − 2ξ 2 +
√

4ξ 4 − 4ξ 2 + 2 (2.3.85)

The bandwidth is plotted as a function of the damping ratio in Fig-

ure 2.3.14.

As the damping is increased, the bandwidth decreases. It is inter-

esting to note that the bandwidth equals the undamped natural fre-

quency ωn when the damping ratio ξ equals 1/
√

2 (= 0.707).

2.4 ROTATING UNBALANCE

In a rotating machine such as a motor, a generator, a turbine, and

so on, there is always an unbalance because the center of rotation

never coincides with the center of the rotor mass. Even though this

eccentricity is small, this results in a rotating centrifugal force on

the rotor with a significant amplitude because the centrifugal force is

proportional to the square of the angular speed. Further, a rotating



110 Vibration of Mechanical Systems

eqk

eqc

e
um

)(tx

esin ωt

Static Equilibrium

eqm

eqm

xkeq
xceq &

x(t)

Free body diagram

ωt

Figure 2.4.1 A spring–mass–damper system with rotating unbalance

centrifugal force results in a sinusoidal excitation on the structure,

and hence can lead to a large magnitude of the structural vibration

because of the resonance phenomenon.

Consider the system in which an unbalance mass mu with an eccen-

tricity e is rotating at a speed of ω rad/sec (Figure 2.4.1). Let the total

mass be meq, which includes the unbalance mass mu. From the free

body diagram in Figure 2.4.1,

net force in x-direction = −keqx − ceqẋ (2.4.1)

And the acceleration of the mass (meq − mu) is ẍ. The displace-

ment of the unbalance mass mu is x + e sin ωt. As a result, the accel-

eration of the unbalance mass will be the second time derivative of

x + e sin ωt. Applying Newton’s second law of motion,

−keqx − ceqẋ = (meq − mu)ẍ + mu
d2

dt2
(x + e sin ωt) (2.4.2)
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After some simple algebra,

meqẍ + ceqẋ + keqx = mueω2 sin ωt (2.4.3)

Comparing Equations 2.4.3 and 2.3.3,

f0 = mueω2 (2.4.4)

Following the developments in Section 2.3, the steady state response

xss(t) is again given by

xss(t) = A sin(ωt − φ) (2.4.5)

where the amplitude A and the phase angle φ are given by Equations

2.3.25 and 2.3.26:

A
f0/keq

= 1√
(1 − r2)2 + (2ξr)2

(2.4.6)

and

tan φ = 2ξr
1 − r2

(2.4.7)

It should be noted that the complete solution is still given by Equa-

tions 2.3.29, 2.3.35, and 2.3.43 for underdamped, critically damped,

and overdamped systems, respectively.

Using Equation 2.4.4,

f0

keq
= mueω2

keq
= emu

meq

meqω
2

keq
= emu

meq

ω2

ω2
n

= emu

meq
r2 (2.4.8)

Substituting Equation 2.4.8 into Equation 2.4.6, the steady state

amplitude due to the rotating unbalance is given by

meq

mu

A
e

= r2√
(1 − r2)2 + (2ξr)2

(2.4.9)

The steady state amplitude (A) due to the rotating unbalance is plot-

ted in Figure 2.4.2 as a function of the frequency ratio for many values

of the damping ratio. The plot for the phase angle is exactly the same

as the one shown in Figure 2.3.4. Here, the amplitude (A) equals zero



112 Vibration of Mechanical Systems

3 

2.5 

2 

1.5 

1 

0.5 

0
0 0.5 1 1.5 2 2.5 3

ξ = 0

ξ = 0

ξ = 0.3

ξ = 0.5

ξ = 1

ξ = 2

ξ = 0.707

Frequency ratio, r = ω/ωn

A
m

pl
itu

de
, A

.m
eq

/e
.m

u

Figure 2.4.2 Steady state amplitude versus frequency ratio (rotating unbalance)

at r = 0 and equals (mue/meq) for all damping ratios as r → ∞. Near

resonance condition, the amplitude (A) can be large for small values

of the damping ratio.

To find the maximum amplitude, Equation 2.4.9 is differentiated

with respect to r ,

meq

mue
dA
dr

= −r2[2(1 − r2)(−2r) + (2ξ)22r ]
2[(1 − r2)2 + (2ξr)2]1.5

+ 2r
[(1 − r2)2 + (2ξr)2]0.5

(2.4.10)

The condition for the maximum value of the amplitude A is

dA
dr

= 0 (2.4.11)

Therefore, from Equations 2.4.10 and 2.4.11,

−r2 [(1 − r2)(−2r) + (2ξ)2r
]+ 2r

[
(1 − r2)2 + (2ξr)2] = 0 (2.4.12)
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Figure 2.4.3 Rotating unbalance position under stroboscopic light

After some algebra, Equation 2.4.12 yields

r = 1√
1 − 2ξ 2

provided ξ ≤ 1√
2

= 0.707 (2.4.13)

It should be noted that the maximum amplitude occurs for r = ∞
when ξ ≥ 0.707.

For ξ ≤ 0.707, substituting Equation 2.4.13 into Equation 2.4.9,

meq

mu

Ap

e
= 1

2ξ
√

1 − ξ 2
(2.4.14)

where Ap is the peak amplitude. It is interesting to note that right-

hand sides of Equations 2.3.58 and 2.4.14 are identical.

Using Equation 2.3.64, the amplitude fT0 of the force transmitted

to the support in steady state will be given by

fT0

mueω2
=

√
1 + (2ξr)2√

(1 − r2)2 + (2ξr)2
(2.4.15)

Example 2.4.1: Identification of Damping Ratio and Natural

Frequency

Consider an SDOF system with the rotating unbalance = 0.1

kg – meter and the equivalent mass meq = 200 kg (Figure 2.4.3a). At

a speed of 850 rpm under stroboscopic light, the configuration of the

eccentric mass is horizontal, the displacement x is zero, and the veloc-

ity ẋ is positive. The steady state amplitude at the speed of 850 rpm is

found to be 25 mm. Determine the damping ratio and the undamped
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natural frequency of the system. Also, determine the angular speed

ω when the angular position of the rotating unbalance as shown in

Figure 2.4.3b when the displacement x is zero, and the velocity ẋ is

positive.

Solution

The configuration in Figure 2.4.3a indicates that the response x(t)

lags behind the excitation force by 90◦. Therefore, the frequency ratio

r = 1 from Equation 2.4.7, that is,

ωn = ω = 850 rpm = 89.012 rad/sec

Given:

mue = 0.1 kg-m and A = 0.025 m

From Equation 2.4.9,

meq

mu

A
e

= 1
2ξ

⇒ ξ = 0.01

The configuration in Figure 2.4.3b indicates that the response x(t) lags

behind the excitation force by 135◦. Therefore,

tan φ = 1
−1

From Equation 2.4.7,

2ξr
r2 − 1

= 1 ⇒ r2 − 0.02r − 1 = 0

Solving this quadratic equation: r = 1.01 and − 0.99. Since the nega-

tive value of r is meaningless,

r = ω

ωn
= 1.01 ⇒ ω = 1.01ωn = 858.5 rpm

Example 2.4.2: A Rotor Shaft with Mass Unbalance

Consider the rotor–shaft system shown in Figure 1.3.1, but with a cas-

ing around the rotor as shown in Figure 2.4.4. The clearance δ between



Vibration of an SDOF System under Constant and Purely Harmonic Excitation 115

Rotor with mass = m  

Simply
supported shaft

2

l

2

l

Casing Clearance = δδ

δ

Figure 2.4.4 Rotor–shaft system with casing

the rotor and the casing is 10 mm. The length and the diameter of the

circular steel shaft are 0.5 m and 3 cm, respectively. The mass and the

unbalance of the turbine rotor are 12 kg and 0.25 kg-cm, respectively.

a. Determine the critical speed of the rotor.

b. If the rotor operates at the critical speed, find the time after which

the rotor will hit the casing. Assume that the initial conditions are

zeros.

c. Assume that the operating speed of the rotor is higher than its

critical value. Then, the rotor must pass through its critical speed

before it acquires the desired speed. Recommend a safe value of

angular acceleration to cross the critical speed.

a. Area moment of inertia I = π(0.03)4

64 = 3.9761 × 10−8 m4

For steel, E = 2 × 1011 N/m2

� = 0.5 m

keq = 48EI
�3

= 3.0536 × 106 N/m

ωn =
√

keq

meq
= 504.45 rad/sec

critical speed ω = ωn = 504.45 rad/sec
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b. Unbalance mue = 0.25 × 10−2 kg-m

f0 = mueω2 = 636.173 N

Equation 2.2.38 is rewritten here.

x(t) = f0

2keq
sin ωnt − f0ωn

2keq
t cos ωt

Therefore,

x(t) = 1.0417 × 10−4 sin ωnt − 0.0525t cos ωnt

or

x(t) ≈ −0.0525t cos ωnt

Let the time after which the rotor hits the casing be th. Then,

0.0525th = 0.01 ⇒ th = 0.1905 sec

c. Recommended acceleration = desired speed−0
(0.1905/2) rad/sec2.

The operating speed will reach the desired speed from rest in half

the time that it takes for the rotor to hit the casing at the critical speed.

Therefore, the rotor will not hit the casing.

2.5 BASE EXCITATION

There are many practical situations where the base is not fixed and

the vibration is caused by the displacement of the base, for example,

automobile vibration caused by uneven road profile, building vibra-

tion during earthquake, and so on.

Consider the SDOF spring–mass–damper system with the base

having a displacement y(t) (Figure 2.5.1). From the free body dia-

gram,

net force in x-direction = −keq(x − y) − ceq(ẋ − ẏ) (2.5.1)
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Figure 2.5.1 A spring–mass–damper system with base excitation

Applying Newton’s second law of motion,

−keq(x − y) − ceq(ẋ − ẏ) = meqẍ (2.5.2)

or,

meqẍ + ceqẋ + keqx = ceq ẏ + keq y (2.5.3)

With y(t) = y0 sin ωt, the right-hand side of Equation 2.5.3 can be writ-

ten as

ceq ẏ + keq y = ceqωy0 cos ωt + keq y0 sin ωt (2.5.4)

Let Equation 2.5.4 be represented as

ceq ẏ + keq y = f0 sin(ωt + θ) (2.5.5)

Using Equation 2.5.4,

ceqωy0 cos ωt + keq y0 sin ωt = f0 sin(ωt + θ)

= f0 cos θ sin ωt + f0 sin θ cos ωt (2.5.6)
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Comparing the coefficients of cos ωt and sin ωt on both sides,

f0 sin θ = ceqωy0 (2.5.7)

and

f0 cos θ = keq y0 (2.5.8)

Squaring Equations 2.5.7 and 2.5.8 and adding them,

f0 = y0

√
k2

eq + (ceqω)2 (2.5.9)

Dividing Equation 2.5.7 by Equation 2.5.8 and using Equation 2.3.24,

tan θ = ceqω

keq
= 2ξr (2.5.10)

Dividing Equation 2.5.9 by keq and using Equation 2.3.24,

f0

keq
= y0

√
1 +

(
ceqω

keq

)2

= y0

√
1 + (2ξr)2 (2.5.11)

Using Equations 2.5.3 and 2.5.5, the differential equation of motion is

written as

meqẍ + ceqẋ + keqx = f0 sin(ωt + θ) (2.5.12)

where f0 and θ are defined by Equations 2.5.11 and 2.5.10, respec-

tively. Following the developments in Section 2.3, the steady state

response xss(t) is given by

xss(t) = A sin(ωt + θ − φ) (2.5.13)

where the amplitude A and the phase angle φ are given by Equations

2.3.25 and 2.3.26.

A
f0/keq

= 1√
(1 − r2)2 + (2ξr)2

(2.5.14)

and

tan φ = 2ξr
1 − r2

(2.5.15)
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It should be noted that the complete solutions are given by Equa-

tions 2.3.29, 2.3.35, and 2.3.43 for underdamped, critically damped,

and overdamped systems, respectively.

Substituting Equation 2.5.11 into Equation 2.5.14,

A
y0

=
√

1 + (2ξr)2√
(1 − r2)2 + (2ξr)2

(2.5.16)

The ratio of the steady state amplitude A of the mass and the input

base amplitude y0 is known as the displacement transmissibility. It

is important to note that the expressions for displacement and force

transmissibilities are identical. Compare Equations 2.5.16 and 2.3.64.

Therefore, the plot of transmissibility (Figure 2.3.10) holds for base

excitation also. And a support system, that is, the spring stiffness and

the damping constant, should be designed such that r >
√

2 and the

damping constant c is as small as possible. Equation 2.3.70 is valid

here also.

Equation 2.5.13 can be written as

xss(t) = A sin(ωt − ψ) (2.5.17)

where

ψ = φ − θ (2.5.18)

Since the input base displacement is y(t) = y0 sin ωt, the phase ψ is
the angle by which the steady state displacement xss(t) lags behind the

base displacement. From Equations 2.5.15 and 2.5.10,

ψ = φ − θ = tan−1 2ξr
1 − r2

− tan−1 2ξr = tan−1 2ξr3

1 + r2(4ξ 2 − 1)

(2.5.19)

Again, note that the expression of the phase lag ψ for base excitation

is the same as that for the force transmitted to the support when the

mass is directly excited by the sinusoidal force. Compare Equations

2.3.65 and 2.5.19. The plot of the phase lag ψ (Figure 2.3.11) holds for

base excitation also.
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Example 2.5.1: Microgravity Isolation Systems

In a spacecraft, a number of scientific experiments are conducted to

utilize the microgravity environment; that is, the acceleration due to

gravity in space is 10−6 g where g is the acceleration due to gravity on

earth. However, because of various disturbances such as crew motion,

thruster firing, and so on, the acceleration due to gravity in space can

be as high as 10−3 g.

Design a spring–damper suspension system for an experiment

module, which has a mass of 1.5 kg. The disturbance frequencies lie

between 0.1 and 0.5 Hz, and assume that the damping ratio is ξ = 0.2.

Solution

In the context of microgravity isolation system, meq in Figure 2.5.1

is the mass of the experiment module. The base acceleration, ÿ(t) is

caused by various disturbances on the spacecraft. The displacement

and acceleration transmissibilities are identical because

ω2A
ω2 y0

= A
y0

The desired transmissibility is 10−3 because ω2A and ω2 y0 are 10−6 g

and 10−3 g, respectively. Using Equation 2.5.16,

A
y0

=
√

1 + (2ξr)2√
(1 − r2)2 + (2ξr)2

= 10−3

This equation leads to the following quadratic equation in r2 :

(r2)2 − 160001.84r2 − 999999 = 0

There are two roots: r2 = 1.6 × 105 and −0.62. Since a negative value

of r2 is meaningless, r2 = 1.6 × 105 and r = 400.

When r >
√

2, the transmissibility decreases as r increases. There-

fore,

ω

ωn
≥ 400 ⇒ ωn ≤ ω

400
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Figure 2.6.1 A vibration measuring instrument

Here, 0.1 Hz ≤ ω ≤ 0.5 Hz. Therefore,

ωn = 0.1 × 2π

400
= 0.00157 rad/sec

Therefore,

keq = meqω
2
n = 3.6973 × 10−6 N/m

ceq = 2ξmeqωn = 9.42 × 10−4 N-sec/m

2.6 VIBRATION MEASURING INSTRUMENTS

Here, basic theories for designing instruments that measure ampli-

tudes of vibratory displacements and acceleration are presented.

These instruments are composed of a spring–mass–damper system as

shown in Figure 2.6.1, and are rigidly attached to the vibratory struc-

ture with the displacement

y(t) = y0 sin ωt (2.6.1)

and therefore the acceleration

ÿ = −ω2 y0 sin ωt (2.6.2)
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The position of the pointer attached to the mass, which is the relative

displacement

z = x − y (2.6.3)

is available from the scale reading. By proper selection of mass, stiff-

ness, and damping coefficient, the amplitude of z = x − y can serve

as a good estimate of either the displacement amplitude (y0) or the

acceleration amplitude (ω2 y0). The instruments that measure the dis-

placement amplitude (y0) and the acceleration amplitude (ω2 y0) are

called the vibrometer and the accelerometer, respectively.

From the free body diagram in Figure 2.6.1,

net force in x-direction = −keq(x − y) − ceq(ẋ − ẏ) (2.6.4)

Applying Newton’s second law of motion,

−keq(x − y) − ceq(ẋ − ẏ) = meqẍ (2.6.5)

From Equations 2.6.3 and 2.6.2,

ẍ = z̈ + ÿ = z̈ − ω2 y0 sin ωt (2.6.6)

Substituting Equations 2.6.3 and 2.6.6 into Equation 2.6.5,

meqz̈ + ceqż + keqz(t) = f0 sin ωt (2.6.7)

where

f0 = meqω
2 y0 (2.6.8)

Therefore,

f0

keq
= meqω

2 y0

keq
= ω2 y0

ω2
n

(2.6.9)

The steady state

zss(t) = z0 sin(ωt − φ) (2.6.10)
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where the amplitude z0 is obtained by using Equations 2.3.52 and

2.6.9:

z0 = f0/keq√
(1 − r2)2 + (2ξr)2

= ω2 y0/ω
2
n√

(1 − r2)2 + (2ξr)2
(2.6.11)

where r is the frequency ratio ω/ωn. The phase angle φ is given by

Equation 2.3.53:

φ = tan−1 2ξr
1 − r2

(2.6.12)

2.6.1 Vibrometer

From Equation 2.6.11,

z0

y0
= r2√

(1 − r2)2 + (2ξr)2
(2.6.13)

The plot of the ratio in Equation 2.6.13 is shown in Figure 2.6.2. It

should be noted that the right-hand side of Equation 2.6.13 is identi-

cal to the relationship for the steady state amplitude of the rotating

unbalance problem (Equation 2.4.9).

For large r,

z0

y0
≈ 1 or z0 ≈ y0 (2.6.14)

It should be recalled that z0 is directly available from the scale reading.

Equation 2.6.14 establishes the fact that z0 can be a good estimate of

the amplitude of vibration y0 when the frequency ratio r = ω/ωn is

large. A large value of r = ω/ωn implies a small value of the natural

frequency ωn, which is achieved by having a small stiffness and/or a

large mass.

Example 2.6.1: Design of a Vibrometer

A vibrometer is to be designed such that the error in the estimated

vibration amplitude is less than 4%. Determine the undamped natural

frequency when the frequency of vibration lies between 20 and 50 Hz.

Assume that the damping ratio is 0.3.
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Solution

It is required that

0.96 ≤ z0

y0
≤ 1.04

The plot of z0/y0 is shown in Figure 2.6.2 for ξ = 0.3. The line z0/y0 =
1.04 intersects the plot at two points, whereas z0/y0 = 0.96 intersects

the plot at only one point. The intersection point corresponding to

z0/y0 = 0.96 is not important for vibrometer design. The error is less

than 4% when the frequency ratio is greater than the higher of the

two values of the frequency ratio where z0/y0 = 1.04 intersects the

plot. To determine this frequency ratio,

z0

y0
= r2√

(1 − r2)2 + (2ξr)2
= 1.04
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With ξ = 0.3,

0.0816(r2)2 − 1.7738r2 + 1.0816 = 0

This is a quadratic equation in r2. Two roots are: r2 = 21.1098

and 0.6279, or equivalently, r = 4.5945 and 0.7924.

Therefore,

r = ω

ωn
≥ 4.5945 ⇒ ωn ≤ ω

4.5945

Here 20 Hz ≤ ω ≤ 50 Hz. The undamped natural frequency ωn which

will satisfy the above inequality ωn ≤ ω/4.5945 for all signal frequen-

cies ω is given as

ωn = 20 × 2π

4.5945
rad/sec = 27.3509 rad/sec
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2.6.2 Accelerometer

From Equation 2.6.11,

ω2
nz0

ω2 y0
= 1√

(1 − r2)2 + (2ξr)2
(2.6.15)

The plot of the ratio in Equation 2.6.15 is shown in Figure 2.6.3. It

should be noted that the right-hand side of Equation 2.6.15 is identical

to the relationship for the steady state amplitude of the direct force

excitation problem (Equation 2.3.52).

For small r,

ω2
nz0

ω2 y0
≈ 1 or ω2

nz0 ≈ ω2 y0 (2.6.16)

It should be again recalled that z0 is directly available from the scale

reading. Equation 2.6.16 establishes the fact that ω2
nz0 can be a good

estimate of the amplitude of the acceleration ω2 y0 when the frequency

ratio r = ω/ωn is small. A small value of r = ω/ωn implies a large

value of the natural frequency ωn, which is achieved by having a large

stiffness and/or a small mass.

Example 2.6.2: Design of an Accelerometer

An accelerometer is to be designed such that the error in the

estimated acceleration amplitude is less than 4%. Determine the

undamped natural frequency when the frequency of vibration lies

between 20 and 50 Hz. Assume that the damping ratio is 0.3.

Solution

It is required that

0.96 ≤ ω2
nz0

ω2 y0
≤ 1.04

The plot of ω2
nz0/ω

2 y0 is shown in Figure 2.6.4 for ξ = 0.3. The line

ω2
nz0/ω

2 y0 = 1.04 intersects the plot at two points, whereas the line

ω2
nz0/ω

2 y0 = 0.96 intersects the plot at only one point. The intersec-

tion point corresponding to ω2
nz0/ω

2 y0 = 0.96 is not important for the

accelerometer design. The error is less than 4% when the frequency
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ratio is smaller than the lower of the two values of frequency ratio

where ω2
nz0/ω

2 y0 = 1.04 intersects the plot. To determine this fre-

quency ratio,

ω2
nz0

ω2 y0
= 1√

(1 − r2)2 + (2ξr)2
= 1.04

With ξ = 0.3,

1.0816(r2)2 − 1.7738r2 + 0.0816 = 0

This is a quadratic equation in r2. Two roots are: r2 = 1.5926

and 0.0474 or equivalently, r = 1.2620 and 0.2177.

Therefore,

r = ω

ωn
≤ 0.2177 ⇒ ωn ≥ ω

0.2177

Here 20 Hz ≤ ω ≤ 50 Hz. The undamped natural frequency ωn, which

will satisfy the above inequality for all signal frequencies ω, is given as

ωn = 50 × 2π

0.2177
rad/sec = 1443.1 rad/sec
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2.7 EQUIVALENT VISCOUS DAMPING FOR

NONVISCOUS ENERGY DISSIPATION

There are many forms of nonviscous damping found in applications;

for example, Coulomb friction, where the damping force is not pro-

portional to the velocity. In such cases, it is useful to determine equiv-

alent viscous damping so that the linear analysis developed in previous

sections can be used.

Let Wnv be the energy dissipated by nonviscous damping per

cycle of oscillation having an amplitude A and a frequency ω. Then,

the equivalent viscous damping ceq is defined by equating Wnv with

the energy dissipated by equivalent viscous damper per cycle of

oscillation having the same amplitude A and frequency ω. Using

Equation 1.2.26,

πceqωA2 = Wnv (2.7.1)

or

ceq = Wnv

πωA2
(2.7.2)

If the damping force is fd(t), then the energy dissipated per cycle of

oscillation is calculated as follows:

Wnv =
∮

fd(t)dx (2.7.3)

It should be noted that the integral in Equation 2.7.3 is evaluated for

one complete cycle of oscillation. A typical plot of fd(t) versus dis-

placement x(t) is shown in Figure 2.7.1. Hence, the integral on the

right-hand side of Equation 2.7.3 is the shaded area in Figure 2.7.1. In

other words, the shaded area is the energy dissipated (Wnv) per cycle

of oscillation.

Example 2.7.1 Forced Response of a Frictionally Damped Spring–

Mass System

Consider a spring–mass system in Figure 2.7.2 where one side of the

mass is pushed against the wall by the normal load N. Assuming that
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Figure 2.7.1 Damper force fd (t) versus oscillatory displacement x(t)

the coefficient of friction is μ, the friction force fd(t) will be μN in the

direction opposite to the velocity ẋ(t). The external force on the mass

is f0 sin ωt. It is assumed that the steady state response is sinusoidal,

that is,

x(t) = A sin(ωt − φ) (2.7.4)

where amplitude A and phase φ are to be determined.

m

k

f sin ωt

μ

0
N

Normal load

Coefficient of friction

)(tx

Static
equilibrium

Figure 2.7.2 Frictionally damped spring–mass system under sinusoidal excitation
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Figure 2.7.3 Coulomb friction force fd (t) versus steady state displacement x(t)

Figure 2.7.3 shows the friction force versus the steady state dis-

placement plot. Therefore, the energy dissipated per cycle of oscilla-

tion is

Wnv =
∮

fd(t)dx = 4μNA (2.7.5)

From Equation 2.7.2, the equivalent viscous damping is given by

ceq = 4μN
πωA

(2.7.6)

Using the equivalent viscous damping ceq, the system shown in Fig-

ure 2.7.2 can be approximated as a standard spring–mass–damper sys-

tem shown in Figure 2.7.4.

The application of Equation 2.3.19 yields

A = f0

[(k − mω2)2 + (ceqω)2]
(2.7.7)

Substituting Equation 2.7.6 into Equation 2.7.7,

A = f0

k

⎡
⎢⎢⎢⎣

1 −
(

4μN
πf0

)2

(1 − r2)2

⎤
⎥⎥⎥⎦

0.5

(2.7.8)
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k

m

eqc

)(tx

Static
equilibrium

f sin ωt0

Figure 2.7.4 Spring–mass system with the equivalent viscous damper

where r is the frequency ratio ω/ωn. For the amplitude A to be a real

number, it is required that

f0 >
4μN
π

(2.7.9)

The inequality in Equation 2.7.9 is the condition for the validity of

the equivalent viscous damping approach. From Equation 2.7.8, the

following results are derived:

a. At resonance condition (r = 1 or ω = ωn), the steady state ampli-

tude of vibration is unbounded. In other words, Coulomb fric-

tion damping is unable to bring any change to the response of a

spring–mass system. This is a reflection of the fact that the energy

dissipated by Coulomb friction per cycle is proportional to the

amplitude. Therefore, the Coulomb friction is a weaker form of

damping in comparison with the viscous damping for which the

energy dissipated per cycle is proportional to the square of the

amplitude.

b. At nonresonance condition (r �= 1 or ω �= ωn), the steady state

amplitude of vibration does get reduced due to Coulomb friction,

when compared with the amplitude of an undamped system.
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EXERCISE PROBLEMS

P2.1 Consider the system shown in Figure P2.1a where a = 25 cm,

�1 = 50 cm, and �2 = 30 cm. When the force f (t) is a step function of

magnitude 1 N, the response is as shown in Figure P2.1b. Determine

the mass m, the stiffness k, and the damping constant c.

k

a

1l

c

m

2l

Massless
and
rigid bar

A

)(tf

Figure P2.1a Spring–mass–damper system subjected to step forcing function
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Figure P2.1b Unit step response for system in Figure P2.1a
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P2.2 Consider a spring–mass-damper system (Figure P2.2) with

meq = 100 kg, keq = 10,000 N/m, and ceq = 20 N-sec/m.

eqkeqc

eqm

)(tx
Static equilibrium

1m 2m

Figure P2.2 Spring–mass-damper system

It is required to place a 10 kg mass on the main mass meq such that

the new static equilibrium is reached without any vibration. Develop

a strategy to achieve this goal. You are allowed to use two separate

masses m1 and m2 such that m1 + m2 = 10 kg.

P2.3 Consider the system shown in Figure P2.1a where a = 25 cm,

�1 = 50 cm, and �2 = 30 cm. Here, k = 1,100 N/m and 0.5 kg < m <

2 kg. The force f (t) is a step function.

Find a value of damping constant c such that the steady state is

reached without any overshoot.

P2.4 Consider the system shown in Figure P1.12.

a. First the damper is detached and the mass is excited by a force

f (t) = 20 sin ωtN. Find and plot responses when ω = 0.8ωn, ωn, and

1.5ωn. Assume that the initial conditions are zero. Compare your

results from analysis to those from MATLAB ODE23 or ODE45.

b. Reattach the damper, and the mass is again excited by a force f(t) =
20 sin ωtN. Find and plot responses when ω = 0.8ωn, ωn, and 1.5ωn.

Assume that the initial conditions are zero. Compare your results

from the analysis to those from MATLAB ODE23 or ODE45.

Also, show the phase lags of the responses in your plots.
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P2.5 Consider a rotor on a massless and rigid shaft, which is supported

by ball bearings at the ends (Figure P2.5).

Massless 
and 
rigid  shaft

Rotor with mass = m
and eccentricity = e

2

l

2

l

Bearing Bearing

Figure P2.5 Rotor on massless and rigid shaft

The mass of the rotor is 10 kg and the eccentricity is 0.5 cm. If

the operating speed of the rotor is 4,200 rpm, what should be the

stiffnesses of the bearings such that the amplitude of rotor vibration

does not exceed 0.05 cm?

P2.6 Consider a rotor on a massless and flexible steel shaft, which is

simply supported at the ends (Figure P2.6).

