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PREFACE

Every attempt to employ mathematical methods in the study of chemical questions
must be considered profoundly irrational and contrary to the spirit ofchemistry.
If mathematical analysis should ever hold a prominent place in chemistry – an
aberration which is happily almost impossible – it would occasion a rapid and
widespread degeneration of that science.

Augustus Compte, French philosopher, 1798–1857; in Philosophie Positive,
1830.

A dissenting view:

The more progress the physical sciences make, the more they tend to enter the
domain of mathematics, which is a kind of center to which they all converge. We
may even judge the degree of perfection to which a science has arrived by the
facility to which it may be submitted to calculation.

Adolphe Quetelet, French astronomer, mathematician, statistician, and
sociologist, 1796–1874, writing in 1828.

The purpose of this book is to teach the basics of the core concepts and methods of
computational chemistry. Some fundamental concepts are the idea ofa potential energy
surface, the mechanical picture of a molecule as used in molecular mechanics, and the
Schrödinger equation and its elegant taming with matrix methods to give energy levels
and molecular orbitals. All the needed matrix algebra is explained before it is used. The
fundamental methods of computational chemistry are molecular mechanics, ab ini-
tio, semiempirical, and density functional methods. Molecular dynamics and Monte
Carlo methods are only mentioned; while these are important, they utilize fundamental
concepts and methods treated here. I wrote the book because there seemed to be no
text quite right for an introductory course in computational chemistry suitable for a
fairly general chemical audience; I hope it will be useful to anyone who wants to learn
enough about the subject to start reading the literature and to start doing computational
chemistry. There are excellent books on the field, but evidently none that seeks to
familiarize the general student of chemistry with computational chemistry in the same
sense that standard textbooks of those subjects make organic or physical chemistry
accessible. To that end the mathematics has been held on a leash (no attempt is made
to show that molecular orbitals are vectors in Hilbert space, or that a finite-dimensional
inner-product space must have an orthonormal basis), and the only sections that the
nonspecialist may justifiably view with some trepidation are the (outlined) derivation
of the Hartree–Fock and, to a lesser extent, the Kohn–Sham equations. These sections
should be read, if only to get the flavor of the procedures, but should not stop anyone
from getting on with the rest of the book.

Computational chemistry has become a tool used in much the same spirit as IR or
NMR spectroscopy, and to use it sensibly it is no more necessary to be able to write
your own programs than the fruitful use of IR or NMR spectroscopy requires you to
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be able to able to build your own spectrometer. I have tried to give enough theory to
provide a reasonably good idea of how the programs work. In this regard, the concept
of constructing and diagonalizing a Fock matrix is introduced early, and there is little
talk of secular determinants (except for historical reasons in connection with the simple
Hückel method). Many results of actual computations, most of them specifically for
this book, are given. Almost all the assertions in these pages are accompanied by
literature references, which should make the text useful to researchers who need to
track down methods or results, and students (i.e. anyone who is still learning anything)
who wish to delve deeper. The material should be suitable for senior undergraduates,
graduate students, and novice researchers in computational chemistry. A knowledge of
the shapes of molecules, covalent and ionic bonds, spectroscopy, and some familiarity
with thermodynamics at about the level provided by second-year undergraduate courses
is assumed. Some readers may wish to review basic concepts from physical and organic
chemistry.

The reader, then, should be able to acquire the basic theory and a fair idea of the
kinds of results to be obtained from the common computational chemistry techniques.
You will learn how one can calculate the geometry of a molecule, its IR and UV spectra
and its thermodynamic and kinetic stability, and other information needed to make
a plausible guess at its chemistry.

Computational chemistry is accessible. Hardware has become far cheaper than it was
even a few years ago, and powerful programs previously available only for expensive
workstations have been adapted to run on relatively inexpensive personal computers.
The actual use of a program is best explained by its manuals and by books written for
a specific program, and the actual directions for setting up the various computations
are not given here. Information on various programs is provided in chapter 8. Read the
book, get some programs and go out and do computational chemistry.

It is a real pleasure acknowledge the help of many people: Professor Imre Csizma-
dia of the University of Toronto, who gave unstintingly of his time and experience,
the students in my computational and other courses, the generous and knowledgeable
people who subscribe to CCL, the computational chemistry list, an exceedingly helpful
forum for anyone seriously interested in the subject; and my editor at Kluwer, Dr Emma
Roberts, who was always most helpful and encouraging.

E. Lewars
Department of Chemistry

Trent University
Peterborough, Ontario

Canada



Chapter 1

An Outline of What Computational
Chemistry is All About

Knowledge is experiment’s daughter
Leonardo da Vinci, in Pensieri, ca. 1492
Nevertheless:

1.1 WHAT YOU CAN DO WITH
COMPUTATIONAL CHEMISTRY

Computational chemistry (also called molecular modelling; the two terms mean about
the same thing) is a set of techniques for investigating chemical problems on a computer.
Questions commonly investigated computationally are:

Molecular geometry: The shapes of molecules – bond lengths, angles, and dihedrals.

Energies of molecules and transition states: This tells us which isomer is favored at
equilibrium, and (from transition state and reactant energies) how fast a reaction
should go.

Chemical reactivity: For example, knowing where the electrons are concentrated (nucle-
ophilic sites) and where they want to go (electrophilic sites) enables us to predict
where various kinds of reagents will attack a molecule.

IR, UV, and NMR spectra: These can be calculated, and if the molecule is unknown,
someone trying to make it knows what to look for.

The interaction of a substrate with an enzyme: Seeing how a molecule fits into the active
site of an enzyme is one approach to designing better drugs.

The physical properties of substances: These depend on the properties of individual
molecules and on how the molecules interact in the bulk material. For example,
the strength and melting point of a polymer (e.g. a plastic) depend on how well
the molecules fit together and on how strong the forces between them are. People
who investigate things like this work in the field of materials science.
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1.2 THE TOOLS OF COMPUTATIONAL CHEMISTRY

In studying these questions computational chemists have a selection of methods at their
disposal. The main tools available belong to five broad classes as described below.

Molecular mechanics (MM) is based on a model of a molecule as a collection of
balls (atoms) held together by springs (bonds). If we know the normal spring lengths
and the angles between them, and how much energy it takes to stretch and bend the
springs, we can calculate the energy of a given collection of balls and springs, i.e. of a
given molecule; changing the geometry until the lowest energy is found enables us to
do a geometry optimization, i.e. to calculate a geometry for the molecule.

Molecular mechanics is fast: a fairly large molecule like a steroid (e.g. cholesterol,
can be optimized in seconds on a powerful desktop computer (a workstation);

on a personal computer the job might also take only a few seconds.
Ab initio calculations (ab initio is from the Latin: “from first principles”) are based

on the Schrödinger equation. This is a one of the fundamental equations of modern
physics and describes, among other things, how the electrons in a molecule behave.
The ab initio method solves the Schrödinger equation for a molecule and gives us the
molecule’s energy and wavefunction. The wavefunction is a mathematical function
that can be used to calculate the electron distribution (and, in theory at least, anything
else about the molecule). From the electron distribution we can tell things like how
polar the molecule is, and which parts of it are likely to be attacked by nucleophiles or
electrophiles.

The Schrödinger equation cannot be solved exactly for any molecule with more
than one (!) electron. Thus approximations are used; the less serious these are, the
“higher” the level of the ab initio calculation is said to be. Regardless of its level, an
ab initio calculation is based only on basic physical theory (quantum mechanics) and
is in this sense “from first principles”. Ab initio calculations are relatively slow: the
geometry and IR spectra (= the vibrational frequencies) of propane can be calculated
at a reasonably high level in minutes on a Pentium-type machine, but a fairly large
molecule, like a steroid, could take perhaps weeks. The latest personal computers
(like a Pentium or a PowerMac), with a GB of RAM and several GB of disk space,
are serious computational tools and now compete with UNIX workstations even for
the demanding tasks associated with high-level ab initio calculations. Such calculations
on a well-outfitted personal computer (ca. $4000) are perhaps a few times slower than
on an average UNIX workstation (ca. $15 000). The distinction between workstations
and high-end PCs has blurred.

Semiempirical (SE) calculations are, like ab initio, based on the Schrödinger
equation. However, more approximations are made in solving it, and the very compli-
cated integrals that must be calculated in the ab initio method are not actually evaluated
in SE calculations: instead, the program draws on a kind of library of integrals that
was compiled by finding the best fit of some calculated entity like geometry or energy
(heat of formation) to the experimental values. This plugging of experimental values
into a mathematical procedure to get the best calculated values is called parameteri-
zation (or parametrization). It is the mixing of theory and experiment that makes the
method “semiempirical”: it is based on the Schrödinger equation, but parameterized
with experimental values (empirical means experimental). Of course one hopes that
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SE calculations will give good answers for molecules for which the program has not
been parameterized (otherwise why not just look up the experimental results?) and this
is often the case (MM, too, is parameterized).

Semiempirical calculations are slower than MM but much faster than ab initio calcu-
lations. SE calculations take roughly 100 times as long as MM calculations, and ab initio
calculations take roughly 100–1000 times as long as SE. A SE geometry optimization
on a steroid might take minutes on a Pentium-type machine.

Density functional calculations (often called density functional theory (DFT) cal-
culations) are, like ab initio and SE calculations, based on the Schrödinger equation.
However, unlike the other two methods, DFT does not calculate a wavefunction, but
rather derives the electron distribution (electron density function) directly. A functional
is a mathematical entity related to a function.

Density functional calculations are usually faster than ab initio, but slower than SE.
DFT is relatively new (serious DFT computational chemistry goes back to the 1980’s,
while computational chemistry with the ab initio and SE approaches was being done
in the 1960s).

Molecular dynamics calculations apply the laws of motion to molecules. Thus one
can simulate the motion of an enzyme as it changes shape on binding to a substrate, or
the motion of a swarm of water molecules around a molecule of solute.

1.3 PUTTING IT ALL TOGETHER

Very large molecules can be studied only with MM, because other methods (quantum
mechanical methods, based on the Schrödinger equation: SE, ab initio and DFT) would
take too long. Novel molecules, with unusual structures, are best investigated with
ab initio or possibly DFT calculations, since the parameterization inherent in MM or
SE methods makes them unreliable for molecules that are very different from those
used in the parameterization. DFT is relatively new and its limitations are still unclear.

Calculations on the structure of large molecules like proteins or DNA are done with
MM. The motions of these large biomolecules can be studied with molecular dynamics.
Key portions of a large molecule, like the active site of an enzyme, can be studied with
SE or even ab initio methods. Moderately large molecules, like steroids, can be studied
with SE calculations, or if one is willing to invest the time, with ab initio calculations.
Of course MM can be used with these too, but note that this technique does not give
information on electron distribution, so chemical questions connected with nucleophilic
or electrophilic behaviour, say, cannot be addressed by MM alone.

The energies of molecules can be calculated by MM, SE, ab initio or DFT. The method
chosen depends very much on the particular problem. Reactivity, which depends largely
on electron distribution, must usually be studied with a quantum-mechanical method
(SE, ab initio or DFT). Spectra are most reliably calculated by ab initio methods, but
useful results can be obtained with SE methods, and some MM programs will calculate
fairly good IR spectra (balls attached to springs vibrate!).

Docking a molecule into the active site of an enzyme to see how it fits is an extremely
important application of computational chemistry. One manipulates the substrate with
a mouse or a kind of joystick and tries to fit it (dock it) into the active site (automated
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docking is also possible); with some computer systems a feedback device enables you
to feel the forces acting on the molecule being docked. This work is usually done
with MM, because of the large molecules involved, although selected portions of the
biomolecules could be studied by one of the quantum mechanical methods. The results
of such docking experiments serve as a guide to designing better drugs, molecules that
will interact better with the desired enzymes but be ignored by other enzymes.

Computational chemistry is valuable in studying the properties of materials, i.e. in
materials science. Semiconductors, superconductors, plastics, ceramics – all these have
been investigated with the aid of computational chemistry. Such studies tend to involve
a knowledge of solid-state physics and to be somewhat specialized.

Computational chemistry is fairly cheap, it is fast compared to experiment, and it is
environmentally safe. It does not replace experiment, which remains the final arbiter of
truth about Nature. Furthermore, to make something – new drugs, new materials – one
has to go into the lab. However, computation has become so reliable in some respects
that, more and more, scientists in general are employing it before embarking on an
experimental project, and the day may come when to obtain a grant for some kinds
of experimental work you will have to show to what extent you have computationally
explored the feasibility of the proposal.

1.4 THE PHILOSOPHY OF COMPUTATIONAL CHEMISTRY

Computational chemistry is the culmination (to date) of the view that chemistry is
best understood as the manifestation of the behavior of atoms and molecules, and that
these are real entities rather than merely convenient intellectual models [1]. It is a
detailed physical and mathematical affirmation of a trend that hitherto found its boldest
expression in the structural formulas of organic chemistry [2], and it is the unequivocal
negation of the till recently trendy assertion [3] that science is a kind of game played
with “paradigms” [4].

In computational chemistry we take the view that we are simulating the behaviour of
real physical entities, albeit with the aid of intellectual models; and that as our models
improve they reflect more accurately the behavior of atoms and molecules in the real
world.

1.5 SUMMARY OF CHAPTER 1

Computational chemistry allows one to calculate molecular geometries, reactivities,
spectra, and other properties. It employs:

Molecular mechanics – based on a ball-and-springs model of molecules;

Ab initio methods – based on approximate solutions of the Schrödinger equation
without appeal to fitting to experiment;

Semiempirical methods – based on approximate solutions of the Schrödinger
equation with appeal to fitting to experiment (i.e. using parameterization);
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DFT methods  – based on approximate solutions of the Schrödinger equation,
bypassing the wavefunction that is a central feature of ab initio and semiempirical
methods;

Molecular dynamics methods study molecules in motion.

Ab initio and the faster DFT enable novel molecules of theoretical interest to be
studied, provided they are not too big. Semiempirical methods, which are much faster
than ab initio or even DFT, can be applied to fairly large molecules (e.g. cholesterol,

while MM will calculate geometries and energies of very large molecules
such as proteins and nucleic acids; however, MM does not give information on electronic
properties. Computational chemistry is widely used in the pharmaceutical industry to
explore the interactions of potential drugs with biomolecules, for example by docking
a candidate drug into the active site of an enzyme. It is also used to investigate the
properties of solids (e.g. plastics) in materials science.

REFERENCES

[1]

[2]

[3]

The physical chemist Wilhelm Ostwald (Nobel Prize 1909) was a disciple of the philosopher
Ernst Mach. Like Mach, Ostwald attacked the notion of the reality of atoms and molecules
(“Nobel Laureates in Chemistry, 1901–1992,” L. K. James, Ed., American Chemical Society
and the Chemical Heritage Foundation, Washington, DC, 1993) and it was only the work of
Jean Perrin, published in 1913, that finally convinced him, perhaps the last eminent holdout
against the atomic theory, that these entities really existed (Perrin showed that the number
of tiny particles suspended in water dropped off with height exactly as predicted in 1905 by
Einstein, who had derived an equation assuming the existence of atoms). Ostwald’s philo-
sophical outlook stands in contrast to that of another outstanding physical chemist, Johannes
van der Waals, who staunchly defended the atomic/molecular theory and was outraged by
the Machian positivism of people like Ostwald. See “Van der Waals and Molecular Science,”
A. Ya. Kipnis, B. F. Yavelov and J. S. Powlinson, Oxford University Press, New York, 1996.

For the opposition to and acceptance of atoms in physics see: D. Lindley, “Boltzmann’s
Atom. The Great Debate that Launched a Revolution in Physics,” Free Press, New York,
2001; C. Cercignani, “Ludwig Boltzmann: The Man who Trusted Atoms,” Oxford University
Press, New York, 1998.

Of course, to anyone who knew anything about organic chemistry, the existence of atoms
was in little doubt by 1910, since that science had by that time achieved significant success
in the field of synthesis, and a rational synthesis is predicated on assembling atoms in a
definite way.

For accounts of the history of the development of structural formulas see M. J. Nye, “From
Chemical Philosophy to Theoretical Chemistry,” University of California Press, 1993;
C. A. Russell, “Edward Frankland: Chemistry, Controversy and Conspiracy in Victorian
England,” Cambridge University Press, Cambridge, 1996.

(a) An assertion of the some adherents of the “postmodernist” school of social studies; see
P. Gross and N. Levitt, “The Academic Left and its Quarrels with Science,” John Hopkins
University Press, 1994. (b) For an account of the exposure of the intellectual vacuity of some
members of this school by physicist Alan Sokal’s hoax see M. Gardner, “Skeptical Inquirer,”
1996, 20(6), 14.
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[4] (a) A trendy word popularized by the late Thomas Kuhn in his book “ The Structure of
Scientific Revolutions,” University of Chicago Press, 1970. For a trenchant comment on
Kuhn, see Ref. [3b]. (b) For a kinder perspective on Kuhn, see S. Weinberg, “Facing Up,”
Harvard University Press, 2001, chapter 17.

EASIER QUESTIONS

1.
2.
3.

4.

5.
6.

7.

8.
9.

10.

What does the term computational chemistry mean?
What kinds of questions can computational chemistry answer?
Name the main tools available to the computational chemist. Outline (a few
sentences for each) the characteristics of each.
Generally speaking, which is the fastest computational chemistry method (tool),
and which is the slowest?
Why is computational chemistry useful in industry?
Basically, what does the Schrödinger equation describe, from the chemist’s
viewpoint?
What is the limit to the kind of molecule for which we can get an exact solution to
the Schrtidinger equation?
What is parameterization?
What advantages does computational chemistry have over “wet chemistry”?
Why cannot computational chemistry replace “wet chemistry”?

HARDER QUESTIONS

Discuss the following and justify your conclusions.
1.
2.

3.

4.

5.
6.

7.

8.

Was there computational chemistry before electronic computers were available?
Can “conventional” physical chemistry, such as the study of kinetics, thermody-
namics, spectroscopy and electrochemistry, be regarded as a kind of computational
chemistry?
The properties of a molecule that are most frequently calculated are geometry,
energy (compared to that of other isomers), and spectra. Why is it more of a
challenge to calculate “simple” properties like melting point and density?
Hint: Is there a difference between a molecule X and the substance X?
Is it surprising that the geometry and energy (compared to that of other isomers) of
a molecule can often be accurately calculated by a ball-and-springs model (MM)?
What kinds of properties might you expect MM to be unable to calculate?
Should calculations from first principles (ab initio) necessarily be preferred to those
which make some use of experimental data (semiempirical)?
Both experiments and calculations can give wrong answers. Why then should
experiment have the last word?
Consider the docking of a potential drug molecule X into the active site of an
enzyme: a factor influencing how well X will “hold” is clearly the shape of X; can
you think of another factor?
Hint: Molecules consist of nuclei and electrons.
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9.

10.

In recent years the technique of combinatorial chemistry has been used to quickly
synthesize a variety of related compounds which are then tested for pharmaco-
logical activity (S. Borman, Chemical & Engineering News: 2001, 27 August,
p. 49; 2000, 15 May, p. 53; 1999, 8 March, p. 33). What are the advantages
and disadvantages of this method of finding drug candidates, compared with the
“rational design” method of studying, with the aid of computational chemistry,
how a molecule interacts with an enzyme?
Think up some unusual molecule which might be investigated computationally.
What is it that makes your molecule unusual?
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Chapter 2

The Concept of the Potential Energy Surface

Everything should be made as simple as possible, but not simpler.
Albert Einstein

2.1 PERSPECTIVE

1.

We begin a more detailed look at computational chemistry with the potential energy
surface (PES) because this is central to the subject. Many important concepts that
might appear to be mathematically challenging can be grasped intuitively with the
insight provided by the idea of the PES [1].

Consider a diatomic molecule AB. In some ways a molecule behaves like balls
(atoms) held together by springs (chemical bonds); in fact, this simple picture is the
basis of the important method molecular mechanics, discussed in chapter 3. If we take
a macroscopic balls-and-spring model of our diatomic molecule in its normal geometry
(the equilibrium geometry), grasp the “atoms” and distort the model by stretching or
compressing the “bonds,” we increase the potential energy of the molecular model
(Fig. 2.1). The stretched or compressed spring possesses energy, by definition, since
we moved a force through a distance to distort it. Since the model is motionless while
we hold it at the new geometry, this energy is not kinetic and so is by default potential
(“depending on position”). The graph of potential energy against bond length is an
example of a PES (we will soon see an example of an actual surface rather than the line
of Fig. 2.1).

Real molecules behave similarly, but they differ from our macroscopic model in two
relevant ways:

They vibrate incessantly (as we would expect from Heisenberg’s uncertainty princi-
ple: a stationary molecule would have an exactly defined momentum and position)
about the equilibrium bond length, so that they always possess kinetic energy (T)
and/or potential energy (V): as the bond length passes through the equilibrium
length, V = 0 while at the limit of the vibrational amplitude, T = 0; at all other
positions both T and V are nonzero. The fact that a molecule is never actually sta-
tionary with zero kinetic energy (it always has zero-point energy (ZPE); section 2.5)
is usually shown on potential energy/bond length diagrams by drawing a series of
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lines above the bottom of the curve (Fig. 2.2) to indicate the possible amounts of
vibrational energy the molecule can have (the vibrational levels it can occupy).
A molecule never sits at the bottom of the curve, but rather occupies one of the
vibrational levels, and in a collection of molecules the levels are populated accord-
ing to their spacing and the temperature [2]. We will usually ignore the vibrational
levels and consider molecules to rest on the actual potential energy curves or (below)
surfaces, and

Near the equilibrium bond length the potential energy/bond length curve for a
macroscopic balls-and-spring model or a real molecule is described fairly well by
a quadratic equation, that of the simple harmonic oscillator
where k is the force constant of the spring). However, the potential energy deviates
from the quadratic curve as we move away from (Fig. 2.2). The deviations
from molecular reality represented by this anharmonicity are not important to our
discussion.

2.

Figure 2.1 represents a one-dimensional (1D) PES (a line is a 1D “surface”) in the 2D
graph of E vs. q. A diatomic molecule AB has only one geometric parameter for us to
vary, the bond length Suppose we have a molecule with more than one geometric
parameter, e.g. water: the geometry is defined by two bond lengths and a bond angle.
If we reasonably content ourselves with allowing the two bond lengths to be the same,
i.e. if we limit ourselves to symmetry (two planes of symmetry and a two-fold
symmetry axis; see section 2.6) then the PES for this triatomic molecule is a graph of
E vs. two geometric parameters, the bond length, and the
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bond angle (Fig. 2.3). Figure 2.3 represents a 2D PES (a normal surface is a 2D object)
in the 3D-graph; we could make an actual 3D model of this drawing of a 3D graph of
E vs. and

We can go beyond water and consider a triatomic molecule of lower symmetry, such
as HOF. This has three geometric parameters, the H–O and O–F lengths and the H–O–F
angle. To construct a Cartesian PES graph for HOF analogous to that for would
require us to plot E vs. and angle H–O–F. We would need
four mutually perpendicular axes and since such a 4D graph
cannot be constructed in our 3D space we cannot accurately draw it. The HOF PES is a
3D “surface” of more than two dimensions in 4D space: it is a hypersurface, and PESs
are sometimes called potential energy hypersurfaces. Despite the problem of drawing a
hypersurface, we can define the equation as the PES for HOF, where
f is the function that describes how E varies with the q’s, and treat the hypersurface
mathematically. For example, in the AB diatomic molecule PES (a line) of Fig. 2.1 the
minimum potential energy geometry is the point at which On the
PES (Fig. 2.3) the minimum energy geometry is defined by the point Pm, corresponding
to the equilibrium values of and at this point Although
hypersurfaces cannot be faithfully rendered pictorially, it is very useful to a computa-
tional chemist to develop an intuitive understanding of them. This can be gained with
the aid of diagrams like Figs 2.1 and 2.3, where we content ourselves with a line or a 2D
surface, in effect using a slice of a multidimensional diagram. This can be understood
by analogy: Fig. 2.5 shows how 2D slices can be made of the 3D diagram for water.
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The slice could be made holding one or the other of the two geometric parameters
constant, or it could involve both of them, giving a diagram in which the geometry axis
is a composite of more than one geometric parameter. Analogously, we can take a 3D
slice of the hypersurface for HOF (Fig. 2.6) or even a more complex molecule and use
an E vs. diagram to represent the PES; we could even use a simple 2D diagram,
with q representing one, two or all of the geometric parameters. We shall see that these
2D and particularly 3D graphs preserve qualitative and even quantitative features of
the mathematically rigorous but unvisualizable n-dimensional
hypersurface.

2.2 STATIONARY POINTS

Potential energy surfaces are important because they aid us in visualizing and under-
standing the relationship between potential energy and molecular geometry, and in
understanding how computational chemistry programs locate and characterize struc-
tures of interest. Among the main tasks of computational chemistry are to determine
the structure and energy of molecules and of the transition states involved in chemical
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reactions: our “structures of interest” are molecules and the transition states linking
them. Consider the reaction

A priori, it seems reasonable that ozone might have an isomer (call it isoozone) and
that the two could interconvert by a transition state as shown in reaction (1). We can
depict this process on a PES. The potential energy E must be plotted against only two
geometric parameters, the bond length (we may reasonably assume that the two O–O
bonds of ozone are equivalent, and that these bond lengths remain equal throughout
the reaction) and the O–O–O bond angle. Figure 2.7 shows the PES for reaction (1), as
calculated by the AM 1 semiempirical method (chapter 6; the AM 1 method is unsuitable
for quantitative treatment of this problem, but the PES shown makes the point), and
shows how a 2D slice from this 3D diagram gives the energy/reaction coordinate type
of diagram commonly used by chemists. The slice goes along the lowest-energy path
connecting ozone, isoozone and the transition state, i.e. along the reaction coordinate,
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and the horizontal axis (the reaction coordinate) of the 2D diagram is a composite of
O–O bond length and O–O–O angle. In most discussions this horizontal axis is left
quantitatively undefined; qualitatively, the reaction coordinate represents the progress
of the reaction. The three species of interest, ozone, isoozone, and the transition state
linking these two, are called stationary points. A stationary point on a PES is a point
at which the surface is flat, i.e. parallel to the horizontal line corresponding to the
one geometric parameter (or to the plane corresponding to two geometric parameters,
or to the hyperplane corresponding to more than two geometric parameters). A mar-
ble placed on a stationary point will remain balanced, i.e. stationary (in principle;
for a transition state the balancing would have to be exquisite indeed). At any other
point on a potential surface the marble will roll toward a region of lower potential
energy.
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Mathematically, a stationary point is one at which the first derivative of the potential
energy with respect to each geometric parameter is zero:

Partial derivatives, are written here rather than to emphasize that
each derivative is with respect to just one of the variables of which E is a function.
Stationary points that correspond to actual molecules with a finite lifetime (in contrast
to transition states, which exist only for an instant), like ozone or isoozone, are minima,
or energy minima: each occupies the lowest-energy point in its region of the PES,
and any small change in the geometry increases the energy, as indicated in Fig. 2.7.
Ozone is a global minimum, since it is the lowest-energy minimum on the whole PES,
while isoozone is a relative minimum, a minimum compared only to nearby points on
the surface. The lowest-energy pathway linking the two minima, the reaction coordinate
or intrinsic reaction coordinate (IRC; dashed line in Fig. 2.7) is the path that would be
followed by a molecule in going from one minimum to another should it acquire just
enough energy to overcome the activation barrier, pass through the transition state, and
reach the other minimum. Not all reacting molecules follow the IRC exactly: a molecule
with sufficient energy can stray outside the IRC to some extent [3].

Inspection of Fig. 2.7 shows that the transition state linking the two minima represents
a maximum along the direction of the IRC, but along all other directions it is a minimum.
This is a characteristic of a saddle-shaped surface, and the transition state is called a
saddle point (Fig. 2.8). The saddle point lies at the “center” of the saddle-shaped region
and is, like a minimum, a stationary point, since the PES at that point is parallel to
the plane defined by the geometry parameter axes: we can see that a marble placed
(precisely) there will balance. Mathematically, minima and saddle points differ in
that although both are stationary points (they have zero first derivatives; Eq. (2.1)),
a minimum is a minimum in all directions, but a saddle point is a maximum along the
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reaction coordinate and a minimum in all other directions (examine Fig. 2.8). Recalling
that minima and maxima can be distinguished by their second derivatives, we can write:

The distinction is sometimes made between a transition state and a transition struc-
ture [4]. Strictly speaking, a transition state is a thermodynamic concept, the species an
ensemble of which are in a kind of equilibrium with the reactants in Eyring’s1 transition-
state theory [5]. Since equilibrium constants are determined by free energy differences,
the transition state, within the strict use of the term, is a free energy maximum along
the reaction coordinate (in so far as a single species can be considered representative
of the ensemble). This species is also often (but not always [5]) also called an activated
complex. A transition structure, in strict usage, is the saddle point (Fig. 2.8) on a theo-
retically calculated (e.g. Fig. 2.7) PES. Normally such a surface is drawn through a set
of points each of which represents the enthalpy of a molecular species at a certain geom-
etry; recall that free energy differs from enthalpy by temperature times entropy. The
transition structure is thus a saddle point on an enthalpy surface. However, the energy
of each of the calculated points does not normally include the vibrational energy, and
even at 0 K a molecule has such energy (ZPE: Fig. 2.2, and section 2.5). The usual
calculated PES is thus a hypothetical, physically unrealistic surface in that it neglects
vibrational energy, but it should qualitatively, and even semiquantitatively, resemble
the vibrationally-corrected one since in considering relative enthalpies ZPEs at least
roughly cancel. In accurate work ZPEs are calculated for stationary points and added to
the “frozen-nuclei” energy of the species at the bottom of the reaction coordinate curve
in an attempt to give improved relative energies which represent enthalpy differences
at 0 K (and thus, at this temperature where entropy is zero, free energy differences
also; Fig. 2.19). It is also possible to calculate enthalpy and entropy differences, and
thus free energy differences, at, say, room temperature (section 5.5.2). Many chemists
do not routinely distinguish between two terms, and in this book the commoner term,
transition state, is used. Unless indicated otherwise, it will mean a calculated geometry,
the saddle point on a hypothetical vibrational-energy-free PES.

1 Henry Eyring, American chemist. Born Colonia Juarárez, Mexico, 1901. Ph.D. University of California,
Berkeley, 1927. Professor Princeton, University of Utah. Known for his work on the theory of reaction rates
and on potential energy surfaces. Died Salt Lake City, Utah, 1981.

For a minimum

for all q.
For a transition state

for all q, except along the reaction coordinate, and

along the reaction coordinate.
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The geometric parameter corresponding to the reaction coordinate is usually a com-
posite of several parameters (bond lengths, angles and dihedrals), although for some
reactions one or two may predominate. In Fig. 2.7, the reaction coordinate is a composite
of the O–O bond length and the O–O–O bond angle.

A saddle point, the point on a PES where the second derivative of energy with
respect to one and only geometric coordinate (possibly a composite coordinate) is
negative, corresponds to a transition state. Some PES’s have points where the second
derivative of energy with respect to more than one coordinate is negative; these are
higher-order saddle points or hilltops: e.g. a second-order saddle point is a point on the
PES which is a maximum along two paths connecting stationary points. The propane
PES, Fig. 2.9, provides examples of a minimum, a transition state and a hilltop – a
second-order saddle point in this case. Figure 2.10 shows the three stationary points
in more detail. The “doubly-eclipsed” conformation (A), in which there is eclipsing
as viewed along the C1–C2 and the C3–C2 bonds (the dihedral angles are 0° viewed
along these bonds) is a second-order saddle point because single bonds do nor like to
eclipse single bonds and rotation about the C1–C2 and the C3–C2 bonds will remove
this eclipsing: there are two possible directions along the PES which lead, without a
barrier, to lower-energy regions, i.e. changing the H–C1/C2–C3 dihedral and chang-
ing the H–C3/C2–C1 dihedral. Changing one of these leads to a “singly-eclipsed”
conformation (B) with only one offending eclipsing CH3–CH2 arrangement, and this
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is a first-order saddle point, since there is now only one direction along the PES
which leads to relief of the eclipsing interactions (rotation around C3–C2). This route
gives a conformation C which has no eclipsing interactions and is therefore a mini-
mum. There are no lower-energy structures on the PES and so C is the global
minimum.

The geometry of propane depends on more than just two dihedral angles, of course;
there are several bond lengths and bond angles and the potential energy will vary with
changes in all of them. Figure 2.9 was calculated by varying only the dihedral angles
associated with the C1–C2 and C2–C3 bonds, keeping the other geometrical parameters
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the same as they are in the all-staggered conformation. If at every point on the dihedral/
dihedral grid all the other parameters (bond lengths and angles) had been optimized
(adjusted to give the lowest possible energy, for that particular calculational method;
section 2.4), the result would have been a relaxed PES. In Fig. 2.9 this was not done, but
because bond lengths and angles change only slightly with changes in dihedral angles
the PES would not be altered much, while the time required for the calculation (for
the PES scan) would have been much greater. Figure 2.9 is a nonrelaxed or rigid PES,
albeit not very different, in this case, from a relaxed one.

Chemistry is essentially the study of the stationary points on a PES: in studying more
or less stable molecules we focus on minima, and in investigating chemical reactions
we study the passage of a molecule from a minimum through a transition state to
another minimum. There are four known forces in nature: the gravitational force, the
strong and the weak nuclear forces, and the electromagnetic force. Celestial mechanics
studies the motion of stars and planets under the influence of the gravitational force and
nuclear physics studies the behavior of subatomic particles subject to the nuclear forces.
Chemistry is concerned with aggregates of nuclei and electrons (with molecules) held
together by the electromagnetic force, and with the shuffling of nuclei, followed by
their obedient retinue of electrons, around a PES under the influence of this force (with
chemical reactions).

The concept of the chemical PES apparently originated with R. Marcelin [6]: in
a dissertation-long paper (111 pages) he laid the groundwork for transition-state the-
ory 20 years before the much better-known work of Eyring [5,7]. The importance of
Marcelin’s work is acknowledged by Rudolph Marcus in his Nobel Prize (1992) speech,
where he refers to “…Marcelin’s classic 1915 theory which came within one small
step of the transition state theory of 1935.” The paper was published the year after the
death of the author, who seems to have died in World War I, as indicated by the footnote
“Tué à l’ennemi en sept 1914”. The first PES was calculated in 1931 by Eyring and
Polanyi,2 using a mixture of experiment and theory [8].

2.3 THE BORN–OPPENHEIMER APPROXIMATION

A PES is a plot of the energy of a collection of nuclei and electrons against the geometric
coordinates of the nuclei–essentially a plot of molecular energy vs. molecular geometry
(or it may be regarded as the mathematical equation that gives the energy as a function
of the nuclear coordinates). The nature (minimum, saddle point or neither) of each point
was discussed in terms of the response of the energy (first and second derivatives) to
changes in nuclear coordinates. But if a molecule is a collection of nuclei and electrons
why plot energy vs. nuclear coordinates – why not against electron coordinates? In other
words, why are nuclear coordinates the parameters that define molecular geometry? The
answer to this question lies in the Born–Oppenheimer approximation.

2Michael Polanyi, Hungarian–British chemist, economist, and philosopher. Born Budapest, 1891. Doctor
of medicine 1913, Ph.D. University of Budapest, 1917. Researcher Kaiser-Wilhelm Institute, Berlin, 1920–
1933. Professor of chemistry, Manchester, 1933–1948; of social studies, Manchester, 1948–1958. Professor
Oxford, 1958–1976. Best known for book “Personal Knowledge,” 1958. Died Northampton, England, 1976.
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Born3 and Oppenheimer4 showed in 1927 [9] that to a very good approximation
the nuclei in a molecule are stationary with respect to the electrons. This is a
qualitative expression of the principle; mathematically, the approximation states that
the Schrödinger equation (chapter 4) for a molecule may be separated into an electronic
and a nuclear equation. One consequence of this is that all (!) we have to do to calcu-
late the energy of a molecule is to solve the electronic Schrödinger equation and then
add the electronic energy to the internuclear repulsion (this latter quantity is trivial to
calculate) to get the total internal energy (see section 4.4.1). A deeper consequence of
the Born–Oppenheimer approximation is that a molecule has a shape.

The nuclei see the electrons as a smeared-out cloud of negative charge which binds
them in fixed relative positions (because of the mutual attraction between electrons and
nuclei in the internuclear region) and which defines the (somewhat fuzzy) surface [10]
of the molecule (see Fig. 2.11). Because of the rapid motion of the electrons compared
to the nuclei the “permanent” geometric parameters of the molecule are the nuclear
coordinates. The energy (and the other properties) of a molecule is a function of the
electron coordinates (x, y, z of each electron); section 5.2), but depends
only parametrically on the nuclear coordinates, i.e. for each geometry 1,2, . . . there
is a particular energy: (x, y, z,...),                                  which
is a function of x but depends only parametrically on n. Actually, the nuclei are not

3Max Born, German–British physicist. Born in Breslau (now Wroclaw, Poland), 1882, died in Göttin-
gen, 1970. Professor Berlin, Cambridge, Edinburgh. Nobel prize, 1954. One of the founders of quantum
mechanics, originator of the probability interpretation of the (square of the) wavefunction (chapter 4).

4J. Robert Oppenheimer, American physicist. Born in New York, 1904, died in Princeton, 1967. Professor
California Institute of Technology. Fermi award for nuclear research, 1963. Important contributions to
nuclear physics. Director of the Manhattan Project 1943–1945. Victimized as a security risk by senator
Joseph McCarthy’s Un-American Activities Committee in 1954. Central figure of the eponymous PBS TV
series (Oppenheimer: Sam Waterston).
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stationary, but execute vibrations of small amplitude about equilibrium positions; it is
these equilibrium positions that we mean by the “fixed” nuclear positions. It is only
because it is meaningful to speak of (almost) fixed nuclear coordinates that the concepts
of molecular geometry or shape [11] and of the PES are valid. The nuclei are much
more sluggish than the electrons because they are much more massive (a hydrogen
nucleus is about 2000 times more massive than an electron).

Consider the molecule made up of three protons and two electrons. Ab initio
calculations assign it the geometry shown in Fig. 2.12. The equilibrium positions of the
nuclei (the protons) lie at the corners of an equilateral triangle and has a definite
shape. But suppose the protons were replaced by positrons, which have the same mass
as electrons. The distinction between nuclei and electrons, which in molecules rests
on mass and not on some kind of charge chauvinism, would vanish. We would have
a quivering cloud of flitting particles to which a shape could not be assigned on a
macroscopic time scale.

A calculated PES, which we might call a Born–Oppenheimer surface, is normally
the set of points representing the geometries, and the corresponding energies, of a
collection of atomic nuclei; the electrons are taken into account in the calculations as
needed to assign charge and multiplicity (multiplicity is connected with the number of
unpaired electrons). Each point corresponds to a set of stationary nuclei, and in this
sense the surface is somewhat unrealistic (see section 2.5).

2.4 GEOMETRY OPTIMIZATION

The characterization (the “location” or “locating”) of a stationary point on a PES, i.e.
demonstrating that the point in question exists and calculating its geometry and energy,
is a geometry optimization. The stationary point of interest might be a minimum, a tran-
sition state, or, occasionally, a higher-order saddle point. Locating a minimum is often
called an energy minimization or simply a minimization, and locating a transition state is
often referred to specifically as a transition state optimization. Geometry optimizations
are done by starting with an input structure that is believed to resemble (the closer the
better) the desired stationary point and submitting this plausible structure to a computer
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algorithm that systematically changes the geometry until it has found a stationary point.
The curvature of the PES at the stationary point, i.e. the second derivatives of energy
with respect to the geometric parameters (section 2.2) may then be determined (section
2.5) to characterize the structure as a minimum or as some kind of saddle point.

Let us consider a problem that arose in connection with an experimental study.
Propanone (acetone) was subjected to ionization followed by neutralization of the
radical cation, and the products were frozen in an inert matrix and studied by IR spec-
troscopy [12]. The spectrum of the mixture suggested the presence of the enol isomer
of propanone, 1-propen-2-ol:

To confirm (or refute) this the IR spectrum of the enol might be calculated (see section
2.5 and the discussions of the calculation of IR spectra in subsequent chapters). But
which conformer should one choose for the calculation? Rotation about the C–O and
C–C bonds creates six plausible stationary points (Fig. 2.13), and a PES scan (Fig. 2.14)
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indicated that there are indeed six such species. Examination of this PES shows that the
global minimum is structure 1 and that there is a relative minimum corresponding to
structure 4. Geometry optimization starting from an input structure resembling 1 gave
a minimum corresponding to 1, while optimization starting from a structure resembling
4 gave another, higher-energy minimum, resembling 4. Transition-state optimizations
starting from appropriate structures yielded the transition states 2 and 3. These station-
ary points were all characterized as minima or transition states by second-derivative
calculations (section 2.5) (the species 5 and 6 were not located). The calculated IR
spectrum of 1 (using the ab initio method – chapter 5) was in excellent
agreement with the observed spectrum of the putative propenol.

This illustrates a general principle: the optimized structure one obtains is that closest
in geometry on the PES to the input structure (Fig. 2.15). To be sure we have found
a global minimum we must (except for very simple or very rigid molecules) search a
PES (there are algorithms that will do this and locate the various minima). Of course we
may not be interested in the global minimum; e.g. if we wish to study the cyclic isomer
of ozone (section 2.2) we will use as input an equilateral triangle structure, probably
with bond lengths about those of an O–O single bond.

In the propenol example, the PES scan suggested that to obtain the global mini-
mum we should start with an input structure resembling 1, but the exact values of
the various bond lengths and angles were unknown (the exact values of even the
dihedrals was not known with certainty, although general chemical knowledge made

seem plausible). The actual creation of input structures is



The Concept of the Potential Energy Surface 25

usually done nowadays with an interactive mouse-driven program, in much the same
spirit that one constructs plastic models or draws structures on paper. An older alter-
native is to specify the geometry by defining the various bond lengths, angles and
dihedrals, i.e. by using a so-called Z-matrix (internal coordinates).

To move along the PES from the input structure to the nearest minimum is obviously
trivial on the 1D PES of a diatomic molecule: one simply changes the bond length
till that corresponding to the lowest energy is found. On any other surface, efficient
geometry optimization requires a sophisticated algorithm. One would like to know in
which direction to move, and how far in that direction (Fig. 2.16). It is not possible,
in general, to go from the input structure to the proximate minimum in just one step,
but modern geometry optimization algorithms commonly reach the minimum in about
10 steps, given a reasonable input geometry. The most widely-used algorithms for
geometry optimization [13] use the first and second derivatives of the energy with
respect to the geometric parameters. To get a feel for how this works, consider the
simple case of a 1D PES, as for a diatomic molecule (Fig. 2.17). The input structure
is at the point and the proximate minimum, corresponding to the optimized
structure being sought, is at the point Before the optimization has been
carried out the values of and are of course unknown. If we assume that near
a minimum the potential energy is a quadratic function of which is a fairly good
approximation, then

At the input point
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Equation (2.9) shows that if we know the slope or gradient of the PES at the
point of the initial structure, the curvature of the PES (which for a quadratic

three atoms has an x, y and z coordinate, giving 9 geometric parameters,
the PES would be a 9-dimensional hypersurface on a 10D graph. We need the first
and second derivatives of E with respect to each of the 9 and these derivatives
are manipulated as matrices. Matrices are discussed in section 4.3.3; here we need
only know that a matrix is a rectangular array of numbers that can be manipulated
mathematically, and that they provide a convenient way of handling sets of linear
equations. The first-derivative matrix, the gradient matrix, for the input structure can
be written as a column matrix

At all points

From (2.6) and (2.7),

and

curve is independent of and the initial geometry, we can calculate the
optimized geometry. The second derivative of potential energy with respect to geometric
displacement is the force constant for motion along that geometric coordinate; as we
will see later, this is an important concept in connection with calculating vibrational
spectra.

For multidimensional PES’s, i.e. for almost all real cases, far more sophisticated
algorithms are used, and several steps are needed since the curvature is not exactly
quadratic. The first step results in a new point on the PES that is (probably) closer to
the minimum than was the initial structure. This new point then serves as the initial
point for a second step toward the minimum, etc. Nevertheless, most modern geometry
optimization methods do depend on calculating the first and second derivatives of the
energy at the point on the PES corresponding to the input structure. Since the PES is
not strictly quadratic, the second derivatives vary from point to point and are updated
as the optimization proceeds.

In the illustration of an optimization algorithm using a diatomic molecule, Eq. (2.9)
referred to the calculation of first and second derivatives with respect to bond length,
which latter is an internal coordinate (inside the molecule). Optimizations are actually
commonly done using Cartesian coordinates x, y, z. Consider the optimization of a
triatomic molecule like water or ozone in a Cartesian coordinate system. Each of the
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and the second-derivative matrix, the force constant matrix, is

The force constant matrix is called the Hessian.5 The Hessian is particularly impor-
tant, not only for geometry optimization, but also for the characterization of stationary
points as minima, transition states or hilltops, and for the calculation of IR spectra
(section 2.5). In the Hessian as is true for all well-behaved
functions, but this systematic notation is preferable: the first subscript refers to the row
and the second to the column. The geometry coordinate matrices for the initial and
optimized structures are

which is somewhat similar to Eq. (2.9) for the optimization of a diatomic molecule.

structure (for initial gradients (for and second derivatives (for H). With an
initial “guess” for the geometry (e.g. from a model-building program followed by
molecular mechanics) as input, gradients can be readily calculated analytically (from
the derivatives of certain integrals). An approximate initial Hessian is often calculated
from molecular mechanics (chapter 3). Since the PES is not really exactly quadratic,
the first step does not take us all the way to the optimized geometry, corresponding to
the matrix Rather, we arrive at the first calculated geometry; using this geometry
a new gradient matrix and a new Hessian are calculated (the gradients are calculated
analytically and the second derivatives are updated using the changes in the gradients
– see below). Using and the new gradient and Hessian matrices a new approximate

5Ludwig Otto Hesse, 1811–1874, German mathematician.

and

The matrix equation for the general case can be shown to be:

For n atoms we have 3n Cartesians; and are 3n × 1 column matrices and H is
a 3n × 3n square matrix; multiplication by the inverse of H rather than division by H
is used because matrix division is not defined.

Equation (2.14) shows that for an efficient geometry optimization we need an initial
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geometry matrix is calculated. The process is continued until the geometry and/or
the gradients (or with some programs possibly the energy) have ceased to change
appreciably.

As the optimization proceeds the Hessian is updated by approximating each second
derivative as a ratio of finite increments:

i.e. as the change in the gradient divided by the change in geometry, on going from the
previous structure to the latest one. Analytic calculation of second derivatives is rela-
tively time-consuming and is not routinely done for each point along the optimization
sequence, in contrast to analytic calculation of gradients. A fast lower-level optimiza-
tion, for a minimum or a transition state, usually provides a good Hessian and geometry
for input to a higher-level optimization [14]. Finding a transition state (i.e. optimizing
an input structure to a transition state structure) is a more challenging computational
problem than finding a minimum, as the characteristics of the PES at the former are
more complicated than at a minimum: at the transition state the surface is a maximum
in one direction and a minimum in all others, rather than simply a minimum in all direc-
tions. Nevertheless, modifications of the minimum-search algorithm enable transitions
states to be located, albeit often with less ease than minima.

2.5 STATIONARY POINTS AND NORMAL-MODE
VIBRATIONS: ZPE

Once a stationary point has been found by geometry optimization, it is usually desirable
to check whether it is a minimum, a transition state, or a hilltop. This is done by calcu-
lating the vibrational frequencies. Such a calculation involves finding the normal-mode
frequencies; these are the simplest vibrations of the molecule, which, in combination,
can be considered to result in the actual, complex vibrations that a real molecule under-
goes. In a normal-mode vibration all the atoms move in phase with the same frequency:
they all reach their maximum and minimum displacements and their equilibrium posi-
tions at the same moment. The other vibrations of the molecule are combinations of
these simple vibrations. Essentially, a normal-modes calculation is a calculation of the
infrared spectrum, although the experimental spectrum is likely to contain extra bands
resulting from interactions among normal-mode vibrations.

A nonlinear molecule with n atoms has 3n – 6 normal modes: the motion of each
atom can be described by 3 vectors, along the x, y, and z axes of a Cartesian coordinate
system; after removing the 3 vectors describing the translational motion of the molecule
as a whole (the translation of its center of mass) and the 3 vectors describing the rotation
of the molecule (around the 3 principal axes needed to describe rotation for a 3D object of
general geometry), we are left with 3n – 6 independent vibrational motions. Arranging
these in appropriate combinations gives 3n – 6  normal modes. A linear molecule
has 3n – 5  normal modes, since we need subtract only three translational and two
rotational vectors, as rotation about the molecular axis does not produce a recognizable
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change in the nuclear array. So water has 3n – 6 = 3(3) –  6 = 3 normal modes, and
HCN has 3n – 5 = 3(3) – 5 = 4 normal modes. For water (Fig. 2.18) mode 1 is
a bending mode (the H–O–H angle decreases and increases), mode 2 is a symmetric
stretching mode (both O–H bonds stretch and contract simultaneously) and mode 3 is
an asymmetric stretching mode (as the bond stretches the bond contracts,
and vice versa). At any moment an actual molecule of water will be undergoing a
complicated stretching/bending motion, but this motion can be considered to be a
combination of the three simple normal-mode motions.

Consider a diatomic molecule A–B; the normal-mode frequency (there is only one
for a diatomic, of course) is given by [15]:

where vibrational “frequency,” actually wavenumber, in from deference
to convention we use although the cm is not an SI unit, and so the other units
will also be non-SI; signifies the number of wavelengths that will fit into one cm.
The symbol is the Greek letter nu, which resembles an angular vee; could be read

constant for the vibration; reduced mass of the molecule
and are the masses of A and B.

The force constant k of a vibrational mode is a measure of the “stiffness” of the
molecule toward that vibrational mode – the harder it is to stretch or bend the molecule
in the manner of that mode, the bigger is that force constant (for a diatomic molecule
k simply corresponds to the stiffness of the one bond). The fact that the frequency of
a vibrational mode is related to the force constant for the mode suggests that it might
be possible to calculate the normal-mode frequencies of a molecule, i.e. the directions
and frequencies of the atomic motions, from its force constant matrix (its Hessian).
This is indeed possible: matrix diagonalization of the Hessian gives the directional
characteristics (which way the atoms are moving), and the force constants themselves,
for the vibrations. Matrix diagonalization (section 4.3.3) is a process in which a square
matrix A is decomposed into three square matrices, P, D, and D is
a diagonal matrix: as with k in Eq. (2.17) all its off-diagonal elements are zero. P is a
premultiplying matrix and is the inverse of P. When matrix algebra is applied to
physical problems, the diagonal row elements of D are the magnitudes of some physical
quantity, and each column of P is a set of coordinates which give a direction associated
with that physical quantity. These ideas are made more concrete in the discussion

“nu tilde”;  “nu bar,” has been used less frequently. velocity of light; force
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accompanying Eq. (2.17), which shows the diagonalization of the Hessian matrix for a
triatomic molecule, e.g.

Equation (2.17) is of the form The 9 × 9 Hessian for a triatomic molecule
(three Cartesian coordinates for each atom) is decomposed by diagonalization into a P
matrix whose columns are “direction vectors” for the vibrations whose force constants
are given by the k matrix. Actually, columns 1, 2 and 3 of P and the corresponding

and of k refer to translational motion of the molecule (motion of the whole
molecule from one place to another in space); these three “force constants” are nearly
zero. Columns 4, 5 and 6 of P and the corresponding and of k refer to
rotational motion about the three principal axes of rotation, and are also nearly zero.
Columns 7, 8 and 9 of P and the corresponding and of k are the direction
vectors and force constants, respectively, for the normal-mode vibrations: and

refer to vibrational modes 1, 2 and 3, while the 7th, 8th, and 9th columns of P are
composed of the x, y and z components of vectors for motion of the three atoms in mode
1 (column 7), mode 2 (column 8), and mode 3 (column 9). “Mass-weighting” the force
constants, i.e. taking into account the effect of the masses of the atoms (cf. Eq. (2.16)
for the simple case of a diatomic molecule), gives the vibrational frequencies. The
P matrix is the eigenvector matrix and the k matrix is the eigenvalue matrix from
diagonalization of the Hessian H. “Eigen” is a German prefix meaning “appropriate,
suitable, actual” and is used in this context to denote mathematically appropriate entities
for the solution of a matrix equation. Thus the directions of the normal-mode frequencies
are the eigenvectors, and their magnitudes are the mass-weighted eigenvalues, of the
Hessian.

Vibrational frequencies are calculated to obtain IR spectra, to characterize station-
ary points, and to obtain zero point energies (below). The calculation of meaningful
frequencies is valid only at a stationary point and only using the same method that
was used to optimize to that stationary point (e.g. an ab initio method with a particular
correlation level and basis set – see chapter 5). This is because (1) the use of second
derivatives as force constants presupposes that the PES is quadratically curved along
each geometric coordinate (Fig. 2.2) but it is only near a stationary point that this
is true, and (2) use of a method other than that used to obtain the stationary point
presupposes that the PES’s of the two methods are parallel (that they have the same
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curvature) at the stationary point. Of course, “provisional” force constants at nonsta-
tionary points are used in the optimization process, as the Hessian is updated from step
to step. Calculated IR frequencies are usually somewhat too high, but (at least for ab
initio and density functional calculations) can be brought into reasonable agreement
with experiment by multiplying them by an empirically determined factor, commonly
about 0.9 [16] (see the discussion of frequencies in chapters 5–7).

A minimum on the PES has all the normal-mode force constants (all the eigenvalues
of the Hessian) positive: for each vibrational mode there is a restoring force, like that
of a spring. As the atoms execute the motion, the force pulls and slows them till they
move in the opposite direction; each vibration is periodic, over and over. The species
corresponding to the minimum sits in a well and vibrates forever (or until it acquires
enough energy to react). For a transition state, however, one of the vibrations, that along
the reaction coordinate, is different: motion of the atoms corresponding to this mode
takes the transition state toward the product or toward the reactant, without a restoring
force. This one “vibration” is not a periodic motion but rather takes the species through
the transition state geometry on a one-way journey. Now, the force constant is the first
derivative of the gradient or slope (the derivative of the first derivative); examination of
Fig. 2.8 shows that along the reaction coordinate the surface slopes downward, so the
force constant for this mode is negative. A transition state (a first-order saddle point)
has one and only one negative normal-mode force constant (one negative eigenvalue
of the Hessian). Since a frequency calculation involves taking the square root of a
force constant (Eq. (2.16)), and the square root of a negative number is an imaginary
number, a transition state has one imaginary frequency, corresponding to the reaction
coordinate. In general an nth-order saddle point (an nth-order hilltop) has n negative
normal-mode force constants and so n imaginary frequencies, corresponding to motion
from one stationary point of some kind to another.

A stationary point could of course be characterized just from the number of negative
force constants, but the mass-weighting requires much less time than calculating the
force constants, and the frequencies themselves are often wanted anyway, e.g. for
comparison with experiment. In practice one usually checks the nature of a stationary
point by calculating the frequencies and seeing how many imaginary frequencies are
present; a minimum has none, a transition state one, and a hilltop more than one. If one
is seeking a particular transition state the criteria to be satisfied are:

1.

2.

3.

It should look right. The structure of a transition state should lie somewhere between
that of the reactants and the products; e.g. the transition state for the unimolecular
isomerization of HCN to HNC shows an H bonded to both C and N by an unusually
long bond, and the CN bond length is in-between that of HCN and HNC.

It must have one and only one imaginary frequency (some programs indicate this as
a negative frequency, e.g.  – instead of the correct

The imaginary frequency must correspond to the reaction coordinate. This is usually
clear from animation of the frequency (the motion, stretching, bending, twisting,
corresponding to a frequency may be visualized with a variety of programs). For
example, the transition state for the unimolecular isomerization of HCN to HNC
shows an imaginary frequency which when animated clearly shows the H migrating
between the C and the N. Should it not be clear from animation which two species the
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transition state connects, one may resort to an IRC calculation [17]. This procedure
follows the transition state downhill along the IRC (section 2.2), generating a series
of structures along the path to the reactant or product. Usually it is clear where the
transition state is going without following it all the way to a stationary point.

The energy of the transition state must be higher than that of the two species it
connects.

4.

Besides indicating the IR spectrum and providing a check on the nature of stationary
points, the calculation of vibrational frequencies also provides the ZPE (most programs
will calculate this automatically as part of a frequency job). The ZPE is the energy a
molecule has even at absolute zero (Fig. 2.2), as a consequence of the fact that even at
this temperature it still vibrates [2]. The ZPE of a species is usually not small compared
to activation energies or reaction energies, but ZPEs tend to cancel out when these
are calculated (by subtraction), since for a given reaction the ZPE of the reactant,
transition state and product tend to be roughly the same. However, for accurate work
the ZPE should be added to the “total” (electronic + nuclear repulsion) energies of
species and the ZPE-corrected energies should then be compared (Fig. 2.19). Like the
frequencies, the ZPE is usually corrected by multiplying it by an empirical factor; this
is sometimes the same as the frequency correction factor, but slightly different factors
have been recommended [16].

The Hessian that results from a geometry optimization was built up in steps from one
geometry to the next, approximating second derivatives from the changes in gradients
(Eq. (2.15)). This Hessian is not accurate enough for the calculation of frequencies and
ZPE’s. The calculation of an accurate Hessian for a stationary point can be done analyti-
cally or numerically. Accurate numerical evaluation approximates the second derivative
as in Eq. (2.15), but instead of and being taken from optimization iter-
ation steps, they are obtained by changing the position of each atom of the optimized
structure slightly and calculating analytically the change in the
gradient at each geometry; subtraction gives This can be done for a change
in one direction only for each atom (method of forward differences) or more accurately
by going in two directions around the equilibrium position and averaging the gradient
change (method of central differences). Analytical calculation of ab initio frequencies
is much faster than numerical evaluation, but demands on computer hard drive space
may make numerical calculation the only recourse at high ab initio levels (chapter 5).

2.6 SYMMETRY

Symmetry is important in theoretical chemistry (and even more so in theoretical
physics), but our interest in it here is bounded by modest considerations: we want
to see why symmetry is relevant to setting up a calculation and interpreting the results,
and to make sense of terms like etc., which are used in various places in this
book. Excellent expositions of symmetry are given by, e.g. Atkins [18] and Levine [19].

The symmetry of a molecule is most easily described by using one of the standard
designations like These are called point groups (Schoenflies point groups)
because when symmetry operations (below) are carried out on a molecule (on any object)
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with symmetry, at least one point is left unchanged. The classification is according
to the presence of symmetry elements and corresponding symmetry operations. The
main symmetry elements are mirror planes (symmetry planes), symmetry axes, and
an inversion center; other symmetry elements are the entire object, and an improper
rotation axis. The operation corresponding to a mirror plane is reflection in that plane,
the operation corresponding to a symmetry axis is rotation about that axis, and the
operation corresponding to an inversion center is moving each point in the molecule



The Concept of the Potential Energy Surface 35

along a straight line to that center then moving it further, along the line, an equal distance
beyond the center. The “entire object” element corresponds to doing nothing (a null
operation); in common parlance an object with only this symmetry element would be
said to have no symmetry. The improper rotation axis corresponds to rotation followed
by a reflection through a plane perpendicular to that rotation axis. We are concerned
mainly with the first three symmetry elements. The main point groups are exemplified
in Fig. 2.20.
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A molecule with no symmetry elements at all is said to belong to the group (to
have The only symmetry operation such a molecule permits is the null
operation – this is the only operation that leaves it unmoved. An example is CHBrClF,
with a so-called asymmetric atom; in fact, most molecules have no symmetry – just
think of steroids, alkaloids, proteins, most drugs. Note that a molecule does not need
an “asymmetric atom” to have symmetry: HOOF in the conformation shown is
(has no symmetry).

A molecule with only a mirror plane belongs to the group Example: HOF.
Reflection in this plane leaves the molecule apparently unmoved.

A molecule with only a axis belongs to the group Example: in the
conformation shown. Rotation about this axis through gives the same orientation
twice. Similarly etc. are possible.

A molecule with two mirror planes whose intersection forms a axis belongs
to the group. Example: Similarly is pyramidane is and HCN
is
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A molecule with only an inversion center (center of symmetry) belongs to the
group Example: meso-tartaric acid in the conformation shown. Moving any point
in the molecule along a straight line to this center, then continuing on an equal distance
leaves the molecule apparently unchanged.

A molecule with a axis and a mirrorplane horizontal to this axis is            (a
object will also perforce have an inversion center). Example: (E)-1,2-difluoroethene.
Similarly B(OH)3 is

A molecule with a axis and two more axes, perpendicular to that axis, has
 symmetry. Example: the tetrahydroxycyclobutadiene shown. Similarly, a molecule

with a axis (the principal axis) and three other perpendicular axes is
A molecule with a axis and two perpendicular axes (as for above),

plus a mirror plane is Examples: ethene, cyclobutadiene. Similarly, a axis
(the principal axis), three perpendicular axes and a mirror plane horizontal to the
principal axis confer symmetry, as in the cyclopropenyl cation. Similarly, benzene
is and is

A molecule is if it has a axis and two perpendicular axes (as for
above), plus two “dihedral” mirror planes; these are mirror planes that bisect two
axes (in general, that bisect the axes perpendicular to the principal axis). Example:
allene (propadiene). Staggered ethane is (it has symmetry elements plus three
dihedral mirror planes. symmetry can be hard to spot.

Molecules belonging to the cubic point groups can, in some sense, be fitted symmet-
rically inside a cube. The commonest of these are and I; they will be simply
exemplified:

This is tetrahedral symmetry. Example:
This might be considered “cubic symmetry”. Example: cubane,
Also called icosahedral symmetry. Example: buckminsterfullerene.

Less-common groups are and the cubic groups T, (dodecahedrane is and
O (see [18,19]). Atkins [18] and Levine [19] give flow charts which make it relatively
simple to assign a molecule to its point group, and Atkins provides pictures of objects
of various symmetries which often make it possible to assign a point group without
having to examine the molecule for its symmetry elements.

We saw above that most molecules have no symmetry. So why is a knowledge of sym-
metry important in chemistry? Symmetry considerations are essential in the theory of
molecular electronic (UV) spectroscopy and sometimes in analyzing in detail molecular
wavefunctions (chapter 4), but for us the reasons are more pragmatic. A calculation run
on a molecule whose input structure has the exact symmetry that the molecule should
have will tend to be faster and will yield a “better” (see below) geometry than one run on
an approximate structure, however close this may be to the exact one. Input molecular
structures for a calculation are usually created with an interactive graphical program
and a computer mouse: atoms are assembled into molecules much as with a model kit,
or the molecule might be drawn on the computer screen. If the molecule has symmetry
(if it is not is not this can be imposed by optimizing the geometry with molecu-
lar mechanics (chapter 3). Now consider water: we would of course normally input
the molecule with its exact equilibrium symmetry, but we could also alter
the input structure slightly making the symmetry (three atoms must lie in a plane).
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The structure has two degrees of freedom: a bond length (the two bonds are the
same length) and a bond angle. The structure has three degrees of freedom: two
bond lengths and a bond angle. The optimization algorithm has more variables to cope
with in the case of the lower-symmetry structure. A moderately high-level geometry
optimization and frequencies job on dimethyl ether, took 5.7 min, but
on the ether 6.8 min (actually, small molecules like water, and low-level calcula-
tions, show a levelling effect, taking only seconds and requiring about the same time
regardless of symmetry).

What do we mean by a better geometry ? Although a successful geometry optimization
will give essentially the same geometry from a slightly distorted input structure as from
one with the perfect symmetry of the molecule in question, corresponding bond lengths
and angles (e.g. the four C–H bonds and the two HCH angles of ethene) will not be
exactly the same. This can confuse an analysis of the geometry, and carries over into
the calculation of other properties like, say, charges on atoms – corresponding atoms
should have exactly the same charges. Thus both esthetic and practical considerations
encourage us to aim for the exact symmetry that the molecule should possess.

2.7 SUMMARY OF CHAPTER 2

The PES is a central concept in computational chemistry. A PES is the relationship –
mathematical or graphical – between the energy of a molecule (or a collection of
molecules) and its geometry.

ric parameter. The stationary points of chemical interest are minima
for all and transition states or first-order saddle points; for one
along the reaction coordinate (IRC), and for all other Chemistry is the study of
PES stationary points and the pathways connecting them.

The Born–Oppenheimer approximation says that in a molecule the nuclei are
essentially stationary compared to the electrons. This is one of the cornerstones of
computational chemistry because it makes the concept of molecular shape (geometry)
meaningful, makes possible the concept of a PES, and simplifies the application of the
Schrödinger equation to molecules by allowing us to focus on the electronic energy and
add in the nuclear repulsion energy later.

Geometry optimization is the process of starting with an input structure “guess” and
finding a stationary point on the PES. The stationary point found will normally be the
one closest to the input structure, not necessarily the global minimum. A transition
state optimization usually requires a special algorithm, since it is more demanding than
that required to find a minimum. Modern optimization algorithms use analytic first
derivatives and (usually numerical) second derivatives.

It is usually wise to check that a stationary point is the desired species (a minimum or
a transition state) by calculating its vibrational spectrum (its normal-mode vibrations).
The algorithm for this works by calculating an accurate Hessian (force constant matrix)
and diagonalizing it to give a matrix with the “direction vectors” of the normal modes,
and a diagonal matrix with the force constants of these modes. A procedure of “mass-
weighting” the force constants gives the normal-mode vibrational frequencies. For a

Stationary points on a PES are points where  for all  where is a geomet-
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minimum all the vibrations are real, while a transition state has one imaginary vibration,
corresponding to motion along the reaction coordinate. The criteria for a transition state
are appearance, the presence of one imaginary frequency corresponding to the reaction
coordinate, and an energy above that of the reactant and the product. Besides serving
to characterize the stationary point, calculation of the vibrational frequencies enables
one to predict an IR spectrum and provides the ZPE. The ZPE is needed for accurate
comparisons of the energies of isomeric species. The accurate Hessian required for
calculation of frequencies and ZPE’s can be obtained either numerically or analytically
(faster, but much more demanding of hard drive space).
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EASIER QUESTIONS

1.
2.
3.

4.
5.

6.
7.

8.

9.
10.

What is a PES (give the two viewpoints)?
Explain the difference between a relaxed PES and a rigid PES.
What is a stationary point? What kinds of stationary points are of interest to
chemists, and how do they differ?
What is a reaction coordinate?
Show with a sketch why it is not correct to say that a transition state is a maximum
on a PES.
What is the Born-Oppenheimer approximation, and why is it important?
Explain, for a reaction how the potential energy change on a PES is related
to the enthalpy change of the reaction. What would be the problem with calculating
a free energy/geometry surface?
Hint: Vibrational frequencies are normally calculated only for stationary points.
What is geometry optimization? Why is this process for transition states (often
called transition state optimization) more challenging than for minima?
What is a Hessian? What uses does it have in computational chemistry?
Why is it usually good practice to calculate vibrational frequencies where practical,
although this often takes considerably longer than geometry optimization?

HARDER QUESTIONS

1.

2.

3.

4.

5.

6.

7.

The Born–Oppenheimer principle is often said to be a prerequisite for the concept
of a PES. Yet the idea of a PES (Marcelin, 1915) predates the Born–Oppenheimer
principle (1927). Discuss.
How high would you have to lift a mole of water for its gravitational potential energy
to be equivalent to the energy needed to dissociate it completely into hydroxyl
radicals and hydrogen atoms? The strength of the O–H bond is about
the gravitational acceleration g at the Earth’s surface (and out to hundreds of km)
is about What does this indicate about the role of gravity in chemistry?
If gravity plays no role in chemistry, why are vibrational frequencies different for,
say, C–H and C–D bonds?
We assumed that the two bond lengths of water are equal. Must an acyclic molecule

have equal A–B bond lengths? What about a cyclic molecule
Why are chemists but rarely interested in finding and characterizing second-order
and higher saddle points (hilltops)?
What kind(s) of stationary points do you think a second-order saddle point
connects?
If a species has one calculated frequency very close to what does that tell
you about the (calculated) PES in that region?
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8.

9.

The ZPE of many molecules is greater than the energy needed to break a bond;
e.g. the ZPE of hexane is about                          while the strength of a C–C or a C–H
bond is only about                       Why then do such molecules not spontaneously
decompose?
Only certain parts of a PES are chemically interesting: some regions are flat and
featureless, while yet other parts rise steeply and are thus energetically inaccessible.
Explain.
Consider two PESs for the                                 A, a plot of energy vs. the H–C bond
length, and B, a plot of energy vs. the HCN angle. Recalling that HNC is the
higher-energy species (Fig. 2.19), sketch qualitatively the diagrams A and B.

10.
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Chapter 3

Molecular Mechanics

We don’t give a damn where the electrons are.
Words to the author, from the president of a

well-known chemical company, emphasizing
his firm’s position on basic research.

3.1 PERSPECTIVE

Molecular mechanics (MM) [1] is based on a mathematical model of a molecule as
a collection of balls (corresponding to the atoms) held together by springs (correspond-
ing to the bonds) (Fig. 3.1). Within the framework of this model, the energy of the
molecule changes with geometry because the springs resist being stretched or bent
away from some “natural” length or angle, and the balls resist being pushed too closely
together. The mathematical model is thus conceptually very close to the intuitive feel
for molecular energetics that one obtains when manipulating molecular models of plas-
tic or metal: the model resists distortions (it may break!) from the “natural” geometry
that corresponds to the bond lengths and angles imposed by the manufacturer, and in
the case of space-filling models, atoms cannot be forced too closely together. The MM
model clearly ignores electrons.

The principle behind MM is to express the energy of a molecule as a function of
its resistance toward bond stretching, bond bending, and atom crowding, and to use
this energy equation to find the bond lengths, angles, and dihedrals corresponding to
the minimum-energy geometry – or more precisely, to the various possible potential
energy surface minima (chapter 2). In other words, MM uses a conceptually mechanical
model of a molecule to find its minimum-energy geometry (for flexible molecules, the
geometries of the various conformers). The form of the mathematical expression for
the energy, and the parameters in it, constitute a forcefield, and MM methods are
sometimes called forcefield methods. The term arises because the negative of the first
derivative of the potential energy of a particle with respect to displacement along some
direction is the force on the particle; a “forcefield” E(x, y, z coordinates of atoms) can
be differentiated to give the force on each atom.
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The method makes no reference to electrons, and so cannot (except by some kind
of empirical algorithm) throw light on electronic properties like charge distributions
or nucleophilic and electrophilic behaviour. Note that MM implicitly uses the Born–
Oppenheimer approximation, for only if the nuclei experience what amounts to a static
attractive force, whether from electrons or springs, does a molecule have a distinct
geometry (section 2.3).

An important point, which students sometimes have a problem with, is that the con-
cept of a bond is central to MM, but not essential – although often useful – in electronic
structure calculations. In MM a molecule is defined by the atoms and the bonds, which
latter are regarded almost literally as springs holding the atoms together. Usually, bonds
are placed where the rules for drawing structural formulas require them, and to do a MM
calculation you must specify each bond as single, double, etc., since this tells the pro-
gram how strong a bond to use (sections 3.2.1 and 3.2.2). In an electronic structure
calculation – ab initio (chapter 5), semiempirical (SE) (chapter 6), and density func-
tional theory (chapter 7) – a molecule is defined by the relative positions of its atomic
nuclei, the charge, and the “multiplicity” (which follows easily from the number of
unpaired electrons). An oxygen nucleus and two protons with the right x, y, z coor-
dinates, no charge, and multiplicity one (no unpaired electrons) is a water molecule.
There is no need to mention bonds here, although the chemist might wish to somehow
extract this useful concept from this picture of nuclei and electrons. This can be done
by calculating the electron density and associating a bond with, for example, a path
along which electron density is concentrated, but there is no unique definition of a bond
in electronic structure theory. It is worth noting, too, that in some graphical interfaces
used in computational chemistry bonds are specified by the user, while in others they
are shown by the program depending on the separation of pairs of atoms. The novice
may find it disconcerting to see a specified bond still displayed even when a change in
geometry has moved a pair of atoms far apart, or to see a bond vanish when a pair has
moved beyond the distance recognized by some fudge factor.

Historically [2], MM seems to have begun as an attempt to obtain quantitative
information about chemical reactions at a time when the possibility of doing quan-
titative quantum mechanical (chapter 4) calculations on anything much bigger than the
hydrogen molecule seemed remote. Specifically, the principles of MM, as a poten-
tially general method for studying the variation of the energy of molecular systems
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with their geometry, were formulated in 1946 by Westheimer1 and Meyer [3a], and by
Hill [3b], In this same year Dostrovsky, Hughes2 and Ingold3 independently applied
MM concepts of to the quantitative analysis of the reaction, but they do not seem
to have recognized the potentially wide applicability of this approach [3c]. In 1947
Westheimer [3d] published detailed calculations in which MM was used to estimate the
activation energy for the racemization of biphenyls.

Major contributors to the development of MM have been Schleyer4 [2b,c] and
Allinger5 [1c,d]; one of Allinger’s publications on MM [1d] is, according to the Citation
Index, one of the most frequently cited chemistry papers. The Allinger group has, since
the 1960s, been responsible for the development of the “MM-series” of programs, com-
mencing with MM1 and continuing with the currently widely-used MM2 and MM3,
and the recent MM4 [4]. MM programs [5] like Sybyl and UFF will handle molecules
involving much of the periodic table, albeit with some loss of accuracy that one might
expect for trading breadth for depth, and MM is the most widely-used method for
computing the geometries and energies of large biological molecules like proteins and
nucleic acids (although recently SE (chapter 6) and even ab initio (chapter 5) methods
have begun to be applied to these large molecules).

3.2 THE BASIC PRINCIPLES OF MM

3.2.1 Developing a forcefield
The potential energy of a molecule can be written

where etc. are energy contributions from bond stretching, angle bending, tor-
sional motion (rotation) around single bonds, and interactions between atoms or groups
which are nonbonded (not directly bonded together). The sums are over all the bonds,
all the angles defined by three atoms A–B–C, all the dihedral angles defined by four
atoms A–B–C–D, and all pairs of significant nonbonded interactions. The mathemat-
ical form of these terms and the parameters in them constitute a particular forcefield.
We can make this clear by being more specific; let us consider each of these four terms.

The bond stretching term. The increase in the energy of a spring (remember that we
are modelling the molecule as a collection of balls held together by springs) when it is

1Frank H. Westheimer, born Baltimore, Maryland, 1912. Ph.D. Harvard 1935. Professor University of
Chicago, Harvard.

2 Edward D. Hughes, born Wales, 1906. Ph.D. University of Wales, D.Sc. University of London. Professor,
London. Died 1963.

3Christopher K. Ingold, born London 1893. D.Sc. London 1921. Professor Leeds, London. Knighted
1958. Died London 1970.

4Paul von R. Schleyer, born Cleveland, Ohio, 1930. Ph.D. Harvard 1957. Professor Princeton; institute
codirector and professor University of Erlangen-Nürnberg, 1976–1998. Professor University of Georgia.

5Norman L. Allinger, born Rochester New York, 1930. Ph.D. University of California at Los Angeles,
1954. Professor Wayne State University, University of Georgia.
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stretched (Fig. 3.2) is approximately proportional to the square of the extension:

where is the proportionality constant (actually one-half the force constant of the
spring or bond [6]; but note the warning about identifying MM force constants with the
traditional force constant from, say, spectroscopy – see section 3.3); the bigger
the stiffer the bond/spring – the more it resists being stretched; l is the length of the
bond when stretched; and      is the equilibrium length of the bond, its “natural” length.

If we take the energy corresponding to the equilibrium length as the zero of energy,
we can replace by

The angle bending term. The increase in energy of system ball–spring–ball–spring–
ball, corresponding to the triatomic unit A–B–C (the increase in “angle energy”)
is approximately proportional to the square of the increase in the angle (Fig. 3.2);
analogously to Eq. (3.2):

where is a proportionality constant (one-half the angle bending force constant [6];
note the warning about identifying MM force constants with the traditional force con-
stant from, say, spectroscopy –see section 3.3); a is the size of the angle when distorted;
and      is the equilibrium size of the angle, its “natural” value.
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The torsional term. Consider four atoms sequentially bonded: A–B–C–D (Fig. 3.3).
The dihedral angle or torsional angle of the system is the angle between the A–B
bond and the C–D bond as viewed along the B–C bond. Conventionally this angle is
considered positive if regarded as arising from clockwise rotation (starting with A–B
covering or eclipsing C–D) of the back bond (C–D) with respect to the front bond (A–B).
Thus in Fig. 3.3 the dihedral angle A–B–C–D is 60° (it could also be considered as
being –300°). Since the geometry repeats itself every 360°, the energy varies with
the dihedral angle in a sine or cosine pattern, as shown in Fig. 3.4 for the simple
case of ethane. For systems A–B–C–D of lower symmetry, like butane (Fig. 3.5), the
torsional potential energy curve is more complicated, but a combination of sine or
cosine functions will reproduce the curve:
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The nonbonded interactions term. This represents the change in potential energy with
distance apart of atoms A and B that are not directly bonded (as in A–B) and are not
bonded to a common atom (as in A–X–B); these atoms, separated by at least two atoms
(A–X–Y–B) or even in different molecules, are said to be nonbonded (with respect
to each other). Note that the A–B case is accounted for by the bond stretching term

and the A–X–B term by the angle bending term            but the nonbonded term
is, for the A–X–Y–B case, superimposed upon the torsional term              we

can think of as representing some factor inherent to resistance to rotation about
a (usually single) bond X–Y (MM does not attempt to explain the theoretical, electronic
basis of this or any other effect), while for certain atoms attached to X and Y there may
also be nonbonded interactions.

The potential energy curve for two nonpolar nonbonded atoms has the general form
shown in Fig. 3.6. A simple way to approximate this is by the so-called Lennard–Jones
12-6 potential [7]:

where r is the distance between the centers of the nonbonded atoms or groups.
The function reproduces the small attractive dip in the curve (represented by the

negative term) as the atoms or groups approach one another, then the very steep rise
in potential energy (represented by the raising the positive, repulsive term raised to
a large power) as they are pushed together closer than their van der Waals radii. Setting

we find that for the energy minimum in the curve the corresponding value
of     is                               i.e.
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If we assume that this minimum corresponds to van der Waals contact of the nonbonded
groups, then the sum of the van der Waals radii of the groups A
and B. So

and so

Thus can be calculated from or estimated from the van der Waals radii.
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Setting we find that for this point on the curve i.e.

If we set (from Eq. (3.6)) in Eq. (3.5), we find

i.e.

So can be calculated from the depth of the energy minimum.
In deciding to use equations of the form (3.2)–(3.5) we have decided on a particular

MM forcefield. There are many alternative forcefields. For example, we might have
chosen to approximate by the sum of a quadratic and a cubic term:

This gives a somewhat more accurate representation of the variation of energy with
length. Again, we might have represented the nonbonded interaction energy by a more
complicated expression than the simple 12-6 potential of Eq. (3.5) (which is by no means
the best form for nonbonded repulsions). Such changes would represent changes in the
forcefield.

3.2.2 Parameterizing a forcefield
We can now consider putting actual numbers, etc., into Eqs (3.2)–
(3.5), to give expressions that we can actually use. The process of finding these numbers
is called parameterizing (or parametrizing) the forcefield. The set of molecules used
for parameterization, perhaps 100 for a good forcefield, is called the training set. In the
purely illustrative example below we use just ethane, methane and butane.

Parameterizing the bond stretching term. A forcefield can be parameterized by ref-
erence to experiment (empirical parameterization) or by getting the numbers from
high-level ab initio or density functional calculations, or by a combination of both
approaches. For the bond stretching term of Eq. (3.2) we need and Experi-
mentally, could be obtained from IR spectra, as the stretching frequency of a bond
depends on the force constant (and the masses of the atoms involved) [8], and could
be derived from X-ray diffraction, electron diffraction, or microwave spectroscopy [9].

Let us find          for the C/C bond of ethane by ab initio (chapter 5) calculations.
Normally high-level ab initio calculations would be used to parameterize a forcefield,
but for illustrative purposes we can use the low-level but fast STO-3G method [10].
Eq. (3.2) shows that a plot of against should be linear with a slope of

Table 3.1 and Fig. 3.7 show the variation of the energy of ethane with stretching
of the C/C bond, as calculated by the ab initio STO-3G method. The equilibrium bond
length has been taken as the STO-3G length:
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The slope of the graph is

Similarly, the CH bond of methane was stretched using ab initio STO-3G calcula-
tions; the results are

Parameterizing the angle bending term. From Eq. (3.3), a plot of against
should be linear with a slope of  From STO-3G calculations on bending
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the H–C–C angle in ethane we get (cf. Table 3.1 and Fig. 3.7)

Calculations on staggered butane gave for the C–C–C angle

Parameterizing the torsional term. For the ethane case (Fig. 3.4), the equation for
energy as a function of dihedral angle can be deduced fairly simply by adjusting the

accurate torsional potential energy function can be created with five parameters,      and

The values of the parameters              are given in Table 3.2. The calculated curve can be
made to match the experimental one as closely as desired by using more terms (Fourier
analysis).

Parameterizing the nonbonded interactions term. To parameterize Eq. (3.5) we might
perform ab initio calculations in which the separation of two atoms or groups in different

basic equation                     to give                                                            For butane (Fig. 3.5),
using Eq. (3.4) and experimenting with a curve-fitting program shows that a reasonably
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molecules (to avoid the complication of concomitant changes in bond lengths and
angles) is varied, and fit Eq. (3.5) to the energy vs. distance results. For nonpolar
groups this would require quite high-level calculations (chapter 5), as van der Waals
or dispersion forces are involved. We shall approximate the nonbonded interactions of
methyl groups by the interactions of methane molecules, using experimental values of

and , derived from studies of the viscosity or the compressibility of methane. The
two methods give slightly different values [7b], but we can use the values

and

Summary of the parameterization of the forcefield terms. The four terms of Eq. (3.1)
were parameterized to give:

The parameters k of Eq. (3.25) are given in Table 3.2.

Note that this parameterization is only illustrative of the principles involved; any really
viable forcefield would actually be much more sophisticated. The kind we have devel-
oped here might at the very best give crude estimates of the energies of alkanes. An
accurate, practical forcefield would be parameterized as a best fit to many experimental
and/or calculational results, and would have different parameters for different kinds of
bonds, e.g. C–C for acyclic alkanes, for cyclobutane and for cyclopropane. A force-
field able to handle not only hydrocarbons would obviously need parameters involving
elements other than hydrogen and carbon. Practical forcefields also have different para-
meters for various atom types, like carbon vs. carbon, or amine nitrogen vs.
amide nitrogen. In other words, a different value would be used for, say, stretching
involving an C–C bond than for an C–C bond. This is clearly nec-
essary since the force constant of a bond depends on the hybridization of the atoms
involved; the IR stretch frequency for the bond comes at roughly
while that for the bond is about                     [8]. Since the vibrational fre-
quency of a bond is proportional to the square root of the force constant, the force
constants are in the ratio of about for corresponding atoms, force
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constants are in fact generally roughly proportional to bond order (double bonds and
triple bonds are about two and three times as stiff, respectively, as the corresponding
single bonds). Some forcefields account for the variation of bond order with conforma-
tion (twisting p orbitals out of alignment reduces their overlap) by performing a simple
PPP molecular orbital calculation (chapter 6) to obtain the bond order.

A sophisticated forcefield might also consider H/H nonbonded interactions explic-
itly, rather than simply subsuming them into methyl/methyl interactions (combining
atoms into groups is the feature of a united atom forcefield). Furthermore, non-
bonding interactions between polar groups need to be accounted for in a field not
limited to hydrocarbons. These are usually handled by the well-known potential
energy/electrostatic charge relationship

which has also been used to model hydrogen bonding [11].
A subtler problem with the naive forcefield developed here is that stretching, bend-

ing, torsional, and nonbonded terms are not completely independent. For example,
the butane torsional potential energy curve (Fig. 3.5) does not apply precisely to all

systems, because the barrier heights will vary with the length of the
central C–C bond, obviously decreasing (other things being equal) as the bond is length-
ened, since there will be a decrease in the interactions (whatever causes them) between
the and on one of the carbons of the central C–C and those on the other
carbon. This could be accounted for by making the k’s of Eq. (3.25) a function of the
X–Y length. Actually, partitioning the energy of a molecule into stretching, bending,
etc. terms is somewhat formal; e.g. the torsional barrier in butane can be considered
to be partly due to nonbonded interactions between the methyl groups. It should be
realized that there is no one, right functional form for an MM forcefield (see, e.g. [1b]);
accuracy, versatility, and speed of computation are the deciding factors in devising a
forcefield.

3.2.3 A calculation using our forcefield
Let us apply the naive forcefield developed here to comparing the energies of two
2,2,3,3-tetramethylbutane i.e. t-Bu-Bu-t) geometries. We compare
the energy of structure 1 (Fig. 3.8) with all the bond lengths and angles at our “natural”
or standard values (i.e. at the STO-3G values we took as the equilibrium bond lengths
and angles in section 3.2.2) with that of structure 2, where the central C–C bond has
been stretched from 1.538 to 1.600 Å, but all other bond lengths, as well as the bond
angles and dihedral angles, are unchanged. Figure 3.8 shows the nonbonded distances
we need, which would be calculated by the program from bond lengths, angles and
dihedrals. Using Eq. (3.1):
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For structure 1

Bond stretch contribution cf. structure with

Bond stretch contribution cf. structure with

Bond bend contribution cf. structure with

Bond bend contribution cf. structure with

Torsional contribution cf. structure with no gauche–butane interactions

nonbonding contribution cf. structure with noninteracting
Actually, nonbonding interactions are already included in the torsional term (as

gauche–butane interactions); we might have used an ethane-type torsional function
and accounted for interactions entirely with nonbonded terms. However, in
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comparing calculated relative energies the torsional term will cancel out.

For structure 2

Bond stretch contribution cf. structure with

Bond stretch contribution cf. structure with

Bond bend contribution cf. structure with

Bond bend contribution cf. structure with

Torsional contribution cf. structure with no gauche–butane interactions.

The stretching and bending terms for structure 2 are the same as for structure 1,
except for the contribution of the central C–C bond; strictly speaking, the torsional
term should be smaller, since the opposing groups have been moved apart.

nonbonding contribution cf. structure with noninteracting

So the relative energies are calculated to be

This crude method predicts that stretching the central C/C bond of 2,2,3,3-
tetramethylbutane from the approximately normal length of 1.583 Å
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(structure 1) to the quite “unnatural” length of 1.600 Å (structure 2) will lower the poten-
tial energy by and indicates that the drop in energy is due very largely to the
relief of nonbonded interactions. A calculation using the accurate forcefield MM3 [12]

(roughly to about ) and medium-sized (roughly to  organic molecules.
It is by no means limited to organic molecules, as forcefields like SYBYL and UFF [5]
have been parameterized for most of the periodic table, but the great majority of MM
calculations have been done on organics, probably largely because MM was the cre-
ation of organic chemists (this is probably because the concept of geometric structure
has long been central in organic chemistry). The most frequent use of MM is undoubt-
edly to obtain reasonable starting structures for ab initio, SE, or DFT (chapters 5–7)

gave an energy difference of                        between a “standard” geometry approximately
like structure 1, and a fully optimized geometry, which had a central C/C bond length
of 1.576 Å. The surprisingly good agreement is largely the result of a fortuitous can-
cellation of errors, but this does not gainsay the fact that we have used our forcefield to
calculate something of chemical interest, namely the relative energy of two molecular
geometries. In principle, we could have found the minimum-energy geometry accord-
ing to this forcefield, i.e. we could have optimized the geometry (chapter 2). Geometry
optimization is in fact the main use of MM, and modern programs employ analytical
first and second derivatives of the energy with respect to the geometric coordinates for
this (chapter 2).

