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CAUSALITY, MEASUREMENT THEORY AND
THE DIFFERENTIABLE STRUCTURE

OF SPACE-TIME

Introducing graduate students and researchers to mathematical physics, this
book discusses two recent developments: the demonstration that causality can
be defined on discrete space-times; and Sewell’s measurement theory, in which
the wave packet is reduced without recourse to the observer’s conscious ego,
nonlinearities or interaction with the rest of the universe.

The definition of causality on a discrete space-time assumes that space-time is
made up of geometrical points. Using Sewell’s measurement theory, the author
concludes that the notion of geometrical points is as meaningful in quantum
mechanics as it is in classical mechanics, and that it is impossible to tell whether
the differential calculus is a discovery or an invention. This mathematical dis-
course on the relation between theoretical and experimental physics includes
detailed accounts of the mathematically difficult measurement theories of von
Neumann and Sewell.
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Preface

Someone once said that a book is never finished; it is merely abandoned. As the
truth of it began to sink in, I sometimes wondered what on earth made me start
upon this one!

I first met Richard Eden while visiting Jacques Mandelbrojt in Marseilles, in
the late 1960s or early 1970s. We were next thrown together in 2000–2001 in
Clare Hall, Cambridge, where he was one of the presiding deities and I a visiting
fellow. In the intervening decades we had both moved from one production line
to another. Richard’s questioning about what I had been doing compelled me
to organize my thoughts, and this book is the result; it would not have come
into being without the encouragement offered by Richard, and by Jamal Nazrul
Islam.

The influence of Wigner, whom I barely knew, permeates almost every page of
this book. I first met him in 1961, at the Weizmann Institute. I was then working
for my Ph.D. under Professor Giulio Racah on a group-theoretical problem of
nuclear spectroscopy, and in awe of Wigner. As I was introduced to him, he blew
my self-confidence to smithereens by asking for my opinion about the unrea-
sonable effectiveness of mathematics in physics – I had none – but he had the
kindness to send me a typescript of his article when he returned to Princeton.
That question has haunted me ever since.

It was not only Richard Eden whom I met in Marseilles; another person was
Hans-Jürgen Borchers. We had rooms next to each other in the old CNRS guest
house on Chemin Joseph Aiguier, which was in the middle of nowhere. As a
result, we would often sit in one of our rooms late into the night over a cup of
approximate coffee, engaged in what Borchers was to describe later as ‘furious
discussions’, but which to me were long silences punctuated by the occasional
remark. Out of these discussions, or whatever, grew a friendship and collabora-
tion that has lasted till now, and the fruits of which are reflected in this book.
Since then, I have been a regular visitor to Göttingen where I made lifelong
friends, first and foremost Hansjörg Roos and Helmut Reeh, from whom I have
learnt more than I can tell. For me the words Extra Göttingam non est vita have
a special meaning.

My meeting with Geoffrey Sewell was also accidental. It happened in the
cloakroom, not of Victoria Station, but of a student hostel in Swansea. I have
not met Abner Shimony in person at all, but we have corresponded for several
years by e-mail; my daughter, Mandu, was a friend of his wife, Manana Sikic,
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and worked for her at Yale. Bertrand Russell said that one should choose one’s
parents with care, but then he was a philosopher; a physicist may counter that
one should choose one’s children with care. It is not easy to be both a physicist
and a philosopher.

The last accident that has left its imprint on this book is recent. Professor
Gustav Born, the son of Max Born, gave a talk about his father in Göttingen in
late October, 2008. I did not go to his talk, but Hansjörg Roos did, and found
that we both had been unaware of Born’s later works. I have not had enough
time to absorb all of them, but I hope to have given a brief but fair indication
of the relevant ones. I believe that Max Born’s later works have the potential
to stand physics on its head; this possibility is discussed, fittingly, in the last
section of the Epilogue. These works of Born (and Pauli) mean that I can no
longer make a certain claim to originality, but I could not have wished for more
illustrious predecessors.

My colleagues Daniel Berend, Theodore Eisenberg and Michael Lin in
Beer-Sheva have befriended me both intellectually and otherwise. Their names do
not appear in the Index because they work in other areas, but Chapter 1 and the
Mathematical Appendices have gained very considerably from their recensions,
and that was no accident.

Shelley once wrote that ‘Life, like a dome of many-coloured glass, Stains the
white radiance of Eternity’. So, I believe, does the relation between theoretical
and experimental physics, which is the unstated interlinear of this book. As
I abandon this dome, I realize that there are many more pieces of stained glass
to be put in place, and hope that it will be done by craftsmen more skilled than I.

Pardes Hanna, Israel R N Sen
April 2009 E-mail: rsen@cs.bgu.ac.il
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To the reader

I have tried to make this book accessible to the average senior undergraduate
or beginning postgraduate student in physics, irrespective of specialization. The
mathematics used above and beyond what every physics undergraduate is taught
is provided in the Mathematical appendices.

A very good idea of the contents of the book may be formed by reading the
Prologue and the Introductions to Parts I and II, in that order. They are written,
as far as possible, in plain English. They will also give the reader an idea of the
mathematics he or she may be lacking.

A firm grasp of sets and mappings and of the mathematical structure of the
real number system is basic to the whole book. Appendices A1 and A2 develop
this material in sufficient detail. Part I requires an equally firm grasp of basic
point-set topology, which is provided in Appendix A3. Completions, both metric
and uniform, are treated in Appendix A4. Differentiable manifolds are defined
in Appendix A8. There are no exercises so-called, but every now and then the
reader is invited to satisfy himself or herself of some point or the other. They
should not impose undue hardship, and may usefully be taken up.

Chapters 6–11 of Part II use von Neumann’s definition of a separable Hilbert
space over the complex numbers, and the basic results of the structure the-
ory of self-adjoint operators, known as spectral theory, on it. This is given in
Appendix A6. Students of quantum mechanics will be familiar with much of
this material, but maybe not at the required level of precision. The theory of
measure and integral, on which it is based, is given in Appendix A5. Chapter 10
uses the notion of conditional expectation, which is the subject of Appendix A7.
Some of the material of Appendix A8 is needed in Chapter 7, and some in
Chapter 12.

The accounts these appendices give are selective, and – quite deliberately –
present mathematics as a part of culture, not as a part of technology. For the
same reason, there are remarks on an assortment of topics that range from
curiosities to watersheds, and even an occasional unsolved problem. They are
there to add to the reader’s enjoyment.

The appendices may also be used as a work of reference. To facilitate this,
all mathematical terms being defined are set in boldface. Some mathematical
terms are defined in the body of the main text, and they too are set in boldface.
Terms that are specific to Part I are set in italics, as are terms from physics that
need definition or emphasis.



xx To the reader

The contents of Part I are built from scratch; the possibility of exploiting
standard mathematical results emerges only towards the end. The treatment
offered is adapted to this circumstance. In Chapter 2, almost all the results are
proven; in Chapter 3, about half, and hardly any in Chapters 4 and 5. Most of
the results are self-evident in Minkowski space, but require proof in our setting.
Some of the proofs are difficult, but this happens only in the later stages; by
then they can be omitted.

There are a large number of quotations in the text. The published source is
almost always indicated, including the page number. References to these page
numbers are abbreviated to p. or pp. Cross-references to pages in this book are
spelled out e.g. (page 23) or (pages 161–163). The index is an index of definitions
and names; it does not list all occurrences of a term. It is supplemented by a list
of symbols that are specific to Part I.

Formulae and LATEX environments (theorem, lemma, definition, remark, etc.)
are numbered consecutively, within chapters, the former within brackets, the
latter without. Thus, (3.17) means formula (3.17) in Chapter 3, and Lemma 10.7
means the environment (which happens to be a lemma) 10.7 in Chapter 10.
The appendices are numbered A1–A8, with (A1.6) being a formula and A6.31
a definition. Formulae are referred to by number only; other environments are
referred to by name and number.

Parts I and II of the book can be read independently of each other. The link
between them is explained in the Prologue, and in the Introduction to Part II.



Prologue

The quantitative data obtained in any physical experiment are recorded as finite,
ordered sets of rational numbers. All such sets are discrete. However, when a
physicist sits down to make sense of such data, the tools he or she employs are
generally based upon the continuum: analytic (or at least smooth) functions,
differential equations, Lie groups, and the like. It is the view of many eminent
mathematicians that ‘bridging the gap between the domains of discreteness and
of continuity . . . is a central, presumably even the central problem of the founda-
tions of mathematics’,1 yet Fritz London did not seem to have had the slightest
hesitation in writing, in the very first paragraph of his book on superfluidity,2

‘that new differential equations were required to describe [the observed behaviour
of]. . . “superfluid” helium. . . ’ The physicist had stepped over the gap which has
occupied philosophers for two millenia without even noticing that it existed!3

This gap is but a fragment of one that separates theoretical from experimental
physics. Some of the most important physicists of the first half of the twentieth
century have expressed themselves on the subject, and it is instructive to compare
their views. Dirac, for example, had the following to say:4

The physicist, in his study of natural phenomena, has two methods of
making progress: (1) the method of experiment and observation, and (2) the
method of mathematical reasoning. The former is just the collection of
selected data; the latter enables one to infer results about experiments
that have not been performed. There is no logical reason why the second
method should be possible at all, but one has found in practice that it
does work and meets with reasonable success. This must be ascribed to
some mathematical quality in Nature, a quality which the casual observer
of Nature would not suspect, but which nevertheless plays an important
role in Nature’s scheme.

There can be no clearer acknowledgement of this gap than Dirac’s remark: ‘There
is no logical reason why the second method should be possible at all.’

1 See (Fraenkel, Bar-Hillel and Levy, 2001, p. 211).
2 See (London, 1964, p. 1).
3 The emphases in the quotations are in the originals.
4 See (Dirac, 1938–39, first paragraph).



2 Prologue

It is well known that Heisenberg stumbled upon matrix mechanics while
attempting to express quantum theory entirely in terms of observable quanti-
ties. Many years later, he wrote an article in the literary journal Encounter in
which he recounted the following:5

It is generally believed that our science is empirical, and that we draw our
concepts and our mathematical constructs from empirical data. If this was
the whole truth, we should when entering a new field introduce only those
quantities that can directly be observed, and formulate laws only by means
of these quantities.

When I was a young man I believed that this was just the philosophy
which Albert Einstein had followed in his theory of Relativity. I tried,
therefore, to take a corresponding and related step in Quantum theory by
introducing the matrices. But when I later asked Einstein about it, he told
me: ‘This may have been my philosophy, but it is nonsense all the same.
It is never possible to introduce only observable quantities in a theory. It
is a theory which decides what can be observed. . . ’ What he meant was
that. . . we cannot separate the empirical process of observation from the
mathematical construct and concepts.

The ‘mathematical quality in nature’ of Dirac’s description, acknowledged if
not articulated by Einstein and Heisenberg, was a philosophical position that
went back to the ancient Greeks – to geometry, measuring the earth, and arith-
metic, the art of counting. But, in the last three decades of the nineteenth
century, Georg Cantor had developed his theory of transfinite numbers which
challenged this wisdom. Cantor introduced the notion of a set, and, using this
notion, established several epoch-making results. One of these was a precise char-
acterization of infinite sets.6 Another was the proof that the set of all subsets
of a given set is, in a precisely defined sense, larger than the original set. This
construction, called the power-set construction, could be applied to infinite sets
to yield an unending succession of infinite sets, each larger than its predecessor;
a revolutionary idea in mathematics at the end of the nineteenth century. It
was this freedom to pursue ideas, unfettered by constraints other than those of
consistency, that – Cantor asserted – distinguished mathematics from the other
sciences.7

It seems unlikely that Einstein, Dirac and Heisenberg were influenced in any
way by Cantor’s work. The same could not be said of Wigner, if only because of
his friendship with von Neumann. Fifteen years before Heisenberg’s Encounter

5 See (Heisenberg, 1975, pp. 55–56).
6 A brief but adequate introduction to Cantor’s theory is given in Appendix A1.
7 A summary of Cantor’s position is given in the section entitled The nature of mathematics

in (Dauben, 1990, pp. 132–133). References to original and secondary sources will also be
found in this work.



Prologue 3

article, Wigner, in his celebrated essay on the unreasonable effectiveness of math-
ematics in the natural sciences,8 had asked the question: what is mathematics?,
and answered it, paraphrasing the logician and philosopher of science Walter
Dubislav, as follows: ‘. . . mathematics is the science of skillful operations with
concepts and rules invented just for this purpose.’ If that were the case – and
many practising mathematicians today would affirm that it is indeed the case –
the effectiveness of mathematics in the natural sciences would be difficult to
understand.

Taking stock, we may discern two world-views that are diametrically opposed
to each other: the pre-Cantorian view that mathematics is, in everyday speech,
discovered and not invented, and the post-Cantorian one that mathematics
is invented, and not discovered.9 It turns out, however, that between these
metaphysical opposites, there is room for scientific analysis.

By a scientific analysis we mean (in the present context) one that is based
upon physical principles and carried out by mathematical means. The preci-
sion required for such an analysis can only be attained by narrowing the field
of enquiry. We shall confine ourselves to the following question: is the differ-
ential calculus a discovery, or an invention? Or, in scientific language: is the
differentiable structure of space-time a consequence of physical principles? 10

In Part I of this book, we shall establish some results that suggest that, subject
to a certain caveat, the answer to the last question is in the affirmative. The
physical principle that has these profound mathematical consequences is causality
in the sense of Einstein and Weyl.11 It turns out that the notion of Einstein–Weyl
causality can be defined, as a partial order, on any infinite set of points, totally
devoid of any predefined mathematical structure. Such causally ordered spaces
can be completed – i.e., densely embedded in continua – in a unique manner,
and the causal order can be extended, again uniquely, to the completed space.
Furthermore, when these continua are finite-dimensional, they have the (unique)
local structure of a differentiable manifold. If we agree to call a countably infinite
set on which Einstein–Weyl causality is defined a discrete space-time, then the
results can be stated as follows:

(i) Any discrete space-time can be completed, i.e., embedded in a continuum.
The discrete space-time defines this continuum uniquely.

(ii) The causal order of the discrete space-time has a unique extension to its
completion.

8 See (Wigner, 1970, p. 224).
9 What was simplistically described above as the pre-Cantorian view is actually a vast corpus

in philosophy, with a history that goes back more than two millenia.
10 The statement that the real line R has a differentiable structure is equivalent to the state-

ment that there is such a subject as the differential calculus of a single real variable. A
generalization will be found in Section A8.2.

11 For details, see (Borchers and Sen, 2006).
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(iii) The completion of a discrete, finite-dimensional space-time has the local
structure of a differentiable manifold.

The results described above were obtained on the assumption that the notion
of geometrical points (in the sense of Euclidean geometry) may be used in physics
without further analysis. This assumption was strongly controverted by Wigner.
Following earlier work by Wigner himself, Araki and Yanase established, within
the framework of von Neumann’s measurement theory, that an observable that
does not commute with a conserved quantity cannot be measured precisely.12

Since the position operator of a point-particle would seldom commute with the
Hamiltonian, its position could not be measured precisely, which led Wigner
to comment to Haag that ‘there are those of us who believe that there are no
points’.13

Part II of the book is an attempt to assuage Wigner’s doubts. The strategy
is extremely simple: try to show that the situation is no worse in quantum
mechanics than it is in classical mechanics. But the validity of this procedure is
based on the assumption that there are limits to the usefulness of Francis Bacon’s
motto ‘dissecare naturam’. In practical terms, a concept of measurement which
is untenable in classical mechanics should be treated with suspicion in quantum
mechanics.

John Bell, for example, has described quantum mechanics as ‘our most fun-
damental physical theory’.14 If quantum mechanics is fundamental and classical
mechanics a mere � → 0 limit of it, then it is less than obvious how a comparison
with the ills of classical mechanics can cure the ills of quantum mechanics. It is
true that quantum mechanics ‘explains’ a set of natural phenomena that classical
mechanics cannot; but it is equally true that the basic ‘observables’ of quantum
mechanics are borrowings from the dynamical variables of classical mechanics:
‘Who is the Potter, pray, and who the Pot?’15

Since the aim of theoretical physics is to understand physical phenomena that
are observed, a theory – I maintain – should fit a particular observational win-
dow.16 For example, the theory that is appropriate for describing the behaviour
of ideal gases in thermodynamic equilibrium is inappropriate for describing the

12 See (Araki and Yanase, 1960).
13 This comment was made by Wigner after Haag’s talk at the International Colloquium on

Group Theoretical Methods in Physics in Philadelphia in 1986. Wigner’s own account of
his doubts will be found on page 207.

14 The quotation, and the context, will be found on page 194.
15 The Rubayyat of Omar Khayyam, translated by Edward FitzGerald.
16 The notion of an observational window is arrived at by attempting to understand Einstein’s

maxim, ‘it is a theory which decides what can be observed’. First, the observer decides what
he or she wants to observe, and devises a theory to account for the observed regularities. A
‘description of physical phenomena’ is a description of the temporal evolution of the state of
a physical system. The observational window determines the variables of state. The latter
are required to be complete, i.e., temporal evolution is required to map the space of states
into itself. Finally, this requirement constrains what can, or cannot, be observed. The term
‘observational window’ was first used in (Roos and Sen, 1994).
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scattering of alpha-particles by thin metallic foils, and vice versa. We assume that
the theories we are working with are not ‘theories of everything’. Their function
is to permit logical deductions from well-defined premises. It is therefore reason-
able to demand that each theory be internally consistent.17 To sum up, I do not
see the question: which is more fundamental – quantum mechanics or classical
mechanics – as one that advances scientific enquiry.18 Classical mechanics has
provided us with a body of concepts in terms of which equations of motion can
be precisely framed for several classes of state spaces. Quantum mechanics has
not changed these concepts; it has added a single new concept, but the result
has been a revolutionary change in the space of states, which is the same as its
observational window. I therefore believe that the strategy mentioned earlier is
well conceived.

After this explicit statement of the assumptions that underlie our endeavour,
we may turn to the essential point. We want to show that, as far as limitations
on the accuracy of a measurement are concerned, they are no worse in quantum
mechanics than they are in classical mechanics. But what are the factors that
limit the accuracy of measurements in classical mechanics?

In the theory called classical mechanics, there are no physical principles that
limit the accuracy of measurements. Measurements are assumed to be instanta-
neous, and therefore even the position of a moving point-particle can be measured
precisely at any instant of time. What, then, is the source of limitations on the
accuracy of classical measurements on which we are trying to build our case? We
begin with a few historical remarks, some of which are common knowledge while
others have hardly entered into the consciousness of the scientific community.

Although Einstein’s contributions were decisive in establishing the particle
aspect of light, Einstein himself remained a lifelong sceptic of quantum mecha-
nics. His exchanges with Bohr are well known;19 Einstein remained unconvinced.
However, Einstein also carried on a lifelong correspondence with Max Born on
the subject. Born too failed to convince Einstein, but, in the process – sometime
before 1954 – he came to a crucial realization: the reason why an exact determi-
nation of the state of a physical system – be it classical or quantum-mechanical –
was impossible lay in the mathematical structure of the real number system. He

17 Unfortunately, this demand cannot always be met. As far as agreement between theory and
experiment is concerned, quantum electrodynamics (QED) is by far the most successful
physical theory that we have, but it is known to be logically inconsistent. The logical
inconsistency of QED was pointed out, from two different directions, by Dyson and Haag
(Dyson, 1952; Haag, 1955). The explanation of this puzzle remains – or so the present author
contends – the most important unsolved problem in theoretical physics. By explanation
we mean a logical deduction from accepted premises, and not a belief, as articulated by
Weinberg (Weinberg, 1995, p. 499, last paragraph).

18 It may be that in making this assertion I am, as Keynes would have it, being driven by the
ghosts of defunct philosophers.

19 See, for example, (Wheeler and Zurek, 1983), which contains 47 pages on the Bohr–Einstein
dialogue, and reprint of the EPR paper (Einstein, Podolsky and Rosen, 1935) and Bohr’s
reply to it.
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pointed out a fact to which no physicist, before him, seems to have paid the
slightest attention.20 This fact is the following: the rational numbers are count-
able, and therefore form a set of Lebesgue measure zero on the real line. That is,
almost every real number is irrational. Now the explicit decimal representation
of an irrational number is nonrecurrent, and requires an infinite number of digits.
It is therefore absurd to assert that the position of a point-particle on a real line
can be measured precisely. At least ten years before the paper by Lorenz that
set off the chaos revolution,21 Born noticed what has since become known as the
‘sensitive dependence on initial conditions’ of nonlinear classical mechanics, and
used these facts to make the following assertions about classical point-particle
mechanics:

(i) From the viewpoint of the experimentalist, it makes little sense to talk
about the position of a point-particle. What makes sense is the notion of
a probability distribution about its position.

(ii) In view of the sensitive dependence on initial conditions, a second determi-
nation of the position of a point-particle – if successful – could be interpreted
as a reduction of the probability distribution; it would effect a drastic change
in the probability distribution.

We may now hone our strategy to the following. Since the measurement of a
continuous variable in classical physics is possible only within an error ε, where
ε is an arbitrarily small but positive number, what we have to show is that, given
any ε > 0, the corresponding quantum-mechanical observable can be measured
within this error.

To sum up: the gap between the domains of discreteness and of continuity
in mathematics is equally a gap between experimental and theoretical physics.
Here classical mechanics and nonrelativistic quantum mechanics are on a par
with each other, as they both rely on the same local topological–geometrical
structure of space-time.

As is well known, von Neumann’s measurement theory, the source of Wigner’s
doubts, requires the intervention of the observer’s ‘conscious ego’. The mathe-
matical part of the theory cannot account for the reduction of the wave packet; it
is, as we shall find, a theory of entanglement (the term was coined by Schrödinger
three years after the appearance of von Neumann’s book) rather than a theory
of measurement. A resolution of Wigner’s doubts requires, first and foremost,
a resolution of the quantum measurement problem in a mathematical man-
ner: namely, a theory that accounts for the reduction of the wave packet in
which appeal to the observer’s conscious ego is replaced by a significantly weaker
mathematical hypothesis.

20 In (Sen, 2008) I referred to this fact as ‘known to all but honoured by none’. I was wrong;
Max Born had seen its implications more than 50 years earlier.

21 The reference is to (Lorenz, 1963).



Prologue 7

Such a theory has been proposed by Sewell, and extended by the present author
to continuous spectra.22 This theory may aptly be described as a bridge over the
Heisenberg cut, with movement across it being controlled by the Schrödinger–von
Neumann equations. In this theory observables with discrete, rational spectra
can be measured precisely, and therefore observables with continuous spectra can
be measured with an error ε > 0, where ε can be made arbitrarily small. This
is not very different from the measurement of a continuous variable in classical
mechanics, if the result of measurement is constrained to be a rational number.
Therefore one is tempted to claim that quantum mechanics does not make the
situation any worse than it already is in classical physics.

However, Sewell’s theory assumes that the state spaces of object and apparatus
are finite-dimensional. As is well known, the canonical commutation relation
qp − pq = i� cannot be realized on finite-dimensional vector spaces; it runs afoul
of the identity Tr (qp − pq) = 0. This causes no trouble in measurement theory,
as quantum-mechanical uncertainties are negligibly small by comparison with
errors of observation.23 Nevertheless, the assumption may be at variance with
the general principles of quantum mechanics as they are commonly understood,
and that is why the above claim should be tempered with caution.

Is it possible to lift the assumption of finite-dimensionalities from Sewell’s
measurement theory? The answer is not known, but to do so it will almost
certainly be necessary to devise a framework (within nonrelativistic physics)
for describing interactions of microscopic quantum systems with macroscopic
systems considered as a whole. In the opinion of the present author, this is a key
unsolved problem in nonrelativistic quantum mechanics.

The development of Parts I and II is mathematically rigorous. The results
that are quoted without proof – and there are many – have been proven. The
phrase ‘it may be shown that. . . ’ (or something similar) invariably means ‘it has
been shown that. . . ’. I use the former phrase because it sounds better to my
ears. Again, mindful of the intended readership, many concepts defined in the
appendices are recapitulated in footnotes to the text, or else a reference is given
to the page on which it is defined. The word ‘page’ (or ‘pages’) is spelled out
when it refers to a page in this book, and abbreviated to p. (or pp.) when it
refers to some other source.

In a book such as the present one, it is neither possible nor desirable – or so
the present author contends – to avoid expression of the opinions and beliefs
that guide the endeavours of physicists. My personal opinions may diverge from
the consensus (or, when there is no consensus, from commonly held views), and
I have tried to keep the two separate. My personal beliefs and opinions are

22 See (Sewell, 2005; Sen, 2008).
23 The observable consequences of quantum mechanics derive mainly from the superposition

principle, which holds on any linear space, irrespective of its dimensionality.
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expressed either in the first person singular, or marked by a qualifier as in the
first sentence of this paragraph.

Many of the references cited have been reprinted in various collections. Many
articles originally published in German have been translated into English. I have
referred to reprint volumes and English translations wherever I have had access
to them, but I have omitted the names of the translators (which were not always
available). Some of the references to books have been dictated by the desire to
provide a historical perspective, but without pretensions to historical scholarship;
others, by what I own, or have access to. Few of them are of recent vintage; I
have not referred to later editions or reprints that I have not been able to consult.

Part I of this book is based entirely on the special theory of relativity; Part II,
entirely on nonrelativistic quantum mechanics. Since I do not consider the unity
of physics to be a good working hypothesis for a mathematical treatment,24 I
think that nonrelativistic quantum mechanics should stand as an autonomous,
logically consistent edifice, despite its inadequacy as a physical theory at high
energies. But I should add that nonrelativistic mechanics, both classical and
quantum, assumes mathematical structures on space and time that appear to
have their origins on Einstein–Weyl causality.

As stated earlier in different words, we have fallen short of our goal of deci-
phering whether the differential calculus is a discovery or an invention. But the
search has revealed some new questions of interest in mathematics, theoreti-
cal physics and possibly in experimental physics, and these are discussed, or
speculated upon, in the Epilogue.

24 This is only one possible viewpoint among many. Theorists have long been attempting to
integrate a larger class of problems as one unit, and some of the more recent attempts,
such as string and superstring theories, have led to phenomenal advances in mathematics.
If these endeavours succeed in reaching even a few of their goals, I will have to change my
opinion.



Part I

Causality and differentiable structure





Introduction to Part I

In the special theory of relativity, the principle that no signal can propagate
faster than light (which we shall call Einstein–Weyl causality) determines a par-
tial order (the past–future order) on Minkowski space M4, which is just the
topological space R4 with the Minkowski inner product defined on it. In 1959,
A D Aleksandrov observed that this partial order defines a topology on M4 which
is the same as the usual (product) topology of R4 (Aleksandrov, 1959). Let
p ∈ M4 and C±

p be the forward (future) and backward (past) cones at p. Finally,
let q ∈ C+

p . Denote by I[p, q] the set C+
p ∩ C−

q . The interior of I[p, q] will be
denoted by I(p, q) and called an open order interval. It is nonempty if q does not
lie on the mantle of C+

p (Fig. I.1(b)). One sees immediately that the family of
open order intervals forms a base for the usual topology on R4. Note that this
topology is Hausdorff; if a, b are two distinct points in M4, then one can find
open order intervals Ia, Ib such that a ∈ Ia, b ∈ Ib and Ia ∩ Ib = ∅, and this is
true for any Mn, n ≥ 2.

What happens in nonrelativistic physics? Here too one can claim to have a
principle of causality (which we shall call Newton causality), which asserts that
there are no limits on signal velocities: the ‘velocity of light’ is infinite. Irre-
spective of the physical content of this principle, it is mathematically nontrivial.
For simplicity, consider a two-dimensional space-time R2, space and time being
represented on the X- and Y-axes respectively. The ‘forward cone’ at p = (x0, t0)
is the half-plane {(x, t)|all x, t ≥ t0}. Let q = (x1, t1) with t1 > t0. Then

........................................................................................
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(b) Minkowski space-time

Fig. I.1. Order intervals in two-dimensional space-time
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I(p, q) = {(x, t)| all x, t0 < t < t1} is an open order interval (Fig. I.1(a)). These
order intervals define a topology, which is not the standard topology of R2. It is
not Hausdorff; distinct points with the same value of t cannot be separated by
open order intervals.

Since causality principles are physical principles, the fact that they have
mathematical consequences deserves notice. However, Minkowski space and New-
tonian space-time come with so many predefined mathematical structures1 that
the precise contribution of causality principles becomes difficult to separate. Can
one define causal structures on point-sets that have no predefined mathematical
structures on them?

The answer should be in the affirmative if one could define the analogues of
light cones on them. Light cones in Minkowski space are families of light rays
with very specific properties. Light rays themselves have a total order defined on
them, the order in the direction of propagation. In the following, we shall use the
term light rays to denote the space-time paths of light rays, as one pictures them
in Minkowski spaces. In Minkowski spaces, two light rays intersect only once, or
not at all. However, in the formation of an image through a lens – which takes
us out of Minkowski space – two light rays intersect twice, but at well-separated
points; the local behaviour of families of light rays may not be the same as their
global behaviour. The causal properties of space-time are completely determined,
both locally and globally, by light rays and their intersections. The example of
image formation by a lens shows that the local and global properties of the
intersections of light rays may be very different, and one has to remain sensitive
to this fact.

The order properties of light rays and their intersections can be abstracted.
A key property is that between any two distinct points on a light ray lies a
third, which means that a light ray must have infinitely many points. That
rules out finite sets. It turns out that the abstracted properties of light rays
and their intersections – which may legitimately be called causal structures –
can be defined on countably infinite sets. Such sets are sharply distinguished
from continuua, and cannot carry any differential structure in the usual
sense.

We start by making precise the notion of a causal structure on a structureless
set. This requires a certain amount of care, as one really has to walk a tightrope
between the too general and the too restrictive. As expected, the order structure
defines a topology, which we call the order topology. The essential part is a
careful analysis of this topology, and the crowning result of this analysis is that
the order topology is completely regular and that one-point sets are closed. Such
spaces are called Tychonoff spaces. At this point we begin to make contact with
standard mathematics – so far we have not had use of even the real numbers –
and can make use of the following results:

1 Topological, linear, differential, metric, invariance groups. . .
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(i) A completely regular space is uniformizable.
(ii) A uniform space admits a uniform completion.

But much work remains; the whole exercise would be pointless if the order
structure of the original space could not be extended to the completed space.
It can, but only after a substantial effort. The original ordered space is densely
embedded in the new ordered space so obtained. The new ordered space is also
completely regular – in fact, Tychonoff – and therefore uniformizable. However,
it is already complete in this uniformity.2 Such spaces are called completely
uniformizable. Now a remarkable theorem due to Shirota states that a topological
space is completely uniformizable if and only if (i) it is Tychonoff, (ii) it can be
embedded as a closed subspace of RJ for some J , and (iii) it has an arcane pro-
perty which is briefly discussed on page 286, and which is possessed by all known
sets. So, if our completed space is finite-dimensional, it is a closed subspace of
some Rn, and will surely have, locally, a differentiable structure. At this point
we can make no statement about a global differential structure.

That is, a causally ordered space which cannot have a differentiable struc-
ture can be densely embedded in a continuum. If the latter is finite-dimensional,
it has the local structure of a differentiable manifold. Since it is impossible,
experimentally, to distinguish between the original space and the manifold
in which it is embedded, it becomes difficult to tell – or so the present
author contends – whether the differentiable structure of space-time is a con-
sequence of the physical principle of Einstein–Weyl causality or a mathematical
invention.

This part is organized as follows. Chapter 1 is aimed at readers who are
not familiar with ‘abstract’ mathematics. The point is to decouple the idea of
mathematical structures from the underlying sets by giving examples of different
mathematical structures that can be defined on the same set of points (which
may be finite or infinite), and are of interest to the physicist. Chapter 2 defines
the notion of causality as a partial order on sets that are devoid of predefined
mathematical structures. The next chapter studies the topology of these ordered
sets in some detail. It establishes that these spaces have the Tychonoff property,
as well as some global homogeneity properties. Chapter 4 studies the completion
of these spaces and introduces the notion of order completion, which is marginally
different from the corresponding mathematical notion. The extension of order
to the completed space is also studied in this chapter. Our final result, that
locally compact order-complete spaces have the local structure of differentiable
manifolds, is established in Chapter 5.

Until Chapter 5, no use is made of ‘established mathematics’. Everything
has to be built ‘from the ground up’. Intuition is lacking, and as a result it

2 There is a small but physically significant difference between uniform completion and what
we shall eventually define as order completion that is being disregarded here. At this stage,
it is a harmless simplification.
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is almost impossible to absorb definitions and results without proofs. At the
beginning, quite a few proofs are given in full, but their density thins out as
the work progresses. Fortunately, the long and difficult constructions and proofs
come towards the end, by which stage the reader is prepared enough to see
the wood without counting the trees. Wherever possible, formal statements and
arguments are supplemented by verbal explanations and examples that only
presume familiarity with the special theory of relativity.



1

Mathematical structures on sets of points

Every student of physics is familiar with the Gibbs paradox, and its resolution
by ‘correct Boltzmann counting’. The paradox arises because identical particles
in classical physics are assumed distinguishable; the question of how they are
to be distinguished is not asked. The resolution, correct Boltzmann counting, is
equivalent to the assumption that even in classical mechanics, two point-particles
with the same mass cannot be distinguished from each other.

The opposite is true in set theory. Take the assembly of geometrical points
that constitute an open interval on a straight line, and recall that in Euclidean
geometry a point has no structure. Now perform a thought-experiment in which
two points are pulled out at random from the interval and shown to an observer
in the next room. There is no way in which the observer can tell one from the
other. However, admitting two identical objects in a set is a recipe for disaster
(see the example on page 242); if one does, then it becomes impossible to define
the notion of a function in a sensible manner. A set, in mathematics, has to be
a collection of distinct objects, considered as a single entity.1

How, then, is one supposed to understand ‘the set of points that constitute the
real line’ or the two-dimensional plane? The short answer is: exactly as Gibbs
understood an assembly of n classical point-particles – distinguishable. Famil-
iarity with quantum mechanics may have made it counterintuitive to today’s
physicist, but it was clearly not counterintuitive to Gibbs, and does not appear
to be counterintuitive to mathematicians.

If S is a set containing n elements, then the Cartesian product S2 = S×S =
{(a, b)|a, b ∈ S} contains exactly n2 elements; S2 has more elements than S. Until
1888, mathematicians believed that something similar also held true for infinite
sets (although infinity was not a very well-defined concept); for example, there
were believed to be many more points on the plane than on the line.

In the 1870s, Georg Cantor succeeded in placing the notion of infinity – in the
mathematical context – on a precise logical footing (pages 243–244). Using his
newly developed tools, he showed in 1888 that one could map the unit interval
I = [0, 1] on the real line R bijectively (i.e., one-to-one) onto I2, the unit
square. Two years later, Giuseppe Peano constructed a map f : I → I2 which

1 One should note carefully that not every collection of distinct objects is a set; see pages
248–249.
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was bijective and continuous.2 Peano’s construction was rapidly followed by
others, and such maps are now known as space-filling or Peano curves. These
examples demonstrated that differences between infinite sets like I and I2 were
to be sought, not in the ‘number of points’ they contained, but elsewhere.

The ‘elsewhere’ are the mathematical structures that are placed on a set of
points. Shorn of all such structures, a set of points X has only one attribute,
namely its cardinality (Section A1.5.1, page 245), which is denoted by |X|. The
sets Im and Rm, which are defined for positive integers m, have the same cardi-
nality for all such m; the sets Rm and Rn have the same cardinality for all positive
integers m and n. The common cardinality of all these sets is ℵ (Section A1.5.1).3

In other words, each of the sets Im and Rn is obtained by defining different
mathematical structures on the same underlying set of cardinality ℵ.

In this chapter we shall review some of the mathematical structures that can
be defined on finite sets, and infinite sets of cardinalities ℵ0 and ℵ. We shall
have no occasion to use sets of higher cardinalities. Our aim is to demonstrate
that a vast array of distinct mathematical structures can be defined on the same
underlying set.

1.1 Mathematical structures on finite sets

There are relatively few classes of mathematical structures that one can define
on a finite set. The most important of them, at least for the physicist, are certain
finite groups like the permutation groups and the crystallographic point groups,
which are finite subgroups of the rotation group in three dimensions.

Recall that, in mathematics, a field is a set on which two operations, both
commutative, are defined. These operations are called addition and multiplica-
tion, and indeed the field one encounters most often is the field of real numbers.
The cardinality of the underlying set is ℵ. Another example of a field is the field
of rational numbers, of cardinality ℵ0. However, there exist finite fields as well. It
can be shown that, for any prime p and any positive integer n, there exists a field
Fpn with cardinality pn (Jacobson, 1974). Finite fields, once mere mathematical
curiosities, are now used extensively in cryptography and the theory of coding.

1.2 Mathematical structures on countably infinite sets

In this section our tabula rasa will be a countably infinite set, also known as a
set of cardinality ℵ0 (see page 244), which we shall denote by Ξ. The sets N,

2 The inverse map f−1 : I2 → I was well defined, but it was not continuous; it could not be,
because I is not homeomorphic to I2. The proof that Im and In (or for that matter R

m

and R
n; R denotes the set of real numbers in their natural order) are not homeomorphic to

each other for m �= n, where m and n are positive integers, came much later, and required
the development of the new subject of algebraic topology.

3 Some authors prefer to use the letter c rather than ℵ; However, everyone – as far as the
present author knows – is happy with ℵ0, the cardinality of the set of integers.
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of natural numbers (i.e., of positive integers), N, of nonnegative integers,
Z, of integers and Q, of the rationals are all constructed from Ξ. They have
an order defined on them, the familiar < or > of arithmetic. To specify the
algebraic structures on them, it is convenient to begin by defining the notion of
a semigroup, which is a group without the inverse:

Definition 1.1 (Semigroup) A semigroup (S, ·) is a set S on which a binary
operation · : S × S → S is defined. The image ·(a, b) of (a, b) under this
map is written a · b, or simply ab. The operation is associative, i.e., a(bc) =
(ab)c.

If the operation is commutative, i.e., if ab = ba, it is denoted by the plus sign
and written a + b (= b + a) rather than ab, and called addition. In this case the
semigroup is called Abelian, or commutative. Unlike a group, a semigroup
need not have an identity, and therefore we shall state explicitly whether or not
it has one. The reader is invited to prove that the identity, if it exists, is unique.

If an Abelian semigroup has an identity, then the latter is generally denoted
by 0; a + 0 = a for all a ∈ S.

We now turn to the order and algebraic structures4 on Ξ that turn it into N,
N, Z and Q.

(i) N, the set of natural numbers. This is obtained from Ξ by defining on it
the (arithmetical) order <, and the operation of addition +. With respect
to the order <, N has a smallest element, namely 1, and each element has
a unique successor. With respect to addition, N is a semigroup without
identity.

Note that one can also define the operation of ordinary multiplication on
N. Addition and multiplication obey the distributive law a(b+ c) = ab+ bc.
N is a multiplicative semigroup with identity, the multiplicative identity
being 1.

(ii) N, the set of nonnegative integers. N differs from N in having the additive
identity 0, which now becomes the smallest element with respect to the
order <.

(iii) Z, the set of integers. This set is also totally ordered with respect to <, but
it has no smallest (or largest) element. Each element has a unique successor.
Z is a group under addition, but only a semigroup under multiplication.

(iv) Q, the set of rational numbers. This set is also totally ordered by <, but no
element has a unique successor. For suppose that r2 is the unique successor
of r1; then r1 < (r1 + r2)/2 < r2, a contradiction, because (r1 + r2)/2 is
also a rational number. Q is a group under addition, and Q�{0} is a group
under multiplication; in mathematical terms, Q is an ordered field.

4 For the reader who is particular, we should add that we are not going into the monoid, ring,
vector space or module structures that these sets may have.
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The order topology (page 259) can be defined on each of the above sets by
choosing as a basis the family of open intervals (a, b), augmented by the intervals
[1, b) for N and [0, b) for N. In this topology, one-point sets are open in N, N and
Z, but not in Q. Therefore the topology thus defined on N, N and Z is discrete,
but that defined on Q is not. One can also define a notion of distance d on each
of the above sets: d(a, b) = |a − b|. This satisfies the triangle inequality

d(x, z) ≤ d(x, y) + d(y, z),

where x, y, z are distinct points, equality holding if either x < y < z or x > y > z.
The metric topology (page 269) defined by d is the same as the order topology
on each set.

1.3 Mathematical structures on uncountable sets

As we noted earlier, the sets Rn have the same cardinality. They are distin-
guished, not by the ‘number of points’ they contain, but by the mathematical
structures that are defined on them. The cases n = 1 and n > 1 have to be
considered separately.

For mathematical analysis,5 the big difference between Q and R is that all
Cauchy sequences converge in R, but not in Q. As a result, the limit that defines
the derivative (say of a function f) and exists in R may fail to exist upon restric-
tion to Q. The space Q cannot be endowed with a differentiable structure in the
usual sense.6 The differentiable (or differential) structure, in turn, serves as the
substratum for further geometrical structures, such as the Riemannian structure.

The real line R has the following structures defined on it:

(i) The order structure. R is a totally (or linearly) ordered set, ordered by the
relation <.

(ii) The topological structure. The order on R defines the order topology on it.
(iii) The algebraic structure. R is a field.
(iv) The linear structure. R is a one-dimensional vector space over itself (the

reals).
(v) The metric structure. R has a metric defined on it. This metric defines a

topology on it, and the metric topology coincides with the order topology.
(vi) The differentiable structure. R is a one-dimensional differentiable manifold.
(vii) The Borel structure (page 301).

The structures enumerated above are interrelated, and are compatible with each
other.

5 Mathematical analysis is also the name for a branch of mathematics that has grown out of
the theory of functions of the nineteenth century.

6 The concept of a differentiable structure will be defined in Section A8.2.1.
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It is interesting to compare the mathematical structures on R with those on
Q. On Q, one may define the order, topological algebraic and metric structures
just as one does on R. Furthermore, Q is a one-dimensional linear space over
the rationals. When one completes Q to R, these structures may be extended to
the completion,7 and these extensions coincide with the usual order, topological,
algebraic and metric structures on R, which is also a one-dimensional vector
space over the rationals.

1.4 Global geometrical structures on Rn

We shall denote by Rn the Cartesian product of n copies of R, topologized by
the product topology (page 263). The following structures are defined globally
on Rn:

(i) The Euclidean structure. Let x = (x1, . . . , xn), y = (y1, . . . , yn) be points
in Rn. Define on Rn the Euclidean metric

d(x, y) = {(x1 − y1)2 + · · · + (xn − yn)2}1/2. (1.1)

The topology induced by this metric on Rn coincides with the product
topology.8 The group of transformations (i.e., maps of Rn onto itself) that
leave the metric (1.1) invariant is called the Euclidean group.

(ii) The Minkowski structure. This structure is defined by the indefinite
Minkowski form

s2(x, y) = (x0 − y0)2 − (x1 − y1)2 − · · · − (xn−1 − yn−1)2. (1.2)

In (1.2), we have denoted the components of x by (x0, x1, . . . , xn−1), in
keeping with the practice in relativity theory. One may use the Minkowski
form to define a topology on Rn via light cones. Define

intC+
a = {x|s2(a, x) > 0, a0 − x0 < 0},

intC−
a = {x|s2(a, x) > 0, a0 − x0 > 0}.

(1.3)

The reader will notice that intC±
a are respectively the interiors of the

forward and backward cones at a. Let now

I(a, b) = intC+
a ∩ intC−

b .

Then I(a, b) = ∅ unless b is in the interior of the forward cone at a. The
collection of all I(a, b) is a basis for a topology on Rn, and this topology

7 The subject of completions is treated in detail in Appendix A4.
8 Recall that there exist different, but topologically equivalent, metrics on R

n, as well as
topologically inequivalent ones.
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coincides with the product topology on Rn. The group of transformations
that leave the Minkowski form invariant is known as the Poincaré group,
or the inhomogeneous Lorentz group.

(iii) The affine structure. The rotation and Lorentz groups are subgroups
of the group GL(n, R) of general linear transformations of Rn. Like-
wise, the Euclidean and Poincaré groups are subgroups of the group of
transformations

x′
i =

n∑
j=1

Aijxj + bi, (1.4)

where the matrix [Aij ] is invertible. Such transformations were called affine
or linear by Weyl (Weyl, 1950, bottom of p. 21). This usage is no longer
current. The term linear is reserved for the homogeneous part of the
transformations (1.4), and the term affine survives mainly in affine con-
nections in differential geometry. Weyl’s group of affine transformations is
the inhomogeneous general linear group, which is sometimes denoted by
IGL(n, R).

1.5 Local geometrical structures on n-manifolds

We shall now define some local geometrical structures on differentiable mani-
folds. (The reader who is unfamiliar with this notion will find a brief account
in Appendix A8.) We remind the reader that the mathematician’s conception of
the local-global dichotomy is based on the notion of neighbourhood of a point,
which can be defined independently of the notion of distance between points.
This is discussed in greater detail in Appendices A3 and A8.

1.5.1 Riemannian and Lorentz structures

A Riemannian structure on an n-manifold is a smooth assignment of a
positive-definite quadratic form (in local coordinates)

ds2 =
n∑

i,j=1

gij(x)dxidxj (1.5)

to each point of the manifold. It is a fundamental theorem in differential geometry
that every differentiable manifold admits a Riemannian metric (see Appendix
A8). A Riemannian metric defines a metric topology on the manifold which is
identical with its original topology.

A Lorentz structure on an n-manifold is a smooth assignment of an
indefinite quadratic form of signature

+ − · · · −
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at every point of the manifold. Formula (1.5) continues to hold, but the signature
of ds2 has changed. As opposed to the Riemannian structure, not every man-
ifold admits a Lorentz structure. The topology of a Lorentzian manifold may
be thought of as determined by its Riemannian metric. It is a pleasing fact of
differential geometry that most of the results that hold on Riemannian manifolds
hold on Lorentzian manifolds as well (Eisenhart, 1964).

1.5.2 The conformal structure

In an attempt to unify general relativity and electrodynamics, Weyl investigated
a class of transformations on Riemannian and Lorentzian manifolds that did
not leave ds2 invariant, but multiplied it by a local scaling factor Ω(x). These
transformations left the angle between two directions, which is a dimensionless
quantity, unchanged, and therefore he called them conformal transformations.
Conformal transformations of a Lorentz manifold therefore map light cones,

ds2 = 0,

to light cones. Conformal transformations on a four-dimensional Minkowski space
form a 15-parameter group consisting of the Lorentz transformations, dilatations
and the (nonlinear) transformations of reciprocal radii xi → xi/x2. Weyl showed
that conformal transformations left the tensor

Cλ
µνσ = Rλ

µνσ +
1

n − 2
(
δλ
ν Rµσ − δλ

σRµν + gµσRλ
µ − gµνRλ

σ

)
+

R

(n − 1)(n − 2)
(
δλ
σgµν − δλ

ν gµσ

)
(1.6)

invariant. In (1.6) Rλ
µνσ is the Riemann tensor, Rµν the Ricci tensor and R the

scalar curvature. The tensor Cλ
µνσ was called the conformal curvature tensor by

Weyl, but nowadays it is usually called the Weyl tensor or the conformal tensor.

1.5.3 The Weyl projective structure

In general relativity, paths of freely falling particles are timelike geodesics; paths
of light rays are null-geodesics, as in special relativity. Transformations of a
Lorentzian manifold that map geodesics to geodesics were studied by Weyl, who
demonstrated that they leave the following tensor invariant:

Wλ
µνσ = Rλ

µνσ +
1

n − 1
(
δλ
ν Rµσ − δλ

σRµν

)
. (1.7)
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This tensor was called the projective curvature tensor by Weyl, and the structure
associated with it the projective structure. Note, however, that the Weyl projec-
tive structure on a Lorentz manifold does not necessarily map null-geodesics to
null-geodesics, or light cones to light cones.

The reader is referred to (Eisenhart, 1964) for more information on the Weyl
conformal and projective structures.
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Definition of causality on a structureless set

In the following we shall assume that the space, time and space-time of physics
are made up of ‘points’ in the sense of Euclidean geometry. This assumption has
been questioned by Wigner since 1952, and his reservations will be the subject
of Part II of this book.

We shall begin by defining the notion of causality (which we shall call Einstein–
Weyl causality) on a set of points devoid of any mathematical structure. It will
be defined as a partial order on the set. Our point of departure is the observation
that the propagation of a light ray determines a total order (the past–future order)
on its path. We shall try to build up the causal structure by abstraction from the
intersection properties of these paths in Minkowski space, and in real life.

2.1 Light rays

The fundamental objects in our scheme will be:

(i) A nonempty set of points M .
(ii) A distinguished family of subsets of M , called light rays.

The fundamental relation in our scheme will be a total order defined on the light
rays.

We shall use the term light ray as a shorthand for the space-time path of a
light ray; more precisely, for a mathematical abstraction from the corresponding
physical concept. Light rays will generally be denoted by the letter l. A light ray
through the point x will be denoted by lx, one through the points x, y by lx,y.
Distinct light rays through x will be differentiated, if necessary, by superscripts,
thus: lx, l′x, l1x, l2x, etc. Every light ray l will be a totally ordered subset of M , and
the total order on every ray l will be denoted by <l or (equivalently) by l> .
The statements x <l y and y l> x will be read, respectively, as ‘x precedes y on
l’ and ‘y follows x on l’, and will mean exactly the same thing.

We do not exclude the possibility that both x <l y and x l> y hold simultane-
ously; however, they can hold simultaneously if and only if x = y. If x <l y and
x �= y, we shall write x <ll y.

2.2 The order axiom

We shall demand that a light ray have the property that between any two distinct
points lies a third, that is, if x, z ∈ l, x <ll z, then there exists y ∈ l such
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that x <ll y <ll z. This requirement can only be met if there are infinitely many
distinct points on a light ray. We shall also demand that a light ray have no
beginning and no end.1 To sum up, a light ray will be assumed to satisfy the
following:

Axiom 2.1 (The order axiom)

(a) If x, y ∈ l and x �= y, then x <l y or 2 y <l x. If x, y ∈ l and both x <l y and
y <l x, then x = y.

(b) If x, z ∈ l and x <ll z, then there exists3 y ∈ l such that x <ll y <ll z.

(c) For every y ∈ l, there exist x, z ∈ l such that x <ll y <ll z.

(d) If l1, l2 are two distinct light rays and x, y ∈ l1 ∩ l2, then

x <l1 y ⇔ x <l2 y.

The last condition means that no light ray propagates ‘backward in time’ (see
Fig. 2.1).

�

�

l1

l2

Allowed

�

�

l1

l2

Forbidden

Fig. 2.1. Illustrating the order axiom, part (d)

Notations 2.2 lx will denote a light ray through the point x, and lx,y will
denote a light ray through x which passes through the point y.

We now define light ray segments (not intervals; the term interval will be
reserved for a different use, to be defined later) as follows. For any light ray l

1 We should reassure the reader that this is essentially a technical assumption that facili-
tates the subsequent mathematical development; it does not prevent one from introducing
singularities, if desired, at the end of the process.

2 In everyday speech, the phrase ‘A or B’ may mean one of two things: (i) ‘A (is
true), or B (is true), or both (are true)’; (ii) ‘A, or B, but not both’. One has to
decide from the context which of the two is meant, which may be difficult if the writ-
ing is sloppy. In mathematics, this particular ambiguity is avoided by convention; or
always means the inclusive or, i.e., case (i). However, the inclusive or would often be
unacceptable in physics; for example, two distinct points may be spacelike or timelike
to each other, but cannot be both! These contradictory usages are firmly established.

We shall try to avoid the problem as much as possible by using the phrase either A
or B, which will mean ‘either A or B, but not both’.

3 Again, in mathematics, the phrase there exists means that there exists at least one object
in question; there can be, and often are, many distinct objects satisfying the condition in
question.
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and x, y ∈ l, x <l y, define

l(x, y) = {a|a ∈ l, x <ll a <ll y},

l[x, y] = {a|a ∈ l, x <l a <l y}.
(2.1)

l(x, y) and l[x, y] will be called open and closed light-ray segments respectively.
Note that l(x, x) = ∅ and l[x, x] = {x} for any x ∈ l.

Remark 2.3 Although, according to the above definition, l[x, x] = {x} is a
closed light-ray segment, when we talk about closed light-ray segments l[x, y]
in this and the following chapters, we shall generally assume that x <ll y, i.e.,
l(x, y) is nonempty. If the possibility x = y is to be included, it will be stated
explicitly.

In view of the centrality of light rays in our scheme, it is not surprising that
we shall often have to decide whether or not two given points x, y are joined
by a light ray. We shall denote by λ(x, y) the statement that there is a light
ray through x, y, and by ∼λ(x, y) its negation: there is no light ray that passes
through both x and y.

Let {x0, x1, . . . , xn} be a finite set of points such that λ(xk, xk+1) for k =
0, 1, . . . , n − 1. Define l∗[x, y] = l[x, y] if x <ll y and l∗[x, y] = l[y, x] if y <ll x.
We shall call l∗[x, y] an unoriented segment. The concatenation (symbol: ��) of
unoriented segments

l∗[x0, x1] �� l∗[x1, x2] �� · · · �� l∗[xn−1, xn] (2.2)

will be called an l-polygon, and denoted by

P (x0, x1, . . . xn).

Examples of l-polygons are shown in Fig. 2.2. Note that, although three suc-
cessive points xk−1, xk, xk+1 in P (x0, x1, . . . xn) will not generally lie on the
same light ray, i.e., l∗xk−1,xk

�= l∗xk,xk+1
, this is not a requirement; degener-

ate cases will be admissible, including the case in which the points x0, . . . , xn

lie on the same light ray, as well as the case x0 = x1 in P (x0, x1), i.e.,
P (x0, x1) = l[x0, x0] = {x0}. The points x0, x1, . . . , xn will be called the nodes
of the l-polygon P .

We now make the following definition:

Definition 2.4 A space M will be called l-connected if there is an l-polygon
connecting any two points x and y in M .

The essential part of this definition is the fact that an l-polygon consists of a
finite number of light-ray segments.

From now on, we shall make the following nontriviality assumptions:
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Fig. 2.2. Examples of l-polygons

Assumption 2.5 (Nontriviality assumptions)

(i) M does not consist of a single point.
(ii) M does not consist of a single light ray.
(iii) M is l-connected.

2.3 The identification axiom

We now turn to the intersections of light rays; the structure of the theory will
be decided by the intersection properties of light rays.

The defining physical property of Minkowski space is that the velocity of light
is constant, so that paths of light rays are straight lines. Consequently two light
rays intersect only once, if they intersect at all. Consider now an optical device
that forms a real image. To do so, actual light rays must intersect twice, which
means that the paths of light rays in the optical device cannot be described in
Minkowski space. However, the object point and the image point are well sep-
arated, which suggests that the space-times containing optical imaging devices
may be locally Minkowski, like the space-time of general relativity.

We shall therefore assume that if two light rays intersect more than once, the
points of intersection are well separated, in a precise sense that will be defined
below using only the notion of order. We shall also assume that two light rays
do not merge, and a light ray does not split into two (or more). These condi-
tions, which are mainly aimed at avoiding excessive generality, are illustrated in
Fig. 2.3. We formulate these assumptions mathematically as follows:

Axiom 2.6 (The identification axiom) If l, l′ are two distinct light rays,
S = l ∩ l′ and a ∈ S, then there exist p, q ∈ l such that p <ll a <ll q and
l(p, q) ∩ S = {a}. The same situation holds on l′.
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�
l2

Allowed

�l1
l1 l1

l2 l2

l1, l2
� �

�

�

Forbidden

Fig. 2.3. Illustrating the identification axiom

It follows immediately from this axiom that if l is any light ray and l(x, y)
any open segment on it, then l(x, y) ⊂ l′ ⇒ l′ = l; in trying to avoid exces-
sive generality, we have arrived at a far-reaching ‘analyticity condition’. This
condition will eventually allow us to extend a light-ray segment indefinitely and
unambiguously in both directions, and this extension property will prove to be
an essential tool in later chapters.

2.4 Light cones

An l-polygon P (x0, x1, . . . xn) will be called ascending if xk <ll xk+1 for k =
0, 1, . . . , n − 1, and denoted by P ↑(x0, x1, . . . xn). It will be called descending if
xk+1 <ll xk for k = 0, 1, . . . , n − 1, and denoted by P ↓(x0, x1, . . . xn).

We now define semi-infinite light-ray segments as follows:

l+b,c = {x|x ∈ lb,c, b <ll x; b <ll a},

l−b,a = {x|x ∈ lb,a, x <l a; a <ll b}.
(2.3)

The second argument in l+b,c or l−b,a is one that picks a unique light ray out
of the many that may pass through b; the implicit assumption is that such a
point exists; on any nonempty light-ray segment one can find two points that
are traversed by only one light ray. This assumption is inessential; it may be
avoided, but then the discussion leading to the definitions of cones becomes
much longer. This discussion may be found in (Borchers and Sen, 2006).

Using semi-infinite segments, we define an extension of the notion of ascend-
ing and descending polygons by allowing the last segment to extend indefi-
nitely. In the forward direction, with x0 <ll x1 <ll · · · <ll xn, this will be the
concatenation

l[x0, x1] �� · · · �� l[xn−2, xn−1] �� l+xn−1,xn
. (2.4)

The object defined by (2.4) will be called an unbounded ascending l-polygon.
Unbounded descending l-polygons can be defined analogously. We shall denote
by P ↑

x an ascending l-polygon from x, either bounded or unbounded, but still
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with a finite number of nodes. The nodes other than x are left unspecified. P ↓
x

will be defined similarly, with order reversed.
We are now in a position to define light cones at x.

Definition 2.7 (Light cones at x)

C+
x =

⋃
all P ↑

x

P ↑
x ,

C−
x =

⋃
all P ↓

x

P ↓
x .

(2.5)

C+
x and C−

x are called, respectively, the forward and the backward cone at x.
The forward cone is also called the future or positive cone; the backward cone is
also called the past, or negative cone. The union

Cx = C+
x ∪ C−

x (2.6)

is called the cone at x. We now define

l±
x = lx ∩ C±

x . (2.7)

l+x and l−
x will be called, respectively, forward and backward rays from x. The

notations l±x,a will mean, respectively, a forward and a backward ray from x

through a. In the first case, one will have x <ll a; in the second, a <ll x. These
notations have been anticipated in (2.3).

2.4.1 Timelike points

Let P (x0, x1, . . . , xn) be an l-polygon. The unoriented segment l∗[x0, x1], with
x0 �= x1, will be called the initial of P .

Definition 2.8 (Timelike points)

(a) A point y ∈ C+
x , y �= x will be called a timelike point of C+

x if, for any forward
ray l+x through x, there is an ascending l-polygon P from x to y such that
the initial of P is a subset of l+x . The set of all timelike points of C+

x will be
denoted by τC+

x , and called the τ -interior of C+
x .

(b) The set τC−
x is defined analogously, by reversal of order.

Equivalently, one could say that y is a timelike point of C+
x if, for any l+x , there

is a ∈ l+x , a �= x such that y ∈ C+
a .

The significant part of this definition is the italicized phrase for any forward
ray l+x through x, which cannot be omitted; it is not enough that there be an
ascending polygon from x to y.
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2.4.2 Extension of order

We shall now extend the total order on the light rays to a partial order on all
of M .

Definition 2.9 (Order on M) Define

x < y (or y > x) iff y ∈ C+
x ,

equivalently,

x < y (or y > x) iff x ∈ C−
y .

The equivalence of x < y and y > x follows from the fact that an ascending
polygon from x to y is equally a descending polygon from y to x. Note also that
if y ∈ l+x , then x < y ⇔ x <l y.

Theorem 2.10 < (or >) defines a reflexive (page 263) partial order on M .

Proof Reflexivity means x < x, which holds because, by definition, x ∈ C+
x . To

prove transitivity, i.e., x < y and y < z ⇒ x < z, it suffices to note that the
concatenation of an ascending polygon from x to y and one from y to z is an
ascending polygon from x to z.

The reader is invited to verify that the following lemma is an immediate
consequence of the definitions:

Lemma 2.11 If y ∈ τC+
x and z > y, then z ∈ τC+

x , and the same for order
reversed.

We now define

Definition 2.12 (β-boundary)

βC+
x = C+

x � τC+
x , βC−

x = C−
x � τC−

x .

βC+
x and βC−

x will be called the β-boundaries of C+
x and C−

x respectively.

Proposition 2.13 Let y > x. Then

(1) y ∈ τC+
x is equivalent to βC+

x ∩ C+
y = ∅.

(2) x ∈ τC−
y is equivalent to βC−

y ∩ C−
x = ∅.

Proof The first assertion is proven as follows. Let y ∈ τC+
x and suppose that there

exists a point z ∈ βC+
x ∩ C+

y . Then z > y. Hence, by Lemma 2.11, z ∈ τC+
x , a

contradiction. In the opposite direction, since y ∈ C+
x , βC+

x ∩ C+
y = ∅ implies

y /∈ βC+
x . But y ∈ C+

x , from which it follows that y ∈ τC+
x . The second assertion

follows by reversal of order.
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There are two reasons why we cannot use the topological terms interior and
boundary in the present context. One is that we do not yet have a topology!
The other is that when we do have a topology, the β-boundary of a cone may
fail to agree with its topological boundary. An example is provided by the two-
dimensional Minkowski space from which the strip x1 ≥ x0, 2 ≤ x1 ≤ 3 has been
excised, as shown in Fig. 2.4. Of the two forward rays from the point (1, 3), only
one, marked l, is shown in the figure. It does not belong to the cone C+

x (shaded
region), but does belong to the topological boundary ∂C+

x of C+
x .
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Fig. 2.4. Illustrating that βC+
x and ∂C+

x may be different

2.5 The cone axiom

The order defined by x is not antisymmetric, i.e., x < y and x > y together
do not imply that x = y. By definition, x ∈ C+

x ∩ C−
x ; antisymmetry fails when

C+
x ∩ C−

x contains points other than x. Consider the physics. Owing to part
(a) of the order axiom (page 24), light rays cannot form a closed loop; but
there is nothing in our scheme so far to prevent timelike curves4 from forming
closed loops. Indeed, the anti-de-Sitter space of Fig. 2.5, which is a one-sheeted
hyperboloid (light rays are the two families of straight lines which generate the
hyperboloid), permits closed timelike loops, one of which is shown in the figure.
This must be regarded as a physical pathology which has to be eliminated. We
do this via the following axiom:

Axiom 2.14 (The cone axiom)

C+
x ∩ C−

x = {x} for all x ∈ M.

4 A precise definition of timelike curves will be given in Section 5.1. The definition will not
contradict physical intuition, which is what we are using here.
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Fig. 2.5. This anti-de-Sitter space violates the cone axiom

We shall now make the following notational conventions:

Notations 2.15 If y ∈ τC+
x , we shall write x  y. If x ∈ τC−

y , we shall write
y � x. The symbols | and |� will denote the negations of  and � respectively.

As a mnemonic, one could note that the past–future orientation of all three
symbols <l , < and  is the same.

The odd thing is that x  y does not imply y � x (which is why we have
called the above notational conventions rather than definitions); our scheme is
still too general. This is shown by the following example (Fig. 2.6).
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b l1−
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O

Fig. 2.6. a � b does not imply b � a

Example 2.16 All points on the X-axis except the origin O are excised from
two-dimensional Minkowski space. This leaves the upper and lower half-planes
(without boundary), connected by the single point O. One sees from Fig. 2.6
that there are descending l-polygons from b that meet each of the two forward
rays from a at points above a. However, no ascending l-polygon from a can meet
the ray l−b at a point below b. Therefore a  b, but b |� a.

The problem – and it is definitely a problem – lies not in the definitions of
 and � but in the fact that the two half-planes are joined by a single point.
It is easy to see that it disappears if the two half-planes are joined but by an
open interval, no matter how small. The necessary restrictions will be placed in
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Axiom 2.43 (which requires some preparation). Anticipating this, we make the
following definition:

Definition 2.17 (S-spaces) A subset of M satisfying the order, identification
and cone axioms will be called an S-space (S from symmetry) if

x  y ⇔ y � x.

It will be seen later that we shall only be concerned with S-spaces, for which we
have the following

Theorem 2.18 In an S-space,  (equivalently, �) defines a nonreflexive,
nonsymmetric (page 263) partial order.

To avoid confusion, we shall not use the symbol � until we have established
Theorem 2.33 (page 40).

Terminology 2.19 In keeping with standard practice in physics, we shall say
that two distinct points x, y ∈ M are spacelike, timelike or lightlike to each
other according as (i) x /∈ Cy (equivalently, y /∈ Cx), (ii) x  y (or y  x), or
(iii) λ(x, y).

If x, y are two distinct points in Minkowski space, then they would be either
spacelike, or timelike, or lightlike to each other; there is no fourth possibility.
The situation is not so simple in the present setting.

Let a ∈ M and x ∈ βC+
a , x �= a. Then x is neither spacelike nor timelike to

a. It would be lightlike to a if there were a forward ray l+a which passes through
x. However, the axioms we have adopted so far provide no assurance that this is
true. It will turn out to be true, locally, as a consequence of Axiom 2.43, which
we have not yet formulated.

This fact should serve as a warning that, in the present setting, results which
are obvious in Minkowski space need proof.

2.6 D-sets

Of the three axioms that we have adopted so far, one (the order axiom) intro-
duces structure while the other two (the identification and cone axioms) rule
out excessive generality. The order axiom itself is basically global, without any
explicitly local content. For example, it allows two distinct light rays to intersect
more than once. This is essential for admitting optical image-forming devices,
but one would not want two light rays to intersect more than once in a small
neighbourhood of a point. We need an axiom that defines small neighbourhoods,
i.e. the local structure of the theory.

As a guide to intuition, consider a closed ball B around the origin O in
Euclidean n-space. One of the important properties of B is that it can be
contracted upon itself to the point O; i.e., if x = (x1, x2, . . . , xn) ∈ B and
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O = (0, 0, . . . , 0), then the maps x �→ λx = (λx1, λx2, . . . , λxn), 0 < λ ≤ 1 are
homeomorphisms, and the limit λ → 0 of these homeomorphisms is a continuous
map. One hardly needs any reflection to realize that a vast amount of mathe-
matical structure is involved in expressing this seemingly simple idea, none of
which is available to us yet.

The objects that are available to us, as substitutes for open and closed balls,
are open and closed order intervals I(a, b) and I[a, b], which we now define. In
the following, a, b are any two points in M .

Definition 2.20 (Order intervals)

I[a, b] = C+
a

⋂
C−

b ,

I(a, b) = τC+
a

⋂
τC−

b .

If a  b, then the order intervals I[a, b] and I(a, b) will also be called double
cones. We shall write βI[a, b] = (βC+

a ∪ βC−
b ) ∩ I[a, b].

Remarks 2.21 It follows from these definitions that if a and b are spacelike to
each other, then I(a, b) = I[a, b] = ∅. If a = b, then I(a, b) = ∅ and I[a, b] = {a}.
If λ(x, b) and b <ll x, then I[x, b] = ∅; similarly, if b  x, then I[x, b] = ∅. But,
if y ∈ βC+

x and y �= x, we cannot exclude the possibility that ∼λ(x, y); we know
very little about I[x, y] in this situation.

What are the properties that we would like the order intervals to have? Our
arsenal is limited: we have at our disposal only the light rays (which are our
substitutes for straight lines), and we can impose conditions only on their inter-
sections. While avoiding global commitments, we should like order intervals
I[a, b] that are small enough to have the following properties:

(i) A light ray from the τ -interior of I[a, b] should not exit I[a, b] without
intersecting its β-boundary (see Example 2.24).

(ii) However, if a light ray l traverses I(a, b), then no segment l[x, y] of it (with
x �= y) should lie on βI[a, b].