Rotor with mass = m

Simply supported shaft

2

l

2

l

Figure P2.6 Rotor on massless and flexible shaft

The mass of the rotor is 10 kg and the eccentricity is 0.5 cm. The

length and the diameter of the shaft are 50 cm and 5 cm, respectively.

a. Compute the critical speed of the rotor.

b. If the rotor operates at critical speed, how much time will it take

for the maximum bending stress in the shaft to be about 70% of its

yield stress? Assume that the rotor starts from rest.
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c. Assuming that the rotor starts from rest, suggest an angular accel-

eration of the rotor to reach a speed that equals two times the criti-

cal speed. It is desired that the maximum bending stress in the shaft

is below 50% of its yield stress. Verify your result using numerical

integration of differential equation.

d. For part c, plot the force transmitted to each support as a function

of time.

P2.7 An instrument with mass = 13 kg is to be isolated from aircraft

engine vibrations ranging from 18,00 to 2,300 cpm. What should be

the stiffness of an isolator for at least 65% isolation? Assume that the

damping ratio is 0.045.

Assuming that the initial conditions are zero, demonstrate the per-

formance of your isolator for both the extreme frequencies (1,800 and

2,300 cpm) using the MATLAB routine ODE23 or ODE45. For each

frequency, plot displacements of the radio and the support in a single

figure. Then, also verify the analytical expression of the phase of the

steady state response of the instrument.

k

a

1l

c

m

2l

A

yty sin ωt)( 0=

)(tx

Massless 
and 
rigid bar

Figure P2.8 A spring–mass–damper system with sinusoidal base displacement

P2.8 Determine the amplitude and the phase of the steady state

response of the mass m in Figure P2.8.

P2.9 A vehicle with mass meq = 1,050 kg and suspension stiffness

keq = 435,000 N/m is traveling with a velocity V on a sinusoidal
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road surface with amplitude = 0.011 m and a wavelength of 5.3 m

(Figure P2.9).

a. Determine the critical speed of the vehicle.

b. Select an appropriate amount of damping for the suspension

system.

c. With the damping selected in part b, should the vehicle be oper-

ated above or below the critical speed so that the amplitude of the

vehicle is small? Justify your answer.

d. With the damping selected in part b, should the vehicle be oper-

ated above or below the critical speed so that the amplitude of the

vehicle is small relative to the road profile? Justify your answer.

eqk

eqm

V

Road profile

Figure P2.9 A vehicle moving over a rough road

P2.10 The natural frequency and the damping ratio of a vibrometer

are 6 Hz and 0.22 Hz, respectively. What is the range of frequencies

for the measurement error to be below 3%?

Corroborate the validity of your design using MATLAB ODE23

or ODE45 for a signal frequency. Show the signal that your instru-

ment will produce after it has been attached to the vibrating structure.

P2.11 An accelerometer with mass = 0.01 kg and a damping ratio =
0.707 is to be designed. What should be the undamped natural
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frequency of the system so that the measurement error never exceeds

2%? The vibration signal, which is to be measured, can have a fre-

quency as high as 200 Hz.

Corroborate the validity of your design using MATLAB ODE23

or ODE45 for the signal frequency = 80 Hz. Show the signal that your

instrument will produce after it has been attached to the vibrating

structure.

P2.12 The force-deflection curve for a structure is experimentally

obtained (Figure P2.12). What is the equivalent viscous damping if

the frequency of oscillation is 100 Hz?

Force (N)

Deflection (mm)53.0

794

−794

2.0
−0.2

−0.53

Figure P2.12 Force-deflection curve



3

RESPONSES OF AN SDOF

SPRING–MASS–DAMPER

SYSTEM TO PERIODIC AND

ARBITRARY FORCES

In Chapter 2, the response has been calculated when the excitation is

either constant or sinusoidal. Here, a general form of periodic exci-

tation, which repeats itself after a finite period of time, is considered.

The periodic function is expanded in a Fourier series, and it is shown

how the response can be calculated from the responses to many sinu-

soidal excitations. Next, a unit impulse function is described and the

response of the single-degree-of-freedom (SDOF) system to a unit

impulse forcing function is derived. Then, the concept of the convo-

lution integral, which is based on the superposition of responses to

many impulses, is developed to compute the response of an SDOF

system to any arbitrary type of excitation. Last, the Laplace transform

technique is presented. The concepts of transfer function, poles, zeros,

and frequency response function are also introduced. The connection

between the steady-state response to sinusoidal excitation and the fre-

quency response function is shown.

3.1 RESPONSE OF AN SDOF SYSTEM

TO A PERIODIC FORCE

The procedure of a Fourier series expansion of a periodic function is

described first. The concepts of odd and even functions are introduced

next to facilitate the computation of the Fourier coefficients. It is also

shown how can a Fourier series expansion be interpreted and used

138
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T T2 T3−2T −T t

LL

)(tf

0

Figure 3.1.1 A periodic function

for a function with a finite duration. Last, the particular integral of an

SDOF system subjected to a periodic excitation is obtained by com-

puting the response due to each term in the Fourier series expansion

and then using the principle of superposition.

3.1.1 Periodic Function and its Fourier Series Expansion

Consider a periodic function f (t) with the time period T, that is, the

function repeats itself after time T. Therefore,

f (t + nT) = f (t); n = 1, 2, 3, . . . , (3.1.1)

and

f (t − nT) = f (t); n = 1, 2, 3, . . . , (3.1.2)

It should be noted that a periodic function is defined for −∞ ≤ t ≤ ∞
(Figure 3.1.1). Sine and cosine functions are the simplest examples of

periodic functions.

The fundamental frequency ω of a periodic function with the time

period T is defined as follows:

ω = 2π

T
(3.1.3)

The Fourier series expansion of a periodic function f (t) is defined as

follows:

f (t) = a0 +
∞∑

n=1

an cos(nωt) +
∞∑

n=1

bn sin(nωt) (3.1.4)
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where

a0 = 1
T

T∫
0

f (t)dt = 1
T

T/2∫
−T/2

f (t)dt (3.1.5)

an = 2
T

T∫
0

f (t) cos(nωt)dt = 2
T

T/2∫
−T/2

f (t) cos(nωt)dt (3.1.6)

and

bn = 2
T

T∫
0

f (t) sin(nωt)dt = 2
T

T/2∫
−T/2

f (t) sin(nωt)dt (3.1.7)

Derivations of Equations 3.1.5–3.1.7 are based on the following facts:

a. Integrals of cosine and sine functions over the time period T is

zero, that is,

T∫
0

cos(nωt)dt =
T/2∫

−T/2

cos(nωt)dt = 0; n �= 0 (3.1.8)

T∫
0

sin(�ωt)dt =
T/2∫

−T/2

sin(�ωt)dt = 0 (3.1.9)

b. Orthogonality of cos nωt and sin �ωt in the following sense:

T∫
0

cos(nωt) sin(�ωt)dt =
T/2∫

−T/2

cos(nωt) sin(�ωt)dt = 0 (3.1.10)

c. Orthogonality of sin nωt and sin �ωt in the following sense:

T∫
0

sin(nωt) sin(�ωt)dt =
T/2∫

−T/2

sin(nωt) sin(�ωt)dt = 0; n �= �

(3.1.11)
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d. Orthogonality of cos nωt and cos �ωt in the following sense:

T∫
0

cos(nωt) cos(�ωt)dt =
T/2∫

−T/2

cos(nωt) cos(�ωt)dt = 0; n �= �

(3.1.12)

The expression for a0 is derived by integrating both sides of Equation

3.1.4 over a full time period as follows:

T∫
0

f (t)dt =
T∫

0

a0dt +
∞∑

n=1

an

T∫
0

cos(nωt)dt +
∞∑

n=1

bn

T∫
0

sin(nωt)dt

(3.1.13)

Using Equations 3.1.8 and 3.1.9,

T∫
0

f (t)dt = a0T + 0 + 0 (3.1.14)

It is easily seen that Equation 3.1.13 yields Equation 3.1.5.

The expression for a� is derived by multiplying both sides of Equa-

tion 3.1.4 by cos(�ωt) and then integrating over a full time period as

follows:
T∫

0

f (t) cos(�ωt)dt =
T∫

0

a0 cos(�ωt)dt +
∞∑

n=1

an

T∫
0

cos(nωt) cos(�ωt)dt

+
∞∑

n=1

bn

T∫
0

sin(nωt) cos(�ωt)dt (3.1.15)

Using Equations 3.1.8–3.1.12,

T∫
0

f (t) cos(�ωt)dt = 0 + a�

T∫
0

cos2(�ωt)dt + 0

= a�

2

T∫
0

1 + cos(2�ωt)dt = a�

2
T (3.1.16)

It is easily seen that Equation 3.1.16 yields Equation 3.1.6. It should

also be noted that the equation (3.1.4) is multiplied by a� where � can
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be any value from 1 to ∞. The subscript � is chosen to be different

from n, which is a counter for the summation �.

The expression for b� is derived by multiplying both sides of Equa-

tion 3.1.4 by sin(�ωt) and then integrating over a full time period as

follows:

T∫
0

f (t) sin(�ωt)dt =
T∫

0

a0 sin(�ωt)dt +
∞∑

n=1

an

T∫
0

cos(nωt) sin(�ωt)dt

+
∞∑

n=1

bn

T∫
0

sin(nωt) sin(�ωt)dt (3.1.17)

Using Equations 3.1.8–3.1.12,

T∫
0

f (t) sin(�ωt)dt = 0 + 0 + b�

T∫
0

sin2(�ωt)dt

= b�

2

T∫
0

1 − cos(2�ωt)dt = b�

2
T (3.1.18)

It is easily seen that Equation 3.1.18 yields Equation 3.1.7.

3.1.2 Even and Odd Periodic Functions

For an even function ge(t),

ge(t) = ge(−t) (3.1.19)

Because of the property in Equation 3.1.19,

T/2∫
−T/2

ge(t)dt = 2

T/2∫
0

ge(t)dt (3.1.20)

Cosine functions are even functions because cos(nωt) = cos(−nωt).

For an odd function go(t),

go(t) = −go(−t) (3.1.21)
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Even × Even ≡ Even

Even × Odd ≡ Odd

Odd × Even ≡ Odd

Odd × Odd ≡ Even

Figure 3.1.2 Multiplication of odd and even functions

Because of the property in Equation 3.1.21,

T/2∫
−T/2

go(t)dt = 0 (3.1.22)

Sine functions are odd because sin(nωt) = − sin(−nωt). When odd

and even functions are multiplied among each other, the result can

be either odd or even functions (Figure 3.1.2).

Fourier Coefficients for Even Periodic Functions

For an even periodic function, the computational effort needed to

obtain the Fourier coefficients can be significantly reduced. First,

using Equation 3.1.20,

a0 = 1
T

T∫
0

f (t)dt = 1
T

T/2∫
−T/2

f (t)dt = 2
T

T/2∫
0

f (t)dt (3.1.23)

Since cosine is an even function, f (t) cos(nωt) will be an even function

according to the information in Figure 3.1.2. Therefore, using Equa-

tion 3.1.20 again,

an = 2
T

T∫
0

f (t) cos(nωt)dt = 2
T

T/2∫
−T/2

f (t) cos(nωt)dt

= 4
T

T/2∫
0

f (t) cos(nωt)dt (3.1.24)
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Figure 3.1.3 An even periodic function

Since sine is an odd function, f (t) sin(nωt) will be an odd function

according to the information in Figure 3.1.2. Therefore, using Equa-

tion 3.1.22,

bn = 2
T

T∫
0

f (t) sin(nωt)dt = 2
T

T/2∫
−T/2

f (t) sin(nωt)dt = 0 (3.1.25)

Example 3.1.2: Fourier Series Expansion of Triangular Waveform

Consider the even periodic function shown in Figure 3.1.3. Therefore,

bn = 0; n = 1, 2, 3, . . . , (3.1.26)

To evaluate the integrals for a0 and an in Equations 3.1.23 and 3.1.24,

the function f (t) is defined between 0 and T/2 as follows:

f (t) = A
T/2

t = 2A
T

t; 0 ≤ t ≤ T
2

(3.1.27)

Using Equation 3.1.23,

a0 = 2
T

T/2∫
0

2A
T

tdt = 4A
T2

(
T
2

)2 1
2

= A
2

(3.1.28)

Using Equation 3.1.24,

an = 4
T

T/2∫
0

2A
T

t cos(nωt)dt = 8A
T2

[
t

nω
sin(nωt) + 1

(nω)2
cos(nωt)

]∣∣∣∣
T/2

0

(3.1.29)
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or

an = 8A
[

1
2nωT

sin
(

nωT
2

)
+ 1

(nωT)2
cos
(

nωT
2

)
− 1

(nωT)2

]∣∣∣∣
T/2

0

(3.1.30)

Because ωT = 2π (Equation 3.1.3)

an = 8A
[

1
4nπ

sin(nπ) + 1
4π2n2

cos(nπ) − 1
4π2n2

]
(3.1.31)

For odd and even n, cos nπ = −1 and +1, respectively. And sin nπ = 0

for all n. Therefore,

an = − 4A
n2π2

; n = 1, 3, 5, . . . , (3.1.32)

and

an = 0; n = 2, 4, 6, . . . , (3.1.33)

Therefore, the Fourier series expansion is

f (t) = A
2

− 4A
π2

cos ωt − 4A
9π2

cos 3ωt − 4A
25π2

cos 5ωt − · · · (3.1.34)

Fourier Coefficients for Odd Periodic Functions

For an odd periodic function, the computational effort needed to

obtain the Fourier coefficients can also be significantly reduced. First,

using Equation 3.1.22,

a0 = 1
T

T∫
0

f (t)dt = 1
T

T/2∫
−T/2

f (t)dt = 0 (3.1.35)

Since cosine is an even function, f (t) cos(nωt) will be an odd function

according to the information in Figure 3.1.2. Therefore, using Equa-

tion 3.1.22 again,

an = 2
T

T∫
0

f (t) cos(nωt)dt = 2
T

T/2∫
−T/2

f (t) cos(nωt)dt = 0 (3.1.36)



146 Vibration of Mechanical Systems

t

T

T−

2

T

2

T−
f (t)

A

−A

L

L

Figure 3.1.4 Square waveform: An odd periodic function

Since sine is an odd function, f (t) sin(nωt) will be an even function

according to the information in Figure 3.1.2. Therefore, using Equa-

tion 3.1.20,

bn = 2
T

T∫
0

f (t) sin(nωt)dt = 2
T

T/2∫
−T/2

f (t) sin(nωt)dt

= 4
T

T/2∫
0

f (t) sin(nωt)dt (3.1.37)

Example 3.1.3: Fourier Series Expansion of a Square Waveform

Consider the square waveform (Figure 3.1.4), which is an odd periodic

function. Therefore,

a0 = 0 (3.1.38)

and

an = 0; n = 1, 2, 3, . . . , (3.1.39)

To evaluate the integrals for bn in Equation 3.1.37, the function f (t) is

defined between 0 and T/2 as follows:

f (t) = A; 0 ≤ t ≤ T
2

(3.1.40)
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t

 f (t)

0 dt

Figure 3.1.5 A finite duration function

Using Equation 3.1.37,

bn = 4
T

T/2∫
0

A sin(nωt)dt = 4A
T

[
−cos(nωt)

nω

]∣∣∣∣
T/2

0

= 4A
nωT

[
− cos

(
nωT

2

)
+ 1
]

(3.1.41)

Because ωT = 2π (Equation 3.1.3),

bn = 2A
nπ

(1 − cos nπ) (3.1.42)

For odd and even n, cos nπ = −1 and +1, respectively. Therefore,

bn = 4A
nπ

; n = 1, 3, 5, . . . , (3.1.43)

and

bn = 0; n = 2, 4, 6, . . . , (3.1.44)

Therefore, the Fourier series expansion is

f (t) = 4A
π

sin ωt + 4A
3π

sin 3ωt + 4A
5π

sin 5ωt + · · · (3.1.45)

3.1.3 Fourier Series Expansion of a Function with a Finite Duration

Consider a function f (t) of finite duration td (Figure 3.1.5). Then, it

can also be expanded in a Fourier series by treating this function as

one period of a fictitious periodic function g(t) (Figure 3.1.6).
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Figure 3.1.6 Fictitious periodic function corresponding to a finite duration function

The Fourier series expansion of this fictitious periodic function

g(t) can be defined as follows:

g(t) = a0 +
∞∑

n=1

an cos(nωt) +
∞∑

n=1

bn sin(nωt) (3.1.46)

where the fundamental frequency ω is given by

ω = 2π

td
(3.1.47)

However, the Fourier series (Equation 3.1.46) should only be used

for 0 ≤ t ≤ td , as the actual function f (t) is zero for t < 0 and t > td .

Therefore,

f (t) = a0 +
∞∑

n=1

an cos(nωt) +
∞∑

n=1

bn sin(nωt); 0 ≤ t ≤ td (3.1.48)

Example 3.1.3: Fourier Series Expansion of a Triangular Pulse

Consider the triangular pulse f (t) as shown in Figure 3.1.7. The cor-

responding fictitious periodic function g(t) is shown in Figure 3.1.8,

which is identical to the periodic function shown in Figure 3.1.3.

Therefore, from Equation 3.1.34,

f (t) = A
2

− 4A
π2

cos ωt − 4A
9π2

cos 3ωt − 4A
25π2

cos 5ωt − · · · ; 0 ≤ t ≤ td
(3.1.49)

where

ω = 2π

td
(3.1.50)
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  f (t)

dt
0

A

2
dt t

Figure 3.1.7 A triangular pulse

Example 3.1.4: Turbomachinery Blade Excitation

Consider the rotor and the stator of a turbomachine (Figure 3.1.9).

The schematic drawings of the stator and the rotor are shown in

Figure 3.1.10. The stator consists of four equi-spaced nozzles, with

each nozzle having a 45 degrees sector. The rotor is a bladed disk

with a rotational speed of � cps (Hz). When the blade comes in front

of the nozzle, it experiences a constant force p due to fluid flow. The

temporal variation of the force experienced by each blade is periodic

and is shown in Figure 3.1.11.

The force pattern is repeated four times during one full rotation.

As a result, the time period T of the forcing function is

T = 1
4�

sec

And the fundamental frequency

ω = 2π

T
= 8π� rad/sec

The periodic force shown in Figure 3.1.11 is neither odd nor even. To

evaluate the integrals for a0, an, and bn in Equation 3.1.4, the function

t

)(tg

L
L

dtd−t 0

A

FictitiousFictitious

dt2d−2t

Figure 3.1.8 Fictitious periodic function for a triangular pulse
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RotorStator

Shaft

Fluid flow

Fluid flow

Ω

Figure 3.1.9 Fluid flow through a rotor/stator

f (t) is defined as follows:

f (t) =
{

p for 0 ≤ t < 0.5T

0 for 0.5T ≤ t < T
(3.1.51)

Using Equation 3.1.5,

a0 = 1
T

⎡
⎣ T/2∫

0

pdt + 0

⎤
⎦ = p

2
(3.1.52)

Using Equation 3.1.6,

an = 2
T

⎡
⎣ T/2∫

0

p cos(nωt)dt + 0

⎤
⎦= 2p

T

[
sin(nωt)

nω

]∣∣∣∣
T/2

0
= 2p

nωT
sin
(

nωT
2

)

(3.1.53)
Because ωT = 2π ,

an = 0 (3.1.54)

Nozzle# 1

Nozzle# 4

Nozzle# 2

Nozzle# 3

Stator

Disk

BladesRotor

Figure 3.1.10 Descriptions of rotor and stator
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T− T5.0−

Figure 3.1.11 Force experienced by each blade

Next, using Equation 3.1.7,

bn = 2
T

⎡
⎣ T/2∫

0

p sin(nωt)dt + 0

⎤
⎦ = 2p

T

[
−cos(nωt)

nω

]∣∣∣∣
T/2

0

= 2p
nωT

[
− cos

(
nωT

2

)
+ 1
]

(3.1.55)

Because ωT = 2π ,

bn = p
nπ

(1 − cos nπ) (3.1.56)

For odd and even n, cos nπ = −1 and +1, respectively. Therefore,

bn = 2p
nπ

; n = 1, 3, 5, . . . , (3.1.57)

and

bn = 0; n = 2, 4, 6, . . . , (3.1.58)

Therefore, the Fourier series expansion is

f (t) = p
2

+ 2p
π

sin ωt + 2p
3π

sin 3ωt + 2p
5π

sin 5ωt + · · · (3.1.59)

3.1.4 Particular Integral (Steady-State Response with Damping)

Under Periodic Excitation

Consider the spring–mass–damper system subjected to a periodic

force f (t) with the fundamental frequency ω. Using the Fourier series
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expansion, the differential equation of motion can be written as

meqẍ + ceqẋ + keqx = f (t) = a0 +
∞∑

n=1

an cos(nωt) +
∞∑

n=1

bn sin(nωt)

(3.1.60)

First the particular integral will be obtained for each term on the right-

hand side separately.

a. Constant term a0

Let the particular integral due to the constant term be x0.

Then,

meqẍ0 + ceqẋ0 + keqx0 = a0 (3.1.61)

The particular integral in this case will be a constant p, that is,

x0 = p (3.1.62)

Substituting Equation 3.1.62 into Equation 3.1.61,

keq p = a0 (3.1.63)

because ṗ = 0 and p̈ = 0. In other words,

x0 = p = a0

keq
(3.1.64)

b. Term an cos(nωt)

Let the particular integral be xcn(t). Then,

meqẍcn + ceqẋcn + keqxcn = an cos(nωt) (3.1.65)

Using Equation 2.3.25,

xcn(t) = an/keq√
(1 − n2r2)2 + (2ξnr)2

cos(nωt − φn) (3.1.66)

where

φn = tan−1 2ξnr
1 − (nr)2

(3.1.67)



Responses of an SDOF Spring–Mass–Damper System 153

and

r = ω

ωn
(3.1.68)

c. Term bn sin(nωt)

Let the particular integral be xsn(t). Then,

meqẍsn + ceqẋsn + keqxsn = bn sin(nωt) (3.1.69)

Using Equation 2.3.25,

xsn(t) = bn/keq√
(1 − n2r2)2 + (2ξnr)2

sin(nωt − φn) (3.1.70)

where φn and r are given by Equations 3.1.67 and 3.1.68.

Having obtained the steady-state response or the particular inte-

gral due to each term on the right-hand side of Equation 3.1.60, the

complete particular integral xp(t) is obtained by using the principle of

superposition:

xp(t) = x0 +
∞∑

n=1

xcn(t) +
∞∑

n=1

xsn(t) (3.1.71)

or

xp(t) = a0

keq
+

∞∑
n=1

an/keq√
(1 − n2r2)2 + (2ξnr)2

cos(nωt − φn)

+
∞∑

n=1

bn/keq√
(1 − n2r2)2 + (2ξnr)2

sin(nωt − φn) (3.1.72)

where φn and r are given by Equations 3.1.67 and 3.1.68.

It should be noted that xp(t) will be the steady-state response when

ceq > 0.

Example 3.1.5: Steady-State Response of a Turbine Blade

Consider the turbomachinery problem of Example 3.1.3. The turbine

rotates at 60 Hz. The natural frequency of the system is 160 Hz. Find

the maximum steady-state amplitude in terms of p/keq assuming that

the damping ratio ξ is 0.01.
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Using Equations 3.1.59 and 3.1.72,

xp(t)
p/keq

= 1
2

+
∞∑

n=1,3,...

2/(nπ)√
(1 − n2r2)2 + (2ξnr)2

sin(nωt − φn) (3.1.73)

where

r = ω

ωn
= 60

160
= 3

8
and ξ= 0.01

n = 1 :

2/n√
(1 − n2r2)2 + (2ξnr)2

= 2.3272; φ1 = 0.0087 rad

n = 3 :

2/n√
(1 − n2r2)2 + (2ξnr)2

= 2.5008; φ3 = 3.0571 rad

n = 5 :

2/n√
(1 − n2r2)2 + (2ξnr)2

= 0.1590; φ5 = 3.1267 rad

n = 7 :

2/n√
(1 − n2r2)2 + (2ξnr)2

= 0.0485; φ7 = 3.1327 rad

Neglecting n = 7 and higher terms,

xp(t)
p/keq

= 0.5 + 2.3272
π

sin(ωt − φ1) + 2.5008
π

sin(3ωt − φ3)

+ 0.1590
π

sin(5ωt − φ5)

The plot of xp(t)/(p/keq) is shown in Figure 3.1.12. The maximum

value of the steady-state response xp(t)/(p/keq) is 2.3.

3.2 RESPONSE TO AN EXCITATION WITH

ARBITRARY NATURE

The response to an arbitrary type of excitation is obtained via an

impulsive force, which has a large magnitude and a small duration.
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Figure 3.1.12 Steady-state response with n = 5 in Equation 3.1.73

The time integral f̂ of an impulsive force f (t) is finite, and is defined

as the impulse of the force:

f̂ =
∫

f (t)dt (3.2.1)

In other words, the impulse of a force f̂ is the area under the force–

time plot. For a unit impulse, f̂ = 1. Drawing an analogy with this

impulsive force, a mathematical impulse unit function is defined as

follows.

3.2.1 Unit Impulse Function δ(t − a)

Consider a constant function of the magnitude 1/ε of duration ε

(Figure 3.2.1a). Therefore,

f̂ =
∫

f (t)dt = 1
ε
ε = 1 (3.2.2)

The function shown in Figure 3.2.1a has a unit impulse. Having ε → 0,

the unit impulse function δ(t − a) is obtained (Figure 3.2.1b) with the

following properties:
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Figure 3.2.1 Unit impulse function

1. δ(t − a) = 0 when t �= a (3.2.3)

2. δ(t − a) = ∞ when t = a, but with the following constraint
∞∫

0

δ(t − a)dt = 1 (3.2.4)

3. For any function g(t),

∞∫
0

g(t)δ(t − a)dt = g(a) (3.2.5)

It should be noted that the unit impulse function is not necessarily a

force function. It could be defined for any variable, such as displace-

ment and velocity.

3.2.2 Unit Impulse Response of an SDOF System

with Zero Initial Conditions

Consider a spring–mass–damper system subjected to the unit impulse

force δ(t) (Figure 3.2.2). The differential equation of motion is

meqẍ + ceqẋ + keqx = δ(t) (3.2.6)

This unit impulse force is applied at t = 0. Since the duration of this

impulse function is zero, symbols 0− and 0+ are introduced to denote

instants just before and after the application of the force, respectively.
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Figure 3.2.2 Spring–mass–damper subjected to unit impulse force

Zero initial conditions will then be represented as

x(0−) = 0 and ẋ(0−) = 0 (3.2.7)

Due to the impulsive force,

change in momentum = m ẋ(0+) − mẋ(0−) = mẋ(0+) (3.2.8)

Since the change in the momentum equals the magnitude of the

impulse,

mẋ(0+) = 1 (3.2.9)

or,

ẋ(0+) = 1
m

(3.2.10)

In other words, the velocity has changed instantaneously from 0

to 1/m. It can be shown that the displacement remains unchanged,

that is,

x(0+) = x(0−) = 0 (3.2.11)



158 Vibration of Mechanical Systems

Note that there is no force for t ≥ 0+. Hence, the response due to

the unit impulse force can be obtained by solving the following free

vibration problem:

meqẍ + ceqẋ + keqx = 0; x(0+) = 0 and ẋ(0+) = 1
m

(3.2.12)

Case I: Undamped and Underdamped System (0 ≤ ξ < 1)

From Equation 1.5.19, the free vibration of the underdamped system

is given by

x(t) = e−ξωnt(A1 cos ωdt + B1 sin ωdt) (3.2.13)

where

A1 = x(0+) = 0 (3.2.14)

B1 = ẋ(0+) + ξωnx(0+)
ωd

= 1
mωd

(3.2.15)

Substituting Equations 3.2.14 and 3.2.15 into Equation 3.2.13,

x(t) = 1
mωd

e−ξωnt sin ωdt (3.2.16)

The unit impulse response (the response due to the unit impulse force)

of an underdamped system is given by Equation 3.2.16 and will be

represented by a new symbol g(t), that is,

g(t) = 1
mωd

e−ξωnt sin ωdt (3.2.17)

For an undamped system (ξ = 0),

g(t) = 1
mωn

sin ωnt (3.2.18)

Case II: Critically Damped (ξ = 1 or ceq = cc)

From Equation 1.5.38, the free vibration of the critically damped sys-

tem is given by

x(t) = x(0+)e−ωnt + [ẋ(0+)+ ωnx
(
0+)]te−ωnt = 1

m
te−ωnt (3.2.19)
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The unit impulse response (the response due to the unit impulse force)

of a critically damped system is given by Equation 3.2.19 and will be

represented by a new symbol g(t), that is,

g(t) = 1
m

te−ωnt (3.2.20)

Case III: Overdamped (ξ >1 or ceq >cc)

From Equation 1.5.41, the free vibration of the overdamped system is

given by

x(t) = A1es1t + B1es2t (3.2.21)

where

s1 = −ξωn + ωn

√
ξ 2 − 1 < 0 (3.2.22)

s2 = −ξωn − ωn

√
ξ 2 − 1 < 0 (3.2.23)

Using Equations 1.5.45 and 1.5.46,

A1 = s2x(0+) − ẋ(0+)
s2 − s1

= − 1
m(s2 − s1)

= 1

2mωn

√
ξ 2 − 1

(3.2.24)

B1 = −s1x(0+) + ẋ(0+)
s2 − s1

= 1
m(s2 − s1)

= − 1

2mωn

√
ξ 2 − 1

(3.2.25)

The unit impulse response (the response due to the unit impulse force)

of an overdamped system is given by Equation 3.2.21 and will be rep-

resented by a new symbol g(t), that is,

g(t) = 1

2mωn

√
ξ 2 − 1

(es1t − es2t) (3.2.26)

Nondimensional unit impulse responses, g(t)mωn, are plotted in

Figure 3.2.3 for all cases of damping.
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Figure 3.2.3 Unit impulse response for undamped, underdamped, critically damped,
and overdamped systems

3.2.3 Convolution Integral: Response to an Arbitrary

Excitation with Zero Initial Conditions

Consider a forcing function f (t) of an arbitrary nature (Figure 3.2.4).