3.3 EXAMPLES OF THE USE OF MM

If we consider the applications of MM from the viewpoint of the goals of those who
use it, then the main applications have been:

(1)

(2)

(3)

(4)

(5)

to calculate the geometries (and perhaps energies) of small to medium-sized
(i.e. nonpolymeric) molecules, very often in order to a reasonable starting geometry
for another type (e.g. ab initio) of calculation;

to calculate the geometries and energies of polymers (mainly proteins and nucleic
acids);

to calculate the geometries and energies of transition states (infrequent);

as an aid to organic synthesis;

to generate the potential energy function under which molecules move, for
molecular dynamics calculations.

These applications are not all independent. For example, a chemist planning a synthesis
might use MM to obtain a plausible geometry for an intermediate involved in the
synthesis (the use ofMM in synthesis is now so common it is likely that this is often not
reported in the literature), and a protein or nucleic acid could be studied with molecular
dynamics. Examples of these five facets of the use of MM will be given.

3.3.1 Geometries and energies of small- to
medium-sized molecules

Molecular mechanics is used mainly to calculate geometries and energies for small-
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calculations. Nowadays this is usually done by building the molecule with an interac-
tive builder in a graphical user interface, then optimizing it with MM with the click
of a mouse. The resulting structure is then subjected to an ab initio, etc. calculation.
MM calculations are usually done only for equilibrium structures (i.e. relative minima
on the PES), but by constraining geometric parameters one can approximate roughly
transition states (below).

The two salient features of MM calculations on small to medium-sized molecules
is that they are fast and they can be very accurate. Times required for a geometry
optimization of unbranched of symmetry, with the Merck Molecular
Force Field (MMFF), the SE AM1 (chapter 6) and the ab initio HF/3-21G (chapter 5)
methods, as implemented with the program SPARTAN [13], were 1.2, 16 s, and 57 min,
respectively (on an obsolescent machine a few years ago; these times would now by
shorter by a factor of at least 2). Clearly as far as speed goes there is no contest between
the methods, and the edge in favor of MM increases with the size of the molecule. In
fact, MM was till recently the only practical method for calculations on molecules with
more than about 100 heavy atoms (in computational chemistry a heavy atom is any atom
heavier than helium). Even programs not designed specifically for macromolecules
will handle molecules with 1000 or more atoms on machines of modest power (e.g. a
good PC).

Molecular mechanics energies can be very accurate for families of compounds for
which the forcefield has been parameterized. Appropriate parameterization permits
calculation of (heat of formation, enthalpy of formation) in addition to strain
energy [1f]. For the MM2 program (see below), for standard hydrocarbons errors
are usually only which is comparable to experimental error, and for
oxygen containing organics the errors are only the errors in MM
conformational energies are often only about [15]. MM geometries are
usually reasonably good for small to medium-sized molecules [4,9a,16]; for the MM3
program (see below) the RMS error in bond lengths for cholesteryl acetate was only
about 0.007 Å [4]. “Bond length” is, if unqualified, somewhat imprecise, since different
methods of measurement give somewhat different values [4,9a] (section 5.5.1). MM
geometries are routinely used as input structures for quantum-mechanical calculations,
but in fact the MM geometry and energy are in some cases as good or better than
those from a “higher-level calculation” [17]. The benchmark MM programs for small
to medium-sized molecules are probably MM2 and MM3, which will presumably be
gradually supplanted by MM4 [4]; the MMFF [18] is likely to become very popular
too, not least because of its implementation in SPARTAN [13].

3.3.2 Geometries and energies of polymers
Next to generating geometries and energies of small to medium-sized molecules, the
main use of MM is to model polymers, mainly biopolymers (proteins, nucleic acids,
polysaccharides). Forcefields have been developed specifically for this; two of the
most widely-used of these are CHARMM (Chemistry at Harvard using Molecular
Mechanics) [19] (the academic version; the commercial version is CHARMm) and
the forcefields in the computational package AMBER (Assisted Model Building with
Energy Refinement) [20]. CHARMM was designed to deal with biopolymers, mainly
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proteins, but has been extended to handle a range of small molecules. AMBER is per-
haps the most widely used set of programs for biological polymers, being able to model
proteins, nucleic acids, and carbohydrates. Programs like AMBER and CHARMM
that model large molecules have been augmented with quantum mechanical meth-
ods (SE [21] and even ab initio [22]) to investigate small regions where treatment of
electronic processes like transition state formation may be critical.

An extremely important aspect of the modelling (which is done largely with MM) of
biomolecules is designing pharmacologically active molecules that can fit into active
sites (the pharmacophores) of biomolecules and serve as useful drugs. For example,
a molecule might be designed to bind to the active site of an enzyme and block the
undesired reaction of the enzyme with some other molecule. Pharmaceutical chemists
computationally craft a molecule that is sterically and electrostatically complementary
to the active site, and try to dock the potential drug into the active site. The binding
energy of various candidates can be compared and the most promising ones can then
be synthesized, as the second step on the long road to a possible new drug. The compu-
tationally assisted design of new drugs and the study of the relationship of structure to
activity (quantitative structure–activity relationships, QSAR) is one of the most active
areas of computational chemistry [23].

3.3.3 Geometries and energies of transition states
By far the main use of MM is to find reasonable geometries for the ground states
of molecules, but it has also been used to investigate transition states. The calcula-
tion of transition states involved in conformational changes is a fairly straightforward
application of MM, since “reactions” like the interconversion of butane or cyclohexane
conformers do not in involve the deep electronic reorganization that we call bond-
making or bond-breaking. The changes in torsional and nonbonded interactions that
accompany them are the kinds of processes that MM was designed to model, and so
good transition state geometries and energies can be expected for this particular kind of
process; transition state geometries cannot be (readily) measured, but the MM energies
for conformational changes agree well with experiment: indeed, one of the two very
first applications of MM [3a,d] was to the rotational barrier in biphenyls (the other
was to the reaction [3c]). Since MM programs are usually not able to optimize
an input geometry toward a saddle point (see below), one normally optimizes to a
minimum subject to the symmetry constraint expected for the transition state. Thus
for ethane, optimization to a minimum within symmetry (i.e. by constraining the
HCCH dihedral to be or by starting with a structure of exactly symmetry)
will give the transition state, while optimization with symmetry gives the ground-
state conformer (Fig. 3.9). Optimizing an input cyclohexane structure (Fig. 3.10)
gives the stationary point nearest this input structure, which is the transition state for
interconversion of enantiomeric twist cyclohexane conformers.

There are several examples of the application of MM to actual chemical reactions,
as distinct from conformational changes; the ones mentioned here are taken from the
review by Eksterowicz and Houk [24]. The simplest way to apply MM to transition
states is to approximate the transition state by a ground-state molecule. This can some-
times give surprisingly good results. The rates of solvolysis of compounds RX to the
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cation correlated well with the energy difference between the hydrocarbon RH, which
approximates RX, and the cation which approximates the transition state leading to
this cation. This is not entirely unexpected, as the Hammond postulate [25] suggests that
the transition state should resemble the cation. In a similar vein, the activation energy for
solvolysis has been approximated as the energy difference between a “methylalkane”,
with corresponding to X in RX, and a ketone, the carbon of which corresponds
to the incipient cationic carbon of the transition state.
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One may wish a more precise approximation to the transition state geometry than
is represented by an intermediate or a compound somewhat resembling the transition
state. This can sometimes be achieved by optimizing to a minimum subject to the
constraint that the bonds being made and broken have lengths believed (e.g. from
quantum mechanical calculations on simple systems, or from chemical intuition) to
approximate those in the transition state, and with appropriate angles and dihedrals
also constrained. With luck this will take the input structure to a point on the potential
energy surface near the saddle point. For example, an approximation to the geometry of
the transition state for formation of cyclohexene in the Diels–Alder reaction of butadiene
with ethene can be achieved (Fig. 3.11) by essentially building a boat conformation of
cyclohexene, constraining the two forming C/C bonds to about 2.1 Å, and optimizing,
using the bridge (later removed) to avoid twisting and to maintain symmetry;
optimization with a dihedral constraint removes steric conflict between two hydrogens
and gives a reasonable starting structure for, say, an ab initio optimization.

The most sophisticated approach to locating a transition state with MM is to use an
algorithm that optimizes the input structure to a true saddle point, that is to a geometry
characterized by a Hessian with one and only one negative eigenvalue (chapter 2). To
do this the MM program must be able not only to calculate second derivatives, but
must also be parameterized for the partial bonds in transition states, which is a feature
lacking in standard MM forcefields.

MM has been used to study the transition states involved in reactions, hydrob-
orations, cycloadditions (mainly the Diels-Alder reaction), the Cope and Claisen
rearrangements, hydrogen transfer, esterification, nucleophilic addition to carbonyl
groups and electrophilic C/C bonds, radical addition to alkenes, aldol condensations,
and various intramolecular reactions [24].

3.3.4 MM in organic synthesis
In the past 15 years or so MM has become widely used by synthetic chemists, thanks
to the availability of inexpensive computers (personal computers will easily run MM
programs) and user-friendly and relatively inexpensive programs [5]. Since MM can
calculate the energies and geometries of ground state molecules and (within the lim-
itations alluded to above) transition states, it can clearly be of great help in planning
syntheses. To see which of two or more putative reaction paths should be favored,
one might (1) use MM like a hand-held model: examine the substrate molecule for
factors like steric hindrance or proximity of reacting groups, or (2) approximate the
transition states for alternative reactions using an intermediate or some other plausi-
ble proxy (cf. the treatment of solvolysis in the discussion of transition states above),
or (3) attempt to calculate the energies of competing transition states (cf. the above
discussion of transition state calculations).

The examples given here of the use of MM in synthesis are taken from the review
by Lipkowitz and Peterson [26]. In attempts to simulate the metal-binding ability of
biological acyclic polyethers, the tricyclic 1 (Fig. 3.12) and a tetracyclic analogue were
synthesized, using as a guide the indication from MM that these molecules resemble the
cyclic polyether 18-crown-6, which binds the potassium ion; the acyclic compounds
were found to be indeed comparable to the crown ether in metal-binding ability.
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Enediynes like 2 (Fig. 3.12) are able to undergo cyclization to a phenyl-type diradical
3, which in vivo can attack DNA; in molecules with an appropriate triggering mechanism
this forms the basis of promising anticancer activity. The effect of the length of the
constraining chain (i.e. of n in 2) on the activation energy was studied by MM, aiding
the design of compounds (potential drugs) that were found to be more active against
tumors than are naturally-occurring enediyne antibiotics.

To synthesize the very strained tricyclic system of 4 (Fig. 3.12), a photochemical
Wolff rearrangement was chosen when MM predicted that the skeleton of 4 should be
about                        less stable than that of the available 5. Photolysis of the diazoketone
6 gave a high-energy carbene which lay above the carbon skeleton of 4 and so was able
to undergo Wolff rearrangement ring contraction to the ketene precursor of 4.

A remarkable (and apparently still unconfirmed) prediction of MM is the claim
that the perhydrofullerene should be stabler with some hydrogens inside the
cage [27].

3.3.5 Molecular dynamics and Monte Carlo simulations
Programs like those in AMBER are used not only for calculating geometries and ener-
gies, but also for simulating molecular motion, i.e. for molecular dynamics [28], and
for calculating the relative populations of various conformations or other geometric
arrangements (e.g. solvent molecule distribution around a macromolecule) in Monte
Carlo simulations [29]. In molecular dynamics Newton’s laws of motion are applied



 2.4 min; 1.4min; 3.7min; 1.5GHz Pentium 4). For
larger molecules where MP2 would need hours, MM calculations might still take only
seconds. Note, however, that ab initio methods provide information that MM cannot,
and are far more reliable for molecules outside those of the kind used in the MM
training set (section 3.2.2). The worst MMFF bond length deviation from experiment
among the 20 molecules is 0.021 Å (the bond of propene; the MP2 deviation
is 0.020 Å); most of the other errors are ca. 0.01 Å or less. The worst bond angle
error is 13.6°, for HOF, and for HOCl the deviation is 7.9°, the second worst angle
error in the set. This suggests a problem for the MMFF with X–O–Halogen angles,
but while for OF deviation from the MP2 angle (which is likely to be close to

only
MMFF dihedral angles are remarkably good, considering that torsional barriers are

believed to arise from subtle quantum mechanical effects. The worst dihedral angle
error is 10°, for HOOH, and the second worst, –5.0°, is for the analogous HSSH.
The popular ab initio HF/3-21G (chapter 5) and SE PM3 (chapter 6) methods also
have trouble with HOOH, predicting a dihedral angle of 180°. For those dihedrals not
involving OO or SS bonds, (an admittedly small selection), the MMFF errors are only
ca. l°–2°, cf. ca. 2°–6° for MP2.
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to molecules moving in a MM forcefield, although relatively small parts of the sys-
tem (system: with biological molecules in particular modelling is often done not on an
isolated molecule but on a molecule and its environment of solvent and ions) may be
simulated with quantum mechanical methods [21,22]. In Monte Carlo methods random
numbers decide how atoms or molecules are moved to generate new conformations or
geometric arrangements (states) which are then accepted or rejected according to some
filter. Tens of thousands (or more) of states are generated, and the energy of each is
calculated by MM, generating a Boltzmann distribution.

3.4 GEOMETRIES CALCULATED BY MM

Figure 3.13 compares geometries calculated with the MMFF with those from a rea-
sonably high-level ab initio calculation chapter 5) and from
experiment. The MMFF is a popular force field, applicable to a wide variety of mole-
cules. Popular prejudice holds that the ab initio method is “higher” than MM and so
should give superior geometries. The set of 20 molecules in Fig. 3.13 is also used in
chapters 5, 6, and 7, to illustrate the accuracy of ab initio, SE, and density functional
calculations in obtaining molecular geometries. The data in Fig. 3.13 are analyzed in
Table 3.3. Table 3.4 compares dihedral angles for eight molecules, which are also used
in chapters 5–7.

This survey suggests that for common organic molecules the MMFF is nearly as good
as the ab initio method for calculating geometries. Both methods
give good geometries, but while these MM calculations all take effectively about one
second, MP2 geometry optimizations on these molecules require typically a few minutes

experiment) is for  the deviation is
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3.5 FREQUENCIES CALCULATED BY MM

Any method that can calculate the energy of a molecular geometry can in principle
calculate vibrational frequencies, since these can be obtained from the second deriva-
tives of energy with respect to molecular geometry (section 2.5), and the masses of the
vibrating atoms. Some commercially available MM programs, for example the MMFF
as implemented in SPARTAN [13], can calculate frequencies. Frequencies are useful
(section 2.5) (1) for characterizing a species as a minimum (no imaginary frequencies)
or a transition state or higher-order saddle point (one or more imaginary frequencies),
(2) for obtaining zero-point energies to correct frozen-nuclei energies (section 2.2), and
(3) for interpreting or predicting infrared spectra.

68 Computational Chemistry
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(1) Characterizing a species. This is not often done with MM, because MM is
used mostly to create input structures for other kinds of calculations, and to study
known (often biological) molecules. Nevertheless MM can yield information on the
curvature of the potential energy surface (as calculated by that particular forcefield,
anyway) at the point in question. For example, the MMFF-optimized geometries of

(staggered) and (eclipsed) ethane (Fig. 3.3) show, respectively, no imaginary
frequencies and one imaginary frequency, the latter corresponding to rotation about the
C/C bond. Thus the MMFF (correctly) predicts the staggered conformation to be a min-
imum, and the eclipsed to be a transition state connecting successive minima along the
torsional reaction coordinate. Again, calculations on cyclohexane conformations with
the MMFF correctly give the boat an imaginary frequency corresponding to a twisting
motion leading to the twist conformation, which latter has no imaginary frequencies
(Fig. 3.10). Although helpful for characterizing conformations, particularly hydrocar-
bon conformations, MM is less appropriate for species in which bonds are being formed
and broken. For example, the symmetrical species in the
reaction, with equivalent C/F partial bonds, is incorrectly characterized by the MMFF
as a minimum rather than a transition state, and the C/C bonds are calculated to be
1.289 Å long, cf. the value of ca. 1.8 Å from methods known to be trustworthy for
transition states.

(2) Obtaining zero-point energies (ZPEs). ZPEs are essentially the sum of the
energies of each normal-mode vibration. They are added to the raw energies (the frozen-
nuclei energies, corresponding to the stationary points on a Born-Oppenheimer surface;
section 2.3) in accurate calculations of relative energies using ab initio (chapter 5) or
DFT (chapter 7) methods. However, the ZPEs used for those corrections are usually
obtained from an ab initio or DFT calculation.

(3) Infrared spectra. The ability to calculate the energies and relative intensi-
ties of molecular vibrations amounts to being able to calculate infrared spectra. MM as
such cannot calculate the intensities of vibrational modes, since these involve changes
in dipole moments (section 5.5.3), and dipole moment is related to electron distribution,
a concept that lies outside MM. However, approximate intensities can be calculated by
assigning dipole moments to bonds or charges to atoms, and such methods have been
implemented in MM programs [31], although MM programs that calculate intensities
are not yet widely used. Figures 3.14–3.17 compare the IR spectra of acetone, benzene,
dichloromethane and methanol, calculated with the MM3 program6 with the experi-
mental spectra, and with spectra calculated by the ab initio method;
the data for Figs 3.14–3.17 are in Tables 3.5–3.8 (in chapters 5–7 spectra for these four
molecules, calculated by ab initio, SE, and density functional methods, are also given).
The MP2 spectra generally match experiment better than the MM3, although the latter
method furnishes a rapid way of obtaining approximate IR spectra. For a series of related
compounds, MM3 might be a reasonable way to quickly investigate trends in frequen-
cies and intensities. Extensive surveys of MMFF and MM4 frequencies showed that
MMFF root-mean-square errors are ca. and MM4 errors [5b].

6 The MM3 frequencies and intensities were kindly provided by Dr. J. -H. Lii of the Department of
Chemistry of the University of Georgia, Athens, Georgia, USA.
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3.6 STRENGTHS AND WEAKNESSES OF MM

3.6.1 Strengths
Molecular mechanics is fast, as shown by the times for optimization of in
section 3.3. The speed of MM is not always at the expense of accuracy: for the kinds
of molecules for which it has been parameterized, it can rival or surpass experiment in
the reliability of its results (sections 3.3 and 3.4). MM is undemanding in its hardware
requirements: except perhaps for work on large biopolymers, MM calculations on
moderately well-equipped personal computers are quite practical. The characteristics
of speed, (frequent) accuracy and modest computer requirements have given MM a place
in many modelling programs.

Because of its speed and the availability of parameters for almost all the elements
(section 3.3), MM – even when it does not provide very accurate geometries – can
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supply reasonably good input geometries for SE, ab initio or density functional cal-
culations, and this is one of its main applications. The fairly recent ability of MM
programs to calculate IR spectra with some accuracy [16,32] may presage an impor-
tant application, since frequency calculation by quantum mechanical methods usually
requires considerably more time than geometry optimization). Note that MM frequen-
cies should be calculated using the MM geometry – unfortunately, MM cannot be used
as a shortcut to obtaining frequencies for a species optimized by a quantum mechanical
calculation (ab initio, density functional or SE), since frequencies must be calculated
using the same method used for the geometry optimization (section 2.5).

3.6.2 Weaknesses
The possible pitfalls in using MM are discussed by Lipkowitz [33]. The weaknesses
of MM stem from the fact that it ignores electrons. The philosophy behind MM is to
think of a molecule as a collection of atoms subject to forces and to use any practical
mathematical treatment of these forces to express the energy in terms of the geometric
parameters. By parameterization MM can “calculate” electronic properties; for exam-
ple, using bond dipoles it can find a dipole moment for a molecule, and using values
that have been calculated for various atom types by quantum mechanics it can assign
charges to atoms. However, such results are obtained purely by analogy, and their reli-
ability can be negated by unexpected electronic factors to which MM is oblivious. MM
cannot provide information about the shapes and energies of molecular orbitals nor
about related phenomena such as electronic spectra.

Because of the severely empirical nature of MM, interpreting MM parameters in
terms of traditional physical concepts is dangerous; for example, the bond-stretching
and angle-bending parameters cannot rigorously be identified with spectroscopic force
constants [33]; Lipkowitz suggests that the MM proportionality constants (section 3.2.1)
be called potential constants. Other dangers in using MM are the following:

(1) Using an inappropriate forcefield. A field parameterized for one class of
compounds is not likely to perform well for other classes.

(2) Transferring parameters form one forcefield to another. This is usually not valid.
(3) Optimizing to a stationary point that may not really be a minimum (it could

be a “maximum”, a transition state), and certainly may not be a global minimum
(chapter 2). If there is reason to be concerned that a structure is not a minimum, alter
it slightly by bond rotation and reoptimize; a transition state should slide down toward
a nearby minimum (e.g. eclipsed ethane altered slightly from the geometry and
optimized goes to the staggered conformer (Fig. 3.9).

(4) Being taken in by vendor hype. MM programs, more so than SE ones and unlike
ab initio or DFT programs, are ruled by empirical factors (the form of the forcefield and
the parameters used in it), and vendors do not usually caution buyers about potential
deficiencies.

(5) Ignoring solvent and nearby ions. For polar molecules using the in vacuo structure
can lead to quite wrong geometries and energies. This is particularly important for
biomolecules. One way to mitigate this problem is to explicitly add solvent molecules
or ions to the system, which can considerably increase the time fora calculation. Another
might be to subject various plausible in vacuo-optimized conformations to single-point
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(no geometry optimization) calculations that simulate the effect of solvent and take the
resulting energies as being more reliable than the in vacua ones.

(6) Lack of caution about comparing energies calculated with MM. The method cal-
culates the energy of a molecule relative to a hypothetical strainless idealization of the
molecule. Using MM to calculate the relative energy of two isomers by comparing their
strain energies (the normal MM energies) is dangerous because the two strain energies
are not necessarily relative to the same hypothetical unstrained species (strain energies
are not an unambiguous observable [34]). This is particularly true for functional group

relative enthalpies. For example, the MMFF gives for
strain energies of i.e. relative energies of but the
experimental value is ca. i.e. is much the higher-
energy molecule. On the other hand, the MMFF yields for gauche-butane/anti-butane

sonably close to the experimental value of For chair twist
and boat       cyclohexane, the MMFF strain energies are –14.9, 9.9, and

the estimates of 0,24 and MM programs can be parameterized to give, not
just strain energy, but enthalpies of formation [1f], and the use of these enthalpies should
make possible energy comparisons between isomers of disparate structural kinds.

Although chemists often compare stabilities of isomers using enthalpies, we should
remember that equilibria are actually determined by free energies. The lowest-enthalpy
isomer is not necessarily the one of lowest free energy: a higher-enthalpy molecule
may have more vibrational and torsional motion (it may be springier and floppier)
and thus possess more entropy and hence have a lower free energy. Free energy has an
enthalpy and an entropy component, and to calculate the latter, one needs the vibrational
frequencies. Programs that calculate frequencies will usually also provide entropies,
and with parameterization for enthalpy this can permit the calculation of free energies.
Note that the species of lowest free energy is not always the major one present: one
low-energy conformation could be outnumbered by one hundred of higher energy, each
demanding its share of the Boltzmann pie.

(7) Assuming that the major conformation determines theproduct. In fact, in a mobile
equilibrium the product ratio depends on the relative reactivities, not relative amounts,
of the conformers (the Curtin–Hammett principle [35]).

(8) Failure to exercise judgement: small energy differences (say up to
mean nothing in many cases. The excellent energy results referred

to in section 3.3 can be expected only for families of molecules (usually small to
medium-sized) for which the forcefield has been parameterized.

Many of the above dangers can be avoided simply by performing test calculations on
systems for which the results are known (experimentally, or “known” from high-level
quantum mechanical calculations). Such a reality check can have salutary effects on
the reliability of one’s results, and not only with reference to MM.

isomers, like and which have
quite different atom types. For isomers consisting of the same kinds of atoms (alkanes
cf. alkanes, say), and especially for conformational isomers and E/Z isomers (geometric
isomers), a good MM forcefield should give strain energies which reasonably represent

strain energies of i.e. relative energies of rea-

i.e. relative energies of 0, 24.8 and cf. the experimental
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3.7 SUMMARY OF CHAPTER 3

This chapter explains the basic principles of MM, which rests on a view of molecules
as balls held together by springs. MM began in the 1940s with attempts to analyze the
rates of racemization of biphenyls and reactions.

The potential energy of a molecule can be written as the sum of terms involving
bond stretching, angle bending, dihedral angles and nonbonded interactions. Giving
these terms explicit mathematical forms constitutes devising a forcefield, and giving
actual numbers to the constants in the forcefield constitutes parameterizing the field.
An example is given of the devising and parameterization of an MM forcefield.

MM is used mainly to calculate geometries and energies for small to medium-sized
molecules. Such calculations are fast and can be very accurate, provided that the
forcefield has been carefully parameterized for the types of molecules under study.
Calculations on biomolecules is a very important application of MM; the pharmaceuti-
cal industry designs new drugs with the aid ofMM: for example, examining how various
candidate drugs fit into the active sites of biomolecules (docking) and the related aspect
of QSAR are of major importance. MM is of some limited use in calculating the geome-
tries and energies of transition states. Organic synthesis now makes considerable use of
MM, which enables chemists to estimate which products are likely to be favored and to
devise more realistic routes to a target molecule than was hitherto possible. In molecular
dynamics MM is used to generate the forces acting on molecules and hence to calculate
their motions, and in Monte Carlo simulations MM is used to calculate the energies of
the many randomly generated states.

MM is fast, it can be accurate, it is undemanding of computer power, and it provides
reasonable starting geometries for quantum mechanical calculations. MM ignores elec-
trons, and so can provide parameters like dipole moment only by analogy. One must
be cautious about the applicability of MM parameters to the problem at hand. Station-
ary points from MM, even when they are relative minima, may not be global minima.
Ignoring solvent effects can give erroneous results for polar molecules. MM gives strain
energies, the difference of which for structurally similar isomers represent enthalpy dif-
ferences; parameterization to give enthalpies of formation is possible. Strictly speaking,
relative amounts of isomers depend on free energy differences. The major conformation
(even when correctly identified) is not necessarily the reactive one.
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EASIER QUESTIONS

1.
2.
3.
4.
5.

6.

7.
8.
9.

10.

What is the basic idea behind MM?
What is a forcefield?
What are the two basic approaches to parameterizing a forcefield?
Why does parameterizing a forcefield for transition states present special problems?
What is the main advantage of MM, generally speaking, over the other methods of
calculating molecular geometries and relative energies?
Why is it not valid in all cases to obtain the relative energies of isomers by comparing
their MM strain energies?
What class of problems cannot be dealt with by MM?
Give four applications for MM. Which is the most widely used?
MM can calculate the values of vibrational frequencies, but without
“outside assistance” it can’t calculate their intensities. Explain.
Why is it not valid to calculate a geometry by some slower (e.g. ab initio) method,
then use that geometry for a fast MM frequency calculation?

HARDER QUESTIONS

1.

2.

3.

4.

5.

6.

7.

One big advantage of MM over other methods of calculating geometries and rel-
ative energies is speed. Does it seem likely that continued increases in computer
speed could make MM obsolete?
Do you think it is possible (in practical terms? In principle?) to develop a forcefield
that would accurately calculate the geometry of any kind of molecule?
What advantages or disadvantages are there to parameterizing a forcefield with the
results of “high-level” calculations rather than the results of experiments?
Would you dispute the suggestion that no matter how accurate a set of MM results
might be, they cannot provide insight into the factors affecting a chemical problem,
because the “ball and springs” model is unphysical?
Would you agree that hydrogen bonds (e.g. the attraction between two water
molecules) might be modelled in MM as weak covalent bonds, as strong van der
Waals or dispersion forces, or as electrostatic attractions? Is any one of these three
approaches to be preferred in principle?
Replacing small groups by “pseudoatoms” in a forcefield (e.g. by an
“atom” about as big) obviously speeds up calculations. What disadvantages might
accompany this simplification?
Why might the development of an accurate and versatile forcefield for inorganic
molecules be more of a challenge than for organic molecules?
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8.

9.

10.

What factor(s) might cause an electronic structure calculation (e.g. ab initio or
DFT) to give geometries or relative energies very different from those obtained
from MM?
Compile a list of molecular characteristics/properties that cannot be calculated
purely by MM.
How many parameters do you think a reasonable forcefield would need to minimize
the geometry of 1,2-dichloroethane?
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Chapter 4

Introduction to Quantum Mechanics in
Computational Chemistry

It is by logic that we prove, but by intuition that we discover.
J. H. Poincaré, ca. 1900.

4.1 PERSPECTIVE

Chapter 1 outlined the tools that computational chemists have at their disposal, chapter 2
set the stage for the application of these tools to the exploration of potential energy
surfaces, and chapter 3 introduced one of these tools, molecular mechanics. In this
chapter you will be introduced to quantum mechanics, and to quantum chemistry,
the application of quantum mechanics to chemistry. Molecular mechanics is based on
classical physics, physics before modern physics; one of the cornerstones of modern
physics is quantum mechanics, and ab initio (chapter 5), semiempirical (SE) (chapter 6),
and density functional (chapter 7) methods belong to quantum chemistry. This chapter
is designed to ease the way to an understanding of the role of quantum mechanics
in computational chemistry. The word quantum comes from Latin (quantus, “how
much?”, plural quanta) and was first used in our sense by Max Planck in 1900, as an
adjective and noun, to denote the constrained quantities or amounts in which energy
can be emitted or absorbed. Although the term quantum mechanics was apparently
first used by Born (of the Born–Oppenheimer approximation, section 2.3) in 1924, in
contrast to classical mechanics, the matrix algebra and differential equation techniques
that we now associate with the term were presented in 1925 and 1926 (section 4.2.6).

“Mechanics” as used in physics is traditionally the study of the behavior of bod-
ies under the action of forces like, e.g. gravity (celestial mechanics). Molecules are
made of nuclei and electrons, and quantum chemistry deals, fundamentally, with the
motion of electrons under the influence of the electromagnetic force exerted by nuclear
charges. An understanding of the behavior of electrons in molecules, and thus of the
structures and reactions of molecules, rests on quantum mechanics and in particular
on that adornment of quantum chemistry, the Schrödinger equation. For that reason
we will consider in outline the development of quantum mechanics leading up to the
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Schrödinger equation, and then the birth of quantum chemistry with (at least as far
as molecules of reasonable size goes) the application of the Schrödinger equation to
chemistry by Hückel. This simple Hückel method is currently disdained by some the-
oreticians, but its discussion here is justified by the fact that (1) it continues to be
useful in research and (2) it “is immensely useful as a model, today . . . because it is
the model which preserves the ultimate physics, that of nodes in wave functions. It is
the model which throws away absolutely everything except the last bit, the only thing
that if thrown away would leave nothing. So it provides fundamental understanding.”1

A discussion of a generalization of the simple Hückel method, the extended Hückel
method, sets the stage for chapter 5. The historical approach used here, although per-
force somewhat superficial, may help to ameliorate the apparent arbitrariness of certain
features of quantum chemistry [1,2]. An excellent introduction to quantum chemistry
is the text by Levine [3].

Our survey of the factors that led to modern physics and quantum chemistry will
follow the sequence:

(1)

(2)
(3)
(4)
(5)

(6)

the origins of quantum theory: blackbody radiation and the photoelectric effect;

radioactivity (brief);
relativity (very brief);

the nuclear atom;

the Bohr atom;

the wave mechanical atom and the Schrödinger equation.

4.2 THE DEVELOPMENT OF QUANTUM MECHANICS
(THE SCHRÖDINGER EQUATION)

4.2.1 The origins of quantum theory: blackbody radiation
and the photoelectric effect

A blackbody is one that is a perfect absorber of radiation: it absorbs all the radiation
falling on it, without reflecting any. More relevant for us, the radiation emitted by a
hot blackbody depends (as far as the distribution of energy with wavelength goes) only
on the temperature, not on the material the body is made of, and is thus amenable to
relatively simple analysis. The sun is approximately a blackbody; in the lab a good
source of blackbody radiation is a furnace with blackened insides and a small aperture
for the radiation to escape. In the second half of the nineteenth century the distribution of

Personal communication from Professor Roald Hoffmann (see the extended Hückel method, section 4.4).

Blackbody radiation

Three discoveries mark the transition from classical to modern physics: quantum theory,
radioactivity, and relativity (Fig. 4.1). Quantum theory had its origin in the study of
blackbody radiation and the photoelectric effect.

1
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energy with respect to wavelength that characterizes blackbody radiation was studied,
in research that is associated mainly with Lummer and Pringsheim [1]. They plotted
the flux     (in modern SI units, per wavelength emitted by a blackbody
over a wavelength range vs. the wavelength, for various temperatures (Fig. 4.2):

The result is a histogram or bar graph in which the area of each rectangle
is and represents the flux (energy per second per unit area) emitted
in the wavelength range covered by that can be called the flux density
for that particular wavelength range The total area of all the rectangles is the total
flux emitted over its whole wavelength range by the blackbody. As approaches zero
(note that for the nonmonochromatic radiation from a blackbody the flux at a particular
wavelength is essentially zero) the histogram approaches being a smooth curve, the ratio
of finite increments approximates a derivative, and we can ask: what is the function
(Fig. 4.2) In the answer to this question lay the beginnings of quantum
theory.
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Late nineteenth century physics, classical physics at its zenith, predicted that the flux
density emitted by a black body should rise without limit as the wavelength decreases.
This is because classical physics held that radiation ofa particular frequency was emitted
by oscillators (atoms or whatever) vibrating with that frequency, and that the average
energy of an oscillator was independent of its frequency; since the number of possible
frequencies increases without limit, the flux density (energy per second per unit area
per wavelength interval) from the blackbody should rise without limit toward higher
frequencies or shorter wavelengths, into the ultraviolet, and so the total flux (energy
per second per unit area) should be infinite. This is clearly absurd and was recognized
as being absurd; in fact, it was called “the ultraviolet catastrophe” [1]. To understand
the nature of blackbody radiation and to escape the ultraviolet catastrophe, physicists
in the 1890s tried to find the function (Fig. 4.2)

Without breaking with classical physics, Wien had found a theoretical equation that fit
the Lummer–Pringsheim curve at relatively short wavelengths, and Rayleigh and Jeans
one that fit at relatively long wavelengths. adopted a different approach:

the total energy possessed by the oscillators in the frequency range is
the Greek letter nu, commonly used for frequency, not to be confused with vee,
commonly used for velocity) is proportional to the frequency:

(2) the emission or absorption of radiation of frequency by the collection of oscilla-
tors is caused by jumps between energy levels, with loss or gain of a quantity of
energy

The constant k, now recognized as a fundamental constant of nature, 6.626 ×
is called Planck’s constant, and is denoted by h, so Eq. (4.2)

becomes

Why the letter h? Evidently because h is sometimes used in mathematics to denote
infinitesimals and Planck intended to let this quantity go to zero. In the event, it turned
out to be small but finite. Apparently the letter was first used to denote the new constant
in a talk given by Planck at a meeting (Sitzung) of the German Physical Society in Berlin,
on 14 December 1900 [4]. The interpretation of Eq. (4.3), a fundamental equation of
quantum theory, as meaning that the energy represented by radiation of frequency
v is absorbed and emitted in quantized amounts hv (definite, constrained amounts;
jerkily rather than continuously) was, ironically, apparently never fully accepted by
Planck [5]. Planck’s constant is a measure of the graininess of our universe: because
it is so small processes involving energy changes often seem to take place smoothly,

2 Max Planck, born Kiel, Germany, 1858. Ph.D. Berlin 1879. Professor, Kiel, Berlin. Nobel prize in physics
for quantum theory of blackbody radiation 1918. Died Göttingen, 1947.

he found, in 1900, a purely empirical equation that fit the facts, and then
tried to interpret the equation theoretically. To do this he had to make two assumptions:

(1)
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The photoelectric effect
An apparently quite separate (but in science no two phenomena are really ever unre-
lated) phenomenon that led to Eq. (4.3), which is to say to quantum theory, is the
photoelectric effect: the ejection of electrons from a metal surface exposed to light. The
first inkling of this phenomenon was due to Hertz,3 who in 1888 noticed that the poten-
tial needed to elicit a spark across two electrodes decreased when ultraviolet light shone
on the negative electrode. Beginning in 1902, the photoelectric effect was first studied
systematically by Lenard,4 who showed that the phenomenon observed by Hertz was
due to electron emission.

Facts (Fig. 4.3) that classical physics could not explain were the existence of a thresh-
old frequency for electron ejection, that the kinetic energy of the electrons is linearly
related to the frequency of the light, and the fact that the electron flux (electrons per unit
area per second) is proportional to the intensity of the light. Classical physics predicted
that the electron flux should be proportional to the light frequency, decreasing with a
decrease in frequency, but without sharply falling to zero below a certain frequency,
and that the kinetic energy of the electrons should be proportional to the intensity of
the light, not the frequency.

These facts were explained by Einstein5 in 1905 in a way that now appears very
simple, but in fact relies on concepts that were at the time revolutionary. Einstein went
beyond Planck and postulated that not only was the process of absorption and emission
of light quantized, but that light itself was quantized, consisting of in effect of particles
of energy

where is the frequency of the light. These particles were given the name photons
(Arthur Compton, ca. 1923). If the energy of the photon before it removes an electron
from the metal is equal to the energy required to tear the electron free of the metal, plus
the kinetic energy of the free electron, then

where W is the work function of the metal, energy needed to remove an electron (with
no energy left over), is the mass of an electron, is the velocity of electron ejected by

3Heinrich Hertz, born Hamburg, Germany, 1857. Ph.D. Berlin, 1880. Professor, Karlsruhe, Bonn.
Discoverer of radio waves. Died Bonn, 1894.

4 Philipp Lenard, German physicist, born Pozsony, Austria–Hungary (now Bratislava, Slovakia), 1862.
Ph.D. Heidelberg 1886. Professor, Heidelberg. Nobel prize in physics 1905, for work on cathode rays.
Lenard supported the Nazis and rejected Einstein’s theory of relativity. Died Messelhausen, Germany, 1947.

5Albert Einstein, German–Swiss–American physicist. Born Ulm, Germany, 1879. Ph.D. Zürich 1905.
Professor Zürich, Prague, Berlin; Institute for Advanced Studies, Princeton, New Jersey. Nobel Prize in
physics 1921 for theory of the photoelectric effect. Best known for the special (1905) and general (1915)
theories of relativity. Died Princeton, 1955.

but on an ultramicroscopic scale the graininess is there [6]. The constant h is the
hallmark of quantum expressions, and its finite value distinguishes our universe from
a nonquantum one.



86 Computational Chemistry

the photon, and is the kinetic energy of the free electron. Rearranging Eq. (4.5):

Thus a plot of the kinetic energies of the electrons vs. the frequency of the
light should be a straight line of positive slope  (h; this is one way to find Planck’s
constant) intersecting the axis at a positive value as experiment indeed
showed (Fig. 4.3).

Planck’s explanation of the blackbody radiation curves (1900 [4]) and Einstein’s
explanation of the facts of the photoelectric effect (1905 [7]) indicated that the flow
of energy in physical processes did not take place continuously, as had been believed,
but rather jerkily, in discrete jumps, quantum by quantum. The contributions of Planck
and Einstein were the signal developments marking the birth of quantum theory and
the transition from classical to modern physics.

4.2.2 Radioactivity
Brief mention of radioactivity is in order because it, along with quantum mechanics
and relativity, transformed classical into modern physics. Radioactivity was discovered
by Becquerel in 1896. However, an understanding of how materials like uranium and
radium could emit, over the years, a million times more energy than would be permitted
by chemical reactions, had to await Einstein’s special theory of relativity (section 4.2.3),
which showed that a tiny, unnoticeable decrease in mass represented the release of a
large amount of energy.
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4.2.3 Relativity
Relativity is relevant to computational chemistry because it must often be explicitly
taken into account in accurate calculations involving atoms heavier than about chlo-
rine or bromine (see below) and because, strictly speaking, the Schrödinger equation,
the fundamental equation of quantum chemistry, is an approximation to a relativistic
equation, the Dirac6 equation.

Relativity was discovered in by Einstein in 1905, when he formulated the special
theory of relativity, which deals with nonaccelerated motion in the absence of significant
gravitational fields (general relativity, published by Einstein in 1915, is concerned with
accelerated motion and gravitation). Special relativity predicted a relationship between
mass and energy, the famous equation and, of more direct relevance to
computational chemistry, showed that the mass of a particle increases with its velocity,
dramatically so near the velocity of light. In heavier elements the inner electrons are
moving at a significant fraction of the speed of light, and the relativistic increase in their
masses affects the chemistry of these elements (actually, some physicists do not like
to think in terms of rest mass and relativistic mass, but that is a controversy that need
not concern us here). In computational chemistry relativistic effects on electrons are
usually accounted for by what are called effective core potentials or pseudopotentials
(section 5.3.3).

4.2.4 The nuclear atom
The “nuclear atom” is the picture of the atom as a positive nucleus surrounded by
negative electrons. Although the idea of atoms in speculative philosophy goes back to
at least the time of Democritus,7 the atom as the basis of a scientifically credible theory
emerges only in nineteenth century, with the rationalization by Dalton8 in 1808 of the
law of definite proportions. Nevertheless, atoms were regarded by many scientists of
the positivist school of Ernst Mach as being at best a convenient hypothesis, despite
the success of the atomistic Maxwell-Boltzmann9 kinetic theory of gases and it was
not until 1908, when Perrin’s10 experiments confirmed Einstein’s atomistic analysis of

6 Paul Adrien Maurice Dirac, born Bristol, England, 1902. Ph.D. Cambridge, 1926. Professor, Cambridge,
Dublin Institute for Advanced Studies, University of Miami, Florida State University. Nobel prize in physics
1933 (shared with Schrödinger). Known for his mathematical elegance, for connecting relativity with quantum
theory, and for predicting the existence of the positron. Died Tallahassee, Florida, 1984.

7 Democritus, Greek philosopher, born Abdera, Thrace (the eastern Balkans) ca. 470 B.C. Died ca. 370
B.C.

8John Dalton, born Eaglesfield, England, 1766. Considered the founder of quantitative chemical atomic
theory: law of definite proportions, pioneered determination of atomic weights. Cofounder of British
Association for the Advancement of Science. Died Manchester, England, 1844.

9 Ludwig Boltzmann, born Vienna 1844. Ph.D. Vienna. Professor Graz, Vienna. Developed the kinetic
theory of gases independently of Maxwell (viz., Boltzmann constant’s, k). Firm supporter of the atomic
theory in opposition to Mach and Ostwald, helped develop concept of entropy (S). Died Duino, Austria
(now in Italy), 1906 (suicide incurred by depression). Inscribed on gravestone:

10 Jean Perrin, born Lille, France, 1870. Ph.D. École Normal Supérieure, Paris. Professor University of
Paris. Nobel prize in physics 1923. Died New York, 1942.
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Brownian motion that the reality of atoms was at last accepted by such eminent holdouts
as Boltzmann’s opponent Ostwald.11

The atom has an internal structure; it is thus not “atomic ” in the Greek sense and is
more than the mere restless particle of kinetic theories of gases or of Brownian motion.
This was shown by two lines of work: the study of the passage of electricity through
gases and the behavior of certain solutions. The study of the passage of electricity
through gases at low pressure was a very active field of research in the nineteenth
century and only a few of the pioneers in what we can now see as the incipient field
of subatomic physics will be mentioned here. The observation by Plücker in 1858 of
a fluorescent glow near the cathode on the glass walls of a current-carrying evacuated
tube was one of the first inklings that particles might be elicited from atoms. That these
were indeed particles rather than electromagnetic rays was indicated by Crookes in
the 1870s, by showing that they could be deflected by a magnet. Goldstein showed in
1886 the presence of particles of opposite charge to those emitted from the cathode,
and christened the latter “cathode rays.” That the cathode rays were negative particles
was proved by Perrin in 1895, when he showed that they imparted a charge to an object
on which they fell. Further evidence of the particle nature of cathode rays came at
around the same time from Thomson,12 who showed (1897) that they are deflected in
the expected direction by an electric field. Thomson also measured their mass-to-charge
ratio and from the smallest possible value of charge in electrochemistry calculated the
mass of these particles to be about 1/1837 of the mass of a hydrogen atom. Lorentz later
applied the name “electron” to the particle, adopting a term that had been appropriated
from the Greek by Stoney for a unit of electric current amber, which
acquires a charge when rubbed). Thomson has been called the discoverer of the electron.

It was perhaps Thomson who first suggested a specific structure for the atom in terms
of subatomic particles. His “plum pudding” model (ca. 1900), which placed electrons
in a sea of positive charge, like raisins in a pudding, accorded with the then-known
facts in evidently permitting electrons to be removed under the influence of an electric
potential. The modern picture of the atom as a positive nucleus with extranuclear
electrons was proposed by Rutherford13 in 1911. It arose from experiments in which
alpha particles from a radioactive sample were shot through very thin gold foil. Most of
the time the particles passed through, but occasionally one bounced back, indicating that
the foil was mostly empty space, but that present were particles which were small and,
compared to the mass of the electron (which was much too light to stop an alpha particle),
massive. From these experiments emerged our picture of the atom as consisting of a
small, relatively massive positive nucleus surrounded by electrons: the nuclear atom.

11Wilhelm Friedrich Ostwald, German chemist, born Riga, Latvia, 1853. Ph.D. Dorpat, Estonia. Professor
Riga, Leipzig. A founder of physical chemistry, opponent of the atomic theory till convinced by the work of
Einstein and Perrin. Nobel prize in chemistry 1909. Died near Leipzig, 1932.

12 Sir Joseph John Thomson, born near Manchester, 1856. Professor, Cambridge. Nobel prize in physics
1906. Knighted 1908. Died Cambridge, 1940.

13 Ernest Rutherford (Baron Rutherford), born near Nelson New Zealand, 1871. Studied at Cambridge
under J. J. Thomson. Professor McGill University (Montreal), Manchester, and Cambridge. Nobel prize in
chemistry 1908 for work on radioactivity, alpha particles, and atomic structure. Knighted 1914. Died London,
1937.
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Rutherford gave the name proton (from Greek                 primary or first) to the least
massive of these nuclei (the hydrogen nucleus).

There is another thread to the development of the concept of the atom as a composite
of subatomic particles. The enhanced effect of electrolytes (solutes that provide an
electrically conducting solutions) on boiling and freezing points and on the osmotic
pressure of solutions led Arrhenius14 in 1884 to propose that these substances exist in
water as atoms or groups of atoms with an electric charge. Thus sodium chloride in
solution would not, as was generally held, exist as NaCl molecules but rather as an a
positive sodium “atom” and a negative chlorine “atom”; the presence of two particles
instead of the expected one accounted for the enhanced effects. The ability of atoms
to lose or gain charge hinted at the existence of some kind of subatomic structure, and
although the theory was not warmly received (Arrhenius was almost failed on his Ph.D.
exam), the confirmation by Thomson (ca. 1900) that the atom contains electrons made
acceptable the concept of charged atoms with chemical properties quite different from
those of the neutral ones. Arrhenius’ was awarded the Nobel prize for his Ph.D. work.

4.2.5 The Bohr atom
The nuclear atom as formulated by Rutherford faced a serious problem: the electrons
orbit the nucleus like planets orbiting the Sun. An object engaged in circular (or ellip-
tical) motion experiences an acceleration because its direction is changing and thus its
velocity, which unlike speed is a vector, is also changing. An electron in circular motion
about a nucleus would experience an acceleration toward the nucleus, and since from
Maxwell’s equations of electromagnetism an accelerated electric charge radiates away
energy, the electron should lose energy by spiralling in toward the nucleus, ending up
there, with no kinetic and potential energy; calculations show this should happen in a
fraction of a second [8].

A way out of this dilemma was suggested by Bohr15 in 1913 [9,10]. He retained the
classical picture of electrons orbiting the nucleus in accord with Newton’s laws, but
subject to the constraint that the angular momentum of an electron must be an integral
multiple of

where m is the electron mass,      is the electron velocity, r is the radius of electron orbit,
and h is the Planck’s constant. Equation (4.7) is the Bohr postulate, that electrons can
defy Maxwell’s laws provided they occupy an orbit whose angular momentum (i.e. an
orbit of appropriate radius) satisfies Eq. (4.7). The Bohr postulate is not based on a
whim, as most textbooks imply, but rather follows from: (1) the Plank equation Eq. (4.3),

and (2) starting with an orbit of large radius such that the motion is essentially
linear and classical physics applies, as no acceleration is involved, then extrapolating

14Svante Arrhenius, born near Uppsala, Sweden, 1859. Ph.D. University of Stockholm. Nobel prize in
chemistry 1903. Professor Stockholm. Died Stockholm 1927.

15 Niels Bohr, born Copenhagen, 1885. Ph.D. University of Copenhagen. Professor, University of
Copenhagen. Nobel prize in physics 1922. Founder of the “Copenhagen school” interpretation of quantum
theory. Died Copenhagen, 1962.
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to small-radius orbits. The fading of quantum-mechanical equations into their classi-
cal analogues as macroscopic conditions are approached is called the correspondence
principle [11].

Using the postulate of Eq. (4.7) and classical physics, Bohr derived an equation for
the energy of an orbiting electron in a one-electron atom (a hydrogen-like atom, H or

etc.) in terms of the charge on the nucleus and some constants of nature. Starting
with the total energy of the electron as the sum of its kinetic and potential energies:

where Z is the nuclear charge (1 for H, 2 for He, etc.), e is the charge on the electron,
is the permitivity of the vacuum. Using force = mass × acceleration:

Equation (4.13) expresses the total (kinetic plus potential) energy of the electron of a
hydrogen-like atom in terms of four fundamental quantities of our universe: electron
charge, electron mass, the permittivity of empty space, and Planck’s constant. From
Eq. (4.13) the energy change involved in emission or absorption of light by a hydrogen-
like atom is simply

where is the energy of a state characterized by quantum number minus the
energy of a state characterized by quantum number Note that from Eq. (4.13) the
total energy increases (becomes less negative) as n increases (= 1,2, 3,...), so higher-
energy states are associated with higher quantum numbers n and corresponds
to absorption of energy and to emission of energy. The Planck relation
between the amount of radiant energy absorbed or emitted and its frequency

Eq. (4.3)), Eq. (4.14) enables one to calculate the frequencies of spectroscopic
absorption and emission lines for hydrogen-like atoms. The agreement with experiment
is excellent, and the same is true too for the calculated ionization energies of hydrogen-
like atoms for in Eq. (4.14)).

i.e.

So from Eq. (4.8)

From Eqs (4.7) and (4.10):

So from Eqs (4.11) and (4.12):
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4.2.6    The wave mechanical atom and the Schrödinger equation
The Bohr approach works well for hydrogen-like atoms, atoms with one electron:
hydrogen, singly-ionized helium, doubly-ionized lithium, etc. However, it showed
many deficiencies for other atoms, which is to say, almost all atoms of interest other
than hydrogen. The problems with the Bohr atom for these cases were described below.

(1) There were lines in the spectra corresponding to transitions other than simply
between two n values (cf. Eq. (4.14)). This was rationalized by Sommerfeld in 1915,
by the hypothesis of elliptical rather than circular orbits, which essentially introduced
a new quantum number k, a measure of the eccentricity of the elliptical orbit. Electrons
could have the same n but different ks, increasing the variety of possible electronic

field the numbers n, k (later l) and are insufficient to describe the energy of an
electron and new transitions, invoking are possible.

The only quantum number that flows naturally from the Bohr approach is the principal
quantum number, n; the azimuthal quantum number l (a modified k), the spin quantum
number and the magnetic quantum number  are all ad hoc, improvised to meet
an experimental reality. Why should electrons move in elliptical orbits that depend on
the principal quantum number n? Why should electrons spin, with only two values
for this spin? Why should the orbital plane of the electron take up with respect to
an external magnetic field only certain orientations, which depend on the azimuthal
quantum number? All four quantum numbers should follow naturally from a satisfying
theory of the behaviour of electrons in atoms.

The limitations of the Bohr theory arise because it does not reflect a fundamental
facet of nature, namely the fact that particles possess wave properties. These limita-
tions were transcended by the wave mechanics of Schrödinger,16 when he devised his
famous equation in 1926 [ 12,13]. Actually, the year before the Schrödinger equation was

16Erwin Schrödinger, born Vienna, 1887. Ph.D. University of Vienna. Professor Stuttgart, Berlin, Graz
(Austria), School for Advanced Studies Dublin, Vienna. Nobel prize in physics 1933 (shared with Dirac).
Died Vienna, 1961.

transitions; k is related to what we now call the azimuthal quantum number,
(2) There were lines in the spectra of the alkali metals that were not accounted for

by the quantum numbers n and k. In 1925 Goudsmit and Uhlenbeck showed that these
could be explained by assuming that the electron spins on an axis; the magnetic field
generated by this spin around an axis could reinforce or oppose the field generated by
the orbital motion of the electron around the nucleus. Thus for each n and k there are
two closely-spaced “magnetic levels,” making possible new, closely-spaced spectral
lines. The spin quantum number, or was introduced to account for spin.

(3) There were new lines in atomic spectra in the presence of an external magnetic
field (not to be confused with the fields generated by the electron itself). This Zeeman
effect (1896) was accounted for by the hypothesis that the electron orbital plane can
take up only a limited number oforientations, each with a different energy, with respect
to the external field. Each orientation was associated with a magnetic quantum number

(often designated m) = –l, –(l – 1), …, (l – 1), l. Thus in an external magnetic
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published, Heisenberg17 published his matrix mechanics approach to calculating atomic
(and in principle molecular) properties. The matrix approach is at bottom equivalent to
Schrödinger’s use of differential equations, but the latter has appealed to chemists more
because, like physicists of the time, they were unfamiliar with matrices (section 4.3.3),
and because the wave approach lends itself to a physical picture of atoms and molecules
while manipulating matrices perhaps tends to resemble numerology. Matrix mechanics
and wave mechanics are usually said to mark the birth of quantum mechanics (1925,
1926), as distinct from quantum theory (1900). We can think of quantum mechanics
as the rules and equations used to calculate the properties of molecules, atoms, and
subatomic particles.

Wave mechanics grew from the work of de Broglie,18 who in 1923 was led to
this “wave-particle duality” by his ability to deduce the Wien blackbody equation
(section 4.2.1) by treating light as a collection of particles (light quanta) analogous
to an ideal gas [14]. This suggested to de Broglie that light (traditionally considered a
wave motion) and the atoms of an ideal gas were actually not fundamentally different.
He derived a relationship between the wavelength of a particle and its momentum, by
using the time-dilation principle of special relativity, and also from an analogy between
optics and mechanics. The reasoning below, while less profound than de Broglie’s,
may be more accessible. From the special theory of relativity, the relation between the
energy of a photon and its mass is

where c is the velocity of light. From the Planck equation (4.3) for the emission and
absorption of radiation, the energy of a photon may be equated with the energy
change of an oscillator, and we may write

and because the product of mass and velocity is momentum, Eq. (4.18) can be written

relating the momentum of a photon (in its particle aspect) to its wavelength (in its wave
aspect). If Eq. (4.19) can be generalized to any particle, then we have

I7Werner Heisenberg, born Würzburg, Germany, 1901. Ph.D. Munich, 1923. Professor, Leipzig
University, Max Planck Institute. Nobel Prize 1932 for his famous uncertainty principle of 1927. Direc-
tor of the German atomic bomb/reactor project 1939–1945. Held various scientific administrative positions
in postwar (Western) Germany 1945–1970. Died Munich 1976.

18Louis de Broglie, born Dieppe, 1892. Ph.D. University of Paris. Professor Sorbonne, Institut Henri
Poincaré (Paris), Nobel prize in physics 1929. Died Paris, 1987.

From Eqs (4.15) and (4.16)

Since Eq. (4.17) can be written



Introduction to Quantum Mechanics 93

relating the momentum of a particle to its wavelength; this is the de Broglie
equation.

If a particle has wave properties it should describable by somehow combining the
de Broglie equation and a classical wave equation. A highly developed nineteenth
century mathematical theory of waves was at Schrödinger’s disposal, and the union of
a classical wave equation with Eq. (4,20) was one of the ways that he derived his wave
equation. Actually, it is said that the Schrödinger equation cannot actually be derived,
but is rather a postulate of quantum mechanics that can only be justified by the fact
that it works [15]; this fine philosophical point will not be pursued here. Of his three
approaches [15], Schrödinger’s simplest is outlined here. A standing wave (one with
fixed ends like a vibrating string or a sound wave in a flute) whose amplitude varies
with time and with the distance from the ends is described by

where f (x) is the amplitude of the wave, x is the distance from some chosen origin,

where is the wavelength of particle of mass m and velocity Identifying the wave
with a particle and substituting for from (4.22) into (4.21):

Since the total energy of the particle is the sum of its kinetic and potential energies:

where E is the total energy of the particle, and V is the potential energy (the usual
symbol), i.e.

where f (x) is the amplitude of the particle/wave at a distance  from some chosen
origin, m is the mass of the particle, E is the total energy (kinetic + potential) of
the particle, and V is the potential energy of the particle (possibly a function of x).
This is the Schrödinger equation for one-dimensional (1D) motion along the spatial
coordinate x. It is usually written

Substituting Eq. (4.25) for into Eq. (4.23):

and  is the wavelength. From Eq. (4.20):
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where is the amplitude of the particle/wave at a distance x from some chosen origin.
The 1D Schrödinger equation is easily elevated to 3D status by replacing the 1D operator

by its 3D analogue

due to Born (section 2.3) and Pauli19 is that it is proportional to the probability of
finding the particle near a point P(x, y, z) (recall that is a function of x, y, z):

The probability of finding the particle in an infinitesimal cube of sides dx, dy, dz is
dx dy dz, and the probability of finding the particle somewhere in a volume V is

the integral over that volume of with respect to dx, dy, dz (a triple integral);
is thus a probability density function, with units of probability per unit volume. Born’s
interpretation was in terms of the probability of a particular state, Pauli’s the chemist’s
usual view, that of a particular location.

The Schrödinger equation overcame the limitations of the Bohr approach (see the
beginning of section 4.2.6): the quantum numbers follow naturally from it (actually
the spin quantum number ms requires a relativistic form of the Schrödinger equation,
the Dirac equation, and electron “spin” is apparently not really due to the particle
spinning like a top). The Schrödinger equation can be solved in an exact analytical way
only for one-electron systems like the hydrogen atom, the helium monocation and the
hydrogen molecule ion, but the mathematical approach is complicated and of no great
relevance to the application of this equation to the study of serious molecules. However
a brief account of the results for hydrogen-like atoms is in order.

The standard approach to solving the Schrödinger equation for hydrogen-like atoms
involves transforming it from Cartesian (x, y, z) to polar coordinates since
these accord more naturally with the spherical symmetry of the system. This makes it

Solution of the f(r) equation gives rise to the n quantum number, solution
of the equation to the l quantum number, and solution of the equation to
the (often simply called m) quantum number. For each specific and

19Wolfgang Pauli, born Vienna, 1900. Ph.D. Munich 1921. Professor Hamburg, Zurich, Princeton, Zurich.
Best known for the Pauli exclusion principle. Nobel Prize 1945. Died Zurich 1958.

is the Laplacian operator “del squared.” Replacing by Eq. (4.27)
becomes

This is a common way of writing the Schrödinger equation. It relates the amplitude of
the particle/wave to the mass m of the particle, its total energy E and its potential energy
V. The meaning of itself is unknown [2] but the currently popular interpretation of

possible to separate the equation into three simpler equations,  and
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there is a mathematical function obtained by combining the appropriate
and

The function (clearly could also be expressed in Cartesians), depends
functionally on and parametrically on n, l and for each particular set

of these numbers there is a particular function with the spatial coordinates
variables A function like k sin x is a function of x and depends only
parametrically on k. This function is an orbital (“quasi-orbit”; the term was invented
by Mulliken, section 4.3.4), and you are doubtless familiar with plots of its variation
with the spatial coordinates. Plots of the variation of  with spatial coordinates indicate
variation of the electron density (recall the Born interpretation of the wavefunction) in
space due to an electron with quantum numbers and We can think of an
orbital as a region of space occupied by an electron with a particular set of quantum
numbers, or as a mathematical function describing the energy and the shape of the
spatial domain of an electron. For an atom or molecule with more than one electron,
the assignment of electrons to orbitals is an (albeit very useful) approximation, since
orbitals follow from solution of the Schrödinger equation for a hydrogen atom.

The Schrödinger equation that we have been talking about is actually the time-
independent (and nonrelativistic) Schrödinger equation: the variables in the equation
are spatial coordinates, or spatial and spin coordinates (section 5.2.3.1) when electron
spin is taken into account. The time-independent equation is the one most widely-used
in computational chemistry, but the more general time-dependentSchrödingerequation,
which we shall not examine, is important in certain applications, like some treatments
of the interaction of a molecule with light, since light (radiation) is composed of time-
varying electric and magnetic fields. The time-dependent density functional theory
(DFT) method of calculating UV spectra (chapter 7) is based on the time-dependent
Schrödinger equation.

4.3 THE APPLICATION OF THE SCHRÖDINGER EQUATION
TO CHEMISTRY BY HÜCKEL

4.3.1 Introduction
The quantum mechanical methods described in this book are all molecular orbital (MO)
methods, or oriented toward the MO approach: ab initio and SE methods use the MO
method, and density functional methods are oriented toward the MO approach. There
is another approach to applying the Schrödinger equation to chemistry, namely the
valence bond (VB) method. Basically the MO method allows atomic orbitals (AOs)
to interact to create the MO of a molecule, and does not focus on individual bonds as
shown in conventional structural formulas. The VB method, on the other hand, takes the
molecule, mathematically, as a sum (linear combination) of structures each of which
corresponds to a structural formula with a certain pairing of electrons [16], The MO
method explains in a relatively simple way phenomena that can be understood only
with difficulty using the VB method, like the triplet nature of dioxygen or the fact that
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benzene is aromatic but cyclobutadiene is not [17]. With the application of computers
to quantum chemistry the MO method almost eclipsed the VB approach, but the latter
has in recent years made a limited comeback [18].

The first application of quantitative quantum theory to chemical species significantly
more complex than the hydrogen atom was the work of Hückel20 on unsaturated organic
compounds, in 1930–1937 [19]. This approach, in its simplest form, focuses on the
p electrons of double bonds, aromatic rings and heteroatoms. Although Hückel did
not initially explicitly consider orbital hybridization (the concept is usually credited
to Pauling,21 1931 [20]), the method as it became widely applied [21] confines itself
to planar arrays of -hybridized atoms, usually carbon atoms, and evaluates the
consequences of the interactions among the p electrons (Fig. 4.4). Actually, the simple
Hückel method has been occasionally applied to nonplanar systems [22]. Because of
the importance of the concept of hybridization in the simple Hückel method a brief
discussion of this concept is warranted.

4.3.2 Hybridization
Hybridization is the mixing of orbitals on an atom to produce new, “hybridized” (in the
spirit of the biological use of the term), AOs. This is done mathematically but can be
appreciated pictorially (Fig. 4.5). One way to justify the procedure theoretically is to

20Erich Hückel, born Berlin, 1896. Ph.D. Göttingen. Professor, Marburg. Died Marburg, 1980.
21Linus Pauling, born Portland, Oregon, 1901. Ph.D. Caltech. Professor, Caltech. Known for work in

quantum chemistry and biochemistry, campaign for nuclear disarmament, and controversial views on vitamin
C. Nobel prize for chemistry 1954, for peace 1963. Died near Big Sur, CA, 1994.
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recognize that AOs are vectors in the generalized mathematical sense of being elements
of a vector space [23] (if not in the restricted sense of the physicist as physical entities
with magnitude and direction); it is therefore permissible to take linear combinations of
these vectors to produce new members of the vector space. A good, brief introduction
to hybridization in is given by Streitwieser [24].

will be used for AOs and for MOs):

or

Both the set (4.33) and the set (4.34) consist of four orbitals, since the electron
density contributions from the component s and p orbitals to the hybrid is, in each case
(considering the squares of the coefficients; recall the Born interpretation of the square
of a wavefunction, section 4.2.6) in the ratio 1 : 3, i.e. and and in
each set we have used a total of one s orbital, and one each of the and orbitals.
The total electron density from each component orbital is unity, e.g. for

Hybridization is purely a mathematical procedure, originally invented to reconcile
the quantum mechanical picture of electron density in s, p, etc. orbitals with traditional
views of directed valence. For example, it is sometimes said that in the absence of
hybridization combining a carbon atom with four unpaired electrons with four hydrogen
atoms would give a methane molecule with three equivalent, mutually perpendicular
bonds and a fourth, different, bond (Fig. 4.6). Actually, this is incorrect: the 2s and
three 2p orbitals of an unhybridized carbon along with the four 1s orbitals of four
hydrogen atoms provide, without invoking hybridization, a tetrahedrally symmetrical

In a familiar example, a 2s orbital can be mixed with three 2p orbitals to give four
hybrid orbitals; this can be done in an infinite number of ways, such as (from now on
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valence electron distribution that leads to tetrahedral methane with four equivalent bonds
(Fig. 4.6). In fact, it has been said “It is sometimes convenient to combine AOs to form
hybrid orbitals that have well defined directional character and then to form MOs by
combining these hybrid orbitals. This recombination of AOs to form hybrids is never
necessary…” [25]. Interestingly, the MOs accommodating the four highest-energy
electron pairs of methane (the eight valence electrons) are not equivalent in energy
(not degenerate). This is an experimental fact that can be shown by photoelectron
spectroscopy [26]. Instead of four orbitals of the same energy we have three degenerate
orbitals and one lower in energy (and of course the almost undisturbed 1s core orbital
of carbon). This surprising arrangement is a consequence of the fact that symmetry
requires one combination (i.e. one MO) of carbon and hydrogen orbitals (essentially a
weighted sum of the C2s and the four His orbitals) to be unique and the other three
AO combinations (the other three MOs) to be degenerate (they involve the C2p and
the H1s orbitals) [26,27]. It must be emphasized that although the methane valence
orbitals are energetically different, the electron and nuclear distribution is tetrahedrally
symmetrical – the molecule indeed has (section 2.6) symmetry. The four MOs formed
directly from AOs are the canonical MOs. They are delocalized (spread out over the
molecule), and do not correspond to the familiar four bonding H1s MOs, each
of which is localized between the carbon nucleus and a hydrogen nucleus. However,
the canonical MOs can be mathematically manipulated to give the familiar localized
MOs (section 5.2.3.1).
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Another example illustrates a situation somewhat similar to that we saw with methane,
and what was until fairly recently a serious controversy: the best way to represent the
carbon/carbon double bond [28]. The currently popular way to conceptualize the
bond has it resulting from the union of two hybridized carbon atoms (Fig. 4.7);
the orbitals on each carbon overlap end-on forming a bond and the p orbitals
on each carbon overlap sideways forming a bond. Note that the usual depiction of
a carbon p orbital is unrealistically spindle-shaped, necessitating depicting overlap
with connecting lines as in Fig. 4.7. Figure 4.8 shows a picture in better accord with
the calculated electron density in the p orbital, i.e. corresponding to the square of the
wavefunction. The two leftover orbitals can be used to bond to, say, hydrogen
atoms, as shown. From this viewpoint the double bond is thus composed of a bond
and a bond. However, this is not the only way to represent the bond. One can,
for example, mathematically construct a carbon atom with two orbitals and two
orbitals; the union of two such carbons gives a double bond formed from two
bonds (Fig. 4.9), rather than from a bond and a bond. Which is right? They are
only different ways of viewing the same thing: the electron density in the bond
decreases smoothly from the central C/C axis in both models (Fig. 4.10), and the
experimental NMR coupling constant for the C–H bond would, in both models,
be predicted to correspond to about 33% s character in the orbital used by carbon to bond
to hydrogen [29]. The ability of the hybridization concept to correlate and rationalize
acidities of hydrocarbons in terms of the s character of the carbon orbital in a C–H
bond [29] is an example of the usefulness of this idea. Most of the systems studied by
the simple Hückel method are essentially flat, as expected for arrays, and many
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properties of these molecules can be at least qualitatively understood by considering the
in-plane electrons of the overlapping orbitals to simply represent a framework
that holds the perpendicular p orbitals, in which we are interested, in an orientation
allowing neighboring p orbitals to overlap.

Before moving on to Hückel theory we take a look at matrices, since matrix algebra
is the simplest and most elegant way to handle the linear equations that arise when MO
theory is applied to chemistry.
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4.3.3 Matrices and determinants
Matrix algebra was invented by Cayley22 as a systematic way of dealing with systems
of linear equations. The single equation in one unknown

has the solution

Consider next the system of two equations in two unknowns

22Arthur Cayley, lawyer and mathematician, born Richmond, England, 1821. Graduated Cambridge.
Professor, Cambridge. After Euler and Gauss, history’s most prolific author of mathematical papers. Died
Cambridge, 1895.
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The subscripts of the unknowns coefficients a indicate row 1, column 1, row 1, column 2,
etc. We will see that using matrices the solutions (the values of x and y) can be expressed
in a way analogous to that for the equation

A matrix is a rectangular array of “elements” (numbers, derivatives, etc.) that obeys
certain rules of addition, subtraction, and multiplication. Curved or angular brackets
are used to denote a matrix:

Do not confuse matrices with determinants (below), which are written with straight
lines, e.g.

is a determinant, not a matrix. This determinant represents the number
In contrast to a determinant, a matrix is not a number, but rather an

operator (although some would consider matrices to be generalizations of numbers,
with e.g. the 1 × 1 matrix An operator acts on a function (or a vector) to give
a new function, e.g. d/dx acts on (differentiates) f (x) to give

and the square root operator acts on to give y. When we have done matrix multipli-
cation you will see that a matrix can act on a vector and rotate it through an angle to
give a new vector.

Let us look at matrix addition, subtraction, multiplication by scalars, and matrix
multiplication (multiplication of a matrix by a matrix).

Addition and subtraction
Matrices of the same size (2 × 2 and 2 × 2, 3 × 1 and 3 × 1, etc.) can be added just by
adding corresponding elements:

or

Subtraction is similar:
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Multiplication by a scalar
A scalar is an ordinary number (in contrast to a vector or an operator), e.g. 1, 2,
1.714, etc. To multiply a matrix by a scalar we just multiply every element by the
number:

Matrix multiplication
We could define matrix multiplication to be analogous to addition: simply multiplying
corresponding elements. After all, in mathematics any rules are permitted, as long as
they do not lead to contradictions. However, as we shall see in a moment, for matrices
to be useful in dealing with simultaneous equations we must adopt a slightly more
complex multiplication rule. The easiest way to understand matrix multiplication is to
first define series multiplication. If

then we define the series product as

Now it is easy to understand matrix multiplication: if where A, B, and C are
matrices, then element i, j of the product matrix C is the series product of row i of A
and column j of B. For example,

(With practice, you can multiply simple matrices in your head.) Note that matrix
multiplication is not commutative: AB is not necessarily BA, e.g.

(Two matrices are identical if and only if their corresponding elements are the same.)
Note that two matrices may be multiplied together only if the number of columns of the
first equals the number of rows of the second. Thus we can multiply A(2 × 2)B(2 × 2),
A(2 × 2)B(2 × 3), A(3 × 1)B(1 × 3), and so on. A useful mnemonic is
(a × c), meaning, for example that A(2 × 1) times B(1 × 2) gives C(2 × 2):

It is helpful to know beforehand the size, i.e. (2 × 2), (3 × 3), whatever, of the matrix
you will get on multiplication.

series and series

So for example, if and then
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To get an idea of why matrices are useful in dealing with systems of linear equations,
let us go back to our system of equations

Provided certain conditions are met this can be solved for x and y, e.g. by solving (1)
for x in terms of y then substituting for x in (2) etc. Now consider the equations from
the matrix viewpoint. Since

clearly AB corresponds to the left-hand side of the system, and the system can be
written

A is the coefficients matrix, B is the unknowns matrix, and C is the constants matrix.
Now, if we can find a matrix such that (analogous to the numbers

then

Thus the unknowns matrix is simply the inverse of the coefficients matrix times the
constants matrix. Note that we multiplied by on the left which
is not the same as multiplying on the right, which would give this is
not necessarily the same as B.

To see that a matrix can act as an operator consider the vector from the origin to the
point P(3,4). This can be written as a column matrix, and multiplying it by the rotation
matrix shown transforms it (rotates it) into another matrix:

Some important kinds of matrices
These matrices are particularly important in computational chemistry:

the zero matrix (the null matrix),

diagonal matrices,

the unit matrix (the identity matrix),

the inverse of another matrix,

symmetric matrices,

(1)

(2)

(3)

(4)

(5)



Introduction to Quantum Mechanics 105

the transpose of another matrix,

orthogonal matrices.

Clearly, multiplication by the zero matrix (when the mnemonic permits
multiplication) gives a zero matrix.

(2) A diagonal matrix is a square matrix that has all its off-diagonal elements zero;
the (principal) diagonal runs from the upper left to the lower right. Examples:

(3) the unit matrix or identity matrix 1 or I is a diagonal matrix whose diagonal
elements are all unity. Examples:

Since diagonal matrices are square, unit matrices must be square (but zero matrices
can be any size). Clearly, multiplication (when permitted) by the unit matrix leaves the
other matrix unchanged:

(4) The inverse of another matrix A is the matrix that, multiplied A, on the left

(5) A symmetric matrix is a square matrix for which for each element.
Examples:

Note that a symmetric matrix is unchanged by rotation about its principal diagonal.
The complex-number analogue of a symmetric matrix is a Hermitian matrix (after the
mathematician Charles Hermite); this has e.g. if element
then element the complex conjugate of element Since
all the matrices we will use are real rather than complex, attention has been focussed
on real matrices here.

If then

(6)

(7)

(1) The zero matrix or null matrix, 0, is any matrix with all its elements zero.
Examples:

or right, gives the unit matrix: Example:

Check it out.
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(6) The transpose or ofa matrix A is made by exchanging rows and columns.
Examples:

Note that the transpose arises from twisting the matrix around to interchange rows
and columns. Clearly the transpose of a symmetric matrix A is the same matrix A. For
complex-number matrices, the analogue of the transpose is the conjugate transpose
to get this form the complex conjugate of A, by converting each complex number
element a + bi in A to its complex conjugate a – bi, then switch the rows and columns
of to get Physicists call the adjoint of A, but mathematicians use
adjoint to mean something else.

(7) An orthogonal matrix is a square matrix whose inverse is its transpose: if
then A is orthogonal. Examples:

We saw that for the inverse of a matrix, . so for an orthogonal
matrix since here the transpose is the inverse. Check this out for the
matrices shown. The complex analogue of an orthogonal matrix is a unitary matrix; its
inverse is its conjugate transpose.

The columns of an orthonormal matrix are orthonormal vectors. This means that
if we let each column represent a vector, then these vectors are mutually orthogonal
and each one is normalized. Two or more vectors are orthogonal if they are mutually
perpendicular (i.e. at right angles), and a vector is normalized if it is of unit length.
Consider the matrix above. If column 1 represents the vector and column 2 the
vector then we can picture these vectors like this (the long side of a right triangle is
of unit length if the squares of the other sides sum to 1):

If then

If then

The two vectors are orthogonal: from the diagram the angle between them is clearly
90° since the angle each makes with, say, the x-axis is 45°. Alternatively, the angle can
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be calculated from vector algebra: the dot product (scalar product) is

where (“mod v”) is the absolute value of the vector, i.e. its length:

Each vector is normalized, i.e.
The dot product is also

(with an obvious extension to 3D space)

i.e.

and so

Likewise, the three columns of the matrix above represent three mutually perpendic-
ular, normalized vectors in 3D space. A better name for an orthogonal matrix would be
an orthonormal matrix. Orthogonal matrices are important in computational chemistry
because MOs can be regarded as orthonormal vectors in a generalized n-dimensional
space (Hilbert space, after the mathematician David Hilbert). We extract information
about MOs from matrices with the aid of matrix diagonalization.

Matrix diagonalization
Modern computer programs use matrix diagonalization to calculate the energies (eigen-
values) of MOs and the sets of coefficients (eigenvectors) that help define their size and
shape. We met these terms, and matrix diagonalization, briefly in section 2.5; “eigen”
means suitable or appropriate, and we want solutions of the Schrödinger equation that
are appropriate to our particular problem. If a matrix A can be written
where D is a diagonal matrix (you could call P and pre- and postmultiplying matri-
ces), then we say that A is diagonalizable (can be diagonalized). The process of finding
P and D (getting from P is simple for the matrices of computational chemistry –
see below) is matrix diagonalization. For example,

if

then and

Check it out. Linear algebra texts describe an analytical procedure using determinants,
but computational chemistry employs a numerical iterative procedure called Jacobi
matrix diagonalization, or some related method, in which the off-diagonal elements are
made to approach zero.

(or for a 3D vector).
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Now, it can be proved that if and only if A is a symmetric matrix (or more generally, if
we are using complex numbers, a Hermitian matrix – see symmetric matrices, above),
then P is orthogonal (or more generally, unitary – see orthogonal matrices, above) and
so the inverse of the premultiplying matrix P is simply the transpose of (or
more generally, what computational chemists call the conjugate transpose see
transpose, above). Thus

(In this simple example the transpose of P happens to be identical with P.) In the spirit
of numerical methods 0.707 is used instead of A matrix like A above, for which the

premultiplying matrix P is orthogonal (and so for which  is said to be orthog-
onally diagonalizable. The matrices we will use to get MO eigenvalues and eigenvectors
are orthogonally diagonalizable. A matrix is orthogonally diagonalizable if and only
if it is symmetric; this has been described as “one of the most amazing theorems in
linear algebra” (see S. Roman, “An Introduction to Linear Algebra with Applications",
Harcourt Brace, 1988, p. 408) because the concept of orthogonal diagonalizability is
not simple, but that of a symmetric matrix is very simple.

Determinants
A determinant is a square array of elements that is a shorthand way of writing a sum
of products; if the elements are numbers, then the determinant is a number. Examples:

As shown here, a 2 × 2 determinant can be expanded to show the sum it represents by
“cross multiplication.” A higher-order determinant can be expanded by reducing it to
smaller determinants until we reach 2 × 2 determinants; this is done like this:

Here we started with element (1, 1) and moved across the first row. The first of the above
four terms is 2 times the determinant formed by striking out the row and column in
which 2 lies, the second term is minus 1 times the determinant formed by striking out the
row and column in which 1 lies, the third term is plus 3 times the determinant formed by
striking out the row and column in which 3 lies, and the fourth term is minus 0 times the
determinant formed by striking out the row and column in which 0 lies; thus starting
with the element of row 1, column 1, we move along the row and multiply by +1,

if

then
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–1, +1, –1. It is also possible to start at, say element (2,1), the number 1, and move
across the second row (–, +, –, +), or to start at element (1,2) and go down the column
(–,+ ,– ,+) , etc. One would likely choose to work along a row or column with the most
zeroes. The (n – 1) × (n – 1) determinants formed in expanding an n × n determinant
are called minors, and a minor with its appropriate + or – sign is a cofactor. Expansion
of determinants using minors/cofactors is called Lagrange expansion (Joseph Louis
Lagrange, 1773). There are also other approaches to expanding determinants, such as
manipulating them to make all the elements but one of a row or column zero; see any text
on matrices and determinants. The third-order determinants in the example above can
be reduced to second-order ones and so the fourth-order determinant can be evaluated
as a single number. Obviously every determinant has a corresponding square matrix and
every square matrix has a corresponding determinant, but a determinant is not a matrix;
it is a function of a matrix, a rule that tells us how to take the set of numbers in a matrix
and get a new number. Approaches to the study of determinants were made by Seki in
Japan and Leibnitz in Europe, both in 1683. The word “determinant” was first used in
our sense by Cauchy (1812), who also wrote the first definitive treatment of the topic.

Some properties of determinants
These are stated in terms of rows, but also hold for columns; D is “the determinant.”

(1) If each element of a row is zero, D is zero (obvious from Lagrange expansion).

(2) Multiplying each element of a row by k multiplies D by k (obvious from Lagrange
expansion).

(3) Switching two rows changes the sign of D (since this changes the sign ofeach term
in the expansion).

(4) If two rows are the same D is zero, (follows from 3, since if n must
be zero.

(5) If the elements of one row are a multiple of those of another, D is zero (follows
from 2 and 4).

(6) Multiplying a row by k and adding it (adding corresponding elements) to another
row leaves D unchanged (in the Laplace expansion the terms with k cancel).

(7) A determinant A can be written as the sum of two determinants B and C which
differ only in row i in accordance with this rule: if row i of A is

clear; with row

4.3.4 The simple Hückel method – theory
The derivation of the Hückel method (SHM, or simple Hückel theory, SHT; also called
Hückel MO method, HMO method) given here is not rigorous and has been strongly
criticized [30]; nevertheless it has the advantage of showing how with simple arguments
one can use the Schrödinger equation to develop, more by a plausibility argument than

then row i of B is and row i of C is An example makes this
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a proof, a method that gives useful results and which can be extended to more powerful
methods with the retention of many useful concepts from the simple approach.

The Schrödinger equation (section 4.2.6, Eq. (4.29))

can after very simple algebraic manipulation be rewritten

This can be abbreviated to the seductively simple-looking form

where

The symbol (“H hat” or “H peak”) is an operator (section 4.3.3): it specifies that an
operation is to be performed on and Eq. (4.36) says that the result of the operation
will be E multiplied by The operation to be performed on (i.e. (x, y, z)) is
“differentiate it twice with respect to x, to y and to z, add the partial derivatives, and

why symbols replaced words in mathematical discourse). The notation means

Eq. (4.36) says that an operator acting on afunction equals a constant (E)
times the function (H hat of psi equals E psi). Such an equation

is called an eigenvalue equation. The functions f and constants k that satisfy Eq. (4.38)
are eigenfunctions and eigenvalues, respectively, of the operator O. The operator is
called the Hamiltonian operator, or simply the Hamiltonian. The term is named after
the mathematician Sir William Rowan Hamilton, who formulated Newton’s equations
of motion in a manner analogous to the quantum mechanical equation (4.36). Eigen-
value equations are very important in quantum mechanics, and we shall again meet
eigenfunctions and eigenvalues.

The eigenvalue formulation of the Schrödinger equation is the starting point for our
derivation of the Hückel method. We will apply Eq. (4.36) to molecules, so in this
context and are the molecular Hamiltonian and wavefunction, respectively. From

we get

Note that this is not the same as just as x df (x)/dx, say, is not the same
as dxf (x)/dx. Integrating and rearranging we get

of not times

multiply the sum by then add this result to V times (now you can see
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The integration variable dv indicates integration with respect to spatial coordinates (x, y,
in a Cartesian coordinate system), and integration over all of space is implied, since

that is the domain of an electron in a molecule, and thus the domain of the variables of
thefunction One might wonder why not simply use the problems with

Next we approximate the molecular wavefunction as a linear combination of AOs
(LCAO). The MO concept as a tool in interpreting electronic spectra was formalized by
Mulliken23 starting in 1932 and building on earlier (1926) work by Hund24 [31] (recall
that Mulliken coined the word orbital). The postulate behind the LCAO approach is
that an MO can be “synthesized” by combining simpler functions, now called basis
functions; these functions comprise a basis set. This way of calculating MOs is based
on suggestions of Pauling (1928) [32] and Lennard-Jones25 (1929) [33]. Perhaps the
most important early applications of the LCAO method were the SHM (1931) [19], in
which p AOs orbitals are combined to give AOs (probably the first time that the MOs
of relatively big molecules were represented as a weighted sum of AOs with optimized
coefficients), and the treatment of all the lower electronic states of the hydrogen mole-
cule by Coulson26 and Fischer (1949) [34]. The basis functions are usually located on
the atoms of the molecule, and may or may not (see the discussion of basis functions in
section 5.3) be conventional AOs. The wavefunction can in principle be approximated
as accurately as desired by using enough suitable basis functions. In this simplified
derivation of the Hückel method we at first consider a molecule with just two atoms,
with each atom contributing one basis function to the MO. Combining basis functions
on different atoms to give MOs spread over the molecule is somewhat analogous to
combining AOs on the same atom to give hybrid AOs (section 4.3.2) [27]. The com-
bination of n basis functions always gives n MOs, as indicated in Fig. 4.11, and we
expect two MOs for the two-AO diatomic molecule we are using here.

Using the LCAO approximation

where and are basis functions on atoms 1 and 2, and and are weighting
coefficients to be adjusted to get the best and substituting into Eq. (4.40) we get

23 Robert Mulliken, born Newburyport, Massachusetts, 1896. Ph.D. University of Chicago. Professor New
York University, University of Chicago, Florida State University. Nobel prize in chemistry 1966, for the MO
method. Died Arlington, Virginia, 1986.

24Friedrich Hund, born Karlsruhe, Germany, 1896. Ph.D. Marburg, 1925, Professor Rostock, Leipzig,
Jena, Frankfurt, Göttingen. Died Göttingen, 1997.

25John Edward Lennard-Jones, born Leigh, Lancaster, England, 1894. Ph.D. Cambridge, 1924. Professor
Bristol. Best known for the Lennard-Jones potential function for nonbonded atoms. Died Stoke-on-Trent,
England, 1954.

26Charles A. Coulson, born Worcestershire, England, 1910. Ph.D. Cambridge, 1935. Professor of theoret-
ical physics, King’s College, London; professor of mathematics, Oxford; professor of theoretical chemistry,
Oxford. Died Oxford, 1974. Best known for his book “Valence” (the 1st Ed., 1952).

this function are that it goes to infinity as approaches zero, and it is not well-behaved
with regard to finding a minimum by differentiation.
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If we multiply out the terms in Eq. (4.42) we get

where
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Note that in Eqs (4.43) and (4.44) the are not operators hence are not given hats;
they are integrals involving and basis functions

For any particular molecular geometry (i.e. nuclear configuration: section 2.3, the
Born–Oppenheimer approximation) the energy of the ground electronic state is the
minimum energy possible for that particular nuclear arrangement and the collection of
electrons that goes with it. Our objective now is to minimize the energy with respect
to the basis set coefficients. We want to find the c’s corresponding to the minimum
on an energy vs. c’s potential energy surface. To do this we follow a standard calculus
procedure: set equal to zero, explore the consequences, then repeat for
In theory, setting the first derivatives equal to zero guarantees only that we will find in
“MO space” (an abstract space defined by an energy axis and two or more coefficient
axes) a stationary point (cf. section 2.2), but examining the second derivatives shows
that the procedure gives an energy minimum if all or most of the electrons are in bonding
MOs, which is the case for most real molecules [35]. Write Eq. (4.43) as

This can be written

The analogous procedure, beginning with Eq. (4.45) and differentiating with respect to
leads to

Equation (4.47) can be written as Eq. (4.48):

since as shown in Eqs (4.44) and and the form used in Eq.
(4.48) is preferable because it makes it easy to remember the pattern for the two-
basis function system examined here and for the generalization (see below) to n basis
functions. Equations (4.46) and (4.48) form a system of simultaneous linear equations:

The pattern is that the subscripts correspond to the row and column in which they lie;
this is literally true for the matrices and determinants we will consider later, but even for

and differentiate with respect to c1:

Set
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the system of equations (4.49) we note that in the first equation (row 1), the coefficient
of has the subscripts 11 (row 1, column 1) and the coefficient of has the subscripts
12 (row 1, column 2), while in the second equation (row 2) the coefficient of     has the
subscripts 21 (row 2, column 1) and the coefficient of has the subscripts 22 (row 2,
column 2).