(iii) There should be at most one light ray through two distinct points of I[a, b].
(This cannot be required of all I[x, y] ⊂ M .)

(iv) There should be no ‘holes’ inside I[a, b]; this has to be expressed precisely
in terms of light rays and their intersections.

(v) If x ∈ βC+
a ∩ I[a, b], then there should be a light ray through a and x.

Similarly, if y ∈ βC−
b ∩ I[a, b], then there should be a light ray through y

and b.
(vi) I[a, b] should be an S-space.

The above requirements would seem to be obvious; i.e., they should be incorpo-
rated in the theory unless they turn out to have unacceptable (and, at the present
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stage, unforeseen) consequences. However, they leave one important question
unanswered.

In Minkowski space, one cannot form a triangle by intersecting three light
rays. That is, if l1+x and l2+x are two forward rays from x, a1 ∈ l1+x , x <ll a1

and a2 ∈ l2+x , x <ll a2, then there is no light ray that passes through a1 and
a2. It is not clear a priori whether or not this is a desirable feature in the
present setting. Locally, the conditions stipulated above would prevent a light
ray through a1 and a2 from traversing the τ -interior of I[x, y], so that such a
ray has to lie entirely on βC+

x . It turns out, somewhat surprisingly (we shall
not prove it), that this situation is inconsistent with the conditions stipulated
above, and that one has to rule it out explicitly. (This will be achieved by
Definition 2.22(d).)

With this preparation, we proceed to define, formally, the notion of a D-set,5

preparatory to stating our final axiom. The definition will be formulated as six
separate conditions, which will be assigned names for easier recall.

Definition 2.22 (D-sets) A subset U of M will be called a D-set iff it fulfils
the following conditions:

(a) The order-convexity condition. U contains the entire closed order
interval between any two of its points: x, y ∈ U ⇒ I[x, y] ⊂ U

(Fig. 2.7(a)).
A body in Euclidean n-space is called convex if a line segment joining any
two points in the body lies wholly within the body. A D-set, while being
order-convex, need not be convex (see Fig. 2.8).

(b) The openness condition.6 For every x ∈ U and every light ray l through
x, there are points p, q ∈ l ∩ U such that p <ll x <ll q (Fig. 2.7(a)).
That is, the intersection of a light ray with a D-set does not have a minimum
or a maximum with respect to the order <ll .

(c) The intersection condition. If y ∈ U, r ∈ τC−
y ∩U and lr is a ray through

r, then (Fig. 2.7(b), upper part)

l+r ∩ {βC−
y � {y}} ∩ U �= ∅,

and the same with order reversed.
In words, a forward ray from the backward τ -interior of a cone in a D-set
intersects its backward β-boundary below the apex of the cone, and the same
with order reversed.

5 From the German Durchschnittseigenschaft, roughly translatable here as standard or normal.
However, these two words are so over-used in the mathematical literature that it seems better
to avoid them.

6 When the topology is introduced, D-sets will turn out to be open sets.
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Fig. 2.7. Some defining properties of D-sets

(d) The convexity condition. If x ∈ U and l′ ∩βC+
x ∩U contains two distinct

points a, b, then (Fig. 2.7(b), lower part)7

x ∈ l′a,b ∩ C+
x ∩ U ⊂ βC+

x ∩ U,

and the same with order reversed.
That is, in a D-set U, a light ray that passes through two distinct points on
the β-boundary of a forward (backward) cone lies wholly on the β-boundary
of that forward (backward) cone and passes through its vertex.

(e) The l-uniqueness condition. If a, b ∈ U and λ(a, b), then the ray la,b is
unique.
That is, through any two distinct points in a D-set there passes at most one
light ray. (It follows that two distinct light rays cannot intersect more than
once in a D-set.) As we observed earlier, this condition will not hold globally
except in particularly simple spaces.

(f) The l-dimension condition. Through any point of U , there are at least
two distinct light rays.

Remarks 2.23 (About the figures) In the figures, some D-sets are gene-
rally indicated by dashed lines enclosing circular or elliptical regions, which are

7 We shall use the term convexity only in this sense. On the rare occasion when we have to refer
to the property called convexity of bodies in Euclidean spaces, we shall state it explicitly.
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convex bodies in R2. This should not be taken too literally; circles and ellipses
in two-dimensional Minkowski space are not generally order-convex. Conversely,
order-convexity does not imply Euclidean convexity, as shown by the example,
in M3, pictured in Fig. 2.8.
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Fig. 2.8. Order-convexity does not imply Euclidean convexity

One should note that the empty set ∅ satisfies Conditions 2.22 trivially; it is
therefore a D-set. However, the D-sets that we shall consider in Section 2.7 will
all be assumed nonempty, unless the contrary is stated explicitly. Note that we
have not required a D-set to be an S-space; this property will be established
later as a theorem.

2.7 Properties of D-sets

We shall now study the basic properties of D-sets. In Minkowski space these
properties are either obvious or trivial to prove. The reason is that light rays
are homeomorphic to the real line R, and there are no holes or gaps in Rn.
By contrast, Q may be described as being ‘full of gaps’, and the same is true
of the real subfield F of the field of algebraic numbers (which is countable; see
page 250). One cannot rule out a priori that two light rays cross each other
without intersecting; consider the following example:

Example 2.24 Let M = Q×R. This is a subset of R2 in which the X-coordinate
is restricted to be rational. Let α be any irrational number. The lines x = y and
x + y = α in M cross each other without intersecting.

This is one reason why the results of this chapter require proof.
We begin by defining yet another convexity property:

Definition 2.25 A closed order interval I[a, b] will be called l-convex if any
light ray through any point x ∈ I(a, b) intersects βI[a, b] at exactly two points,
one lying on βC+

a and the other on βC−
b .

Not every closed order interval is l-convex. For example, the one (in two
dimensions) shown in Fig. 2.9 is not; it has a hole in its middle. The topological
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Fig. 2.9. An order interval that is not l-convex

boundary of the hole cannot belong to M ; if it did, the light ray l shown in the
figure will have a point that is maximal with respect to the order <l .

Lemma 2.26 Let U be a D-set and I[a, b] ⊂ U . Then I[a, b] is l-convex.

Proof This follows immediately from the intersection and the convexity condi-
tions.

It is the property of l-convexity that allows us to distinguish between order
intervals that have holes in them and those that do not. When we have defined
the topology (and are therefore allowed to use the terms interior and boundary),
we shall find that a light ray from the interior of a D-set intersects its boundary
at exactly two points. We shall then be able to say that every D-set is l-convex.

2.7.1 D-sets and timelike order

In Section 5.1 we shall establish the existence, in D-sets, of timelike curves,
which will be subsets of M that are totally ordered by  and are homeomorphic
to light-ray segments. However, for the moment we cannot take for granted that
there are enough mutually timelike points in a D-set. In this section we shall
establish that there are enough such points.

Theorem 2.27 Let U be a D-set and let y ∈ U . Then there exist points x, z ∈ U

such that x  y  z.

In words, every point in a D-set has a timelike predecessor and a timelike
successor.

Proof Let ly be a ray through y. By the openness condition (b) of Definition 2.22,
there exists a point p ∈ l+y ∩U such that y <ll p (see Fig. 2.10). By the l-dimension
condition 2.22(f) there is at least one light ray lp other than ly through p. Again,
the openness condition implies that there exists a point z ∈ l+p such that p <ll z.
Then ∼λ(y, z), so that y <ll p, p <ll z imply that y < z. It follows that either



38 Definition of causality on a structureless set

..
..
..
...
..
..
..
...
..
..
..
..
..
...
..
...

...
...

....
....

........
..........................................

.....
..
..
.............

..

..

..

...

..

...
.......
..
..
.......

.............. .. .. .. .. .. ... .. .. .. ... ...
.... ...

... ...
...
....

....
..
..
..
...
...
...
...
..
...
..
..
..
..

...
....
....
.....
.....
.....
.....
....
....
..
.....
.....
.....
....
....
.....
.....
.....
...
...

......
......

......
.......

.......
......

......
......

.......
......

...

�

�

�

y

z

p

l+y

l+p

Fig. 2.10. Every point in a D-set has a timelike successor

y  z or z ∈ βC+
y . If z ∈ βC+

y , then, since p ∈ βC+
y , the intersection lp∩βC+

y ∩U

contains two distinct points p and z. Then from the convexity condition 2.22(d)
it follows that z ∈ lp ∩ C+

y ∩ U ⊂ βC+
y ∩ U , i.e., the ray lp passes through y, a

contradiction. This proves that y  z.
The existence of the point x, x  y is established by the same argument, with

order reversed.

The next result shows that, in a D-set, between any two distinct timelike
points lies a third.

Lemma 2.28 Let U be a D-set and x, z ∈ U such that x  z. Then there exists
y ∈ U such that x  y  z. The same holds with order reversed.

Proof We have to prove that I(x, z) is nonempty. The spirit of the proof
is the same as the proof of Theorem 2.27. The details may be found in
(Borchers and Sen, 2006), but may also be filled in by the reader without much
difficulty.

The following result is an immediate corollary of Theorem 2.27:

Corollary 2.29 Let U be a D-set, and let x0 ∈ U . Then there exists an infinity
of points xn ∈ U , n ∈ Z such that xn  xn+1 for all n ∈ Z. The same holds
with order reversed.

2.7.2 Light rays from τ-interiors of D-sets

The intersection condition 2.22(c) stipulates that, in a D-set, the intersection of
a light ray from the τ -interior of a cone with its β-boundary be nonempty. We
prove below that this intersection consists of a single point.
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Theorem 2.30 Let U be a D-set, and let x, y ∈ U such that y ∈ τC+
x . Let ly be

a light ray through y. Then

l−y ∩ βC+
x

consists of a single point, and the same holds with order reversed.

Proof By Proposition 2.13, y ∈ τC+
x is equivalent to βC+

x ∩ C+
y ∩ U = ∅. By the

intersection condition, if ly ∩ βC+
x ∩ U is nonempty, then

ly ∩ βC+
x = l−y ∩ βC+

x ∩ U ⊂ I[x, y] ⊂ U.

Then, if l−y ∩ βC+
x contained two distinct points, it would follow from the

convexity condition that

ly ∩ C+
x ∩ U ⊂ βC+

x ,

contradicting the assumption y ∈ τC+
x . The same argument holds with order

reversed.

2.7.3 Incidence of light rays on cone boundaries

In this section we shall establish two results on the incidence of light rays on cone
boundaries in D-sets. The first is that in a D-set, every point on the β-boundary
of a cone is connected to its vertex by a light ray. From this it would follow that
in a D-set, two distinct points are either spacelike, or timelike, or lightlike to
each other (see the paragraphs that follow Terminology 2.19 on page 32). The
second is that, in a D-set, every light ray through the vertex of a cone lies wholly
on its β-boundary.

Lemma 2.31 Let U be a D-set and let x ∈ U . If a is any point on βC+
x such

that a �= x, then there exists a light ray lx through x such that a ∈ l+x ∩ βC+
x ∩ U

and x <ll a. The same holds with order reversed.

Proof Since a ∈ βC+
x , there is an ascending l-polygon P ↑(x0, . . . , xn−1, xn) from

x = x0 to a = xn, where the points x0, . . . , xn are distinct. Suppose that xn−1 ∈
βC+

x . Then, by the convexity condition, x ∈ lxn−1,a. That is, there exists a light
ray lx through x and a. (By the l-uniqueness condition, there is only one light
ray through the points x and a.)

Suppose now that xn−1 /∈ βC+
x . Then xn−1 ∈ τC+

x . Now a = xn > xn−1, and
therefore it follows from Lemma 2.11 that a ∈ τC+

x , a contradiction. This proves
the stated result. The same argument holds with order reversed.

We define an inner light ray at x ∈ M to be a ray that joins x with a point
y ∈ τC+

x (or in τC−
x ).
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Lemma 2.32 There are no inner light rays in a D-set.

Proof Let y ∈ τC+
x and suppose that there exists a light ray lx,y that joins x with

y. By Theorem 2.30, a backward ray from y intersects βC+
x at only one point.

By the intersection condition, this point cannot be x itself. The same argument
holds for a ∈ τC−

x .

2.7.4 A D-set is an S-space

We now have the tools to prove the following fundamental result:

Theorem 2.33 Every D-set is an S-space.

Proof Let U be a D-set and x, y ∈ U such that y ∈ τC+
x . Let ly be a light ray

through y. Then, by Theorem 2.30, the intersection l−y ∩ βC+
x is a unique point,

say u. If u �= x then it follows that x ∈ τC−
y . The case u = x is ruled out by

Lemma 2.32.

2.7.5 New D-sets from old

In this section we shall state two results on generating new D-sets from given
ones. The proof of the first is straightforward, and that of the second is lengthy.
We shall omit the proofs, and refer the interested reader to (Borchers and Sen,
2006).

Proposition 2.34 The intersection of two D-sets is a D-set.

Proposition 2.35 Let U be a D-set and x, y ∈ U such that x  y. Then I(x, y)
is an l-connected D-set.

It should be stressed that a D-set need not be l-connected. In two-dimensional
Minkowski space, the sets U and V shown in Fig. 2.11 are D-sets. In each
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diagram, the origin of coordinates is marked O. Their intersection U ∩V consists
of two disjoint pieces, i.e., U ∩V = ∅. For clarity, the two rectangles constituting
U ∩ V have been shifted slightly with respect to each other.

The sets I(x, y) that are D-sets will be used so frequently that it is useful to
give them a name:

Definition 2.36 An order interval I(x, y) will be called a D-interval if I[x, y] ⊂
U , where U is a D-set.

If a D-set contains two disjoint pieces U and V , then the two must be spacelike
to each other; no point of U can be either timelike or lightlike to any point of V .

2.7.6 An incidence theorem for β-boundaries

In this section, we shall establish a variant of Proposition 2.13 that holds in
D-sets. We begin with a preliminary lemma.

Lemma 2.37 Let U be a D-set and x = z0, y = zn ∈ U such that x < y. Let
P ↑(z0, z1, . . . , zn) be an ascending polygon from z0 to zn. If the light ray lz1,z2 is
distinct from the ray lz0,z1 , then y = zn ∈ τC+

x . The same statement holds with
order reversed.

Proof We shall assume that z2 ∈ βC+
x and obtain a contradiction. If z2 ∈ βC+

x ,
then, by the convexity condition, lz1,z2 ∩ U ⊂ βC+

x ∩ U and x ∈ lz1,z2 . Since
z0 and z1 belong to both light rays, the two rays (restricted to U) must be the
same, which is the desired contradiction. Hence z2 ∈ τC+

x . The same argument
applies with order reversed.

Theorem 2.38 Let U be a D-set, x ∈ U and p ∈ βC+
x ∩ U , p �= x. Then

(1) βC+
x ∩ βC+

p ∩ U = l+x,p ∩ βC+
p ∩ U ;

(2) βC+
x ∩ βC−

p ∩ U = l[x, p].

Proof Let a ∈ βC+
p , p �= a. Then P (x, p, a) is an ascending l-polygon from x to

a (Fig. 2.12). By Lemma 2.37, if lx,p �= lp,a, then a ∈ τC+
x . If a /∈ τC+

x ∩ U ,
then necessarily a ∈ βC+

x ∩ U , i.e., a, p ∈ βC+
x ∩ U . Therefore, by the convexity

condition, x ∈ lp,a. Then, by the l-uniqueness condition, lx,p ∩ U = lp,a ∩ U ,
which proves the first assertion.

To prove the second assertion, note simply that owing to the convexity condi-
tion any point in the intersection βC+

x ∩ βC−
p has to lie on the unique ray that

passes through both x and p.

2.7.7 Spacelike separation in D-sets

So far we have concerned ourselves mainly with pairs of points that were timelike
or lightlike to each other. We now turn to spacelike separations in D-sets.
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Fig. 2.12. Illustrating Theorem 2.38

Theorem 2.39 Let U be a D-set, x ∈ U and l1x, l2x two distinct light rays
through x. Pick a point a ∈ l1−

x ∩ U, a �= x and a point b ∈ l2+x ∩ U, b �= x.
Then

(1) b � a, and

(2) I(a, b) ∩ Cx = ∅,
i.e., every point in I(a, b) is spacelike to x.

Proof The fact that b � a follows immediately from Lemma 2.37 and Proposition
2.34. Next, Theorem 2.27 ensures that I(a, b) is nonempty. Finally, Theorem 2.38
shows that C+

x ∩ τC−
b = C−

x ∩ τC+
a = ∅. Hence Cx ∩ I(a, b) = ∅.

If r, s ∈ U and r  s, then, by definition, C−
r ∩ U ⊂ C−

s ∩ U and the
inclusion is such that βC−

r ∩ βC−
s ∩ U = ∅; the situation shown in Fig. 2.13(a)

cannot arise. If r ∈ βC−
s and r �= s, then, from Theorem 2.38(1), we have

βC−
s ∩ βC−

r ∩ U = l−s,r ∩ U . Therefore if βC−
r ∩ βC−

s ∩ U �= ∅ and the condition
r <ll s does not hold, then r and s must be spacelike to each other (Fig. 2.13(b)).
Conversely:

Lemma 2.40 Let U be a D-set, x, r, s ∈ U such that x  r, x  s and r, s are
mutually spacelike. Then βC−

r ∩ βC−
s ∩ C+

x is nonempty.

Proof Let lx be a light ray through x. From the definition of D-sets, lx ∩βC−
r ∩U

is a single point. Call it qr. Similarly, let {qs} = lx ∩ βC−
s ∩ U . Since qr and qs

lie on the same light ray, there are three possibilities:

(1) qr <ll qs. Then Lemma 2.37 implies that qr  s, so that the ray lqr
, r

intersects βC−
s at a unique point p, and p ∈ βC−

r ∩ βC−
s ∩ C+

x .
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Fig. 2.13. Difference between pairs of timelike and spacelike points

(2) qr = qs. Then this point lies, by definition, on βC−
r ∩ βC−

s ∩ C+
x .

(3) qs <ll qr. This is the same as case (1) above, with r and s interchanged.

2.7.8 Timelike order and D-subsets

We have established, in Theorem 2.27, that every point in a nonempty D-set has
timelike predecessors and successors. We shall now establish that similar results
hold with respect to D-subsets.

Proposition 2.41 Let U be a D-set and V a D-subset of U . Let x ∈ V and
z ∈ U � V such that x  z. Then there exists y ∈ V such that x  y  z. The
same holds with order reversed.

Remark: The existence of points y ∈ V such that x  y has been established in
Theorem 2.27. What remains to be proved is that among these there are points
which also satisfy y  z.

Proof Owing to the order-convexity condition, I[x, z] ∈ U . If I(x, z) ⊂ V , then
every point y in I(x, z) satisfies x  y  z. If I(x, z) �⊂ V , then for any forward
ray l+x from x, there is a backward ray l

(1)−
z from z such that {q} = l+x ∩ l

(1)−
z ∈ U

(see Fig. 2.14). Next, let p ∈ l+x ∩ V such that x  p <l q. Finally, let l
(2)−
z be

a second backward ray from z, and let {s} = l
(2)−
z ∩ βC+

p . According to the
openness condition, there exist points y ∈ l(p, s), y �= s such that y ∈ V . These
points fulfil the requirement x  y  z.

The same argument holds, with order reversed.

The main result of this section follows easily from the above.

Theorem 2.42 Let U be a D-set and V a D-subset of U . Let x ∈ V and
z ∈ U � V such that z � x. Then there exist points u, y ∈ V and w ∈ U such
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Fig. 2.14. Illustrating Proposition 2.41

that

u  x  y  z  w.

Proof

(1) Use Theorem 2.27 to obtain from x ∈ V a point u ∈ V such that u  x.

(2) Use Theorem 2.27 to obtain from z ∈ V a point w ∈ U such that z  w.

(3) Use Proposition 2.41 to obtain from x ∈ V and z ∈ U (as V ⊂ U) a point
y ∈ V such that x  y  z.

Then u  x  y  z  w.

2.8 The local structure axiom

We conclude this chapter with our last axiom, the local structure axiom:

Axiom 2.43 (The local structure axiom) For each x ∈ M there is a D-set
Ux such that x ∈ Ux ⊂ M .

This axiom ensures that the order structure of the space M has, locally, many
of the properties of a Minkowski space, always bearing in mind that M need not
be a continuum; its cardinality could well be ℵ0.
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2.9 Ordered spaces

We are now ready to make the following definition:

Definition 2.44 (Ordered space) A space M which satisfies the order,
identification, cone and local structure axioms will be called an ordered space.

The reader may wonder, legitimately, whether the system of axioms we have
adopted is free of internal inconsistencies. A simple counterexample would prove
that a system of axioms is inconsistent, but there is no way of proving consistency
in mathematics. The best one can hope for is to exhibit a nontrivial example that
satisfies the axioms. n-dimensional Minkowski space Mn satifies all our axioms.

We end this chapter with the definition of order-preserving maps:

Definition 2.45 (Order preserving maps) Let M,M ′ be ordered spaces and
ϕ : M → M ′ a map from M to M ′. Let x, y ∈ M and x′ = ϕ(x), y′ = ϕ(y). The
map ϕ will be called order preserving if the following conditions are satisfied:

(a) x = y ⇒ x′ = y′; x �= y ⇒ x′ �= y′.

(b) If l is a light ray in M , then its image l′ = ϕ(l) is a light ray in M ′.

(c) λ(x, y) ⇒ λ(x′, y′); ∼λ(x, y) ⇒ ∼λ(x′, y′).

(d) x <l y ⇒ x′ <l y′.

(e) x < y ⇒ x′ < y′.

(f) x ∈ τC±
y ⇒ x′ ∈ τC±

y′ .

An order-preserving map is thus required to be injective (condition (a)), but
not bijective. The injectivity condition is rather strong; it means, among other
things, that the projections of three-dimensional Minkowski space onto its two-
dimensional subspaces will not be order-preserving.



3

The topology of ordered spaces

The order structure on M defines a topology on it, which will be called the order
topology. This topology makes M into a Tychonoff space which, additionally,
has some strong homogeneity properties. We shall define the order topology and
study its basic properties in this chapter.

3.1 The order topology

We begin with two preliminary results on separating points by D-sets.

Theorem 3.1 Let U be a D-set, y ∈ U and b ∈ U � C−
y . Then there exists a

point a ∈ U � C−
y such that b � a.

Proof There are three possibilities, depending on the situation of b with respect
to y. They are:

(1) b � y.

(2) b ∈ βC+
y .

(3) b /∈ C+
y .

We shall establish the existence of the point a case-by-case.

(1) By Proposition 2.35, if b � y, then I(b, y) is a nonempty l-connected D-set.
The condition a  b will be satisfied by any point a ∈ I(y, b).

(2) If b ∈ βC+
y , then, by the convexity condition, there is a light ray ly,b through y

and b. Pick a point p ∈ ly,b such that y <ll p <ll b. From p, choose a backward
ray l−p different from ly,b, and on it a point a ∈ U such that a <ll p. Then
Lemma 2.37 implies that a  b. Since C−

y ⊂ C−
p and βC−

y ∩βC−
p = ly,b∩C−

y ,
it follows that a /∈ C−

y (see Fig. 3.1(a)).

(3) Finally, let b /∈ C+
y . By Theorem 2.27 there exists z ∈ U such that z  b.

(i) If z /∈ C−
y , then there is nothing to prove. (ii) If z ∈ βC−

y , then, by Lemma
2.28, there exists a ∈ U such that z  a  b. Then, by Theorem 2.39(2),
a /∈ C−

y . (iii) If z ∈ τC−
y then, by Lemma 2.40, βC−

y ∩ βC−
b is nonempty. Let

p ∈ βC−
y ∩ βC−

b and choose a point z′ ∈ lp,y z′ <ll p (Fig. 3.1(b)). Then, by
Lemma 2.37, z′  b and we are back to situation (b).
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Fig. 3.1. Separation by forward and backward cones

The above separation allows one to construct the desired separation by D-sets.

Theorem 3.2 If x and y are two distinct points in a D-set U, then there exist
D-subsets Ux, Uy of U such that x ∈ Ux, y ∈ Uy and Ux ∩ Uy = ∅.

Proof There are three possibilities, according to whether x and y are timelike,
lightlike or spacelike to each other. We take them in turn.

(1) x and y are timelike to each other. We may assume, without loss of generality,
that x  y. Then, from Corollary 2.29, there exist points a, b, c ∈ U such
that a  x  b  y  c. The sets Ux = I(a, b) and Uy = I(b, c) fulfil the
requirements.

(2) x and y are lightlike to each other. We may assume, without loss of generality,
that x <ll y. By Theorem 2.27, there exist points a, b ∈ U such that a  x

and b � y. Let q ∈ l(x, y) (see Fig. 3.2). Let lq be a second ray through q,
lq �= lx,y, and choose p, r ∈ lq∩U such that p <ll q <ll r. Let a ∈ τC−

x ∩U and
b ∈ τC+

y ∩ U . The sets Ux = I(a, r) and Uy = I(p, b) fulfil the requirements.
Details are left to the reader.

(3) x and y are spacelike to each other, i.e., y /∈ Cx ∩ U . Then y /∈ C−
x ∩ U , and

therefore, from Theorem 3.1, there exists a point p ∈ U such that p  y

and p /∈ C−
x ∩ U . Then x /∈ C+

p . We may therefore apply Theorem 3.1 with
order reversed to x and C+

p to obtain a point s ∈ U such that s � x and
s /∈ C+

p ∩ U (Fig. 3.3). Then C−
s ∩ C+

p = ∅. Proposition 2.41 now tells us
that there exist points r, q ∈ U such that p  y  q, r  x  s. The sets
Ux = I(r, s) and Uy = I(p, q) fulfil the requirements.
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We shall now prove the following crucial lemma:

Lemma 3.3 The family of D-intervals in M is a base (page 258) for a topology
on M .

Proof Let us temporarily denote D-intervals by I, distinguishing different ones
by subscripts. We have only to prove that for any two I1, I2 such that I1∩I2 �= ∅,
there exists I3 such that I3 ⊂ I1 ∩ I2.

Note first that every point is contained in a D-interval; by the local structure
axiom, for any point x ∈ M there is a D-set Ux such that x ∈ Ux ⊂ M . Then,
by Theorem 2.27, there is an open order interval I such that x ∈ I ⊂ Ux.

By Proposition 2.34, W = I1 ∩I2 is a D-set. If it is nonempty, then for w ∈ W

there exist, again by Theorem 2.27, points a, b ∈ W such that a  w  b. Then,
by the order-convexity condition, I3 = I(a, b) ⊂ W .
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Definition 3.4 (Order topology) The topology on M that has the family of
D-intervals as a base will be called the order topology on M .

It follows immediately from this definition and Theorem 3.2 that:

Theorem 3.5 The order topology on M is Hausdorff (page 266).

It follows that the order topology is T1 (page 266), i.e., one-point sets are
closed in an ordered space.

Having defined a topology, we are now in possession of the topological notions
of interior and boundary. We omit the simple proof of the following:

Theorem 3.6 In a D-set U , βC+
x ∩ U = ∂C+

x ∩ U (the boundary of C+
x ) and

τC+
x ∩ U = int C+

x ∩ U (the interior of C+
x ), and the same with order reversed. It

follows that if x, y ∈ U, x  y, then I[x, y] is the topological closure of I(x, y).

The family of D-sets is also a base for a topology on M , and it is easily seen
that the topology defined by this base is again the order topology. It follows
that every D-set is an open set. The converse is false. If a  b  c  d, then
U = I(a, b) ∪ I(c, d) is clearly an open set; however, it is not order-convex, and
therefore is not a D-set. When is an open set a D-set? This question is answered
by the following lemma:

Lemma 3.7 An open subset U of an ordered space M is a D-set if and only if
it satisfies the following conditions:

(1) U is order-convex.

(2) If I[x, y] ⊂ U , then every light ray that traverses the interior of I[x, y]
intersects βI[x, y] at exactly two distinct points.

(3) If a, b ∈ U and λ(a, b), then the ray la,b is unique.

If U is a D-set, then the above conditions are satisfied by definition. To prove
that if U satisfies these conditions then it is a D-set one has to verify the six
defining conditions of D-sets. These verifications are straightforward, and will
be omitted. They may be found in (Borchers and Sen, 2006).

3.1.1 The Tychonoff property

Ordered spaces are Tychonoff spaces (page 267), as we shall prove below. A
Tychonoff space is a completely regular space (page 267) which is also a T1

space. Ordered spaces are Hausdorff (Theorem 3.5) and therefore T1, so that we
have only to prove that they are completely regular.

The separation property called complete regularity was first proved by
Urysohn, in one of the deepest results of point-set topology which has become
known as Urysohn’s lemma. Urysohn proved his result for normal spaces (which
need not be T1) by a certain construction which, as we shall see below, can be
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transferred almost word-for-word to ordered spaces without the assumption of
normality.

Theorem 3.8 (Complete regularity) Let M be an ordered space, A ⊂ M a
closed subset and b ∈ M a point such that b /∈ A. Then there exists a continuous
real-valued function f : M → [0, 1] such that f(b) = 0 and f(x) = 1 for x ∈ A.

Proof The reader who is familiar with Urysohn’s lemma will recognize that the
proof is exactly the same as that of the latter, except that, instead of normality,
one uses Lemma 2.28 to obtain a family of open sets with the required nesting
property. The reader who is unfamiliar with the proof of Urysohn’s lemma will
find that the proof uses a strikingly original idea.

We first set up the notations specific to the purpose. In the rest of this proof,
I will denote a D-interval I(., .), and I its closure I[., .]. Write P = Q ∩ [0, 1] and
let p0, p1, . . . , pn, . . . be an enumeration of P such that p0 = 0 and p1 = 1. Set
Pn = {p0, . . . , pn}.

Since b ∈ M � A and M � A is open, there exists a D-interval I1 such that
b ∈ I1 ⊂ M �A. By Lemma 2.28, there exist points x, y ∈ I1 such that x  b 
y, i.e., b ∈ I(x, y) ⊂ I[x, y] ⊂ I1. Set I0 = I(x, y) (see Fig. 3.4).
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Fig. 3.4. Proof of complete regularity
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Suppose that, for r ∈ Pn, D-intervals Ir that have the property

r < s ⇒ Ir ⊂ Is for r, s ∈ Pn (3.1)

have already been defined. We shall define a D-interval In+1 such that property
(3.1) holds for r, s ∈ Pn+1 (Fig. 3.4).

Since 0, 1 ∈ Pn and 0 < pn+1 < 1, the number pn+1 partitions the set Pn into
two disjoint subsets L and R such that r ∈ L ⇒ r < pn+1 and r ∈ R ⇒ r > pn+1.
Since Pn is finite, L has a largest member w and R has a smallest member u,
and

w < pn+1 < u.

Since u, w ∈ Pn, the D-intervals Iu, Iw are already defined. Let now

u1, u2, w1, w2 ∈ I1

such that Iu = I(u1, u2) and Iw = I(w1, w2). Then

u1  w1  w2  u2.

By Lemma 2.28, there exist v1, v2 ∈ I1 such that

u1  v1  w1  w2  v2  u2.

Then Iv ⊂ Iu and Iw ⊂ Iv.
The above procedure defines, recursively, a set of D-intervals Ir, indexed by

r ∈ P, that have the properties

(1) b ∈ I0;

(2) r < s ⇒ Ir ⊂ Is for all r, s ∈ P;

(3) I1 ∩ A = ∅.

Define now the function

f(x) =

{
1, if x /∈ any Ir;

inf {r|x ∈ Ir}, otherwise.
(3.2)

Clearly, f(b) = 0 and f(x) = 1 for all x ∈ A. It remains to prove that f is
continuous. This proof is identical with that in the proof of Urysohn’s lemma, and
may be found in any textbook on the subject, for example (Munkres, 1975).
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Since one-point sets are closed in a Hausdorff space, the result we want follows
immediately:

Corollary 3.9 The ordered space M is a Tychonoff space.

3.1.2 Order equivalence

Let M, M ′ be two ordered spaces and f : M → M ′ a map. We shall denote by x′

and U ′ the images in M ′, under f , of a point x and a subset U of M . We shall,
temporarily, distinguish different light rays in M by subscripts, e.g., l1 and l2,
and denote their images in M ′ by l′1 and l′2. Using these notations, we define the
notion of order equivalence as follows:

Definition 3.10 (Order equivalence) Two ordered spaces M and M ′ will be
said to be order equivalent if there exists a map f : M → M ′ that satisfies the
following conditions:

(a) f is bijective.

(b) If l is a light ray in M , its image l′ is a light ray in M ′, and a <ll b implies
a′ <ll b′.

(c) If l1 ∩ l2 = {an}, then l′1 ∩ l′2 = {a′
n}, and an <ll an+1 ⇒ a′

n <ll a′
n+1.

(d) If U is a D-set in M , then U ′ is a D-set in M ′.

It is easy to check that, according to the Definition 2.45 of order-preserving
maps, the map f is order-preserving. Order equivalence, as the reader is invited
to verify, is an equivalence relation in the mathematical sense. Definition 3.10(d)
implies that two order-equivalent spaces M and M ′ are homeomorphic with each
other. However, the converse is not true, as the following examples show.

Examples 3.11

(i) The de Sitter space in 1 + 1 dimensions is a one-sheeted hyperboloid. It has
two families of generators, which are straight lines, and two generators from
the two different families intersect exactly once. Identifying the generators
with light rays furnishes the 1 + 1 de Sitter space with an order structure.

Consider now the cylinder S1 × R with the circle S1 as base. Define the
light rays to be curves that are inclined at 45◦ with the circular sections of
the cylinder parallel to the base. This makes the cylinder into an ordered
space. Two light rays that intersect each other do so infinitely many times.

The cylinder S1 × R is homeomorphic with the 1 + 1 de Sitter space.
However, the order structures defined on the two are manifestly different;
they are not order-equivalent.

These examples suggest that the phenomena of gravitational lensing may
be independent of the global topological structure of space-time.

(ii) Start with two copies of two-dimensional Minkowski space. (a) Excise the
origin from one, and (b) excise the closed disc of unit radius and centre at
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the origin from the other. The resulting spaces are homeomorphic with each
other. However, they are not order-equivalent. In case (a), only the two light
rays through the origin are cut into two; in case (b), uncountably many light
rays are cut into two.

We end this section with the following proposition:

Proposition 3.12 The subspace topology on a light ray l induced by the order
topology on M is the same as the topology of the order <l on l.

The straightforward proof is omitted; it may be found in (Borchers and Sen,
2006). (Had this proposition been false, further development of the theory
would have ground to a halt.) The result will be used in the following without
attribution.

3.2 Homogeneity properties

In this section we shall establish two homogeneity properties of D-sets. The
first is that any two closed light-ray segments that lie entirely in D-sets are
homeomorphic with each other, as are any two open segments. To state the
second, we need a notation. If U is a D-set, a, b ∈ U , a  b, we define

S(a, b) = βC+
a ∩ βC−

b . (3.3)

The definition ensures that S(a, b) is nonempty, does not consist of a single
point, and lies in a D-set. The homogeneity property we wish to express is that
if U, V are D-sets, S(a, b) ⊂ U and S(p, q) ⊂ V , then S(a, b) and S(p, q) are
homeomorphic with each other. In imitation of Minkowski space, the S(a, b) will
be called spacelike hyperspheres.

We shall establish plausibility, but shall not give the proofs of any of the results
in this section. With one exception, they are all straightforward, and all of them
may be found in (Borchers and Sen, 2006). The results will be based on certain
maps of light-ray segments onto each other in a D-set, which we shall now define.

3.2.1 The standard maps

Definition 3.13 Let U be a D-set, x, y ∈ U such that x  y, and lx a light
ray through x. Set (Fig. 3.5)

{p} = lx ∩ βC−
y .

Then, by order-convexity, p ∈ U . Let ly be a light ray through y such that
ly �= lp,y, and set

{q} = ly ∩ βC+
x .
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Then q ∈ U . Next, let r, s be any two points in U that satisfy

r ∈ lx, x <l r <l p,

s ∈ ly, q <l s <l y.

Define now the maps ρ and σ,

ρ : lx[x, p] → ly,

σ : ly[q, y] → lx,

as follows:
ρ(r) = ly ∩ βC+

r ,

σ(s) = lx ∩ βC−
s ,

(3.4)

respectively. Since the right-hand sides of (3.4) are unique points, the maps ρ

and σ are well defined.
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Fig. 3.5. Defining the standard maps ρ and σ

The maps ρ and σ are natural maps, in the mathematical sense of the term;
one does not need a coordinate system to define them. Their key properties are
given in the following theorem:

Theorem 3.14 The maps ρ and σ defined by (3.4) are injective and order-
preserving. Furthermore, they are homeomorphisms onto their ranges.
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The range of ρ is l[q, y] and that of σ is l[x, p]. When ρ and σ are restricted
to their ranges, we shall denote their inverses by ρ−1 and σ−1 respectively. We
have, in this case,

ρ = σ−1 and σ = ρ−1.

The segments l[x, p] and l[q, y] are homeomorphic;1 we shall write this as

l[x, p] hom= l[q, y].

We shall call the maps ρ and σ the standard maps.

3.2.2 Three or more dimensions

We begin by remarking straightaway that the term dimension has not yet been
defined. We are allowing ourselves to use it because, in this case, intuition will
not lead us astray.

By arguments identical with the above, one can prove that

l[x, q] hom= l[p, y].

But what about the possibility that (for example)

l[x, p] hom= l[x, q] ?

To answer this question, one has to distinguish between the following cases:
(i) There are exactly two light rays through any point in the D-set U . (ii) There
are more than two light rays through any point x ∈ U . In case (i), S(x, y) =
{p, q} and there are not enough natural maps to answer the question (Fig. 3.6).
However, there is a simplifying factor that comes into play, and it is the following.
Let a ∈ I(x, y). Then, of the two backward rays l1−

a and l2−
a from a, one intersects

l(x, p) and the other intersects l(x, q) (Fig. 3.6). Therefore, when it becomes
possible to introduce coordinates on l[x, p] and l[x, q], one can assign coordinates
(a1, a2) to any point a ∈ I[a, b]. This, in turn, enables the results of interest to be
deduced quickly and easily. This case, which will be called the two-dimensional
case, will not be pursued any further.

Case (ii) is more interesting. From now on we shall deal exclusively with this
case, which we state as follows:

Assumption 3.15 There are infinitely many light rays through any point
of M .

1 In a D-set, a segment l[u, v] will determine, uniquely, the ray l on which it lies.
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Fig. 3.6. The two-dimensional case

A word of explanation may be required here. We know that in two-dimensional
Minkowski space there are exactly two light rays through each point, but in
higher-dimensional Minkowski spaces there are infinitely many light rays through
every point. In our present setting, known proofs of the results that will be
stated below require the existence of three or more light rays through each point.
However, it can be shown at a later stage of development that if there are more
than two light rays through each point, there are infinitely many. Assumption
3.15 is therefore a shortcut, and not a loss of generality.

Let I(x, y) be a D-interval, and p ∈ S(x, y). We shall call the segments l[x, p]
and l[p, y] boundary segments of I(x, y). Figure 3.7 shows a D-interval I(x, y)
with three points p1, p2, p3 ∈ S(x, y). Clearly,

l[x, p1]
hom= l[p3, y]

and

l[x, p2]
hom= l[p3, y],

from which it follows that

l[x, p1]
hom= l[x, p2].

The following result then becomes almost self-evident:

Theorem 3.16 In a D-set, any two boundary segments of an order interval are
homeomorphic to each other.
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Fig. 3.7. Homeomorphisms of light ray segments in D-sets

The points s and x in Fig. 3.7 are timelike to each other, with x  s. Therefore
l[x, r] hom= l[x, p3], from which it follows that l[x, r] hom= l[x, p1]. We state this
result as a theorem:

Theorem 3.17 Let U be a D-set and l[a, p] ⊂ U any light ray segment in it.
Then any closed subsegment of l[a, p] is homeomorphic with l[a, p].

Using l-polygons that lie entirely within U , Theorem 3.17 may be combined
with Theorem 3.16 to yield the following result:

Theorem 3.18 In a D-set, any two closed light-ray segments are homeomorphic
to each other.

It is natural to ask if it is possible to extend these results to all of M . Clearly,
the answer would be in the affirmative if it were possible to extend Theorem 3.17
to all of M . This depends on the existence of overlapping covers, which we shall
now define.

Definition 3.19 (Overlapping cover) Let M be an ordered space, l a light
ray in M and U = {Uα|α ∈ A} a cover of l by D-sets. The cover U is called
an overlapping cover if, for any x, y ∈ l such that x <ll y, there exist points
x = x0, x1, . . . , xn = y on l satisfying xk <ll xk+1 and D-sets U1, . . . , Un such
that l[xk, xk+1] ⊂ Uk+1. Then Uk ∩ Uk+1 �= ∅ for k = 0, . . . , n − 1.

Although the definition is long, it is essentially simple, as illustrated in Fig. 3.8.
The figure shows the ray l, the points xk−2, xk−1, xk, xk+1 on it and the D-sets
Uk−1, Uk and Uk+1.
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Fig. 3.8. Part of an overlapping cover

When does a light ray not have an overlapping cover? If l is a continuum, i.e.,
if it is locally homeomorphic with R, then every open cover of it contains an
overlapping subcover. The question arises only if l is a discontinuum, e.g. if it
is locally homeomorphic with Q. In that case it may happen that two ordered
spaces are joined together not by a point – which would contradict the local
structure axiom – but by a gap! In that case light rays could pass from one to
the other, but such light rays would not have overlapping covers. An example of
this kind may be found in (Borchers and Sen, 2006).

We shall regard such examples as pathological, and eliminate them by the
following assumption:

Assumption 3.20 (Overlapping cover assumption) Henceforth, every
light ray will be assumed to have an overlapping cover.

The following result is a direct consequence of Assumption 3.20. The proof
may be found in (Borchers and Sen, 2006).

Theorem 3.21 (First homogeneity property) Let M be an ordered space
in which every light ray has an overlapping cover. Let U1, U2 be D-sets and
l1[a, b] ⊂ U1, l2[p, q] ⊂ U2 be closed light ray segments such that a <ll b and
p <ll q. Then

l1[a, b] hom= l2[p, q].

The following result, like the one above, is also proven step-by-step, but the
proof of the very first step (proving that it holds in a D-set) is complicated.
We shall content ourselves with the remark that the proof does not require the
introduction of artificial coordinate systems, and refer the interested reader to
(Borchers and Sen, 2006).
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Theorem 3.22 (Second homogeneity property) Let M be an ordered space
in which every light ray has an overlapping cover. Let U, V ⊂ M be D-sets,
a, b ∈ U , a  b and p, q ∈ V , p  q. Then

S(a, b) hom= S(p, q).

By now, it would undoubtedly have occurred to the reader to wonder whether
or not any two D-intervals in M are homeomorphic to each other. The answer
is not known; it has not yet been found possible to address this question by
coordinate-free methods. We shall see later that the answer is in the affirmative
in order-complete spaces, which are the subject of the chapter that follows, but
the proof that has been found requires the use of a coordinate system.



4

Completion of ordered spaces

The ordered spaces M that we have defined are not complete, i.e, they are not
necessarily complete. Strictly speaking, we cannot yet speak of the completeness
of ordered spaces. The only mathematical structure defined so far on an ordered
space is the topological structure, and completeness is not a topological notion.1

Let us therefore start by considering light rays, which, by definition, are totally
ordered sets possessing the property that between any two points lies a third.
This property is shared by the set of rational numbers in their natural order.
The Dedekind completion (page 253) of such sets invokes only the order property,
and results in a set that has the least upper bound property (page 255). Such sets
are locally homeomorphic2 with R. One may therefore talk about light rays that
are complete, meaning thereby that they are Dedekind-complete.

In the strictly technical sense of the term, no proofs are given in this chapter,
with a few exceptions in Section 4.7. However, results that require complicated
proofs are broken down into smaller lemmas and propositions, and bare state-
ments are often accompanied by an explanation of what the result is driving at.
The reader who is not mathematically inclined may not be able to reconstruct
the proofs independently, but should be able to follow how the argument deve-
lops. Sometimes, if the result seems obvious but the proof is not, the warning
‘requires proof’ is added in parenthesis.

4.1 Spaces in which light rays are complete

It turns out that there are infinite-dimensional ordered metric spaces in which
light rays are complete, but the space itself is not metrically complete; there
are Cauchy sequences in it that do not converge. (It should be added that we
know of no finite-dimensional examples of this kind; this phenomenon may be
confined to infinite-dimensional spaces.) The results that are quoted below hold
in ordered spaces in which light rays are complete. In this case every light ray
has an overlapping cover by D-sets. The reason is as follows. From Proposition
3.12 we know that the order topology on a light ray l is the same as the subspace
topology on it induced by the order topology on M . Therefore open segments in

1 The reader may occasionally encounter the term topological completeness; it is defined in
Section A4.1, page 277.

2 If we assume that light rays are countable subsets of M , then their Dedekind completions
will be globally homeomorphic with R.
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l are intersections of l with open sets in M . It is a standard result in point-set
topology that a totally ordered set is Dedekind-complete iff every cover of it by
open intervals has an overlapping subcover. It follows that if l is complete, then
l has an overlapping cover by open sets in M , from which it follows easily that
it has an overlapping D-cover.

Proposition 4.1 Let M be an ordered space in which light rays are complete,
and let x and y be two distinct points in M . Then there exists an l-polygon
P (x0, . . . , xn) with x = x0 and y = xn such that any two successive vertices
xk, xk−1, k = 0, . . . , n − 1 lie in a D-set.

Using this, we may prove several interesting results:

Theorem 4.2 Let M be an ordered space in which light rays are complete. Then
M is an S-space, i.e., x  y ⇔ y � x.

Using similar methods, we may prove that the following results hold globally:

Theorem 4.3 Let M be an ordered space in which light rays are complete, and
let x ∈ M . Then τC+

x = int C+
x , and the same with order reversed.

Note, however, that Theorem 4.3 does not imply that βCx = ∂Cx; in the
example shown in Fig. 2.4, light rays are homeomorphic with R.

Theorem 4.4 Let M be an ordered space in which light rays are complete, let
x ∈ M and y ∈ βC+

x . Then there is a light ray through x which passes through y.

Proofs of these results do not involve any significantly new ideas, and may
safely be omitted. The interested reader is referred to (Borchers and Sen, 2006).
The results themselves are promising enough to warrant an investigation of the
notion of completeness in ordered spaces.

4.2 Metric and uniform completions

If an ordered space were to be metrizable, then of course it would admit a metric
completion. Ordered spaces are not necessarily metrizable; but, being completely
regular (Theorem 3.8), they are uniformizable (Theorem A4.9). Now, according
to Theorem A4.10, a necessary and sufficient condition for a uniform space to
be metrizable is that it have a countable base. However, we shall show, by an
example, that an ordered space need not have a countable base.

For this we need a digression into set theory. A set S is called well-ordered
if (i) it is totally ordered by an order relation ≺, and (ii) every nonempty subset
of S has a smallest element in the ordering ≺. The set of nonnegative integers
N is well-ordered in the natural order <, but the sets of integers Z and of real
numbers R are not. The well-ordering theorem of set theory asserts that every
set can be well-ordered, although noone has the slighest idea of how to well-order
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a set like R. This theorem, announced be Zermelo in 1904, caused consternation
among mathematicians. Its proof used the axiom of choice. The well-ordering
theorem was eventually proven to be equivalent to the axiom of choice, and the
controversy largely subsided when the latter was shown by Kelley, in 1950, to
be equivalent to the Tychonoff theorem.

Let (X, ≺) be a well-ordered set, and let α ∈ X. Given α, the set

Sα = {x|x ∈ X and x ≺ α}

is called a section of X by α. It can be proved that

Theorem 4.5 There exists an uncountable well-ordered set, every section of
which is either finite or countable.

For a proof, see (Munkres, 1975, p. 66). This set is called the minimal uncount-
able well-ordered set, and is denoted by SΩ. Using SΩ, we define a set as
follows:

Definition 4.6 Let L be the set SΩ × [0, 1) in the dictionary order <d, with
the smallest element removed.3 The set L with the order <d is called the long
line.

If α ∈ SΩ and u ∈ [0, 1), the coordinates of a point on L are (α, u); the point
(o, 0) is excluded, where o is the first member of SΩ.

Traditionally, light rays in two-dimensional Minkowski space M2 are parallel
to the lines x + y = 0 and x − y = 0. If one rotates the coordinate axes by π/4
while keeping the light rays fixed, the light rays become the lines x = const and
y = const. By analogy, we define the two-dimensional big Minkowski space as
the product L×L in which light rays are the long lines ξ = const and η = const,
where (ξ, η) is a point of L×L, with ξ = (α, y) and η = (β, y). This makes L×L
into an ordered space. This space does not have a countable base, and therefore
is not metrizable.

4.2.1 Uniformizability of ordered spaces

Such examples may seem to be of little physical relevance, but we do not wish
to exclude them yet. That is, we are consciously barring the path to completions
via metrization. This option is available to us because completions may also be
defined via uniformities.4 Unlike metrics – which are defined with the help of
real numbers – uniformities do not need any external concept, and in this sense
are more in the spirit of our endeavour.

3 Dictionary order <d on SΩ × [0, 1) is defined as follows. Let ≺ be the order on SΩ,
α, β ∈ SΩ and x, y ∈ [0, 1). Then (α, x), (β, y) ∈ SΩ × [0, 1). One defines (α, x) <d (β, y) iff
either α ≺ β or α = β and x < y. It is easily seen that <d is a nonreflexive total order.

4 Uniformities are discussed in sufficient detail for our purposes in Sections A4.2 and A4.3.
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A uniform structure on a point-set X is stronger than a topological structure,
but weaker than a metric structure, in the following sense. A uniform structure
on X defines a unique topology on it, which is called the topology of the uni-
formity, or the uniform topology. However, different uniform structures on X

may define the same topology on it. In precisely the same way, a metric struc-
ture on X is stronger than a uniform structure on it. A metric on X defines a
unique uniformity on it which is called the uniformity of the metric, or the metric
uniformity, but different metrics on X may induce the same uniformity on it.
And, just as a topological space is called metrizable if it admits a metric which
induces the given topology on it, it is called uniformizable if it admits a unifor-
mity which induces the given topology on it. Uniformizability, like metrizability,
is a topological concept.

The question we should ask is the following: under what conditions is the order
topology uniformizable? The answer is provided by Theorem A4.9: A topological
space is uniformizable if and only if it is completely regular. As we have seen,
ordered spaces are not only completely regular; they are Tychonoff (Theorem 3.8
and Corollary 3.9). We therefore conclude that:

Theorem 4.7 Every ordered space is uniformizable.

However, we should also pause to enquire why we have asked the question
answered by Theorem 4.7. The property we are interested in is completeness,
because complete spaces (like Rn) admit differentiable structures in the ordinary
sense, which incomplete spaces (like Qn) do not. Uniformizability, for us, is not
an end in itself but only a means to the end of completeness.

One could visualize the situation as follows. Incomplete spaces like Qn contain
gaps which prevent limiting processes essential to the differentiable structure
from being carried out; the process of completion fills these gaps. In incomplete
metric spaces these gaps prevent some Cauchy sequences from converging. The
elegant solution to this problem is to define a new space consisting of Cauchy
sequences in the old space.5 The metric here is merely the enabling device which
makes it possible to define Cauchy sequences. In spaces which are not metrizable,
one would need an alternative to the theory of convergence in metric spaces
before one can try to define a completion process.

Two major alternatives – essentially equivalent – have been developed by
mathematicians: nets and filters. The concept of a net involves an auxiliary
notion of a ‘direction’ which is external to set theory (and topology); a filter, by
contrast, is defined by using only the concepts of sets and subsets (Section A3.8).
To the purist, this may be seen as an advantage, but it is probably correct to
say that the concept of nets is closer to the intuition of those who are used to

5 Strictly speaking, the new space consists of equivalemce classes of Cauchy sequences in the
old; since convergence properties are determined entirely by the tail, two Cauchy sequences
are defined to be equivalent iff they share the same tail.
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sequences. Despite this, we have chosen the filter theory of convergence; the
notion of a direction bears a certain resemblence to the notion of order, which
may be a source of confusion.

A filter on a set X is a family F of nonempty subsets of X such that if
F1, F2 ∈ F , then F1∩F2 ∈ F , and F ∈ F , F ′ ⊃ F implies that F ′ ∈ F . Appendix
A4, devoted to metric and uniform completions, also covers the essentials of the
theory of convergence in the language of filters. Cauchy filters in uniform spaces
are defined (Definition A4.16), a complete uniform space is defined as one in
which every Cauchy filter converges (Definition A4.18), and the completion of
a uniform space is discussed. The main result is Theorem A4.20, which may be
stated concisely as follows:

Theorem 4.8 Every uniform space is densely and uniformly embedded in a
complete uniform space, which is called its uniform completion. The completion
is Hausdorff if the original space is Hausdorff.

The topology of a first-countable space (page 274) may be described in terms
of convergent sequences. It is possible to define Cauchy sequences in a uniform
space (Definition A4.13) without involving the notion of real numbers. Unsur-
prisingly, every Cauchy sequence converges in a complete uniform space; one says
that every uniformly complete space is sequentially complete (Theorem A4.22).
Later we shall assume first countability, which will allow us to exploit sequential
completeness to obtain the required topological results – and will render these
results more transparent.

4.2.2 Complete uniformizability

We now come to a concept of considerable theoretical interest. A topological
space is called completely uniformizable if there exists a uniformity in which it
is complete, and if the topology of that uniformity is identical with the original
topology of the space. We shall give a few examples to clarify this concept.

Examples 4.9

(i) Consider the space Q in the discrete topology (in which every subset is
open). This topology can be induced by the metric

d(x, y) =

{
1, if x �= y,

0, if x = y.

This metric also induces a uniformity on Q, which is the discrete uniformity.
With these structures, the space Q is both metrically and uniformly com-
plete, as the only Cauchy sequences are those which are ultimately constant.
Q, with the discrete topology, is completely uniformizable.
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(ii) Consider Q again, but this time with its usual topology, which is induced by
the metric d(x, y) = |x−y|. This space is uniformizable, but not completely
uniformizable. The metric completion of Q is R, as is its uniform completion.

(iii) The space R, with its usual topology, is completely uniformizable. The
open interval (0, 1), which is homeomorphic with R, is uniformizable but
not completely uniformizable; its completion (both metric and uniform) is
the closed interval [0, 1], which is completely uniformizable.

(iv) Exactly the same is true for the n-dimensional analogues of the above spaces.

The question of when a topological space is completely uniformizable turns
out to be more subtle than it looks. It has been discussed quite adequately, for
our purposes, in Appendix A4, and the result expressed as Shirota’s theorem
(page 286). In view of this theorem, we may assert that the uniform completion
of an ordered space is a closed subspace of some RJ . Ignoring trivial examples
like the QJ (and other pathlogical ones that will surely be concocted), we may
modify the earlier statement to read that completions of ordered spaces will be
products of RJ , or closed connected subsets of RJ for some J .

This is where the real line enters, unavoidably, into the picture.
In Part I of this book we shall use the term continuum to denote a nonempty

open subset of RJ for any J �= ∅.

4.3 The concept of order completion

Having discussed the theoretical situation at length, we now come to practical
matters; the pitfalls to be avoided, and how to avoid them. The following exam-
ples illustrate both the wanted and the unwanted features of uniform completion
(which may at times be the same as metric completion). Recall that we denote
n-dimensional Minkowski space by Mn.

Examples 4.10

(i) Let M be the punctured plane M2 � {O}, where O is the origin. M is an
ordered space according to Definition 2.44; excision of a point from M2 cuts
each of the two light rays through it into two, but this cannot be regarded as
a failing. Completion of this space restores the origin, which has the effect
of joining two pairs of distinct light rays in M2 �{O} into two continua. We
would want the completion process to ‘complete’ existing light rays, and
possibly to add new light rays, but not to join two distinct light rays in M

into one.
(ii) Let M = Mn � B̄, where B̄ is a closed ball of finite radius ‘somewhere’

in Mn. Again, M is an ordered space. Its completion is the space M2 � B,
where B is B̄ with its boundary removed; it is an open ball. The completion
process adds the boundary ∂B̄ of the hole, which become end-points of light
rays in M2 � B. The completed space violates the order axiom.
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(iii) Let M = Q2, with the light rays being the lines x + y = const and
x − y = const, where x, y ∈ Q. Its completion is the space R2. To make
it into an ordered space, we have to define the light rays. Some light
rays define themselves, so to speak; these are the Dedekind completions
of the light rays in Q2. However, the completion process introduces new
points (the irrationals) on the X-axis, and wholly new light rays have to be
defined through them. Finally, one has to show that the completed space
with these new light rays is indeed an ordered space. The solution is obvi-
ous in the present example, but requires considerable effort in the general
case.

(iv) Let a, b ∈ ordered Q2, a  b and let M be the open order interval
IQ(a, b) ⊂ Q2. Then M is an ordered space. Its completion is the closed
order interval IM[a, b] in the Minkowski plane. It would be an ordered
space but for the boundary. Excising the boundary, one obtains the open
order interval IM(a, b) in the Minkowski plane, which is indeed an ordered
space.

In examples (i) and (ii) above, the spaces M are already complete enough, and
the new points added by the completion process are merely an embarassment;
in case (i), they force a change in the order structure; in case (ii), they destroy
the order structure. Example (iii) illustrates what the completion process can
and cannot do; the completed space is a continuum, but is no longer an ordered
space; for example, the irrational points on the X-axis introduced by the com-
pletion process have no light rays defined through them. Example (iv) provides
a pointer to how to proceed. Suppose that IQ(a, b) is a D-interval in Q2. Its
completion IM[a, b] is a closed order interval in M2, but its interior IM(a, b) is a
D-interval in M2.

Let us temporarily denote by Xu the uniform completion of X in the unifor-
mity under consideration. X is assumed Hausdorff, and therefore so is Xu. Let
U be an open subset of X. Then Uu is closed in Xu; the analogue of U ∈ M will
not be Uu ∈ Xu, but rather its interior intUu ⊂ Xu.

What we really want is the following conjecture to be true:

Conjecture 4.11 Let M be an ordered space. There exists an ordered space
M̌ that satisfies the following conditions:

(i) M̌ is locally a continuum.

(ii) It is possible to extend the order on M to M̌ .

(iii) There exists an embedding ι : M → M̌ that is order-preserving (see
Definition 2.45).

If such a space M̌ exists and is unique, then it may be called the order completion
of M .
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4.3.1 The order uniformity on D-sets

We shall establish the existence of the order completion M̌ of M , subject to a
condition that will be stated a little later, by a constructive procedure. We begin
with the definition of the order uniformity on D-sets.

Let U ⊂ M be a D-set in the ordered space M , and denote by Dα a D-interval
that is a subset of U . Let BA = {Dα|α ∈ A} be a base for a topology on U .
Such bases clearly exist, and the topology they define on U is clearly the order
topology on U , which coincides with the subspace topology on U inherited from
the order topology on M . We shall call BA a D-base for the topology of U .

Lemma 4.12 Let {BA|A ∈ A} be the family of D-bases on U . For each A ∈ A,
define

EA =
⋃

α∈A

Dα × Dα.

Then6 the family {EA|A ∈ A} is a base for a filter EU on U × U .

Theorem 4.13 The filter EU of Lemma 4.12 defines a uniformity on U .

The uniformity defined by EU will be called the order uniformity on U , and
also denoted by EU . We have:

Theorem 4.14 The order uniformity EU on U is Hausdorff.

Finally, we have:

Theorem 4.15 The topology of the order uniformity EU on U is the same as
the order topology on U .

Recall that a complete subspace of a Hausdorff uniform space is closed (Theo-
rem A4.24). It follows that the completion of a D-interval in U is a closed subset
of the completion of U .

We now make the following fundamental assumption:

Assumption 4.16 Let M be an ordered space and U a D-set in M . Then the
uniform subspace (U, EU ) is totally bounded (see pages 279 and 286) in the order
uniformity EU on U .

We shall state Assumption 4.16 succinctly as follows: The ordered space M is
locally precompact.

The significance of this assumption is as follows. Although we know that M

is uniformizable, we do not know whether or not it admits a unique uniformiza-
tion. The order uniformity on a D-set is, by definition, unique. If M is locally

6 The proof of this lemma is not trivial. The interested reader is referred to (Borchers and Sen,
2006).
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precompact, then the completion of any D-subset U of M in its order uniform-
ity is compact and Hausdorff (in the uniform topology of the completion). On
a compact Hausdorff space, there is only one uniformity that is compatible
with its topology. Therefore this uniformity is bound to be the order unifor-
mity on the completion of U . If U1 and U2 are two D-sets in M , then so is
U1 ∩ U2, and the completion of this intersection has a unique uniformity which
is necessarily the subspace uniformity induced by the completions of either U1

or U2. This fact makes it possible to extend the order on M to its completion
D-set by D-set, the results remaining valid independently of the uniqueness, or
otherwise, of the uniformity on M .

Before we can proceed, we have to set up a whole array of notations and
definitions. In the following, and in Section 4.4, D will always denote a D-set
in M :

Notations and definitions 4.17

(i) The uniform completion of (D, ED) will be denoted by D̃. The topology of
D̃ will be the topology of its uniformity, which will be the only topology
which we shall ever consider on D̃.

(ii) The interior of D̃ will be denoted by Ď:

Ď = int D̃. (4.1)

(iii) Let {Dα|α ∈ A} be a D-cover of M . The space M̌ will be defined as follows:

M̌ =
⋃

α∈A

Ďα. (4.2)

The reader is invited to verify that the family of sets {Ďα|α ∈ A} is a base
for a topology on M̌ . This is the only topology we shall ever consider on M̌ .
The sets Ď will be called Ď-sets in M̌ . For the moment the terminology is
only suggestive; it will be justified later.

(iv) Finally, define

M̃ =
⋃

α∈A

D̃α. (4.3)

Define a topology T on M̃ by taking finite unions and arbitrary intersections
of the family {D̃α|α ∈ A} as its closed sets. The sets {D̃α} cover M̃ , and
therefore T is indeed a topology on M̃ . Clearly M̌ is a subspace of M̃ ,
and the topology of M̌ which was defined above is the subspace topology
it inherits from T . The sets Ďα are open in both M̃ and M̌ . The only
difference between the two spaces is that

M̌ = M̃ � ∂M̃.
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We are now in a position to define the concept of order completion.

Definition 4.18 Let M be an ordered space which is locally precompact in its
order uniformity. The order completion of M will be defined to be the space M̌

of (4.2), with the topology which has the family of Ď-sets defined by (4.1) as a
base.

4.4 Extension of order: notations and definitions

The term order completion defined above is suggestive, but remains to be jus-
tified. The justification will consist of showing that the order on M can be
extended to M̌ . That is, M̌ can be made into an ordered space in such a way
that M becomes an ordered subspace of M̌ . This is a long process, and it is
important to devise a set of symbols and terms that are suggestive, not mislead-
ing, and can be remembered from one page to the next by the reader who is not
interested in the details of the many long and elaborate proofs.

We begin by extending some of the notations and definitions introduced above
to larger classes of subsets of M̌ .

More notations and definitions 4.19

(i) Let B ⊂ D. We shall denote the uniform completion of B in (D, ED) by B̃.
Then, by Theorem A4.24, B̃ is a closed subset of D̃. It is therefore a closed
subset of M̃ .

(ii) Let A be a closed subset of D. We define Ǎ = Ã ∩ Ď. That is, if A is closed
in M , then Ǎ is closed in M̌ .

(iii) Let U be an open subset of D. We define Ǔ = int (Ũ ∩ Ď). That is, if U is
open in D, then Ǔ is open in Ď (and therefore in M̌). Note that Ǔ is also
the order completion of the ordered space U .

When we have extended the order of M to M̌ , we shall find that the above
notations are consistent with our earlier ones.

We now have an ordered space M densely embedded in a space M̌ which is
not yet ordered. Until that is done, we shall find it very convenient to distinguish
between points of M and those of M̌ � M – and to know when we should not
make this distinction. We therefore adopt the following notations.

Still more notations 4.20

(i) Points in M will be denoted by lower-case Latin letters, excepting the letters
x, y, z.

(ii) Lower case Greek letters ξ, η, ζ will denote points in M̌ which are not
in M .

(iii) The letters x, y, z will represent points in M̌ which may or may not be
in M .
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Definition 4.21 (Light rays, local cones and D-intervals)

(a) Light rays The extension of order from M to M̌ will be carried out, as
announced earlier, ‘D-set by D-set’. There is one important exception to
this, and it applies to light rays l ∈ M . As they are totally ordered sets that
have the density property, any completion process on them is equivalent to
Dedekind completion, and can therefore be carried out globally. We shall
denote the completion of the light ray l in M by l̃, and by ľ the intersection
l̃∩M̌ . Taking this intersection excises the boundary points, if any, that were
introduced by the completion process. ľ will be called the order completion
of l. The notations l> , <l and <ll will apply to ľ as well.

(b) Local cones through points a ∈ M ⊂ M̌ Let a ∈ D and C±
a the forward

and backward cones at a. We define

C±
a;D = C±

a ∩ D, (4.4)

and call them local cones at a in M . By Theorem 3.6 the relations

βC±
a;D = ∂C±

a;D ∩ D (4.5)

always hold for local cones. Define successively

C±
a;Ď

= C±
a;D considered as a subset of Ď;

C̃±
a;Ď

= the uniform completion of C±
a;Ď

;

Č±
a;Ď

= C̃±
a;Ď

∩ Ď; (4.6)

τČ±
a;Ď

= int Č±
a;Ď

. (4.7)

Equation (4.6) deserves a remark. The uniform completion C̃±
a;Ď

of the
local cone C±

a;Ď
not only completes the cone mantle; it also introduces a

‘base’, which is part of the topological boundary ∂C̃±
a;Ď

. Intersection with

Ď excises this ‘base’ but keeps the completed mantle (which lies in Ď). This
is precisely what we want.

(c) Local cones through points η ∈ M̌ �M Let η be a new point introduced
by the order completion. Remarkably, the same kind of limiting process that
leads to the definition of η allows one to define local cones at η before light
rays through η are defined. One needs the order structure of M , the topology
of M̌ and the completeness of Ď. These definitions are given below.

Let η ∈ Ď � D. Then there exists a filter base of closed order intervals
I[rα, sα] in D that converges to η ∈ M̌ , and we define the forward local
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cone Č+
η;D at η as

Č+
η;Ď

=

(⋂
rα

C̃+
rα;Ď

)
∩ Ď. (4.8)

The backward local cone at η will then be defined as

Č−
η;Ď

=

(⋂
sα

C̃−
sα;Ď

)
∩ Ď. (4.9)

(d) D-intervals in M̌ If x, y ∈ Č+
a,Ď

, we define

Ǐ[x, y] = Č+
x;Ď

∩ Č−
y;Ď

,

Ǐ(x, y) = C̃+
x;Ď

∩ C̃−
y;Ď

,
(4.10)

and call them Ď-intervals. The terminology will be justified later. Recall that x

and y may be any two points in M̌ (see Notations 4.20).

The definitions of local cones and Ď-intervals given above is purely topological.
For the moment, the cone mantle is available to us only locally, and then too as
part of its topological boundary. It is desirable to define a mantle operator which
is the local analogue of the β-boundary operator in M . This is accomplished as
follows:

Definition 4.22 (Mantle operator ∂̌)

∂̌Č±
x;Ď

= (∂Č±
x;Ď

) ∩ Ď, (4.11)

where ∂ is the standard topological boundary operator.