Let us determine the response at t = t0. First, the following points

should be noted:

a. The entire forcing function before t = t0 will have an influence on

the response at t = t0.

Δ

t

)(t f

a
0t−0t

L L L

0
Δτ τ τ

τ

Figure 3.2.4 An arbitrary forcing function
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b. The forcing function after t = t0 will not have any influence on the

response at t = t0.

The forcing function before the instant t = t0 is divided into many

strips of small time width �τ . Each strip can be viewed as an impulse

function as shown in Figure 3.2.4. Let us consider one such impulse

function at t = τ . The magnitude of the impulse is

f̂ τ = f (τ )�τ (3.2.27)

The contribution of this impulse to the response at t = t0 is

xτ (t0) = g(t0 − τ )f̂ τ = g(t0 − τ )f (τ )�τ (3.2.28)

where g(.) is the unit impulse response. The response at t = t0 is then

found by summing up the contributions from all the impulses (strips

of width �τ ):

x(t0) =
τ=t0−�τ∑

τ=0

xτ (t0) =
τ=t0−�τ∑

τ=0

g(t0 − τ )f (τ )�τ (3.2.29)

When �τ → 0, the summation in Equation 3.2.29 becomes the inte-

gral as follows:

x(t0) =
τ=t0∫

τ=0

g(t0 − τ )f (τ )dτ (3.2.30)

Since t0 is arbitrarily chosen, the response at any time t is given by

x(t) =
τ=t∫

τ=0

g(t − τ )f (τ )dτ (3.2.31)

This is the convolution integral and yields the response for zero initial

conditions. This represents the complete solution, that is, it contains

both the homogeneous part and the particular integral.

Example 3.2.1: Step Response of an Undamped System

Consider the undamped spring–mass system subjected to a step forc-

ing function (Figure 3.2.5). Assume that the initial conditions are
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Figure 3.2.5 Undamped SDOF system subjected to step forcing function

zeros. Then,

f (t) = f0 for t > 0 (3.2.32)

Using Equations 3.2.18, 3.2.31, and 3.2.32,

x(t) =
τ=t∫

τ=0

1
mωn

sin(ωn(t − τ ))f0dτ = f0

mωn

[
cos(ωn(t − τ ))

ωn

]τ=t

τ=0

(3.2.33)

After some simple algebra,

x(t) = f0

mω2
n

[1 − cos(ωnt)] = f0

k
[1 − cos(ωnt)] ; t ≥ 0 (3.2.34)

Note that Equation 3.2.34 is identical to Equation 2.1.21 with ξ = 0.

Example 3.2.2: Underdamped SDOF System Subjected to a Rectan-

gular Pulse

Consider an underdamped spring–mass–damper system in which the

mass is subjected to the force f (t) as shown in Figure 3.2.6. Assuming

that all initial conditions are zero, find the response using the convo-

lution integral.

The differential equation of motion is

meqẍ + ceqẋ + keqx(t) = f (t); x(0) = 0, ẋ(0) = 0 (3.2.35)
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Figure 3.2.6 Underdamped SDOF system and rectangular pulse

Case I: 0 ≤ t ≤ a

x(t) =
τ=t∫

τ=0

g(t − τ )f (τ )dτ =
τ=t∫

τ=0

g(t − τ ) 0dτ = 0 (3.2.36)

Case II: a ≤ t ≤ b

x(t) =
τ=t∫

τ=0

g(t − τ )f (τ )dτ =
τ=a∫

τ=0

g(t − τ ) 0dτ +
τ=t∫

τ=a

g(t − τ ) Pdτ

=
τ=t∫

τ=a

g(t − τ ) Pdτ (3.2.37)

Therefore,

x(t) =
τ=t∫

τ=a

g(t − τ ) Pdτ = P
meqωd

τ=t∫
τ=a

e−ξωn(t−τ ) sin(ωd(t − τ ))dτ

(3.2.38)

Substituting ν = t − τ into Equation 3.2.38,

x(t) = P
meqωd

ν=t−a∫
ν=0

e−ξωnν sin(ωdν)dν (3.2.39)
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or

x(t) = P
meqωd

[
e−ξωnν

ξ 2ω2
n + ω2

d

(−ξωn sin ωdν − ωd cos ωdν)

]∣∣∣∣∣
ν=t−a

ν=0

(3.2.40)

or

x(t) = − P
meqωd

[
e−ξωn(t−a)

ω2
n

(ξωn sin ωd(t − a) + ωd cos ωd(t − a))

]

+ P
meqω2

n
(3.2.41)

Simplifying Equation 3.2.41,

x(t) = P
meqω2

n

[
1 − ωn

ωd
e−ξωn(t−a) sin(ωd(t − a) + φ)

]
(3.2.42)

where cos φ = ξ

Case III: t ≥ b

x(t) =
τ=t∫

τ=0

g(t − τ )f (τ )dτ

=
τ=a∫

τ=0

g(t − τ )0dτ +
τ=b∫

τ=a

g(t − τ ) Pdτ +
τ=t∫

τ=b

g(t − τ ) 0dτ (3.2.43)

Therefore,

x(t) =
τ=b∫

τ=a

g(t − τ ) Pdτ = P
meqωd

τ=b∫
τ=a

e−ξωn(t−τ ) sin(ωd(t − τ ))dτ

(3.2.44)

or

x(t) = P
meqωd

[
e−ξωnν

ξ 2ω2
n + ω2

d

(−ξωn sin ωdν − ωd cos ωdν)

]∣∣∣∣∣
ν=t−a

ν=t−b

(3.2.45)
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Simplifying Equation 3.2.45,

x(t) = P
meqωdωn

[
e−ξωn(t−b) sin(ωd(t − b) + φ)

− e−ξωn(t−a) sin(ωd(t − a) + φ)
]

(3.2.46)

where cos φ = ξ .

3.2.4 Convolution Integral: Response to an Arbitrary Excitation

with Nonzero Initial Conditions

Consider again the same equivalent SDOF system considered in Sec-

tion 3.2.3, that is,

meqẍ + ceqẋ + keqx = f (t) (3.2.47)

Assume that x(0) and/or ẋ(0) are not zero. In this case, the following

two problems are separately solved:

1. Forcing function with zero initial conditions

meqẍ1 + ceqẋ1 + keqx1 = f (t); x1(0) = 0 and ẋ1(0) = 0

(3.2.48)

This problem has already been solved in Section 3.2.3. Therefore,

x1(t) =
τ=t∫

τ=0

g(t − τ )f (τ )dτ (3.2.49)

2. Nonzero initial conditions without any forcing function

meqẍ2 + ceqẋ2 + keqx2(t) = 0; x2(0) = x(0) and ẋ2(0) = ẋ(0)

(3.2.50)

The problem in Equation 3.2.50 represents the free vibration of a

damped or undamped SDOF system. As seen in Chapter 2, the solu-

tion to Equation 3.2.50 depends on the damping values as follows.
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Case I: Undamped and Underdamped (0 ≤ ξ <1 or 0 ≤ ceq <cc)

x2(t) = e−ξωnt(A1 cos ωdt + B1 sin ωdt) (3.2.51)

where

A1 = x(0) (3.2.52)

and

B1 = ẋ(0) + ξωnx(0)
ωd

(3.2.53)

Case II: Critically Damped (ξ = 1 or ceq = cc)

x2(t) = x(0)e−ωnt + [ẋ(0) + ωnx(0)]te−ωnt (3.2.54)

Case III: Overdamped (ξ > 1 or ceq > cc)

x2(t) = A1es1t + B1es2t (3.2.55)

where

s1 = −ξωn + ωn

√
ξ 2 − 1 < 0 (3.2.56)

s2 = −ξωn − ωn

√
ξ 2 − 1 < 0 (3.2.57)

A1 = s2x(0) − ẋ(0)
s2 − s1

(3.2.58)

and

B1 = −s1x(0) + ẋ(0)
s2 − s1

(3.2.59)

Last, the solution to Equation 3.2.47 with an arbitrary forcing function

and nonzero initial conditions is

x(t) = x1(t) + x2(t) (3.2.60)
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Figure 3.2.7 Vehicle moving over a step bump

where x1(t) is given by Equation 3.2.49 and x2(t) is given by Equations

3.2.51, 3.2.54, and 3.2.55 for 0 ≤ ξ < 1, ξ = 1, and ξ > 1, respectively.

It should also be remembered that the expression of the unit impulse

response g(t), in the solution to Equation 3.2.49 for x1(t) is given by

Equations 3.2.17, 3.2.20, and 3.2.26 for 0 ≤ ξ < 1, ξ = 1, and ξ > 1,

respectively.

Example 3.2.3: A Vehicle Past a Step Bump

The differential equation of motion (Figure 3.2.7) is

meqẍ + keqx = f (t) (3.2.61)

where

f (t) = keq y(t) (3.2.62)

Using Equations 3.2.60, 3.2.49, and 3.2.51–3.2.53, the response is

x(t) = x1(t) + x2(t) (3.2.63)

where

x1(t) =
τ=t∫

τ=0

g(t − τ )f (τ )dτ (3.2.64)
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and

x2(t) = x(0) cos ωnt (3.2.65)

Here,

g(t) = 1
meqωn

sin ωnt (3.2.66)

From Equations 3.2.62 and 3.2.64,

x1(t) = 1
meqωn

τ=t∫
τ=0

sin(ωn(t − τ ))keq y(τ )dτ

= 1
meqωn

τ=t∫
τ=0

sin(ωn(t − τ ))keq y0dτ (3.2.67)

Evaluating the integral in Equation 3.2.67,

x1(t) = y0(1 − cos ωnt) (3.2.68)

Last, from Equations 3.2.63, 3.2.65, and 3.2.68,

x(t) = y0(1 − cos ωnt) + x(0) cos ωnt (3.2.69)

3.3 LAPLACE TRANSFORMATION

Consider a function f (t)us(t) in time-domain where us(t) is the unit

step function (Figure 3.3.1). In other words,

f (t)us(t) =
{

f (t) for t ≥ 0

0 for t < 0
(3.3.1)

The Laplace transform of f (t)us(t) is defined as

f (s) = L( f (t)us(t)) =
∞∫

0

f (t)e−stdt (3.3.2)
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1

t

)(tus

0

Figure 3.3.1 Unit step function

And f (t)us(t) is defined as the inverse Laplace transformation of f (s),

that is,

L−1( f (s)) = f (t)us(t) (3.3.3)

3.3.1 Properties of Laplace Transformation

a. Linearity

L(α f1(t) + β f2(t)) = αL( f1(t)) + βL( f2(t)) (3.3.4)

where α and β are any real or complex numbers.

b. Derivatives

L
(

d f
dt

)
= sL( f (t)) − f (0) (3.3.5)

L
(

d2f
dt2

)
= s2L( f (t)) − sf (0) − d f

dt
(0) (3.3.6)

c. Integrals

L

⎛
⎝ t∫

0

f (τ )dτ

⎞
⎠ = 1

s
L( f (t)) (3.3.7)

d. Shifting in time-domain

L( f (t − a)us(t − a)) = e−asL( f (t)) (3.3.8)
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e. Shifting in s-domain

L(eαtf (t)us(t)) = f (s − α) (3.3.9)

f. Final value theorem

lim
t→∞ f (t) = lim

s→0
sf (s) (3.3.10)

provided sf (s) is analytic on the imaginary axis and in the right

half of the complex s-plane.

g. Convolution integral

L

⎛
⎝ t∫

0

f1(t − τ )f2(τ )dτ

⎞
⎠ = L( f1(t)).L( f2(t)) = f1(s)f2(s) (3.3.11)

Therefore, the convolution integral in time-domain is equivalent to a

simple multiplication in s-domain.

3.3.2 Response of an SDOF System via Laplace Transformation

The differential equation of motion for the system shown in Fig-

ure 2.1.1 is

meqẍ + ceqẋ + keqx = f (t) (3.3.12)

where the nature of forcing function f (t) is arbitrary.

Taking Laplace transformation on both sides,

L(meqẍ + ceqẋ + keqx) = L( f (t)) (3.3.13)

Using the linearity property in Equation 3.3.4,

meqL(ẍ(t)) + ceqL(ẋ(t)) + keqL(x(t)) = L( f (t))

Using properties in Equations 3.3.5 and 3.3.6,

meq[s2x(s) − sx(0) − ẋ(0)] + ceq[sx(s) − x(0)] + keqx(s) = f (s)

(3.3.14)

or(
meqs2 + ceqs + keq

)
x(s) − meqẋ(0) − (meqs + ceq)x(0) = f (s) (3.3.15)
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Solving the algebraic Equation 3.3.15,

x(s) = f (s)
meqs2 + ceqs + keq

+ (meqs + ceq)x(0)
meqs2 + ceqs + keq

+ meqẋ(0)
meqs2 + ceqs + keq

(3.3.16)

or,

x(s) = f (s)

meq

[
s2 + ceq

meq
s + keq

meq

] +
(
s + ceq

meq

)
x(0)[

s2 + ceq

meq
s + keq

meq

] + ẋ(0)[
s2 + ceq

meq
s + keq

meq

]
(3.3.17)

Using Equations 1.4.46 and 1.5.12,

x(s) = f (s)
meq

(
s2 +2ξωns+ω2

n

) + (s+2ξωn)x(0)(
s2 +2ξωns+ω2

n

) + ẋ(0)(
s2 +2ξωns+ω2

n

)
(3.3.18)

Last, the response x(t) is obtained by taking the inverse Laplace trans-

formation of x(s).

Example 3.3.1: Rectangular Pulse as the Force

Consider an underdamped SDOF system subjected to the force shown

in Figure 3.3.2. To determine the Laplace transform of the forcing

function f(s), via the table in Appendix C, the function f (t) is repre-

sented as a difference between the two forcing functions f1(t) and f2(t)

shown in Figure 3.3.3, that is,

f (t) = f1(t) − f2(t) (3.3.19)

Using the property in Equation 3.3.4,

f (s) = f1(s) − f2(s) (3.3.20)

From the table in Appendix C,

L(us(t)) = 1
s

(3.3.21)



172 Vibration of Mechanical Systems
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Figure 3.3.2 Rectangular pulse as a forcing function for SDOF System

Therefore, using the property in Equation 3.3.8,

L( f1(t)) = L(Pus(t − a)) = P
s

e−as (3.3.22)

and

L( f2(t)) = L(Pus(t − b)) = P
s

e−bs (3.3.23)

Therefore, from Equation 3.3.20,

f (s) = P
s

(e−as − e−bs) (3.3.24)

With zero initial conditions, Equation 3.3.18 yields

x(s) = Pe−as

meqs
(
s2 + 2ξωns + ω2

n

) − Pe−bs

meqs
(
s2 + 2ξωns + ω2

n

) (3.3.25)

From the table in Appendix C,

L−1

[
ω2

n

s
(
s2 + 2ξωns + ω2

n

)
]

=
[

1 − ωn

ωd
e−ξωnt sin(ωdt + φ)

]
us(t)

(3.3.26)

t

)(1 tf

P

a0 t

)(2 tf

P

b0

_

Figure 3.3.3 Rectangular pulse as a difference between two delayed step functions
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where φ = cos−1 ξ . Using the property in Equation 3.3.8 and the

result in Equation 3.3.26, the inverse Laplace transformation of Equa-

tion 3.3.25 yields

x(t) =
[

1− ωn

ωd
e−ξωn(t−a) sin(ωd(t −a) + φ)

]
P

meqω2
n

us(t −a)

−
[

1− ωn

ωd
e−ξωn(t−b) sin(ωd(t −b)+φ)

]
P

meqω2
n

us(t −b) (3.3.27)

3.3.3 Transfer Function and Frequency Response Function

A general second-order differential equation can be written as

ẍ + a1 ẋ + a0x(t) = b2ü + b1u̇ + b0u(t) (3.3.28)

where x(t) and u(t) are defined as the output and the input of the

system, respectively. Taking Laplace transform of Equation 3.3.28,

s2x(s) − sx(0) − ẋ(0) + a1(sx(s) − x(0)) + a0x(s)

= s2u(s) − su(0) − u̇(0) + b1(su(s) − u(0)) + b0u(s) (3.3.29)

Setting all initial conditions (x(0), ẋ(0), u(0), and u̇(0)) to be zero,

Equation 3.3.29 yields

s2x(s) + a1sx(s) + a0x(s) = b2s2u(s) + b1su(s) + b0u(s) (3.3.30)

The transfer function G(s) is then defined as

G(s) = x(s)
u(s)

= b2s2 + b1s + b0

s2 + a1s + a0
(3.3.31)
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G(s)
u(s) x(s)

Figure 3.3.4 Block diagram

Equation 3.3.11 is represented by a block diagram, shown in Fig-

ure 3.3.4, where

x(s) = G(s)u(s) (3.3.32)

Example 3.3.2: Direct Excitation Problem

For the direct excitation problem, the governing differential equation

is given by Equation 3.3.12. Comparing Equations 3.3.12 and 3.3.28,

u(t) = f (t) (3.3.33)

b0 = 1
meq

, b1 = 0, b2 = 0 (3.3.34)

a0 = keq

meq
, a1 = ceq

meq
(3.3.35)

The transfer function is given by

G(s) = x(s)
u(s)

= b0

s2 + a1s + a0
(3.3.36)

Example 3.3.3: Base Excitation Problem

For the base excitation problem, governing differential equation is

Equation 2.5.3. Comparing Equations 2.5.3 and 3.3.28,

u(t) = y(t) (3.3.37)

b2 = 0, b1 = ceq

meq
, b0 = keq

meq
(3.3.38)

a0 = keq

meq
, a1 = ceq

meq
(3.3.39)
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The transfer function is given by

G(s) = x(s)
u(s)

= b1s + b0

s2 + a1s + a0
(3.3.40)

Significance of Transfer Function

Let u(t) = δ(t), the unit impulse function. In this case, u(s) = 1 and

Equation 3.3.32 yields x(s) = G(s), where x(s) is the Laplace trans-

form of the response to the unit impulse input under zero initial con-

ditions, known as the unit impulse response. In other words, the trans-

fer function is the Laplace transform of the unit impulse response of

the system. Taking the inverse Laplace transform of Equation 3.3.32,

x(t) =
t∫

0

g(t − τ )u(τ )dτ (3.3.41)

Equation 3.3.41 is the same convolution integral that has been derived

in Section 3.2.3.

Poles and Zeros of Transfer Function

A transfer function G(s) can be written as a ratio of two polynomials

N(s) and D(s):

G(s) = N(s)
D(s)

(3.3.42)

Poles are defined as the roots of the denominator polynomial equa-

tion D(s) = 0, whereas zeros are defined as the roots of the numerator

polynomial equation N(s) = 0 In general, D(s) = 0 is also the charac-

teristic equation. For example, poles are the roots of s2 + a1s + a0 = 0

for both direct force and base excitation transfer functions (Equa-

tions 3.3.36 and 3.3.40). They are the same as the characteristic roots

defined in Chapter 1. There is no finite zero for the direct force excita-

tion transfer function (Equation 3.3.36). However, there is a real zero

at −b0/b1 for the base excitation transfer function (Equation 3.3.40).

The transfer function is called stable when all poles are located in

the left half of the complex s-plane (Figure 1.6.1).
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Frequency Response Function

The frequency response function G( jω) is obtained by substituting

s = jω into the transfer function G(s), where ω is the frequency. The

frequency response function for the transfer function in Equation

3.3.40 is given by

G( jω) = b1 jω + b0

( jω)2 + a1 jω + a0
= b0 + jb1ω

(a0 − ω2) + ja1ω
(3.3.43)

For a specified frequency ω, G( jω) is a complex number, for which

the magnitude and the phase (or angle) can be expressed as

∣∣G( jω)
∣∣ =

√
b2

0 + b2
1ω

2√
(a0 − ω2)2 + (a1ω)2

(3.3.44)

∠G( jω) = tan−1 b1ω

b0
− tan−1 a1ω

(a0 − ω2)
(3.3.45)

When the magnitude in decibels, dB (20 log10

∣∣G( jω)
∣∣) and the phase

are plotted as a function of the frequency ω, the resulting diagrams are

known as Bode plots. The MATLAB routine “bode” can be readily

used to make Bode plots.

For a stable G(s), the magnitude and the phase of the frequency

response function have the following physical significance:

a. The magnitude
∣∣G( jω)

∣∣ is the ratio of the amplitudes of the steady-

state output and the sinusoidal input with frequency ω.

b. The angle ∠G( jω) is the phase difference between the steady-state

sinusoidal output and the sinusoidal input with frequency ω.

Example 3.3.4: Frequency Response Function for Direct Excitation

Problem

The frequency response function for the direct force transfer function

(Equation 3.3.36) is as follows:

G( jω) = b0

( jω)2 + ja1ω + a0
(3.3.46)



Responses of an SDOF Spring–Mass–Damper System 177

For a linear differential equation with characteristic roots in the left

half of the complex plane, the steady-state response x(t) is sinusoidal

when the input u(t) is sinusoidal. Let

u(t) = u0 sin ωt (3.3.47)

Then the steady-state response x(t) will be expressed as

x(t) = A sin(ωt − φ) (3.3.48)

where φ is the phase lag between the steady-state response x(t) and

the input u(t). The magnitude and the phase of the complex number

G( jω) are related to the steady-state amplitude and the phase as fol-

lows:

∣∣G( jω)
∣∣ = A

u0
(3.3.49)

and

∠G( jω) = −φ (3.3.50)

For the direct force excitation problem, substitution of the parameters

in Equations 3.3.34 and 3.3.35 yields

G( jω) = 1(
keq − meqω2

)+ jceqω
(3.3.51)

From Equation 3.3.49,

A
u0

= ∣∣G( jω)
∣∣ = 1√(

keq − meqω2
)2 + (ceqω

)2 (3.3.52)

From Equation 3.3.50,

φ = −∠G( jω) = tan−1 ceqω

keq − meqω2
(3.3.53)

Note that Equations 3.3.52 and 3.3.53 are same as Equations 2.3.19

and 2.3.20.
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Figure 3.3.5 Bode plot for direct excitation problem

Example 3.3.5: Bode Plot via MATLAB

Consider the Example 3.3.2 for which meq = 1 kg, keq = 2, 500 N/m,

and ceq = 25 N-sec/meter. Construct Bode plots for this system.

Using Equation 3.3.36, the transfer function of the system is

G(s) = 1
s2 + 25s + 2, 500

(3.3.54)

The Bode plots are shown in Figure 3.3.5. The MATLAB program is

given in Program 3.3.1.

MATLAB Program 3.3.1: Bode Plots

num=1;
den=[1 25 2500];

sysG=tf(num,den);
bode(sysG)

grid
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EXERCISE PROBLEMS

P3.1 Find the Fourier series expansions of the periodic functions

shown in Figures P3.1a–c.

t

)(tf

P

TT− T20

Half sine wave

Figure P3.1a Periodic function with half sine waves

P

−P

T

2

T

2

T−
T− t

)(tf

0

−P

Figure P3.1b Periodic function with triangular waves

tT T2T−−2T

P

T3.0

)(tf

0

Figure P3.1c A periodic function with ramps

P3.2 Consider a spring–mass–damper system with mass = 1.2 kg and

damping ratio = 0.05, which is subjected to the periodic force shown

in Figures P3.1a–c. Let the natural frequency of the system be π/T.
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a. Determine the steady-state response for each forcing function.

b. Verify your analytical results by numerical integration of the dif-

ferential equations.

P3.3 In Example 3.1.4, the second nozzle is inadvertently closed. Find

the Fourier coefficients of the force experienced by each blade. Also,

find the maximum steady-state amplitude using the natural frequency

and the damping ratio provided in Example 3.1.5.

P3.4 A turbine blade in a rotor of a gas turbine experiences the

force (Table P3.4) during each rotation. An SDOF model of the tur-

bine blade is described in Figure P3.4a where m = 1 kg, k = 80,000

N/m, and c = 3 N-sec/m. The clearance is 0.0002 m. The force f (t) is

described by data in Table P3.4, where the locations of the pressure

measurements are shown in P3.4b.

Table P3.4 Force (N) as a function of angular position

Locations 1 through 10
7.1990 6.7002 6.5711 6.8254 6.9662 7.9576 5.5987 5.1906 7.2930 9.3493
Locations 11 through 20
9.6712 6.3222 5.8015 9.3643 6.1894 8.2292 9.8344 8.3247 9.3519 5.0496
Locations 21 through 30
5.6850 9.0938 7.1508 9.4516 8.6745 8.4366 6.7306 5.8302 5.7781 5.9556
Locations 31 through 40
7.1123 9.2799 7.4512 9.0797 7.3038 7.2868 7.2534 7.0611 9.5080 5.0279
Locations 41 through 50
6.4870 5.2458 8.4659 8.2505 9.9149 7.7634 7.0004 5.9939 8.1260 8.6668
Locations 51 through 60
6.8794 5.0494 7.0993 8.7683 8.9694 9.5998 9.2236 6.8388 8.1040 8.6564
Locations 61 through 70
5.9695 9.5241 7.8460 8.1589 6.1721 7.7439 9.6579 6.6760 8.2777 6.9595
Locations 71 through 80
8.1366 8.4954 6.9859 7.0681 8.2761 9.1879 6.8580 7.1263 7.9733 7.8287
Locations 81 through 90
8.5827 7.5566 8.8820 7.4467 5.9295 8.5032 9.9135 9.0332 8.5178 7.4248
Locations 91 through 99
5.5731 8.3243 6.8269 5.7002 7.8339 9.1150 8.3697 9.9972 9.8082
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Figure P3.4a Model of a turbine blade
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Figure P3.4b Locations of force measurements
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Figure P3.4c Angular velocity profile

The gas turbine is stationary. You are in charge of starting the

engine and operating the gas turbine at a steady rotational speed

equal to 60 Hz. Using the velocity profile (Figure P3.4c), determine

the smallest angular acceleration of the turbine so that the blade never

hits the casing.



182 Vibration of Mechanical Systems

At the steady speed of 60 Hz, compute the Fourier coefficients

and the steady-state response analytically. Compare your steady-state

response to that from ODE23 or ODE45.

P3.5 Consider an SDOF spring–mass–damper system subjected to the

step forcing function (Figures 2.1.1 and 2.1.2).

Using the convolution integral, derive Equations 2.1.21, 2.1.28,

and 2.1.38 for underdamped, critically damped, and overdamped sys-

tem, respectively.

P.3.6 Using the convolution integral, derive the expression for the

response of an undamped (c = 0) spring–mass system subjected to

the forcing function f(t) shown in Figure P3.6. Assume that all initial

conditions are zero.

m

x(t)

f (t)

k

c 0 a

P

Qf(t )

t

Figure P3.6 Spring–mass system subjected to staircase function with two steps

P3.7 Consider the cantilever of the atomic force microscope (Bin-

ning and Quate, 1986) with length =100 μm, thickness = 0.8 μm, and

width = 20 μm. The material of the cantilever is silicon nitride having

E = 310 × 109Pa and density = 3.29 gm/cc. A force f(t) is applied at

the tip of the cantilever.

The force f(t) is as shown in Figure P3.7 for which P = 1 μN, Q =
0.5 μN, a = 1 sec, b = 2 sec, d = 3 sec, and g = 5 sec.

a. On the basis of an equivalent SDOF model, find the unit impulse

response function for zero initial conditions. Assume the damping

ratio = 0.001.
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Figure P3.7 Forcing function for atomic force microscope problem

b. Using the convolution integral, determine x(t) for t > 0. Assume

that x(0) = 0.5 μm, and dx/dt = 0.

Using MATLAB, plot x(t) versus t.

P3.8 The base displacement y(t) in Figure P3.8a is described in

Figure P3.8b. Using the convolution integral, determine the response

x(t).

eqm

eqk

)(tx

)(ty

Static equilibrium
0)0( ≠x

0

(a) (b)

)0( =x

t

)(ty

a b

0y

Figure P3.8 (a) Base excitation problem (b) Specified base displacement

P3.9 Consider an SDOF spring–mass–damper system subjected to the

step forcing function (Figures 2.1.1 and 2.1.2).