The system of equations (4.49) are called secular equations, because of a supposed
resemblance to certain equations in astronomy that treat the long-term motion of the
planets; from the Latin saeculum, a long period of time (not to be confused with secular
meaning worldly as opposed to religious, which is from the Latin secularis, worldly,
temporal). From the secular equations we can find the basis function coefficients
and and thus the MOs since the c’s and the basis functions make up the MOs
(Eq. (4.41)). The simplest, most elegant and most powerful way to get the coefficients
and energies of the MOs from the secular equations is to use matrix algebra (section
4.3,3), The following exposition may seem a little involved, but it must be emphasized
that in practice the matrix method is implemented automatically on a computer, to
which it is highly suited.

The secular equations (4.49) are equivalent to the single matrix equation

Since the H – ES matrix is an H matrix minus an ES matrix, and since the ES matrix
is the product of an S matrix and the scalar E, Eq. (4.50) can be written:

which can be more concisely rendered as

and Eq. (4.52) can be written

H and S are square matrices and c and 0 are column matrices (Eq. (4.51)), and E is
a scalar (an ordinary number). We have been developing these equations for a system
of two basis functions, so there should be two MOs, each with its own energy and its
own pair of c’s (Fig. 4.11). We need two energy values and four c’s: we want to be able
to calculate and of energy level 1) and and of
energy level; in keeping with common practice the energies of the MOs are designated

and Eq. (4.53) can be extended (our simple derivation shortchanges us here) [36]
to encompass the four c’s and two the result is
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We now have only square matrices; in Eq. (4.53) c was a column matrix and E was not
a matrix, but rather a scalar – an ordinary number. The matrices are:

The H matrix is an energy-elements matrix, the Fock27 matrix, whose elements are
integrals (Eqs (4.44). Fock actually pointed out the need to take electron spin into
account in more elaborate calculations than simple Hückel method; we will meet “real”
Fock matrices in chapter 5. For now, we just note that in the simple (and extended)
Hückel methods as an ad hoc prescription at most two electrons, paired, are allowed in
each MO. Each represents some kind of energy term, since is an energy operator
(section 4.3.3). The meaning of the is discussed later in this section.

The C matrix is the coefficient matrix, whose elements are the weighting factors
that determine to what extent each basis function (roughly, each atomic orbital on
an atom) contributes to each MO Thus is the coefficient of in the
coefficient of in etc., with the first subscript indicating the basis function and
the second subscript the MO (Fig. 4.11). In each column of C the c’s belong to the
same MO.

The S matrix is the overlap matrix, whose elements are overlap integrals which
are a measure of how well pairs of basis functions (roughly, AOs) overlap. Perfect
overlap, between identical functions on the same atom, corresponds to while
zero overlap, between different functions on the same atom or well-separated functions
on different atoms, corresponds to

The diagonal matrix is an energy-levels matrix, whose diagonal elements are
MO energy levels corresponding to the MOs Each is ideally the negative
of the energy needed to remove an electron from that orbital, i.e. the negative of the
ionization energy for that orbital. Thus it is ideally the energy of an electron attracted to
the nuclei and repelled by the other electrons, relative to the energy of that electron and
the corresponding ionized molecule, infinitely separated from one another. This is seen
by the fact that photoelectron spectra correlate well with the energies of the occupied
orbitals, in more elaborate (ab initio) calculations [26]. In simple Hückel calculations,
however, the quantitative correlation is largely lost.

Now suppose that the basis functions had these properties (the H and S integrals,
involving are defined in Eqs (4.44)):

More succinctly, suppose that

27 Vladimer Fock, born St. Petersburg, 1898. Ph.D. Petrograd University, 1934. Professor Leningrad
University, also worked at various institutes in Moscow. Worked on quantum mechanics and relativity, e.g.
the Klein–Fock equation for particles with spin in an electromagnetic field. Died Leningrad, 1974.
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where is the Kronecker delta (Leopold Kronecker, German mathematician, ca. 1860)
which has the property of being 1 or 0 depending on whether i and j are the same or
different. Then the S matrix (Eqs (4.55)) would be

Since this is a unit matrix Eq. (4.54) would become

and by multiplying on the right by the inverse of C we get

So from the definition of matrix diagonalization, diagonalization of the H matrix will
give the C and the matrices, i.e. will give the coefficients c and the MO ener-
gies (Eqs (4.55)), if (Eq. (4.57)). This is a big if, and in fact it is not
true. would mean that the basis functions are both orthogonal and nor-
malized, i.e. orthonormal. Orthogonal atomic (or molecular) orbitals or functions

have zero net overlap (Fig. 4.12), corresponding to A normal-

unnormalized basis function will ensure normalization However, we
cannot choose a set of orthogonal atom-centered basis functions, because orthogonal-
ity implies zero overlap between the two functions in question, and in a molecule
the overlap between pairs of basis functions will depend on the geometry of the
molecule (Fig. 4.12). (However, as we will see later, the basis functions can be
manipulated mathematically to give combinations of the original functions which are
orthonormal).

ized orbital or function has the property We can indeed use a
set of normalized basis functions: a suitable normalization constant k applied to an
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The assumption of basis function orthonormality is a drastic approximation, but
it greatly simplifies the Hückel method, and in the present context it enables us to
reduce Eq. (4.54) to Eq. (4.59), and thus to obtain the coefficients and energy levels
by diagonalizing the Fock matrix. Later we will see that in the absence of the orthog-
onality assumption the set of basis functions can be mathematically transformed so
that a modified Fock matrix can be diagonalized; in the simple Hückel method we are
spared this transformation. In the matrix approach to the Hückel method, then, we must
diagonalize the Fock matrix H; to do this we have to assign numbers to the matrix ele-
ments and his brings us to other simplifying assumptions of the SHM, concerning
the

units are, e.g. the coulomb integral

the bond integral or resonance integral

for basis functions on adjacent atoms, and finally

for basis functions neither on the same or on adjacent atoms.
To give these approximations some physical significance, we must realize that in

quantum mechanical calculations the zero of energy is normally taken as corresponding
to infinite separation of the particles of a system. In the simplest view, the coulomb
integral, is the energy of the molecule relative to a zero of energy taken as the electron
and basis function (i.e. AO; in the SHM, is usually a carbon p AO) at infinite
separation. Since the energy of the system actually decreases as the electron falls
from infinity into the orbital, is negative (Fig. 4.13). The negative of in this view,
is the ionization energy (a positive quantity) of the orbital (the ionization energy of the
orbital is defined as the energy needed to remove an electron from the orbital to an
infinite distance away).

The quantity the bond integral or resonance integral, is, in the simplest view, the
energy of an electron in the overlap region (roughly, a two-center MO) of adjacent p
orbitals relative to a zero of energy taken as the electron and two-center MO at infinite
separation. Like is negative energy quantity. A rough, naive estimate of the value of

would be the negative of the average of the ionization energies (a positive quantity)
of the two adjacent AOs, multiplied by some fraction to allow for the fact that the
two orbitals do not coincide but are actually separated. These views of and are
oversimplifications [30],

In the SHM the energy integrals are approximated as just three quantities (the
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The H elements of Eq. (4.62) become or 0 according to the rules of Eqs (4.61).
This will be clear from the examples in Fig. 4.14.

The computer algorithms for matrix diagonalization use some version of the
Jacobi rotation method [37], which proceeds by successive numerical approximations
(textbooks describe a diagonalization method based on expanding the determinant cor-
responding to the matrix; this is not used in computational chemistry). Therefore in
order to diagonalize our Fock matrices we need numbers in place of and In meth-
ods more advanced than the SHM, like the extended Hückel method (EHM), other SE
methods, and ab initio methods, the integrals are calculated to give numerical (in
energy units) values. In the SHM we simply use energy values in units relative to
(recall that is a negative quantity: Fig. 4.13). The matrix of Fig. 4.14(a) then becomes

An electron in an MO represented by a 1,2-type interaction is lower in energy than one
in a p orbital (1,1 -type interaction) by one energy unit. Similarly, the H matrix of

We derived the 2 × 2 matrices of Eqs (4.55) starting with a two-orbital system. These
results can be generalized to n orbitals:
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Fig. 4.14(b) becomes

and the H matrix of Fig. 4.14(c) becomes

The H matrices can be written down simply by setting all i, i-type interactions equal to
0, and all i, j-type interactions equal to –1 where i and j refer to atoms that are bonded
together, and equal to 0 when i and j refer to atoms that are not bonded together.

Diagonalization of the two-basis-function matrix of Eq. (4.63) gives
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Comparing Eq. (4.66) with Eq. (4.60), we see that we have obtained the matrices
we want: the coefficients matrix C and the MO energy levels matrix The columns of
C are eigenvectors, and the diagonal elements of are eigenvalues; cf. Eq. (4.38) and
the associated discussion of eigenfunctions and eigenvalues. The result of Eq. (4.66)
is readily checked by actually multiplying the matrices (multiplication here is aided by
knowing that an analytical rather than numerical diagonalization shows that ±0.707
are approximations to Note that and that is the transpose of C.
The first eigenvector of C, the left-hand column, corresponds to the first eigenvalue of

the top left element; the second eigenvector corresponds to the second eigenvalue.
The individual eigenvectors, and are column matrices:

Figure 4.15 shows a common way of depicting the results for this two-orbital calculation.
Since the coefficients are weighting factors for the contributions of the basis functions
to the MOs (Fig. 4.11 and associated discussion), the c’s of eigenvector combine
with the basis functions to give and the c’s of eigenvector combine with
these same basis functions to give MOs below are bonding and MOs
above are antibonding. The matrix translates into an energy level diagram with
of energy and  of energy i.e. the MOs lie one unit below and one

above the nonbonding level. Since like is negative, the and
levels are of lower and higher energy, respectively, than the nonbonding level.

Diagonalization of the three-basis function matrix of Eq. (4.64) gives

The energy levels and MOs corresponding to these results are shown in Fig. 4.16.
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Diagonalization of the four-basis-function matrix of Eq. (4.65) gives

The energy levels and MOs from these results are shown in Fig. 4.17. Note that all these
matrix diagonalizations yield orthonormal eigenvectors: and
as required the fact that the Fock matrices are symmetric (see the discussion of matrix
diagonalization in section 4.3.3).

4.3.5 The simple Hückel method – applications
Applications of the SHM are discussed in great detail in several books [21]; here we
will deal only with those applications which are needed to appreciate the utility of the
method and to smooth the way for the discussion of certain topics (like bond orders
and atomic charges) in later chapters. We will discuss: the nodal properties of the MOs;
stability as indicated by energy levels and aromaticity (the 4n + 2 rule); resonance
energies; and bond orders and atomic charges.

The nodal properties of the MOs
A node of an MO is a plane at which, as we proceed along the sequence of basis
functions, the sign of the wavefunction changes (Figs 4.15–4.17). For a given molecule,
the number of nodes in the orbitals increases with the energy. In the two-orbital
system (Fig. 4.15), has zero nodes and has one node. In the three-orbital system
(Fig. 4.16), and have zero, one and two nodes, respectively. In the cyclic
four-orbital system (Fig. 4.17), has zero nodes, and which are degenerate
(of the same energy) each have one node (one nodal plane), and has two nodes.
In a given molecule, the energy of the MOs increases with the number of nodes. The
nodal properties of the SHM orbitals form the basis of one of the simplest ways of
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understanding the predictions of the Woodward–Hoffmann orbital symmetry rules [38].
For example, the thermal conrotatary and disrotatary ring closure/opening of polyenes
can be rationalized very simply in terms of the symmetry of the highest occupied
MO of the open-chain species. That the highest MO should dominate the course of
this kind of reaction is indicated by more detailed considerations (including extended
Hückel calculations) [38]. Figure 4.18 shows the situation for the ring closure of a
1,3-butadiene to a cyclobutene. The phase (+ or –) of the HOMO at the end
carbons (the atoms that bond) is opposite on each face, because this orbital has one node
in the middle of the chain. You can see this by sketching the MO as the four AOs
contributing to it, or even – remembering the node – drawing just the end AOs. For the
electrons in to bond, the end groups must rotate in the same sense (conrotation) to
bring orbital lobes of the same phase together. Remember that plus and minus phase has
nothing to do with electric charge, but is a consequence of the wave nature of electrons
(section 4.2.6): two electron waves can reinforce one another and form a bonding pair
if they are “vibrating in phase”; an out-of-phase interaction represents an antibonding
situation. Rotation in opposite senses (disrotation) would bring opposite-phase lobes
together, an antibonding situation. The mechanism of the reverse reaction is simply
the forward mechanism in reverse, so the fact that the thermodynamically favored
process is the ring-opening of a cyclobutene simply means that the cyclobutene shown
would open to the butadiene shown on heating. Photochemical processes can also be
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accommodated by the Woodward–Hoffmann orbital symmetry rules if we realize that
absorption of a photon creates an electronically excited molecule in which the previous
lowest unoccupied MO (LUMO) is now the HOMO. For more about orbital symmetry
and chemical reactions see, e.g. the book by Woodward and Hoffmann [38].

Stability as indicated by energy levels and aromaticity
The MO energy levels obtained from an SHM calculation must be filled with electrons
according to the species under consideration. For example, the neutral ethene molecule
has two electrons, so the diagrams of Fig. 4.19(a) (cf. Fig. 4.15) with one, two and
three    electrons, would refer to the cation, the neutral and the anion. We might expect
the neutral, with its bonding orbital full and its antibonding orbital empty,
to be resistant to oxidation (which would require removing electronic charge from the
low-energy and to reduction (which would require adding electronic charge to the
high-energy

The propenyl (allyl) system has two, three orfour electrons, depending on whether
we are considering the cation, radical or anion (Fig. 4.19(b); cf. Fig. 4.16). The cation
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might be expected to be resistant to oxidation, which requires removing an electron
from a low-lying orbital and to be moderately readily reduced, as this involves
adding an electron to the nonbonding orbital a process that should not be strongly
favorable or unfavorable. The radical should be easier to oxidize than the cation, for this
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requires removing an electron from a nonbonding, rather than a lower-lying bonding,
orbital, and the ease of reduction of the radical should be roughly comparable to that
of the cation, as both can accommodate an electron in a nonbonding orbital. The
anion should be oxidized with an ease comparable to that of the radical (removal of an
electron from the nonbonding but be harder to reduce (addition of an electron to
the antibonding

The cyclobutadiene system (Fig. 4.19(c); cf. Fig. 4.17) can be envisaged with,
amongst others, two (the dication), four (the neutral molecule) and six (the dian-
ion) electrons. The predictions one might make for the behavior of these three
species toward redox reactions are comparable to those just outlined for the propenyl
cation, radical and anion, respectively (note the analogous occupancy of bonding,
nonbonding and antibonding orbitals). The neutral cyclobutadiene molecule is, how-
ever, predicted by the SHM to have an unusual electronic arrangement for a diene:
in filling the orbitals, from the lowest-energy one up, one puts electrons of the
same spin into the degenerate and in accordance with Hund’s rule of max-
imum multiplicity. Thus the SHM predicts that cyclobutadiene will be a diradical,
with two unpaired electrons of like spin. Actually, more advanced calculations [39]
indicate, and experiment confirms, that cyclobutadiene is a singlet molecule with
two single and two double C/C bonds. A square cyclobutadiene diradical with four
1.5 C/C bonds would distort to a rectangular, closed-shell (i.e. no unpaired elec-
trons) molecule with two single and two double bonds (Fig. 4.20). This could have
been predicted by augmenting the SHM result with a knowledge of the phenom-
enon known as the Jahn–Teller effect [40]: cyclic systems (and certain others) with
an odd number of electrons in degenerate (equal-energy) MOs will distort to remove
the degeneracy.
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What general pattern of MOs emerges from the SHM? Acyclic systems (ethene,
the propenyl system, 1,3-butadiene, etc.), have MOs distributed singly and evenly on
each side of the nonbonding level; the odd-AO systems also have one nonbonding
MO (Fig. 4.21). Cyclic systems (the cyclopropenyl system, cyclobutadiene, the
cyclopentadienyl system, benzene, etc.) have a lowest MO and pairs of degenerate
MOs, ending with one highest or a pair of highest MOs, depending on whether the
number of MOs is even or odd. The total number of MOs is always equal to the number
of basis functions, which in the SHM is, for organic polyenes, the number of p orbitals
(Fig. 4.21). The pattern for cyclic systems can be predicted qualitatively simply by
sketching the polygon, with one vertex down, inside a circle (Fig. 4.22). If the circle is of
radius         the energies can even be calculated by trigonometry [41 ]. It follows from this
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says that cyclic arrays of -hybridized atoms with electrons are characteristic
of aromatic molecules; the canonical aromatic molecule benzene with six electrons
corresponds to n = 1. For neutral molecules with formally fully conjugated perimeters
this amounts to saying that those with an odd number of C/C double bonds are aromatic
and those with an even number are antiaromatic (see resonance energies, below).

Hückel’s rule has been abundantly verified [17] notwithstanding the fact that the
SHM, when applied without regard to considerations like the Jahn–Teller effect (see
above) incorrectly predicts 4n species like cyclobutadiene to be triplet diradicals. The
Hückel rule also applies to ions; for example, the cyclopropenyl with system two

electrons, the cyclopropenyl cation, corresponds to n = 0, and is strongly aromatic.

pattern that cyclic species (not necessarily neutral) with 2, 6, 10, … electrons have
filled MOs and might be expected to show particular stability, analogously to the filled
AOs of the unreactive noble gases (Fig. 4.23). The archetype of such molecules is, of
course, benzene, and the stability is associated with the general collection of properties
called aromaticity [17]. These results, which were first perceived by Hückel [ 19] (1931–
1937), are summarized in a rule called the 4n + 2 rule or Hückel’s rule, although the
4n + 2 formulation was evidently actually due to Doering and Knox (1954) [42]. This
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Other aromatic species are the cyclopentadienyl anion (six electrons, Hückel
predicted the enhanced acidity of cyclopentadiene) and the cycloheptatrienyl cation.
Only reasonably planar species can be expected to provide the AO overlap need for
cyclic electron delocalization and aromaticity, and care is needed in applying the rule.

Resonance energies
The SHM permits the calculation of a kind of stabilizing energy, or, more accurately, an
energy that reflects the stability of molecules. This energy is calculated by comparing the
total electronic energy of the molecule in question with that of a reference compound, as
shown below for the propenyl systems, cyclobutadiene, and the cyclobutadiene dication.

The propenyl cation, Fig. 4.19(b); cf. Fig. 4.16. If we take the total electronic
energy of a molecule to be simply the number of electrons in a MO times the energy
level of the orbital, summed over occupied orbitals (a gross approximation, as it ignores
interelectronic repulsion), then for the propenyl cation

We want to compare this energy with that of two electrons in a normal molecule with
no special features (the propenyl cation has the special feature of an empty p orbital
adjacent to the formal C/C double bond), and we choose neutral ethene for our reference
energy (Fig. 4.15)

The stabilization energy is then

Since is negative, the electronic energy of the propenyl cation is calculated to be
below that of ethene: providing an extra, empty p orbital for the electron pair causes the
energy to drop. Actually, resonance energy is usually presented as a positive quantity,
e.g. We can interpret this as below a reference system.
To avoid a negative quantity in SHM calculations like these, we can use instead of

The propenyl radical, Fig. 4.16. The total electronic energy by the SHM is

For the reference energy we use one ethene molecule and one nonbonding p electron
(like the electron in a methyl radical):

The stabilization energy is then
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anion) gives
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Thus the SHM predicts that all three propenyl species will be lower in energy than if the
electrons were localized in the formal double bond and (for the radical and anion) in

one p orbital. Because this lower energy is associated with the ability of the electrons to
spread or be delocalized over the whole system, what we have called E(stab) is often
denoted as the delocalization energy, and designated Note that (or is always
some multiple of (or is zero). Since electron delocalization can be indicated by the
familiar resonance symbolism the Hückel delocalization energy is often equated with
resonance energy, and designated The accord between calculated delocalization
and the ability to draw resonance structures is not perfect, as indicated by the next
example.

Cyclobutadiene (Fig. 4.17). The total electronic energy is

Using two ethene molecules as our reference system:

and so for E(stab) we get

Cyclobutadiene is predicted by this calculation to have no resonance energy, although
we can readily draw two “resonance structures” exactly analogous to the Kekulé struc-
tures of benzene. The SHM predicts a resonance energy of for benzene. Equating

with the commonly-quoted resonance energy of for
benzene gives a value of for but this should be taken with more than
a grain of salt, for outside a closely related series of molecules, has little or no quan-
titative meaning [43]. However, in contrast to the failure of simple resonance theory
in predicting aromatic stabilization (and other chemical phenomena) [44], the SHM is
quite successful.

The cyclobutadiene dication (cf. Fig. 4.17). The total electronic energy is

Using one ethene molecule as the reference:

and so
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Thus the stabilization energy calculation agrees with the deduction from the disposition
of filled MOs (i.e. with the 4n + 2 rule) that the cyclobutadiene dication should be
stabilized by electron delocalization, which is in some agreement with experiment [45].

More sophisticated calculations indicate that cyclic 4n systems like cyclobutadiene
(where planar; cyclooctatetraene, for example, is buckled by steric factors and is simply
an ordinary polyene) are actually destabilized by electronic effects: their resonance
energy is not just zero, as predicted by the SHM, but less than zero. Such systems are
antiaromatic [17,46].

Bond orders
The meaning of this term is easy to grasp in a qualitative, intuitive way: an ideal single
bond has a bond order of one, and ideal double and triple bonds have bond orders
of two and three, respectively. Invoking Lewis electron-dot structures, one might say
that the order of a bond is the number of electron pairs being shared between the two
bonded atoms. Calculated quantum mechanical bond orders should be more widely
applicable than those from the Lewis picture, because electron pairs are not localized
between atoms in a clean pairwise manner; thus a weak bond, like a hydrogen bond or
a long single bond, might be expected to have a bond order of less than one. However,
there is no unique definition of bond order in computational chemistry, because there
seems to be no single, correct method to assign electrons to particular atoms or pairs of
atoms [47]. Various quantum mechanical definitions of bond order can be devised [48],
based on basis-set coefficients. Intuitively, these coefficients for a pair of atoms should
be relevant to calculating a bond order, since the bigger the contribution two atoms make
to the wavefunction (whose square is a measure of the electron density; section 4.2.6),
the bigger should be the electron density between them. In the SHM the order of a bond
between two atoms and is defined as

Here the 1 denotes the single bond of the ubiquitous spectator bond framework,
which is taken as always contributing a bond order of unity. The other term is the

bond order; its value is obtained by summing over all the occupied MOs the number
of electrons n in each of these MOs times the product of the c’s of the two atoms for
each MO. This is illustrated in the following examples.

Ethene. The occupied orbital is which has 2 electrons), and the coefficients of
and for this orbital are 0.707, 0.707 (Eq. (4.66)). Thus

which is reasonable for a double bond. The order of the bond is 1 and that of the
bond is 1.
The ethene radical anion. The occupied orbitals are which has 2 electrons, and

which has 1 electron; the coefficients of and for are 0.707, 0.707 and for
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The bond order of 0.500 (1,500 – bond order) accords with two electrons in the
bonding MO and one electron in the antibonding orbital.

Atomic charges
In an intuitive way, the charge on an atom might be thought to be a measure of the
extent to which the atom repels or attracts a charged probe near it, and to be measurable
from the energy it takes to bring a probe charge from infinity up to near the atom.
However, this would tell us the charge at a point outside the atom, for example a point
on the van der Waals surface of the molecule, and the repulsive or attractive forces on
the probe charge would be due to the molecule as a whole. Although atomic charges
are generally considered to be experimentally unmeasurable, chemists find the concept
very useful (thus calculated charges are used to parameterize molecular mechanics
force fields – chapter 3), and much effort has gone into designing various definitions
of atomic charge [47,48]. Intuitively, the charge on an atom should be related to the
basis set coefficients of the atom, since the more the atom contributes to a multicenter
wavefunction (one with contributions from basis functions on several atoms), the more
it might be expected to lose electronic charge by delocalization into the rest of the
molecule (cf. the discussion of bond order above). In the SHM the charge on an atom

is defined as (cf. Eq. (4.70))

The summation term is the charge density, and is a measure of the electronic charge
on the molecule due to the electrons. For example, having no electrons (an empty
p orbital, formally a cationic carbon) would mean a electron charge density of
zero; subtracting this from unity gives a charge on the atom of +1. Again, having
two electrons in a p orbital would mean a electron charge density of 2 on the
atom; subtracting this from unity gives a charge on the atom of – 1 (a filled p orbital,
formally an anionic carbon). The application of Eq. (4.71) will be illustrated using
methylenecyclopropene (Fig. 4.24).

Methylenecyclopropene (Fig. 4.24).

0.707, –0.707 (Eq. (4.66)). Thus
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The results of this charge calculation are summarized in Fig. 4.24; the negative charge
on the exocyclic carbon and the positive charges on the ring carbons are in accord
with the resonance picture (Fig. 4.24), which invokes a contribution from the aromatic
cyclopropenyl cation [49]. Note that the charges sum to (essentially) zero, as they
must for a neutral molecule (the hydrogens, which actually also carry charges, have
been excluded from consideration here). A high-level calculation places a total charge
(carbon plus hydrogen) – albeit defined in a different way – of –0.37 on the          group
and +0.37 on the ring (cf. –0.487 and +0.487 for the exocyclic carbon and the ring
carbons in the SHM calculation).

4.3.6 Strengths and weaknesses of the SHM

Strengths
The SHM has been extensively used to correlate, rationalize, and predict many chemical
phenomena, having been applied with surprising success to dipole moments, esr spectra,
bond lengths, redox potentials, ionization potentials, UV and IR spectra, aromaticity,
acidity/basicity, and reactivity, and specialized books on the SHM should be consulted
for details [21]. The method will probably give some insight into any phenomenon that
involves predominantly the electron systems of conjugated molecules. The SHM
may have been underrated [50] and reports of its death are probably exaggerated.
However, the SHM is not used very much in research nowadays, partly because more
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sophisticated electron approaches like the PPP method (section 6.2.2) are available,
but mainly because of the phenomenal success of all-valence-electron SE methods
(chapter 6), which are applicable to quite large molecules, and of the increasing power
of all-electron ab initio (chapter 5) and DFT (chapter 7) methods.

Weaknesses
The defects of the SHM arise from the fact that it treats only electrons, and these
only very approximately. The basic Hückel method described here has been augmented
in an attempt to handle non substituents, e.g. alkyl groups, halogen groups, etc.,
and heteroatoms instead of carbon. This has been done by treating the substituents as

centers and embodying empirically altered values of and so that in the Fock
matrix values other than –1 and 0 appear. However, the values of these modified
parameters that have been employed vary considerably [51], which tends to diminish
one’s confidence in their reliability.

The approximations in the SHM are its peremptory treatment of the overlap inte-
grals S (section 4.3.4, discussion in connection with Eqs (4.55)), its drastic truncation
of the possible values of the Fock matrix elements into just and 0 (section 4.3.4,
discussion in connection with Eqs (4.61)), its complete neglect of electron spin, and its
glossing over (although not exactly ignoring) interelectronic repulsion by incorporating
this into the and parameters.

The overlap integrals S are divided into just two classes:

depending on whether the orbitals on the atoms i and j are on the same or different
atoms. This approximation, as explained earlier, reduces the matrix form of the secular
equations to standard eigenvalue form (Eq. (4.59)), so that the Fock matrix
can (after giving its elements numerical values) be diagonalized without further ado (the
ado is explained in section 4.3.7, in connection with the extended Hückel method). In the
older determinant, as opposed to matrix, treatment (section 4.3.7), the approximation
greatly simplifies the determinants. In fact, however, the overlap integral between
adjacent carbon p orbitals is ca. 0.24 [52].

Setting the Fock matrix elements equal to just and 0. Setting

depending on whether the orbitals on the atoms i and j are on the same, adjacent or
further-removed atoms is an approximation, because all the terms are not the same,
and all the adjacent-atom terms are not the same either; these energies depend on
the environment of the atom in the molecule; for example, atoms in the middle of a
conjugated chain should have different and parameters than ones at the end of
the chain. Of course, this approximation simplifies the Fock matrix (or the determinant
in the old determinant method, section 4.3.7).

The neglect of electron spin and the deficient treatment of interelectronic repulsion
is obvious. In the usual derivation (section 4.3.4): in Eq. (4.40) the integration is carried
out with respect to only spatial coordinates (ignoring spin coordinates; contrast ab initio

or 0

or 0
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theory, section 5.2), and in calculating energies (section 4.3.5) we simply took the
sum of the number of electrons in each occupied MO times the energy level of the MO.
However, the energy of an MO is the energy of an electron in the MO moving in the
force field of the nuclei and all the other electrons (as pointed out in section 4.3.4, in
explaining the matrices of Eqs (4.55)). If we calculate the total electronic energy by
simply summing MO energies times occupancy numbers, we are assuming, wrongly,
that the electron energies are independent of one another, i.e. that the electrons do not
interact. An energy calculated in this way is said to be a sum of one-electron energies.
The resonance energies calculated by the SHM can thus be only very rough, unless
the errors tend to cancel in the subtraction step, which in fact probably occurs to some
extent (this is presumably why the method of Hess and Schaad for calculating resonance
energies works so well [50]). The neglect of electron repulsion and spin in the usual
derivation of the SHM is discussed in Ref. [30].

4.3.7 The determinant method of calculating the
Hückel c’s and energy levels

An older method of obtaining the coefficients and energy levels from the secular
equations (Eqs (4.49) for a two-basis-function system) utilizes determinants rather
than matrices. The method is much more cumbersome than the matrix diagonalization
approach of section 4.3.4, but in the absence of cheap, readily-available comput-
ers (matrix diagonalization is easily handled by a personal computer) its erstwhile
employment may be forgiven. It is outlined here because traditional presentations of
the SHM [21] use it.

Consider again the secular equations (4.49):

By considering the requirements for nonzero values of and we can find how to
calculate the c’s and the MO energies (since the coefficients are weighting factors that
determine how much each basis function contributes to the MO, zero c’s would mean
no contributions from the basis functions and hence no MOs; that would not be much
of a molecule). Consider the system of linear equations

Using determinants:

equations), then in the equations for and the numerator is zero, and so
where D is the determinant of the system. If  (the situation in the secular
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and The only way that and can be nonzero in this case is that the
determinant of the system be zero, i.e.

for then and and 0/0 can have any finite value; mathematicians
call it indeterminate. This is easy to see:

which is true for any finite value of
So for the secular equations the requirement that the c’s be nonzero is that the

determinant of the system be zero:

If we invoke the SHM simplification of orthogonality of the S integrals (pp. 37–39),
then and and Eq. (4.75) becomes

The diagonal terms will always be –  E, but the placement of and 0 will depend
on which i, j terms are adjacent and which are further-removed, which depends on the
numbering system chosen (see below). Since multiplying or dividing a determinant by
a number is equivalent to multiplying or dividing the elements of one row or column

Equation (4.72) can be generalized to n basis functions (cf. the matrix of Eq. (4.62)):

Substituting  and 0 for the appropriate H’s (p. 39) we get
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by gives

Finally, if we define we get

The diagonal terms are always x but the off-diagonal terms, 1 for adjacent and 0 for
nonadjacent orbital pairs, depend on the numbering (which does not affect the results:
Fig. 4.25). Any specific determinant of the type in Eq. (4.77) can be expanded into a
polynomial of order n (where the determinant is of order n × n), making Eq. (4.77)
yield the polynomial equation:

The polynomial can be solved for x and then the energy levels can be found from
from

The coefficients can then be calculated from the energy levels by substituting the E’s
into one of the secular equations, finding the ratio of the c’s, and normalizing to get the
actual c’s. An example will indicate how the determinant method can be implemented.

Consider the propenyl system. In the secular determinant the i, i-type interactions
will be represented by x, adjacent i, j-type interactions by 1, and nonadjacent i, j-type
interactions by 0. For the determinantal equation we can write (Fig. 4.25)

(Compare this with the Fock matrix for the propenyl system). Solving this equation
(see section 4.3.3):

by that number (section 4.3.3), multiplying both sides of Eq. (4.75) by  n times, i.e.
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This cubic can be factored (but in general polynomial equations require numerical
approximation methods):

so and or

From and

leads to

leads to

leads to

So we get the same energy levels as from matrix diagonalization
To find the coefficients we substitute the energy levels into the secular equations; for

the propenyl system these are, projecting from the secular equations for a two-orbital
system, Eqs (4.49):

These can be simplified (Eqs (4.57) and (4.61)) to

For the energy level (MO level 1, substituting into the first secular
equation we get

so
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(Recall the notation; is the coefficient for atom 1 in is the coefficient for
atom 2 in etc.) Substituting into the second secular equation we get

We now have the relative values of the c’s:

To find the actual values of the c’s, we utilize the fact that the MO (we are talking about
MO level 1, must be normalized:

Now, from the LCAO method

Therefore

So from Eq. (4.87), and recalling that in the SHM we pretend that the basis functions
are orthonormal, i.e. that we get

Using the ratios of the c’s from Eq. (4.84):

i.e.

and so

By substituting into the secular equations (4.83) the E values for and we could

and Although this somewhat clumsy way of finding the c’s from the energy
levels was streamlined (see, e.g. [21d]), the determinant method has been replaced by
matrix diagonalization implemented in a computer program.

find the ratios of the c’s for and and with the aid of the orthonormalization
equation analogous to Eq. (4.88) we could get the actual values of and
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4.4 THE EXTENDED HÜCKEL METHOD

In the SHM, as in all modern MO methods, a Fock matrix is diagonalized to give
coefficients (which with the basis set give the wavefunctions of the MOs) and energy
levels (i.e. MO energies). The SHM and the extended Hückel method (EHM, extended
Hückel theory, EHT) differ in how the elements of the Fock matrix are obtained and
how the overlap matrix is treated. The EHM was popularized and widely applied by
Hoffmann28 [53], although earlier work using the approach had been done by Wolfsberg
and Helmholz [54], We now compare point by point the SHM and the EHM.

Simple Hückel method
(1) Basis set is limited to p orbitals. Each element of the Fock matrix H is an integral
that represents an interaction between two orbitals. The orbitals are in almost all cases
a set of p orbitals (usually carbon 2p) supplied by an framework, with the p orbital
axes parallel to one another and perpendicular to the plane of the framework. In other
words, the set of basis orbitals – the basis set – is limited (in the great majority of cases)
to orbitals (taking the framework plane, i.e. the molecular plane, to be the xy plane).

(2) Orbital interaction energies are limited to and 0. The Fock matrix orbital
interactions are limited to and 0, depending on whether the interaction is,
respectively i, i, adjacent, or further-removed. The value of does not vary smoothly
with the separation of the orbitals, although logically it should decrease continuously
to zero as the separation increases.

(3) Fock matrix elements are not actually calculated. The Fock matrix elements are
not any definite physical quantities, but rather energy levels relative to  in units of

to the standard eigenvalue form (Eq. (4.59)) and so which is
the same as saying that the SHM Fock matrix is directly diagonalized to give the c’s
and

Now compare these four points with the corresponding features of the EHM.

Extended Hückel method
(1) All valence s and p orbitals are used in the basis set. As in the SHM each element of
the Fock matrix is an integral representing an interaction between two orbitals; however,
in the EHM the basis set is not just a set of orbitals but rather the set of valence-
shell orbitals of each atom in the molecule (the derivation of the secular equations

28 Roald Hoffmann, born Zloczow, Poland, 1937. Ph.D. Harvard, 1962, Professor, Cornell. Nobel prize
1981 (shared with Kenichi Fukui; section 7.3.5) for work with organic chemist Robert B. Woodward, showing
how the symmetry of molecular orbitals influences the course of chemical reactions (the Woodward–
Hoffmann rules or the conservation of orbital symmetry). Main exponent of the extended Hückel method.
He has written poetry, and several popular books on chemistry.

4.4.1 Theory

making them 0 or –1. One can try to estimate and but the SHM does not define
them quantitatively.

(4) Overlap integrals are limited to 1 or 0. We pretend that the overlap matrix S is a
unit matrix, by setting This enables us to simplify (Eq. (4.54))
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says nothing about what kinds of orbitals we are considering). Thus each hydrogen
atom contributes a 1s orbital to the basis set and each carbon atom a 2s and three 2p
orbitals. Lithium and beryllium, although they have no 2p electrons, are assigned a
2s and three 2p orbitals (experience shows that this works better than omitting these
basis functions) so the atoms from lithium to fluorine each contribute a 2s and three 2p
orbitals. A basis set like this, which uses the normal valence orbitals of atoms, is called
a minimal valence basis set.

(2) Orbital interaction energies are calculated and vary smoothly with geometry.
The EHM Fock matrix orbital interactions are calculated in a way that depends on
the distance apart of the orbitals, so their values vary smoothly with orbital separation.

(3) Fock matrix elements are actually calculated. The EHM Fock matrix elements
are calculated from well-defined physical quantities (ionization energies) with the aid
of well-defined mathematical functions (overlap integrals), and so are closely related
to ionization energies and have definite quantitative values.

(4) Overlap integrals are actually calculated. We do not in effect ignore the overlap
matrix, i.e. we do not set it equal to a unit matrix. Instead, the elements of the overlap
matrix are calculated, each depending on the distance apart of the atoms i and j,
which has the important consequence that the S values depend on the geometry of the
molecule. Since S is not taken as a unit matrix, we cannot go directly from
to and thus we cannot simply diagonalize the EHM Fock to get the c’s and

These four points are elaborated on below.

(1) Use of a minimal valence basis set in the EHM is more realistic than treating just
the orbitals, since all the valence electrons in a molecule are likely to be involved
in determining its properties. Further, the SHM is largely limited to systems, i.e. to
alkenes and aromatics and derivatives of these with attached electron groups, but the
EHM, in contrast, can in principle be applied to any molecule. The use of a minimal
valence basis set makes the Fock matrix much larger than in the “corresponding” SHM
calculation. For example in an SHM calculation on ethene, only two orbitals are used,
the on and the on and the SHM Fock matrix is (using the compact Dirac
notation

To write down the EHM Fock matrix, let us label the valence orbitals like this:
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Then

The SHM and EHM basis sets are shown in Fig. 4.26.
(2) The EHM Fock matrix interactions do not have just two values or as

in the SHM, but are functions of the orbitals (the basis functions) and and of the
separation of these orbitals, as explained in (3) below.

(3) The EHM matrix elements and are calculated (rather than set
equal to 0 or –1), although the calculation is a simple one using overlap integrals
and experimental ionization energies; in ab initio calculations (chapter 5) and more
advanced SE calculations (chapter 6), the mathematical form of taken into account.
The -type interactions are taken as being proportional to the negative of the ionization
energy [55] of the orbital and the -type interactions as being proportional to the
overlap integral between and and the negative of the average of the ionization
energies and of and (the negative of the orbital ionization energy is the
energy of an electron in the orbital, compared to the zero of energy of the electron and
the ionized species infinitely separated and at rest):

A proportionality constant K of about 2 is commonly used.

For and experiment shows
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The overlap integrals are calculated using Slater-type (section 5.3.2) functions for the
basis functions, e.g.

where the parameters depend on the particular atom (H, C, etc.) and orbital
etc. The variable – R is the distance of the electron from the atomic nucleus on which
the function is centered; is the vector from the origin of the Cartesian coordinate
system to the electron, and R is the vector from the origin to the nucleus on which the
basis function is centered:

where are the coordinates of the nucleus bearing the Slater function. The
Slater function is thus a function of three variables and depends parametrically
on the location of the nucleus A on which it is centered. The Fock matrix
elements are thus calculated with the aid of overlap integrals whose values depend the
location of the basis functions; this means that the MOs and their energies will depend
on the actual geometry used in the input, whereas in a simple Hückel calculation, the
MOs and their energies depend only on the connectivity of the molecule).

(4) The overlap matrix S in the EHM is not simply treated as a unit matrix, in
effect ignoring it, for the purpose of diagonalizing the Fock matrix. Rather, the overlap
integrals are actually evaluated, not only to help calculate the Fock elements, but also
to reduce the equation to the standard eigenvalue form                                        This
is done in the following way. Suppose the original set of basis functions could
be transformed by some process into an orthonormal set (since atom-centered
basis functions cannot be orthogonal, as explained in section 4.3.4, the new set must be
delocalized over several centers and is in fact a linear combination of the atom-centered
set) such that with a new set of coefficients we have LC AO MOs with the same energy
levels as before, i.e.

where is the Kronecker delta (Eq. (4.57)). The result of the process referred to
above is

not as the energy will not depend on manipulation ofa given set ofbasis functions)
where the matrices H, C, S and were defined in section 4.3.4 (Eqs (4.55)) and and

are analogous to H and S with in place of and is the matrix ofcoefficients
that satisfies the equation with the energy levels (the elements of being the same
as in the original equation Since from Eq. (4.97) the unit matrix
(section 4.3.3), Eq. (4.98) simplifies to
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The Process that effects the transformation is called orthogonalization, since the result
is to make the basis functions orthogonal. The favored orthogonalization procedure in
computational chemistry, which I will now describe, is Löwdin orthogonalization (after
the quantum chemist Per-Olov Löwdin).

Define a matrix such that

(By multiplying on the left by and noting that 1.)

and note that then we have from (4.101) and (4.102)

Let

i.e.

Thus the orthogonalizing Process of (4.99) (or rather one possible orthogonalization
process, Löwdin orthogonalization) is the use of an orthogonalizing matrix to
transform H by pre- and postmultiplication (Eq. 102) into satisfies the standard
eigenvalue equation (Eq. (4.103)), so

In other words, using we transform the original Fock matrix H, which is not
directly diagonalizable to eigenvector and eigenvalue matrices C and into a related
matrix which is diagonalizable to eigenvector and eigenvalue matrices and The
matrix is then transformed to the desired C by multiplying by (Eq. (4.100)).
So without using the drastic approximation we can use matrix diagonalization
to get the coefficients and energy levels from the Fock matrix.

The orthogonalizing matrix is calculated from S: the integrals S are calculated
and assembled into S, which is then diagonalized:

Now it can be shown that any function of a matrix A can be obtained by taking the
same function of its corresponding diagonal alter ego and pre- and postmultiplying by
the diagonalizing matrix P and its inverse

and diagonal matrices have the nice property that is the diagonal matrix whose
diagonal element i, j = f (element i, j of D). So the inverse square root of D is the

Substituting (4.100) into and multiplying on the left by we get
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matrix whose elements are the inverse square roots of the corresponding elements of
D. Therefore

and D, D is used to calculate then the orthogonalizing matrix is
calculated (Eq. (4.107)) from and The orthogonalizing matrix is then
used to convert H to which can be diagonalized to give the eigenvalues and the
eigenvectors (section 4.4.2).

Review of the EHM procedure
The EHM procedure for calculating eigenvectors and eigenvalues, i.e. coefficients (or
in effect MOs – the        along with the basis functions comprise the MOs) and energy
levels, bears several important resemblances to that used in more advanced methods
(chapters 5 and 6) and so is worth reviewing.

(1) An input structure (a molecular geometry) must be specified and submitted to
calculation. The geometry can be specified in Cartesian coordinates (probably the
usual way nowadays) or as bond lengths, angles and dihedrals (internal coordinates),
depending on the program. In practice a virtual molecule would likely be created
with an interactive model-building program (usually by clicking together groups and
atoms) which would then supply the EHM program with either Cartesian or internal
coordinates.

(2) The EHM program calculates the overlap integrals S and assembles the overlap
matrix S.

(3) The program calculates the Fock matrix elements (Eqs (4.91)
and (4.92)) using stored values of ionization energies I, the overlap integrals S, and
the proportionality constant K of that particular program. The matrix elements are
assembled into the Fock matrix H.

orthogonalizing matrix is then calculated from P, and (Eq. (4.107)).
(5) The Fock matrix H in the atom-centered nonorthogonal basis is transformed

into the matrix in the delocalized, linear combination orthogonal basis by pre-
and postmultiplying H by the orthogonalizing matrix (Eq. (4.102)).

(6) is diagonalized to give and (Eq. (4.104)). We now have the energy
levels (the diagonal elements of the matrix).

(7) must be transformed to give the coefficients c of the original, atom-centered
set of basis functions in the MOs (i.e. to convert the elements to To get the

(Eq. (4.100)).

Molecular energy and geometry optimization in the EHM
Steps (1)–(7) take an input geometry and calculate its energy levels (the elements of
and their MOs or wavefunctions (the from the c’s, the elements of C, and the basis
functions  Now, clearly any method in which the energy of a molecule depends on its

and to find            we (or rather the computer) simply take the inverse square root of
the diagonal (i.e. the nonzero) elements of D. To summarize: S is diagonalized to give

(4) The overlap matrix is diagonalized to give P, D and (Eq. (4.105)) and
is then calculated by finding the inverse square roots of the diagonal elements of D. The

in the we transform to C by premultiplying by
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geometry can in principle be used to find minima and transition states (see chapter 2).
This brings us to the matter of how the EHM calculates the energy of a molecule.
The energy of a molecule, that is, the energy of a particular nuclear configuration on
the potential energy surface, is the sum of the electronic energies and the internuclear
repulsions

In comparing the energies of isomers, or of two geometries of the same molecule, one
should, strictly, compare The electronic energy is the sum of
kinetic energy and potential energy (electron–electron repulsion and electron–nucleus
attraction) terms. The internuclear repulsion, due to all pairs of interacting nuclei and
trivial to calculate, is usually represented by V, a symbol for potential energy. The EHM
ignores Furthermore, the method calculates electronic energy simply as the sum of
one-electron energies (section 4.3.5), ignoring electron-electron repulsion. Hoffmann’s
tentative justification [53a] for ignoring internuclear repulsion and using a simple sum
of one-electron energies was that when the relative energies of isomers are calculated,
by subtracting two values of the electron repulsion and nuclear repulsion terms
approximately cancel, i.e. that changes in energy that accompany changes in geometry
are due mainly to alterations of the MO energy levels. Actually, it seems that the (quite
limited) success of the EHM in predicting molecular geometry is due to the fact that

is approximately proportional to the sum of the occupied MO energies; thus
although the EHM energy difference is not equal to the difference in total energies, it
is (or tends to be) approximately proportional to this difference [56]. In any case, the
real strength of the EHM lies in the ability of this fast and widely applicable method to
assist chemical intuition, if provided with a reasonable molecular geometry.

4.4.2 An illustration of the EHM:
the protonated helium molecule

Protonation of a helium atom gives the helium hydride cation, the simplest
heteronuclear molecule [57]. Conceptually, of course, this can also be formed by the
union of a helium dication and a hydride ion, or a helium cation and a hydrogen atom:

Its lower symmetry makes this molecule better than for illustrating molecular quan-
tum mechanical calculations (most molecules have little or no symmetry). Following
the prescription in points (1)–(7), we calculate the following results.

(1) Input structure
We choose a plausible bond length: 0.800 Å (the H–H bond length is 0.742 Å and the
H–X bond length is ca. 1.0 Å, where X is a “first-row” element (in quantum chemistry,
first-row means Li to F, not H and He). The Cartesian coordinates could be written

(2) Overlap integrals and overlap matrix
The minimal valence basis set here consists of the hydrogen 1s orbital and the
helium 1s orbital The needed integrals are and where
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The Slater functions for and are [58]

and

Reasonable values [57] are and if is in
atomic units, a.u. (see section 5.2.2); 1 Å. The overlap integrals are

(for all well-behaved functions
The overlap matrix is thus

(3) Fock matrix
We need the matrix elements and where the integrals

are not actually calculated from first principles but rather are estimated with
the aid of overlap integrals and orbital ionization energies:

Using simply the ionization energies (cf. [55]):

Hoffmann used in his initial calculations [53a] So

And the Fock matrix is

(as must be the case if  and  are normalized and
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(4) Orthogonalizing matrix
As explained above, we (a) diagonalize S, (b) calculate then (c) calculate the
orthogonalizing matrix

(a) Diagonalize S

(c) Calculate the orthogonalizing matrix

(5) Transformation of the original Fock matrix H to
Using Eq. (102):

(6) Diagonalization of
From Eq. (4.104) diagonalization of gives an eigenvector matrix

and the eigenvalue matrix the columns of  are the coefficients of the transformed,
orthonormal basis functions:

(b) Calculate
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We now have the energy levels (–25.5 and –5.95 eV), but the eigenvectors of must
be transformed to give us the coefficients of the original, nonorthogonal basis functions.

(7) Transformation of      to C

Using Eq. (4.102),

Note that unlike the case in the SHM, the sum of the squares of the c’s for an MO does
not equal 1, since overlap integrals for basis functions on different atoms are not set
equal to 0; in other words, the basis functions are not assumed to be orthogonal, and
the overlap matrix is not a unit matrix. Thus for

functions are normalized, so

4.4.3 The extended Hückel method – applications
The EHM was initially applied to the geometries (including conformations) and rel-
ative energies of hydrocarbons [53a], but the calculation of these two basic chemical
parameters is now much better handled by SE methods like AM1 and PM3 (chapter 6)
and by ab initio (chapter 5) methods. The main use of the EHM nowadays is to study
large, extended systems [59] like polymers, solids and surfaces. Indeed, of four papers
by Hoffmann and coworkers in the J. Am. Chem. Soc. in 1995, using the EHM, three
applied it to such polymeric systems [60]. The ability of the method to illuminate
problems in solid-state science makes it useful to physicists. Even when not applied to
polymeric systems, the EHM is frequently used to study large, heavy-metal-containing
molecules [61] that might not be very amenable to ab initio or to other SE approaches.

4.4.4 Strengths and weaknesses of the EHM

Strengths
One big advantage of the EHM over ab initio methods (chapter 5), more elaborate SE
methods (chapter 6), and DFT methods (chapter 7), is that the EHM can be applied to

since the probability of finding an electron in somewhere in space is 1. The basis
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very large systems, and can treat almost any element since the only element-specific
parameter needed is an ionization energy, which is usually available. In contrast, more
elaborate SE methods have not been parameterized for most elements (although recent
parameterizations of PM3 and MNDO for transition metals make these much more
generally useful than hitherto – chapter 6, section 6.2.6.7). For ab initio and DFT
methods, basis sets may not be available for elements of interest, and besides, ab initio
and even DFT methods are hundreds of times slower than the EHM and thus limited
to much smaller systems. The applicability of the EHM to large systems and a wide
variety of elements is one reason why it has been extensively applied to polymeric
and solid-state structures. The EHM is faster than more elaborate SE methods because
calculation of the Fock matrix elements is so simple and because this matrix needs
to be diagonalized only once to yield the eigenvalues and eigenvectors; in contrast,
SE methods like AM1 and PM3 (chapter 6), as well as ab initio calculations, require
repeated matrix diagonalization because the Fock matrix must be iteratively refined in
the SCF procedure (section 5.2.3.6).

The spartan reliance of the EHM on empirical parameters helps to make it relatively
easy (in the right hands) to interpret its results, which depend, in the last analysis, only
on geometry (which affects overlap integrals) and ionization energies. With a strong
dose of chemical intuition this has enabled the method to yield powerful insights, such
as counterintuitive orbital mixing [62], and the very powerful Woodward–Hoffmann
rules [38].

The applicability to large systems, including polymers and solids, containing almost
any kind of atom, and the relative transparency of the physical basis of the results, are
the main advantages of the EHM.

Surprisingly for such a conceptually simple method, the EHM has a theoretically-
based advantage over otherwise more elaborate SE methods like AM1 and PM3, in that
it treats orbital overlap properly: those other methods use the “neglect of differential
overlap” or NDO approximation (section 6.2), meaning that they take as in
the SHM. This can lead to superior results from the EHM [63].

The EHM is a very valuable teaching tool because it follows straightforwardly from
the SHM yet uses overlap integrals and matrix orthogonalization in the same fashion
as the mathematically more elaborate ab initio method.

Finally, the EHM, albeit more elaborately parameterized than in its original incar-
nation, has recently been shown to offer some promise as a serious competitor to the
very useful and popular SE AM1 method (section 6.2.6.4) for calculating molecular
geometries [64].

Weaknesses
The weaknesses of the standard EHM probably arise at least in part from the fact
that it does not (contrast the ab initio method, chapter 5) take into account elec-
tron spin or electron–electron repulsion, ignores the fact that molecular geometry is
partly determined by internuclear repulsion, and makes no attempt to overcome these
defects by parameterization (unlike the recent variation which, with the aid of careful
parameterization, evidently gives good geometries [64]).

The standard EHM gives, by and large, poor geometries and energies. Although it
predicts a C–H bond length of ca. 1.0 Å, it yields C/C bond lengths of 1.92, 1.47 and
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0.85 Å for ethane, ethene and ethyne, respectively, cf. the actual values of 1.53, 1.33
and 1.21 Å, and although the favored conformation of an alkane is usually correctly
identified, the energy barriers and differences are generally at best in only modest
agreement with experiment. Because of this inability to reliably calculate geometries,
EHM calculations are usually not used for geometry optimizations, but rather utilize
experimental geometries.

4.5 SUMMARY OF CHAPTER 4

This chapter introduces the application of quantum mechanics (QM) to computational
chemistry by outlining the development of QM up to the Schrödinger equation and then
showing how this equation led to the SHM, from which the EHM followed.

Quantum mechanics teaches, basically, that energy is quantized: absorbed and emit-
ted in discrete packets (quanta) of magnitude hv, where h is Planck’s constant and
v (Greek nu) is the frequency associated with the energy. QM grew out of studies
of blackbody radiation and of the photoelectric effect. Besides QM, radioactivity and
relativity contributed to the transition from classical to modern physics. The classical
Rutherford nuclear atom suffered from the deficiency that Maxwell’s electromagnetic
theory demanded that its orbiting electrons radiate away energy and swiftly fall into the
nucleus. This problem was countered by Bohr’s quantum atom, in which an electron
could orbit stably if its angular momentum was an integral multiple of However,
the Bohr model contained several ad hoc fixes and worked only for the hydrogen atom.
The deficiencies of the Bohr atom were surmounted by Schrödinger’s wave mechanical
atom; this was based on a combination of classical wave theory and the de Broglie
postulate that any particle is associated with a wavelength where p is the
momentum. The four quantum numbers follow naturally from the wave mechanical
treatment and the model does not break down for atoms beyond hydrogen.

Hückel was the first to apply QM to species significantly more complex than
the hydrogen atom. The Hückel approach is treated nowadays within the framework of
the concept of hybridization: the electrons in p orbitals are taken into account and the

electrons in an framework are ignored. Hybridization is a purely mathematical
convenience, a procedure in which atomic (or molecular) orbitals are combined to give
new orbitals; it is analogous to the combination of simple vectors to give new vectors
(an orbital is actually a kind of vector).

The SHM (SHT, HMO method) starts with the Schrödinger equation in the form
where is a Hamiltonian operator, is a MO wavefunction and E is the

energy of the system (atom or molecule). By expressing as a LCAO and minimizing
E with respect to the LCAO coefficients one obtains a set of simultaneous equations,
the secular equations. These are equivalent to a single matrix equation,
H is an energy matrix, the Fock matrix, C is the matrix of the LCAO coefficients, S is
the overlap matrix and is a diagonal matrix whose nonzero, i.e. diagonal, elements
are the MO energy levels. The columns of C are called eigenvectors and the diagonal
elements of are called eigenvalues. By the drastic approximation (1 is the unit
matrix), the matrix equation becomes i.e. which is the same
as saying that diagonalization of H gives C and i.e gives the MO coefficients in the
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LCAO, and the MO energies. To get numbers for H the SHM reduces all the Fock
matrix elements to (the coulomb integral, for AOs on the same atom) and (the bond
integral or resonance integral, for AOs not on the same atom; for nonadjacent atoms

is To get actual numbers for the Fock elements, and are defined as
energies relative to in units of this makes the Fock matrix consist ofjust 0s and
– 1s, where the 0s represent same-atom interactions and nonadjacent-atom interactions,
and the –1s represent adjacent-atom interactions. The use of just two Fock elements
is a big approximation. The SHM Fock matrix is easily written down just by looking
at the way the atoms in the molecule are connected. Applications of the SHM include
predicting:

(a)

(b)

(c)

The nodal properties of the MOs, very useful in applying the Woodward–Hoffmann
rules.

The stability of a molecule based on its filled and empty MOs, and its delocalization
energy or resonance energy, based on a comparison of its total withthat
of a reference system. The pattern of filled and empty MOs led to Hückel’s rule
(the 4n + 2 rule) which says that planar molecules with completely conjugated
p orbitals containing 4n + 2 electrons should be aromatic.

Bond orders and atom charges, which are calculated from the AO coefficients of
the occupied MOs (in the SHM LCAO treatment, p AOs are basis functions that
make up the MOs).

The strengths of the SHM lie in the qualitative insights it gives into the effect of
molecular structure on orbitals. Its main triumph in this regard was its spectacularly
successful prediction of the requirements for aromaticity (the Hückel 4n + 2 rule).

The weaknesses of the SHM arise from the fact that it treatsonly electrons(limiting
its applicability largely to planar arrays), its all-or-nothing treatment of overlap
integrals, the use of just two values for the Fock integrals, and its neglect of electron
spin and interelectronic repulsion. Because of these approximations it is not used for
geometry optimizations and its quantitative predictions are sometimes viewed with
suspicion. For obtaining eigenvectors and eigenvalues from the secular equations an
older and inelegant alternative to matrix diagonalization is the use of determinants.

The EHM (EHT) follows from the SHM by using a basis set that consists not just of
p orbitals, but rather ofall the valence AOs (a minimal valence basis set), by calculating
(albeit very empirically) the Fock matrix integrals, and by explicitly calculating the over-
lap matrix S (whose elements are also used in calculating the Fock integrals). Because S
is not taken as a unit matrix, the equation must be transformed to one without
S before matrix diagonalization can be applied. This is done by a matrix multiplication
process called orthogonalization, involving which converts the original Fock
matrix H, based on nonorthogonal atom-centered basis functions, into a Fock matrix

based on orthogonal linear combinations of the original basis functions. With these
new basisfunctions,                       i.e                         so that diagonalization of
gives the eigenvectors (of the new basis functions, which are transformed back to those
corresponding to the original set: and eigenvalues of H.

Because the overlap integrals needed by the EHM depend on molecular geometry,
the method can in principle be used for geometry optimization, although for the con-
ventional EHM the results are generally poor, so known geometries are used as input.
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Applications of the EHM involve largely the study of big molecules and polymeric
systems, often containing heavy metals.

The strengths of the EHM derive from its simplicity: it is very fast and so can
be applied to large systems; the only empirical parameters needed are (valence-state)
ionization energies, which are available for a wide range of elements; the results of cal-
culations lend themselves to intuitive interpretation since they depend only on geometry
and ionization energies, and on occasion the proper treatment of overlap integrals even
gives better results than those from more elaborate SE methods. The fact that the EHM
is conceptually simple yet incorporates several features of more sophisticated methods
enables it to serve as an excellent introduction to quantum mechanical computational
methods.

The weaknesses of the EHM are due largely to its neglect of electron spin and
electron–electron repulsion and the fact that it bases the energy of a molecule simply
on the sum of the one-electron energies of the occupied orbitals, which ignores electron–
electron repulsion and internuclear repulsion; this is at least partly the reason it usually
gives poor geometries.
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EASIER QUESTIONS

What do you understand by the term quantum mechanics?

Outline the experimental results that led to quantum mechanics.
What approximations are used in the SHM?

How could the SHM Fock matrix for 1,3-butadiene be modified in an attempt to
recognize the fact that the molecule has, formally anyway, two double bonds and
one single bond?

What are the most important kinds of results that can be obtained from Hückel
calculations?

Write down the simple Hückel Fock matrices (in each case using and 0,
and 0, – 1 and 0) for: (1) the pentadienyl radical (2) the cyclopentadienyl radical
(3) trimethylenemethane, (4) trimethylenecyclopropane (5) 3-methylene-
1,4-pentadiene.

The SHM predicts the propenyl cation, radical and anion to have the same resonance
energy (stabilization energy). Actually, we expect the resonance energy todecrease
as we add electrons; why should this be the case?

What molecular feature cannot be obtained at all from the simple Hückel method?
Why?

List the differences between the underlying theory of the SHM and the EHM.

A 400 × 400 matrix is easily diagonalized. How many carbons would an alkane
have for its EHM Fock matrix to be 400 × 400 (or just under this size)? How many
carbons would a (fully) conjugated polyene have if its SHM Fock matrix were
400 × 400?

4.7

1.

HARDER QUESTIONS

Do you think it is reasonable to describe the Schrödinger equation as a postulate
of quantum mechanics? What is a postulate?
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2.

3.

4.

5.

6.

7.

8.

9.

10.

What is the probability of finding a particle at a point?

Suppose we tried to simplify the SHM even further, by ignoring all interactions i,
(ignoring adjacent interactions instead of setting them What effect

would this have on energy levels? Can you see the answer without looking at a
matrix or determinant?

How might the i, j-type interactions in the simple Hückel Fock matrix be made to
assume values other than just – 1 and 0?

What is the result of using as a reference system for calculating the resonance energy
of cyclobutadiene, not two ethene molecules, but 1,3-butadiene? What does this
have to do with antiaromaticity? Is there any way to decide if one reference system
is better than another?

What is the problem with unambiguously defining the charge on an atom in a
molecule?

It has been reported that the extended Hückel method can be parameterized to
give good geometries. Do you think this might be possible for the simple Hückel
method? Why or why not?

Give the references to a journal paper that used the SHM, and one that used the
EHM, within the last decade. Give an abstract of each paper.

The ionization energies usually used to parameterize the EHM are not ordinary
atomic ionization energies, but rather valence-state AO ionization energies (VSAO
ionization energies). What does the term “valence state” mean here? Should the
VSAO ionization energies of the orbitals of an atom depend somewhat on the
hybridization of the atom? In what way?

Which should require more empirical parameters: a molecular mechanics force
field (chapter 3) or an EHM program? Explain.



“I could have done it in a much more complicated way”, said the
Red Queen, immensely proud.

Lewis Carroll, ca. 1870.

5.1 PERSPECTIVE

Chapter 4 showed how quantum mechanics was first applied to molecules of real chem-
ical interest (pace chemical physics) by Erich Hückel, and how the extension of the
simple Hückel method (SHM) by Hoffmann gave a technique of considerable useful-
ness and generality, the extended Hückel method (EHM). The SHM and EHM are both
based on the Schrödinger equation, and this makes them quantum mechanical methods.
Both depend on reference to experimental quantities (i.e. on parameterization against
experiment) to give actual values of calculated parameters: the SHM gives energy levels
in terms of a parameter which we could try to assign a value by comparison with
experiment (actually the results of SHM calculations are usually left in terms of
while the EHM needs experimental valence ionization potentials to calculate the Fock
matrix elements. The need for parameterization against experiment makes the SHM and
the EHM semiempirical (“semiexperimental”) theories. In this chapter, we deal with
a quantum mechanical approach that does not rely on calibration against measured
chemical parameters and is therefore called ab initio [1] meaning “from the first”, from
first principles (it is true that ab initio calculations give results in terms of fundamental
physical constants – Planck’s constant, the speed of light, the charge of the electron
– that must be measured to obtain their actual numerical values, but a chemical the-
ory could hardly be expected to calculate the fundamental physical parameters of our
universe).

Chapter 5

Ab initio calculations
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5.2 THE BASIC PRINCIPLES OF THE AB INITIO METHOD

5.2.1 Preliminaries
In chapter 4, we saw that wavefunctions and energy levels could be obtained by
diagonalizing a Fock matrix: the equation

is just another way of saying that diagonalization of H gives the coefficients or eigenvec-
tors (the columns of C that, combined with the basis functions, yield the wavefunctions
of the molecular orbitals) and the energy levels or eigenvalues (the diagonal elements
of Equation (5.1) followed from

which gives Eq. (5.1) when S is approximated as a unit matrix (simple Hückel method,
section 4.3.4) or when the original Fock matrix is transformed into H (into in
the notation ofsection 4.4.1) using an orthogonalizing matrix calculated from S (EHM
section 4.4.1). To do a simple or an extended Hückel calculation the algorithm assembles
the Fock matrix H and diagonalizes it. This is also how an ab initio calculation is done;
the essential difference compared to the Hückel methods lies in the evaluation of the
matrix elements.

In the simple Hückel method the Fock matrix elements are not calculated, but
are instead set equal to 0 or –1 according to simple rules based on atomic connectivity
(section 4.3.3); in the EHM the are calculated from the relative positions (through

of the orbitals or basis functions and the ionization potentials of these orbitals
(section 4.4.1); in neither case is calculated from first principles. Section 4.3.3,
Eqs (44) imply that is:

In ab initio calculations is calculated from Eq. (5.3) by actually performing the
integration using explicit mathematical expressions for the basis functions and
and the Hamiltonian operator of course the integration is done by a computer
following a detailed algorithm. How this algorithm works will now be outlined.

5.2.2 The Hartree SCF method
The simplest kind of ab initio calculation is a Hartree–Fock (HF) calculation. Mod-
ern molecular HF calculations grew out of calculations first performed on atoms by
Hartree1 in 1928 [2]. The problem that Hartree addressed arises from the fact that for
any atom (or molecule) with more than one electron an exact analytic solution of the
Schrödinger equation (section 4.3.2) is not possible, because of the electron–electron

1Douglas Hartree, born Cambridge, England, 1897. Ph.D. Cambridge, 1926. Professor applied
mathematics, theoretical physics, Manchester, Cambridge. Died Cambridge, 1958.
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repulsion term(s). Thus, for the helium atom the Schrödinger equation (cf. section 4.3.3,
Eqs (4.36) and (4.37)) is, in SI units

Here m is the mass (kg) of the electron, e is the charge (coulombs, positive) of the
proton  (=  minus the charge on the electron), the variables and are the
distances (meters) of electrons 1 and 2 from the nucleus, and from each other, Z = 2
is the number of protons in the nucleus, and is something called the permitivity of
empty space; the factor is needed to make SI units consistent.

Hamiltonians can be written much more simply by using atomic units. Let’s take
Planck’s constant, the electron mass, the proton charge, and the permitivity of space as
the building blocks of a system of units in which and are numerically
equal to 1 and the numerical values of physical
constants are always dependent on our system of units). These
are the units of angular momentum, mass, charge, and permitivity in the system of
atomic units. In this system, Eq. (5.4) becomes

Using atomic units simplifies writing quantum-mechanical expressions, and also means
that the numerical (in these units) results of calculations are independent of the currently
accepted values of physical constants in terms of kg, coulombs, meters, and seconds
(of course, when we convert from atomic to SI units we must use accepted SI values of
m, e, etc.). The atomic units of energy and length are particularly important to us. We
can get the atomic unit of a quantity by combining and to give the
expression with the required dimensions. The atomic units of length and energy, the
bohr and the hartree, turn out to be:

The bohr is the radius of a hydrogen atom in the Bohr model (section 4.2.5), or the most
probable distance of the electron from the nucleus in the fuzzier Schrödinger picture
(section 4.2.5). The hartree is the energy needed to move a stationary electron one
bohr distant from a proton away to infinity.The energy of a hydrogen atom, relative to
infinite proton/electron separation as zero, is hartree: the potential energy is – 1 h
and the kinetic energy (always positive) is Note that atomic units derived by starting
with the old Gaussian system (cm, grams, statcoulombs) differ by a factor from
the SI-derived ones.

The Hamiltonian
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consists of five terms, signifying (Fig. 5.1) from left to right: the kinetic energy of
electron 1, the kinetic energy of electron 2, the potential energy of the attraction of
the nucleus (charge Z = 2) for electron 1, the potential energy of the attraction of the
nucleus for electron 2, and the potential energy of the repulsion between electrons 1
and 2. Actually this is not the exact Hamiltonian, for it neglects effects due to relativity
and to magnetic interactions such as spin–orbit coupling [3]; these effects are rarely
important in calculations involving lighter atoms, say those in the first two full rows
of the periodic table (up to about chlorine). Relativistic quantum chemical calculations
will be briefly discussed later. Thewavefunction is the “total”, overall wavefunction
of the atom and can be approximated, as we will see later for molecular HF calculations,
as a combination of wavefunctions for various energy levels. The problem with solving
Eq. (5.5) exactly arises from the term. This makes it impossible to separate
the Schrödinger equation for helium into two one-electron equations which, like the
hydrogen atom equation, could be solved exactly [4]. This problem arises in any system
with three or more interacting moving objects, and in fact the many-body problem is
an old one even in classical mechanics, going back to eighteenth century studies in
celestial mechanics. The impossibility of an analytic solution to poly electronic systems
prompted Hartree’s approach to calculating wavefunctions and energy levels for atoms.

Hartree’s method was to write a plausible approximate polyelectronic wavefunction
(a “guess”) for an atom as the product of one-electron wavefunctions:

This function is called a Hartree product. Here is a function of the coordinates
of all the electrons in the atom, is a function of the coordinates of electron 1,

is a function of the coordinates of electron 2, etc.; the one-electron functions
etc. are called atomic orbitals (molecular orbitals if we were dealing

with a molecule). The initial guess, is our zeroth approximation to the true total
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wavefunction zeroth because we have not yet started to refine it with the Hartree
process; it is based on the zeroth approximations etc. To apply the Hartree
process we first solve for electron one a one-electron Schrödinger equation in which
the electron–electron repulsion comes from electron one and an average, smeared-out
electrostatic field calculated from due to all the other elec-
trons. The only moving particle in this equation is electron one. Solving this equation
gives an improved version of            We next solve for electron 2 a one-electron
Schrödinger equation with electron two moving in an average field due to the elec-
trons of continuing to electron moving in a field due to

. This completes the first cycle of calculations and gives

Repetition of the cycle gives

The process is continued for k cycles till we have a wavefunction and/or an energy
calculated from that are essentially the same (according to some reasonable criterion)
as the wavefunction and/or energy from the previous cycle. This happens when the
functions are changing so little from one cycle to the next that the
smeared-out electrostatic field used for the electron–electron potential has (essentially)
ceased to change. At this stage the field of cycle k is essentially the same as that of
cycle k – 1, i.e. it is “consistent with” this previous field, and so the Hartree procedure
is called the self-consistent-field-procedure, which is usually abbreviated as the SCF
procedure.

There are two problems with the Hartree product of Eq. (5.7). Electrons have a
property called spin, among the consequences of which is that not more than two
electrons can occupy one atomic or molecular orbital (this is one statement of the
Pauli (section 4.2.6) exclusion principle). In the Hartree approach we acknowledge
this only in an ad hoc way, simply by not placing more than two electrons in any
of the component orbitals that make up our (approximate) total wavefunction
Another problem comes from the fact that electrons are indistinguishable. If we have
a wavefunction of the coordinates of two or more indistinguishable particles, then
switching the positions of two of the particles, i.e. exchanging their coordinates, must
either leave the function unchanged or change its sign. This is because all physical
manifestations of the wavefunction must be unchanged on switching indistinguishable
particles, and these manifestations depend only on its square (more strictly on the
square of its absolute value, i.e. on to allow for the fact that may be a complex,
as distinct from a real, function). This should be clear from the equations below for a
two-particle function:

If and

then

if and only if or
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If switching the coordinates of two of the particles leaves the function unchanged, it is
said to be symmetric with respect to particle exchange, while if the function changes
sign it is said to be antisymmetric with respect to particle exchange. Comparing the
predictions of theory with the results of experiment shows [5] that electronic wave-
functions are actually antisymmetric with respect to exchange (such particles are called
fermions, after the physicist Enrico Fermi; particles like photons whose wavefunctions
are exchange-symmetric are called bosons, after the physicist S. Bose). Any rigorous
attempt to approximate the wavefunction should use an antisymmetric function of
the coordinates of the electrons 1 ,2 , . . . . n, but the Hartree product is symmetric rather
than antisymmetric; e.g. if we approximate a helium atom wavefunction as the prod-
uct of two hydrogen atom 1s orbitals, then if and

then
These defects of the Hartree SCF method were corrected by Fock (section 4.3.4) and

by Slater2 in 1930 [6], and Slater devised a simple way to construct a total wavefunction
from one-electron functions (i.e. orbitals) such that will be antisymmetric to elec-

tron switching. Hartree’s iterative, average-field approach supplemented with electron
spin and antisymmetry leads to the HF equations.

5.2.3 The HF equations
5.2.3.1 Slater determinants 

The Hartree wavefunction (above) is a product of one-electron functions called orbitals,
or, more precisely, spatial orbitals: these are functions of the usual space coordinates
x, y, z. The Slater wavefunction is composed, not just of spatial orbitals, but of spin
orbitals. A spin orbital    (spin) is the product of a spatial orbital and a spin function,
or The spin orbitals corresponding to a given spatial orbital are

and

As the function (spatial) has as its variables the coordinates x, y, z, so the spin func-
tions and have as their variables a spin coordinate, sometimes denoted (Greek
letter or or (Greek omega). We know that a wavefunction fits in with an
operator and eigenvalues, say the energy operator and energy eigenvalues, according
to the equation Analogously, the spin functions and are associated
with the spin operator according to and
Unlike most other functions, then, and each have only one eigenvalue,
and respectively. A spin function has the peculiar property that it is zero
unless spin function) or spin function). A function that is zero
everywhere except at one value of its variable, where it spikes sharply, is a delta function

2John Slater, born Oak Park Illinois, 1900. Ph.D. Harvard, 1923. Professor of physics, Harvard, 1924–
1930; MIT 1930–1966; University of Florida at Gainesville, 1966–1976. Author of 14 textbooks, contributed
to solid-state physics and quantum chemistry, developed X-alpha method (early density functional theory
method). Died Sanibel Island, Florida, 1976.

then
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(invented by Dirac – section 4.2.3). Since the spin function (spin or ) describing
an electron exists only when the spin variable these two values can be con-
sidered the allowed values of the spin quantum number mentioned in section 4.2.6.
Sometimes an electron with spin quantum number (“an electron with spin is
called an electron, and said to have up spin, and an electron with spin is called
a electron, and said to have down spin. Up and down electrons are often denoted by
arrows and respectively. A nice, brief treatment of the delta function and of the
mathematical treatment of the spin functions is given by Levine [7].

The Slater wavefunction differs from the Hartree function not only in being composed
of spin orbitals rather than just spatial orbitals, but also in the fact that it is not a
simple product of one-electron functions, but rather a determinant (section 4.3.3) whose
elements are these functions. To construct a Slater wavefunction (Slater determinant)
for a closed-shell species (the only kind we consider in any detail here), we use each
of the occupied spatial orbitals to make two spin orbitals, by multiplying the spatial
orbital by and, separately, by The spin orbitals are then filled with the available
electrons. An example should make the procedure clear (Fig. 5.2). Suppose we wish to
write a Slater determinant for a four-electron closed-shell system. We need two spatial
molecular orbitals, since each can hold a maximum of two electrons; each spatial orbital

(spatial) is used to make two spin orbitals, (spatial) and (spatial) (alternatively,
each spatial orbital could be thought of as a composite of two spin orbitals, which we are
separating and using to build the determinant). Along the first (top) row of a determinant
we write successively the first spin orbital, the first spin orbital, the second spin
orbital, and the second spin orbital, using up our occupied spatial (and thus spin)
orbitals. Electron one is then assigned to all four spin orbitals of the first row – in
a sense it is allowed to roam among these four spin orbitals [8]. The second row of
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the determinant is the same as the first, except that it refers to electron two rather
than electron one; likewise the third and fourth rows refer to electrons three and four,
respectively. The result is the determinant of Eq. (5.10).

(The factor ensures that the wavefunction is normalized, i.e. that
integrated over all space= 1 [9].) This Slater determinant ensures that there are no
more than two electrons in each spatial orbital, since for each spatial orbital there are
only two one-electron spin functions, and it ensures that is antisymmetric since
switching two electrons amounts to exchanging two rows of the determinant, and this
changes its sign (section 4.3.3). Note that instead of assigning the electrons successively
to row 1, row 2, etc., we could have placed them in column 1, column 2, of
Eq. (5.11) = of Eq. (5.10). Some authors use the row format for the electrons, others
the column format.

Slater determinants enforce the Pauli exclusion principle, which forbids any two elec-
trons in a system to have all quantum numbers the same. This is readily seen for an
atom: if the three quantum numbers n, l and of  (x, y, z) (section 4.2.6) and the
spin quantumnumber of or were all the same for any electron, two rows (or
columns, in the alternative formulation) would be identical and the determinant, hence
the wavefunction, would vanish (section 4.3.3).

For 2n electrons (we are limiting ourselves for now to even-electron species, as the
theory for these is simpler) the general form ofa Slater determinant is clearly the 2n × 2n
determinant

The Slater determinant for the total wavefunction of a 2n-electron atom or molecule
is a 2n × 2n determinant with 2n rows due to the 2n electrons and 2n columns due
to the 2n spin orbitals (you can interchange the row/column format); since these are
closed-shell species, the number of spatial orbitals is half the number of electrons.
We use the lowest n occupied spatial orbitals (the lowest 2n spin orbitals) to make the
determinant.
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The determinant (= total molecular wavefunction ) just described will lead to
(remainder of section 5.2) n occupied, and a number of unoccupied, component spatial
molecular orbitals These orbitals from the straightforward Slater determinant
are called canonical (in mathematics the word means “in simplest or standard form”)
molecular orbitals. Since each occupied spatial can be thought of as a region of
space which accommodates a pair of electrons, we might expect that when the shapes
of these orbitals are displayed (“visualized”; section 5.5.6) each one would look like
a bond or a lone pair. However, this is often not the case; e.g. we do not find that one
of the canonical MOs of water connects the O with one H, and another canonical MO
connects the O with another H. Instead most of these MOs are spread over much of a
molecule – delocalized (lone pairs, unlike conventional bonds, do tend to stand out).
However, it is possible to combine the canonical MOs to get localized MOs which look
like our conventional bonds and lone pairs. This is done by using the columns (or rows)
of the Slater to create a with modified columns (or rows): if a column/row of a
determinant is multiplied by k and added to another column/row, the determinant is
unchanged (section 4.3.3). We see that if this is applied to the Slater determinant, we
will get a “new” determinant corresponding to exactly the same total wavefunction, i.e.
to the same molecule, but built up from different component occupied MOs The
new and the new are no less or more correct than the previous ones, but by
appropriate manipulation of the columns/rows the can be made to correspond to
our ideas of bonds and lone pairs. These localized MOs are sometimes useful.

5.2.3.2 Calculating the atomic or molecular energy

The next step in deriving the HF equations is to express the energy of the molecule
or atom in terms of the total wavefunction the energy will then be minimized with
respect to each of the component molecular (or atomic; an atom is a special case of
a molecule) spin orbitals and (cf. the minimization of energy with respect to
basis function coefficients in section 4.3.3). The derivation of these equations involves
considerable algebraic manipulation, which is at times hard to follow without actually
writing out the intermediate expressions. The procedure has been summarized by Pople
and Beveridge [10], and a less condensed account is given by Lowe [11].

It follows from the Schrödinger equation that the energy of a system is given by

This is similar to Eq. (4.40) in chapter 4, but here the total wavefunction has been
specified, and allowance has been made for the possibility of being a complex
function by utilizing its complex conjugate this ensures that E, the energy of the
atom or molecule, will be real. If is complex then will not be a real number,
while will, as must be the case for a probability. Integration is with
respect to three spatial coordinates and one spin coordinate, for each electron. This is
symbolized by which means dx dy dz  d so for a 2n-electron
system these integrals are actually 4 × 2n-fold, each electron having its set of four
coordinates. We assume the use of orthonormal functions (section 4.3.4), since this
makes several integrals disappear in the derivation of the energy. Working with the
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usual normalized wavefunctions makes the denominator unity, and Eq. (5.13) can then
be written as

or using the more compact Dirac notation for integrals (section 4.4.1)

In Eq. (5.14) it is understood that the first is actually and that the integration
variables are the space and spin coordinates. The vertical bars are only to visually
separate the operator from the two functions, for clarity.

We next substitute into Eq. (5.14) the Slater determinant for (and and the
explicit expression for the Hamiltonian. A simple extension of the helium Hamiltonian
of Eq. (5.5) to a molecule with 2n electrons and atomic nuclei (the nucleus has
charge gives

Just like the helium Hamiltonian, the molecular Hamiltonian in Eq. (5.15) is com-
posed (from left to right) of electron kinetic energy terms, nucleus-electron attraction
potential energy terms, and electron–electron repulsion potential energy terms (cf.
Fig. 5.1). This is actually the electronic Hamiltonian, since nucleus-nucleus repulsion
potential energy terms have been omitted; from the Born–Oppenheimer approximation
(section 2.3) these can simply be added to the electronic energy after this has been calcu-
lated, giving the total molecular energy for a molecule with “frozen nuclei” (calculation
of the vibrational energy, the zero-point energy (ZPE), is discussed later). Calculation
of the internuclear potential energy is trivial:

Substituting into Eq. (5.14) the Slater determinant and the molecular Hamiltonian
gives, after much algebraic manipulation

for the electronic energy of a 2n-electron molecule (the sums are over the n occupied
spatial orbitals The terms in Eq. (5.17) have these meanings:

where
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The operator is so called because it leads to the electronic energy of a
single electron moving simply under the attraction of a nuclear “core”, with all the
other electrons stripped away; is the electronic energy of, for example, H,

or (of course, it is different for these various species). Note that (1)
represents the kinetic energy of electron 1 plus the potential energy of attraction of
that electron to each of the nuclei the 1 in parentheses in these equations is just a
label showing that the same electron is being considered in and (we could
have used, say, 2 instead). The integration in Eq. (5.18) is respect to spatial coordinates
only, not because spin coordinates have been “integrated out”: on
integration, i.e. summation over the discrete spin variable, these give 0 or 1 [7,10,12].
We are left with the three integration variables (x, y, z) and so the integral is threefold.

J is called a coulomb integral; it represents the electrostatic (i.e. coulombic) repulsion
between an electron in and one in i.e. between the charge clouds of orbitals
and This may be clearer if one considers the integral as a sum of potential energy
termsinvolving repulsion betweeninfinitesimal volume elements (Fig. 5.3). The 1
and 2 are just labels showing we are considering two electrons. The integrals J and
K allow each electron to experience the average electrostatic repulsion of a charge
cloud due to all the other electrons. Since J represents potential energy corresponding
to a destabilizing electrostatic repulsion, it is positive. As for in Eq. (5.18), the
integration is with respect to spatial coordinates because the spin coordinates have
been integrated out. There are six integration variables, x, y, z for electron and
x, y, z for electron and so the integral is sixfold. Note that the ab initio coulomb

or
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integral J is not the same as what we called a coulomb integral in simple Hückel theory;
that was (Eq. (4.61)) and represents at least crudely the energy of an
electron in the orbital (section 4.3.4). The ab initio coulomb integral can also be
written

but unlike (5.20) this does not notationally emphasize the repulsion (invoked by the
operator) between electrons 1 and 2 (on the left and right, respectively, of

in Eq. (5.20)).

K is called an exchange integral; mathematically, it arises from Slater determinant
expansion terms that differ only in exchange of electrons. Note that the terms on either
side of differ by exchange of electrons. It is often said to have no simple physical
interpretation, but looking at Eq. (5.17), we can regard K as a kind of correction to J,
reducing the effect of J (both J and K are positive, with K smaller), i.e. reducing the
electrostatic potential energy due to the mutual charge cloud repulsion referred
to in connection with J. This reduction in repulsion arises because as particles with
an antisymmetric wavefunction, two electrons cannot occupy the same spin orbital
(roughly, cannot be at the same point in space), and can occupy the same spatial orbital
only if they have opposite spins, so two electrons of the same spin avoid each other more
assiduously than expected only from the coulombic repulsion taken into account by J.
We could consider the summed 2J–K terms of Eq. (5.17) to be the true coulombic
repulsion, corrected for electron spin, i.e. corrected for the Pauli exclusion principle
effect. The J and K interactions are shown in Fig. 5.4 for a four-electron molecule,
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the smallest closed-shell system in which K integrals arise. A detailed exposition of
the significance of the HF integrals is given by Dewar [13]. Note that outside the
nucleus the only significant forces in atoms and molecules are electrostatic; there are
no vague “quantum-mechanical forces” in chemistry [14]. Chemical reactions involve
the shuffling of atomic nuclei under the influence of the electromagnetic force.

5.2.3.3 The variation theorem (variation principle)

The energy calculated from Eq. (5.14) is the expectation value of the energy operator
i.e. the expectation value of the Hamiltonian operator. In quantum mechanics an

integral of a wavefunction “over” an operator, as E in Eq. (5.14) is an integral of
over is the expectation value of that operator. The expectation value is the value
(strictly, the quantum-mechanical average value) of the physical quantity represented
by the operator. Every “observable”, i.e. every measurable property of a system, has a
quantum mechanical operator from which the property could be calculated, at least in
principle, by integrating the wavefunction over the operator. The expectation value of
the energy operator is the energy of the molecule (or atom). Of course this energy
will be the exact, true energy of the molecule only if the wavefunction and the
Hamiltonian are exact. The variation theorem states that the energy calculated from
Eq. (5.14) must be greater than or equal to the true ground-state energy of the molecule.
The theorem [15] (it can be stated more rigorously, specifying that must be time-
independent and must be normalized and well-behaved) is very important in quantum
chemistry: it assures us that any ground state (we examine electronic ground states
much more frequently than we do excited states) energy we calculate “variationally”
(i.e. using Eq. (5.14)) must be greater than or equal to the true energy of the molecule.
In practice, any molecular wavefunction we insert into Eq. (5.14) is always only an
approximation to the true wavefunction and so the variationally calculated molecular
energy will always be greater than the true energy. The HF energy is variational (the
method starts with Eq. (5.14)) so the variation theorem gives us at least some indication
of the true energy and of how good our wavefunction is: the correct energy always lies
below any calculated by the HF method, and the better the wavefunction, the lower the
calculated energy. The HF energy actually levels off at a value above the true energy
as the HF wavefunction, based on a Slater determinant, is improved; this is discussed
in section 5.5, in connection with post-HF methods.

5.2.3.4 Minimizing the energy; the HF equations

The HF equations are obtained from Eq. (5.17) by minimizing the energy with respect
to the atomic or molecular orbitals The minimization is carried out with the con-
straint that the orbitals remain orthonormal, for orthonormality was imposed in deriving
Eq. (5.17). Minimizing a function subject to a constraint can be done using the method
of undetermined Lagrangian multipliers [16]. For orthonormality the overlap integrals
S must be constants and at the minimum the energy is constant

Thus at any linear combination of E and is constant:
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where are the Lagrangian multipliers; we do not know what they are, physically, yet
(they are “undetermined”). Differentiating with respect to the of the S’s:

Substituting the expression for E from Eqs (5.17) into (5.24) we get

Note that this procedure of minimizing the energy with respect to the molecular orbitals
is somewhat analogous to the minimization of energy with respect to the atomic

orbital coefficients c in the less rigorous procedure which gave the Hückel secular
equations in section 4.3.3. It is also somewhat similar to finding a relative minimum on
a PES (section 2.4), but with energy in that case being varied with respect to geometry.
Since the procedure starts with Eq. (5.14) and varies the MO’s to find the minimum
value of E, it is called the variation method; the variation theorem (section 5.2.3.3)
assures us that the energy we calculate from the results will be greater than or equal to
the true energy.