Our last definition in this section is that of spacelike hyperspheres in Ď, which
is similar to the definition in D ⊂ M (see (3.3)):

Definition 4.23 For x, y ∈ Č+
a;Ď

, we define

Š(x, y) = ∂̌Č+
x;Ď

∩ ∂̌Č−
y;Ď

. (4.12)

4.5 Extension of order: topological results

In this section we shall state, mostly without proof, some basic relations among
the objects defined in Section 4.4, using the completeness of M̃ and the order
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structure and topology of M . These results have been established under the
following restrictive assumption:7

Assumption 4.24 From now on, all ordered spaces M will be assumed to
satisfy the first axiom of countability (page 274).

4.5.1 Symmetry properties

We begin by extending Definition 2.9 of the order < (or >) to local cones in M̌ :

Definition 4.25

x < y iff y ∈ Č+

x;Ď
;

x > y iff y ∈ Č−
x;Ď

.
(4.13)

In M , the equivalence y ∈ C+
x ⇔ x ∈ C−

y followed from the fact that an
ascending l-polygon from x to y is equally a descending l-polygon from y to x.
l-polygons are not yet available to us in Ď. However, the result – which in M is
order-theoretic but with profound topological consequences – can be established
here by purely topological means. The proof is based on the following lemma:

Lemma 4.26 Let ξ ∈ Ď. Then there exist convergent sequences {an}, an 
an+1 and {bn}, bn � bn+1 in D that converge to ξ from below and from above
respectively.

Using the above lemma, we prove the desired result in two stages:

Lemma 4.27 Let x, y ∈ Ď. Then:

(1) If y ∈ τČ+

x;Ď
, then x ∈ τČ−

y;Ď
, and the same with order reversed.

(2) If y ∈ ∂̌Č+

x;Ď
, then x ∈ ∂̌Č−

y;Ď
, and the same with order reversed.

It follows immediately from the above that

Corollary 4.28

y /∈ Čx;Ď ⇔ x /∈ Čy;Ď.

Notations and terminology 4.29 The above results extend the notations
x  y, x | y, y � x and y |� x to Ď-sets, and are equivalent. We shall also
express Corollary 4.28 in words as ‘x and y are spacelike to each other’. As before,
the terminology will be fully justified only when the order has been extended
to M̌ .

7 Mathematically, the assumption of first countability may not be necessary; all results estab-
lished using Cauchy sequences appear to be provable using Cauchy filters. However, it is not
clear, at least at the time of writing, what physical significance such a generalization may
have.
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4.5.2 Separation theorems

The sets Ď enjoy some fairly strong separation properties which we shall express
in forms that will be most useful to us: Theorems 4.32, 4.33 and 4.34. The proofs
of these theorems proceed via the two inclusion lemmas that are stated below.

Lemma 4.30 Let D be a D-set in M and r, s, t, u points in D such that r 
s  t  u. Then

Ǐ[s, t] ⊂ Ǐ(r, u).

The important point is that Ǐ[s, t] is a closed set.
Let S(a, b) ⊂ D. We consider the space S(a, b) in its relative uniformity and

topology. Let O be an open set in S(a, b), and denote its closure in S(a, b) by O.
Denote by Õ the uniform completion of O ⊂ S(a, b) (note that O �= Õ). Then Õ

is closed in S̃(a, b). Denote the interior of Õ by Ǒ. Clearly,

Ǒ ⊂ Õ ⊂ Š(a, b).

Lemma 4.31 Let S(a, b) be a spacelike hypersphere in D ⊂ M and Š(a, b) its
uniform completion. If V, W are open sets in S(a, b) such that W ⊂ V , then

W̃ ⊂ V̌ .

Theorem 4.32 Let U ⊂ M be a D-set, and a, b, a′, b′ ∈ U such that a  b,
a′  b′ and I(a, b) ∩ I(a′, b′) = ∅. Then

Ǐ(a, b) ∩ Ǐ(a′, b′) = ∅.

Theorem 4.33 Let U be a D-set in M and W,W ′ open sets in S(a, b) ⊂ U such
that W ∩ W ′ = ∅. Then W̌ ∩ W̌ ′ = ∅.

Theorem 4.34 Let D ⊂ M be a D-set and p, q a pair of spacelike points in it,
i.e., C+

p;D ∩ C−
q;D = ∅. Then Č+

p;Ď
∩ Č−

q;Ď
= ∅.

4.5.3 Density lemmas

Finally, we state two density lemmas:

Lemma 4.35 Let ξ, ζ ∈ Ď such that ξ  ζ. Then there exists η ∈ Ď such that
ξ  η  ζ.

Lemma 4.36 Let z ∈ ∂̌Č+

x;Ď
, z �= x. Then there exists y ∈ ∂̌Č+

x;Ď
, x �= y, y �= z

such that z ∈ ∂̌Č+

y;Ď
.
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4.6 Extending the order to M̌

In order to extend the order from M to M̌ , we have to define light rays in M̌ and
verify that the space M̌ , so equipped, satisfies the order, identification, cone and
local structure axioms. Some light rays through points a ∈ M ⊂ M̌ have already
been defined: the order completions ľ of light rays l in M . However, in M̌ there
are more light rays through a than the ľa. Let a, b ∈ D, a  b and consider the
spacelike hypersphere Š(a, b). Except in the trivial case M = M̌ , Š(a, b) contains
points that do not belong to S(a, b). Let ξ ∈ Š(a, b) be such a point. It would be
reasonable to expect that ξ is connected to a and b by light-ray segments, and
this is indeed the case.

We shall use a different font to distinguish between the light rays ľ and those
that we are about to define:

Notations 4.37 � will denote a new light ray in M̌ , i.e., one which is not the
order completion ľ of any light ray l in M .

4.6.1 The segment �[a, η]

The segment �[a, η] is defined in the following manner. Since Š(a, b) is the uniform
completion of S(a, b), there is a Cauchy sequence {tn}, n ∈ N on S(a, b) that
converges to η ∈ Š(a, b) � S(a, b). The light-ray segments l[a, tn], n ∈ N are well
defined on βI[a, b] (Fig. 4.1). The segment �[a, η] is the ‘limit’ of the sequence
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Fig. 4.1. Defining the segment �[a, η]
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of segments {l[a, tn]} as n → ∞. Of course, the word limit is used above only
in an intuitive sense, and it has to be proved that the limit actually exists in a
precise mathematical sense. This can be done, but the proof is long and involved.
One first constructs the object �[a, η], and then proves that it has the following
properties, which justifies calling it a light-ray segment:

4.6.1.1 Properties of the segment �[a, η]

(i) �[a, η] is totally ordered. (Upon examination of the construction, this turns
out to be true by definition.)

(ii) �[a, η] is homeomorphic to every ľ[a, tn], and therefore to a closed interval
on the real line.

(iii) �[a, η] ⊂ ∂̌Ǐ[a, b]. (This is true by construction.)

(iv) �[a, η] ⊂ ∂̌Č−
η;Ď

, where Č−
η;Ď

was defined by (4.9). (This requires proof.)

(v) Let h ∈ τC+
a;D such that un /∈ C−

h;D for n > N0 (see Fig. 4.2). Then
∂̌Č−

h,Ď
∩ �[a, η] consists of a single point. (This requires proof.)

(vi) Let ξ ∈ τC+
a;Ď

such that un /∈ Č−
ξ;Ď

for some n. Then ∂̌Č−
ξ;Ď

∪�[a, η] consists
of a single point. (This requires proof.)

Some further properties of the segment �[a, η] are stated in the following.

Theorem 4.38 Let {wn}, wn ∈ C+
a;D, wn � wn+1 � a be a sequence that

converges to η (see Fig. 4.2). Then

�[a, η] =
⋂
n∈N

Ǐ[a, wn].

The following theorem shows that �[a, η] does not belong to the completion of
any light ray l in M , which justifies the term new light ray.
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Fig. 4.2. Properties of the segment �[a, η]
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Theorem 4.39 Let U ⊂ M be a D-set and �[a, η] ⊂ Ǔ . If x ∈ �[a, η], x �= a,
then x /∈ M .

Theorem 4.38 can also be used as an alternative definition of the segment
�[a, η]. Subsegments of �[a, η] can be defined similarly:

Proposition 4.40 Let ξ ∈ �(a, η) and let {vn}, n ∈ N, vn+1  vn be a sequence
of points in C+

a;D that converges to ξ. Then

�[a, ξ] =
⋂
n∈N

Ǐ[a, vn].

We end this section with the following theorem:

Theorem 4.41 Let η ∈ ∂̌Č+
a;Ď

. Then

�[a, η] = ∂̌Č+
a;Ď

∩ ∂̌Č−
η;Ď

.

4.6.2 The segment �[ξ, η]

The segments �[ξ, η] are defined somewhat differently. Let ξ ∈ Ď and η ∈
∂̌Č+

ξ;Ď
, ξ �= η.

Definition 4.42

�[ξ, η] = ∂̌Č+
ξ;Ď

⋂
∂̌Č−

η;Ď
.

4.6.2.1 Properties of the segment �[ξ, η]

The segment �[ξ, η] has the following properties:

(i) �[ξ, η] is totally ordered by the relation < (equivalently, by >). It is this
fact which justifies calling �[ξ, η] a light-ray segment.

(ii) �[ξ, η] is closed, being the intersection of the sets ∂̌Č+
ξ;Ď

and ∂̌Č−
η;Ď

, which
are closed in Ď.

(iii) �[ξ, η] ⊂ ∂̌Č+
ξ;Ď

, by definition.

(iv) �[ξ, η] ⊂ ∂̌Č−
η;Ď

, by definition.

(v) Let {an}, an+1 � an and {bn}, bn+1  bn be Cauchy sequences in D that
converge to ξ and η respectively in Ď. Then

�[ξ, η] =
⋂
n∈N

Ǐ[an, bn].
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(vi) Let p ∈ τC̃p

ξ;Ď
∩ D such that bn /∈ C−

p;D for all n ∈ N, where the bn are as
in (v) above. Then

∂̌Č+
p;Ď

⋂
�[ξ, η]

is a single point. (This requires proof.)

(vii) Let ζ ∈ τC̃+
ξ;Ď

such that bn /∈ C−
ζ;Ď

for n ∈ N. Then

∂̌Č+
ζ;Ď

⋂
�[ξ, η]

is a single point. (This requires proof.)

4.6.3 Extending light-ray segments

Whereas the light rays ľ are defined globally in M̌ , a segment �[x, y], where at
least one of x and y do not belong to M , is defined only locally in a Ď-set. The
definition of � (any �) has to be extended to all of M̌ by means of overlapping
covers. The extension process is based on the following lemma:

Lemma 4.43 Let y ∈ ∂̌Č+
x;Ď

, y �= x. Then the set ∂̌Č+
x;Ď

∩ ∂̌Č+
y;Ď

is totally
ordered by <.

Proof Let z ∈ ∂̌Č+
x;Ď

∩ ∂̌Č+
y;Ď

. Then the light ray segments �[x, z] and �[y, z] are
well defined, and ordered by <. The result follows.

The procedure for step-by-step extension of new light-ray segments should
now be fairly obvious. We shall denote the total order on � by l> or <l . The
symbol <ll will have the same meaning on � as it does on l and ľ.

This completes the definition of new light rays in M̌ .

4.7 Verification of the axioms

Our last task is to verify that the space M̌ is indeed an ordered space in our
sense of the term.

4.7.1 The order axiom

It is easy to see that the light rays ľ and � satisfy the order axiom 2.1. All rays
ľ and � in M̌ are locally homeomorphic with R. Parts (a) and (b) of Axiom 2.1
are basic properties of R. Part (c) follows from the fact that order completion
excises all boundary points that are introduced by uniform completion. From the
definitions of the segments �[a, η] and �[ξ, η] it is clear that the order on these
segments is consistent with the order on segments of ľ, which ensures that Axiom
2.1(d) is satisfied.
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4.7.2 The identification axiom

Since the identification axiom 2.6 holds for any pair of rays l, l′ in M , it holds
trivially for ľ, ľ′ in M̌ . From Theorem 4.39 it follows that two rays ľ and � cannot
overlap in an open segment in any Ď-set. By construction, two distinct segments
�[ξ, η] and �[ξ, ζ] have only the point ξ in common in a Ď-set. The extension of
these segments to overlapping Ď-sets uses the identification axiom as a tool. It
follows that Axiom 2.6 is satisfied everywhere in M̌ .

4.7.3 The cone axiom

Recall that the local cones were defined topologically in Definition 4.21, owing
to which the polygon lemma was not available. Having defined the rays ľ and
�, we can make use of the notion of l-polygons, and provide an order-theoretic
characterization of local cones.

Lemma 4.44 Let y ∈ Č+

x;Ď
. Then

(1) If y ∈ ∂̌Č+

x;Ď
, then there exists a light ray through x and y.

(2) If y ∈ τČ+

x;Ď
, then there exist ascending l-polygons from x to y.

The same assertions hold with order reversed.

We now define cones globally as follows:

Č+
x =

⋃
all P ↑

x ⊂M̌

{y|y ∈ P ↑
x },

Č−
x =

⋃
all P ↓

x ⊂M̌

{y|y ∈ P ↓
x }

and

Čx = Č+
x

⋃
Č−

x .

The example of the anti-de-Sitter space given earlier (Fig. 2.5), which was
locally M2, shows that the cone axiom is independent of completeness or
incompleteness. It depends, basically, on the global topology of the space.

It can be proved that if the cone axiom is satisfied in M , then it is satisfied in
M̌ . One assumes that the set

Q = Č+
x ∩ Č−

x � {x}

is nonempty, and derives a contradiction.
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4.7.4 D-sets in M̌

We shall prove that a set Ď = int D̃ ⊂ M̃ , where D is a D-set in M , is indeed
a D-set in M̌ . To do so, one has to verify that Ď satisfies the six conditions in
Definition 2.22 of D-sets. The verifications are simple, and are given below.

(i) The l-convexity condition x, y ∈ Ď, x  y ⇒ Ǐ[x, y] ⊂ Ď. Let Ux, Uy

be open sets in M̌ such that x ∈ Ux ⊂ Ď, y ∈ Uy ⊂ Ď and Ux ∩ Uy = ∅.
Then there exist Cauchy sequences {an} ⊂ Ux, an+1 � an and {bn} ⊂
Uy, bn+1  bn for all n ∈ N that converge to x and y respectively. Then
am  am+1  bn+1  bn for all m, n ∈ N, and

I(x, y) =
(⋂

Č+
am;Ď

)⋂(⋂
Č−

bn;Ď

)
=
⋂
n∈N

(
Č+

an;Ď

⋂
Č−

bn;Ď

)

=
⋂
n∈N

Ǐ[an, bn].

(ii) The openness condition Since Ď is open, the intersection of a light ray
with it cannot have end-points.

(iii) The intersection condition Let x, y, z ∈ Ď, x  y  z. Then ľ+y (or �+y ,
as the case may be) intersects ∂Č−

z;Ď
at a single point, and ľ−y (or �−

y , as

the case may be) intersects ∂Č+
x;Ď

at a single point. (See Subsections 4.6.1.1
and 4.6.2.1.)

(iv) The convexity condition The convexity condition clearly remains true
for the rays ľ. New rays � are defined segmentwise by intersections

�[x, y] = ∂̌Č+

x;Ď

⋂
∂̌Č−

y;Ď
,

and therefore the ray � will also satisfy the convexity axiom on ∂̌Č±
z;Ď

for

any z ∈ � ∩ Ď.
(v) The uniqueness condition This is trivially true for the rays ľ. For the

rays �, it is true by construction: if y ∈ ∂̌Č+

x;Ď
or x ∈ ∂̌Č−

y;Ď
, then there is

only one � through x and y.
(vi) The dimension condition The cardinality of the set of light rays through

a ∈ M̌ cannot be smaller than that of the set of light rays through a ∈ M .

This concludes our verification that Ď is indeed a D-set in M̌ , and justifies
the notation (and terminology, for those who still remember where the D of a
D-set comes from).
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4.7.5 The local structure axiom

We have just established that every Ď-interval is a D-set in M̌ . Every point ξ

introduced by order completion is contained in a nonempty Ď-interval Ǐ(a, b).
Observe that the family of Ď-intervals

{Ǐ(a, b)|a, b ∈ D ⊂ M, a  b}

is a base for the order topology of M̌ .
This concludes our verification that M̌ satisfies the axioms that define ordered

spaces. The verification also justifies the suggestive notations and terminology
that we employed earlier.
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Structures on order-complete spaces

In this chapter we shall study some mathematical structures on order-complete
spaces. The mathematical developments that follow are concerned only with
order-complete spaces, and therefore it will no longer be necessary to adhere to
the special notations of Chapter 4. We shall revert to our original notations:
M,l,C±

x ,D,I and S, and no special significance will be attached to any lower-
case Greek or Latin letter. However, we shall continue to distinguish between
ordered and order-complete spaces, and shall be explicit in stating whether M

is merely ordered or order-complete.
Our first step will be to define timelike curves. We shall then use these to

define a parametrization of order intervals. This will allow us to prove that
all D-intervals are homeomorphic with each other, and with an open ball in
some Rn. It will follow immediately from the latter that D-intervals in finite-
dimensional order-complete spaces are differentiable manifolds. This, in turn, will
imply that ordered spaces are embedded in spaces that have locally the structure
of differentiable manifolds. As experiments cannot distinguish between ordered
and order-complete spaces, it becomes difficult to tell whether the differential
calculus is a discovery or an invention. Of course, this presumes that the special
theory of relativity is a discovery, and not an invention.

5.1 Timelike curves in M

A curve in a topological space X is a continuous map ϕ : [0, 1] → X from
the closed real interval [0, 1] into X. By analogy, we may define a curve in an
ordered space M which is not necessarily order-complete as a continuous map
ϕ: l[a, b] → M , where l[a, b] is any closed light-ray segment in M with a <ll b. A
timelike curve in M will then be a curve which is ordered by . The definition
of a timelike curve in an order-complete space follows from the above:

Definition 5.1 Let M be an order-complete space, U ⊂ M a D-set and a, b ∈ U

such that a  b. A continuous map θ : [0, 1] → U such that θ(0) = a and θ(1) = b

is called a timelike curve if t1 < t2 implies that θ(t1)  θ(t2).

We shall denote the image of θ in M by Θ, and shall, by abuse of language,
call Θ[a, b] a timelike curve joining a with b in M , where a  b.

Thus a timelike curve is, by definition, locally homeomorphic to a light ray. It
turns out to be annoyingly difficult to establish the existence of timelike curves
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in arbitrary order-complete spaces. The reason can be understood by looking at
two-dimensional Minkowski space.

Figure 5.1 shows an order interval I[O, P ] in two-dimensional Minkowski space;
it is a rectangle. Y and X are the other two vertices of this rectangle. y, y′ are
two distinct points as shown on l(O, Y ), and the second forward rays from them
(i.e., not lO,Y ) intersect lX,P at s and s′ respectively. Similar statements apply
to the points x, x′, r, r′ and the light-ray segments l[x, r], l[x′, r′], as shown in
the figure.
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Fig. 5.1. Construction of timelike curves in M
2

Now x  P , and therefore the backward ray l−s,y from s intersects the forward
ray l+x,r at the point a on the figure. Then O  a  P . A similar consideration
may be applied to the order interval I[a, P ]. The backward rays l−s′,y′ and l−r′,x′

intersect each other at b, and a  b  P ; P ↑(a, c, b) and P ↑(a, d, b) are two
distinct ascending l-polygons from a to b. We have obtained two points a, b

such that O  a  b  P . The whole process described above is completely
trivial.

In fact, we can go further. Since light rays are locally homeomorphic with
R, we can consider O to be the origin of coordinates, take the ray lO,Y to be
one axis and the ray lO,X the other. Then any point on I[O, P ] will be the
intersection of a forward ray from l[O, X] with a forward ray from l[O, Y ]. If we
identify the segments l[O, X] and l[O, Y ] with the real interval [0, 1], the set of
points {(p, p)|p ∈ [0, 1]} – the straight line joining O with P – will be a timelike
curve.
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The reason is that on R2 any forward ray l+x,r is bound to intersect any for-
ward ray l+y,s; this is a simple consequence of the intermediate value theorem
of calculus. However, this may no longer be true in an arbitrary order-complete
space.

Let M be an order-complete space, D ⊂ M a D-interval, a, b ∈ D, a  b,
p, q ∈ S(a, b), p �= q, x ∈ l(a, q) and y ∈ l(a, p). Figure 5.2 shows the forward
rays l+x,r, r ∈ l(p, b) and l+y,s, s ∈ l(q, b) by dashed curves. The existence of these
rays and of the points r, s is assured by the fact that I[a, b] lies in a D-set. But
nothing assures us that the rays lx,r and ly,s intersect in D. In fact, so far we
have not been able to prove that they do, unless M is a Minkowski or a de Sitter
space. This unsolved problem has been called the cushion problem in (Borchers
and Sen, 2006).
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Fig. 5.2. The cushion problem

Despite the cushion problem, it is still possible to prove that timelike curves
exist. The proof is by construction, and is long and involved. We shall con-
tent ourselves with quoting the final result, referring the interested reader to
(Borchers and Sen, 2006) for details.

Theorem 5.2 Let U be a D-set in an order-complete space M , a, b ∈ U, a  b.
Then there exists a continuous timelike curve Θ(t) on M from a to b, with
a = Θ(0) and b = Θ(1).

The theorem quoted below follows from the details of the construction, which
we have omitted:
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Theorem 5.3 The topology of the order  on a timelike curve Θ is the same
as the subspace topology that Θ inherits from M ; i.e., Θ is locally homeomorphic
with R.

It should be noted that the concatenation of two timelike curves is again a time-
like curve. Therefore a timelike curve can be extended indefinitely, by overlapping
D-covers, in both forward and backward directions. The cone axiom will ensure
that the forward and backward continuations never meet; there are no closed
timelike curves.

We shall use the obvious notation for open timelike curves: Θ(a, b) will denote
the curve Θ[a, b] with its end-points deleted.

5.2 Parametrization of D-intervals

We begin with the following lemma, which is fundamental:

Lemma 5.4 Let M be an order-complete space, U a D-set in it, a, b ∈ U, a  b

and Θ[a, b] a timelike curve joining a with b. Then, for any point w ∈ I[a, b],
there exist points u, v ∈ Θ[a, b] such that

βC−
w ∩ Θ(a, b) = {u},

βC+
w ∩ Θ(a, b) = {v}.

(5.1)

The situation is depicted in Fig. 5.3. Clearly, u  v.

5.2.1 2 -cells in D-intervals

Let U be a D-set in the order-complete space M , and let a, b ∈ U , a  b.
Figure 5.4 shows the D-interval I[a, b], a point p ∈ S(a, b), the ray segments
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Fig. 5.3. Illustrating Lemma 5.4
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Fig. 5.4. 2-cells in D-intervals

l[a, p] and l[p, b] and a timelike curve Θ[a, b]. Since both l[a, p] and Θ[a, b] are
homeomorphic with closed intervals on the real line, they are homeomorphic
with each other, but there is a natural homeomorphism, defined as follows, which
will be of special interest to us. Let ξ ∈ l[a, p] (Fig. 5.4). By Lemma 5.4, the
point

ϑ(ξ) = βC+
ξ ∩ Θ[a, b] (5.2)

exists and is unique. The map

ϑ : l[a, p] → Θ[a, b] (5.3)

so defined is bijective and order-preserving, and therefore a homeomorphism.
Let p and ξ be as above (Fig. 5.4), and set η = ϑ(ξ), where ϑ(ξ) is defined by

(5.2). Define now

F [a, b; p] = {x|x ∈ l[ξ, η], ξ ∈ l[a, p]}. (5.4)
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In Fig. 5.4, the set F [a, b; p] appears as a delicately shaded triangle. We shall
give it the subspace topology inherited from U . With this topology, it is what is
called a 2-cell in topology, i.e., a topological space that is homeomorphic with a
nondegenerate triangle in the Euclidean plane.

The proof of this assertion is long and complicated. We shall mention only the
key stages here; full details may be found in (Borchers and Sen, 2006).

We define a metric d on Θ[a, b] such that d(a, b) = 1. Let now

d(η, b) = α, d(a, ζ) = β,

and assign coordinates to ξ as follows:

ξ = (α, β). (5.5)

Then

0 ≤ α, β ≤ 1, α + β ≤ 1, (5.6)

so that α + β = 1 for a point on Θ[a, b]. A pair of real numbers (α, β) satisfying
conditions (5.6) determines a unique point on F [a, b; p]. Let us denote by Cα the
subset of F [a, b; p] that is defined as follows:

Cα = {z = (α, β)|α fixed, 0 ≤ β ≤ 1 − α}. (5.7)

This set is clearly the ray segment l[ξ, η] for which d(η, b) = α. In the same way,
we can define the subset of F [a, b; p]

Cβ = {z = (α, β)|β fixed, 0 ≤ α ≤ 1 − β}. (5.8)

Owing to the cushion problem, we cannot assume that this set is a light-ray
segment. However, we can prove that:

Lemma 5.5 The set Cβ defined by (5.8) is a continuous curve.

We may therefore assert that (5.5) defines a coordinate system on F [a, b; p] in
the usual sense. The curve Cβ is the curve originating at ζ and passing through
z in Fig. 5.4.

The pairs of real numbers (α, β) may also be regarded as points on a Euclidean
plane. With the usual system of Cartesian coordinates, they are easily seen to
define the triangle ∆ with vertices (0, 0), (0, 1) and (0, 1), and there is a self-
evident bijection Π between ∆ and F [a, b; p]. With some further effort, one
proves that

Theorem 5.6 The bijection Π between ∆ and F [a, b; p] is a homeomorphism.

Observe that this result holds for any p ∈ S(a, b).
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5.2.2 Cylindrical coordinates on D-intervals

In the notation of Lemma 5.4, if w ∈ I(a, b), then u, v ∈ Θ(a, b). Clearly, w ∈
S(u, v). It follows from the definitions of u, v and F [a, b; p] that

S(u, v) ∩ F [a, b; p] = {w}.

Conversely, given w ∈ I[a, b], we may determine the 2-cell F [a, b; p] on which
it lies as follows. Let ξ = l−v,w ∩ βC+

a . Then p = l+a,ξ ∩ S(a, b). That is, w is
uniquely determined by the triple {u, v, p}.

This triple may be cast into a form more suitable for our purposes by the
introduction of cylindrical coordinates on I[a, b] as follows. We first map Θ[a, b]
homeomorphically onto the real interval [−1, 1] (instead of [0, 1], as earlier), so
that

a �→ −1,

b �→ +1.
(5.9)

Then every point of Θ is assigned a numerical coordinate lying between −1 and
+1. Let now w ∈ I[a, b] and u, v as before, i.e., as defined by (5.1). We shall use
the same letters u, v to define their numerical coordinates on Θ[0, 1]. Then

−1 ≤ u ≤ v ≤ 1.

Clearly, if w ∈ Θ[a, b], then u = v. If w = a, then u = v = −1, and if w = b,
then u = v = 1. We define

r =
v − u

2
,

h =
v + u

2
.

(5.10)

Then
−1 ≤ h ≤ 1,

0 ≤ r ≤ 1 − |h|.
(5.11)

The variables h and r will be called the level and radius respectively, as is
common with cylindrical coordinates. Note that r = 0 means that w ∈ Θ[a, b].
The upper bound for r, given h, follows from the fact that u is constrained by
u ≤ v.

It is clear that for fixed h the sets of constant r are the corresponding hyper-
spheres S(u, v). Therefore, to complete the parametrization of I[a, b], we have
to parametrize S(u, v). However, we do not need to do this explicitly. From the
second homogeneity property (Theorem 3.22), we know that all spacelike hyper-
spheres in D-sets are homeomorphic with each other. We may therefore choose
a fiducial hypersphere S in a D-set and parametrize it in any way that is possi-
ble (usually this will require more than one coordinate chart). Let φ(x) be the
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coordinates of the point x on the fiducial hypersphere. We may parametrize the
points w ∈ I[a, b]

w = {h; r, φ(w)} (5.12)

in such a way that φ(w) is constant on the 2-cell F [a, b; p] on which w lies.
Since every closed D-interval I[x, y] has the same parametrization, the theorem

below follows immediately.

Theorem 5.7 (Third homogeneity property) Let I[a, b] and I[x, y] be any
two closed D-intervals in M . Then I[a, b] and I[x, y] are homeomorphic with
each other.

This is a very useful result, as we shall see below. Unfortunately, we have not
been able to find a coordinate-free proof for it.

5.3 Final results

Having established the third homogeneity property, we may proceed to obtain
our final results.

5.3.1 Contractibility of order intervals

We start with the trivial observation that the concatenation of two timelike
curves is again a timelike curve. Therefore, if I[a, b] is a D-interval and o is any
point in I(a, b), then there is a timelike curve Θ[a, b] that passes through o. We
may now choose a homeomorphism of Θ[a, b] with the interval [−1, 1] such that
h(o) = r(o) = 0. Let now w ∈ I[a, b], w = {h, r, φ}, and consider the maps

[h, r, φ] �→ [th, tr, φ] (5.13)

for 1 ≤ t ≤ 0. Recalling that φ = const on 2-cells F [a, b; p], we see that for any
t such that 1 ≤ t < 0, (5.13) determines a homeomorphism of order intervals,
whereas for t = 0 the entire ordered interval is mapped onto the point o. Since
o is any point in I(a, b), we have proved that:

Theorem 5.8 The order interval I[a, b] is contractible upon itself to any point
o ∈ I(a, b).

5.3.2 The local differentiable structure

Since we assumed that the ordered spaces of Chapter 3 were locally precompact,
our order-complete spaces are locally compact. Therefore a D-interval I[a, b]
with nonempty interior is compact, and is therefore a closed connected subset of
Rn for some (finite) n. Since this set is homogeneous (i.e., every pair of points
in its interior have neighbourhoods that are homeomorphic to each other) and
contractible upon itself to every point in its interior, it is homeomorphic to a
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closed ball in Rn. The interior of this ball is nonempty and has a differentiable
structure, and this structure may be transferred automatically to I(a, b), for
example by choosing rectangular Cartesian coordinates on Rn such that the
origin is at the centre of the ball. The radius is arbitrary. We conclude that:

Theorem 5.9 Every nonempty open D-interval I(a, b) is diffeomorphic to a
nonempty open ball in Rn. The dimension n is the same for all open D-intervals
in M .

We may therefore state our final result as follows:

Theorem 5.10 Every locally precompact ordered space can be densely and uni-
formly embedded in an n-dimensional order-complete topological manifold which
has the local structure of an n-dimensional differentiable manifold.

We cannot say anything about the existence, or otherwise, of a global
differentiable structure without making additional assumptions.





Part II

Geometrical points and measurement theory





Introduction to Part II

The argument of Part I of this book may be summed up as follows. The notion of
causality can be defined as a partial order on an infinite set of geometrical points.1

Defining causality is the same as assigning a light cone at each point (of a space).
A light cone is determined by the set of light rays through its vertex. A light ray
is totally ordered by the natural past–future order on it. The partial order on the
whole space, called the causal order, may be reconstructed – i.e., axiomatized –
from the properties of light rays and their intersections. A key property of a light
ray is that between any two points of it lies a third, i.e., the cardinality of the
set of points constituting a light ray is at least ℵ0. It turns out that the entire
causal structure can be defined on a set of cardinality ℵ0. In common parlance
(though not in the technical topological sense), such spaces would be called
discrete, as opposed to continuua. Analysis of the causal spaces so defined shows
that the locally compact ones among them can be densely embedded in continuua
that have the local structure of finite-dimensional differentiable manifolds. Thus,
although causality does not imply that space-time is a differentiable manifold, it
comes as close as possible, mathematically, to implying it without actually doing
so; a principle that most people would consider purely physical has far-reaching
mathematical implications.

The whole structure is contingent upon the assumption that space-time is
made up of geometrical points. This assumption has been questioned twice
between 1930 and 1960. Between the wars, application of noncovariant pertur-
bation theory to quantum electrodynamics (QED) produced divergent integrals
in all orders except the lowest. The seemingly intractable nature of the problem
led several physicists, Pauli and Heisenberg among them, to propose a radical
overhaul of the notion of space-time at small distances.2 After the second world
war, Tomonaga, Schwinger, Feynman and Dyson created a perturbation theory
that was both covariant and gauge-invariant, which allowed the divergences to
be eliminated without modifying the structure of space-time at small distances;
the latter idea had, if anything, been detrimental to progress.3 Then, in 1952,

1 A geometrical point is defined to be a point in the sense of Euclidean geometry.
2 See (Schweber, 1994, Chapter 2). Relevant quotations from Pauli and Heisenberg will be

found on pp. 84–85 and p. 101 respectively of that book.
3 See (Schweber, 1994) for a riveting historical account. Some later theoretical developments,

following the realization that the perturbation series diverges (Dyson 1952; Haag 1955), are
described briefly in the Epilogue of this book.
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Wigner asserted that an additive conservation law limits the precise measure-
ment of an operator which does not commute with the conserved quantity.4 This
implied that the position of a point-particle could seldom be measured precisely,
which in turn led Wigner to question the whole notion of geometrical points. As
he put it to Haag, ‘Some of us believe that there are no points’.5

The reader will recall that von Neumann’s measurement theory contains a
metaphysical part, namely an appeal to the observer’s conscious ego, which was
accepted – perhaps not wholeheartedly, but accepted nevertheless – by Wigner.
The mathematical content of the theory was expressed by Wigner almost as an
epigram: ‘The state of the object is mirrored by the state of an apparatus’. More
importantly, Wigner also captured what the theory did not achieve: ‘. . . neither
apparatus nor object is in a state which has a classical description’.6 To sum
up, von Neumann’s mathematical theory could neither determine the state of
the apparatus nor account for collapse of the state vector; these required, at the
end of a finite or infinite ‘von Neumann chain’, the intervention of the observer’s
conscious ego.

The result which led Wigner to assert that ‘Some of us believe that there are
no points’ is known as the Wigner–Araki–Yanase theorem, which was proven by
Araki and Yanase within von Neumann’s measurement theory.7 The object was
assumed to be in an eigenstate ϕµ of the observable A to be measured.8 The
apparatus was prepared in the initial state ξ independently of the object. Araki
and Yanase showed that the equation (page 198)

U(t)[ϕµ ⊗ ξ] = ϕµ ⊗ ζµ,

where ζµ is the unique final state of the apparatus that corresponds to the state
ϕµ of the object, cannot hold unless A commutes with all additively conserved
quantities. In the above, t is greater than the time it takes for the apparatus to
reach its final state.

Having established the above-mentioned limitations on precise measurements,
Araki and Yanase proceeded to define a notion of approximate measurements.
In classical physics, measurement error is defined to be the difference between
the true and the measured value. Since the state of the apparatus has no
classical description, this concept of measurement error was not available
in von Neumann’s theory. Araki and Yanase circumvented this difficulty by

4 See (Wigner, 1952).
5 Quoted by Haag at the end of his talk at the 1995 Wigner conference in Goslar; Haag seemed

to suggest that this could be the reason why Wigner received the algebraic formulation of
relativistic quantum field theory less than enthusiastically. It was Professor R J Eden, who
knew Wigner well, who first told me that Wigner’s doubts arose from the inexactness of
single measurements in quantum mechanics.

6 Both quotations may be found in (Wigner, 1970); they are on pp. 158 and 187 respectively.
7 See (Araki and Yanase, 1960).
8 Araki and Yanase considered the eigenvalue µ to be degenerate. For the sake of clarity of

exposition, we are ignoring the degeneracy; it changes nothing of significance to us.
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quantifying a concept of malfunctioning of the apparatus.9 Let the combined
object–apparatus system evolve as follows:10

U(t)[ϕµ ⊗ ξ] = ϕµ ⊗ ζµ + ψ ⊗ ϑµ,

where (ζµ, ϑν) = 0 and ||ψ⊗ζµ||2 < ε. This means that the state of the object is
mirrored by the state of the apparatus not with probability 1, as in (11.7) quoted
above, but with probability 1 − ε. They then gave an example in which ε could
be made as small as one wished. The nonvanishing quantity ε represented the
probability of malfunctioning of the apparatus, and not an error of measurement
in the conventional sense. Their final conclusion was that, for any given ε, an
approximate measurement was always possible. This result was controverted
by Shimony and Busch,11 who considered measurement theories that differed
from von Neumann’s in that they allowed the initial state of the apparatus
to be a mixed state, and came to the opposite conclusion: even approximate
measurements were not possible in their modified versions of von Neumann’s
theory!

What the work of Shimony and Busch had in common with that of Araki and
Yanase was the following: in none of them was the state of the apparatus required
to have a classical description.

There is, however, a physical conception of measurement – not quite amount-
ing to a theory – known as the Heisenberg cut or the Bohr–Heisenberg cut12 in
which the state of the apparatus does have a classical description and an error of
measurement its classical meaning. Heisenberg asserted that one had to divide
the world into an observed and an observing system, and it was this division
which prevented a causal description of the act of measurement. This much was
accepted by von Neumann.13 Indeed, one may be forgiven for thinking that von
Neumann’s 2nd and 1st interventions (page 138) constituted an interpretation
of the Heisenberg cut in mathematical terms; on one side of the cut, the state
vector evolved under the Schrödinger equation; on the other side of the cut,
it collapsed. Where von Neumann and Wigner parted company with Bohr and
Heisenberg was in their differing conceptions of the measuring apparatus. Bohr
insisted that the states of a measuring apparatus must have a classical descrip-
tion; Wigner was equally adamant that ‘neither apparatus nor object is in a
state which has a classical description’.14

9 See (Yanase, 1961, Sec. 2) also (Wigner 1983, Eqn (63), p. 302).
10 This is discussed in greater detail on page 200.
11 See (Shimony, 1974; Busch and Shimony, 1996). These results are discussed in greater detail

in Section 11.4.
12 This is discussed in greater detail in Remark 8.3, pages 140-141.
13 See (von Neumann, 1955, p. 420).
14 Von Neumann may have been a bit less categorical; see the last quotation in Sub-

section 8.3.3.2, page 157.
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What remains to be explored15 is the possibility of incorporating a classical
description of the states of the measuring apparatus as an integral part of a
mathematical theory of measurement – i.e., of building, mathematically, a bridge
over the Heisenberg cut. The mathematical theories that would have suggested
that this task is worth attempting were not available to Bohr and Heisenberg, or
to von Neumann. Bohr and Heisenberg would have looked to the correspondence
principle to guide their physical intuition, but the correspondence principle loses
all meaning if the limit of large quantum numbers is not uniquely defined. Von
Neumann may even have been sceptical of the task itself; in the section on
‘Radiation Theory’ of his book, he wrote:16

Now it is inconvenient formally and of doubtful validity [emphasis added] to
admit systems with infinitely many degrees of freedom, or wave functions
with infinitely many arguments. Our original discussions were always based
on a finite number of coordinates.

But it is precisely when one admits systems with infinitely many degrees of
freedom that the possibility of reconciling the divergent views of von Neumann
and Wigner, and of Bohr and Heisenberg, begins to appear on the horizon. Iron-
ically, the basic tools required for this enterprise were forged by von Neumann
himself.

We shall call an N -particle quantum-mechanical system large if it is not pos-
sible to tell, experimentally, whether the system contains N or N + 1 particles.
This will mostly be the case when N is within a few orders of magnitude of
Avogadro’s number, and in such situations qualitative features of the theory are
often thrown into sharper relief in the limit of infinitely many particles (e.g., the
thermodynamic limit). The canonical commutation and anticommutation rela-
tions for infinitely many degrees of freedom have so many representations that
they cannot be handled effectively by Hilbert space techniques. A result obtained
by Haag in 1955 showed that in relativistic quantum field theories, which were
necessarily theories with infinitely many degrees of freedom (since particle num-
bers were not conserved), it was essential to use non-Fock representations.17

Following the lead of Segal,18 these representations were tamed by using the

15 Considering the very many avenues that have been explored in the literature, this statement
requires clarification. The clarification is that we are searching for a conservative mathe-
matical theory that causes the wave packet to collapse owing to its interaction with an
observing system in the sense of Bohr and Heisenberg, and not a radical departure. We
include nonlinear modifications of the Schrödinger equation and interaction with the rest
of the universe among radical departures.

16 The quotation may be found in (von Neumann, 1955, p. 265).
17 Haag’s theorem established that the interaction picture, which was developed in the Fock

representation, existed only if there was no interaction. For QED this reproduced, from
a different perspective, Dyson’s result that the renormalized perturbation series diverged
(Dyson, 1952). A very readable account of Haag’s theorem is given in (Barton, 1963).

18 An account of Segal’s work from his own perspective may be found in (Segal, 1963).
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theory of operator algebras, which was initiated by von Neumann himself in
1936.19 While the initial impetus may have come from quantum field theory, the
theory of operator algebras quickly chalked up impressive successes in applica-
tions to quantum statistical mechanics. Three of the early landmarks were the
papers by Araki and Woods in 1963, by Haag, Hugenholtz and Winnink in 1967
and the book by Ruelle in 1969.20 In 1932, when von Neumann wrote his book,
or in 1963, when Wigner wrote his article, there was little hint of the richness
of this theory or of the breadth of its applications. It led, in the nonrelativis-
tic domain, to what Sewell has described as a ‘generalized quantum-mechanical
framework’, commonly (but misleadingly) known as algebraic quantum theory.
The extension of Newtonian particle mechanics to continuous media, initiated
by Daniel Bernoulli, may be viewed as a similar generalization in the classical
domain.

Within the generalized quantum-mechanical framework, the existence of
observables ‘with a classical description’ was first established by Lanford and
Ruelle in 1969.21 These authors called them observables at infinity, because they
could make their presence felt outside any bounded region of space. They were
‘weak limits’, which are defined on representations and not on the algebra itself,
i.e., their existence or nonexistence depended entirely on the representation – and
this is where one parts company with quantum mechanics on a single Hilbert
space.22

When these weak limits did exist they belonged to the centre of the represen-
tation, justifying the adjective ‘classical’. They could, in some sense, be likened
to intensive variables of thermodynamics. These observables were used by Hepp
to give a rigorous demonstration of the reduction of the wave packet in the limit
t → ∞. To the best of the present author’s knowledge, this work of Hepp was
the first to demonstrate, mathematically, that the wave packet could collapse
without the intervention of the observer’s conscious ego.23 Such observables of
the apparatus are often called pointer observables.

If one is secure in the knowledge that pointer observables exist, one can try to
approximate them, or their thermodynamic conjugates (which would again be
pointer observables) in large systems; indeed, such approximations are a sine qua
non for establishing contact with experimental physics. With hindsight, one sees
that they had been devised, and used to considerable effect, long before algebraic

19 The first of the papers on Rings of operators was (Murray and von Neumann, 1936). In the
introduction to this paper, the authors wrote: ‘. . . various aspects of the quantum mechanical
formalism suggest strongly the elucidation of this subject.’

20 The relevant references are (Araki and Woods, 1963; Haag, Hugenholtz and Winnink, 1967;
Ruelle, 1969).

21 The work of Lanford and Ruelle is discussed briefly in Chapter 12.
22 One may have to part company with the single Hilbert space formalism even in the quan-

tum mechanics of one spinless particle. See Reeh’s example, given in Section 7.5.2, and the
discussion of superseparability in the Epilogue.

23 See (Hepp, 1972).
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quantum theory was formulated: by Pauli in 1928, in formulating the master
equation24 and by van Kampen in 1954, in his theory of irreversible processes.
The observables used by van Kampen were coarse-grained averages of extensive
variables of parts of the system. Ten years later, Emch gave a rigorous discussion
of quantum-mechanical systems on a single Hilbert space that contained, by
assumption, a set of commuting macroscopic observables (without going into
their genesis) and used it to derive generalized master equations.25

It is sometimes said that passage to the thermodynamic limit smooths out
the fluctuations that are always present in a finite system. However, these fluc-
tuations can also be eliminated by a different, but equally unrealizable device:
by cooling down to absolute zero. But, even if one disregards human errors,
the atomic structure of matter and thermodynamic fluctuations, one cannot run
away from the real number system.26 It is this fact that results in the gap
between theoretical and experimental physics, as discussed in the Prologue:
almost every value of a continuous real variable is irrational, and therefore
a continuous classical variable cannot be measured precisely in a finite time
with finite physical resources. Experimental physics requires one to replace the
notion of precise measurements by that of measurements with arbitrary preci-
sion, i.e., measurements in which the error, while nonzero, can be made as
small as one wishes. The example of the thermodynamic limit suggests that
the error ε and the size of the system N should vary in opposite directions. In
quantum theory, N should be large enough for the apparatus to have pointer
observables.

A measurement is an interaction between object and apparatus which drives
the pointer of the apparatus. This effect is qualitatively different from the usual
interactions between two quantum-mechanical or two classical systems. The lack
of characterization of such interactions was described by Wigner as ‘the principal
conceptual weakness of the orthodox view’.27 A dynamical theory of measure-
ment has to specify at least a minimal set of conditions which a measurement
interaction has to satisfy.

Sewell has proposed a measurement theory in which the apparatus does have
pointer states, and in which interaction of the quantum object with the (macro-
scopic) pointer observables of the apparatus causes the state vector of the object
to collapse. This statistical assertion of the theory is contained in a condi-
tional expectation functional, the time evolution of which is determined by

24 The master equation made its first appearance in (Pauli, 1928). The term is now used for
a number of similar equations in the theory of stochastic processes. We shall use the term
only as it was used by van Kampen and Emch.

25 The references to van Kampen and Emch are (van Kampen, 1954; Emch, 1964).
26 As far as I know, the first physicist to take this seriously was Max Born. It is mentioned

explicitly in his Nobel lecture (1954), and some of its consequences developed in several
subsequent publications. A summary of Born’s conclusions is presented in Section 6.5.

27 See (Wigner, 1970, p. 167, 1983, p. 338).



Introduction to Part II 99

the Schrödinger–von Neumann equations.28 The notion of measurement with
arbitrary precision has the same meaning in this theory as it does in classical
physics. Sewell’s theory was originally formulated for the measurement of observ-
ables with discrete spectra, but it was pointed out by the present author that
it applied equally to the measurement of observables with continuous spectra –
even those that did not commute with additively conserved quantities – in the
approximate sense defined by von Neumann.29 In Sewell’s theory, the appara-
tus is an N -particle quantum-mechanical system, where N is of the order of
Avogadro’s number, but the theory also assumes that the Hilbert spaces of object
and apparatus are finite-dimensional. These assumptions are more restrictive
than the general principles of quantum mechanics. They obviously imply that
the canonical commutation relations cannot be precisely implemented on these
spaces, which is tolerable only if measurement errors are much larger than the
uncertainty principle bounds. The result suggests that, as far as geometrical
points are concerned, the problem of measurement does not make the situa-
tion significantly worse in quantum mechanics than it is in classical mechanics,
but falls short of a complete proof. It falls short precisely because of the finite-
dimensionality assumptions. A complete proof would seem to require lifting the
finite-dimensionality assumptions of Sewell’s theory, which would take us into
waters as yet uncharted. Some reflections on this matter will be found in the
Epilogue.

This part is organized as follows. Chapter 6 begins with a backward glance
at quantum mechanics from our present vantage point. It then discusses the
measurement of continuous variables in classical physics, for purposes of com-
parison with the measurement of observables with continuous spectra in quantum
mechanics. The last section of this chapter is devoted to Born’s observation that
it makes no sense to talk about measuring an irrational number, and of the
far-reaching conclusion he drew from it. As far as the present author knows,
this work has not entered into the consciousness of the community of physi-
cists. Chapter 7 is a collection of topics in nonrelativistic quantum mechanics
that are not always discussed in introductory texts; it includes the example by
Reeh that shows that, contrary to a widespread belief, the Stone–von Neumann
uniqueness theorem does not hold at the Lie algebra level, and that this fact has
observable physical consequences.30 It also includes a section on the probability
interpretation of quantum mechanics that serves to define our terms. (Later we
shall find that Sewell’s theory of measurement dictates a subtle change in the
standard concept of what is measured.) Chapter 8 provides a detailed account of

28 See (Sewell, 2005, 2006).
29 See (Sen, 2008).
30 The reference to Reeh’s work is (Reeh, 1988). The Stone–von Neumann theorem applies to

the exponentiated ‘Weyl form’ of the canonical commutation relations for a finite number
of degrees of freedom, i.e., for the group, and not for its Lie algebra.
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von Neumann’s measurement theory, including the historical background of the
collapse postulate. The latter is intended as a reminder that a theory of measure-
ment that does not include wave function collapse – either as an assumption or
as a theorem – may have to abandon the conservation of energy and momentum
in individual collisions, and this point is most tellingly made by a flashback to
the Bohr–Kramers–Slater proposal and the experiment of Compton and Simon.
Chapter 9 deals with macroscopic observables in quantum mechanics, based pri-
marily on von Neumann’s work. The approach we have adopted is rather formal,
and should be complemented by a study of the relevant parts of van Kampen’s
works (which has not been carried out in this book).31 Chapter 10 is devoted
to Sewell’s measurement theory, which is the focus of this part. Computations
in this chapter, of a kind that may be unfamiliar to many readers, are spelled
out in considerable detail. It is followed by one which deals (albeit sketchily)
with impossibility theorems and approximate measurements mentioned earlier,
and relates the results of Part II to the fundamental assumption of Part I. The
last chapter, Chapter 12, provides an introduction to the mathematical treat-
ment of the symmetries and dynamics of large quantum-mechanical systems;
its purpose is to illustrate how the qualitative differences between microscopic
and macroscopic systems in nonrelativistic quantum mechanics may be brought
under mathematical control, without which it would scarcely be possible to lift
the finite-dimensionality assumptions of Sewell’s theory.

31 The works in question are (van Kampen, 1954, 1962).
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Real numbers and classical measurements

6.1 The impact of quantum theory

Till quantum mechanics came along, it would not have occurred to many that
the structure of a physical theory itself may be constrained by limitations on
the precision of measurements. In classical mechanics, dynamical variables were
implicitly assumed to be precisely measurable at all times, from which it followed
that any mathematically well-defined function of the dynamical variables was
precisely measurable at any time. Quantum mechanics severed the ‘natural’ link
between the two concepts. Two observables, well-defined at all times,1 would be
simultaneously measurable only if they commuted with each other. However, a
single observable could always be measured precisely. Although the details are
well known, it may be worth recalling that while it was the uncertainty principle
that unsettled the theorists,2 what the experimentalists were unearthing were
effects of the superposition principle, with measurement errors that far exceeded
the uncertainty principle constraints.

What may be less well known (except to quantum field theorists) is that rela-
tivistic quantum field theory demands a severance of the link between being
well defined and being measurable at yet another level. The classical electro-
magnetic field is well defined – and therefore measurable – at every point of
space-time. However, no component of the quantized electric or magnetic field is
precisely measurable at any point.3 The last fact was discovered by Landau and
Peierls, but it remained for Bohr to point the way to the correct conclusion to be
drawn.

An electric or magnetic field strength is measured by determining the force
it exerts on a charge or on a current (or permanent magnet). To measure the
electric field strength at a point, one would need a charged point-particle of finite
mass and measure the rate of change of its momentum caused by the field at that
point; not the momentum itself, which of course cannot be measured with any
precision at all, but its derivative. In classical electrodynamics, an accelerated
charge radiates, and this radiation causes a ‘radiation reaction’ upon the charge

1 Recall that in the Schrödinger picture observables are assumed to be time-independent.
2 See, for instance, ‘The Bohr–Einstein dialogues’, in (Wheeler and Zurek, 1983, pp. 1–49).
3 They are well defined mathematically as operator-valued distributions on space-time. We

shall not go into details; the interested reader may consult the splendid elementary text
(Barton, 1963), the more advanced standard text (Streater and Wightman, 1964) or the
more recent book (Haag, 1993).
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itself. When the velocity of light cannot be regarded as infinite, Landau and
Peierls showed that, owing to this radiation reaction, the force exerted by the field
on a test particle (charge or magnetic dipole) could not be measured precisely.
It followed that electric and magnetic field strengths at a point could not be
measured precisely. The conclusion that they drew from this was expressed as
follows in the abstract of their paper (Landau and Peierls, 1931), which bears
the title ‘Extension of the uncertainty principle to relativistic quantum theory’:

It is shown by considering possible methods of measurement that all the
physical quantities occurring in wave mechanics can in general no longer
be defined in the relativistic range.

Landau and Peierls attempted to link the above to the ‘well-known failures’
of relativistic quantum mechanics, which were: (i) the appearance of negative-
energy states in Dirac’s electron theory, (ii) the self-energy problem for a charged
particle, and (iii) the infinite zero-point energy of the radiation field.

Landau and Peierls went to Copenhagen with the manuscript of their paper in
late 1930 or early 1931. However, they could not get Bohr to agree. A humorous,
if slightly partisan account of the whole story is given by Rosenfeld in Niels Bohr
and the Development of Physics (Rosenfeld, 1955).

Bohr refused to admit that quantum mechanics could forbid the precise
measurement of any single quantity. Rosenfeld writes:

My first task was to lecture Bohr on the fundamentals of field quanti-
zation; the mathematical structure of the commutation relations and the
underlying physical assumptions of the theory were subject to unrelenting
scrutiny. After a very short time, needless to say, the roles were reversed
and he was pointing out to me essential features to which nobody as yet
had paid sufficient attention.

His first remark, which threw decisive light on the problem, was that field
components taken at definite space-time points are used in the formalism
as idealizations without immediate physical meaning; the only meaningful
statements of the theory concern averages of such field components over
finite space-time regions. This meant that in studying the measurability of
field components we must use as test bodies finite distributions of charge
and current, and not point charges as had been loosely done so far. The con-
sideration of finite test-bodies immediately disposed of Landau and Peierls’
argument concerning the perturbation of the momentum measurement by
the radiation reaction: it is easily seen that this reaction is so much reduced
for finite test bodies, as to be always negligible.

The scheme of canonical field quantization (devised by Dirac, Jordan, Heisen-
berg and Pauli) upon which Rosenfeld must have lectured to Bohr was based
upon the Lagrangian formalism. The electromagnetic field was described by
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the vector potential Aµ = Aµ(x, x0). Its canonical conjugate, according to the
Lagrangian formalism, was (see, e.g., (Schweber, 1961))

πµ =
∂L

∂Aµ,0
= −Aµ,0,

where an index σ (zero in the above) after the comma in a superscript or subscript
indicates the partial derivative with respect to xσ. The equal-time commutation
relations (ETCR) then become (in their original, noncovariant form)

[Aµ,0(x), Aν(x′)]x0=x′
0

= −i�δµ
ν δ(x − x′). (6.1)

The electric and magnetic field strengths are components of the antisymmetric
tensor Fµν = Aµ,ν − Aν,µ. Their commutators therefore involve the δ-function
and its derivatives. Bohr and Rosenfeld interpreted this as follows (Bohr and
Rosenfeld, 1933):

The occurrence of the δ-function in the commutation relations [between
the field components] brings to the fore the fact that the quantum theo-
retical field quantities are not to be considered as true point functions but
that unambiguous meaning can be attached only to space-time integrals
of the field components. With a view to the simplest possibility of testing
the formalism we shall consider only averages of field components over sim-
ply connected space-time regions whose spatial extension remains constant
during a given time interval.

We note that the nonmeasurability of fields at points did not cause Bohr to
question the notion of geometrical points. Wigner, as we shall see later, was
inclined to be more pessimistic. We end this section by pointing out that in 1950
Bohr and Rosenfeld published an extended version of their paper which took
advantage of the covariant formulation of QED in the interaction picture that
had been developed in the intervening years (Bohr and Rosenfeld, 1950).

6.2 Precise measurements in classical mechanics

We saw in the previous section that a central assumption of classical mecha-
nics, namely that a dynamical variable is well defined only if it is precisely
measurable,4 is no longer tenable in quantum mechanics. But what exactly does
a ‘precise measurement’ mean? We begin by analysing this problem, which does

4 The statement ‘A is true if B is true’ means that the condition B is sufficient for A to be
true. The statement ‘A is true only if B is true’ means that the condition B is necessary for
A to be true. The statement ‘A is true if and only if B is true’ means that the condition B
is necessary and sufficient for A to be true.
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not seem to have been discussed much by physicists.5 To avoid misunderstanding,
we should add that we shall use the term classical mechanics in the sense of
nonrelativistic, or Newtonian mechanics, unless the contrary is stated explicitly.

6.2.1 Space, time and measurement in classical mechanics

We begin by defining our terms. The words point and line will be used in the
sense of Euclidean geometry. The Euclidean line will be related to the number
system we shall use through the following assumption:

Assumption 6.1 The line of Euclidean geometry is the same as the linear
continuum R of mathematical analysis.

This assumption, which may explain why R is called the real line, is always made
but seldom made explicit. The mathematical structure of R was elaborated only
in 1872, by Cantor and Dedekind, 2000 years after Euclid, and almost 200 years
after Newton and Leibniz. Modern treatments of Euclidean geometry – which
serve mainly to study departures from it – are an exception to this rule (see,
for instance, the text (Martin, 1975)). The assumption is discussed, from the
physicist’s point of view, in (Sen, 1999). The phrases real line and real interval
will be used in the mathematical sense.

It will be assumed that the notion of empty space makes sense. Space will be
assumed to be three-dimensional, and time, one-dimensional. Measuring instru-
ments interact with physical objects and not with empty space, and therefore
to measure the distance between two points in space we need the notion of
test-particles, i.e., objects of the size of a geometrical point but with physical
attributes like charge or mass that may interact with measuring devices.

Since a measuring device interacts with test-particles, and not with points in
space, why should the motion of a test-particle provide information about space?
That it does is an assumption, which may be regarded as the physical equivalent
of the intermediate-value theorem of calculus:

Assumption 6.2 If a test-particle travels from a point A to a point B in space,
its trajectory is a continuous curve joining the points A and B.

This assumption allows us to use the mathematical structures on Euclidean space
R3 to describe the behaviour of systems of test-particles.6 A rigid configuration of
test-particles will be defined as one that is invariant under the three-dimensional
Euclidean group and the group of time translations.

5 A notable exception was Max Born. His work on the subject was published mainly after
his retirement from Edinburgh. It is discussed briefly in Section 6.5. The author was not
aware of this work when he wrote the initial version of this chapter, and would like to thank
Professor H Roos for bringing it to his attention and for providing him with the references.

6 The notation R
3 will be used both for the Cartesian product R × R × R and this Cartesian

product endowed with the Euclidean metric (6.2). This will not cause any confusion.
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6.2.2 Perfect rulers

The notion of a perfect ruler, i.e., an instrument to measure lengths, will be taken
as understood. If the points P, P ′ are assigned rectangular Cartesian coordinates
(x, y, z) and (x′, y′, z′) respectively using a perfect ruler, then the distance d(P,P ′)
measured by the same ruler will be given by the formula

d(P, P ′) = {(x − x′)2 + (y − y′)2 + (z − z′)2} 1
2 . (6.2)

A perfect ruler will be regarded as a black box which accepts pairs of points
(P, P ′) as input and produces the real number d(P, P ′) of (6.2) as output. We
may consider this process to be mediated by internal states ξ of the device (the
notation �→ is defined on page 241),

(P, P ′) �−→ ξ
µ�−→ d(P, P ′),

where µ, the calibration map, is bijective. The pairs (ξ, µ(ξ)) have to be stored
in the permanent memory of the device.

Since d is a nonnegative real number, the assumption that the Euclidean line
is the same as the real line implies that the cardinality of the set of internal
states of R cannot be less than ℵ.7 Now almost every real number is irrational,8

and an irrational number has a unique strictly infinite binary representation. It
will require countably many bits of memory to store a single irrational number.
It follows that:

Condition 6.3 The device R described above will need to have ℵ cells of
permanent memory, each cell containing ℵ0 bits.

It will not have escaped the reader’s attention that this condition is rather
strong.

6.3 Discussion

Fabrication and calibration of the ruler are independent processes. It is also
possible to calibrate the device R so that it implements the so-called discrete
metric

d(P, P ′) =

{
0, for P = P ′,

1, for P �= P ′

7 The notion of cardinality is defined in Subsection A1.5.1, pages 245–246.
8 In the technical sense that the rational numbers form a countable subset of R (Sub-

section A2.1), and a countable subset of R has Lebesgue measure zero (Subsection
A5.6.2).



106 Real numbers and classical measurements

on R3. In this case the device will have only two distinct internal states, and will
require only a finite amount of internal memory.

There has never been any doubt – at least, to the best of this author’s knowl-
edge – that infinitely precise measurements cannot be made in the laboratory.
The reason, it was generally believed, was the impossibility of fabricating test-
particles and perfect rulers. The analysis carried out above shows that, even in a
hypothetical laboratory furnished with test-particles and perfect rulers, infinitely
precise measurements cannot be carried out unless the following additional
conditions are fulfilled:

(i) The ruler is calibrated with infinite precision.9

(ii) Irrational numbers are recorded precisely.

The impossibility of meeting these conditions does not spring either from
quantum-mechanical roots, or from the atomistic structure of inanimate nature.
It springs from the nature of the real number system. Quantum mechanics can-
not improve upon this situation; it can only make it worse. Whether or not it
does make matters worse will be investigated in the next few chapters.

6.4 The role of the experimentalist

Let us now try to look at the implications of these limitations from the experi-
mentalists’ point of view. The numbers they read on the dials of their instruments
will necessarily be rational. The decimal expression for a rational number is either
recurrent, e.g., 1/7 = 0.142857 (the bar over the group 142857 meaning that the
group is repeated indefinitely) or finite, in which case the infinite tail of zeroes
is often omitted in daily life; one writes 2/5 = 0.4 rather than the more precise
0.40. However, the experimentalist can never be sure whether the number on
the dial represents a true rational or a rational approximation to an irrational,
and therefore the standard practice in physics is to report numbers ‘correct to d

significant figures’, according to a fixed, predetermined system of units. Increas-
ing the accuracy of a particular measurement then translates into increasing the
number of significant figures in the reading.

The effort to increase the accuracy of measurements is a driver of, and is also
driven by, technological changes. The latter can seldom be modelled theoretically.
However, in a large class of experiments the period of ‘design of the experiment’
is short by comparison with the pace of technological change, which effectively
eliminates technological change from the equation. Under these circumstances,

9 This would require an algorithm for labelling the internal states of the device by real numbers,
which may be equivalent to well-ordering the real numbers (see page 248). As no well-ordering
of the real numbers is known (Subsection A2.2.4), it is not possible to assume that a ruler
can be calibrated with infinite precision without further analysis. We shall not attempt to
resolve this problem.
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the experimentalist’s concern is fundamentally the same as that of the economist:
efficient allocation of scarce resources.

Had available memory been infinite, this discussion would not have been nec-
essary. The problem arises from the finiteness of available memory. If the number
of internal states of the apparatus is n, and each internal state requires r units
of memory to calibrate it, then the total memory requirement for the instrument
is m units, where

m = nr. (6.3)

The quantity m is to be considered as a fixed resource, and the allocation problem
is that of dividing it between r and n. That is, the resolving power of the
instrument (accuracy of observation) may be increased only by decreasing the
number of internal states. If m is held constant, n has to be divided by 10 to
increase the resolving power by a single decimal digit.

We may therefore conclude that, for fixed memory resources, the resolving
power of an instrument is inversely proportional to the range of observation,
i.e., the number of data points that may be recorded by the instrument. This
is a fundamental constraint in the design of an experiment at any given ‘state
of the art’. We shall find that this fact plays an important role in the theory of
measurement in quantum mechanics.

6.5 Born’s probability interpretation of classical mechanics

Max Born retired from his Edinburgh chair in 1953, and was awarded the Nobel
Prize in 1954. Subsequent to his retirement, he published several articles in which
he asserted that classical mechanics too was essentially a probabilistic theory.
His argument was based on two pillars:

(i) The concept of infinitely precise measurements was devoid of meaning, owing
to the nature of the real number system. The best one could claim about
(say) the position of a point particle was that it was a probability distribution
with a peak at a certain point and a certain spread (variance).

(ii) Nonlinear classical systems exhibited a sensitive dependence on initial con-
ditions.10 He gave a very simple example (which he attributed to Einstein)
to illustrate this phenomenon.

From these, he concluded that a second measurement of the position of the
particle effected a reduction of the probability, in the sense that the second mea-
surement caused the probability distribution, as a function of time, to change
dramatically (the assumption being that the second measurement had detected
the particle).

10 Born did not use this term. He first mentioned the fact (as far as I know) in his Nobel prize
lecture of 1954; Lorenz’s paper on ‘Deterministic nonperiodic flow’, which set off the chaos
revolution, appeared in 1963 (Lorenz, 1963).
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I have not been able to find any clear indications, in Born’s own writings, of
when he began to develop this viewpoint.11 It does not seem to be there either
in his 1948 Waynflete lectures (Born, 1949), or in the letters he wrote to Einstein
(Einstein died on 18 April 1955). Born said the following in his Nobel lecture
(Born, 1954, p. 264):

. . . Thus determinism lapses completely into indeterminism as soon as the
slightest inaccuracy in the data on velocity is permitted. . . Is one justified
in saying that the coordinate x = π cm where π = 3.1415 . . . is the famil-
iar transcendental number. . . ? As a mathematical tool the concept of a
real number represented by a nonterminating decimal fraction is excep-
tionally important and fruitful. As the measure of a physical quantity it is
nonsense. . .

However, in the comments Born added to The Born–Einstein Letters as it was
being prepared for publication, he wrote (Einstein, 1971, item 116, pp. 227–228):

My own manuscript seemed to me to contain certain thoughts which I had
not yet come across elsewhere. I rewrote it completely. . .

At this time I received an invitation from the Danish Academy to con-
tribute to a volume. . . to be published on the occasion of Niels Bohr’s
seventieth birthday. I therefore sent my paper. . . to the Danish Academy
in Copenhagen. . . In a letter from Zürich of 11th December 1955,. . . Pauli
writes. . . ‘Your paper in the Danish presentation volume to Bohr makes
very pleasant reading now; its epistomological content has now become
very clear, and I agree with all of it. I had used the mathematics of the
example of the mass point between two walls, and of the wave packets
which belong to it, in my lectures in such a way that the transformation
formula of the theta-function comes into play. But that is a mere detail.’
It is more than a detail. It shows that Pauli had long been familiar with
all that I had to say. . . ever since the time he had been my assistant in
Göttingen, I had been aware that he was a genius, comparable only with
Einstein himself. . .

The above quotation may not reflect accurately the role Pauli may have played
in the development of Born’s ideas; the interested reader will have to read all
of items 111–116, pp. 216–228, of (Einstein, 1971), especially the part from
paragraph 3 on p. 224 to the end of Born’s remarks on p. 228.

Since I have not been able to delve deeper into this fascinating bit of the
history of physics, I am adding a few references for the interested reader. A brief
account of the Born–Einstein correspondence is given in the reminiscences of
Max Born and his wife Hedwig (Born and Born, 1969, pp. 134–136). The phrase
‘reduction of probabilities’ does not appear in Born’s Nobel prize lecture (Born,

11 The article (Born, 1955) refers to an article by Einstein in (Einstein, 1953). The example
used by Born appears to be taken from this source.
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1954, pp. 264–265). It appeared a year later, in the Danish Niels Bohr Festschrift
(Born, 1955) and again in an article in the Heisenberg Festschrift (Born, 1961,
§§ 3–4, pp. 107–111).12 More improbably, Born translated a book of Wilhelm
Busch’s poems, Klecksel the Painter, into English (currently out of print). An
absorbing account of Born’s family history, life and work, including the work he
did after retirement, has been provided by his son (Born, G., 2002, esp. p. 257).

Note added in proof

I was able to obtain a copy of Einstein’s paper (Einstein, 1953) after this book
was sent to press. The first sentence of the last paragraph of this paper reads as
follows:13

To my mind it is not satisfactory to build on such a [quantum-mechanical]
view of physics because one cannot dispense with an objective description
of individual macroscopic systems [emphasis in the original] (description
of the “real” state) without letting the physical view of the world dissolve
into fog.