Using the Laplace transformation technique, derive Equations

2.1.21, 2.1.28, and 2.1.38 for underdamped, critically damped, and

overdamped systems, respectively.
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P3.10 Solve the problem P3.7 using the Laplace transformation tech-

nique.

P3.11 Solve the problem P3.8 using the Laplace transformation tech-

nique.

P3.12 Consider the system shown in Figure P3.12, where a = 25 cm,

�1 = 50 cm, and �2 = 30 cm. Here, k = 1, 100 N/m, m = 2 kg, and the

damping ratio is 0.1.

a

Massless
and
rigid bar

y(t)

l1

l2

mA

k

c

x(t)

Figure P3.12 A massless bar with mass, spring, and damper

a. Derive the transfer function x(s)
y(s) .

b. Find poles and zeros of the transfer function.

c. Construct Bode plots for the frequency response function.

P3.13 The dynamics of pedestrian–bridge interaction is given (New-

land, 2004) by

Mÿ + Ky(t) + mαβ ÿ(t − �) + 2ξ
√

KMẏ = −mβ ẍ(t)

where M : Mass of the bridge, K : Stiffness of the bridge, ξ : damping

ratio, Y : displacement of the pavement, x : movement of the center of

mass caused by pedestrian walking, m : mass of the pedestrian, and �

: time lag. α and β are constants.
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a. Derive the transfer function G(s) = y(s)
x(s)

b. Plot
∣∣αG( jω)

∣∣ versus frequency ratio ω
ωn

where ω : input frequency,

ωn =
√

K
M for ω� = 0, −π

2 , −π and π
2 . Assume that αβm

M = 0.1 and

ξ = 0.1.



4

VIBRATION OF TWO-DEGREE-OF-

FREEDOM-SYSTEMS

For a two-degree-of-freedom (2DOF) system, the number of inde-

pendent second-order differential equations is two. With respect to

a vector composed of the displacements associated with each degree

of freedom, these two differential equations are represented as a sin-

gle equation. In this vector equation, the coefficients of acceleration,

velocity, and displacement vectors are defined as the mass matrix,

the damping matrix, and the stiffness matrix, respectively. Next, the

method to compute the natural frequencies and the modal vectors,

also known as mode shapes, is presented. The number of natural

frequencies equals the number of degrees of freedom, which is two.

Unlike in a single-degree-of-freedom (SDOF) system, there is a mode

shape associated with each natural frequency. Next, free and forced

vibration of both undamped and damped 2DOF systems are ana-

lyzed. Using these techniques, vibration absorbers are designed next.

A vibration absorber consists of a spring, a mass, and a damper, and is

attached to an SDOF main system experiencing vibration problems.

After the addition of a vibration absorber to an SDOF main system,

the complete system has two degrees of freedom. Last, the response

is represented as a linear combination of the modal vectors, and it is

shown that the response of each mode of vibration is equivalent to the

response of an SDOF system.

186
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Figure 4.1.1 Two-degree-of-freedom system

4.1 MASS, STIFFNESS, AND DAMPING MATRICES

Let x1(t) and x2(t) be the displacements (linear or angular) associated

with two degrees of freedom. Then, displacement x(t), velocity ẋ(t),

and acceleration ẍ(t) vectors are defined as follows:

x(t) =
[

x1(t)

x2(t)

]
; ẋ(t) =

[
ẋ1(t)

ẋ2(t)

]
; and ẍ(t) =

[
ẍ1(t)

ẍ2(t)

]
(4.1.1a–c)

Let f1(t) and f2(t) be the forces (or the torques) associated with each

degree of freedom. Then, the force vector f(t) is described as follows:

f(t) =
[

f1(t)

f2(t)

]
(4.1.2)

The dynamics of a 2DOF system is governed by a set of two coupled

second-order differential equations, which is written in the matrix

form as follows:

Mẍ + Cẋ + Kx(t) = f(t) (4.1.3)

where the matrices M, C, and K are known as mass, damping, and

stiffness matrices, respectively.

Example 4.1.1: Two Degree of Freedom System

Consider the 2DOF system shown in Figure 4.1.1. The free body dia-

gram of each mass is shown in Figure 4.1.2.
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Figure 4.1.2 Free body diagrams for system in Figure 4.1.1

From the free body diagram of the mass m1 in Figure 4.1.2, New-

ton’s second law of motion yields

f1(t) − k1x1 − c1 ẋ1 − k2(x1 − x2) − c2(ẋ1 − ẋ2) = m1 ẍ1 (4.1.4)

From the free body diagram of the mass m2 in Figure 4.1.2, Newton’s

second law of motion yields

f2(t) − k3x2 − k2(x2 − x1) − c2(ẋ2 − ẋ1) = m2 ẍ2 (4.1.5)

Equations 4.1.4 and 4.1.5 are rearranged as follows:

m1 ẍ1 + (c1 + c2)ẋ1 − c2 ẋ2 + (k1 + k2)x1 − k2x2 = f1(t) (4.1.6)

m2 ẍ2 − c2 ẋ1 + c2 ẋ2 − k2x1 + (k2 + k3)x2 = f2(t) (4.1.7)

Putting Equations 4.1.6–4.1.7 in the matrix form,[
m1 0

0 m2

][
ẍ1

ẍ2

]
+
[

c1 + c2 −c2

−c2 c2

][
ẋ1

ẋ2

]

+
[

k1 + k2 −k2

−k2 k2 + k3

][
x1

x2

]
=
[

f1(t)

f2(t)

]
(4.1.8)

Equation 4.1.8 has the form of Equation 4.1.3,

Mẍ + Cẋ + Kx = f(t) (4.1.9)

where

x(t) =
[

x1(t)

x2(t)

]
; f(t) =

[
f1(t)

f2(t)

]
(4.1.10)
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Figure 4.1.3 Double pendulum

M =
[

m1 0

0 m2

]
, C =

[
c1 + c2 −c2

−c2 c2

]
, and K =

[
k1 + k2 −k2

−k2 k2 + k3

]

(4.1.11)

The matrices M, C, and K are mass, damping, and stiffness matrices,

respectively.

Example 4.1.2: Double Pendulum

Consider a double pendulum as shown in Figure 4.1.3. The mass and

the mass-moment of inertia about the support point of each pendulum

are m and �, with the center of mass located at a distance � from the

support joint. Derive the differential equations of motion and obtain

the mass and stiffness matrices.

The free body diagram of each pendulum is shown in Figure 4.1.4,

where RA and RB are the unknown reaction forces at the support joints

A and B.

Taking moments about the support joint A,

−k�1θ1�1 − kc(�1θ1 − �1θ2)�1 − mg�θ1 = �θ̈1 (4.1.12)

Taking moments about the support joint B,

−k�1θ2�1 − kc(�1θ2 − �1θ1)�1 − mg�θ2 = �θ̈2 (4.1.13)
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Figure 4.1.4 Free body diagram from each pendulum

Equations 4.1.12 and 4.1.13 can be put in the matrix form as[
� 0

0 �

][
θ̈1

θ̈2

]
+
[

(k + kc)�2
1 + mg� −kc�

2
1

−kc�
2
1 (k + kc)�2

1 + mg�

][
θ1

θ2

]
=
[

0

0

]

(4.1.14)

Equation 4.1.14 yields mass (M) and stiffness (K) matrices as

M =
[

� 0

0 �

]
(4.1.15)

and

K =
[

(k + kc)�2
1 + mg� −kc�

2
1

−kc�
2
1 (k + kc)�2

1 + mg�

]
(4.1.16)

Example 4.1.3: Combined Translational and Rotational Motion

Consider a rigid bar (Figure 4.1.5) with the mass m and the mass-

moment of inertia Ic about the center of mass C, which is located at

distances �1 and �2 from left and right ends, respectively. Further, the

bar is supported by springs with stiffnesses k1 and k2 at its left and

right ends, respectively. Derive the differential equations of motion

and obtain the mass and stiffness matrices.

Note: This rigid bar and springs can be viewed as an automobile chassis

and tires. To help with your imagination, dotted lines are drawn.
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Figure 4.1.5 A rigid bar supported by springs at both ends

The free body diagram of a rigid bar is shown in Figure 4.1.6,

where x is the displacement of the center of mass C and θ is the clock-

wise angular displacement of the bar.

Summing all forces along x-directions,

−k1(x − �1θ) − k2(x + �2θ) = mẍ (4.1.17)

Taking moments about the center of mass C,

k1(x − �1θ)�1 − k2(x + �2θ)�2 = Icθ̈ (4.1.18)

Equations 4.1.17 and 4.1.18 are represented in the matrix form as[
m 0

0 Ic

][
ẍ

θ̈

]
+
[

k1 + k2 −(k1�1 − k2�2)

−(k1�1 − k2�2) k1�
2
1 + k2�

2
2

][
x

θ

]
=
[

0

0

]

(4.1.19)

Equation 4.1.19 yields mass (M) and stiffness (K) matrices as

M =
[

m 0

0 Ic

]
(4.1.20)

x
θ

1l 2l

θ1l−x

θ2l+x

)( 11 θl−xk

)( 22 θl+xk

c

Figure 4.1.6 Free body diagram of rigid bar supported by springs
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and

K =
[

k1 + k2 −(k1�1 − k2�2)

−(k1�1 − k2�2) k1�
2
1 + k2�

2
2

]
(4.1.21)

4.2 NATURAL FREQUENCIES AND MODE SHAPES

There is a mode shape or a modal vector associated with a natural

frequency. The method to compute the natural frequencies and the

mode shapes is as follows.

Ignoring damping and external force terms, Equation 4.1.3 can be

written as

Mẍ + Kx = 0 (4.2.1)

Let

x(t) =
[

A1

A2

]
sin(ωt + φ) (4.2.2)

where amplitudes A1, A2, and the phase φ are to be determined. Dif-

ferentiating Equation 4.2.2 twice with respect to time,

ẍ = −ω2

[
A1

A2

]
sin(ωt + φ) (4.2.3)

Substituting Equations 4.2.2 and 4.2.3 into Equation 4.2.1,

(K − ω2M)

[
A1

A2

]
=
[

0

0

]
(4.2.4)

For a nonzero or a nontrivial solution of A1 and A2,

det(K − ω2M) = 0 (4.2.5)

which will be a quadratic equation in ω2. The solution of Equation

4.2.5 yields two values (ω2
1 and ω2

2) for ω2 where ω1 and ω2 are the

natural frequencies. In other words, there are two natural frequencies

for a 2DOF system. Corresponding to each natural frequency, there is
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a mode shape which is obtained from Equation 4.2.4 after substituting

ω = ω1 or ω = ω2, that is,

Pi

[
A1,i

A2,i

]
=
[

0

0

]
; i = 1, 2 (4.2.6)

where

Pi = (K − ω2
i M) =

[
p11,i p12,i

p21,i p22,i

]
; i = 1, 2 (4.2.7)

Substituting Equation 4.2.7 into Equation 4.2.6, the following two lin-

ear equations are obtained:

p11,i A1,i + p12,i A2,i = 0 (4.2.8)

p21,i A1,i + p22,i A2,i = 0 (4.2.9)

Because det Pi = 0, the rank (Strang, 1988) of the matrix Pi cannot

be two, and both the rows of the matrix Pi are not independent, or

equivalently Equations 4.2.8 and 4.2.9 are essentially the same. In

other words, there is only one equation in two unknowns A1,i and A2,i .

Therefore, only the ratio of A1,i and A2,i can be found, for example,

using Equation 4.2.8,

A2,i

A1,i
= − p11,i

p12,i
(4.2.10)

One of the variables, that is, either A1,i or A2,i , can be chosen arbitrar-

ily. For example, let A1,i = 1. Then,

A2,i = − p11,i

p12,i
(4.2.11)

And the modal vector vi corresponding to the natural frequency ωi

can be defined as

vi =
[

A1,i

A2,i

]
=
[

1

− p11,i

p12,i

]
; i = 1, 2 (4.2.12)

This modal vector vi is also defined as the mode shape corresponding

to the natural frequency ω = ωi .
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Figure 4.2.1 Undamped spring–mass system

Example 4.2.1: Natural Frequencies and Mode Shapes of the System

in Figure 4.2.1

Consider the 2DOF system shown in Figure 4.1.1 with the following

parameters: c1 = c2 = 0 and m1 = m2 = m. The resulting spring–mass

system is shown in Figure 4.2.1. Determine the natural frequencies

and the mode shapes for the two cases: k1 = k2 = k3 = k, and k1 =
k2 = k and k3 = 2k.

Case I: k1 = k2 = k3 = k

Equation 4.1.8 yields the following mass and stiffness matrices:

M =
[

m 0

0 m

]
and K =

[
2k −k

−k 2k

]
(4.2.13)

Then,

K − ω2M =
[

2k − ω2m −k

−k 2k − ω2m

]
(4.2.14)

Therefore, from Equation 4.2.14,

det(K − ω2M) = (2k − ω2m)2 − k2 = (k − ω2m)(3k − ω2m) = 0

(4.2.15)

Solving Equation 4.2.15, the two natural frequencies are:

ω1 =
√

k
m

and ω2 =
√

3k
m

(4.2.16)
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Mode shape (modal vector) corresponding to the natural frequency ω1

From Equation 4.2.7,

P1 = (K − ω2
1M) =

[
p11,1 p12,1

p21,1 p22,1

]
=
[

k −k

−k k

]
(4.2.17)

Equation 4.2.10 yields the following eigenvector:

v1 =
[

1

1

]
(4.2.18)

Mode shape (modal vector) corresponding to the natural frequency ω2

From Equation 4.2.7,

P2 = (K − ω2
2M) =

[
p11,2 p12,2

p21,2 p22,2

]
=
[

−k −k

−k −k

]
(4.2.19)

Equation 4.2.10 yields the following eigenvector:

v2 =
[

1

−1

]
(4.2.20)

Case II: k1 = k2 = k and k3 = 2k

Equation 4.1.8 yields the following mass and stiffness matrices:

M =
[

m 0

0 m

]
and K =

[
2k −k

−k 3k

]
(4.2.21)

Therefore, from Equation 4.2.21,

K − ω2M =
[

2k − ω2m −k

−k 3k − ω2m

]
(4.2.22)

From Equation 4.2.22,

det(K − ω2M) = (2k − ω2m)(3k − ω2m) − k2 = 0 (4.2.23)

or

m2(ω2)2 − 5kmω2 + 5k2 = 0 (4.2.24)
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Solving Equation 4.2.24,

ω2 = 5km ± km
√

5
2m2

(4.2.25)

Hence, the two natural frequencies are:

ω1 =
√

1.382k
m

and ω2 =
√

3.618k
m

(4.2.26)

Mode shape (Modal vector) corresponding to the natural frequency ω1

From Equation 4.2.7,

P1 = (K − ω2
1M) =

[
p11,1 p12,1

p21,1 p22,1

]
=
[

0.618k −k

−k 1.618k

]
(4.2.27)

Equation 4.2.10 yields the following eigenvector:

v1 =
[

1

0.618

]
(4.2.28)

Mode shape (Modal vector) corresponding to the natural frequency ω2

From Equation 4.2.7,

P2 = (K − ω2
2M) =

[
p11,2 p12,2

p21,2 p22,2

]
=
[

−1.618k −k

−k −0.618k

]

(4.2.29)

Equation 4.2.10 yields the following eigenvector:

v2 =
[

1

−1.618

]
(4.2.30)

Example 4.2.2: Natural Frequencies and Mode Shapes of a Double

Pendulum

Find the natural frequencies and the mode shapes of the double pen-

dulum shown in Figure 4.1.3.

From Equations 4.1.12 and 4.1.13,

(K − ω2M) =
[

α − ω2� −β

−β α − ω2�

]
(4.2.31)
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where

α = (k + kc)�2
1 + mg� and β = kc�

2
1 (4.2.32)

From Equation 4.2.31,

det(K − ω2M) = (α − ω2�)2 − β2 = (α + β − ω2�)(α − β − ω2�) = 0

(4.2.33)

Solving Equation 4.2.33, the two natural frequencies are

ω2
1 = α − β

�
and ω2

2 = α + β

�
(4.2.34)

Mode shape (Modal vector) corresponding to the natural frequency ω1

From Equation 4.2.7,

P1 = (K − ω2
1M) =

[
p11,1 p12,1

p21,1 p22,1

]
=
[

β −β

−β β

]
(4.2.35)

Equation 4.2.10 yields the following modal vector:

v1 =
[

1

1

]
(4.2.36)

Mode shape (Modal vector) corresponding to the natural frequency ω2

From Equation 4.2.7,

P2 = (K − ω2
2M) =

[
p11,2 p12,2

p21,2 p22,2

]
=
[

−β −β

−β −β

]
(4.2.37)

Equation 4.2.10 yields the following modal vector:

v2 =
[

1

−1

]
(4.2.38)

4.2.1 Eigenvalue/Eigenvector Interpretation

From Equation 4.2.4,

K

[
A1

A2

]
= ω2M

[
A1

A2

]
(4.2.39)



198 Vibration of Mechanical Systems

Pre-multiplying both sides of Equation 4.2.39 by M−1,

M−1Kv = ω2v (4.2.40)

where

v =
[

A1

A2

]
(4.2.41)

Therefore, the square of the natural frequency ω2 and the correspond-

ing modal vector v are the eigenvalue and the eigenvector (Boyce and

DiPrima, 2005; Strang, 1988) of the matrix M−1K, respectively. The

eigenvalue/eigenvector interpretation is convenient from the com-

putation point of view, as there are standard routines available, for

example, the MATLAB routine “eig.”

4.3 FREE RESPONSE OF AN UNDAMPED

2DOF SYSTEM

In general, if the initial conditions are arbitrarily chosen, the free

vibration will contain both the natural frequencies ω1 and ω2. On the

basis of the assumed solution (Equation 4.2.2) and the fact that the

response can be expressed as a linear combination of the modal vec-

tors, the general solution can be written as

x(t) = α1v1 sin(ω1t + φ1) + α2v2 sin(ω2t + φ2) (4.3.1)

where v1 and v2 are the modal vectors (or mode shapes) correspond-

ing to the natural frequencies ω1 and ω2, respectively. Constants α1,

α2, φ1, and φ2 can be determined from the initial conditions x(0) and

ẋ(0). From Equation 4.3.1,

x(0) = v1α1 sin φ1 + v2α2 sin φ2 (4.3.2)

or

x(0) = Q

[
α1 sin φ1

α2 sin φ2

]
(4.3.3)
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where Q is a 2 × 2 matrix defined as follows:

Q =
[

v1 v2

]
(4.3.4)

From Equation 4.3.3, [
α1 sin φ1

α2 sin φ2

]
= Q−1x(0) (4.3.5)

Differentiating Equation 4.3.1 with respect to time,

ẋ(t) = α1v1ω1 cos(ω1t + φ1) + α2v2ω2 cos(ω2t + φ2) (4.3.6)

Substituting t = 0 into Equation 4.3.6,

ẋ(0) = α1v1ω1 cos φ1 + α2v2ω2 cos φ2 (4.3.7)

Using the definition of Q given in Equation 4.3.4,

ẋ(0) = Q

[
ω1α1 cos φ1

ω2α2 cos φ2

]
(4.3.8)

Therefore, [
ω1α1 cos φ1

ω2α2 cos φ2

]
= Q−1ẋ(0) (4.3.9)

In summary, α1 sin φ1, α2 sin φ2, α1 cos φ1, and α2 cos φ2 are first

obtained from Equations 4.3.5 and 4.3.9. Then, α1, α2, φ1, and φ2 are

determined.

As an example, let the initial conditions be as follows:

x(0) = χv1 and ẋ(0) = 0 (4.3.10)

where χ is a constant.

Then, from Equations 4.3.2 and 4.3.9,[
α1 sin φ1

α2 sin φ2

]
=
[

χ

0

]
and

[
α1 cos φ1

α2 cos φ2

]
=
[

0

0

]
(4.3.11)
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Therefore,

α1 = χ, φ1 = π

2
, and α2 = 0 (4.3.12)

Hence, from Equations 4.3.1 and 4.3.12, the response would be

x(t) = χv1 sin
(
ω1t + π

2

)
= χv1 cos ω1t (4.3.13)

The response is purely sinusoidal with the frequency equal to the first

natural frequency. This is due to the fact that the initial conditions

match with the first modal vector and do not contain the second modal

vector. If the initial conditions match the second modal vector, the

free vibration will be purely sinusoidal with the frequency equal to

the second natural frequency.

Example 4.3.1: Free Vibration of a Double Pendulum

Consider the double pendulum shown in Figure 4.1.3. Numerical

values of the parameters are as follows: m = 0.5 kg, � = 0.6 kg −
m2, k = kc = 10, 000 N/m, � = 0.8 m, �1 = 0.3 m. Initial conditions are

given as: θ1(0) = 0.1 rad, θ2(0) = 0.05 rad, θ̇1(0) = 10 rad/sec, θ̇2(0) =
−15 rad/ sec.

Determine the equation governing the free vibration.

Solution

From Equation 4.2.34,

ω1 = 38.814 rad/sec and ω2 = 67.130 rad/sec

From Equation 4.3.4,

Q =
[

1 1

1 −1

]

Therefore,

Q−1 =
[

0.5 0.5

0.5 −0.5

]
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From Equation 4.3.5,[
α1 sin φ1

α2 sin φ2

]
= Q−1x(0) =

[
0.075

0.025

]
rad

From Equation 4.3.9,[
ω1α1 cos φ1

ω2α2 cos φ2

]
= Q−1ẋ(0) =

[
−2.5

12.5

]
rad/ sec

Considering α1 sin φ1 = 0.075 and ω1α1 cos φ1 = −2.5,

α1 = 0.0989, φ1 = 2.2804 rad

Considering α2 sin φ2 = 0.025 and ω2α2 cos φ2 = 12.5,

α2 = 0.1879, φ2 = 0.1335 rad

From Equation 4.3.1,[
θ1(t)

θ2(t)

]
= 0.0989

[
1

1

]
sin(38.814t + 2.2804)

+0.1879

[
1

−1

]
sin(67.130t + 0.1335)

4.4 FORCED RESPONSE OF AN UNDAMPED 2DOF

SYSTEM UNDER SINUSOIDAL EXCITATION

The differential equations of motion of an undamped 2DOF system

can be represented as

M

[
ẍ1

ẍ2

]
+ K

[
x1

x2

]
=
[

f10

f20

]
sin ωt (4.4.1)

where M and K are mass and stiffness matrices, respectively. The

amplitudes of sinusoidal excitations are f10 and f20.

Assume the forced response (particular integral) to be[
x1(t)

x2(t)

]
=
[

A1

A2

]
sin ωt (4.4.2)
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Figure 4.4.1 Two-degree-of-freedom system under sinusoidal excitation

Here, the amplitudes A1 and A2 are allowed to be negative. A neg-

ative value of the amplitude represents the phase angle equal to

180 degrees. Substituting Equation 4.4.2 into Equation 4.4.1, and

equating the coefficients of sin ωt on both sides,

(K − ω2M)

[
A1

A2

]
=
[

f10

f20

]
(4.4.3)

From Equation 4.4.3,[
A1

A2

]
= (K − ω2M)−1

[
f10

f20

]
(4.4.4)

Example 4.4.1: Forced Response of a 2DOF System

Consider the 2DOF system shown in Figure 4.4.1 which is the same

model as the one shown in Figure 4.1.1 with the following parameters:

c1 = c2 = 0, m1 = m2 = m, k1 = k2 = k, k3 = 2k, and f1(t) = f2(t) =
f0 sin ωt.

With respect to Equation 4.4.1,

f10 = f20 = f0 (4.4.5)

M =
[

m 0

0 m

]
and K =

[
2k −k

−k 3k

]
(4.4.6)
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Therefore, from Equation 4.4.4,[
A1

A2

]
=
[

2k − ω2m −k

−k 3k − ω2m

]−1 [
f0

f0

]
(4.4.7)

Equation 4.4.7 yields[
A1

A2

]
= f0

(2k − ω2m)(3k − ω2m) − k2

[
4k − ω2m

3k − ω2m

]
(4.4.8)

After some algebra, the amplitudes of masses are found to be

A1

f0/k
= 0.8[1 − (ω/ωz1 )2]

[1 − (ω/ω1)2][1 − (ω/ω2)2]
(4.4.9)

and

A2

f0/k
= 0.6[1 − (ω/ωz2 )2]

[1 − (ω/ω1)2][1 − (ω/ω2)2]
(4.4.10)

where

ωz1 =
√

4k
m

, ωz2 =
√

3k
m

, ω1 =
√

1.382k
m

, and ω2 =
√

3.618k
m
(4.4.11)

It should be noted that ω1 and ω2 are the natural frequencies (Equa-

tion 4.2.26). When ω = ω1 or ω = ω2, the amplitudes A1 and A2 are

infinite (Figures 4.4.2 and 4.4.3). Furthermore, A1 = 0 at ω = ωz1 and

A2 = 0 at ω = ωz2 .

4.5 FREE VIBRATION OF A DAMPED 2DOF SYSTEM

The free vibration of a damped 2DOF system is governed by the fol-

lowing differential equations:

Mẍ + Cẋ + Kx = 0 (4.5.1)

where M, C, and K are mass, damping, and stiffness matrices, respec-

tively. Here, the initial displacement x(0) and/or velocity ẋ(0) will be

nonzero.
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The solution can be written as

x(t) =
[

A1

A2

]
est (4.5.2)

where s is to be determined. Substituting Equation 4.5.2 into Equa-

tion 4.5.1,

(Ms2 + Cs + K)

[
A1

A2

]
=
[

0

0

]
(4.5.3)

For a nontrivial solution of Equation 4.5.3,

det(Ms2 + Cs + K) = 0 (4.5.4)

When C = 0,

det(Ms2 + K) = 0 (4.5.5)

It can be shown that the roots of this equation are purely imaginary.

In fact, by substituting s = ± jω, Equation 4.5.5 reduces to

det(−Mω2 + K) = 0 (4.5.6)

which is the same as Equation 4.2.5. In the case of C �= 0, the roots of

Equation 4.5.4 can be obtained via the eigenvalue/eigenvector formu-

lation as follows:

Define

y1 = x(t) and y2 = ẋ(t) (4.5.7)

Then,

ẏ1 = y2 (4.5.8)

and from Equation 4.5.1,

ẏ2 = ẍ = −M−1Kx(t) − M−1Cẋ(t) = −M−1Ky1(t) − M−1Cy2(t)

(4.5.9)
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Equations 4.5.8 and 4.5.9 can be written in the matrix form as

ẏ(t) = Ry(t) (4.5.10)

where

y(t) =
[

y1(t)

y2(t)

]
(4.5.11)

and

R =
[

0 I

−M−1K −M−1C

]
(4.5.12)

It can be shown that the eigenvalues of the matrix R are the same as

the roots of Equation 4.5.4. These eigenvalues can be complex or real.

A set of complex conjugate eigenvalues (−σ ± jω) correspond to an

underdamped SDOF system and can be written as

−σ ± jω = −ξωn ± ωn

√
1 − ξ 2 j (4.5.13)

where ξ and ωn are the damping ratio and the undamped natural fre-

quency respectively. Therefore,

ωn =
√

σ 2 + ω2 (4.5.14)

and

ξ = σ√
σ 2 + ω2

(4.5.15)

The undamped natural frequency (Equation 4.5.14) will be one of the

roots of det(K − ω2M).

The solution of Equation 4.5.10 can be described as

y(t) = eRty(0) (4.5.16)

where eRt is the matrix exponential described as

eRt = I + Rt + R2 t2

2!
+ R3 t3

3!
+ · · · (4.5.17)
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and

R2 = RR, R3 = R2R, . . . (4.5.18)

In MATLAB, the matrix exponential can be calculated by using the

command “expm.” It should also be noted that

y(0) =
[

y1(0)

y2(0)

]
=
[

x(0)

ẋ(0)

]
(4.5.19)

That is, y(0) is composed of the initial displacement x(0) and the veloc-

ity ẋ(0) vectors.

Example 4.5.1: Free Vibration of a Damped 2DOF Freedom System

Consider the spring–mass–damper model in Figure 4.1.1 with f1(t) =
f2(t) = 0. Let m1 = m2 = 0.5 kg, k1 = k2 = k3 = 10, 000 N/m, c1 =
10 N − sec/m, and c2 = 0. Obtain x1(t) and x2(t) when the initial

conditions are as follows: x1(0) = 1.5, x2(0) = 0.5, ẋ1(0) = 0, and

ẋ2(0) = 0.

From Equation 4.1.8,

M =
[

m1 0

0 m2

]
=
[

0.5 0

0 0.5

]

C =
[

c1 + c2 −c2

−c2 c2

]
=
[

10 0

0 0

]

and

K =
[

20, 000 −10, 000

−10, 000 20, 000

]

The eigenvalues of the matrix R (Equation 4.5.12) are presented in

Table 4.1.