From the definitions of and we get

where

and

and similarly for and
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Using for dH, dJ, dK and dS the expressions in Eqs (5.26), (5.27), (5.28) and (5.31),
Eq. (5.25) becomes

Since the MOs can be varied independently, and the expression on the left side is zero,
both parts of Eq. (5.32) (the part shown and the complex conjugate) equal zero. It can
be shown that a consequence of

is that

Equation (5.34) can be written as:

where is the Fock operator:

We want an eigenvalue equation because (cf. section 4.3.3) we hope to be able to
use the matrix form of a series of such equations to invoke matrix diagonalization to
get eigenvalues and eigenvectors. Equation (5.35) is not quite an eigenvalue equation,
because it is not of the form Operation on function = k × function, but rather Operation
on function = sum of (k × functions). However, by transforming the molecular orbitals

i.e.
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to a new set the equation can be put in eigenvalue form (with a caveat, as we shall
see). Equation (5.35) represents a system of equations

There are n spatial orbitals since we are considering a system of 2n electrons and
each orbital holds two electrons. The 1 in parentheses on each orbital emphasizes that
each of these n equations is a one-electron equation, dealing with the same electron
(we could have used a 2 or a 3, etc.), i.e. the Fock operator (Eq. 5.36) is a one-electron
operator, unlike the general electronic Hamiltonian operator of Eq. (5.15), which is a
multi-electron operator (a 2n electron operator for our specific case). The Fock operator
acts on a total of n spatial orbitals, the in Eq. (5.35).

The series of equations (5.37) can be written as the single matrix equation (cf.
Eq. (4.50))

i.e.

In Eqs (5.37), each equation will be of the form which is what we want, if
all the except for i= j (e.g. in the first equation                                               if
the only nonzero is ). This will be the case if in Eq. (5.39) L is a diagonal matrix.
It can be shown that L is diagonalizable (section 4.3.3), i.e. there exist matrices P,
and a diagonal matrix such that

Substituting L from Eqs (5.40) into (5.39):

Multiplying on the left by and on the right by P we get

which, since can be written
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where

We may as well remove the factor by incorporating it into and we can omit
the prime from (we could have started the derivation using primes on the then
written for Eq. (5.43)). Equation (5.42) then becomes (anticipating the
soon-to-be-apparent fact that the diagonal matrix is an energy-level matrix)

Equation (5.44) is the compact form of (cf. Eq. (5.38)). Thus

where the superfluous double subscripts on the have been replaced by single ones.
Equations (5.44/5.46) are the matrix form of the system of equations

These Eqs (5.47) are the HF equations (the matrix form is Eqs (5.44) or (5.46)). By
analogy with the Schrödinger equation we see that they show that the
Fock operator acting on a one-electron wavefunction (an atomic or molecular orbital)
generates an energy value times the wavefunction. Thus the Lagrangian multipliers
turned out to be (with the the energy values associated with the orbitals
Unlike the Schrödinger equation the HF equations are not quite eigenvalue equations
(although they are closer to this ideal than is Eq. (5.35)), because in the
Fock operator is itself dependent on in a true eigenvalue equation the operator
can be written down without reference to the function on which it acts. The significance
of the HF equations is discussed in the next section.

where
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5.2.3.5 The meaning of the HF equations

The HF equations (5.47) (in matrix form Eqs (5.44) and (5.46)) are pseudoeigenvalue
equations asserting that the Fock operator acts on a wavefunction to generate
an energy value times Pseudoeigenvalue because, as stated above, in a true
eigenvalue equation the operator is not dependent on the function on which it acts; in
the HF equations depends on because (Eq. (5.36)) the operator contains and
which in turn depend (Eqs (5.29) and (5.30)) on Each of the equations in the set
(5.47) is for a single electron (“electron one” is indicated, but any ordinal number could
be used), so the HF operator is a one-electron operator, and each spatial molecular
orbital is a one-electron function (of the coordinates of the electron). Two electrons
can be placed in a spatial orbital because the full description of each of these electrons
requires a spin /unction or (section 5.2.3.1) and each electron “moves in” a different
spin orbital. The result is that the two electrons in the spatial orbital do not have all
four quantum numbers the same (for an atomic orbital, e.g. one electron has quantum
numbers n = 1, l= 0, m= 0 and while the other has n= 1, l = 0, m = 0 and

and so the Pauli exclusion principle is not violated.
The functions are the spatial molecular (or atomic) orbitals or wavefunctions that

(along with the spin functions) make up the overall or total molecular (or atomic)
wavefunction which can be written as a Slater determinant (Eq. (5.12)). Concerning
the energies from the fact that

(this follows simply from multiplying both sides of a HF equation by and integrating,
noting that is normalized) and the definition of (Eq. (5.36)) we get

(the operators and in Eq. (5.36) have been transformed by integration into the
integrals J and K in Eq. 5.49)). Equation (5.50) shows that is the energy of an electron
in subject to interaction with all the other electrons in the molecule: Eq. (5.19)
is the energy of the electron due only to its motion (kinetic energy) and to the attraction
of the nuclear core (electron-nucleus potential energy), while the sum of 2J–K terms
represents the exchange-corrected (via K) coulombic repulsion (through J) energy
resulting from the interaction of the electron with all the other electrons in the molecule
or atom [17].

In principle the Eqs (5.47) allow us to calculate the molecular orbitals (MOs) and
the energy levels We could start with “guesses” (actually obtained by intuition or
analogy) of the MOs (the zeroth approximation to these) and use these to construct the

i.e.
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operator (Eq. (5.36), then allow to operate on the guesses to yield energy levels
(the first approximation to the ) and new, improved [18] functions (the first calculated
approximations to the Using the improved functions in and operating on these
gives the second approximations to the and and the process is continued until

and no longer change (within preset limits), which occurs when the smeared-out
electrostatic field represented in Eq. (5.17) by (cf. Fig. 5.3) ceases
to change appreciably – is consistent from one iteration cycle to the next, i.e. is self-
consistent. This is, of course, in exactly the same spirit as the procedure described
in section 5.2.2 using the Hartree product as our total or overall wavefunction The
main difference between the two methods is that the HF method represents as a Slater
determinant of component spin MOs rather than as a simple product of spatial MOs, and
a consequence of this is that the calculation of the average coulombic field in the Hartree
method involves only the coulomb integral J, but in the HF modification we need the
coulomb integral J and the exchange integral K, which arises from Slater determinant
terms that differ in exchange of electrons. Because K acts as a kind of “Pauli correction”
to the classical electrostatic repulsion, reminding the electrons that two of them of the
same spin cannot occupy the same spatial orbital, electron–electron repulsion is less
in the HF method than if a simple Hartree product were used. Of course K does not
arise in calculations involving no electrons of like spin, as in or (section 4.4.1; also
section 5.4.3.6e) which have only two, paired-spin, electrons. At the end of
the iterative procedure we have the MO’s and their corresponding energy levels
and the total wavefunction the Slater determinant of the The can be used
to calculate the total electronic energy of the molecule, and the MO’s areuseful
heuristic approximations to the electron distribution, while the total wavefunction
can in principle be used to calculate anything about the molecule. Applications of the
energy levels and the MO’s are given in section 5.4.

5.2.3.6 Basis functions and the Roothaan–Hall equations

5.2.3.6a Deriving the Roothaan–Hall equations
As they stand, the HF equations (5.44), (5.46) or (5.47) are not very useful for mole-
cular calculations, mainly because (1) they do not prescribe a mathematically viable
procedure getting the initial guesses for the MO wavefunctions which we need
to initiate the iterative process (section 5.2.3.5), and (2) the wavefunctions may be so
complicated that they contribute nothing to a qualitative understanding of the electron
distribution. For calculations on atoms, which obviously have much simpler orbitals
than molecules, we could use for the atomic orbital wavefunctions based on the
solution of the Schrödinger equation for the hydrogen atom (taking into account the
increase of atomic number and the screening effect of inner electrons on outer ones
[19]). This yields the atomic wavefunctions as tables of at various distances from
the nucleus. This is not a suitable approach for molecules because among molecules
there is no prototype species occupying a place analogous to that of the hydrogen atom
in the hierarchy of atoms, and as indicated above it does not readily lend itself to
an interpretation of how molecular properties arise from the nature of the constituent
atoms.
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In 1951 Roothaan and Hall independently pointed out [20] that these problems can
be solved by representing MOs as linear combinations of basis functions (just as in
the SHM, in chapter 4, the MOs are constructed from atomic p orbitals). For a
basis-function expansion of MOs we write

In devising a more compact notation for this set of equations it is very helpful, par-
ticularly when we come to the matrix treatment in section 5.2.3.6c, to use different
subscripts to denote the MOs and the basis functions Conventionally, Roman
letters have been used for the and Greek letters for the or i, j, k, l, … for the

and r, s, t, u,... for the The latter convention will be adopted here, and we
can write the Eqs (5.51) as

We are expanding each MO in terms of m basis functions. The basis functions are
usually (but not necessarily) located on atoms, i.e. for the function    (x , y , z), where
x, y, z are the coordinates of the electron being treated by this one-electron function,
the distance of the electron from the nucleus is:

where are the coordinates of the atomic nucleus in the coordinate system used
to define the geometry of the molecule. Because each basis function may usually be
regarded (at least vaguely) as some kind of atomic orbital, this linear combination of
basis functions approach is commonly called a linear combination of atomic orbitals
(LCAO) representation of the MOs, as in the SHM and EHM (sections 4.3.3 and 4.4.1).
The set of basis functions used for a particular calculation is called the basis set.

We need at least enough spatial MOs to accommodate all the electrons in the
molecule, i.e. we need at least n for the 2n electrons (recall that we are dealing
with closed-shell molecules). This is ensured because even the smallest basis sets used
in ab initio calculations have for each atom at least one basis function corresponding to
each orbital conventionally used to describe the chemistry of the atom, and the number
of basis functions is equal to the number of (spatial) MOs (section 4.3.4). An
example will make this clear: for an ab initio calculation on the smallest basis
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set would specify for and for
each These nine basis functions (5 on C and 4 × 1 = 4 on H) create
nine spatial MO’s which could hold 18 electrons; for the 10 electrons of we
need only 5 spatial MO’s. There is no upper limit to the size of a basis set: there are
commonly many more basis functions, and hence MOs, than are needed to hold all the
electrons, so that there are usually many unoccupied MO’s. In other words, the number
of basis functions m in the expansions (5.52) can be much bigger than the number
n of pairs of electrons in the molecule, although only the n occupied spatial orbitals
are used to construct the Slater determinant which represents the HF wavefunction
(section 5.2.3.1). This point, and basis sets, are discussed further in section 5.3.

To continue with the Roothaan–Hall approach, we substitute the expansion (5.52) for
the into the HF equations (5.47), getting (we will work with m, not n, HFequations
since there is one such equation for each MO, and our m basis functions will generate
m MOs):

( operates on the functions not on the c’s, which have no variables x, y, z ) . Multi-
plying each of these m equations by (or etc. if the are complex
functions, as is occasionally the case) and integrating, we get m sets of equations (one
for each of the basis functions Basis function gives

where
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Basis function gives

Finally, basis function gives

In the m sets of equations (5.54-1) to (5.54-m) each set itself contains m equations (the
subscript of for example, runs from 1 to m), for a total of m × m equations. These
equations are the Roothaan-Hall version of the HF equations; they were obtained by
substituting for the MOs in the HF equations a linear combination of basis func-
tions weighted by c’s).  The Roothaan–Hall equations are usually written more
compactly, as

We have m × m equations because each of the m spatial MO’s we used (recall that
there is one HF equation for each Eqs (5.47)) is expanded with m basis functions.
The Roothaan–Hall equations connect the basis functions (contained in the integrals
F and S, Eqs (5.55)), the coefficients c, and the MO energy levels Given a basis
set s = 1, 2, 3, …, m} they can be used to calculate the c’s, and thus the MOs

(Eq. (5.52)) and the MO energy levels The overall electron distribution in the
molecule can be calculated from the total wavefunction which can be written as
a Slater determinant of the “component” spatial wavefunctions (by including spin
functions), and in principle anyway, any property of a molecule can be calculated
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from  The componentwavefunctions and their energy levels are extremely useful,
as chemists rely heavily on concepts like the shape and energies of, for example, the
HOMO and LUMO of a molecule (MO concepts are reviewed in chapter 4). The energy
levels enable (with a correction term) the total energy of a molecule to be calculated,
and so the energies of molecules can be compared and reaction energies and activation
energies can be calculated. The Roothaan–Hall equations, then, are a cornerstone of
modern ab initio calculations, and the procedure for solving them is outlined next.
These ideas are summarized pictorially in Fig. 5.5.

The fact that the Roothaan–Hall equations (5.56) are actually a total of m × m
equations suggests that they might be expressible as a single matrix equation, since
the single matrix equation AB = 0, where A and B are m × m matrices, represents
m × m “simple” equations, one for each element of the product matrix AB (work it
out for two 2 × 2 matrices). A single matrix equation would be easier to work with
than equations and might allow us to invoke matrix diagonalization as in the case
of the simple and extended Hückel methods (sections 4.3.3 and 4.4.1). To subsume the
sets of Eqs (5.54-1) to (5.54-m), i.e. Eqs (5.56), into one matrix equation, we might
(eschewing a rigorous deductive approach) suspect that the matrix form is the rather
obvious possibility

Here F, C and S would have to be m × m matrices, since there are and S’s,
and would be an m × m diagonal matrix with the nonzero elements
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since must contain only m elements, but has to be m × m to make the right-hand side
matrix product the same size as that on the left.

This is easily checked: the left-hand side of Eq. (5.57) is

The right-hand side of Eq. (5.57) is

Now compare FC (5.58) and (5.59). Comparing element of FC (multiplied
out to give a single matrix as shown in (5.58)) with element of (multiplied out
to give a single matrix as shown in (5.59)) we see that if i.e. if (5.57) is
true, then

i.e.

But this is the first equation of the set (5.53-1). Continuing in this way we see that
matching each element of (the multiplied-out) matrix FC (5.58) with the corresponding
element of (the multiplied-out) matrix gives one of the equations of the set (5.54-1)
to (5.54-m), i.e. of the set (5.56). This can be so only if so this matrix
equation is indeed equivalent to the set of Eqs (5.56).
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Now we have the matrix form of the Roothaan–Hall equations.
These equations are sometimes called the Hartree–Fock–Roothaan equations, and,
often, the Roothaan equations, as Roothaan’s exposition was the more detailed and
addresses itself more clearly to a general treatment of molecules. Before showing how
they are used to do ab initio calculations, a brief review of how we got these equations
is in order.

Summary of the derivation of the Roothaan–Hall equations:

1. The total wavefunction of an atom or molecule was expressed as a Slater
determinant of spin MOs (spatial) and (spatial) Eq. (5.12).

2. From the Schrödinger equation we got an expression for the electronic energy of
the atom or molecule, Eq. (5.14).

3. Substituting the Slater determinant for and the explicit form of the Hamiltonian
operator into (5.14) gave the energy in terms of the spatial MO’s (Eq. (5.17):

4. Minimizing E in (5.17) with respect to the (to find the best gave the HF
equations

5. Substituting into the HFequations (5.44) the Roothaan–Hall linear com-
bination of basis functions (LCAO) expansions (5.52) for the MO’s

gave the Roothaan–Hall equations (Eqs (5.56)), which can be written compactly
as (Eqs (5.57)).

5.2.3.6b Using the Roothaan–Hall equations to do ab initio
calculations – the SCF procedure

The Roothaan–Hall equations (Eqs (5.57)) (F, C, S and are defined in
connection with Eqs (5.58) and (5.59); the matrix elements F and S are defined by
Eqs (5.54) and (5.55)) are of the same matrix form as Eq. (4.54), in the
simple Hückel method (section 4.3.3) and the extended Hückel (section 4.4.1) method.
Here, however, we have seen (in outline) how the equation may be rigorously derived.
Also, unlike the case in the Hückel methods the Fock matrix elements are rigorously
defined theoretically: from Eqs (5.55)

and Eq. (5.36)

it follows that

(5.44).
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where

and

To use The Roothaan–Hall equations we want them in standard eigenvalue-like form
so that we can diagonalize the Fock matrix F of Eq. (5.57) to get the coefficients c
and the energy levels just as we did in connection with the extended Hückel method
(section 4.4.1). The procedure for diagonalizing Fand extracting the c’s and and is
exactly the same as that explained for the extended Hückel method (although here the
cycle is iterative, i.e. repetitive, see below):

1. The overlap matrix S is calculated and used to calculate an orthogonalizing matrix
as in Eqs (4.107) and (4.108):

2. is used to convert F to (cf. (4.104):

The transformed Fock matrix satisfies

(cf. Eq. (4.106)). The overlap matrix S is readily calculated, so if Fcan be calculated
it can be transformed to which can be diagonalized to give and which latter
yields the MO energy levels

3. Transformation of to C (Eq. (4.102)) gives the coefficients in the expansion
of the MO’s in terms of basis functions

Equations (5.63)–(5.66) show that to calculate F, i.e. each of the matrix elements F,
we need the wavefunctions because and the coulomb and exchange operators
(Eqs (5.65) and (5.66)), are defined in terms of the It looks like we are faced with
a dilemma: the point of calculating F is to get (besides the the (the c’s with the
chosen basis set make up the but to get F we need the The way out of this
is to start with a set of approximate c’s, e.g. from an extended Hückel calculation, which
needs no c’s to begin with because the extended Hückel “Fock” matrix elements are
calculated from experimental ionization potentials (section 4.4.1). These c’s, the initial
guess, are used with the basis functions to in effect (section 5.2.3.6c) calculate initial
MO wavefunctions which are used to calculate the F elements Transformation
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of F to and diagonalization gives a “first-cycle” set of and (after transformation
of to C) a first-cycle set of c’s. These c’s are used to calculate new i.e. a
new F, and this gives a second-cycle set of and c’s. The process is continued until
things – the the c’s (as the density matrix – section 5.2.3.6c), the energy, or, more
usually, some combination of these – stop changing within certain pre-defined limits,
i.e. until the cycles have essentially converged on the limiting and c’s. Typically,
about ten cycles are needed to achieve convergence. It is because the operator depends
on thefunctions on which it acts, making an iterative approach necessary, that the
Roothaan–Hall equations, like the HF equations, are called pseudoeigenvalue (see end
of section 5.2.3.4 and start of 5.2.3.5).

Now, in the HF method (the Roothaan–Hall equations represent one implementation
of the HF method) each electron moves in an average field due to all the other electrons
(see the discussion in connection with Fig. 5.3, section 5.2.3.2). As the c’s are refined the
MO wavefunctions improve and so this average field that each electron feels improves
(since J and K, although not explicitly calculated (section 5.2.3.6c) improve with the

When the c’s no longer change the field represented by this last set of c’s is
(practically) the same as that of the previous cycle, i.e. the two fields are “consistent”
with one another, i.e. “self-consistent”. This Roothaan–Hall–Hartree–Fock iterative
process (initial guess, first F, first-cycle c’s, second F, second-cycle c’s, third F, etc.)
is therefore a self-consistent-field-procedure or SCF procedure, like the HF procedure
of section 5.2.2. The terms “HF calculations/method” and “SCF calculations/method"
are in practice synonymous. The key point to the iterative nature ofthe SCFprocedure
is that to get the c’s (for the MOs and the MO we diagonalize a Fock matrix F,
but to calculate F we need an initial guess for the c’s and we then improve the c’s by
repeatedly recalculating and diagonalizing F. The procedure is summarized in Fig. 5.6.
Note that in the simple and extended Hückel methods we do not need the c’s to calculate
F, and there is no iterative refinement of the c’s, so these are not SCF methods; other
semiempirical procedures, however (chapter 6) do use the SCF approach.

5.2.3.6c Using the Roothaan–Hall equations to do ab initio calculations –
the equations in terms of the c’s and of the LCAO expansion

The key process in the HF ab initio calculation of energies and wavefunctions is
calculation of the Fock matrix, i.e. of the matrix elements (section 5.2,3.6b).
Equation (5.63) expresses these in terms of the basis functions and the operators

and but the and operators (Eqs (5.28) and (5.31)) are themselves func-
tions of the MO’s and therefore of the c’s and the basis functions Obviously the
can be written explicitly in terms of the c’s and such a formulation enables the Fock
matrix to be efficiently calculated from the coefficients and the basis functions without
explicitly evaluating the operators and after each iteration. This more explicit (in
terms of the Roothaan–Hall LCAO approach) formulation of the Fock matrix will now
be explained.

To see more clearly what is required, write Eq. (5.63) as
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using the compact Dirac notation. The operator involves only the Laplacian
differentiation operator, atomic numbers and electron coordinates, so we do not have
to consider substituting the Roothaan–Hall c’s and into The operators and

, however, invoke the integrals and We now
examine these two integrals.

Substituting for the basis function expansion and for (2) the
expansion (cf. Eq. (5.52)):

where the double sum arises because we multiply the sum by the sum. To get the
desired expression for we multiply this by and integrate with
respect to the coordinates of electron 1, getting:

Note that this is really a sixfold integral, since there are three variables for
electron 1, and three for electron 2, represented by and respectively.
This equation can be written more compactly as

The notation

is a common shorthand for this kind of integral, which is called a two-electron repulsion
integral (or two-electron integral, or electron repulsion integral); the physical signifi-
cance of these is outlined in section 5.2.3.6d). This parentheses notation should not be
confused with the Dirac bra-ket notation, (a bra) and a ket: by definition

so

Actually, several notations have been used for the integrals of Eq. (5.73) and for other
integrals; make sure to ascertain which symbolism a particular author is using.



187Ab initio calculations

Substituting for the basis function expansion and for the
expansion (cf. Eq. (5.52)):

To get the desired expression for we multiply this by and
integrate with respect to the coordinates of electron 1:

which can be written more compactly as

where of course (cf. (5.73))

Substituting Eqs (5.72) and (5.76) for and into
Eq. (5.71) for we get

i.e.

where the integral of the operator over the basis functions has been written as:

with defined by Eq. (5.64).
Equation (5.78), with its ancillary definitions Eqs (5.73), (5.77), and (5.79), is what

we wanted: the Fock matrix elements in terms of the basis functions and their weight-
ing coefficients c, for a closed-shell molecule; m is the numberofbasis functionsand 2n
is the number of electrons. We can use Eq. (5.78) to calculate MO’s and energy levels

from Eq. (5.66):
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(section 5.2.3.6b). Given a basis set and molecular geometry (the integrals depend on
molecular geometry, as will be illustrated) and starting with an initial guess at the c’s,
one (or rather the computer algorithm) calculates the matrix elements assembles
them into the Fock matrix F, etc. (section 5.2.3.6b and Fig. 5.6) Let us now examine
certain details connected with Eq. (5.78) and this procedure.

5.2.3.6d Using the Roothaan–Hall equations to do ab initio
calculations – some details

Equation (5.78) is normally modified by subsuming the c’s into the elements of
the density matrix P:
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where the density matrix elements are

(sometimes P is defined as From Eqs (5.78) and (5.81):

Equation (5.82), a slight modification of Eq. (5.78), is the key equation in calculating
the ab initio Fock matrix. Each density matrix element represents the coefficients
c for a particular pair of basis functions and summed over all the occupied
MO’s We use the density matrix here just as a convenient way to
express the Fock matrix elements, and to formulate the calculation of properties arising
from electron distribution (section 5.5.4), although there is far more to the density
matrix concept [21]. Equation (5.82) enables the MO wavefunctions (which are
linear combinations of the c’s and and their energy levels to be calculated by
iterative diagonalization of the Fock matrix.

Equation (5.17) gives one expression for the molec-
ular electronic energy E. If we wish to calculate E from the energy levels, we must note
that in the HF method E is not simply twice the sum of the energies of the n occupied
energy levels, i.e. it is not the sum of the one-electron energies (as we take it to be in
the simple and extended Hückel methods). This is because the MO energy level value
represents the energy of one electron subject to interaction with all the other electrons.
The energy of an electron is thus its kinetic energy plus its electron–nuclear attrac-
tive potential energy plus, courtesy of the J and K integrals (section 5.2.3.5
and Eqs (5.48)–(5.50 = 5.83)), the potential energy from repulsion of all the other
electrons:

If we add the energies of electrons 1 and 2, say, we are adding, besides the kinetic
energies of these electrons, the repulsion energy of electron 1 on electron 2,3,4,...,
and the repulsion energy of electron 2 on electron 1, 3,4,... – in other words, we are
counting each repulsion twice. The simple sum thus represents properly the total kinetic
and electron–nuclear attraction potential energy, but overcounts the electron–electron
repulsion potential energy (recall that we are working with electrons and thus
filled MOs):

Note that we cannot just take half of this simple sum, because only the electron–electron
energy terms, not all the terms, have been doubly-counted. The solution is to subtract
from the superfluous repulsion energy; from our discussion of Eq. (5.50) in
section 5.2.3.5 we saw that the sum over n represents the repulsion energy
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of one electron interacting with all the other electrons, so to remove the superfluous
interactions we subtract                           the sum over n   of the repulsion energy sum,
to get [13]

is the HF electronic energy: the sum of one-electron energies corrected (within
the average-field HF approximation) for electron–electron repulsion. We can get rid of
the integrals J and K over and obtain an equation for in terms of c’s and

From (5.83),

and from this and (5.85) we get

From the definition of in Eqs (5.49) and (5.50), i.e. from

and the LCAO expansion (5.52)

we get from Eq. (5.86)

Using Eq. (5.81), Eq. (5.89) can be written in terms of the density matrix elements P:

This is the key equation for calculating the HF electronic energy of a molecule. It can
be used when self-consistency has been reached, or after each SCF cycle employing the

and yielded by that particular iteration, and which latter does not change
from iteration to iteration, since it is composed only of the fixed basis functions and an
operator which does not contain or from Eqs (5.64=5.19) and (5.79)
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does not change because the SCF procedure refines the electron–electron repul-
sion (till the field each electron feels is “consistent” with the previous one), but
in contrast represents only the contribution to the kinetic energy plus electron-nucleus
attraction of the electron density associated with each pair of basis functions and

Equation (5.90) gives the HF electronic energy of the molecule or atom – the energy
of the electrons due to their motion (their kinetic energy) plus their energy due to
electron–nucleus attraction and (within the HF approximation) to electron–electron
repulsion (their potential energy). The total energy of the molecule, however, involves
not just the electrons but also the nuclei, which contribute potential energy due to inter-
nuclear repulsion and kinetic energy due to nuclear motion. This motion persists even
at 0 K, because the molecule vibrates even at this temperature; this unavoidable vibra-
tional energy is called the zero-point vibrational energy or zero-point energy (ZPVE or
ZPE; section 2.5, Fig. 2.20 and associated discussion). Calculation of the internuclear
repulsion energy is trivial, as this is just the sum of all coulombic repulsions between
the nuclei:

Calculation of the ZPE is more involved; it requires calculating the frequencies (i.e. the
normal-mode vibrations – section 2.5) and summing the energies of each mode [22]
(all this is done by standard programs, which print out the ZPE after the frequencies).
Adding the HF electronic energy and the internuclear repulsion gives what we might
call the total “frozen-nuclei” (no ZPE) energy:

from (5.90) and (5.92). the energy usually displayed at the end of a HF calculation
is, in ordinary parlance, “the HF energy”. An aggregate of such energies, plotted against
various geometries, represents an HF Born–Oppenheimer PES (section 2.3). The zero
of energy for the Schrödinger equation for an atom or molecule is normally taken as
the energy of the electrons and nuclei at rest at infinite separation. The HF energy (any
ab initio energy, in fact) of a species is thus relative to the energy of the electrons and
nuclei at rest at infinite separation, i.e. it is the negative of the minimum energy required
to break up the molecule or atom and separate the electrons and nuclei to infinity. We
are normally interested in relative energies, differences in absolute ab initio energies.
Ab initio energies are discussed in section 5.5.2.

In a geometry optimization (section 2.4) a series of single-point calculations (cal-
culations at a single point on the potential energy surface, i.e. at a single geometry) is
done, each of which requires the calculation of and the geometry is changed sys-
tematically until a stationary point is reached (one where the potential energy surface is
flat; ideally should fall monotonically in the case of optimization to a minimum).
The ZPE calculation, which is valid only for a stationary point on the potential energy
surface (section 2.5; discussion in connection with Fig. 2.19), can be used to correct

of the optimized structure for vibrational energy; adding the ZPE gives the total
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internal energy of the molecule at 0 K, which we could call

The relative energies of isomers may be calculated by comparing but for accu-
rate work the ZPE should be taken into account, even though the required frequency
calculations usually take considerably longer than the geometry optimization (some-
times five to ten times as long – see section 5.3.3, Table 5.3). Fortunately, it is valid
to correct with a ZPE from a lower-level optimization-plus-frequency job (not
a lower-level frequency job on the higher-level geometry). Figure 2.19 in section 2.5
compares energies for the species in the isomerization of HNC to HCN. The rela-
tive energies with/without the ZPE correction for HCN, transition state, and HNC
are 0/0, 202/219, and The ZPE’s of isomers tend to be roughly
equal and so to cancel when relative energies are calculated (less so where transition
states are involved), but, as implied above, in accurate work it is usual to compare the
ZPE-corrected energies

5.2.3.6e Using the Roothaan–Hall equations to do ab initio
calculations – an example

The application of the HF method to an actual calculation will now be illustrated in detail
with protonated helium, the simplest closed-shell heteronuclear molecule. This
species was also used to illustrate the details of the EHM in section 4.4. 1b. In this simple
example all the steps were done with a pocket calculator, except for the evaluation of
the integrals (this was done with the ab initio program Gaussian 92 [23]) and the matrix
multiplication and diagonalization steps (done with the program Mathcad [24]).

Step 1 Specifying the geometry, basis set and MO orbital occupancy
We start by specifying a geometry and a basis set. We will use same geometry as with
the EHM, 0.800 Å, i.e. 1.5117 a.u. (bohr). In ab initio calculations on molecules, the
basis functions are almost always Gaussian functions (basis functions are discussed in
section 5.3). Gaussian functions differ from the Slater functions we used in the EHM in
chapter 4 in that the exponent involves the square of the distance of the electron from
the point (usually an atomic nucleus) on which the function is centered:

An s-type Slater function

An s-type Gaussian function

In ab initio calculations the mathematically more tractable Gaussians are used to approx-
imate the physically more realistic Slater functions (see section 5.3). We use here the
simplest possible Gaussian basis set: a 1s atomic orbital on each of the two atoms, each
1s orbital being approximated by one Gaussian function. This is called an STO-1G
basis set, meaning Slater-type orbitals-one Gaussian, because we are approximating a
Slater-type 1s orbital with a Gaussian function. The best STO-1G approximations to
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where is the distance of the electron in is a one-electron function) from
nucleus i on which is centered (Fig. 5.7). The larger constant in the helium exponent
as compared to that of hydrogen (0.7739 vs. 0.4166) reflects the intuitively reasonable
fact that since an electron in is bound more tightly to its doubly-charged nucleus
than is an electron in is to its singly-charged nucleus, electron density around the
helium nucleus falls off more quickly with distance than does that around the hydrogen
nucleus (Fig. 5.8).

We have a geometry and a basis set, and wish to do an SCF calculation on with
both electrons in the lowest MO, i.e. on the singlet ground state. In general, SCF
calculations proceed from specification of geometry, basis set, charge and multiplicity.
The multiplicity is a way of specifying the number of unpaired electrons:

the hydrogen and helium 1s orbitals in a molecular environment [25] are
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where s = total number of unpaired electron spins (each electron has a spin of
taking each unpaired spin as Figure 5.9 shows some examples of the specification of
charge and multiplicity. By default an SCF calculation is performed on the ground state
of specified multiplicity, i.e. the MO’s are filled from up to give the lowest-energy
state of that multiplicity.

Step 2 Calculating the integrals
Having specified a HF calculation on singlet with H–He = 0.800Å (1.5117
bohr), using an STO-1G basis set, the most straightforward way to proceed is to now
calculate all the integrals, and the orthogonalizing matrix that will be used to
transform the Fock matrix F to and to convert the transformed coefficient matrix
to C (Eqs (5.67)–(5.70)). The integrals are those required for the one-electron
part of the elements of F, and the two-electron repulsion integrals
(Eq. (5.82)), as well as the overlap integrals, which are needed to calculate the overlap
matrix S and thus the orthogonalizing matrix (Eq. (5.67)).

Efficient methods have been developed for calculating these integrals [26] and their
values will simply be given here. For our calculation the elements of the Fock
matrix (Eq. (5.82)) are conveniently written as:

Here (1) has been dissected into a kinetic energy integral T and two poten-
tial energy integrals, V (H) and V (He). From the definition of the operator
(Eq. (5.64)) and the Roothaan–Hall expression for the integral (Eq. (5.79)) we
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see that (the (1) emphasizes that these integrals involve the coordinates of only one
electron):

and

In Eq. (5.102) the variable is the distance of the electron (“electron 1” – see the discussion
in connection with Eqs (5.18) and (5.19)) from the hydrogen nucleus, and in Eq. (5.103)
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the variable is the distance of the electron from the helium nucleus; and are 1
and 2, respectively.

From Eq. (5.100) the two-electron contribution to the each Fock matrix element is

Each element is calculated from a density matrix element (Eqs (5.80)
and (5.81)) and two two-electron integrals and (Eqs (5.73) and (5.77)).
The required one-electron integrals for calculating the Fock matrix F are

To see which two-electron integrals are needed we evaluate the summation in Eq. (5.104)
for each of the matrix elements
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Each element of the electron repulsion matrix G has eight two-electron repulsion
integrals, and of these 32 there appear to be 14 different ones:

However, examination of Eq. (5.73) shows that many of these are the same. It is easy
to see that if the basis functions are real (as is almost always the case) then

Taking this into account, there are only six unique two-electron repulsion integrals,
whose values are:

The integrals (11|11) and (22|22) represent repulsion between two electrons both in
the same orbital or respectively), while (22|11) represents repulsion between
an electron in and one in (21|11) could be regarded as representing the repulsion
between an electron associated with and and one confined to and analogously
for (22|21), while (21|21) can be thought of as the repulsion between two electrons
both of which are associated with and (Fig. 5.10). Note that in the T and V terms
of the Fock matrix elements, the operator in the integrals is and
or while in the G terms it is (Eqs (5.101)–(5.103) and (5.73)). The
overlap integrals are

and the overlap matrix is

Step 3 Calculating the orthogonalizing matrix
Calculating the orthogonalizing matrix             (see Eqs (5.67)–(5.69) and the discussion
referred to in chapter 4):

from

new with

new with

(11|11), (11|12), (12|11), (11|21), (11|22), (12|21)

(12|12), (12|22)

(22|11), (21|12), (22|12), (22|21), (21|22), (22|22)

(11|11) = 0.7283

(21|11) = 0.3418

(22|11) = 0.5850

(21|21) = 0.2192

(22|21) = 0.4368

(22|22) = 0.9927

(5.110)
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Diagonalizing S:

Calculating

Calculating

Step 4 Calculating the Fock matrix
(a) The one-electron matrices
From Eq. (5.100)
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The one-electron matrices T, V(H) and V(He) (i.e. follow immediately from the
one-electron integrals. The kinetic energy matrix is

is smaller than as the kinetic energy of an electron in is smaller
than that of an electron in this is expected since the larger charge on the
helium nucleus results in a larger kinetic energy for an electron in its orbital than
for an electron in the hydrogen orbital–classically speaking, the electron must move
faster to stay in orbit around the stronger-pulling He nucleus. can be regarded as
the kinetic energy of an electron in the overlap region.

The hydrogen potential energy matrix is

All the V(H) values represent the attraction of an electron to the hydrogen nucleus.
is the potential energy due to attraction of an electron in to the hydrogen

nucleus, and is the potential energy due to attraction of an electron in to the
hydrogen nucleus. As expected, an electron in is attracted to the H nucleus
more strongly (the potential energy is more negative) than is an electron in

can be regarded as the potential energy of attraction to the hydrogen nucleus of
an electron in the  overlap region.

The helium potential energy matrix is

All the V(He) values represent the attraction of an electron to the helium nucleus.
the potential energy of attraction of an electron in to the helium nucleus,

is of course less negative than the potential energy of attraction of an electron in
to this same nucleus. can be taken as the potential energy of attraction to the
helium nucleus of an electron in the overlap region. An electron in
is attracted to the helium nucleus more strongly than an electron in is attracted
to the hydrogen nucleus (–2.8076 in V(He) cf. –1.0300 in V(H)), due to the greater
nuclear charge of helium.

The total one-electron energy matrix, is

This matrix represents the 1-electron energy (the energy the electron would have if
interelectronic repulsion did not exist) of an electron in at the specified geom-
etry, for this STO-1G basis set. The (1,1), (2,2) and (1,2) terms represent, ignoring
electron–electron repulsion, the energy of an electron in and the over-
lap region, respectively; the values are the net result of the various kinetic energy and
potential energy terms discussed above.
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(b) The two-electron matrix
The two-electron matrix G, the electron repulsion matrix (Eq. (5.111)), is calculated
from the two-electron integrals and the density matrix elements (Eq. (5.104)). This
is intuitively plausible since each two-electron integral describes one interelectronic
repulsion in terms of basis functions (Fig. 5.10) while each density matrix element
represents (see section 5.4.3) the electron density on (the diagonal elements of P in
Eq. (5.80)) or between (the off-diagonal elements of P) basis functions. To calcu-
late the matrix elements (Eqs (5.106)–(5.108)) we need the appropriate integrals
(Eqs (5.110) and density matrix elements. These latter are calculated from

Each involves the sum over the occupied MO’s we are dealing
with a closed-shell ground-state molecule with electrons) of the products of the
coefficients of the basis functions and As pointed out in section 5.2.3.6b the
HF procedure is usually started with an “initial guess” at the coefficients. We can use
as our guess the extended Hückel coefficients we obtained for with this same
geometry (section 4.4. 1b); we need the c’s only for the occupied MO’s:

(Usually we need more c’s than the small basis set of an extended Hückel or other
semiempirical calculation supplies; a projected semiempirical wavefunction is then
used, with the missing c’s extrapolated from the available ones.) Using these c’s and
Eq. (5.121) we calculate the initial-guess P’s for Eqs. (5.106)–(5.108); since there is
only one occupied MO in Eq. 121) the summation has only one term:

G may now be calculated. From Eqs (5.106)–(5.108), using the above values of P
and the integrals of Eq. (5.110), and recalling that integrals like (11|12) and (21|11)
are equal (Eq. (5.109) we get:
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From the G values based on the initial guess c’s the initial-guess electron repulsion
matrix is

The initial-guess Fock matrix is (Eqs (5.116), (5.120) and (5.127))

The zero subscripts in Eqs (5.127) and (5.128) emphasize that the initial-guess c’s,
with no iterative refinement, were used to calculate G; in the subsequent iterations of
the SCF procedure will remain constant while G will be refined as the c’s, and
thus the P’s, change from SCF cycle to cycle. The change in the electron repulsion
matrix G corresponds to that in the molecular wavefunction as the c’s change (recall the
LCAO expansion); it is the wavefunction (squared) which represents the time-averaged
electron distribution and thus the electron/charge cloud repulsion (sections 5.2.3.2,
5.2.3.5 and 5.2.3.6b).

Step 5 Transforming F to the Fock matrix that satisfies
As in section 4.4. 1b, we use the orthogonalizing matrix (step 3) to transform
F to a matrix which when diagonalized gives the energy levels and a coeffi-
cient matrix which is subsequently transformed to the matrix C of the desired c’s
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(see section 5.2.3.6b):

Step 6 Diagonalizing to obtain the energy level matrix and a coefficient matrix

The energy levels (the eigenvalues of ) from this first SCF cycle are – 1.4027 and
–0.0756 h (h = hartrees, the unit of energy in atomic units), corresponding to the
occupied MO and the unoccupied MO The MO coefficients (the eigenvectors
of of and for the transformed, orthonormal basis functions, are, from
(actually here and its inverse, are the same):

is the first column of and is the second column of These coefficients
are the weighting factors that with the transformed, orthonormal basis functions give
the MO’s:

where and are linear combinations of our original basis functions and
The original basis functions were centered on atomic nuclei and were normalized but
not orthogonal (section 4.3.3), while the transformed basis functions are delocalized
over the molecule and are orthonormal (section 4.4.1a)). Note that the sum of the
squares of the coefficients of and is unity, as must be the case if the basis
functions are orthonormal (section 4.3.6). In the next step is transformed to obtain
the coefficients of the original basis functions in the MO’s. We want the MOs in terms
of the original, atom-centered basis functions (roughly, atomic orbitals – section 5.3)
because such MOs are easier to interpret.

Step 7 Transforming to C, the coefficient matrix of the original, nonorthogonal
basis functions.
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As in section 4.4. 1b, we use the orthogonalizing matrix to transform to C:

This completes the first SCF cycle. We now have the first set of MO energy levels and
basis function coefficients:

From Eq. (5.130):

From Eq (5.133) (cf. Eq (5.132)):

Suppose our convergence criterion was that the elements of P must agree with
those of the previous P matrix to within 1 part in 1000. Comparing Eqs (5.136)
with (5.123) we see that this has not been achieved: even the smallest change is
|(1.312 – 1.503)/1.503| = 0.127, far above the required 0.001. Therefore another
SCF cycle is needed.

Note that the sum of the squares of the coefficients of and is not unity, since
these atom-centered functions are not orthogonal (contrast the simple Hückel method,
section 4.3.4).

Step 8 Comparing the density matrix from the latest c’s with the previous density
matrix to see if the SCF procedure has converged
The density matrix elements based on the c’s of (Eq. (5.133) can be compared with
those (Eq. (5.123)) based on the initial guess:

Step 9 Beginning the second SCF cycle: using the c’s of to calculate a new Fock
matrix (cf. Step 4, (b))
The first Fock matrix used c’s from our initial guess (Step 4, (b)). An improved F
may now be calculated using the c’s from the first SCF cycle. Calculating as we did
in Step 4, (b) for but using the new P’s:
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From the G values based on the first-cycle c’s the electron repulsion matrix is

and the Fock matrix from this is

Step 10 Transforming to (cf. Step 5)

Step 11 Diagonalizing to obtain the energy levels ε and a coefficient matrix
(cf. Step 6)
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The energy levels from this second SCF cycle are –1.4447 and –0.1062h. To get the
MO coefficients corresponding to these MO energy levels in terms of the original basis
functions and we now transform to

Step 12 Transforming to (cf. Step 7)

This completes the second SCF cycle. We now have the MO energy levels and basis
function coefficients:

From Eq. (5.143):

From Eq. (5.144):

Step 13 Comparing the density matrix from the latest c’s with the previous density
matrix to see if the SCF procedure has converged
The density matrix elements based on the c’s of are

Comparing the above with (5.136) we see that convergence to within our 1-part-in-
1000 criterion has not occurred: the largest change in the density matrix is |(0.1996 –
0.1885)/0.1885| = 0.059, which is above 0.001, so the SCF procedure is repeated.

Three more SCF cycles were carried out; the results of the “zeroth cycle” (the initial
guess) and the five cycles are summarized in Table 5.1. Only with the fifth cycle has
convergence been achieved, i.e. have the changes in all the density matrix elements
fallen below 1 part in 1000 (the largest change is in | (0.2020 – 0.2019)/0.2019 =
0.0005 < 0.001). In actual practice, a convergence criterion of from about 1 part in
to 1 in is used, depending on the program and the particular kind of calculation.
The coefficients and the density matrix elements change smoothly, although the energy
levels and show some oscillation. To reduce the number of steps needed to achieve
convergence, programs sometimes extrapolate the density matrix, i.e. estimate the final
P values and use these estimates to initiate the final few SCF cycles.

Often the main result from a HF (i.e. an SCF) calculation is the energy of the molecule
(the calculation of energy may be subsumed into a geometry optimization, which is
really the task of finding the minimum-energy geometry). The STO-1G energy of
with an internuclear distance of 0.800 Å may be calculated from our results:
the electronic energy is
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the internuclear repulsion energy is

and the total internal energy of the molecule at 0 K (except for ZPE – section 5.2.3.6d)
is

which is what is normally meant by the HF energy, is printed by the program at
the end of a single-point calculation or a geometry optimization, or by some programs
at the end of each step of a geometry optimization.

Using the energy levels and density matrix elements from the first cycle (Table 5.1),
with the elements from Eq. (5.120), Eq. (5.147) gives for the electronic energy

From Eq. (5.148) the internuclear repulsion energy is

and from Eq. (5.149) the total HF energy is

The HF energies for the five SCF cycles are given in Table 5.1.
Instead of starting with eigenvectors from a non-SCF method like the extended

Hückel method, as was done in this illustrative procedure, an SCF calculation is occa-
sionally initiated by taking as the Fock matrix, that is, by initially ignoring
electron–electron repulsion, setting equal to zero the second term in Eq. (5.82), or G in
Eq. (5.100), whereupon becomes This is usually a poor initial guess, but is
occasionally useful. You are urged to work your way through several SCF cycles start-
ing with this Fock matrix; this tedious calculation will help you to appreciate the power
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and utility of modern electronic computers and may enhance your respect for those who
pioneered complex numerical calculations when the only arithmetical aids were mathe-
matical tables and mechanical calculators (mechanical calculators were machines with
rotating wheels, operated by hand-power or electricity. There were also, in astronomy
at least, armies of women arithmeticians called computers – the original meaning of
the word).

If we calculate the electronic energy simply as twice the sum of the energies of the
occupied MO orbitals, as with the SHM and EHM, we get a much higher value than
from the correct procedure (Eq. (5.147)); with a 0.800 Å bond length and the converged
results this naive electronic energy is 2(–1.4470) h = –2.8940 h, while the correct
electronic energy (not given in Table 5.1 – the HF energies there are electronic plus
internuclear repulsion) is –3.7668 h, i.e. 30 percent lower when we correct for the fact
that simply double-summing the MO energies counts electron repulsion terms twice
(section 5.2.3.6d).

A geometry optimization for can be done by calculating the Hartree-Fock
energy (electronic plus internuclear) at different bond lengths to get the minimum-
energy geometry. The results are shown in Fig. 5.11; the optimized bond length for the
STO-1G basis set is ca. 0.86 Å. Note that it is customary to report ab initio energies in
hartrees to 5 or 6 decimal places (and bond lengths in Å to 3 decimals); the truncated
values used here are appropriate for these illustrative calculations.

Summary of the steps in an SCF calculation using the Roothaan–Hall LCAO expansion
of the MO’s

Specify a geometry, basis set, and orbital occupancy (this latter is done by specifying
the charge and multiplicity, with an electronic ground state being the default).

1.
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2.

3.

Calculate the integrals: for each nucleus, and the two-electron integrals
etc. needed for as well as the overlap integrals for the orthogonalizing

matrix derived from S (see step 3). Note: in the direct SCF method (section 5.3) the
two-electron integrals are calculated as needed, rather than all at once.

Calculate the orthogonalizing matrix
(a) diagonalize

(b) Calculate (take the power of the elements of D)

(c) Calculate

4. Calculate the Fock matrix F
Calculate the one-electron matrix using the T and
V integrals from step 2.

The two-electron matrix (the electron repulsion matrix) G: Use an initial guess
of the coefficients of the occupied MO’s to calculate initial-guess density matrix
elements:

(a)

(b)

Use the density matrix elements and the two-electron integrals to calculate G:

The Fock matrix is

5. Transform F to the Fock matrix that satisfies

6. Diagonalize to get energy levels and a matrix

Transform to C, the coefficient matrix of the original basis functions7.

8. Compare the density matrix elements calculated from the C of the previous step
with those of the step before that one (and/or use other criteria, e.g. the molecular
energy); if convergence has not been achieved go back to step 4 and calculate a new
Fock matrix using the P’s from the latest c’s. If convergence has been achieved,
stop.

It should be realized modern ab initio programs do not rigidly follow the basic SCF
procedure described in this section. To speed up calculation they employ a variety
of mathematical tricks. Among these are: the use of symmetry to avoid duplicate
calculation of identical integrals; testing two-electron integrals quickly to see if they are
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small enough to be neglected (as is the case for functions on distant nuclei; this decreases
the time of a calculation from an dependence on the number of basis function to
about an dependence); recalculating integrals to avoid the bottleneck of hard-drive
access (direct SCF, section 5.3.2); representing the MOs as a set of gridpoints in space
(in addition to a basis set expansion), which eliminates the need to explicitly calculate
two-electron integrals. This pseudospectral method speeds up ab initio calculations by
a factor of perhaps three or four. Methods of speeding up calculations are explained,
with references to the literature, by Levine [27].

The method of calculating wavefunctions and energies that has been described in
this chapter applies to closed-shell, ground-state molecules. The Slater determinant we
started with (Eq. (5.12)) applies to molecules in which the electrons are fed pairwise
into the MO’s, starting with the lowest-energy MO; this is in contrast to free radicals,
which have one or more unpaired electrons, or to electronically excited molecules, in
which an electron has been promoted to a higher-level MO (e.g. Fig. 5.9, neutral triplet).
The HF method outlined here is based on closed-shell Slater determinants and is called
the restricted HF method or RHF method; “restricted” means that the electrons of
spin are forced to occupy (restricted to) the same spatial orbitals as those of spin:
inspection of Eq. (5.12) shows that we do not have a set of spatial orbitals and a
set of spatial orbitals. If unqualified, a HF (i.e. an SCF) calculation means an RHF
calculation.

The common way to treat free radicals is with the unrestricted HF method or UHF
method. In this method, we employ separate spatial orbitals for the and the electrons,
giving two sets of MOs, one for and one for electrons. Less commonly, free radicals
are treated by the restricted open-shell HF or ROHF method, in which electrons occupy
MO’s in pairs as in the RHF method, except for the unpaired electron(s). The theoretical
treatment of open-shell species is discussed in [1,10, l(k, l)], in particular, compare
the performance of the UHF and ROHF methods.

Excited states, and those unusual molecules with electrons of opposite spin singly
occupying different spatial MO’s (open-shell singlets) cannot be properly treated with
a single-determinant wavefunction. They must be handled with approaches beyond the
HF level, such as configuration interaction (section 5.4).

5.3 BASIS SETS

5.3.1 Introduction

We encountered basis sets in sections 4.3.3, and 4.4.1a, and 5.2.3.6a. A basis set is
a set of mathematical functions (basis functions), linear combinations of which yield
molecular orbitals, as shown in Eqs (5.51) and (5.52). The functions are usually, but not
invariably , centered on atomic nuclei (Fig. 5.7). Approximating molecular orbitals as
linear combinations of basis functions is usually called the LCAO or linear combination
of atomic orbitals approach, although the functions are not necessarily conventional
atomic orbitals: they can be any set of mathematical functions that are convenient to
manipulate and which in linear combination give useful representations of MOs. With
this reservation, LCAO is a useful acronym. Physically, several (usually) basis functions
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describe the electron distribution around an atom and combining atomic basis functions
yields the electron distribution in the molecule as a whole. Basis functions not centered
on atoms (occasionally used) can be considered to lie on “ghost atoms”; see basis set
superposition error, section 5.4.3.

The simplest basis sets are those used in the SHM and EHM (chapter 4). As applied to
conjugated organic compounds (its usual domain), the simple Hückel basis set consists
of just p atomic orbitals (or “geometrically p-type” atomic orbitals, like a lone-pair
orbital which can be considered not to interact with the framework). The extended
Hückel basis set consists of only the atomic valence orbitals. In the SHM, we do not
worry about the mathematical form of the basis functions, reducing the interactions
between them to 0 or –1 in the SHM Fock matrix (e.g. Eqs (4.62) and (4.64)). In the
EHM the valence atomic orbitals are represented as Slater functions (section 4.4.1a).

5.3.2 Gaussian functions; basis set preliminaries; direct SCF

The electron distribution around an atom can be represented in several ways. Hydrogen-
like functions based on solutions of the Schrödinger equation for the hydrogen atom,
polynomial functions with adjustable parameters, Slater functions (Eq. (5.95)), and
Gaussian functions (Eq. (5.96)) have all been used [28]. Of these, Slater and Gaussian
functions are mathematically the simplest, and it is these that are currently used as the
basis functions in molecular calculations. Slater functions are used in semiempirical
calculations, like the EHM (section 4.4) and other semiempirical methods (chapter 6).
Modern molecular ab initio programs employ Gaussian functions.

Slater functions are good approximations to atomic wavefunctions and would be
the natural choice for ab initio basis functions, were it not for the fact that the eval-
uation of certain two-electron integrals requires excessive computer time if Slater
functions are used. The two-electron integrals (sections 5.2.3.6c, e) of the G matrix
(Eq. (5.100)) involve four functions, which may be on from one to four centers (nor-
mally atomic nuclei). Those two-electron integrals with three or four different functions

and and three or four nuclei (three- or four-center integrals)
are extremely difficult to calculate with Slater functions, but are readily evaluated with
Gaussian basis functions. The reason is that the product of two Gaussians on two cen-
ters is a Gaussian on a third center. Consider an s-type Gaussian centered on nucleus A
and one on nucleus B; we are considering real functions, which is what basis functions

where

with the nuclear and electron positions in Cartesian coordinates (if these were not s-type
functions, the preexponential factor would contain one or more cartesian variables to
give the function (the “orbital”) nonspherical shape). It is not hard to show that

normally are:
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The product of and is the Gaussian centered at Now consider the general
electron-repulsion integral

If each basis function were a single, real Gaussian, then from Eq. (5.155) this would
reduce to

i.e. three- and four-center two-electron integrals with four basis functions would
immediately simplify to tractable two-center integrals with two functions.

Actually, things are a little more complicated. A single Gaussian is a poor approxi-
mation to the nearly ideal description of an atomic wavefunction that a Slater function
provides. Figure 5.12 shows that a Gaussian (designated STO-1G) is rounded near
while a Slater function has a cusp there (zero slope vs. a finite slope at the
Gaussian also decays somewhat faster than the Slater function at large r. The solution
to the problem of this poor functional behaviour is to use several Gaussians to approxi-
mate a Slater function. In Fig. 5.12 a single Gaussian and a linear combination of three
Gaussians have been used to approximate the Slater function shown; the nomenclature
STO-1G and STO-3G mean “Slater-type orbital (approximated by) one Gaussian” and
“Slater-type orbital (approximated by) three Gaussians”, respectively. The Slater func-
tion shown is one suitable for a hydrogen atom in a molecule and the
Gaussians are the best fit to this Slater function. STO-1G functions were used in our
illustrative HF calculation on (section 5.2.3.6e), and the STO-3G function is the
smallest basis function used in standard ab initio calculations by commercial programs.
Three Gaussians are a good speed vs. accuracy compromise between two and four or
more [25].

The STO-3G basis function in Fig. 5.12 is a contracted Gaussian consisting of three
primitive Gaussians each of which has a contraction coefficient (0.4446, 0.5353 and
0.1543). Typically, an ab initio basis function consists of a set of primitive Gaussians
bundled together with a set of contraction coefficients. Now consider the two-electron
integral (Eq. (5.156)). Suppose each basis function is an STO-3G contracted
Gaussian, i.e.

and analogously for and Then it is easy to see that
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where and so on. Thus with contracted Gaussians as basis functions,
each two-electron integral becomes a sum of easily calculated two-center two-electron
integrals. Gaussian integrals can be evaluated so much faster than Slater integrals that the
use of contracted Gaussians instead of Slater functions speeds up the calculation of the
integrals enormously, despite the larger number of integrals. Discussions of the number
of integrals in an ab initio calculation usually refer to those at the contracted Gaussian
level, rather than the greater number engendered by the use of primitive Gaussians; thus
the program Gaussian 92 [23] says that both an STO-1G and an STO-3G calculation
on water use the same number (144) of two-electron integrals, although the latter
clearly involves more “primitive integrals.” The fruitful suggestion to use Gaussians in
molecular calculations came from Boys (1950 [29]); it played a major role in making
ab initio calculations practical, and this is epitomized in the names of the Gaussian
series of programs, e.g. Gaussian 92 [23], which are possibly the most widely-used
ab initio programs.
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Fast calculation of integrals is particularly important for the two-electron integrals,
as their number increases rapidly with the size of the molecule and the basis set (basis
sets are discussed in section 5.3.3). Consider a calculation on water with an STO-
1G basis set (and bear in mind that the smallest basis set normally used in ab initio
calculations is the STO-3G set). In a standard ab initio calculation we use at least
one basis function for each core orbital and each valence-shell orbital. Thus the oxygen
requires five basis functions, for the and orbitals; we can designate
these functions and denote the 1 s hydrogenfunctions, one for each H,
and In computational chemistry atoms beyond hydrogen and helium in the periodic
table are called “heavy atoms”, and the computational “first row” is lithium–neon.
With experience, the number of heavy atoms in a molecule gives a quick indication of
about how many basis functions will be invoked by a specified basis set. Following the
procedure for in Eq. (5.106):

Now u runs from 1 to 7 and t from 1 to 7, so will consist of 49 terms, each containing
two two-electron integrals for a total of 98 integrals. The Fock matrix for seven
basis functions is a 7 × 7 matrix with 49 elements, so
apparently there are 49 × 98 = 4802 two-electron integrals. Actually, many of these are
duplicates ( scan Fock matrix has only about different elements),
differ from other integrals only in sign, or are very small, and the number of unique
nonvanishing two-electron integrals is 119 (calculated with Gaussian 92 [23]). For an
STO-1G calculation on hydrogen peroxide (12 basis functions), there are ca. 700 unique
nonvanishing two-electron integrals (cf. a naive theoretical maximum of 41472). The
usual formula for estimating the maximum number of unique two-electron integrals for
a set of m real basis functions derives from the fact that there are four basis functions
in each integral and is eightfold degenerate (Eq. (5.109)); this approximates the
maximum number of these integrals as

In the above calculations the symmetry of water and hydrogen peroxide
plays an important role in reducing the number of integrals which must actually be
calculated, and modern ab initio programs recognize and utilize symmetry where it can
be used (most molecules lack symmetry, but the small molecules of particular theoretical
interest usually possess it), and are also able to recognize and avoid calculating integrals
below a threshold size. Nevertheless the rapid rise in the number of 2-electron integrals
with molecular and basis set size portends problems for ab initio calculations. An
ab initio calculation on aspirin, a fairly small 13 heavy atoms) molecule of
practical interest, using the 3-21G basis set (section 5.3.3), which is the smallest that
is usually used, requires 133 basis functions, which from Eq. (5.160) could invoke up
to 39 million two-electron integrals. Clearly, a modest ab initio calculation
could require tens of millions of integrals. Information on molecular size, symmetry,
basis sets and number of integrals is summarized in Table 5.2 (the 3-21G basis set is
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explained in section 5.3.3). Note that for those molecules with no symmetry the
number of two-electron integrals calculated from Eq. (5.160) is about the same as that
actually calculated by Gaussian 92.

There are two problems with so many two-electron integrals: the time needed to cal-
culate them, and where to store them. Solutions to the first problem are, as explained,
to use Gaussian functions, to utilize symmetry where possible, and to ignore those
integrals that a preliminary check reveals are “vanishing”. The other problem can be
dealt with by storing the integrals in the RAM (the random access memory, i.e. the
electronic memory), storing the integrals on the hard drive, or not storing them at
all, but rather calculating them as they are required. Calculating all the integrals at
the outset and storing them somewhere is called conventional scf, being the earlier-
used procedure. The latter procedure of calculating only those two-electron integrals
needed at the moment, and recalculating them again when necessary, is called direct
scf (presumably using “direct” in the sense of “just now” or “at the moment”). Cal-
culating all the two-electron the integrals and storing them in the RAM is the fastest
approach, since it requires them to be calculated only once, and accessing informa-
tion from the electronic memory is fast. However, RAM cannot yet store as many
integrals as the hard drive. A (currently) respectable memory of 1GB can store all
the integrals generated by perhaps about 1000 basis functions (up to about 50 mil-
lion); beyond this the computer essentially grinds to a halt. The capacity of the
hard drive is typically considerably greater than that of the RAM (say, 50 GB for a
respectable hard drive), and storing all the two-electron integrals on the hard drive is
often a viable option, but suffers from the disadvantage that the time taken to read
data from a mechanical device like the hard drive into the RAM, where it can be
used by the cpu, is much greater (perhaps a millisecond compared to a nanosecond)
than the time needed to access the information were it stored in a purely electronic
device like the RAM (which is the only alternative to direct scf in, e.g. Spartan
[30]). For these reasons, ab initio calculations with many basis functions (beyond
about 120, depending on the size of the RAM) nowadays use direct scf, despite the
need to recalculate integrals [31]. These considerations will change with improve-
ments in hardware, and the availability of very large electronic memories may make
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storage of all the two-electron integrals in RAM the method of choice for ab initio
calculations.

5.3.3 Types of basis sets and their uses
We have met the STO-1G (section 5.2.3.6e and 5.3.2) and STO-3G (section 5.3.2) basis
sets. We saw that a single Gaussian gives a poor representation of a Slater function,
but that this approximation can be improved by using a linear combination of Gaus-
sians (Fig. 5.12). In this section the basis sets commonly used in ab initio calculations
are described and their domains of utility are outlined. Note that the STO-1G basis,
although it was useful for our illustrative purposes, is not used in research calculations
(Figure 5.12 shows how poorly it approximates a Slater function). We will consider the
STO-3G, 3-21G, 6-31G*, and 6-311G* basis sets, which, with variations obtained by
adding polarization (*) and diffuse (+) functions, are the most widely-used; other sets
will be briefly mentioned. Information on basis sets is summarized in Table 5.3. Good
discussions of currently popular basis sets are given in, e.g. [1a,e 1i]; the compilations
by Hehre et al. [1g,32] are extensive and critically evaluated.

The basis sets described here are those developed by Pople3 and coworkers [33],
which are probably the most popular now, but all general-purpose (those not used just
on small molecules or on atoms) basis sets utilize some sort of contracted Gaussian
functions to simulate Slater orbitals. A brief discussion of basis sets and references
to many, including the widely-used Dunning and Huzinaga sets, is given by Simons
and Nichols [34]. There is no one procedure for developing a basis set. One method is

John Pople, born in Burnham-on-Sea, Somerset, England, 1925. Ph.D. (Mathematics) Cambridge, 1951.
Professor, Carnegie-Mellon University, 1960–1986, Northwestern University (Evanston, Illinois) 1986–
present. Nobel Prize in chemistry 1998 (with Walter Kohn, chapter 5, section 7.1).

3
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to optimize Slater functions for atoms or small molecules, i.e. to find the values of
that give the lowest energy for these, and then to use a least-squares procedure to fit
contracted Gaussians to the optimized Slater functions [35].

STO-3G
This is a called a minimal basis set, although some atoms actually have more basis
functions (which for this basis can be equated with atomic orbitals) than are needed
to accommodate all their electrons. For the earlier part of the periodic table (hydrogen
to argon) each atom has one basis function corresponding to its usual atomic orbital
description, with the proviso that the orbitals used by the later atoms of a row are
available to all those of the row. A hydrogen or helium atom has a 1s basis function.
Each “first-row” atom (lithium to neon) has a 1s, a 2s, and a and function,
giving 5 basis functions for each of these atoms: although lithium and beryllium are
often not thought of as using p orbitals, all the atoms of this row are given the same
basis, because this has been found to work better than a literally minimum basis set.
Second-row atoms (sodium to argon) have a 1s and a 2s, as well as three 2p functions,
plus a 3s and three p functions, giving 9 basis functions. In the third row, potassium
and calcium, as expected, have the 9 functions of the previous row, plus a 4s and
three 4p functions, for a total of 13 basis functions. Starting with the next element,
scandium, five 3d orbitals are added, so that scandium to krypton have 13 + 5 = 18
basis functions. The STO-3G basis is summarized in Fig. 5.13(a).

The STO-3G basis introduces us to the concept of contraction shells in constructing
contracted Gaussians from primitive Gaussians (section 5.3.2). The Gaussians of a
contraction shell share common exponents. Carbon, e.g. has one s shell and one sp shell.
This means that the 2s and 2p Gaussians (belonging to the 2sp shell) share common

exponents (which differ from those of the 1s function). Consider the contracted
Gaussians

The usual practice is to set and Using common
for the s and p primitives reduces the number of distinct integrals that must be

calculated. An STO-3G calculation on for example, involves 9 basis functions
(5 for C and 1 for each H) in 6 shells: for C one s (i.e. a 1s) shell, and one sp (i.e.
a 2s plus 2p) shell, and for each H one s (i.e. a 1s) shell. The current view is that
the STO-3G basis is not very good, and it would normally be considered unacceptable
for research. Nevertheless, one hesitates to endorse Dewar and Storch’s assertion that
“it must be considered obsolete” [36]. We do not know how many publications report
work which began with a preliminary and unreported but valuable investigation using
this basis. Its advantages are speed (it is probably the smallest basis set that would
even be considered for an ab initio calculation) and the ease with which the molec-
ular orbitals can be dissected into atomic orbital contributions. The STO-3G basis is
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roughly twice as fast as the next larger commonly used one, the (Table 5.3).
Sophisticated semiempirical methods (chapter 6) are perhaps more likely to be used
nowadays in preliminary investigations, and to obtain reasonable starting structures for
ab initio optimizations, but for systems significantly different from those for which the
semiempirical methods were parameterized one might prefer to use the STO-3G basis.
As for examining atomic contributions to bonding, interpreting bonding in terms of
hybrid orbitals and the contribution of particular atoms to MO’s is simpler when each
atom has just one conventional orbital, rather than split orbitals (as in the basis sets
to be discussed). Thus a fairly recent analysis of the electronic structure of three- and
four-membered rings used the STO-3G basis explicitly for this reason [37], as did an
interpretation of the bonding in the unusual molecule pyramidane [38].

The shortcomings (and virtues) of the STO-3G basis are extensively documented
throughout in [1g]. Basically, the drawbacks are that by comparison with the
basis, which is not excessively more demanding of time, it gives significantly less
accurate geometries and energies (this was the reason for the call to abandon this basis
[36]). Actually, even for second-row atoms (Na–Ar), where the defects of such a small
basis set should be, and are, most apparent, the STO-3G basis supplemented with five



222 Computational Chemistry

d or polarization functions (the STO-3G* basis; polarization functions are discussed
below) can give results comparable to those of the basis set. Thus for the S–O
bond length of we get (Å): STO-3G, 1.820; STO-3G*, 1.480; 3-21G, 1.678;

, 1.490; exp., 1.485, and for NSF [39] the geometries shown in Fig. 5.14.

3-21G and Split valence and double-zeta basis sets
These bases (the basis is described after the “pure” 3-21G) split each valence
orbital into two parts, an inner shell and an outer shell. The basis function of the inner
shell is represented by two Gaussians, and that of the outer shell by one Gaussian (hence
the “21”); the core orbitals are each represented by one basis function, each composed
of three Gaussians (hence the “3”). Thus H and He have a 1s orbital (the only valence
orbital for these atoms) split into (1s inner) and (1s outer), for a total of 2
basis functions. Carbon has a function represented by three Gaussians, an inner

and function, each composed of two Gaussians,
and an outer and function, each composed of
one Gaussian, making 9 basis functions. The terms inner and outer derive from the
fact that the Gaussian of the outer shell has a smaller than the Gaussians of the
inner shell, and so the former function falls off more slowly, i.e. it is more diffuse and
effectively spreads out further, into the outer regions of the molecule. The purpose of
splitting the valence shell is to give the SCF algorithm more flexibility in adjusting the
contributions of the basis functions to the molecular orbitals, thus achieving a more
realistic simulated electron distribution. Consider carbene, (Fig. 5.15). We can
denote the basis functions
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Thirteen basis functions (“atomic orbitals”) give thirteen LCAO MOs:

Note that since there are thirteen MO’s but only eight electrons to be accommodated,
only the first four MOs are occupied (recall that we are talking about
closed-shell molecules in the ground electronic state). The nine empty MOs are called
unoccupied or virtual molecular orbitals. We shall see that virtual MOs are important
in certain kinds of calculations. Now, in the course of the SCF process the coefficients
of the various inner- and outer-shell basis functions can be varied independently to find
the best wavefunctions (those corresponding to the lowest energy). As the iterations
proceed some outer-shell functions, say, could be given greater (or lesser) empha-
sis, independently of any inner-shell functions, allowing a finer-tuning of the electron
distribution, and a lower energy, than would be possible with unsplit basis functions.

A still more malleable basis set is one with all the basis functions, not just those
of the valence AO’s, split; this is called a double zeta (double ) basis set (perhaps
from the days before Gaussians, with had almost completely displaced
Slater functions with for molecular calculations). Double zeta basis sets are
much less widely used than split valence sets, since the former are computationally
more demanding and for many purposes only the contributions of the “chemically
active” valence functions to the MOs need to be fine-tuned, and in fact “double zeta”
is sometimes used to refer to split valence basis sets.

Lithium to neon have a 1s function and inner and outer 2s, and
functions, for a total of 9 basis functions. These inhabit three contraction

shells (see the STO-3G discussion): a 1s, an sp inner and an sp outer contraction shell.
Sodium to argon have a 1s, a 2s and three 2p functions, and an inner and outer shell
of 3s and 3p functions, for a total of 1+ 4 + 8 = 13 basis functions. These are in
four shells: a 1s, an sp (2s, 2p), an sp inner and an sp outer (3s and 3p inner, 3s and
3p outer). Potassium and calcium have a 1s, a 2s and three 2p, and a 3s and three 3p
functions, plus inner and outer 4s and 4p functions, for a total of 1+4+4+8= 17 basis
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functions. For the remaining atoms for which the 3-21G basis is available d functions
are added. The 3-21G basis set is summarized in Fig. 5.13(b).

For molecules with atoms beyond the first row (beyond neon), this “pure” 3-21G
basis tends to give poor geometries. This problem is largely overcome for second-
row elements (sodium to argon) by supplementing this basis with d functions, called
polarization functions. The term arises from the fact that d functions permit the elec-
tron distribution to be polarized (displaced along a particular direction), as shown in
Fig. 5.16. Polarization functions enable the SCF process to establish a more anisotropic
electron distribution (where this is appropriate) than would otherwise be possible (cf.
the use of split valence basis sets to permit more flexibility in adjusting the inner and
outer regions of electron density). The 3-21G basis set augmented where appropriate
with d functions is called the basis; the asterisk indicates polarization func-
tions (d in this case), and the parentheses mean that the extra (compared to the “pure”
3-21G basis) polarization functions are present only beyond the first row. For H to Ne,
the 3-21G and the basis sets are identical, and for these first-row atoms the
term 3-21G, rather than is normally used. The 3-21G basis without the sup-
plementary d polarization functions is not normally employed for atoms beyond neon:
here the usual 3-21G-type basis set is the There is also a relatively little-used
basis, the 3-21G* (no parentheses) in which a set of six d functions is added to the first-
row elements, giving carbon, say, 15 rather than nine basis functions. The
basis (with parentheses) is summarized in Fig. 5.13(c). p-Polarization functions can
also be added to hydrogens and helium (below).
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Examples of geometries calculated with the 3-21G and basis sets are shown
in Fig. 5.14. The gives remarkably good geometries for such a small basis
set, and in fact it is used for the geometry optimization step of some high-accuracy
energy methods (section 5.5.2). Since it is roughly ten times as fast (Table 5.3) as the
next widely-used basis, the 6-31G* (below) and is much less demanding of computer
power, the basis set is a kind of workhorse for relatively big molecules; see for
example a study using it for geometry optimization investigations of pericyclic reactions
[40]. The somewhat similar but less popular 4-21G basis was used, with the 3-21G*
basis on sulfur, for geometry optimization of the protein crambin, with 46 amino acid
residues and 642 atoms. This represented 3597 basis functions, and the job took 260
days [41]. Even where geometry optimizations with larger bases are practical, a survey
of the problem with the 3-21G* basis is sometimes useful (it is geometries
rather than relative energies which are good; consistently getting good relative energies
is a more challenging problem - see section 5.5.2).

6-31G*
This is a split valence basis set with polarization functions (these terms were explained
in connection with the basis set, above). The valence shell of each atom is split
into an inner part composed of three Gaussians and an outer part composed of one
Gaussian (“31”), while the core orbitals are each represented by one basis function,
each composed of six Gaussians (“6”). The polarization functions (*) are present on
“heavy atoms” – those beyond helium. Thus, H and He have a 1s orbital represented
by an inner and an outer basis function, making two basis functions. Carbon has
a 1s function represented by six Gaussians, an inner 2s, and

function, each composed of three Gaussians, and an outer and
function, each composed of one Gaussian, and six (not five)

3d functions, making a total of 15 basis functions. A 6-31G* calculation on uses
15 + 2 + 2 = 19 basis functions, and generates 19 MO’s. In the closed-shell species
the eight electrons occupy four of these MO’s, so there are 15 unoccupied or virtual
MO’s; compare this with a 3-21G calculation on (above) where there are a total
of 13 MOs and nine virtual MOs. The 6-31G* basis, also often called 6-31G(d), is
summarized in Fig. 5.13(d).

The 6-31G* is probably the most popular basis at present. It gives good geometries
and, often, reasonable relative energies (section 5.5.2); however, there seems to be
little evidence that it is, in general, much better than the basis for geometry
optimizations. Since it is about 10 times as slow (Table 5.3) as the basis,
the general preference for the 6-31G* for geometry optimizations may be due to its
better relative energies (section 5.5.2). The basis does have certain geometry
deficiencies compared to the 6-31G*, particularly its tendency to overzealously flatten
nitrogen atoms (the N of aniline is wrongly predicted to be planar), and this, along
with inferior relative energies and less consistency, may be responsible for its being
neglected in favor of the 6-31 G* basis set [42]. The virtues of the and 6-31 G*
basis sets for geometry optimizations are discussed further in section 5.5.1. Note that
the geometries and energies referred to here are those from HF-level calculations. Post-
HF (section 5.4) calculations, which can give significantly better geometries and much
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better relative energies (sections 5.5.1 and 5.5.2), require a basis set of at least the
6-31G* size for meaningful results.

The 6-31G* basis adds polarization functions only to so-called heavy atoms (those
beyond helium). Sometimes it is helpful to have polarization functions on the hydrogens
as well; a basis with three 2p functions on each H and He atom (in addition
to their and functions) is called the (or 6-31 (d,p)) basis. The
and bases are the same except that in the each H and He has five,
rather than two, functions. The 6-31G** basis may be preferable to the where
the hydrogens are engaged in some special activity like hydrogen bonding or bridging
[43]. In high-level calculations on hydrogen bonding or on boron hydrides, for example,
polarization functions are placed on hydrogen. For calculations on and references to
the hydrogen bonded water dimer, see section 5.4.3.

Diffuse functions
Core electrons or electrons engaged in bonding are relatively tightly bound to the
molecular nuclear framework. Lone-pair electrons or electrons in a (previously) virtual
orbital, are relatively loosely held, and are on the average at a larger distance from the
nuclei than core or bonding electrons. These “expanded” electron clouds are found in
molecules with heteroatoms, in anions, and in electronically excited molecules. To sim-
ulate well the behaviour of such species diffuse functions are used. These are Gaussian
functions with small values of this causes to fall off very slowly with
the distance r from the nucleus, so that by giving enough weight to the coefficients of
diffuse functions the SCF process can generate significant electron density at relatively
large distances from the nucleus. Typically a basis set with diffuse functions has one
such function, composed of a single Gaussian, for each valence atomic orbital of the
“heavy atoms”. The 3-21 + G basis set for carbon for this element) is

13 basis functions

and the basis for carbon is

Sometimes diffuse functions are added to hydrogen and helium as well as to the heavy
atoms; such a basis set is indicated by + +. The 3-21 + +G and 6-31 + +G basis for

19 basis functions
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hydrogen and helium is

3 basis functions

A 3-21++G calculation on would use 13 + 3 + 3 =19  basis functions, a 6-31 +
+G* calculation 19 + 3 + 3 = 25 basis functions, and a 6-31 + +G** calculation
19 + 6 + 6 = 25 basis functions.

There is some disagreement over when diffuse functions should be used. Certainly
most workers employ them routinely in studying anions and excited states, but not
ordinary lone pair molecules (molecules with heteroatoms, like ethers and amines).
A reasonable recommendation is to study with and without diffuse functions species
representative of the problem at hand, for which experimental results are known, and
see if these functions help. A paper by Warner [43] gives useful references and a
good account of the efficacy of diffuse functions in treating certain molecules with
heteroatoms.

Large basis sets
The is a small basis set and the 6-31G* and 6-31G** are moderate-size basis
sets. Of those we have discussed, only the 6-31G* and 6-31G** with diffuse functions
(6-31+G*, 6-31++G*, 6-31+G** and 6-31++G**) might be considered fairly large.
A large basis set might have a doubly-split or even triply-split valence shell with d, p
and f, and maybe even g, functions on at least the heavy atoms. An example of a large
(but not very large) basis set is the 6-311G** (i.e. 6-311(d,p)) set. This is a split valence
set with each valence orbital split into three shells, composed of three, one and one
Gaussian, while the core orbitals are represented by one basis function composed of six
Gaussians; each heavy atom also has five (not six in this case) 3d functions and each
hydrogen and helium has three 2p functions. The 6-311G** basis for carbon is then

18 basis functions

and for hydrogen

6 basis functions

Unequivocally large basis sets would be triply-split valence shell sets with d and f
functions on heavy atoms and p functions on hydrogen. At the smaller end of such sets

1s

1s+

1s
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is the 6-311G(df,p) basis, with five 3d’s and seven          on each heavy atom and three
on each hydrogen and helium. For carbon this is

25 basis functions

and for hydrogen

6 basis functions

A more impressive example of a large basis set would be 6-311G(3df,3pd). This has
for each heavy atom three sets of five d functions and one set of seven f functions,
and for each hydrogen and helium three sets of three p functions and one set of five d
functions, i.e. for carbon

35 basis functions

and for hydrogen

17 basis functions

1s

1s
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Note that all these large basis sets can be made still bigger by adding diffuse functions
to heavy atoms (+) or to heavy atoms and hydrogen/helium (++). The number of basis
functions on using some small, medium and large bases is summarized (C+H+H):

Large basis sets are used mainly for post-HF level (section 5.4) calculations, where
the use of a basis smaller than the 6-31G* is essentially pointless. At the HF level the
largest basis routinely used is the 6-31G* or 6-31G** (augmented if appropriate by
diffuse functions), and post- HF geometry optimizations are frequently done using the
6-31G* or 6-31G** basis too. Use of the larger bases (6-311G** and up) tends to be
confined to single-point calculations on structures optimized with a smaller basis set
(section 5.5.2). These are not firm rules: the high-accuracy CBS (complete basis set)
methods (section 5.5.2) use as part of their procedure single-point HF (rather than post-
HF) level calculations with very large basis sets, and geometry optimizations with large
basis sets were performed at both HF and post-HF levels in studies of the theoretically
and experimentally challenging oxirene system [44].

Effective core potentials (pseudopotentials)
From about the third row (potassium to krypton) of the periodic table on the large
number of electrons (19–36) has a considerable slowing effect on conventional ab ini-
tio calculations, because of the large number of two-electron repulsion integrals they
engender. The usual way of avoiding this problem is to add to the Fock operator a
one-electron operator that takes into account the effect of the core electrons on the
valence electrons, which latter are still considered explicitly. This “average core effect”
operator is called an effective core potential (ECP) or a pseudopotential. With a set of
valence orbital basis functions optimized for use with it, it simulates the effect on the
valence electrons of the atomic nuclei plus the core electrons. A distinction is sometimes
made between an ECP and a pseudopotential, the latter term being used to mean any
approach limited to the valence electrons, while ECP is sometimes used to designate
a simplified pseudopotential corresponding to a function with fewer orbital nodes than
the “correct” functions. However, the terms are often used interchangeably to designate
a nuclei-plus-core electrons potential used with a set of valence functions, and that is
what is meant here.

So far we have discussed nonrelativistic ab initio methods: they ignore those conse-
quences of Einstein’s theory of relativity that are relevant to chemistry (section 4.2.3).
These consequences arise in the special (rather than the general) theory, from the
dependence of mass on velocity [45]. This dependence causes the masses of the inner
electrons of heavy atoms to be significantly greater than the electron rest mass; since the
Hamiltonian operator in the Schrödinger equation contains the electron mass (Eqs (5.36)
and (5.37)), this change of mass should be taken into account. Relativistic effects in

STO-3G 5 + 1 + 1 = 7 functions
3-21G(= here) 9 + 2 + 2=13 functions
6-31G* (6-31G(d)) 15 + 2 + 2 = 19 functions
6-31G**(6-31G(d,p)) 15 + 5 + 5 = 25 functions
6-311G**(6-31 lG(d,p)) 18 + 6 + 6 = 30 functions
6-31 1G(df,p) 25 + 6 + 6 = 37 functions
6-31 1G(3df,3pd) 35 + 17 + 17 = 69 functions
6-311++G(3df, 3pd) 39 + 18 + 18 = 75 functions
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heavy-atom molecules affect geometries, energies, and other properties. Relativity is
accounted for in the relativistic form of the Schrödinger equation, the Dirac equation
(interestingly, Dirac thought his equation would not be relevant to chemistry [46]).
This equation is not commonly used explicitly in molecular calculations, but is instead
used to develop [47] relativistic effective core potentials (relativistic pseudopotentials).
Relativistic effects begin to become significant for about third-row elements, i.e. those
for which ECPs begin to be useful for speeding up calculations, so it makes sense
to take relativistic effects into account in developing these potential operators and
their basis functions, and indeed ECPs are generally relativistic. Such ECPs can give
accurate results for molecules with third-row-plus atoms by simulating the relativis-
tic mass increase. Comparing such a calculation on silver fluoride using the popular
LANL2DZ basis set (a split valence basis) with a 3-21G* calculation, using Gaussian
94 for Windows [48] on a PentiumPro:

LANL2DZ basis, 31 basis functions, 1.9 min; Ag-F = 2.064 Å

basis, 48 basis functions, 2.6 min; Ag-F = 2.019 Å

The experimental bond length is 1.983 Å [49].

In this simple case there is no real advantage to the pseudopotential calculation (the
 3-21G* geometry is actually better!), but for more challenging calculations on “very-
heavy-atom” molecules, particularly transition metal molecules, ab initio calculations
use pseudopotentials almost exclusively. A concise description of pseudopotential the-
ory and specific relativistic effects on molecules, with several references, is given by
Levine [50]. Reviews oriented toward transition metal molecules [51a,b] and the lan-
thanides [51c] have appeared, as well as detailed reviews of the more “technical” aspects
of the theory [52].

Which basis set should I use ?
There are books of practical advice [1e,k,53] which help to provide a feel for the
appropriateness of various basis sets. By reading the research literature one learns what
approaches, including which basis sets, are being applied to a various problems, espe-
cially those related to the one’s research. This said, one should avoid simply assuming
that the basis used in published work was the most appropriate one: in the absence of
evidence to the contrary, one may suspect that it was either too small or unnecessarily
big. Hehre [32] has shown that in many cases the use of very large bases is pointless; on
the other hand some problems yield, if at all, only to very large basis sets (see below). A
Goldilocks-like basis can rarely (except for calculations of a cursory or routine nature)
be simply picked; rather, one homes in on an it, by experimenting. A rational approach
in many cases might be to survey the territory first with a semiempirical method (chap-
ter 6) or with the STO-3G basis and to use one of these to create input structures
and input hessians (section 2.4) for higher-level calculations) then to move on to the

basis or possibly the for a reasonable exploration of the problem.
For a novel system for which there is no previous work to serve as a guide one should
move up to larger basis sets and to post-HF methods (section 5.4), climbing the ladder
of sophistication until reasonable convergence of at least qualitative results has been
obtained. Janoschek has given an excellent survey indicating the reliability of ab initio
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calculations and the level at which one might need to work to obtain trustworthy results
by [54].

Oxirene (oxacyclopropene) provides a canonical example of a molecule which even
at the highest current levels of theory has declined to reveal its basic secret: can it
exist (“Oxirene: to Be or Not to Be?” [44b]). Very large basis sets and advanced
post-HF methods suggest it is a true minimum on the potential energy surface, but its
disconcerting tendency to display an imaginary (section 2.5) calculated ring-opening
vibrational mode at some of the highest levels used leaves the judicious chemist with
no choice but to reserve judgement on its being. The nature of a series of substituted
oxirenes, studied likewise at high levels, appears to be clearer [44a].

Another system that has yielded results which are dependent on the level of theory
used, but which unlike the oxirene problem provides a textbook example of a smooth
gradation in the nature of the answers obtained, is the ethyl cation (Fig. 5.17). At the
HF STO-3G and 3-21G levels the classical structure is a minimum and the bridged
nonclassical structure is a transition state, but with the 6-31G* basis the bridged ion has
become a minimum and the classical one, although the global minimum, is not securely
ensconced as such, being only lower than the bridged ion. At the post-HF
(section 5.4) MP2 level with the 6-31G* basis the bridged ion is a minimum and the
classical one has lost the dignity of being even a stationary point. The ethyl cation and
several other systems have been reviewed [54].

In summary, in many cases [32] the 3-21G (i.e. or 6-31G* basis sets, or even
the much faster molecular mechanics (chapter 3) or semiempirical (chapter 6) methods,
are entirely satisfactory, but there are problems that require quite high levels of attack.
In this connection, whether one chooses to regard the wide variety of basis sets at our
disposal as representing a “chaotic proliferation” [55] or rather valuable components
of our armamentarium is perhaps a matter of viewpoint.

5.4 POST-HF CALCULATIONS: ELECTRON CORRELATION

5.4.1 Electron correlation
Electron correlation is the phenomenon of the motion of pairs of electrons in atoms or
molecules being connected (“correlated”) [56]. The purpose of post-HF calculations
is to treat such correlated motion better than does the HF method. In the HF treatment,
electron–electron repulsion is handled by having each electron move in a smeared-out,
average electrostatic field due to all the other electrons (sections 5.2.3.2 and 5.2.3.6b),
and the probability that an electron will have a particular set of spatial coordinates at
some moment is independent of the coordinates of the other electrons at that moment.
In reality, however, each electron at any moment moves under the influence of the
repulsion, not of an average electron cloud, but rather of individual electrons (in fact
current physics regards electrons as point particles – with wave properties of course).
The consequence of this is that the motion of an electron in a real atom or molecule is
more complicated than that for an electron moving in a smeared-out field [57] and the
electrons are thus better able to avoid one another. Because of this enhanced (compared
to the HF treatment) standoffishness, electron–electron repulsion is really smaller than
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predicted by a HF calculation, i.e. the electronic energy is in reality lower (more nega-
tive). If you walk through a crowd, regarding it as a smeared-out collection of people,
you will experience collisions that could be avoided by looking at individual motions
and correlating yours accordingly. The HF method overestimates electron–electron
repulsion and so gives higher electronic energies than the correct ones, even with the
biggest basis sets, because it does not treat electron correlation properly.