Einstein was distinguishing between individual systems and ensembles of sys-
tems. His conclusion was summarized by Born as follows (Born, 1955, p. 8):
‘. . . Einstein then discusses the question whether quantum mechanics leads to a
description of the behaviour of macro-bodies which corresponds to. . . [his] notion
of reality, and his answer is no.’

Notice the singling-out of macroscopic systems by Einstein, and recall that
the title of the (Einstein, Podolsky and Rosen, 1935) paper was “Can quantum-
mechanical description of physical reality be considered complete?’ Much of the
controversy caused by this paper has devolved around the word ‘reality’, and has
been more metaphysical than physical in content. By contrast, the description
of macroscopic systems within quantum mechanics is – or so the present author
contends – a task for the physicist.14 Einstein’s 1953 essay was quite possibly the
last words he wrote on the subject; even at that late date, a mathematically rigo-
rous and physically meaningful description of macroscopic systems had not been
extracted from the formalism of quantum mechanics, and, in that sense, quan-
tum mechanics was manifestly ‘incomplete’.15 A concise state-of-the-art account
of how far the task of ‘completing’ quantum mechanics in this sense has pro-
gressed, and the results that the formalism has led to, may be found in Sewell’s
book, appropriately titled Quantum Mechanics and its Emergent Macrophysics
(Sewell, 2005).

12 Due to illness, Born was not able to proofread this article. In the footnote on p. 106, Born
quotes a verse from Wilhelm Busch. Professor Roos, who provided me with most of these
references, has pointed out that there is an ‘annoying misprint’ in this quotation. A correct
rendition, as well as Born’s own translation of it, will be found in (Born, G., 2002, p. 260).

13 I am grateful to Professor H Roos for this translation.
14 This is the subject of Chapter 9 of the present work.
15 In this context, see also the quotation from Einstein on page 234.
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Special topics in quantum mechanics

The chief aim of this chapter is to give brief accounts of topics in nonrelativistic
quantum mechanics that are not always treated in elementary texts. We begin
with the Hilbert space formulation of quantum mechanics as set down by von
Neumann in his book Mathematical Foundations of Quantum Mechanics (von
Neumann, 1955),1 which will henceforth be referred to as von Neumann’s book.
Much of our concern will be with continuous spectra, which cannot be discussed
adequately in the Dirac formalism. The density matrix, which will play a key
role in Chapters 8 and 10, will be treated in some detail.

The section on formalism is followed by one on the probability interpretation;
the latter is included because Sewell’s theory of measurement suggests a subtle
reformulation of a part of it. These are followed by sections on superselection
rules and the Galilei group, which is the relativity group of quantum mechanics.
They are based on the pioneering works of Wigner and Bargmann. The last
section is devoted to the fundamental theorems of von Neumann and Stone, and
to Reeh’s observation on the physical significance of the failure of the Stone–von
Neumann uniqueness theorem at the Lie algebra level.

7.1 The formalism of quantum mechanics

By quantum mechanics we shall mean the nonrelativistic quantum theory of a
system with a finite number, N , of particles. The number N is assumed fixed.
It will be convenient, for later recall, to divide the material into subsections.

7.1.1 Pure states

The pure states of the system will be unit rays in a separable, infinite-dimen-
sional Hilbert space H over the complex numbers (see Appendix A6, pages 316–
318).2 We are emphasizing the separability condition (which is equivalent to
the existence of a countable orthonormal base) because in current mathematical

1 This is the title of the English translation. In the translator’s preface (dated December
1949), the translator stated that ‘the translated manuscript has been carefully revised by
the author. . . and any deviations from the original text are. . . due to the author’. The German
original, Mathematische Grundlagen der Quantenmechanik, was published in 1932.

2 If errors due to the uncertainty principle can be ignored, e.g., when only the spins are of
interest, the system can often be modelled conveniently on a finite-dimensional Hilbert space.
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literature Hilbert spaces are no longer assumed to be separable,3 contrary to
von Neumann’s original definition. The problem of understanding ‘why the ima-
ginary unit enters quantum theory ’ has been addressed by Stueckelberg and
collaborators (Stueckelberg, 1960; Stueckelberg et al., 1961; Stueckelberg and
Guenin, 1961, 1962) by constructing quantum theories on real Hilbert spaces.
The following quotation is from von Neumann’s book, pp. 196–198:

In this method of description, it is evident that everything which can be
said about the state of a system must be derived from its wave function
φ(q1, . . . , qk). . . Furthermore, it should be pointed out regarding this that
while φ is dependent on the time t, as well as the coordinates q1, . . . , qk

of the configuration space of our system, nevertheless the Hilbert space
involves only the q1, . . . , qk (because the normalization is related to these
alone). Hence the dependence on t is not to be considered in forming the
Hilbert space [emphasis added]. Instead of this, it is rather to be regarded as
a parameter. . . Because of this, we shall occasionally indicate the parameter
t in φ. . . by writing φt.

We shall have occasion to refer to this quotation.

7.1.2 Mixed states

Let {ui|i ∈ N} be an orthonormal basis for H and ψ =
∑

i ciui a normalized
vector,

∑
i |ci|2 = 1. Let A be a bounded self-adjoint operator on H (page 326).

The mean or expectation value E(ψ;A) of A in the state ψ is defined to be
E(ψ;A) = (ψ, Aψ), and may be written as

E(ψ;A) =
∞∑

i=0

|ci|2(ui, Aui) +
∑
i	=j

c̄icj(ui, Auj). (7.1)

The second sum on the right consists of the quantum interference terms, which
are trivially absent if the basis {ui} consists of eigenvectors of A.

The quantum interference terms will also be absent if, instead of the linear
superposition ψ of the states ui, we consider a statistical ensemble formed from
the states {ui}, the probability of occurrence of the state ui being pi, where
0 ≤ pi and

∑
i pi = 1. In this case the ensemble average of the operator A will

be given by

E(p;A) =
∞∑

i=0

pi(ui, Aui). (7.2)

3 However, the Hilbert spaces used in the theory of infinite-dimensional group representations,
as developed by Mackey (Mackey, 1968, 1976, 1978), are separable. We shall use an elemen-
tary form of Mackey’s theory in Section 7.4. Professor Mackey once told the author that ‘I
always assume separability, whether I need it or not’.
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If we choose pi = |ci|2, then (7.2) becomes (7.1), minus the quantum interference
terms. This may be interpreted as follows: every pair (ψ, {ui}) on H, where
ψ is a normalized pure state and {ui} an orthonormal basis, gives rise to a
statistical ensemble of states on H (van Kampen, 1962, p. 185). These statistical
ensembles are known as mixed states, and the ui their components.4 They can
be described, equivalently, by a class of operators on the Hilbert space H, called
density matrices.5 Define an operator ρ on H via its matrix elements in the
basis {ui}:

(ui, ρuj) = ρij =

{
p2

i , i = j,

0, i �= j.
(7.3)

Then Tr ρ =
∑

i pi = 1. By the invariance of the trace, this equality is indepen-
dent of the basis in H. The operator ρ is clearly self-adjoint. Using ρ, (7.2) can
be written compactly as

E(p;A) ≡ E(ρ, A) = Tr (ρA). (7.4)

The right-hand side of (7.4) is independent of the basis in H. Recall also that
Tr (ρA) = Tr (Aρ). The quantity E(ψ;A) is manifestly independent of the basis.

When there is no risk of confusion (and often even when there is), the
quantities E(ψ;A) and E(p;A) are written simply as E(A).

Let now ua be a fixed vector in {ui}, and consider a second probability
distribution p′ on S, defined by

p′(ui) = δia. (7.5)

The matrix ρ now has only one nonzero element, which is [ρ]aa = 1. It satisfies
the condition ρ2 = ρ, so that it is a projection operator. For visual impact, we
write ψ (= ua) for ua. Formula (7.2) now shows that in this case

E(p′;A) = (ψ, Aψ) = E(ψ;A), (7.6)

i.e., the ensemble average of A is the same as its quantum-mechanical expectation
value in the state ψ. In this case the operator ρ represents a pure state. In an
arbitrary orthonormal basis {ϕn}, the density matrix of the pure normalized
state ϕ =

∑
n anϕn has the matrix elements

ρmn[ϕ] = āman.

4 The components {ψi} of a mixed state need not be orthogonal to each other, but
nonorthogonal components will not be eigenvectors of the density matrix.

5 The density matrix was introduced independently in 1927 by von Neumann, Landau and
Weyl. See (Landau and Lifshitz, 1959, §12, pp. 35–38) and (Weyl, 1931, pp. 77–79). Von
Neumann calls it the statistical operator.
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After this discussion, we proceed to the formal definitions and main results;
proofs may be found in most textbooks on the subject, and also in (London and
Bauer, 1939); English translation in (Wheeler and Zurek, 1983):

Definition 7.1 (Density matrix) A density matrix (more correctly, a density
operator) on H is a positive self-adjoint operator of unit trace.

Let the density matrix ρ have the spectral decomposition

ρ =
∞∑

n=0

wnEn, (7.7)

where En are projection operators on H. Then wn ≥ 0, and

kn = dim En < ∞ if wn �= 0,

∞∑
n=0

wnkn = 1.
(7.8)

In words, zero is the only eigenvalue of a density matrix that can be infinitely
degenerate.

Theorem 7.2 The set of density matrices on H is convex, i.e., if ρ0, ρ1 are
density matrices, then so is

ρλ = (1 − λ)ρ0 + λρ1

for any λ ∈ [0, 1].

The expression on the right-hand side of the above equation is called a convex
combination of ρ0 and ρ1. An element in a convex set which cannot be expressed
as a convex combination of two distinct elements is called an extremal element
of the set.

The notion of convexity in linear spaces is a generalization of the notion of
convexity in n-dimensional Euclidean spaces. A body in Euclidean n-space is
called convex if the line segment joining any two points in the body lies wholly
within the body. For details, see, e.g., (Kitchen, 1968), or almost any book on
advanced calculus.

Definition 7.3 (Pure and mixed states) A density matrix ρ is said to rep-
resent a pure state iff it is also a projection operator, i.e., iff ρ2 = ρ. Otherwise,
it is said to represent a mixed state.

Theorem 7.4 A pure state is an extremal state in the set of density matrices.

This theorem means that a pure state cannot be represented as a convex
combination of mixed states.
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We shall denote the set of density matrices on H by DH.

7.1.3 Partial traces

Let HI, HII be Hilbert spaces and H = HI ⊗ HII be their tensor product (page
321). Let {ϕI

m}, {ϕII
n } be orthonormal bases in HI and HII respectively. Then

{ϕm,n = ϕI
m ⊗ ϕII

n } is an orthonormal basis for H. Let A be a bounded operator
on H. We shall write its matrix elements in the basis {ϕm,n} as

Amn,m′n′ = (ϕI
m ⊗ ϕII

n , A ϕI
m′ ⊗ ϕII

n′). (7.9)

Suppose now that A is a positive trace class operator on H (page 327). Then

∞∑
m,n=1

Amn,mn < ∞,

so that

∞∑
n=1

Amn,m′n < ∞ and
∞∑

m=1

Amn,mn′ < ∞.

We may therefore define an operator AI = TrIIA on HI as follows:

AI
mm′ = (ϕI

m,TrIIA ϕI
m′) =

∞∑
n=1

(
ϕI

m ⊗ ϕII
n , A (ϕI

m′ ⊗ ϕII
n )
)
. (7.10)

The definition of this operator does not depend on the chosen basis {ϕII
n } of HII.

The proof is the same as that for the ordinary trace.
The reader is invited to verify that AI is a trace class operator on HI. It is

called the partial trace of A over HII. The partial trace AII = TrIA of A on HII

is defined analogously.
Partial traces are operators. To avoid confusion, we shall temporarily denote

the ordinary trace by a subscript; thus, if K is any Hilbert space and B a trace
class operator on it, TrKB will denote the trace of B on K. It follows immediately
from the definitions that

TrHI(TrII A) = TrHII(TrIA) = TrH A (7.11)

and

TrII(AI ⊗ AII) = (TrHIIAII)AI. (7.12)

The above formula also holds with I and II interchanged.
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The following lemma is often useful:

Lemma 7.5 Let ρ be a trace class operator on H = HI ⊗ HII. Then

E(ρ, AI ⊗ III) ≡ Tr (ρ(AI ⊗ III)) = E(ρI, AI),

where ρI is the partial trace of ρ over HII and III is the identity operator on HII.

Proof By direct computation. Using the orthonormal bases {ϕI
m} and {ϕII

n } in
HI and HII respectively, we have

Tr(ρ(AI ⊗ III)) =
∞∑

m,n=1

(
ϕI

m ⊗ ϕII
n , ρ(AI ⊗ III)(ϕI

m ⊗ ϕII
n )
)

=
∞∑

m=1

( ∞∑
n=1

(
ϕI

m ⊗ ϕII
n , ρ(AIϕI

m ⊗ ϕII
n )
))

=
∞∑

m=1

(ϕI
m, (TrIIρ)AIϕI

m)

= TrHI((TrIIρ)AI) = E(ρI, AI),

where the definition (7.10) of the partial trace was used to transform the second
equation into the third.

7.1.4 Dynamics

As noted on page 111, time does not enter in the definition of the Hilbert space H

in von Neumann’s axiomatization of quantum mechanics. For example, for a sin-
gle spinless particle, H = L2(R3,d3x). Dynamics is introduced via an additional
assumption which, for a conservative system, is as follows: the Hilbert space H

carries a continuous unitary representation of a one-parameter group;6 this para-
meter is time. This group of unitary transformations defines the Hamiltonian of
the system, and conversely; the relation is discussed in Section 7.5.3.

In the Schrödinger picture, state vectors are time-dependent, whereas observ-
ables are not. Since the vectors {ui} of any orthonormal basis for H are
time-independent, the time dependence of a Schrödinger picture state vector
ψ(t) =

∑
i ci(t)ui must be carried entirely by the expansion coefficients ci(t).

The time evolution of the state vector is governed by the Schrödinger equation.
The density matrix is an operator, and not a state vector. Its time evolution is

6 The term one-parameter group means a Lie group which is either the real line R or the
circle S1.
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governed by the von Neumann equation

dρ

dt
= −i[H, ρ]. (7.13)

(See von Neumann’s book, pp. 350–351.) This is to be contrasted with
Heisenberg’s equation of motion (in the Heisenberg picture) for the operator A:

dA

dt
= i[H, A]. (7.14)

If H is not time-dependent, then the initial-value problem for (7.13) can be
solved explicitly. The solution is

ρ(t) = U(t)ρ(0)U�(t), (7.15)

where U(t) = exp(−iHt), and U�(t) = [U(t)]�. In this case:

Theorem 7.6 If time evolution is described by a time-independent Hamiltonian,
then the eigenvalues of the density matrix are time-independent.

This theorem plays an important role in von Neumann’s measurement theory,
which is the subject of the next chapter.

In the literature, one encounters the statement that an operator A is time-
independent. The statement as it stands is slightly ambiguous, and we would
like to remove this ambiguity. In this work, this statement will be taken to mean
only that the operator A does not depend explicitly on the time parameter t; it
will not imply that A commutes with the Hamiltonian.

7.1.5 Observables

In classical physics, any quantity that admits of an equation of motion may be
called a dynamical variable. The notion of an observable is, in some sense, its
analogue in quantum mechanics, but there are important differences between the
two. The term observable seems to have been introduced by Dirac. In the first
edition of his Principles of Quantum Mechanics, he wrote (Dirac, 1930, p. 25):

In quantum mechanics it is more convenient to deal with something that
refers to one particular time instead of all times, analogous to the value
of a classical variable at a particular instant of time. We shall call such a
quantity an observable.

In von Neumann’s formulation, observables become operators on the Hilbert
space H. Since H bears no reference to time, observables are, at least at the first
stage of definition, time-independent operators. Furthermore, since the result of
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any measurement is a real number,7 observables have to be self-adjoint operators.
We leave aside, for the time being, the following questions:

(i) Can every self-adjoint operator be called an observable?
(ii) Can every observable be measured in the laboratory?

Observables do not have to be bounded. This introduces severe mathematical
complications, some of which are discussed in Appendix A6, and will not be
repeated here.

It should be stated that the terms self-adjoint operator and observable are
used interchangeably in many works on quantum mechanics. This may (in rare
instances) lead to confusion. For example, the Schrödinger picture is often defined
as one in which the states carry the time dependence, whereas the operators do
not. There is clearly a terminological conflict, for a density matrix is by definition
a self-adjoint operator, but it is also time-dependent in most nontrivial cases.
Formally, the difficulties can be avoided if one agrees to specify the observables
before introducing the dynamics, and this is the procedure that we shall follow.8

The reason for labouring upon this point will become clear in Section 11.1.

7.2 The probability interpretation of quantum mechanics

In this section we shall recapitulate the standard probability interpretation of
quantum mechanics. The latter, we recall, consists of a set of assumptions that
do not follow from the principles of quantum mechanics. The goal of quantum-
mechanical measurement theory may then be stated as follows: determine the
weakest possible set of assumptions9 that have to be adjoined to the principles
(axioms) of quantum mechanics to obtain the assumptions of the probability
interpretation as theorems.

Let Hψ(x) = i∂ψ(x)/∂t be the Schrödinger equation for a single spinless
particle. In this case, the probability interpretation asserts that∫

V

|ψ(x)|2dx

is the probability for finding the particle in the volume V . Implicit in this
statement are the assumptions that (a) it is possible to measure (precisely) the
position of the particle, and (b) it is possible to prepare the system in the same
initial state as often as one wants. In quantum mechanics, the term measurement

7 Technically, this statement can sometimes be generalized to include complex numbers. How-
ever, this generalization will not add an iota of physical insight, and will therefore be
ignored.

8 This specification requires a bit of care, and is given in Sections 12.5–12.7, pages 218–225.
Until then, we shall not make any use of the technicalities of the definition, and the reader
will not be misled by understanding the terms algebra of observables and set of observables
in an intuitive sense.

9 The term weakest is being used here in the mathematical sense.
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(of an observable) generally means a set of identical measurements carried out
upon every member of an ensemble of identically prepared systems, as opposed
to a single measurement; the adjective ‘single’ cannot be omitted.

Further development of the probability interpretation10 proceeds as follows.
It is assumed that every observable can be measured.11 (Von Neumann was
apparently the first to make this assumption explicit.) It can then be shown
that two or more observables can be measured simultaneously if and only if they
commute with each other (von Neumann 1955, p. 201). Single measurements are
supposed to be instantaneous, at least in the first instance; an operator which
does not commute with the Hamiltonian (which generates the time evolution)
will change during any finite interval, no matter how small. Let A be a self-adjoint
operator with a purely discrete and nondegenerate spectrum, λk its eigenvalues
and ψk the eigenvector corresponding to the eigenvalue λk. It is assumed that
the system can be prepared repeatedly in a state

ψ =
∑

k

ckψk (7.16)

in which the coefficients ck are fixed, but the observer has no a priori knowledge
of them (except the normalization condition

∑
k |ck|2 = 1). The probability

interpretation now makes the following assertions:

(i) A single measurement of the observable A yields one of the eigenvalues, say
λk, as its result. A second single measurement made immediately after the
first will yield the same value.12

(ii) Repeated measurements of A (on identically prepared systems) yield the
value λk with probability |ck|2.

Before the measurement, the ensemble of identically prepared systems is
described by the pure state (7.16); after the measurement, it is described by
the mixed state ∑

k

|ck|2P[ψk], (7.17)

where P[ψ] is the projection operator on H onto the one-dimensional subspace
spanned by the vector ψ:

P[ψ]f = (ψ, f)
ψ

||ψ|| (7.18)

10 Called the statistical interpretation by von Neumann.
11 That is, it is not required that a measuring device corresponding to a given observable be

realizable in the laboratory. We shall return to this question in Chapter 10.
12 We remind the reader that we are dealing with nonrelativistic quantum mechanics; if two

successive measurements are performed upon the same system, the time difference between
them will not depend on the frame of reference.
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for all f ∈ H. The transformation∑
k

ckψk −→
∑

k

|ck|2P[ψk] (7.19)

is known as the reduction or collapse of the wave packet.
The probability interpretation of quantum mechanics was initiated by Max

Born in 1926 (Born 1926). We quote from the English translation of this paper
in (Wheeler and Zurek, 1983, p. 54):

If one translates this result into terms of particles, only one interpretation
is possible: Φn,m(α, β, γ) gives the probability∗ for the electron. . .

The star on the word ‘probability’ above refers to a footnote, which reads:

Addition in proof: More careful consideration shows that the probability is
proportional to the square of the quantity Φn,m.

In the history of the printed word, there could have been few footnotes as
consequential as this.

7.2.1 Quantum theory of measurement

The term measurement is used in a very restricted sense in what is known as
the quantum theory of measurement. This theory has only one aim, and that
is to account for the process (7.19). It does not mean that determinations of
e/m or of scattering cross-sections are not measurements; it does mean that
such measurements are well outside the scope of the theories of measurement
that we shall discuss in subsequent chapters. The problem that has exercised
physicists for the better part of a century is whether or not the process (7.19)
can be accounted for by the standard assumptions of quantum mechanics.

7.2.2 Remarks on notations

In the rest of this book, the letters E and P will sometimes be used simulta-
neously in two different senses each: E for expectation values and projection
operators, and P for projection and momentum operators. When E is used
to denote expectation values, its argument will be enclosed in brackets, as in
Section 7.1.2; when used to denote projection operators, its argument will be
denoted by a subscript, which may be a single letter, as in Section 7.3, or a more
complicated expression (see Appendix A6). The letter P , with or without sub-
scripts, will stand for momentum operators; but when the subscript is a vector in
some Hilbert space enclosed within square brackets, as defined in (7.18) above, it
will denote the projection operator onto the one-dimensional subspace spanned
by that vector. In addition, the letter E will be used to denote the energy, a
spectral value of the generator of time translations, in Section 7.4.
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7.3 Superselection rules

Suppose that the Hilbert space of a quantum-mechanical system can be decom-
posed into the direct sum of two nonzero subspaces, H = H1 ⊕ H2, such that the
relative phase of any two vectors ϕ1 ∈ H1 and ϕ2 ∈ H2 is nonmeasurable, i.e.,
has no observable consequences. Put differently, for any two fixed vectors ϕ1 and
ϕ2, any observable O and any α ∈ R, it is not possible to distinguish, experimen-
tally, between (ϕ1, Oϕ2) and (ϕ1, Oeiαϕ2). In particular (choosing α = π), it is
not possible to distinguish, experimentally, between (ϕ1, Oϕ2) and −(ϕ1, Oϕ2).
This will surely be the case if no observable has a nonvanishing matrix element
between ϕ1 ∈ H1 and ϕ2 ∈ H2.

Such a situation will arise if there exists a self-adjoint operator on H which is
not a multiple of the identity and commutes with every observable of the system.
Let M be such an operator, and assume that the spectrum of M is discrete. Let
the eigenvalues of M be µj , j ∈ N. We may assume, without loss of generality,
that µi �= µj for i �= j. We may then write

H =
⊕

j

Hj and M =
∑

j

µjEj ,

where Hj is the subspace of H belonging to the eigenvalue µj of M , and Ej the
projection operator onto Hj . Let O be any observable, i �= j, ψi ∈ Hi, ψj ∈ Hj .
From [O, M ] = 0 we find that

(µi − µj)(ψi, Oψj) = 0. (7.20)

But µi − µj �= 0, and therefore

(ψi, Oψj) = 0. (7.21)

Equation (7.21) describes what is known as a superselection rule,13 and the
subspaces Hj are called superselection sectors of the Hilbert space H. If ϕ and ψ

are vectors belonging to different superselection sectors, then their relative phase
cannot be determined.

Suppose that a given Hilbert space can be decomposed into the direct sum
of two subspaces, one that has only states of half-integral spin and the other
that has only states of integral spin. A rotation by 2π (about any axis) will
change the sign of a half-integral spin state, but will leave the sign of an integral
spin state unchanged. But this rotation is the identity operation, which should
change nothing. It follows that no observable can have a nonvanishing matrix
element between a half-integral spin state and an integral spin state. In plain
words, it is physically meaningless to superpose states with integral spin and

13 In the example given, the superselection rule is generated by the operator M .
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those with half-odd integral spin. This result is known as the superselection rule
for univalence.14

If an observable is additively conserved and commutes with every observable,
then there can be no operator that effects a transition between states with dif-
ferent eigenvalues of this observable; the result will be a superselection rule. It is
believed that electric charge and baryon number generate superselection rules.

The concept of superselection rules was introduced in (Wick, Wightman and
Wigner, 1952). Superselection sectors have become very significant in relativistic
quantum field theory. For an introduction, see (Haag 1993).

7.4 The Galilei group

The invariance group of nonrelativistic quantum mechanics is the universal cov-
ering group of the inhomogeneous Galilei group G, together with the discrete
operations of space inversion and time reversal. The covering group of G is
obtained by replacing the subgroup of rotations in 3-space by its covering group
SU(2), and has the effect of introducing half-integral spins. Space inversion leads
to the concept of parity (see (Wigner, 1959)), but we shall not be concerned
with it. Time inversions are special: according to the theorem of Wigner which
lies at the foundation of the theory of symmetry in quantum mechanics,15 a
symmetry operation is represented by a unitary operator on Hilbert space – with
the exception of time reversal, which has to be represented by an antiunitary
operator. Formally, it lies beyond the theory of unitary group representations,
but is easily accommodated. See (Wigner, 1959, Chapter 26).

The inhomogeneous Galilei group G is a ten-parameter group of linear
transformations on space and time, which may be displayed explicitly as follows:

t′ = t + b,

x′ = Rx + vt + a.
(7.22)

In the above, b is a time translation, a a space translation, v a velocity boost or
simply boost16 and R a rotation in three-dimensional space.

If we write an element g ∈ G as

g = (b, a,v, R), (7.23)

14 The superselection rule for univalence can also be derived from invariance under time rever-
sal (Wick, Wightman and Wigner, 1952). The argument is the one used for deriving (7.21);
the (antiunitary) operator of time reversal is not a multiple of the identity. We have chosen
the argument using the 2π rotation because of its similarity to the one leading to Bargmann’s
superselection rule (Subsection 7.4.2), which is probably the most important superselection
rule in nonrelativistic quantum mechanics. A full treatment of time reversal may be found
in Chapter 26 of (Wigner, 1959).

15 See (Wigner, 1959); for clearer proofs see (Emch and Piron, 1963) or (Bargmann, 1964).
16 The term boost is attributed to Wightman. Inönü and Wigner used the terms pure Galilei

transformation or acceleration (Inönü and Wigner, 1952).
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then the multiplication law may be written as

(b′,a′,v′, R′) (b, a,v, R) = (b′ + b, a′ + R′a + v′b, v′ + R′v, R′R). (7.24)

The identity element is17

e = (0, 0, 0, 1)

and the inverse of g is

g−1 = (−b, −R−1(a − bv),−R−1v, R−1).

It is easily seen that (i) time translations, (ii) space translations, (iii) boosts
and (iv) rotations constitute subgroups of G. The group of rotations in n-
dimensional Euclidean space is identical with the group of orthogonal n × n

matrices of determinant 1, which is denoted by O(n, R). The Euclidean group in
three dimensions is the subgroup of G consisting of rotations and space trans-
lations: {(0,a, 0, R)}. It is evidently isomorphic with the subgroup {(0, 0,v, R)}
of the boosts and rotations.

Since G is a real Lie group, its Lie algebra is also an algebra over the reals. In
physics one is interested in unitary representations in which the generators are
represented by Hermitian operators.18 Since the commutator of two Hermitian
operators is necessarily anti-Hermitian, it may be written as i times a Hermitian
operator, where i =

√−1. It is customary in physics to write Lie algebras in this
manner. We shall follow this practice for the Lie algebra g of the group G.

We shall denote by Ji, Ki and Pi, i = 1, 2, 3, the generators of the rota-
tions, boosts and space translations respectively, and by H the generator of time
translations. They satisfy the commutation relations

[Ji, Jj ] = iεijkJk,

[Ji, Kj ] = iεijkKk,

[Ji, Pj ] = iεijkPk,

[Ki, H] = iPi,

(7.25)

where εijk is the Levi-Civita symbol (the completely antisymmetric tensor in
three dimensions with ε123 = 1). All commutators that do not appear in (7.25)

17 We are using the ordinary numerals 0 and 1 to denote the zero vector and the identity
rotation respectively.

18 Unless the group is compact, some of these generators will be unbounded operators which
are not defined everywhere on the Hilbert space (see Appendix A6). It is fairly easy to avoid
the pitfalls. We shall omit the cautionary remarks to achieve a more fluent exposition.
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vanish. It may be verified from (7.25) that the quantities

P 2 and (K × P )2 (7.26)

commute with all elements of g; the symbols K and P denote 3-vectors.
It follows that P 2 must be a multiple of the identity in any irreducible rep-

resentation of G. The irreducible unitary representations19 of G were analysed
by Inönü and Wigner, who showed that they did not contain states that were
localizable either in space or in velocity space, and concluded that none of them
could admit of a particle interpretation (Inönü and Wigner, 1952).20

7.4.1 Projective representations of the Galilei group

It was shown by Bargmann (Bargmann, 1954) that a nonrelativistic particle of
nonzero mass is described, not by a true or vector representation of Galilei group
G but rather by a projective or ray representation of it. These will be defined
below. We shall confine ourselves to connected Lie groups; however, much of
what follows applies to disconnected Lie groups and to finite groups as well.

7.4.1.1 Factor systems and group exponents

Let F be a connected Lie group, H a finite- or infinite-dimensional Hilbert space
over the complex numbers,21 and D(H) the set of invertible linear transforma-
tions of H onto itself. An up-to-a-factor representation (D, ω) of F upon H

is a map D : F → D that satisfies the condition

D(x1)D(x2) = ω(x1, x2)D(x1x2), (7.27)

where D(x) is the image of x ∈ F in D, and ω(x1, x2) is a complex-valued
function of modulus unity which is jointly continuous in x1 and x2. The function
ω, called a factor system on F , has to satisfy the condition

ω(x1, x2x3) ω(x2, x3) = ω(x1, x2) ω(x1x2, x3), (7.28)

which follows from the associativity of multiplication in F .
Let now D′(x) = ϕ(x)D(x), where ϕ(x) is a continuous complex-valued func-

tion on F of unit modulus. Straightforward calculations show that the pair

19 Henceforth the term representation of a group will always denote a unitary representation,
unless the contrary is stated explicitly.

20 A nonrigorous but basically correct argument is as follows. Since P is the generator of
space translations, its spectral values p are momenta, and if p2 = const there are simply
not enough momenta available to form a δ-function in three-dimensional space.

21 Here we are using the term Hilbert space as it was originally defined by von Neumann
(Appendix A6, pages 316–317. Nowadays many physicists use this term only for infinite-
dimensional separable Hilbert spaces, and mathematicians no longer assume separability.
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(D′, ω′) is an up-to-a-factor representation of F , with the factor system

ω′(x1, x2) =
ϕ(x1)ϕ(x2)

ϕ(x1x2)
ω(x1, x2). (7.29)

We now come to the essential definition.

Definition 7.7 (Equivalence of up-to-a-factor representations) The up-
to-a-factor representations (D, ω) and (D′, ω′) are said to be equivalent, written
D ∼ D′, if there exists a continuous function ϕ on F of modulus unity such that
the conditions (7.29) are satisfied.

It is easily seen that the relation ∼ is a true equivalence relation in the
mathematical sense (see page 263). It therefore divides the set of up-to-a-factor
representations of F into pairwise-disjoint equivalence classes. If an equiva-
lence class contains an up-to-a-factor representation with the factor system
ω(x1, x2) = 1 for all x1, x2 ∈ F , then its members are called true or vector
representations. If it does not, then its members are called ray or projective
representations.22

Henceforth the term representation will mean a true representation. Projective
(or ray) representations will be explicitly specified as such.

Factor systems can be simplified as follows. Setting x1 = x2 = e in (7.27), we
find that D(e) = exp (iγ) for some γ ∈ R. Using this fact, we find from (7.27)
that ω(e, x) = ω(x, e) = exp (iγ) for all x ∈ F . Now, choosing ϕ(x) = exp (−iγ)
for all x ∈ F in (7.29), we find that

ω′(e, x) = e−iγω(e, x) = 1 = ω′(x, e) for all x ∈ F.

That is, any up-to-a-factor representation is equivalent to a simplified one with
ω(e, x) = ω(x, e) = 1 for all x ∈ F .

A continuous real-valued function ξ : F×F → R is called a group exponent if

ξ(e, e) = 0, (7.30)

and, for any x1, x2, x3 ∈ F ,

ξ(x1, x2) + ξ(x1x2, x3) = ξ(x2, x3) + ξ(x1, x2x3), (7.31)

which is the counterpart of (7.28). It follows from (7.31) and (7.30) that

ξ(x, e) = ξ(e, x) = 0 (7.32)

22 In the literature, true representations are often regarded as a subclass of ray representations.
We wish to keep the two strictly separate, which we do by defining them to be distinct
subclasses of up-to-a-factor representations. This term was introduced by Wigner, and is
seldom used today.
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and

ξ(x, x−1) = ξ(x−1, x) (7.33)

for all x ∈ F . Factor systems and group exponents (in their simplified forms) are
related as follows:

ω(x, y) = eiξ(x,y). (7.34)

7.4.1.2 The extended Galilei group

A ray representation of the Galilei group G is a true representation of a larger
group G̃, which may be defined as follows. Form the Cartesian product R × G,
and, given a group exponent ξ on G, define a multiplication on R × G by

(θ′, g′) · (θ, g) = (θ′ + θ + ξ(g′, g), g′g), (7.35)

where θ, θ′ ∈ R and g, g′ ∈ G. Owing to (7.31), this multiplication is associative.
It is also invertible; using (7.32) and (7.33) one finds that it has the identity
(0, e), and that the inverse of g̃ = (θ, g) is

g̃−1 = (θ, g)−1 = (−θ − ξ(g−1, g), g). (7.36)

The extended Galilei group G̃ is the set R × G furnished with the multipli-
cation law (7.35). One sees by straightforward computations that Θ = {(θ, e)}
is a normal subgroup of G̃, and that G ∼ G̃/Θ. The group G̃ is called a central
extension23 of G by Θ. Moreover,

(θ, g) = (θ, e)(0, g). (7.37)

Finally, we have to show that a ray representation of G is a true representation
of G̃. Let D(g) be a ray representation of G on H with factor system

ω(g′, g) = eiη(g′,g) (7.38)

such that ω(g, e) = ω(e, g) = 1 for all g ∈ G. Set

ξ(g′, g) =
1
m

η(g′, g), (7.39)

23 Let F, G, H be groups such that H is a normal subgroup of F and G is isomorphic with F/H.
Then F is called an extension of G by H. If H belongs to the centre of F , the extension is
called central. A fairly detailed account, addressed to physicists, may be found in (Michel,
1964).
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where m �= 0, and define the operator D̃(θ, g) on H by

D̃(θ, g) = eimθD(g). (7.40)

Then, using (7.37), (7.38) and (7.40) we find that

D̃(θ′, g′) · D̃(θ, g) = eim(θ′+θ)D(g′) · D(g)

= eim[θ′+θ+ξ(g′,g)]D(g′g)

= D̃(θ′ + θ + ξ(g′, g), g′g). (7.41)

Equation (7.41) shows that the set of operators {D̃(θ, g)|θ ∈ R, g ∈ G} forms
a true representation of G̃ on H. This representation depends on a real parameter
m �= 0. Conversely, given a true representation D̃ of g̃ on H, the set of operators
{D(g)|g ∈ G} defined by

D(g) = D̃(0, g)

constitute a ray representation of G, with the group exponent ω(g′, g) being
defined by (7.38).

7.4.1.3 Mass in nonrelativistic quantum mechanics

The parameter m in (7.39) is identifiable with the nonrelativistic mass of a
particle. To see this most clearly, consider the Lie algebra g̃ of G̃. This differs
from g only in the following. In g, one set of vanishing Lie brackets is

[Pi, Kj ] = 0.

In g̃, this is replaced by the nonvanishing bracket

[Pi, Kj ] = iδijm · I, (7.42)

where I is the eleventh element of g̃, the other ten being the same as those of g.
The element I commutes with every element of g. Owing to the commutator
(7.42), the Casimir operators of g̃ differ drastically from those of g. It is easily
verified, by direct computation, that the quantity

H − P 2

2m
(7.43)

commutes with every element of g̃. It is called the internal energy, and is a
constant in every irreducible representation of G̃. As there is no loss of gene-
rality in doing so, it is equated to zero in every such representation. The
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relation between mass, energy and momentum of a free particle in nonrelativistic
quantum mechanics follows from this stipulation.

7.4.2 Bargmann’s superselection rule; conservation of mass

The group exponents ξ(g′, g) in (7.35) are defined only up to equivalence. One
possible choice of ξ(g′, g) is (we omit the calculations; for details, see (Lévy-
Leblond, 1972))

ξ(g′, g) = ( 1
2v′2b + v′ · R′a). (7.44)

Let now H1 and H2 be Hilbert spaces that carry the irreducible projective spin-
zero representations of G with masses m1 and m2 respectively, where m1 �= m2,
and form their direct sum H = H1 ⊕ H2. Let ϕ ∈ H1 and ψ ∈ H2. Then ϕ + ψ

is a vector in H. Assume that we are using the group exponent (7.44). Apply,
successively, the transformations

(0,a, 0, 1), (0, 0,v, 1), (0,−a, 0, 1) and (0, 0,−v, 1)

(which together constitute the identity transformation) to the state ϕ + ψ ∈ H.
An easy calculation shows the result to be

ϕ + ψ −→ e−im1a·vϕ + e−im2a·vψ. (7.45)

Since m1 �= m2, the relative phases of ϕ and ψ differ on the two sides of (7.45).
Since this difference has resulted from an identity transformation, it follows
that the relative phases of ϕ and ψ are undefined, so that no meaning can be
attached to the superposition ϕ + ψ. In other words, no observable can have a
nonvanishing matrix element between states of different mass in nonrelativistic
quantum mechanics.

This result is known as Bargmann’s superselection rule.
The pioneering work on ray representations of Lie groups is that of Bargmann

(Bargmann, 1954). The book by Hamermesh (Hamermesh, 1962) contains an
elementary account of the general theory (both for finite and Lie groups), as well
as several applications. The review article by Lévy-Leblond (Lévy-Leblond, 1972)
is devoted exclusively to the Galilei group. The subject of ray representations
has been absorbed into the subject of group extensions, which in turn has been
absorbed into a branch of mathematics called the cohomology of groups. An
introductory account, aimed at physicists, may be found in Michel’s Istanbul
lectures (Michel, 1964).

It may be worth remarking that the notion of particle mass in nonrelativistic
classical mechanics follows from the cohomology of the Galilei group (which does
not depend on Hilbert space representations).
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7.4.3 The Galilei group in two dimensions

Central extensions G̃2 of the Galilei group in two spatial dimensions, G2, have
been studied by Bose, motivated in part by the question of excitations with
fractional (not half-integral) angular momenta. Although such angular momenta
did not turn up, Bose found a significant difference between the groups in two
and three dimensions. Central extensions of the Lie algebra g2 of G2 form a
three-parameter family g̃2, whereas those of G2 itself form only a two-parameter
family. It is the universal covering group Gcov

2 of G2 that has a three-parameter
family of central extensions, and the Lie algebras of these groups are precisely
the g̃2. The third element of the extension of g2 is not a complete vector field on
a G̃2. For details, we refer the reader to his papers (Bose, 1995a,b) which are
very readable if the reader is willing to accept a little bit of homological algebra
on faith.24

7.5 Theorems of von Neumann and Stone; Reeh’s example

In this section we shall state two fundamental theorems upon which the quantum
mechanics of N particles has been based. They are known as the Stone–von
Neumann uniqueness theorem and Stone’s theorem.25 The first of these has
often been misinterpreted.

To avoid the difficulties associated with unbounded operators, Weyl proposed
replacing the canonical commutation relations (CCR), for a finite number of
degrees of freedom, by a group which has since become known as the Weyl group.
This is a Lie group, and the CCR are its Lie algebra. The Stone–von Neumann
uniqueness theorem asserted that the Weyl group had only one irreducible uni-
tary representation. This was taken by some physicists to mean that the CCR
had only one irreducible unitary representation, the familiar Schrödinger repre-
sentation. Quantum field theories were seen to differ from quantum mechanics in
that, for infinitely many degrees of freedom, the CCR (and the anticommutation
relations as well) had infinitely many inequivalent representations.

Mathematicians have known, at least since 1967, that the CCR, as opposed to
the Weyl group, possessed inequivalent irreducible representations even for one
degree of freedom (Fuglede, 1967). In 1972, Reed and Simon gave an example of
one that was not equivalent to the Schrödinger representation (Reed and Simon,
1972, pp. 274–276). In 1983 Schmüdgen constructed infinitely many inequivalent
irreducible representations (Schmüdgen, 1983). However, no physical relevance
seems to have been attached to these examples. In 1988 Helmut Reeh, using
the magnetic Aharonov–Bohm effect, constructed a representation that was not

24 A topological–geometrical interpretation of these phenomena in terms of vector fields on
manifolds may be found in Appendix A8, particularly Section A8.7 and Subsection A8.7.3.

25 Many authors refer to the Stone–von Neumann uniqueness theorem as von Neumann’s
uniqueness theorem. It was announced independently by Stone and von Neumann in 1930,
but von Neumann gave a complete proof.
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unitarily equivalent to the Schrödinger representation for two degrees of freedom
(Reeh, 1988), showing that these representations were not mere mathematical
curiosities that could be disregarded by the physicist. In 2001, Summers wrote
that ‘seventy years ago, this example would have been a bombshell’ (Summers,
2001). We shall discuss Reeh’s example in Section 7.5.2, and return to it in the
Epilogue.

7.5.1 The Stone–von Neumann uniqueness theorem

Let the system consist of a finite number of spinless particles in one or more spa-
tial dimensions. The subscripts j, k on the canonical coordinates and momenta
Qj , Pk will run from 1 to N , where N is a positive integer. The CCR for the
system will then be

QjPk − PkQj = iδjkI,

QjQk − QkQj = 0,

PjPk − PkQj = 0,

(7.46)

where we are using units in which � = 1. The quantity I commutes with every Qj

and Pj , and physics dictates that it should be the identity. The last requirement
is essential; the 3 × 3 matrices

Q =

⎛⎝0 0 0
0 0 1
0 0 0

⎞⎠, P =

⎛⎝0 1 0
0 0 0
0 0 0

⎞⎠, R =

⎛⎝0 0 i
0 0 0
0 0 0

⎞⎠ (7.47)

satisfy [Q, P ] = iR, but R is not the identity matrix.26

The problem is to determine the inequivalent irreducible unitary representa-
tions of the CCR (7.46) on a Hilbert space on which I is represented by the
identity operator. This space cannot be finite-dimensional; for, if the Qj , Pk are
n × n matrices, then, taking the traces of both sides of the first equation in
(7.46), we obtain 0 = in. But if the Hilbert space is infinite-dimensional, then
at least one of each canonically conjugate pair (Pi, Qi) is unbounded, and there-
fore not defined everywhere on it (see Section A6.2, particularly Theorem A6.8,
page 324). Weyl therefore chose to work instead with the exponentiated, or Weyl
forms of the CCR, and his lead has been followed ever since. The Weyl forms
are defined by (Weyl, 1931, p. 274)

Aj(aj) = exp (iajQj) and Bk(bk) = exp (ibkPk), (7.48)

26 The matrices Q, P and R form the Lie algebra of a group known as the Heisenberg group,
which is a 3-parameter Lie group that generalizes to 2n + 1 dimensions, and is of some
mathematical interest. See (Tilgner, 1970) for an introduction.
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where j, k = 1, . . . , N , aj , bk ∈ R, and there is no summation over repeated
indices. The multiplication rules for the Aj(aj), Bk(bk) are

Aj(aj)Aj(a′
j) = Aj(aj + a′

j),

Bj(bk)Bj(b′
j) = Bj(bj + b′

j),

Aj(aj)Bk(bk) = Bk(bk)Aj(aj) exp [iajbk · δjk].

(7.49)

The Aj(aj) form an N -parameter Abelian group; the group space is Rn. The
same is true of the Bk(bk). The Aj(aj) and Bk(bk) together form a 2N -parameter
group, with the identity element

I = Ai(0) = Bj(0), i, j = 1, . . . , N,

where the I is the same I that appears in the first of the commutation relations
(7.46). The last equation of (7.49) shows that this group is no longer Abelian.
We shall denote it by W , or more explicitly by WN (Q, P ) (W for Weyl). The
commutator or derived subgroup of W is clearly W ′ = {zI; z ∈ C, |z| = 1}, and
W ′′ = I; the group W is solvable (see (Jacobson, 1974, pp. 238–239)). Recall
that a group G is simple if the only normal subgroups it has are G and {e},
where e is the identity of G. The Weyl group is neither simple nor semisimple.

The Stone–von Neumann uniqueness theorem may be stated succinctly as
follows; for details, the reader is referred to the historical review by Summers
(Summers, 2001).

Theorem 7.8 (Stone–von Neumann uniqueness theorem) The group
WN (Q, P ) has, up to unitary equivalence, only one continuous irreducible repre-
sentation, and the operators Qk, Pj of the canonical commutation relations are
its infinitesimal generators.

Recall that while the group action is analytic in a Lie group, it is only
required to be continuous in a unitary representation (which is necessarily
infinite-dimensional) if the group is noncompact.

The full proof of this theorem, given by von Neumann (von Neumann, 1930),
is beyond the scope of this book.27 However, there is a different proof of the first
part, due to Mackey, which is based on ideas more familiar to physicists. The
key idea of this proof is sketched below.

We begin by recalling the inducing construction, adapted by Wigner (from
the works of Frobenius on finite groups) for his study of the unitary represen-
tations of the Poincaré group (Wigner, 1939), and developed into a complete

27 The mathematically prepared reader will find an absorbing account of this theorem and its
impact upon physics in (Summers, 2001).
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mathematical theory of infinite-dimensional group representations by Mackey.28

The representations of the whole group are induced from those of a certain sub-
group, called the little group by Wigner (and isotropy group or stabilizer in
the mathematical literature). Every irreducible representation of the little group
gives rise to a representation of the whole group, and representations that arise
from inequivalent representations of the little group are themselves inequiva-
lent. If the little group consists of the identity alone, then the whole group will
have only one irreducible representation. Mackey used this method to determine
the irreducible representations of the group WN (Q, P ), and found that the lit-
tle group consisted of the identity alone. The Stone–von Neumann uniqueness
theorem followed immediately. Mackey’s proof may be found in (Mackey, 1968,
pp. 53–57) or (Mackey, 1978, pp. 180–181). It is based on his imprimitivity
theorem, which should be easily accessible to the reader who is familiar with
projection-valued measures (defined on page 333).

7.5.2 Reeh’s example

The discussion of Subsection 7.5.1 may be summarized in two sentences. The
canonical commutation relations (7.46) constitute the Lie algebra w of the
Lie group W = WN (Q, P ). The latter has only one irreducible unitary rep-
resentation. The problem is that the correspondence between Lie groups and
Lie algebras is not one-to-one; while every Lie group has a uniquely defined
Lie algebra, the converse is not true. For example, if F is a simply connected Lie
group and ∆ any discrete normal subgroup of F , then F and F/∆ have the same
Lie algebra. The fact that nonisomorphic Lie groups may be locally isomorphic
(i.e., have the same Lie algebra) was shown by Michel to have implications for
elementary particle physics (Michel, 1964). Reeh’s example, outlined below, can
be viewed as demonstrating that its implications for physics may be far wider.

As mentioned earlier, the example is based on the magnetic Aharonov–Bohm
effect. We refer the reader to the book by Peshkin and Tonomura for early
disputes and experimental confirmation of the effect (Peshkin and Tonomura,
1989), and consider an idealized model of a charged (spinless) particle moving in
the xy-plane which is free of any magnetic field, except for a flux line of intensity
α′ at z = 0. The quantity α′ cannot be changed by a gauge transformation.
If α′ �= 0, then the configuration space for the particle is the punctured plane
R2 � O; if α′ = 0, i.e., there is no flux line, then the configuration space is
the entire plane R2. In the first case (α′ �= 0), the vector potential A(x, y) at
the point (x, y) on the circle Cr(O) with centre O = (0, 0) and radius r will be
gauge-equivalent to α′a = α′e/r, e being the unit tangent vector29 to Cr(O)

28 In the following, all representations will be assumed to be unitary unless the contrary is
explicitly stated; representations such as (7.47) are thereby excluded.

29 In this section we shall denote two-vectors by boldface italic letters.
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at (x, y). The Schrödinger operators for this case will be

P ′ = i
∂

∂x
+ αa,

Q′ = multiplication by x,

(7.50)

where we have set α = eα′, e being the electronic charge.30 When the configura-
tion space is the entire plane (when the vector potential is gauge-equivalent to
zero), the Schrödinger operators will assume their standard form

P = i
∂

∂x
,

Q = multiplication by x.

(7.51)

The P ′ and Q′ obey the same commutation relations as the P and Q; a(x)
obviously commutes with x. But since the the magnetic flux α is independent of
the choice of gauge, it follows that:

(i) When α is not an integer, the vector potential in the punctured plane cannot
be gauged away (owing to the ‘topological obstruction’ at the origin), so
that the representation of P ′,Q′ cannot be transformed unitarily into that
of P ,Q; the representation of P ′,Q′ is ‘non-Fock’.

(ii) The representations of P ′,Q′ for different noninteger values of α cannot be
transformed unitarily into each other.

Reeh proved the first of the above results by a close examination of the domains
of unbounded self-adjoint operators involved. The details are beyond the scope
of this book. The second result is not mentioned explicitly by Reeh, but follows
from his analysis.

We should like to make a final comment before concluding this subsection.
The examples constructed by Schmüdgen are based on the operators

Q = x − i
∂

∂y
, P = −i

∂

∂x
(7.52)

on L2(R2), on which they are well-defined unbounded operators. However, the
operator Q of (7.52) is not a derivation of any algebra of functions on R2; it does
not annihilate the constants, and therefore cannot be identified with a vector field
on a two-dimensional manifold.31

30 The spin of the electron is generally disregarded in the theory of the Aharonov–Bohm effect.
The validity of this assumption appears to be confirmed by experiment. See (Peshkin and
Tonomura, 1989).

31 A brief discussion of differentiable manifolds, Lie groups and Lie algebras is given in
Appendix A8. The operator of multiplication by x is never a derivation on the algebra
of functions of x.
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7.5.3 Stone’s theorem

Let {U(t)}, t ∈ R be a one-parameter group of unitary operators (‘unitaries’,
for short) on a Hilbert space H. This group is said to be strongly continuous in
t (see Appendix A6) if

lim
t→t0

||[U(t) − U(t0)]ϕ|| = 0 for every ϕ ∈ H, t0 ∈ R.

Stone’s theorem asserts that if {U(t)} is a strongly continuous group of unitaries
on H, then there exists a self-adjoint operator H on H such that

U(t) = e−iHt.

The proof of this theorem requires considerably more machinery than we are
able to develop here. (It requires care to define unbounded self-adjoint operators;
the definition is given in Section A6.5.) The interested reader is referred to (Reed
and Simon, 1972). We shall content ourself with a few comments.

(i) If A is a bounded operator, the formal power series for exp iA converges
in the norm, and may therefore be taken to define the exponential. This
method fails if A is unbounded. In quantum mechanics, Hamiltonians are
generally unbounded self-adjoint operators, and therefore one has, first of
all, to devise a method for defining their exponentials (and other functions).
We shall not enter into this problem, except to state that if

∫
λdEλ is

the spectral resolution of the unbounded self-adjoint operator A, then the
function f(A), if it is definable at all, is given by

∫
f(λ)dEλ. For a full

treatment, we refer the reader to the text by Reed and Simon cited above.

(ii) The operator H is called the infinitesimal generator of the group32 {U(t)}.

(iii) In quantum mechanics, it is the converse of Stone’s theorem that is most
often used: the solution of the Schrödinger equation i∂ψ/∂t = Hψ, subject
to the initial condition ψ(0) = ψ0, is given by

ψ(t) = U(t)ψ0,

where U(t) = exp (−iHt).

(iv) The time t enters as a parameter in the explicit solution in the following
manner. Let {ψn|n ∈ N} be an orthonormal base for H, and let

ψ(0) =
∞∑

n=1

cnψn,

32 The group {U(t)} may also be regarded as a one-parameter real Lie group; it is possible to
‘forget’ the background of unitary operators and Hilbert spaces over the complex numbers.
In this case, the group element would be written as exp tX, without making any reference
to complex numbers.
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where
∑ |cn|2 = 1. Then we may write ψ(t) as

ψ(t) =
∞∑

n=1

cn(t)ψn,

where cn(0) = cn and
∑ |cn(t)|2 = 1 for all t. The burden of time dependence

is carried entirely by the coefficients cn(t), and does not involve the vectors
ψn, in conformity with the quotation from von Neumann on page 111.

Since H is separable, it admits of complete orthonormal bases (see page 318),
and any two orthonormal bases are related by a unitary or an antiunitary trans-
formation. The Schrödinger and Heisenberg pictures correspond to bases in H

that are unitary transforms of each other, the transformations themselves being
dependent on time. This fact was first observed by Dirac (Dirac, 1930).
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Von Neumann’s theory of measurement

Von Neumann’s theory of measurement in Quantum Mechanics was spelled out
in the last chapter of his book, which was published in 1932. This book was highly
mathematical for its time, and in 1939 London and Bauer provided a simplified
account of the measurement theory part of it (London and Bauer, 1939). Von
Neumann died in 1957. Thirty years after the publication of von Neumann’s
book, Wigner published a review containing his views on the shortcomings of von
Neumann’s theory, but omitting any discussion of its mathematical core, namely
von Neumann’s analysis of composite systems (Wigner, 1963). He also published
a set of lecture notes entitled Interpretation of Quantum Mechanics (Wigner,
1983) in which some of his concerns were spelled out in greater detail, and an
article addressed ‘to an audience of non-physicists’ (Wigner, 1964). Wigner’s
own contributions to measurement theory were discussed by Shimony in a talk
at the Wigner centennial conference (Shimony, 2002). The English translation of
von Neumann’s book was published in 1955.1 The account that follows is based
on these sources.

We shall assume that the reader is acquainted with notions such as wave func-
tion collapse and the Heisenberg cut, but we shall not assume familiarity with the
technicalities of von Neumann’s theory. This chapter is organized accordingly.
Section 8.1 explains what we mean by the term von Neumann’s measurement
theory and gives an overview of the subject.2 It is followed by Sections 8.2 and
8.3, in which the theory is spelled out in detail. Section 8.4 recounts Wigner’s
reservations. In Section 8.5, the last, von Neumann’s main results are reformu-
lated in the language of entanglement, and an apparent difference of perception
between von Neumann and Wigner is pointed out; it concerns a crucial but often
ignored point.

8.1 Overview

The subject we shall call von Neumann’s measurement theory can be divided
into four parts, the first two of which are seldom stated explicitly. The main
mathematical part is contained in Chapter VI of his book, but we shall have

1 See the footnote on page 110.
2 In the literature, one sometimes encounters the term ‘von Neumann’s measurement theory’

but is unsure of what the author means; we wish to avoid this pitfall.
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occasion to refer to other chapters as well. For the convenience of the reader, we
shall cite all references by chapter, section or page numbers.

(i) Inference from observation. Having analysed the experimental evidence, von
Neumann concluded that the act of measurement changes the state of the
object from a pure to a mixed one. (See also Remark 8.3 on page 140.)

(ii) Measurement of operators with continuous spectra. Since there are no eigen-
vectors that belong to a point in the continuous spectrum of a self-adjoint
operator, von Neumann analysed what it means to measure such an oper-
ator. London and Bauer describe this analysis as ‘. . . sophistications, which
do not concern questions of principle. . . ’ (Wheeler and Zurek, 1983, foot-
note on p. 223). The present author contends that these ‘sophistications’
are at the heart of the matter; the question will be discussed in Chapter 9.

(iii) Mathematical structure of composite systems. Von Neumann described the
‘combining of two systems’ by the mathematical operation of forming the
tensor product of Hilbert spaces of the individual systems. Analysing the
structure of pure states of the tensor product, he found that the substates of
the two parts were perfectly correlated with each other. As Wigner was to
describe it later, ‘the state of the apparatus mirrors the state of the object’.

(iv) Intervention of the observer. In his deductive development of the theory,
von Neumann posited the human observer (who ‘remains outside the cal-
culation’) as an integral part of the measurement process (Section 8.3.1).
Let I be the object of measurement, II the measuring apparatus and III the
human observer. There are two possibilities:

(a) I is the ‘observed system’ and II + III the ‘observer’. Then it is the wave
function of I that collapses.

(b) I + II is the ‘observed system’ and III the ‘observer’. Then it is the wave
function of I + II that collapses. The analysis of a composite system
applies to I + II, and I and II mirror the states of each other.

Von Neumann established that, under his assumptions – some of which are
metaphysical – (a) and (b) lead to the same result.

Von Neumann’s writing is clear; it is possible to separate the mathematical
from the metaphysical parts, and we shall exploit this fact. The crux of his mea-
surement theory is that the state vector of a system changes with time in two
different ways: (i) smoothly, when it evolves under the Schrödinger equation; and
(ii) abruptly, when one performs a measurement upon it. This abrupt change has
become known as the collapse of the wave packet. If the Schrödinger equation
cannot account for it – and von Neumann concluded that it could not – then one
has to devise an alternative mechanism for the collapse. The one that von Neu-
mann devised was the intervention of the observer’s conscious ego. Faced with
this unsettling suggestion, some physicists chose just to ‘shut up and calculate’,3

3 A phrase attributed to Dirac.
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while others looked towards philosophy. Prominent among the latter was Wigner,
who explained the situation as follows in his 1964 article (reprinted in (Wigner,
1970); see pp. 186–187):

Even though it is not strictly relevant, it may be useful to give the rea-
son for the increased interest of the contemporary physicist in problems
of epistemology and ontology. The reason is, in a nutshell, that physi-
cists have found it impossible to give a satisfactory description of atomic
phenomena without reference to the consciousness. This. . . refers. . . to the
process called the ‘reduction of the wave packet’. This [reduction of the
wave packet] takes place whenever the result of an observation enters the
consciousness of the observer. . . Alternatively, one could say that quantum
mechanics provides only probability connections between the results of my
observations as I perceive them. Whichever formulation one adopts, the
consciousness evidently plays an indispensable role.4

In outline, the situation is as follows. The interaction between the mea-
suring apparatus and the. . . object of the measurement. . . results in a state
in which there is a strong statistical correlation between the state of the
apparatus and the state of the object. In general, neither apparatus nor
object is in a state which has a classical description [emphasis added].
However, the state of the. . . apparatus plus object is, after the interac-
tion, such that only one state of the object is compatible with any given
state of the apparatus. Hence, the state of the object can be ascertained
by determining the state of the apparatus after the interaction has taken
place. It follows that the measurement of the state of the object has been
reduced to the measurement of the state of the apparatus. However, since
the state of the apparatus has no classical description [emphasis added], the
measurement of the state of the apparatus is, from the conceptual point
of view, no different from the measurement on the original object. In a
similar way, the problem can be transferred from one link of a chain to
the next, and so on. However, the measurement is not completed until its
result enters our consciousness [emphasis added]. This last step is, at the
present state of our knowledge, shrouded in mystery and no explanation has
been given so far in terms of quantum mechanics, or in terms of any other
theory.5

4 Footnote in the original : ‘This is not the proper place to give a detailed proof of this
assertion. . . It should suffice, therefore, to mention that the fact was pointed out with full
clarity first by von Neumann (see Chapter VI of his Mathematical Foundations of Quantum
Mechanics). . . ’ We shall dispute this assertion of Wigner’s in Section 8.5.2.

5 Many physicists who were not content to ‘shut up and calculate’ were ill at ease with the
‘last step’ described above by Wigner. Roland Omnès expressed himself forthrightly (Omnès,
1999, p. 69) in a book which set forth his counterproposal. Other counterproposals, or
references to them, may be found in (Wheeler and Zurek, 1983; Joos et al., 2003; Namiki
et al., 1999; Sinha, 1994; and Sinha and Goswami, 2007). The present author, who has no
claim to expertise in this vast field, apologizes in advance to those whose works have not
come to his notice.
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In Chapter 9 we shall contest Wigner’s assertion that ‘the state of the appa-
ratus has no classical description’, and in Chapter 10 we shall investigate the
implications of this contest for measurement theory.

8.2 Von Neumann’s initial considerations

In quantum-mechanical measurement theory, one uses the term measurement to
denote the exact or approximate determination of an eigenvalue or a spectral
value of a self-adjoint operator. The theory encompasses self-adjoint operators
for which no measurement procedure may be realizable in the laboratory. We
shall return to this last point in Chapter 11.

8.2.1 The inference from observation

In von Neumann’s book, equivalence of the Heisenberg and the Schrödinger
pictures is established in Chapters I and II. The problem of measurement is
discussed in Chapter VI; it is analysed exclusively in the Schrödinger picture.

As stated earlier, von Neumann postulated that the state vector of a quan-
tum-mechanical system can change with time in two different ways:

(i) Reversibly, under the Schrödinger equation. In this evolution probability
amplitudes evolve into probability amplitudes. Von Neumann called it the
‘2nd intervention’.

(ii) Irreversibly, by an act of measurement. Von Neumann called it the
‘1st intervention’. This change was described by (7.19) and discussed on
page 119.

The Schrödinger equation is a cornerstone of quantum mechanics; item (ii) above
is the famous (or infamous) reduction of the state vector.6 Von Neumann was led
to it by the Bohr–Kramers–Slater (hereafter BKS) paper (January 1924) and the
experiments of Compton and Simon (June 1925).7 Both of these papers preceded
the article by Heisenberg (July 1925) which heralded the advent of quantum
mechanics.8 The following quotation is from the Introduction of the BKS paper
(van der Waerden, 1967, p. 159):

On the one hand, the phenomena of interference, on which the action of
all optical instruments essentially depends, claim an aspect of continuity
of the same character as that involved in the wave theory of light. . . On
the other hand, the exchange of energy and momentum between matter
and radiation, on which the observation of optical phenomena ultimately

6 Also known as collapse of the wave packet. The terms state vector and wave packet are used
interchangeably.

7 The references are to (Bohr, Kramers and Slater, 1924) and (Compton and Simon, 1925).
8 The reference is to (Heisenberg, 1925); English translation in (van der Waerden, 1967).
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depends, claims essentially discontinuous features. These have even led to
the introduction of the theory of light-quanta [emphasis added], which in
its most extreme form denies the wave constitution of light. At the present
state of science it does not seem possible to avoid the formal character of
the quantum theory [emphasis added] which is shown by the fact that the
interpretation of atomic phenomena does not involve a description of the
mechanism of discontinuous processes. . .

The ‘aspect of continuity. . . in the wave theory of light’ is best captured in the
Huygens principle, according to which every point on a wavefront is the source
of outgoing spherical waves (circular waves, in two dimensions). The quantum
theory of radiation devised by BKS tried to preserve as much of the classical wave
theory as possible, but at the cost of abandoning the conservation of energy and
momentum. What BKS did manage to achieve was the following: while energy
and momentum were not conserved in individual events, they were conserved
statistically, i.e., when summed, or averaged, over many events.9 The Compton–
Simon experiment refuted this picture decisively. The closing paragraph of their
article reads:

These results do not appear to be reconcilable with the view of the statis-
tical production of recoil and photo-electrons proposed by Bohr, Kramers
and Slater. They are, on the other hand, in direct support of the view
that energy and momentum are conserved during the interaction between
radiation and electrons [emphasis in the original].

Basing himself on the BKS paper and the Compton–Simon experiment, von
Neumann (pp. 213–214 of his book) argued that:

. . . three degrees of causality or non-causality may be distinguished [in
nature]. First, the. . . [measured] value could be entirely statistical, i.e., the
result of a measurement could be predicted only statistically; and if a sec-
ond measurement were taken immediately after the first one, this would
also have a dispersion, without regard to the value found initially – for
example, the dispersion might be equal to the original one.10 Second, it
is conceivable that the value of. . . [the measured quantity] may have a dis-
persion in the first measurement, but that [an] immediately subsequent
measurement is constrained to give a result which agrees with that of the

9 The Bohr–Kramers–Slater paper is reprinted in the source book edited by van der Waerden
(van der Waerden, 1967). Papers which originally appeared in German were translated into
English for this volume. The volume contains a very helpful historical introduction by the
editor.

10 In this case the state of the system will not be altered by the measurement. If one measures
the energy, and the initial state is a superposition of energy eigenstates with different eigen-
values, then a measurement which returns a unique value and leaves the state unchanged
will obviously violate the law of conservation of energy.
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first. Third,. . . [the measured quantity] could be determined causally at the
outset.

The Compton–Simon experiment now shows that only the second case
is possible in a statistical theory.

We shall now make a formal statement of the hypothesis of reduction of the
state vector, which we shall refer to, for brevity, as the collapse postulate.

Hypothesis 8.1 (Collapse postulate) Let A be an observable with a
discrete, nondegenerate spectrum11 on the Hilbert space H, and uk its eigen-
vectors. A measurement of A sends a pure state

∑
k ckuk into the mixed state∑

k |ck|2P[uk], where P[uk] is the projection operator onto the vector uk ∈ H.

Having formulated this hypothesis, we may summarize the key point of the
discussion that preceded it as follows:

Conclusion 8.2 (Consistency with conservation laws) If an additively
conserved quantity (like momentum or a component of the angular momentum)
is being measured, then the negation of the collapse postulate may lead to a
contradiction with the conservation law.

If the measured eigenvalue λ of A is nondegenerate, then the collapse postulate
implies that the state of the system after (a single) measurement is a unique ray
in the Hilbert space. If λ is a degenerate eigenvalue, then it only implies that
the state after a single measurement lies in the eigenspace of λ (von Neumann,
1955, p. 218).

Remark 8.3 (The Heisenberg cut) The collapse postulate may be regarded
as the precise mathematical formulation of the Heisenberg cut. In the published
version of his Chicago lectures of 1929, Heisenberg wrote (Heisenberg, 1930,
p. 58):

The partition of the world into observing and observed system prevents a
sharp formulation of the law of cause and effect. (The observing system
need not always be a human being; it may also be an inanimate apparatus,
such as a photographic plate.)

This partition is the Heisenberg cut (sometimes called the Bohr–Heisenberg cut).
The idea of the cut was first expressed by Heisenberg at the Congresso Inter-
nazionale di Fisica, held in Como in September 1927, during the discussion
following Bohr’s talk (Heisenberg, 1928). In a letter dated 18 January 1933
(replying to a letter by Heisenberg which has been lost), Pauli stated that the
result of a measurement does not depend on the precise location of this cut, and

11 There is no difficulty in admitting degenerate eigenvalues; the statement becomes a little
more complicated. Details are left to the reader.
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referred to von Neumann’s book in support (Pauli, 1985).12 The mathematical
results (see the quotation on pages 144–145) elaborated on pp. 439–445 of von
Neumann’s book offer no solution except the ‘infinite von Neumann chain’. The
Heisenberg cut avoids this infinite chain, but does not provide a bridge between
the observing and the observed system. On the other hand, the observing sys-
tem, ‘such as a photographic plate’, does have a classical description.13 Shimony
has emphasized that

The insistence upon a classical description of the measuring apparatus,
not as a convenient approximation but as a matter of principle, clearly
differentiates Bohr’s interpretation of quantum mechanics from that of von
Neumann and of London and Bauer.