The response is obtained from the MATLAB program 4.5.1 and is

presented in Figure 4.5.1.
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Table 4.1 Eigenvalues of matrix R

Characteristic roots (−σ ± jω) ξ ωn (rad/sec)

−5.01 ± 141.51j 0.0354 141.5987
−4.99 ± 244.59i 0.0204 244.6422

MATLAB Program 4.5.1: Free Vibration of a Damped 2DOF

System

%

clear all

close all

%

M=[0.5 0;0 0.5];

C=[10 0;0 0];

K=[20000 −10000;-10000 20000];

%

MI=inv(M);
%

R=[zeros(2,2) eye(2);-MI∗K -MI∗C]
%

ada=eig(R);
ogn1=abs(ada(1));
xi1=-real(ada(1))/ogn1;
ogn2=abs(ada(3));
xi2=-real(ada(3))/ogn2;
%

%Initial conditions

y0=[1 0.5 0 0]’;

%

T=2∗pi/ogn1;
delt=T/40;
t=-delt;
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for i=1:1000
t=t+delt;
tv(i)=t;
y(:,i)=expm(R∗t)∗y0;

end

plot(tv,y(1,:),tv,y(2,:),’--’)

xlabel(‘time(sec.)’)

legend(‘x_1(t)’,‘x_2(t)’)

grid

4.6 STEADY-STATE RESPONSE OF A DAMPED 2DOF

SYSTEM UNDER SINUSOIDAL EXCITATION

The vibration of a damped 2DOF system is governed by the differen-

tial Equation 4.1.3 that is rewritten here:

Mẍ + Cẋ + Kx = f(t) (4.6.1)
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where the external excitation vector f(t) is written as

f(t) =
[

f1(t)

f2(t)

]
(4.6.2)

It is assumed that both f1(t) and f2(t) are sinusoidal with the same

frequency. Typically,

f1 = F̂1 sin(ωt + ψ1) and f2 = F̂2 sin(ωt + ψ2) (4.6.3)

or

f1 = F̂1 cos(ωt + ψ1) and f2 = F̂2 cos(ωt + ψ2) (4.6.4)

To facilitate the analysis, it will be assumed for any of these two cases,

f(t) =
[

f1(t)

f2(t)

]
=
[

F1

F2

]
e jωt; j =

√
−1 (4.6.5)

where [
F1

F2

]
=
[

F̂1e jψ1

F̂2e jψ2

]
(4.6.6)

The steady-state solution of Equation 4.6.1 is assumed to be[
x1(t)

x2(t)

]
=
[

X1

X2

]
e jωt (4.6.7)

Therefore,

ẋ(t) =
[

ẋ1(t)

ẋ2(t)

]
=
[

X1

X2

]
jωe jωt (4.6.8)

and

ẍ(t) =
[

ẍ1(t)

ẍ2(t)

]
=
[

X1

X2

]
(−ω2)e jωt (4.6.9)

Substituting Equations 4.6.5, 4.6.7–4.6.9 into Equation 4.6.1,

[(K − ω2M) + jCω]

[
X1

X2

]
e jωt =

[
F1

F2

]
e jωt (4.6.10)
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Equating the coefficients of e jωt on both sides,

[(K − ω2M) + jCω]

[
X1

X2

]
=
[

F1

F2

]
(4.6.11)

Therefore, [
X1

X2

]
= [(K − ω2M) + jCω]−1

[
F1

F2

]
(4.6.12)

Corresponding to Equation 4.6.3,[
x1(t)

x2(t)

]
=
[

A1 sin(ωt + φ1)

A2 sin(ωt + φ2)

]
(4.6.13)

where

A1 = |X1| , A2 = |X2| , φ1 = ∠X1, and φ2 = ∠X2 (4.6.14)

If excitations were in the form of Equation 4.6.4,[
x1(t)

x2(t)

]
=
[

A1 cos(ωt + φ1)

A2 cos(ωt + φ2)

]
(4.6.15)

where A1, A2, φ1, and φ2 are given by Equation 4.6.14.

Example 4.6.1: Steady-State Response of a Damped 2DOF System

Find the steady-state response of system in Figure 4.1.1 for which

f1(t) = 10 sin(240t) N and f2(t) = 100 cos(240t) N. As in Example 4.5.1,

let m1 = m2 = 0.5 kg, k1 = k2 = k3 = 10, 000 N/m, c1 = 10 N − sec/m,

and c2 = 0.

Using K, M, and C in Example 4.5.1,

(K − ω2M) + jωC = 104

[
−0.88 + j0.24 −1

−1 −0.88

]

Therefore,

[(K − ω2M) + jωC]−1 = 10−3
[

0.2079 − j0.1946 −0.2362 + j0.2211
−0.2362 + j0.2211 0.1548 − j0.2513

]
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With respect to Equation 4.6.3,

F̂1 = 10, ψ1 = 0, F̂2 = 100, and ψ2 = π

2

Therefore, [
F1

F2

]
=
[

F̂1e jψ1

F̂2e jψ2

]
=
[

10

j100

]

From Equation 4.6.12,[
X1

X2

]
= [(K − ω2M) + jCω]−1

[
F1

F2

]
=
[

0.0242 + j0.0217

−0.0275 − j0.0133

]

Next,

A1 = |X1| = 0.0325, A2 = |X2| = 0.0305,

φ1 = ∠X1 = 0.7306 rad, and φ2 = ∠X2 = −2.6919 rad

Last, Equation 4.6.13 yields the following steady-state response:[
x1(t)

x2(t)

]
=
[

0.0325 sin(240t + 0.7306)

0.0305 sin(240t − 2.6919)

]
m

4.7 VIBRATION ABSORBER

In this section, design techniques for two types (undamped and

damped) of vibration absorbers are presented.

4.7.1 Undamped Vibration Absorber

Consider an undamped spring–mass system with the stiffness k1 and

the mass m1 subjected to a sinusoidal excitation f0 sin ωt (Figure 4.7.1).

When ω = √
k1/m1, there will be resonance and a large amount of

vibration. In many applications, it is not possible to add damping, or

to change the natural frequency, or the excitation frequency. In these

situations, another spring–mass system with the stiffness k2 and the
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Figure 4.7.1 An undamped vibration absorber

mass m2 is added to suppress this vibration. The spring–mass system

with the stiffness k2 and the mass m2 is called the undamped vibration

absorber. The objectives are to select the absorber stiffness k2 and the

absorber mass m2 for the suppression of vibration of the main mass

m1 in a reliable manner.

Applying Newton’s second law of motion to free body diagrams in

Figure 4.7.2,

f0 sin ωt − k1x1 − k2(x1 − x2) = m1 ẍ1 (4.7.1)

−k2(x2 − x1) = m2 ẍ2 (4.7.2)

Rearranging the differential equations of motion (Equations 4.7.1 and

4.7.2),

m1 ẍ1 + (k1 + k2)x1 − k2x2 = f0 sin ωt (4.7.3)

m2 ẍ2 − k2x1 + k2x2 = 0 (4.7.4)
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Figure 4.7.2 Free body diagrams of masses in Figure 4.7.1

Therefore, the differential equations of motion in matrix form can be

written as

M

[
ẍ1

ẍ2

]
+ K

[
x1

x2

]
=
[

f0

0

]
sin ωt (4.7.5)

where

M =
[

m1 0

0 m2

]
(4.7.6)

and

K =
[

k1 + k2 −k2

−k2 k2

]
(4.7.7)

From Equations 4.7.6 and 4.7.7,

K − ω2M =
[

k1 + k2 − ω2m1 −k2

−k2 k2 − ω2m2

]
(4.7.8)

From Equation 4.7.8,

(K − ω2M)−1 = 1
�

[
k2 − ω2m2 +k2

+k2 k1 + k2 − ω2m1

]
(4.7.9)

where

� = det(K − ω2M) = (k1 + k2 − ω2m1)(k2 − ω2m2) − k2
2 (4.7.10)

From Equation 4.4.4,[
A1

A2

]
= 1

�

[
k2 − ω2m2 k2

k2 k1 + k2 − ω2m1

][
f0

0

]

= 1
�

[
(k2 − ω2m2)f0

k2f0

]
(4.7.11)
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where A1 and A2 are the amplitudes of x1 and x2, respectively. From

Equations 4.7.11 and 4.7.10,

A1 = (k2 − ω2m2)f0

(k1 + k2 − ω2m1)(k2 − ω2m2) − k2
2

(4.7.12)

and

A2 = k2 f0

(k1 + k2 − ω2m1)(k2 − ω2m2) − k2
2

(4.7.13)

The amplitude A1 of the main mass m1 will be zero when the absorber

parameters k2 and m2 are chosen such that

k2

m2
= ω2 (4.7.14)

Define √
k1

m1
= ω11 (4.7.15)

and √
k2

m2
= ω22 (4.7.16)

The condition in Equation 4.7.14 can then be expressed as

ω = ω22 (4.7.17)

In other words, whenever ω22 is chosen such that it equals the excita-

tion frequency ω, A1 = 0, that is, the vibration of the main mass will

be completely suppressed. The parameter ω22 is designed such that

the vibration of the main mass will be suppressed at the resonance

condition of the original SDOF system, that is, ω = ω11. As a result,

the design condition is

ω22 = ω11 (4.7.18)

From the definitions in Equations 4.7.15 and 4.7.16, the condition in

Equation 4.7.18 is also expressed as

k2

m2
= k1

m1
(4.7.19)
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In summary, when k2 and m2 are selected to satisfy Equation 4.7.19,

A1 = 0 when ω = ω11. And the amplitude of the absorber mass at this

condition ω = ω11 = ω22 will be

A2 = − f0

k2
(4.7.20)

Define the mass ratio μ as

μ = m2

m1
(4.7.21)

Then, from Equation 4.7.19,

k2

k1
= m2

m1
= μ (4.7.22)

Using Equation 4.7.22, Equations 4.7.12 and 4.7.13 are represented as

follows:

A1k1

f0
= (1 − r2)

(1 + μ − r2)(1 − r2) − μ
(4.7.23)

and

A2k1

f0
= 1

(1 + μ − r2)(1 − r2) − μ
(4.7.24)

where

r = ω

ω11
= ω

ω22
(4.7.25)

In Figure 4.7.3, the magnitude of the amplitude |A1| is plotted as a

function of ω with the condition in Equation 4.7.18. It should be noted

that A1 �= 0 when ω �= ω11. In fact, the amplitude A1 is infinite when ω

equals one of the natural frequencies of the 2DOF system, which are

the roots of Equation 4.2.5 as follows:

� = det(K − ω2M) = (k1 + k2 − ω2m1)(k2 − ω2m2) − k2
2 = 0

(4.7.26)

In Figure 4.7.4, the magnitude of the amplitude |A2| is plotted as

a function of ω with the condition in Equation 4.7.18. Dividing
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Equation 4.7.26 by k1k2,(
1 + k2

k1
− ω2 m1

k1

)(
1 − ω2 m2

k2

)
− k2

k1
= 0 (4.7.27)

Using Equations 4.7.22 and 4.7.25,

(1 + μ − r2)(1 − r2) − μ = 0 (4.7.28)

After some algebra, Equation 4.7.28 yields

(r2)2 − (2 + μ)r2 + 1 = 0 (4.7.29)

The roots of the quadratic Equation 4.7.29 are as follows:

r2
1 = (2 + μ) −

√
μ2 + 4μ

2
(4.7.30)

r2
2 = (2 + μ) +

√
μ2 + 4μ

2
(4.7.31)

where

r1 = ω1

ω11
and r2 = ω2

ω11
(4.7.32a, b)

Note that ω1 and ω2 are the natural frequencies of the 2DOF system.

These natural frequencies are plotted as a function of the mass ratio

μ in Figure 4.7.5.

Example 4.7.1: An Undamped Vibration Absorber

When a fan with 1,000 kg mass operates at a speed of 2,400 rpm on

the roof of a room (Figure 4.7.6), there is a large amount of vibration.

Design an undamped vibration absorber, which can satisfactorily

perform even when there is about 10% fluctuation in the angular

speed of the fan.

Solution

ω11 = ω = 2, 400 × 2π

60
= 80π rad/sec
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To ensure a good margin of safety, let us keep the natural frequencies

of the 2DOF system to be at least 20% away from ω11 (Figure 4.7.5).

In this case, r = 0.8 in the following equation:

(r2)2 − (2 + μ)r2 + 1 = 0

or

μ = r4 + 1
r2

− 2 = (0.8)4 + 1
(0.8)2

− 2 = 0.2025

ω

2k

2mVibration
absorber

Figure 4.7.6 Undamped vibration absorber attached to the ceiling of room
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It should be noted that r = 0.8 has been chosen because the lower

natural frequencies in Figure 4.7.5 are closer to the r = 1 line.

Therefore,

μ = m2

m1
= 0.2025 ⇒ m2 = 202.5 kg

and
k2

m2
= ω2

11 = (80π)2

Last,

k2 = m2(80π)2 = 6, 400π2 × 202.5 = 1.2791 × 107 N/m

4.7.2 Damped Vibration Absorber

An undamped vibration absorber yields complete suppression of

vibration at the design frequency of excitation, which is generally

selected to be the resonance condition of the original system. How-

ever, if the excitation frequency is a variable, unbounded response

is obtained when the excitation frequency matches either of the two

natural frequencies of the 2DOF system. In order to alleviate this

situation, a damper is included in the absorber design as shown in

Figure 4.7.7, and the objective is to choose damper parameters such

that the vibration of the main mass is minimized over all excitation

frequencies. When the damping constant c = 0, the amplitude of the

main mass can be unbounded. Similarly, when the damping constant

is extremely large, both masses will become as if they are welded

together, and the system will effectively become an SDOF system,

that is, the response can again be unbounded. In other words, nei-

ther a small c nor an extremely large c will be desirable. There exists

an optimal value of the damping constant c for which the vibration of

the main mass is minimized over all excitation frequencies.

From the free body diagram in Figure 4.7.7,

f0 sin ωt − k1x1 − k2(x1 − x2) − c(ẋ1 − ẋ2) = m1 ẍ1 (4.7.33)

−k2(x2 − x1) − c(ẋ2 − ẋ1) = m2 ẍ2 (4.7.34)
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Figure 4.7.7 Damped vibration absorber and associated free body diagrams

or

m1 ẍ1 + cẋ1 − cẋ2 + (k1 + k2)x1 − k2x2 = f0 sin ωt (4.7.35)

m2 ẍ2 − cẋ1 + cẋ2 − k2x1 + k2x2 = 0 (4.7.36)

Equations 4.7.35–4.7.36 are put in the matrix form as

Mẍ + Cẋ + Kx(t) = f(t) (4.7.37)

where

x(t) =
[

x1(t)

x2(t)

]
; f(t) =

[
f0

0

]
sin ωt (4.7.38)

M =
[

m1 0

0 m2

]
, C =

[
c −c

−c c

]
, and K =

[
k1 + k2 −k2

−k2 k2

]

(4.7.39)
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The steady-state response is computed by following the procedure

outlined in Section 4.6. To use Equation 4.6.12,

(K − ω2M) + jCω =
[

k1 + k2 − ω2m1 + jωc −k2 − jωc

−k2 − jωc k2 − ω2m2 + jωc

]

(4.7.40)

Therefore,

[(K−ω2M)+ jωC]−1 = 1
�

[
k2 −ω2m2 + jωc k2 + jωc

k2 + jωc k1 +k2 −ω2m1 + jωc

]

(4.7.41)

where

� = det(K − ω2M + jωC)

= (k1 + k2 − ω2m1 + jωc)(k2 − ω2m2 + jωc) − (k2 + jωc)2

(4.7.42)

After some algebra,

� = [(k1 − ω2m1)(k2 − ω2m2) − ω2k2m2] + jωc(k1 − ω2(m1 + m2))

(4.7.43)

Furthermore [
F1

F2

]
=
[

f0

0

]
(4.7.44)

From Equation 4.6.12,[
X1

X2

]
= 1

�

[
(k2 − ω2m2 + jωc)f0

(k2 + jωc)f0

]
(4.7.45)

The amplitude of the main mass is given by

A1 = |X1| =
∣∣(k2 − ω2m2 + jωc)f0

∣∣
|�| (4.7.46)
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Using Equation 4.7.43,

A1 = f0
√

(k2 −ω2m2)2 + (cω)2√
[(k1 −ω2m1)(k2 −ω2m2)−ω2k2m2]2 + [ωc(k1 −ω2(m1 +m2)]2

(4.7.47)

or

A1k1

f0
=

√(
k2
k1

− ω2m2
k1

)2
+
(

cω
k1

)2

√[
(k1−ω2m1)(k2−ω2m2)

k2
1

− ω2k2m2

k2
1

]2
+
[

ωc(k1−ω2(m1+m2))
k2

1

]2
(4.7.48)

Define the following nondimensional variables:

μ = m2

m1
, ω11 =

√
k1

m1
, ω22 =

√
k2

m2
, f = ω22

ω11
(4.7.49)

g = ω

ω11
and ξ = c

2m2ω11
(4.7.50)

Then,

k2

k1
= k2

m2

m1

k1

m2

m1
=
(

ω22

ω11

)2

μ = f 2μ (4.7.51)

ω2m2

k1
= ω2m1

k1

m2

m1
= g2μ (4.7.52)

cω
k1

= 2cω
2m2ω11

ω11m2

k1
= 2ξ

ω

ω11
= 2ξgμ (4.7.53)

(ωc)(k1 − ω2(m1 + m2))

k2
1

=
(

ωc
k1

)(
1 − ω2

ω2
11

− ω2

ω2
11

μ

)

= (2ξgμ)(1 − g2 − μg2) (4.7.54)

(k1 − ω2m1)(k2 − ω2m2)

k2
1

= (1 − g2)
(

k2

k1
− ω2m2

k1

)

= (1 − g2)(f 2 − g2)μ (4.7.55)
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ω2k2m2

k2
1

= ω2k2

k1

m1

k1

m2

m1
= g2f 2μ2 (4.7.56)

Substituting Equations 4.7.49–4.7.56 into Equation 4.7.48,

A1k1

f0
=

√
(f 2 − g2)2 + (2ξg)2√

[(1 − g2)(f 2 − g2) − g2f 2μ]2 + (2ξg)2(1 − g2 − μg2)2

(4.7.57)

Den Hartog (1956) has obtained optimal absorber parameters to min-

imize the following function:

I = max

g
A1(g) (4.7.58)

Here, A1(g) is a representation of the fact that A1 is a function of

frequency ratio g. The objective function I is the maximum value of

A1 with respect to the variation in g.

Case I: Tuned Case (f = 1 or ω22 = ω11)

For the minimum value of I, the optimal value of ξ is

ξ 2 = μ(μ + 3)(1 +√μ/(μ + 2)
8(1 + μ)

(4.7.59)

And the objective function I is

I = max

g
A1(g) = f0

k1

1

(−μ + (1 + μ)
√

μ/(μ + 2))
(4.7.60)

The amplitude of this main mass due to this optimal absorber is shown

in Figure 4.7.8.

Case II: No restriction on f (Absorber not tuned to main system)

For the minimum value of I,

f = 1
1 + μ

(4.7.61)
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μ = 0.1
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ξ = 0.1

ξ = 0.3

ξ = ξopt

Figure 4.7.8 Amplitude of the main mass for various damping ratios (Absorber tuned
to main system, f = 1)

and

ξ 2 = 3μ

8(1 + μ)3
(4.7.62)

The objective function I is

I = max

g
A1(g) = f0

√
1 + 2/μ

k1
(4.7.63)

The amplitude of this main mass due to this optimal absorber is shown

in Figure 4.7.9.

Example 4.7.2: A Damped Vibration Absorber

When a fan with 1,000 kg mass operates at a speed of 2,400 rpm on the

roof of a room (Figure 4.7.10), there is a large amount of vibration.

Design an optimally damped vibration absorber with the mass

ratio equal to 0.2025, which is same as that in Example 4.7.1.
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g = ω/ω11
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0
μ = 0.1

f = 1/(1+ μ)

ξ = 0.1

ξ = 0.3

ξ = ξopt

ξopt = 0.1679

Figure 4.7.9 Amplitude of the main mass for various damping ratios (Absorber not
tuned to main system)

From Equation (4.7.61),

f = 1
1 + μ

= 1
1.2025

= 0.8316

and

k2

m2
= f 2ω2

11 = (0.8316 × 80π)2

2k

2m

Damped
vibration
absorber

c

ω

Figure 4.7.10 Damped vibration absorber attached to the ceiling of room
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Therefore,

k2 = m2(f × 80π)2 = 6, 400π2f 2 × 202.5 = 8.8457 × 106 N/m

From Equation (4.7.62),

ξ =
√

3μ

8(1 + μ)3
= 0.209

c = 2ξm2ω11 = 2.1274 × 104 N-sec/m

4.8 MODAL DECOMPOSITION OF RESPONSE

The general differential Equation 4.1.3 is rewritten

Mẍ + Cẋ + Kx = f(t) (4.8.1)

Pre-multiplying both sides of Equation 4.8.1 by M−1,

ẍ + M−1Cẋ + M−1Kx = M−1f(t) (4.8.2)

In general, the response x(t) is a linear combination of the modal vec-

tors v1 and v2, that is,

x(t) = v1 y1(t) + v2 y2(t) (4.8.3)

where y1(t) and y2(t) are the coefficients of modal vectors v1 and v2,

respectively. Equation 4.8.3 can be represented in a compact form as

follows:

x(t) = Vy(t) (4.8.4)

where

V = [ v1 v2 ] (4.8.5)

and

y(t) =
[

y1(t)

y2(t)

]
(4.8.6)
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Substituting Equation 4.8.4 into Equation 4.8.2 and pre-multiplying

by V−1,

ÿ + Cd ẏ + Kdy = fv(t) (4.8.7)

where

Cd = V−1M−1CV, Kd = V−1M−1KV, and fv(t) = V−1M−1f(t)

(4.8.8)

From Equation 4.8.8 and Equation 4.2.40,

Kd = V−1M−1KV = � =
[

ω2
1 0

0 ω2
2

]
(4.8.9)

Let

fv(t) =
[

fv1(t)

fv2(t)

]
(4.8.10)

Case I: Undamped System (C = 0)

Equations 4.8.7 and 4.8.10 yield

ÿ1 + ω2
1 y1 = fv1(t) (4.8.11)

ÿ2 + ω2
2 y2 = fv2(t) (4.8.12)

Equations 4.8.11 and 4.8.12 can be solved by techniques developed

for an SDOF system. After that, the response can be obtained from

Equation 4.8.3.

Case II: Damped System (C �= 0)

For a general damping matrix, the matrix Cd will not be diagonal, and

the differential equations for y1(t) and y2(t) will be coupled. However,

the modal equations are decoupled for special cases, for example,

C = αM + βK (4.8.13)
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m

)(1 tx

k k

)(2 tx

k
m

f sin ωt1 f sin ωt2

Figure 4.8.1 Two-degree-of-freedom system with sinusoidal excitation and modal
damping

where α and β are constants. This form of damping is known as Pro-

portional or Rayleigh damping. In this case, from Equation 4.8.8,

Cd = V−1M−1CV = αI + β� (4.8.14)

Equation 4.8.7 yields

ÿ1 + (α + βω2
1)ẏ1 + ω2

1 y1 = fv1(t) (4.8.15)

ÿ2 + (α + βω2
2)ẏ2 + ω2

2 y2 = fv2(t) (4.8.16)

Equations 4.8.15 and 4.8.16 can be solved by techniques developed

for an SDOF system. After that, the response can be obtained from

Equation 4.8.3.

On the basis of Equations 4.8.15 and 4.8.16, the modal damping in

each mode ξi ; i = 1, 2, can be described as

ξi = α + βω2
i

2ωi
; i = 1, 2 (4.8.17)

Example 4.8.1: Application of Modal Decomposition

Consider the system shown in Figure 4.8.1 and assume that the damp-

ing ratios in modes 1 and 2 are 0.05 and 0.1 respectively. Determine

the steady-state response via modal decomposition. Following param-

eters are provided: m = 2 kg, k = 1, 800 N/m, f1 = 10 N, f2 = 20 N, and

ω = 45 rad/sec.
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Solution

From the Example 4.2.1 (Case I),

V =
[

1 1

1 −1

]
; M =

[
2 0

0 2

]

ω1 =
√

k
m

= 30 rad/sec and ω2 =
√

3k
m

= 51.9615 rad/sec

Note that

ξ1 = 0.05, r1 = ω

ω1
= 45

30
= 1.5

ξ2 = 0.1, r2 = ω

ω2
= 45

51.9615
= 0.866

f(t) =
[

10

20

]
sin 45t

From Equation 4.8.8,

fv(t) = V−1M−1f(t) =
[

fv1(t)

fv2(t)

]
=
[

7.5

−2.5

]
sin ωt

In steady state, the responses of Equations 4.8.15 and 4.8.16 are given

as

y1(t) = Y1 sin(45t + φ1)

y2(t) = Y2 sin(45t + φ2)

where

Y1 = 7.5

ω2
1[(1 − r2

1 )2 + (2ξ1r1)2]0.5
= 0.0066,

φ1 = tan−1 2ξ1r1

(1 − r2
1 )

= 3.022 rad

Y2 = −2.5

ω2
2[(1 − r2

2 )2 + (2ξ2r2)2]0.5
= −0.0030,

φ2 = tan−1 2ξ2r2

(1 − r2
2 )

= 0.6058 rad
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Last, from Equation 4.8.4,

x1(t) = y1(t) + y2(t)

x2(t) = y1(t) − y2(t)

EXERCISE PROBLEMS

P4.1 Consider the system in Figure P4.1.

m

)(1 tx

k ck

)(2 tx

k
m

Figure P4.1 Undamped 2DOF system with coupling stiffness kc

a. Derive the differential equations of motion and obtain the mass

and stiffness matrices.

b. Calculate the natural frequencies and the mode shapes.

c. Find the initial conditions such that the free vibration is sinusoidal

with each natural frequency.

P4.2 Consider the system in Figure P4.2.

k 2k

2m 3m

Massless
and
rigid bar

Figure P4.2 Massless rigid bar with masses lumped at ends and supported on springs
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a. Derive the differential equations of motion and obtain the mass

and stiffness matrices.

b. Calculate the natural frequencies and the mode shapes.

c. Find the initial conditions such that the free vibration is sinusoidal

with each natural frequency.

P4.3 Consider the system in Figure P4.3.

k

m

l

Rigid bar
mass = m

A

k

2

l

Figure P4.3 A rigid bar connected to another mass via a spring

a. Derive the differential equations of motion and obtain the mass

and stiffness matrices.

b. Calculate the natural frequencies and the mode shapes.

c. Find the initial conditions such that the free vibration is sinusoidal

with each natural frequency.

P4.4 Consider the system in Figure P4.4.

k

Box with mass 2m mCylinder with mass

k

Figure P4.4 A cylinder inside a box with spring connections
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a. Derive the differential equations of motion and obtain the mass

and stiffness matrices.

b. Calculate the natural frequencies and the mode shapes.

c. Find the initial conditions such that the free vibration is sinusoidal

with each natural frequency.

P4.5 Obtain and plot free vibration response for the system shown in

Figure P4.1 when m = 1 kg, k = 530 N/m, kc = 130 N/m. Assume that

x1(0) = 0.01 m, ẋ1(0) = 1 m/sec, x2(0) = 0, and ẋ2(0) = 0.

P4.6 Consider the system in Figure P4.6.

k k2

m2 m3

Massless
and
rigid bar

2x1 x

c

Figure P4.6 Massless rigid bar with masses lumped at ends and supported by springs
and a damper

a. Derive the differential equations of motion and obtain mass, stiff-

ness, and damping matrices.

b. Assume that m = 11 kg, k = 4, 511 N/m, and c = 20 N − sec/m.

Determine the damping ratio and the undamped natural frequency

for each mode.

c. Obtain and plot response when x1(0) = 0.01 m, ẋ1(0) = 1 m/sec,

x2(0) = −0.02 m, and ẋ2(0) = 0.

P4.7 A quarter car model of an automobile is shown in Figure P4.7.

The vehicle is traveling with a velocity V on a sinusoidal road surface

with amplitude = 0.011 m and a wavelength of 5.3 m.
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2k

2m

V

Road surface

1m

1k
c

Tire

Suspension
system

Static equilibrium

1x

Static equilibrium

2x

y

Figure P4.7 A quarter car model

a. Derive the differential equations of motion and obtain mass, stiff-

ness, and damping matrices. Also, obtain the forcing vector.

b. Assume that m1 = 1, 010 kg, m2 = 76 kg, k1 = 31, 110 N/m, k2 =
321, 100 N/m, and c = 4, 980 N − sec/m. Determine the damping

ratio and the undamped natural frequency for each mode.

c. Compute the amplitudes and the phases of steady-state responses

when the velocity V = 100 km/h with and without the damper.

d. Plot amplitudes of both masses as a function of the velocity V in

the presence of a damper.

P4.8 A rotor–shaft system (Figure P4.8) consisting of torsional stiff-

ness k1 and mass-moment of inertia J1 is subjected to a sinusoidal

torque with magnitude 1.3 kN-meter. When the excitation frequency

equals 80 Hz, there is a large amount of vibration.
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1k
1J 2J

2k

Vibration absorber
Torque

Figure P4.8 Undamped torsional vibration absorber

Design an undamped vibration absorber with the requirement that

the system will be safe for 20% fluctuation in excitation frequency

around 80 Hz. Determine the amplitude of the absorber rotor J2 at

80 Hz.

P4.9 A rotor–shaft system consisting (Figure P4.9) of torsional stiff-

ness k1 and mass-moment of inertia J1 is subjected to a sinusoidal

torque with magnitude 1.3 kN-meter. When the excitation frequency

equals 80 Hz, there is a large amount of vibration.