Hartree-Fock calculations are sometimes said to ignore, or at least neglect, electron
correlation. Actually, the HF method allows for some electron correlation: two electrons
of the same spin can’t be in the same place at the same time because their spatial and
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spin coordinates would then be the same and the Slater determinant (section 5.2.3.1)
representing the total molecular wavefunction would vanish, since a determinant is zero
if two rows or columns are the same (section 4.3.3). This is just a consequence of the
antisymmetry of the wavefunction: switching rows or columns of a determinant changes
its sign; for two rows/columns the same and so If
the wavefunction were to vanish so would the electron density, which can be calculated
from the wavefunction. This is one way of looking at the Pauli exclusion principle.
Now, since the probability is zero that at any moment two electrons of like spin are at
the same point in space, and since the wavefunction is continuous, the probability of
finding them at a given separation should decrease smoothly with that separation. This
means that even if electrons were uncharged, with no electrostatic repulsion between
them, around each electron there would still be a region increasingly (the closer we
approach the electron) unfriendly to other electrons of the same spin. This quantum
mechanically engendered “Pauli exclusion zone” around an electron is called a Fermi
hole (after Enrico Fermi; it applies to fermions (section 5.2.2) in general). It can be
shown that the HF method overestimates the size of the Fermi hole. Besides the quantum
mechanical Fermi hole, each electron in a real molecule, not in a “HF molecule”, is
surrounded by a region unfriendly to all other electrons, regardless of spin, because
of the electrostatic (Coulomb) repulsion between point particles (= electrons). This
electrostatic exclusion zone is called a Coulomb hole. Since the HF method does not
treat the electrons as discrete point particles it essentially ignores the existence of the
Coulomb hole, allowing electrons to get too close on the average. This is the main
source of the overestimation of electron–electron repulsion in the HF method. Post-HF
calculations attempt to allow electrons, even of different spin, to avoid one another
better than in the HF approximation.

Hartree-Fock calculations give an electronic energy (and thus a total internal energy,
section 5.2.3.6d) that is too high (the variation theorem, section 5.2.3.3, assures us that
the HF energy will never be too low). This is partly because of the overestimation of
electronic repulsion and partly because of the fact that in any real calculation the basis
set is not perfect. For sensibly-developed basis sets, as the basis set size increases the
HF energy gets smaller, i.e. more negative. The limiting energy that would be given
by an infinitely large basis set is called the HF limit (i.e. the energy in the HF limit).
Table 5.4 and Fig. 5.18 show the results of some HF and post-HF calculations on the
hydrogen molecule; the limiting energies are close to the accepted ones [58]. Errors in
energy, or in any other molecular feature, that can be ascribed to using a finite basis set
are said to be caused by basis set truncation. Basis set truncation does not always cause
serious errors; for example, the small HF/3-21G basis often gives good geometries
(section 5.3.3). Where necessary, the truncation problem can be minimized by using a
large (provided the size of the molecule makes this practical), appropriate basis set.

A measure of the extent to which any particular ab initio calculation does not deal
perfectly with electron correlation is the correlation energy. In a canonical exposition
[59] Löwdin defined correlation energy thus: “The correlation energy for a certain state
with respect to a specified Hamiltonian is the difference between the exact eigenvalue
of the Hamiltonian and its expectation value in the HF approximation for the state under
consideration.” In other words, the correlation energy for a calculation on some mole-
cule or atom is the energy calculated by some perfect quantum mechanical procedure,
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minus the energy calculated by the HF method with a huge (“infinite”) basis set, using
the same Hamiltonian:

– E(HF limit) using the same Hamiltonian for both terms

From this definition the correlation energy is negative, since E(exact) is more negative
than E(HF limit). Usually E(exact) and E(HF limit) are taken as the energy from
a Hamiltonian that excludes relativistic effects (like that in section 5.2.2, Eqs (5.4),
(5.5), (5.6) and associated discussion), which are significant only for heavy atoms, so
unless qualified the term correlation energy means nonrelativistic correlation energy.
The correlation energy is essentially the energy that the HF procedure fails to account
for. If relativistic effects (and other , usually small, effects like spin–orbit coupling)
are negligible then is the difference between the experimental value (of the
energy required to dissociate the molecule or atom into infinitely separated nuclei and
electrons) and the limiting HF energy.

A distinction is sometimes made between dynamic and nondynamic or static cor-
relation energy. Dynamic correlation energy is the energy a HF calculation does not
account for because it fails to keep the electrons sufficiently far apart; this is the usual
“correlation energy”. Nondynamic correlation energy is the energy a calculation (HF
or otherwise) may not account for because it uses a single determinant, or starts from
a single determinant (is based on a single-determinant reference – section 5.4.3); this
problem arises with singlet diradicals, e.g. where a closed-shell description of the elec-
tronic structure is qualitatively wrong. Dynamic correlation energy can be calculated
(“recovered”) by Møller-Plesset or configuration interaction methods (sections 5.4.2
and 5.4.3) and static correlation energy can be recovered by basing the wavefunction
on more than one determinant, as in the multireference configuration interaction method
(section 5.4.3).

Although HF calculations are satisfactory for many purposes (sections 5.5 and 5.6)
there are cases where a better treatment of electron correlation is needed. This is partic-
ularly true for the calculation of relative energies, although geometries and some other
properties are also improved by post-HF calculations, section 5.4). As an illustration
of a shortcoming of HF calculations consider an attempt to find the C/C single bond
dissociation energy of ethane by comparing the energy of ethane with that of two methyl
radicals:

Let us simply subtract the energy of two methyl radicals from that of an ethane mole-
cule, and compare with experiment the results of HF calculations and (anticipating
section 5.4.2) the post-HF (i.e. correlated) MP2 method. In Table 5.5 the energies shown
for and are the “uncorrected” ab initio energies (the energy displayed at
the end of any calculation; this is the electronic energy+the internuclear repulsion), the
ZPE, and the “corrected” energy (uncorrected energy + ZPE); see section 5.2.3.6d. The
ZPEs used here are from HF/6-31G* optimization/frequency jobs; these are fairly fast
and give reasonable ZPEs. The ZPEs were all calculated by multiplying by an empiri-
cal correction factor of 0.9135 (this brings them into better agreement with experiment
[60]). Although frequencies must be calculated with the same method (HF, MP2, etc.)
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and basis set as were used for the geometry optimization, ZPEs from a particular
method/basis may be used to correct energies obtained with another method/basis. The
only calculations that give reasonable agreement with the experimental ethane C–C dis-
sociation energy (reported at from 368 to 377 kJ [61]) are the correlated (MP2)
ones, 370 and 363 kJ because of error in the experimental value the two MP2
results may be equally good. The HF values (248 and 232 kJ ) are very poor, even
(especially!) when the very large 6-311++G(3df,3p2d) basis is used.

This inability of HF calculations to model correctly homolytic bond dissociation
is commonly illustrated by curves of the change in energy as a bond is stretched,
e.g. Fig. 5.19. The phenomenon is discussed in detail in numerous expositions of
electron correlation [62]. Suffice it to say here that representing the wavefunction as
one determinant (or a few), as is done in Hartree-Fock theory, does not permit correct
homolytic dissociation to two radicals because while the reactant (e.g. ) is a closed-
shell species that can (usually) be represented well by one determinant made up of paired
electrons in the occupied MOs, the products are two radicals, each with an unpaired
electron. Ways of obtaining satisfactory energies, with and without the use of electron
correlation methods, for processes involving homolytic cleavage, are discussed further
in section 5.5.2.
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5.4.2 The Møller-Plesset approach to electron correlation
The Møller-Plesset (MP) treatment of electron correlation [64] is based on perturbation
theory, a very general approach used in physics to treat complex systems [65]; this
particular approach was described by Møller and Plesset in 1934 [66] and developed

There are basically three approaches to dealing with electron correlation: explicit
use of the interelectronic distances as variables in the Schrödinger equation, treatment
of the real molecule as a perturbed HF system, and explicit inclusion in the wavefunc-
tion of electronic configurations other than the ground-state one. Using interelectronic
distances explicitly quickly seems to become mathematically intractable and is cur-
rently limited to atoms and molecules that are very small [63]. The other two methods
are general and very important: the perturbation approach is used in the very pop-
ular Møller–Plesset4 methods, and the use of higher electronic configurations in the
wavefunction forms the basis of configuration interaction, which in various forms is
employed in some of the most advanced ab initio methods currently used for dealing
with electron correlation. A powerful method that is becoming increasingly popular
and incorporates mathematical features of the perturbation and higher-electronic-state
methods, the coupled-cluster approach, is also described.

Møller-Plesset: the Norwegian letter ø is pronounced like French eu or German ö.4
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into a practical molecular computational method by Binkley and Pople [67] in 1975.
The basic idea behind perturbation theory is that if we know how to treat a simple (often
idealized) system then a more complex (and often more realistic) version of this system,
if it is not too different, can be treated mathematically as an altered (perturbed) version of
the simple one. Møller-Plesset calculations are denoted as MP, MPPT (MP perturbation
theory) or MBPT (many-body perturbation theory) calculations. The derivation of the
MP method [68] is complicated, and only the flavor of the approach will be given
here. There is a hierarchy of MP energy levels: MP0, MP1 (these first two designations
are not actually used), MP2 etc.…, which successively account more thoroughly for
interelectronic repulsion.

“MP0” would use the electronic energy obtained by simply summing the HF one-
electron energies (section 5.2.3.6d, Eq. (5.84)). This ignores interelectronic repulsion
except for refusing to allow more than two electrons in the same spatial MO. “MP1”
corresponds to MP0 corrected with the Coulomb and exchange integrals J and K
(Eqs (5.85) and (5.90)), i.e. MP1 is just the Hartree-Fock energy. As we have seen
(sections 5.2.3.2 and 5.2.3.6b), this handles interelectronic repulsion in an average way.
We could write where is the sum of one-electron
energies and internuclear repulsions and is the J, K correction (corresponding
respectively to the two terms in Eqs (5.85) and (5.90)), regarding the second term as a
kind of perturbational correction to the sum of one-electron energies.

MP2 is the first MP level to go beyond the HF treatment (it is the first “real” MP level).
The MP2 energy is the HF energy plus a correction term (a perturbational adjustment)
that represents a lowering of energy brought about by allowing the electrons to avoid
one another better than in the HF treatment:

The HF term includes internuclear repulsions, and the perturbation correction is
a purely electronic term. is a sum of terms each of which models the promotion
of pairs of electrons (so-called double excitations are required by Brillouin’s theorem
[69]) from occupied to unoccupied MOs (virtual MOs).

Let’s do an MP2 energy calculation on , the molecule for which a HF (i.e. an
SCF) calculation was shown in detail in section 5.2.3.6e. As for the HF calculation, we
will take the internuclear distance as 0.800 Å and use the STO-1G basis set; we can
then use for our MP2 calculation these HF results that we obtained in section 5.2.3.6e:

The MO coefficients:

For the occupied MO (recall that these are respectively
the coefficient of basis function 1, in MO1 and the coefficient of basis function 2,

in MO1. In this simple case there is one function on each atom: and on atoms
1 and 2 (H and He).

For the unoccupied (virtual) MO

The two-electron repulsion integrals:

(11|11) = 0.7283       (21|21) = 0.2192

(21|11) = 0.3418      (22|21) = 0.4368

(22|11) = 0.5850      (22|22) = 0.9927
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The energy levels: occupied MO, virtual MO,

The HF energy:

The MP2 energy correction for a closed-shell two-electron/two-MO system is [70]:

Applying this formula is straightforward; although the arithmetic is tedious, it is worth
doing (as was true for the HF calculation in section 5.2.3.6e) in order to appreciate how
much work is involved in even this simplest molecular MP2 job. Consider the integral
in the numerator of Eq. (5.162); substituting for and

Multiplying out the integrand gives a total of 16 terms (from 4 terms to the left of
and 4 terms to the right), and leads to a sum of 16 integrals:

recalling the notational degeneracy in the two-electron integrals (section 5.2.3.6e,
“Step 2 Calculating the integrals”). Substituting the values of the coefficients and the
two-electron integrals:

So from Eq. (5.162)

The MP2 energy is the HF energy plus the MP2 correction (Eq. (5.162)):

This energy, which includes internuclear repulsion, since includes this
(Eq. (5.93)), is the MP2 energy normally printed out at the end of the calculation.
To get an intuitive feel for the physical significance of the calculation just performed
look again at Eq. (5.162), which applies to any two-electron/two-basis function species.



The equation shows that the absolute value (the correction is negative since is smaller
than – the occupied MO has a lower energy than the virtual one) of the correlation
correction increases, i.e. the energy decreases, with the magnitude of the integral (which
is positive). This integral represents the decrease in energy arising from allowing an
electron pair in the occupied MO to spill over into the virtual MO

represents electron 1 in and represents electron 2 in

represents electron 1 in and represents electron 2 in

The operator brings in coulombic interaction: the coulombic repulsion energy
between infinitesimal volume elements and separated
by a distance is and the integral is simply
the sum over all such volume elements (cf. the discussion in connection with Fig. 5.3
and the average-field integrals J and K in section 5.2.3.2). Physically, the decrease
in energy makes sense: allowing the electrons to be partly in the formally unoccupied
virtual MO rather than confining them strictly to the formally occupied MO enables
them to avoid one another better than in the HF treatment, which is based on a Slater
determinant consisting only of occupied MOs (section 5.2.3.1). The essence of the
MP method (MP2, MP3, etc.) is that the correction term handles electron correlation
by promoting electrons from occupied to unoccupied (virtual) MOs, giving electrons,
in some sense, more room to move and thus making it easier for them to avoid one
another; the decreased interelectronic repulsion results in a lower electronic energy. The
contribution of the interaction” to decreases as the occupied/virtual MO
gap increases, since this is in the denominator. Physically, this makes sense: the
bigger the gap between the occupied and higher-energy virtual MO, the “harder” it is to
promote electrons from the one into the other, so the less can such promotion contribute
to electronic stabilization. So in the expression for (Eq. (5.162), the numerator
represents the promotion of electrons from the occupied to the virtual orbital, and the
denominator represents how hard it is to do this.

As we just saw, MP2 calculations utilize the HF MOs (their coefficients c and ener-
gies ). The HF method gives the best occupied MOs obtainable from a given basis
set and a one-determinant total wavefunction but it does not optimize the virtual
orbitals (after all, in the HF procedure we start with a determinant consisting of only the
occupied MOs – sections 5.2.3.1–5.2.3.4). To get a reasonable description of the virtual
orbitals and to obtain a reasonable number of them into which to promote electrons,
we need a basis set that is not too small. The use of the STO-1G basis in the above
example was purely illustrative; the smallest basis set generally considered acceptable
for MP calculations is the 6-31G*, and in fact this is perhaps the one most frequently
used for MP2 calculations. The 6-311G** basis set is also widely used for MP2 and
MP4 calculations. Both bases can of course be augmented (section 5.3.3) with diffuse
functions, and the 6-31G* with H polarization functions (6-31G**). MP2 calculations
increase rapidly in complexity with the number of electrons and orbitals, involving
as they do a sum of terms (rather than just one term as in ), each representing
the promotion of an electron pair from an occupied to a virtual orbital; thus an MP2
calculation on with the 6-31G* basis involves 8 electrons and 19 MOs (4 occupied
and 15 virtual MOs).
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In MP2 calculations doubly excited states (doubly excited configurations) interact
with the ground state (the integral in Eq. (5.162) involves with electrons 1 and 2, and

with electrons 1 and 2). In MP3 calculations doubly excited states interact with one
another (there are integrals involving two virtual orbitals). In MP4 calculations singly,
doubly triply and quadruply excited states are involved. MP5 and higher expressions
have been developed, but MP2 and MP4 are by far the most popular MP levels (also
called MBPT(2) and MBPT(4) – many-body perturbation theory). MP2 calculations,
which are much slower than HF, can be speeded up somewhat by specifying MP2(FC),
MP2 frozen-core, in contrast to MP2(FULL); frozen-core means that the core (non-
valence electrons) are “frozen,” i.e. not promoted into virtual orbitals, in contrast to full
MP2 which takes all the electrons into account in summing the contributions of excited
states to the lowering of energy. Most programs (e.g. Gaussian, Spartan) perform
MP2(FC) by default when MP2 is specified, and “MP2” usually means frozen-core.
MP4 calculations are sometimes done omitting the triply excited terms (MP4SDQ) but
the most accurate (and slowest) implementation is MP4SDTQ (singles, doubles, triples,
quadruples).

Calculated properties like geometries and relative energies tend to be better (to be
closer to the true ones) when done with correlated methods (sections 5.5.1–5.5.4). To
save time, energies are often calculated with a correlated method on a HF geometry,
rather than carrying out the geometry optimization at the correlated level. This is called
a single-point calculation (it is performed at a single point on the HF potential energy
surface, without changing the geometry). A single-point MP2(FC) calculation using the
6-311G** basis, on a structure that was optimized with the HF method and the 6-31G*
basis, is designated as MP2(FC)/6-311G**//HF/6-31G*. A HF/6-31G* (say) geometry
optimization, without a subsequent single-point calculation, is sometimes designated
HF/6-31G*//HF/6-31G*, and an MP2 optimization MP2/6-31G*//MP2/6-31G*. The
correlation treatment (HF, MP2, MP4,...) is often called the method, and the basis
set (STO-3G, 3-21G, 6-31G*,...) the level, but we will often find it convenient to
let level denote the combined procedure of method and basis set, referring, say, to an
MP2/6-31G* calculation as being at a higher level than an HF/6-31* one.

Figure 5.20 shows the rationale behind the use of single-point calculations for obtain-
ing relative energies. In the diagram a single-point MP2 calculation on a stationary
point at the HF geometry gives the same energy as would be obtained by optimizing
the species at the MP2 level, which is often approximately true (it would be exactly
true if the MP2 and HF geometries were identical). For example, the single-point and
optimized energies of butanone are –231.68593 and –231.68818h, a difference of
0.00225 h (2.3 mh) or not large bearing in mind that special high-accuracy
calculations (section 5.5.2.2) are needed to reliably get relative energies to within, say,

Single-point calculations would also give relative energies similar to those
from the use of optimized correlated geometries if the incremental deviations from the
optimized-geometry energies were about the same for the two species being compared
(e.g. reactant and TS for an activation energy, reactant and product for a reaction energy).

The method can occasionally give not just quantitatively, but qualitatively wrong
results. The HF and correlated surfaces may have different curvatures: for example
a minimum on one surface may be a transition state or may not exist (may not be a
stationary point) on another. Thus fluoro- and difluorodiazomethane are HF minima but
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are not MP2/6-31G* stationary points [71]; an attempt to approximate the MP2/6-31G*
reaction energy for, say, using single-point MP2/6-31 G* energies
on HF geometries, is misguided if does not exist on the MP2 PES. Neverthe-
less, because HF optimizations followed by single-point correlated energy calculations
are much faster (“cheaper”) than correlated optimizations, and usually give improved
relative energies, the method is widely used. Figure 5.21 compares some MP2 single-
point and MP2-optimized energies with experiment or with high-level calculations [72].
Geometries are discussed further in section 5.5.1.

5.4.3 The configuration interaction approach to
electron correlation

The configuration interaction (CI) treatment of electron correlation [62,73] is based on
the simple idea that one can improve on the HF wavefunction, and hence energy, by
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adding on to the HF wavefunction terms that represent promotion of electrons from
occupied to virtual MOs. The HF term and the additional terms each represent a par-
ticular electronic configuration, and the actual wavefunction and electronic structure of
the system can be conceptualized as the result of the interaction of these configurations.
This electron promotion, which makes it easier for electrons to avoid one another, is as
we saw (section 5.4.2) also the physical idea behind the MP method; the MP and CI
methods differ in their mathematical approaches.

HF theory (sections 5.2.3.1–5.2.3.6) starts with a total wavefunction or total MO
which is a Slater determinant made of “component” wavefunctions or In

section 5.2.3.1 we approached HF theory by considering the Slater determinant for a
four-electron system:

To construct the HF determinant we used only occupied MOs: four electrons require
only two spatial “component” MOs, and and for each of these there are two spin
orbitals, created bymultiplying by one of the spin functions or the resulting
four spin orbitals are used four times, once with each electron.
The determinant the HF wavefunction, thus consists of the four lowest-energy spin
orbitals; it is the simplest representation of the total wavefunction that is antisymmetric
and satisfies the Pauli exclusion principle (section 5.2.2), but as we shall see it is not
a complete representation of the total wavefunction.

In the Roothaan–Hall implementation of ab initio theory each “component” is
composed of a set of basis functions (Sections 5.2.3.6 and 5.3):

Now note that there is no definite limit to how many basis functions can
be used for our four-electron calculation; although only two spatial and
(i.e. four spin orbitals) are required to accommodate the four electrons of this the
total number of can be greater. Thus for the hypothetical H–H–H–H an STO-3G
basis gives four a 3-21G basis gives 8, and a 6-31G** basis gives 20 (section 5.3.3).
The idea behind CI is that a better total wavefunction, and from this a better energy,
results if the electrons are confined not just to the four spin orbitals

but are allowed to roam over all, or at least some, of the virtual spin orbitals
To permit this we could write as a linear combination of

determinants
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where is the HF determinant of Eq. (5.163) and etc. correspond to the
promotion of electrons into virtual orbitals, e.g. we might have

was obtained from by promoting an electron from spin orbital to the spin
orbital Another possibility is

Here two electrons have been promoted, from the spin orbitals and to
and and represent promotion into virtual orbitals of one and two electrons,
respectively, starting with the HF electronic configuration (Fig. 5.22).
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What is the physical meaning of all these totalwavefunctions Each determinant
D, or a linear combination of a few determinants, represents an idealized (in the sense
of contributing to the real electron distribution) configuration, called a configuration
state function or configuration function, CSF (see below). The CI wavefunctions of
Eqs (5.168) or Eqs (5.169), then, are linear combinations of CSF’s. No single CSF fully
represents any particular electronic state. Each wavefunction is the total wavefunc-
tion of one of the possible electronic states of the molecule, and the weighting factors
in its expansion determine to what extent particular CSF’s (idealized electronic states)
contribute to any For the lowest-energy wavefunction representing the ground
electronic state, we expect the HF determinant to make the largest contribution to the
wavefunction. Thewavefunctions etc. represent excited electronic states. The
single-determinant HF wavefunction of Eq. (5.163) (or the general single-determinant
wavefunction of Eq. (5.12)) is merely an approximation to the of Eqs (5.168).

If every possible idealized electronic state of the system, i.e. every possible deter-
minant D, were included in the expansions of Eqs (5.168), then the wavefunctions
would be full CI wavefunctions. Full CI calculations are possible only for very small
molecules, because the promotion of electrons into virtual orbitals can generate a huge
number of states unless we have only a few electrons and orbitals. Consider for example
a full CI calculation on a very small system, H–H–H–H with the 6-31G* basis set. We
have eight basis functions and four electrons, giving eight spatial MOs and 16 spin
MOs, of which the lowest four are occupied. There are two electrons to be promoted
into 6 virtual α spin MOs, i.e. to be distributed among 8 spin MOs, and likewise
for the electrons and spin orbitals. This can be done in
ways. The number of configuration state functions is about half this number of deter-
minants; a CSF is a linear combination of determinants for equivalent states, states
which differ only by whether an or a electron was promoted. CI calculations with
more than five billion (sic) CSFs have been performed on ethyne, rightly
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Equation (5.165) is analogous to Eq. (5.164): in (5.164) “component” MOs are
expanded in terms of basis functions and in (5.165) a total MO is expanded
in terms of determinants, each of which represents a particular electronic configu-
ration. We know that the basis functions of Eq. (5.164) generate component
MOs (section 5.2.3.6a), so the determinants of Eq. (5.165) must generate total
wavefunctions and Eq. (5.165) should really be written

i.e. (cf. Eq. (5.164))
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called benchmark calculations, such computational tours de force are, although of lim-
ited direct application, important for evaluating the efficacy, by comparison, of other
methods.

The simplest implementation of CI is analogous to the Roothaan–Hall implemen-
tation of the HF method: Eqs (5.168) lead to a CI matrix, as the HF equations (using
Eqs (5.164)) lead to a HF matrix (Fock matrix; section 5.2.3.6). We saw that the Fock
matrix F can be calculated from the and of Eq. (5.164) (starting with a “guess”
of the and that F (after transformation to an orthogonalized matrix and diag-
onalization) gives eigenvalues and eigenvectors i.e. F leads to the energy levels
and the wavefunctions of the component MOs all this was shown in detail in
section 5.2.3.6e. Similarly, a CI matrix can be calculated in which the determinants
D play the role that the basis functions play in the Fock matrix, since the D’s in
Eqs (5.168) correspond mathematically to the in Eq. (5.164)). The D’s are com-
posed of spin orbitals and and the spin factors can be integrated out, reducing
the elements of the CI matrix to expressions involving the basis functions and coef-
ficients of the spatial component MOs The CI matrix can thus be calculated from
the MOs resulting from an HF calculation. Orthogonalization and diagonalization of
the CI matrix gives the energies and the wavefunctions of the ground state and,
from determinants, excited states. A full CI matrix would give the energies and
wavefunctions of the ground state and all the excited states obtainable from the basis
set being used. Full CI with an infinitely large basis set would give the exact energies
of all the electronic states; more realistically, full CI with a large basis set gives good
energies for the ground and many excited states.

Full CI is out of the question for any but small molecules, and the expansion of
Eq. (5.169) must usually be limited by including only the most important terms. Which
terms can be neglected depends partly on the purpose of the calculation. For example,
in calculating the ground state energy quadruply excited states are, unexpectedly, much
more important than triply and singly excited ones, but the latter are usually included
too because they affect the electron distribution of the ground state, and in calculating
excited state energies single excitations are important. A CI calculation in which all the
post HF D’s involve only single excitations is called CIS (CI singles); such a calculation
yields the energies and wavefunctions of excited states and often gives a reasonable
account of electronic spectra. Another common kind of CI calculation is CI singles and
doubles (CISD, which actually indirectly includes triply and quadruply excited states).
Various mathematical devices have been developed to make CI calculations recover
a good deal of the correlation energy despite the necessity of (judicious) truncation
of the CI expansion. Perhaps the currently most widely-used implementations of CI
are multiconfigurational SCF (MCSCF) and its variant complete active space SCF
(CASSCF), and the coupled-cluster (CC) and related quadratic CI (QCI) methods.

The CI strict analogue of the iterative refinement of the coefficients that we saw
in HF calculations (section 5.2.3.6e) would refine just the weighting factors of the
determinants (the c’s of Eqs (5.168), but in the MCSCF version of CI the spatial
MOs within the determinants are also optimized (by optimizing the of the LCAO
expansion, Eq. (5.164)). A widely-used version of the MCSCF method is the CASSCF
method, in which one carefully chooses the orbitals to be used in forming the various CI
determinants. These active orbitals, which constitute the active space, are the MOs that
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one considers to be most important for the process under study. Thus for a Diels–Alder
reaction, the two and two MOs of the diene and the and MO of the alkene
(the dienophile) would be a reasonable minimum [75] as candidates for the active space
of the reactants; the six electrons in these MOs would be the active electrons, and with
the 6-31G* basis this would be a (specifying electrons, MOs) CASSCF (6, 6)/6-31G*
calculation. CASSCF calculations are used to study chemical reactions and to calculate
electronic spectra. They require judgement in the proper choice of the active space and
are not essentially algorithmic like other methods [76]. An extension of the MCSCF
method is multireference CI (MRCI), in which the determinants (the CSFs) from an
MCSCF calculation are used to generate more determinants, by promoting electrons in
them into virtual orbitals (multifererence, since the final wavefunction “refers back” to
several, not just one, determinant).

The CC method is actually related to both the perturbation (section 5.4.2) and the
CI approaches (section 5.4.3). Like perturbation theory, CC theory is connected to the
linked cluster theorem (linked diagram theorem) [77], which proves that MP calcula-
tions are size-consistent (see below). Like straightforward CI it expresses the correlated
wavefunction as a sum of the HF ground state determinant and determinants represent-
ing the promotion of electrons from this into virtual MOs. As with the MP equations,
the derivation of the CC equations is complicated. The basic idea is to express the
correlated wavefunction as a sum of determinants by allowing a series of operators

... to act on the HF wavefunction:

where The operators are excitation operators and
have the effect of promoting one, two, etc., respectively, electrons into virtual spin
orbitals. Depending on how many terms are actually included in the summation for
one obtains the coupled cluster doubles (CCD), coupled cluster singles and doubles
(CCSD) or coupled cluster singles, doubles and triples (CCSDT) method:

Instead of the very demanding CCSDT calculations one often performs CCSD(T) (note
the parentheses), in which the contribution of triple excitations is represented in an
approximate way (not refined iteratively); this could be called coupled cluster perturba-
tive triples. The quadratic configuration method (QCI) is very similar to the CC method.
The most accurate implementation of this in common use is QCISD(T) (quadratic CI
singles, doubles, triples, with triple excitations treated in an approximate, non-iterative
way). The CC method, which is usually only moderately slower than QCI (Table 5.6),
is apparently better [78].

Like MP methods, CI methods require reasonably large basis sets for good results.
The smallest (and perhaps most popular) basis used with these methods is the 6-31G*
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basis, but where practical the 6-311G** basis, developed especially for post-HF calcu-
lations, might be preferable (see Table 5.6). Higher-correlated single-point calculations
on MP2 geometries tend to give more reliable energies relative energies than do single-
point MP2 calculations on HF geometries (section 5.4.2, in connection with Figs 5.20
and 5.21). There is some evidence that when a correlation method is already being used,
one tends to get improved geometries by using a bigger basis set rather than by going
to a higher correlation level [79]. Figure 5.21 shows the results of HF and MP2 meth-
ods applied to chemical reactions. The limitations and advantages of numerous such
methods are shown in a practical way in the Gaussian 94 workbook by Foresman and
Frisch [1e]. Energies and times for some correlated calculations are given in Table 5.6.

Size-consistency
Two factors that should be mentioned in connection with post-HF calculations are the
questions of whether a method is size-consistent and whether it is variational. A method
is size-consistent if it gives the energy of a collection of n widely-separated atoms or
molecules as being n times the energy of one of them. For example, the HF method
gives the energy of two water molecules 20 Å apart (considered as a single system or
“supermolecule”) as being twice the energy of one water molecule. The example below
gives the result of HF/3-21G geometry optimizations on a water molecule, and on two
water molecules at increasing distances (with the supermolecule the O/H
internuclear distance r was held constant at 10, 15,... Å while all the other geometric
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parameters were optimized):

As the two water molecules are separated a hydrogen bond (equilibrium bond length
r = ca. 2.0 Å) is broken and the energy rises, levelling off at 20–25 Å to twice the
energy of one water molecule. With the HF method we find that for any number n of
molecules M, at large separation the energy of a supermolecule equals n times
the energy of one M. The HF method is thus size-consistent. A size-consistent method,
we see, is one that scales in a way that makes sense.

Now, it is hard to see why, physically, the energy of n identical molecules so widely-
separated that they cannot affect one another should not be n times the energy of
one molecule. Any mathematical method that does not mimic this physical behaviour
would seem to have a conceptual flaw, and in fact lack of size-consistency also places
limits on the utility of the program. For instance, in trying to study the hydrogen-
bonded water dimer we would not be able to equate the decrease in energy (compared
to twice the energy of one molecule) with stabilization due to hydrogen bonding, and
it is unclear how we could computationally turn off hydrogen bonding and evaluate
the size-consistency error separately (actually, there is a separate problem, basis set
superposition error – see below – with species like the water dimer, but this source of
error can be dealt with). It might seem that any computational method must be size-
consistent (why shouldn’t the energy of a large-separation come out at n times that
of M?). However, it is not hard to show that “straightforward” CI is not size-consistent
unless Eqs (5.168) include all possible determinants, i.e. unless it is full CI. Consider
a CISD calculation with a very large (“infinite”) basis set on two helium atoms which
are separated by a large (“infinite”; say ca. 20Å) distance, and are therefore non-
interacting. Note that although helium atoms do not form covalent molecules, at
short distances they do interact to form van der Waals molecules. The wavefunction for
this four-electron system will contain, besides the HF determinant, only determinants
with single and double excitations (CISD). Lacking triple and quadruple excitations it
will not produce the exact energy of our He–He system, which must be twice that of
one helium atom, but instead will yield a higher energy. Now, a CISD calculation with
an infinite basis set on a single He atom will give the exact wavefunction, and thus the
exact energy of the atom (because only single and double promotions are possible for
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a two-electron system). Thus the energy of the infinitely-separated He–He system is
not twice the energy of a single He atom in this calculation.

Variational behavior
The other factor to be discussed in connection with post-HF calculations is whether a
particular method is variational. A method is variational (see the variation theorem,
section 5.2.3.3) if any energy calculated from it is not less than the true energy of the
electronic state and system in question, i.e if the calculated energy is an upper bound
to the true energy. Using a variational method, as the basis set size is increased we get
lower and lower energies, levelling off above the true energy (or at the true energy in the
unlikely case that our method treats perfectly electron correlation, relativistic effects,
and any other minor effects). Figure 5.18 shows that the calculated energy of using
the HF method approaches a limit (–1.133…h) with increasingly large basis sets.
The calculated energy can be lowered by using a correlated method and an adequate
basis: full CI with the very big 6-311 + +G(3df, 3p2d) basis gives –1.17288 h, only

(small compared with the H–H bond energy of above the
accepted exact energy of –1.17439 h (Fig. 5.18).

If we cannot have both, it is more important for a method to be size-consistent than
variational. Recall the methods we have seen in this book:

Hartree-Fock

MP (MP2, MP3, MP4, etc.)

full CI

truncated CI: CIS, CISD, etc.

MCSCF and its CASSCF variant

CC and its QCI variants (QCISD, QCISD(T), QCISDT, etc.)

The HF and full CI methods are both size-consistent and variational. All the other
methods we have discussed are size-consistent but not variational. Thus we can use
these methods to compare the energies of, say, water and the water dimer, but only with
the HF or full CI methods can we be sure that the calculated energy is an upper bound
to the exact energy, i.e. that the exact energy is really lower than the calculated (only a
very high correlation level and basis set are likely to give essentially the exact energy;
see section 5.5.2).

Basis set superposition error, BSSE
This is not associated with a particular method, like HF or CI, but rather is a basis
set problem. Consider what happens when we compare the energy of the hydrogen-
bonded water dimer with that of two noninteracting water molecules. Here is the result
of an MP2(FC)/6-31G* calculation; both structures were geometry-optimized, and the
energies are corrected for ZPE:
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The straightforward conclusion is that at the MP2(FC)6-31G* level the dimer is
stabler than two noninteracting water molecules by If there are no other
significant intermolecular forces, then we might say the H-bond energy in the water
dimer [80] is (that it takes this energy to break the bond – to separate the
dimer into noninteracting water molecules). Unfortunately there is a problem with this
simple subtraction approach to comparing the energy of a weak molecular association
AB with the energy of A plus the energy of B. If we do this we are assuming that if
there were no interactions at all between A and B at the geometry of the AB species,
then the AB energy would be that of isolated A plus that of isolated B. The problem
is that when we do a calculation on the AB species (say the dimer in
this “supermolecule” the basis functions (“atomic orbitals”) of B are available to A so
A in AB has a bigger basis set than does isolated A; likewise B has a bigger basis than
isolated B. When in AB each of the two components can borrow basis functions from
the other. The error arises from “imposing” B’s basis set on A and vice versa, hence
the name basis set superposition error. Because of BSSE A and B are not being fairly
compared with AB, and we should use for the energies of separated A and of B lower
values than we get in the absence of the borrowed functions. A little thought shows that
accounting for BSSE will give a smaller value for the hydrogen bond energy (or van der
Waals’ energy, or dipole–dipole attraction energy, or whatever weak interaction is being
studied) than if it were ignored.

There are two ways to deal with BSSE. One is to say, as we implied above, that we
should really compare the energy of AB with that of A with the extra basis functions
provided by B, plus the energy of B with the extra basis functions provided by A.
This method of correcting the energies of A and B with extra functions is called the
counterpoise method [81], presumably because it balances (counterpoises) functions
in A and B against functions in AB. In the counterpoise method the calculations on the
components A and B of AB are done with ghost orbitals, which are basis functions
(“atomic orbitals”) not accompanied by atoms (spirits without bodies, one might say):
one specifies for A, at the positions that would be occupied by the various atoms of
B in AB, atoms of zero atomic number bearing the same basis functions as the real
atoms of B. This way there is no effect of atomic nuclei or extra electrons on A, just
the availability of B’s basis functions. Likewise one uses ghost orbitals of A on B. A
detailed description of the use of ghost orbitals in Gaussian 82 has been given by Clark
[81a]. The counterpoise correction gives only an approximate value of the BSSE, and
it is rarely applied to anything other than weakly-bound dimers, like hydrogen-bonded
and van der Waals species: strangely, the correction worsens calculated atomization
energies (e.g. covalent and it is not uniquely defined for species of
more than two components [81b].

The second way to handle BSSE is to swamp it with basis functions. If each fragment
A and B is endowed with a really big basis set, then extra functions from the other
fragment won’t alter the energy much – the energy will already be near the asymptotic
limit. So if one simply (!) carries out a calculation on A, B and AB with a sufficiently
big basis, the straightforward procedure of subtracting the energy of AB from that of
A + B should give a stabilization energy essentially free of BSSE. For good results
one needs good geometries and adequate accounting for correlation effects. The use
of large basis sets and high correlation levels to get high-quality atomization energies
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(which are of course of the covalent type) is explained in the book by
Foresman and Frisch [1e]. Energy calculations are discussed further in section 5.5.2.

5.5 APPLICATIONS OF THE AB INITIO METHOD

An extremely useful book by Hehre [32] discusses critically the merits of various
computational levels (ab initio and others) for calculating molecular properties, and
contains a wealth of information, admonitory and tabular, on this general subject.

It is probably the case that the two parameters most frequently sought from ab initio
calculations (and most semiempirical and DFT calculations too) are geometries and
(section 5.5.2) energies, although this is not to say that other quantities, like vibra-
tional frequencies (section 5.5.3) and parameters arising from electron distribution
(section 5.5.4) are unimportant. Molecular geometries are important: they can reveal
subtle effects of theoretical importance, and in designing new drugs or materials [82] the
shapes of the candidates for particular roles must be known with reasonable accuracy –
e.g. docking a putative drug into the active site of an enzyme requires that we know
the shape of the drug and the active site. While the creation of new pharmaceuticals or
materials can be realized with the aid of molecular mechanics (chapter 3) or semiem-
pirical methods (chapter 6), the increasingly facile application of ab initio techniques
to large molecules makes it likely that this method will play a more important role in
such utilitarian pursuits. Novel molecules of theoretical interest can be studied reliably
only by ab initio methods, or possibly by density functional theory (chapter 7), which
is closer in theoretical tenor to the ab initio, rather than semiempirical, approach. The
theory behind geometry optimizations was outlined in section 2.4, and some results
of optimizations with different basis sets and electron correlation methods have been
given (sections 5.3.3 and 5.4). Extensive discussions of the virtues and shortcomings
of various ab initio levels for calculating geometries can be found in [1e,g,38].

Molecular geometries or structures refer to the bond lengths, bond angles, and dihe-
dral angles that are defined by two, three and four, respectively, atomic nuclei. In
speaking of the distance, say, between two “atoms” we really mean the internuclear
distance, unless we are considering nonbonded interactions, when we might also wish
to examine the separation of the van der Waals surfaces. In comparing calculated and
experimental structures we must remember that calculated geometries correspond to
a fictional frozen-nuclei molecule, one with no ZPE (section 5.2.3.6d), while exper-
imental geometries are averaged over the amplitudes of the various vibrations [83].
Furthermore, different methods measure somewhat different things. The most widely-
used experimental methods for finding geometric parameters are X-ray diffraction,
electron diffraction and microwave spectroscopy. X-ray diffraction determines geome-
tries in a crystal lattice, where they may be somewhat different than in the gas phase
to which ab initio reactions usually apply (although structures and energies can be
calculated taking solvent effects into account, as explained in section 5.5.2). X-ray
diffraction depends on the scattering of photons by the electrons around nuclei, while

5.5.1 Geometries
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electron diffraction depends on the scattering of electrons by the nuclei, and microwave
spectroscopy measures rotational energy levels, which depend on nuclear positions.
Neutron diffraction, which is less used than these three methods, depends on scattering
by atomic nuclei.

The main differences are between X-ray diffraction (which probes nuclear positions
via electron location) on the one hand and electron diffraction, microwave spectroscopy
and neutron diffraction (which probe nuclear positions more directly), on the other
hand. The differences result from (1) the fact that X-ray diffraction measures dis-
tances between mean nuclear positions, while the other methods measure essentially
average distances, and (2) from errors in internuclear distances caused by the non-
isotropic (uneven) electron distribution around atoms. The mean vs. average distinction
is illustrated here:

Suppose that nucleus A is fixed and nucleus B is vibrating in an arc as indicated. The
distance between the mean positions is r (shown), but on the average B is further away
than r.

Differences resulting from nonisotropic electron distribution are significant only for
H–X bond lengths: X-rays see electrons rather than nuclei, and the simplest inference
of a nuclear position is to place it at the center of a sphere whose surface is defined by
the electron density around it. However, since a hydrogen atom has only one electron,
for a bonded hydrogen there is relatively little electron density left over from covalent
sharing to blanket the nucleus, and so the proton, unlike other nuclei, is not essentially
at the center of an approximate sphere defined by its surrounding electron density:

Clearly, the X-ray-inferred H–X distance will be less than the internuclear distance
measured by electron diffraction, neutron diffraction, or microwave spectroscopy, meth-
ods which see nuclei rather than electrons. These and other sources of error that can
arise in experimental bond length measurements (like bond length, bond angles and
dihedral angles will obviously also depend on nuclear positions) are detailed by Burkert
and Allinger [84], who mention nine (!) kinds of internuclear distance r, and a compre-
hensive reference to the techniques of structure determination may be found in the book
edited by Domenicano and Hargittai [85a]. Despite all these problems with defining
and measuring molecular geometry (see e.g. [85b], we will adopt the position that it is
meaningful to speak of experimental geometries to within 0.01 Å for bond lengths, and
to within 0.5° for bond angles and dihedrals [86].
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geometries are almost as good as HF/6-31G* geometries.

MP2/6-31G* geometries are on the whole slightly but significantly better than
HF/6-31G* geometries, although individual MP2 parameters are sometimes a bit
worse.

and HF/6-31G* C–H bond lengths are consistently slightly (ca. 0.01–0.03
and ca. 0.01 Å, respectively) shorter than experimental, while MP2/6-31G* C–H
bond lengths are not systematically over- or underestimated.

HF/6-31G* O–H bonds are consistently slightly (ca. 0.01 Å) shorter than experimental,
while MP2/6-31G* O–H bond lengths are consistently slightly (ca. 0.01 Å) longer.

O–H bond lengths are not consistently over- or underestimated.

None of the three levels consistently over- or underestimates C–C bond lengths.
HF/6-31G* C–X (X = O, N, Cl, S) bond lengths tend to be underestimated

slightly (ca. 0.015 Å) while MP2/6-31G* C–X bond lengths may tend to be slightly
(ca. 0.01 Å) overestimated. C–X bond lengths are not consistently over-
or underestimated.

HF/6-31G* bond angles may tend to be slightly larger (ca. 1°) than experimental,
while MP2/6-31G* angles may tend to be slightly (0.7°) smaller.

bond angles are not consistently over- or underestimated. Dihedrals
do not seem to be consistently over-or underestimated by any of the three levels. The

level breaks down completely for HOOH, where a dihedral angle of 180°,
far from the experimental 119.1°, is calculated; omitting this error of 61° and the

dihedral error of 7.6° lowers the error from 8.8
to 2.5°. The experimental value of 58.4° for the dihedral is
suspect because of its anomalously large deviation from all three calculated results,
and because it is among those dihedrals which are said to be suspect or having a large
or unknown error (designated X in Harmony et al. – see reference in Table 5.8). The
error for the HOOH dihedral represents a clear failure of the level and
is an example of a case which provides an argument for using the 6-31G* rather than
the 3-21G basis, although the latter is much faster and often of comparable accuracy
(of course with correlated methods like MP2 a smaller basis than 6-31G* should not
be used, as pointed out in section 5.4). The errors in calculated dihedral angles are ca.
2–3° for HF/6-31G*, and ca. 2° for MP2/6-31G*: omitting the
dihedral errors of 8.6° and 5.9° from the sample lowers the HF error from 2.9° to 2.3°
and the MP2 error from 2.3 to 1.9.

The accuracy of ab initio geometries is astonishing, in view of the approximations
present: the basis set is small and the 6-31G* is only moderately large, and so
these probably cannot approximate closely the true wavefunction; the HF method does
not account properly for electron correlation, and the MP2 method is only the simplest
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Let us briefly compare HF/3-21G, HF/6-31G* and MP2/6-31G* geometries.
Figure 5.23 gives bond lengths and angles calculated at these three levels and experi-
mental bond lengths and angles, for 20 molecules. The geometries shown in Fig. 5.23
are analyzed in Table 5.7, and Table 5.8 provides information on dihedral angles in
eight molecules. There should be little difference between MP2(full) geometries and
the MP2(FC) geometries used here. This (admittedly limited) survey suggests that:
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approach to handling electron correlation; the Hamiltonian in both the HF and the
MP2 methods used here neglects relativity and spin-orbit coupling. Yet with all these
approximations the largest error (Table 5.7) in bond lengths is only 0.033 A
level for HCHO) and the largest error in bond angles is only 3.2° level for
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The largest error in dihedral angles (Table 5.8), omitting the 3-21G result for
is 8.6° (HF/6-31G* for but as stated above the reported

experimental dihedral of 58.4° is suspect.
From Fig. 5.23 and Table 5.7, the mean error in 39 (13 + 8 + 9 + 9) bond lengths

is 0.01–0.015 Å at the and HF/6-31G* levels, and ca. 0.005–0.008 Å at
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the MP2/6-31G* level. The mean error in 18 bond angles is only 1.3° and 1.0° at the
and HF/6-31G* levels, respectively, and 0.7° at the MP2(FC)/6-31G* level.

From Table 5.8 the mean dihedral angle error at the level for 9 dihedrals
(omitting the questionable dihedral) is 3.0°; the mean of 8 dihedral
errors (omitting the and the HOOH errors) is 2.5°. For the other two
levels the mean of 10 dihedral angles (including the questionable dihe-
dral) is 2.9° (HF/6-31G*) and 2.3° (MP2/6-31G*). If we agree that errors in calculated
bond lengths, angles and dihedrals of up to 0.02 Å, 3° and 4° respectively correspond
to fairly good structures, then all the , HF/6-31G* and MP2/6-31G* geome-
tries, with the exception of the HOOH dihedral, which is simply wrong,
and the possible exception of the HOCC dihedral of are fairly good.
We should, however, bear in mind that, as with the HOOH dihedral, there
is the possibility of an occasional nasty surprise. Interestingly, geometries
are, for some series of compounds, somewhat better than ones. For exam-
ple, the RMS errors in geometry for the series CH, NH, OH, HF, CN,
HCN, and using MP2/6-31G*, and                         (a modi-
fied basis used in CBS calculations – section 5.5.2.2b) are 0.012, 0.016 and 0.015 Å,
respectively [86].

The calculations summarized in Tables 7 and 8 are in reasonable accord with conclu-
sions based on information available ca. 1985 and given by Hehre, Radom, Schleyer
and Pople [87]: HF/6-31G* parameters for A–H, A/B single and A/B multiple bonds
are usually accurate to 0.01, 0.03 and 0.02 A, respectively, bond angles to ca. 2° and
dihedral angles to ca. 3°, with HF/3-21G(*) values being not quite as good. MP2 bond
lengths appear to be somewhat better, and bond angles are usually accurate to ca. 1 °,
and dihedral angles to ca. 2°. These conclusions from Hehre et al., hold for molecules
composed of first-row elements (Li to F) and hydrogen; for elements beyond the first
row larger errors not uncommon.

The main advantage of MP2/6-31G* optimizations over or HF/6-31G*
ones is not that the geometries are much better, but rather that for a stationary point,
MP2 optimizations followed by frequency calculations are more likely to give the cor-
rect curvature of the potential energy surface (chapter 2) for the species than are HF
optimizations/frequencies. In other words, the correlated calculation tells us more reli-
ably whether the species is a relative minimum or merely a transition state (or even
a higher-order saddle point; see chapter 2). Thus fluorodiazomethane [71] and sev-
eral oxirenes [44] are (apparently correctly) predicted by MP2 optimizations to be not
minima, while HF optimizations indicate them to be minima. The interesting hexaaz-
abenzene is predicted to be a minimum at the HF/6-31G* level, but
a hilltop with two imaginary frequencies at the MP2/6-31G* level [88]. For transi-
tion states, in contrast to ground states, we don’t have experimental geometries, but
correlation effects can certainly be important for their energies (section 5.5.2.2b), and
MP2/6-31G* geometries for transition states are probably significantly better in general
than HF/6-31G* ones.

Suppose we want something better than “fairly good” structures? Experienced
workers in computational chemistry have said [89]
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When we speak of “accurate” geometries, we generally refer to bond lengths that are within
about 0.01–0.02 Å of experiment and bond and dihedral angles that are within about 1–2° of the
experimentally-measured value (with the lower end of both ranges being more desirable).

Even by these somewhat exacting criteria, MP2/6-31G* and even HF/6-31G* cal-
culations are not, in the cases studied here, far wanting; the worst deviations from
experimental values seem to be for dihedral angles, and these may be the least reliable
experimentally. However, since some larger deviations from experiment are seen in our
sample, it must be conceded that HF/6-31G* and even MP2/6-31G* calculations cannot
be relied on to provide “accurate” (sometimes called high-quality) geometries. Further-
more, there are some molecules that are particularly recalcitrant to accurate calculation
of geometry (and sometimes other characteristics); two notorious examples are FOOF
(dioxygen difluoride) and ozone (these have been described as “pathological” [90]).
Here are the HF/6-31G*, MP2(FC)/6-31G* and experimental [91] geometries:

The errors in the calculated geometries are (HF/6-31G*/MP2/6-31G*):

FOOF:  FO length, –0.208/–0.080 A; OO length, 0.094/0.076 Å

These calculated geometries do not satisfy even our “fairly good” criterion and are well
short of being “accurate”; the bond lengths are particularly bad. Using the 6-311++G**
basis (for FOOF, 88 vs. 60 basis functions; for 66 vs. 45 basis functions) we get
for calculated geometries (errors) using HF/6-311 + +G**:

FOOF:   FO length, 1.353 Å (–0.222); OO length, 1.300 (0.083) Å

Thus with a much larger basis, but still using the Hartree-Fock method, the FOOF
geometry is about the same and the geometry has become even worse than at
the HF/6-31G* level! Better geometries were obtained by going beyond the MP2
correlational level; we get for calculated geometries (errors) using CCSD(T)/6-31G*:

FOOF: FO length, 1.539 Å (–0,036); OO length, 1.276 (0.059) Å

FOO angle, –3.7°/–2.6°

FOOF dihedral, –3.4°/–1.7°

OO length, –0.068/0.028 Å

OOO angle, 2.2/–0.5

FOO angle, 106.5° (–3.0)

FOOF dihedral, 85.3° (–2.2)

OO length, 1.194 Å (–0.078)

OOO angle, 119.4° (2.6)
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The geometry is now on the verge of satisfying ours “accurate” requirement, but the
FOOF geometry still has unsatisfactory bond lengths. CCSD(T) with a considerably
bigger basis set (similar to 6-311 (2d)) has been reported [92] to give for FOOF errors of
0.039, –0.001, –0.6 and 0.3 for the FO and OO lengths and the FOO angle and FOOF
dihedral, respectively; even here one of the bond lengths does not meet the “accurate”
criterion of being within 0.02 Å of experiment.

The problem with ozone probably arises at least partly from the fact that this molecule
has singlet diradical character: it is approximately a species in which two electrons,
although having opposite spin, are not paired in the same orbital:

The HF method works best with normal closed-shell molecules, because it uses a
single Slater determinant, but ozone has open-shell diradical character: it is, or at least
resembles, a species with two half-filled orbitals, one with a single α electron and the
other with a single electron; there are various ways of handling this molecule [91].
The cause of the problems with FOOF are harder to explain, but fluorine is known to
be a somewhat troublesome element [92], although not all fluorine-containing species
require very large basis sets [93].

5.5.2

Along with geometries (section 5.5.1), the molecular features most frequently sought
from ab initio calculations are probably energies. An ab initio calculation gives an
energy quantity that represents the energy of the molecule (or atom) relative to its
stationary constituent electrons and nuclei at infinite separation, this separated state
being taken as the zero of energy. The ab initio energy of a species is thus the negative
of the energy needed to dissociate it completely (to infinite separation) into the electrons
and nuclei, or the negative of the energy given out when the electrons and nuclei “fall
together” from infinity to form the species. This was pointed out for HF energies
(section 5.2.3.6d, in connection with Eq. (5.93)), and the infinite-separation reference
point also holds for correlated ab initio energies. By ab initio energy, then, we normally
mean the electronic energy (whether calculated by the HF or by a correlation method)
plus the internuclear repulsion (cf. Eq. (5.93):

ab initio energy (Hartree–Fock):

Energies: Preliminaries5.5.2.1

Energies

FOO angle, 107.5° (–2.0)

FOOF dihedral, 86.7° (–0.8)

OO length, 1.296 Å (0.024)

OOO angle, 116.5° (–0.3)
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ab initio energy (correlated method):

If the ab initio energy has been corrected by adding the ZPE (cf. Eq. (5.94)), giving
the total internal energy at 0 K, this should be pointed out: ab initio energy, corrected
for ZPE:

The ZPE-corrected ab initio energy is preferred for calculating relative energies (see
below). At the end of a calculation (HF or correlated) is given; if we wish to
include ZPE and get a frequency calculation is necessary.

What we actually want is usually not these “absolute” ab initio energies, because
chemistry really deals with relative energies (all energies are relative to something, but
in this context it is useful to restrict the term to the energy difference between reactants
and products or transition states, or between two isomers). We are thus interested in the
reaction energy (the energy difference between the product and reactant) and what we
might call the activation energy (the energy difference between the transition state and
reactant; note however – see below – that the well-known Arrhenius activation energy
is not simply the difference in calculated energies of transition state and reactants).
Calculating the relative stabilities of isomers amounts to calculating the reaction energy
of an isomerization reaction.

Figure 5.24 shows what Coulson meant when he said that calculating the relative
stabilities of isomers by subtracting absolute energies is like finding the weight of the
captain by weighing the ship with and without him [94]. The absolute ab initio energies
of the two isomers shown are each about and the difference in their
energies is only about which is 1 part in 45,000, and these figures are quite
typical. If we conservatively assign a captain a weight of 100kg, the analogy corre-
sponds to a small ship weighing 4,500,000 kg or about 5000 tonnes. Yet the astonishing
thing is that modern ab initio calculations can, as we shall see, accurately and reliably
predict relative energies. A comprehensive account of energy calculations by ab initio
and other methods is given by Irikura and Frurip [95].

Reaction energies belong to the realm of thermodynamics, and activation energies to
that of kinetics: the energy difference between the products and the reactants (“differ-
ence” is defined here as product energy minus reactant energy) determines the extent
to which a reaction has progressed at equilibrium, i.e the equilibrium constant, and the
energy difference between the transition state and the reactants (transition state energy
minus reactant energy) determines (partially; see section 5.5.2.2d) the rate of the reac-
tion, i.e the rate constant (Fig. 5.25). The term “energy” in chemistry can mean (to
give the three most common entities) potential energy, enthalpy (heat content), H, or
Gibbs free energy, G. The potential energy on a computed Born–Oppenheimer surface
(the usual “potential energy surface”; section 2.3) represents 0 K enthalpy differences
without ZPE. Enthalpy differences, and free energy differences, are related
through the entropy difference:

Ab initio calculations
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More detailed discussion of enthalpy, free energy, and entropy are given in books on
thermodynamics, and the relationships between these quantities and processes at the
molecular level are explained in books on statistical mechanics [96]; general discussions
of these topics are given in physical chemistry texts [97].

To get an intuitive feel for we can regard it as essentially a measure of the
strengths of the bonds in the products or the transition state, compared to the strengths
of the bonds in the reactants [98]:

(pdt or TS depending on whether we are considering reaction enthalpy or activation
enthalpy). Thus an exothermic process, which from the definition has has
stronger bonds in the products than in the reactants; in some sense the bonds lose heat
energy, becoming tighter and stabler. The bond energy tables given in most organic
chemistry textbooks can be used to calculate rough values of (reaction), and accu-
rate reaction enthalpies can sometimes be obtained from the more sophisticated use of
bond energies and similar quantities [99]. To see an application of simple bond energy
tables [100], consider the keto/enol reaction:

The ethanal to ethenol (acetaldehyde to vinyl alcohol) reaction is predicted to be
endothertnic by i.e. neglecting entropy the enol is predicted to lie

above the aldehyde. Because these are only average bond energies,
the apparently remarkable agreement with the ab initio calculations in Fig. 5.21

the connection between from calculations like this and from
ab initio calculations is discussed below) must be regarded as a coincidence. In any
case, the correct value is about (section 5.5.2.2e). Crude bond energy
calculations like this can be expected to be in error by 50 or more Accurate
bond energy calculations can however be done [99] using essentially bond energies that
refer to quite specific structural environments; for example, a C–H bond on a primary

carbon that is in turn attached to another carbon.
For a reaction taking place at 0 K the enthalpy change is simply the internal energy

Using Eq. (5.175):

change at 0 K:
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Note that although the calculation of values for demands frequency jobs,
which are relatively time-consuming (“expensive”), accurate relative energy differ-
ences require this, and we will regard the ZPE-uncorrected ab initio energy as
only an approximation to (see 5.2.3.6d and Fig. 2.20). At temperatures other
than 0 K, is plus the increases in translational, rotational, vibrational and
electronic energies on going from 0 K to the higher temperature T, plus the work done
by the system in effecting a pressure or volume change:

One frequently chooses the standard temperature of 298.15 K, about room temperature.
From 0 K to room temperature the increase in electronic energy is negligible and the
increase in vibrational energy is small.

The entropy difference for a process is essentially a measure of the disorder of
the products or the transition state, compared to the disorder of the reactants:

(pdt or TS depending on whether we are considering reaction entropy or activation
entropy)

Entropy is a sophisticated concept, and this is not the place to give a rigorous definition
of disorder; suffice it to say that a disordered system is more probable than an ordered
one, and the entropy of a system is proportional to the logarithm of its probability [101].
Intuitively, we see that for a process in which the product or the transition state
is less symmetrical or has more freedom of motion than do the reactants. For example,
ring-opening reactions, since they relieve constraints on intramolecular motion, should
be accompanied by an increase in entropy. Note that an increase in entropy favors a
process: it increases a rate constant (activation entropy) or an equilibrium constant
(reaction entropy), while an increase in enthalpy disfavors a process.

More details on the calculation of entropies is given in the book by Hehre, Radom,
Schleyer and Pople, who also tabulate the errors in calculated entropy for small mole-
cules composed of elements from H to F [102]. Errors in calculated entropies at
300 K are 1.7, 1.3 and (0.4, 0.3 and at 300 K,
for frequency calculations at the HF/3-21G, 6-31G* and MP2/6-31G* levels, respec-
tively. From Eq. (5.175) this corresponds to an error in free energy at 300 K of

or    for the MP2/6-31G* cal-
culations. This is much smaller than the enthalpy error of ca. which can
be reliably obtained with high-accuracy methods (see below) and shows that in cur-
rent ab initio work errors in free energies can be expected to come mainly from the
enthalpy. Many programs, e.g. Gaussian and Spartan, automatically calculate the cor-
rection terms to be added to in Eq. (5.177) at the end of a frequency calculation,
and print out the 298.15K enthalpy or the correction to the 0 K enthalpy. Reaction
entropies are needed to calculate free energies of reaction (from Eq. (5.174)), from
which equilibrium constants [103] can be calculated:
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where several species are in equilibrium, the ratios are proportional to their Boltzmann
exponential factors. For example, if the relative free energies G of A, B and C are
0, 5.0 and (here G for A has been set to zero and B and C lie 5.0 and

higher) then

Activation entropies are useful because they can give information on the structure
of a transition state (as stated above, a more confined transition state is signalled by
a negative activation entropy), but the ab initio calculation of rate constants [104]
from activation free energies is not as straightforward as the calculation of equilibrium
constants from reaction free energies. The crudest way to calculate a rate constant is to
use the Arrhenius equation [96c,105]

and to simply approximate the preexponential factor A by that for a similar reaction
(a typical value is [106])and to approximate or by the value of

(the activation enthalpy) at the temperature in question. The Arrhenius activation
energy and the activation enthalpy are actually related by

for a unimolecular reaction, and by

for a bimolecular reaction in the gas phase [107]. The main problem with this is that
the preexponential factor A varies by a large factor even for, say, reactions which are
formally unimolecular [106]:

so that this method of guessing by analogy could give a value for of A that was out by a
factor of (or more). The exponential factor is prone to smaller errors, since calcu-
lating to within is now feasible, and an error of this size corresponds
to an error factor in of exp(–10/2.48) = 57 (at T = 298 K). This may
seem to be itself very big, but a simple method of reliably calculating rate constants
to within a factor of 100 would be very useful for estimating the stability of unknown
substances. Note that for unimolecular processes like the rearrangement of a molecule
to a stabler isomer, the halflife, an intuitively more meaningful quantity than the rate

i.e. the halflife of a unimolecular reaction is approximately the reciprocal of its rate
constant.

at room temperature and so at this temperature

constant, is simply
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5.5.2.2 Energies: calculating quantities relevant to
thermodynamics and to kinetics

5.5.2.2a Thermodynamics; “direct” methods, isodesmic reactions
Here we are concerned with the relative energies of species other than transition states.
Such molecules are sometimes called “stable species,” even if they are not at all stable
in the usual sense, to distinguish them from transition states, which exist only for an
instant on the way from reactants to products, A “stable species,” in contrast, sits in a
potential energy well and survives at least a few molecular vibrations
The very useful book by Hehre [32] contains a wealth of information on computational
and experimental results concerning thermodynamic quantities.

The ab initio reaction energy that is most commonly calculated is simply the dif-
ference in ZPE-corrected energies, which is the reaction enthalpy change at
0 K (Eq. (5.176)). This provides an easily-obtained indication of whether a reaction
is likely to be exothermic or endothermic, or of the relative stabilities of isomers.
Table 5.9 illustrates this procedure. The results are only semiquantitatively correct, and
the HF/6-31G* method is not necessarily better here than the HF/3-21G. In fact, it
has been documented by extensive calculations that such HF/3-21G and HF/6-31G*
energy differences generally give only a rough indication of energy changes. Much bet-
ter results are obtained from MP2/6-31G* calculations on MP2/6-31G*, HF/3-21G* or
even semiempirical AM1 geometries, and it is well worth consulting the book by Hehre
for details [108].

To get the best results from relatively low-level calculations, one can utilize isodesmic
reactions (Greek: “same bond,” i.e. similar bonding on both sides of the equation).
These are reactions in which the number of each kind of bond and each kind of lone
pair is conserved. For example,

and

are isodesmic reactions; the first one has on each side 6 N–H bonds, one C–N bond and
one nitrogen lone pair, and the second has on each side 6 C–H and 2 C–F bonds. The
reaction

is, strictly speaking, not isodesmic, since although it has the same number of bonds, even
the same number of single bonds, on both sides, there are 6 C–H, one C–C, and 2 H–H
bonds on one side and 8 C–H bonds on the other. Note that an isodesmic reaction does
not have to be experimentally realizable: it is an artifice to obtain a reasonably accurate
energy difference by ensuring that as far as possible errors cancel. This will happen
to the extent that particular errors are associated with particular structural features;
electron correlation effects are thought to be especially important in calculating energy
differences, and such effects tend to cancel when the number of electron pairs of each
kind is conserved.

Reactions like (5.182) give fairly good quantitative results for the proton affinities
(essentially, the basicity) of nitrogen bases [109], by using to deprotonate a series
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of the conjugate acids. Isodesmic processes like (5.183)
have been used to reveal the nature and amount of interaction between groups

X and Y on an carbon [ 110]. IfX and Y interact in a stabilizing way, then separating
them should be reflected in an endothermic reaction, and conversely mutually destabi-
lizing groups should give an exothermic reaction. For reaction (5.183) at the 3-21G level
the product energies minus the reactant energies are i.e. the reaction is
endothermic by while for the corresponding reaction the reaction
energy is which indicates a qualitatively different mutual interaction
between two fluorines, as compared to two chlorines, on the same carbon (actually, a
bigger basis set indicates that the Cl/Cl interaction in is about zero). Another
application of isodesmic reactions has been to estimating aromatic character [111].

There is no unique isodesmic reaction for a particular problem. For example, to
compare the ring strain in oxacyclopropane (oxirane, ethylene oxide) with that in
cyclopropane, one might calculate the reaction energy of the oxygen exchange reaction
(remember that isodesmic reactions do not have to be experimentally achievable):

Here the equilibrium should favor the less-strained ring. Alternatively, one might
compare the reaction energies of the two cleavage reactions:

Here, the reaction that forms the less-strained ring should be the less endothermic (or
the more exothermic, if the reactions turn out to be exothermic).

Let us calculate the reaction energies for the three reactions. For (5.185), the
HF/6-31G* (including ZPE) energies are

E(pdts) – E(reactants)

The reaction is calculated to be exothermic by and the simple interpre-
tation is that cyclopropane is more strained than oxacyclopropane by
To compare oxacyclopropane and cyclopropane using (5.186) and (5.187), we do need
not calculate the energies of and since these will cancel out:
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and for (187):

Reaction (5.187) is more endothermic than reaction (5.186)by 1.18152 – 1.17357 h =
0.00795 h = indicating that cyclopropane is more strained than oxa-
cyclopropane by this amount [112]. The agreement between the two approaches is
not coincidental, since the cancellation of the methane and the ethane energies makes
these two conceptually different approaches mathematically identical. Note, however,
that for any isodesmic reaction we can always write some non-equivalent (unlike the
case of (5.185) vs. (5.186)/(5.187)) isodesmic process to get the desired quantity. Also,
different isodesmic reactions will give somewhat different results; this is essentially
because the “reagents” of one reaction will not be calculated to exactly the same degree
of accuracy as those of another reaction.

As we saw in section 5.4.1, calculation of homolytic cleavage energies by simply
subtracting HF energies gives very poor results. Let us calculate a homolytic bond
dissociation energy by an isodesmic-type approach. The idea is to combine the desired
homolytic reaction with one of known (either from experiment or from as high-level
calculation) energy in a reaction which, although not strictly isodesmic, conserves the
number of single, double, etc. bonds and the number of unpaired electrons. For example,
suppose we want E(C--O), the C–O bond dissociation energy in We might
utilize the scheme

Here E(C–C) and E(C–O) are homolytic dissociation energies(bond energies) and
E(iso) is the energy of the isodesmic-type reaction shown. This reaction is not strictly
isodesmic, since a C–C bond is replaced by a C–O bond, but it does have the same
number of unpaired electrons(one) on each side, so net correlation effects should be
much less than for a reaction in which two unpaired electrons are created from a
bond. A reaction in which the number of unpaired electrons is conserved is called an
isogyric(Greek, “same spin”) reaction. Since the overall energy change in a process is
independent of the path connecting the initial and final states [113] we write

E(C–C) must be known, and E(iso) is to be obtained by calculation. Taking an exper-
imental value of for the bond energy of the ethane C–C bond [61], and

i.e.
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using HF/6-31G* energies (this level appears to be the lowest for which reasonably
accurate results can usually be expected [114]), employing the unrestricted HF(UHF,
i.e. UHF/6-31G*; end of section 5.2) method for the two radicals:

Now let us repeat this calculation using MP2(FC)/6 – 21G* energies:

So

In the HF case E(iso) is and in the MP2 case it is
Thus E(C–O) comes out in one case significantly weaker than E(C–C), and in the
other case slightly stronger. The experimental C–O bond energy for has been
reported as [115]. Clearly, at the HF/6-31G* level anyway, this approach
to bond energies is unreliable, but may be viable at the MP2 level [116].

Isodesmic reactions help us to make the most of the method/basis set we decide
to use(this decision being guided by the size of the molecules and the computational
resources available, i.e. by how “expensive” the calculations are). They have on occasion
being used with fairly high-level calculations, to obtain high-quality results that would
require even higher-level methods were “direct-subtraction” methods to be used [117].
Isodesmic reactions have been discussed and used extensively [109,118].

5.5.2.2b Thermodynamics; high-accuracy calculations
As the previous discussion suggests (section 5.5.2.2a), the calculation of good rel-
ative energies is much more challenging than the calculation of good geometries.
Nevertheless, it is now possible to reliably calculate energy differences to within
about An energy difference with an error of is said to
be within chemical accuracy. The term was popularized by Pople (biographical foot-
note section 5.3.3) in connection with the G1 and G2 (see below) methods. An accuracy
of about commonly rounded in this context to
was, in 1991, considered to be realistic and chemically useful, perhaps because this is
small compared to typical bond energies (roughly The ab initio energies
and methods needed for results of chemical accuracy are called high-accuracy energies
and methods.

As one might expect, high-accuracy energy methods are based on high-level corre-
lational methods and big basis sets. However, because the straightforward application
of such computational levels would require unreasonable times (be very “expensive”),

So E(C–O) = E(C–C) – E(iso) = 368 – 36.9 =

E(C–O) = E(C–C) – E(iso) = 368 – (–4.4) =
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the calculations are broken up into several steps, each of which provides an energy
value; summing these gives an energy close to that which would be obtained from the
more unwieldy one-step calculation. There are two classes of popular high-accuracy
energy methods: the Pople group’s G2 and G3 (for Gaussian-2 and Gaussian-3; these
have superseded Gaussian-1) methods and their variants, and the Peterson group’s CBS
(complete basis set) methods. These will now be discussed and briefly compared.

The G2 method and its variants
The G2 and G3 methods [119] are the successors to the first widely-used high-accuracy
energy method, the G1 method [120], which they have replaced. Relatively few results
are yet available for the G3 method, so only G2 calculations will be discussed. These
consist of nine steps:

An HF/6-31G* geometry optimization.

An HF/6-31G* ZPE calculation.

An MP2(full)/6-31G* optimization(at the time G1 and G2 were being developed,
analytic frequencies were not available for MP2(FC) (section 5.4.2) optimizations,
which are faster and about as good).

An MP4/6-311G** single-point calculation.

An MP4/6-311 + G** single-point calculation.

An MP4/6-311G(2df,p) single-point calculation.

A QCISD(T)/6-311G** single-point calculation.

An MP2/6-311 + G(3df,2p) single-point calculation.

An empirical higher-level correction (HLC) to account for any remaining errors due
to electron correlation.

1.
2.
3.

4.
5.
6.
7.
8.
9.

The tedious procedure for combining these steps to get the G2 energy is detailed by
Foresman and Frisch [ 121 ], but with the Gaussian 94 and 98 programs only the keyword
“G2” is needed. A G2 calculation is essentially equivalent to a QCISD(T)/6-311 +
G(3df,2p) calculation on an MP2(full)/6-31G* geometry with a HF/6-31G* ZPE
correction [122]. Because of the empirical HLC the G2 method is semiempirical, except
when this correction cancels out. This happens, for example, in calculating proton
affinities as the energy difference of the protonated and unprotonated species [123].
The HLC is based on the number of and    spin electrons, which are the same for
both species in a case like this. The G2 method is among the most time-consuming
of the high-accuracy energy methods, and several variants have been developed with a
view to getting greater speed with little loss of accuracy. This has been largely achieved
with the G2(MP2) and G2(MP2,SVP) (SVP = split valence plus polarization basis set)
methods. Actually, in the absence of any evidence to the contrary, one may now assume
that the G3 method, which seems to be somewhat more accurate and faster than G2, is
the Gaussian high-accuracy method of choice, and this, or a faster but nearly as accurate
variation, like G3(MP2), is recommended over the G2 family.
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CBS methods
Complete basis set methods [86] involve essentially seven or eight steps:

A geometry optimization (at the or MP2/6-31G* level, depending on
the particular CBS method).

A ZPE calculation at the optimization level.

An HF single-point calculation with a very big basis set (6-311 + G(3d2f, 2df, p)
or 6-311+ G(3d2f, 2df, 2p), depending on the particular CBS method).

An MP2 single-point calculation (basis depending on the particular CBS method).

Something called a pair natural orbital extrapolation to estimate the error due to
using a finite basis set.

An MP4 single-point calculation.

For some CBS methods, a QCISD(T) single-point calculation.

One or more empirical corrections.

There are three basic CBS methods: CBS-4 (for fourth-order extrapolation), CBS-Q
(for quadratic CI) and CBS-APNO (or CBS-QCI/APNO, for asymptotic pair nat-
ural orbitals), in order of increasing accuracy (and increasing computer time). These
methods are available with keywords in the Gaussian 94 and 98 programs.

Comparison of G2-type and CBS methods
The relative merits of the four most popular G2 and CBS methods are apparent from
Table 5.10 (taken from the book by Foresman and Frisch [1e]). All four methods
are available as a keyword in Gaussian 94 and Gaussian 98. If the test sample is
representative, then the CBS-Q method is the most accurate and the G2 the second
most accurate (G3 should be somewhat better and faster than G2). As CBS-Q seems
to be faster than G2, CBS-Q appears to be the method of choice among these four
for most high accuracy energy calculations, unless the system is relatively large, in
which case CBS-4, the least accurate of the four, may have to be used. G3 and CBS-Q
likely have quite similar errors, and G3 is faster than G2: the times on a Pentium 3

6.
7.
8.

4.
5.

2.

3.

1.
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5.5.2.3 Thermodynamics; calculating heats of formation

The heat of formation (enthalpy of formation) of a compound is an important ther-
modynamic quantity, because a table of heats of formation of a limited number of
compounds enables one to calculate the heats of reaction (reaction enthalpies) of a
great many processes, that is, how exothermic or endothermic these reactions are. The
heat of formation of a compound at a specified temperature T is defined [126] as the
standard heat of reaction (standard reaction enthalpy) for formation of the compound at
T from its elements in their standard states (their reference states). By the standard state
of an element we mean the thermodynamically stablest state at Pa (standard pres-
sure, about normal atmospheric pressure), at the specified temperature (the exception
is phosphorus, for which the standard state is white phosphorus; although red phos-
phorus is stabler under normal conditions, these allotropes are apparently somewhat
ill-defined). The specified temperature is usually 298.15 K (about room temperature).
The heat of formation of a compound at room temperature is thus the amount of heat
energy (enthalpy) that must be put into the reaction to make the compound from its ele-
ments in their normal (room temperature and atmospheric pressure) states; it is the “heat
content” or enthalpy of the compound compared to that of the elements. For example,
at 298 K the heat of formation of is and the heat of formation of

is [127]. To make a mole of from solid graphite (carbon in
its standard state at 298 K) and hydrogen gas requires –74.87 kJ, i.e. 74.87 kJ are given
out – the reaction is mildly exothermic. To make a mole of from solid graphite and
fluorine gas requires –933.20 kJ, i.e. 933.20 kJ are given out – the reaction is strongly
exothermic. In some sense is thermodynamically much stabler with respect to its
elements than is Note that the standard heat of formation of an element is zero,
since the reaction in question is the formation of the element from the element, in the
same state (no reaction, or a null reaction). Heat of formation is denoted
and heat of formation at, say, 298 K by “delta H sub f standard at 298 K”. The
delta indicates that this is a difference (enthalpy of the compound minus enthalpy of
the elements) and the superscript denotes “standard”.

There are extensive tabulations of experimentally-determined heats of formation,
mostly at 298 K (one way to determine is from heats of combustion: burning
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for CBS-Q, G2, G3, and G3(MP2) jobs on OF were 59, 206, 136, and 41
minutes, respectively. It thus seems that where size permits and a slight loss of accuracy
is tolerable, G3(MP2) is the method ofchoice. The maximum practical number ofheavy
atoms for G2, CBS-Q, G2(MP2) and CBS-4 calculations were, at least recently, ca. 5,
7,7, and 15, respectively [124]. There are more accurate (and more time-consuming!)
methods than any of the four in Table 5.10. The CBS-APNO method (available with
a keyword in Gaussian 94 and 98), which is limited to about four heavy atoms [124],
has a mean absolute deviation of only [86], and a method that can give
atomization energies accurate to about has been reported [125]. Because
of the empirical correction terms, the Gaussian and CBS methods are not purely ab
initio, except where these terms disappear by subtraction [123]. Some applications of
high-accuracy energy methods and suggestions about choosing a method (high accuracy
or otherwise) will be given in the following sections (5.5.2.2c–e).
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the compound and the elements and measuring calorimetrically the heat evolved enables
one to calculate the heat of formation by subtraction). can also be obtained by
ab initio calculations. This is valuable because (1) it is far easier and cheaper than doing
a thermochemical experiment, (2) many compounds have not been subjected to exper-
imental determination of their heats of formation, and (3) highly reactive compounds,
or valuable compounds available only in very small quantity cannot be subjected to
the required experimental protocol. e.g. combustion. Let us see how can be
calculated.

Atomization method
Suppose we want to calculate for methanol. We will calculate the heat of forma-
tion at 0 K and then correct this to 298 K. Figure 5.26 shows the principle behind
what has been called the “atomization” method [128]. Methanol is (conceptually) atom-
ized at 0 K into carbon, hydrogen and oxygen atoms(the ground electronic states have
been chosen here); it is from this step that the term “atomization” comes. The elements
in their normal states are also used to make these atoms, and to make methanol. The heat
of formation of methanol at 0 K follows from equating the energy needed to generate
the atoms from the elements via methanol to that
needed to make them directly from the elements in their normal states:

is the ab initio atomization energy of methanol, the energy difference
between the atoms and methanol. There are a couple points to note about this conceptual
scheme. We are converting into carbon atoms graphite, a polymeric material, so strictly
speaking Fig. 5.26 should show where n  is a number large

i.e.
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enough to represent the substance graphite rather than just some carbon oligomer. All
the species in the figure will then be increased in number by a factor of n, butdivision
by this common factor will still give us Eq. (5.188). Another point is that although
hydrogen and oxygen are solids at 0 K, we are considering isolated molecules being
atomized.

To calculate we need the 0 K heat of formation of C, H and O atoms,
i.e. the atomization energies of graphite, molecular hydrogen, and molecular oxygen,
and the 0 K atomization energy of methanol. The atomization energies of hydrogen
and oxygen can be calculated ab initio, but not that of graphite, which is a very big
“molecule”. For consistency we will use experimental values of all three elemental
atomization energies, as recommended [128]. From Eq. (5.176), the 0K atomization
energy of methanol is simply the ab initio energies of its constituent atoms minus the
ZPE-corrected ab initio of methanol:

Experimental values of and (as well as
for other atoms, and references to more extensive tabulations) are given in [113]; in

To calculate we need (Eq. (5,189)) for C, H and O atoms
(in the states shown) and for methanol. G2 (for comparison with the value in [128])
calculations gave these values (hartrees):

Reference [128] gives the 0 K G2 value by the atomization method as
and the experimental value as (two sources) – 190.7 or

To correct the 0 K heat of formation to that at 298.15 K we add the increase in enthalpy
of methanol on going from 0 to 298 K and subtract the corresponding increases for
the elements in their standard states. The value for methanol is the difference of two

C 711.2 H 216.035 O 246.6

From Eq. (5.189)

From Eq. (5.188)

C
H

O

–37.78430
–0.50000 (there are no correlation effects for the H atom;

this is the exact energy)
–74.98203
–115.53490
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quantities provided in the thermochemical summary at the end of the G2 calculation as
implemented in Gaussian 94 or Gaussian 98:

(G2(0 K) is the G2 value for what we have called
The experimental enthalpy increases for the elements are given in [128];

From these and

The accepted experimental value [129] is
Note that if is not wanted, can be calculated directly, since from

Eqs (5.188) and (5.190) the 0 K ab initio energy of the compound is subtracted out and
it follows that
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Formation method
An alternative to the atomization method is what has been called the “formation”
method, which is illustrated for methanol in Fig. 5.27. This method utilizes a kind
of “pseudo heat of formation”s, of the compound from atomic carbon and mole-
cular hydrogen and oxygen (the conventional heat of formation is relative to graphite
and molecular hydrogen and oxygen). From Fig. 5.27,

The value calculated by this procedure in [128] is The atomization
method usually gives somewhat more accurate heats of formation, at least with the
G2-type methods (although for the particular case of methanol this is not so), perhaps

where the experimental value of is used, and

A calculation using G2 energies gives
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because these methods were optimized (via the semiempirical terms, section 5.5.2.2b)
to give accurate atomization energies.

Isodesmic reaction method
Finally, heats of reaction can be calculated by ab initio methods with the aid of isodesmic
reactions (section 5.5.2.2a), as indicated in Fig. 5.28 (actually, the scheme in Fig. 5.28
is not strictly isodesmic – e.g. only on one side of the “isodesmic” equation is there an
H–H bond). From this scheme

This is very close to our atomization heat of formation value above
and a little more negative than the experimental value
[128]).

Of the three approaches to calculating heats of formation (atomization, formation
and isodesmic), the atomization has been recommended over the formation [128]. The
isodesmic (or isodesmic-type, as in Fig. 5.28) should be at least as accurate as the

With this and the experimental 0 K heats of formation of and [128]:

Using G2 values:

where
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atomization, because of the ability of isodesmic and related processes to compensate
for basis set and correlation deficiencies (section 5.5.2.2a). In concluding our discus-
sion of heats of formation, note that all these calculations of the heat of formation
of methanol were not purely ab initio (quite apart from the empirical correction term
in G2), since they required experimental values of either the heat of atomization of
graphite (atomization and formation methods) or the heat of formation of methane
(formation method). The inclusion of experimental values makes the calculation of
heat of formation with the aid of ab initio methods a semiempirical procedure (do not
confuse the term as used here with semiempirical programs like AM1, discussed in
chapter 6). Augmentation with experimental data is needed whenever an ab initio cal-
culation would involve an extended, solid substance like graphite (see the discussion in
connection with the atomization method); other examples are phosphorus and sulfur.

Considerable attention has been given here to heats (enthalpies) of formation, because
there are extensive tabulations of these [130] and papers on their calculation appear
often in the literature [131]. However, we should remember that equilibria [103] are
dependent not just on enthalpy differences, but also on the often-ignored entropy
changes, as reflected in free energy differences, and so the calculation of entropies
is also important [132].

5.5.2.3a Kinetics; calculating reaction rates
Ab initio kinetics calculations are far more challenging than thermodynamics calcula-
tions; in other words, the calculation of rate constants is much more involved than that
of equilibrium constants or quantities like reaction enthalpy, reaction free energy, and
heat of formation, which are related to equilibrium constants. Why is this so? After all,
both rates and equilibria are related to the energy difference between two species: the
rate constant to that between the reactant and transition state (TS), and the equilibrium
constant to that between the reactant and product (Fig. 5.25). Furthermore, the energies
of transition states, like those of reactants and products, can be calculated. The reason
for the difference is partly because the energies of transition states are harder to calculate
to high accuracy than are those of relative minima (“stable species”). Another problem
is that the rate does not depend strictly on the TS/reactant free energy difference (which
can, at sufficiently high levels, be accurately calculated).

To understand the problem consider a unimolecular reaction Figure 5.29
shows the potential energy surface for two reactions of this type, and

The reactions have identical calculated free energies of activation. By calculated, we
mean here using some computational chemistry method (e.g. ab initio) and locating a
stationary point with no imaginary frequencies, corresponding to A, and an appropriate
stationary point with one imaginary frequency, etc. (section 2.5), corresponding to
B. The “traditional” calculated rate constant then follows from a standard expression
involving from the energy difference between the TS and reactant (our calculated free
energy of activation) and the partition functions of the two species. However, in the TS
region the PES for the first process is flatter than for the second process – the saddle-
shaped portion of the surface is less steeply-curved for reaction 1 than for reaction 2.
If all reacting A molecules followed exactly the intrinsic reaction coordinate (IRC;
section 2) and passed through the calculated TS species, then we might expect the two
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reactions to proceed at exactly the same rate, since all and molecules would have
to surmount identical barriers. However, the IRC is only an idealization [133], and
molecules passing through the TS region toward the product frequently stray from this
path (dashed lines). Clearly for the reaction at any finite temperature more
molecules (reflected in a Boltzmann distribution) will have the extra energy needed to
traverse the higher-energy regions of the saddle, away from the TS point, than in the
case of if the saddle were curved infinitely steeply, no molecules could stray
outside the reaction path. Thus reaction 1 must be faster than reaction 2, although they
have identical computed free energies of activation; the rate constant for reaction 1 must
be bigger than that for reaction 2. The difficulty of obtaining good rate constants from
accurate calculations on just two PES points, the reactant and the TS, is mitigated by
this fact: the vibrational frequencies of the TS sample the curvature of the saddle region
both along the reaction path (this curvature is represented by the imaginary frequency)
and at “right angles” to the reaction path (represented by the other frequencies). High
frequencies correspond to steep curvature. So when we use the TS frequencies in the
partition function equation for the rate constant we are, in a sense, exploring regions of
the PES saddle other than just the stationary point. The role of the curvature of the PES
in affecting reaction rates is nicely alluded to by Cremer, who also shows the place of
partition functions in rate equations [134].

Another way to calculate rates is by molecular dynamics [135]. Molecular dynamics
calculations use the equations of classical physics to simulate the motion of a molecule
under the influence of forces; the required force fields can be computed by ab initio
methods or, for large systems, semiempirical methods (chapter 6) or molecular mechan-
ics (chapter 3). In a molecular dynamics simulation of the reaction molecules
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of A are “shaken” out of their potential well, and some pass through the saddle region
at a rate that, for a given temperature, depends on the height of this region and its
curvature. The height and curvature can be handled as an analytic function of atomic
coordinates which has been fitted to a finite number of calculated
(e.g. by ab initio methods) points. The situation is even more complicated, because
the simulation technique just outlined ignores quantum mechanical tunnelling [136],
which, particularly where light atoms like hydrogen move, can speed up a reaction by
orders of magnitude compared to classical predictions.

For rigorous calculations of rate constants one best utilizes specialized programs
[137]. There are many discussions of the theory of reaction rates, in various degrees of
detail [138]. In this section we will limit ourselves to gas-phase unimolecular reactions
[139] and examine the results of some rough calculations. We will use the equation

where unimolecular rate constant = Boltzmann constant,
Planck’s constant, J s;

the transition-state-reactant free energy difference (in some calculations we
will try the ZPE-corrected 0 K energy difference, which is the 0 K enthalpy
difference); R = gas constant,

This is not a rigorous equation for the unimolecular rate constant (which has high-
and low-pressure limiting forms anyway [139]). Roughly, Eq. (5.195) results from
assuming that the rotational and vibrational partition functions do not change on going
from the reactant to the TS in the high-pressure limit [140]; rates at the low-pressure
limit appear to be slower than those at the high-pressure limit by a factor of roughly
1000 [141], In comparing calculated and experimental rate constants, we will consider
the conditions to be the high-pressure limit (ca. 100mmHg or 13000Pa [141]. In the
following calculations we will see if Eq. (5.195) is useful.