(Shimony, 1963; reprinted in Shimony, 1993, p. 24). We shall interpret ‘a classical
description of the measuring apparatus’ to mean that the measuring appara-
tus possesses observables the values of which can be registered on displays
which are incontrovertibly classical. Such observables will be called classical
observables. Recall that the term observable itself means a self-adjoint opera-
tor on a Hilbert space, and therefore a classical observable is, by definition, a
quantum-mechanical concept. The question of these observables will occupy us
in Chapter 9.

8.2.2 Measurement of operators with continuous spectra

There is no loss of generality in assuming that the operator has no discrete
spectrum. Consider the measurement of an operator H which has the spectral
decomposition ((A6.23), page 339)

H =
∞∑

n=1

λnEn +

∞∫
0

λdEλ,

e.g., the energy of an electron in the field of a positive point charge (hydro-
gen atom). Here the λn, which are negative, are the energies of the bound
states. The Hilbert space H of states of the electron decomposes into the direct
sum H = Hbd ⊕ Hscatt, where Hbd contains only the bound states and Hscatt

(which is necessarily infinite-dimensional) contains only the scattering states.
The restriction of H to Hscatt is an operator that has only a continuous spectrum.

12 In the summer of 1935 Heisenberg wrote an article, ‘Ist eine deterministische Ergänzung der
Quantenmechanik möglich?’, which, however, was not published. Heisenberg sent a copy of
this paper to Bohr, and it was eventually published in Pauli’s scientific correspondence as
an appendix to Heisenberg’s letter to Pauli of 2 July 1935 (Pauli, 1985, pp. 409–418.)

13 I would like to thank Professors H Goenner, H Reeh and H Rechenberg (who is presently
writing a scientific biography of Werner Heisenberg) for the references cited above.



142 Von Neumann’s theory of measurement

In Hscatt, the operator H has no eigenvectors, only approximate eigenvectors.
That is, for any λ in the continuous spectrum of H and any ε > 0, there exist
vectors ψλ ∈ Hscatt such that ||(H −λI)ψλ|| < ε. But what kind of measurement
will cause the state vector of a system to collapse to an approximate eigenvector –
and to which of the many approximate eigenvectors? Von Neumann addressed
this problem as follows (p. 220 of his book):

We have seen that a quantity A [a self-adjoint operator] can always (i.e.,
for each state ψ) be measured exactly if and only if it possesses a pure
discrete spectrum. If it possesses none, then it can be measured only with
limited accuracy . . . [emphasis added].

To prove the last assertion, von Neumann divides R into a countable set of
intervals [λ(n), λ(n+1)], n ∈ Z, with λ(n) < λ(n+1). He then chooses, for each n ∈
Z, a number λn such that λ(n) ≤ λn ≤ λ(n+1), and defines a piecewise-constant
function G as follows:

G(λ) = λk, for λ ∈ (λ(k), λ(k+1)) k ∈ Z.

The values of G(λ) at the points λ(n) are arbitrary. He then proves that the
operator G(A) has a purely discrete spectrum, and that its eigenvalues are
the λn. (Operator functions G(A) are defined via the spectral theorem; see
Appendix A6.) It can therefore be measured precisely, and a precise measurement
of G(A) is equivalent to an approximate measurement of A, the measurement
being accurate to ε, where

ε = Max (λ(n+1) − λ(n))

is the maximum spacing between two adjacent division points.
There are two points to be noted in this scheme:

(i) There is no canonical choice for the function G. It is entirely up to a human
agency.

(ii) The numbers λ(n) and λn are arbitrary. They are not required to be either
rational or irrational.

The experimentalist has to design, not only the apparatus to measure the oper-
ator, but also the operator itself (with a little help from the mathematician; see
‘the converse of the spectral theorem’, page 331).

8.2.3 The quantum measurement problem

The discussion of Subsections 8.2.1 and 8.2.2 may be summarized as follows:
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(i) The collapse postulate, by allowing for the conservation of energy and
momentum in radiative processes, distinguishes between quantum mecha-
nics and the radiation theory of Bohr, Kramers and Slater.

(ii) If a quantum measurement is understood to be the assignment of a real
number to a vector in Hilbert space, an operator with a continuous spec-
trum cannot be measured; one can only measure an approximation to it
by an operator with a purely discrete spectrum (which we shall call a von
Neumann approximant to the operator with a continuous spectrum).

We shall now give a verbal formulation of the measurement problem.

Problem 8.4 (Quantum measurement problem) Describe how probability
amplitudes evolve into probabilities under the Schrödinger equation for the
composite object–apparatus system.

Von Neumann could not resolve this problem mathematically. At the ‘last
step’ mentioned by Wigner (last two sentences of the quotation on page 137),
he had to invoke the human observer. His analysis of the structure of composite
systems was mathematically unimpeachable; the seeds of his failure lay in the
assumptions he made in translating the verbal formulation given above into a
mathematical one.

We now turn to his analysis, which is given in Chapter VI of his book.

8.3 Von Neumann’s Chapter VI

Chapter VI of von Neumann’s book, ‘The measuring process’, is divided into
three sections. In the following, we shall provide a section-by-section summary
of this chapter. In Subsections 8.3.1–8.3.3, we shall adhere to von Neumann’s
headings and his labels I, II and III, but shall depart from his mathematical
notations. The summary of the last section (our Subsection 8.3.3) will be incom-
plete. We shall omit von Neumann’s proof of the proposition that his theory of
measurement does not violate the principle of psycho-physical parallelism (see
below).

Von Neumann’s book appeared in 1932, three years before the term entangle-
ment was coined by Schrödinger (Schrödinger, 1935). As we shall see, what von
Neumann called a combined system would be called an entangled system today.
We shall exploit this fact, but shall restrict use of the concept to Remarks 8.8
and 8.9, and to Section 8.5.

Definitions of the term entanglement that one finds are sometimes ambiguous,
even when set down by workers in the field. We shall use the term in the following
sense, which seems to conform to to its actual use in the literature:
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Definition 8.5 (Entangled states) A state of a system which consists of n

distinguishable subsystems is called separable if it is a tensor product of the
states of the subsystems; otherwise it is called entangled.14

The above definition – which is the one we shall adopt – makes no state-
ment about systems consisting of n subsystems that are indistinguishable from
each other, such as n identical particles obeying Bose or Fermi statistics.
The notion of entanglement for systems consisting of two identical particles is
under investigation; see, for example, (Li et al., 2001) and (Schliemann et al.,
2001).15

8.3.1 Formulation of the problem

After remarking that time evolution of a state vector under the Schrödinger equa-
tion is both causal and reversible, whereas the changes induced by a measurement
are neither, von Neumann writes (p. 418 of his book):

Let us now compare these circumstances with those which actually exist
in nature or in its observation. First of all. . . the measurement or. . . [its]
subjective perception is a new entity relative to the physical environment
and is not reducible to the latter [emphasis added]. . . Nevertheless, it is a
fundamental requirement of the scientific viewpoint [emphasis added] – the
so-called principle of the psycho-physical parallelism – that it must be pos-
sible. . . to describe the extra-physical process of the subjective perception
as if it were in reality in the physical world [emphasis added]. . .

As an example, von Neumann discusses the measurement, by a human observer,
of the temperature of a body by a mercury thermometer, pointing out that
the process can be thought of as consisting of a succession of steps,16 the steps
themselves not being uniquely defined. He finally concludes that (pp. 420–421 of
his book):

That is, we must always divide the world into two parts, the one being the
observed system, the other the observer. . . The boundary between the two
is arbitrary to a very large extent. . . 17

14 To avoid misunderstandings, we should like to repeat that we are concerned exclusively
with nonrelativistic quantum mechanics, in which there is no upper limit to signal velocity.
Under this hypothesis, it is difficult to distinguish between action at a distance and field
action unless the field itself happens to be measurable.

15 I would like to thank Dr CF Roos for this clarification, as well as the references cited above.
16 Such as expansion of the mercury column, light reflected by it striking the observer’s eye, a

signal from eye to brain through the optic nerve, etc.
17 If the observer were to have a classical description, this division would be precisely the

Heisenberg cut.
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Now quantum mechanics describes the events which occur in the observed
portion of the world, so long as they do not interact with the observing
portion, with the aid of the [Schródinger equation], but as soon as such
an interaction occurs, [emphasis added] i.e., a measurement, it requires the
application of [the collapse] process. The dual form is therefore justified.18

However, the danger lies in the fact that the principle of psycho-physical
parallelism is violated [emphasis added], so long as it is not shown that the
boundary between the observed system and the observer can be displaced
arbitrarily in the sense given above.

In order to discuss this, let us divide the world into three parts: I, II and
III. Let I be the system actually observed, II the measuring instrument, and
III the actual observer.19. . . [The phrase abstract ego, often rendered as the
conscious ego, appears for the first time in the sentence omitted.] It is to be
shown that the boundary can be drawn just as well between I and II + III
as between I + II and III. . . That is, in one case [the Schrödinger equation]
is to be applied to I, and [collapse] to the interaction between I and II+III;
and in the other case [the Schródinger equation] is to be applied to I + II,
and [collapse] to the interaction between I + II and III. (In each case, III
itself remains outside of the calculation [emphasis added].) The proof of
this assertion, that both procedures give the same results regarding I (this
and only this belongs to the observed part of the world in both cases), is
then our problem. But in order to accomplish this successfully, we must first
investigate more closely the process of forming the union of two physical
systems (which leads from I and II to I + II).

Next, we shall give an account of von Neumann’s analysis of ‘forming the
union of two physical systems’. This analysis is purely mathematical, and is
independent of the proposition that the principle of psycho-physical parallelism
is ‘a fundamental requirement of the scientific viewpoint’.

8.3.2 Composite systems

Von Neumann considers two physical systems I and II, ‘not necessarily the ones
of Section 8.3.1’, with k and l degrees of freedom respectively and with Hilbert

18 At this point there is a footnote (p. 420, footnote 207), which I was not able to understand. I
therefore enlisted the help of Professor H Roos of the University of Göttingen, who translated
this footnote from the German original into English as follows:

N Bohr, Naturwiss. Vol. 17 (1929) was the first to point out that the dual descrip-
tion of nature – necessitated by the formalism of quantum mechanics – is also
justified by the physical nature of things, and he pointed to the connection with
the psycho-physical parallelism.

19 Footnote 208 in the original : ‘The discussion carried out in the following, as well as that
in [Section 8.3.3], contains essential elements which the author owes to conversations with
L Szilard. . . ’
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spaces HI and HII. The Hilbert space of the composite system is the tensor
product H = HI ⊗ HII (see Appendix A6, pages 321–322). All three are Hilbert
spaces of complex-valued square-integrable functions, i.e., L2-spaces, but it will
often be economical to treat them as abstract Hilbert spaces over the complex
numbers. When regarded as complex-valued functions, vectors in HI and HII will
be denoted by lower-case Greek letters with one argument,

ϕI(q) = ϕI(q1, . . . , qk),

ϕII(r) = ϕII(r1, . . . , rl),
(8.1)

and vectors in H by capital Greek letters with two arguments, e.g.,

Φ(q, r) ∈ H. (8.2)

In this case, the product of ϕI(q) and ϕII(r), which will be a vector in H, will
be denoted multiplicatively as ϕI(q) ϕII(r). When ϕI(q) and ϕII(r) are regarded
as vectors in abstract Hilbert spaces, the variables q and r will be omitted, and
the product of ϕI and ϕII will be written as ϕI ⊗ ϕII. The inner product on HI

will be written as (ϕI, ψI) in the abstract case, and as the integral∫
ϕI(q)ψI(q)dq

in the concrete case, and similarly for HII and H.

1. Physical quantities; rules of correspondence

Next, von Neumann discusses physical quantities. We shall present the beginning
in his own words (pp. 422–423 of his book).

. . . The physical quantities of I, II [and] I + II are correspondingly the
[self-adjoint]20 operators AI, AII and A in HI, HII and H respectively.

Each physical quantity in I is naturally also one in I+II, and in fact its A

is obtained from its AI in this way: to obtain AΦ(q, r) consider r as constant
and apply AI to the function Φ(q, r).21 This rule of transformation is correct
in any case for the coordinate and momentum operators Q1, . . . , Qk and
P1, . . . , Pk, i.e.,

q1, . . . , qk, −i
∂

∂q1
, . . . ,−i

∂

∂qk

(cf. I.2) [The section referred to is entitled The original formulations of
quantum mechanics, pp. 7–17 of von Neumann’s book] and it conforms

20 Hypermaximal Hermitian in the original; see Definition A6.31.
21 Footnote 209 in the original : ‘It can easily be shown that if AI is hermitian or hypermaximal,

A is also.’
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with principles I, II22 in IV.2.23 We therefore postulate this generally.
(This is the customary procedure in quantum mechanics.)

In the same way, each physical quantity in II is also one in I + II, and
its AII gives rise to its A by the same rule: AΦ(q, r) equals AIIΦ(q, r) if in
the latter expression, q is taken as constant, and Φ(q, r) is considered as a
function of r.

Following this, von Neumann exhibits his correspondences AI → A and AII →
A explicitly in matrix form. The formulae make it clear that he is dealing with
the operators AI ⊗ III and II ⊗ AII on H (where II,II are the identity operators
on HI,II respectively), and the natural correspondences

AI −→ AI ⊗ III,

AII −→ II ⊗ AII.

(8.3)

Note that von Neumann does not assert that a physical quantity in I is also one
in II, or vice versa, leaving open the possibility that one of them is microscopic
and the other macroscopic. This is the case that he considers (briefly) in the
second quotation in Subsection 8.3.3.2, page 157.

2. Density matrices; rules of correspondence

Let {ϕI
m} and {ϕII

n } be complete orthonormal bases in HI and HII respectively.
Define

Φm,n = ϕI
m ⊗ ϕII

n .

Then {Φm,n} is a complete orthonormal basis in H = HI ⊗ HII. The matrix
representations of operators will be defined in the standard manner, Omn =
(fm, Ofn) for the operator O on the Hilbert space H. We shall denote the matrix
elements of the density matrix ρ on H by a pair of double indices:24

Definition 8.6

ρmn,m′n′ = (Φm,n, ρ Φm′,n′).

22 The principles I, II are as follows: I: ‘If the quantity R has the operator R, then the quantity
f(R) has the operator f(R).’ II: ‘If the quantities R, S . . . have the operators R, S . . ., then
the quantities R + S + · · · have the operators R + S + · · · . It is not assumed that R, S . . .
are simultaneously measurable.’

23 Footnote 210 in the original : ‘For I this is clear, and for II also, so long as only polynomials
are concerned. For general functions, it can be inferred from the fact that the correspondence
of a resolution of the identity and a Hermitian operator is not disturbed in the transition
AI → A.’

24 Density matrices were discussed in Subsection 7.1.2; see Definition 7.1.
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The density matrices ρI on HI and ρII on HII are defined as partial traces:

ρI = TrIIρ and ρII = TrIρ. (8.4)

It follows that

ρI
mm′ =

∞∑
n=1

ρmn,m′n,

ρII
nn′ =

∞∑
m=1

ρmn,mn′ .

(8.5)

Obviously, a given ρ determines ρI and ρII uniquely.
At this point von Neumann remarks (p. 425 of his book):

We have thus established the rules of correspondence for the statistical
operators of I, II, I + II, i.e., ρI, ρII, ρ. They proved to be essentially differ-
ent from those [formulae (8.3)] which control the correspondence between
the operators AI, AII, A of physical quantities.

Note that, in general,

ρ �= ρI ⊗ ρII. (8.6)

That being the case, the following is a natural question:

3. When do ρI and ρII determine ρ uniquely?

Equations (8.5) show that ρ determines ρI and ρII uniquely. Owing to (8.6), one
would not expect the converse to be generally true. Von Neumann investigated
the conditions under which the converse was true, and concluded that:

Theorem 8.7 The density matrices ρI and ρII on HI and HII determine a unique
density matrix ρ on HI ⊗ HII if and only if at least one of ρI or ρII represents a
pure state.

The theorem is stated on p. 426 of von Neumann’s book. The proof (which is
lengthy and will not be given here) consists of two parts. First, it is shown that if
both ρI and ρII represent mixtures, then there are infinitely many ρ that satisfy
(8.5), i.e., the condition of Theorem 8.7 is necessary. Then it is shown that the
condition is sufficient, i.e., if one of ρI or ρII represents a pure state, then ρ is
uniquely determined. In this case, von Neumann calls ρI and ρII projections of
ρ; we shall make use of this terminology later.

Theorem 8.7 is used in only one place in von Neumann’s measurement theory:
proof that the initial state of the apparatus cannot be a mixture (page 155). The
main burden falls upon the determination of ρI and ρII for a given pure state
Φ ∈ H, which is our next task.
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4. The maps F and F �; determination of ρI and ρII

Now comes the critical step. Observe that if {ϕII
n (r)} is a complete orthonormal

basis for HII, then so is {ϕ̄II
n (r)}, the bar above denoting complex conjugation.25

Let

Φ(q, r) =
∞∑

m,n=1

fmnϕI
m(q)ϕ̄II

n (r) (8.7)

be a vector of unit norm in HI ⊗ HII. The coefficients fmn are restricted (only)
by the condition

∞∑
m,n=1

|fmn|2 = ||Φ||2 = 1. (8.8)

Remarks 8.8

(i) If fmn does not factorize, i.e., fmn �= ambn, then the systems I and II are
entangled. In the mathematical analysis that follows, von Neumann aims
at establishing a canonical form for the vector Φ(q, r) which describes an
entangled state of the systems I and II.

(ii) According to London and Bauer, the state Φ of (8.7), which is clearly entan-
gled, is the state of the object–apparatus system after the measurement
interaction has taken place; the initial state, before the measurement, is
separated (equations (1) and (2), and the text in between, on p. 246 of
(Wheeler and Zurek, 1983)). This is physically reasonable, but the present
author has not been able to find this assertion in von Neumann’s book;
indeed, the discussion on pp. 437–439 of his book, given in our Sub-
section 8.3.3.1, appears to contradict London and Bauer. It will become
clear in the course of the discussion that von Neumann’s mathematical
analysis depends only on the form of Φ(q, r), and not upon its genesis.

Define now two linear transformations

F : HI → HII,

F � : HII → HI (8.9)

(determined by the state Φ of the composite system) by

FϕI(q) =
∫

Φ(q, r)ϕI(q)dq,

F �ϕII(r) =
∫

Φ(q, r)ϕII(r)dr.

(8.10)

25 This means that {ϕ̄II
n } is obtained from {ϕII

n } by an antiunitary transformation.
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The transformations F and F � are bounded, by definition. Substituting (8.7)
into (8.10), we find that

FϕI
m(q) =

∞∑
j=1

f̄mjϕ
II
j (r),

F �ϕII
n (r) =

∞∑
i=1

finϕI
i(q),

(8.11)

so that

(ϕII
k , FϕI

m) = f̄mk,

(ϕI
l , F

�ϕII
n ) = fln,

i.e.,

Fkm = f̄mk,

(F �)ln = fln.
(8.12)

Formulae (8.12) show that F and F � are adjoints of each other, justifying the
notation. The compositions

HI F−→ HII F �

−→ HI,

HII F �

−→ HI F−→ HII

show that F �F and FF � are operators on HI and HII respectively.26 They are
clearly positive (Definition A6.14, page 327). Their matrix elements are, in the
bases we are using,

(F �F )mn =
∞∑

k=1

fmkf̄nk,

(FF �)mn =
∞∑

k=1

f̄kmfkn,

(8.13)

so that

Tr (FF �) = Tr (F �F ) = 1. (8.14)

It follows that the operators FF � and F �F are compact (Theorem A6.18,
page 327).

26 We are using the fact that the composition of two linear transformations may be denoted
multiplicatively.
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On the other hand, the matrix elements of ρ for the pure state Φ defined by
(8.7) are

ρmn,m′n′ = f̄mnfm′n′ . (8.15)

Combining (8.5), (8.15) and (8.13) we find that27

F �F = ρI,

FF � = ρII.
(8.16)

The operators ρI and ρII so defined are positive and have unit trace. Von
Neumann emphasizes that (8.16) are independent of the orthonormal bases that
were used to derive them. He then draws attention to the fact that, as first
noticed by Landau in 1927, the projections of the density matrix of a pure state
in Φ ∈ H may be density matrices of mixed states in HI and HII.

5. The structure of ρI and ρII

Since the operators ρI and ρII are positive, self-adjoint and compact, their spectra
are discrete and lie on [0,∞). Since the eigenvalue 0 cannot be ruled out for either
of them, we begin by separating out their null spaces:

HI = HI
0 ⊕ (HI

0)
⊥,

HII = HII
0 ⊕ (HII

0 )⊥.
(8.17)

In the above, HI,II
0 are the null spaces of ρI,II respectively. Their orthogonal

complements HI.II
+ = (HI,II

0 )⊥ are spanned by eigenvectors of ρI,II with positive
eigenvalues. Denoting the restrictions of ρI,II to HI,II

+ by ρI,II
+ respectively, we

may write the spectral resolution of ρI
+ in the form (A6.12):

ρI
+ =

∞∑
k=1

λk EI
λk

, (8.18)

where λk > λk′ > 0 for k < k′ and EI
λk

is the projection operator on the
subspace of eigenvectors with eigenvalue λk; recall that this subspace is finite-
dimensional.28 The same formula holds for the spectral decomposition of ρII

+

27 Footnote 213 in the original : ‘The mathematical discussion is based on a paper by
E. Schmidt, Math. Ann. 63, 433-476 (1907).’ [The volume number was printed incorrectly
in the English translation. Schmidt’s expansion formula for the asymmetric kernel of an
integral equation is very similar to (8.30), and may be found in (Courant and Hilbert, 1953,
p. 159).]

28 The argument, based on the fact that the identity operator on an infinite-dimensional
Hilbert space is not compact, is given on page 330.
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on HII
+; one replaces I by II in (8.18), and λk by µk, where µk are the eigenvalues

of ρII, µ0 = 0 and µk > µk′ > 0 for k < k′.29

The operators ρI and ρII are closely related. Let ψI
j be a normalized eigenvector

of ρI with eigenvalue λj . From ρI = F �F we have

F �FψI
j = ρIψI

j = λjψ
I
j . (8.19)

Applying the transformation F from the left and rearranging the left-hand side,
we obtain

FF �(FψI
j) = λj(FψI

j), (8.20)

which shows that FψI
j is an eigenvector of FF � = ρII with eigenvalue λj . Since

the argument is symmetric in the indices I and II, we conclude that: (i) ρI and ρII

have the same eigenvalues; (ii) the ordered set {µk} is identical with the ordered
set {λk}, and (iii) there is a one-to-one correspondence between the eigenvectors
of ρI

+ and ρII
+. We may thus write the spectral decomposition of ρII

+ as

ρII
+ =

∞∑
k=1

λk EII
λk

, (8.21)

where the λk are the same as in (8.18), and

dim EI
λk

= dim EII
λk

. (8.22)

Equations (8.18), (8.21) and (8.22) show that the density matrices ρI and ρII

differ only in the multiplicity of the eigenvalue zero.

6. Reduction of the matrix F

Let {ψI
k}, k ∈ N, be an orthonormal family of eigenvectors of ρI that is a basis

for HI
+:

ρI
+ψI

k = λkψI
k.

Then it is true that ρIψI
k = λkψI

k, i.e., F �FψI
k = λkψI

k, so that

(ψI
k, F �FψI

k) = (FψI
k, FψI

k) = λk. (8.23)

We have seen in (8.20) that FψI
k is an eigenvector of ρII with eigenvalue λk.

Equation (8.23) now shows that

ψII
k =

1√
λk

FψI
k (8.24)

29 For greater symmetry, we could have written λk as λI
k and µk as λII

k , but then the right-hand
sides of (8.18) and (8.21) would have looked more cluttered.
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is a normalized eigenvector of ρII, so that {ψII
k }, k ∈ N is an orthonormal basis

for HII
+. We also have the symmetric relation

ψI
k =

1√
λk

F �ψII
k . (8.25)

Equations (8.24) and (8.25) show that the maps F+ : HI
+ → HII

+ and F �
+ :

HII
+ → HI

+, which are restrictions of F to HI
+ and F � to HII

+ respectively, are
diagonal in the bases {ψI

m} and {ψII
m}.

Now let {ξI
m}, m ∈ N, be an orthonormal basis for HI such that30

ψI
k = ξI

µk
, (8.26)

where the set {µk} is a countable subset of N, and for m /∈ {µk},

ξI
m ∈ HI

0.

Similarly, let {ξII
n }, n ∈ N, be an orthonormal basis for HII such that

ψII
k = ξII

νk
, (8.27)

where {νk} is also a countable subset of N, and for n /∈ {νk},

ξII
n ∈ HII

0 .

We rewrite (8.24) as

F ξI
µk

=
√

λk ξII
νk

,

F ξI
m = 0 for m /∈ {µk}.

(8.28)

That is, in these bases

fmn =

{ √
λk, m = µk, n = νk, k ∈ N,

0, otherwise.
(8.29)

Equivalently, the vector Φ can be written as

Φ(q, r) =
∞∑

k=1

√
λk ξI

µk
(q) ξII

νk
(r). (8.30)

At this point von Neumann writes (p. 434 of his book):

By suitable choice of the complete orthonormal sets ξI
m(q) and ξII

n (r) we
have established that each column of the matrix [fmn] contains at most one

30 The orthonormal bases {ξI
m} and {ξII

n } are being introduced to cope with the possibility
that dim HI

0 �= dim HII
0 .
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element �= 0 (that this is real and > 0, namely
√

λk, is unimportant for what
follows). What is the physical meaning of this mathematical statement?

Remark 8.9 It is clear from the derivation that the decomposition (8.30)
of Φ(q, r) into a sum of mirrorred pairs is unique. The coefficients

√
λk are

square roots of the common (nonzero) eigenvalues of ρI
+ and ρII

+, and the vectors
ξI
µk

(q), ξII
νk

(r) are eigenvectors of ρI
+, ρII

+ respectively. We shall call (8.30) the
Schmidt–von Neumann canonical form (or briefly, the canonical form) of the
entangled state Φ(q, r).

7. Physical significance

We shall call I the object, II the apparatus and I + II the combined system. The
discussion of Subsection 8.2.2 shows that an observable AI may be assumed,
without loss of generality, to be a compact self-adjoint operator. Von Neumann
continues (p. 434 of his book):

Let AI be an operator with the eigenfunctions ξI
1, ξ

I
2, . . . and with only

distinct eigenvalues, say a1, a2, . . .; likewise AII with ξI
1, ξ

I
2, . . . and b1, b2, . . ..

AI corresponds to a physical quantity in I, AII to one in II. They are
therefore simultaneously measurable. It is easily seen that the statement ‘AI

has the value am and AII has the value bn’ determines the state Φmn(q, r) =
ξI
m(q) ξII

n (r), and that this state has the probability

(Φ, P[Φmn]Φ) = |(Φ, Φmn) = |fmn|2

in the state Φ(q, r). Consequently, our statement means that AI, AII are
simultaneously measurable, and that if one of them was measured in Φ,
then the value of the other is determined by it uniquely.

Then, after dealing with some minor technicalites (including redefining the
√

λk

of (8.30) as ck), von Neumann arrives at the formulae

ρI
+ =

M∑
k=1

|ck|2P[ξI
µk

] (8.31)

and

ρII
+ =

M∑
k=1

|ck|2P[ξII
νk

]. (8.32)

He goes on to say (p. 436 of his book):
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Hence, when Φ is projected in I or II, it in general becomes a mixture,
while it is a state31 in I + II only. Indeed, it involves certain information
regarding I + II which cannot be made use of in I alone or in II alone,
namely the one-to-one correspondence of the AI and AII values with each
other [emphasis added].

He concludes the section with the following:

On the basis of the above results, we note: If I is in the state ξI(q) and
II is in the state ξII(r), then I + II is in the state ξI(q) ξII(r). If on the
other hand I + II is in a state Φ(q, r) which is not a product ξI(q) ξII(r),
then I and II are mixtures and not states, but Φ establishes a one-to-one
correspondence between possible values of certain quantities in I and in II.

8.3.3 Discussion of the measuring process

Von Neumann’s Section VI.3 contains several pages devoted to proving that his
measurement theory does not violate the principle of psycho-physical parallelism.
As we shall not make use of the result, we have omitted the argument. For ease
of reference, we have divided the remaining material, presented below, into two
sections.

8.3.3.1 The initial state cannot be a mixture

Von Neumann argues that the initial state of the apparatus cannot be a mixture
if a measurement is to be effected. The argument is as follows. We give as much
of it as possible in his own words (pp. 437–438 of his book).

Let I be the observed system, II the observer. If I is in the [pure] state
ρI = P[ϕ

I] while II on the other hand is a mixture

ρII =
∞∑

n=1

wnP[ξII
n ], (8.33)

then I + II is a uniquely determined mixture

ρ =
∞∑

n=1

wnP[Φn], Φn(q, r) = ϕI(q) ⊗ ξII
n (r). (8.34)

[The assertion follows from Theorem 8.7; ρI and ρII are clearly the projec-
tions of ρ defined by (8.34).] If now a measurement of a quantity A takes

31 Von Neumann uses the terms state and mixture to denote pure and mixed states respec-
tively. We are using the terminology in current use, in which a state can be either pure or
mixed.
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place in I, then this [intervention] is to be regarded as an interaction of I
and II. This is a process. . . [of unitary evolution under] an energy operator32

H. If it has the time duration t, then we obtain

ρ(t) = e−itHρ eitH (8.35)

from ρ, and in fact,

ρ(t) =
∞∑

n=1

wnP[e−itHΦn(q,r)]. (8.36)

At this stage von Neumann makes an assumption, which we have separated
from the body of the text for emphasis:

Assumption 8.10 (von Neumann) For each n, the evolute

e−itHΦn(q, r) (8.37)

has the form = φI
n(q) ηII

n (r), where the φI
n are eigenfunctions of A and the ηII

n

any fixed orthonormal set in HII.

He continues:

[If Assumption 8.10 holds], then this intervention will have the character
of a measurement. For it transforms each [pure] state ϕ of I into a mixture
of the eigenfunctions φI

n of A. The statistical character therefore arises in
this way: Before the measurement I was in a (unique) [pure] state, but II
was a mixture – and the mixture character of II has, in the course of the
interaction, associated itself with I + II, and, in particular, it has made a
mixture of the projection in I. . .

At this point, the attempted explanation breaks down. For quantum
mechanics requires that wn = (ϕI, P[φI

n]ϕ
I) = |(ϕI, φI

n)|2, i.e., wn dependent
on ϕI!. . .

Von Neumann concludes that (p. 439 of his book):

Therefore the non-causal nature of the [collapse] process is not produced
by any incomplete knowledge of the state of the observer. . .

Remark 8.11 The situation may be described, in words, as follows. Von Neu-
mann is trying to demonstrate that, if the initial state of the apparatus is
a mixture, then the principle that the initial states of object and apparatus

32 It is this assertion of von Neumann that appears to justify the statement by London and
Bauer, Remarks 8.8 (ii).



8.4 Wigner’s reservations 157

are independent of each other is violated if Assumption 8.10 holds. That is, if
Assumption 8.10 is invalid, then the result too may cease to be valid.

Assumption 8.10 is a very specific assumption about the object–apparatus
interaction; it asserts that eigenfunctions of A are mapped one-to-one onto vec-
tor states of the apparatus after the measurement interaction has run its course.
Von Neumann seems to have accepted it as generic, which does not need justifi-
cation. We shall find that the object–apparatus interaction that is at the heart
of Sewell’s theory (Chapter 10) clearly violates this assumption; nondegenerate
eigenstates of A are mapped to subspaces of dim � 1 of the Hilbert space of the
apparatus. From the point of view of physics, Assumption 8.10 may be generic
for entanglement, but it surely is not for a measurement.

8.3.3.2 Apparatus with a classical display

For the last part, we again take up the story in von Neumann’s own words (p. 439
of his book):

Let us now apply ourselves again to the problem formulated at the end of
[Section 8.3.1]. I, II and III shall have the meanings given there, and, for
the quantum-mechanical investigation of I, II, we shall use the notation of
[Section 8.3.2], while III remains outside of the calculation (cf. the discus-
sion of this in [Section 8.3.1]). Let A be a quantity (in I) actually to be
measured, ϕI

1, ϕ
I
2, . . . its eigenfunctions. Let I be in the state ϕI(q).

If I is the observed system, II + III the observer, then we must apply the
[collapse] process, and we find that the measurement transforms I from the
state ϕI into one of the states ϕI

n, (n = 1, 2, . . .), the probabilities for which
are respectively |(ϕI, ϕI

n)|2, (n = 1, 2, . . .).

The paragraph that follows is a direct continuation of the above. We have
interrupted the continuation at this point as a way of emphasizing it.

Now, what is the method of description if I + II is the observed system,
and only III the observer? In this case we must say that II is a measuring
instrument which shows on a scale the value of A (in I) : the position of
the pointer on this scale is a physical quantity B (in II) which is actually
observed by III. . . [emphasis added].

With this quotation, we end our summary of this section of von Neumann’s
book.

8.4 Wigner’s reservations

Wigner’s major reservations about von Neumann’s measurement theory were
condensed into one paragraph in his 1963 review, in the section entitled Prob-
lems of the orthodox view (Wigner, 1970, p. 167). Most of this paragraph is
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reproduced below. We have broken up the paragraph into a list of separate items.
We shall consider these reservations in the sections and pages indicated at the end
of each:

(i) The principal conceptual weakness of the orthodox view is, in my opinion,
that it merely abstractly postulates interactions which have the effect of
[reduction of the wave packet, Section 10.7, page 190].

(ii) For some observables, in fact for the majority of them (such as xypz),
nobody seriously believes that a measuring apparatus exists [Section 9.3,
pages 170–172].

(iii) It can even be shown that no observable which does not commute with
the additive conserved quantities (such as linear or angular momentum
or electric charge) can be measured precisely, and in order to increase
the accuracy of the measurement, one has to use a very large measuring
apparatus. . . [Section 11.8, pages 205–206].

(iv) On the other hand, most quantities which we believe to be able to measure,
and surely all the very important quantities such as position, momentum,
fail to commute with all the conserved quantities, so that their measurement
cannot be possible with microscopic apparatus [Section 11.8, pages 205-206].

(v) This raises the suspicion that the macroscopic nature of the apparatus is
necessary in principle. . . The joint state vector. . . resulting from a measure-
ment with a very large apparatus, surely cannot be distinguished as simply
from a mixture [emphasis in the original] as was the state vector obtained
in the Stern-Gerlach experiment. . . [This experiment had been discussed by
Wigner earlier in his paper. See Section 11.8, pages 205–206.]

In the third paragraph of the same section of the same article, Wigner wrote:

The simplest. . . summary of the conclusions. . . is that. . . [the quantum] laws
merely provide probability connections between the results of several con-
secutive observations on a system. . . However, there is a certain weakness
in the word “consecutive”, as this is not a relativistic concept. Most obser-
vations are not local and one will assume, similarly, that they have an
irreducible extension in time, that is, duration. . .

This problem will be fully addresed in Section 9.3.

8.5 Reconsideration of von Neumann’s theory

In the above, we have presented a fairly detailed account of the mathematical
part of von Neumann’s measurement theory, and a brief but adequate summary



8.5 Reconsideration of von Neumann’s theory 159

of Wigner’s critique of it. To conclude this chapter, we shall rephrase some
of von Neumann’s his results in the language of entanglement, and shall draw
attention to a statement of his which suggests that his ‘physical’ notion of the
measuring apparatus may have differed essentially from the one he analysed
mathematically.

8.5.1 Entanglement

The state Φ of the two-component system defined by (8.7) is clearly an entan-
gled state. Von Neumann’s analysis of the structure of composite systems is an
analysis of the structure of entangled states of two-component systems, which
may be extended to n-component systems. We shall therefore name the result
summarized in paragraph 7 of Subsection 8.3.2 (pages 154–155) von Neumann’s
entanglement theorem and restate it as follows (recall the definition of projections
of density matrices on page 148):

Theorem 8.12 (Von Neumann’s entanglement theorem)

(1) Projections of separated states of a two-component system are pure states of
the component systems; projections of entangled states of a two-component
system are mixed states of the component systems.

(2) In an entangled state, there is a (1, 1) correspondence between the values of
an observable AI with nondegenerate eigenvalues that commutes with ρI and
the values of a corresponding observable AII, so that the value of AI may be
inferred by observing the value of AII.

Remark 8.13 Von Neumann’s remark on page 148 may now be restated as
follows: The rules of correspondence for (density matrix) states reflect the
phenomenon of entanglement, which does not apply to observables.

Let us return, briefly, to the analysis that transformed the state Φ(q, r) defined
by (8.7) into the form (8.30). Suppose that the systems I and II were interacting
with each other for t < −|τ |, but are moving freely, each under its own Hamil-
tonian, for t ≥ 0. Then the coefficients fmn in (8.7) are functions of time. To
avoid ambiguity we shall denote the time-dependent coefficients by amn(t) and
set fmn = amn(0). That is, the quantities λk in (8.30) are calculated with the
coefficients amn(0).

However, the λk are the common eigenvalues of the density matrices ρI(0) and
ρII(0) at t = 0. If the systems I and II are not interacting with each other, then
these eigenvalues do not change with time. That is, the decomposition (8.30)
holds for all t > 0. We restate this as follows, for emphasis:

Conclusion 8.14 (Persistence of entanglement) Equation (8.30) estab-
lishes the phenomenon of persistence of entanglement in nonrelativistic physics.
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8.5.2 Description of the measuring apparatus

In Section 8.3.3, von Neumann considers two possibilities: (i) I is the observed
system, and II + III the observer, and (ii) I + II is the observed system, and only
III the observer. He says (we reproduce this part of the quotation from page
157):

Now, what is the method of description if I + II is the observed system,
and only III the observer? In this case we must say that II is a measuring
instrument which shows on a scale the value of A (in I): the position of
the pointer on this scale is a physical quantity B (in II) which is actually
observed by III. . . [emphasis added].

To the present author, the above quotation suggests that von Neumann
regarded the display of the apparatus as a classical display; it is difficult to
see how the terms ‘scale’ and ‘position of the pointer’ can be interpreted oth-
erwise. In this case, we may remark that III could well be a recording device,
rather than a human observer. However, von Neumann offers no explanation of
how this physical quantity B (in II) – which must be a self-adjoint operator on
HII – could arise in the scheme of Subsection 8.3.2; it may have been suggested
(to him) by the analysis in Section V.4 of his book, entitled The macroscopic
measurement.

Wigner thought differently (see the quotation on page 137):

. . . the state of the apparatus has no classical description. . . ,

but, after reviewing the work of Yanase (1961),33 he softened somewhat: ‘This
raises the suspicion that the macroscopic nature of the apparatus is necessary
in principle. . . ’ (item (v) of the quotation on page 158). He did not offer any
suggestion as to how a ‘very large measuring apparatus’ could differ qualitatively
from a small one; he only noted that, in such a situation, it would not be easy
to distinguish, experimentally, between pure and mixed states of the coupled
system. Neither did he – or so it seems to the present author – take into account
the developments that established that the term classical observables (as defined
on page 141) was mathematically well defined and physically meaningful.

33 Yanase’s work dealt with increasing the accuracy of measurement of a class of operators
which could only be measured approximately (Wigner, 1952; Araki and Yanase, 1960). The
word measurement is used here in the sense that ‘the state of the apparatus reflects the
state of the object’, nothing more.
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Macroscopic observables in quantum physics

In a certain sense, object and apparatus were essentially on the same footing in
von Neumann’s measurement theory. They were systems with k and l degrees
of freedom respectively (page 146). There were no constraints on the numbers
k and l, which could, for example, be of the same order of magnitude. Quite
possibly, it was this lack of differentiation between object and apparatus that
led Wigner to assert that ‘the state of the apparatus has no classical description’
(page 137), a state of affairs that produced the infinite von Neumann chain which
only ended in the observer’s consciousness.1

In this and the following chapter we shall break with von Neumann and assume
that k is small, i.e., of the order of unity, and that l is large, i.e., within a few
orders of magnitude of Avogadro’s number. The room for manoeuvre that this
provides will allow us to break with Wigner and explore systems with states that
do have classical descriptions. It will not surprise the informed reader that the
room for manoeuvre created by our assumption will be filled, very substantially,
by von Neumann’s own work.

This chapter is divided into three sections. Section 9.1 is devoted to a theorem
of von Neumann on observables that commute with each other. This prepares
the way to our treatment of macroscopic observables, which is based on the
commuting approximations to P and Q devised by von Neumann; these results,
together with their antecedents, are presented in Section 9.2. In Section 9.3, an
attempt is made to resolve some of Wigner’s doubts.

We remind the reader that an adequate account of the theory of single
operators is provided in Appendix A6.

9.1 Commuting self-adjoint operators

Let H be a Hilbert space and T a bounded self-adjoint operator with the spectral
decomposition (see page 336)

T =
∫

λ dEλ. (9.1)

1 See, however, Remark 8.3.
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Define two bounded self-adjoint operators A and B by

A =
∫

f(λ) dEλ, B =
∫

g(λ) dEλ, (9.2)

where f and g are measurable functions. Clearly, the operators A and B commute
with each other, and with T . This result has a converse, which we shall state
in a more general form, i.e., for a finite or countable family of bounded or
unbounded self-adjoint operators. However, we have first to clarify the notion of
commutativity for operators that are not necessarily bounded.

An unbounded self-adjoint operator G on H cannot be defined everywhere on
H. Let ξ ∈ H be a vector which is outside the domain of G. Then the equation
0 ·Gξ = G ·0ξ has no meaning, because Gξ on the left-hand side is undefined.
We would like the relation 0·G − G·0 = 0 to hold unconditionally. This can be
achieved by redefining the notion of commutativity as follows.

Let R and S be two self-adjoint operators on H, bounded or unbounded, and
let their spectral decompositions be

R =
∫

r(λ) dRλ, S =
∫

s(λ) dSλ. (9.3)

We define
[R, S] = 0 iff [Rλ, Sµ] = 0 for all λ, µ. (9.4)

If R and S are both bounded, this definition agrees with the usual definition.
If one of them is unbounded and the other, say S, is the constant operator
cI, c ∈ C, then Sµ = 0 or I; the latter commute with every Rλ, so that the
definition (9.4) achieves the desired result.2

We are now ready to state (somewhat loosely) the following result, which is a
special case of a theorem of von Neumann (von Neumann, 1955, pp. 173–174).

Theorem 9.1 Let {Ak|k ∈ N} be a family of commuting self-adjoint operators
on H. Then there exists a self-adjoint operator T (possibly unbounded) on H

with a spectral resolution T =
∫

λ dEλ, and a family of real-valued measurable
functions {fk(λ)}, indexed by k ∈ N, such that

Ak =
∫

fk(λ) dEλ.

This result shows that a ‘complete set of commuting observables’ can, in prin-
ciple, be reduced to a single observable (and a family of real-valued measurable
functions). This is convenient for measurement theory, but the success or failure
of a practical calculation in quantum mechanics depends more often upon the
choice of a suitable basis conforming to a set of commuting observables.

2 Note that our general assumption that all observables be defined on a common dense domain
does not address the problem that we have just settled.
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9.1.1 Commuting observables with discrete spectra

For the special case of a finite set {A(k)|k = 1, 2, . . . , K} of commuting observ-
ables with purely discrete spectra, Theorem 9.1 can easily be established. It is
the result we need, and we shall give an informal sketch of the proof, because of
the insight it provides.3

The observables A(k) have the spectral decompositions

A(k) =
∑

j

λ
(k)
j E

(k)
j . (9.5)

For clarity, we write A(1) =
∑

p λpEp and A(2) =
∑

q µqFq. Let

Gp,q = Ep ∩ Fq. (9.6)

Then
Ep =

∑
q

Gp,q, Fq =
∑

p

Gp,q (9.7)

and ∑
p,q

Gp,q = I,

so that A(1), A(2) can be expressed in the form

A(1,2) =
∑
p,q

g(1,2)
p,q Gp,q, (9.8)

where g
(1,2)
p,q are suitably chosen real numbers (many of which will be zero).

However, it will no longer be true that

(p, q) �= (r, s) ⇒ g(1,2)
p,q �= g(1,2)

r,s .

We now relabel the set {Gp,q} with a single index, say a(1) (note that a(1)

is a running index; the superscript (1) denotes that this is the first step of a
process), and rewrite (9.5) in terms of the {Ga(1)}. Since the process (9.6) of
subdividing a pair of projection operators into a set of finer projection operators
does not depend on the eigenvalues, we may repeat the steps (9.7) and (9.8) with
{Ga(1)} and A(3) and obtain a still finer set of projection operators {Ga(2)}. After
k − 1 steps, when all the observables A(k) will have been so dealt with, we shall
arrive at a set {Ga(k−1)} = {Πα|α = 1, 2, . . . , ν} of pairwise-orthogonal projection
operators which are fine enough to permit the reconstruction, by formulae like
(9.8), of each A(k). This set {Πα} will be the coarsest such set of projection
operators, ‘coarsest’ here meaning the following. If {G′

z} �= {Πα} is another set

3 A full proof, and some further discussion, is given in von Neumann’s book, pp. 173–178.
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of projection operators out of which one may reconstruct the set {A(k)}, then
one may reconstruct the {Πα} out of the {G′

z}, but not the {G′
z} out of the

{Πα}.
We shall call the set of projection operators {Πα} the cellular decomposition4

of the set of operators A(k). Under appropriate physical conditions, the subspaces
Hα = Πα H may be regarded as the quantum analogues of classical phase cells.
Mathematically, the subspaces Hα may be defined by a single cellular operator

T =
ν∑

α=1

λα Πα, λα ∈ R, λα �= λβ for α �= β, (9.9)

and the classical observables on H will turn out to be the observables that
commute with a suitable T .

Remark 9.2 The emphasis in the above sentence is on the word suitable. As
we shall see in subsection 9.2.5, there are a vast number of observables that
commute with each other, even on a single-particle Hilbert space.

9.2 The uncertainty principle and commuting observables

We begin with a summary, adapted from von Neumann’s account (1955, pp. 230–
237) of the mathematical theory of the uncertainty principle and of minimum
uncertainty product states.5 We remind the reader that we are using units in
which � = 1.

9.2.1 The uncertainty principle

The formalism of quantum mechanics is based on the canonical commutation
relations

[P, Q] = −iID. (9.10)

Of the two operators P, Q, at least one must be unbounded (Theorem A6.8,
page 324); D is their common domain which is dense in H, and ID the identity
operator6 on D.

For any vector φ ∈ D with ||φ|| = 1, the identity

2 Im (Pφ, Qφ) = −1 (9.11)

4 The terms cellular decomposition and cellular operator are ad hoc terms; the first has been
borrowed from an entirely different branch of mathematics.

5 References to the original sources are given in footnote 131 on p. 233 of von Neumann’s book.
The papers (Heisenberg, 1927) (in English translation) and (Robertson, 1929) may be found
in (Wheeler and Zurek, 1983).

6 In the following, we shall omit the subscript on ID; this should not cause any confusion.
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is established by straightforward computation; Im z denotes the imaginary part
of z. The quantity Im (Pφ, Qφ) is antisymmetric in its arguments,

Im (Pφ, Qφ) = −Im (Qφ, Pφ),

and therefore we shall replace (9.11) by the equality of absolute values

2 |Im (Pφ, Qφ)| = 1, (9.12)

which is symmetric in P and Q. We then have the inequalities

|Im (Pφ, Qφ)| ≤ |(Pφ, Qφ)| ≤ ||Pφ||·||Qφ||, (9.13)

of which the second follows from the Schwarz inequality |f, g)| ≤ ||f || · ||g||
(page 317). Combining (9.12) with (9.13), we obtain the uncertainty principle
bound

||Pφ||·||Qφ|| ≥ 1
2 . (9.14)

We introduce the following notations for the means (or expectation values)
and dispersions of P and Q in the (normalized) state φ:

ρ = (φ, Pφ), ε2 = ||(P − ρI)φ||2,
σ = (φ, Qφ), η2 = ||(Q − σI)φ||2.

(9.15)

Define now the mean-shifted operators

P ′ = P − ρI,

Q′ = Q − σI.
(9.16)

Then, firstly,
(φ, P ′φ) = (φ, Q′φ) = 0, (9.17)

and secondly,
[P ′, Q′] = [P, Q] = −iI. (9.18)

The uncertainty principle inequality (9.14) was derived solely from the commu-
tation relation (9.10). Therefore it continues to hold for P ′, Q′, i.e.,

||P ′φ||·||Q′φ|| ≥ 1
2 ; (9.19)

using the definitions (9.15) of ε and η, this inequality becomes

ε·η ≥ 1
2 . (9.20)
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9.2.2 Minimum uncertainty product states

We now investigate whether there exist vectors ψ ∈ D such that the equality
holds in (9.20). Note first that the argument which led to the inequality (9.14)
proceeded via the relations (9.12) and (9.13) – and the latter also remain true
with P, Q replaced by P ′, Q′ respectively. Therefore the equality will hold in
(9.20) if and only if the following equalities hold:

1
2 = |Im (P ′ψ, Q′ψ)| = |(P ′ψ, Q′ψ)| = ||P ′ψ||·||Q′ψ||. (9.21)

The last of these will be true if and only if P ′ψ is a constant multiple of Q′ψ,
i.e., iff

P ′ψ = (β + iγ)Q′ψ, β, γ ∈ R. (9.22)

If this condition is satisfied, then the second equality in (9.21) becomes

Im [((β + iγ)Q′ψ, Q′ψ, )] = |β + iγ||(Q′ψ, Q′ψ)|,

which can be satisfied if and only if β = 0. In this case,

P ′ψ = iγQ′ψ. (9.23)

If (9.23) holds, then the first of (9.21) gives

1 = 2γ||Q′ψ||2, (9.24)

i.e., γ > 0. Then from (9.19), (9.20) and (9.24) we obtain

ε =
√

γ

2
, η =

√
1
2γ

. (9.25)

9.2.3 Determination of ψ

The discussion of the last subsection does not prove the existence of ψ. This,
however, can be done by direct calculation. Let H = L2(R,dq), and let Q be the
operator of multiplication by q on it. Then

P = −i
d
dq

,

and (9.23) becomes (
−i

d
dq

− ρ

)
ψ = iγ(q − σ)ψ,

or
dψ

dq
= [−γ(q − σ) + iρ]ψ. (9.26)
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This is a first-order linear differential equation. The constant of integration in its
solution is determined by the normalization condition ||ψ|| = 1. The solution is

ψγ;ρ,σ(q) =
(

2γ

π

) 1
4

exp [−γ(q − σ)2/2] · exp (iρq), (9.27)

which is a damped oscillation centred around q = σ. This shows that minimum
uncertainty product states exist, and form a three-parameter family. For the
special case of equal uncertainties ε = η, the parameter γ equals unity, and the
solution (9.27) assumes the form

ψ1;ρ,σ(q) =
(

2
π

) 1
4

exp [−(q − σ)2/2] · exp (iρq). (9.28)

9.2.4 Von Neumann’s commuting operators P̂ , Q̂

The self-adjoint operators P, Q considered above are unbounded and their spec-
tra are strictly continuous. Therefore they have no eigenvectors, and can only be
measured approximately (page 142). That being the case, von Neumann asked
the following question: is it possible to find two commuting observables P̂ , Q̂

which are reasonable approximations to P and Q respectively? If such operators
exist, then one could claim to measure P and Q, albeit approximately, but simul-
taneously.7 His answer was in the affirmative, and his construction is sketched
below.

We see from the right-hand sides of (9.15) that the vector ψ of (9.27) satisfies
the equations

||(P − ρI)ψγ;ρ,σ|| = ε,

||(Q − σI)ψγ;ρ,σ|| = η.
(9.29)

It may therefore be called a ‘simultaneous approximate eigenvector’ of P and Q

corresponding to the spectral values ρ of P and σ of Q respectively. The good-
ness of the approximations is determined by ε and η respectively. The equality
signs in (9.29) show that, given the uncertainty principle, they are the best
possible.

Define now

ρµ =
√

2πγ ·µ =
√

4π ·εµ,

σν =
√

2π/γ ·ν =
√

4π ·ην,
(9.30)

7 Equation (9.20) merely shows the impossibility of a simultaneous measurement with ε · η <
1/2; it does not establish the possibility of a simultaneous measurement with ε·η = K ≥ 1/2.
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where µ, ν ∈ Z. Then

ρµ − ρµ−1 =
√

4π ·ε,
σν − σν−1 =

√
4π ·η.

We now relabel the states ψγ;ρµ,σν
as ψµ,ν . Then (9.29) become

||(P − ρµI)ψµ,ν || = ε,

||(Q − σνI)ψµ,ν || = η.
(9.31)

The vectors of {ψµ,ν |µ, ν ∈ Z} are normalized, but not orthogonal to each other.
Von Neumann used the Gram–Schmidt process to obtain an orthonormalized
set, and verified, ‘without any particular difficulties’, that it was complete. He
denoted the set he obtained by {ψ′

µ,ν |µ, ν ∈ Z}, and established the estimates

||(P − ρµI)ψ′
µ,ν || ≤ Cε,

||(Q − σνI)ψ′
µ,ν || ≤ Cη

(9.32)

for a certain fixed C. He added (von Neumann, 1955, p. 407) :

A value C ∼ 60 has been obtained in this way, and it could probably
be reduced. The proof of this fact leads to rather tedious calculations,
which require no new concepts, and we shall omit them. The factors C ∼
60 are not important, since εη. . . measured in macroscopic (CGS) units is
exceedingly small (c·10−28).

Denote now by P[ψ′
µ,ν ] the projection operator onto ψ′

µ,ν , and define

P̂ =
∑

µ,ν∈Z

ρµ P[ψ′
µ,ν ] (9.33)

and
Q̂ =

∑
µ,ν∈Z

σν P[ψ′
µ,ν ]. (9.34)

Then P̂ and Q̂ are von Neumann approximants to P and Q respectively (page
143), and

[P̂ , Q̂] = 0. (9.35)

The eigenvalues ρµ of P̂ and σν of Q̂ are infinitely degenerate. Let

Eµ =
∑
ν∈Z

P[ψ′
µ,ν ]
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and

Fν =
∑
µ∈Z

P[ψ′
µ,ν ].

Then we may write (9.33) and (9.34) as

P̂ =
∑
µ∈Z

ρµ Eµ (9.36)

and

Q̂ =
∑
ν∈Z

σν Fν . (9.37)

The Eµ and Fν are projection operators onto infinite-dimensional subspaces of
H. The numbers ρµ and σν which characterize these subspaces are measurable
with absolute precision in the von Neumann theory, and determine ‘values’ of P

and Q up to errors ε and η respectively.
The above considerations may readily be extended to systems with N degrees

of freedom, subject to the canonical commutation relations (7.46). Every well-
defined operator function F (Pi, Qj) that has a continuous spectrum can be
approximated by a function F (P̂i, Q̂j) which commutes with every P̂i, Q̂j .

9.2.5 The von Neumann–Wigner characterization of macroscopic
measurements

Section V.4 of von Neumann’s book (pp. 398–416) is entitled The macroscopic
measurement. Although the subject is discussed extensively, the term ‘macro-
scopic measurement’ itself does not appear to be defined explicitly. The following
‘definition’, so to speak, has been distilled by the present author from his
discursive treatment:

Definition 9.3 (Macroscopic measurements)

(i) A macroscopic measurement is never infinitely precise; one has therefore to
specify the accuracy of measurement for the quantity being measured.

(ii) A macroscopic measurement can be regarded as a yes–no experiment. Con-
sequently, its possible results can be represented by a projection operator
E on the Hilbert space H. The eigenvalues 1 and 0 of E correspond to the
answers ‘yes’ and ‘no’ respectively. If the answer is yes, then the state of
the system is to be found in the subspace EH; if the answer is no, it is to
be found in the subspace (I − E)H.
(In footnote 203 on p. 402 of his book, von Neumann attributes this
characterization of the macroscopic observer to Wigner.)
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(iii) All macroscopic measurements that can be performed can be performed
simultaneously; i.e., the corresponding projection operators E1, E2, . . .

commute with each other.
(iv) The simultaneous eigenspaces Hj , j ∈ N of all the macroscopic projection

operators {Ej} correspond to classical phase cells.
(According to Boltzmann’s formula (S = k log W ), the dimension of an
eigenspace Hk is proportional to the exponential of the entropy of the
corresponding phase cell; it is ordinarily a large number.)

Further on, von Neumann remarks (footnote 204, pp. 410) that

. . . all macroscopically observable quantities are in no way all commutative
with H [the Hamiltonian]. Indeed, many such quantities, for example the
center of gravity of a gas in diffusion, change appreciably with t. . . Since
all macroscopic quantities do commute, H is never a macroscopic quantity,
i.e., the energy is not measured macroscopically with complete precision.
This is plausible without additional comment.

Definition 9.3(i) suggests that von Neumann regarded the spectra of all macro-
scopic observables to be continuous. It followed that they could only be measured
via approximants which had discrete spectra. If the macroscopic observables are
assumed to be the quantum counterparts of functions of dynamical variables
pi, qj of classical mechanics, then the substitutions

pi → P̂i, qj → Q̂j (9.38)

will produce, in one fell swoop, a family of operators which (a) have discrete
spectra, (b) commute with each other, and (c) have a useful physical interpre-
tation if the corresponding classical expression has one. This family will consist
of n-particle operators for n = 1, 2, . . . , N , that is, the projections in its cellular
operator (9.9) will be one-dimensional (and the upper limit of the summation
will be ∞).8

In current usage, a macroscopic operator is an n-particle operator with large
n, meaning that n is within a few orders of magnitude of Avogadro’s number.
Definition 9.3 does not place any restriction on n. Our subsequent use of the
term macroscopic will conform to the current usage.

9.3 Answers to Wigner, I

While the term measurement encompasses a wide variety of processes, mea-
surement theory in quantum mechanics is concerned exclusively with those that

8 The procedure described above is designed to be applicable simultaneously to all N . In
practice, N is considered fixed and averaging (coarse-graining) precedes discretization.
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lead to the reduction of a wave packet. The wave packet of a small quantum-
mechanical system is reduced, as we shall see in the next chapter, when it
interacts (in a manner which will be specified) with a macroscopic one as a
whole. This has the effect of replacing the infinite von Neumann chain by a
bridge over the Heisenberg cut, and renders invalid Wigner’s remark that ‘the
state of the system has no classical description’ (page 137) once the bridge is
crossed.

But what exactly does a classical description achieve?
The final (metaphysical) stage of von Neumann’s measurement theory was

anthropocentric, and its anthropocentrism was accepted by Wigner for lack of a
better alternative. This aspect was strongly controverted by Jauch, who began
by pointing out a key difference between classical and quantum-mechanical mea-
surements. In a classical measurement, the apparatus did not have a ‘back
effect’ (Jauch’s term) upon the object. He then went on to say (Jauch, 1968,
p. 164):

It is essential in the construction of an objective science that it be freed from
anthropomorphic elements. This requirement of objectivity. . . can actu-
ally be satisfied [in microphysics] because. . . the last stages of observation,
[namely] ‘reading the scale’ [are] on the classical level. . .

[This] has the consequence. . . that the ‘scale can be read’ by a num-
ber of different observers who can communicate and establish that they
read concurrent results. . . The individual observer, although necessary for
completing an actual observation, can now fade into the background. . .

We may sum up the discussion as follows: if the state of the apparatus has a
classical description, then the measurement may be regarded as completed when
the object and the apparatus have ceased to interact.

Another of Wigner’s objections was the following (page 158) :

For some observables, in fact for the majority of them (such as xypz),
nobody seriously believes that a measuring apparatus exists.

This objection too is anthropocentric.
There is considerable evidence – or so the present author contends – that

microscopic quantum systems can interact with large quantum systems as a
whole.9 Examples include the Mössbauer effect and (in the nonrelativistic domain
of finite-mass systems) the creation of elementary excitations by the inelastic

9 We remind the reader once again that our subject-matter is nonrelativistic quantum mecha-
nics, in which there is no upper bound to the signal velocity. Therefore this notion makes
perfect sense. The fact that global effects can often be approximated very well by local
calculations is a source of confusion regarding inferences that can be made from observa-
tions, which only strengthens the case for a clear, unambiguous statement of the theoretical
framework.
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scattering of neutrons by solids and by liquid helium. The ‘measurement inter-
action’ appears to be a subclass of such interactions. What is wholly lacking is
knowledge of the general principles – if indeed there be any – that govern such
asymmetric interactions, except for the realization that they may violate time-
reversal invariance. These are major physical problems which, in the opinion of
the present author, have been disregarded owing to the anthropocentric bias
of quantum measurement theory. The problem, surely, is not the construction
of a device for measuring xypz, but understanding how microscopic observables
such as xypz can interact with macroscopic observables of a large, nonrelativistic
quantum-mechanical system.
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Sewell’s theory of measurement

If the probability interpretation of quantum mechanics is to be maintained,1

then an act of measurement – of a self-adjoint operator A with eigenvalues λi

and eigenvectors ψi – should have the following effects:

(i) Interaction with the measuring apparatus should cause an initial pure state∑
i ciψi of the observed system to collapse to the mixed state

∑
i|ci|2P[ψi].

(ii) The measuring apparatus should reflect an eigenvalue of A upon a classical
output device.

The problem of quantum-mechanical measurement theory – as we shall under-
stand it – is to establish that effects (i) and (ii) above can be caused by the
interaction between the observed system and the measuring apparatus, where
the interaction is described by standard quantum mechanics:2 unitary evolution
of the coupled object–apparatus system under a time-independent interaction
Hamiltonian.3 It should be emphasized that the object–apparatus system is
assumed to be totally isolated from external influences.

As we saw in Chapter 8, von Neumann’s measurement theory proper4 did not
meet these aims. Analysing the theory, Wigner concluded that ‘[its] principal con-
ceptual weakness. . . is. . . that it merely abstractly postulates interactions which
have the effect of [reduction of the wave packet]’ (page 158). Von Neumann made
up for this weakness by invoking the observer’s conscious ego. In 1971–2 Klaus
Hepp, using the newly developed algebraic quantum theory for systems with
infinitely many degrees of freedom, showed that the extra generality afforded by
this framework5 made it possible to avoid the conscious ego hypothesis (Hepp,
1972).

1 The standard form of the probability interpretation that was described on pages 117–119
tacitly assumed that measurements were instantaneous. In Sewell’s theory, measurements
are not instantaneous but require small but nonzero time τ – enough for a cat to be killed
by a cyanide capsule – to be completed. As a result, assertion (i) on page 118 cannot be
maintained in its naive form but must be modified. The modification required will emerge
from the theory itself, and will be described in Subsection 10.5.2.

2 The quantum measurement problem formulated on page 143 is item (i) of the above.
3 Time-independent, i.e., apart from switching the interaction on and off.
4 By proper we mean the theory excluding the conscious ego hypothesis. We shall use this

term again, in Chapter 11.
5 Namely, the existence of the observables at infinity of Lanford and Ruelle (1967); they will

be briefly discussed in Section 12.5.
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In Hepp’s scheme, the measuring device was a system with infinitely many
degrees of freedom, and different pointer positions corresponded to inequivalent
representations of the canonical commutation and anticommutation relations.
A unitary dynamical evolution could not cause the system to jump from one
representation to an inequivalent one, and therefore the pointer position could
change and the state vector collapse only in the limit t → ∞. This result was
controverted (among others) by Bell, who modified an example of Hepp by intro-
ducing observables which came into effect only at large values of t, and undid the
temporal evolution of earlier times. This led him to ‘insist, however, that t = ∞
never comes, so that the wave packet reduction never happens’ (Bell, 1975).
However, the conventional Schrödinger picture – in which all observables are
time-independent – did not exist for Bell’s model.6 A little later, Whitten-Wolfe
and Emch developed a model, again based on the C�-algebra framework, in
which the state vector collapsed instantaneously, but in the infinite-volume limit
of the object–apparatus interaction (Whitten-Wolfe and Emch, 1976). While
the need to invoke the limit t → ∞ or V → ∞ could be considered a weak-
ness of these schemes, the authors cited did succeed in establishing a fact of
paramount importance: that von Neumann’s metaphysical hypotheses of psycho-
physical parallelism and the abstract ego – staunchly defended by Wigner –
could be replaced by physical hypotheses which admitted precise mathematical
formulation.

Once the problem had been ‘downgraded’ from metaphysics to physics, it
would have been natural for physicists to enquire whether the above results could
be reproduced, in their essentials, in ordinary (linear, closed-system) quantum
mechanics. But to the best of the present author’s knowledge this problem was
not addressed in a mathematically rigorous fashion for nearly 30 years until
Sewell took it up in 2005.7 Sewell’s theory, in the words of its author, was
‘designed to obtain conditions on the [object–apparatus] coupling that lead to
[the effects (i) and (ii)]’ in a finite time, and in a finite volume (Sewell, 2005). As
in von Neumann’s theory, the measuring apparatus is an N -particle quantum-
mechanical system, N being of the order of magnitude of Avogadro’s number.
But, whereas von Neumann’s theory results in the entanglement of mirrored pairs
of vector states of object and apparatus (see (8.30) and the ensuing discussion),
Sewell’s theory seeks to pair an energy eigenstate of the object with a subspace of
the Hilbert space of the apparatus characterized by values of certain macroscopic
observables of the latter; the problem is how to bring this physical picture under
effective mathematical control.

6 Bell’s critique will be discussed in greater detail in Chapter 11, pages 192–195.
7 Plausibility arguments, within standard quantum mechanics, that the state vector could

collapse without the intervention of the human observer had been advanced earlier in (Peres,
1980, 1986; van Kampen, 1988; Allahverdyan, Balian and Nieuwenhuizen, 2003). The author
apologizes to those whose works he may have overlooked.
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In this chapter, we shall provide a detailed exposition of Sewell’s general theory
(called by him the generic model), taking care to point out its differences with
von Neumann’s theory, and to make explicit the hypotheses invoked at each
stage. We start with a discussion of the points (i) and (ii) mentioned at the
beginning of this chapter.

10.1 Preliminary discussion

The problem of measurement theory is not just the determination of conditions
on the object–apparatus interaction that lead to the effects (i) and (ii) described
on page 173. The moment the conscious observer is removed from the equation,
these effects have to be captured by mathematical formulae rather than verbal
descriptions. The tool that is needed may be sensed by considering an imaginary
variant of the classical Stern–Gerlach experiment.8

Figure 10.1 shows the scheme for a Stern–Gerlach experiment on atoms such
as lithium or silver. The magnetic moments of these atoms are due entirely to
the spin of the outermost electron, and can therefore assume only two values.
We shall denote the two spin states by 1, 2. The atoms in the beam β prepared
by the source S are assumed to be in the state c1ψ1 +c2ψ2, with |c1|2 + |c2|2 = 1.
The inhomogeneous magnetic field produced by the magnet MM is assumed to
split the beam β into two beams β1 and β2, the atoms in β1 being in the state
ψ1, and those in β2 in the state ψ2.
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Fig. 10.1. Imaginary Stern–Gerlach experiment

A detector, D1 or D2, ‘fires’ when an atom traverses it. The experiment
shows that there are only two possible outcomes: one, which we shall denote
by Ω1, is that D1 has fired, but D2 has not; the other, which we shall denote
by Ω2, is that D2 has fired, but D1 has not. The source S is assumed to emit
atoms singly, and the interval between the emission of two successive atoms is
assumed to be greater than the relaxation time of the detectors. Under these

8 As Wigner said (Wigner, 1970, p. 159), in the Stern–Gerlach experiment ‘the “apparatus” is
[a] positional coordinate of the particle’; the object is part of the apparatus! Owing to this
special circumstance – or so the present author contends – analysis of this experiment cannot
yield much insight into the general problem of measurement. Our imaginary variant is an
artifice, designed only to motivate a mathematical concept; it plays no role in the deductive
development of the theory.
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circumstances, the event that the detectors D1 and D2 fire simultaneously never
occurs.