1k
1J 2J

2k

Vibration absorber
Torque

c

Figure P4.9 Damped torsional vibration absorber

Design an optimally damped vibration absorber. Determine the

amplitudes of both rotors as a function of excitation frequencies.

P4.10 Determine the response of the two-mass system in Figure P4.10

via modal decomposition when the force f (t) is a step function of

magnitude 5 N and the modal damping ratio in the vibratory mode
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m

)(1 tx

k

)(2 tx

m

)(t f

Figure P4.10 Two masses connected by a spring

is 0.05. Assume that m = 1.5 kg, k = 1, 250 N/m, x1(0) = 0.02 m,

ẋ1(0) = 1 m/sec, x2(0) = −0.01 m, and ẋ2(0) = 0.



5

FINITE AND INFINITE

(CONTINUOUS) DIMENSIONAL

SYSTEMS

This chapter begins with the computation of the natural frequencies

and the mode shapes of a discrete multi-degree-of-freedom (MDOF)

system. It is shown that the natural frequencies and the modal vectors

(mode shapes) are computed as the eigenvalues and the eigenvectors

of a matrix dependent on mass and stiffness matrices. The orthogonal

properties of modal vectors are derived. These orthogonal principles

are the foundation of the modal decomposition technique, which leads

to a significant reduction in the computational effort required to com-

pute the response. Next, the following cases of continuous systems

are considered: transverse vibration of a string, longitudinal vibration

of a bar, torsional vibration of a circular shaft, and transverse vibra-

tion of a beam. These continuous systems have mass continuously dis-

tributed, are infinitely dimensional, and are governed by partial dif-

ferential equations. The method of separation of variables is used and

the natural frequencies and the modal vectors are calculated. Again,

modal decomposition is used to compute the response. Last, the finite

element method is introduced via examples of the longitudinal vibra-

tion of a bar and the transverse vibration of a beam.

5.1 MULTI-DEGREE-OF-FREEDOM SYSTEMS

The differential equations of an MDOF system is written as

Mẍ + Cẋ + Kx = f(t) (5.1.1)

237
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m

k
k

k
m

f 1(t)
f 2(t) f 3(t)

x1(t) x2(t) x3(t)

m

k

c

Figure 5.1.1 Three-degree-of-freedom system

The mass matrix M, the damping matrix C, and the stiffness matrix K

are n × n matrices where n is the number of degrees of freedom. The

force vector f(t) is n-dimensional.

Example 5.1.1: Consider the three-degree-of-freedom system shown

in Figure 5.1.1.

The free body diagram of each mass is shown in Figure 5.1.2. Applying

Newton’s law of motion to each mass, three second-order differential

equations are obtained as follows:

f1(t) − kx1 − k(x1 − x2) − c(ẋ1 − ẋ2) = mẍ1 (5.1.2)

f2(t) − k(x2 − x1) − c(ẋ2 − ẋ1) − k(x2 − x3) = mẍ2 (5.1.3)

f3(t) − k(x3 − x2) − kx3 = mẍ3 (5.1.4)

With the number of degrees of freedom n equal to 3, Equations 5.1.2–

5.1.4 can be put in the matrix form (Equation 5.1.1).

m

kx1

  f1(t) f2(t) f3(t)

x1(t) x2(t) x3(t)

kx3

k(x1 − x2) k(x2 − x1)
k(x3 − x2)

k(x2 − x3)
c(x2 − x1) m&&

c(x1 − x2)&&

m

Figure 5.1.2 Free body diagram for each mass in Figure 5.1.1
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where

x(t) =

⎡
⎢⎣

x1(t)

x2(t)

x3(t)

⎤
⎥⎦ ; f(t) =

⎡
⎢⎣

f1(t)

f2(t)

f3(t)

⎤
⎥⎦ (5.1.5)

M =

⎡
⎢⎣

m 0 0

0 m 0

0 0 m

⎤
⎥⎦ , K =

⎡
⎢⎣

2k −k 0

−k 2k −k

0 −k 2k

⎤
⎥⎦ , and

C =

⎡
⎢⎣

c −c 0

−c c 0

0 0 0

⎤
⎥⎦ (5.1.6)

5.1.1 Natural Frequencies and Modal Vectors (Mode Shapes)

There is a mode shape or a modal vector associated with a natural

frequency. A general method to compute the natural frequencies and

the mode shapes is as follows.

Ignoring damping and external force terms, Equation 5.1.1 can be

written as

Mẍ + Kx = 0 (5.1.7)

Let

x(t) = a sin(ωt + φ) (5.1.8)

where n × 1 vector a, the frequency ω, and the phase φ are to be deter-

mined.

Differentiating Equation 5.1.8 twice with respect to time,

ẍ = −ω2a sin(ωt + φ) (5.1.9)

Substituting Equations 5.1.8 and 5.1.9 into Equation 5.1.7,

(K − ω2M)a = 0 (5.1.10)
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For a nonzero or a nontrivial solution of a,

det(K − ω2M) = 0 (5.1.11)

which will be a polynomial equation of degree n in ω2. Equation 5.1.10

can also be written as

Ka = ω2Ma (5.1.12)

or

M−1Ka = ω2a (5.1.13)

Equation 5.1.13 clearly indicates that ω2 and a are an eigenvalue and

an eigenvector (Strang, 1988) of the matrix M−1K. In addition, Equa-

tion 5.1.12 suggests that ω2 and a are generalized eigenvalues and

eigenvectors of the stiffness matrix K with respect to the mass matrix

M. The MATLAB command for computation of generalized eigen-

values and eigenvectors is eig(K, M). The formulation of the general-

ized eigenvalue/eigenvector problem is convenient for a large number

of degrees of freedom because the inverse of the mass matrix is not

required.

Example 5.1.2: Eigenvalues and Eigenvectors of Three-Mass Chain

From Example 5.1.1, the mass and stiffness matrices are as follows:

M =

⎡
⎢⎣

m 0 0

0 m 0

0 0 m

⎤
⎥⎦ ; K =

⎡
⎢⎣

2k −k 0

−k 2k −k

0 −k 2k

⎤
⎥⎦ (5.1.14a, b)

Therefore,

K − ω2M =

⎡
⎢⎣

2k − ω2m −k 0

−k 2k − ω2m −k

0 −k 2k − ω2m

⎤
⎥⎦ (5.1.15)

From Equation 5.1.15,

det(K − ω2M) = (2k − mω2)[(2k − mω2)2 − 2k2] (5.1.16)
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From Equation 5.1.16, three natural frequencies are as follows:

ω1 =
√

(2 − √
2)k

m
, ω2 =

√
2k
m

, and ω3 =
√

(2 + √
2)k

m
(5.1.17)

Using Equation 5.1.10,

(K − ω2M)a =

⎡
⎢⎣

2k − ω2m −k 0

−k 2k − ω2m −k

0 −k 2k − ω2m

⎤
⎥⎦
⎡
⎢⎣

a1

a2

a3

⎤
⎥⎦ =

⎡
⎢⎣

0

0

0

⎤
⎥⎦

(5.1.18)

I. Modal Vector for ω2 = (2−√
2)k

m

From Equation 5.1.18,⎡
⎢⎣

√
2k −k 0

−k
√

2k −k

0 −k
√

2k

⎤
⎥⎦
⎡
⎢⎣

a1

a2

a3

⎤
⎥⎦ =

⎡
⎢⎣

0

0

0

⎤
⎥⎦ (5.1.19)

Two independent equations are

√
2ka1 − ka2 = 0 and −ka2 +

√
2ka3 = 0 (5.1.20a, b)

Since there are two equations in three unknowns, a1 is arbitrarily cho-

sen to be 1. Then, the solutions of Equations 5.1.20a,b yield a2 = √
2

and a3 = 1. In other words, the modal vector is

a = [ 1
√

2 1 ]T (5.1.21)

II. Modal Vector for ω2 = 2k/m

From Equation 5.1.18,⎡
⎢⎣

0 −k 0

−k 0 −k

0 −k 0

⎤
⎥⎦
⎡
⎢⎣

a1

a2

a3

⎤
⎥⎦ =

⎡
⎢⎣

0

0

0

⎤
⎥⎦ (5.1.22)
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Two independent equations are

ka2 = 0 and −ka1 − ka3 = 0 (5.1.23a, b)

Again, a1 is arbitrarily chosen to be 1. Then, the solutions of Equa-

tions 5.1.23a,b yield a2 = 0 and a3 = −1. In other words, the modal

vector is

a = [ 1 0 −1 ]T (5.1.24)

III. Modal Vector for ω2 = (2+√
2)k

m

From Equation 5.1.18,⎡
⎢⎣

−√
2k −k 0

−k −√
2k −k

0 −k −√
2k

⎤
⎥⎦
⎡
⎢⎣

a1

a2

a3

⎤
⎥⎦ =

⎡
⎢⎣

0

0

0

⎤
⎥⎦ (5.1.25)

Two independent equations are

−
√

2ka1 − ka2 = 0 and −ka2 −
√

2ka3 = 0 (5.1.26a, b)

Again, a1 is arbitrarily chosen to be 1. Then, the solutions of Equa-

tions 5.1.26a,b yield a2 = −√
2 and a3 = 1. In other words, the modal

vector is

a = [ 1 −√
2 1 ]T (5.1.27)

5.1.2 Orthogonality of Eigenvectors for Symmetric Mass

and Symmetric Stiffness Matrices

The orthogonality of eigenvectors is an important property for the

vibration analysis of an MDOF system. The derivation of this property

is as follows.

Let ω2
i and vi be the eigenvalue and eigenvector pair where i =

1, 2, . . . , n. Then,

Kvi = ω2
i Mvi (5.1.28)



Finite and Infinite (Continuous) Dimensional Systems 243

and

Kv j = ω2
j Mv j (5.1.29)

Pre-multiplying both sides of Equation 5.1.28 by vT
j ,

vT
j Kvi = ω2

i vT
j Mvi (5.1.30)

Pre-multiplying both sides of Equation 5.1.29 by vT
i and then taking

the transpose, (
vT

i Kv j
)T = ω2

j

(
vT

i Mv j
)T (5.1.31)

or

vT
j KTvi = ω2

j v
T
j MTvi (5.1.32)

For symmetric mass and symmetric stiffness matrices,

K = KT (5.1.33)

and

M = MT (5.1.34)

Using Equations 5.1.33 and 5.1.34, Equation 5.1.32 yields

vT
j Kvi = ω2

j v
T
j Mvi (5.1.35)

Substituting Equation 5.1.30 into Equation 5.1.35,(
ω2

i − ω2
j

)
vT

j Mvi = 0 (5.1.36)

As a result,

vT
j Mvi = 0 for ωi �= ω j (5.1.37)

From Equations 5.1.30 and 5.1.37,

vT
j Kvi = 0 for ωi �= ω j (5.1.38)

Usually, each eigenvector is scaled such that

vT
i Mvi = 1; i = 1, 2, . . . , n (5.1.39)
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In this case, from Equation 5.1.30,

vT
i Kvi = ω2

i ; i = 1, 2, . . . , n (5.1.40)

Define a modal matrix V as follows:

V = [ v1 v2 · · · vn−1 vn ] (5.1.41)

Then, Equations 5.1.37–5.1.40 are expressed as

VTMV = In (5.1.42)

and

VTKV = � (5.1.43)

where

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ω2
1 0 · · · 0 0

0 ω2
2 · · · 0 0

...
...

. . .
...

...

0 0 · · · ω2
n−1 0

0 0 · · · 0 ω2
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5.1.44)

Note: The derivations (Equations 5.1.42 and 5.1.43) are shown only

for nonrepeated natural frequencies. However, it may be possible to

diagonalize when some of the natural frequencies are repeated.

Example 5.1.3: Orthogonality of Modal Vectors in Three-Mass Chain

Modal vectors in Example 5.1.2 are normalized to satisfy Equa-

tion 5.1.42 as follows:

v1 = 1
2
√

m

⎡
⎢⎣

1√
2

1

⎤
⎥⎦ , v2 = 1√

2m

⎡
⎢⎣

1

0

−1

⎤
⎥⎦ , and v3 = 1

2
√

m

⎡
⎢⎣

1

−√
2

1

⎤
⎥⎦

(5.1.45)
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Therefore, the modal matrix is

V = [ v1 v2 v3 ] = 1

2
√

2m

⎡
⎢⎣

√
2 2

√
2

2 0 −2√
2 −2

√
2

⎤
⎥⎦ (5.1.46)

Hence,

VTKV = 1
8m

⎡
⎢⎣

√
2 2

√
2

2 0 −2√
2 −2

√
2

⎤
⎥⎦
⎡
⎢⎣

2k −k 0

−k 2k −k

0 −k 2k

⎤
⎥⎦
⎡
⎢⎣

√
2 2

√
2

2 0 −2√
2 −2

√
2

⎤
⎥⎦

(5.1.47)

It can be verified that

VTKV = k
m

⎡
⎢⎣

2 − √
2 0 0

0 2 0

0 0 2 + √
2

⎤
⎥⎦ =

⎡
⎢⎣

ω2
1 0 0

0 ω2
2 0

0 0 ω2
3

⎤
⎥⎦ (5.1.48)

5.1.3 Modal Decomposition

In general, the response x(t) is a linear combination of the modal vec-

tors vi ; i = 1, 2, . . . , n, that is,

x(t) = v1 y1(t) + v2 y2(t) + · · · + vn yn(t) (5.1.49)

where yi (t) is the coefficient of the modal vectors vi ; i = 1, 2, . . . , n.

Equation 5.1.49 can be represented in a compact form as follows:

x(t) = Vy(t) (5.1.50)

where the matrix V is defined by Equation 5.1.41 and the vector y(t)

is defined as

y(t) = [ y1 y2 · · · yn−1 yn ]T (5.1.51)

Substituting Equation 5.1.50 into Equation 5.1.1, and pre-multiplying

by VT,

VTMVÿ + VTCVẏ + VTKVy = VTf(t) (5.1.52)



246 Vibration of Mechanical Systems
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Figure 5.1.3 An equivalent undamped SDOF system for each mode

Equations 5.1.52 are often called modal equations as they are in terms

of modal components yi ; i = 1, 2, . . . , n. Matrices VTMV and VTKV

are diagonal, but there is no guarantee that VTCV is diagonal. Two

special cases of damping resulting in decoupled modal equations are

considered as follows.

Case I: Undamped System (C = 0)

Substituting Equations 5.1.42 and 5.1.43 into Equation 5.1.52,

ÿ + �y = VTf(t) (5.1.53)

or

ÿi + ω2
i yi = vT

i f(t); i = 1, 2, . . . , n (5.1.54)

Here, modal equations are decoupled and each modal equation in
Equation 5.1.54 can be viewed as an equivalent undamped single-

degree-of-freedom system subjected to the force vT
i f(t) (Figure 5.1.3).

The quantity vT
i f(t) is also known as the modal force.

Example 5.1.4: Consider the system in Figure 5.1.1 with zero

damping.

Let m = 2 kg and k = 1,000 kg, and

f(t) =

⎡
⎢⎣

1

0.5

2

⎤
⎥⎦ sin 30t N (5.1.55)
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Let the initial displacement and velocity vectors be x(0) =
[0.03 0.02 0.04]T m and ẋ(0) = [3 5 8]T m/sec.

The MATLAB program is listed in Program 5.1. This yields

V =

⎡
⎢⎣

0.3536 −0.5 −0.3536

0.5 0 0.5

0.3536 0.5 −0.3536

⎤
⎥⎦ (5.1.56)

and

� =

⎡
⎢⎣

ω2
1 0 0

0 ω2
2 0

0 0 ω2
3

⎤
⎥⎦ =

⎡
⎢⎣

(17.114)2 0 0

0 (31.6228)2 0

0 0 (41.3171)2

⎤
⎥⎦

(5.1.57)

The conditions in Equations 5.1.42 and 5.1.43 have been verified.

Next,

VTf(t) =

⎡
⎢⎢⎢⎣

vT
1 f(t)

vT
2 f(t)

vT
3 f(t)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎣

1.3107

0.5

−0.8107

⎤
⎥⎦ sin 30t (5.1.58)

Initial conditions are

⎡
⎢⎣

y1(0)

y2(0)

y3(0)

⎤
⎥⎦ = V−1x(0) =

⎡
⎢⎣

0.0695

0.01

−0.0295

⎤
⎥⎦ (5.1.59)

and

⎡
⎢⎣

ẏ1(0)

ẏ2(0)

ẏ3(0)

⎤
⎥⎦ = V−1ẋ(0) =

⎡
⎢⎣

12.7782

5

−2.7782

⎤
⎥⎦ (5.1.60)
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Equation 5.1.54 yields

ÿ1 + (17.114)2 y1 = 1.3107 sin 30t; y1(0) = 0.0695,

ẏ1(0) = 12.7782 (5.1.61a)

ÿ2 + (31.6228)2 y2 = 0.5 sin 30t; y2(0) = 0.01, ẏ2(0) = 5

(5.1.61b)

ÿ3 + (41.3171)2 y3 = −0.8107 sin 30t; y3(0) = −0.0295,

ẏ3(0) = −2.7782 (5.1.61c)

These equations can be easily solved using techniques presented in

Chapter 2, and the response of the MDOF system is then given by

⎡
⎢⎣

x1(t)

x2(t)

x3(t)

⎤
⎥⎦ = V

⎡
⎢⎣

y1(t)

y2(t)

y3(t)

⎤
⎥⎦ (5.1.62)

MATLAB Program 5.1: Modal Vectors and Modal Initial Conditions

%

clear all

close all

%

m=2;
k=1000;
M=[2 0 0;0 2 0;0 0 2];
K=[2∗k -k 0;-k 2∗k -k;0 -k 2∗k];
f=[1 0.5 2]’;

%

[V,D]=eig(K,M);
V’∗f
y0=inv(V)∗[0.03 0.02 0.04]’%initial value of y

dy0=inv(V)∗[3 5 8]’%initial value of dy/dt
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Figure 5.1.4 An equivalent damped SDOF system for each mode

Case II: Proportional or Rayleigh Damping

Assume that the damping matrix has the following form:

C = αM + βK (5.1.63)

where α and β are the constants. This form of damping is known as

Proportional and Rayleigh damping. Substituting Equations 5.1.42,

5.1.43, and 5.1.63 into Equation 5.1.52,

ÿ + (αI + β�)ẏ + �y = VTf(t) (5.1.64)

or

ÿi + (α + βω2
i

)
ẏi + ω2

i yi = vT
i f(t); i = 1, 2, . . . , n (5.1.65)

Again, the modal equations are decoupled and each modal equation

in Equation 5.1.65 can be viewed as an equivalent damped single-

degree-of-freedom system subjected to the modal force vT
i f(t) (Fig-

ure 5.1.4).

Example 5.1.5: Nonproportional Damping

Consider the Example 5.1.1 with c = 5 N-sec/meter. The mass and

stiffness matrices are the same as those in Example 5.1.4. In this

case,

VTCV =

⎡
⎢⎣

0.1072 0.3661 0.6250

0.3661 1.25 2.1339

0.6250 2.1339 3.6428

⎤
⎥⎦ (5.1.66)



250 Vibration of Mechanical Systems

)(x, tw

x dxx +

Zero vibration position

Figure 5.2.1 Transverse vibration of a string

Because VTCV is not diagonal, the damping in the system is not pro-

portional.

5.2 CONTINUOUS SYSTEMS GOVERNED

BY WAVE EQUATIONS

This section deals with the vibration of a string, the longitudinal vibra-

tion of a bar, and the torsional vibration of a circular shaft.

5.2.1 Transverse Vibration of a String

Consider a string (Figure 5.2.1) with tension P, mass per unit length

μ, and external force per unit length f�(x, t). Let w(x, t) be the trans-

verse deflection of the string at a position x and time t. The free

body diagram of a string section with the length dx is shown in

Figure 5.2.2.

P

P

d+dxtxf ),(l

x

w w + dw

x + dx

θθ

θ

Figure 5.2.2 Free body diagram of a string element
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Applying Newton’s second law of motion to the free body diagram in

Figure 5.2.2,

f�(x, t)dx + P sin(θ + dθ) − P sin θ = μdx
∂2w
∂t2

(5.2.1)

where θ is the slope of the function w(x, t), that is,

tan θ = ∂w
∂x

(5.2.2)

For a small θ ,

sin θ ≈ tan θ = ∂w
∂x

(5.2.3)

and

sin(θ + dθ) ≈ tan(θ + dθ) = ∂w
∂x

+ ∂2w
∂x2

dx (5.2.4)

Substituting Equations 5.2.3 and 5.2.4 into Equation 5.2.1,

1
μ

f�(x, t) + χ2 ∂2w
∂x2

= ∂2w
∂t2

(5.2.5)

where

χ =
√

P
μ

(5.2.6)

Equation 5.2.5 is the governing partial differential equation of motion.

Natural Frequencies and Mode Shapes

Natural frequencies and mode shapes are the characteristics of free

vibration. Therefore, the external force term in Equation 5.2.5 is

ignored to obtain

χ2 ∂2w
∂x2

= ∂2w
∂t2

(5.2.7)

The partial differential Equation 5.2.7 is known as the wave equation.

The solution of the partial differential Equation 5.2.7 is repre-

sented as follows:

w(x, t) = X(x)T(t) (5.2.8)
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where X(x) is a function of position x only and T(t) is a function of

time t only. This technique is known as the separation of variables

(Boyce and DiPrima, 2005). Differentiating Equation 5.2.8,

∂2w
∂x2

= d2X
dx2

T (5.2.9)

and

∂2w
∂t2

= X
d2T
dt2

(5.2.10)

Substituting Equations 5.2.9 and 5.2.10 into Equation 5.2.7,

χ2 1
X

d2X
dx2

= 1
T

d2T
dt2

(5.2.11)

Since the left-hand side of Equation 5.2.11 is only a function of x and

the right-hand side of Equation 5.2.11 is only a function of t, they can

be equal only by being a constant. Also, it has been found that this

constant must be a negative number for a physically meaningful solu-

tion. Denoting this negative constant as −ω2,

χ2 1
X

d2X
dx2

= 1
T

d2T
dt2

= −ω2 (5.2.12)

Equation 5.2.12 represent the following two ordinary differential

equations:

d2T
dt2

+ ω2T = 0 (5.2.13)

and

d2X
dx2

+ ω2

χ2
X = 0 (5.2.14)

Both equations have the same form as the differential equation gov-

erning the undamped free vibration of an equivalent single-degree-

of-freedom system in Chapter 1. Therefore, the solution of Equation

5.2.13 is as follows:

T(t) = A1 sin ωt + B1 cos ωt (5.2.15)
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where the constants A1 and B1 depend on the initial position and the

velocity of the string. The form of the solution Equation 5.2.15 clearly

indicates that the constant ω is the natural frequency of vibration.

The solution of Equation 5.2.14 is as follows:

X(x) = A2 sin
(

ω

χ
x
)

+ B2 cos
(

ω

χ
x
)

(5.2.16)

where the constants A2 and B2 depend on the boundary conditions

which also yield natural frequencies and associated mode shapes. As

an example, a string fixed at both ends is considered as follows.

String Fixed at Both Ends Let a string of length � be fixed at both

ends. In this case, the boundary conditions are described as

w(0, t) = 0 for all t (5.2.17)

and

w(�, t) = 0 for all t (5.2.18)

From Equations 5.2.8 and 5.2.17,

X(0) = 0 (5.2.19)

From Equations 5.2.8 and 5.2.18,

X(�) = 0 (5.2.20)

Imposing the conditions (Equations 5.2.19 and 5.2.20) to Equation

5.2.16,

B2 = 0 (5.2.21)

and

X(�) = A2 sin
(

ω

χ
�

)
= 0 (5.2.22)

For a nontrivial solution (A2 �= 0),

sin
(

ω

χ
�

)
= 0 (5.2.23)
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The number of solutions of Equation 5.2.23 is infinite as follows:

ω

χ
� = nπ ; n = 1, 2, 3, . . . , (5.2.24)

Equation 5.2.24 leads to the natural frequencies for the transverse

vibration of the string:

ωn = nπχ

�
= nπ

�

√
P
μ

; n = 1, 2, 3, . . . , (5.2.25)

The number of natural frequencies is infinite as the number of degrees

of freedom of a continuous structure is infinite. Substituting Equations

5.2.21 and 5.2.25 into Equation 5.2.16,

X(x) = A2 sin
(

ωn

χ
x
)

= A2 sin
(

nπ
x
�

)
(5.2.26)

Setting A2 arbitrarily equal to one, the mode shape associated with

the frequency ωn is written as

φn(x) = sin
(

nπ
x
�

)
; n = 1, 2, 3, . . . , (5.2.27)

These mode shapes are shown in Figure 5.2.3.

The mode shapes (Equation 5.2.27) are orthogonal to each other

in the following sense:

�∫
0

φi (x)φ j (x)dx = 0; i �= j (5.2.28)

It should also be noted that

�∫
0

φ2
i (x)dx = �

2
(5.2.29)
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Figure 5.2.3 Mode shapes φn(x) of strings fixed at both ends

Computation of Response

In general, the response can be expressed as a linear combination of

mode shapes, that is,

w(x, t) =
∞∑

n=1

αn(t)φn(x) (5.2.30)

where time-dependent coefficients αn(t) are to be determined.

Differentiating Equation 5.2.30 twice and using Equation 5.2.14,

χ2 ∂2w
∂x2

=
∞∑

n=1

αn(t)χ2 d2φn

dx2
= −

∞∑
n=1

αn(t)ω2
nφn(x) (5.2.31)

Substituting Equation 5.2.31 into the partial differential equation of

motion (Equation 5.2.5),

∞∑
n=1

αn(t)ω2
nφn(x) = −

∞∑
n=1

d2αn

dt2
φn(x) + 1

μ
f�(x, t) (5.2.32)
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Multiplying both sides of Equation 5.2.32 by φ j (x) and integrating

from 0 to �,

∞∑
n=1

αn(t)ω2
n

�∫
0

φn(x)φ j (x)dx = −
∞∑

n=1

d2αn

dt2

�∫
0

φn(x)φ j (x)dx

+ 1
μ

�∫
0

f�(x, t)φ j (x)dx (5.2.33)

Then using the properties in Equations 5.2.28 and 5.2.29,

α j (t)
�

2
ω2

j = −d2α j

dt2

�

2
+ 1

μ

�∫
0

f�(x, t)φ j (x)dx (5.2.34)

or

d2α j

dt2
+ ω2

jα j (t) = 2
μ�

�∫
0

f�(x, t)φ j (x)dx (5.2.35)

Initial conditions are obtained from w(x, 0) and ẇ(x, 0). From Equa-

tion 5.2.30,

w(x, 0) =
∞∑

n=1

αn(0)φn(x) (5.2.36)

ẇ(x, 0) =
∞∑

n=1

α̇n(0)φn(x) (5.2.37)

Using the properties in Equations 5.2.28 and 5.2.29,

α j (0) = 2
�

�∫
0

w(x, 0)φ j (x)dx (5.2.38)

and

α̇ j (0) = 2
�

�∫
0

ẇ(x, 0)φ j (x)dx (5.2.39)
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Figure 5.2.4 Initial displacement of a string

Example 5.2.1: Free Vibration of a String

Consider a string for which the initial displacement is shown in Fig-

ure 5.2.4, which can be analytically expressed as

w(x, 0) = sin
(πx

�

)
+ sin

(
2πx
�

)
(5.2.40)

Assuming that the initial velocity of string ẇ(x, 0) = 0, determine the

free response of the string.

From Equation 5.2.38,

α1(0) = 2
�

�∫
0

[
sin
(πx

�

)
+ sin

(
2πx
�

)]
sin
(πx

�

)
dx = 1 (5.2.41)

α2(0) = 2
�

�∫
0

[
sin
(πx

�

)
+ sin

(
2πx
�

)]
sin
(

2πx
�

)
dx = 1 (5.2.42)

and

α j (0) = 0; j = 3, 4, 5, . . . , (5.2.43)
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Figure 5.2.5 Longitudinal vibration of a bar

From Equation 5.2.39,

α̇ j (0) = 0; j = 1, 2, 3, . . . , (5.2.44)

The solution of Equation 5.2.35 with f�(x, t) = 0 is

α j (t) = cos ω j t; j = 1, 2 (5.2.45)

α j (t) = 0; j = 3, 4, 5, . . . , (5.2.46)

Therefore, from Equation 5.2.30, the response is

w(x, t) = cos(ω1t) sin
(πx

�

)
+ cos(ω2t) sin

(
2πx
�

)
(5.2.47)

5.2.2 Longitudinal Vibration of a Bar

Consider a longitudinal bar shown in Figure 5.2.5 for which u(x, t) is

the axial displacement at a distance x from the left end and at any time

t. The force per unit length along the axial direction is f�(x, t). The free

body diagram of an element of the length dx is shown in Figure 5.2.6,

where P is the force on the element from the part of the bar on the

left of the element. Similarly, P + dP is the force on the element from

the part of the bar that is on the right side of the element.