Consider the reactions in Fig. 5.30. Reactant and product structures were created
with Spartan [30] and transition states were generated with Spartan’s transition state
routine; semiempirical AM1 geometries from Spartan were used as input to G94W [48]
CBS-Q, CBS-4 and G2 (section 5.5.2.2b) calculations. The results of the calculations
are summarized in Tables 5.11 and 5.12. Table 5.12 shows that for a given reaction we
got the same result, to within a factor of 10, whether we used CBS-Q or G2,
or the biggest deviation is for a factor of 3.0 cf. 0.3. The CBS-4
method gave rate constants that are smaller than the CBS-Q and G2 rate constants by
factors of from about 2 to 5000 using These results
may be compared with the experimental facts:

The experimental rate constant for the isocyanomethane (methyl isocyanide) to
propanenitrile (acetonitrile) reaction is at 298 K [142]. This com-
pares astonishingly well with the value of in Table 5.11, calculated from
the G2 value of the calculated rate constant is only a factor of three too small
(using G2 with gives a rate constant too small by a factor of ten). The CBS-Q
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method gives a rate constant too small by factors of eight and 28 (using
CBS-4 rate constants are too small by factors of from about (using

to (using
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The reported halflife of ethenol (vinyl alcohol) in the gas phase at room temperature
is ca. 30min [143], far shorter than our calculated However, the 30 min
halflife is very likely that for a protonation/deprotonation isomerization catalyzed by
the walls of the vessel, rather than for the concerted hydrogen migration (Fig. 5.30)
considered here. Indeed, the related ethynol has been detected in planetary atmospheres
and interstellar space [144], showing that that molecule, in isolation, is long-lived. All
three methods predict very long halflives, the same to within a factor of two, regardless
of whether one uses or

Cyclopropylidene to allene
Cyclopropylidene has never been detected [145], so its halflife must be very short even
well below room temperature. Our calculations predict room temperature halflives for
Cyclopropylidene Gaussian 94 and 98 can be instructed to calculate G
(and H) at temperatures other than 298.15 K, so that and and thus equilibrium
and rate constants, could be calculated for other temperatures, but if we just use the
298 K value of which should not change dramatically with temperature (cf.

and in Table 5.11), we can estimate the halflife at 77 K
(attempts to generate Cyclopropylidene at 77 K gave allene [146]). Equation (5.195)
gives a halflife at 77 K of 590 s (10 min). Since this could easily be out by a factor
of 10, the calculation accords with experiment. Cyclopropylidene should be easily
observable at 10K, a routine matrix isolation [147] working temperature, where its
halflife is calculated to be ca.

These experimental facts and the comparison of the three computational methods
suggest these tentative generalizations: the use of Eq. (5.195) with CBS-Q or (prefer-
ably?) G2 values of gives for unimolecular isomerizations rate constants that are
qualitatively reliable. The CBS-4 rate constants are smaller than the CBS-Q and G2
ones by a factor of from 2 to 1000. This is not bad for CBS-Q and G2, considering that
Eq. (5.195) is quite approximate, and that the CBS and G2 methods (section 5.5.2.2b)
were developed to provide reliable thermodynamic data, not to handle transition states.

where is in
Equation (5.196) shows that for is (at 10-

298 K); this is about as expected, since the period of a molecular vibration is about
s and with no barrier a species should survive for only about one vibra-

tional motion (that along the reaction coordinate, corresponding to the imaginary
frequency) as it passes through the saddle region (e.g. Fig. 5.29). Figure 5.31, a graph
of Eq. (5.197), can be used to estimate halflives at room temperature from the free
energy of activation, for unimolecular isomerizations. We see that the threshold value
of for observability at room temperature for a species that decays by a unimole-
cular process is predicted to be roughly or 9 min), with
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From Eq. (5.195) and the fact that for a unimolecular reaction
follows that

At 298 K (about room temperature) this becomes

Computational Chemistry



287

a strong dependence on Experience shows that in fact the threshold barrier for
observing or isolating a compound at room temperature is about

5.5.2.3b Energies: concluding remarks
Although we have paid considerable attention to high-accuracy energy methods (CBS
and G2), many ab initio studies are limited to obtaining relative energies at a mod-
erate level like MP2/6-31G*, or even HF/6-31G* or HF/3-21G. In comparing the
thermodynamic stabilities of isomers (in contrast to calculating an “absolute” ther-
modynamic parameter like the heat of formation of a compound), simple subtraction
of ab initio energies calculated at a modest level (e.g. Fig. 5.24) usually gives at least
semiquantitatively reliable results. Some examples of energy differences calculated at
modest ab initio levels are shown in Table 5.13. Here (section 5.2.3.6d), the
ZPE-corrected ab initio energy, has been used to calculate energy differences for five
pairs of isomers. The ab initio energies are from HF/3-21G-optimized geometries,
HF/6-31G*-optimized geometries, and single-point HF/6-31G* calculations on HF/3-
21G-optimized geometries; the ZPE corrections are all from HF/3-21G* frequencies on
HF/3-21G-optimized geometries. Although ZPE corrections have been included here,
ignoring them for such modest-level calculations on pairs of isomers evidently makes
little difference, as the correction is the same for both isomers, to within a few
(but for comparison of a ground state and a TS the ZPE correction is more likely to be
significant, see e.g. Fig. 2.20; and in high-accuracy calculations ZPE’s should always

Ab initio calculations



288

be included). This very small sample does not permit one to draw conclusions about
energies, but this has been discussed in sections 5.3.3 and 5.5.2.2a.

The single-point           energies are almost identical to the optimized-geometry ones
(correlated single-point energies were discussed in sections 5.4.2 and 5.4.3). Agree-
ment with experiment (the 0 and 298 K enthalpy values are approximately comparable)
is good except for ethanal/ethenol; the reported experimental value of for
this pair is supported by a high-accuracy energy calculation (CBS-Q, section 5.5.2.2b)
that gives a 0 K enthalpy difference of at 298 K, bolster-
ing the assertion that changes little from 0 to 298 K). The two values are
evidently in error by about while the error is only

A “higher” level is not guaranteed to give more accurate
results, at least not until we reach very high levels. As might be suspected, the relative
energies of conformers is also treated quite well by these modest levels [148].

Foresman and Frisch [149], in a chapter with very useful data and recommendations,
show large mean absolute deviations (MAD) and enormous maximum errors for HF
and even MP2 methods; e.g.
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How can this be reconciled with the results shown in this chapter and the modest
levels endorsed by Hehre [32]? As hinted (“Don’t Panic!”; [1e], p. 146)], the large
errors reported are a composite including some “tough cases” [150] like atomization
energies (section 5.4.1). If the calculation set had been limited to, say, comparing the
energies of isomers containing only carbon, hydrogen and oxygen, the errors would
have been much smaller. A good feel for the accuracy of various levels of calculation
will emerge from examining the extensive data in Hehre’s book [32], while Fores-
man and Frisch remind us that there are cases in which high-accuracy methods are
required.

The number of imaginary frequencies tells us the curvature of the potential energy
surface at the point corresponding to a particular stationary point: whether an
optimized structure (i.e. a stationary point) is a minimum, a transition state (a
first-order saddle point), or a higher-order saddle point. See section 2.5. Rou-
tinely checking optimized structures with a frequency calculation is a good idea,
if the size of the job does not make this impractical (frequencies take longer than
optimizations).

The frequencies must be calculated to get the zero point energy of the molecule.
This is needed for accurate energy comparisons (section 2.5).

The normal-mode vibrational frequencies of a molecule correspond (with qualifi-
cations) to the bands seen in the infrared (IR) spectrum of the substance. Thus the
IR spectrum of a substance that has never been made can be calculated to serve as
a guide for the experimentalist. Unidentified IR bands observed in an experiment
can sometimes be assigned to a particular substance on the basis of the calculated
spectrum of a suspect; if the spectra of the usual suspects are not available from
experiment (they might be extremely reactive, transient species), we can calculate
them.

The characterization of stationary points by the number of imaginary frequencies
was discussed in chapter 2, and ZPEs in chapter 2 and earlier sections of this chapter.
Here we will examine the utility of ab initio calculations for the prediction of IR
spectra [152]. It is important to remember that frequencies should be calculated
at the same level (e.g. HF/3-21G, MP2/6-31G*,…) as was used for the geometry
optimization (section 2.5).

Positions (frequencies) of IR bands
In section 2.5, we saw that diagonalization of the force constant matrix gives an eigen-
value matrix whose elements are the force constants of the normal modes, and an
eigenvector matrix whose elements are their “direction vectors”. Mass-weighting the
force constants gives the wavenumbers (“frequencies”) of the normal-mode vibrations,
and their motions can be identified by using the direction vectors to animate them. So
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5.5.3 Frequencies
The calculation of normal-mode frequencies (section 2.5) is important because:

1.

2.

3.
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we can calculate the wavenumbers of IR bands and associate each band with some par-
ticular vibrational mode. The wavenumbers from ab initio calculations are larger than
the experimental ones, i.e. the “frequencies” are too high. There are two reasons why
this might be so: the principle of equating second derivatives of energy (with respect
to geometry changes) with force constants might be at fault, or the basis set and/or
correlation level might be deficient.

The principle of equating a second derivative with a stretching or bending force
constant is not exactly correct. A second derivative is strictly equal to a force
constant only for cases where the energy is a quadratic function of the geometry (simple
harmonic motion), i.e. where a graph of E vs. q is a parabola, but vibrational curves are
not parabolas (Fig. 5.32). For a parabolic E/q relationship, and considering a diatomic
molecule for simplicity:

where is the equilibrium geometry. Here k is by definition the force constant,
the second derivative of E, and For a real molecule, however, the E/q
relationship is more complicated, being a power series in etc., terms, and there is
notjust one constant. Equation (5.198) holds for what is called simple harmonic motion,
and the coefficients of the higher-power terms in the more accurate equation are called
anharmonicity corrections. Assuming that bond vibrations are simple harmonic is the
harmonic approximation.

For small molecules it is possible to calculate from the experimental IR spectrum the
simple harmonic force constant k and the anharmonicity corrections. Using k, harmonic



frequencies can be calculated [153], These correspond to a parabolic E/q relationship
(Fig. 5.32), i.e. to a steeper curve than the real one, and thus to stiffer bonds. Stiffer
bonds need more energy to stretch them (or bend them, for bending force constants),
and thus absorb higher-frequency infrared light. Harmonic frequencies derived from
experimental IR spectra are higher than the observed (the “raw”) experimental fre-
quencies, and are closer to ab initio frequencies than are the observed frequencies
[154]. Since both theoretically calculated (e.g. by ab initio methods) frequencies and
experimentally-derived harmonic frequencies are based on a parabolic E/q relation-
ship, it is sometimes considered better to compare calculated frequencies with harmonic
frequencies rather than observed experimental frequencies [155].

Because both ab initio and experimentally-derived harmonic frequencies rest on
second derivatives, we might expect ab initio frequencies to converge not toward the
observed experimental, but rather toward the experimentally-derived harmonic frequen-
cies, as correlation level/basis set are increased. This is indeed the case, as has been
shown by calculations on water with high correlation levels (CCSD(T); section 5.4.3)
and large basis sets (polarization functions and triply- or quadruply-split valence shells
(section 5.3.3). The deviations fell from 269, 282, and at the Hartree-Fock
level to values only 9, 13, and higher than the experimentally-derived har-
monic values of 3943, 3832, and [156]. The observed water frequencies
are 3756, 3657 and ; experimentally-derived harmonic frequencies are typ-
ically about 5% higher, and ab initio frequencies about 5–10% higher, than observed
frequencies.

From the foregoing discussion it appears that ab initio frequencies are too high
because of the harmonic approximation: equating of with a force constant.
There is no theoretical reason why high-level calculations should converge toward the
observed frequencies; this statement applies to frequencies calculated, as is almost
always the case, by the harmonic approximation (above). However, we wish, ideally, to
compute observed IR spectra. Fortunately, calculated and observed frequencies differ
by a fairly constant factor, and ab initio frequencies can be brought into reasonable
agreement with experiment by multiplying them by a correction factor. An extensive
comparison by Scott and Radom of calculated and experimental frequencies [60] has
provided empirical correction factors for frequencies calculated by a variety of methods.
A few of the correction factors from this compilation are:

The correction factors at the HF level with the three basis sets are very similar, 0.90–
0.91; the factors at the MP2 level are significantly closer to 1, but Scott and Radom say
that “MP2/6-31(d) does not appear to offer a significant improvement in performance
over HF/6-31G(d) and occasionally shows large errors”, and “The most cost-effective
procedures found in this study for predicting vibrational frequencies are HF/6-31(d)
and [certain density functional methods]”. Scott and Radom have also derived separate
correction factors for zero-point vibrational energies, although it was at least hitherto
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HF/3-21G
HF/6-31G*
HF/6-311G(df,p)
MP2(FC)/6-31G*
MP2(FC)/6-311G**

0.9085
0.8953
0.9054
0.9434
0.9496
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This can be used to calculate the relative intensities of IR bands (the calculation of
dipole moments is discussed in the next section). One way to calculate the derivative is
to approximate it as a ratio of finite increments d becomes ) and calculate the change
in dipole moment with a small change in geometry; there are also analytical methods
for calculating the derivative [158].

It has been reported that at the HF level calculated IR-band intensities often differ
from experiment by a factor of over 100 percent, but at the MP2 level are typically
within 30 percent of experiment [159]. A few calculated (frequencies and intensities) IR

common practice to use the same correction factor for frequencies and for ZPE’s. Better
agreement with experiment can be obtained by using empirical correction factors for
specific kinds of vibrations (Scott and Radom give separate factors for low-frequency
vibrations, as opposed to the relatively high-frequency ones to which the factors above
refer), but this is rarely done.

Intensities of lR bands
The bands in an IR spectrum have not just positions (“frequencies”, denoted by various
wavenumbers), but also intensities (not routinely quantified, but commonly described as
weak, medium, or strong). To calculate an IR spectrum for comparison with experiment
it is desirable to compute both wavenumbers and intensities. The intensity of an IR
vibration is determined by the change in dipole moment accompanying the vibration. If
a vibrational mode leads to no change in dipole moment, the mode will, theoretically,
not result in absorption of an IR photon, because the oscillating electric fields of the
radiation and the vibrational mode will be unable to couple. Such a vibrational mode
is said to be IR-inactive, i.e. it should cause no observable band in the IR spectrum.
Stretching vibrations that, because of symmetry, are not accompanied by a change in
dipole moment, are expected to be IR-inactive. These occur mainly in homonuclear
molecules like and and in linear molecules; thus the C/C triple bond stretch
in symmetrical akynes, and the symmetric OCO stretch in carbon dioxide, do not
engender bands in the IR spectrum. For Raman spectroscopy (in which one measures
the scattered rather than the transmitted IR light), the requirement for observing a
vibrational mode (i.e. for absorption of a photon) is that the vibration occur with a
change in polarizability. Raman spectra are routinely calculable (e.g. by the Gaussian
programs [23,48]; the IR and Raman frequencies are the same) along with IR spectra.
A band which should be IR-inactive or at least very weak can in fact sometimes be
seen because of coupling with other vibrational modes; thus the triple-bond stretch
of benzyne dehydrobenzene) has been observed [157], although it apparently
should be accompanied by only a very small change in dipole moment. Bands like this
are expected to be, at best, weak.

As might be expected from the foregoing discussion, the intensity of an IR normal
mode can be calculated from the change in dipole moment with respect to the change
in geometry accompanying the vibration. The intensity is proportional to the square of
the change in dipole moment with respect to geometry:
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spectra are shown in Figs 5.33–5.36 (based on experiment, and the data in Tables 5.14–
5.17). This sample, although very limited, gives one an idea of the kind of similarity
one can expect between experimental and ab initio IR spectra. A detailed resemblance
cannot be expected, but the general features of a spectrum are reproduced. Probably
the main utility of calculated ab initio IR spectra is in predicting the IR spectra of
unknown molecules, as an aid to their synthesis. It should be possible to increase
the accuracy of predicted spectra by performing calculations on a series of known
compounds and fitting the experimental to the calculated wavenumbers, and perhaps
intensities, to obtain empirical corrections tailored specifically to the functional group of
interest.
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We have seen three applications of ab initio calculations: finding the shapes (geome-
tries), the relative energies, and the frequencies of stationary points (usually minima
and transition states) on a potential energy surface. The shape of a molecular species
is one of its fundamental characteristics. It can, for example, provide clues to the exis-
tence of theoretical principles (why is it that benzene has six equal-length CC bonds,
but cyclobutadiene has two “short” and two “long” bonds [160]?), or act as a guide to
designing useful molecules (docking a candidate drug into the active site of an enzyme
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5.5.4 Properties arising from electron distribution: dipole
moments, charges, bond orders, electrostatic potentials,
atoms-in-molecules
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requires a knowledge of the shapes of the drug and of the active site [82]). The rela-
tive energies of molecular species is fundamental to a knowledge of their kinetic and
thermodynamic behaviour, and this can be important in attempts to synthesize them.
The vibrational frequencies of a molecule, provide information about the electronic
nature of its bonds, and prediction of the spectra represented by these frequencies may
be useful to experimentalists.

A fourth important characteristic of a molecule is the distribution of electron density
in it. Calculation of the electron density distribution enables one to predict the dipole
moment, the charge distribution, the bond orders, and the shapes of various molecular
orbitals.

Dipole moments
The dipole moment [ 161 ] of a system of two charges Q and – Q separated by a distance

is, by definition, the vector Qr ; the direction of the vector is officially from – Q
toward +Q, but chemists usually assign a molecular or bond dipole (see below) the
direction from the positive end of the bond or molecule to the negative (Fig. 5.37(a)).
The dipole moment of a collection of charges                               with corresponding
position vectors (Fig. 5.37(b)) is

and the so the dipole moment of a molecule is seen to arise from the charges and
positions of its component electrons and nuclei. The dipole moment of a molecule is
an experimental observable [162], with which we can compare calculated moments. It
is often convenient to think of the molecular dipole moment as the vector sum of bond
moments (Fig. 5.37(c)). Two points should be noted: we are discussing an average
dipole moment, because electron and nuclear motions will cause the dipole moment to
fluctuate, so that even a spherical atom can have temporary nonzero dipole moments.
Another point is that we usually consider the dipole moments of neutral molecules
only, not of ions; this is because the dipole moment of a charged species is not unique,
but depends on the choice of the point in the coordinate system from which the position
vectors are measured.

Let us look at the calculation of the dipole moment within the HF approximation.
The quantum mechanical analogue of Eq. (5.200) for the electrons in a molecule is

Here the summation of charges times position vectors is replaced by the integral over
the total wavefunction (the square of the wavefunction is a measure of charge) of the
dipole moment operator (the summation over all electrons of the product of an electronic
charge and the position vectors of the electrons). To perform an ab initio calculation
of the dipole moment of a molecule we want an expression for the moment in terms of
the basis functions their coefficients and the geometry (for a molecule of specified
charge and multiplicity these are the only “variables” in an ab initio calculation). The HF
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totalwavefunction is composed of those component orbitals which are occupied,
assembled into a Slater determinant (section 5.2.3.1), and the are composed of
basis functions and their coefficients (sections 5.3). Eq. (5.201), with the inclusion of
the contribution of the nuclei to the dipole moment, leads to the dipole moment in
Debyes as ([1g], p. 41)
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Here the first term refers to the nuclear charges and position vectors and the second
term (the double summation) refers to the electrons. = the density matrix elements
(sections 5.2.3.6d and 5.2.3.6e), cf.:

The P summation is over the occupied orbitals ( j = 1,2,..., n; we are considering
closed-shell systems, so there are 2n electrons) and the double summation is over the
m basis functions. The operator r is the electronic position vector.

How good are ab initio dipole moments? Hehre’s extensive survey of prac-
tical ab initio methods [32] indicates that fairly good results are given by
HF/6-31G*//HF/6-31G* (dipole moment from a HF/6-31G* calculation on a
HF/6-31G* geometry) calculations, and that MP2/6-31G*//MP2/6-31G* calculations
are usually not much better. Some calculated and experimental dipole moments are
compared in Table 5.18. These results, which are quite typical, indicate that cal-
culated values tend to be about 0.0–0.5 D higher than experimental, with a mean
deviation of about 0.3 D; negative deviations are rare. HF/3-21G//HF/3-21G (the low-
est ab initio level likely to be used) calculations may show the largest deviations.
Single-point HF/6-31G* calculations on HF/3-21G geometries appear to give results
about as good as (or better than? Note and [32], pp. 76, 77) those from
MP2(FC)/6-31G*//MP2(FC)/6-31G* calculations. As is the case for other properties,
3-21G calculations of dipole moments on molecules with atoms beyond neon require
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Charges and bond orders
Chemists make extensive use of the idea that the atoms in a molecule can be assigned
electrical charges. Thus in a water molecule each hydrogen atom is considered to have
an equal, positive, charge, and the oxygen atom to have a negative charge (equal in
magnitude to the sum of the hydrogen charges). This concept is clearly related to the
dipole moment: in a diatomic (for simplicity) molecule one expects the negative end
of the dipole vector to point toward the atom assigned the negative charge. However,
there are two problems with the concept: first, the charge on an atom in a molecule,
unlike the dipole moment of a molecule, cannot be measured (it is not an observable).
Second, there is no unique, correct theoretical method for calculating the charge on an
atom in a molecule.

Both the measurement and calculational problems arise from the difficulty of defining
what we mean by “an atom in a molecule”. Consider the hydrogen chloride molecule. As
we move from the hydrogen nucleus to the chlorine nucleus, where does the hydrogen
atom end and the chlorine atom begin? If we had a scheme for partitioning the molecule
into atoms (Fig. 5.38(a)), the charge on each atom could be defined as the net electric
charge within the space of the atom, i.e. the algebraic sum of the electronic and the
nuclear charges. The electronic charge in the defined space could be found by integrating
the electron density (essentially the square of the wavefunction; only the wavefunction
composed of the occupied orbitals need be considered) over that region of space.

Bond order is a term with conceptual difficulties related to those associated with atom
charges. The simplest electronic interpretation of a bond is that it is a pair of electrons
shared between two nuclei, somehow [164] holding them together. From this criterion
and Lewis structures the C/C bond order in ethane is 1, in ethene 2, and in ethyne 3,
in accordance with the classical assignment of a single, a double, and a triple bond,
respectively. However, if a bond is a manifestation of the electron density between two
nuclei, then the bond order need not be an integer; thus the bond in
might be expected to have a lower bond order than the in because
the group might drain electron density away toward the electronegative oxygen.
However, an attempt to calculate bond order from electron density (the square of the
wavefunction) runs into the problem that in a polyatomic molecule, at any rate, it is not
clear how to define precisely the region “between” two atomic nuclei (Fig. 5.38(b)).

Assigning atom charges and bond orders involves calculating the number of elec-
trons “belonging to” an atom or shared “between” two atoms, i.e. the “population” of
electrons on or between atoms; hence such calculations are said to involve population
analysis. Earlier schemes for population analysis bypassed the problem of defining the
space occupied by atoms in molecules, and the space occupied by bonding electrons,
by partitioning electron density in a somewhat arbitrary way. The earliest such schemes
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polarization functions for reasonable results (the 3-21G(*) basis; [32], pp. 23–30). The
3-21G* calculations in Table 5.18 show a mean deviation 0.33; the HF/6-31G* calcu-
lations are only slightly better (mean deviation 0.26) and the MP2/6-31G* calculations
appear to be, if anything, slightly worse (mean error 0.34). If high-accuracy calculated
dipole moments (0.1 D or better) are needed, high-level correlation and large basis sets
must be used; such calculations may be needed to reproduce the magnitude and even
the direction of small dipole moments, e.g. in carbon monoxide [163].
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were utilized in the simple Hückel or similar methods [165], and related these quantities
to the basis functions (which in these methods are essentially valence, or even just p,
atomic orbitals; see section 4.3.4). The simplest scheme used in ab initio calculations
is Mulliken population analysis [166].

Mulliken population analysis is in the general spirit of the scheme used in the simple
Hückel method, but allows for several basis functions on an atom and does not require
the overlap matrix to be a unit matrix. In ab initio theory each molecular orbital has a
wavefunction (section 5.2.3.6a):

Here the basis set engenders MOs Several basis
functions can reside on each atom, so is the coefficient of basis function s (not, as
in simple Hückel theory, atom s) in MO i. For any MO squaring and integrating
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The integral equals one because the probability that the electron is somewhere in the
MO (which, strictly, extends over all space) is one; the (both the same) overlap
integrals are also unity, since the basis functions are normalized (cf. section 4.4.1 b).

In the Mulliken scheme each electron in is taken to contribute a “fraction of an
electron” to basisfunction and a fraction of an electron
(see Eq. (5.205)) to the overlap region, and in general to contribute a fraction
of an electron to the basis function (“orbital”) and a fraction of an electron

to the overlap space; see Fig. 5.39(a). This seems reasonable since
(1), the terms sum to one (the “fractions” of the electron must add to one), and (2)
it seems reasonable to partition the contribution of electrons to basis functions and
overlap regions according to the “electron density sum” in Eq. (5.205). Now if there
are electrons in MO then the contributions of to the electron population of
basis function and of the overlap region between and are

over all space gives

and

The total contributions from all the MOs to the electron population in and in the
overlap region between and are

The sums are over the occupied MOs, since for the virtual MOs. The number
is the Mulliken net population in the basisfunction and the number is the

Mulliken overlap population for the pair of basis functions and The net population
summed over all plus the overlap population summed over all pairs equals the
total number of electrons in the molecule.

The quantities and are used to calculate atom charges and bond orders. The
Mulliken gross population in the basis function is defined as the Mulliken net pop-
ulation (Eq. (5.206)) plus one half of all those Mulliken overlap populations
(Eq. (5.207)) which involve (of course for some may be negligible; e.g. for
well-separated atoms is very small):
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The gross population is an attempt to represent the total electron population in the
basis function ; this is considered here to be the net population the population
that all the occupied MOs contribute to through the representation of in each
by its coefficient (Eq. (5.208), plus one-half of the all the populations in the overlap
regions involving (Fig. 5.39(b)). Assigning to one-half, rather than some other
fraction, of the electron population in an overlap region with is said to be arbitrary.
Of course it is not arbitrary, in the sense that Mulliken thought about it carefully and
decided that one-half was at least as good as any other fraction. One might imagine
a more elaborate partitioning in which the fraction depends on the electronegativity
difference between the atoms on which and reside, with the more electronegative
atom getting the larger share of the electron population. To get the charge on an atom
A we calculate the gross atomic population for A:
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This is the sum over all the basis functions on atom A A qualifying the
summation means “r belonging to A”) of the gross populations in each (Eq. (5.210);
it involves all the basis functions on A and all the overlap regions these functions have
with other basis functions We can regard as the total electron population on
atom A (within the limits of the Mulliken treatment). The Mulliken charge on atom A,
the net charge on A, is then simply the algebraic sum of the charges due to the electrons

The matrix element is summed over all filled MOs (from to for the ground
electronic state of a 2n-electron closed-shell molecule); an example of the calculation
of P was given in section 5.2.3.6e. The elements of the overlap matrix S are simply the
overlap integrals:

From Eq. (5.214) it follows that the matrix (PS) obtained by multiplying corresponding
elements of P and S,

Note that (PS) is not the matrix PS obtained by matrix multiplication of P and S; each
element of that matrix would result from series multiplication: a row of P times a
column of S (section 4.3.3).

has elements

and the nucleus:

The Mulliken bond order for the bond between atoms A and B is the total population
for the A/B overlap region:

The overlap population for basis functions and (Eq. (5.209)) is summed over all
the overlaps between basis functions on atoms A and B.

Since the formulas for calculating Mulliken charges and bond orders (Eqs (5.206)-
(5.213)) involve summing basis function coefficients and overlap integrals, it is not
too surprising that they can be expressed neatly in terms of the density matrix
(section 5.2.3.6d) P and the overlap matrix S (section 4.3.3). The elements of the
density matrix P are
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The diagonal elements of (PS) are

Compare this with Eq. (5.208): for a ground-state closed-shell molecule there are 2
electrons in each occupied MO and Eq. (5.208) can be written as:

i.e.

The off-diagonal elements of (PS) are given by Eq. (5.217),    Compare this
with Eq. (5.209): for a ground-state closed-shell molecule there are 2 electrons in each
occupied MO and Eq. (5.209) can be written as:

i.e.

Thus the matrix (PS) can be written as:

The matrix (PS) (or sometimes 2(PS)) is called a population matrix.

An example of population analysis:
As a simple illustration of the calculation of atom charges and bond orders, consider

From our HF calculations on this molecule (section 5.2.3.6e) we have

Therefore,

From Eq. (5.223), (PS) gives us
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Note that the elements of the population matrix (PS) sum to the number of electrons in
the molecule: 0.2020 + 1.2864 + 0.2557 + 0.2557 = 2.000. This is expected, since

Computational Chemistry

The sum of all the on H has only one term, since there is only one basis function
on H. Using Eq. (5.211):

The charges sum to 0.5423 + 0.4579 = 1.000, the total charge on the molecule. The
less positive charge on helium is in accord with the fact that electronegativity increases
from left to right along a row of the periodic table. H–He bond order For this we use
Eq. (5.213); is summed for all overlaps between basis functions on atoms A and B.
There is only one such overlap, that between and so

The charge on He,  is the algebraic sum of the gross electronic population and the
nuclear charge:

The sum of all the on He has only one term, since there is only one basis function
on He:

Charge on He, For this we need the sum of all the on He (Eq. (5.211).
There is only one basis function on He, so there is only one relevant for He, and
for there is only one overlap, with so the summation involves only one term,

The charge on H,  is the algebraic sum of the gross electronic population and the
nuclear charge (Eq. (5.212)):

Charge on H, For this we need the sum of all the on H (Eqs (5.211)
and (5.210)). There is only one basis function on H, so there is only one relevant

for H, and for there is only one overlap, with so the summation involves only
one term, Using Eq. (5.210):
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the diagonal elements are the number of electrons in the “atomic space” of the basis
functions, and the off-diagonal elements are the number of electrons in the overlap
space of the basis functions.

The Mulliken approach to population analysis has certain problems; for example,
it sometimes assigns more than two electrons, and sometimes a negative number of
electrons, to an orbital. It is also fairly basis-set dependent (Hehre, Radom, Schleyer
and Pople compare Mulliken charges for a variety of molecules using the STO-3G,
3-21G(*) and 6-31G* basis sets: [1g], pp. 337–339). Other approaches to partitioning
electrons among orbitals and thus calculating charges and bond orders are the Löwdin
method [167] and the natural atomic orbitals (NAO) population analysis of Weinhold
[168].

Electrostatic potential
The electrostaticpotential (ESP) is a measure of charge distribution that also provides
other useful information [169]. The electrostatic potential at a point P in a molecule
is defined as the amount of energy (work) needed to bring a unit point positive “probe
charge” (e.g. a proton) from infinity to P. The electrostatic potential can be thought of
as a measure of how positive or negative the molecule is at P: a positive value at the
point means that the net effect experienced by the probe charge as it was brought from
infinity was repulsion, while a negative value means that the probe charge was attracted
to P, i.e. energy was released as it fell from infinity to P. The ESP at a point is the net
result of the effect of the positive nuclei and the negative electrons. The calculation of
the effect of the nuclei is trivial, following directly from the fact that the potential due
to a point charge Z at a distance r away from the unit charge is

Thus the ESP created by the nuclei is

where is the distance from nucleus A to the point P, i.e. the absolute value of
the difference of two vectors.To obtain the expression for the ESP due to the electrons,
we can modify Eq. (5.227) by replacing the summation over the nuclei by an integral
over infinitesimal volume elements of the electron density or chargedensity (see
Atoms-in-molecules). The total ESP is:

The ESP at many points on the surface of the molecule can be calculated (section 5.5.6)
and a set of atom charges then calculated to fit (by a least-squares procedure) the ESP
values, and also to sum to the net charge on the molecule (the use of visualization of
the ESP is discussed in section 5.5.6).
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Values of Mulliken and Löwdin bond orders, and Mulliken, natural and ESP atom
charges, are compared in Table 5.19, for hydrogen fluoride. We see that the Mulliken
charges vary considerably, but apart from the STO-3G values, the electrostatic charges
vary very little, and the natural charges little, with the level of calculation. Bond orders,
however, are quite sensitive to the level of calculation. The utility of charges and bond
orders lies not in their absolute values, but rather in the fact that a comparison of, say,
Löwdin charges or bond orders, calculated at the same level for a series of molecules,
can provide insights into a trend. For example, one might argue that the electron-
withdrawing power of a series of groups A, B, etc. could be compared by comparing
the C/C bond orders in etc. Bond orders have been used to
judge whether a species is free or really covalently bonded, and have been proposed as
an index of progress along a reaction coordinate [170].

Atoms-in-molecules
A method of calculating charges and bond orders that may be less arbitrary than any of
those mentioned so far is based on the theory of atoms in molecules (AIM), developed
by Bader and coworkers [171]. The AIM approach rests on analyzing the variation
from place to place in a molecule of the electron density function (electron probability
function, charge density function, chargedensity), This is a function which
gives the variation of the total electron density from point to point in the molecule;

is the probability of finding an electron in an
infinitesimal volume centered on the point with coordinates (x, y, z) (the probability
of finding more than one electron in is infinitesimal). The electron probability
density can be calculated from the wavefunction. It is not, as one might have thought,
simply where is the multielectron wavefunction of space and spin coordinates
(section 5.2.3.1). This latter is the function for the variation from point to point of the
probability of finding electron 1 with a specified spin, electron 2 with a specified spin,
etc., at points (x, y, z). If we think of the electrons being smeared out in a fog around
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the molecule, then the variation of from point to point corresponds to the varying
density of the fog, and centered on a point P corresponds to the
amount of fog in the volume element dxdydz. Alternatively, in a scatterplot of electron
density in a molecule, the variation of with position can be indicated by varying the
volume density of the points. For more on the electron density function see sections 7.1
and7.2.1.

Consider first the electron density around an atom. As we approach the nucleus
this rises toward a maximum, or the negative of the electron density, falls toward a
minimum (Fig. 5.40). Viewing the electron distribution in terms of rather than is
useful because it more easily enables us to discern analogies between the variation of

in a molecule (in a vs. location-in-molecule graph), and a potential energy surface,
which is the variation of energy with geometry (an E vs. geometry graph). Examine
the distribution of in a homonuclear diatomic molecule (Fig. 5.41). This shows
a plot of vs. two of the three Cartesian coordinates needed to assign positions to all
the points in the molecule. The graph retains the internuclear axis (by convention the

and one other axis, say y; the molecule is symmetrical with respect to reflection
in the yz plane. The negative of the electron density, dips toward a minimum at
the atomic nuclei goes toward a maximum). The nuclei correspond to stationary
points, where the surface has zero slope (if we ignore the fact that, strictly speaking,
the nonrelativistic density forms a cusp at a nucleus, i.e. the derivative of
becomes discontinuous) and from whence it goes upward in all directions. Thus the
first derivative of with respect to all spatial coordinates is zero, and the second
derivative is positive:
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and

Moving along the internuclear line we find a point in a saddle-shaped region, analogous
to a transition state, where the surface again has zero slope (all first derivatives zero),
and is negatively curved along the but positively curved in all other directions
(Fig. 5.41), i.e.

This transition-state-like point is called a bond critical point. All points at which the first
derivatives are zero are critical points, so the nuclei are also critical points. Analogously
to the energy/geometry Hessian of a potential energy surface, an electron density func-
tion critical point (stationary point; relative maximum or minimum or saddle point) can
be characterized in terms of its second derivatives by diagonalizing the Hessian

to get the number of positive and negative eigenvalues:
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For the surface of Fig. 5.41 the number of positive and negative eigenvalues for
a nuclear critical point are 3 and 0, and for a bond critical point, 2 and 1. Thus for the

surface to which the Hessian of Eq. (5.232) refers (the mirror image of the
surface), the number of positive and negative eigenvalues is, respectively, 0 and 3 (for
a nucleus), and 1 and 2 (for a bond critical point).

The minimum path(maximum- path) from one X nucleus to the other is the
bond path; with certain qualifications this can be regarded as a bond. It is analogous
to the minimum-energy path connecting a reactant and its products, i.e. to the intrinsic
reaction coordinate. Such a bond is not necessarily a straight line: in strained mole-
cules it may be curved. The bond passes through the bond critical point, (which for a
homonuclear diatomic molecule is the midpoint between of the internuclear line).
Now consider Fig. 5.42, which shows the molecule viewed along the The
contour lines represent electron density, which rises as we approach a nucleus and falls
off as we go to and beyond the van der Waals surface. If it is true that the molecule can be
divided into atoms, then for the dividing surface S (represented as a vertical line in
Fig. 5.42) must lie midway between the nuclei, with the internuclear line being normal
to S and meeting S at the bond critical point. The electron density defines a gradient
vector field, the totality of the trajectories each of which results from starting at infinity
and moving along the path of steepest increase in Figure 5.42 shows that only two
of the trajectories (of those in the plane of the paper) that originate at infinity do not
end at the nuclei; these end at the bond critical point. These two trajectories define the
intersection of S with the plane of the paper. None of the trajectories cross S, which is
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thus called a zero-flux surface (the gradient vector field is analogous to an electric field
whose “flux lines” point along the direction of attraction of a positive charge toward a
central negative charge). The space within a molecule bounded by one (for a diatomic
molecule) or more zero-flux surfaces is an atomic basin (away from the nuclei the basin
extends outward to infinity, becoming shallower as the electron density fades toward
zero). The nucleus and the electron density in an atomic basin constitute an atom in a
molecule. Even for molecules other than homonuclear diatomics, atoms are still defined
by atomic basins partitioned off by unique zero-flux surfaces, as illustrated in Fig. 5.43.

In the AIM (atoms-in-molecules method), the charge on an atom is calculated by
integrating the electron density function over the volume of its atomic basin; the charge
is the algebraic sum of the electronic charge and the nuclear charge (the atomic number
of the nucleus minus the number of electrons in the basin). An AIM bond order
can be defined in terms of the electron density [172], and the bond order for two
particular atoms A and B is then defined by an empirical equation obtained by fitting
to a few accepted A–B bond orders. For example, for nitrogen/nitrogen bonds a linear
equation correlates and for, say, HN=NH and
N=N; from this equation bond orders can be assigned to other nitrogen/nitrogen bonds
from their values.

5.5.5 Miscellaneous properties – UV and NMR spectra,
ionization energies, and electron affinities

A few other properties that can be calculated by ab initio methods are briefly treated here.
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UV spectra
Ultraviolet spectra result from the promotion of an electron in an occupied MO of
a ground electronic state molecule into a virtual MO, thus forming an electronically
excited state [152] (excited state-to-excited state spectra are not normally studied by
experimentalists). Calculation of UV spectra with reasonable accuracy requires some
method of dealing with excited states. Simply equating energy differences between
HOMO and LUMO with does not give satisfactory results for the absorption fre-
quency/wavelength, because the energy of a virtual orbital, unlike that of an occupied
one, is not a good measure of its energy (of the energy needed to remove an electron
from it; this is dealt with in connection with ionization potentials and electron affinities)
and because this method ignores the energy difference between a singlet and a triplet
state.

Electronic spectra of moderate accuracy can be calculated by the configuration
interaction CIS method (section 5.4.3) [173]. Compare, for example, the UV spectra
of methylenecyclopropene calculated by the CIS/6-31+G* method (diffuse functions
appear to be desirable in treating excited states, as the electron cloud is relatively
extended) with the experimental spectrum [173], in Table 5.20. The agreement in wave-
length is not particularly good for the longest-wavelength band, although this result can
be made more palatable by noting that both calculation and experiment agree reason-
ably well on relative intensities (the two bands that were not observed are calculated to
be relatively weak and to lie very near the strongest band). The CIS approach to excited
states has been said [173] to be analogous to the HF approach to ground states in that
both give at least qualitatively useful results.

NMR spectra
NMR spectra result from the transition of an atomic nucleus in a magnetic field from
a low-energy to a high-energy state [152]. Quantum-mechanical calculations of NMR
spectra focus on predicting the chemical shift (magnetic field strength needed for the
transition relative to that needed for some reference) of a nucleus. This requires cal-
culation of the magnetic shielding of the nuclei of the molecule of interest, and of the
reference nuclei, usually those of tetramethylsilane, TMS. The chemical shift of the
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or nucleus is then its (absolute) shielding value minus that of the TMS or
nucleus. The theory of magnetic shielding of nuclei involves a treatment of how the

energy of a nucleus varies with a magnetic field and with nuclear magnetic moments
[174]. NMR spectra can be calculated with remarkable accuracy even at the HF level
[175] (although there is some evidence that improved results are obtained using the
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Ionization energies and electron affinities
Ionization energies (also called ionization potentials) and electron affinities are related
in that both involve transfer of an electron between a molecular orbital and infinity:
in one case (IE) we have removal of an electron from an occupied orbital and in the
other (EA) addition of an electron to a virtual (or a half-occupied) orbital. The IE for an
orbital is defined as the energy needed to remove an electron from the orbital (to infinite
separation), while the EA of an orbital is the energy released when the orbital accepts
an electron from infinity [179]. The term IE when applied to a molecule normally
means the minimum energy needed to remove an electron to infinity, i.e. to form the
radical (for an originally closed-shell molecule) cation, and the term electron affinity
normally means the maximum energy released when the molecule accepts an electron
to form the radical anion (for an originally closed-shell molecule). The IE of a “stable”
species, i.e. any molecule or atom that can exist (a relative minimum on the potential
energy surface), is always positive. The EA of a molecule is positive if the accepted
electron is bound, i.e. if it is not spontaneously ejected; if the new electron is ejected
in microseconds or less (is unbound), the molecule has a negative EA (is a “resonance
state” – this has nothing to do with the term resonance as in resonance hybrid).

IEs and EAs may be vertical oradiabatic: the energy difference between the precursor
molecule and the species formed by removing or adding an electron gives the
vertical value if is at the same geometry as while the adiabatic value is obtained
if has its own actual, equilibrium geometry. Since the equilibrium geometry of
is clearly of lower energy than the unrelaxed geometry corresponding to vertical
IEs are larger than adiabatic IEs, and vertical EAs are smaller than adiabatic EAs.
Experimental IEs and EAs may be vertical or adiabatic. The adiabatic values appear
to be of more interest to chemists, since it is these that represent the energy difference
between two “stable” molecules (the neutral and the charged; at least in those cases
where the charged species does not instantly decompose), but compilations of IEs and
EAs often do not state explicitly whether their listed values are adiabatic or vertical; a
welcome exception is the book by Levin and Lias [ 180]. A good brief discussion of IEs
and EAs, including various measurement techniques, is to be found in the compilation
by Lias et al. [130b]. Many IEs and EAs are available on the worldwide web [130a].

lonization energies and electron affinities can be calculated simply as the energy
difference between the neutral and the ion. Approximate IEs can be obtained by applying
Koopmans’ (not Koopman’s) theorem [181], which says that the energy required to
remove an electron from an orbital is the negative of the orbital energy. Thus the IE of a
molecule is approximately the negative of the energy of its HOMO (the principle does
not work as well for ionization ofelectrons more tightly bound than those in the HOMO).
This makes it simple to obtain approximate IEs for comparison with photoelectron
spectroscopy [182] results. Unfortunately, the principle does not work well for EAs:
the EA of a molecule is not reasonably well approximated as the negative of the LUMO
energy. In fact, ab initio calculations normally give virtual MOs (vacant MOs) positive
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MP2 method [175b,176]), as is clearly shown by the results in Fig. 5.44. The remark-
able shielding effect of a benzene ring in [7]paracyclophane [177] is nicely reproduced.
The calculation ofNMR spectra has become an important tool in probing the electronic
structure of theoretically interesting molecules [178],
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energies, implying that molecules will not accept electrons to form anions (i.e. that
they have negative EAs), which is often false. Koopmans’ theorem works because of a
cancellation of errors in the IE case (which actually leads to modest overestimation of
the IE) but not for EAs. Errors arise from approximate treatment of electron correlation,
and from the fact that when an electron is removed from or added to a molecule electronic
relaxation (not to be confused with geometry relaxation) occurs. A further problem for
EAs is that the procedure for minimizing the energies of MOs (section 5.2.3.4) gives,
within the limits of the HF procedure, the best occupied, but not virtual, MOs.

Some calculated and experimental IEs are given in Table 5.21, based on the raw
data in Table 5.22. The calculations (experimental data are sparse) indicate vertical
IEs to be indeed slightly (about 0.2 eV) higher than adiabatic. The HF/6-31G*
values underestimate the IE by about 1–1.5eV while MP2(FC)/6-31G* values
underestimate it by only about 0.1–0.4eV (others have reported them to be generally
too low by 0.3–0.7 eV [183]). The Koopmans’ theorem (-HOMO) energies for both the
HF and MP2 level calculations are about 1–1.5eV too high. Electron affinities (which
seem to be of less interest than ionization energies) can be calculated as the energy
difference between the neutral molecule and its anion. High-accuracy IEs and EAs can
be calculated by the G2 (or a variation like G2(MP2)) method or one of the CBS methods
[86,184,185] (section 5.5.2.2b), although the convenient procedures implemented for
these methods in the Gaussian 94 and 98 programs do not allow calculation of vertical
energies since the geometry of the ion will be automatically optimized.

5.5.6 Visualization
Modern computer graphics have given visualization, the pictorial presentation of the
results of calculations, a very important place in science. Not only in chemistry, but
in physics, aerodynamics, meteorology, and even mathematics, the remarkable ability
of the human mind to process visual information is being utilized [186]. Gone are the
days when it was de rigeur to pore over tables of numbers to comprehend the factors
at work in a system, whether it be a galaxy, a supersonic airliner, a thunderstorm, or
a novel mathematical entity. We will briefly examine the role of computer graphics
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in computational chemistry, limiting ourselves to molecular vibrations, van der Waals
surfaces, charge distribution, and molecular orbitals.

Molecular vibrations
Animation of normal-mode frequencies usually readily enables one to ascribe a band in
the calculated vibrational (i.e. IR) spectrum to a particular molecular motion (a stretch-
ing, bending, or torsional mode, involving particular atoms). It sometimes requires a
little ingenuity to describe clearly the motion involved, but animation is far superior
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to trying to discern the motion from the printed direction vectors (section 2.5; these
show the extent of motion in the x, y, and z directions), which are supplied by some
programs. Useful, however, are the visualized direction vectors that some programs,
e.g. GaussView [187], can attach to a picture of the molecule, catching the vibration in
the act so to speak.

Animating vibrations is useful not only for predicting or interpreting an IR spectrum,
but can sometimes also help in geometry optimizations. Suppose we wish to locate
computationally the intermediate through which the chair conformers of cyclohexane
interconvert 1 Fig. 5.45). This reaction, although degenerate, can be studied
by NMR spectroscopy [188]. One might surmise that the intermediate is the boat
conformation 2, but a geometry optimization and frequencies calculation on this
structure (note that in a quantum mechanical calculation, whether ab initio or otherwise,
the input symmetry is normally preserved) followed by animation of the vibrations,
shows otherwise. There is one imaginary vibration (section 2.5), and the transition state
wants to escape from its saddle point by twisting to a structure 3, called the twist
or twist-boat, which latter is the true intermediate. The enantiomeric twist structures
3 and go to 1 and respectively, over a high-energy form 4 (or called the half-
chair. A geometry optimization starting with a structure leads to the desired relative
minimum. Similarly, if one obtains a second-order saddle point (one kind of hilltop),
animation of the two imaginary frequencies often indicates what the species seeks to
do to escape from the hilltop to a become a first-order saddle point (a transition state) or
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a minimum, and it often possible to obtain the desired transition state or minimum by
altering the shape of the input structure so that it has the symmetry and approximates the
shape of the desired structure. An example is provided by cyclopropylamine (Fig. 5.46)
[189]; the structure 1 is a hilltop at the B3LYP/6-31G* level (chapter 7), whose two
imaginary frequencies indicate that it wants to undergo nitrogen pyramidalization and
rotation about the C–N bond to form the other four conformations shown.

Electrostatic potential
Electrostatic potential, the net electrostatic potential energy (roughly, the charge) due
to nuclei and electrons was mentioned in section 5.5.4 in connection with calculation
of atom charges. The ESP can be displayed (visualized) by color-coding it onto the van
der Waals surface, by displaying it as a surface itself, or by showing it with contour lines
on a slice through the molecule; the three possibilities are shown for the water molecule
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in Fig. 5.47. Color-coding (mapping) the ESP onto the surface of the molecule, (c),
enables one to see how an approaching reagent would perceive the charge distribution.
Showing the ESP as a surface residing in the region of space where the net charge
is negative, (b), gives a very useful picture of those parts of a molecule where the
electrostatic effect of the electrons wins out over that of the nuclei; this is a particularly
good way of seeing the presence of lone pairs, as Fig. 5.48, also, makes clear. Note that
in Fig. 5.47(c) and (b) (mapping of the ESP on the van der Walls surface and depicting
the ESP itself as a surface) the lone pairs do not stick out like rabbit ears [190]. This
is because as electron density which can be ascribed to one orbital falls off, that due to
another increases: there is no “electron hole” between the two lone pairs (for the same
reason the electron density cross section through a double bond is elliptical and
through a triple bond circular; see section 4.3.2). Showing the ESP as a surface
made clear that the remarkable cycloalkane pyramidane [191] has a lone pair, like the
carbene (Fig. 5.48). Depicting the ESP by contour lines on a slice through the
molecule reveals its internal structure, but this is probably not as relevant to reactivity
as the picture seen by mapping it onto the van der Waals surface, which is the picture
presented to the outside molecular world. Examining the ESP interactions between a
molecule and the active site of an enzyme can be important in drug design [82]. Various
applications of the ESP are discussed by Politzer and Murray [192] and Brinck [169a].

Molecular orbitals
Visualization of molecular orbitals shows the location of those regions where the
highest-energy electrons are concentrated (the highest occupied MO, the HOMO), and
those regions which offer the lowest-energy accommodation to any donated electrons
(the lowest unoccupied MO, the LUMO). Electrophiles should bond to the atom where
the HOMO is “strongest” (where the electron density due to the highest-energy electron
pair is greatest) and nucleophiles to the atom where the LUMO is strongest, at least
as seen on the van der Waals surface by an approaching reagent. The information pro-
vided by inspection of the HOMO and LUMO (the frontier orbitals) is thus somewhat
akin to that given by visualizing the ESP (electrophiles should tend to go to regions of
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negative ESP, nucleophiles to regions of positive ESP). Figure 5.49 shows the LUMOs
of the ketones norcamphor and camphor, mapped onto their van der Waals surfaces.
For norcamphor (Fig. 5.49(a)), the prominence of its LUMO at the carbonyl carbon as
seen from the “top” or exo face (the face with the bridge) rather than the bottom
(endo) face, suggests that nucleophiles should attack from the exo direction. In accord
with this, hydride donors, for example, approach from the exo face to give mainly the
endo alcohol. For camphor, where the bridge is instead of the exo face
is shielded by a group which sterically thwarts the electronically preferred attack
from this direction, and so nucleophiles tend to approach rather the endo face, a fact
nicely rationalized by visualizing simultaneously the LUMO and the van der Waals
surface (Fig. 5.49(b)) [193].

Figure 5.50 shows the LUMOs of three bicyclo[2.2.1]heptane derivatives (camphor
and norcamphor, above, also have this carbon skeleton). The LUMOs are shown here as
3D regions of space, rather than mapping them onto a surface as was done in Fig. 5.49.
Comparing the “composite” molecule (Fig. 5.50(c)) with the cation and the alkene
clearly shows electronic interaction between the p orbital of the cationic carbon and
the antibonding MO of the double bond.

Visualization–closing remarks
Other molecular properties and phenomena that can benefit from the aid of visualization
are the distribution of unpaired electron spin in radicals and the changes in orbitals
and charge distribution as a reaction progresses. These and many other visualization
exercises are described in publications (e.g. [53c]) by Wavefunction, Inc. and in their
visualization CD [194].
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Strengths
Ab initio calculations are based on a fundamental physical equation, the Schrödinger
equation, without empirical adjustments. This makes them esthetically satisfying, and
ensures (if the Schrödinger equation is true) that they will give correct answers pro-
vided the approximations needed to obtain numerical results (to solve the Schrödinger
equation) are not too severe for the problem at hand. The level of theory needed for a
reliable answer to a particular problem must be found by experience – comparison with
experiment for related cases – so in this sense current ab initio calculations are not fully
a priori [36,195]). A few “ab initio methods” do not even fully eschew empirical factors:
the G2 and G3 and the CBS series of methods have empirical factors which, unless they
cancel(as in proton affinity calculations, section 5.2.2.2b) make these methods, strictly
speaking, semiempirical. A consequence of the (usual) absence of empirical parame-
ters is that ab initio calculations can be performed for any kind of molecular species
(including transition states and even non-stationary points), rather than only species
for which empirical parameters are available (see chapter 6). These characteristics of
reliability (with the caveats alluded to) and generality are the strengths of ab initio
calculations.

Weaknesses
Compared to other methods (molecular mechanics, semiempirical calculations, density
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functional calculations – chapters 3, 6 and 7, respectively) ab initio calculations are
slow, and they are relatively demanding of computer resources (memory and disk space,
depending on the program and the particular calculation). These disadvantages, which
increase with the level of the calculation, have been to a large extent overcome by the
tremendous increase in computer power, accompanied by decreases in price, that have
taken place since the invention of electronic computers. In 1959 Coulson doubted the
possibility (he also questioned the desirability, but in this regard visualization has been
of enormous help) of calculations on molecules with more than 20 electrons, but 30
years later computer speed had increased by a factor of 100,000 [196], and ab initio
calculations on molecules with 100 electrons (about 15 heavy atoms) were common.

5.7 SUMMARY OF CHAPTER 5

Ab initio calculations rest on solving the Schrödinger equation; the nature of the neces-
sary approximations determine the level of the calculation. In the simplest approach, the
HF method, the total molecular wavefunction is approximated as a Slater determinant
composed of occupied spin orbitals (each spin orbital is a product of a conventional
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spatial orbital and a spin function). Writing the molecular energy as the expectation
value of the wavefunction ( i.e. invoking the Schrödinger equation,
then differentiating E with respect to the spin orbitals that compose the wavefunction
(= the Slater determinant), we get the HF equations. To use these in practical calcu-
lations the spatial orbitals are approximated as a linear combination (a weighted sum)
of basis functions. These are usually identified with atomic orbitals, but can really be
any mathematical functions that give a reasonable wavefunction, i.e. a wavefunction
which gives reasonable answers when we do the calculations. The main defect of the
HF method is that it does not treat electron correlation properly: each electron is con-
sidered to move in an electrostatic field represented by the average positions of the
other electrons, whereas in fact electrons avoid each other better than this model pre-
dicts, since any electron A sees any other electron B as a moving particle and the two
mutually adjust (correlate) their motions to minimize their interaction energy. Electron
correlation is treated better in post-HF methods, such as the MP, CI and CC methods.
These methods lower electron-electron interaction energy by allowing the electrons to
reside not just in conventionally occupied MOs (the n lowest MOs for a 2n-electron
species), but also in formally unoccupied MOs (virtual MOs).

The main uses of the ab initio method are calculating molecular geometries, ener-
gies, vibrational frequencies, spectra (IR, UV, NMR), ionization potentials and electron
affinities, and properties like dipole moments which are directly connected with elec-
tron distribution. These calculations find theoretical and practical applications, since,
for example, enzyme-substrate interactions depend on shapes and charge distributions,
reaction equilibria and rates depend on energy differences, and spectroscopy plays
an important role in identifying and understanding novel molecules. The visualiza-
tion of calculated phenomena, such as molecular vibrations, charge distributions, and
molecular orbitals, can be very important in interpreting the results of calculations.

General discussions of and references to ab initio calculations are found in: (a) I. N. Levine,
“Quantum Chemistry,” 4th edn, Prentice Hall, Engelwood Cliffs, New Jersey, 2000. (b)
J. P. Lowe, “Quantum Chemistry,” 2nd edn, Academic Press, New York, 1993. (c) F. L.
Pilar, Elementary Quantum Chemistry,” 2nd edn, McGraw-Hill, New York, 1990. (d) An
advanced book: A. Szabo and N. S. Ostlund, “Modern Quantum Chemistry,” McGraw-
Hill, New York, 1989. (e) J. B. Foresman and Æ. Frisch, “Exploring Chemistry with
Electronic Structure Methods,” Gaussian Inc., Pittsburgh, PA, 1996. (f) A. R. Leach,
“Molecular Modelling,” Longman, Essex, England, 1996. (g) An important reference is
still: W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, “Ab Initio Molecular
Orbital Theory,” Wiley, New York, 1986. (h) A recent evaluation of the state and future
of quantum chemical calculations, with the emphasis on ab initio methods: M. Head-
Gordon, J. Phys. Chem., 1996, 100, 13213. (i) F. Jensen, “Introduction to Computational
Chemistry,” Wiley, New York, 1999. (j) M. J. S. Dewar, “The Molecular Orbital Theory
of Organic Chemistry,” McGraw-Hill, New York, 1969. This book contains many tren-
chant comments by one of the major contributors to computational chemistry; begins with
basic quantum mechanics and ab initio theory, although it later stresses semiempirical
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In the term Hartree-Fock, what, essentially, were the contributions of each of these
two people?

What is a spin orbital? A spatial orbital?

At which step in the derivation of the HF energy does the assumption that each
electron sees an “average electron cloud” appear?

For a closed-shell molecule the number of occupied molecular orbitals is half the
number of electrons, but there is no limit to the number of virtual orbitals. Explain.

In the simple Hückel method, denotes the basis function coefficient for the
contribution of atom number s (in whatever numbering scheme we choose) to MO
number . In the ab initio method, still refers to MO number , but the s does not
necessarily denote atom number s. Explain.

The derivation of the Roothaan–Hall equations involves some key concepts: Slater
determinant, Schrödinger equation, explicit Hamiltonian operator, energy minimiza-
tion, and LCAO. Using these, summarize the steps leading to the Roothaan–Hall
equations
What are the similarities and the differences between the basis set of the extended
Hückel method and the ab initio STO-3G basis set?

In the simple and extended Hückel methods, the molecular orbitals are calculated
and then filled from the bottom up with the available electrons. However, in ab initio
calculations the occupancy of the orbitals is taken into account as they are being
calculated. Explain. (Hint: look at the expression for the Fock matrix elements in
terms of the density matrix.)

Isodesmic reactions have been used to investigate aromatic stabilization, but there
is not a unique isodesmic reaction for each problem. Write two isodesmic reactions
for the ring-opening of benzene, both of which have on each side of the equation
the same number of each kind of bond. Have you any reason to prefer one of the
equations to the other?

List the strengths and weaknesses of ab initio calculations compared to molecular
mechanics and extended Hückel calculations. State the molecular features that can
be calculated by each method.

Does the term ab initio imply that such calculations are “exact”? In what sense might
ab initio calculations be said to be semiempirical – or at least not a priori?

Can the Schrödinger equation be solved exactly for a species with two protons and
one electron? Why or why not?

The input for an ab initio calculation (or a semiempirical calculation of the type
discussed in chapter 6, or a DFT calculation – chapter 7) on a molecule is usually
just the cartesian coordinates of the atoms (plus the charge and multiplicity). So how
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does the program know where the bonds are, i.e. what the structural formula of the
molecule is?

Why is it that (in the usual treatment) the calculation of the internuclear repulsion
energy term is easy, in contrast to the electronic energy term?

In an ab initio calculation on or , one kind of interelectronic interaction
does not arise; what is it, and why?

Why are basis functions not necessarily the same as atomic orbitals?

One desirable feature of a basis set is that it should be “balanced.” How might a
basis set be unbalanced?

In a HF calculation, you can always get a lower energy (a “better” energy, in the
sense that it is closer to the true energy) for a molecule by using a bigger basis set, as
long as the HF limit has not been reached. Yet a bigger basis set does not necessarily
give better geometries and better relative (i.e. activation and reaction) energies. Why
is this so?

Why is size-consistency in an ab initio method considered more important than
variational behavior (MP2 is size-consistent but not variational)?

A common alternative to writing a HF wavefunction as an explicit Slater determinant
is to express it using a permutation operator which permutes (switches) electrons
around in MOs. Examine the Slater determinant for a two-electron closed-shell
molecule, then try to rewrite the wavefunction using
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Semiempirical Calculations

Current “ab initio” methods were limited to very inaccurate
calculations for very small molecules.

M J. S. Dewar, A Semiempirical Life, 1992.

We have already seen examples of semiempirical (SE) methods, in chapter 4: the
simple Hückel method (SHM, Erich Hückel, ca. 1931) and the extended Hückel method
(EHM, Roald Hoffman, 1963). These are semiempirical (semiexperimental) because
they combine physical theory with experiment. Both methods start with the Schrödinger
equation (theory) and derive from this a set of secular equations which may be solved
for energy levels and molecular orbital coefficients (most efficiently by diagonalizing
a Fock matrix; see chapter 4). However, the SHM gives energy levels in units of a para-
meter that can be translated into actual quantities only by comparing SHM results
with experiment, and the EHM uses experimental ionization energies to translate the
Fock matrix elements into actual energy quantities. SE calculations stand in contrast to
empirical methods, like molecular mechanics (MM, chapter 3), and theoretical meth-
ods, like ab initio calculations (chapter 5). MM starts with a model of a molecule
as balls and springs, a model that works but whose theoretical justification lies out-
side MM. The ab initio method, like the Hückel methods, starts with the Schrödinger
equation but does not appeal to experiment (beyond invoking, when actual quantities are
needed, experimental values for Planck’s constant, the charge on the electron and pro-
ton, and the masses of the electron and atomic nuclei – fundamental physical constants
which could be calculated only by some deep theory of the origin and nature of our
universe [1].

The Hückel methods were discussed in chapter 4 rather than here because extensive
application of these methods came before widespread use of ab initio methods, and
because the simple Hückel, extended Hückel and ab initio methods form a conceptual
progression in which the first two methods aid understanding of the next one in this

Chapter 6

6.1 PERSPECTIVE



hierarchy of complexity. The SE methods treated in this chapter are logically regarded
as simplifications of the ab initio method, since they use the SCF procedure (chapter 5)
to refine the Fock matrix, but do not evaluate these matrix elements ab initio. The
SHM was developed (1931) outside the realm of SCF theory (which was invented
for atoms: Hartree, 1928 [2]), as the first application of the Schrödinger equation to
molecules of reasonable size, and the EHM is a straightforward extension of this. In
contrast, the methods of this chapter were created in a conscious attempt to provide
practical alternatives to the ab initio approach, the application of which to molecules of
reasonable size understandably seemed hopeless in the infancy of electronic computers
(the PPP method, one of the first SCF SE methods, was published in 1953, just when
the first electronic computers began to be available to chemists [3]). SE calculations are
much less demanding than ab initio ones, because parameterization and approximations
drastically reduce the number of integrals which must be calculated. The pessimism
with which the ab initio approach was viewed is clear in the words of several pioneers
of the application of quantum mechanics to chemistry:

C. A. Coulson, 1959: “I see little chance – and even less desirability – of dealing in this
accurate manner with systems containing more than 20 electrons...” [4]

M. J. S. Dewar1, 1969: “How then shall we proceed? The answer lies in abandoning
attempts to carry out rigorous a priori calculations.” [5].

Neither Coulson nor Dewar could have foreseen the enormous increase in computer
power that was to come over the next few decades. What Coulson meant by “even less
desirability” was perhaps that the computed results would be too complex to interpret;
one factor which has obviated this problem is the visual display of information (sections
5.5.6, 6.3.6). The development of improved algorithms and far faster computers has
altered the situation almost out of recognition: computers in 2000 were about one
million times faster than in 1959 (computers were said [4] to be 100 000 times faster
in 1989 than in 1959, the date of Coulson’s remarks; it seems safe to say that they
increased in speed by a factor of 10 in the subsequent decade). A calculation that in
1967 would have taken 200 years can now be run on a cheap computer in less than an
hour [6]. Why, then, are SE calculations still used? Because they are still about 100–
1000 times faster than ab initio (chapter 5) or density functional (chapter 7) methods.
The increase in computer speed means that we can now routinely examine by ab initio
methods moderately large molecules – up to, say, steroids, with about 30 heavy atoms
(nonhydrogen atoms), and by semiempirical methods (and faster with MM, chapter 3)
huge molecules, like proteins and nucleic acids.

1Michael J. S. Dewar, born Ahmednagar, India, 1918. Ph.D. Oxford, 1942. Professor of chemistry at
Universities of London, Chicago, Texas at Austin, and University of Florida. Died Florida, 1997.
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The SE methods we saw in chapter 4 simply construct a Fock matrix and diagonalize it
to get molecular orbital (MO) energy levels and MOs (i.e. the coefficients of the basis

6.2.1 Preliminaries

THE BASIC PRINCIPLES OF SCF SE METHODS6.2

Computational Chemistry
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functions that make up the MOs). The simple Hückel Fock matrix elements were simply
relative energies 0 and –1 (0 and units, relative to the nonbonding level or
in the EHM the Fock matrix elements were calculated from ionization energies. A
single matrix diagonalization gave the energy levels and MO coefficients. This chapter
is concerned with SE methods that are closer to the ab initio method in that the SCF
procedure (sections 5.2.3.6d and 5.2.3.6e) is used to refine the energy levels and MO
coefficients. As in ab initio calculations each Fock matrix element is calculated from
a core integral density matrix elements and electron repulsion integrals
(rs\tu), (ru\ts):

As stated above, the following discussion applies to SE methods that use the SCF
procedure and so pay some service to Eq. (6.1). As with an ab initio calculation, to
initiate the process we need an initial guess of the coefficients, to calculate the density
matrix values the guess can come from a simple Hückel calculation (for a
electron theory like the PPP method) or from an extended Hückel calculation (for an
all-valence-electron theory, like CNDO and its descendants). The Fock matrix of
elements is diagonalized repeatedly to refine energy levels and coefficients.

The divergence from the ab initio method lies in (1) treating only valence or elec-
trons, i.e. in the meaning of the “core,” (2) the mathematical functions used to expand
the MOs (the basis set functions), (3) how the core and two-electron repulsion integrals
are evaluated, and (4) the treatment of the overlap matrix. These approximations are
discussed in detail by Dewar [7]. An excellent yet compact survey of the principles
behind all the major SE methods is given by Levine [8], and SE methods have also
been reviewed by Thiel [9]; a detailed exposition of the basic (pre-1970) theory behind
these methods can be found in the book by Pople and Beveridge [10]. Expanding on
points (1)–(4):

(1) Treating only valence or electrons, i.e. the meaning of the “core”. In an
ab initio calculation is the kinetic energy of an electron moving in the force-field
of the atomic nuclei, plus the potential energy of attraction of the electron to these
atomic nuclei: the electron is moving under the influence of a positive core composed
of atomic nuclei. SE calculations handle at most valence electrons (the PPP method
handles only electrons), so each element of the core becomes an atomic nucleus plus
its core electrons (for the PPP method, a nucleus with the core electrons plus all
valence electrons). Instead of a cloud of all the electrons moving in a framework of
nuclei, we have a cloud valence electrons (for the PPP method, electrons) moving in
a framework of atomic cores (atomic core = nucleus + valence electrons, or for PPP,
nucleus + all electrons that don’t contribute to the system). The SCF SE energy is
calculated in a manner analogous to that of an ab initio calculation of the Hartree-Fock
energy (cf. Eq. (5.149)), but n in Eq. (6.2) is not half the total number of electrons, but
rather half the number of valence electrons (half the number of electrons for a PPP
calculation), i.e. n is the number of MOs formed from the those electrons being included
in the basis set. is the valence electronic electronic for the PPP method) energy,
rather than the total electronic energy, and is the core-core repulsion, rather than
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the nucleus–nucleus repulsion:

Treating the core electrons in effect as part of the atomic nuclei means that we need
basis functions only for the valence electrons. With a minimal basis set (section 5.3.3)
an ab initio calculation on ethene, needs five basis functions

for each carbon and one basisfunction (1s) for each hydrogen, a total of 14 basis
functions, while a SE calculation needs four functions for each carbon and one for each
hydrogen, for a total of 12; for cholesterol, the numbers of basis functions
are 181 and 154 for ab initio and SE, respectively. In both cases the SE calculation
needs only about 85% as many basis functions as an ab initio calculation; the SE basis
set advantage is small compared to minimal basis set ab initio calculations, but large
compared to ab initio calculations with split valence and split valence plus polarization
(section 5.3.3) basis sets. For ethene, comparing a ab initio calculation with a
minimal basis SE calculation, the numbers of basis functions are 38 and 12, a ratio of
32%; for cholesterol, 497 and 154, a ratio of 31%. SE calculations use only a minimal
basis set and hope to compensate for this by parameterization of the two-electron
integrals (below).

(2) The basis set functions. In SE methods the basis functions correspond to atomic
orbitals (valence AOs or AOs), while in ab initio calculations this is strictly true only
for a minimal basis set, since an ab initio calculation can use many more basis functions
than there are conventional AOs. The SCF-type SE methods we are considering in this
chapter use Slater functions, rather than approximating Slater functions as sums of
Gaussian functions (section 5.3.2). Recall that the only reason ab initio calculations use
Gaussian, rather than the more accurate Slater, functions, is because calculation of the
electron–electron repulsion two-electron integrals is far faster with Gaussian functions
(section 5.3.2). In SE calculations these integrals have been parameterized into the
calculation (see below). Mathematical forms of the basis functions are still needed,
to calculate overlap integrals for although these methods treat the overlap
matrix as a unit matrix, some overlap integrals are evaluated (approximate MO theory
has some apparent logical contradictions [7]) and used to help calculate core integrals
and electron-repulsion integrals. As in ab initio calculations linear combinations of
the basis functions are used to construct MOs, which in turn are multiplied by spin
functions and used to represent the total molecular wavefunction as a Slater determinant
(section 5.2.3.1).

(3) The integrals. The core integrals and the two-electron repulsion integrals
(electron-repulsion integrals), Eq. (6.1), are not calculated from first principles (i.e. not
from an explicit Hamiltonian and basis functions, as illustrated in section 5.2.3.6e),
but rather many integrals are taken as zero, and those that are used are evaluated in
an empirical way from the kinds of atoms involved and their distances apart. Recall
that calculation of the two-electron integrals, particularly the three- and four-center
ones (those involving three or four different atoms) takes up most of the time in an
ab initio calculation. The integrals to be ignored (set equal to zero) are determined
from the extent to which differential overlap is neglected. Differential overlap dS is the
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differential of the overlap integral (e.g. section 4.3.3) S:

SE methods differ amongst themselves in (amongst other ways) the criteria for setting
dS = 0, i.e. for applying zero differential overlap (ZDO).

(4) The overlap matrix. SCF-type SE methods take the overlap matrix as a unit
matrix, S = 1, so S vanishes from the Roothaan–Hall equations without the
necessity of using an orthogonalizing matrix to transform these equations into standard
eigenvalue form (which latter enables the Fock matrix to be diagonalized to
give the MO coefficients and energy levels; sections 4.4.3, 4.4.1, and 5.2.3.6b).

6.2.2 The Pariser-Parr-Pople (PPP) method
The first SE SCF-type method to gain widespread use was the PPP method
(1953) [11,12]. Like the SHM, PPP calculations are limited to electrons, with the
other electrons forming a framework to hold the atomic orbitals in place. The Fock
matrix elements are calculated from Eq. (6.1); for a PPP calculation represents
the nuclei plus all non- -system electrons, is calculated from the coefficients of
those p AOs contributing to and the two-electron repulsion integrals
refer to electrons in the system. The one-center core integrals are estimated
empirically from the ionization energy of a 2p AO and (see below) the two-electron
integral The two-center core integrals are calculated from

where k is an empirical parameter chosen to give the best agreement with experiment of
the wavelength of UV absorption bands, and the overlap integral is calculated
from the basis functions, with the proviso that if and are on atoms that are not
connected then the integral is taken as zero.

The two-electron integrals are evaluated by applying the ZDO approximation (above)
to all different orbitals r and s:

From Eq. (6.6) and the definition of the two-electron integral

it follows that (1) for (rs|tu) = 0, and (2) for r =s and t = u, (rs|tu) = (rr|tt).
Both cases are taken into account by writing
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where the are Kronecker deltas if the subscripts are the same, zero otherwise).
Thus the four-center (i.e. and three-center (i.e. two-electron integrals
are ignored, but not the two-center (i.e. and one-center (i.e. two-
electron integrals. The one-center integrals are taken as the difference between
the valence-state ionization energy and the electron affinity of the atom bearing (these
valence-state parameters refer to a hypothetical isolated atom in the same hybridization
state as in the molecule, and can be found spectroscopically). The two-center integrals

are estimated from and and the distance between the and
atoms.

Although the overlap integrals are actually calculated for the evaluation of
(Eq. (6.5), the overlap matrix is taken as a unit matrix as far as the matrix

Roothaan–Hall equations go; thus or and the
Fock matrix is diagonalized to give the MO coefficients and energy levels without
transforming it with an orthogonalizing matrix. That the overlap matrix is a unit matrix
is a corollary of the ZDO approximation of Eq. (6.6), from which it follows that
the off-diagonal matrix elements are zero; the diagonal elements are of course unity
if normalized AO basis functions are used. PPP energies are electronic
energies or electronic energies plus core-core repulsions, if is added
(Eq. (6.2)).

The PPP method has been used to calculate the UV spectra of conjugated compounds,
especially dyes [13], a task it performs fairly well. The accuracy of these calculations
can be improved by incorporating electron correlation (section 5.4), using the configu-
ration interaction (CI) method. The calculations were usually done at a fixed geometry,
although an empirical bond length-bond order relation permits optimization of bond
length. The classical PPP method is not much used, having evolved into other neglect
of differential overlap (NDO) methods, especially those parameterized for spectra, like
INDO/S and ZINDO/S (below).

6.2.3 The complete neglect of differential
overlap (CNDO) method

The first SE SCF-type method to go beyond just electrons was the complete neglect
of differential overlap method (1965) [14]. This was a general-geometry method, since
it is not limited to planar systems (molecules with conjugated electron systems,
like benzene, are usually planar). Like the other early general-geometry method, the
EHM, which appeared in 1963 (section 4.4), CNDO calculations use a minimal valence
basis set of Slater-type orbitals, in which each atom has the usual number of valence
AOs. The Fock matrix elements are calculated from Eq. (6.1); for a CNDO calculation

represents the nuclei plus all core electrons, is calculated from the coeffi-
cients of the valence AOs, and the two-electron repulsion integrals refer to valence
electrons.

There are two versions of CNDO, CNDO/1 and an improved version, CNDO/2. First
look at CNDO/1. Consider the core integrals where both orbitals are the same
(i.e. the same orbital occurs twice in the integral and are on the
same atom A. Recall the example of an ab initio calculation on (section 5.2.36e).
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where is a basis function on atom A. The term in Eq. (7.0) is regarded as the
energy of an electron in the AO on A corresponding to the function and is taken
as the negative of the valence-state ionization energy of such an electron. The integrals
in the term are simply calculated as the potential energy of a valence s orbital in
the electrostatic field of the core of atom A, B, etc., e.g.

where is the charge on the core of atom B, i.e. the atomic number minus the number
of core (non-valence) electrons, and the variable is the distance of the 2s electron
from the center of the core (from the atomic nucleus). The core integrals with different
orbitals on the same atom (A = B; one-center integrals) or on different atoms
are taken as being proportional to the overlap integral of the relevant orbitals:

The overlap integral here is calculated from the basis functions, although (as for the
PPP method, above) the overlap matrix is taken as a unit matrix as far as the matrix
Roothaan–Hall equations are concerned. The proportionality constant is taken as
the arithmetic mean of parameters for atoms A and B, these parameters being those
that give the best fit of CNDO MO coefficients to those of minimal-basis-set ab initio
calculations. Since different AOs on the same atom are orthogonal, when A=B these
integrals are zero. Note thatcalculating from a best-fit to minimal-basis-set ab initio
calculations means that CNDO parameterization is not purely empirical, but rather, to
some extent attempts to match (low-level) ab initio results. This is a weakness of CNDO
and a potential weakness of its successors INDO and NDDO (below). As repeatedly
emphasized by Dewar, this deficiency was avoided in his methods (section 6.2.5.1) by
consistently parameterizing to match experiment.

As with the PPP method, the two-electron repulsion integrals are evaluated by apply-
ing the ZDO approximation to all different orbitals r and s (Eq. (6.6)). Thus the
two-electron integrals reduce to (Eq. (6.8)), i.e. only one-
and two-center two-electron integrals are considered. All one-center integrals on the

Consider, say, element (1,1) of that matrix. From Eq. (5.116):

Eq. (6.9) can be generalized to a matrix element (r,r) and a molecule with atoms A, B,
C,..., giving
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same atom A are given the samevalue, and all two-center integrals between atoms
A and B are given the samevalue, These integrals are calculated from valence s
Slater functions on A and B.

CNDO/2 differs from CNDO/1 in two modifications to the matrix elements
(Eq. (7.0)): (1) to account better for both ionization energy and electron affinity,
is evaluated not just from ionization energy but as a kind of average of ionization
energy and electron affinity, and (2) the integrals in the term are calculated from
the two-electron integrals as This latter evaluation amounts
to neglecting so-called penetration integrals; these integrals make nonbonded atoms
attract one another, and causes bond lengths to be too short and bond energies to
be too large [14–17]. CNDO energies are valence electron electronic energies E SE, or

is not much used nowadays, having evolved into the less approximate semiempirical
methods INDO and NDDO (below).

6.2.4 The intermediate neglect of differential
overlap (INDO) method

INDO [18] goes beyond CNDO by curtailing the application ofthe ZDO approximation.
Instead of applying it to all different atomic orbitals in the two-electron integrals
(Eq. (6.6)), as in the PPP and CNDO methods, in INDO ZDO is not applied to those
one-center two-electron integrals, with and all on the same
atom; obviously, these repulsion integrals should be the most important. Although
more accurate than CNDO, INDO is nowadays used mostly only for calculating UV
spectra, in specially parameterized versions called INDO/S and ZINDO/S [19].

6.2.5 The neglect of diatomic differential
overlap (NDDO) method

NDDO [20] goes beyond INDO in that the ZDO approximation (section 6.2.1, point (3))
is not applied to orbitals on the same atom, i.e. ZDO is used only for atomic orbitals
on different atoms. NDDO is the basis of the currently popular semiempirical meth-
ods developed by Dewar and coworkers: modified NDDO (MNDO), Austin method 1
(AM1) and parametric method (PM3).

6.2.5.1 NDDO-based methods from the Dewar group: MNDO,
AM1, PM3 and SAM1 – preliminaries

SCF-type (see section 6.1) SE theories are based to a large extent on the approximate
MO theory (see the book of this title [10]) developed by Pople and coworkers. The
Pople school, however, went on to concentrate on the development of ab initio meth-
ods, and indeed it is for his contributions to these, which are largely encapsulated in
the Gaussian series of programs [21], that Pople was awarded the 1998 Nobel Prize in
chemistry [22] (shared with Walter Kohn, a pioneer in density functional theory; see

electronic energies plus core–core repulsions,            if           is added (Eq. (6.2)). CNDO
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chapter 7). In contrast, Dewar pursued the SE approach almost exclusively [23], and
continued till the end of his career to stoutly maintain that at least as far as molecules
of real chemical interest go his SE methods were superior to ab initio ones. (“There is
clearly little point in using a procedure that requires thousands of times more computing
time than ours do if it is no better than ours, let alone one that is inferior.”) [24]. The
rivalry between the Dewar school and the adherents of the ab initio approach began
relatively early in the development of Dewar methods (see, e.g. [25–27]), intensified
to actual polemic [28], and is passionately described from an unabashedly partisan
viewpoint in Dewar’s autobiography [23]. The ab initio vs. Dewar SE controversy was
largely rooted in a difference of viewpoints and in a focus by Dewar on the inabil-
ity of ab initio calculations to give reasonably accurate absolute molecular energies
(an absolute molecular energy is the energy needed to dissociate a molecule into its
nuclei and electrons, infinitely separated and at rest). In the absence of error cancella-
tion, errors in absolute energies lead to errors in activation and reaction energies, and
the errors in absolute energies were, ca. 1970, commonly in the region of a thousand
kilojoules per mole. Cancellation (actually not as untrustworthy as Dewar thought –
section 5.5.2.1) could not, he held, be relied on to provide chemically useful relative
energies (reaction and activation energies), say up to some tens of kilojoules per mole.
The exchange with Halgren, Kleir and Lipscomb nicely illustrates the viewpoint differ-
ence [27]: one side held that even when inaccurate, ab initio calculations can teach us
something fundamental, while SE calculations, no matter how good, do not contribute
to fundamental theory. Dewar focussed on the study of reactions of “real” chemical
interest. Interestingly, the high-accuracy “ab initio” methods that in recent years have
achieved chemical accuracy (section 5.5.2.2b), now considered to be about
employ some empirical parameters, a fact that would have amused Dewar (section 6.1,
footnote 1).

In contrast to the viewpoint of the ab initio school, Dewar regarded the SE method
not merely as an approximation to ab initio calculations, but rather as an approach that,
carefully parameterized, could give results far superior to those from ab initio calcu-
lations, at least for the foreseeable future: “The situation [ca. 1992] could be changed
only by a huge increase in the speed of computers, larger than anything likely to be
attained before the end of the century, or by the development of some fundamentally
better ab initio approach.” [29]. The conscious decision to achieve experimental accu-
racy rather than merely to approximate ab initio results (note the remarks in connection
with Eq. (6.12)) was clearly stated several times [26,28,30] in the course of the devel-
opment of these SE methods: “We set out to parametrize [semiempirical methods] in
an entirely different manner, to reproduce the results of experiment rather than those
of dubious ab initio calculations.” [30].

The first (1967) of the Dewar-type methods was PNDDO [31] (partial NDDO).
Because further development of the NDDO approach turned out to be “unexpectedly
formidable” [30], Dewar’s group temporarily turned to INDO, creating MINDO/1 [32]
(modified INDO, version 1). The third version of this method, MINDO/3, was said [30]
“[to have] so far survived every test without serious failure,” and it became the first
widely-used Dewar-type method, but keeping their promise to return to NDDO the
group soon came up with MNDO. MINDO/3 was made essentially obsolete by MNDO,
except perhaps for the study of carbocations (Clark has summarized the strengths and
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weaknesses of MINDO/3, and the early work on MNDO [33]). MNDO and its descen-
dants AM1 and PM3 are discussed below. A modification of AM1, SAM1, is briefly
mentioned; it has not (yet?) gained much popularity.

6.2.5.2 Heats of formation from SE electronic energies

Of the several experimental parameters that the Dewar methods are designed to repro-
duce, probably the two most important are geometry and heat of formation. For heat of
formation the procedure encoded in the methods is the following [34]. As with ab initio
calculations, SCF-type SE calculations initially give electronic energies these are
calculated using Eq. (6.2). Inclusion of the core–core repulsion which is neces-
sary for geometry optimization, gives the total semiempirical energy normally
expressed in atomic units (hartrees), as in an ab initio calculation (e.g. section 5.2.3.6e).
This energy the total internal energy of the molecule except for zero point vibra-
tional energy, is used to calculate the heat of formation (enthalpy of formation) of the
molecule. Figure 6.1 will help to make it clear how this is done. The quantities in
Fig. 6.1 are

(1) the experimental 298 K heat of formation of the molecule M, i.e. the
heat energy needed to make M from its elements. This is the quantity we want.

(2) The atomization energy of M, which is the energy of the atoms minus the energy of
M. The energy of the atoms is the conversion factor F converts
the energy per atom in hartrees, into the same units, or as is
used for the experimental heats of formation of the atoms; F is per
hartree (or The energy of the molecule M is the
optimized geometry being used. The same SE method is used to calculate atomic and
molecular energies, both of which are negative quantities, the energy of the species
relative to electrons and one or more atomic cores infinitely separated. is
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purely electronic, since an atom has no core–core repulsion (i.e. it has no atoms to
separate), while the molecular energy includes core–core repulsion.

(3) the sum, over all the atoms A of M, of the experimental 298 K
heats of formation of these atoms.

Equating the two paths from the elements in their standard states at 298 K to atoms
we get

Thus the desired quantity, the heat of formation of the molecule, can be calculated from
the experimental heats of formation of the atoms and the semiempirical energies of the
atoms and the molecule. The calculation of Eq. (6.13) is automatically done by the
program using stored values for atomic heats of formation and semiempirical atomic
energies, and the “freshly calculated” calculated molecular energy, and one normally
never sees These calculations are for the gas phase, and if one wants the
heat of formation of a liquid or a solid, then the experimental heat of vaporization or
sublimation must be taken into account. Note that this procedure is conceptually almost
the same as the atomization method for ab initio calculation of heats of formation
(section 5.5.2.2c). However, the purpose here is to obtain the heat of formation at room
temperature (298 K) from the molecular “total semiempirical energy,” the electronic
energy plus core–core repulsion; in the ab initio atomization method the 0 K heat of
formation is calculated with the aid of the molecular energy including ZPE (the 0 K
heat of formation can be corrected to 298 K – see section 5.5.2.2c). The SE procedure
involves some approximations. The ZPE of the molecule is not used, and the increase
in thermal energy from 0 to 298 K is not calculated. Thus if were fully
analogous to the ab initio 0 K electronic energy plus internuclear repulsion then the
calculated atomization energy would be at 0 K, not 298 K, and furthermore would
employ a frozen-nucleus approximation to the true 0 K energy. The good news is that

is parameterized (below) to reproduce   to the extent that this
parameterization succeeds the neglect of ZPE and of the 0–298 K increase in thermal
energy are overcome (and electron correlation is also implicitly taken into account).
The key to obtaining reasonably accurate heats of formation from these methods is thus
their parameterization to give the values of and used in Eq. (6.13).
This parameterization, which is designed to also give reasonable geometries and dipole
moments, is discussed below.

6.2.5.3   MNDO

MNDO [33], a modified NDDO (section 6.2.5) method, was reported in 1977 [35].
MNDO is conveniently explained by reference to CNDO (section 6.2.3). MNDO is a
general geometry method with a minimal valence basis set of Slater-type orbitals, the
one-center core integrals. The Fock matrix elements are calculated using Eq. (6.1). We
discuss the core and two-electron integrals in the same order as for CNDO.

The core integrals with the same orbital twice on the same atom A are
calculated using Eq. (6.10). Unlike the case in CNDO, where is found from ion-
ization energies (CNDO/1) or ionization energies and electron affinities (CNDO/2), in
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MNDO is one of the parameters to be adjusted. The integrals in the summation
term are evaluated similarly to the CNDO/2 method from a two-electron integral
(see below)involving and the valence s orbital on atom B:

The core integrals with different orbitals and , on the same atom A are not
simply taken as being proportional to the overlap integral, as in CNDO (Eq. (6.12)),
but rather are also (like the case of both orbitals on the same atom) evaluated from
Eq. (6.10), which in this case becomes

The first term is zero from symmetry [36]. Each integral of the summation term is again
evaluated, as in CNDO/2, from a two-electron integral:

The core integrals with different orbitals and on different atoms A and
B are taken, as in CNDO (cf. Eq. (6.12)), to be proportional to the overlap integral
between and where again the proportionality constant is the arithmetic mean of
parameters for atoms A and B:

The overlap integral is calculated from the basis functions although the overlap matrix
is taken as a unit matrix as far as the Roothaan–Hall equations go (section 6.2.2). These
core integrals are sometimes called core resonance integrals.