Denote by prs = p(ψr|Ωs), r, s = 1, 2 the probability that if the outcome is
Ωs, the atom that traversed the apparatus is in the state ψr. In the experiment
described above,

p(ψr|Ωs) = δrs, (10.1)

where δrs is the Kronecker delta. Equation (10.1) expresses the correlation –
rather simple, in the present case – between the state of the apparatus and the
state of the object. The quantities prs are conditional probabilities, but not in
the sense of elementary probability theory, because one cannot assign physically
meaningful a priori probabilities to the events Ω1 and Ω2. The mathematical
object that we shall use to obtain the required information will be a certain
conditional expectation. A brief but self-contained account of the topic, tailored
to our needs, is given in Appendix A7. For the special case of measurement
theory, the relevant results were established by Sewell by elementary means, and
will be recounted in Section 10.4.

10.2 The object–apparatus interaction

We begin by defining our terms and setting up the basic notations. The system on
which the measurement is carried out will be called the object. The measuring
device will be called the apparatus. The object will be denoted by O and the
apparatus by A. They will be considered to be two distinct quantum-mechanical
systems, defined on the Hilbert spaces Ho and Ha, with Hamiltonians Ho and Ha

respectively. Ho and Ha will be assumed to be time-independent.
We shall denote by S = O + A the quantum-mechanical system defined on

the Hilbert space H = Ho ⊗ Ha. The time evolution of S will be assumed to be
determined by a Hamiltonian

H = Ho ⊗ Ia + Io ⊗ Ha + V, (10.2)

where Io and Ia are the identity operators on Ho and Ha respectively, and the
operator V is the interaction between the object and the apparatus, which is
switched on adiabatically at t = 0. The aim of Sewell’s theory – which, at
this point, begins to depart essentially from von Neumann’s – is to determine
conditions on V that lead to the effects (i) and (ii) described on page 173.

It follows from (10.2) that the dynamics of the composite system S under
the Hamiltonian H will be given by the one-parameter group of unitary
transformations U(t) of Ho ⊗ Ha which is generated by H:

U(t) = exp (iHt) for all t ∈ R. (10.3)

We now make the following assumptions.
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Assumption 10.1 (Initial states of object and apparatus) The object O
and apparatus A are prepared independently of each other in the initial states
represented by the density matrices P[ψ] and Ω on Ho and Ha respectively, where
P[ψ] is the projection operator (7.18) onto a pure state ψ of O, and the interaction
V is switched on adiabatically at t = 0.

Then the initial state (at t = 0) of S is

Φ = Φ(0) = P[ψ] ⊗ Ω. (10.4)

Assumption 10.2 (Dimensionalities of the Hilbert spaces) The Hilbert
spaces Ho and Ha are finite-dimensional,9 with

n = dim Ho  dim Ha.

The dimension of Ha is not specified. The justification for the assumption
dim Ha < ∞ is provided by the physics of the situation. The microscopic states
of the coupled object–apparatus system lie in an energy shell of finite thickness –
before, during and after the measurement interaction.

The assumption dim Ho = n is far from trivial, and will be discussed in detail
at later stages. Observe that Assumptions 10.1 and 10.2 are radical departures
from von Neumann’s theory.

Since Ho is n-dimensional, it has an orthonormal basis consisting of eigen-
vectors of Ho; we denote this basis by {u1, . . . , un}, and the corresponding
eigenvalues of Ho by εr:

Hour = εrur. (10.5)

The initial state ψ of O may be expressed as a linear combination of the vectors
ur,

ψ =
n∑

r=1

crur, (10.6)

with
n∑

r=1

|cr|2 = 1. (10.7)

We now impose the following essential condition on the object–apparatus
interaction V :

9 The assumption Ha < ∞ is implicit in (Sewell, 2005). I would like to thank Professor
G L Sewell for this clarification, and for the physical reasoning behind it.
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Assumption 10.3 (Object–apparatus interaction) The object–apparatus
interaction V is of the form

V =
n∑

r=1

P[ur] ⊗ Vr, (10.8)

where P[ur] is the projection operator onto the state ur and the Vr are observables
of the apparatus, which are self-adjoint operators on Ha.

This assumption (which has no analogue in von Neumann’s theory) has the
following consequence, which in fact is the reason for making it. Let ξ, ζ ∈ Ha.
An easy computation shows that, with V given by (10.8),

(ui ⊗ ξ, V uj ⊗ ζ) = δij(ξ, Vjζ) (no summation),

i.e., V does not induce transitions between different eigenstates of Ho.
Since Ho =

∑
r εrP[ur] and Io =

∑
r P[ur], (10.8) allows us to recast the

Hamiltonian (10.2) of the composite system S as

H =
n∑

r=1

P[ur] ⊗ Kr, (10.9)

where Kr is defined by
Kr = Ha + Vr + εrIa. (10.10)

In order to proceed, we need a computational identity. Let H1 and H2 be any
two Hilbert spaces, E1, . . . , Ek a set of pairwise-orthogonal projection operators
on H1, and B1, . . . , Bk a set of operators on H2 that are defined on a common
dense domain (they need not commute with each other). It is easily seen that(

k∑
i=1

Ei ⊗ Bi

)n

=
k∑

i=1

Ei ⊗ Bn
i .

We use this identity to exponentiate the right-hand side of (10.9), and obtain

U(t) = exp (iHt) =
n∑

r=1

P[ur] ⊗ Ur(t), (10.11)

where
Ur(t) = exp (iKrt). (10.12)

Introducing (10.11) into the right-hand side of

Φ(t) = U�(t)Φ(0)U(t),
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where Φ(0) = Φ is the initial state given by (10.4), we find that

Φ(t) =
∑
r,s

[
P[ur]P[ψ]P[us]

]⊗ [U�
r (t)ΩUs(t)

]
. (10.13)

Let f ∈ Ho. Then, using (10.6) and (10.7), we find that

P[ur]P[ψ]P[us]f = P[ur]P[ψ](us, f)us

= (us, f)(ψ, us)(ur, ψ)ur

= c̄scr(us, f)ur. (10.14)

Define now an operator Rr,s on Ho by

Rr,sf = (us, f)ur (10.15)

and an operator Ωr,s(t) on Ha by

Ωr,s(t) = U�
r (t)ΩUs(t). (10.16)

Since Ω has unit trace, so do the Ωr,r(t):

Tr Ωr,r(t) = Tr Ω = 1 for all r. (10.17)

Furthermore,
(Ωr,s(t))� = Ωs,r(t), (10.18)

as is evident from (10.16). These elementary facts will be called upon later. Next,
using (10.15) and (10.16), we may write (10.13) as

Φ(t) =
n∑

r,s=1

cr c̄sRr,s ⊗ Ωr,s(t). (10.19)

Note carefully that (10.19) describes the unitary temporal evolution of a coupled
conservative system that is standard in quantum mechanics, subject to Assump-
tion 10.2, namely that Ho and Ha are finite-dimensional. We remark in passing
that this assumption is standard in the theoretical analysis of the Stern–Gerlach
effect; see, e.g., (Wigner, 1983). The presence of the object–apparatus interac-
tion V manifests itself in the subscripts r, s on Ωr,s(t) in the right-hand side of
(10.19). It is easy to verify that if V = 0, i.e., if object and apparatus do not
interact, then (10.16) reduces to Ωr,s(t) = U�(t)ΩU(t), the right-hand side being
independent of r, s. Then (10.19) becomes

Φ(t) =
n∑

r,s=1

cr c̄sRr,s ⊗ Ω(t);
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as expected, object and apparatus evolve independently of each other. However,
we should also pay attention to the fact that the indices r, s that appear in (10.19)
pertain exclusively to the states of the object; we shall therefore call these indices
object indices.

We now make the assumption that the measurement is completed within a
(short) time τ :

Assumption 10.4 (Duration of the measurement interaction) The mea-
surement is completed within an interval τ , i.e., for t > τ , object and apparatus
no longer interact. The time τ is smaller, by orders of magnitude, than the
Poincaré recurrence time for the object–apparatus system.

This assumption means that we may set V = 0 for t > τ , so that, for t > τ ,
the Hamiltonian (10.2) may be written as

H = Ho ⊗ Ia + Io ⊗ Ha. (10.20)

Then for t > τ the quantity Kr defined by (10.10) may be written as

K ′
r = Ha + εrIa. (10.21)

Setting t = t′ + τ for t > τ , we may rewrite (10.16) as

Ωr,s(t′ + τ) = U�
r (t′)U�

r (τ)ΩUs(τ)Us(t′)

= U�
r (t′)Ωr,s(τ)Us(t′), (10.22)

where Ur(t′) and Us(t′) are calculated with K ′
r and K ′

s, given by (10.21).
Therefore, for t = t′ + τ , t′ > 0, we have

Ωr,s(t′ + τ) = exp(−iHat
′)Ωr,s(τ) exp(iHat

′). (10.23)

We set this equation aside for later use.

10.3 The macroscopic observables of A

We shall now make explicit use of an assumption that has only been implicit
so far: that the apparatus A is a macroscopic N -particle system, where N is of
the order of Avogadro’s number or larger. That is, it is large enough to have
macroscopic observables which commute with each other, as discussed in detail
in Chapter 9. We now make the following assumption.

Assumption 10.5 (Characterization of the apparatus) The measuring
apparatus is characterized by a finite set of macroscopic observables M =
{M1, M2, . . . , MK}, which is a subset of the set Ba of all observables of A. Every
observable in M commutes with Ha.
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Since Ha is finite-dimensional, every observable Mk ∈ M has a purely dis-
crete spectrum, consisting of a finite number of distinct eigenvalues. Note that
Assumption 10.5 represents yet another radical departure from von Neumann’s
theory.

As discussed in Subsection 9.1.1, there exists a cellular operator T ,

T =
ν∑

α=1

λαΠα, λα ∈ R, λα �= λβ for α �= β, (9.9)

such that each operator Mk ∈ M can be expressed in terms of the spectral
projections Πα of T , and T is the coarsest operator with this property.10 It
follows easily from Assumption 10.5 that the Πα, and T , commute with Ha. The
cellular decomposition of Mk ∈ M is

Mk =
ν∑

α=0

mk;αΠα, (10.24)

where the mk;α are eigenvalues of Mk; the difference between the cellular
decomposition of Mk and its spectral decomposition is that in the cellular decom-
position two or more eigenvalues mk;α may be equal, whereas in the spectral
decomposition they are, by definition, distinct, which requires the projection
operators to be modified accordingly. The projection operators Πα satisfy

ΠαΠβ = Παδαβ (10.25)

and
ν∑

α=0

Πα = Ia. (10.26)

Now define
Kα = ΠαHa. (10.27)

The subspaces Kα are quantum analogues of classical phase cells, and represent a
macroscopic state of the apparatus. The dimensions of these subspaces are very
large; as remarked in Definition 9.3(iv), page 169, dimKα ∼ exp (cN), where
c ∼ 1 and N ∼ 1024. In the following, we shall refer to the subspace Kα of Ha

as a cell, or a state of the apparatus A. The index α itself will be called the
apparatus index.

10.4 Expectations and conditional expectations of observables

We shall denote the set of observables on Ho by A. Note that A is not an
algebra – the product of two self-adjoint operators is not self-adjoint unless the

10 The term coarsest was defined, in the present context, on page 164.



182 Sewell’s theory of measurement

two commute – but it is a linear space over R. The observables of S of interest to
us will be the tensor products A ⊗ M , where A ∈ A and M ∈ M. By contrast,
the von Neumann theory appears to deal with all observables of the form A⊗B,
where A is as before but B is any bounded self-adjoint operator on Ha.

The expectation value E(A ⊗ M) of the observable A ⊗ M ∈ A ⊗ M in the
time-dependent state Φ(t) is defined by the standard formula

E(A ⊗ M) = Tr (Φ(t)[A ⊗ M ]) for all A ∈ A, M ∈ M. (10.28)

In the following, we shall use the shorthand notations

E(A) = E(A ⊗ Ia) (10.29)

and

E(M) = E(Io ⊗ M). (10.30)

E(A) is the unconditional time-dependent expectation value of the observables
A of the object. Since Πα is the projection operator onto the cell Kα, the time-
dependent probability that the macroscopic state of the apparatus A is defined
by the cell Kα is given by

wα(t) = E(Io ⊗ Πα). (10.31)

We single out the index 0 to denote the rest-state, or the state at t = 0, of the
apparatus. Then

wα(0) = δα,0. (10.32)

Since the apparatus was prepared in the initial state Ω, (10.31) and (10.32) mean
that

α �= 0 =⇒ Πα(ΩHa) = 0, (10.33)

which we shall state in words as follows: the mixed state Ω lies entirely in the
cell K0 ⊂ Ha.

The time evolution of the state Ω can be pictured as follows. Initially, under
the action of the Hamiltonian (10.9), the state Ω may ‘spread’ to cells other than
K0; however, the spreading process stops by t = τ . Since the cellular projections
Πα commute with Ha, the motions induced by Ha after the interval τ remain
strictly within the cells for all φ ∈ Ha. We express this conclusion in words as
follows:

Conclusion 10.6 After a time τ , temporal evolution no longer transports any
vector of Ha from one cell Kα to another; the cellular decomposition of Ha is
stable under forward time translations for t > τ .
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To set up a measurement theory without von Neumann’s conscious ego hypo-
thesis, we have to be able to calculate the following quantities for times t > τ ,
i.e., after the measurement interaction has run its course:

(i) The unconditional expectation value E(A) of an observable A. This would
give us the statistical distribution of the measured values of A for a large
number of single measurements. We may also describe this quantity as the
state of the object in the absence of a pointer reading.

(ii) The conditional expectation value E(A|Kα) of A, given that the macroscopic
state of the apparatus is defined by the cell Kα. This would give us the result
of a single measurement.

As the preliminary discussion of Section 10.1 made clear, one cannot assign
physically meaningful a priori probabilities on the set of cells {Kα}. The existence
of the conditional expectation value E(A|Kα) is therefore contingent upon the
existence of a certain conditional expectation functional upon the set of observ-
ables A. That this functional exists, and is unique, is the content of the following
crucial lemma, due to Sewell:11

Lemma 10.7 (Sewell) There exists a unique linear functional E(·|M) : A →
M that preserves positivity and normalization and satisfies the condition

E(E(A|M)M)) = E(A ⊗ M) for all A ∈ A, M ∈ M, (10.34)

where the left-hand side is understood in the sense of (10.30).12

Proof The proof consists of showing that (10.34), regarded as an equation for
the unknown E(A|M), has a unique solution with the required properties.

Since E(A|M) is an element of M, it can be written uniquely as

E(A|M) =
ν∑

α=0

fα(A)Πα.

Therefore

Io ⊗ (E(A|M)M) = Io ⊗
(

ν∑
α=0

fαΠαM

)

=
ν∑

α=0

mαfα(A)(Io ⊗ Πα),

11 The proof shows that the lemma is also valid if dim Ha = ∞.
12 This result is a noncommutative analogue of (A7.23), namely E(E(X|G)Z) = E(XZ) of

classical probability theory derived in Appendix A7. Let F = A ⊗ M and G = Io ⊗ M. The
quantity E(·|M) is a functional A ⊗ M → Io ⊗ M restricted to A ⊗ Ia. Take X = A ⊗ Ia,
Z = Io ⊗ M and E(X|G) = E(A|M) in (A7.23). Equation (10.34) follows immediately.
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so that, using (10.30) and (10.31), we obtain

E(E(A|M)M) =
ν∑

α=0

mαfα(A)E(Io ⊗ Πα)

=
ν∑

α=0

fα(A)mαwα. (10.35)

On the other hand,

E(A ⊗ M) =
ν∑

α=0

mαE(A ⊗ Πα), (10.36)

and therefore (10.34) can hold if and only if

ν∑
α=0

mα [fα(A)wα − E(A ⊗ Πα)] = 0.

Since this has to hold for every M ∈ M, it follows that

fα(A)wα = E(A ⊗ Πα), (10.37)

so that, for wα �= 0,

fα(A) = E(A ⊗ Πα)/wα (10.38)

and

E(A|M) =
∑
α

′ E(A ⊗ Πα)
wα

Πα, (10.39)

where the prime on the summation sign indicates that the sum extends only over
those values of α for which wα is nonzero. This solution of (10.34) is unique; it
clearly preserves positivity and normalization.

Remark 10.8 In the following, we shall confine ourselves to the case in which
the state of the object is described by a single macroscopic observable. It will then
suffice to consider subalgebras M that consist of multiples of a single observable
M . We shall then have M = T , and the cellular decomposition of M will be the
same as its spectral decomposition.

Since the set of projectors {Πα} define the cellular decomposition of M, the
conditional expectation values E(A|Kα) are determined by the operator E(A|M)
as follows:

E(A|M) =
∑
α

′
E(A|Kα) · Πα. (10.40)
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Comparing (10.40) with (10.39), we obtain

E(A|Kα) =
E(A ⊗ Πα)

wα
(10.41)

for wα �= 0.

10.4.1 Explicit expressions

Lemma 10.7 shows that all the information we require is contained in E(A⊗M).
We therefore begin with an explicit calculation of this quantity.

By definition,
E(A ⊗ M) = Tr (Φ(t)[A ⊗ M ]). (10.42)

We introduce the expression (10.19) for Φ(t) and (10.24) for M into the above.
Since the trace is a linear map and the sums are finite, we may take the constants
and the summations outside the Tr sign. We then obtain

E(A ⊗ M) =
n∑

r,s=1

ν∑
α=0

cr c̄smαTr
(
[Rr,s ⊗ Ωr,s(t)][A ⊗ Πα)]

)
=

n∑
r,s=1

ν∑
α=0

cr c̄smαTr
(
[Rr,sA] ⊗ [Ωr,s(t)Πα]

)
. (10.43)

Let now {ξk} be any orthonormal basis for Ha. Using the orthonormal basis
{ui ⊗ ξk} for H, we may write the trace in (10.43) explicitly as

Tr
(
[Rr,s ⊗ Ωr,s(t)][A ⊗ Πα)]

)
=

n∑
i=1

∞∑
k=1

(
ui ⊗ ξk, [Rr,sA ⊗ Ωr,s(t)Πα] · [ui ⊗ ξk]

)
=

n∑
i=1

(
ui, Rr,sA ui

) ∞∑
k=1

(
ξk, Ωr,s(t)Πα ξk

)
, (10.44)

where we have used formula (A6.5) for the inner product in tensor product spaces
to reduce the first equation to the second. Using the definition (10.15) of Rr,s,
we easily find that the first sum on the last line is

n∑
i=1

(
ui, Rr,sA ui

)
= (us, Aur), (10.45)

while the second sum is clearly just the trace of Ωr,sΠα. Lastly, we define

Fr,s;α(t) = Tr (Ωr,sΠα). (10.46)
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Introducing (10.45) and (10.46) into (10.44) and then the resulting expression
into (10.43), we arrive at the formula

E(A ⊗ M) =
n∑

r,s=1

ν∑
α=0

cr c̄s(us, Aur)mαFr,s;α. (10.47)

Next, comparing (10.47) with (10.36), we find that

E(A ⊗ Πα) =
n∑

r,s=1

cr c̄s(us, Aur)Fr,s;α. (10.48)

Lastly, setting A = Io in (10.48) and using the definition (10.31) of wα, we obtain

wα =
n∑

r=1

|cr|2Fr,r;α. (10.49)

The state of the coupled system for t > 0 is described completely by the Fr,s;α.

10.4.2 Properties of Fr,s;α

The following properties of Fr,s;α(t) follow almost immediately from the defini-
tion (10.46) and the properties (10.17) and (10.18) of Ωr,s(t):

0 ≤ Fr,r;α ≤ 1, (10.50)

ν∑
α=0

Fr,r;α = 1 (10.51)

and

Fr,s;α = F̄s,r;α. (10.52)

It also follows from (10.50) and (10.52) that, for z1, . . . , zn ∈ C, the sesquilinear
form

n∑
r,s=1

zr z̄sFr,s;α

is positive for each α, from which follows the inequality

Fr,r;αFs,s;α ≥ |Fr,s;α|2, (10.53)

which holds for each α.
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10.5 Ideal measurements

In an ideal measurement, the final state of the apparatus should be readable
unambiguously, and should point to a unique state of the object. These aims
will be achieved if, for t > τ , the object–apparatus dynamics meets the following
conditions:

(i) The density matrix Ωr,r(t) lies entirely in a single cell Kα; i.e., vectors in Ha

that lie outside Kα do not contribute to Ωr,r(t).
(ii) The observed state of the apparatus (for α �= 0) indicates a unique state of

the object.

It is not necessary for every nonnull state of the apparatus to correspond
to a state of the object, but those that do not will never result from an ideal
measurement. Therefore (in view of Remark 10.8) there is no loss of generality
in assuming that every nonnull value of the apparatus index corresponds to a
unique value of the object index, and vice versa. That is, there exists an invertible
map γ

r = γ(α) for α �= 0 (10.54)

from the set of nonnull apparatus indices to the set of object indices. Then, if
condition (i) is satisfied, we shall have

Tr (Ωr,rΠα) = δγ−1(r),α, (10.55)

i.e.,
Fr,r;α = δγ−1(r),α. (10.56)

That means that for r �= s and fixed α, at least one of Fr,r;α and Fs,s;α must
vanish. Then, from (10.53), it follows that

Fr,s;α = 0 for r �= s, α �= 0, (10.57)

which shows that, for times t > τ , the density matrix for the state of the appa-
ratus lies in a single cell. This evolution of the object–apparatus system has
taken place under the ordinary Schrödinger–von Neumann equations. What is
observed in a single experiment is a macroscopic ‘pointer position’ that describes
the cell. What quantum mechanics cannot tell us is in which cell will the final
state of the apparatus be in a particular experiment.

10.5.1 Interpretation

Setting M = Ia and using the shorthand notation (10.29), we may rewrite (10.47)
as

E(A) =
n∑

r=1

|cr|2(ur, Aur) +
n∑

r,s=1
r 	=s

ν∑
α=0

Fr,s;αcr c̄s(ur, Aus). (10.58)
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Then, for τ > 0 and α �= 0 we have, using (10.57),

E(A) =
n∑

r=1

|cr|2(ur, Aur). (10.59)

This is the classical expectation value of a random variable which assumes the
values (ur, Aur) with probabilities pr = |cr|2. The quantity being measured will
therefore be the diagonal matrix element of A in the basis {ur}.

Let us now inject the information that the pointer has been read at some time
t > τ and the apparatus found in the macroscopic state α �= 0. Then the rele-
vant expectation value of the observable A is the conditional expectation value
E(A|Kα). Using (10.48) and (10.49), the expression (10.41) for E(A|Kα) becomes

E(A|Kα) = (uγ(α), Auγ(α)). (10.60)

This shows that the object–apparatus interaction has sent the initial state ψ of
the object to the eigenstate uγ(α) of Ho; the wave packet has collapsed to one of
the eigenstates of Ho. Combining (10.59) and (10.60), we conclude that the final
state of the object is

ρo(t′ + τ) =
n∑

r=1

|cr|2P[ur]. (10.61)

10.5.2 The probability interpretation in Sewell’s theory

Equations (10.59) and (10.60) show that the expectation and conditional expec-
tation values are defined in terms of the diagonal matrix elements of the
observable A in a basis consisting of eigenstates of Ho. These diagonal matrix
elements reduce to eigenvalues of A if and only if A commutes with Ho. Sewell’s
theory is therefore consistent with an extension of the naive probability inter-
pretation in which observables that do not commute with the Hamiltonian may
also be measured. In this case the measured value will not be an eigenvalue, but
rather a diagonal matrix element of the measured observable.

10.6 Consistency and robustness of Sewell’s generic model

The reader who is familiar with Wigner’s most serious reservation on von Neu-
mann’s measurement theory may be puzzled by the assertion that the observable
A is not required to commute with Ho. We shall set aside this question for the
next chapter, and begin by addressing two questions that, in our opinion, have
priority: the questions of consistency and of robustness, or stability, of Sewell’s
generic model.
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10.6.1 The question of consistency

The theory developed so far was based on a number of assumptions: Assumptions
10.1–10.5. No matter how reasonable physically or mathematically, they remain
just that: assumptions, and it is pertinent to ask whether they are mathematically
consistent with each other.

Consistency problems in mathematics are at best tricky, at worst undecidable.
Since this situation is not really tolerable in day-to-day life, logicians have deve-
loped a strategy to deal with it. This strategy consists of eschewing maximum
generality and accepting a specific theory as consistent if there is a model which
satisfies the axioms of the theory in a nontrivial manner. We shall not define
the mathematical meaning of the term model, but shall accept the thinking
behind the strategy. That is, we shall accept the assumptions of Sewell’s theory
as being consistent with each other if there is an exactly soluble model – as
physicists understand this term – in which the assumptions of the theory are
fulfilled nontrivially.

Such a model has been developed by Sewell, who named it the finite Coleman–
Hepp model. The existence of this model provides an affirmative answer to
the nontriviality problem. We shall omit details of this model, referring the
reader to the original article (Sewell, 2005). Sewell employs ‘. . . the phase cell
representation of van Kampen and Emch for the description of macroscopic
observables. . . ’,13 which leads to the same final results as our treatment of macro-
scopic observables of large quantum systems in Chapter 9, based on the work
of von Neumann: the full algebra of observables Ba of the apparatus A has a
subalgebra M of macroscopic observables that commute with each other, and
this is the formal structure that is employed by Sewell.14

10.6.2 The question of robustness

As we have seen, (10.56) implies that the measurement is perfect; there is no pos-
sibility for the pointer reading to give a result other than the correct state of the
object. In a finite system – no matter how large N is – thermodynamic fluctua-
tions are not smoothed out completely, and a reasonable theory of measurement
ought to be robust enough to cope with the resulting errors of measurement.
This robustness is generic to Sewell’s scheme, and has been sketched in (Sewell,
2007).

According to its definition (10.46), the quantity Fr,r;α is the probability that,15

for t > τ , the object is in the state r when the apparatus is in the state α. The

13 The references cited by Sewell are (van Kampen, 1954; Emch, 1964).
14 It is not necessary to be conversant with the mathematical definition of algebras of observ-

ables in order to appreciate the physical content of the above statement. See footnote 8 on
page 117.

15 The complete statement is: the object is in the state ur when the apparatus is in the
macroscopic state determined by the cell Kα.
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requirement (10.56) of a bijective correspondence between object and apparatus
states forces these probabilities to be either 1 or 0. There exists, therefore, a
natural way to weaken this requirement, and that is by replacing it by

Fr,r;α = pr(α;N), (10.62)

where pr is a probability distribution on r for given α, depending on the param-
eter N , which has a high peak at r = γ(α) but also a small but nonzero variance.
Then a correspondence (r′, α), where r′ �= r(α), will be a rare event which can
be analysed by the theory of large deviations.16 Such an analysis has been carried
out by Sewell,17 who obtained the following estimates:

|1 − Fr,r;α| ∼ exp (−cN/n), (10.63)

and, for r �= s,
|Fr,s;α| ∼ exp(−cN/2n), (10.64)

where c is a positive constant of order unity. The factor n in the denominators of
the exponents is dim Ho, and equals 2 for the finite Coleman–Hepp model solved
by Sewell (Sewell, 2005). If, as we have assumed, N is of the order of Avogadro’s
number and n of order unity, then the right-hand sides of (10.63) and (10.64)
are indeed small; one may consider the measuring apparatus A to be a reliable
instrument. If, on the other hand, n is within a few orders of magnitude of N ,
the measuring apparatus will no longer be a reliable instrument.

It may, however, be argued that the experimentalist has some control over n;
otherwise even the assumption that n is finite becomes untenable. The problem
of the size of n belongs properly to the domain of design of the experiment; as we
have seen in Section 6.4, one may expect the experimentalist to make n as small
as possible, to increase the accuracy of measurement. Unexpectedly, in quantum-
mechanical measurement theory more accurate instruments also appear to be the
more reliable ones.

10.7 Answers to Wigner, II

The first of Wigner’s objections to von Neumann’s measurement theory, listed
on page 158, was:

The principal conceptual weakness of the orthodox view is, in my opinion,
that it merely abstractly postulates interactions which have the effect of
[reduction of the wave packet].

16 The theory of large deviations, as it is understood today, was initiated by Varadhan
(Varadhan, 1966). A standard reference for physicists is (Ellis, 1985).

17 Private communication.
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In the opinion of the present author, this criticism goes to the heart of the
matter. The root of the problem is Wigner’s own insistence that the state of
the apparatus have no classical description. It should be recalled that Hepp,
Whitten-Wolfe and Emch developed explicitly soluble models in which the
object–apparatus interaction was specified precisely.18 Sewell, in his generic
model, attempted – successfully – to determine the key qualitative features of
object–apparatus interactions that lead to the effects (i) and (ii) described on
page 173 (Sewell, 2005). It may thus be claimed that Sewell’s theory is not subject
to Wigner’s principal objection. As we shall see in Section 11.8, Wigner’s remain-
ing objections (page 158) do not apply to Sewell’s theory, precisely because it
takes cognizance of his principal objection.

18 The references are (Hepp, 1972; Whitten-Wolfe and Emch, 1976).
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Summing-up

In this chapter we shall discuss a variety of topics that are not covered by Sewell’s
scheme. Our main conclusion will be that Sewell’s scheme can be extended to
cover these topics, and the extension provides adequate answers to the problems
of measurement theory in quantum mechanics. We shall then attempt to meet
the last three of Wigner’s objections listed on page 158, and the problem arising
from the failure of localizability in relativistic physics that was stressed by him.
The material will be arranged as follows.

In Section 11.1 we shall deal with an example of Bell that challenged the notion
of quantum mechanics as it has been used so far in this book. In Section 11.2 we
shall discuss a few extensions of Sewell’s scheme, leaving aside the crucial exten-
sion to continuous spectra. That discussion, provided in Section 11.6, will be
preceded by short accounts of the results of Araki and Yanase in Section 11.3, the
impossibility theorems of Shimony and Busch in Section 11.4, and the Heisenberg
cut in Section 11.5. The results of Araki and Yanase were obtained within von
Neumann’s measurement theory proper,1 whereas Shimony and others based
their attempts on a class of modifications of it. Section 11.7 will be devoted to
establishing the adequacy of Sewell’s scheme, and Section 11.8 to meeting the
objections of Wigner and providing our answer to the question that has induced
the writing of Part II of this book.

11.1 Bell’s example

We have already referred to Hepp’s 1972 paper, which (to the best of the
present author’s knowledge) was the first to demonstrate that the metaphysi-
cal assumptions of von Neumann could be replaced by mathematical ones to
achieve reduction of the wave packet. This paper was strongly criticized by
Bell. The following quotations are from his critique (Bell, 1975; reprinted in
Bell, 2004) of Hepp’s paper, which was mentioned in passing in the previous
chapter:

K. Hepp has discussed quantum measurement theory [using]. . . the C� alge-
bra description of infinite quantum systems. . . Many people not familiar

1 We remind the reader that the adjective proper means that the intervention of the observer’s
conscious ego has been excluded from the theory. See footnote 4 on page 173.
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with the C� algebra approach. . . have been intrigued by the following
statement in Hepp’s abstract:

In several explicitly soluble models, the measurement leads to macro-
scopically different “pointer positions” and to a rigorous “reduction of
the wave packet” with respect to all [emphasis added] local observables.

This looks like a clean solution at last to the infamous measurement prob-
lem.2 But it is not so. . . Here we will take one3 of his models and analyse
it in elementary text-book terms. . .

Bell then does precisely that. After having done so, he continues:

The result [quoted above]. . . shows that any fixed observable Q will even-
tually give a very poor (zero, in this case) measure of persisting coherence.
But nothing forbids the use of different observables as time goes on
[emphasis added]. . .

Then Bell constructs the following set of explicitly time-dependent self-adjoint
operators:

z(t) = σ1
0

[t−r−w]∏
n=1

σ2
n,

where σ1, σ2, σ3 are the Pauli spin matrices and the subscript n denotes the
particle number. The quantity [x] in the upper limit denotes the integral part
of x, x > 0 (Bell denotes it by N(x)). For our present purposes, we need not
be concerned with r and w, except to note that they are positive numbers. By
definition, z(t) = 0 for [t − r − w] < 1. In Bell’s words, ‘the increasing string of
factors here serves to unflip the flipped spins [flipped by the object–apparatus
interaction]’. From this he concludes that

So long as nothing, in principle, forbids consideration of such arbitra-
rily complicated observables, it is not permitted to speak of wave packet
reduction.

Bell’s fallacy (or so the present author contends) was in not recognizing that he
was interpreting the word all used by Hepp as a layman, whereas Hepp was using
it as a mathematician. There was a principle that forbade consideration of such
observables: von Neumann’s axiomatization of quantum mechanics, in which
observables were, by definition, time-independent; the unconditional existence

2 Footnote in the original : For a general survey, see, for example, d’Espagnat (1971).
3 Footnote in the original : Note that Hepp considers several other models, making points not

presented here, in particular concerning the possibility of ‘catastrophic’ time evolutions.
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of the Schrödinger picture (as defined by us in Subsection 7.1.5, page 116) was
a sine qua non.

The last paragraph of Bell’s paper reads as follows:

The continuing dispute about quantum measurement theory is not between
people who disagree on the results of simple mathematical manipulations.
Nor is it between people with different ideas about the actual practicality
of measuring arbitrarily complicated observables. It is between people who
view with different degrees of concern or complacency the following fact: so
long as the wave packet reduction is an essential component, and so long as
we do not know exactly when and how it takes over from the Schrödinger
equation, we do not have an exact and unambiguous formulation of our
most fundamental physical theory.

The present author sees things differently:

(i) Wave packet reduction was indeed an essential component of von Neumann’s
theory.

(ii) When Bell was writing (1975) it could indeed be argued that ‘we do not
know exactly when and how [wave packet reduction] takes over from the
Schrödinger equation’ (since in Hepp’s work it happened only as t → ∞),
and therefore ‘we do not have an exact and unambiguous formulation of our
most fundamental physical theory’ – provided that ‘this most fundamental
physical theory’ is understood as von Neumann’s axiomatization of quantum
mechanics.

(iii) However, what Bell did, in effect, was to depart radically from von Neu-
mann’s axiomatization. Therefore, while his counterexample did contradict
the collapse postulate, one can only draw the following conclusions from
this fact (or so the present author believes):

(a) There are two theories under consideration; N (von Neumann’s) and B
(Bell’s), and N �= B. In N all observables are time-independent; in B
this is not true, by definition.

(b) Theory N has a lacuna; to fill it, it is necessary that a result, which we
shall call theorem C (collapse of the wave packet), be proven within it.
This had not yet been done in 1975, without invoking the limit t → ∞.

(c) Bell’s counterexample proves that theorem C is false in theory B. It
makes no statement about theory N.

After this hiatus, let us summarize what we have learnt from Sewell’s theory
so that we may continue.

(i) In Sewell’s theory, the algebras of observables of both object and apparatus
are fixed from the outset, and consist of time-independent operators.
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(ii) Wave packet reduction ‘takes over’ from the Schrödinger equation when the
observed microscopic system interacts with the macroscopic apparatus. The
transition, which is probably not instantaneous, nevertheless takes place
within a very short time (in the laboratory frame).

(iii) Except in special cases, the quantity measured is a diagonal matrix element
and not an eigenvalue of the observable.

11.2 Extension of Sewell’s scheme

We shall now consider a particular case and an extension of Sewell’s generic
model. The really important extension, to observables with continuous spectra,
will be postponed till after a review of the results of Wigner, Araki and Yanase
in Section 11.3, and of the results of Shimony and Busch in Section 11.4.

11.2.1 Degenerate eigenvalues

Let us now assume that the observable A commutes with the Hamiltonian but
has degenerate eigenvalues. Then the ur are eigenvectors of A as well:

Aur = arur. (11.1)

To simplify the discussion we assume that only one of the eigenvalues is
degenerate:

ai �= aj for i, j = 1, . . . , m + 1,

ai = aj = b for i, j > m.
(11.2)

In this case we may expect the wave packet to collapse, but, as we shall see below,
the apparatus will no longer be able to distinguish between different eigenstates
uj of the object for j > m.

From (11.1) it follows that

(us, Aur) = arδrs (no summation),

so that (10.47) becomes, with M = Ia,

E(A ⊗ Ia) =
n∑

r=1

ar|cr|2
ν∑

α=0

Fr,r;α (11.3)

and (10.48) becomes

E(A ⊗ Πα) =
n∑

r=1

ar|cr|2Fr,r;α. (11.4)
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After the time τ , the apparatus is in one of the states α = 1, . . . , m, m + 1. We
assume that if 1 ≤ α ≤ m, then the state of the apparatus corresponds to one
of the nondegenerate eigenstates of the object. Under these conditions (10.51),
which can be written as

m∑
α=1

Fr,r;α + Fr,r;m+1 = 1,

yields the information that, for α = r < m + 1,

Fr,r;r = 1,

whereas, for α = m + 1,

Fr,r;m+1 = 1 for r = m + 1, . . . , n.

Then (11.3) and (11.4) become, respectively,

E(A ⊗ Ia) =
m∑

r=1

ar|cr|2 + (n − m)b
n∑

r=m+1

|cr|2 (11.5)

and

E(A ⊗ Πα) =

⎧⎪⎨⎪⎩
ar|cr|2 for 1 ≤ α ≤ m

b

(
n∑

m+1
|cr|2

)
for α = m + 1.

(11.6)

Equation (11.5) shows that the wave packet has collapsed, but (11.6) shows that
the pointer reading α = m + 1 no longer corresponds to a unique vector state of
the object, as von Neumann had asserted (von Neumann, 1955, p. 218).

11.2.2 The case of dim Ho = ∞
Sewell’s generic model is based on the assumption that dim Ho = n, where
n is finite. Von Neumann’s theory assumes that Ho is an infinite-dimensional
separable Hilbert space, and the Araki–Yanase theorem, which will be proven in
the following section, is established in the framework of von Neumann’s theory.
It will therefore be useful, for purposes of comparison, to see what additional
assumptions are required to extend Sewell’s generic model to the case dim Ho =
∞. The first of these is dim Ha = ∞, which requires no further comment.

If Ho is infinite-dimensional, then one will have to assume that Ho has a purely
discrete spectrum. Correspondingly, one will have to assume that the macroscopic
operator M has a countable infinity of distinct eigenvalues. It is easy to see
that the contents of Sections 10.2–10.4 remain valid in this case as well, except
possibly for the very last inequality (10.53), which is Fr,r;αFs,s;α ≥ |Fr,s;α|2. This
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inequality cannot be asserted without further analysis. However, we have seen in
Subsection 11.2.1 that the terms with Fr,s;α, r �= s drop out of the expectation
values if the operator A being measured commutes with the Hamiltonian. It
follows that:

Conclusion 11.1 The conclusions of Sewell’s generic model remain valid also
for dim Ho = dim Ha = ∞ if the Hamiltonian Ho has a purely discrete spec-
trum, the cells Kα are finite-dimensional, and one of the following conditions
holds:

(i) The operator A being measured commutes with Ho.
(ii) The quantities Fr,s;α = Tr (Ωr,sΠα) vanish for r �= s.

In these cases one has to replace the upper limits of summation n and ν in (11.5)
and (11.6) by ∞.

11.3 The Araki–Yanase theorem

In 1952, Wigner considered the problem of measuring the spin components
of a particle, and found that, if the z-component was conserved, then the
x- and y-components could not be measured precisely (Wigner, 1952). The term
measurement was understood by him in the sense of von Neumann,4 and encap-
sulated as ‘the state of the apparatus reflects the state of the object’. Wigner’s
result was generalized by Araki and Yanase, who proved that an observable
A with a purely discrete spectrum cannot be measured exactly (in the von
Neumann sense) unless it commutes with all conserved quantities (Araki and
Yanase, 1960). They also proved that, under certain conditions on the con-
served quantities, A could always be measured approximately, provided that the
notion of approximate measurement was understood in the rather special sense
of Definition 11.3; the larger the measuring apparatus, the better the approxi-
mation. All of these results were proven within a slightly sharpened form of von
Neumann’s measurement theory proper; whereas the actual interaction between
object and apparatus was passed over in silence (except to establish the result
reported in Section 8.3.3.1) by von Neumann, Araki and Yanase assumed that it
could be represented as a unitary evolution of the combined state of the object
and apparatus. We begin by setting up the notations.

As before, we denote by Ho and Ha the Hilbert spaces of object and apparatus
respectively. The Hilbert space of the combined system will be H = Ho ⊗ Ha.
Vectors in Ho will be denoted by ϕ, with subscripts when necessary, and vectors
in Ha by the letters ξ, ϑ and ζ, again with subscripts as necessary.

Araki and Yanase considered the measurement of an observable A. The initial
state of the object–apparatus system was ϕµ ⊗ ξ, where ϕµ is an eigenvector of

4 We have called the result von Neumann’s entanglement theorem; see page 159.
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A with eigenvalue µ: Aϕµ = µϕµ. The measurement process is expressed by the
equation

U(t)[ϕµ ⊗ ξ] = ϕµ ⊗ ζµ, (11.7)

where t > τ , τ being the time it takes for the apparatus to arrive at its final
state ζµ. The vectors ϕµ ∈ Ho and ζµ ∈ Ha satisfy the orthogonality conditions

(ϕµ, ϕν) = δµν ,

(ζµ, ζν) = 0 if µ �= ν,
(11.8)

the second orthogonality requirement in (11.8) being necessary for distinguishing
between different states of the object. At the end of the process, ‘the state of
the apparatus reflects the state of the object’, nothing more. Araki and Yanase
allowed for the eigenvalues µ of A to be degenerate, but we shall assume that
they are nondegenerate. This merely simplifies the appearance of the formulae;
the argument remains the same.

Suppose now that there is a self-adjoint operator L on H which is additive in
the sense that

L = Lo ⊗ Ia + Io ⊗ La, (11.9)

where Lo and La are self-adjoint operators on Ho and Ha respectively, and that
L obeys the conservation law

[U(t), L] = 0, (11.10)

which is ‘universal’ in the sense that it holds for every possible choice of the
apparatus. Then:

Theorem 11.2 (Araki–Yanase) With A, L, Lo and La as above, the evolution
equation (11.7) cannot hold unless

[Lo, A] = 0. (11.11)

In words, unless A commutes with Lo, the final state of the apparatus will not
reflect the state of the object.5

5 The usual definition of commuting operators has to be modified to cover unbounded
operators. This modification was given in (9.4), page 162.
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Proof Let µ �= ν. Using unitarity, the conservation law (11.10) and the
measurement condition (11.7), we find that

(ϕν ⊗ ξ, L[ϕµ ⊗ ξ]) = (U(t)[ϕν ⊗ ξ], U(t)L[ϕµ ⊗ ξ])
= (U(t)[ϕν ⊗ ξ, ]LU(t)[ϕµ ⊗ ξ])
= (ϕν ⊗ ζν , L[ϕµ ⊗ ζµ]).

The last line may be simplified by using the additivity condition (11.9):

(ϕν ⊗ ζν , L[ϕµ ⊗ ζν ]) = (ϕν ⊗ ζν , (Lo ⊗ Ia + Io ⊗ La)[ϕµ ⊗ ζν ])
= (ϕν ⊗ ζν , ϕµ ⊗ Laζν) + (ϕν ⊗ ζν , Loϕµ ⊗ ζµ)
= (ϕν , ϕµ)(ζν , Laζµ) + (ϕν , Loϕµ)(ζν , ζµ)
= 0, for µ �= ν,

where we used the orthogonality relations (11.8). We therefore conclude that

(ϕν ⊗ ξ, L[ϕµ ⊗ ξ]) = 0 for µ �= ν. (11.12)

Next, using again the additivity condition (11.9), we may recast the left-hand
side of (11.12) as

(ϕν ⊗ ξ, L[ϕµ ⊗ ξ]) = (ϕν ⊗ ξ, (Lo ⊗ Ia + Io ⊗ La)[ϕµ ⊗ ξ])
= (ϕν ⊗ ξ, Loϕµ ⊗ ξ) + (ϕν ⊗ ξ, ϕµ ⊗ Laξ)
= (ϕν , Loϕµ)(ξ, ξ) + (ϕν , ϕµ)(ξ, Laξ)
= (ϕν , Loϕµ)(ξ, ξ) for µ �= ν. (11.13)

Combining (11.12) and (11.13), we obtain

(ϕν , Loϕµ) = 0 for µ �= ν. (11.14)

This result states that the off-diagonal matrix elements of Lo vanish in a basis
consisting of the eigenvectors of A. To complete the proof of [A, Lo] = 0, we use
the spectral representation of A (recall that we have assumed the eigenvalues of
A to be nondegenerate):

A =
∑

λ

λP[ϕλ]. (11.15)

It suffices to prove that [P[ϕλ], Lo] = 0 for all λ. Now

(ϕν , P[ϕλ]Loϕµ) − (ϕν , LoP[ϕλ]ϕµ) = δλν(ϕν , Loϕµ) − δλµ(ϕν , Loϕµ).

Owing to (11.14), the right-hand side vanishes unless λ = µ = ν. But then if
λ=µ=ν, the equation becomes the trivial identity 0 = 0. This establishes that
U(t)[ϕµ ⊗ ξ] = ϕµ ⊗ ζµ implies that [Lo, A] = 0. The assertion of the theorem is
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the contrapositive of this result, assuming that the conservation law [U(t), L] = 0
continues to hold.

We have ignored domain questions for the operators Lo and La in the above
proof. Araki and Yanase have shown that the result continues to hold even if La

is unbounded, as long as Lo is bounded. Details may be found in footnote 4 of
(Araki and Yanase, 1960).6

For purposes of comparison, we note that in Sewell’s theory, (10.59) and
(10.60) show that, if A does not commute with Ho, then the quantity measured
is no longer an eigenvalue of A, but an approximation to one. The goodness
of the approximation depends, among other factors, on the choice of Ho and
Ho. Indeed, Sewell’s assumption n < ∞ may be interpreted as exhibiting the
centrality of the notion of approximate measurements in his theory.

Since the position operator, a key observable, will seldom commute with the
Hamiltonian (which is an absolutely conserved quantity), it is natural to ask if
such a quantity can be measured approximately in von Neumann’s theory proper.
But the first problem is to define the notion of an approximate measurement in
von Neumann’s theory proper, in which states of the measuring apparatus do
not have classical descriptions. Therefore the result of a measurement cannot be
assumed to be a real number, and the statistical notions of mean and deviation
are no longer available.

Araki and Yanase defined a notion of malfunctioning of the apparatus which
could be quantified. It was based on the observation that, in von Neumann’s
theory, one could envisage a situation in which the state of the apparatus did
not reflect the state of the object. Using this definition, they were able to prove
that an approximate measurement is possible, provided that L has a discrete
spectrum and Lo has a finite number of eigenvalues. As we shall not be using
their result, we shall omit the proof, and content ourselves with stating their
definition.

Definition 11.3 (Approximate measurement (Araki–Yanase)) Suppose
that the observable A with the spectral representation (11.15) does not com-
mute with the operator Lo of (11.9). Then A will be said to be approximately
measurable if there exist states ϕµ, ψ ∈ Ho and ζµ, ϑµ ∈ Ha with the following
properties:

(ζµ, ζν) = 0 if µ �= ν,

(ζµ, ϑν) = 0 for all µ, ν,

6 The Araki–Yanase result has been examined in detail, and some of its limitations exposed,
by Stein and Shimony in Appendix A of their paper (Stein and Shimony, 1971). As will be
seen in Section 11.5, neither the results of Araki and Yanase nor those of Stein and Shimony
will be sufficient for our purposes, and therefore we shall not go into the technicalities.
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(ϑµ, ϑν) = 0 for µ �= ν,

||ψ ⊗ ζµ||2 < ε,

and temporal evolution of the combined system has the form, for t > τ ,

U(t)[ϕµ ⊗ ξ] = ϕµ ⊗ ζµ + ψ ⊗ ϑµ. (11.16)

Araki and Yanase proved the existence of such states for any ε > 0. However –
and this is the important point – the states of the apparatus A were superposi-
tions of eigenstates of La; to reduce ε, one had to go on increasing the number
of eigenstates, in effect converting A into a large device, for which a pure state
could hardly be distinguished from a mixed one.

This concludes our survey of the results of Araki and Yanase. We shall return
to their notion of approximate measurements in Section 11.5.

11.4 Impossibility theorems of Shimony and Busch

As we have seen, von Neumann’s measurement theory proper did not lead to the
reduction of the wave packet. Several authors, starting with Fine, have investi-
gated whether or not it was possible to arrive at a different result in a modified
version of von Neumann’s theory, with a somewhat different notion of measure-
ment (Fine, 1969). The answer was uniformly negative, and led to a number
of theorems on the ‘insolubility of the quantum measurement problem’. Recall
that von Neumann had argued that the initial state of the apparatus cannot be
a mixture (pages 155–156). Shimony attempted to revive the possibility of the
initial state of the apparatus being a mixture by relaxing the condition that the
measurement be exact (Shimony, 1974; see also Fehrs and Shimony, 1974). His
assumptions were as follows (the notation is obvious):

(a) {Km
o } is a finite or countable family, indexed by m, of pairwise orthogonal

subspaces of Ho that span Ho.
(b) {Km

a } is a family of pairwise orthogonal subspaces of Ha.
(c) U is a unitary operator on Ho ⊗ Ha.
(d) T is a statistical operator (density matrix) on Ha such that for every m and

every ϕ ∈ Km
o ,

U(P[ϕ] ⊗ T )U−1 =
∑
r,n

ar,nP[ζr,n], (11.17)

where ζr,n ∈ Ho ⊗ Kn, and the ar,n are nonnegative real numbers such that∑
r,n

ar,n = 1,∑
r

ar,n  1 for n �= m.
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As (11.17) shows, the modification attempted by Shimony may be described
as follows. The initial state of the object is a pure state, but that of the
apparatus is a mixture. The final state of the object–apparatus system is a
density matrix which has a sharp peak at n = m (but it still does not have a
‘classical description’). This is the sense in which the measurement is approxi-
mate. Shimony proved that under these conditions, if the number of subspaces
Km

o is greater than 1, then ‘there exist initial states of the object for which the
final statistical state of the object plus apparatus is not expressible as a mixture
of eigenstates of the apparatus observable’.

The proof of this result is by contradiction. Shimony assumed the contrary,
and derived, by a detailed computational argument, a contradiction with the
fact that the eigenvalues of a density matrix are invariant under unitary trans-
formations. Some years later, Brown gave a much simpler proof of a similar
result under slightly stronger conditions (Brown, 1986), but it turned out that
this weakened the final result considerably. A critique of Brown’s result may be
found in (Shimony, 1993, pp. 46–47).

Subsequently Busch and Shimony, using the notion of unsharp observ-
ables defined by positive operator valued measures,7 proved that Shimony’s
impossibility theorem held even for unsharp observables (Busch and Shimony,
1996). We should like to draw the reader’s attention to the last sentence of their
abstract, which is as follows: ‘Both theorems show that the measurement prob-
lem is not the consequence of neglecting the ever-present imperfections of actual
measurements.’ A ‘maximal extension’ of Shimony’s theorem was obtained by
Stein in 1997, using arguments that were more conceptual than computational
(Stein, 1997).

11.5 The Heisenberg cut

As already discussed in the Introduction to Part II, the 1930s saw two concep-
tions of measurement attempting to ‘complete’ Born’s probability interpretation
of quantum mechanics. One was that of Heisenberg and Bohr, in which the result
of a measurement was supposed to be represented on a classical output device. As
noone had any idea how an apparatus made up of quantum-mechanical subsys-
tems could do so, Heisenberg invented the ‘Heisenberg cut’, which would be better
described as the Heisenberg chasm. Its merit, from the point of view that we have
espoused, was that the notions of measurement error and approximate measure-
ments were the same as they were in classical physics, and there was no difficulty
in accepting that almost every measurement of a continuous spectrum had to
be approximate. To recapitulate: in the notion of measurement advanced by von
Neumann and Wigner, the state of the apparatus had no classical description.

7 These measures, which we shall not define (they are defined in the article by Busch and
Shimony), are used extensively in the quantum theory of open systems. See, for example,
(Davis, 1976).
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It followed immediately that there was no canonically defined notion of approxi-
mate measurements. Araki and Yanase therefore proposed to augment the notion
of exact measurement by a quantifiable notion of malfunctioning of the appara-
tus, and defined an approximate measurement as one with a small but nonzero
probability of apparatus malfunction. With this notion they concluded, within
von Neumann’s theory proper, that an approximate measurement was always
possible. Recall that the wave packet did not collapse in von Neumann’s theory
proper.

Shimony, and then Busch and Shimony, modified von Neumann’s theory
proper to admit mixed initial states of the apparatus, but then, in view of von
Neumann’s result that the initial state of the apparatus could not be a mixture
(Subsection 8.3.3.1), they had to abandon the notion of precise measurements
altogether. They devised a notion of approximate measurements that was closer
to intuition than the ‘apparatus malfunction’ of Araki and Yanase, but their
conclusion was that, with these premises, even approximate measurements were
impossible.

Sewell’s theory modifies von Neumann’s premises to permit the building of a
bridge over the Heisenberg cut; collapse of the wave packet results, so to speak,
from crossing this bridge.

11.6 Measurement of continuous spectra

An operator R with a strictly continuous spectrum does not have eigenvectors,
and therefore cannot be measured in accordance with von Neumann’s theory.
In Subsection 8.2.2 we described how von Neumann formulated the problem of
approximate measurement of such an operator, and reduced it to the problem
of exact measurement of an operator G(R) = G with a purely discrete spectrum
which was an approximation to R. This operator G, which we called a von
Neumann approximant to R, was not canonically defined; it had, presumably,
to be chosen by the experimentalist, who then had to design an apparatus to
measure it.

Choose ε > 0, and let {ϕn|n ∈ N} be a set of approximate eigenvectors of R,

||(R − λkI)ϕk|| < εk, k ∈ N,

such that every spectral value λ of R lies in one (or more) of the intervals
(λk − ε, λk − ε). We shall assume that the λk are equally spaced, i.e., the
quantity

∆ = λk − λk−1
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is independent of k. Let G be the operator that has a purely discrete spectrum,
with the eigenvalues and eigenvectors

Gϕk = λkϕk.

Then G is a von Neumann approximant of R, and an exact measurement of G

is equivalent, according to von Neumann, to an approximate measurement of R

to an accuracy of ±ε. The theory places no limitations on ε, except that it be
greater than zero.

The problem of exact measurement of G has already been dealt with. If G

does not commute with Ho, then a measurement of G will yield not one of
its eigenvalues but one of its diagonal matrix elements in a basis consisting of
eigenvectors of Ho. In principle, if G and Ho are known, then the matrix elements

gkk = (uk, Guk)

can be calculated. Set

δk = min
j

|gkk − λj |.

Then, if

δk  ∆, (11.18)

a reading of gkk will reflect, with near-certainty, one and only one eigenvalue of
G, namely the one nearest to gkk. In Sewell’s theory, an approximate mea-
surement of an operator with a continuous spectrum is possible (via a von
Neumann approximant) even if the operator in question does not commute with
any quantity that obeys a universal additive conservation law.

11.7 Adequacy of Sewell’s scheme

Sewell’s theory has not resulted in the complete elimination of anthropocentrism
from the theory of measurement in quantum mechanics. But it has succeeded,
or so we shall argue, in reducing the role of the experimental quantum physicist
to roughly the same as that of the experimental classical physicist, which was
discussed in Chapter 6. There the role of the experimentalist was explained
in economic terms: the efficient allocation of scarce resources. The role of the
physicist designing and performing quantum-mechanical measurements is exactly
the same.

An observable A can be measured exactly only if it has a purely discrete
spectrum, and the measurement can be recorded exactly only if the eigenvalue
being measured is rational. An observable with a continuous spectrum can never
be measured exactly, but one can devise a von Neumann approximant that
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can be measured exactly. These statements may have to be modified slightly
if the observable being measured does not commute with the Hamiltonian, but
the same would be true of classical measurements. In the final analysis – or
so the present author claims – it is the limitation of physical resources that
limits the accuracy of ideal measurements, both in classical and in quantum
mechanics.8

Recall the equation

m = nr. (6.3)

that we wrote down in Section 6.4. There m was the total memory available,
n the number of observation points, and r the memory required to record each
observation, which (possibly by a change of scale) is the same thing as the number
of significant digits in the record of the observation. The only change required
here is to interpret n = dim Ho. That means that the experimentalist who wishes
to obtain the most accurate results will confine himself or herself to as small an
n as is feasible, i.e., to as small a range as possible of the variable concerned.

11.8 Answers to Wigner, III

We shall conclude this part of our enterprise by answering the remaining ques-
tions raised by Wigner. These fall into two parts: items (iii)–(v) that were quoted
on page 158, and the ‘tension with the special theory of relativity’, to use a
beautiful phrase coined by Shimony (Shimony, 2002).

The first set of questions share two common themes: (a) the impossibility of
precise measurements of most observables, and (b) the need for using a large
apparatus to make a reasonably accurate measurement.

Regarding the impossibility of precise measurements, it is a ‘flaw’, as first
noted by Born, that quantum mechanics shares with classical mechanics. Even
if one is willing to disregard all instrumental and human errors (and to work
at absolute zero), there is little that one can do about the structure of the
real number system. Quantum mechanics affords enough freedom to make
quantum-mechanical errors smaller than any preassigned quantity in any sin-
gle measurement, provided that measurements are understood in Bohr’s sense
as formulated mathematically by Sewell.

Regarding the need for using a large apparatus, it appears to the present
author that Wigner could be described as the quintessential reductionist, which
is why (i) he rejected Bohr’s idea, and (ii) this possibility made him uneasy. The

8 Real measurements are subject to random errors. Sewell has attempted, with some success
(Sewell, 2007; private communication), to trace these random errors to thermodynamic
fluctuations, and to estimate the probability of large fluctuations using the theory of large
deviations. The same argument should hold true for classical measurements, but the present
author is not aware of any study.
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first paragraph of an essay he wrote honouring Einstein reads as follows (Wigner,
1970, p. 3):

The world is very complicated and it is clearly impossible for the human
mind to understand it completely. Man has therefore devised an artifice
which permits the complicated nature of the world to be blamed on some-
thing which is called accidental and thus permits him to abstract a domain
in which simple laws can be found. The complications are called initial
conditions; the domain of regularities, laws of nature.9 Unnatural as such
a division of the world’s structure may appear from a very detached point
of view, and probable though it is that the possibility of such a division has
its own limits, the underlying abstraction is probably one of the most fruit-
ful ones the human mind has ever made. It has made the natural sciences
possible.

At the Istanbul Summer School in 1962, Wigner told a group of students
that this division into initial conditions and laws of nature ‘was the essence
of reductionism’ (or words to that effect). The present author was one of the
group.

It could be that Wigner did not believe in the seemingly antireductionist (and
possibly antirelativistic) proposition that a microscopic system could interact
with a macroscopic system as a whole; the appeal to the observer’s conscious
ego, about which he said that it was ‘. . . shrouded in mystery and no explanation
has been given so far in terms of quantum mechanics, or in terms of any other
theory’ (page 137), could therefore be construed as the counsel of despair.

11.8.1 The tension with the theory of relativity

Two of the most important observables in nonrelativistic quantum mechanics
are the position and momentum operators of a single particle. The momentum
operators will be constants of motion in many situations, but exactly the opposite
will be true for the position operators. The position operator in nonrelativistic
quantum mechanics – if it exists at all – will, firstly, have a continuous spectrum
and secondly, will seldom commute with the Hamiltonian. Observables with
continuous spectra cannot be measured exactly in von Neumann’s formulation
of quantum mechanics. If one does not admit measuring instruments with states
that have classical descriptions, they may not even be approximately measurable.

However, if one does admit measuring instruments with states that do have
classical descriptions, then Sewell’s theory and its extension provides an ade-
quate solution within von Neumann’s formulation of quantum mechanics. In the

9 We shall refer to this as Wigner’s paradigm, the word paradigm being used in the sense of
Kuhn (Kuhn, 1957).
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opinion of the present author, the situation is no worse in quantum mechanics
than it is in classical mechanics.

In relativistic quantum theory, the impossibility of precise measurement of the
position of a particle may be a blessing rather than a curse. In 1974, in a paper
that is remarkably short and easy to read, Hegerfeldt proved that the notion
of particle localizability is in conflict with the notion of causality (Hegerfeldt,
1974). We quote the abstract of his paper in full:

We show that under quite general assumptions localization of particles in
a finite space region at a given time is inconsistent with causality. The
same holds for localization in a finite region of space-time. The derivation
is short and very simple.

This result made Wigner very unhappy. We quote from his lecture notes (Wigner,
1983, p. 312):

No matter how one defines the position, one has to conclude that the veloc-
ity, defined as the ratio of two subsequent position measurements divided
by the time interval between them, has a finite probability of assuming an
arbitrarily large value, exceeding c. One either has to accept this, or deny
the possibility of measuring the position precisely or even giving significance
to this concept: a very difficult choice!

If the impossibility of precise measurement of the position of a point-particle
is reason enough to question the usefulness of the notion of a geometrical point
in physics, then it surely is an argument that extends to Newtonian physics
as well. Wigner is on record as having remarked that ‘no one asks whether the
outcome of the measurement is a rational or an irrational number’ (Wigner, 1983,
p. 274) when discussing the measurement of an observable with a continuous
spectrum, but the present author does not know whether, unlike Max Born, he
ever considered the analogous problem in classical physics.

The present author disagrees with Wigner’s assessment quoted above, and
believes that denying the possibility of precise measurements is the only rational
choice.10 Unfortunately, the rationality of this choice may have been masked
by the fact that it is superficially similar to the one advocated by the school
of thought that maintains that what is good enough ‘for all practical purposes’
does not require further analysis – what Bell described as the FAPP school of
thought.

10 As discussed earlier, this means that the notion of precise measurements has to be replaced
by the notion of arbitrarily precise measurements, i.e., measurements with error ε > 0,
where ε can be arbitrarily small.
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Large quantum systems

The aim of this final chapter of Part II is rather different from that of the
preceding chapters. It is to provide a glimpse into the generalizations of the
formalism of quantum mechanics on Hilbert space that are required to describe
the symmetries and dynamics of systems with infinitely many degrees of freedom,
owing to the qualitative differences that arise when the number of degrees of
freedom tends to infinity.

The burden of the preceding chapters was that the notion of a geometri-
cal point is as meaningful in quantum physics as it is in classical physics.
The argument involved a lengthy excursion into quantum-mechanical measure-
ment theory. During this excursion, we found that the notion of design of the
experiment played an essential role.

An experiment, no matter how ingenious, does not create laws of nature; it
substantiates, or refutes, an assumed law. According to the dichotomy between
laws of nature and initial conditions that was posited by Wigner (page 206), the
role of human intervention in an experiment is to realize, under controlled and
repeatable conditions, a conjunction of initial conditions that may be improbable
in nature. Seen in this light:

(i) The failure of von Neumann’s theory proper to explain wave function collapse
is either a failure of the theory to establish control over complicated initial
conditions or an indicator of as-yet-undiscovered laws of nature; the success
of Sewell’s theory suggests that it is the former, and not the latter.

(ii) The centrality of ‘design of the experiment’ in Sewell’s theory falls short
of anthropocentrism. A quantum-mechanical measurement reveals conse-
quences of laws of nature that would seldom be manifested in nature owing
to the very low probability of the required conjunction of initial conditions;
human intervention merely increases this probability.

Let us try to interpret Sewell’s theory in terms of Wigner’s paradigm. In
this theory the apparatus is an N -particle system subject to ordinary quantum
mechanics, where N is large. The magnitude of N permits a reduced descrip-
tion of the apparatus by a set of commuting macroscopic observables, and it
makes sense to talk about the macroscopic evolution of the apparatus. Wigner’s
paradigm should be applicable to this situation as well.1 However, a macroscopic

1 It also shows that Wigner’s paradigm is not equivalent to reductionism; it does not always
honour Francis Bacon’s motto ‘dissecare naturam’. Precisely for that reason, it may be more
significant scientifically.
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measuring apparatus can, by definition, be driven by a microscopic system. It is
therefore pertinent to ask:

Question 12.1 What are the principles that govern the interactions that permit
a microscopic quantum-mechanical system to drive the macroscopic observables
of a large system?

The above formulation is intended to suggest a paradigm shift: the problems
of quantum-mechanical measurement theory lie, not in the intervention of the
observer, but in the physics of the interaction between two qualitatively different
entities, one a microscopic system and the other a macroscopic nonrelativistic
quantum-mechanical system considered as a whole.2 In the following, we shall
try to prepare the ground for this study.

12.1 Elementary excitations in superfluid helium

The theory of symmetry in quantum mechanics developed by Wigner does not
suffice for infinite systems which cannot be described adequately on a single
Hilbert space. A striking example is provided by the elementary excitations
in superfluid helium, which were postulated by Landau and detected later by
inelastic neutron scattering experiments. The reason is that these excitations
have zero nonrelativistic mass, and objects with zero nonrelativistic mass cannot
be described on a Hilbert space.

We have seen, in Subsection 7.4.1, that particles of nonzero mass are described
by projective representations of the Galilei group G. The true representations of
G were analyzed by Inönü and Wigner (Inönü and Wigner, 1952).3 They con-
cluded that irreducible unitary representations of G did not contain states that
were either localizable in space or in velocity space. The reason, briefly, is as fol-
lows. One of the invariants of the Lie algebra of G is the quantity P 2 (page 123);
in an irreducible representation, it will be a constant. In such a representation
there are simply not enough p-values available to form a δ-function in x-space.4

This naive argument was replaced by mathematically correct ones by Inönü and
Wigner. The irreducible representations are defined on the spaces L2(S2(r),dS),
where S2(r) is the 2-sphere p2 = r > 0 and dS is the rotation-invariant measure

2 The Reeh–Schlieder theorem of relativistic quantum theory suggests the possibility that the
adjective nonrelativistic used above may not be essential. We shall not stop to discuss this
fascinating question. The interested reader is referred to (Reeh and Schlieder, 1961; Streater
and Wightman, 1964; Haag, 1993), for a start.

3 Although this paper was published two years before Bargmann’s 1954 paper in which the
latter showed that a nonrelativistic particle of mass m �= 0 corresponded to a projective
representation of G (discussed in Subsection 7.4.1), Bargmann’s results were known to Inönü
and Wigner. See p. 706 of their paper, particularly footnote 2.

4 The reader who is not familiar with the true representations of the Galilei group is referred
to the review article (Lévy-Leblond, 1972), or the article (Sen, 1972). These articles use
the Dirac formalism. The quantities E and p are not eigenvalues but spectral values, but it
is convenient to talk about the energy and momentum of states, and lack of mathematical
rigour does not lead to serious errors in this instance.
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on it.5 One may, instead, try to work with a reducible representation, containing
all p-values, defined on the space L2(R3,dp). In this case R3 may be considered
as momentum space, with dp the Lebesgue measure on it. If E and p are the
spectral values of H and P (normally interpreted as energy and momenta), then
their transformation properties under the boost (0, 0,v, 1) turn out to be

E → E + p · v,

p → p.
(12.1)

That is, the momentum is invariant under the boosts, but the energy is not. We
have the following situation:

(i) According to (12.1), it is not possible to assign a definite E to a given p2;
in the language of many-body problems, the existence of a dispersion law is
precluded in a unitary representation.

(ii) According to Landau, it is precisely elementary excitations with the trans-
formation properties (12.1) that are responsible for the phenomenon of
superfluidity below a certain critical velocity.6 These excitations have a
dispersion law E = E(p2).