Applying Newton’s second law of motion to the element in Fig-

ure 5.2.6,

f�(x, t)dx + P + dP − P = ρAdx
∂2u
∂t2

(5.2.48)

where ρ and A are the mass density and the cross-sectional area,

respectively. Note that the mass of the element of length dx is ρAdx.
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P
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u

dxf (x, t)

(x, t)

l

dx

Figure 5.2.6 Free body diagram of an element of length dx

The strain ε (Crandall et al., 1999) at a position x in Figure 5.2.5 is

ε = ∂u
∂x

(5.2.49)

Therefore, the stress σ at a position x in Figure 5.2.5 is

σ = E
∂u
∂x

(5.2.50)

where E is the Young’s modulus of elasticity. Using Equation 5.2.50,

the internal force P at a position x in Figure 5.2.5 is

P = σA = EA
∂u
∂x

(5.2.51)

Differentiating Equation 5.2.51,

dP = EA
∂2u
∂x2

dx (5.2.52)

Substituting Equation 5.2.52 into Equation 5.2.48,

c2 ∂2u
∂x2

+ f�(x, t)
ρA

= ∂2u
∂t2

(5.2.53)

where

c =
√

E
ρ

(5.2.54)

The governing partial differential equation of motion (Equation

5.2.53) is also a wave equation.

Example 5.2.2: Find the natural frequencies and the mode shapes of

a fixed–free longitudinal bar.
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In this case, the boundary conditions are described as

u(0, t) = 0 for all t (5.2.55)

and

du
dx

(�, t) = 0 for all t (5.2.56)

Similar to Equation 5.2.8,

u(x, t) = X(x)T(t) (5.2.57)

The solutions of T(t) and X(x) are given by Equations 5.2.15 and

5.2.16 where χ is replaced by c.

From Equations 5.2.55 and 5.2.57

X(0) = 0 (5.2.58)

From Equations 5.2.56 and 5.2.57,

dX
dx

(�) = 0 (5.2.59)

Imposing the conditions in Equations 5.2.58 and 5.2.59 to Equation

5.2.16,

B2 = 0 (5.2.60)

and

dX
dx

(�) = A2
ω

c
cos
(ω

c
�
)

= 0 (5.2.61)

For a nontrivial solution (A2 �= 0),

cos
(ω

c
�
)

= 0 (5.2.62)

The number of solutions of Equation 5.2.62 is infinite as follows:

ω

c
� = 2n − 1

2
π ; n = 1, 2, 3, . . . , (5.2.63)
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Figure 5.2.7 Mode shapes φn(x) for longitudinal vibration of a bar (fixed-free)

Equation 5.2.63 leads to the natural frequencies for the longitudinal

vibration of a bar:

ωn = (2n − 1)πc
2�

= (2n − 1)π
2�

√
E
ρ

; n = 1, 2, 3, . . . , (5.2.64)

The mode shapes of the longitudinal bar vibration are

φn(x) = sin
(ωn

c
x
)

= sin
(

(2n − 1)π
2�

x
)

(5.2.65)

These mode shapes are plotted in Figure 5.2.7.

5.2.3 Torsional Vibration of a Circular Shaft

Consider a shaft with a circular cross section shown in Figure 5.2.8 for

which θ(x, t) is the angle of twist of a section at a distance x from the

left end and at any time t.

The torque per unit length along the axial direction is n�(x, t).

The free body diagram of an element of the length dx is shown in
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n

x dx

(x, t)

(x, t)

θ
X X

: Torque per unit lengthl

Figure 5.2.8 Torsional vibration of a circular shaft

Figure 5.2.9, where Mt is the torque on the element from the part of

the shaft on the left of the element. Similarly, Mt + dMt is the torque

on the element from the part of the bar that is on the right side of the

element.

Applying Newton’s second law of motion to the element in Fig-

ure 5.2.9,

Mt + dMt + n�(x, t)dx − Mt = I0dx
∂2θ

∂t2
(5.2.66)

where I0 is the mass-moment of inertia per unit length about the axis

XX. It is known (Crandall et al., 1999) that

Mt = GJ
∂θ

∂x
(5.2.67)

where G and J are the Shear modulus of elasticity and the area

moment of inertia of the circular cross section about the axis XX,

tt dMM +tM

dxnl

(x, t)
(x, t) θθ

θ
d+

dx

Figure 5.2.9 Free body diagram of an element of length dx
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Drill

l

n0δ(x − l)

Torque

Figure 5.2.10 A simple model of drill

respectively. From Equation 5.2.67,

dMt = GJ
∂2θ

∂x2
dx (5.2.68)

Substituting Equation 5.2.68 into Equation 5.2.66,

c2 ∂2θ

∂x2
+ n�(x, t)

I0
= ∂2θ

∂t2
(5.2.69)

where

c =
√

GJ
I0

(5.2.70)

The governing differential equation of motion (Equation 5.2.69) is

also a wave equation.

Example 5.2.3: Forced Response of a Circular Drill

Consider a circular drill of length � and diameter d. When the drill

makes a hole on a work surface, it experiences a torque n0 at x = �

(Figure 5.2.10). Assuming that θ(x, 0) = 0, θ̇(x, 0) − 0, and treating

the shaft as fixed–free, determine the response θ(x, t), the angle of

twist of a section at a distance x from the left.

Since the shaft is fixed–free, the natural frequencies and the mode

shapes can be shown to be given by Equations 5.2.64 and 5.2.65,

that is,

ω j = (2 j − 1)πc
2�

= (2 j − 1)π
2�

√
GJ
I0

; j = 1, 2, 3, . . . , (5.2.71)
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And the mode shapes will be

φ j (x) = sin
(ω j

c
x
)

; j = 1, 2, 3, . . . , (5.2.72)

Following Equations 5.2.30 and 5.2.35, the response is given by

θ(x, t) =
∞∑
j=1

α j (t)φ j (x) (5.2.73)

where

d2α j

dt2
+ ω2

jα j (t) = 2
I0�

�∫
0

n�(x, t)φ j (x)dx (5.2.74)

Here,

n�(x, t) = n0δ(x − �) (5.2.75)

where δ(x − �) is the Dirac delta or the unit impulse function. Substi-

tuting Equation 5.2.75 into Equation 5.2.74, and using Equation 3.2.5,

d2α j

dt2
+ ω2

jα j (t) = 2n0φ j (�)
I0�

(5.2.76)

Because θ(x, 0) = 0 and θ̇(x, 0) = 0,

α j (0) = 0 and α̇ j (0) = 0; j = 1, 2, 3, . . . , (5.2.77)

Following the solution procedure in Chapter 2 (Equation 2.1.21),

α j (t) = 2n0φ j (�)

I0�ω
2
j

(1 − cos ω j t); j = 1, 2, 3, . . . , (5.2.78)

From Equations 5.2.73, 5.2.72, and 5.2.78,

θ(x, t) =
∞∑
j=1

2n0φ j (�)

I0�ω
2
j

(1 − cos ω j t) sin
(ω j

c
x
)

(5.2.79)
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x dx

w

(x, t)

(x, t)

fl

Force per unit length

Figure 5.3.1 Transverse vibration of a beam

5.3 CONTINUOUS SYSTEMS: TRANSVERSE

VIBRATION OF A BEAM

5.3.1 Governing Partial Differential Equation of Motion

Consider a beam shown in Figure 5.3.1 for which w(x, t) is the trans-

verse displacement at a distance x from the left end and at any time t.

The force per unit length along the lateral direction is f�(x, t). The free

body diagram of an element of the length dx is shown in Figure 5.3.2,

where V(x, t) and M(x, t) are the shear force and the bending moment,

respectively, on the element from the part of the beam on the left of

the element. Similarly, V(x, t) + dV(x, t) and M(x, t) + dM(x, t) are

the shear force and the bending moment, respectively, on the element

from the part of the beam which is on the right side of the element.

dxfl

V
dVV +

dx

M dMM +

w

2

dx

(x, t)(x, t)

(x, t)

(x, t)(x, t)
(x, t)

(x, t)

(x, t)

Figure 5.3.2 Free body diagram of a beam element
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Applying Newton’s second law of motion to the beam element in

Figure 5.3.2,

−(V + dV) + f�(x, t)dx + V = ρAdx
∂2w
∂t2

(5.3.1)

where ρ and A are the mass density and the cross-sectional area,

respectively.

It is well known (Crandall et al., 1999) that

V = ∂M
∂x

(5.3.2)

Therefore,

dV = ∂2M
∂x2

dx (5.3.3)

Substituting Equation 5.3.3 into Equation 5.3.1,

−∂2M
∂x2

+ f�(x, t) = ρA
∂2w
∂t2

(5.3.4)

From the elementary beam theory (Crandall et al., 1999),

M(x, t) = EIa
∂2w
∂x2

(5.3.5)

where E and Ia are the Young’s modulus of elasticity and the area

moment of inertia of the beam cross section, respectively. Substituting

Equation 5.3.5 into Equation 5.3.4,

EIa
∂4w
∂x4

+ ρA
∂2w
∂t2

= f�(x, t) (5.3.6)

Equation 5.3.6 is the governing partial differential equation of motion.
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5.3.2 Natural Frequencies and Mode Shapes

Setting the external force f�(x, t) = 0, Equation 5.3.6 can be written

as

β2 ∂4w
∂x4

= −∂2w
∂t2

(5.3.7)

where

β2 = EIa

ρA
(5.3.8)

Following the method of separation of variables, assume that

w(x, t) = X(x)T(t) (5.3.9)

where X(x) is a function of x only and T(t) is a function of time t only.

From Equation 5.3.9,

∂4w
∂x4

= d4X
dx4

T (5.3.10)

and

∂2w
∂t2

= X
d2T
dt2

(5.3.11)

Substituting Equation 5.3.10 and 5.3.11 into Equation 5.3.7

−β2 1
X

d4X
dx4

= 1
T

d2T
dt2

(5.3.12)

Since the left-hand side of Equation 5.3.12 is only a function of x and

the right-hand side of Equation 5.3.12 is only a function of t, they can

be equal only by being a constant. Also, it has been found that this

constant must be a negative number for a physically meaningful solu-

tion. Denoting this negative constant as −ω2,

−β2 1
X

d4X
dx4

= 1
T

d2T
dt2

= −ω2 (5.3.13)

From Equation 5.3.13,

d2T
dt2

+ ω2T = 0 (5.3.14)
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The solution of Equation 5.3.14 is

T(t) = A1 sin ωt + B1 cos ωt (5.3.15)

where A1 and B1 are the constants. Equation 5.3.13 also yields

d4X
dx4

− γ 4X = 0 (5.3.16)

where

γ 4 = ω2

β2
(5.3.17)

The solution of Equation 5.3.16 is assumed as

X(x) = Aesx (5.3.18)

Substituting Equation 5.3.18 into Equation 5.3.16,

(s4 − γ 4)Aesx = 0 (5.3.19)

For a nontrivial solution (A �= 0),

s4 − γ 4 = 0 (5.3.20)

or

(s + γ )(s − γ )(s + iγ )(s − iγ ) = 0 (5.3.21)

where i = √−1. The four roots of Equation 5.3.21 are as follows:

s1 = −γ, s2 = γ, s3 = −iγ, and s4 = iγ (5.3.22)

Therefore, the general solution of Equation 5.3.16 is

X(x) = A2e−γ x + B2eγ x + C2e−iγ x + D2eiγ x (5.3.23)

Equation 5.3.23 can also be expressed as

X(x) = A3 cosh γ x + B3 sinh γ x + C3 cos γ x + D3 sin γ x (5.3.24)

Here, the constants A3 and B3 are related to A2 and B2. Also, the

constants C3 and D3 are related to C2 and D2.
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l

w(0, t) = 0

(0, t) = 0M M

w(l, t) = 0

(l, t) = 0

Figure 5.3.3 A simply supported beam

Simply Supported Beam

For a simply supported beam (Figure 5.3.3) of length �, deflections at

both ends are zero, that is,

w(0, t) = 0 and w(�, t) = 0 (5.3.25)

Also, the bending moments at both ends of a simply supported beam

are zero, that is,

M(0, t) = 0 and M(�, t) = 0 (5.3.26)

The boundary conditions in Equations 5.3.25 and 5.3.26 along with the

assumed form of the solution (Equation 5.3.9) and Equation 5.3.5 lead

to the following four conditions on X(x):

X(0) = 0 (5.3.27a)

X(�) = 0 (5.3.27b)

d2X
dx2

(0) = 0 (5.3.27c)

and

d2X
dx2

(�) = 0 (5.3.27d)

From Equations 5.3.27a, 5.3.27c, and 5.3.24,

A3 + C3 = 0 (5.3.28)

A3 − C3 = 0 (5.3.29)
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Equations 5.3.28 and 5.3.29 imply that

A3 = 0 and C3 = 0 (5.3.30a, b)

Applying Equations 5.3.27b and 5.3.27d to Equation 5.3.24,[
sinh γ � sin γ �

sinh γ � − sin γ �

][
B3

D3

]
=
[

0

0

]
(5.3.31)

For a nontrivial solution of Equation 5.3.31,

det

[
sinh γ � sin γ �

sinh γ � − sin γ �

]
= 0 (5.3.32)

The condition in Equation 5.3.32 yields

sin γ � = 0 (5.3.33)

Substituting Equation 5.3.33 into Equation 5.3.31 yields

B3 = 0 (5.3.34)

Because of Equations 5.3.30a,b and 5.3.34, Equation 5.3.24 yields

X(x) = D3 sin γ x (5.3.35)

Equations 5.3.33 and 5.3.35 lead to the natural frequencies and the

mode shapes, respectively. From Equation 5.3.33,

γ � = nπ ; n = 1, 2, 3, . . . , (5.3.36)

From Equations 5.3.17 and 5.3.36, the natural frequencies of a simply

supported beam are

ωn = n2π2β

�2
; n = 1, 2, 3, . . . , (5.3.37)

There are an infinite number of natural frequencies as the num-

ber of degrees of freedom of a continuous structure is infinite. The
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Figure 5.3.4 A cantilever beam

associated mode shapes are obtained from the Equation 5.3.35 by

arbitrarily setting D3 = 1:

φn(x) = sin
(nπx

�

)
; n = 1, 2, 3, . . . , (5.3.38)

Cantilever Beam

For a cantilever beam (Figure 5.3.4) of length �, the deflection and the

slope at the left end is zero, that is,

w(0, t) = 0 and
dw
dx

(0, t) = 0 (5.3.39)

Also, the bending moment and the shear force at the right end of a

cantilever beam are zero, that is,

M(�, t) = 0 and V(�, t) = 0 (5.3.40)

The boundary conditions in Equations 5.3.39 and 5.3.40 along with the

assumed form of solution (Equations 5.3.9) and Equation 5.3.5 lead to

the following four conditions on X(x):

X(0) = 0 (5.3.41a)

dX
dx

(0) = 0 (5.3.41b)

d2X
dx2

(�) = 0 (5.3.41c)

and

d3X
dx3

(�) = 0 (5.3.41d)



272 Vibration of Mechanical Systems

Applying the conditions in Equations 5.3.41a–5.3.41d to Equation

5.3.24,

A3 + C3 = 0 (5.3.42a)

B3 + D3 = 0 (5.3.42b)

A3 cosh γ � + B3 sinh γ � − C3 cos γ � − D3 sin γ � = 0 (5.3.42c)

A3 sinh γ � + B3 cosh γ � + C3 sin γ � − D3 cos γ � = 0 (5.3.42d)

Because of Equations 5.3.42a and 5.3.42b, Equations 5.3.42c and

5.3.42d can be written as[
(cosh γ � + cos γ �) (sinh γ � + sin γ �)

(sinh γ � − sin γ �) (cosh γ � + cos γ �)

][
A3

B3

]
=
[

0

0

]
(5.3.43)

For a nontrivial solution of Equation 5.3.43,

det

[
(cosh γ � + cos γ �) (sinh γ � + sin γ �)

(sinh γ � − sin γ �) (cosh γ � + cos γ �)

]
= 0 (5.3.44)

The condition in Equation 5.3.44 yields

cosh γ � cos γ � = −1 (5.3.45)

And from Equation 5.3.43,

B3

A3
= − (cosh γ � + cos γ �)

(sinh γ � + sin γ �)
(5.3.46)

From Equation 5.3.24,

X(x) = A3[(cosh γ x − cos γ x) + �(sinh γ x − sin γ x)] (5.3.47)

where

� = B3

A3
= − (cosh γ � + cos γ �)

(sinh γ � + sin γ �)
(5.3.48)

There are an infinite number of roots of Equation 5.3.45. The first four

roots of Equation 5.3.45 are

γ1� = 1.875104, γ2� = 4.694091,

γ3� = 7.854757, and γ4� = 10.995541 (5.3.49)
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Figure 5.3.5 Mode shapes φn(x) of a cantilever beam

From Equations 5.3.17 and 5.3.49, the natural frequencies of a can-

tilever beam are

ωn = β

�2
(γn�)2; n = 1, 2, 3, . . . , (5.3.50)

The associated mode shapes are obtained from Equation 5.3.47 by

arbitrarily setting A3 = 1:

φn(x) = (cosh γnx − cos γnx) + �n(sinh γnx − sin γnx) (5.3.51)

where �n is given by Equation 5.3.48 with γ = γn. These mode shapes

are plotted in Figure 5.3.5.

5.3.3 Computation of Response

In general, the response can be expressed as a linear combination of

mode shapes, that is,

w(x, t) =
∞∑

n=1

αn(t)φn(x) (5.3.52)
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where time-dependent coefficients αn(t) are to be determined. Mode

shapes φi (x) and φ j (x) of beams are orthogonal, that is,

�∫
0

φi (x)φ j (x)dx = 0; i �= j (5.3.53)

Differentiating Equation 5.3.52 four times and using Equation 5.3.16,

∂4w
∂x4

=
∞∑

n=1

αn(t)
d4φn

dx4
=

∞∑
n=1

αn(t)
1
β2

ω2
nφn(x) (5.3.54)

From the partial differential equation of motion in Equation 5.3.6,

∞∑
n=1

αn(t)ω2
nφn(x) +

∞∑
n=1

d2αn

dt2
φn(x) = 1

ρA
f�(x, t) (5.3.55)

Multiplying both sides of Equation 5.3.54 by φ j (x), and integrating

from 0 to �,

∞∑
n=1

αn(t)ω2
n

�∫
0

φn(x)φ j (x)dx +
∞∑

n=1

d2αn

dt2

�∫
0

φn(x)φ j (x)dx

= 1
ρA

�∫
0

f�(x, t)φ j (x)dx (5.3.56)

Then using the property in Equation 5.3.53,

α j (t)η jω
2
j + d2α j

dt2
η j = 1

ρA

�∫
0

f�(x, t)φ j (x)dx (5.3.57)

or

d2α j

dt2
+ ω2

jα j (t) = 1
ρAη j

�∫
0

f�(x, t)φ j (x)dx (5.3.58)

where

η j =
�∫

0

φ2
j (x)dx (5.3.59)
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Figure 5.3.6 A cantilever beam subjected to sinusoidal excitation

Initial conditions are obtained from w(x, 0) and ẇ(x, 0). From Equa-

tion 5.3.52,

w(x, 0) =
∞∑

n=1

αn(0)φn(x) (5.3.60)

ẇ(x, 0) =
∞∑

n=1

α̇n(0)φn(x) (5.3.61)

Using the properties in Equations 5.3.53 and 5.3.59,

α j (0) = 1
η j

�∫
0

w(x, 0)φ j (x)dx (5.3.62)

and

α̇ j (0) = 1
η j

�∫
0

ẇ(x, 0)φ j (x)dx (5.3.63)

Example 5.3.1: Response of a Cantilever Beam

Consider a steel cantilever beam of rectangular cross section (Fig-

ure 5.3.6) with the width b = 0.01 m and the thickness h = 0.005 m.

The length � of the beam is 0.8 m. At the tip of the beam, a sinu-

soidal force with magnitude P = 10 N and frequency ω = 100 rad/ sec

is applied. Determine the steady-state response by assuming that the

damping ratio in each mode is 0.02.

For steel, E = 2 × 1011 N/m2 and ρ = 7, 850 kg/m3.

A = bh = 5 × 10−5N/m2 and Ia = 1
12

bh3
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Then,

β =
√

EIa

ρA
= 7.2855

The first four natural frequencies (Equation 5.3.49) are as follows:

ω1 = 40 rad/ sec, ω2 = 250 .8 rad/ sec,

ω3 = 702 .3 rad/ sec, and ω4 = 1376.3 rad/ sec

Here,

f�(x, t) = P sin ωtδ(x − �) (5.3.64)

where δ(x − �) is the Dirac delta or the unit impulse function.

After introducing the damping ratio ξ in each mode, Equation

5.3.58 becomes

d2α j

dt2
+ 2ξω j α̇ j + ω2

jα j (t) = feq( j) sin ωt (5.3.65)

where

feq( j) = Pφ j (�)
ρAη j

(5.3.66)

Using Equation 5.3.59,

η j =
�∫

0

φ2
j (x)dx = �

1∫
0

φ2
j (x̄)dx̄ (5.3.67)

where

x̄ = x
�

(5.3.68)

and

φ j (x̄) = [cosh(γ j�x̄) − cos(γ j�x̄) + � j (sinh(γ j�x̄) − sin(γ j�x̄)]

(5.3.69)

It has been verified numerically that

η j = � (5.3.70)
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Using results in Chapter 2, the steady-state response of Equation

5.3.65 can be written as

α j (t) = � j sin(ωt − θ j ) (5.3.71)

where

� j = feq( j)√(
ω2

j − ω2
)2 + (2ξω jω)2

(5.3.72)

and

θ j = 2ξω jω

ω2
j − ω2

(5.3.73)

From Equation 5.3.52, the steady-state displacement at x = � is given

by

w(�, t) =
n∑

j=1

φ j (�)α j (t) =
n∑

j=1

φ j (�)� j sin(ωt − θ j ) (5.3.74)

After some algebra, Equation 5.3.74 is written as

w(�, t) = B1 sin ωt − B2 cos ωt (5.3.75)

where

B1 =
n∑

j=1

φ j (�)� j cos θ j (5.3.76)

and

B2 =
n∑

j=1

φ j (�)� j sin θ j (5.3.77)

From Equation 5.3.75,

w(�, t) = B sin(ωt − ϕ) (5.3.78)

where

B =
√

B2
1 + B2

2 and tan ϕ = B2

B1
(5.3.79a, b)
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From the MATLAB Program 5.2 with ω = 100 rad/ sec,

B = 0.0155 m and ϕ = 3.1145 rad

MATLAB Program 5.2

%cantilever beam

gamL=[1.875104 4.694091 7.854757 10.995541];%eq.(5.3.49)

E=2e11;%Young’s Modulus of Elasticity (N/mˆ2)

rho=7850;%mass density(kg./mˆ3)

L=0.8;%length of beam(meter)

b=0.01;%meter
h=0.005;%meter
A=b∗h;%cross sectional area

%

P=10;%magnitude of force (Newton)

omega=100;%excitation frequency(rad./sec.)

m=rho∗L∗A;%mass of beam

Ia=b∗hˆ3/12;

beta=sqrt(E∗Ia/(rho∗A));

sumcos=0;
sumsin=0;
for i=1:4
omegan(i)=beta∗gamL(i)ˆ2/Lˆ2;%Natural Frequencies(rad/sec.),eq.(5.3.50)

lamd=-(cosh(gamL(i))+cos(gamL(i)))/(sinh(gamL(i))+sin(gamL(i)));%eq.
%(5.3.48)

ang=gamL(i)∗1;

phiL(i)=(cosh(ang)-cos(ang))+lamd∗(sinh(ang)-sin(ang));

Feq(i)=P∗phiL(i)/(m∗L);%Equivalent force in mode#i

den=sqrt((omegan(i)ˆ2-omegaˆ2)ˆ2+(2∗0.02 ∗omegan(i)∗omega)ˆ2);

Amp(i)=Feq(i)/den;%Amplitude of Response in Mode#i

phase(i)=atan2(2∗0.02∗omegan(i)∗omega,omegan(i)ˆ2-omegaˆ2);%Phase

sumcos=sumcos+phiL(i)∗Amp(i)∗cos(phase(i));%B1

sumsin=sumsin+phiL(i)∗Amp(i)∗sin(phase(i));%B2
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end

%

Ampw=sqrt(sumcosˆ2+sumsinˆ2)%Steady State Amplitude of w(L,t):B

phasew=atan2(sumsin,sumcos)%Steady State Phase of w(L,t)

5.4 FINITE ELEMENT ANALYSIS

The number of degrees of freedom of a continuous system is infi-

nite. For simple geometries, such as those considered in Sections 5.2

and 5.3, the governing partial differential equation of motion can be

solved analytically to determine the natural frequencies, the mode

shapes, and the response of the structure. However, in general, the

analytical solution of a partial differential equation is not possible for

a real structure, for example, a turbine blade. As a result, the struc-

ture is discretized into a finite number of elements and the solution

is obtained numerically. This process is known as the finite element

method, which has been successfully applied to many real engineering

problems. In fact, many commercially available codes, such as ANSYS

and NASTRAN, are routinely used in industries. Here, fundamental

ideas behind the finite element analysis (Petyt, 1990) will be illustrated

via two simple examples: longitudinal vibration of a bar and transverse

vibration of a beam.

5.4.1 Longitudinal Vibration of a Bar

Consider the longitudinal bar shown in Figure 5.2.5 again. This bar

is divided into n elements of equal lengths (Figure 5.4.1), that is, the

length of each element is

�e = �

n
(5.4.1)

Each element has two nodes associated with it. For example, the first

element has nodes 1 and 2, and the last element has nodes n and
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(x, t)u

K KK

x

el el

l

1 2 3 ni
Node n + 1

Node 2

Node 1

Node i + 1

1−n

Element 1 Element n

Figure 5.4.1 Discretization of a longitudinal bar by a finite number of elements

n + 1. In general, the element i will have the node numbers i and i + 1

(Figure 5.4.2).

Each node has one degree of freedom (axial displacement u ). Let

ui (t) be the axial displacement of the node i . Then, a discrete displace-

ment vector u(t) can be defined as

u(t) = [ u1(t) u2(t) · · · un(t) un+1(t) ]T (5.4.2)

Inside each element, the displacement is assumed to be a predefined

function of the axial coordinate ξ . Here, this function will be chosen

as linear. For example, inside the element i ,

u(ξ, t) = a1 + a2ξ ; 0 ≤ ξ ≤ �e (5.4.3)

Note that

At ξ = 0, u(0, t) = ui (t) (5.4.4)

At ξ = �e, u(�e, t) = ui+1(t) (5.4.5)

iu
1+iu

el

u

0= el=

Element i(ξ, t)

ξ ξ

Figure 5.4.2 An element of a longitudinal bar
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Substituting Equations 5.4.4 and 5.4.5 into Equation 5.4.3,

a1 = ui (5.4.6)

and

a2 = ui+1 − ui

�e
(5.4.7)

Substituting Equations 5.4.6 and 5.4.7 into Equation 5.4.3,

u(ξ, t) =
(

1 − ξ

�e

)
ui (t) + ξ

�e
ui+1(t) (5.4.8)

Differentiating Equation 5.4.8 with respect to ξ ,

∂u
∂ξ

= − 1
�e

ui (t) + 1
�e

ui+1(t) (5.4.9)

Equation 5.4.9 can be expressed as

∂u
∂ξ

= κTvi (t) (5.4.10)

where

vi (t) =
[

ui (t)

ui+1(t)

]
(5.4.11)

and

κT =
[

− 1
�e

1
�e

]
(5.4.12)

Differentiating Equation 5.4.8 with respect to time,

∂u
∂t

=
(

1 − ξ

�e

)
u̇i (t) + ξ

�e
u̇i+1(t) (5.4.13)

Equation 5.4.13 can be expressed as

∂u
∂t

= nT(ξ)v̇i (t) (5.4.14)

where

v̇i (t) =
[

u̇i (t)

u̇i+1(t)

]
(5.4.15)
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and

nT(ξ) =
[(

1 − ξ

�e

)
ξ

�e

]
(5.4.16)

The kinetic energy of the element i is written as

Ti =
�e∫

0

ρA
(

∂u
∂t

)2

dξ = ρAv̇T
i

⎡
⎣ �e∫

0

n(ξ)nT(ξ)dξ

⎤
⎦ v̇i (5.4.17)

where ρ is the mass density of the material and

�e∫
0

n(ξ)nT(ξ)dx =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�e∫
0

(
1 − ξ

�e

)2

dξ

�e∫
0

(
1 − ξ

�e

)
ξ

�e
dξ

�e∫
0

(
1 − ξ

�e

)
ξ

�e
dξ

�e∫
0

( ξ

�e

)2
dξ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= �e

6

[
2 1

1 2

]

(5.4.18)

Substituting Equation 5.4.18 into Equation 5.4.17,

Ti = 1
2

v̇T
i Mev̇i (5.4.19)

where Me is the mass matrix of the element defined as follows:

Me = ρA�e

3

[
2 1

1 2

]
(5.4.20)

Using Equation 5.4.10, the potential energy of the element i is written

as

Pi = EA

�e∫
0

(
∂u
∂ξ

)2

dξ = EA

�e∫
0

(
∂u
∂ξ

)T (
∂u
∂ξ

)
dξ

= EAvT
i

⎡
⎣ �e∫

0

κκTdξ

⎤
⎦ vi (5.4.21)
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⎥
⎦

⎤
⎢
⎣

⎡=Φ
001000

000100

LL

LL
i

Column i

Column (i + 1)

Figure 5.4.3 Matrix connecting vi to u

where E and A are the Young’s modulus of elasticity and the cross-

sectional area of the element, respectively. Furthermore,

�e∫
0

κκTdξ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�e∫
0

1
�2

e
dξ −

�e∫
0

1
�2

e
dξ

−
�e∫

0

1
�2

e
dξ

�e∫
0

1
�2

e
dξ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= 1
�e

[
1 −1

−1 1

]
(5.4.22)

Substituting Equation 5.4.22 into Equation 5.4.21,

Pi = 1
2

vT
i Kevi (5.4.23)

where Ke is the stiffness matrix of the element defined as

Ke = 2EA
�

[
1 −1

−1 1

]
(5.4.24)

Total Kinetic and Potential Energies of the Bar

From Equation 5.4.11,

vi (t) = �i u(t) (5.4.25)

where �i is a 2 × (n + 1) matrix defined in Figure 5.4.3. The kinetic

and potential energies of the element i are defined as

Ti = 1
2

u̇T�T
i Me�i u̇(t) (5.4.26)

Pi = 1
2

uT�T
i Ke�i u(t) (5.4.27)
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The total kinetic energy of the bar is obtained by summing the kinetic

energy of each element:

T =
n∑

i=1

Ti = 1
2

u̇TMtu̇(t) (5.4.28)

where Mt is the mass matrix defined as

Mt =
n∑

i=1

�T
i Me�i (5.4.29)

The total potential energy of the bar is obtained by summing the

potential energy of each element:

P =
n∑

i=1

Pi = 1
2

uTKtu(t) (5.4.30)

where Kt is the stiffness matrix defined as

Kt =
n∑

i=1

�T
i Ke�i (5.4.31)

The differential equations of motion will then be

Mtü(t) + Ktu(t) = 0 (5.4.32)

It should be noted that Equation 5.4.32 refers to a free–free bar, as

there is no constraint imposed on any nodal displacement.