The two-electron integrals are evaluated applying ZDO (section 6.2.1) within the
framework of the NDDO approximation (section 6.2.5). As with the PPP (section 6.2.2)
and CNDO (section 6.2.3) methods, this makes all two-electron integrals become

, i.e only one- and two-center two-electron integrals are nonzero.
The one-center integrals are evaluated from valence-state ionization energies. The
two-center integrals are evaluated from the one-center integrals and the separation
of the nuclei by an involved procedure in which the integrals are expanded as sums
of multipole-multipole interactions [35a,37] that make the two-center integrals show
correct limiting behavior at zero and infinite separation.

As in CNDO the penetration integrals are neglected (section 6.2.3, CNDO/2). A con-
sequence of this is that the core–core repulsions in Eq. (6.2)) cannot be realistically
calculated simply as the sum of pairs of classical electrostatic interactions between
point charges centered on the nuclei. Instead, Dewar and coworkers chose [35a] the
expression
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where and are the core charges of atoms A and B and and are the valence
s orbitals on A and B (the two-electron integral in Eq. (6.18) is actually approximately
proportional to so there is some connection with the simple electrostatic model).
The term is a correction increment to make the result come out better; it depends
on the core charges and the valence s functions on A and B, their separation R, and
empirical parameters

The above mathematical treatment constitutes the creation of the form of the semi-
empirical equations; to actually use these equations, they must be parameterized using
experimental data. This is analogous to the situation in molecularmechanics (chapter3),
where a force field, defined by the form of the functions used (e.g. a quadratic func-
tion of the amount by which a bond is stretched, for the bond-stretch energy term) is
constructed, and must then be parameterized by inserting specific quantities for the
parameters (e.g. values for the stretching force constants of various bonds). For each
kind of atom A (a maximum of) six parameters is needed:

The kinetic-energy-containing term of Eq. (6.10) (as explained above, this
CNDO equation is also used in MNDO to evaluate where is a valence s
AO.

The term of Eq (6.10) where is a valence p AO.

The parameter in the exponent of the Slater function (e.g. section 5.3.2, Fig. 5.12)
for the various valence AOs (MNDO uses the same for the s and p AOs).

The parameter (Eq. (6.17)) for a valence s AO.

The parameter for a valence p AO.

the parameter in the correction increment (Eq. (6.19)) to the core–core
repulsion (Eq. (6.18)).

(1)

(2)

(3)

(4)

(5)

(6)

Some atoms have five parameters because for them MNDO takes to be the same for
s and p orbitals, and hydrogen has four parameters because MNDO does not assign it
 p orbitals.

We want the parameters that will give the best results, for a wide range of mole-
cules. What we mean by “results” depends on the molecular characteristics of most
interest to us. MNDO (and its siblings AM1 and PM3, below) was parameterized [35a]
to reproduce heat of formation, geometry, dipole moment, and the first vertical ion-
ization energy (from Koopmans’ theorem; section 5.5.5). To parameterize MNDO a
training set of molecules (a “molecular basis set” is Dewar’s term – no connection
with a basis set of functions used to construct MOs) of small, common molecules (e.g.
methane, benzene, dinitrogen, water, methanol; 34 molecules were used for the C,
H, O, N set) was chosen and the six parameters above were adjusted in an
attempt to give the best values of the four molecular characteristics (heat of formation,
geometry, dipole moment, and ionization energy). Specifically, the objective was to
minimize Y, the sum of the weighted squares of the deviations from experiment of the
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four molecular characteristics:

where N is the number of molecules in the training set, and is a weighting factor
chosen to determine the relative importance of each characteristic The actual process
of assigning values to the parameters is formally analogous to the problem of geometry
optimization (section 2.4). In geometry optimization we want the set of atomic coor-
dinates that correspond to a minimum (sometimes to a transition state) on a potential
energy hypersurface. In parameterizing a SE method we want the set of parameters
that correspond to the minimum overall calculated deviation of the chosen characteris-
tics from their experimental values – the parameters that give the minimum Y, above.
Details of the parameterization process for MNDO have been given by Dewar [35a]
and by Stewart [38].

The results of MNDO calculations on 138 compounds limited to the elements C,
H, O, N were reported by Dewar and Thiel [35b]. The absolute mean errors were:
in heat of formation, for all 138 compounds; in geometry, for
bond lengths for 228 bonds, for angles at C for acyclics (less for cyclic molecules);
in dipole moment, 0.30 D for 57 compounds; in ionization energy, 0.48 eV for 51
compounds. To put the errors in perspective, typical values of these quantities are,
respectively, roughly –600 – and 10–15 eV. Although
MNDO can reproduce these and other properties of a wide variety of molecules [33,39],
it is little used nowadays, having been largely superseded by AM1 and, to a some-
what lesser extent, PM3 (below). More results from MNDO calculations are given in
section 6.3.

6.2.5.4 AM1

Austin method 1 (AM1, developed at the University of Texas at Austin [40]) was
introduced by Dewar, Zoebisch, Healy, and Stewart in 1985 [41]. AM1 is an improved
version of MNDO in which the main change is that the core–core repulsions (Eq.
(6.18)) were modified to overcome the tendency of MNDO to overestimate repulsions
between atoms separated by about their van der Waals distances (the other change is
that the parameter in the exponent of the Slater function – see parameter 3 in the
listing of the six parameters above – need not be the same for s and p AOs on the same
atom). The core–core repulsions were modified by introducing attractive and repulsive
Gaussian functions centered at internuclear points [42], and the method was then re-
parameterized. The great difficulties experienced in the parameterization of AM1 and
its predecessors are emphasized by Dewar and coworkers in many places, e.g.: “All our
work has therefore been based on a very laborious purely empirical technique...”
for the MINDO methods [30]; parameterization is a “purely empirical affair” and
“needs infinite patience and enormous amounts of computer time,” for AM 1 [41 ]. In his
autobiography Dewar says [43] “This success [of these methods] is no accident and it
has not been obtained easily,” and summarizes the problems with parameterizing these
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methods: (1) the parametric functions are of unknown form, (2) the choice ofmolecules
for the training set affects the parameters to some extent, (3) the parameters are not
unique, there is no way to tell if the set of values found is the best one, and there is no
systematic way to find alternative sets, (4) deciding if a set of parameters is acceptable
is a matter of judgment. Dewar et al. chose to call their modified MNDO method
AM1, rather than MNDO/2, because they felt that their methods were being confused
(presumably because of the “INDO” and “NDO” components of the appellations) with
“grossly inaccurate” [41] ZDO SCF SE methods like CNDO and INDO.

Dewar, Zoebisch, Healy, and Stewart reported [41] that AM1 calculations on com-
pounds containing nitrogen and/or oxygen gave an absolute mean error in heat of
formation of for 80 compounds, “generally satisfactory” agreement with
experiment for the geometries of 138 molecules, absolute mean error in dipole moment
of 0.26 D for 46 compounds, and absolute mean error in ionization energy of 0.40 eV
for 29 compounds. These results are slightly better than those for MNDO, but the real
advantages ofAM1 over MNDO were said [41] to lie in its better treatment ofhydrogen
bonding, crowded molecules, four-membered rings, and activation energies. AM1 is
the most widely-used SE method nowadays. MNDO and AM1 (and PM3, below) are
compared further in section 6.3.

6.2.5.5 PM3

PM3 is a variation ofAM1,differing mainly in how the parameterization is done. When
PM3 was first published [38], two parameterizations of MNDO-type methods, MNDO
and AM1, had been carried out, and PM3 was at first called MNDO-PM3, meaning
MNDO parametric method 3. Three papers [38,44,45] define the PM3 method. The
Dewar school’s approach to parameterization was a painstaking one (section 6.2.5.4),
making liberal use of chemical intuition. The developer of PM3, Stewart, employed
a faster, more algorithmic approach, “several orders of magnitude faster than those
previously employed” [38]. Although it is based on AM1, PM3 did not enjoy Dewar’s
blessing. The reasons for this appear to be at least twofold: (1) Dewar evidently felt
(on the basis of very early results [46]) that PM3 represented at best an only mar-
ginal improvement over AM1, and that a new SE method should make previous ones
essentially obsolete, as MNDO made MINDO/3 obsolete, and AM1 largely replaced
MNDO. Stewart defended his approach [47] with the rejoinder, inter alia, that if PM3
was only a only marginal improvement over AM1, then AM1 was only a marginal
improvement over MNDO. (2) Dewar objected strongly to any proliferation of compu-
tational chemistry methods, whether it be in the realm of ab initio basis sets [48] or of
SE methods [46,48].

For compounds containing H, C, N, O, F, Cl, Br, and I, Holder et al. reported [49] that
PM3 calculations gave an absolute mean error in heat of formation of for
408 compounds for AM1), and Dewar et al. reported an absolute mean
error in bond lengths of 0.022 Å for 344 bonds (cf. 0.027 forAM1), for 146 angles

for AM1) [50], and 0.40 D for 196 compounds (cf. 0.35 D for AM1) [50]. PM3
is the second most widely-used semiempirical method nowadays (after AM1). MNDO,
AM1, and PM3 are compared further in section 6.3.
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6.2.5.6 SAM1

Semi ab initio method number 1 (SAM1) was the last SE method to be reported
(1993, [50]) by Dewar’s group. SAM1 is essentially a modification of AM1 in which
the two-electron integrals are calculated ab initio using contracted Gaussians (an STO-
3G basis set) as in standard ab initio calculations (section 5.3.2). This is in contrast to
AM1, where the two-center two-electron integrals are calculated from the one-center
two-electron integrals, which are estimated spectroscopically. As Holder and Evleth
point out in a brief but lucid outline of the basis of AM1 and SAM1 [51], a key
distinguishing feature of each SE method is how it calculates the two-electron repul-
sion integrals. Since the NDDO approximation discards all the three- and four-center
two-electron integrals, the number of two-electron integrals to be calculated is greatly
reduced. This, and the limitation to valence electrons, makes SAM1 only about twice
as slow as AM1 [51].

One of the main reasons for developing SAM1 was to improve the treatment of
hydrogen bonding (this was also a primary reason for developing AM1 from MNDO;
evidently success there was only limited). SAM1 is indeed an improvement over AM1 in
this respect, and “appears to be the first semiempirical parameterization to handle a wide
variety of [hydrogen bonded] systems correctly”; in fact, it was said that “the results
from SAM1 for virtually every system has improved over AM1 and PM3, fulfilling the
criteria for SAM1 to be a reasonable successor to AM1 and PM3 for general purpose
semiempirical calculations” [51]. An extensive list of experimental heats of formation
compared with those calculated by SAM1, AM1, and PM3 has been published [49].
Actually, despite its apparent generally significant superiority over AM1, there have
been relatively few publications using SAM1. This is probably because the program
at present is available only in the commercial SE package AMPAC [52], which seems
to be used mainly by chemists working in industry who cannot always publish freely,
and because the parameterization of SAM1 has not yet been fully disclosed in the open
literature (researchers are perhaps uncomfortable about using a black box, or even a
gray one).

6.2.5.7 Inclusion of d orbitals: MNDO/d and PM3t; explicit electron
correlation: MNDOC

The original (and most widely-used) versions of MNDO, AM1, and PM3 do not use d
orbitals. Hence they might be expected to show reduced accuracy for elements in the
“second-row” (computational chemists’ lingo) and beyond like, P, S, Cl, Br, and I, and
cannot be used for transition metals. Actually, because of appropriate parameterization
AM1 and PM3 are able to treat monovalent Cl, Br and I as standard elements (C, H, O,
N, F), and they handle divalent S reasonably well. To make them able to work better
with elements in the second row and beyond, and/or to handle transition metals (note
that in Zn, Cd, and Hg the d electrons are not normally involved in bonding), d orbitals
have been incorporated into some SE methods. MNDO/d [53] uses d orbitals for some
post-first row nonmetals and has been parameterized for several transition metals. Some
versions of SPARTAN [54] have PM3 (tm), PM3 with d orbitals for many transition
metals. PM3 (tm) geometries have been compared with experimental and ab initio ones;
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the results were said to range from excellent for dihydrogen complexes to very poor for
complexes [55].

The parameterization of SE methods is supposed to simulate, amongst other effects,
electron correlation, so it might seem pointless to introduce electron correlation
explicitly, by the Møller–Plesset method or by configuration interaction (section 5.4).
However, the parameterization of these SE methods is done using ordinary stable
molecules. Surprisingly, MNDO, AM1, PM3 (and presumably SAM1) also reproduce
reasonably well the energies and geometries of reactive intermediates like carbocations,
carbanions and carbenes. However, the parameterization is unlikely to be as reliable
for transition states as for ground states, so activation energies are expected to be less
accurate than reaction energies. A method that explicitly calculates electron correlation
might improve calculated activation energies. In the SE field the standard program for
this is MNDOC (MNDO with correlation), developed by Thiel and coworkers [56].
MNDOC is said to perform better than MNDO (and presumably better than the other
MNDO-related methods) in calculating activation energies and electronic excitation
energies [39]. For more on the accuracy of MNDO and MNDOC see sections 6.3.1
(geometries) and 6.3.2.2 (activation energies).

6.3   APPLICATIONS OF SE METHODS

A good, brief overview of the performance of MNDO, AM1, and PM3 is given by
Levine [57], Hehre has compiled an extremely useful book comparing AM1 with MM
(chapter 3), ab initio (chapter 5) and DFT (chapter 7) methods for calculating geometries
and other properties [58], and an extensive collection of AM1 and PM3 geometries is
to be found in Stewart’s second PM3 paper [44].

6.3.1   Geometries
Many of the general remarks on molecular geometries in section 5.5.1, preceding the
discussion of results of specifically ab initio calculations, apply also to SE calculations.
Geometry optimizations of large biomolecules like proteins and nucleic acids, which a
few years ago were limited to MM, can now be done routinely [59] with SE methods on
inexpensive personal computers with the program MOZYME [60], which uses localized
orbitals to solve the SCF equations [61].

Let us compare AM1, PM3, (chapter 5) and experimental geome-
tries; the method is the highest-level ab initio method routinely
used. Figure 6.2 gives bond lengths and angles calculated by these three methods and
experimental bond lengths and angles, for the same 20 molecules as in Fig. 5.23. The
geometries shown in Fig. 6.2 are analyzed in Table 6.1, and Table 6.2 provides informa-
tion on dihedral angles for the same eight molecules as in Table 5.8. Fig. 6.2 corresponds
exactly to Fig. 5.23, Table 6.1 to Table 5.7, and Table 6.2 to Table 5.8.

This survey suggests that: AM1 and PM3 give quite good geometries (although
dihedral angles, below, show quite significant errors): bond lengths are mostly within
0.02 Å of experimental (although the AM1 C-S bonds are about 0.06 Å too short), and
angles are usuallywithin of experimental (the worst case is the AM1 HOF angle,
which is too big).
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Of AM 1 and PM3, neither has a clear advantage over the other in predicting geometry,
although PM3 C–H and C–X bond lengths appear to be more accurate
than AM1. MP2 geometries are considerably better than AM1 and PM3, but HF/3-21G
and HF/6-31G* geometries (Fig. 5.23 and Table 5.7) are only moderately better.
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AM1 and PM3 bond lengths are almost always (AM 1) or tend to be (PM3) longer
than experimental, by ca. 0.004–0.025 (AM1) or ca. 0.002 Å (PM3). AM1 O–H bonds
tend to be slightly longer (up to 0.016 Å) and PM3 O–H bonds to be somewhat shorter
(up to 0.028 Å) than experimental. Both AM1 and PM3 consistently underestimate C–C
bond lengths (by about 0.02 Å).

N, F, Cl, S) bond lengths appear to be consistently neither over- nor
underestimated by AM1, while PM3 tends to underestimate them; as stated above, the
PM3 lengths seem to be the more accurate (mean errors 0.013 vs. 0.028 Å for AM1).
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Both AM1 and PM3 give quite good bond angles (largest error ca. 4°, except for HOF
for which the AM1 error is 7.1°).

AM1 tends to overestimate dihedrals (10+, 0–), while PM3 may do so to a lesser
extent (7+, 3–). PM3 breaks down for HOOH (calculated 180°, experimental 119.1°,
and does poorly for (calculated 57°, experimental 73°). Omitting the case of
HOOH, the mean dihedral angle errors for AM 1 and PM3 are 5° and 4.5°; however, the
variation here is from 1 ° to 11 ° for AM 1 and from –1 ° to –16° for PM3 (although not
wildly out of line with the AM1, PM3 or MP2 calculations, the reported experimental

dihedral of 58.4° is suspect; see section 5.5.1).
The accuracy of AM1 and PM3 then is quite good for bond lengths and angles,

but fairly approximate for dihedrals. The largest error (Table 6.1) in bond lengths
is 0.065 Å (AM1 for MeSH) and in bond angles 7.1° (AM1 for HOF). The largest
error in dihedrals (Table 6.2), omitting the PM3 result for HOOH, is 16° (PM3 for

From Fig. 6.2 and Table 6.1, the mean error in 39(13 + 8 + 9 + 9) bond lengths
is ca. 0.01–0.03 Å for the AM1 and PM3 methods, with PM3 being somewhat better
except for O–H and O–S. The mean error in 18 bond angles is ca. 2° for both AM1 and
PM3. From Table 6.2, the mean dihedral angle error for 9 dihedrals for AM1 and PM3
(omitting the case of HOOH, where PM3 simply fails) is ca. 5°; if we include HOOH,
the mean errors for AM1 and PM3 are 6° and 10°, respectively.

Schröder and Thiel have compared MNDO (section 6.2.5.3) and MNDOC
(section 6.2.5.7) with ab initio calculations for the study of the geometries and energies
of 47 transition states [62], AM1 and PM3 calculations should give somewhat better
results than MNDO for these systems, since these two methods are essentially improved
versions of MNDO. The general impression is that the SE and ab initio transition states
are qualitatively similar in most cases, with MNDOC geometries being sometimes a
bit better. The SE and ab initio geometries were in most cases fairly similar, so that as
far as geometry goes one would draw the same qualitative conclusions.

Semiempirical and ab initio geometries are compared further in Fig. 6.3, which
presents results for four reactions, the same as for the ab initio calculations summarized
in Fig. 5.21. As expected from the results of Fig. 6.2, the SE geometries of the reactants
and products (the energy minima) are quite good (taking the MP2/6-31G* results as
our standard). The SE transition state geometries, however, are also surprisingly good:
with only small differences between the AM1 and PM3 results, in all four cases the
SE transition states resemble the ab initio ones so closely that qualitative conclusions
based on geometry would be the same whether drawn from the AM1 or PM3, or from
the MP2/6-31G* calculations. The largest bond length error (if we accept the MP2
geometries as accurate) is about 0.09 Å (for the transition state, 1.897–1.803),
and the largest angle error is 9° (for the HNC transition state, 72.8°–63.9°; most of the
angle errors are less than 3°).

These results, together with those of Schröder and Thiel [62] indicate that SE geome-
tries are usually quite good, even for transition states. Exceptions might be expected for
hypervalent compounds, and for unusual structures like the cation; for the latter
AM1 and PM3 predict the classical structure, but calculations
predict this species to have a hydrogen-bridged structure (Fig. 5.17). SE energies are
considered in section 6.3.2.
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6.3.2 Energies
6.3.2.1 Energies: preliminaries

As with ab initio (chapter 5) and MM (chapter 4) calculations, the molecular parameters
usually sought from SE calculations are geometries (preceding section) and energies.
As explained (section 6.2.5.2), the most widely-used SE methods, AM1 and PM3, give
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(room temperature, 298 K) heats of formation. This is in distinct contrast to ab ini-
tio calculations, which give (the negative of) the energy for total dissociation of the
molecule into nuclei and electrons, starting from a hypothetical zero-vibrational energy
state or from the 0 K state with ZPE included (section 5.5.2.1). Ab initio methods can be
made to provide heats of formation, by slightly roundabout methods (section 5.5.2.2c).
The errors in SE heats of formation might at first strike one as being very large; thus
for the common diatomic molecules, which by definition have standard heats of forma-
tion of zero, AM1/PM3 give these heats of formation –21.7/–56.0;

+46.7/ + 73.5; (triplet), –116/–17.5; –59.2/–48.5;
–22.0/ + 20.6. An extensive compilation of AM1 and PM3 heats of formation

(which corrects errors in earlier values) [44] gave for 657 normal-valent compounds
these average errors for the absolute deviations 53/33; for 106
hypervalent compounds 348 (sic)/57. These results are not as bad as they may at first
seem if we note that (1) the heats of formation of organic compounds are commonly in
the region of (2) often we are interested in trends, which are more
likely to be qualitatively right than actual numbers are to be quantitatively accurate,
and (3) usually chemists are concerned with energy differences, i.e. relative energies
(below). AM1 heats of formation for hypervalent compounds (above and Ref. [47])
appear to be distinctly inferior to those from PM3. Thiel has compared MNDO, AM1,
PM3, and MNDO/d heats of formation with those from some ab initio methods [64].

The discussion of enthalpy, free energy, and reaction and activation energies in
section 5.5.2.1 applies to SE calculations too. Now let’s retrace some of the calculations
of chapter 5, using AM1 and PM3 rather than ab initio methods.

6.3.2.2 Energies: calculating quantities relevant to
thermodynamics and kinetics

We are usually interested in relative energies. An ab initio energy difference (for iso-
mers, or isomeric systems like reactants cf. products) represents a 0 K energy difference,
i.e. a 0 K enthalpy difference, whereas a semiempirical (AM1 or PM3) energy differ-
ence represents a room temperature enthalpy difference; thus even if the ab initio and
SE calculations both had negligible errors, they would not be expected to give exactly
the same relative energy, unless the 0–298 K enthalpy change on both sides of the
equation cancelled. A typical change in heat of formation is shown by methanol; the
(ab initio calculated) heats of formation of methanol at 0 and 298 K are –195.9 and

respectively (section 5.5.2.2c). This change of is small
compared to the errors in SE and many ab initio calculations, so discrepancies between
energy changes calculated by the two approaches must be due to factors other than
the 0–298 K enthalpy change. The errors in heats of formation cannot be counted on
to consistently cancel when we subtract to obtain relative energies, and because of the
quite large errors in the heats of formation (53 and for AM1 and PM3, for a
large sample of “normal compounds”; section 6.6.2.1) errors of about
should not be uncommon, although much smaller errors are often obtained. Consider
the relative energies of (Z)- and (E)-2-butene (Fig. 5.24). The HF/3-21G energy differ-
ence, corrected for ZPE (although in this case the ZPE is practically the same for both
isomers) is (Z) – (E) = –155.12709 – (–155.13033)h = 0.00324 h =
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AM1 calculations (ZPE is not considered here, since as explained in section 6.2.5.2, this
is taken into account in the parameterization) give

The experimental heats offormation (298 K, gas phase) are
i.e. [65].

The comparison by Schröder and Thiel [62] (section 6.3.1) of SE (MNDO and
MNDOC) and ab initio geometries and energies concluded that the SE methods usu-
ally overestimate activation energies. Of 21 activation energies (Table IV in Ref. [62],
entries I, K, W omitted), MNDO overestimated (compared with “best”  correlated
ab initio calculations) 19 and underestimated 2; the overestimates ranged from

and the underestimates were 46 and MNDOC overes-
timated 16 and underestimated 5; the overestimates ranged from and
the underestimates Thus for calculating activation energies MNDOC is
significantly better than MNDO, and it is probably better than AM1 for this purpose,
since, like MNDO but unlike MNDOC, AM1 does not explicitly take into account
electron correlation, which can be important for activation energies. For these 21 reac-
tions, restricted Hartree–Fock calculations overestimated 18 activation energies and
underestimated 3; the overestimates of energies ranged from and the
underestimates The mean absolute deviations from the “best” corre-
lated ab initio calculations for the 21 reactions were: MNDO, MNDOC,

RHF, Evidently MNDOC is somewhat better than RHF
(uncorrelated) calculations for activation energies. Correlated-level ab initio calcula-
tions, however, appear to be superior to MNDOC; in particular, MNDOC predicts
substantial barriers for isomerization of carbenes by hydrogen migration. Other work
showed that AM 1 greatly overestimates the barrier for decomposition or rearrangement
of some highly reactive species [66].

Some SE reaction energies and relative energies of isomers are given in Table 6.3;
these are analogous to the ab initio results in Table 5.9. These calculations suggest that,
like the Hartree–Fock-level calculations of Table 5.9, AM1 and PM3 can give useful,
although sometimes only rough, indications of the magnitude of energy differences.
Further information on the reliability of these methods is provided by the calculations
for the four reactions summarized in Fig. 6.3, which were discussed in section 6.3.1 in
connection with geometries. Fig. 6.4, based on the energies in Fig. 6.3, makes these
results clear. In all four cases the SE methods give the relative energies of the products
semiquantitatively; the worst deviation from experiment is for the PM3 relative energy
of HCN, which is too low. In fact, in two of the
four cases and HNC reactions) the AM 1 product relative energies are the
best (and in the other two cases, the MP2 energies are the best); however, this is likely
to be due to an atypical cancellation of errors. The transition state relative energies are
best-approximated in one case by AM1 and PM3, and in the
other three cases by MP2; for these three latter reactions the SE relative energies are
considerably higher than the experimental and MP values, which accords with other
work mentioned above [62,66].

From the available information, then, we can conclude that SE heats of formation
and reaction energies (reactant cf. product) are semiquantitatively reliable. Activation
energies (reactant cf. transition state) are usually considerably overestimated by AM1
and PM3, but are handled better by MNDOC, which actually gives results somewhat
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better than those from RHF calculations, at least in many cases. An extensive compar-
ison of AM1 with ab initio and density functional methods for calculating geometries
and relative energies is given in Hehre’s book [58]. Consistently good calculated reac-
tion energies and especially activation energies require correlated ab initio methods
(sections 5.4.2 and 5.5.2) or DFT methods (chapter 7). It is interesting that AM1 and
PM3, which were parameterized mainly to give good energies (heats of formation)
actually provide quite good geometries but energies of only modest quality.

6.3.3 Frequencies
The general remarks and the theory concerning frequencies in section 5.5.3, apply to SE
frequencies too, but the zero-point energies are usually not needed, since the SE energy
is normally not adjusted by adding the ZPE (section 6.2.5.2). As with ab initio calcu-
lations, SE frequencies are used to characterize a species as a minimum or a transition
state (or a higher-order saddle point), and to get an idea of what the IR spectrum looks
like. As with ab initio frequencies too, in SE methods the wavenumbers (frequencies)
of vibrations are calculated from a mass-weighted second-derivative matrix (a hessian)
and intensities are calculated from the changes in dipole moment accompanying the
vibrations. Like their ab initio counterparts, SE frequencies are higher than the exper-
imental ones; presumably this is at least partly due to the harmonic approximation, as
was discussed in section 5.5.3.

Correction factors improve the fit between SE calculated and experimentally mea-
sured spectra, but the agreement does not become as good as does the fit of corrected
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ab initio to experimental spectra. This is because deviations from experiment are less
systematic for SE than for ab initio methods (a characteristic that has been noted for
errors in SE energies [68]). For AM1 calculations, correction factors of 0.9235 [69] and
0.9532 [70], and for PM3, factors of 0.9451 [69] and 0.9761 [70], have been recom-
mended. A factor of 0.86 has been recommended for SAM1 for non-H stretches [71].
However, the variation of the correction factor with the kind of frequency is bigger for
SE than for ab initio calculations; for example, for correcting carbonyl stretching fre-
quencies, examination of a few molecules indicated (author’s work) that (at least for C,
H, O compounds) correction factors of 0.83 (AM1) and 0.86 (PM3) give a much better
fit to experiment. In Table 6.4 the factors of Ref. [69] were used. The after-correction
deviations from experiment are considerably larger for AM1 and PM3 than for even
moderate-level ab initio calculations: about 35% of the SE frequencies deviated by
more than 10% from experiment, compared with 21% for HF/3–21G and 10% for
HF/6-31G* [70].
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The calculated intensities of SE vibrations are much more approximate than those
for ab initio vibrations (the latter are typically within 30% of the experimental intensity
at the MP2 level), which is somewhat surprising, since SE (AM1 and PM3) dipole
moments, from the vibrational changes of which intensities are calculated, are fairly
accurate (section 6.3.4). Note that unlike the case with UV spectra, IR intensities
are rarely actually measured; rather, one usually simply visually classifies a band as
strong, medium, etc., by comparison with the strongest band in the spectrum. An
idea of the reliability of SE frequencies and intensities is given by the IR spectra
in Figs 6.5–6.8, which compare experimental spectra with semiempirical (AM1 and
PM3) and ab initio (MP2/6-31G*) spectra, for the same four compounds (acetone,
benzene, dichloromethane, methanol) shown in Figs 5.33–5.36. The SE spectra are
based on the data in Table 6.4; the experimental and MP2 spectra are the ones used
in Figs 5.33–5.36. Recall that the MP2/6-31G* IRs of these four compounds do not
differ dramatically from the spectra calculated at the HF/3-21G(*) and HF/6-31G*
levels. The indication is that SE IR spectra tend to overemphasize the intensities of the
strongest bands at the expense of the weaker, with the result that the spectra (after one
discards the weakest bands) show fewer bands than experimental or ab initio calculated
spectra. Thus if one ignores bands with less than 2% of the intensity of the strongest
band (the carbonyl stretch), the AM1 and PM3 spectra of acetone show only carbonyl
stretch, while with the 2% cutoff the MP2/6-31G* spectrum has 11 bands and matches
the experimental spectrum tolerably well (Fig. 6.5). The semiempirical IRs of benzene
(Fig. 6.6) are not bad, but those of dichloromethane (Fig. 6.7) and methanol Fig. 6.8)
are also significantly sparser than the experimental and MP2 spectra. Of these four
compounds, the SE methods do the best job for benzene, which has only two kind of
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bonds, C/H and C/C, both of which are nonpolar. A problem with AM1 and PM3 IR
spectra, then, is that a “missing” band may not be particularly weak, and may represent
a prominent structural feature, e.g. the O–H stretch of methanol.

The wavenumbers (frequencies) of SE vibrations are more reliable than the inten-
sities. All the normal modes are actually present in the results of an AM1 or PM3
frequency calculation, and animation of these will usually give, approximately, the
frequencies of these vibrations. A very extensive compilation of experimental, MNDO
and AM1 frequencies has been given by Healy and Holder, who conclude that the
AM1 error of 10% can be reduced to 6% by an empirical correction, and that entropies
and heat capacities are accurately calculated from the frequencies [72]. In this regard,
Coolidge et al. conclude – surprisingly, in view of our results for the four molecules in
Figs 6.5–6.8 – from a study of 61 molecules that (apart from problems with ring- and
heavy atom-stretch for AM1 and S–H, P–H and O–H stretch for PM3) “both AM1 and
PM3 should provide results that are close to experimental gas phase spectra” [73].

6.3.4 Properties arising from electron distribution:
dipole moments, charges, bond orders

The discussion in section 5.5.4 on dipole moments, charges and bond orders applies in
a general way to the calculation of these quantities by SE methods too. Electrostatic
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potentials, whether visualized as regions of space or mapped onto van der Waals sur-
faces, are usually qualitatively the same for AM1 and PM3 as for ab initio methods.
Atoms-in-molecules calculations are not viable for SE methods, because the core
orbitals, lacking in these methods, are important for AIM calculations.

Dipole moments

Hehre’s extensive survey of practical computational methods reports the results of
ab initio and DFT single point dipole moment calculations on AM1 geome-
tries [74]. There does not appear to be much advantage to calculating HF/6-31G* dipole
moments on HF/6-31G* geometries (HF/6-31G*//HF/6-31G* calculations) rather
than on the much more quickly- obtained AM1 geometries (HF/6-31G*//AM1 cal-
culations). Indeed, even the relatively time-consuming MP2/6-31G*//MP2/6-31G*
calculations seem to offer little advantage over fast HF/6-31G*//AM1 calculations
as far as dipole moments are concerned (Tables 2.19 and 2.21 in Ref. [74]). This
is consistent with our finding that AM1 geometries are quite good (section 6.3.1).
Table 6.5 compares calculated and experimental dipole moments for 10 molecules,
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using these methods: AM1 (using the AM1 method to calculate for the AM1 geom-
etry, AM1//AM1), HF/6-31*//AM1, PM3 (PM3//PM3), HF/6-31G*//PM3, and
MP2/6-31G* (MP2/6-31G*//MP2/6-31G*). For this set of molecules, the smallest
deviation from experiment, as judged by the arithmetic mean of the absolute deviations
from the experimental values, is shown by the AM1 calculation (0.21 Debyes), and the
largest deviation is shown by the “highest” method, MP2/6-31G* (0.34 D). The other
three methods give essentially the same errors (0.27–0.29 D). It is of course possible
that AM1 gives the best results (for this set on molecules, at least) because errors in
geometry and errors in the calculation of the electron distribution cancel. A study of
196 C, H, N, O, F, Cl, Br, I molecules gave these mean absolute errors: AM1, 0.35 D;
PM3, 0.40D; SAM1, 0.32 D [50]. Another study with 125 H, C, N, O, F, A1, Si, P, S,
Cl, Br, I molecules gave mean absolute errors of: AM1, 0.35 D and PM3, 0.38D [44].
So with these larger samples the AM1 errors were somewhat bigger. Nevertheless, all
these results taken together do indicate that unless one is prepared to use the slower
approach of large basis sets with density functional (chapter 7) methods (errors of ca.
0.1 D [75]; this paper also gives some results for ab initio calculations), AM1 dipole
moments using AM1 geometries may be as good a way as any to calculate this quantity.
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This applies, of course, only to conventional molecules; molecules of exotic structure
(note the remarks for the geometries of hypervalent molecules and molecules of unusual
structure in section 6.3.1) may defy accurate SE predictions.

Charges and bond orders

The conceptual and mathematical bases of these concepts were outlined in chapter 5
(section 5.5 4). We saw that unlike, say, frequencies and dipole moments, charges and
bond orders cannot even in principle be measured experimentally; as physicists say, they
are not observables. Thus there are no “right” values to calculate, and in fact no single,
correct, definitions of these terms, since as with ab initio calculations, SE charges and
bond orders can be defined in various ways. The concepts are nevertheless useful, and
electrostatic potential charges and Löwdin bond orders are preferred nowadays to the
Mulliken parameters.

Figure 6.9 shows charges and bond orders calculated for an enolate (the conjugate
base of ethenol or vinyl alcohol) and for a protonated enone system (protonated prope-
nal). Consider first Mulliken charges and bond orders of the enolate (Fig. 6.9A). The
AM1 and PM3 charges, which are essentially the same, are a bit surprising in that the
carbon which shares charge with the oxygen in the alternative resonance structure is
given a bigger charge than the oxygen; intuitively, one expects most of the negative
charge to be on the more electronegative atom, oxygen (this “defect” of AM1 and PM3
has been noted by Anh et al. [76]). The HF/3-21G method gives the oxygen the bigger
charge (–0.80 vs. –0.67). The two SE and the HF methods all give C/C and C/O
bond orders of about 1.5; this, and the rough equality of O and C charges, suggests
approximately equal contributions from the O-anion and C-anion resonance structures.
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The Mulliken charges of the protonated enone system (Fig. 6.9B) make the oxy-
gen negative, which may seem surprising. However, this is normal for protonated
oxygen and nitrogen (though not protonated sulfur and phosphorus): the hetero atom
in and in is calculated to be negative (i.e. the positive charge is on the
hydrogens) and the hetero atom is also negative in and On the
oxygen and the carbon furthest from the oxygen the HF/3-21G charges differ con-
siderably from the SE ones: the HF calculations make the O much more negative, and
make negative, suggesting that they place more positive charge on the hydrogens
than do the semiempirical calculations (in all cases the charge on is 0.3–0.5). The
three methods do not differ as greatly in their bond order results, although HF method
makes the formal C/O double bond essentially a single bond (bond order 1.18).

Finally, electrostatic potential (ESP) charges and, for the HF/3-21G calculations,
Löwdin bond orders, are shown (Figs 6.9C and D). For the enolate, all three methods
make the ESP charge on carbon more negative than that on oxygen, but the bond orders
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are not greatly altered. For the protonated enone system, AM1 and PM3 suggest more
polarization of electrons toward the O in the C/O bond than is shown by the Mulliken
charges, but while the HF ESP charge on this carbon is greater than the Mulliken (0.76
vs. 0.45), the charge on oxygen is unchanged. The HF Löwdin bond orders for all three
bonds of the CCCO framework (1.55, 1.29, 1.76) are all somewhat bigger than the
Mulliken bond orders (1.18,1.15, 1.59).

These results indicate that charges are more dependent than are bond orders on the
method used to calculate them, and that charges are also harder to interpret than are
bond orders. As with ab initio charges and bond orders, the semiempirically calculated
parameters may be useful in revealing trends in a series of compounds or changes as
a reaction proceeds. For example, ab initio bond order changes along a reaction coor-
dinate have been shown to be useful [77], but presumably semiempirically calculated
bond orders would also yield similar information, at least if the species being studied
were not too exotic. Clearly, one must use the same semiempirical method (e.g. AM1)
and the same procedure (e.g. the Mulliken procedure) in studying a series of species.

6.3.5 Miscellaneous properties – UV spectra,
ionization energies, and electron affinities

All the properties that can be calculated by ab initio methods can in principle also
be calculated semiempirically, bearing in mind that the more the molecule of interest
differs from the training set used to parameterize the SE program, the less reliable the
results will be. For example, a program parameterized to predict the UV spectra of
aromatic hydrocarbons may not give good predictions for the UV spectra of hetero-
cyclic compounds. NMR spectra are usually calculated with ab initio (section 5.5.5) or
density functional (chapter 7) methods. UV spectra, and ionization energies (ionization
potentials) and electron affinities will be discussed here.

UV spectra

As pointed out in section 5.5.5, although ultraviolet spectra result from the promotion
of electrons from occupied to unoccupied orbitals, UV spectra cannot be calculated
with reasonable accuracy simply from the HOMO/LUMO gap of the ground electronic
state, since the UV bands represent energy differences between the ground and excited
states. Furthermore the HOMO/LUMO gap does not account for the presence of the
several bands often found in UV spectra, and gives no indication of the intensity of a
band. Accurate prediction of UV spectra requires calculation of the energies of excited
states. SE UV spectra are usually calculated with programs specifically parameterized
for this purpose, such as INDO/S or ZINDO/S (section 6.2.4) [19], both of which are in,
e.g. HyperChem [78]. ZINDO/S, which appears to have largely superseded INDO/S,
is included in the primarily ab initio and DFT package Gaussian 98 [79]. Table 6.6
compares the UV spectrum of methylenecyclopropene calculated by ZINDO/S as
implemented in Gaussian 98 for Windows (G98W) [80] with the ab initio-calculated
(Table 5.20; the geometry for this was calculated by DFT – chapter 7) and the exper-
imental spectra [81]. The ZINDO/S spectrum resembles the experimental spectrum
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considerably better than does the ab initio one (the experimental 242 nm, and partic-
ularly the 309-nm band, are matched better than by the ab initio calculation). The
times for the calculations, on a 200 MHZ PentiumPro running Windows NT, were 53 s
(ZINDO) and 11 min (ab initio).

lonization energies and electron affinities

The concepts of IE and EA were discussed in section 5.5.5. In Table 6.7, the results of
some semiempirical calculations are compared with ab initio and experimental values,
for the molecules ofTable 5.21. This admittedly very small sample suggests that SE IEs
calculated as energy differences might be comparable to ab initio values. Koopmans’
theorem (the IE for an electron is approximately the negative of the energy of its
molecular orbital; applying this to the HOMO gives the IE of the molecule) values
are consistently bigger than those from energy differences using the same method (by
0.1–0.8 eV). No consistent advantage for any of the six methods is evident here, but a
large sample would likely show the most accurate of these methods to be the energy
difference using MP2(fc)/6-31G* (see Table 5.21 and accompanying discussion).

Calculations by Stewart on 256 molecules (of which 201 were organic), using
Koopmans’ theorem, gave mean absolute IE errors of 0.61 eV for AM1 and 0.57 eV
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for PM3; 60 of the AM1 errors (23%) and 88 of the PM3 (34%) were negative (smaller
than the experimental values) [44]. Particularly large errors (2.0–2.9 eV) were reported
for nine molecules: 1-pentene, 2-methyl-1-butene, acetylacetone, alanine (AM1),
(AM1),CF3Cl(AM1),1,2-dibromotetrafluoroethane, (PM3), and (AM1).
For some these it may be the experimental results that are at fault; for example, there
seems to be no reason why 2-methyl-1-butene and 2-methyl-2-butene should have such
different IEs, and in the opposite order to those calculated: experimental, 7.4 and
8.7 eV; calculated, 9.7 and 9.3 (AM1), 9.85 and 9.4 eV (PM3), respectively. Ab initio
(HF/3-21G) energy-difference calculations by the author give IEs in line with the AM1,
rather than the claimed experimental, results: 2-methyl-1-butene, 9.4 eV; 2-methyl-2-
butene, 9.1 eV. Calculations by the author on the first 50 of these 256 molecules (of
these 50 all but and are organic) gave these mean absolute IE errors: AM1,
0.46 (12 negative); PM3, 0.58 (5 negative); ab initio HF/3-21G, 0.71 (11 negative). So
for the set of 256 mostly organic molecules AM1 and PM3 gave essentially the same
accuracy, and for the set of 50 molecules AM1 was slightly better than PM3 and the
ab initio method was slightly worse than the semiempirical ones. The HF/3-21G level
is the lowest ab initio one routinely used (or at least reported) nowadays; ionization
energies and electron affinities comparable in accuracy to those from experiment can
be obtained by high-accuracy ab initio calculations (sections 5.5.2.2b and 5.5.5), using
the energy difference of the two species involved.

Dewar and Rzepa found that the MNDO (section 6.2.5.3) electron affinities of
26 molecules with delocalized HOMOs (mostly radicals and conjugated organic mole-
cules) had an absolute mean error of 0.43 eV; for ten molecules with the HOMO
localized on one atom, the error was 1.40eV [82]. The errors from AM1 or PM3
should be less than for these MNDO calculations.

6.3.6   Visualization
Many molecular features that have been calculated semiempirically can be visualized,
in a manner analogous to the case ofab initio calculations (section 5.5.6). Clearly, one
wishes to be able to view the molecule, rotate it, and query it for geometric parameters.
Semiempirically calculated vibrations, electrostatic potentials, and molecular orbitals
also provide useful information when visualized, and little need be added beyond that
already discussed for the visualization of ab initio results. AM1 and PM3 surfaces
(van der Waals surfaces, electrostatic potentials, orbitals) are usually very similar in
appearance to those calculated by ab initio methods, but exceptions occasionally occur.
An example is the case of HCC¯ , the conjugate base of ethyne (acetylene), Fig. 6.10.
AM1 predicts that there is one HOMO and that it is of a symmetry (symmetric about
the molecular axis), but a HF/3-21G calculation predicts that there are two HOMOs
of equal energy at right angles, each of symmetry (having a nodal plane containing
the molecular axis; one of these -HOMOs is shown in Fig. 6.10). The 3-21G orbital
pattern persists at the HF/6-31G* and MP2/6-31G* levels. Different orbital patterns
at different calculational levels is not the rule, but is understandable since energetically
close MOs may have their energetic priorities reversed on going to a different level.
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6.3.7 Some general remarks

Parameterized methods like ZINDO/S are probably the only way to calculate reason-
ably accurate UV spectra for large molecules. AM1 and PM3 have become extremely
useful not only because they allow quantum mechanical calculations to be done on
molecules which are still too big for ab initio or DFT (chapter 7) methods, but also
as adjuncts to these latter methods, since they often allow a relatively rapid survey of
a problem, such as an exploration of a potential energy surface: one can locate minima
and transition states, then use the semiempirical structures (size permitting) as inputs for
initial geometries, wavefunctions and hessians (section 2.4) in a higher-level geometry
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optimization. If geometry optimizations are not feasible, single-point calculations on
AM1 or PM3 geometries (which are usually reasonably good) will likely give improved
relative energies. The time is well past when SE calculations were regarded by many
as “worthless” [85], or, at best, as a poor substitute for ab initio calculations.

6.4 STRENGTHS AND WEAKNESSES OF SE METHODS

These remarks refer to AM1 and PM3 (and SAM1).

Strengths

Semiempirical calculations are very fast compared to ab initio and even to DFT
(chapter 7), and this speed is often obtained with only an inconsequential loss of accu-
racy. Semiempirical geometries of normal molecules are entirely adequate for many
purposes, and even transition state geometries are often adequate. Reaction and activa-
tion energies, although not accurate (except by chance cancellation of heat of formation
errors), will probably expose any marked trends. Surprisingly, although they were para-
meterized using normal, stable molecules, AM1 and PM3 usually give fairly realistic
geometries and relative energies for cations, radicals, anions, strained molecules, and
even transition states.

Weaknesses

A major weakness of SE methods is that they must be assumed to be unreliable outside
molecules of the kind used for their training set (the set of molecules used to parameter-
ize them), until shown otherwise by comparison of their predictions with experiment or
with high-level ab initio (or probably DFT) calculations. Although, as Dewar pointed
out [86], the reliability of ab initio calculations, too, should be checked against exper-
iment, the situation is somewhat different for these latter, at least at the higher levels;
studies of exotic species, in particular, are certainly more trustworthy when done ab ini-
tio than semiempirically (see chapter 8). SE heats of formation are subject to errors
of tens of and thus heats (enthalpies) of reaction and activation could be in
error by scores of          AM1 and PM3 underestimate steric repulsions, overes-
timate basicity and underestimate nucleophilicity, and can give unreasonable charges
and structures; PM3 has been reported to tend to give more reliable structures, and
AM1 better energies [76]. Neither AM1 nor PM3 are generally reliable in modelling
hydrogen bonds [87,88], and SAM1 appears to be the Semiempirical method of choice
here [51].

In general, the accuracy of SE methods, particularly in energetics, falls short of
that of current routine ab initio methods (this may not have been the case when AM1
was developed, in 1985 [86]). Parameters may not be available for the elements in
the molecules one is interested in, and obtaining new parameters is something rarely
done by people not actively engaged in developing new methods. SE errors are less
systematic than ab initio, and thus harder to correct for.
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6.5  SUMMARY OF CHAPTER 6

Semiempirical quantum mechanical calculations are based on the Schrödinger equation.
This chapter deals with SCF SE methods, in which repeated diagonalization of the
Fock matrix refines the wavefunction and the molecular energy (the SHM and EHM,
in contrast, need only one matrix diagonalization because their matrix elements are
not calculated using a wavefunction guess – see chapter 4). These calculations are
much faster than ab initio ones, mainly because the number of integrals to be dealt
with is greatly reduced by ignoring some, some integrals are approximated with the
help of experimental quantities (hence “empirical”), and other integrals are calculated
only approximately. In order of increasing sophistication, these SCF SE procedures
have been developed: PPP, CNDO, INDO, and NDDO. The PPP method is limited to

electrons, while CNDO, INDO and NDDO use all the valence electrons. All four
use the ZDO approximation, which sets the differential of the overlap integral equal to
zero; this greatly reduces the number of integrals to be calculated. Traditionally, these
methods were parameterized mostly using experimental quantities (usually ionization
energies and electron affinities), but also (PPP and CNDO) making some use of minimal-
basis-set (i.e. low-level) ab initio calculations. Of these original methods, only versions
of INDO parameterized to reproduce UV spectra (INDO/S and its variant ZINDO/S)
are much used nowadays. Today by far the most popular SCF SE methods are AM1 and
PM3, which are NDDO-based, but carefully parameterized to reproduce experimental
quantities (primarily heats of formation). AM1 and PM3 perform similarly and usually
give quite good geometries, but less satisfactory heats of formation and relative energies.
A modification of AM1 called SAM1, as yet relatively little-used, is said to be an
improvement over AM1. AM1 and SAM1 represent work by the group of Dewar;
PM3 is a version of AM1, by Stewart, differing mainly in a more automatic approach
to parameterization.
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EASIER QUESTIONS

1.

2.
3.

4.

5.

6.

7.

8.

9.
10.

HARDER QUESTIONS

1. Why are even very carefully-parameterized SE methods like AM1 and PM3 not
as accurate and reliable as high-level (e.g. MP2, CI, coupled-cluster) ab initio
calculations?

J. B. Foresman and Æ. Frisch, “Exploring Chemistry with Electronic Structure Methods,”
Gaussian Inc., Pittsburgh, PA, 1996, p. 218.

M. J. S. Dewar and H. S. Rzepa, J. Am. Chem. Soc., 1978,100,784.

R. D. Levin and S. G. Lias, “Ionization Potential and Appearance Potential Measurements,
1971–1981,” National Bureau of Standards, Washington, DC, 1982.

L. A. Curtiss, R. H. Nobes, J. A. Pople, and l. Radom, J. Chem Phys., 1992,97,6766.

Ref. [23, p. 180].

For example, M. J. S. Dewar and D. M. Storch, J. Am. Chem. Soc., 1985, 107, 3898.

For a series of small, mostly nonbiological molecules AM 1 seemed better than PM3, except
for O–H/O hydrogen bonds: J. J. Dannenberg, J. Mol. Struct. (Theochem), 1997, 410, 279.

In model systems of biological relevance, mostly involving water, PM3 was superior to AM1:
Y- J. Zheng and K. M. Merz, J. Comp. Chem., 1992, 13, 1151.

Outline the similarities and differences between the EHM on the one hand and
methods like AM1 and PM3 on the other. What advantages does the EHM have
over more accurate SE methods?
Outline the similarities and differences between MM, ab initio, and SE methods.
Both the simple Hückel and the PPP methods are electron methods, but PPP is
more complex. Itemize the added features of PPP.
What is the main advantage of an all-valence-electron method like, say, CNDO
over a purely electron method like PPP?
Explain the terms ZDO, CNDO, INDO, and NDDO, showing why the latter three
represent a progressive conceptual improvement.
How does an AM1 or PM3 “total electron wavefunction” differ from the of
an ab initio calculation?
ab initio energies are “total dissociation” energies (dissociation to electrons and
atomic nuclei) and AM1 and PM3 energies are standard heats of formation. Is one
of these kinds of energy more useful? Why or why not?
For certain kinds of molecules MM can give better geometries and relative energies
than can even sophisticated SE methods. What kinds of properties can the latter
calculate that MM cannot?
Why do transition metal compounds present special difficulties for AM1 and PM3?
Although both AM1 and PM3 normally give good molecular geometries, they are
not too successful in dealing with geometries involving hydrogen bonds. Suggest
reasons for this deficiency.
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2.

3.

4.

5.

6.

7.

8.

9.

10.

Molecular mechanics is essentially empirical, while methods like PPP, CNDO,
and AM1/PM3 are semiempirical. What are the analogies in PPP etc. to MM pro-
cedures of developing and parameterizing a forcefield? Why are PPP etc. only
semiempirical?
What do you think are the advantages and disadvantages of parameterizing SE
methods with data from ab initio calculations rather than from experiment?
Could a SE method parameterized using ab initio calculations logically be called
semiempirical?
There is a kind of contradiction in the Dewar-type methods (AM1, etc.) in that
overlap integrals are calculated and used to help evaluate the Fock matrix elements,
yet the overlap matrix is taken as a unit matrix as far as diagonalization of the Fock
matrix goes. Discuss.
What would be the advantages and disadvantages of using the general MNDO/AM1
parameterization procedure, but employing a minimal basis set instead of a minimal
valence basis set?
In SCF SE methods major approximations lie in the calculation of the

and integrals of the Fock matrix elements (Eq. (6.1)). Suggest
an alternative approach to approximating one of these integrals.
Read the exchange between Dewar on the one hand and Halgren, Kleir and
Lipscomb on the other [27], Do you agree that SE methods, even when they give
good results “inevitably obscure the physical bases for success (however striking)
and failure alike, thereby limiting the prospects for learning why the results are as
they are?” Explain your answer.
It has been said of SE methods: “They will never outlive their usefulness for cor-
relating properties across a series of molecules... I really doubt their predictive
value for a one-off calculation on a small molecule on the grounds that whatever
one is seeking to predict has probably already been included in with the parameters.”
(A. Hinchliffe, “Ab Initio Determination of Molecular Properties,” Adam Hilger,
Bristol, 1987, p. x). Do you agree with this? Why or why not? Compare the above
quotation with Ref. [23, pp. 133–136].
For common organic molecules Merck Molecular Force field geometries are
nearly as good as  geometries (section 3.4). For such mole-
cules single-point  calculations (section 5.4.2), which are
quite fast, on the MMFF geometries, should give energy differences compa-
rable to those from MP(fc)/6-31G*//MP(fc)/6-31G* calculations. Example:

opt, including ZPE) , total
single point on MMFF geometries) total

What role does this leave for SE calculations?
Semiempirical methods are untrustworthy for “exotic” molecules of theoretical

interest. Give an example of such a molecule and explain why it can be considered
exotic. Why cannot SE methods be trusted for molecules like yours? For what other
kinds of molecules might these methods fail to give good results?
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Chapter 7

Density Functional Calculations

My other hope is that ... a basically new ab initio treatment capable of giving
chemically accurate results a priori, is achieved soon.

M. J. S. Dewar, A Semiempirical Life, 1992.

7.1 PERSPECTIVE

We have seen three broad techniques for calculating the geometries and energies
of molecules: molecular mechanics (chapter 3), ab initio methods (chapter 5), and
semiempirical methods (chapters 4 and 6). Molecular mechanics is based on a balls-
and-springs model of molecules. Ab initio methods are based on the subtler model
of the quantum mechanical molecule, which we treat mathematically starting with
the Schrödinger equation. Semiempirical methods, from simpler ones like the Hückel
and extended Hückel theories (chapter 4) to the more complex SCF semiempirical
theories (chapter 6), are also based on the Schrödinger equation, and in fact their
“empirical” aspect comes from the desire to avoid the mathematical problems that
this equation imposes on ab initio methods. Both the ab initio and the semiempiri-
cal approaches calculate a molecular wavefunction (and molecular orbital energies),
and thus represent wavefunction methods. However, a wavefunction is not a measur-
able feature of a molecule or atom – it is not what physicists call an “observable;” in
fact there is no general agreement among physicists what, if anything, a wavefunction
is[1].

Density functional theory (DFT) is based not on the wavefunction, but rather on
the electron probability density function or electron density function, commonly called
simply the electron density or charge density, designated by This is a proba-
bility per unit volume; the probability offinding an electron in a volume element dxdy dz
centered on a point with coordinates x, y, z is The units of are
logically and since the units of dx dy dz are volume, is
a pure number, a probability. However, if we regard the charge on the electron as our
unit of charge then has units of electronic charge and
units ofelectronic charge. If we think ofelectronic charge as being smeared out in a fog
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around the molecule, then the variation of from point to point is a function of
x,y,z) corresponds to the varying density of the fog, and centered
on a point P(x,y,z) corresponds to the amount of fog in the volume element dx dy dz.
In a scatterplot of electron density in a molecule, the variation of with position can
be indicated by the density of the points. The electron density function is the basis not
only of DFT, but of a whole suite of methods of regarding and studying atoms and
molecules [2], and, unlike the wavefunction, is measurable, e.g. by X-ray diffraction or
electron diffraction [3]. Apart from being an experimental observable and being readily
grasped intuitively [4], the electron density has another property particularly suitable
for any method with claims to being an improvement on, or at least a valuable alter-
native to, wavefunction methods: it is a function of position only, that is, of just three
variables (x, y, z), while the wavefunction of an n-electron molecule is a function of
4n variables, three spatial coordinates and one spin coordinate, for each electron. No
matter how big the molecule may be, the electron density remains a function of three
variables, while the complexity of the wavefunction increases with the number of elec-
trons. The term functional, which is akin to function, is explained in section 7.2.3.1.
To the chemist, the main advantage of DFT is that in about the same time needed
for an HF calculation one can often obtain results of about the same quality as from
MP2 calculations (section 7.3). Chemical applications of DFT are but one aspect of
an ambitious project to recast conventional quantum mechanics, i.e. wave mechanics,
in a form in which “the electron density, and only the electron density, plays the key
role” [5]. It is noteworthy that the 1998 Nobel Prize for chemistry was awarded to
John Pople (section 5.3.3), largely for his role in developing practical wavefunction-
based methods, and Walter Kohn1, for the development of density functional
methods [6].

A question sometimes asked is whether DFT should be regarded as a special kind of
ab initio method. The case against this view is that the correct mathematical form of
the DFT functional is not known, in contrast to conventional ab initio theory where the
correct mathematical form of the fundamental equation, the Schrödinger equation, is
(we think), known. In conventional ab initio theory, the wavefunction can be improved
systematically by going to bigger basis sets and higher correlation levels, which takes
us closer and closer to an exact solution of the Schrödinger equation, but in DFT there
is so far no known way to systematically improve the functional (section 7.2.3.2); one
must feel one’s way forward with the aid of intuition and comparison of the results with
experiment and of high-level conventional ab initio calculations. In this sense current
DFT is semiempirical, but the limited use of empirical parameters (typically from zero
to about 10), and the possibility of one day finding the exact functional makes it ab initio
in spirit. Were the exact functional known, DFT might indeed give “chemically accurate
results a priori.”

1Walter Kohn, born in Vienna in 1923. B.A., B.Sc., University of Toronto, 1945, 1946. Ph.D. Harvard,
1948. Instructor in physics, Harvard, 1948–1950. Assistant, Associate, full Professor, Carnegie Mellon
University, 1950–1960. Professor of physics, University of California at Santa Diego, 1960–1979; University
of California at Santa Barbara 1979–present. Nobel Prize in chemistry 1998.
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7.2   THE BASIC PRINCIPLES OF DENSITY
FUNCTIONAL THEORY

7.2.1 Preliminaries
In the Born interpretation (section 4.2.6) the square of a one-electronwavefunction at
any point X is the probability density (with units of for the wavefunction at
that point, and is the probability (a pure number) at any moment of find-
ing the electron in an infinitesimal volume dx dy dz  around the point (the probability of
finding the electron at a mathematical point is zero). For a multielectron wavefunction

the relationship between thewavefunction and the electron density is more com-
plicated (involving the summation over all spin states of all electrons of n-fold integrals
of the square of the wavefunction), but it can be shown [7] that is related
to the component one-electron spatialwavefunctions of a single-determinant wave-
function (recall from section 5.2.3.1 that the Hartree–Fock can be approximated
as a Slater determinant of spin orbitals and by

The sum is over n the occupied MOs and for a closed-shell molecule each
for a total of 2n electrons. Equation (7.1) applies strictly only to a single-determinant
wavefunction but for multideterminant wavefunctions arising from configuration
interaction treatments (section 5.4) there are similar equations [8]. A shorthand for

is where r is the position vector of the point with
coordinates (x, y, z).

If the electron density rather than the wavefunction could be used to calculate
molecular geometries, energies, etc., this might be an improvement over the wave-
function approach because, as mentioned above, the electron density in an n -electron
molecule is a function of only the three spatial coordinates x, y, z, but the wavefunc-
tion is a function of 4n coordinates. Density functional theory seeks to calculate all
the properties of atoms and molecules from the electron density. The standard book on
DFT is probably still that by Parr and Yang (1989) [9]; more recent developments are
included in the book by Koch and Holthausen [10]. The textbook by Levine [11] gives
a very good yet compact introduction to DFT, and among the many reviews are those
by Friesner et al. [12], Kohn et al. [13], and Parr and Yang [14].

7.2.2   Forerunners to current DFT methods
The idea of calculating atomic and molecular properties from the electron density
appears to have arisen from calculations made independently by Enrico Fermi and
P. A. M. Dirac in the 1920s on an ideal electron gas, work now well-known as the
Fermi–Dirac statistics [15]. In independent work by Fermi [16] and Thomas [17],
atoms were modelled as systems with a positive potential (the nucleus) located in
a uniform (homogeneous) electron gas. This obviously unrealistic idealization, the
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Thomas–Fermi model [18], or with embellishments by Dirac, the Thomas–Fermi–
Dirac model [18], gave surprisingly good results for atoms, but failed completely for
molecules: it predicted all molecules to be unstable toward dissociation into their atoms
(indeed, this is a theorem in Thomas–Fermi theory).

The (X = exchange, is a parameter in the equation; see section 7.2.3.4a)
method gives much better results [19, 20]. It can be regarded as a more accurate version
of the Thomas–Fermi model, and is probably the first chemically useful DFT method.
It was introduced in 1951 [21] by Slater, who regarded it [22] as a simplification of the
Hartree–Fock (section 5.2.3) approach. The method, which was developed mainly
for atoms and solids, has also been used for molecules, but has been replaced by the
more accurate Kohn–Sham type (section 7.2.3) DFT methods.

7.2.3
7.2.3.1

Current DFT methods: the Kohn–Sham approach
Functionals: The Hohenberg–Kohn theorems

Nowadays DFT calculations on molecules are based on the Kohn–Sham approach,
the stage for which was set by two theorems published by Hohenberg and Kohn in
1964 (proved in Levine [23]). The first Hohenberg–Kohn [24] theorem says that all
the properties of a molecule in a ground electronic state are determined by the ground
state electron density function In other words, given  we can
in principle calculate any ground state property, e.g. the energy, we could represent
this as

A functional is a function of a “definite” (cf. the definite integral above) function.
The first Hohenberg–Kohn theorem, then, says that any ground state property of a

molecule is a functional of the ground state electron density function, e.g. for the energy

The relationship (7.2) means that  is a functional of (x, y, z).  A function is a rule
that transforms a number into another (or the same) number:

A functional is a rule that transforms a function into a number:

The functional transforms the function into the number 4. We designate
the fact that the integral is a functional of f (x) by writing
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The theorem is “merely” an existence theorem: it says that a functional F exists, but does
not tell us how to find it; this omission is the main problem with DFT. The significance
of this theorem is that it assures us that there is a way to calculate molecular properties
from the electron density, and that we can infer that approximate functionals will give
at least approximate answers.

The second Hohenberg–Kohn theorem [24] is the DFT analogue of the wavefunction
variation theorem that we saw in connection with the ab initio method (section 5.2.3.3):
it says that any trial electron density function will give an energy higher than (or equal
to, if it were exactly the true electron density function) the true ground state energy.
In DFT molecular calculations the electronic energy from a trial electron density is the
energy of the electrons moving under the potential of the atomic nuclei. This nuclear
potential is called the “external potential” and designated and the electronic energy
is denoted by (“the functional of the ground state electron density”).
The second theorem can thus be stated

where  is a trial electronic density and is the true ground state energy, corre-
sponding to the true electronic density The trial density must satisfy the conditions

where n is the number of electrons in the molecule (this is analogous
to the wavefunction normalization condition; here the number of electrons in all the
infinitesimal volumes must sum to the total number in the molecule) and
for all r (the number of electrons per unit volume cannot be negative). This theorem
assures us that any value of the molecular energy we calculate from the Kohn–Sham
equations (below, a set of equations analogous to the Hartree–Fock equations, obtained
by minimizing energy with respect to electron density) will be greater than or equal to
the true energy (this is actually true only if the functional used were exact; see below).
The Hohenberg–Kohn theorems were originally proved only for nondegenerate ground
states, but have been shown to be valid for degenerate ground states too [25]. The func-
tional of the inequality (7.6) is the correct, exact energy functional (the prescription for
transforming the ground state electron density function into the ground state energy).
The exact functional is unknown, so actual DFT calculations use approximate function-
als, and are thus not variational: they can give an energy below the true energy. Being
variational is a nice characteristic of a method, because it assures us that any energy
we calculate is an upper bound to the true energy. However, this is not an essential fea-
ture of a method: Møller–Plesset and practical configuration interaction calculations
(sections 5.4.2, 5.4.3) are not variational, but this is not regarded as a serious problem.

7.2.3.2  The Kohn–Sham energy and the KS equations

The first Kohn–Sham theorem tells us that it is worth looking for a way to calculate
molecular properties from the electron density. The second theorem suggests that a vari-
ational approach might yield a way to calculate the energy and electron density (the
electron density, in turn, could be used to calculate other properties). Recall that in
wavefunction theory, the Hartree–Fock variational approach (section 5.2.3.4) led to the
HF equations, which are used to calculate the energy and the wavefunction. An anal-
ogous variational approach led (1965) to the KS equations [26], the basis of current
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molecular DFT calculations. The two basic ideas behind the KS approach to DFT are:
(1) To express the molecular energy as a sum of terms, only one of which, a relatively
small term, involves the unknown functional. Thus even moderately large errors in this
term will not introduce large errors into the total energy. (2) To use an initial guess of
the electron density  in the KS equations (analogous to the HF equations) to calculate
an initial guess of the KS orbitals (below); this initial guess is then used to refine these
orbitals, in a manner similar to that used in the HF SCF method. The final KS orbitals
are used to calculate an electron density that in turn is used to calculate the energy.

The Kohn–Sham energy
The strategy here is to regard the energy of our molecule as a deviation from an ideal
energy, which latter can be calculated exactly; the relatively small discrepancy contains
the unknown functional, whose approximation is our main problem. The ideal energy
is that of an ideal system, a fictitious noninteracting reference system, defined as one
in which the electrons do not interact and in which the ground state electron density
is exactly the same as in our real ground state system: We are talking about
the electronic energy of the molecule; the total internal “frozen-nuclei” energy can be
found later by adding the internuclear repulsions, and the 0 K total internal energy by
further adding the zero-point energy, just as in HF calculations (section 5.2.3.6e).

The ground state electronic energy of our real molecule is the sum of the elec-
tron kinetic energies, the nucleus–electron attraction potential energies, and the
electron–electron repulsion potential energies (more precisely, the sum of the quantum-
mechanical average values or expectation values, each denoted and each is a
functional of the ground-state electron density:

Focussing on the middle term: the nucleus–electron potential energy is the sum over all
2n electrons (as with our treatment of ab initio theory, we will work with a closed-
shell molecule which perforce has an even number of electrons) of the potential
corresponding to attraction of an electron for all the nuclei A:

where is the external potential (explained in section 7.2.3.1, in connection with
Eq. (7.6)) for the attraction of electron i to the nuclei. The density function  can be
introduced into by using the fact [27] that

where is a function of the coordinates of the 2n electrons of a system and is
the total wavefunction (the integrations are over spatial and spin coordinates on the left
and spatial coordinates on the right). From Eqs (7.8) and (7.9), invoking the concept of



Density Functional Calculations 391

So Eq. (7.7) can be written

Unfortunately, this equation for the energy cannot be used as it stands, since we do not
know the functionals in and

To utilize Eq. (7.11), Kohn and Sham introduced the idea of a reference system of
noninteracting electrons. Let us define thequantity as the deviation of the
real kinetic energy from that of the reference system:

Let us next define  as the deviation of the real electron–electron repulsion energy
from a classical charge-cloud coulomb repulsion energy. This classical electrostatic
repulsion energy is the summation of the repulsion energies for pairs of infinitesimal
volume elements and (in a nonquantum cloud of negative charge)
separated by a distance multiplied by one-half (so that we do not count the
repulsion energy and again the energy). The sum of infinitesimals is an integral
and so

Actually, the classical charge-cloud repulsion is somewhat inappropriate for electrons
in that smearing an electron (a particle) out into a cloud forces it to repel itself, as
any two regions of the cloud interact repulsively. This physically incorrect electron
self-interaction will be compensated for by a good exchange-correlation functional
(below).

Using (7.12) and (7.13), Eq. (7.11) can be written as

The sum of the kinetic energy deviation from the reference system and the electron–
electron repulsion energy deviation from the classical system is called the exchange-
correlation energy functional or the exchange-correlation energy, (strictly
speaking, the functional is the prescription for obtaining the energy from the electron
density function):

The term represents the kinetic correlation energy of the electrons and the
term the potential correlation energy and the exchange energy, although exchange and

expectation value (chapter 5, section 5.2.3.3) and since
we get
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correlation energy in DFT do not have exactly the same significance here as in HF
theory [28]; is negative. So using Eq. (7.15), Eq. (7.14) becomes

Let us look at the four terms in the expression for the molecular energy in
Eq.(7.16).

1. The first term (the integral of the density times the external potential) is

If we know the integrals to be summed are readily calculated.
2. The second term (the electronic kinetic energy of the noninteracting-electrons

reference system) is the expectation value of the sum of the one-electron kinetic energy
operators over the ground state multielectron wavefunction of the reference system (Parr
and Yang explain this in detail [29]). Using the compact Dirac notation for integrals:

Since these hypothetical electrons are noninteracting can be written exactly
(for a closed-shell system) as a single Slater determinant of occupied spin molecu-
lar orbitals (section 5.2.3.1; for a real system, the electrons interact and using a single
determinant causes errors due to neglect of electron correlation (section 5.4)). Thus,
for a four-electron system,

The 16 spin orbitals in this determinant are the KS spin orbitals of the reference system;
each is the product of a KS spatial orbital  and a spin function Equation (7.18)
can be written in terms of the spatial KS orbitals by invoking a set of rules (the Slater–
Condon rules [30]) for simplifying integrals involving Slater determinants:

The integrals to be summed are readily calculated. Note that DFT per se does not
involve wavefunctions, and the KS approach to DFT uses orbitals only as a way to
calculate the noninteracting-system kinetic energy and the electron density function;
see below.
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3. The third term in Eq. (7.16), the classical electrostatic repulsion energy term, is
readily calculated if is known.

4. This leaves us with the exchange-correlation energy functional,
(Eq. (7.15)) as the only term for which some method of calculation must be devised.
Devising accurate exchange-correlation functionals for calculating this energy term
from the electron density function is the main problem in DFT research. This is
discussed in section 7.2.3.4.

Written out more fully, then, Eq. (7.16) is

The term most subject to error is the relatively small term, which contains the
(exactly) unknown functional.

The Kohn–Sham equations
The KS equations are obtained by utilizing the variation principle, which the second
Hohenberg–Kohn theorem assures us applies to DFT. We use the fact that the electron
density of the reference system, which is the same as that of our real system (see the
definition at the beginning of the discussion of the KS energy), is given by [7]

where the are the KS spatial orbitals. Substituting the above expression for the
orbitals into the energy expression of Eq. (7.21) and varying with respect to the
subject to the constraint that these remain orthonormal (the spin orbitals of a Slater
determinant are orthonormal) leads to the KS equations (the derivation is given by
Parr and Yang [31]; the procedure is similar to that used in deriving the Hartree–Fock
equations, section 5.2.3.4):

where are the KS energy levels (the KS orbitals and energy levels are discussed
later) and (1) is the exchange correlation potential, arbitrarily designated here for
electron number 1, since the KS equations are a set of one-electron equations (cf. the
HF equations) with the subscript i running from 1 to n, over all the 2n electrons in the
system. The exchange correlation potential is defined as the functional derivative of

with respect to
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Functional derivatives, which are akin to ordinary derivatives, are discussed by Parr
and Yang [32] and outlined by Levine [33]. We need the derivative for the KS
equations (7.23), and the exchange-correlation functional itself for the energy equation
(7.21).

The KS equations (7.23) can be written as

The KS operator is defined by Eq. 7.23; The significance of these orbitals and
energy levels is considered later, but we note here that in practice they can be inter-
preted in a similar way to the corresponding HF and extended Hückel entities. Pure
DFT theory has no orbitals or wavefunctions; these were introduced by Kohn and
Sham only as a way to turn Eq. (7.11) into a useful computational tool, but if we
can interpret the KS orbitals and energies in some physically useful way, so much the
better.

The KS energy equation (7.21) is exact: if we knew the density function and the
exchange-correlation energy functional it would give the exact energy. The HF
energy equation (Eq. (5.17), on the other hand, is an approximation that does not treat
electron correlation properly. Similar considerations hold for the KS and HF equations,
derived from the energy equations by minimizing the energy with respect to orbitals:
even in the basis set limit, the HF equations would not give the correct energy, but the
KS equations would, if we knew the exact exchange-correlation energy functional. In
wavefunction theory we know how to improve on HF-level results: by using perturba-
tional or configuration interaction treatments of electron correlation (section 5.4), but
in DFT theory there is as yet no systematic way of improving the exchange-correlation
energy functional. It has been said [34] that “while solutions to the [HF equations]
may be viewed as exact solutions to an approximate description, the [KS equations]
are approximations to an exact description!"

7.2.3.3 Solving the KS equations

First let us review the steps in carrying out a HF calculation (sections 5.2.3.6b–e).
We start with a guess of the basis function coefficients c (cf. Eqs (7.26)), because
the HF operator involves the J and K integrals (section 5.2.3.6) which contain the
wavefunction, and thus the c’s (the wavefunction is composed of the c’s and the basis
functions). The operator is used with the basis functions to calculate the HF Fock
matrix elements which constitute the HF Fock matrix F. An ortho-
gonalizing matrix calculated from the overlap matrix S puts F into a form that
satisfies (section 5.2.3.6b). Diagonalization of gives a coefficients
matrix and an energy levels matrix transforming to C gives the matrix with
the coefficients corresponding to the original basis set expansion of Eq. (7.26), and
these are then used as a new guess to calculate a new F; the process continues till it
converges satisfactorily on the c’s (i.e. the wavefunction) and the energy levels (which
can be used to calculate the electronic energy); the procedure was shown in detail in
section 5.2.3.6e.
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The standard way of solving the KS eigenvalue equations, like that of solving the
HF equations, which they resemble, is to expand the KS orbitals in terms of basis
functions

This is exactly the same as was done with the HF orbitals in section 5.2.3.6a, and in
fact the same basis functions are often used as in wavefunction theory, although as in
all calculations designed to capture electron correlation, sets smaller than split-valence
(section 5.3.3) should not be used; a popular basis in DFT calculations is the 6-31G*.
Substituting thebasis setexpansion intothe KS equations (7.23), (7.25) andmultiplying
by leads, as in section 5.2.3.6a, to m sets of equations, each set with
m equations, which can all be subsumed into a single matrix equation analogous to
the HF equation The key to solving the KS equations then becomes, as in
the standard HF method, the calculation of Fock matrix elements and diagonalization
of the matrix (section 5.2.3.6b). In a DFT calculation we start with a guess of the
density because this is what we need to obtain an explicit expression for the KS
Fock operator (Eqs (7.23), (7.25), (7.24)). This guess is usually a noninteracting
atoms guess, obtained by summing the electron densities of the individual atoms of the
molecule, at the molecular geometry. The KS Fock matrix elements
are calculated and the KS Fock matrix is orthogonalized and diagonalized, etc., to give
initial guesses of the c’s in the basis set expansion of Eq. (7.26) (and also initial values
of the These c’s are used in Eq. (7.23) to calculate a better density function (the
orbitals in Eq. (7.22) are composed of the c’s and the chosen basis set – Eq. (7.26)).
This new density function is used to calculate improved matrix elements which in
turn give improved c’s and then an improved density function, the iterative process being
continued until the electron density etc. converge. The final density and KS orbitals are
used to calculate the energy from Eq. (7.21).

The KS Fock matrix elements are integrals of the Fock operator over the basis func-
tions. Because useful functional are so complicated, these integrals, specifically the

integrals, unlike the corresponding ones in HF theory, cannot be solved
analytically. The usual procedure is to approximate the integral by summing the inte-
grand in steps determined by a grid. For example, suppose we want to integrate
from This could be done approximately, using a grid of width
and summing from –2 to 2 (limits at which the function is small):

The integral is actually For a function f (x, y) the grid would define
the steps in x and y and actually look like a grid or net, approximating the integral
as a sum of the volumes of parallelepipeds, and for the DFT function f (x, y, z) the
grid specifies the steps of x, y, and z. Clearly the finer the grid the more accurately the
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integrals are approximated, and reasonable accuracy in DFT calculations requires (but
is not guaranteed by) a sufficiently fine grid.

7.2.3.4 The exchange-correlation energy functional

We have to consider the calculation of the fourth term in the KS operator of Eq. (7.23),
the exchange-correlation potential This is defined as the functional derivative
of the exchange-correlation energy functional, with respect to the electron
density functional (Eq. (7.23)). To help make sense of this, consider the simple one-
dimensional function  a function of the coordinate x. One functional of this
function is the prescription “multiply the function by x  and integrate from zero to
infinity”, giving

which is a number. The functional derivative of with respect to the function
involves various derivatives [32,33] of the function and of the integrand

i.e. the functional derivative is a function of x. Analogously, the exchange-correlation
energy functional a functional of is a number which depends on
the function and on just what mathematical form the functional has, while
the exchange-correlation potential the functional derivative of is a

varies from point to point in the molecule. Devising good functionals (and
thus their derivatives is the main problem in density functional theory.

7.2.3.4a The local density approximation (LDA)
The simplest approximation to is within the framework of the local density
approximation, LDA; this applies to a uniform (homogeneous) electron gas (or one
in which the electron density varies only very slowly with position). The term
local was perhaps used because for any point only the conditions (the electron density)
at that point are considered, in contrast to so-called nonlocal methods (see below) in
which for each point a gradient, which samples the region a bit beyond that point, is
taken into account . For the LDA the exchange-correlation energy functional
and its derivative can be accurately calculated [35–37]. The method of Slater
(section 7.2.2) [ 19–22] is a special case of the LDA, developed before the KS approach,
in which the (relatively small) correlation part of the exchange-correlation functional
is neglected and the exchange functional used is

x, y, z.function of the variable r, i.e. of Clearly, depends on and, like
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The parameter is empirical; values of 1 to give reasonable results for atoms. For the
place of the method within the LDA and comparisons of atomic calculations
with KS LDA and with HF calculations, see Parr and Yang [36].

7.2.3.4b The local spin density approximation (LSDA)
Better results than with the LDA are obtained by an elaboration of the LDA in which
electrons of and spin in the uniform electron gas are assigned different spatial

inexact functionals [37]. For species in which all the electrons are securely paired,
the LSDA is equivalent to the LDA. Like and its functional derivative

DFT calculations nowadays use exchange-correlation energyfunctionals that not
only involve the LSDA, but also utilize both the electron density and its gradient or
slope (first derivatives with respect to position). These functionals are called gradient-
corrected, or said to use the generalized-gradient approximation (GGA). They are also
called nonlocal functionals, in contrast to the older, local LDA and LSDA functionals.
The term nonlocal may refer to the fact that calculating the gradient of at a point
amounts to sampling the value of an infinitesimal distance beyond the “local” point
of the coordinates r, since the gradient is the change in over an infinitesimal distance
divided by that distance (i.e. in a Taylor series expansion of a function about a point the
first, second etc. terms represent sampling the function increasingly nonlocally [40]).
Nevertheless, it has been suggested [41] that the term nonlocal be avoided in referring
to gradient-corrected functionals.

The exchange-correlation energy functional can be written as the sum of an
exchange-energy functional and a correlation-energy functional, both negative, i.e.

is much bigger than For the argon atom is –30.19
hartrees, while  is only –0.72 hartrees, calculated by the HF method [42]. Thus, it is
not surprising that gradient corrections have proved more effective when applied to the
exchange-energy functional, and a major advance in practical DFT calculations was the
introduction of the Becke 88 functional [43], a “new and greatly improved functional

KS orbitals and from which different electron density functions and
follow. This “unrestricted” LDA method (cf. UHF, section 5.2.3.6e) is called the local
spin density approximation, LSDA, and has the advantages that it can handle systems
with one or more unpaired electrons, like radicals, and systems in which electrons
are becoming unpaired, such as molecules far from their equilibrium geometries; even
for ordinary molecules it appears to be more forgiving toward the use of (necessarily)

and can be accurately calculated [38,39]. LSDA geometries, frequencies
and electron-distribution properties tend to be reasonably good, but (as with HF calcu-
lations) the dissociation energies are very poor, and uniform electron gas-type LSDA
calculations appear to have been largely replaced by an approach that involves not just
the electron density, but its gradient.

7.2.3.4c Gradient-corrected functionals and hybrid functionals

Gradient-corrected functionals
The electron density in an atom or molecule varies greatly from place to place, so it
is not surprising that the uniform electron gas model has serious shortcomings. Most
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for the exchange energy” [44]. Another example of a gradient-corrected exchange-
energy functional is the Gill 1996 (G96) functional. Examples of gradient-corrected
correlation-energy functionals are the Lee–Yang–Parr (LYP) and the Perdew 1986 (P86)
functionals. All these functionals are commonly used with Gaussian-type (i.e. functions
with basis functions for representing the KS orbitals (Eq. (7.26)). A calcu-
lation with B88 for LYP for and the 6-31G* basis set (section 5.3.3) would be
designated as a B88LYP/6-31G* or B88LYP/6-31G* calculation (the Gaussian 98 pro-
gram [45] performs this with the keyword BLYP/6-31G*). A calculation with B88 for

and P86 for is called B88-P86 or B88P86 (BP86 in Gaussian 98). Other possible
combinations of and basis set are G96LYP/6-31 + G* and G96P86/6-311G**.
References to the basis sets in Gaussian are given in the Gaussian manual and the
online help. Sometimes rather than the analytical functions that constitute the standard
Gaussian basis sets, numerical basis sets are used. A numerical basis function is essen-
tially a table of the values that an atomic orbital wavefunction has at many points around
the nucleus, with empirical functions fitted to pass through these points. The empirical
functions are used in calculations instead of the analytical Gaussian-type functions.
One such basis set is the DN* basis [46], available in some versions of the program
Spartan [47]. A calculation designated by Spartan as BP/DN* uses the B88 and P86
(above) functionals with the DN* numerical basis. BP/DN* calculations are said [48]
to give results similar to those from BP86/6-311G* ( section 5.3.3) calculations, and
results in section 7.3.2.2b support this. A numerical basis with polarization functions
on hydrogen, designated DN**, is also available.

Hybrid functionals
Hybrid functionals augment the DFT exchange-correlation energy with a term cal-
culated from HF theory. In HF theory, one expression for the electronic energy is
Eq. (5.17)

where the sums are over n occupied spatial orbitals. If we remove the core energy (the
first term, involving only electron kinetic energy and electron–nucleus attraction) and
the coulomb potential energy (involving the coulomb integrals K) from this equation,
we are left with the exchange energy, involving only the double sum of the exchange
integrals J (section 5.2.3.2):

Substituting into Eq. (7.29) the KS orbitals, which are quite similar to the HF orbitals
(section 7.3.5), gives an expression, based on KS orbitals, for the HF exchange energy:

Since the KS Slater determinant is an exact representation of the wavefunction of the
noninteracting-electrons reference system, is the exact exchange energy for
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a system of noninteracting electrons with electron density equal to the real system
(of course the basis set used imposes a limit on the accuracy of the molecular orbitals
and thus on

Including in an LSDA gradient-corrected DFT expression for
a weighted contribution of the expression for  gives a HF/DFT exchange-correlation
functional, commonly called a hybrid DFT functional. The most popular hybrid
functional at present (and in fact the most popular DFT functional) is based on an
exchange-energy functional developed by Becke in 1993, and modified by Stevens
et al. in 1994 by introduction of the LYP 1988 correlation-energy functional. This
exchange-correlation functional, called the Becke3LYP or B3LYP functional [49] is

Here is the kind of accurate “pure DFT” LSDA non-gradient-corrected exchange
functional alluded to in section 7.2.3.4b, is the KS-orbital-based HF exchange
energy functional of Eq. (7.30), is the Becke 88 exchange functional mentioned

gas of the LDA and the LSDA (sections 7.2.3.4a and 7.2.3.4b), and is the LYP
correlation functional mentioned above; and of the last three terms are gradient-
corrected. The parameters and are those that give the best fit of the calculated
energy to molecular atomization energies. This is thus a gradient-corrected, hybrid
functional. Of those functionals that have been around long enough to be well-tested,
the B3LYP functional is, by and large, the most useful one (see the various applications
of DFT, below). No doubt improved functionals will be discovered, and high hopes
have been expressed for hybrid functionals by some of the chief pioneers in density
functional theory: “A true marriage of density functional and Hartree-Fock ideas and
technologies has emerged, and a potentially very beneficial cross-fertilization between
DFT and traditional wave function methods has begun.” [13].

DFT calculations with functionals incorporating gradient corrections, or gradient
corrections and the HF exchange term (hybrid functionals), can be speeded up with
only a little loss in accuracy by a so-called perturbation method [50]. Here the KS
equations ((7.23), (7.25)) are solved using the derivative (Eq. (7.24)) correspond-
ing to the LSDA functional, which is of course simpler than the gradient-corrected
or hybrid functional. The energy is then calculated from Eq. (7.21), now using the
gradient-corrected or hybrid functional. This is a perturbation approach because the
“real” system with the better functional is regarded as a perturbation of the system
with the approximate KS orbitals and corresponding electron density function. This
perturbation method is available in some versions of Spartan [47] (see the discussion
of gradient-corrected functionals, above) as a pBP/DN* or pBP/DN** calculation.

7.3 APPLICATIONS OF DENSITY FUNCTIONAL THEORY

Levine has compared geometries, energies, etc. from DFT with those from molecu-
lar mechanics, ab initio, and semiempirical methods [51]. Hehre [52] and Hehre and

above, is the Vosko, Wilk, Nusair function (VWN, or Slater VWN, SVWN
function), which forms part of the accurate functional for the homogeneous electron
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Lou [48] have provided extensive, very useful compilations of ab initio, semiempiri-
cal, DFT, and some molecular mechanics results. Calculations in this chapter by the
author were done with the programs Titan [53] (B3LYP), Spartan [47] (pBP and MP2),
Gaussian 94 [54], and Gaussian 98 [45] (for BP86, high-accuracy energies, and IR,
UV, and NMR spectra).

7.3.1 Geometries
Building on the general considerations about the calculation of molecular geometries
in section 5.5.1, we can examine the results of DFT geometry optimizations of the
same set of 20 molecules that were used in Fig. 5.23, and Fig. 6.2. The geometries
in Fig. 7.1 are analyzed in Table 7.1, and Table 7.2 gives the dihedral angles for the
same eight molecules as in Table 5.8, and Table 6.2 (Fig. 7.1 corresponds to Figs 5.23
and 6.2, Table 7.1 to Tables 5.7 and 6.1, and Table 7.2 to Tables 5.8 and 6.2). The
DFT methods chosen were B3LYP/6-31G* and pBP/DN*, which were mentioned
in section 7.2.3.4c. The gradient-corrected hybrid B3LYP functional with the 6-31G*
basis set was chosen because this is at present the most popular DFT method, and
is available in most commercial computational chemistry packages that include DFT.
The perturbationally implemented BP86 (section 7.2.3.4c) functional with the DN*
numerical basis represents a gradient-corrected, non-hybrid method. It is found in
some versions of Spartan, and was chosen because it is fast (see below) and com-
parable in accuracy to B3LYP/6-31G*. As mentioned above, it should give similar
results to B88P86/6-311G* (designated BP86/6-311G* in Gaussian 98) calculations;
in section 7.3.2.2b we will see that pBP/DN*, B88P86/6-31G*, and B88P86/6-311G*
actually do seem to give very similar results. Here, we compare geometries from
B3LYP/6-31G*, pBP/DN*, MP2(FC)/6-31G* (the highest-level ab initio method in
routine use), and experiment.