From (12.1) we see that a value of p2 will never define a unique value of E as long
as the boosts are implemented on the Hilbert space. To create room to define a
dispersion law, we have somehow to ensure that the boosts are not implemented
on the Hilbert space. One possibility is to use a Hilbert bundle as state space, in
which the boosts are implemented not on the fibres, but only on the base space.7

This will be done in the following. We begin with a definition of Hilbert bundles
which will suffice for our present purposes.

12.2 Hilbert bundles

A Hilbert bundle B is the topological product B = X × H, where X is a
second-countable, Hausdorff topological space and H a Hilbert space over C with
its metric topology. Thus a point b ∈ B may be written uniquely as b = (x, φ),
where x ∈ X and φ ∈ H. The map π : B → X defined by π(x, φ) = x is called
the projection of the bundle. A map σ : X → B that satisfies π(σ(x)) = x is
called a section, or cross-section of X in B.

A Hilbert bundle may be pictured on a plane, with the X-axis representing
the base space and the Y -axis the fibre, as in Fig. 12.1. The lines parallel to the
Y -axis are some of the fibres, and s is a continuous cross-section.

5 The case r = 0 is exceptional, and need not be considered in the present context.
6 An account of Landau’s theory is given in the book by Khalatnikov (Khalatnikov, 1965).

This book also contains translations of two of Landau’s original papers.
7 A brief account of the topological spaces called fibre bundles is given in Section A8.1.
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Fig. 12.1. A Hilbert bundle

Sections of a Hilbert bundle can be added, and multiplied by complex numbers;
they form a linear space over C. If the base space has a measure defined on it,
then one can use this measure, together with the metric on the fibre, to define
a metric on the space of sections. This construction defines direct integrals of
Hilbert spaces, which one encounters in the theory of infinite-dimensional group
representations.

A bundle map h : B → B is a homeomorphism that preserves fibres, i.e.,

π(b) = π(b′) =⇒ π(h(b)) = π(h(b′)).

This means that θ induces a base map θ̄ : X → X according to the formula

π ◦ h = h̄ ◦ π

(see Fig. A8.2, page 352); the induced base map is a homeomorphism.

12.3 Bundle representations

In the following we shall assume that G is a topological group, H a closed
subgroup of it, X = G/F the space of left-cosets of F furnished with the quotient
topology, and p : G → G/F the projection. The action of G upon itself by left-
translations, i.e., the map G × G → G defined by (g1, g2) = g1g2, defines an
action of G on X by left-translations which we shall denote by gx, where x ∈ X.

We shall represent G on the Hilbert bundle B = X ×H, where H is a separable
Hilbert space over C. Let x ∈ X, φ ∈ H. Then b = (x, φ) ∈ B, and we may write

gb = g(x, φ) = (gx, u(g, x)φ), (12.2)

where u(g, x) is a unitary operator on H which satisfies the condition

u(g′g, x) = u(g′, gx)u(g, x) (12.3)
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that arises from the associativity of multiplication in G,

(g′g)b = g′(gb). (12.4)

The problem of determining the action of G on B reduces to solving (12.3).
These equations are solved as follows. Let η : X → G be a section of X in G,

and set
k(g, x) = η(gx)−1 · g · η(x). (12.5)

It is easily seen that the quantities k(g, x) so defined satisfy (12.3). Although
each factor on the right-hand side of (12.5) is an element of G, one may readily
verify that k(g, x) is in fact an element of H. It is called a (G, X, H)-cocycle.
Let now D be a continuous unitary representation of H upon H, and set

u(g, x) = D(k(g, x)). (12.6)

This u(g, x) fulfils the cocycle condition (12.3), and solves the algebraic part of
our problem.8

However, as G is a topological group, one would expect a group action to
satisfy some continuity requirements before it can properly be called a repre-
sentation. The continuity requirement that has proved itself is strong continuity,
which we have already encountered in the statement of Stone’s theorem (Subsec-
tion 7.5.3). The action of G on X is continuous, but the continuity of the action of
u(g, x) on H remains to be addressed. According to a theorem of von Neumann,
a unitary group representation is strongly continuous if it is weakly measurable
(page 306). For the latter, it is sufficient that η be measurable, and such choices
are always possible. We refer the reader to Mackey’s Chicago lectures (Mackey,
1976) for full statements and proofs. Measurability of η implies the measurability
of k(g, x), which in turn implies the continuity of u(g, x) = D(k(g, x)). Finally,
we observe that the representation itself is independent of the section η; a change
of sections is equivalent to a unitary transformation on the Hilbert space H, a
result which is not difficult to establish.

Note that we have not assumed that G is a Lie group. If it is, there may be
further results of physical interest. We refer the interested reader to (Sen, 1978,
1986; Sen and Sewell, 2002) for details and for alternative constructions.

12.3.1 Landau excitations

We shall use the term Landau excitations for the excitations which were called
phonons and rotons by Landau; the two are now believed to be the same, and

8 This method of solving (12.3) was devised by Wigner (Wigner, 1939), who traced its ante-
cedants to Frobenius and Schur. See footnote 15 on page 167 of his article (page 47 in
(Dyson, 1966)). It seems to have been discovered independently by Whitney in the course
of his pioneering investigations on fibre bundles. The references may be found in (Steenrod,
1972).
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are called phonons. Our justification for using a different term is that phonons
in superfluid helium are very different from phonons in crystal lattices.9

We shall apply the construction of the preceding section to the Galilei group.
That is, we shall take (in the notations of Section 7.4):

(i) G to be the Galilei group, g = (b, a,v, R) ∈ G.
(ii) H = T0 × E3 ⊂ G. Here T0 and E3 are respectively the subgroups of time

translations and Euclidean transformations, and H = {(b, a, 0, R)}.

Then:

(i) H is a normal subgroup of G.
(ii) The space X of left-cosets of H in G is a group: X ∼ {(0, 0,w, 1)}. We shall

call X the space of boosts and denote an element of it by w.
(iii) G has a natural action on X given by gw = (b, a,v, R)w = v + Rw.
(iv) There exists a natural continuous cross-section of X in G given by η(w) =

(0, 0,w, 1).
(v) With g = (b, a,v, R) and the above cross-section, the cocycle k(g,w) is

given by
k(g,w) = (b, a − (v + Rw)b, 0, R). (12.7)

The Hilbert bundle on which we shall represent G will be B = X×L2(R3,dp),
where R3 is the three-dimensional momentum space, dp the Lebesgue measure
on it and X as defined above. The only thing that remains to be done is to
choose the representation D of H.

12.3.1.1 Unitary representations of E3 and H

The group E3 itself is a semidirect product10 of space translations T3 and rota-
tions: E3 = T3 ∧ O+(3). The representation theory of such groups is based on
two pillars:

(i) That of one-parameter groups, which are commutative; therefore their
irreducible unitary representations are one-dimensional. They are complex
numbers of modulus unity and are called characters. Their theory was
developed by Pontrjagin (Pontrjagin, 1939). If the group is compact, it is

9 However, the latter can also be described in terms of bundle representations, but with a
space group replacing the Euclidean group (Borchers and Sen, 1975).

10 We have denoted the semidirect product, for which there is no standard notation, by the
symbol ∧. It should be noted that, unlike direct products, semidirect products of two groups
cannot always be defined; one of the groups has to be a group of automorphisms of the other,
and the semidirect product structure is defined in terms of this automorphism (which need
not be unique). In physics, the rotation group is the group of automorphisms of T3 which
leaves the Euclidean metric invariant, and the Lorentz and space-time translation groups
are similarly related.

The groups O(3) and O(2) are the orthogonal groups in three and two dimensions
respectively, which include reflections. The rotation groups are their connected components,
and are denoted by O+(3) and O+(2) respectively.
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isomorphic with the two-dimensional rotation group O(2), and its characters
are labelled by an integer; if it is not compact, it is isomorphic with R, and
its characters are labelled by a real number.

(ii) That of compact groups, of which O(3) is one. The representation theory of
compact groups has an extensive literature, of which we mention only the
book by Weyl, the main architect of the subject (Weyl, 1946).

It should be added that the representation theory of O(3) was developed in much
greater detail, for application to atomic spectroscopy, by Wigner (Wigner, 1931;
English translation, 1959). Wigner’s main results will be known to every student
of physics.

The representations of E3 may be constructed by the method of induced rep-
resentations that was developed by Wigner to deal with the Poincaré group
(Wigner, 1939). A classification of the irreducible unitary representations of E3

may be found in (Lévy-Leblond, 1972) or (Sen, 1972).
We shall denote an element of E3 by (a, R). The group multiplication law

in E3 is (a′, R′)(a, R) = (a′ + R′a, R′R). Let φ ∈ L2(R3,dp). We choose the
following representation of E3 on L2(R3,dp):

(U(a, R)φ)(p) = e−ia·p(φ ◦ R−1)(p), (12.8)

where φ ∈ L2(R3,dp) (the sign of the exponent is immaterial; it has been cho-
sen to achieve conformity with Landau’s equations (12.1)). Note that on the
right-hand side of (12.8) the character of T3 is computed before the rotation is
applied.11 This representation is not irreducible, but is the direct integral of all
irreducibles with helicity zero with the Lebesgue measure. Finally, we choose,
arbitrarily, a dispersion law (function)

E = E(p2) (12.9)

and construct with it the following representation of H:

(D(b, a, R)φ)(p) = ei(bE−a·p)(φ ◦ R−1)(p). (12.10)

This is the representation that we shall use.

12.3.1.2 Landau excitations as bundle representations

With k(g,w) given by (12.7) and D by (12.10), the action of G on the bundle
B is given explicitly by the formula

(b, a,v, R)(w, φ) = (v + Rw, eib[E+(v+Rw)·p] e−ia·p φ(R−1p)). (12.11)

11 The same rule has to be followed for computing (U(a′, R′)[U(a, R)φ])p to verify the group
multiplication law.
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To make the result more transparent, let us look at the rest-fibre w = 0 and the
action of the group elements (b, a, 0, 1) and (b, a,v, 1) on it. We find that

(b, a, 0, 1)(0, φ) = (0, eibE e−ia·p φ(p)), (12.12)

whereas

(b, a,v, 1)(0, φ) = (v, eib(E+v·p) e−ia·p φ(p)). (12.13)

This shows that E and p indeed transform under the boosts as required by
Landau’s formula (12.1). However, as a boost maps a fibre of B to a wholly
different fibre, there can be no superposition of states with same p2 but different
E; in other words, the existence of a dispersion law is no longer contradicted by
the requirement of Galilei invariance.

If one takes the transformation properties of the energy and momentum of a
particle of mass m under a Galilei boost v and sets m = 0, one recovers Landau’s
relations (12.1). This justifies the statement made earlier that elementary excita-
tions described by the bundle representation (12.11) are nonrelativistic zero-mass
systems.

12.3.1.3 Unstable excitations

Clearly, there are enough momenta available in the representation (12.8) to form
a δ-function in x-space. This, however, is physically insignificant, as elementary
excitations generally occupy fairly narrow momentum bands. They also tend to
have finite lifetimes. This suggests that they be viewed as representations of the
Galilei semigroup G↑, which is the same as the Galilei group, except that time
translations are not invertible; b ≥ 0 in (b, a,v, R). However, G↑ has an identity
which is the same as the identity of G, and therefore, although the generic
element (b, a,v, R) of G↑ does not have an inverse, the elements (0,a,v, R) do:

(0,a,v, R)−1 = (0,−R−1a, R−1v, R−1). (12.14)

The existence of the identity element implies12 that G↑ has infinitesimal gen-
erators (which are the same as those of G). It also means that, with suitable
restrictions,13 one can develop the theory of both Hilbert space and bundle rep-
resentations for such semigroups along the same lines as that for groups. The

12 We shall not go into details. The reader is referred to (Sen and Sewell, 2002) and the
references cited there.

13 The restrictions are that the semigroup have a coset decomposition with respect to a
maximal subsemigroup, i.e., the base space be definable, and that the subsemigroup be
represented on the fibres. These restrictions are sufficient, but their necessity has not been
established. There appears to be no general theory of either linear or bundle representa-
tions of semigroups. Since decaying particles and excitations are part of nature, this may
be considered as a gap in the literature.
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analogue of the bundle representation (12.13) becomes

(b, a,v, 1)(0, φ) = (v, e−bΓ eib(E+v·p) e−ia·p φ(p)) for b ≥ 0, (12.15)

where Γ > 0 is the half-life of the excitation. We refer the reader to (Sen and
Sewell, 2002) for further details.

12.4 Dynamics on Banach bundles

Banach spaces are norm-complete linear spaces in which the norm does not nece-
ssarily satisfy the polarization identity (page 294).14 A brief account of normed
spaces is given in Section A5.1. We shall define a Banach bundle to be the
topological product C = X × W, where the fibre W is a Banach space. The
following paragraph is taken from (Sen and Sewell, 2002):15

Symmetries are usually studied via group rather than Lie algebra actions,
because they avoid the problems associated with unbounded operators.
By contrast, dynamics is usually studied via the infinitesimal genera-
tor of the one-parameter group or semigroup of time translations – the
Hamiltonian – because the Hamiltonian represents the total energy of the
system in question.16 In quantum mechanics, the Hamiltonian is an opera-
tor on a Hilbert space. In classical mechanics, it is a complete vector field
on a manifold of states. From physical considerations, one would expect a
one-parameter group or semigroup of time translations of a Banach bundle
to possess an infinitesimal generator which would act as a linear trans-
formation on the fibres and a vector field on the base space. To the best
of the authors’ knowledge, such mathematical objects have not yet been
studied. . .

The last sentence is still valid. Therefore we have to write separate equations
of motion on the base space and on the fibres. The action of the group itself
provides solutions of these equations of motion.

Let C be a Banach bundle and T a one-parameter group or semigroup of fibre-
preserving maps Tt : C → C, where the parameter is denoted by the subscript t,
which stands for time.17 If T is a group, then t ∈ R; if it is a semigroup, then
t ∈ R+ = [0,∞). The pair (C, T ) will be called a dynamical system.

14 The polarization identity expresses the inner product as a function of the norm.
15 The material of this section, including its title, is taken from the same reference.
16 Here and in the following the term semigroup will always denote a semigroup with iden-

tity, because only these semigroups have infinitesimal generators. The interested reader is
referred to (Hille, 1965).

17 By convention, a one-parameter group or semigroup is assumed to be at least once
differentiable with respect to that parameter.
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We shall denote a point in C by c = (x, ϑ), where x ∈ X and ϑ ∈ W. The
action of T on C will be written explicitly as

Tt(x, ϑ) = (Stx, W (t, x)ϑ), (12.16)

where S = {St|t ∈ R or t ∈ R+} is a one-parameter group or semigroup of
base maps and W (x, t) is a linear transformation on W. They have to satisfy the
requirements of associativity of multiplication in T , namely

St′(Stx) = St′+t x, (12.17)

and
W (t′ + t, x) = W (t′, Stx)W (t, x). (12.18)

The entities x and ϑ may be regarded as functions of time, and written accord-
ingly as x(t) and ϑ(t). Then the x and ϑ that appear in (12.16) should be regarded
as their initial values x(0) and ϑ(0), and the expressions Stx and W (t, x)ϑ as
solutions of the initial-value problems for the equations of motion for x(t) and
ϑ(t) respectively. Note that S0 = id and W (0, x) = I, the identities on X and
W respectively. The equations of motion themselves may be written as

dx

dt
= F (x) (12.19)

and
dϑ

dt
= L(x)ϑ, (12.20)

where

F (x) = lim
h→0

(Sh − id)x
h

for all x ∈ X (12.21)

and

L(x)ϑ = lim
h→0

(W (x, h) − I)ϑ
h

for all x ∈ X, ϑ ∈ W. (12.22)

Equation (12.19) shows that time translations engender a flow on the base
space which is autonomous; equation (12.20) then shows that this flow drives
a flow on the fibres. If W is a Hilbert space and X a manifold, then one may
describe the situation as an autonomous classical system driving a quantum
system. On the other hand, physics would suggest that it is the motion of the
composite system, represented on the bundle, that defines the motion on the
base space. Passing from the global to the local seems to interchange potter and
pot!18

The reader is referred to (Sen and Sewell, 2002) for further development of
these ideas.

18 The allusion is to the line from The Rubayyat of Omar Khayyam that was quoted on page 4.
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12.5 Operator algebras and states

It is clear that, if the multiplication of operators is defined in the standard way,
the bounded operators on a complex Hilbert space H form an algebra over C. We
shall denote this set by B. Recall that there is a norm defined on B (page 323):

||A|| = sup
||x||=1

||Ax||,

where the supremum is taken over all vectors of unit length in H. The norm
satisfies the conditions

||A|| ≥ 0, ||A|| = 0 iff A = 0,

||cA|| = |c| · ||A|| for all c ∈ C,

||A + B|| ≤ ||A|| + ||B||,
||AB|| ≤ ||A|| · ||B||.

(12.23)

The third inequality is the triangle inequality, which shows that the norm is, inter
alia, a metric on the algebra. Therefore the notions of Cauchy sequences and
completeness make sense. However, the norm will never satisfy the polarization
identity in any nontrivial case, i.e., there is no question of an inner product. The
algebra is a Banach space which is almost never a Hilbert space.

The metric topology induced by the norm on B in the standard way is called
the uniform or norm topology.The algebra is equipped with the operation of
taking the adjoint – called involution in the mathematical literature – which
satisfies

(cA)� = c̄A�,

(AB)� = B�A�.
(12.24)

An algebra with an involution is called a �-algebra (read: star-algebra). An
algebra over C that satisfies conditions (12.23) and (12.24) is called a normed
�-algebra. Equations (12.23) show that the algebraic operations are continuous
in the norm topology.

12.5.1 C�-algebras

We now remove the underlying Hilbert space, and define an abstract algebra as
follows:

Definition 12.2 (C�-algebras) A normed �-algebra A over C is called a C�-
algebra if it satisfies the following conditions:

(a) It is complete in its norm.

(b) ||A�A|| = ||A||2 for all A ∈ A.

It follows from the inequality ||AB|| ≤ ||A|| · ||B|| and the second of these con-
ditions that ||A�|| = ||A||; the easy verification is left to the reader. (An algebra
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that is complete in the norm but does not necessarily satisfy condition (b) is
called a Banach algebra.)

Examples 12.3 (Examples of C�-algebras)

(i) Let X be a compact Hausdorff space, and C(X) the space of complex-valued
continuous functions on it. This space is complete in the sup norm (denoted
by ||·||∞; see Subsection A5.2.1). Since the complex conjugate of a continuous
function is a continuous function, C(X) is a commutative C�-algebra.

It is a remarkable theorem of Gelfand that every commutative C�-algebra
is the algebra of continuous complex-valued functions on some compact
Hausdorff space. The reader will find an excellent easy-to-read account in
the text by Simmons (Simmons, 1963).

(ii) The set B of all bounded operators on a Hilbert space is a C�-algebra with
the usual norm. In this case neither property of Definition 12.2 is obvious.
Proofs may be found in (Bratteli and Robinson, 1979).

Note that an abstract C�-algebra is not required to have an identity. The
examples given above do have identities, and we shall not have occasion to
consider operator algebras that do not have identities.

12.5.2 States on C�-algebras

A state on a C�-algebra is defined to be a positive, normalized linear functional
on the algebra.19 The formal definition is as follows:

Definition 12.4 (States on C�-algebras) Let A be a C�-algebra with iden-
tity. A functional ω : A → C is called a state on A if it fulfils the following
conditions for all c1, c2 ∈ C and all A1, A2 ∈ A:

ω(c1A1 + c2A2) = c1ω(A1) + c2ω(A2),

ω(A) = ω(A�),

ω(A�A) ≥ 0,

ω(I) = 1.

(12.25)

Crucially, states on A also satisfy the Schwarz inequality:

|ω(AB)|2 ≤ ω(A�A)ω(B�B) for all A, B ∈ A. (12.26)

We shall denote the set of states on A by S(A), or briefly by S. It is an
important fact that S is a convex set; i.e., if ω1, ω2 ∈ S and 0 ≤ λ ≤ 1, then

19 We remind the reader that a functional is a map from a linear space into the real or complex
numbers. See the footnote on page 292. The term state, in use in the mathematical literature,
has been taken from physics.
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their convex combination

λω1 + (1 − λ)ω2

also belongs to S. A state that cannot be expressed as a convex combination
of two different states is called an extremal state. In the language of physics,
extremal states correspond to pure states.

12.6 Representations of C�-algebras

Let A be a C�-algebra, and B an algebra of bounded operators, furnished with
the norm topology, on a separable Hilbert space H. With these topologies,20 a
continuous map

π : A → B (12.27)

is called a representation of A on H if the following conditions are satisfied:

π(aA + bB) = aπ(A) + bπ(B),

π(AB) = π(A)π(B),

π(A�) = π(A)�,

π(IA) = IH.

(12.28)

We are assuming that A has an identity; if it does not, the last condition will be
inapplicable. A representation is called faithful if π(A) = 0 ⇔ A = 0.

A representation π of A as defined above has the following basic properties
(we omit the proofs):

(i) π preserves positivity, i.e., A ≥ 0 ⇒ π(A) ≥ 0 for all A ∈ A.
(ii) π preserves continuity of the algebraic operations.
(iii) ||π(A)|| ≤ ||A|| for all A ∈ A, equality holding only if π is a faithful

representation.

12.6.1 The Gelfand–Naimark–Segal theorem

The usefulness of C�-algebras in physics stems from the following theorem:

Theorem 12.5 (Gelfand–Naimark–Segal) Let A be a C�-algebra and ω a
state on it. Then there exists a Hilbert space Hω, a vector Ωω ∈ Hω and a
representation πω of A such that

ω(A) = (Ωω, πω(A)Ωω).

20 As there are several different and useful topologies on the algebra of bounded operators
on a Hilbert space, it is essential to specify which topology is being used to define a
representation.
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Proof The full proof requires more machinery than we have developed. We shall
therefore outline only the main steps, which will be enough to bring out the
feature that is our chief concern.

(1) Recall that the algebra A is, inter alia, a linear space over C. The state ω

defines a Hermitian form on this space through the formula

(A|B) = ω(A�B). (12.29)

This form, linear in B and antilinear in A, is semidefinite; the equality in
ω(A�A) ≥ 0 cannot be excluded.

(2) There is a standard algebraic procedure to deal with this deficiency. Let Iω

be the subset of A defined by

Iω = {X|X ∈ A, (X|X) = 0}. (12.30)

Then Iω is a subspace of A, i.e., an additive group. It can be shown that
X ∈ Iω ⇒ AX ∈ Iω, i.e., Iω is, in algebraic terms, a left-ideal in A. It is
sometimes called the Gelfand ideal of the state ω.

(3) The left-ideal Iω partitions A into equivalence classes as follows: A and B

belong to the same class iff A−B ∈ Iω. The class containing X is the subset
{X + J |J ∈ Iω}. The set of equivalence classes is a linear space over C. The
zero vector in this space is the class Iω itself. We denote the equivalence
class of A by [A].

(4) Let [X] and [Y ] be two distinct equivalence classes, neither of them being
Iω itself. Let X ′ ∈ [X] and Y ′ ∈ [Y ]. One verifies that (X|Y ) = (X ′|Y ′),
and that (X|X) > 0.

(5) One therefore defines an inner product ([X], [Y ]) on the space of equivalence
classes by the formula ([X], [Y ]) = (X|Y ); the particular choices of X and Y

are immaterial. One verifies that ([X], [Y ]) have all the properties required
of an inner product.

(6) The space of equivalence classes, furnished with this inner product, is a
pre-Hilbert space, which is the name given to a linear space that has all
the properties of Hilbert space except completeness. Its metric completion in
the metric defined by the above inner product (Appendix A4) is the required
Hilbert space Hω.

(7) The product in A defines an action of A on the vectors of the pre-Hilbert
space. Let ϕ = [B] and ψ = [AB]. Then this action is defined by the formula

πω(A)ϕ = ψ. (12.31)

The action of A on the pre-Hilbert space can be extended to the whole of
Hω by continuity (by a general procedure in linear analysis).
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(8) Finally, one defines Ωω = [I], the equivalence class containing the identity.
Then one shows that

ω(A) = (Ωω, πω(A)Ωω).

It is clear that the left-ideal Iω depends strongly on the state ω, which need
not be a pure state. The state Ωω, however, is a vector state in the Hilbert
space Hω.

Since the proof of the Gelfand–Naimark–Segal theorem is strictly constructive,
it is also known as the GNS-construction.

12.6.2 The weak operator topology on a representation

An abstract C�-algebra has a natural topology defined on it, namely the norm
topology. It has been proved that the norm which makes a normed algebra into
a C�-algebra is unique. The situation is very different with algebras of opera-
tors on a Hilbert space. As we have just seen, the GNS-construction produces,
from any state on an abstract C�-algebra, an algebra of operators on a Hilbert
space.21 We have already encountered a topology other than the norm topology
on an algebra of operators on Hilbert space in connection with Stone’s theorem:
the strong topology (Subsection 7.5.3 and Appendix A6). We shall now define
another topology, called the weak operator topology.

Definition 12.6 (Weak operator topology) Let B be the set of bounded
operators on the Hilbert space H, {A(k)|k ∈ N} a sequence in B and {ψn|n ∈ N}
an orthonormal basis in H. Denote the matrix elements of A(k) in this basis by
a
(k)
mn = (ψm, A(k)ψn). If the sequences

{a(k)
mn|m, n fixed, k ∈ N}

converge for all m, n, and

lim
k→∞

a(k)
mn = amn,

then they define an operator A with matrix elements amn in B. This notion of
convergence defines a topology on B which is called the weak operator topology.22

21 An algebra of operators on a Hilbert space which is also a C�-algebra is called a concrete
C�-algebra.

22 For a proper definition, sequential convergence has to be replaced by filter convergence
(defined in Subsection A3.8.1), but we shall gloss over this point.
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Weak operator convergence is often written as follows:

A(k) w−→ A.

Recall that we have already defined the notion of strong operator convergence and
used it to formulate Stone’s theorem (page 133). If we denote norm convergence
by A(k) → A and strong operator convergence by A(k) s→ A, then we have the
implications

A(k) −→ A =⇒ A(k) s−→ A =⇒ A(k) w−→ A,

but the implications cannot be reversed. Weakening (= coarsening) the topology
shrinks the family of open sets and therefore enlarges the family of limit points;
and that is why a sequence that converges in the weak operator topology may fail
to converge in the norm topology. More generally, as there are several distinct
(and useful) notions of convergence on a representation but only one on the
algebra itself, a sequence that converges in a representation in one of these senses
may fail to converge in the algebra.

12.7 Algebraic description of infinite systems

Our discussion of C�-algebras, states and representations involved neither space
nor time. One needs both to describe a physical system. Typically, we would like
to describe the temporal evolution of a physical system which contains a finite
number of particles in a finite nonzero volume. We therefore associate with each
bounded open region of space O ⊂ R3 a C�-algebra AO of observables which
satisfies the following conditions:23

(i) If O, O′ are bounded open regions in R3, then

O ⊂ O′ =⇒ AO ⊂ AO′ .

This property is called isotony.
(ii) If O ∩ O′ = ∅, then every A ∈ AO commutes with every A′ ∈ AO′ .

We now define
A =

⋃
O⊂R3

AO, (12.32)

where the overbar indicates completion in the norm. That is, we first form
the algebra which is the union of the AO over all bounded open regions O

in space, and then complete this algebra in the norm. It has, of course, to be

23 Recall that the term algebra of observables means the algebra generated by a given set
of observables. The product of two self-adjoint operators is not self-adjoint unless the two
commute, and therefore the algebra of observables contains elements that are not self-
adjoint, and therefore cannot be called observables.
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established – just as in the completion of Q to R – that new elements so intro-
duced can be welded seamlessly into the algebra. The problem here is simpler
than in the completion of Q to R, because there is no operation of division that
has to be dealt with.

The result is the algebra A = A(R3), which is a C�-algebra. It is called an
algebra of quasi-local observables.

12.7.1 C�-dynamical systems

Before defining the dynamics, let us state some important ways in which the
algebraic approach differs from the Hilbert space approach.

(i) Observables as self-adjoint operators are associated with representations
and not with the abstract algebra. If two representations are unitarily
inequivalent, they will not have the same set of observables in the ordi-
nary quantum-mechanical sense. It is perhaps unfortunate that the term
observable is used in two senses when so much of the physics lies precisely
in the difference between the two.

(ii) A Hilbert space description may be recovered by the GNS-construction from
an arbitrarily chosen state ω. The result depends strongly upon ω, and this
is the extra generality that one achieves in the algebraic description as
compared with von Neumann’s formalism. This extra generality is, in some
sense, equivalent to the generality afforded by inequivalent representations
of the canonical commutation and anticommutation relations for infinitely
many degrees for freedom (CCR and CAR). It is effectively exploitable in the
algebraic formalism,24 e.g., to describe different thermodynamic phases and
equilibrium states at different temperatures; states at different temperatures
correspond to inequivalent representations.

(iii) The formalism of ordinary quantum mechanics devolves around the trans-
formation theory of Dirac, i.e., the equivalence between the Schrödinger
and the Heisenberg pictures. A similar situation does not obtain in the C�-
algebra formulation. The action of a group of automorphisms on the algebra
will define, uniquely, a group of automorphisms on the states, but the con-
verse may not be true. For this reason, a C�-dynamical system is generally
defined as a one-parameter group of automorphisms of the algebra; see, e.g.,
(Bratteli and Robinson, 1981) or (Sewell, 2002).

Definition 12.7 (C�-dynamical systems) A C�-dynamical system is defined
to be a triple (A,S(A), αt), where A is a C�-algebra, S(A) the set of states on
it, and {αt|t ∈ R} a one-parameter group of automorphisms of A. This group
induces a one-parameter group of automorphisms {α�

t |t ∈ R} of S(A) by the

24 It is possible to associate C�-algebras with the CCR and CAR. See, for example, (Emch,
1972) for a general discussion, or (Sewell, 2002) for simple examples.
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formula

(α�
t ω)(A) = ω(αtA).

12.7.2 Observables at infinity

Let Λ be a fixed bounded open set in R3, and let O be any bounded open set
that does not intersect Λ: O ∩ Λ = ∅. Define

ÃΛ =
⋃

O⊂R3�Λ

AO. (12.33)

Then, if AΛ is the algebra of observables inside Λ, ÃΛ can clearly be interpreted
as the algebra of observables outside Λ. Furthermore, ÃΛ ⊂ A.

Choose now a state ω ∈ S(A) and let πω(A) be the representation of A on
the Hilbert space Hω. Then πω(ÃΛ) is well defined, and so is the intersection of
the πω(ÃΛ) for all Λ; call it ∆ω:

∆ω =
⋂
Λ

πω(ÃΛ).

This set is nonempty, because it contains at least the multiples of the identity.
Now comes the essential part. Since ∆ω is a set of operators on the Hilbert space
Hω, we can form its closure in the weak operator topology :

∆w-cl
ω =

[⋂
Λ

πω(ÃΛ)
]w-cl

. (12.34)

The weak closure operation may introduce limit points which belong to the rep-
resentation πω, but not to the algebra A. It is this feature which is not available
in N -particle quantum mechanics on a Hilbert space. Of course, if the state ω

is identifiable as an N -particle state with N < ∞, there will be no such limit
point.

The set ∆w-cl
ω was introduced by Lanford and Ruelle (1969), who called it the

set of observables at infinity of the representation πω. The phrase ‘observables
at infinity’ means that these observables make their presence felt outside any
bounded region of R3; they may be compared with intensive thermodynamic
variables of infinitely extended systems.

The quantum theory of measurement devised by Hepp (Hepp, 1972) to account
for wave function collapse without invoking the observer’s conscious ego was
based on these observables at infinity.

12.8 Temporal evolution of reduced descriptions

In Sewell’s measurement theory, the Hilbert space of the apparatus was assumed
to be finite-dimensional. If we wish to lift this restriction, we have to be able
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to accommodate the possibility that an eigenspace of a macroscopic observable
is infinite-dimensional. This may be difficult to achieve with a density matrix;
since a density matrix has unit trace, its nonzero eigenvalues cannot be infinitely
degenerate. An alternative that suggests itself is a Hilbert bundle based upon
the space of eigenvalues of the macroscopic operator, the fibres being infinite-
dimensional Hilbert spaces.

Let us now leave the measurement problem aside, and consider a macroscopic
observable O with a continuous spectrum. Let B = Λ × H be a Hilbert bundle
based on the spectrum Λ of O; we shall assume the latter to be a connected
subset of R. The Hilbert bundle description of the system is useful only if the
temporal evolution of the system is given by a one-parameter family {Θ(t)} of
bundle maps B → B which induces a family {Θ̄(t)} of base maps Λ → Λ. The
latter are the maps that will be of physical interest. Let us consider two cases:

(i) O is a constant of motion, i.e., it commutes with the Hamiltonian H. In this
case all motion takes place on the fibres, and {Θ̄(t)} is the identity map.

(ii) O does not commute with the Hamiltonian. In this case the map {Θ̄(t)} is
nontrivial. This is exactly the case considered earlier, in Section 12.4 (with
a Banach space as fibre, but that makes no difference). There we noticed
that, while the base map is induced by the bundle map, the (differential)
equations of motion describe a flow on the base space that appears to be
autonomous, while the flow on the fibres is driven by it. Looking at (12.19)
and (12.20), it would not immediately be apparent that they derive from
the bundle map (12.16).

The temporal evolution of Λ, a macroscopic quantity, is described by (12.19).
This equation has some similarities to Pauli’s master equation (Pauli, 1928), but
in a different mathematical setting. We refer the reader to (van Kampen, 1954,
1962) for a more detailed analysis of macroscopic observables, and to (Emch,
1964) for generalized master equations.

The master equation is similar to the Boltzmann equation in that it describes
the temporal evolution of probabilities. However, the Boltzmann equation may
have solutions that are far from equilibrium, and cannot be captured by the
dynamical variables of equilibrium hydrodynamics. In 1977, Wightman wrote
that: ‘In fact, the existence and uniqueness of solutions [of the Boltzmann equa-
tion] for all t is not known to this day except in special cases’ (Wightman, 1977,
p. 151).25

The problem was attacked by Hilbert (Hilbert, 1912).26 Wightman continues:

However, the problem that Hilbert chose to attack was a different one
and, in some sense, more subtle: the problem of normal solutions. The

25 Reference in the original: (Grad, 1969).
26 A simplified version of some of Hilbert’s work and that of Chapman and Enskog may be

found in the textbook by Huang (Huang, 1963).
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Boltzmann equation ought to have a distinguished class of solutions in
which the probability distribution at each time can be characterized com-
pletely by a few macroscopic parameters such as the density n(x, t), velocity
v(x, t) and thermal energy density ε(x, t) mentioned above. The evolution
of these parameters is governed by equations of a kind of macroscopic con-
tinuum mechanics. The important problem of kinetic theory is to show that
general solutions of the Boltzmann equation are asymptotic for large t to
normal solutions; that is the problem of approach to equilibrium.

In the classical case, existence of the density and velocity fields n(x, t) and
v(x, t) may be justifiable on kinetic theory grounds alone, but that of the thermal
energy density field ε(x, t) requires an additional concept, that of local thermo-
dynamic equilibrium, which was introduced by K. Schwarzschild (Schwarzschild,
1906). It has turned out to be rather difficult to give a rigorous definition of this
concept, both classically and quantum-mechanically, and we refer the reader to
the book (Sewell, 2002) and the articles (Roos, 1995; Buchholz, Ojima and Roos,
2002; Bahr, 2006), where further references will be found. Except in special situ-
ations, the stability of macroscopic observables would generally be contingent on
some form of local thermodynamic equilibrium. The subject needs to be pursued.



Epilogue

This work has explored the implications of Einstein–Weyl causality for the
mathematical structure of space-time using the concept of geometrical points,
and has tried to justify the use of the latter in physics. In part, it may also be
viewed as a mathematical analysis of aspects of (i) the gap between theoretical
and experimental physics, (ii) Wigner’s ‘unreasonable effectiveness of mathema-
tics in the natural sciences’ and (iii) consequences of a partial abandonment of
the philosophy of reductionism. From these perspectives, a variety of other prob-
lems suggest themselves – or so it seems to the present author. This Epilogue is
devoted to brief discussions, partly speculative, of some of these problems.1

Causal automorphisms of an ordered space

In 1964, Zeeman published a paper with the title ‘Causality implies the Lorentz
group’, in which he showed that the group of causal automorphisms of Minkowski
space was the same as the inhomogeneous Lorentz group plus the dilatations
(Zeeman, 1964). Zeeman included space reflections (but not time inversion) in
the inhomogeneous Lorentz group. A generalization of Zeeman’s theorem was
given a few years later by Borchers and Hegerfeldt (Borchers and Hegerfeldt,
1972a,b).

Consider an ordered space M with cardinality ℵ0 such that M itself is a D-set.
Denote by G the group of causal automorphisms of M which do not reverse the
direction of time, and by M̌ the order-completion of M , and assume that M̌

is locally compact. It should be possible to extend the action of G on M to
an action on M̌ by a procedure analogous to completion. Having done that,
it should be possible to make G into a topological group using the compact-
open topology induced by the action2 of G on M̌ . The topological space G will
be completely regular,3 i.e., it will be uniformizable, and G should therefore
admit a uniform completion, which we shall denote by G̃. It should, in the first
instance, be possible to extend the group structure of G to G̃, which should then

1 The speculative parts aim to raise scientific questions, without attempting philosophical ana-
lyses which are beyond the present author’s competence. The dangers inherent in exceeding
this competence have been spelled out brilliantly in (Stebbing, 1944).

2 See (Steenrod, 1972, pp. 19–20) for a definition of the compact-open topology. Some mild
restrictions on the group G may be necessary.

3 This is a famous theorem of A. Weil. See (Hewitt and Ross, 1963, p. 70).
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make G̃ into a group of causal automorphisms of M̌ . If M̌ is not plagued by the
cushion problem, then Zeeman’s result suggests that, under certain conditions,
the group G̃ should be the inhomogeneous Lorentz group. The problem is to
determine these conditions. This problem may be addressed with existing tools,
and its solution will provide one further clue to understanding the ‘unreasonable
effectiveness of mathematics in the natural sciences’.

Narrowing the von Neumann–Heisenberg gap in measurement theory

Part II of this book is devoted to measurement theory, but our treatment is
incomplete ‘by definition’, as it were, owing to the limited nature of our objec-
tives. However, it may be completed to an account of what may be described as
‘conservative measurement theory’, as opposed to the ‘orthodox measurement
theory’ of von Neumann and Wigner.4 To do so, one has – in the opinion of
the present author – to begin with a thorough discussion of the impossibility
theorems of Shimony et al. Then one should examine how these impossibility
theorems hold up if the Hilbert spaces of object and apparatus are assumed to
be finite-dimensional, as Sewell does, with dim Ho being many orders of magni-
tude smaller than dim Ha. Such a study may narrow, significantly, the gap that
separates the Bohr–Heisenberg and the von Neumann–Wigner conceptions of
measurement. This hypothesis – or hope – is based on the following observations.
(i) The random errors of physical measurements may be attributed to thermody-
namic fluctuations in finite systems. Except perhaps near T = 0 K, these effects
will be very similar for classical and quantum systems. (ii) As a result, in most
quantum-mechanical measurements made away from T = 0 K, errors of mea-
surement will completely dominate the uncertainty principle bounds, so that the
latter may be ignored.5 (iii) Consequently, the use of finite-dimensional Hilbert
spaces becomes permissible. It is worth repeating that most of the observed
consequences of the superposition principle in the nonrelativistic region do not
depend on the Hilbert space being finite-dimensional. Von Neumann was only
concerned with problems that arose in infinite-dimensional Hilbert spaces.

Sewell has initiated a programme of analysing errors of measurement using
the large deviation principle (Sewell, 2007, personal communication).

Sets, real numbers and physics

As we saw earlier, Wigner’s article on ‘the unreasonable effectiveness of mathe-
matics in the natural sciences’ was based on Cantor’s view that mathematics
is a free creation of the human mind, and Cantor’s view was based on his
discovery of the power-set construction (page 245). What concerns us here is

4 The term orthodox measurement theory was used by Wigner (Wigner, 1963).
5 This is a point that van Kampen has made repeatedly (van Kampen, 1954, 1962, 1988).
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that |P(S)| > |S| unless S = ∅. Cantor’s set theory also contains an undecid-
able proposition, the continuum hypothesis, and both the continuum hypothesis
(page 246) and its negation are consistent with the ZFC axioms (page 249).

So much for the mathematics. In physics, if one keeps experimental limitations
in mind, the notion of a geometrical point (as emphasized by Borchers) cannot
be divorced from its neighbourhoods. The theorist talks to the experimentalist
not in terms of the points that constitute a set S, but only in terms of covers
of S by sets that are open, connected and small in some sense. The power-set
construction destroys the possibility of replacing points by neighbourhoods to
make contact with experimental physics, and therefore – or so the present author
believes – is not relevant to physics. Physics (for the moment, at least) seems
to need only two infinities, ℵ0 and ℵ, and loses nothing by adopting the con-
tinuum hypothesis. In the opinion of the present author, these assumptions are
entirely admissible at the time of writing (2009), and seriously weaken Wigner’s
‘unreasonable effectiveness’ case.

BenDaniel has made a suggestion which is iconoclastic, both mathematically
and physically. He proposes, effectively, to replace the real number system by a
nonstandard enlargement of the rationals, which should suffice to describe experi-
mental data and contain the infinitesimals,6 which would accord with intuition.
Derivatives can be defined, but not infinite sums. This is accomplished by a modi-
fication of the ZFC axioms for set theory, resulting in a theory which BenDaniel
calls ‘theory T’. Cantor’s power-set is no longer relevant to theory T, and the
problem of convergence or divergence of the renormalized perturbation series
becomes an undecidable proposition. The present author is not persuaded by the
physical arguments that underlie BenDaniel’s suggestions, but the mathematics
implied by his theory T appears to be worth pursuing independently of these
arguments. For further details, the reader is referred to (BenDaniel, 1998a,b,
2006); of these, the article (BenDaniel, 1998a) is the most easily readable.

Interaction of quantum and classical systems

The results obtained in experiments on the Mössbauer effect or the inelastic
scattering of neutrons by superfluid helium can be interpreted in two different
ways: (i) The incident particle interacts with a small group of particles in the
target, but the result can be approximated as if the incident particle was inter-
acting with the target as a whole. (ii) The incident particle indeed interacts with
the target as a whole. However, the experiments on the holographic manipula-
tion of cold atomic beams that were carried out by Morinaga and collaborators7

may be interpreted more easily as single microscopic objects interacting with a

6 The term is used here in the technical sense of Abraham Robinson’s nonstandard analysis.
See (Robinson, 1966).

7 See (Morinaga et al., 1996). A review of neutron interferometry may be found in (Rauch and
Werner, 2000).
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macroscopic system as a whole.8 This raises the following question: What are
the principles that govern the interaction of a microscopic system with a macro-
scopic quantum system as a single entity? One obvious requirement is that the
interaction should not be invariant under time reversal, but it is not clear to
the present author whether this should be a guiding principle or a goal of the
endeavour.

The macroscopic quantum system could well be an LED display that produces
a digital readout of, say, the energy of a single spinless particle. How the experi-
mentalist contrives this miracle may be regarded as a black box by the theorist.
It should not matter from which angle, and at what distance, one reads the
digital display; the latter should be a Euclidean scalar. A direct coupling of the
readout to the particle can only be with the Euclidian scalars in its wave func-
tion ψ(x) =

∑
i ciui(x) (the ui are energy eigenfunctions); the only Euclidean

scalars here are the expansion coefficients ci. These observations may be the
starting-point for a detailed analysis.

One could also ask a slightly different question. What are the principles that
govern the interaction of a microscopic system with a classical system?9 One
would like to know whether it is possible to define classical physical systems
that cannot interact with quantum systems. An affirmative answer to this ques-
tion will raise new questions about the nature of dark matter and the need for
quantizing gravity. In this context, the reader’s attention is drawn to the remark
by Einstein quoted on page 234.

Superseparability and noninterferometry

The phenomenon of entanglement, which is one of the consequences of the super-
position principle, has captivated popular imagination as Einstein’s ‘spooky
action at a distance’. Limitations on the superposition principle in quantum
mechanics may allow for possibilities that are, arguably, even spookier.

Suppose that a quantum-mechanical system can exist in vector states ψ1

and ψ2 that belong to inequivalent irreducible unitary representations π1 and
π2, respectively, of the canonical commutation relations. Can any meaning be
attached to the expression

c1ψ1 + c2ψ2

either mathematically or physically? The mathematical answer is trivially in the
affirmative. It is always possible to form the direct sum H of the Hilbert spaces
H1,2 that carry the representations π1, π2 respectively, and regard ψ1,2 as vectors

8 In the opinion of the present author, this description is roughly equivalent to the description
of a single particle, or photon, travelling along two different paths at the same time.

9 The interaction of quantum and classical systems has been investigated by Blanchard and
Jadczyk, but from other points of view; see (Blanchard and Jadczyk, 1993, 1995).
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in H. Then H1,2 become subspaces of H, and c1ψ1 + c2ψ2 is formally defined.
However, this formal process is physically meaningful only if there is a physically
significant observable on H such that

(ψ1, Oψ2) �= 0

for some ψ1 ∈ H1, ψ2 ∈ H2. If there is none, then the subspaces H1 and H2 will
be separated by superselection rules, and we shall say that vectors in H1 and H2

are superseparated. If the phenomenon of superseparability exists, then ψ1 and
ψ2 may have considerable spatial overlap at any given time, but they will not be
able to interfere with each other.

When inequivalent representations of the CCR are associated with equilibrium
states at different temperatures or with different thermodynamic phases, the
superposition c1ψ1 + c2ψ2 may not be meaningful, either physically or mathe-
matically. But when a microscopic system can be prepared in states that belong
to inequivalent representations, as in Reeh’s example, the question suddenly
takes on a different complexion: the existence or nonexistence of the phenomenon
of superseparability may be testable experimentally.

..
......................................................................

..........................................................................
••

E

αL αR

SL SR

L R

ψL ψL

Fig. E.1. Scheme for a noninterferometer

Think of a double-slit interference experiment using a coherent beam of α-
particles. If, as is generally assumed, all α-particles belong to the Schrödinger
representation, one should expect to observe the familiar double-slit interfer-
ence pattern. Now consider a modification of the experiment, as shown by the
scheme of Fig. E.1. The slits are SL and SR, the beams ψL and ψR, and they
meet at E. The difference is that, on the way to E, they pass through two
chambers L and R which are isolated, electromagnetically, from each other and
which contain adjustable magnetic flux lines of strengths α1 and α2, perpendic-
ular to the plane of the paper. These fluxes change the representations of the
beams ψL and ψR, and the geometry precludes the introduction of path differ-
ences within the beams. The experiment will consist of looking at interference –
or its absence – at E, and how the effect changes as α1 and α2 are changed,
assuming that the electromagnetic isolation of the chambers L and R is good
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enough to maintain the beams ψ1 and ψ2 in inequivalent representations. As
the most startling effect will surely be the total absence of interference, it seems
appropriate to describe the scheme of Fig. E.1 as a noninterferometer. If the
required degree of electromagnetic isolation can indeed be achieved in the labo-
ratory, the nonobservation of superseparability may be less dramatic, but more
troubling.

Schmüdgen’s operators (7.52) may be written as x+py, px. This suggests that
controllable substitutions px → px + ieAx, py → py + ieAy may result in a
greater variety of inequivalent representations. The question seems to be worth
investigating, both theoretically and experimentally.

Is nature law abiding?

Born’s critique of the notion of precise measurement (page 108) applies equally to
classical and quantum mechanics. In quantum mechanics, it applies not only to
quantum-mechanical measurement theory as discussed in this book, but also
to the measurement of parameters such as charges and masses that appear in
current theories. It would make sense to ask how the structure of physical theories
would be affected if one left a little wiggle room for physical parameters, meaning
that in nature what we call physical parameters are never precisely defined, and
that theories with precisely defined physical parameters are approximations (to
what, one does not know). To keep the discussion from being overly general,
let us consider only quantum field theories that have turned out to be useful,
despite their well-known difficulties. The field theories that exhibit a sensitive
dependence on one of their parameters are theories with zero-mass fields, like the
photon or the neutrinos. If there is a principle of indifference that asserts that
a physical theory constructed with ZFC mathematics should be indifferent to
undetectable changes in its physical parameters, then zero-mass theories will fall
afoul of this principle. But then an important class of zero-mass theories suffer
from the peculiar problem known as the solar neutrino problem. This problem
may disappear if one ceases to insist that the neutrinos have rest-masses which
are precisely zero. The suggestion is not that the neutrinos have very small but
different masses, but that the notion of precise rest-mass values is not a sensible
one. Nature is not law abiding, in the sense in which we presently understand
the phrase ‘laws of nature’.

The principle of indifference may be relevant to the problem of the divergent
perturbation series of QED, and also to the problem of quantum gravity. The
physical argument for quantizing the gravitational field is that interaction with
an unquantized gravitational field may lead to violations of the uncertainty prin-
ciple. But if these violations are undetectable, would one be able to tell whether
or not the gravitational field is quantized? Einstein’s obstinate refusal to accept
quantum mechanics as a satisfactory ‘description of reality’ is well known, but
the following quotation, from a letter to Max Born dated 1 June 1948, seems
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(at least to the present author) to shed a different light upon it (Einstein, 1971,
item 91, p. 178):

I should just like to add that I am by no means mad about the so-called
classical system, but I do consider it necessary to do justice to the prin-
ciple of general relativity in some way or other, for its heuristic quality is
indispensible to real progress.

Perhaps Einstein would have been less opposed to quantum mechanics if he could
be persuaded that gravity need not be quantized.

It seems to the present author that something like the principle of indifference
is a sine qua non for bridging the gap between theoretical and experimental
physics, but at the moment one can only speculate on how to express such
a principle mathematically. One could try a formulation of mathematics than
is not based on the ZFC axiomatization of set theory, but has mathematics
based on ZFC set theory either as an approximation, or as a singular limit
(such as c → ∞ or � → 0). The interested reader may begin by looking at the
monograph (MacLane and Moerdijk, 1994) on topos theory, which was initiated
by Grothendieck.10 As a counterpoint, we may mention an article by Cartier on
‘the evolution of concepts of space and symmetry’, which also starts with work
by Grothendieck, but stays within the ZFC axioms (Cartier, 2001).

It will take a mighty heave to cause Dirac’s ‘mathematical quality in nature’
to wobble just a tiny bit.

10 I seem to recollect that C J Isham and his collaborators have used topos theory in connection
with quantum gravity, but I am unable to cite exact references.
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Sets and mappings

We begin our discussion of sets with the remark that we are taking the notion of
positive integers as given. This is probably the approach of the average mathe-
matician; logicians may prefer to consider sets as primitive and the notion
of integers as derived from sets. Either way, the subsequent development of
mathematics proper will not be affected.

A1.1 Sets

In mathematics, a set S is a collection of distinct objects considered as a whole,
subject to some restrictions that will be discussed briefly in Section A1.8. The
objects constituting a set are called elements, members or points of the
set. Sets are usually denoted by writing their members within curly brackets.
This writing can take two forms. If the elements can be enumerated and have
standard names, one can list them explicitly. Thus, {1, 2, 5} is a set that has
three elements, the integers 1, 2, and 5. If the number of elements is large, this
may be impractical (although theoretically possible), for example if one wants
to define the set of all positive integers less than NA = 6.022 × 1023 (Avogadro’s
number). In such cases, one defines the set by the rule itself:

S = {n |n a positive integer, n > NA}. (A1.1)

In the above, it is the right-hand side that defines the set; the set of all n that
satisfy the conditions to the right of the vertical bar |.1 S on the left is a name
(or symbol) that has been assigned to the set. It would have been better to use
the assignment operator := (of some computer languages) instead of the equality
sign, but it is the equality sign that is generally used in mathematics, and we
shall stay with this practice.

One can extend this method to define sets that cannot be enumerated, such as

S = {x |x is a real number, x2 < 2}. (A1.2)

This is the set of real numbers larger than −√
2 and smaller than

√
2. The fact

that this set cannot be enumerated will be proven in Appendix A2.

1 The vertical bar | may be replaced by : or ;. All three notations are in current use.



238 Appendix A1: Sets and mappings

If x is a member of the set S, we write:

x ∈ S. (A1.3)

Correspondingly, x /∈ S means that x is not a member of S.
The notation S = T means that the sets S and T have the same elements, i.e.,

x ∈ S ⇔ x ∈ T.

The symbol ⇔ reads: is equivalent to, or if and only if. The latter was abbreviated
by Halmos to iff; this abbreviation is now in common use.

It is convenient to define a set that has no elements at all. This set is called,
appropriately, the empty set and is denoted by ∅ (a zero with a slash through it).

A1.2 New sets from old

We shall now describe a few procedures for fabricating new sets from old. Other
procedures will be described in Sections A1.5 and A1.6.

A1.2.1 Union, intersection and difference

Addition and multiplication are two of the basic rules in algebra for generating
new entities from old. Similarly, there are two basic operations for generating
new sets from old.2 They are the union

A ∪ B = {x |x ∈ A or x ∈ B} (A1.4)

and the intersection

A ∩ B = {x |x ∈ A and x ∈ B}. (A1.5)

Thus, if A = {1, 2, 3, 4}, B = {3, 4, 5, 6} and C = {5, 6}, then A ∪ B =
{1, 2, 3, 4, 5, 6}, A ∩ B = {3, 4} and A ∩ C = ∅. Note that A ∪ B = B ∪ A

and A ∩ B = B ∩ A. Two sets X and Y are called disjoint if X ∩ Y = ∅.

Union and intersection obey the following distributive laws:

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C);

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).
(A1.6)

The proofs consist of verifying – using plain words – that if x ∈ L then x ∈ R,
and vice versa, where L and R are the left and right sides in a given line of
(A1.6).

2 Indeed, in earlier works on set theory, e.g., the book by Hausdorff (English translation,
(Hausdorff, 1957)) the union and intersection of A and B were often denoted by A + B and
AB. The notation we are using is nearly universal by now.
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R ∪ S R ∩ S R � S

Fig. A1.1. Union, intersection, set-theoretic difference

A further operation that is often used is the set-theoretic difference,

A � B = {x | a ∈ A, x /∈ B}. (A1.7)

B is not required to be a subset of A. With A and B as in the examples following
(A1.5), A � B = {1, 2} and B � A = {5, 6}. The quantity A � B, also called
the complement of B in A, is written by some authors, including Munkres
(Munkres, 1975), as A−B, with an ordinary minus sign. The union, intersection
and the set-theoretic difference of two sets – a rectangle R and a square S – are
shown in Fig. A1.1.

The set-theoretic difference satisfies the following rules, which are special cases
of de Morgan’s laws:

A � (B ∪ C) = (A � B) ∩ (A � C);

A � (B ∩ C) = (A � B) ∪ (A � C).
(A1.8)

The proofs of these are similar to those of the distributive laws.
De Morgan’s laws are often verbalized as follows: (a) the complement of a union

is the intersection of the complements; b) the complement of an intersection is the
union of the complements. In this verbalization the union and intersection can
be of more than two sets, but the set A must be understood as given; otherwise
the notion of complement itself will not make sense.

A1.2.2 Subsets

From any given set S, one can construct new sets by taking only some of the
elements of S. Such sets are called subsets of S. If T is a subset of S, one writes
T ⊂ S (equivalently, S ⊃ T ; the symbols ⊂ and ⊃ are modifications of < and >).
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The formal definition of a subset is as follows:

T ⊂ S if and only if x ∈ T =⇒ x ∈ S. (A1.9)

The symbol ⇒ is read implies. Note that this definition implies S ⊂ S; every
set is a subset of itself. The statement T ⊃ S is also read as: T is a superset
of S.

Let us go back, for a moment, to the definition of a subset (A1.9). What
happens if T = ∅? Then the condition x ∈ T ⇒ x ∈ S is surely satisfied; there
is no x for which it is false, because there is no x in T ! One says that if T = ∅,
the condition (A1.9) is vacuously satisfied. That is, the empty set is a subset of
every set.

The subsets S and ∅ of S are called the improper subsets of S; every other
subset of S is called proper. Note that, if T ⊂ S, then T � S = ∅.

In many contexts, one restricts oneself to subsets of a fixed set X. In these
circumstances, the set A′ = X � A is known as the complement3 of A in X.

A1.2.3 Boolean algebras

Definition A1.1 A Boolean algebra of sets is a pair (X, B) where X is a set
and B a family of subsets of X such that:

(a) X ∈ B.
(b) If A, B ∈ B, then A ∪ B ∈ B and A ∩ B ∈ B.
(c) If B ∈ B, then B′ ∈ B.

It follows that ∅ ∈ B. One says that a Boolean algebra is closed under unions,
intersections and complementation. Sets obtained by performing these operations
a finite number of times upon members of B will be members of B. The set of
all subsets of X is a Boolean algebra.

A1.3 Maps

Let S and T be two sets (the case S = T is included). A map (mapping,
function) f from S to T , written

f : S −→ T, (A1.10)

is a rule which assigns, to each point x ∈ S, a unique point y ∈ T . One writes
f(x) = y. The set S is called the domain of f , and T the codomain. Note
the insistence upon the uniqueness of f(x) – functions are single-valued, by

3 The complement of A is often denoted by Ac in the literature, but we shall adhere to A′.
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definition.4 S is called the domain of f . The subset f(S) of T defined by5

f(S) = {y | y ∈ T, y = f(x) for some x ∈ S}

is called the range of f , or the image of S under x. For any V ⊂ T , the set

f−1[V ] = {x | f(x) ∈ V } (A1.11)

is called the inverse image of V . The inverse image is a subset of the domain,
and not a function. Clearly, f(S) ∩ W = ∅ ⇔ f−1[W ] = ∅. A pictorial
representation of these definitions is given in Fig. A1.2.

One often wishes to specify the image of a particular point in the domain S

under the map (A1.10), and it is useful to have a notation for this. The notation
is

x
f�−→ y, (A1.12)

and it is read as follows: f maps x to y.
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Fig. A1.2. Sets associated with maps

Let X, Y, Z be sets, and ϕ : X → Y , ψ : Y → Z be maps. One can clearly
define a map ψ ◦ ϕ : X → Z (Fig. A1.3)

X
ϕ−→ Y

ψ−→ Z

4 Till the mid-nineteenth century certain functions – like log z – were called multiple-valued.
However, this underwent a sea-change with the appearance of Riemann’s doctoral dis-
sertation in 1851. One no longer talks about multiple-valued functions, and students are
introduced quite early to the notion of the Riemann surface of a function. See, for example,
the text (Marsden, 1973).

5 See Notations A1.2 on page 242.
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by the formula

(ψ ◦ ϕ)(x) = ψ(ϕ(x)).

This map is called the composition of ϕ and ψ, and is denoted ψ ◦ ϕ. In
Fig. A1.3, ϕ(X) has been denoted by S and ψ(S) = ψ ◦ ϕ(X) by T .
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Fig. A1.3. Composition of maps

If x �= x′ implies that f(x) �= f(x′), the map f : S → T is called injective,
or one-to-one. If f(S) = T , then f is called surjective, or onto. If f is both
injective and surjective, it is called bijective, or one-to-one onto. A bijective
map can be inverted. The inverse map

g : T −→ S

fulfils the conditions g(f(x)) = x and f(g(y)) = y.
A map ϕ : X → X is called the identity map if ϕ(x) = x for all x ∈ X. The

identity map of X is often denoted by idX . In this notation, g ◦ f = idS and
f ◦ g = idT .

We may now give a simple example to illustrate the problems that would arise
if the elements of a set are not required to be distinct. Let A = {a, b, c}, B =
{1, 2, 3} and f : A → B the map f(a) = 1, f(b) = 2, f(c) = 3. Now set b = a.
We then obtain f(a) = 1 and f(a) = 2, i.e., 1 = 2.

Since electrons are indistinguishable, one cannot talk about a set of n elec-
trons in any mathematical context; one can, however, talk about a system of n

electrons.

Notations A1.2 The image of the point x under the map f is usually written
as f(x). The brackets are logically unnecessary, and one could write the same
more economically as fx, as is done by quite a few authors. We shall use the
notation f(x), which is sanctioned by tradition. The image of a set S under f

will be written as f(S). There is no risk of ambiguity here, as sets are denoted
by capital letters and elements of sets by small letters. The notation f−1 is
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ambiguous. It is used both to denote inverse images (which are not maps) as in
(A1.11), and inverse maps (when the map is invertible). So far we have enclosed
the argument of an inverse image in square brackets, as in (A1.11), but we shall
revert to the more usual f−1(V ) in Appendix A5.

A1.4 Finite and infinite sets

Two sets A and B are called equivalent6 to each other, written A ∼ B, if
they can be mapped bijectively onto each other. If A ∼ B and B ∼ C, then
A ∼ C; sets divide themselves naturally into equivalence classes, and every
set is equivalent to itself.

A set that contains a finite number of elements has the property that it is
not equivalent to any proper subset of itself; the reader is invited to verify this
for the three-element set {a, b, c}. This property can be turned into the formal
definition of finite sets:

Definition A1.3 (Finite sets) A set that is equivalent to no proper subset of
itself is called a finite set.

With each finite set F is associated a unique nonnegative intger n, called the
number of elements of F . Sets with the same value of n are equivalent to each
other; sets with different values of n are not. For example, the proper subsets
of {a, b, c} are {a, b}, {b, c}, {c, a}, {a}, {b} and {c}; none of them is equivalent
to {a, b, c}. These facts may seem to be intuitively obvious, but to the mathe-
matician they need proof. The proofs are simple, but not trivial. The interested
reader may consult the book by Munkres (1975, pp. 39–45).

The empty set is finite; as it has no proper subset, it fulfils the finiteness condi-
tion trivially. The reader is invited to write this out in full, to appreciate that the
word trivial is being used here in a mathematical sense which is different from
the dismissive sense in which the word is used in daily life (and, unfortunately,
also sometimes in mathematics).

Definition A1.4 (Infinite sets) A set is called infinite if it is equivalent to
a proper subset of itself.

The set of nonnegative integers is denoted by N, and the set of positive integers
by N (for historical reasons).7 The set N is infinite, because it is equivalent to the
set 2N = {0, 2, 4, . . .} of nonnegative even integers, which is a proper subset of
N. The map f : N → 2N, defined by the formula f(n) = 2n, proves the assertion.

6 Other terms in use are equipollent and equipotent. The term equivalent is used by
Fraenkel (Fraenkel, 1953), and we have stayed with it because we shall often refer the reader
to this book, which is far more gripping than most textbooks.

7 The positive integers are called natural numbers, after Peano, who also introduced the
notation N.
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The unit interval [0, 2] is infinite, because it is equivalent to the proper subinterval
[0, 1], as shown by the map f(x) = 2x.

A set is called countable,8 countably infinite or denumerable if it is
equivalent to N. The set N itself is countable by definition. The map f : N → N
defined by f(n) = n + 1 exhibits that N is countable. The set of integers Z is
countable; the map f : Z → N defined by

f(n) =

{
2n if n ≥ 0,

−2n − 1 if n < 0

is a bijection. An infinite set that is not countable is called uncountable.
The following result, which also seems intuitively obvious but requires proof

(which we shall omit), is basic.

Theorem A1.5 A subset of a countable set is either finite or countable.

Next, recall that a rational number is a number of the form p/q, where p and
q are integers, and q �= 0. It is not necessary for p and q to be relatively prime.9

However, when one talks about the set of rational numbers, one has to assume
that p and q are relatively prime, to avoid repetitions. The following result may
come as a surprise.

Theorem A1.6 The set of rational numbers is countable.

Proof First consider the positive numbers of the form p/q, where p and q are
positive integers. Set Σ = p + q. Then Σ ≥ 2. The only rational with Σ = 2 is
the integer 1. There are exactly n − 1 rationals with Σ = n (n ≥ 2), namely

1
n − 1

, 2
n − 2

, · · · , n − 1
1

,

and they are all distinct. They can therefore be collected together in a set. Denote
this set by Sn, and its elements by an,k, k = 1, 2, . . . , n− 1. Now consider the set
of symbols T = {an,k|n = 2, 3, . . . , k = 1, 2, . . . , n − 1}. This set is arranged in
dictionary order, and is clearly countable.

Every number in T appears infinitely often in it; the number j/k reappears as
nj/nk in Snj+nk for every integer n > 1. As symbols, the objects j/k and nj/nk

are different; as numbers, they are the same. As an aggregate of symbols, T is
a countable set; as an aggregate of numbers, it is not a set. However, one can
obtain a set of numbers from T as follows.

8 Some authors, including Munkres (Munkres, 1975), use the term countable to denote either
a finite or a countably infinite set. We shall generally use the term to mean countably
infinite, but shall be more explicit if there is any risk of ambiguity.

9 Two integers are said to be relatively prime if they have no common factor except unity.
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Define recursively10

S◦
2 = S2,

S◦
n = Sn � S◦

n−1, n = 3, 4, . . .
(A1.13)

The aggregate T ◦ = {an,k|an,k ∈ S◦
n} is the set of all positive rationals, as well as

a set of symbols. As a set of symbols, it is a subset of T . Therefore, by Theorem
A1.5, it is either finite or countable. As it contains every nonnegative integer, it
cannot be finite, and is therefore countable.

This proves that the set of nonnegative rationals is countable. To include the
negative rationals, all one needs is an easy modification of the proof of the result
that Z itself is countable.

The set of all rationals is denoted by Q.

A1.5 Power sets

It is an elementary combinatorial result that the set of all subsets (including
the empty set) of a set of n objects contains exactly 2n objects; one has the
inequality 2n > n for all n ∈ N.

The set of all subsets of S is called the power set of S, and is denoted by
P(S). If S = {a1, a2, . . . , an}, then P(S) certainly contains the one-point subsets
{a1}, {a2}, . . . , {an} of S, so that there exists an injective map ak �→ {ak} of S

into P(S). Simple counting shows that there can be no injective map of P(S)
into S.

Except for ‘simple counting’, the above considerations generalize readily to
infinite sets.

The calculus of sets exemplified by the distributive laws (A1.6) and de
Morgan’s rules (A1.8) may easily be extended to infinite collections of sets. A
good grounding in this calculus is essential for every student of mathematics,
and therefore every textbook on topology or measure theory begins with this
subject.

A1.5.1 Cardinal numbers

The natural numbers can be used for counting, as well as for ordering. When
used for counting, they are called cardinal numbers: one, two, three, etc.
When used for ordering, they are called ordinal numbers: first, second, third,
etc. The concepts of counting and ordering generalize to infinite sets, but it is not
obvious that there is a generalization of the natural numbers that can perform

10 As the definition of S◦
n depends upon that of S◦

n−1, one cannot define all the S◦
n at

one stroke, but must proceed one step at a time. Such definitions are called recursive or
inductive.
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both tasks. Accordingly, in the transfinite domain, one speaks of cardinals
and ordinals. The cardinal, or cardinality (also called power, for historical
reasons; not to be confused with the power set, defined earlier) of the set S is
often denoted by |S|; we shall use this notation.

The cardinality of a set has the following properties.
Let S and T be two sets. If there exists a bijective map of S into T , the sets S

and T have the same cardinality. Cardinality is a total order on the equivalence
classes (see page 243) of sets. If there exists an injective map of S into T , but
none of T into S, then the cardinality of T is greater than the cardinality of S.
For a finite set, cardinality is just the the number of elements the set has.