Example 5.4.1: Natural Frequencies of a Free–Free Bar

Consider a free–free steel bar with length = 0.04 m and cross-sectional

area = 4 × 10−4 m2. Determine the first five natural frequencies using

5, 10, and 15 elements, and compare them to the theoretical frequen-

cies obtained in Section 5.2.
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Solution

The MATLAB program 5.3 is used. Results are as follows:

First five theoretical frequencies:

[ 0 0.4075 0.8150 1.2226 1.6301 ] × 106 rad/ sec

First five natural frequencies from finite element analysis:

Number of elements = 5,

[ 0 0.4143 0.8691 1.3978 1.9580 ] × 106 rad/ sec

Number of elements = 10,

[ 0 0.4092 0.8285 1.2682 1.7382 ] × 106 rad/sec

Number of elements = 15,

[ 0 0.4083 0.8210 1.2428 1.6781 ] × 106 rad/sec

As the number of elements increases, the natural frequencies con-

verge to their theoretical values.

MATLAB Program 5.3: Finite Element Analysis of a Longitudinal

Bar

clear all

close all

%Free-Free Longitudinal Bar Vibration

betal2_ff=[22.4 61.7 121];

nel=10%number of elements

E=210e9;%Young’s Modulus of Elasticity (N/mˆ2)

rho=7.8e3;%mass density (kg./mˆ3)

lt=4e-2;%Length of Beam (Meter)

Area=4e-4%Cross Sectional Area (mˆ2)

l=lt/nel;%Element Length (Meter)

ndof=nel+1;%number of degrees of freedom

sum_K=zeros(ndof,ndof);
sum_M=zeros(ndof,ndof);
P=zeros(2,ndof);
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Figure 5.4.4 Discretization of a beam by a finite number of elements

P(1:2,1:2)=eye(2);
for i=1:nel

if (i>1)

P=zeros(2,ndof);
P(1:2,i:i+1)=eye(2);
end

Ke=(2∗E∗Area/l)∗[1 -1;-1 1];

Me=(rho∗Area∗l/3)∗[2 1;1 2];

sum_K=sum_K+P’∗Ke∗P;% eq.(5.4.31)

sum_M=sum_M+P’∗Me∗P;%eq.(5.4.29)

end

K=sum_K;
M=sum_M;
%

%Free-Free

%

ogff_th=sqrt(E/rho)∗pi/lt∗[1 2 3 4 5]%Theoretical Natural Frequencies

%

[V_ff,D_ff]=eig(K,M);
ogff_fem=sqrt(diag(D_ff))%Natural Frequencies from FEM

%

5.4.2 Transverse Vibration of a Beam

Consider the beam shown in Figure 5.3.1 again. This beam is divided

into n elements of equal lengths (Figure 5.4.4), that is, the length of
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w
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(t) (t)
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(ξ, t)

ξ

θθ

ξ

Figure 5.4.5 An element of a beam

each element is

�e = �

n
(5.4.33)

Each element has two nodes associated with it. For example, the first

element has nodes 1 and 2, and the last element has nodes n and

n + 1. In general, the element i will have the node numbers i and

i + 1 (Figure 5.4.5).

Each node has two degrees of freedom (transverse displacement w

and the slope ∂w
∂x ). Let wi (t) and θi (t) be the transverse displacement

and the slope at the node i . Then, a discrete displacement vector u(t)

can be defined as

u(t) = [ w1 w2 · · · wn wn+1 θ1 θ2 · · · θn θn+1 ]T (5.4.34)

Inside each element, the transverse displacement is assumed to be a

predefined function of the axial coordinate ξ . Here, this function will

be chosen as a cubic polynomial. For example, inside the element i,

w(ξ, t) = a1(t) + a2(t)ξ + a3(t)ξ 2 + a4(t)ξ 3 (5.4.35)

Differentiating Equation 5.4.35 with respect to ξ ,

∂w
∂ξ

(ξ, t) = a2 + 2a3ξ + 3a4ξ
2 (5.4.36)
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Note that

At ξ = 0, w(0, t) = wi (t),
∂w
∂ξ

(0, t) = θi (5.4.37)

At ξ = �e, w(�e, t) = wi+1(t),
∂w
∂ξ

(�e, t) = θi+1 (5.4.38)

Substituting Equations 5.4.37 and 5.4.38 into Equations 5.4.35 and

5.4.36,

w(0, t) = a1 = wi (t) (5.4.39a)

∂w
∂ξ

(0, t) = a2 = θi (t) (5.4.39b)

w(�e, t) = a1 + a2�e + a3�
2
e + a4�

3
e = wi+1(t) (5.4.39c)

∂w
∂ξ

(�e, t) = a2 + 2a3�e + 3a4�
2
e = θi+1(t) (5.4.39d)

The solutions of Equations 5.4.39a–5.4.39d yield the coefficients a1,

a2, a3, and a4:

a(t) = �qi (t) (5.4.40)

where

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 0 1 0

− 3
�2

e

3
�2

e
− 2

�e
− 1

�e

2
�3

e
− 2

�3
e

1
�2

e

1
�2

e

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.4.41)

aT(t) = [ a1(t) a2(t) a3(t) a4(t) ] (5.4.42)

qT
i (t) = [ wi (t) wi+1(t) θi (t) θi+1(t) ] (5.4.43)
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From Equations 5.4.35, 5.4.40, and 5.4.41,

w(ξ, t) = [ 1 ξ ξ 2 ξ 3 ] a(t) = [ 1 ξ ξ 2 ξ 3 ]�qi (t) = nT(ξ)qi (t)

(5.4.44)

where

n(ξ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 3
�2

e
ξ 2 + 2

�3
e
ξ 3

3
�2

e
ξ 2 − 2

�3
e
ξ 3

ξ − 2
�e

ξ 2 + 1
�2

e
ξ 3

−ξ 2

�e
+ ξ 3

�2
e

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.4.45)

The kinetic energy of the element i is written as

Ti = 1
2

�e∫
0

ρA
(

∂w
∂t

)2

dξ (5.4.46)

where ρ and A are the mass density of the material and the cross-

sectional area of the beam, respectively. Differentiating Equation

5.4.44 with respect to time,

∂w
∂t

= nT(ξ)q̇i (5.4.47)

Therefore,

(
∂w
∂t

)2

=
(

∂w
∂t

)T
∂w
∂t

= q̇T
i n(ξ)nT(ξ)q̇i (5.4.48)

Substituting Equation 5.4.48 into Equation 5.4.46,

Ti = 1
2

q̇T
i Meq̇i (5.4.49)
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where Me is the mass matrix of the element defined as follows:

Me = ρA

⎡
⎣ �e∫

0

n(ξ)nT(ξ)dξ

⎤
⎦ (5.4.50)

Using Equation 5.4.45,

�e∫
0

n(ξ)nT(ξ)dξ = �e

420

⎡
⎢⎢⎢⎢⎣

156 54 22�e −13�e

54 156 13�e −22�e

22�e 13�e 4�2
e −3�2

e

−13�e −22�e −3�2
e 4�2

e

⎤
⎥⎥⎥⎥⎦ (5.4.51)

Therefore, the mass matrix of the beam element is

Me = ρA�e

420

⎡
⎢⎢⎢⎢⎣

156 54 22�e −13�e

54 156 13�e −22�e

22�e 13�e 4�2
e −3�2

e

−13�e −22�e −3�2
e 4�2

e

⎤
⎥⎥⎥⎥⎦ (5.4.52)

The potential energy of the element i is written as

Pi = 1
2

EI

�e∫
0

(
∂2w
∂ξ 2

)2

dξ (5.4.53)

From Equation 5.4.44,

∂2w
∂ξ 2

=
(

∂2n(ξ)
∂ξ 2

)T

qi (t) (5.4.54)

where

∂2n(ξ)
∂ξ 2

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 6
�2

e
+ 12

�3
e
ξ

6
�2

e
− 12

�3
e
ξ

− 4
�e

+ 6
�2

e
ξ

− 2
�e

+ 6
�2

e
ξ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.4.55)
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From Equation 5.4.54,

(
∂2w
∂ξ 2

)2

=
(

∂2w
∂ξ 2

)T (
∂2w
∂ξ 2

)
= qT

i (t)
(

∂2n(ξ)
∂ξ 2

)(
∂2n(ξ)

∂ξ 2

)T

qi (t)

(5.4.56)

Using Equation 5.4.55,

�e∫
0

(
∂2n(ξ)

∂ξ 2

)(
∂2n(ξ)

∂ξ 2

)T

dξ = 1
�3

e

⎡
⎢⎢⎢⎢⎣

12 −12 6�e 6�e

−12 12 −6�e −6�e

6�e −6�e 4�2
e 2�2

e

6�e −6�e 2�2
e 4�2

e

⎤
⎥⎥⎥⎥⎦

(5.4.57)

Substituting Equation 5.4.56 into Equation 5.4.53,

Pi = 1
2

qT
i (t)Keqi (t) (5.4.58)

where Ke is the element stiffness matrix defined as

Ke = EI

�e∫
0

(
∂2n(ξ)

∂ξ 2

)(
∂2n(ξ)

∂ξ 2

)T

dξ (5.4.59)

Substituting Equation 5.4.57 into Equation 5.4.59,

Ke = EI
�3

e

⎡
⎢⎢⎢⎢⎣

12 −12 6�e 6�e

−12 12 −6�e −6�e

6�e −6�e 4�2
e 2�2

e

6�e −6�e 2�2
e 4�2

e

⎤
⎥⎥⎥⎥⎦ (5.4.60)

Total Kinetic and Potential Energies of the Beam

qi (t) = �i u(t) (5.4.61)

where �i is a 4 × (2n + 2) matrix defined in Figure 5.4.6. The kinetic

and potential energies of the element i are defined as

Ti = 1
2

u̇T�T
i Me�i u̇(t) (5.4.62)

Pi = 1
2

uT�T
i Ke�i u(t) (5.4.63)
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Figure 5.4.6 Matrix connecting qi to u

The total kinetic energy of the beam is obtained by summing the

kinetic energy of each element:

T =
n∑

i=1

Ti = 1
2

u̇TMtu̇(t) (5.4.64)

where Mt is the mass matrix defined as

Mt =
n∑

i=1

�T
i Me�i (5.4.65)

The total potential energy of the beam is obtained by summing the

potential energy of each element:

P =
n∑

i=1

Pi = 1
2

uTKtu(t) (5.4.66)

where Kt is the stiffness matrix defined as

Kt =
n∑

i=1

�T
i Ke�i (5.4.67)

The differential equations of motion will then be

Mtü(t) + Ktu(t) = 0 (5.4.68)

It should be noted that Equation 5.4.68 refers to a free–free beam, as

there is no constraint imposed on any nodal displacement or slope.
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Example 5.4.2: Natural Frequencies of a Cantilever Beam

Consider a cantilever steel beam with length = 0.04 m, cross-sectional

area = 4 × 10−4 m2, and area moment of inertia = 10−8

3 m4. Determine

the first four natural frequencies using 5, 10, and 15 elements, and

compare them to the theoretical frequencies derived in Section 5.3.

Solution

The MATLAB Program 5.4 is used. Results are as follows:

First Four Theoretical Frequencies:

[ 0.0329 0.2063 0.5775 1.1317 ] × 106 rad/ sec

First Four Natural Frequencies from finite element analysis:

Number of elements = 5,

[ 0.0329 0.2064 0.5797 1.1451 ] × 106 rad/sec

Number of elements = 10,

[ 0.0329 0.2063 0.5777 1.1329 ] × 106 rad/sec

Number of elements = 15,

[ 0.0329 0.2063 0.5776 1.1321 ] × 106 rad/sec

As the number of elements increases, the natural frequencies con-

verge to their theoretical values.

MATLAB Program 5.4: Finite Element Analysis of Beam Vibration

clear all

close all

%Free-Free and Cantilever Beam

betal2_ff=[4.730 7.853 10.995 14.137].ˆ2;

betal2_cant=[1.875 4.694 7.854 10.995].ˆ2;
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nel=2%number of elements

E=210e9;%Young’s Modulus of Elasticity (N/mˆ2)

rho=7.8e3;%mass density (kg./mˆ3)

I=1e-8/3;%Area Moment of inertia (mˆ4)

lt=4e-2;%Length of Beam (Meter)

Area=4e-4%Cross Sectional Area (mˆ2)

l=lt/nel;%Element Length (Meter)

ndof=2∗(nel-1)+4;
sum_K=zeros(ndof,ndof);
sum_M=zeros(ndof,ndof);
P=zeros(4,ndof);
P(1:4,1:4)=eye(4);
for i=1:nel

if (i>1)

P=zeros(4,ndof);
P(1:4,2∗(i-1)+1:2∗(i-1)+4)=eye(4);
end

Ke=(E∗I/(lˆ3))∗[12 6∗l -12 6∗l; 6∗l 4∗l∗l -6∗l 2∗l∗l;...

-12 -6∗l 12 -6∗l;6∗l 2∗l∗l -6∗l 4∗l∗l];

Me=(rho∗Area∗l/420)∗[156 22∗l 54 -13∗l;22∗l 4∗l∗l 13∗l -3∗l∗l;...

54 13∗l 156 -22∗l;-13∗l -3∗l∗l -22∗l 4∗l∗l];

sum_K=sum_K+P’∗Ke∗P;

sum_M=sum_M+P’∗Me∗P;

end

K=sum_K;
M=sum_M;
%

%Free-Free

%

ogff_th=sqrt((E∗I/(rho∗Area∗ltˆ4)))∗betal2_ff

%

[V_ff,D_ff]=eig(K,M);
ogff_fem=sqrt(diag(D_ff));
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%

%Cantilever

%

ogcant_th=sqrt((E∗I/(rho∗Area∗ltˆ4)))∗betal2_cant

%

K_cant=K(3:ndof,3:ndof);
M_cant=M(3:ndof,3:ndof);
[V_cant,D_cant]=eig(K_cant,M_cant);
ogcant_fem=sqrt(diag(D_cant));
ogcant_fem(1:4)

EXERCISE PROBLEMS

P5.1 Consider the model of a bladed disk (Sinha, 1986) shown in

Figure P5.1 where each blade is represented by a single mass. Fur-

thermore, it should be noted that i + 1 = 1 when i = N and i − 1 = N

when i = 1, where N is the number of blades. Model parameters are

as follows: mt = 0.0114 kg, kt = 430,000 N/m, and Kc = 45,430 N/m.

KccK
Kc

kt kt kt

mt mt mt

xixi−1 xi+1

Figure P5.1 A bladed disk model with one mass per blade sector

a. Compute the natural frequencies and the mode shapes when

N = 3. Examine the orthogonality of the mode shapes.

b. Compute the natural frequencies and the mode shapes when

N = 10. Examine the orthogonality of the mode shapes.
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P5.2 Consider the model of a turbine blade (Griffin and Hoosac,

1984) shown in Figure P5.2. Model parameters (SI units) are as

follows: m1 = 0.0114, m2 = 0.0427, m3 = 0.0299, k1 = 430,300, k2 =
17,350,000, and k3 = 7,521,000.

a. Compute the natural frequencies and the mode shapes. Examine

the orthogonality of the mode shapes.

b. Let f (t) = sin ωt, where ω is the excitation frequency. Using modal

decomposition, find the amplitude and the phase of each mass as

a function of the excitation frequencies near the first natural fre-

quency. Assume the modal damping ratio to be 0.01.

m1

m2

m3

k1

k2

k3

(t) f

x1

x2

x3

Figure P5.2 A bladed disk model with three masses per blade sector

P5.3 Consider the half car model in Figure P5.3. The vehicle is trav-

eling with a velocity V on a sinusoidal road surface with an amplitude

of 0.011 m and a wavelength of 5.3 m.

Parameters of the system are as follows: �1 = 1.35 m, �2 =
1.05 m, Ic = 1,556 kg-m2, m1 = 1,010 kg, m2 = 38 kg, k1 = 31,110 N/m,

k2 = 41,310 N/m, k3 = 321,100 N/m, c1 = 3,980 N-sec/m, and c2 =
4,980 N-sec/m.
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k3

m2

V

Road surface

k1
c1

Tire

Suspension
system

x1

x3

y1

k3

m2

k2
c2

Tire

Suspension
system

x4

y2

x2

Center
of mass, C

l1 l2

Icm1,

Figure P5.3 A half-car model

a. Compute the natural frequencies and the mode shapes.

b. Compute the modal damping ratios.

c. Find the critical speed of the vehicle. At the lowest critical speed,

compute the steady-state response.

P5.4 The steel wire of length 0.9 m and cross-sectional area of 1.3 mm

is fixed at both ends in a musical instrument. The tension in the string

is 220 N. A musician plucks the string while adjusting the lengths of

the strings in the following sequence: 0.5, 0.7, and 0.9 m. Compute the

sequence of the fundamental frequencies of the sound generated by

the instrument.

P5.5 Find the natural frequencies and the mode shapes of a fixed–

fixed longitudinal bar.

P5.6 Find the natural frequencies and the mode shapes of a fixed–

fixed torsional shaft.
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P5.7 Find the natural frequencies and the mode shapes of a cantilever

beam attached to a spring at its end (Figure P5.7).

k

E, Ia, ρ, A, l

Figure P5.7 A cantilever beam attached to a spring

P5.8 A sinusoidal force is applied at the midpoint of a fixed–fixed

elastic beam. Determine the response of the system using zero initial

conditions.

f sin ωt 0

E, Ia, ρ, A, l

Figure P5.8 A fixed–fixed beam excited by a sinusoidal force

P5.9 Consider a fixed–fixed steel bar with the length = 0.1 m and the

cross-sectional area = 4 × 10−4 m2. Using the finite element method,

determine the first three natural frequencies and compare them to the

theoretical values.

P5.10 Consider a fixed–fixed steel beam with the length = 0.1 m, the

cross-sectional area = 4 × 10−4 m2 and the area moment of inertia =
0.5 × 10−8 m4. Using the finite element method, determine the first

three natural frequencies and compare them to the theoretical values.



APPENDIX A

EQUIVALENT STIFFNESSES

(SPRING CONSTANTS) OF BEAMS,

TORSIONAL SHAFT, AND

LONGITUDINAL BAR

In this Appendix, equivalent stiffnesses of beams, a torsional shaft,

and a longitudinal bar are presented. Derivations of these stiffnesses

are based on static deflection of a structure.

A.1 FIXED–FIXED BEAM

aIE,

Force F

a

x
Deflection, δ(x)

b

a + b = l

keq(x) = F
δ(x)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

6EIa�
3

x2b2(3a� − x(3a + b))
; 0 ≤ x ≤ a

6EIa�
3

(� − x)2a2(3b� − (� − x)(3b + a))
; a ≤ x ≤ �

(A.1)

keq(x) : Equivalent stiffness at a distance x from left end

E : Young’s modulus of elasticity

Ia : Area moment of inertia
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A.2 SIMPLY SUPPORTED BEAM

aIE,

Force F

a

x

b

a + b = lDeflection, δ(x)

keq(x) = F
δ(x)

=

⎧⎪⎪⎨
⎪⎪⎩

6EIa�

xb(�2 − x2 − b2)
; 0 ≤ x ≤ a

6EIa�

(� − x)a(2�x − x2 − a2)
; a ≤ x ≤ �

(A.2)

A.3 CANTILEVER BEAM

aIE,

a

x

b

a + b = l 

Force F

Deflection, δ(x)

keq(x) = F
δ(x)

=

⎧⎪⎪⎨
⎪⎪⎩

6EIa

x2(3a − x)
; 0 ≤ x ≤ a

6EIa

a2(3x − a)
; a ≤ x ≤ �

(A.3)

A.4 SHAFT UNDER TORSION

l
Outer dia. = d2

Inner dia. = d1

keq = πG(d4
2 − d4

1 )
32�

; G : Shear modulus of elasticity (A.4)
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A.5 ELASTIC BAR UNDER AXIAL LOAD

l

keq = EA
�

; A: Cross-sectional area (A.5)



APPENDIX B

SOME MATHEMATICAL

FORMULAE

B.1 TRIGONOMETRIC IDENTITY

sin(−x) = − sin x

cos(−x) = cos x

sin(x ± y) = sin x cos y ± cos x sin y

cos(x ± y) = cos x cos y ∓ sin x sin y

sin x + sin y = 2 sin
(

x + y
2

)
cos
(

x − y
2

)

sin x − sin y = 2 cos
(

x + y
2

)
sin
(

x − y
2

)

cos x + cos y = 2 cos
(

x + y
2

)
cos
(

x − y
2

)

cos x − cos y = −2 sin
(

x + y
2

)
sin
(

x − y
2

)

tan(x ± y) = tan x ± tan y
1 ∓ tan x tan y

e jx = cos x + j sin x; j =
√

−1

sinh γ x = eγ x − e−γ x

2

cosh γ x = eγ x + e−γ x

2
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sin γ x = e jγ x − e− jγ x

2 j
; j =

√
−1

cos γ x = e jγ x + e− jγ x

2
; j =

√
−1

cosh2 x − sinh2 x = 1

B.2 POWER SERIES EXPANSION

ex = 1 + x + x2

2!
+ x3

3!
+ · · ·

sin x = x − x3

3!
+ x5

5!
− x7

7!
+ · · · ; x in radians

cos x = 1 − x2

2!
+ x4

4!
− x6

6!
+ · · · ; x in radians

B.3 BINOMIAL EXPANSION

(1 − x)−p = 1 + px + 1
2

p(p + 1)x2 + · · · ; |x| < 1
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LAPLACE TRANSFORM TABLE

f (t) f (s)

δ(t); unit impulse function 1

us(t); unit step function
1
s

tn−1

(n − 1)!
us(t); n = 1, 2, 3, . . . ,

1
sn

e−atus(t)
1

s + a

tn−1e−at

(n − 1)!
us(t); n = 1, 2, 3, . . . ,

1
(s + a)n

sin(at)us(t)
a

s2 + a2

cos(at)us(t)
s

s2 + a2

1
ωd

e−ξωnt sin ωd t us(t) ωd = ωn

√
1 − ξ 2

1
s2 + 2ξωns + ω2

n

− ωn

ωd
e−ξωnt sin(ωd t − φ1)us(t); ωd = ωn

√
1 − ξ 2

s
s2 + 2ξωns + ω2

n[
1 − ωn

ωd
e−ξωnt sin(ωd t + φ1)

]
us(t)

ω2
n

s(s2 + 2ξωns + ω2
n)

ωd = ωn

√
1 − ξ 2; φ1 cos−1 ξ ; ξ < 1
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Absorber, 224–226
Absorber, optimal, 224–225
Acceleration, 110, 115–116, 121–122
Acceleration amplitude, 122
Accelerometer, 122, 125, 126–127, 136
Accelerometer design, 125–127
Aerodynamic, 61–62
Aerodynamic forces, 61–62
Amplitude, 37, 44, 53–54, 55–57, 68, 72
Amplitude, maximum, 68, 112
Amplitude, peak, 113

Bandwidth, 106, 107, 108–109
Base excitation, 116–117, 119, 174–175,

183
Beam, 273, 285–286, 291
Beam, fixed-fixed, 298–300
Beam rigid, 4

Cantilever Beam, 3, 64, 271, 273, 275,
298, 300

Convolution Integral, 160–161, 162, 165,
170, 175, 182–183

Critically Damped System, 46–49, 159

Damped spring–mass system, 57, 70
Damper, 10, 22–23, 49, 129

pure rotational motion, 5–6, 11–12
pure translational motion, 5, 10–11

Differential equation of motion, 3, 25–34

Eigenvalue/Eigenvector, 197–198, 205,
240

Equivalent Mass Constants, 12–13

Equivalent Stiffness Constants, 12, 14, 17,
19, 21, 34, 60–61, 64–65, 299–301

Equivalent Damping Constants, 12–13,
23, 25, 60–61

Finite dimensional systems, 237–251
Finite element analysis, 279, 295
Force Transmissibility, 101–105
Fourier Series Expansion, 138–139,

144–148, 151, 179
Free vibration, 25–40
Frequency Response Function, 138, 173,

176–178

Infinite dimensional systems, 237–291

LaPlace Transformation, 168–178, 184
Logarithmic Decrement, 51, 53–55, 57
Longitudinal Vibration, 15, 237, 250,

258–261, 279

Mass, 5–8
Mass moment of inertia, 5–8, 20, 31, 50,

60, 65, 79, 189, 234–235, 262
Matrices, 187, 189–191, 194–195, 201–203,

231–234, 237–238, 240, 246
Modal decomposition, 227, 229, 235, 237,

245–250, 296
Mode shapes, 15, 192, 194, 196, 198,

231–232, 261, 273–274, 279, 295–296
Motion

planar, 6–8
pure rotation, 5–6, 8–9–11
pure translation, 5–6, 8–10
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Natural Frequencies, 194, 196, 239, 251,
267, 284, 293

Non-viscous energy dissipation, 72,
128–131

Orthogonality, 140–141, 242, 244,
295–296

Overdamped System, 47–49, 111, 119,
159–160, 182–183

Particular integral, 84–85, 95, 97, 139,
151–153, 161, 201

Periodic force, 138, 149, 151, 179
Periodic function, 179
Planar motion, 7

Quality (Q) factor, 106

Rigid bar mass, 232
Rigid body, 6
Rotating unbalance, 113
Rotational motion, 5–9, 11, 190
Rotor-shaft system, 12–13, 14, 114–115,

234–235

SDOF system, 2, 4, 14, 16, 21–22, 25, 37,
40, 45, 47, 57, 63, 72, 80, 82, 88, 98,
113, 138–139, 162–163, 165, 171, 186,
206, 215, 220, 228–229, 246

Simply Supported Beam, 13, 269–270,
300–301

Sinusoidal excitation, 129
Single degree of freedom systems, 1–2,

72, 138, 186
Spring, 8–10

pure rotational motion, 6–8, 11–12
pure translational motion, 5–6, 10–11

Static equilibrium, 26–29, 38–39
Stiffness, 60, 184, 242

Torsional Vibration, 261–265
Transfer Function, 173, 175
Translational motion, 19–22
Transverse Vibration, 250–268

Undamped spring–mass system, 82, 194
Underdamped System, 44, 51–52, 56, 158
Unit Impulse Function, 155–156, 175,

264, 276
Unit Impulse Response, 156–159,

160–161, 167, 175, 182

Vibration Absorber, 212–224
Vibration Measuring Instruments, 72,

121–127
Vibratory system, 5, 10
Vibrometer, 122–124, 136

design, 124
Viscous damper, 12, 22, 128, 131

equivalent, 128, 131

Wave equations, 250–265
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