This survey suggests that B3LYP/6-31G* gives excellent geometries, quite similar to
those from MP2/6-31G*, and pBP/DN* gives good geometries. Only for bonds from C
to O, N, F, Cl, or S is B3LYP/6-31 G* significantly worse than MP2, and about the same
as pBP/DN*; apart from these, B3LYP/6-31G* bond lengths are mostly within 0.009 of
experiment. pBP bond lengths are mostly within 0.026 of experiment. O–H bonds were
always slightly too long by all three methods, and C–H bonds were always slightly too
long for pBP/DN*. All three methods give bond angles usually within 1° of experiment
(the worst error was in the HCN angle of 2.2° for pBP/DN*). The dihedral
angles by all three methods are all mostly within .l°–3° of experiment, but

and show somewhat larger errors (up to ca. 6°). The
worst dihedral errors were ca. 8° for FCH2CH2F by the DFT methods, which is similar
to the MP2/6-31G* error of 5.9° for the HOCC dihedral of

The mean error in 39 (13 + 8 + 9 + 9) bond lengths is ca. 0.004–0.01 Å for B3LYP
and MP2, and ca. 0.01–0.025 for pBP. The mean error in 18 bond angles is ca. 0.6° for
the three methods. For the 10 dihedrals the mean error is ca. 2°.

Geometry errors for 108 molecules were reported by Scheiner et al. [55], comparing
several ab initio and DFT methods. They found that Becke’s original three-parameter
function (which they denote ACM, for adiabatic connection method; B3LYP was
developed as a modification of this [49]), with a 6-31G*-type and with the 6-31G**
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basis sets, gave average bond length errors of about 0.01 Å and bond angle errors
of about 1.0°. They concluded that of the methods they examined ACM is the best
choice for both geometries and reaction energies. St.-Amant et al. [56] also compared
ab initio and DFT methods and found average dihedral angle errors of ca. 3° for 11
molecules using a perturbative gradient-corrected DFT method with an approximately
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6-311G*-type basis set. These workers found average bond length errors of, e.g. 0.01 Å
for C–H and 0.009 Å for C-C single bonds, and average bond angle errors of 0.5°.
El-Azhary reported B3LYP with the 6-31G** and cc-pVDZ basis sets to give slightly
better geometries than MP2, although MP2 avoids the occasional large errors given by
B3LYP [57]. The effect of using different basis sets was minor. In a comparison of HF,
MP2 and DFT (five functionals), Bauschlicher found B3LYP to be the best method
overall [58].

B3LYP/6-31G*, pBP/DN*, and MP2(FC)/6-31G* geometries are further com-
pared, for the species in four reaction profiles, in Fig. 7.2. These correspond to the
ab initio comparisons of Fig. 5.21 and the semiempirical comparisons of Fig. 6.3. For
the reactants and products, the DFT deviations from the MP2 geometries are not more
than 0.026 Å                 1.180Å cf. 1.154 Å) and 0.8° 110.2° 110.2° cf. 109.4°).
For the transition states the maximum deviations from the MP results are –0.107 Å
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(HNC reaction, 1.383 Å cf. 1.455 Å) and –11.2° (HNC reaction, 54.7° cf. 65.9°).
We can assume that the deviations here from the true geometries are similar for the
reactants and products to the cases of other normal molecules, as discussed above, i.e.
that the DFT results are good to excellent (with B3LYP probably better than pBP). For
transition states experimental geometries are not yet available, and we cannot be sure
that the MP2 geometries are superior to the DFT ones. The B3LYP and pBP geometries
are quite similar, with the largest discrepancies again being in the transition state for
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7.3.2 Energies
7.3.2.1 Energies: preliminaries

Usually, we seek from a DFT calculation, as from an ab initio or semiempirical one,
geometries (preceding section) and energies. Like an ab initio energy, a DFT energy is
relative to the energy of the nuclei and electrons infinitely separated and at rest, i.e. it is
the negative of the energy needed to dissociate the molecule into its nuclei and electrons.
AM1 and PM3 semiempirical energies (section 6.3.2) are heats of formation, and by
parameterization include zero-point energies. In contrast, an ab initio (section 5.2.3.6d)
or DFT molecular energy, the energy printed out at the end of any calculation, is
the energy of the molecule sitting motionless at a stationary point (section 2.2) on
the potential energy surface; it is the purely electronic energy plus the internuclear

the HNC isomerization: 0.035Å (1.383 Å cf. 1.348 Å) and 3.3° (70.8° cf. 67.5°). The
consistency of the two DFT methods and their good agreement with MP2 (the “errors”
for the HNC reaction transition state should not affect any qualitative conclusions one
might draw) suggest that these DFT methods are quite comparable to MP2/6-31G* in
calculating transition state geometries.

Hehre has compared bond lengths calculated by the DFT non-gradient-corrected
SVWN method, B3LYP, and MP2, using the 6-31G (no polarization functions) and
6-31G* basis sets [59]. This work confirms the necessity of using polarization functions
with the correlated (DFT and MP2) methods to obtain reasonable results, and also shows
that for equilibrium structures (i.e. structures that are not transition states) there is little
advantage to correlated over HF methods as far as geometry is concerned, a conclusion
presented in section 5.5.1. Hehre and Lou [48] carried out extensive comparisons of
HF, MP2, and DFT (SVWN, pBP, B3LYP) methods with 6-31G* and larger basis sets,
and the numerical DN* and DN** bases. For a set of 16 hydrocarbons, MP2/6-311 +
G(2d,p), B3LYP/6-311 + G(2d, p), pBP/DN**, and pBP/DN* calculations gave
errors of 0.005, 0.006, 0.010, and 0.010Å, respectively. HF/6-311 + G(2d, p) and
SVWN calculations also gave errors of 0.010Å. For 14 C–N, C–O and C–O bond lengths
B3LYP and pBP (errors of 0.007 and 0.008 Å) were distinctly better than HF and SVWN
(errors of 0.022 and 0.014 Å, respectively). The overall indication from the literature and
the results in Figs 7.1 and 7.2 and Table 7.1 is that B3LYP/6-31G* calculations give
excellent geometries and pBP/DN* calculations give good geometries. Larger basis
sets may increase the accuracy, but the increase in time may not make this worthwhile.
DFT calculations appear to be “saturated” more quickly by using bigger basis sets than
are ab initio calculations: Merrill et al. noted that “Once the double split-valence level
is reached, further improvement in basis set quality offers little in the way of structural
or energetic improvement.” [34]; Stephens et al. report that “Our results also show
that B3LYP calculations converge rapidly with increasing basis set size and that the
cost-to-benefit ratio is optimal at the 6-31G* basis set level. 6-31G* will be the basis
set of choice in B3LYP calculations on much larger molecules [than [49].
The results in section 7.3.2.2b, regarding Fig. 7.3, support the view that the 6-31G*
basis nearly saturates gradient-corrected functionals.
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repulsion. In accurate work this “raw” energy should be corrected by adding the zero-
point vibrational energy, to obtain the total internal energy at 0 K. Analogously to the
HF equation in section 5.2.3.6d, Eq. (94) we have

(The Gaussian programs actually denote the DPT energy called here as HF,
e.g. (in hartrees or atomic units) The main advantage of DFT
over HF calculations is in being able to provide, in a comparable time, superior
energy-difference results (reaction energies, activation energies, and electronic tran-
sition energies, i.e. UV spectra). We concentrate on energies from B3LYP/6-31G* and
pBP/DN* calculations for the same reasons that these two methods were chosen for
the geometry calculations in section 7.3.1.

7.3.2.2 Energies: calculating quantities relevant to
thermodynamics and kinetics

7.3.2.2a Thermodynamics
Let us first see how DFT handles a case where HF fails badly: homolytic breaking of
a covalent bond (section 5.4.1). Consider the reaction

In principle, the dissociation energy can be found simply as the energy of two methyl
radicals minus the energy of ethane. Table 7.3 (cf. Table 5.5) shows the results of

and two and pBP) calculations.
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The HF and MP2 ZPEs are from HF/6-31G* optimizations/frequency jobs, and were
corrected by multiplying by 0.9136 [62]; the DFT ZPEs are from the B3LYP/6-3G*
and pBP optimizations/frequencies and are uncorrected, since the correction factor
should be close to unity [62]. As we saw in chapter 5, the HF method gives a very poor
estimate of the bond energy, while the MP2 calculation provides a good value. Here
we see that the B3LYP and pBP methods give a bond energy only slightly less than
that from the MP2 calculation. Note, however, that in general, to get good (reliably
within 10 or even atomization energies and reaction energies simply by
subtraction requires "high-accuracy” methods, using higher-level electron correlation
and bigger basis sets (section 5.5.2.2b). Martell et al. tested six functionals on 44
atomization energies and six reactions and concluded that the best atomization energies
were obtained with hybrid functionals, but slightly better reaction enthalpies were
obtained with non-hybrid ones [63]. St.-Amant et al. found that gradient-corrected
functionals gave good geometries and energies for conformers; the dihedrals were on
average within 4° of experiment and the relative energies were nearly as accurate as
those from MP2 [56]. Scheiner et al. found that, as for geometries, Becke’s original
three-parameter function (usually called ACM, adiabatic connection method) gave the
best reaction energies [55].
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Some reaction energies and relative energies of isomers are compared in Table 7.4
(cf. Table 5.9, Table 6.3).The results for the HCl and formation reactions show no
particular improvement over the HF calculations in Table 5.9. The 2-butene cis/trans
energy difference error is about the same, but the HCN/HNC energy difference is closer
to the experimental value. A large number of energy difference comparisons have been
published for the pBP/DN* and pBP/DN** methods cf. HF, MP2 and experiment [48],
and for B3LYP/6-31G* methods compared to HF, MP2 and experiment [52]. These
comparisons involve homolytic dissociation, various reactions particularly hydrogena-
tions, acid–base reactions, isomerizations, isodesmic reactions, and conformational
energy differences. This wealth of data shows that while gradient-corrected DFT and
MP2 calculations are vastly superior for homolytic dissociations, for “ordinary” reac-
tions (involving only closed-shell species), their advantage is much less marked; for
example, HF/3-21G, HF/6-31G*. SVWN/6-31G* (non-gradient-corrected DFT), all
usually give energy differences similar to those from B3LYP/6-31G* and pBP/DN*
and in fair agreement with experiment. Table 7.5 compares errors for hydrogenations,
isomerizations, bond separation reactions (a kind of isodesmic reaction), and proton
affinities; the methods are HF, SVWN, MP2, and B3LYP, all using the 6-31G* basis.
In two of the four cases (hydrogenation and isomerization) the HF/6-31G* method
gave the best results; in one case MP2 was best and in one case B3LYP. For the energy
comparison of normal (not involving transition states) closed-shell organic species cor-
related methods like MP2 and DFT seem to offer little or no advantage, unless one
needs accuracy within ca. of experiment, in which case high-accuracy
methods should be used. The strength of gradient-corrected DFT methods appears to lie
largely in their ability to give homolytic dissociation energies and activation energies
with an accuracy comparable to that from MP2, but at a time cost comparable to that
from HF calculations.

Bauschlicher et al. compared various methods and recommended B3LYP over HF
and MP2, to a large extent on the basis of the performance of B3LYP with regard to
atomization energies and transition metal compounds [58]. Wiberg and Ochterski com-
pared HF, MP2, MP3, MP4, B3LYP, CBS-4 and CBS-Q with experiment in calculating
energies of isodesmic reactions (hydrogenation and hydrogenolysis, hydrogen transfer,
isomerization, and carbocation reactions) and found that while MP4/6-31G* and CBS-
Q were the best, B3LYP/6-31G* was also generally satisfactory [64]. Rousseau and
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Mathieu developed an economical way of calculating heats of formation by perform-
ing BP/DN* calculations on molecular mechanics geometries; rms deviations from
experiment were about for a variety of compounds [65]. Ventura et al.
found DFT to be better than CCSD(T) (a high-level ab initio method) for studying the
thermochemistry of compounds with the O–F bond [66].

7.3.2.2b  Kinetics
Consider the reaction profiles in Fig. 7.2. In all four cases, the B3LYP/6-31G* and
pBP/DN* activation energies differ by no more than (224/200, 126/121,

and give a reasonable indication of the height of the barrier.
The worst case is that of the ethenol (vinyl alcohol, isomerization, where
the calculated barrier differs from the reported experimental one by from
(B3LYP) to (pBP) (but the experimental barrier could be significantly in
error [61a]).

Let us compare the activation energies for the reactions in Fig. 7.2 with high-
accuracy (section 5.5.2.2d) energy difference values. We will compare the 0 K activation
enthalpies, which is what these energy differences are (section 2.2), of the CBS-Q and
G2 methods, two of the best high-accuracy methods, with the corresponding activa-
tion energies, in Fig. For unimolecular reactions Arrhenius activation
energies exceed enthalpy differences by RT (Eq. (5.180)), but this is only

even at room temperature, 298 K.

Cyclopropylidene reaction

For the isomerization the B3LYP/6-31G* activation energy is a little
lower than the CBS-Q and G2 values (which are somewhat lower than

the reported experimental value, which as stated above could be significantly in error).
For the HCN isomerization the B3LYP/6-31G*, CBS-Q, G2 and experimental values
are essentially the same. For the isomerization the B3LYP/6-31G*, CBS-Q, G2
and experimental values are again essentially the same, and for the cyclopropylidene
isomerization the B3LYP/6-31G*, CBS-Q and G2 values are again essentially the
same and equal to the higher end of the reported experimental values. In all cases
the pBP/DN* activation energies are a little less than the CBS-Q, G2 and B3LYP
values.

CBS-Q, 237; G2, 237; B3LYP, 224; pBP, 200; exp, 282

CBS-Q, 128; G2, 124; B3LYP, 126; pBP, 121; exp 129

CBS-Q, 164; G2, 161, B3LYP, 164; pBP, 159; exp, 161

CBS-Q, 22; G2, 22, B3LYP, 25; pBP, 12.5; exp 13 –20

HCN reaction



412 Computational Chemistry

In a study of alkene epoxidation with peroxy acids, B3LYP/6-31G* gave an
activation energy similar to that calculated with MP4/6-31G*//MP2/6-31G* but
yielded kinetic isotope effects in much better agreement with experiment than did the
ab initio calculation [69]. Even better activation energies than from B3LYP (which it
is said tends to underestimate barriers [70,71]) have been reported for the BH&H-LYP
functional [71–74]. In a study by Baker et al. [75] of 12 organic reactions using seven
methods (semiempirical, ab initio, and DFT), B3PW91/6-31G* was best (average and
maximum errors 15.5 and and B3LYP/6-31G* second best (average and
maximum errors 25 and Jursic studied 28 reactions and recommended
“B3LYP or B3PW91 with an appropriate basis set”, but warned that highly exother-
mic reactions with a small barrier involving hydrogen radicals
“are particularly difficult to reproduce.” [76]. Barriers “above [ca. 40kJ

should be reliable. Lower activation energies should be underestimated by
[76]. As with thermodynamic energy differ-

ences (i.e. energy differences not involving a transition state), consistently obtaining
activation energies accurate to with some confidence requires one of
the high-accuracy methods.

Density functional transition states and activation energies have their problems.
Merrill et al. found that for the fluoride ion-induced elimination of HF from
none of the 11 functionals tested (including B3LYP) was satisfactory, by comparison
with high-level ab initio calculations. Transition states were often looser and stabler
than predicted by ab initio, and in several cases a transition state could not even be
found. They concluded that hybrid functionals offer the most promise, and that “the
ability of density functional methods to predict the nature of TSs demands a great deal
more attention than it has received to date.” [34]. Note that it is assumed here that

Figure 7.3 compares the results of BP86/6-31G*, BP86/6-311G*, and pBP/DN*
calculations on the and reaction profiles. The BP86/6-31G* and
BP86/6-311G* geometries are very similar and the relative energies are nearly identical,
indicating that basis set saturation (section 7.3.1) has been essentially reached. The
pBP/DN* geometries and energies resemble the BP86 ones quite closely, matching
the BP86/6-311G* results a little more closely than the BP86/6-31G*. These results
suggest that B3LYP/6-31 G* activation energies are similar to those from the more time-
demanding (below) CBS-Q and G2 methods, and are close to the experimental values;
pBP/DN* and BP86/6-31G* (and BP86/6-311G*) activation energies may be a little
(perhaps lower than those from B3LYP/6-31G*. Here are the times
required for some DFT, CBS-Q, and G2 calculations (optimization + frequencies), in
each case starting from an AM1 geometry; the jobs were run with Gaussian 94 [54] on
a 600 MHz Pentium III computer:

Ethenol (vinyl alcohol,
BP86/6-31G* 30.0 minutes, relative time 1
B3LYP/6-31G* 30.0 minutes, relative time 1.0
CBS-Q 53.4 minutes, relative time 1.8
G2 142.6 minutes, relative time 4.8
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high-level ab initio calculations are more trustworthy than DFT, presumably because
current DFT functionals are really semiempirical.

7.3.3 Frequencies
The general remarks and theory about frequencies that were given in section 5.5.2.2d
apply to DFT frequencies also. As with ab initio frequency calculations, but unlike
semiempirical, one reason for calculating DFT frequencies is to get zero-point energies
to correct the frozen-nuclei energies. The frequencies are also used to characterize the
stationary point as a minimum, transition state, etc., and to predict the IR spectrum.
As usual the wavenumbers ("frequencies") are the mass-weighted eigenvalues of the
hessian, and the intensities are calculated from changes in dipole moment incurred by
the vibrations.

Unlike ab initio and semiempirical frequencies, DFT frequencies are not always
significantly lower than observed ones (indeed, calculated values slightly higher than
experimental frequencies have been reported). Here are some correction factors that
have been calculated for various functionals, as well as for some ab initio and semiem-
pirical methods (slightly different factors were recommended for accurate calculations
of ZPE) [62]; except for HF/3-21G the basis set for the ab initio and DFT methods
is6-31G*:

HF/3-21G
0.909

The BLYP/6-31G* and BP/86 (and probably the pBP/DN*) correction factors are very
close to unity. For the frequencies of polycyclic aromatic hydrocarbons calculated by
the B3LYP/6-31G* method, Bauschlicher multiplied frequencies below
by 0.980 and frequencies above this by 0.967 [58]. In their paper introducing the
modification of Becke’s hybrid functional to give the B3LYP functional, Stephens
et al. studied the IR and CD spectra of 4-methyl-2-oxetanone and recommended the
B3LYP/6-31G* as an excellent and cost-effective way to calculate these spectra [49].
With six different functional, Brown et al. obtained an agreement with experimental
fundamentals of ca. 4–6%, except for BHLYP [77].

Let us examine the IR spectra of acetone, benzene, dichloromethane, and methanol,
the same four compounds used in chapters 5 and 6 to illustrate calculated ab initio
and semiempirical IR spectra. The DFT spectra in Figs 7.4–7.7 are based on the data
in Table 7.6, and the MP2(FC)/6-31G* spectra are those used in Figs 5.33–5.36 and
6.5–6.8. The DFT methods chosen were B3LYP/6-31G* and BP86/6-31G*. The lat-
ter is used here as a substitute for pBP/DN*, which we often used for geometries
and energies (for the reasons we concentrated on B3LYP and pBP, see the beginning of
section 7.3.1), since as it is implemented in Spartan [47] intensities are not available from
pBP/DN*. Recall (Fig. 7.3) that geometries and relative energies from B3LYP/6-31G*,
B3LYP/6-311G*, and pBP/DN* were very similar; it is expected that IR spectra cal-
culated by BP86/6-31G* and pBP/DN* will also be similar. From Figs 7.4–7.7 we
see that the B3LYP/6-31G* and BP88/6-31G* spectra are very similar, and these DFT

HF/6-31G*
0.895

MP2(FC)
0.943

AMI
0.953

BLYP
0.995

BP86
0.991

B3LYP
0.961

B3PW91
0.957
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spectra are quite similar to the MP2(FC)/6-31G* spectra. The MP2 spectra simulate the
experimental spectra reasonably well, but as we saw in section 5.5.3, are not (for these
“routine” molecules anyway) notably superior to the HF/3-21G and HF/6-31 G* spectra.

7.3.4 Properties arising from electron distribution – dipole
moments, charges, bond orders, atoms-in-molecules

The theory behind calculating dipole moments, charges, and bond orders, and using
atoms-in-molecules analyses, was outlined in section 5.5.4; here the results of applying
DFT calculations to these will be presented.

Dipole moments
Dipole moments seem to be more sensitive to geometry than most other properties,
certainly more so than is energy (of course, for certain geometries and methods, errors
may tend to cancel). Another point to note is that in the perturbational DFT method
(7.2.3.4c) the gradient enters the calculation only to evaluate the energy (Eq. (7.21)),
after the density has converged; properties like dipole moment that are calculated from
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the density will not be gradient-corrected. The gradient is applied only to energy and
properties, like geometry, which are calculated from the energy. The dipole moment
in such a calculation will reflect the gradient-correction only through the geometry
optimization. In practice, the difference between perturbational and non-perturbational
dipole moments is small [78]. Hehre [52] and Hehre and Lou [48] have provided
quite extensive compilations of calculated dipole moments. These confirm that HF
dipole moments tend to be larger than experimental, and show that electron correlation,
through DFT or MP2, tends to lower the dipole moment, bringing it closer to the
experimental value (e.g. for thiophene, from 0.80 D to 0.51 D for B3LYP; the MP2
value is 0.37 D and the experimental dipole moment is 0.55 D [48]).

Table 7.7 compares with experiment dipole moments, values calculated by
B3LYP/6-31G*, pBP/DN*, by single-point B3LYP/6-31G* on AM1 geometries, and
by MP2/FC/6-31G*, for 10 molecules (note that the pBP moments are not gradient-
corrected, as explained above). The three DFT methods give quite similar average
errors, ca. 0.1 D. Note that the smallest error, 0.09 D, is from the fast method of single-
point B3LYP calculations on AM1 geometries, and the largest error, 0.34D, is from
the most time-consuming method, MP2 all the way. The DFT dipole moments are dis-
tinctly better than ab initio (errors ca. 0.3 D, Table 5.18) and semiempirical (errors ca.
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0.2–0.3 D, Table 6.5) moments. None of the methods consistently gives values accu-
rate to within 0.1 D. Dipole moments of about the same accuracy as the DFT ones
in Table 7.7 (possibly a bit less accurate than the B3LYP/6-31G*//AMl ones) were
obtained with single-point gradient-corrected calculations using a large basis set and
geometries from perturbational gradient-corrected/6-311G**-type basis calculations.
For 21 molecules the mean of the absolute deviations was 0.12D [79]. Very accurate
values (mean absolute deviation 0.06–0.07 D) can be obtained with gradient-corrected
DFT and very large basis sets [55].

Charges and bond orders
The theory behind these was given in section 5.5.4. Recall that these parameters are not
observables and so there are no experimental, “right” values to aim for; electrostatic
potential charges and Löwdin bond orders are preferred to Mulliken charges and
bond orders. The effect of various computational levels on atom charges has been
examined [80].
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Figure 7.8 shows charges and bond orders calculated for an enolate and a protonated
enone system (the same as in Fig. 6.9), using B3LYP/6-31G* and HF/3-21G. The results
are qualitatively similar regardless of whether one uses B3LYP or HF, or Mulliken vs.
electrostatic potential/Löwdin. This is in contrast to the results in Fig. 6.9, where there
were some large differences between the semiempirical and HF/3-21G values, and even
between AM1 and PM3. For example, for the protonated species using the Mulliken
method, AM1 and PM3 gave the oxygen a small negative charge, ca. –0.1, but the
HF/3-21G method gave it a large negative charge, –0.63; even stranger, the terminal
carbon had charges of 0.09, 0.23, and -0.25 by the AM1, PM3, and HF methods. In
Fig. 7.8 the biggest differences among corresponding parameters is for the electrostatic
potential charges in the protonated species, where the charges on the oxygen (–0.35 and
–0.63) and on the carbonyl carbon (0.41 and 0.76) differ by a factor of about two. With
both B3LYP and HF the terminal carbon of the enolate is counterintuitively assigned
a bigger negative electrostatic potential charge than the oxygen, as was the case for
AM1 and DFT. The calculated negative charge on the formally positive oxygen of the
protonated molecule was commented on in section 6.3.4. As with the semiempirical
values, bond orders are less variable here than are the charges, but even for this parameter
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there is one qualitative discrepancy: for the cation C/OH bond the Mulliken HF bond
order is essentially single (1.18), while for the Löwdin B3LYP calculation the bond is
essentially double (bond order 1.70). These results remind us that charges and bond
orders are useful mainly for revealing trends, when a series of molecules, or stages along
a reaction coordinate [81] are studied, all with the same methods (e.g.
and Löwdin bond orders).

Atoms-in-molecules
The atoms-in-molecules (AIM) analysis of electron density, using ab initio calcula-
tions, was considered in section 5.5.4. A comparison of AIM analysis by DFT with that
by ab initio calculations by Boyd et al. showed that results from DFT and ab initio
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methods were similar, but gradient-corrected methods were somewhat better than
the SVWN method, using QCISD ab initio calculations as a standard. DFT shifts
the CN, CO, and CF bond critical points of HCN, CO, and toward the car-
bon and increases the electron density in the bonding regions, compared to QCISD
calculations [82].

7.3.5 Miscellaneous properties – UV and NMR spectra,
ionization energies and electron affinities, electronegativity,
hardness, softness and the Fukui function
UV spectra
In wavefunction theory, i.e. conventional quantum mechanics, UV spectra (electronic
spectra) result from promotion of an electron from a molecular orbital to a higher-
energy molecular orbital by absorption of energy from a photon: the molecule goes
from the electronic ground state to an excited state. Since current DFT is said to be
essentially a ground-state theory (e.g. references [11–14]), one might suppose that it
could not be used to calculate UV spectra. However, there is an alternative approach
to calculating the absorption of energy from light. One can use the time-dependent
Schrödinger equation to calculate the effect on a molecule of a time-dependent electric
field, i.e. the electric component of a light wave, which is an oscillating electromagnetic
field, and can set the electron cloud of a molecule oscillating synchronously [83]. This
is a semiclassical treatment in that it uses the Schrödinger equation but avoids equating
the absorbed energy to hv, the energy of a photon. The calculation of UV spectra by
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DFT is based on the time-dependent KS equations, derived from the time-dependent
Schrödinger equation [84]. The implementation of time-dependent DFT (TDDFT, or
time-dependent density functional response theory, TD-DFRT) in Gaussian 98 [45]
has been described by Stratman et al. [85]. Wiberg et al. used this implementation to
study the effect of five functional and five basis sets on the transition energies (the UV
absorption wavelengths) of formaldehyde, acetaldehyde, and acetone [86]. Satisfactory
results were obtained, and the energies were not strongly dependent on the functional,
but B3P86 seemed to be the best and B3LYP the worst. The 6–311 + +G** basis was
recommended. Although these workers used MP2/6-311 + G** geometries, the results
in Table 7.8 indicate that AM1 geometries, which can be calculated perhaps a thousand
times faster, gives transition energies that are nearly as accurate (mean absolute errors of
0.12 and 0.l8 eV, respectively). Table 7.9 compares with experiment the UV spectrum
of methylenecyclopropene, calculated by ab initio, semiempirical, and DFT methods.
The best of the three is the TDDFT calculation, which is the only one that reproduces
the 308 nm band.

The HOMO-LUMO gap calculated with hybrid gradient-corrected functionals is
approximately equal to the UV transition of unsaturated molecules, and this
could be useful in predicting UV spectra (see ionization energies and electron affinities,
below).
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NMR spectra
As with ab initio methods (section 5.5.5), NMR shielding constants can be cal-
culated from the variation of the energy with magnetic field and nuclear magnetic
moment. The chemical shift of a nucleus is its shielding value minus that of the
TMS carbon or hydrogen nucleus (for or NMR spectra, respectively). The
most accurate results are said to be obtained with MP2 calculations, but DFT
is significantly better than HF [88]. Figure 7.9 compares with experiment
and NMR spectra calculated at these levels: B3LYP/6-31G*//B3LYP/6-31G*,
B3LYP/6-311 + G(2d,p)//B3LYP/6-31G*, B3LYP/6-311 + G(2d,p)//AMl, and
HF/6-31G*//B3LYP/6-31G*. The mean absolute errors in the chemical shifts are:

For such a very small sample (three and five     atoms; the Hs were
not included since the observed chemical shift is a weighted average) the results cannot
reasonably be expected to do more than show up gross differences in accuracy, but they
do suggest that for DFT NMR chemical shifts, if high accuracy is not needed there
may be little point in using a bigger basis set than and that AM1 geometries
(for normal molecules, as usual) may be as good for these spectra as B3LYP/6-31G*
geometries.

B3LYP/6-31 G*//B3LYP/6-31G*
B3LYP/6-311 + G(2d, p)//B3LYP/6-31G*
B3LYP/6-311 + G(2d, p)//AM1
HF/6-31 G*//B3LYP/6-31 G*
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Ionization energies and electron affinities
These concepts were discussed in section 5.5.5. We saw that ionization energies (ion-
ization potentials) and electron affinities can be calculated in a straightforward way
as the energy difference between a molecule and the species derived from it by loss
or gain, respectively, of an electron. Using the energy of the optimized geometry of
the radical cation or radical anion (in the case where the species whose IE or EA we
seek is a neutral closed-shell molecule) gives the adiabatic IE or EA, while using the
energy of the ionized species at the geometry of the neutral gives the vertical IE or
EA. Muchall et al. have reported adiabatic and vertical ionization energies and electron
affinities of eight carbenes, calculated in this way by semiempirical, ab initio, and DFT
methods [91]. They recommend B3LYP/6-31 + G*//B3LYP/3-21G(*) as the method
of choice for predicting first ionization energies; the use of the small 3-21G(*) basis
with B3LYP for the geometry optimization is unusual – see section 5.4.2 – usually
the smallest basis used with a correlated method is 6-31G*. This combination is rel-
atively undemanding and gives accurate (largest absolute error 0.14eV) adiabatic and
vertical ionization energies for the carbenes studied. Table 7.10 shows the results of
applying this method to some other (non-carbene) molecules. The B3LYP/6-31 + G*
energy differences are essentially the same with B3LYP/3-21G( * )and AM 1 geometries;
they are good estimates of the experimental IE, are somewhat better than the ab initio
MP2 energy difference values, and are considerably better than the MP2 Koopmans’
theorem (below) IBs. Of course, for unusual molecules (like the carbenes studied by
Muchall et al. [91]) AM1 may not give good geometries, and for such species it would
be safer to use B3LYP/3-21G(*) or B3LYP/6-31G* geometries for the single-point
B3LYP/6-31 + G* calculations.

In wavefunction theory an alternative way to find IEs for removal of an electron from
any molecular orbital is to invoke Koopmans’ theorem: the IE for an orbital is the neg-
ative of the orbital energy; section 5.5.5. In chapters 5 and 6 both the energy difference
and the Koopmans’ theorem methods were used to calculate some IEs (Tables 5.21 and
6.7). The problem with applying Koopmans’ theorem to DFT is that in DFT proper
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there are no molecular orbitals, only electron density. The KS molecular orbitals (the
orbitals that make up the Slater determinant of Eq. (7.19) were, as explained
in section 7.2.3.2, introduced only to provide a practical way to calculate the energy
(note Eqs (7.21), (7.22), and (7.26)). There was at one time a fair amount of argument
over the physical meaning, if any, of the KS orbitals. Baerends and coworkers [92]
and others have suggested that the KS orbitals, like the HF orbitals, provide a good
basis for qualitative discussion. Stowasser and Hoffmann showed that the KS orbitals
resemble those of conventional wavefunction (extended Hückel – chapter 4 – and HF
ab initio) theory in shape, symmetry, and, usually, energy order [93]. They conclude
that these orbitals can indeed be treated much like the more familiar orbitals of wave-
function theory. Furthermore, they showed that although the KS orbital energy values
(the eigenvalues from diagonalization of the DFT Fock matrix – section 7.2.3.3) are
not good approximations to the ionization energies of molecular orbitals (as revealed
by photoelectron spectroscopy), there is a linear relation between
and (HF). Salzner et al., too, showed that in DFT, unlike ab initio theory calculations,
negative HOMO energies are not good approximations to the IE [94], but, surpris-
ingly, HOMO-LUMO gaps from hybrid functionals agreed well with the UV
transitions of unsaturated molecules.

Concerning electron affinities, in HF calculations the negative LUMO energy of a
species M corresponds to the electron affinity not of M but rather of the anion M– [95].
However, Salzner et al. reported that the negative LUMOs from LSDA functionals gave
rough estimates of EA (ca. 0.3–1.4 eV too low; gradient-corrected functionals were
much worse, ca. 6eV too low) [94]. Brown et al. found that for eight medium-sized
organic molecules the energy difference method using gradient-corrected functionals
predicted electron affinities fairly well (average mean error less than 0.2 eV) [77].

Electronegativity, hardness, softness and the Fukui function
The idea of electronegativity was probably born about as soon as chemists suspected that
the formation of chemical compounds involved electrical forces: metals and nonmetals
were seen to possess opposite appetites for the “electrical fluid(s)” of eighteenth century
physics. This “electrochemical dualism” is most strongly associated with Berzelius [98],
and is clearly related to our qualitative notion of electronegativity as the tendency of a
species to attract electrons. Parr and Yang have given a sketch of attempts to quantify
the idea [99]. Electronegativity is a central notion in chemistry.

Hardness and softness as chemical concepts were apparently in the chemical literature
as early as the 1950s [100], but did not become widely used till they were popularized
by Pearson in 1963 [101]. In the simplest terms, the hardness of a species (atom, ion, or
molecule) is a qualitative indication of how polarizable it is, i.e. how much its electron
cloud is distorted in an electric field. In this sense the terms hard, and its opposite soft,
were evidently suggested by D. H. Busch [101a] by analogy with the conventional use
of these words to denote resistance to deformation by mechanical force. The hard/soft
concept proved useful, particularly in rationalizing acid–base chemistry [102]. Thus,
a proton, which cannot be distorted in an electric field (it has no electron cloud) is
a very hard acid, and tends to react with hard bases. Bases in which sulfur electron
pairs provide the basicity are soft, since sulfur is a big, fluffy atom, and they tend
to react with soft acids. Perhaps because it was originally qualitative the hard–soft
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acid–base (HSAB) idea met with skepticism from at least one quarter: Dewar (of
semiempirical fame) dismissed it as a “mystical distinction between different kinds of
acids and bases” [103]. The hard/soft concept has been extensively used to interpret
reactivity.

The Fukui function or frontier function was introduced by Parr and Yang in
1984 [104]. Its mathematical expression (below) defines it as the sensitivity of the
electron density at various points in a species to a change in the number of electrons
in the species. In a chemical reaction a change in electron number clearly involves
removing electrons from or adding electrons to the HOMO or LUMO, respectively, i.e.
the frontier orbitals whose importance was emphasized by Fukui2. This function thus
measures changes in electron density that accompany chemical reactions. The Fukui
function has been used to try to rationalize and predict the variation of reactivity from
site to site in a molecule.

These concepts, which can be analyzed quantitatively using wavefunction theory,
but are often treated in connection with DFT ( perhaps because much of the under-
lying theory was formulated in this context [105]) will now be examined a bit more
quantitatively. Consider the effect on the energy of a molecule, atom, or ion of adding
electrons. Figure 7.10 shows how the energy of a fluorine cation changes as one

2Kenichi Fukui, born Nara, Japan, 1918. Ph.D. Kyoto Imperial University 1948, Professor Kyoto Imperial
University 1951. Nobel Prize 1981. Died 1998.
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and then two electrons are added, giving a radical and an anion The number
of electrons N we have added to (N is taken here as 0 for and is thus 1 for
the atom and 2 for the anion) is integral (1,2,...), but mathematically we can consider
adding continuous electronic charge N; the line through the three points is then a con-
tinuous curve and we can examine the derivative of E with respect to N at
constant nuclear charge. Ca. 1875 Willard Gibbs studied theoretically the effect on the
energy of a system of a change in its composition. The derivative is
the change in energy caused by an infinitesimal change in the number of moles n, at
constant temperature and pressure; it is called the chemical potential [106]. By analogy,

the change in energy with respect to number of added electrons at con-
stant nuclear charge, is the electronic chemical potential (or in an understood context
just the chemical potential) of an atom. For a molecule the differentiation is at constant
nuclear framework, the charges and their positions being constant, i.e. constant external
potential, (section 7.2.3.1). So for an atom, ion, or molecule

The electronic chemical potential of a molecular (including atomic or ionic) species,
according to Eq. (7.33), is the infinitesimal change in energy when electronic charge
is added to it. Figure 7.10 suggests that the energy will drop when charge is added to
a species, at least as far as common charges (from about +3 to – 1) go, and indeed,
even for fluorine’s electronegative antithesis, lithium, the energy drops along the
sequence (QCISD(T)/6-311+G* gives energies of –7.23584, –7.43203,
–7.45448 h, respectively). Now, since one feels intuitively that the more electronega-
tive a species, the more its energy should drop when it acquires electrons, we suspect
that there should be a link between the chemical potential and electronegativity. If
we choose for convenience to make (most) electronegativities positive, then since

is negative we might define the electronegativity as the negative of the
electronic chemical potential:

From this viewpoint the electronegativity of a species is the drop in energy when an
infinitesimal amount (infinitesimal so that it remains the same species) of electronic
charge enters it. It is a measure of how hospitable an atom or ion, or a group or atoms
in a molecule (section 5.5.4), is to the ingress of electronic charge, which fits in with
our intuitive concept of electronegativity.

This definition of electronegativity was given in 1961[107] and later (1978) discussed
in the context of DFT [108]. Equation (7.34) could be used to calculate electronegativity
by fitting an empirical curve to calculated energies for, e.g. M and and
calculating the slope (gradient, first derivative) at the point of interest; however, the
equation can be used to derive a simple approximate formula for electronegativity
using a three-point approximation. For consecutive species M and (constant
nuclear framework), let the energies be E(M),and Then, bydefinition



Density Functional Calculations 427

the ionization energy of M, and

the electron affinity of M. Adding,

So, approximating the derivative at the point corresponding to M as the change in E
when N goes from 0 to 2, divided by this change in electron number, we get

i.e. using Eq. (7.34)

To use this formula one can employ experimental or calculated adiabatic (or vertical,
if the species from removal or addition of an electron are not stationary points) values
of I and A. This same formula (Eq. (7.35) for was elegantly derived by Mulliken
(1934) [109] using only the definitions of I and A. Consider the reactions

and

If X and Y have the same electronegativity then the energy changes of the two reac-
tions are equal, since X and Y have the same proclivities for gaining and for losing
electrons, i.e.

i.e. (I + A) for X = (I + A ) for Y.
So it makes sense to define electronegativity as I + A; the factor of (Eq. (7.35))

was said by Mulliken to be “probably better for some purposes” (possibly to make
the arithmetic mean of I and A, an easily-grasped concept).

Electronegativity has also been expressed in terms of orbital energies, by taking I as
the negative of the HOMO energy and A as the negative of the LUMO energy [110].
This gives

This expression has the advantage over Eq. (7.35) that one needs only the HOMO and
LUMO energies of the species, which are provided by a one-pot calculation (i.e. by what
is operationally a single calculation), but to use Eq. (7.35) one needs (cf. Fig. 7.10)
the energy of the (N – 1)-, N- and (N + l)-electron molecules (most simply at the
geometry of the molecule whose electronegativity we are calculating; cf. the Fukui
functions for SCN– later in this section). How good is Eq. (7.36)? is a
fairly good approximation for the orbitals of wavefunction theory, but not for the KS
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orbitals, and is only a very rough approximation for the KS orbitals, and
for wavefunction orbitals of M is said to correspond to the electron affinity
of not of M (see Ionization energies and electron affinities in section 7.3.5). So
how do the results of calculations using the formula of Eq. 7.36 compare with those
using Eq. (7.35)? Table 7.11 gives values of calculated using QCISD(T)/6-311 +
G* (section 5.4.3) values of I and A, which should give good values of these latter
two quantities, and compares these values with those from HOMO/LUMO energies
calculated by ab initio (MP2(FC)/6-31G*) and by DFT (B3LYP/6-31G*). For the two
cations the agreement between the three ways of calculating is good; for the other
species it is erratic or bad, although the trends are the same for the three methods within
a given family (hardness decreases from cation to radical to anion). There seems little
doubt that Eq. (7.35) is the sounder way to calculate electronegativity. An exposition
of the concept of electronegativity as the (negative) average of the HOMO and LUMO
energies, and the chemical potential as lying at the midpoint of the HOMO/LUMO
gap, has been given by Pearson [110].

Chemical hardness and softness are much newer ideas than electronegativity, and
they were quantified only fairly recently. Parr and Pearson (1983) proposed to identify
the curvature (i.e. the second derivative) of the E vs. N graph (e.g. Fig. 7.10) with
hardness, [111]. This accords with the qualitative idea of hardness as resistance to
deformation, which itself accommodates the concept of a hard molecule as resisting
polarization – not being readily deformed in an electric field: if we choose to define
hardness as the curvature of the E vs. N graph, then

where and are introduced from Eqs (7.33) and (7.34). The hardness of a species
is then the amount by which its electronegativity – its ability to accept electrons –
decreases when an infinitesimal amount of electronic charge is added to it. Intuitively,
a hard molecule is like a rigid container that does not yield as electrons are forced in, so
the pressure (analogous to the electron density) inside builds up, resisting the ingress
of more electrons. A soft molecule may be likened to a balloon that can expand as it
acquires electrons, so that the ability to accept still more electrons is not so seriously
compromised. Softness is the reciprocal of hardness:

and qualitatively, of course, it is the opposite in all ways.
To approximate hardness by I and A (cf. the approximation of electronegativity by

Eq. (7.35)), we approximate the curve (cf. Fig. 7.10) by a general quadratic
(it looks like a quadratic):



Density Functional Calculations 429



430 Computational Chemistry

We will now let M denote any atom or molecule, and and the species formed
by removal or addition of an electron.

E(M) corresponds to and corresponds to so substituting into
our quadratic equation

Actually, the hardness is commonly defined as half the curvature of the E vs. N graph,

The one-half factor is [110] to bring into line with Eq. (7.35), where this factor arises
naturally in applying the three-point approximation and the definitions of I and A to
the rigorous Gibbs equation (Eq. (7.33)) for electronic chemical potential.

Electronegativity has also been expressed in terms of orbital energies, by taking I as
the negative of the HOMO energy and A as the negative of the LUMO energy [110].
This gives

Like the analogous expression for electronegativity (Eq. (7.36)), this requires only
a “one-pot” calculation, of the HOMO and LUMO. Much of what was said about
Eq. (7.36) applies to Eq. (7.42). Table 7.11 gives values of calculated analogously to
the values discussed above. The HOMO/LUMO hardness values are in even worse
agreement with the I/A ones than are the HOMO/LUMO electronegativity values with
the I/A values (the zero values for the HOMO/LUMO-calculated of the radicals
values arise from taking the half-occupied orbital (semioccupied MO, SOMO) as both
HOMO and LUMO). The orbital view of hardness as the HOMO/LUMO gap is dis-
cussed by Pearson, who also reviews the principle of maximum hardness, according
to which in a chemical reaction hardness and the HOMO/LUMO gap tend to increase,

and

and so

i.e.

giving

and from Eq. (7.37)

N = 1 N = 2,

Since



Density Functional Calculations 431

potential energy surface relative minima represent species of relative maximum hard-
ness, and transition states are species of relative minimum hardness [110]. In recent
papers these general ideas about hardness are expounded [112] and the reciprocal con-
cept of softness is used (with the Fukui function) to rationalize some cycloaddition
reactions [113].

The Fukui function (the frontier function) was defined by Parr and Yang [104] as

This says that is the functional derivative (section 7.2.3.2, The Kohn–Sham
equations) of the chemical potential with respect to the external potential (i.e. the
potential caused by the nuclear framework), at constant electron number; and that it is
also the derivative of the electron density with respect to electron number at constant
external potential. The second equality shows to be the sensitivity of to a
change in N, at constant geometry. A change in electron density should be primarily
electron withdrawal from or addition to the HOMO or LUMO, the frontier orbitals of
Fukui [114], hence the name bestowed on the function by Parr and Yang. Since
varies from point to point in a molecule, so does the Fukui function. Parr and Yang
argue that a large value of at a site favors reactivity at that site, but to apply
the concept to specific reactions they define three Fukui functions (“condensed Fukui
functions” [80]):

The three functions refer to an electrophile, a nucleophile, and a
radical. They are the sensitivity, to a small change in the number of electrons, of the
electron density in the LUMO, the HOMO, and in a kind of average HOMO/LUMO
half-occupied orbital. Practical implementations of these condensed Fukui functions
are the “condensed-to-atom” forms of Yang and Mortier [115]:

Here is the electron population (not the charge) on atom k, etc. (see below).
Note that is just the average of and The condensed Fukui functions measure
the sensitivity to a small change in the number of electrons of the electron density at
atom k in the LUMO in the HOMO and in a kind of intermediate orbital

they provide an indication of the reactivity of atom k as an electrophile (reactivity
toward nucleophiles), as a nucleophile (reactivity toward electrophiles), and as a free
radical (reactivity toward radicals).

The easiest way to see how these formulas can be used is to give an example. Let
us calculate for the anion We shall calculate to get an
idea of the nucleophilic power of the S, C, and N atoms in this molecule. We need
the electron population q on each atom or, what gives us the same information, the

and

and
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charge on each atom (for an atom in a molecule, electron population + charge =
atomic number). We perform the calculations for the N-electron species and
the (N –  l)-electron species If we were interested in the nucleophilic power
of the atoms in a neutral molecule M, then to get we would calculate the electron
populations or charges on the atoms in M and in and for the electrophilic power of
the atoms in neutral M, to get we calculate the electron populations or charges on
the atoms in M and The calculations are performed for the two species at the same
geometry. In introducing the condensed Fukui function, Yang and Mortier [115] used
for each pair of species a single “standard” (presumably essentially average) geometry,
with accepted, reasonable bond lengths and angles, and other workers do not specify
whether they use for, say, M and the neutral or the cation geometry. We will
adopt the convention that for a calculation on both geometries
will be those of the species of interest to us; this avoids the problem of trying
to do a geometry optimization on a species that may not be a stationary point on the
potential energy surface (assuming that is itself a stationary point – one will rarely
be interested in something that is not), a situation that arises particularly for some
anions.

Charges and electron populations from calculations on and (and on
and are shown in Fig. 7.11. The anion was optimized

and then the AIM (section 5.5.4) electron population/charges were calculated (the AIM
calculations were done with G98 using the keywords AIM = Charge). An AIM calcu-
lation was then done on the radical at the anion geometry. The optimization and both
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AIM calculations used the B3LYP/6-31 + G* method/basis (results for charges other
than AIM and other methods/basis sets are shown shortly).

The condensed Fukui functions may now be calculated (see Fig. 7.11):

This indicates that in the order of nucleophilicity is (which is what
any chemist would expect). Sulfur is the softest atom here, and carbon the hardest. The
results of such a calculation vary somewhat with the method/basis (e.g. HF/6-31G*,
MP2/6-31G*, etc.), and especially with the way the charges/electron populations are
calculated. Here are the functions from the use of electrostatic potential charges
(the G98 keyword Pop=MK was used) again using B3LYP/6-31 + G*:

In this case the conclusions are unaffected.
In an extensive study, Geerlings et al. [80] showed that with AIM charges semiquan-

titatively similar results are obtained with a variety of correlation methods (HF, MP2,
QCISD, and five DFT functionas), using bases similar to 6-31G*.The biggest devia-
tion from QCISD (section 5.4.3; QCISD was taken as the most reliable of the methods
used) was shown by MP2. For example, for all correlation methods except
MP2 gave O a bigger than C. If we disregarded the MP2 result as anomalous, this
could be interpreted as indicating that the O is more nucleophilic than the C. Actually,
in standard organic syntheses enolates usually react preferentially at the carbon, but
the ratio of C:O nucleophilic attack can vary considerably with the particular enolate,
the electrophile, and the solvent. To complicate things even more, the nucleophile is
not always just the simple enolate: an ion pair or even aggregates of ion pairs may
be involved [116]. Even for the case of an unencumbered enolate, the atom with the
biggest (the softest atom) cannot be assumed to be the strongest nucleophilic center,
because, as and point out in their study [117] of enolates using the
Fukui function, one consequence of the HS AB principle is that an electrophile tends to
react with a nucleophilic center of similar softness (soft acids prefer soft bases, etc.),
not necessarily with the softest nucleophilic center. Thus, for the reaction of
with the electrophile one might calculate, for and
and for The would be expected (in the absence of complica-
tions!) to bond to the atom (C or O) whose value was closest to its value. A
study of the ethyl acetoacetate enolate using these and other concepts has been reported
by Geerlings and coworkers [118]. This approach, which is applicable to any ambident
species, is further illustrated below by the reaction of HNC with alkynes.
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In a study of the reaction of alkynes with hydrogen isocyanide the condensed Fukui
function was combined with the overall or global softness to try to rationalize the
regioselectivity of attack on the triple bond [113]:

This reaction involves electrophilic attack by HNC on the alkyne, to give a zwitterion
which reacts further. Can our concepts be used to predict which alkyne atom, or
(using the designations of Nguyen et al. [113]) will be attacked – will the products be
formed primarily through A or through B? Nguyen et al. approached this problem by
first showing that the reaction is indeed electrophilic attack of HNC (i.e. acting as an
electrophile) on the alkyne (acting as a nucleophile): the HOMO(alkyne)/LUMO(HNC)
interaction has a smaller energy gap than the HOMO(HNC)/LUMO(alky ne) interaction.
They then calculated the local softness or condensed softness parameters (not quite
the same as the condensed-to-atoms parameters of Eqs (7.45) that we saw above; see
below) of and of the alkyne and the C of HNC. For and of the alkyne the
softness as a nucleophile, i.e. softness toward electrophiles, was calculated, with the aid
of and for the HNC C softness as an electrophile, i.e. softness toward nucleophiles,
was calculated, with the aid of

Illustrating how the calculations for may be done:

(1)

(2)

(3)

Optimize the structure of and calculate its atom charges (and energy).

Use the optimized geometry of for a single-point (same geometry) cal-
culation of the charges (and energy) for Steps (1) and (2) enable
calculation of

Use the optimized geometry of for a single-point calculation of the energy
of the anion (This is a radical anion).

Steps (1), (2), and (3) enable us to calculate the global softness (the softness of the
molecule as a whole) of This is done by calculating the vertical ionization
energy and electron affinity as energy differences, then calculating the global softness
as the reciprocal of global hardness. From Eq. (7.38) this is or
2/(I – E), depending on whether we define hardness according to Eq. (7.39) or
(7.40). Nguyen et al. use i.e they take hardness as
rather than The local softness of any atom of interest may now be cal-
culated by multiplying for that atom by Let us look at actual numbers. The

B3LYP/6-311G** basis set and electrostatic potential charges (with the
Gaussian keyword Pop=MK) were used. These gave the charges (and thus electron
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populations) shown in Fig. 7.11. From these populations,

The vertical ionization energy and vertical electron affinity are (here ZPEs have not
been taken into account, as they should nearly cancel; in any case the significance of
a calculated ZPE for the cation or anion at the geometry of the neutral is questionable,
since the former two vertical species are not stationary points):

The softness is then So the
local softness of the two carbons as nucleophiles (softness toward electrophiles) is

(Nguyen et al. report 1.096 and 0.460).
Since electron population is a pure number and global softness has the units of

reciprocal energy, local softness logically has these units too, but the practice is to
simply state that all these terms are in “atomic units”.

Now consider analogous calculations on the HNC C, but for local softness as an
electrophile (softness toward nucleophiles), using These calculations gave

To predict which of the two alkyne carbons, or HNC will preferentially attack,
one now invokes the “local HSAB principle” [119], which says that interaction is
favored between electrophile/nucleophile (or radical/radical) of most nearly equal soft-
ness. The HNC carbon softness of 1.215 is closer to the softness of (1.102) than that
of (0.453) of the alkyne, so this method predicts that in the reaction scheme above
the HNC attacks in preference to i.e. that reaction should occur mainly by the
zwitterion A. This prediction agreed with that from the more fundamental approach
of calculating the activation energies as the difference of transition state and reactant
energies. This kind of analysis worked for and substituents on the alkyne,
but not for –F.

The concepts of hardness, softness, and of frontier orbitals, with which latter the
Fukui function is closely connected, have been severely criticized [103, 120]. It is
also true that in some cases the results predicted using these methods can also be
understood in terms of more traditional chemical concepts. Thus, in the alkyne–HNC
reaction, resonance theory leads one to suspect that the zwitterion A, with the positive
charge formally on the more substituted carbon, will be favored over B. Indeed, AM1,

DFT calculations all show A to be of lower energy than B.

and
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Also, the more rigorous method of locating the two transition states and comparing their
energies was, in the author’s hands, straightforward and not excessively demanding
of time. Nevertheless, the large amount of work which has been done using these
ideas suggests that they offer a useful approach to interpreting and predicting chemical
reactivity. Even an apparently unrelated property, or rather complex of properties,
namely aromaticity, has been subjected to analysis in terms of hardness [121]. As Parr
and Yang say, “This is perhaps an oversimplified view of chemical reactivity, but it is
useful” [122].

7.3.6 Visualization
The only cases for which one might anticipate differences between DFT and wavefunc-
tion theory as regards visualization (sections 5.5.6, 6.3.6) are those involving orbitals: as
explained in section 7.2.3.2, The Kohn-Sham equations, the orbitals of currently popular
DFT methods were introduced to make the calculation of the electron density tractable,
and in a pure DFT theory orbitals do not exist. Thus, electron density, spin density, and
electrostatic potential can be visualized in DFT calculations just as in ab initio or semi-
empirical work. However, visualization of orbitals, so important in wavefunction work
(especially the HOMO and LUMO, which in frontier orbital theory [114] strongly influ-
ence reactivity) is not possible in a pure DFT approach. However, in currently popular
DFT calculations one can visualize the KS orbitals, which are qualitatively much like
wavefunction orbitals [93] (section 7.3.5, Ionization energies and electron affinities).

7.4 STRENGTHS AND WEAKNESSES OF DFT

Strengths
DFT includes electron correlation in its theoretical basis, in contrast to wavefunc-
tion methods, which must take correlation into account by add-ons (Møller-Plesset
perturbation, configuration interaction, coupled-cluster) to ab initio HF theory, or by
parameterization in semiempirical methods. Because it has correlation fundamentally
built in, DFT can calculate geometries and relative energies with an accuracy compa-
rable to MP2 calculations, in roughly the same time as needed for HF calculations.
Aiding this, DFT calculations are basis-set-saturated more easily than are ab initio:
limiting results are approached with smaller basis sets than for ab initio calculations.
Calculations of post-HF accuracy can thus be done on bigger molecules than ab initio
methods make possible. DFT appears to be the method of choice for geometry and
energy calculations on transition metal compounds, for which conventional ab initio
calculations often give poor results [58, 123].

DFT works with electron density, which can be measured and is easily intuitively
grasped [4], rather than a wavefunction, a mathematical entity whose physical meaning
is still controversial.

Weaknesses
The exact exchange-correlation functional one of the terms in the DFT expres-
sion for the energy, is unknown, and no one knows how to systematically improve our
approximations to it. In contrast, ab initio energies can be systematically lowered by
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using bigger basis sets and by expanding the correlation method: MP2, MP3,..., or
more determinants in the CI approach. It is true that for a particular purpose 6-311G*
may not be better than and MP3 is certainly not necessarily better than MP2, but
bigger basis sets and higher correlation levels will eventually approach an exact solution
of the Schrödinger equation. The accuracy of DFT is being gradually improved by mod-
ifying functionals, not according to some grand theoretical prescription, but rather with
the aid of experience and intuition, and checking the calculations against experiment.
This makes DFT somewhat semiempirical. Some functionals contain parameters which
must be fitted to experiment; these methods are even more heavily empirical. Since the
functionals are not based purely on fundamental theory, one should be cautious about
applying DFT to very novel molecules. Of course the semiempirical character of cur-
rent DFT is not a fundamental feature of the basic method, but arises only from our
ignorance of the exact exchange-correlation functional. Because our functionals are
only approximate, DFT as used today is not variational (the calculated energy could be
lower than the actual energy).

DFT is not as accurate as the highest-level ab initio methods, like QCISD(T) and
CCSD(T) (but it can handle much bigger molecules than can these methods). Even
gradient-corrected functionals apparently are unable to handle van der Waals interac-
tions [124], although they do give good energies and structures for hydrogen-bonded
species [125].

DFT today is mainly a ground-state theory, although ways of applying it to excited
states are being developed.

7.5 SUMMARY OF CHAPTER 7

Density functional theory is based on the two Hohenberg–Kohn theorems, which state
that the ground-state properties of an atom or molecule are determined by its elec-
tron density function, and that a trial electron density must give an energy greater
than or equal to the true energy. Actually, the latter theorem is true only if the exact
functional (see below) is used; with the approximate functionals in use today, DFT
is not variational – it can give an energy below the true energy. In the Kohn–Sham
approach the energy of a system is formulated as a deviation from the energy of an
idealized system with noninteracting electrons. The energy of the idealized system can
be calculated exactly since its wavefunction (in the Kohn-Sham approach wavefunc-
tions and orbitals were introduced as a mathematical convenience to get at the electron
density) can be represented exactly by a Slater determinant. The relatively small dif-
ference between the real energy and the energy of the idealized system contains the
exchange-correlation functional, the only unknown term in the expression for the DFT
energy; the approximation of this functional is the main problem in DFT. From the
energy equation, by minimizing the energy with respect to the Kohn–Sham orbitals the
Kohn–Sham equations can be derived, analogously to the HF equations. The molecular
orbitals of the KS equations are expanded with basis functions and matrix methods are
used to iteratively find the energy, and to get a set of molecular orbitals, the KS orbitals,
which are qualitatively similar to the orbitals of wavefunction theory.
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The simplest version of DFT, the LDA, which treats the electron density as constant
or only very slightly varying from point to point in an atom or molecule, and also pairs
two electrons of opposite spin in each KS orbital, is little used nowadays. It has been
largely replaced by methods which use gradient-corrected (“nonlocal”) functionals and
which assign one set of spatial orbitals to electrons, and another set of orbitals
to this latter “unrestricted” assignment of electrons constitutes the LSDA.
The best results appear to come from so-called hybrid functionals, which include some
contribution from HF type exchange, using KS orbitals. The most popular current DFT
method is the LSDA gradient-corrected hybrid method which uses the B3LYP (Becke
three-parameter Lee–Yang–Parr) functional.

Gradient-corrected and, especially, hybrid functionals, give good to excellent
geometries. Gradient-corrected and hybrid functionals usually give fairly good reac-
tion energies, but, especially for isodesmic-type reactions, the improvement over

or calculations does not seem to be dramatic (as far as the relative
energies of normal, ground-state organic molecules goes; for energies and geometries
of transition metal compounds, DFT is the method of choice). For homolytic disso–
ciation, correlated methods (e.g. B3LYP, and MP2) are vastly better than
HF-level calculations; these methods also tend to give fairly good activation barriers.

DFT gives reasonable IR frequencies and intensities, comparable to those from MP2
calculations. Dipole moments from DFT appear to be more accurate than those from
MP2, and B3LYP/6-31G* moments on AM1 geometries are good. Time-dependent
DFT (TDDFT) is the best method (with the possible exception of semiempirical
methods parameterized for the type of molecule of interest) for calculating UV
spectra reasonably quickly. DFT is said to be better than HF (but not as good as
MP2) for calculating NMR spectra. Good first ionization energies are obtained from
B3LYP/6-31 + G*//B3LYP/3-21G(*) energy differences (using AM1 geometries
makes little difference, at least with normal molecules). These values are somewhat
better than the ab initio MP2 energy difference values, and are considerably better than
MP2 Koopmans’ theorem IEs. Rough estimates of electron affinities can be obtained
from the negative LUMOs from LSDA functionals (gradient-corrected functionals give
much worse estimates). For conjugated molecules, HOMO–LUMO gaps from hybrid
functionals agreed well with the UV transitions. The mutually related concepts
of electronic chemical potential, electronegativity, hardness, softness, and the Fukui
function are usually discussed within the context of DFT. They are readily calculated
from ionization energy, electron affinity, and atom charges.
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EASIER QUESTIONS

1. State the arguments for and against, regarding DFT as being more a semiempirical
than an ab initio-like theory.

What is the essential difference between wavefunction theory and DFT? What is it
that, in principle anyway, makes DFT simpler than wavefunction theory?

Why can’t current DFT calculations be improved in a stepwise, systematic way, as
can ab initio calculations?

Which of these prescriptions for dealing with a function are functionals: (1) square
root of

For which class(es) of functions is the nth derivative of a functional?

Explain why a kind of molecular orbital is found in current DFT, although DFT is
touted as an alternative to wavefunction theory.

What is fundamentally wrong with functionals that are not gradient-corrected?

The ionization energy of a molecule can be regarded as the energy required to remove
an electron from its HOMO. How then would a pure density functional theory, with
no orbitals, be able to calculate ionization energy?

Label these statements true or false: (1) For each molecular wavefunction there is
an electron density function. (2) Since the electron density function has only
as its variables, DFT necessarily ignores spin. (3) DFT is good for transition metal
compounds because it has been specifically parameterized to handle them. (4) In the
limit of a sufficiently large basis set, a DFT calculation represents an exact solution
of the Schrödinger equation. (5) The use of very large basis sets is essential with
DFT. (6) A major problem in density functional theory is the prescription for going
from the molecular electron density function to the energy.

Explain in words the meaning of the terms electronegativity, hardness, and the Fukui
function.

10.

2.

3.

4.

5.

7.

9.

[123]

[124]

6.

8.
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HARDER QUESTIONS

1.

2.

3.

4.

5.

6.

It is sometimes said that electron density is physically more real than a wavefunction.
Do you agree? Is something that is more easily grasped intuitively necessarily more
real?

A functional is a function of a function. Explore the concept of a function of a
functional.

Why is it that the HF Slater determinant is an inexact representation of the wave-
function, but the DFT determinant for a system of noninteracting electrons is exact
for this particular wavefunction?

Why do we expect the “unknown” term in the energy equation in
Eq. (7.21)) to be small?

Merrill et al. have said that “while solutions to the [HF equations] may be viewed as
exact solutions to an approximate description, the [KS equations] are approximations
to an exact description!” Explain.

Electronegativity is the ability of an atom or molecule to attract electrons Why is
it then (from one definition) the average of the ionization energy and the electron
affinity (Eq. (7.14)), rather than simply the electron affinity?

Given the wavefunction of a molecule, it is possible to calculate the electron density
function. Is it possible in principle to go in the other direction? Why or why not?

The multielectronwavefunction is a function of the spatial and spin coordinates
of all the electrons. Physicists say that for any system tells us all that can be known
about the system. Do you think the electron densiity function tells us everything
that can be known about a system? Why or why not?

If the electron density function concept is mathematically and conceptually simpler
than the wavefunction concept, why did DFT come later than wavefunction theory?

For a spring or a covalent bond, the concepts of force and force constant can be
expressed in terms of first and second derivatives of energy with respect to extension.
If we let a “charge space” N replace the real space of extension of the spring or bond,
what are the analogous concepts to force and force constant? Using the SI, derive
the units of electronegativity and of hardness.

7.

9.

10.

8.
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Chapter 8

Literature, Software, Books and Websites

The yeoman work in any science…is done by the experimentalist, who must
keep the theoretician honest.

Michio Kaku, Professor of Theoretical Physics, City University of New York.

8.1 FROM THE LITERATURE

A small smorgasbord of published papers will be discussed here, to show how some of
the things that we have seen in previous chapters have appeared in the literature.

8.1.1 To be or not to be
8.1.1.1 Oxirene

Let us start with what looks like a simple problem: what can computational chemistry
tell us about oxirene (oxacyclopropene, Fig. 8.1; the oxirene literature till 1983 has been
reviewed [1]). Labeling one of the carbons of a diazo ketone can
lead to a ketene with scrambled labeling. After excluding the possibility of scrambling
in the diazo compound, this indicates that an oxirene species is formed. However, this
does not tell us whether this species is an intermediate or merely a transition state
(Fig. 8.2). A straightforward way to try to answer this question would seem to be to
calculate the frequencies, at the level used to optimize the structure, and see if there
are any imaginary frequencies – a relative minimum has none, while a transition state
has one (section 2.5). In a preliminary investigation [2] Schaefer and coworkers found
that oxirene was a minimum with the Hartree-Fock (HF) (SCF) method, and also when
electron correlation was taken into account (section 5.4) with the CISD and CCSD
methods, using double-zeta basis sets (section 5.3). However, in going from HF to
CISD to CCSD, the ring-opening frequency fell from 445 to 338 to which
was said to be a much steeper drop than would be expected. A very comprehensive
investigation with the above (“To be …”) title [3], in which the frequencies of oxirene
were examined at 46 (!) different levels failed to definitively settle the matter: even
using CCSD(T) calculations with large basis sets the results were somewhat quirky,
and in fact of the six highest levels used, three gave an imaginary frequency and three



448 Computational Chemistry



Literature, Software, Books and Websites 449

all real frequencies. At the two highest levels the ring-opening frequency was real,
but uncomfortably low (139 and Oxirene is the most notorious case of an
unsolved computational “existence theorem”.

8.1.1.2 Nitrogen pentafluoride

Nitrogen pentafluoride represents an interesting contrast to oxirene. Oxirene is, on
paper, a reasonable molecule; there is no obvious reason why, however unstable it might
be because of antiaromaticity [4] or strain, it should not be able to exist. On the other
hand, defies the hallowed octet rule; why should it be more reasonable than, say,

Yet a comprehensive computational study of this molecule left “little doubt” that
it is a (relative) minimum on its potential energy surface [5]. The full armamentarium
of post-HF methods, CASSDF, MRCI, CCSDT, CCSD(T), MP2 (section 5.4) and DFT
(chapter 7) was employed here, and all agreed that (section 2.6) is a minimum.

8.1.1.3 Pyramidane

If oxirene “should” exist and “should” not, what are we to make of pyramidane
(Fig. 8.3)? This molecule contradicts the traditional paradigm [6] of tetracoordinate
carbon having its bonds tetrahedrally directed: the four bonds of the apical carbon
point toward the base of a pyramid. Part of the calculated [7] potential energy sur-
face of pyramidane is shown in Fig. 8.3. To improve the accuracy of the relative
energies, the MP2 geometries were subjected to single-point calculations (section
5.5.2) using the QCI method (section 5.4.3), with the results shown (Fig. 8.3). At the
QCISD(T)/6-31G*//MP(fc)/6-31G* level pyramidane is predicted to be a relative
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minimum with a barrier of for its lowest-energy isomerization path, to
the tricyclic carbene, which lies above it. This presents us with the aston-
ishing possibility that the exotic hydrocarbon may be isolable at room temperature.
The threshold barrier for isolability at room temperature is about for
example, (E)-cycloheptene, with a barrier of to isomerization, has a room-
temperature halflife ofabout 47 s [8], and the halflife rises steeply with the barrier. Other
properties of pyramidane, including ionization energy and electron affinity (section
5.5.5), heat of formation (section 5.5.2.2c), and NMR spectra (section 5.5.5) were
calculated [7b].

8.1.1.4 Beyond dinitrogen

There has in recent years been considerable interest in the possibility of making
allotropes of nitrogen with more than two atoms per molecule. Curiously, almost
all (the cation has been made [9, 10]) the work reported has been computational
rather than experimental. These compounds are interesting because to any chemist with
imagination the idea of a form of pure nitrogen that is not a gas at room temperature
is fascinating, and because any such compound would be thermodynamically very
unstable with respect to decomposition to dinitrogen.

Perhaps the first serious computational study of nitrogen oligomers was by Engelke,
who studied the analogues of the benzene isomers in Fig. 8.4, first at the uncor-
related [11] then at the MP2 [12] level. The uncorrelated calculations suggested that
1–5 were “stable”, i.e. kinetically stable, although thermodynamically much higher
in energy than dinitrogen. However, on the MP2/6-31G* potential energy surface 1
is a hilltop (section 2.2) and 5 is a transition state (section 2.2). This illustrates the
not-so-rare fact that optimistic predictions at low levels of theory may not be sustained
at higher levels. Noncorrelated ab initio, and in particular, semiempirical (chapter 6)
calculations, tend to be too permissive in granting reality to exotic molecules.

8.1.2 Mechanisms
We have seen, above, that computational chemistry can sometimes tell us with good
reliability whether a molecule can exist. Another important application is to indi-
cate how one molecule gets to be another: how chemical reactions occur. Indeed,
the prime architect of one of the most useful computational tools, the AM1 method
(chapter 6), questioned “whether the mechanism of any organic reaction was really
known” [13] before the advent of computational chemistry! This skepticism was
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engendered by the difficulties and ambiguities in studying very transient intermediates,
and the impossibility (at the time) of observing transition states.

8.1.2.1 The Diels–Alder reaction

This is one of the most important reactions in all of organic synthesis, as it unites two
moieties in a predictable stereochemical relationship, with the concomitant formation of
two carbon–carbon bonds (Fig. 8.5) [14]. The reaction has been used in the synthesis of
complex natural products, for example, in an efficient synthesis of the antihypertensive
drug reserpine [15]. Such a reaction seems to be well worth studying.

The Diels–Alder reaction and related pericyclic reactions, which can be treated qual-
itatively by the Woodward–Hoffmann rules (section 4.3.5), have been reviewed in the
context of computational chemistry [16]. The reaction is clearly nonionic, and the main
controversy was whether it proceeds in a concerted fashion (as indicated in Fig. 8.5) or
through a diradical, in which one bond has formed and two unpaired electrons have yet
to form the other bond. A subtler question was whether the reaction, if concerted, was
synchronous or asynchronous: whether both new bonds were formed to the same extent
as the reaction proceeded, or whether the formation of one ran ahead of the formation
of the other. Using the CASSCF method (section 5.4.3) Li and Houk [17] concluded
that the butadiene–ethene reaction is concerted and synchronous, and chided Dewar
and Jie [18] for stubbornly adhering to the diradical (biradical) mechanism. A DFT
(chapter 7) study also supported the concerted mechanism [19].

8.1.2.2 Abstraction of H from amino acids by the OH radical

This reaction seems more esoteric than the Diels–Alder, and although not “used” at
all, may be very important. Proteins are combinations of amino acid residues, and
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oxidation of proteins by hydroxyl radicals may initiate Alzheimer’s disease, cancer,
and heart disease. The initial step in the destruction or modification of proteins by
hydroxyl radical is likely to be abstraction of a hydrogen atom from the (Fig. 8.6).
In a very thorough study using MP2 (section 5.4) and DFT (chapter 7), Galano et al.
(2001) calculated the geometries of the species (amino acid–OH complexes, transition
states, and amino acid radicals) involved in the reactions of glycine and alanine (Fig.
8.6, R–H and respectively) [20]. The rate constants were also calculated, using
partition functions to calculate the preexponential factor (cf. section 5.5.2.2d). This
paper provides a good account of how computational chemistry can be used to calculate
absolute rate constants for reactions of molecules of moderate size.

8.1.3 Concepts
There are some very basic concepts in chemistry that have proved to be helpful in ratio-
nalizing experimental facts, and which have been taught for perhaps the last fifty years,
but which have nevertheless been questioned in the last decade or so; an example is the
role of resonance in stabilizing species like carboxylate ions. Some newer concepts,
intriguing but not as traditional, have also been scrutinized and questioned; an example
is homoaromaticity.

8.1.3.1 Resonance vs. inductive effects

Beginning organic chemistry students learn that carboxylic acids are stronger acids
than alcohols because of resonance stabilization of the conjugate base (which is more
important than the charge-separation resonance in the acid), while resonance does not
figure in either an alcohol or its conjugate base. This traditional wisdom was apparently
first questioned by Thomas and Siggel, on the basis of photoelectron spectroscopy [21].
They concluded that the relatively high acidity of carboxylic acids is largely inherent
in the acid itself, as a consequence of the polarization of the COOH group caused by
the electronegative carbonyl group pulling electrons from the hydrogen atom. This idea
was taken up by Streitwieser, and applied to other acids, e.g. nitric and nitrous acids,
dimethyl sulfoxide and dimethyl sulfone [22]. The results for carbonyl compounds were
interpreted in accord with another iconoclastic idea, namely that the carbonyl group is
better regarded as than as [23]. This polarization interpretation was
arrived at largely with the aid of atoms-in-molecules (AIM) analysis of the electron
populations on the atoms involved (section 5.5.4), and a simpler variation of AIM (the
projection function difference plot) developed by Streitwieser and coworkers [24]. Work
by others also supports the view that it is “initial-state electrostatic polarization” that is
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largely responsible for the acidity of several kinds of compounds, including carboxylic
acids [25]. Streitwieser cautions that “merely reproducing experiment does not teach
us much unless the results are analyzed to provide understanding of the important
contributions to the numbers in terms of reference systems and simpler models.” [26].
Note that such analysis is presented to a large extent visually (section 5.5.6).

8.1.3.2 Homoaromaticity

Aromaticity [27] is associated with the delocalization of (in the simplest version) elec-
trons (the role of these electrons in imposing symmetry on the prototypical aromatic
species, benzene, is being questioned, but that is another story [28]). A Hückel number
of cyclically delocalized electrons confers aromaticity on a molecule (section 4.3.5).
The idea behind homoaromaticity (homologous aromaticity) is that if a system is aro-
matic, then if we interpose one or more atoms between adjacent orbitals of the
system, provided overlap is not lost, the aromaticity may persist (Fig. 8.7). While there
is little doubt about the reality of homoaromaticity in ions, neutral homoaromaticity
has been elusive [29].
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One molecule that might be expected to be homoaromatic, if the phenomenon can
exist in neutral species, is triquinacene (Fig. 8.7): the three double bonds are held
rigidly in an orientation which appears favorable for continuous overlap with concomi-
tant cyclic delocalization of six electrons. Indeed, its potential aromaticity was one
of the reasons cited for the synthesis of this compound [30]. A measurement of the heat
of hydrogenation of triquinacene found a value lower than that for each
of the next two steps (leading to hexahydrotriquinacene) [31]. This was taken as proof
of homoaromaticity in the triene, i.e. that the compound was stabler than
expected for an unstabilized species (note that this is a small stabilization energy com-
pared to the resonance energy of benzene, a recent computational estimate of which is

However, a recent experimental and computational study of this
question led to the conclusion that triquinacene is not homoaromatic [33]. This was
shown by (a) redetermination of its heat of formation (which had been calculated from
the heat of hydrogenation in the earlier work [31]) using the measured heat of combus-
tion, (b) by calculation of the heat of hydrogenation of a double bond in triquinacene
and in its di- and tetrahydro derivatives (1, 2, 3, Fig. 8.8), and by (c) calculation of mag-
netic properties of the triene and related molecules. The heat of formation was about

higher than the previously reported [31] value, removing the supposed
stabilization energy. The heats of hydrogenation of the double bonds were calculated
with the aid of homodesmotic reactions, a kind of isodesmic reaction (section 5.5.2.2a)
which preserves the number of each kind of bond, and so in which correlation errors
should cancel well; for 1, 2, and 3 the calculated hydrogenation energies of a dou-
ble bond are all essentially the same, showing that a double bond of 1 is an ordinary
cyclopentene double bond. Note that using cyclopentane (Fig. 8.8) rather than, say,
ethane – which would also preserve bond types – to (conceptually) hydrogenate 1, 2,
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and 3 should largely cancel out energy differences due to ring strain. The two mag-
netic properties calculated [33] arise from the presence of a diatropic ring current [27],
which tends to push an aromatic molecule out of a magnetic field (calculated property:
magnetic susceptibility, and which exerts NMR shielding on a proton at or above
the ring center (calculated property: nucleus-independent chemical shift, NICS). NICS
values are obtained from the calculated NMR shielding (section 5.5.5) of a “ghost
nucleus” [34] with no charge, electrons or basis functions, placed at or above [35] the
ring center. Calculation of the changes in and in NICS along the reaction coordi-
nate for the known reaction, the isomerization of diademane to triquinacene (Fig. 8.9),
showed that the transition state, but neither the reactant nor the product, was aromatic.
Homoaromaticity in a few neutral, ground-state molecules has been claimed [36].

The absence of homoaromaticity in triquinacene is probably due to the three pairs of
nonbonded carbons being too far apart, 2.533 Å, from X-ray diffraction; in the transition
state (Fig. 8.9), in contrast, the nonbonded CC distance has been reduced to 1.867 Å
according to a calculation (section 7.2.3.4c).

Significantly, the measured C–C length, 1.319 Å, is close to the normal C–C length
(calculated and measured parameters of triquinacene are cited in [33]).

8.2 TO THE LITERATURE

A feast of information on computational chemistry is available, a small selection of
which is given below.

8.2.1 Books
Listed in chronological order; readers should use their judgement to decide in which
order to read them.

Essentials of Computational Chemistry. Theories and Models, C. J. Cramer, Wiley,
New York, 2002.
Covers a wide range of topics. The level is sometimes quite advanced. Critical
discussions of the literature.

Computational Chemistry: A Practical Guide for Applying Techniques to Real World
Problems, D. Young, Wiley, New York, 2001.



456 Computational Chemistry

A “meta-book” in that it lists several books on computational chemistry; it
also lists many websites concerned with computational chemistry, and many
computational chemistry programs. The material of this book is available at
http://server.ccl.net/cca/documents/dyoung/

A Chemist’s Guide to Density Functional Theory, W. Koch and M. C. Holthausen,
Wiley-VCH, New York, 2000.
Detailed introduction to the theory and applications of DFT.

Quantum Chemistry, 5th edn, I. N. Levine, Prentice Hall, Upper Saddle River, NJ,
2000.
Chapters 15, 16, and 17 give many references to the original literature, to books,
to programs, and to websites. Enormously useful book on quantum chemistry in
general.

Series of books from Wavefunction, Inc, makers of the Spartan computational
chemistry program 2000 and earlier. For available books contact Wavefunction,
http://www.wavefun.com/
These books, oriented toward Wavefunction’s Spartan program, are very useful
introductions to the practice of computational chemistry.

Introduction to Computational Chemistry, F. Jensen, Wiley, New York, 1999.
Good general introduction. Goes fairly deeply into theory.

Computational Thermochemistry, K. K. Irikura and D. J. Frurip, Eds., American
Chemical Society, Washington, DC, 1998.
Useful source of information on the calculation of energy quantities: heats of forma-
tion, reaction energies, bond energies, activation energies, high-accuracy methods (G2,
CBS, etc.), energies of solvation.

The Encyclopedia of Computational Chemistry, 5 volumes, P. von R. Schleyer, Ed.,
Wiley, New York, 1998.
A convenient source of information, but pricey (ca. $3000).

Molecular Mechanics Across Chemistry, A. K. Rappé and C. J. Casewit, University
Science Books, Sausalito, CA, 1997.
Detailed presentation of the applications of MM, particularly in biochemistry and drug
design.

Exploring Chemistry with Electronic Structure Methods, 2nd edn, J. Foresman and
Æ. Frisch, Gaussian, Inc., Pittsburgh, PA, 1996.
Very useful hands-on guide; oriented toward Gaussian 94, but very useful for Gaussian
98 too.

Molecular Modelling. Principles and Applications, A. R. Leach, Longman, Essex,
England 1996.
Good general introduction. Goes reasonably deeply into theory.

Modern Quantum Chemistry. Introduction to Advanced Electronic Structure Theory,
A. Szabo and N. S. Ostlund, 1st edn, revised, McGraw-Hill, New York, 1989.
A detailed, very advanced introduction to basic Hartree–Fock, CI, and MP theory.
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Ab Initio Molecular Orbital Theory, W. J. Hehre, L. Radom, P. von R. Schleyer, and
J. A. Pople, Wiley, New York, 1986.
Still a good introduction to ab initio calculations, although one should realize that
there have been considerable advances since 1986. Basic theory, advice, and extensive
collections of calculated and experimental geometries, energies, and frequencies.

A Handbook of Computational Chemistry, T. Clark, Wiley, New York, 1985.
Still useful, although dated. A revised edition will be welcome.

Book series:
Reviews in Computational Chemistry, K. B. Lipkowitz and D. B. Boyd, Eds., Wiley-
VCH, New York; volume 1 appeared in 1990, volume 17 is currently (July 2001) in
preparation.
A volume in this series typically has from four to eleven chapters, each a kind of tutorial
on the theory and application of some computational method. For tables of contents
and other information see http://chem.iupui.edu/~boyd/rcc.html.

8.2.2 The Worldwide Web
Information on even specialized scientific topics can often be obtained from ordinary
search engines. For example, a popular search engine gave information (ten hits for
each) on these five topics, using the keywords shown: Hartree Fock, potential energy
surface, molecular mechanics, Huckel, Extended Huckel. In several cases the hypertext
leads one to tutorials, and to free programs.

Many websites are given in the books by Young and by Levine, above; some useful
ones are:

http://ccl.osc.edu/ccl/cca.html
CCL, the computational chemistry list. A truly extraordinarily helpful forum for
exchanging ideas, asking questions and getting help. If you join the network you can
expect typically 5–10 messages a day.

http://www.chem.swin.esu.au/chem_ref.html
Gives links to sites for general chemistry, chemistry education, computational
chemistry, etc.

qcldb.ims.ac.jp/index.html
A database of the literature of ab initio and DFT calculations.

www.ccdc.cam.ac.uk/
The Cambridge Crystallographic data Centre; contains the Cambridge Structural
Database, which has X-ray or neutron diffraction structures of more than 230 000
compounds.

8.3 SOFTWARE AND HARDWARE

Many programs are described in the books by Young and by Levine, above; I mention
here only a few that may be of particular interest to people getting into computational
chemistry.
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8.3.1 Software
SPARTAN
Wavefunction, http://www.wavefun.com/
This is a suite of programs with MM (SYBYL and MMFF), ab initio, semiempirical
(MNDO, AM1, PM3), and DFT, with its own superb graphical user interface (GUI) for
building molecules for calculations, and for viewing the resulting geometries, vibra-
tional frequencies, orbitals, electrostatic potential distributions, etc. SPARTAN is a
complete package in the sense that one does not need to buy add-on programs like, say,
a GUI. The program is very easy to use and its algorithms are robust – they usually
accomplish their task, e.g. the sometimes tricky job of finding a transition state usually
works with SPARTAN. Versions of the program are available for PCs running under
Windows NT and LINUX, for Macs, and for UNIX workstations. It has some high-level
correlated ab initio methods and is nevertheless extremely useful for research, not to
mention teaching.

GAUSSIAN
www.gaussian.com/
The most widely used computational chemistry program. Actually a suite of programs
with MM (AMBER, DREIDING, UFF), ab initio, semiempirical (CNDO, INDO,
MINDO/3, MNDO, AM1, PM3) and DFT, and all the usual high-level correlated
ab initio methods. The common high-accuracy methods are available simply by key-
words. There is a large number of basis sets and functionals. Electronically excited
states can be calculated. GAUSSIAN has appeared in improved versions every few
years from 1970 (…G92, G94, G98). It is now available in versions for PCs run-
ning under Windows NT and LINUX, and for UNIX workstations. GAUSSIAN does
not have an integrated GUI, but there are several graphics programs for creating input
files and for viewing the results of calculations. GaussView, expressly designed for
GAUSSIAN 98, is highly recommended as the solution to all GAUSSIAN graphics
problems.

GAMESS (General Atomic and Molecular Electronic Structure System)
www.msg.ameslab.gov/GAMESS/GAMESS.html
Not as many options as GAUSSIAN but free. Versions are available for PCs, Macs,
UNIX workstations and supercomputers.

HyperChem
http://www.hyper.com
Has MM (MM+, AMBER, BIO+, OPLS), semiempirical (extended Hückel, CNDO,
INDO, MINDO/3, MNDO, ZINDO/1, ZINDO/S, AM1, PM3), Hartree-Fock, and
single-point MP2. Available for PCs with Windows 95, 98, NT and 2000, and UNIX
workstations.

Q-Chem
www.q-chem.com/
“The first commercially available quantum chemistry program capable of analyzing
large structures in practical amounts of time.” For ab initio (including high-level
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correlated methods) and DFT. Q-Chem is available for PCs running under LINUX,
for UNIX workstations, and for supercomputers.

JAGUAR
www.psgvb.com
Made by Schrödinger, Inc., JAGUAR is an ab initio (Hartree Fock and MP2) and DFT
package that uses sophisticated algorithms to speed up ab initio calculations. It is said
to be particularly good at handling transition metals, solvation, and conformational
searching. The Jaguar algorithms combined with the SPARTAN GUI are available as
TITAN from the makers of JAGUAR and SPARTAN.

ACES II
www.qtp.ufl.edu/Aces2/
Particularly recommended for MP2 calculations and for CCSD(T) optimizations +
frequencies, which latter are perhaps the most reliable calculations that can currently
be done on molecules of reasonable size (up to about 10 heavy atoms). CCSD(T)
optimizations and frequencies tend to be considerably slower with some other programs.
Available for UNIX workstations and supercomputers.

MOLPRO
www.tc.bham.ac.uk/molpro/
Intended for high-level correlated ab initio calculations (multiconfiguration SCF, multi-
reference CI, and CC). “The emphasis is on highly accurate computations … accurate
ab initio calculations can be performed for much larger molecules than with most other
programs.” MOLPRO has been run on a variety of machines with UNIX-type operating
systems.

8.3.2 Hardware
Someone beginning computational chemistry, who intends to use it extensively enough
to warrant having one’s own machine (strongly recommended), might wish to get a
high-end PC running under Windows NT or LINUX: such a machine is fairly cheap
and it will do even sophisticated correlated ab initio calculations. A 1.5 MHz Pentium
with 1GB of memory and 40GB or more of disk space is now not unusual (soon
it may be substandard). While this is a reasonable choice for general computational
chemistry, certain jobs will run faster on other configurations of machine and operating
system. Using standard Gaussian 94 test jobs and various operating systems, and varying
software and hardware parameters, Nicklaus et al. comprehensively compared a wide
range of “commodity computers” [37]. These are personal computers like those of the
Pentium series, and machines in a similar price range (the costliest was about U.S.
$5000 and most were less than $3000, ca. 1998). They concluded that “commodity-
type computers have … surpassed in power the more powerful workstations and even
supercomputers ….Their price/performance ratios will make them extremely attractive
for many chemists who do not have an unlimited budget, …”
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8.3.3 Postscript
A few years ago the president of a leading computational chemistry software firm told
the author that “In a few years you will be able to have a Cray [a leading supercomputer
brand] on your desk for $5000.” Supercomputer performance is a moving target, but
the day has indeed come when one can have on one’s desk for a few thousand dol-
lars computational power that was not long ago available only to an institution, and
for a good deal more than $5000. A corollary of this is that computational chemistry
has become an important, indeed sometimes essential, auxiliary to experimental work.
More than that, calculations have become so reliable that not only can parameters like
geometries and heats of formation often be calculated with an accuracy rivalling or
exceeding that of experiment, but where high-level calculations contradict experiment,
the experimentalists might be well advised to repeat their measurements. The implica-
tions for the future of chemistry of the happy conjunction of affordable supercomputer
power and highly sophisticated software hardly needs to be stressed.
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