The cardinality of the set of nonnegative integers N is denoted by ℵ0 (pro-
nounced aleph-null); ℵ, pronounced aleph, is the first letter of the Hebrew
alphabet. Clearly, |N| = |Z| = |Q| = ℵ0. The cardinality of the continuum
R is denoted by ℵ. For any nonempty set S, the cardinality of P(S) is greater
than that of S. (The power set of a set that has only one element is a set with
two elements; the other element is the empty set.) One writes |P(S)| > |S|. The
fact that a real number admits at least one and at most two decimal representa-
tions can be used to show, quite easily, that |P(N)| = ℵ (see (Hausdorff, 1957,
pp. 41–45)). Therefore ℵ > ℵ0. Note that some authors, including Willard, use
c rather than ℵ for the cardinality of the continuum (Willard, 1970). We are
following (Fraenkel, 1953) and (Hausdorff, 1957).

We shall need one more result from the arithmetic of cardinals, which is gen-
erally written ℵ0 · ℵ0 = ℵ0. It is the multiplicative form of the statement that
the union of countably many countable sets is itself countable. The proof of this
assertion is rather easy (i.e., it requires no mathematical tools), and the reader
is invited to supply it.

Is there an infinite set with cardinality s such that ℵ > s > ℵ0? In words, is
there a set that is intermediate in size between the rationals and the reals? The
hypothesis that there is no such set is known as the continuum hypothesis.
Cantor tried for years to prove it, but failed.11

The reader who wishes to supplement our minimal account of this fascinating
subject is referred to (Fraenkel, 1953) for a very readable account, with a wealth
of historical detail.

The only transfinite ordinal we shall ever need has appeared in disguise, as
the minimal uncountable well-ordered set. It was defined in Section 4.2, the only
place where it is used.

A1.6 Products of sets

Let X, Y be two sets. An ordered pair (x, y) consists of two elements, one from
X and one from Y , with the one from X being written to the left of the one

11 Why he failed will be explained at the end of this appendix.
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from Y . The Cartesian product X × Y of two sets X and Y is defined to be
the set of ordered pairs

X × Y = {(x, y)|x ∈ X, y ∈ Y }.

The ordering requirement allows this definition to be extended to the product of
n sets; for example, X1 ×X2 ×X3 is defined as (X1 × (X2 ×X3)) or equivalently
as ((X1 × X2) × X3).

To define the product of an arbitrary family of sets, we first reformulate the
above procedure. Let {1, 2 . . . , n} be the set of the first n positive integers, and
define

X = X1 ∪ X2 ∪ . . . ∪ Xn. (A1.14)

Then choose a map f

f : {1, 2, . . . , n} → X (A1.15)

that satisfies the condition

f(k) ∈ Xk for k ∈ {1, 2, . . . , n}. (A1.16)

Set now
xk = f(k). (A1.17)

We may then write

(x1, x2, . . . , xn) = f({1, 2, . . . , n}); (A1.18)

the n-tuple (x1, x2, . . . , xn) is the image of the indexing set {1, 2, . . . , n} under
the chosen map f . Clearly, the product X1 × X2 × · · · × Xn is the set of all such
maps f . The product is the empty set if any of the factor sets is empty.

Note that condition (A1.16) is critical; it ensures that there exist maps

πj : X → Xj , j = 1, 2, . . . , n (A1.19)

such that
πj(x1, x2, . . . , xn) = xj , j = 1, 2, . . . , n. (A1.20)

These maps are called projections of X onto the factors Xj .
We are now ready to formulate the general definition. Let A be a set, α ∈ A

and {Xα}α∈A an indexed family of sets, indexed by α ∈ A. Define

X =
⋃

α∈A

Xα, (A1.21)

and assume that there exists a map

f : A → X (A1.22)
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that satisfies the conditions

f(α) ∈ Xα for all α ∈ A. (A1.23)

The Cartesian product
∏

α∈A Xα of the Xα is defined to be the set of all such
maps f . The projections πβ are defined by

πβ

(∏
α∈A

Xα

)
= xβ , (A1.24)

where
xβ = f(β) ∈ Xβ . (A1.25)

If Xα = Y for all α ∈ A, one writes (A1.21) as

X = Y J , (A1.26)

where J is the cardinality of the indexing set A. If A is finite, then J is a
nonnegative integer.

A1.7 The axiom of choice and the well-ordering theorem

Suppose that we have n nonempty sets Xk. The existence of n-tuples, i.e., of sets
(x1, x2, . . . xn) that contain exactly one element from each of the sets Xk, seems
obvious; at any rate, it has not been seriously challenged. If, however, the set A

is of arbitrarily large cardinality, then the question of existence of maps (A1.22)
satisfying conditions (A1.23) has, historically, been more divisive.

The assumption that such maps exist is far-reaching, and is known as the
axiom of choice. It is equivalent to several classical results, such as Zorn’s
lemma, the well-ordering theorem and the Hausdorff maximal principle,
terms that the reader may have come across. We shall define the concept of
well-ordering and state the well-ordering theorem.

Definition A1.7 (Well-ordered set) An ordered set is called well-ordered if
every nonempty subset of it has a first element.

Theorem A1.8 (Well-ordering theorem) Every set can be well-ordered.

However, a constructive procedure for well-ordering an arbitrary set has not
yet been found.

A1.8 Russell’s paradox

Suppose that it is possible to tell uneqivocally whether or not an object is a
physicist. Then one may talk about the set of all physicists. This set is clearly
not a physicist; therefore it is not a member of itself.
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Consider now the set of all nonphysicists. This set is also not a physicist; but,
that being the case, it is necessarily a member of itself. That is, a set can (against
common sense) be a member of itself.

Finally, consider the set R of all sets that are not members of themselves. If
R is not a member of itself, then it belongs to the set of all sets that are not
members of themselves, i.e., to R; in brief, if R /∈ R then R ∈ R. Conversely, if
R is a member of itself, then it does not belong to the set of all sets that are not
members of themself, i.e., R ∈ R implies that R /∈ R. We have an inescapable
contradiction, which is known as Russell’s paradox.

The contradiction arises from the extreme generality of the notion of a set,
which finds its expression through the word all in the paragraphs above. For
application to mathematics, some restrictions would seem to be required. For
those who do not wish to delve into these questions, the following restriction
would suffice: A set cannot be a member of itself. This would ensure that the
collection of all physicists is a set, but the collection of all nonphysicists is not.

The restrictions generally accepted by mainstream mathematics today are
somewhat more subtle, and are known as the Zermelo–Fraenkel axioms (ZF,
for short) for set theory; see (Fraenkel, Bar-Hillel and Levy, 2001). In this book,
ZF is described as ‘a modified form of Zermelo’s system’ (ibid., p. 18).

It has been shown that the axiom of choice is independent of the ZF axioms.
The ZF axioms together with the axiom of choice are denoted by ZFC.

We had mentioned the continuum hypothesis earlier. It has turned out that
this hypothesis is independent of the ZFC axioms; both the continuum hypothesis
and its negation are consistent with ZFC. The consistency (with ZFC) of the
continuum hypothesis was proved by Kurt Gödel in 1940; the consistency of its
negation was proven by Paul Cohn in 1963.

Terminology A1.9 Quite often one wants to use groupings of objects, but is
indifferent to whether or not these groupings form sets in the sense of ZF. In this
case one uses the terms class, collection, aggregate or family to describe
them, and the curly brackets notation to write them. This causes no confusion.
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The real number system

A2.1 Irrational numbers

Legend has it that a member of the school of Pythagoras proved that
√

2 was
irrational, which so upset Pythagoras that he had the discoverer drowned. One
wonders how he would have reacted had he been told that square root

√
m/n is

irrational unless m and n are both perfect squares.The proof of this fact is simple.
We may assume, without loss of generality, that m and n are relatively prime.
Let

√
m/n = p/q, where p and q are also relatively prime. Then p2/q2 = m/n,

or np2 = mq2. If p and q are relatively prime then so are p2 and q2, from which it
follows that m must divide p2, or m = λp2. Substituting, we find that n = λq2.
Since m and n are relatively prime, we must have λ = 1. That is, m = p2 and
n = q2.

The number
√

2 is an algebraic number; it is a solution of the algebraic
equation x2 − 2 = 0. An equation

a0x
n + a1x

n−1 + a2x
n−2 + · · · + an−1x + an = 0 (A2.1)

with integer coefficients ak, k = 0, 1, . . . n and a0 �= 0 is called an algebraic
equation. The highest power of x on the right-hand side of (A2.1), namely
n, is called the degree of the algebraic equation.1 In 1874, Cantor proved the
then-surprising result that the set of all algebraic numbers is countable.

According to the fundamental theorem of algebra, a polynomial of degree n

with complex coefficients has exactly n roots; these roots may be real or complex,
and two or more roots may be equal. It follows that the equation (A2.1) has at
most n real solutions. If one could enumerate the algebraic equations, Cantor’s
result would follow. Clearly, there are infinitely many algebraic equations of any
given degree n, which makes it impossible to use the degree to enumerate them.
Cantor achieved the required enumeration by using the concept of height of an
algebraic equation, which he defined as follows:

h = (n − 1) + |a0| + |a1| + · · · + |an|. (A2.2)

1 It is also called the degree of the polynomial pn(x) = b0xn + b1xn−1 + · · · + bn, where
b0 �= 0 and the bk are real or complex numbers.
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The height is a nonnegative integer, and it does not require much effort to see
that there are only a finite number of algebraic equations of height h. It follows
that the set of algebraic equations is countable; the countability of the set of
algebraic numbers is an immediate consequence of this fact. For details see, for
example, (Fraenkel, 1953, pp. 53–57).2

Let us temporarily denote the set of real algebraic numbers by A. Then
A ⊃ Q, where the inclusion is proper, so that the nonempty set R � A of
non-algebraic numbers consists entirely of irrationals. A real number which is
not algebraic is called transcendental. The best-known transcendentals3 are
π and e. How numerous are the transcendentals? In the same 1874 paper,
Cantor proved the earth-shaking result that the transcendentals ‘outnumber’
the algebraic numbers.4

The proof of theorem A2.1 given below was published by Cantor in 1892.
It is based upon the decimal representation of real numbers. We begin by
recapitulating the key features of this representation. It will suffice to consider
the numbers in the closed interval [0, 1].

Let b ∈ [0, 1]. Then b can be written as

b =
b1

10
+

b2

102 + · · · +
bn

10n
+ · · · , (A2.3)

where the bn are integers from 0 to 9, and n runs over the positive integers. The
representation

b = 0.b1b2 . . . bn . . . (A2.4)

is called a decimal representation of the number b.
The decimal representation is not always unique. If bk < 9, then

0.b1b2 . . . bk 9 = 0.b1b2 . . . (bk + 1)0, (A2.5)

where the bar over a digit (0 and 9 in the above) or group of digits indicates
recurrence, i.e., the digit or group of digits is repeated indefinitely to the right.
The left-hand side of (A2.5) is called an infinite decimal, and the right-hand side
a terminating decimal.5 With the single exception of 0, every rational number
has a unique infinite decimal representation (1 = 0.9).

2 Fraenkel calls h the amount of the equation.
3 The transcendence of e was proven by Hermite in 1873, and that of π by Lindemann in

1884; Lindemann’s result established the impossibility of squaring the circle.
4 This may be seen clearly by using the notion of Lebesgue measure, which is discussed in

Appendix A5. The Lebesgue measure of a countable set is zero, and therefore that of the
transcendentals in [0, 1] is unity.

5 Recall that rational numbers p/q such that q has only 2 and 5 as factors is a terminating
decimal; all other rationals are represented by recurrent decimals.
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In the following, we shall restrict the term decimal representation of a number
other than zero to mean its infinite decimal representation, unless the contrary
is explicitly specified.

Theorem A2.1 The set of real numbers R is uncountable.

Proof It will suffice to prove the result for the open interval (0, 1). The proof is
by contradiction.

Assume that the reals in the interval (0, 1) have been enumerated, i.e.,
arranged in a sequence indexed by n ∈ N:

{(0, 1)} = {a1, a2, a3, a4 . . .}

We write these numbers in an array

a1 = 0.a11a12a13a14 . . .

a2 = 0.a21a22a23a24 . . .

a3 = 0.a31a32a33a34 . . .

a4 = 0.a41a42a43a44 . . .

. . . = . . . ,

(A2.6)

where aij is the j-th digit after the decimal point in the decimal expression for
ai. We then form the number

d = 0.d11d22d33d44 . . .

where

dnn =

{
ann + 1, if ann �= 9,

0, if ann = 9.

By construction, 0 < d < 1 and d differs from ak at the k-th decimal place.
It therefore differs from every number in the array (A2.6), which contradicts
the assumption that (A2.6) contains every number between 0 and 1. This
contradiction establishes the desired result.

The technique by which the above result is established has become known as
Cantor’s diagonal method. We remind the reader that the cardinality of the
set R is denoted by ℵ. The fact that N can be embedded in R, but R cannot be
embedded in N, is expressed as follows:6 ℵ0 < ℵ.

6 The word embedding is used here in its everyday sense, which translates here to N ⊂ R but
R �⊂ N. In mathematics, the term is used more often in its topological sense, which will be
defined on page 262.



A2.2 The real line 253

A2.2 The real line

Real numbers have a property called completeness which is anything but trans-
parent, and which will be of particular interest to us. It is the property that
ensures that there exists a real number a to which the series

a1

10
+

a2

102 + · · · +
ak

10k
+ · · · (A2.7)

can converge. This a, and the ak in (A2.7), are the same as those in (A2.5). It is
due to this property that every real number (except zero) has a unique infinite
decimal representation.

To explain this property, we shall briefly describe two approaches to the con-
struction of the real numbers from the rationals, one due to Dedekind and the
other to Cantor. Both were published in 1872.

A2.2.1 Dedekind’s construction

Dedekind’s construction was based on the order property of the rationals. The
relation > defines a total order on the rationals Q; if r, s are two distinct rationals,
then either r > s or s > r. (The same total order may also be defined by the
relation <.)

A partition of Q into two nonempty subsets L (from left) and R (from right)
that have the properties

(i) L ∩ R = ∅,

(ii) L ∪ R = Q,

(iii) p ∈ L, q ∈ R ⇒ p < q

(A2.8)

is called a Dedekind section, or briefly a section, of Q.
A rational number u defines two obvious sections of Q:

L1 = {q|q < u}, R1 = {q|q ≥ u}

and

L2 = {q|q ≤ u}, R2 = {q|q > u}.

In the first, R1 has a smallest member (namely, u) but L1 has no largest member;
in the second, L2 has a largest member (again, u), but R2 has no smallest
member. There exist sections that are not defined by rational numbers – which
gives the concept its importance. Consider, e.g., the following partition of Q:

L = {r|r < 0, or r ≥ 0, r2 < 2},

R = {r|r > 0, r2 > 2}.
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Clearly, L consists of the rationals that are smaller than
√

2, and R of rationals
that are greater than

√
2. In this case, L has no largest member, and R has no

smallest member.
The correspondence between a subset of sections of Q and the rational numbers

suggests the possibility of going one step further and identifying the rational
numbers with these sections. To avoid ambiguity, we choose those sections of
Q for which L has a largest member. For this attempt to be successful, one
has to be able to express the laws of arithmetic in terms of sections. This was
accomplished by Dedekind, who was then able to take the decisive step and
propose the following definition of real numbers:

Definition A2.2 (Real numbers) A real number is a section (L, R) of the
rationals Q such that R has no smallest member. If L has a largest member,
then the section is a rational number; otherwise it is an irrational number.

It can be shown that the order and arithmetic properties of the rationals
continue to hold for the reals. Therefore one can define sections of R in an
obvious manner. However, the properties of sections of R differ essentially from
those of Q. The difference is captured by the following theorem:

Theorem A2.3 Let (L, R) be a section of the reals. Then either L has a largest
member, or R has a smallest number. In other words, the case ‘L has no largest
number and R has no smallest member’ cannot occur.

Proof Let LQ = L ∩ Q, RQ = R ∩ Q. Then (LQ, RQ) form a section of Q. There
are two possibilities:

(1) LQ has a largest member, say p.

(2) LQ has no largest member.

In case (1), p is also the largest member of L. For if there exists α ∈ L, α > p,
then there exist rational numbers q ∈ L such that p < q < α, which implies that
q ∈ LQ. But this contradicts the assumption that p is the largest member of Q.
Finally, if L has a largest member, then R cannot have a smallest member. For
suppose that R has a smallest member s. Then p < s, and the number (p + s)/2
belongs neither to L nor to R, a contradiction.

In case (2), the section (LQ, RQ) of Q is a real number β. This number must
belong either to L or to R. If it belongs to L, it is the largest member of L, and
R does not have a smallest member. If it belongs to R, it is the smallest member
of R, and L does not have a largest member. The proofs are exactly the same as
in case (1).

What we have shown above is that, unlike Q, sections of R give us nothing
new. R is called the Dedekind completion of Q, and one says that the set of
real numbers is complete.
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Theorem A2.3 is sometimes called the least upper bound property of the
real numbers. It could equally well be called the greatest lower bound property,
but generally is not.

A2.2.2 The least upper bound property

Let S be a set that is totally ordered by ≺, i.e., if x, y ∈ S, x �= y, then either
x ≺ y (read: x precedes y) or y ≺ x. A subset T of S is said to be bounded
above if there exists a point a ∈ S such that x ≺ a for all x ∈ T . The point a is
called an upper bound for T (in S); it is called the least upper bound for T

if it is an upper bound, and if any y ≺ a0 is not an upper bound. The reader is
invited to prove that the least upper bound, if it exists, is unique.

Definition A2.4 (Least upper bound property) A totally ordered set S

is said to have the least upper bound property if every nonempty subset T ⊂ S

which is bounded above has a least upper bound in S.

The real numbers R have the least upper bound property; the rationals Q
do not. The set of all rationals less than

√
2 is bounded above in Q, but does

not have a least upper bound in Q; it does have a least upper bound, namely√
2 itself, in R. The least upper bound property is equivalent to completeness,

but we shall not go into details. The interested reader is referred to the texts
(Munkres, 1975; Rudin, 1976).

A2.2.3 Cantor’s procedure

Dedekind’s completion of Q was based on the notion of order. However, Q also
has a metric (distance between two points) defined on it, namely d(p, q) = |p−q|.
Cantor’s completion of Q was based on this notion.

Recall that a sequence {ak} of numbers7 is said to converge if there is a
number a such that, given ε > 0, there exists a positive integer N such that
|an − a| < ε whenever n > N . It is called a Cauchy sequence if, given ε > 0,
there exists a positive integer N such that |am − an| < ε for all m,n > N .
Cauchy sequences do not always converge. Consider the sequence of rationals
1.1, 1.14, 1.141, 1.1415, . . . The nth term an of this sequence is obtained by drop-
ping all digits after the nth in the decimal expansion of

√
2. This is a Cauchy

sequence. It does not converge in Q because the point it is trying to converge
to, namely

√
2, does not belong to Q. However, it does converge in R, because√

2 ∈ R. A complete metric space is one in which every Cauchy sequence
converges. Q is a metric space, but it is not complete; R is a complete metric
space.

7 Some authors, such as Munkres (Munkres, 1975), reserve the curly brackets notation {.} for
sets. We shall use it for sets, as well as for sequences, in common with (Friedman, 1970;
Apostol, 1974; Rudin, 1976).
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But how does one obtain R from Q without using Dedekind completion? Can-
tor approached this problem as follows: if the problem is that some Cauchy
sequences have nowhere to converge to, why not define a new space in which
the points are the Cauchy sequences themselves? The rational number r would
then be the Cauchy sequence {an = r}n∈N; the number

√
2 will be the Cauchy

sequence 1, 1.1, 1.14, 1.141, 1.1415 . . . There are two slight problems with this.
One is that convergence or divergence is determined not by the head but by the
tail of the sequence, so that two different Cauchy sequences with the same tail
will converge to the same point. The other is that even sequences with very dif-
ferent tails may converge to the same point; the sequences {−1/n} and {+1/n}
are both Cauchy, have no point in common, and both converge to 0. However,
these problems are easy to dispose of. As the procedure (called metric com-
pletion) is the same for all incomplete metric spaces8 (e.g., Qn, n > 1) – an
advantage which is clearly not shared by Dedekind completion – we shall discuss
the procedure in some detail. This discussion will be carried out in Appendix A4,
as part of a somewhat larger programme.

A2.2.4 Well-ordering and real numbers

On page 248 we had defined well-ordered sets and stated the well-ordering theo-
rem which asserts that every set can be well-ordered. It should therefore be
repeated that no well-ordering of the real numbers is known.

8 Metric spaces were defined by Fréchet in 1906, though not under this name; the name is due
to Hausdorff, who also described the completion procedure in 1914.
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Point-set topology

This section provides a thumbnail sketch of those elements of point-set topology
(also called general topology or just plain topology) that are used in this book.
The subject grew out of attempts to rid the notion of continuity of its traditional
dependence on the notion of distance. It turned out that continuity could be
defined without using real numbers at all; the subject could be founded, instead,
on the calculus of sets. Unfamiliarity with the latter is perhaps the main source
of difficulty for the beginner.

Detailed treatments of the material discussed below may be found in standard
textbooks such as (Kelley, 1955, Willard, 1970 and Munkres, 1975). Of these,
the one by Munkres will perhaps be the easiest for the physicist.

A3.1 Topological spaces

Point-set topology (usually called topology for short) may be regarded as the
study of the notions of convergence of sequences1 and continuity of maps without
using the notion of real numbers. In the theory of functions of a real variable,
both of these notions are intimately related to that of neighbourhoods of a point.
A neighbourhood of a point x on the real line is any subset that contains an
open interval (x − a, x + a) around x, where a > 0; usually a is a small number,
but it does not have to be. In the Euclidean plane R2, neighbourhoods of a point
x are subsets containing discs Dρ(x) = {y|0 < d(x, y) < ρ}, where d(x, y) is the
Euclidean distance between the points x and y. If a, b are two distinct points
in the plane, Dρ(a), Dσ(b) neighbourhoods of a and b that have a nonempty
intersection, and c ∈ Dρ(a)∩Dσ(b), then one can find a real number τ such that

Dτ (c) ⊂ Dρ(a) ∩ Dσ(b), (A3.1)

which is easily seen by making a diagram. This observation opens the way to
defining neighbourhoods of points in sets on which a notion of distance is not
defined. The key notion is that of a topology on a set of points, which is given
below; the notion of neighbourhoods comes a little later.

Definition A3.1 (Topology and topological spaces) A topology T on a
point-set X is a collection of subsets U of X that satisfies the following conditions:

1 A generalization of the notion of sequences is treated in Subsection A3.8.1.
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(a) X and ∅ are members of T .
(b) The union of the members of an arbitrary subfamily of T is a member

of T .
(c) The intersection of a finite number of members of T is also a member of T .

A pair (X, T ) is called a topological space. The members U of the family
T are called open sets.

This definition is related to our preliminary discussion by the two definitions
that follow.

Definition A3.2 (Base for a topology) Let X be a nonempty set. A family
B = {Bα|α ∈ A} of subsets of X is called a base (or basis) for a topology on
X if it satisfies the following conditions:

(a)
⋃

α∈A

Bα = X.

(b) If B1, B2 ∈ B, x ∈ B1 ∩ B2, then there exists B3 ∈ B such that x ∈ B3 ⊂
B1 ∩ B2. (This is the equivalent of (A3.1).)

Definition A3.3 (Topology generated by a base) The topology T on X

generated by the base B is the family of subsets U of X such that for each x ∈ U ,
there is a B ∈ B such that x ∈ B ⊂ U . In words, every U ∈ T is a union of
members of the base.

Every set B ∈ B is an open set (briefly: is open). The set X itself is open.
Additionally, the empty set ∅ is open; the condition ‘for each x ∈ U . . .’, is
trivially satisfied for U = ∅, because there is no such x.

We have just given two different definitions, Definitions A3.1 and A3.3, of
a topology on X. The equivalence of these two definitions is proved in every
textbook, and may be summed up as follows: every topology has a base. One
sometimes says that the family of open sets is closed under arbitrary unions and
finite intersections. It is possible to define many distinct topologies on a set X.
The two most extreme examples are the discrete topology, in which every
subset of X is open, and the indiscrete topology, in which only X and ∅ are
open. Therefore, to avoid confusion, it may sometimes be necessary to specify
the topology explicitly.

We round off the above with the definition of neighbourhoods in topological
spaces: a neighbourhood of a point x in a topological space X is any subset
W of X that contains an open set U containing x: x ∈ U ⊂ W .

Finally, we give a few examples of topologies:

Examples A3.4

(i) The discrete and the indiscrete topologies on X, defined above.
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(ii) A partial order ≺ on a set X is a binary relation that is transitive, i.e., if
x, y, z ∈ X, x ≺ y and y ≺ x, then x ≺ z. If, in addition, the order satisfies
the comparability condition, i.e., for any two distinct points a, b ∈ X,
either a ≺ b or b ≺ a, then the order ≺ is said to be total, or linear.
Some authors omit the requirement that a and b be distinct; then one has
to require the additional condition that if both a ≺ b and b ≺ a hold, then
a = b. (Consider the relations < and ≤ on R.)

Let (X, ≺) be a linearly ordered set. The family of subsets (a, b) = {x|x ∈
X, a ≺ x ≺ b, a �= b} is a base for a topology on X. (The reader is invited
to supply a proof.) This topology is known as the order topology on X,
and (a, b) is an open interval in X. (The condition a �= b in the definition
of (a, b) is unnecessary if a ≺ b ⇒ a �= b.)

(iii) The relation < is a total order on the real line R. The order topology of this
order is known as the standard (or usual) topology on R. (This topology
could equally well be defined by the order >.)

(iv) Consider the family of all subsets of R that exclude the origin 0, together
with R itself. This family contains the empty set, and is closed under arbi-
trary unions and intersections. It therefore defines a topology Tex on R,
called the excluded point topology. (It does not really matter which
point is excluded.)
Topologies like the last one are mainly used for providing counter-
examples.

A3.1.1 Closed sets, interior, boundary

A closed set is defined to be the complement U ′ = X � U of an open set U in
a topological space.2 The family of closed sets contains X and ∅, and is closed
under finite unions and arbitrary intersections. Let A be an arbitrary subset of
X. The union of all open sets contained in A is an open set. (Recall that the
union of a family of open sets is an open set.) It is called the interior of A and
denoted A◦ or intA. The intersection of all closed sets containing A is a closed
set.3 It is called the closure of A and denoted Ā or cl A. A point b is called a
limit point of A if b ∈ Ā; b may or may not belong to A. The following is a
useful little result:

Theorem A3.5 A subset A of X is closed if and only if it contains all its limit
points.

The difference Ā � A◦ is called the boundary of A and denoted ∂A or bdA.
One has the inclusions Ā ⊃ A ⊃ A◦.

2 The reader should be warned that the notation U ′ = X � U is by no means universal. In the
literature the superscript ′ (as in U ′) is used freely, with many different meanings.

3 This fact is established using de Morgan’s laws, page 239.
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Examples A3.6

(i) Let (X, T ) be a topological space. Then the set X is both open and closed,
irrespective of the topology T . Therefore the boundary of X is empty. The
same remarks apply to the empty subset ∅ of X.

(ii) Let X be endowed with the discrete topology. Then every subset of X is
both open and closed, i.e., the boundary of every subset is empty.

(iii) Let R be the real line with the standard topology. Then the open intervals
(a, b) are open and closed intervals [a, b] are closed. The interior of [a, b]
is (a, b), and its boundary is the two-point set {a, b} consisting of the end-
points. The boundary of a half-open interval (a, b] ⊂ R is also the two-
point set {a, b}. But – and this is an important part – if we take X =
[a, b), then the boundary of X consists of the one-point set {a}; the other
putative boundary point, b, does not belong to X. Embedding a topological
space in a larger topological space can introduce new limit and boundary
points.

(iv) Consider the set W of rational numbers that satisfy the inequalities 0 ≤
r ≤ 1, i.e., W = [0, 1] ∩ Q. We show that W is not closed (in the standard
topology on R). The number

√
2 − 1 is the limit of the sequence of rational

numbers 0.1, 0.14, 0.141, 0.1415, and so on, all belonging to W . However, it
is not a rational number, and therefore does not belong to W , i.e., W does
not contain all its limit points.

A3.1.2 Comparison of topologies

Suppose that T1 and T2 are two topologies defined on X. Suppose that every open
set of T1 is also an open set of T2, i.e., O ∈ T1 ⇒ O ∈ T2, i.e., T1 ⊂ T2. Then we
say that (i) the topologies T1 and T2 are comparable, and that (ii) T1 is coarser
than T2, or that T2 is finer than T1; the finer topology includes all the open sets
that the coarser one has. The indiscrete topology is the coarsest possible topology
on a set, in the sense that it is coarser than any other topology; similarly, the
discrete topology is the finest possible topology on a set. The standard topology
on R lies between these two.

The terms smaller (for coarser) and larger (for finer) are also used for the
comparison of topologies. So – and more frequently – are the terms weaker and
stronger, but regrettably the use of the last two is not uniform. If T1 ⊂ T2,
some mathematicians will say that T1 is stronger than T2, and some others will
say that it is weaker than T2. The reader who comes across these terms should
ascertain what the author means. We shall use only the terms coarser and finer
for the comparison of topologies.4

4 Exceptions to this rule will be made when we deal with operators of Hilbert space. The terms
strong and weak are so entrenched there that it would be folly to try to change them.
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Two distinct topologies on X are not generally comparable. Consider the usual
topology T and the excluded point topology Tex on R (page 259); the interval
(−1, 1) is open in T but not in Tex; the interval [1, 2] is open in Tex but not
in T .

A3.2 Continuous functions

Let X, Y be topological spaces. A map

f : X → Y

is defined to be continuous if the inverse image f−1[V ] of an open set V ⊂ Y

is open in X. If X = Y = R, this definition is equivalent to the standard ε-δ
definition of continuity of functions of a real variable. See, for example (Munkres,
1975, pp. 102–103).

The two examples given below are meant to illustrate the extreme – and not
necessarily wanted – generality of the notion of a topological space.

Examples A3.7

(i) Let X be a discrete topological space, i.e., let every subset of X be open.
Then for any topological space Y and any map f : X → Y , the inverse image
f−1[V ] ⊂ X is open for any subset V of Y . In other words, every function
from X into another topological space Y is continuous.

(ii) Let now X be an indiscrete topological space, Y a discrete one, and f : X →
Y a continuous map. Then f−1[V ] = ∅ or X for every open set V ⊂ Y .
Since one-point sets are open in Y , this would imply that f−1[{y}] = X

for some y ∈ Y ; then this point y has to be unique. This means that f

is a constant map; in other words, the only continuous functions are the
constants.

As we shall see below, there exists a fertile middle ground between the discrete
and the indiscrete topologies.

A3.2.1 Homeomorphisms

Let X, Y be two topological spaces. If there exists a continuous bijection f :
X → Y such that the inverse map f−1 : Y → X is also continuous, then f is
said to be a homeomorphism5 between X and Y , and X and Y are said to be
topologically equivalent, or homeomorphic, to each other. Two spaces that
are homeomorphic to each other are topologically indistinguishable, although
they may be distinguishable in terms of other mathematical structures that are
defined on them.

5 Not to be confused with the algebraic concept of homomorphism.
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Example A3.8 The real line R is homeomorphic to the open interval (0, 1) if
the latter is topologized by the subspace topology6 inherited from R. The map
f : (0, 1) → R defined by

y = f(x) =
x

1 − x2

is a homeomorphism. We know from elementary calculus that the function f is
strictly increasing; it is therefore bijective, the inverse map being

x = f−1(y) =
2y

1 + (1 + 4y2)1/2 .

A strictly increasing map is order-preserving, and therefore maps basis elements
on (0, 1) (on the X-axis) to basis elements on R (on the Y -axis). The reader is
invited to complete the articulation of the proof.

A property, or quantity, that is invariant under homeomorphisms is called a
topological invariant. The example just given shows that the distance between
two points is most emphatically not a topological invariant.

We end this section with the following definition.

Definition A3.9 (Embeddings) Let X, Y be topological spaces and f : X →
Y a map which is not bijective. Then f is called an embedding if it is a
homeomorphism f : X → f(X) onto its range f(X), when f(X) has the subspace
topology.

A3.3 New spaces from old

There are three basic constructions for generating new topological spaces out of
old: subspaces, products and quotients. We shall consider them in turn.

A3.3.1 Subspaces

Let (X, U) be a topological space and Y a subset of X. It is easy to see that the
collection {Vα|Vα = Uα ∩ Y, Uα ∈ U} defines a topology V on Y . The topology
V is called the subspace or the relative topology, or the relativization of U
to V . The pair (Y,V) is called a topological subspace or simply a subspace
of (X, U).

A3.3.2 Topological products

Let (X, U) and (Y,V) be two topological spaces. It is easily verified that the
collection B = {U × V |U ∈ U , V ∈ V} is a base for a topology on X × Y . (B
itself is not a topology on X ×Y , as the union of two products is not generally a

6 The subspace topology is defined in Subsection A3.3.1.
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product.) This topology is called the product topology, and X × Y furnished
with this product is called the topological product of X and Y .

Let (x, y) ∈ X × Y . The maps πX : X × Y → X and πY : X × Y → Y defined
by πX(x, y) = x and πY (x, y) = y are called projections on the spaces X and
Y , respectively. If X × Y has the product topology, then the projections are
continuous.

Let now {Xα}α∈A be an arbitrary family of topological spaces. The product
topology on the Cartesian product X =

∏
α Xα is the topology that has as a

base the family of sets of the form

B =
∏
α∈A

Uα,

where (i) Uα is open in Xα, and (ii) Uα = Xα for all but a finite number of
values of α.

Condition (ii) may appear to be counterintuitive, but dropping it would have
unfortunate consequences. If it is dropped one would still obtain a topology on
X, but this topology will be strictly finer than the product topology; it will be
too fine to be of much use. One reason is given below.

Denote by πα the projection from X to Xα ((A1.24) and (A1.25)). Let f :
W → X be a map from a topological space W to the product space X, and
define fα = πα ◦ f . Then

Theorem A3.10 The map f : W → X is continuous if and only if fα is
continuous for each α ∈ A.

This result does not hold if the topology on the product
∏

Xα is any other
than the product topology. For a more detailed discussion, see (Munkres, 1975,
pp. 112–115).

A3.3.3 Quotient spaces

In simple cases, the quotient construction may be regarded as a sort of inverse
of the product construction; hence the name.

A relation R on a set X is a subset7 of the Cartesian product X × X. The
statement (x, y) ∈ R is abbreviated to xRy, and read as ‘x is related to y by
R’. A relation R is called an equivalence relation if it satisfies the following
conditions:

(a) reflexivity: aRa,
(b) symmetry: aRb ⇒ bRa, and
(c) transitivity: aRb, bRc ⇒ aRc.

7 To the nonmathematician, it may seem decidedly odd that the relation < on R be defined
as a subset of R × R. The point of the definition given above is that it applies to sets with
no mathematical structure on them.
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An equivalence relation on a set X partitions X into a set of pairwise-disjoint
subsets called equivalence classes. The following examples will make this clear.

Examples A3.11

(i) The relation A ∼ B between two sets A and B defined on page 243 and
called equivalence there is an equivalence relation.

(ii) Let R2 be the Euclidean plane, and x, y the usual Cartesian coordinates of
a point on it. Define a relation R on R2 by (x, y)R(x′, y′) iff x = x′. One
sees immediately that R is an equivalence relation; the equivalence classes
are lines parallel to the Y -axis.

(iii) Let G be a group, and H a proper subgroup of it. Let a, b ∈ G and define
a relation R on G by aRb if a−1b ∈ H. Since a−1a = e ∈ H, R is reflexive.
Since b−1a = (a−1b)−1 ∈ H, R is symmetric. If c ∈ G, then the identity
a−1c = a−1b · b−1c shows that aRb and bRc together imply aRc, i.e., R

is also transitive; it is an equivalence relation. The equivalence classes are
left-cosets of H in G.

The set of equivalence classes in X under the relation R is denoted by X/R, or
(if only one equivalence relation is being considered) by X/∼. Let π : X → X/∼
be the map that sends x ∈ X to its equivalence class in X/∼. The quotient
topology Tπ on X/∼ is defined as follows:

Tπ = {V ⊂ X/∼|π−1[V ] is open in X}.

The quotient topology is the finest topology on X/∼ that makes the projection
π continuous. The reader is invited to supply a proof.

A3.4 Countability and separation axioms

Unfortunately, the definition of a topological space is a little too general. As
we saw in Section A3.2, between some pairs of topological spaces all functions
are continuous, while between others only the constants are continuous. Useful
(and interesting) topological spaces have to satisfy restrictive conditions that get
rid of both of these excesses. The most important of these conditions are given
below.

A3.4.1 Second countability and separability

A topological space is said to be second countable (or to satisfy the second
axiom of countability) if its topology has a countable base.8

8 There is also a property called first countability. It is considered to be less important than
second countability, partly because second countability implies first countability, and partly
because mathematicians have overcome most of the problems arising from the failure of first
countability. We shall postpone discussion of this concept to Section A3.8.
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The real line R with its usual topology is second countable. Note that the
definition requires the space to have a countable base; it does not require every
base to be countable. The collection of all open intervals is a base, but it is not
countable. The collection of all open intervals (r, s), where r and s are rational,
is also a base; this base is countable.

A set A is said to be dense in a topological space X if X is the closure of A.
A topological space is called separable if it contains a countable dense subset.
The real line R is separable; the rationals Q are countable, and are dense in R.
It can be proved that a second countable space is separable. However, examples
show that not every separable space is second countable.

A3.4.2 Separation properties

The separation conditions discussed below – not to be confused with the
separability property defined above – were first studied by Felix Hausdorff;
axioms T1 − T4 that follow are therefore known as the Hausdorff separation
axioms.9

Figure A3.1 provides pictorial representations of the separation axioms. Points
are indicated by dots, open sets are bounded by dashed lines, and closed sets by
solid lines.
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Fig. A3.1. Illustrating the axioms T1, T2, T3 and T4

9 The axiom now known as T1 does not appear in the first edition of Hausdorff’s Mengenlehre
(1914). It seems to be due to Fréchet or to Riesz, and was incorporated by Hausdorff in the
third edition (1935) of his book (p. 260 of the English translation (Hausdorff, 1957)). The
term separation axiom (Trennungsaxiom in German), the Tn-notation and the T4-axiom
were introduced by Tietze in 1923. T1-spaces are sometimes known as Fréchet spaces.
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(i) Axiom T1: Let X be a topological space, and x, y any two distinct points
in it. Then there exists an open set Uy ⊂ X such that y ∈ Uy but x /∈ Uy.

One-point sets are closed in T1-spaces. Let a ∈ X. For each y ∈ X, y �= a,
choose an open set Uy as above. The union

W =
⋃

y∈X

y 	=a

Uy

is an open set. Therefore its complement X � W is closed. But this
complement is exactly the one-point set {a}.

(ii) Axiom T2: Let X be a topological space, and x, y any two distinct points
in it. Then there exist open sets Ux, Uy ⊂ X such that x ∈ Ux, y ∈ Uy and
Ux ∩ Uy = ∅.

T2-spaces are known as Hausdorff spaces. One says that, in a Hausdorff
space, two distinct points can be separated by open sets. A Hausdorff space
is clearly a T1-space.

(iii) Axiom T3: Let X be a topological space, a∈X and B any closed set
disjoint from a: a /∈ B. Then there exist open sets Ua, UB ⊂ X such that
a ∈ Ua, B ⊂ UB and Ua ∩ UB = ∅.

Examples show that a T3-space does not have to be T1; but if it is T1

(written: T3 + T1), then it is Hausdorff (take B to be a one-point set). A
T3-space that is also T1 is called regular.

(iv) Axiom T4: Let X be a topological space, and A, B ⊂ X any two disjoint
closed sets. Then there exist open sets UA, UB ⊂ X such that A ⊂ UA, B ⊂
UB and UA ∩ UB = ∅.

Examples show that a T4-space does not have to be either T3 or T1. But
if it is T1, then it is clearly T3 and therefore regular. A T4-space that is also
T1 (written: T4 + T1) is called normal.

Thus we have the implications

normal ⇒ regular ⇒ Hausdorff ⇒ T1.

Note on terminology There is no consistency, even at the textbook level, in the
use of the terms regular and normal. For example, Kelley and Willard (Kelley,
1955; Willard, 1970) interchange the definitions of T3 and regular spaces, as
well as of T4 and normal spaces. We have chosen our definitions to agree with
(Munkres, 1975). However, Munkres does not use the designations T2, T3 and
T4 at all.

A3.4.2.1 The T0-separation property

A separation axiom which is weaker than T1 was introduced by Kolmogoroff.
It is known as the Kolmogoroff axiom or, rather more frequently, as the
T0-axiom.The precise statement is as follows:
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A topological space X is said to satisfy the T0-separation axiom if, for
x, y ∈ X, x �= y, there exists either an open set Ux such that x ∈ Ux, y /∈ Ux

or an open set Uy such that y ∈ Uy, x /∈ Uy.

The family of intervals {(a,∞)|a ∈ R}, together with R itself and the empty
set, defines a topology T on the set X = R. This topology is not T1; if a < b,
then there is no interval (x,∞) which contains a but not b. However, there are
intervals (x,∞) that contain b but not a. That is, the topology T is T0, but
not T1.

T0-spaces are seldom encountered, except in the theory of topological groups.
As topological groups form the substratum for much of theoretical physics, the
subject is briefly discussed in Section A3.9. That is the only reason why the
T0-separation axiom is being mentioned here.

A3.4.3 Separation by continuous functions

When does a topological space have a sufficiently large supply of continuous
real-valued function to be really useful? The definitive result in this direction
was proved by Urysohn, and is known as Urysohn’s lemma.

Theorem A3.12 (Urysohn’s lemma) Let X be a normal space, and A, B

closed disjoint subsets of it. Then there exists a continuous function f : X → R
such that f(A) = 0 and f(B) = 1.

The proof is a work of genius, and rewarding to go through. A very readable
account may be found in (Munkres, 1975, pp. 207–211).

The conclusion of Urysohn’s lemma is often described as separation by con-
tinuous functions. The result holds under slightly weaker conditions than
assumed in Theorem A3.12; it is not necessary for one-point sets to be closed.
T4 separation is sufficient but not necessary, but the weaker T3 condition is
necessary but not sufficient. T3-spaces which have the Urysohn separation prop-
erty were once jokingly called T3 1

2
, but the term has stuck. The bourgeois term,

completely regular, has survived. A Tychonoff space is a completely regular
T1-space. We have the implications

normal ⇒ Tychonoff ⇒ regular ⇒ Hausdorff ⇒ T1;

T4 ⇒ T3 1
2

= completely regular ⇒ T3.

Note on terminology Tychonoff spaces are called completely regular by
Munkres (Munkres, 1975), who does not use the term Tychonoff space at all.

These terminological disparities do not cause trouble because one-point sets
are generally closed in the topological spaces used in most areas of mathematics.
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A3.5 Metric spaces and the metric topology

Metric spaces are much more structured than topological spaces. ‘When is a
topological space metrizable?’ is an important question in point-set topology. In
this section we shall define metric spaces, describe the metric topology, and state
a metrization theorem due to Urysohn.

Definition A3.13 (Metric) A metric on a point-set X is a map d : X ×X →
R that satisfies the conditions:

(a) d(x, y) = d(y, x) for all x, y ∈ X,

(b) d(x, y) ≥ 0 for all x, y ∈ X,

(c) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X,

(d) d(x, y) = 0 iff x = y.

Condition (c) is known as the triangle inequality. If one drops condition (d),
the structure obtained is called a semimetric. We shall have occasion to use
this concept in Appendix A5.
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Fig. A3.2. From semimetric to metric

Let d′ be a semimetric on X ′. Define on X ′ a relation R as follows: x′Ry′ if
d′(x′, y′) = 0. The reader is invited to verify that R is an equivalence relation
on X ′. Denote by x the equivalence class of x′ ∈ X ′, by X the set of these
equivalence classes, and by π : X ′ → X the projection map which sends x′ ∈ X ′

to its equivalence class x ∈ X. Finally, let p = π × π : X ′ × X ′ → X × X be
the map which sends the ordered pair (x′, y′) ∈ X ′ × Y ′ to the ordered pair
(x, y) ∈ X × Y , where x = π(x′) and y = π(y′). Then there is a unique map
d : X × X → R such that

d′ = d ◦ p. (A3.2)

Equation (A3.2) means that the two ‘routes’ from X ′ × X ′ to R in Fig. A3.2
yield the same map. Such a diagram is called a commutative diagram. The
reader is invited to verify that d is a metric on X.

Let x, y ∈ Rn. The function d(x, y) defined by

d(x, y) = [(x1 − y1)2 + (x2 − y2)2 + · · · + (xn − yn)2]
1
2 (A3.3)
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is a metric on Rn. Proof of the triangle inequality requires a little work, but we
shall content ourselves with assuming the result. This metric is known as the
Euclidean metric on Rn. The spaces Rn furnished with the metric (A3.3) are
known as Euclidean spaces.

Note that, according to Definition A3.13, the Minkowski ‘metric’

s2(x, y) = (x0 − y0)2 − (x1 − y1)2 − (x2 − y2)2 − · · · − (xn−1 − yn−1)2 (A3.4)

on Rn is not a metric at all; it violates every condition except the first of
Definition A3.13. In mathematics, it would generally be called an indefinite
quadratic form. We shall call it the Minkowski form.

In the literature, the term pseudometric is used both for the Minkowski form
and for the semimetric. To avoid confusion, we shall not use this term at all.

A metric on X defines a topology on X, called the metric topology. Let d

be a metric on X, and define the open ball with centre a and radius r > 0 as
follows:

Br(a) = {x|x ∈ X, d(a, x) < r}.

The family of open balls is a base for a topology on X; this topology is the metric
topology.

Different metrics may induce the same topology on a set X. For example, the
function

d(a, b) = max{|a1 − b1|, |a2 − b2|}

(where (x1, x2) are the Cartesian coordinates of the point x) defines a metric on
R2 (it requires some work to show this) which is manifestly different from the
Euclidean metric [(x1 − y1)2 + (x2 − y2)2]1/2; nevertheless, the topology induced
by this metric on R2 is the same as that induced by the Euclidean metric.

The reader is invited to show that the metric topology on R is the same as
the order topology on it.

Let (X, d) and (Y, δ) be metric spaces. A map f : X → Y is called an isometry
if it preserves distances, i.e., if

d(x, y) = δ(f(x), f(y)) for all x, y ∈ X.

A3.5.1 Metrizability

A topological space (X, T ) is said to be metrizable if it admits a metric d such
that the metric topology Td induced by it on X coincides with the topology T .

Theorem A3.14 (Urysohn’s metrization theorem) A regular second
countable space is metrizable.
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One can show that regularity is necessary for metrizability, but that the second
countability condition can be weakened. Details may be found in (Munkres, 1975,
Chapter 6).

The metric completion of the metric space Q was touched upon in Subsec-
tion A2.2.3. We need to discuss the completion of an arbitrary metric space
(X, d) in some detail, but shall postpone this discussion to Appendix A4.

A3.6 Compactness

A cover of a set X is a collection of subsets {Vα} such that X = ∪αVα. The
straight line can be covered in many ways by open intervals of unit length.
None of these covers has a finite subcover, for the simple reason that every
finite collection of open unit intervals is bound to have a finite total length.
Now consider the unit circle, i.e., the circle of unit radius. Its circumference is
2π. Seven open arcs of unit length will therefore suffice to cover the unit circle.
These simple examples exhibit the difference between compact and noncompact
topological spaces.

A cover of a topological space by open sets is called an open cover. A topo-
logical space is called compact if every open cover has a finite subcover. The
emphasis is on the word every, for since X is open in itself, every topological
space has at least one finite open subcover. A space that is not compact is called
noncompact. The reader is invited to prove the following result: compactness is
a topological invariant. That is, if X and Y are homeomorphic and one of them
is compact, then so is the other.

A3.6.1 Some properties of compact spaces

Compact spaces have many useful properties (which is the mathematician’s way
of saying that compactness is the source of quite a bit of mathematical structure).
We begin with some that do not involve sets of real numbers:

(i) A closed subset of a compact space is compact.
(ii) If X is compact and f : X → Y is continuous, then f(X) is a compact

subspace of Y . This result is generally stated as follows: the continuous
image of a compact space is compact.

Next, compactness combines nicely with the Hausdorff property to yield strong
results:

(i) A compact subset of a Hausdorff space is closed.
(ii) A compact Hausdorff space is normal.

Let us now turn our attention to the Euclidean spaces Rn. These are metric
spaces, but we are considering only their topological aspects, the topologies
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being defined by the Euclidean metric. Recall that for n = 1, the metric topology
coincides with the order topology, and is called the usual topology.

Since R is noncompact, and the open interval (0, 1) is homeomorphic to it, it
follows that (0, 1) is noncompact. However, the closed interval [0, 1] is compact
(in the subspace topology inherited from R). To prove it, one needs the least
upper bound property of R, in one form or another. Details may be found in
(Munkres, 1975, pp. 173–174).

Theorem A3.15 Every closed interval of the real line is compact.

The reader is invited to make the connections necessary to prove that

Theorem A3.16 A continuous real-valued function on a compact space has a
maximum and a minimum value.

We are now ready to enunciate the Tychonoff theorem.

Theorem A3.17 (Tychonoff’s theorem) A product of arbitrarily many
compact spaces is compact.

Using the definition of the product topology, it is quite easy to prove this
result for the product of two compact spaces. Using that proof as a model,
one can prove it for a product of n compact spaces. However, the proof of the
general theorem requires the axiom of choice. Tychonoff’s theorem is one of the
most important in general topology, and a detailed proof will be found in every
textbook on the subject.

Tychonoff announced the proof of his theorem, which used the axiom of
choice, in 1929. The importance of his theorem was realized immediately, but at
that time mathematicians were still not happy with the axiom of choice. Many
attempts were made to prove Tychonoff’s theorem without using the axiom of
choice, but they were unsuccessful. This led Kakutani to conjecture that the
Tychonoff theorem was equivalent to the axiom of choice. In 1950, Kelly proved
Kakutani’s conjecture, which meant that rejecting the axiom of choice would
imply rejecting Tychonoff’s theorem. Most mathematicians were unwilling to
pay this price.

Since the closed unit interval [0, 1] is compact, it follows from Tychonoff’s
theorem that the cubes [0, 1]J are compact. Here J is the cardinality of the
indexing set that defines the product (see A1.26).

A subset A of a metric space (X, d) is said to be bounded if there exists a
real number K such that d(a, b) ≤ K for all a, b ∈ A.

Theorem A3.18 A subset A of Rn is compact (in the metric topology) iff it is
closed and bounded.
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A3.6.2 Local compactness

A topological space X is said to be locally compact if, for each x ∈ X, there
exist subsets Cx, Ux of X such that Cx is compact, Ux is open, and x ∈ Ux ⊂ Cx;
in other words, if every point has a compact neighbourhood.

The spaces Rn are locally compact for all (finite) n. Infinite-dimensional
Hilbert space is not locally compact.

A3.6.3 One-point compactification

Several procedures have been devised for turning a locally compact space X into
a compact space. We shall describe one of these.

Definition A3.19 (One-point compactification) Let X be a locally com-
pact Hausdorff space, and take an object (often denoted by the symbol ∞) that
is not in X. Let Y = X ∪ {∞}. The collection of subsets (of Y )

(a) U , where U is open in X, and

(b) Y � C, where C is a compact subset of X,

defines a topology on Y . This topology makes Y into a compact space, which is
called the one-point compactification of X.

It takes a little work to show that the above defines a topology on Y , and
that Y is compact. The sets C are closed in X, and therefore the subspace
topology that X inherits from Y is the same as its original topology. (Had it
been otherwise, the term ‘compactification’ would have been ill advised.)

The one-point compactification of the real line is the circle S1. The one-point
compactification of Rn, n ≥ 1, is called the n-sphere Sn. The n-sphere is home-
omorphic to the surface of the closed unit ball in Euclidean Rn+1. The proofs
have required the development of the subjects called combinatorial, algebraic
and differential topology, and are the work of many mathematicians spread over
a hundred years.

A3.7 Connectedness and path-connectedness

Let X be a topological space. If there exist two nonempty open subsets U, V of
X such that U ∩ V = ∅ and U ∪ V = X, then the pair U, V is said to form a
separation (or disconnection) of X, and U, V are called components of X.
If X has no disconnection, i.e., it has only one component, then X is said to be
connected. The real line R is connected, and so is every interval, finite or semi-
infinite, of it; R � {O} (the real line with the origin removed) is disconnected;
its components are (−∞, 0) and (0,∞). All indiscrete spaces are connected, and
all discrete spaces containing two or more points are disconnected. A space is
called totally disconnected if its connected subsets are exclusively one-point
sets. A discrete space is totally disconnected.
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The following is a useful result. Let X be a connected topological space, Y a
topological space and f : X → Y a continuous map. Then f(X) is connected.
The continuous image of a connected space is connected. It follows that if Y is
disconnected, f(X) must lie entirely in one of its components.

The intermediate value theorem of calculus is a consequence of the connected-
ness of R.

Theorem A3.20 (Intermediate value theorem) Let X be a connected space
and f : X → R a continuous map. If a, c ∈ X, f(a) < f(c), then for any r such
that f(a) < r < f(c), there exists b ∈ X such that f(b) = r.

Let X be a topological space. A path from a to b in X is a continuous map
f : [0, 1] → X such that f(0) = a and f(1) = b. The space X is said to be
path-connected if every pair of points x, y ∈ X can be joined by a path.

It is rather easy to see that a path-connected space is connected. Examples
show that the converse is not necessarily true.

A3.8 The theory of convergence

Recall that on the real line a sequence {xn} is said to converge to a point
x if, given ε > 0, there exists an integer N such that |xk − x| < ε for all
k > N . Cauchy’s criterion of convergence states that the sequence {an}
is convergent if, given ε > 0, there exists an integer N such that |ak − al| < ε

for all k, l > N . If {an} is convergent, then the limit limn→∞ an exists, and is
unique.

Both the definition of convergence and Cauchy’s criterion generalize to arbi-
trary metric spaces (X, d); all one has to do is to replace |ak − al| by d(ak, al).
A sequence {an} that has the property that d(ak, al) < ε whenever k, l > N is
called a Cauchy sequence. If a Cauchy sequence converges, then it converges
to a unique point. A metric space in which every Cauchy sequence converges is
called complete. The real line is complete; the open interval (0, 1) is not; the
sequences {an = 1/n} and {bn = 1 − 1/n}, n = 2, 3 . . . do not converge, because
the points 0 and 1 do not belong to the interval (0, 1).

On a topological space X, a sequence {xn} is said to converge to x (x ∈ X)
if every neighbourhood of x contains points of the sequence other than x. If U

is a neighbourhood of x, one says that {xn} is ultimately in U if xk ∈ U for
all k > N , where N is some positive integer. On an indiscrete topological space,
every sequence converges to every point of the space. On a discrete topological
space, the only sequences which converge are the constant sequences: xn = x

for all n ∈ N. However, in a Hausdorff space, a sequence can converge to only
one point. For suppose that {xn} converges to x (one writes xn → x) and
y ∈ X, y �= x. Then there exist open sets Ux, Uy such that x ∈ Ux y ∈ Uy and
Ux ∩Uy = ∅. Since xn → x, the sequence {xn} is ultimately in Ux, and therefore
it cannot be ultimately in Uy.
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A3.8.1 Filters

A topological space X is said to have a countable base at x if there exists a
countable set of open sets {Un|x ∈ Un for all n} such that if V is an open set
containing the point x, then Uk ⊂ V for some k. If X has a countable base at each
of its points, then it is said to be first countable, or to satisfy the first axiom
of countability. (It is obvious that a second countable space is first countable.)
It turns out that in first countable spaces all limit points can be detected by
means of convergent sequences, and therefore the topology of the space can be
expressed entirely in terms of convergent sequences.10 However, there are spaces
that are not first countable, and one has to generalize the notion of sequences if
one wants to express the topology in similar terms. Two essentially equivalent
generalizations have been proposed: nets, which involve a generalization of the
notion of order, and the rather different objects called filters. We shall encounter
spaces that are not first countable only in the context of uniformities and uniform
completion. We shall treat these subjects in Appendix A4, basing ourselves, in
the main, on the text by James (James, 1999). As this text uses filters, a brief
discussion of filters is given below.

Definition A3.21 (Filter on a set) A filter F on a set X is a collection of
nonempty subsets of X such that

(a) If F ∈ F and G ⊃ F , then G ∈ F .

(b) If F1, F2 ∈ F then F1 ∩ F2 ∈ F .

The definition implies that the intersection of a finite number of members of
a filter is nonempty; however, this does not necessarily apply to intersections of
infinitely many elements of a filter.

On any set X, the subsets containing the point x form a filter, called the
principal filter generated by x. We shall denote it by Px. In the same way,
any nonempty subset W of X generates a filter on X. If {xn} is a sequence of
points on X, then the family of subsets M of X such that {xn} is ultimately
in M is a filter on X. It is called the elementary filter associated with the
sequence {xn}. If {yn} is another sequence such that xk = yk for k > N , then
the elementary filters associated with {xn} and {yn} are the same.

Definition A3.22 (Refinement of a filter) If F and G are two filters on X

such that F ⊃ G (i.e., G ∈ G ⇒ G ∈ F), then F is said to refine G, or to be a
refinement of G.

A3.8.1.1 Filters on topological spaces

In a topological space X, the family of neighbourhoods of a point x is clearly
a filter on X; we denote it by Nx, and call it the neighbourhood filter at x.

10 For details, see (Munkres, 1975, p. 190).
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The intersection of all members of Nx is nonempty; it contains at least the
point x.

The principal filter at x is clearly a refinement of the neighbourhood filter at x.

Definition A3.23 (Limit points and convergence in terms of filters)
Let X be a topological space and F a filter on it. If F is a refinement of the
neighbourhood filter Nx of x ∈ X, then x is said to be a limit point of F . If x

is a limit point of F , then F is said to converge to x, and written F → x.

Clearly, if F converges to x then so does any refinement of F . For any x ∈
X, the principal filter at x refines the neighbourhood filter at x, and therefore
converges to x. However, a filter on X does not have to converge; if it does, it
may converge to more than one point. If, for example, every neighbourhood of
x is also a neighbourhood of y, y �= x (X is not Hausdorff), then F → x implies
that F → y. However, on a Hausdorff space a filter can converge to at most one
point:

Theorem A3.24 Let X be a Hausdorff space, x, y ∈ X, x �= y. If F is a filter
on X that converges to X, then F cannot converge to y.

Proof Since X is Hausdorff, x and y are separated by disjoint neighbourhoods
Ux and Uy. Being disjoint, they cannot both belong to the same filter. That is,
if F → x, then there exists a neighbourhood Uy of y such that Uy /∈ F , which is
the same as saying that F does not converge to y.

A3.9 Topological groups

A topological group is a group G which is also a topological space such that
the group operations (the multiplication map G × G → G and the inverse map
G → G, defined by g �→ g−1) are continuous. The topology on G × G is the
product topology. The basic results on topological groups are easy to establish,
and may therefore be found in the exercise sections of most books on general
topology, as well as in the very readable book by Pontrjagin (Pontrjagin, 1939).

If a topological group is a T0-space, then the group structure forces it to be a
Tychonoff space. For this reason, works on abstract harmonic analysis11 generally
assume that the topological groups under consideration12 are T0. However, a T0-
topological group may fail to be normal, and therefore need not be metrizable.13

11 We quote from (Hewitt and Ross, 1963), p. 1, paragraph 2: ‘Using a fundamental con-
struction published in 1933 by A. Haar, A. Weil in 1940 showed that Fourier series and
integrals are but special cases of a construct which can be produced on a very wide class
of topological groups.’ Abstract harmonic analysis is the subject that grew out of Weil’s
observation.

12 See (Hewitt and Ross, 1963, p. 83 and p. 19).
13 See (Hewitt and Ross, 1963, pp. 70–75).
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Continuous groups of interest to physicists, such as the Poincaré or Galilei
groups and their subgroups, the group SU(3), etc., usually carry ‘natural’
topologies. The Poincaré group P is the semidirect product14 of the group T

of space-time translations and the homogeneous Lorentz group L: P = T ∧ L.
The Lorentz group L is a closed subgroup of P , meaning that it is a closed set in
the topological space P . It is also a normal subgroup of P , so that the quotient
space P/L is a group; it is the translation group T . Quotient spaces will be
important to us only in the context of Lie groups. A Lie group is a topological
group in which the multiplication and inverse maps are analytic, i.e., functions
that have convergent Taylor series expansions.

When is a topological group a Lie group? This is Hilbert’s fifth problem, which
was solved in 1952 by Gleason, and independently by Montgomery and Zippin.
The answer can be formulated quite simply. A topological group G is said to have
no small subgroups (NSS) if there is a neighbourhood of the identity e in which
the only subgroup of G is {e}. The answer is: A topological group is a Lie group
if and only if it is locally compact and has no small subgroups. The abbreviation
NSS, understood as an adjective, is sometimes used to describe such topological
groups.

14 There seems to be no standard notation for semidirect products.
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Completions

There are many differences between the spaces Rn and Qn, but the one we shall
single out is that differentiable functions1 can be defined on Rn, but not on Qn.
It is this fact that invests the process of completion – i.e., passage from Qn to
Rn – with so much interest.

A completion process requires more structure than topology. We have already
discussed the Dedekind completion of the rationals, which is based on the concept
of order and cannot be extended to sets that are not totally ordered. The most
important class of spaces that can be completed are the metric spaces; a metric,
as we have already noted, imposes more structure than a topology. Finally, there
are the structures called uniformities, weaker than metrics but stronger than
topologies, that can also be completed. Remarkably, the completion of uniform
spaces, unlike that of metric spaces, does not require the explicit use of real
numbers.

We shall discuss metric completion, uniformities and uniform completion in
this appendix. A metric space can be completed in at least two different ways
(with the same result); one can be generalized to uniform spaces, and the other
cannot. We shall discuss only the former. Similarly, uniformities can be defined
in at least three different but equivalent ways; we shall choose the one which is
best adapted to generalizing the procedure of metric completion. The summaries
given below will not provide balanced pictures of their subjects.

A4.1 Metric completion

Recall that a metric space is called complete if every Cauchy sequence in it
converges. A metric d on X is called a complete metric if the space (X, d) is a
complete metric space. A topological space is called completely metrizable if
it admits a complete metric. A completely metrizable space is also called topo-
logically complete; the property of topological completeness, unlike that of
metric completeness, is preserved under homeomorphisms. One should note that
a completely metrizable topological space X may be metrizable with two different
metrics, one ofwhich is complete and the other is not. A counterintuitive example is
provided by the space P = R�Q of the irrationals, which is known to be completely
metrizable; it is clearly not complete in the usual metric (inherited from R).

1 In the usual sense; variants of the differential calculus have been devised on discontinua, but
these have remained more exotic than useful.
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A topological space may be metrizable without being completely metrizable;
the standard example is that of the rationals2 Q. By contrast, a metric space
(X, d) can always be completed, by adding more points to X. To see how this
is to be achieved, let (X, d) be a metric space and consider the set of Cauchy
sequences on it. Define two Cauchy sequences {xn} and {yn} to be equivalent,
written {xn} ∼ {yn}, if

lim
n→∞ d(xn, yn) = 0. (A4.1)

The reflexivity and symmetry of ∼ are obvious; transitivity, i.e.,

{an} ∼ {bn}, {bn} ∼ {cn} ⇒ {an} ∼ {cn},

follows from the triangle inequality

d(an, cn) ≤ d(an, bn) + d(bn, cn).

Two sequences that share the same tail are clearly equivalent, but there is more;
an equivalence class consists of all Cauchy sequences on X that ‘try to converge’
to the same point. If the sequences in an equivalence class converge to a point
a ∈ X, then this equivalence class contains the constant sequence {an = a}. Since
a metric space is Hausdorff, a convergent sequence cannot converge to more than
one point; an equivalence class cannot contain two distinct constant sequences.

The metric space (X, d) is complete if every equivalence class contains a
constant sequence.

Definition A4.1 (Metric completion) Let (X, d) be a metric space. Its
metric completion is a metric space (X∗, d∗) such that:

(a) There is an injective map ı : X → X∗ such that ı(X) is dense in X∗. (The
topology of X∗ is the topology induced by the metric d∗.)

(b) The bijective map ı : X → ı(X) so defined is an isometry.

The map ı is called an isometric embedding of X into X∗.
One has to prove that the definition is not empty of content, i.e., the object

defined actually exists. The proof is constructive, and straightforward. One
would also like to know whether or not the object constructed is unique. The
affirmative answer will be provided after the construction.

The construction of X∗ from X is as follows. The space X∗ is just the set of
equivalence classes of Cauchy sequences on X as defined by (A4.1). We denote
the equivalence class of the sequence {xn} in X by [xn]. If [xn] contains the

2 The proofs of the assertions P is completely metrizable but Q is not require much more
machinery than we are able to develop here. The interested reader is referred to (Willard,
1970).
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constant sequence an = a, we write it as [a] for brevity. When [a] is considered
as a point in X∗, we denote it by a. If [xn] does not contain any constant
sequence, then it determines a point in X∗ which is not in X.

Next, define a function d∗ on X∗ by

d∗([xn], [yn]) = lim
n→∞ d(xn, yn). (A4.2)

Clearly, d∗([a], [b]) = d(a, b). The function d∗ is nonnegative, and is symmetric in
its arguments. The reader is invited to prove that it satisfies the triangle inequa-
lity. Furthermore, if [xn] �= [yn], then d∗([xn], [yn]) �= 0. Thus d∗ is a metric on
X∗. The map ı : X → X∗ defined by ı(x) = [x] is an isometric embedding. Any
point in X∗ that is not in ı(X) is a limit point of ı(X) in the topology of the
metric d∗, and therefore ı(X) is dense in X∗. Finally, every equivalence class of
Cauchy sequences in (X∗, d∗) contains a constant sequence; X∗ is complete, and
its completion would add no new points.

We have proved that:

(i) d∗ is a metric on X∗.
(ii) (X∗, d∗) is a complete metric space.
(iii) ı : X → X∗ defined by ı(x) = [x] embeds X densely and isometrically

in X∗.

There remains the question of uniqueness. This is easily settled. If (Y, δ) is
another completion of (X, d), then X is densely embedded in Y . Let j : X → Y

be this embedding. We shall take the liberty of writing j(x) = x and describing
it as ‘a point in X’ for every x ∈ X. Then the points of Y are limits of Cauchy
sequences in X, and the metric δ on Y is defined by the same formula (A4.2) as
d∗. Define now a map ϕ : Y → X∗ by ϕ(y) = [xn], where xn → y ∈ Y . This map
is an isometry, and, if y ∈ X, then ϕ(y) = [y], i.e. ϕ leaves X pointwise fixed.
That is, the completion is unique up to an isometry that leaves X pointwise
fixed.

We conclude this section with defining the concept of total boundedness for
metric spaces, which establishes the connection between completeness and com-
pactness. This concept will later be generalized to uniform spaces. Recall that,
in a metric space X, the open ball of radius ε > 0 and centre a is the set
Bε(a) = {x|d(x, a) < ε}. Here x, a ∈ X and d is the metric on X.

Definition A4.2 A metric space is called totally bounded if it can be covered
by a finite number of ε-balls for every ε > 0.

The significance of the concept of total boundedness lies in the following results.

Proposition A4.3 A metric space is totally bounded if and only if each sequence
has a Cauchy subsequence.
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Proposition A4.4 A metric space is compact if and only if it is totally bounded
and complete.

Examples A4.5 Consider the intervals (0, 1) and [0, 1] of R, and the set W =
Q ∩ [0, 1]. All are totally bounded. However, neither (0, 1) nor W is compact,
whereas [0, 1] is. W is not compact because it is not closed (page 260).

Because of this connection with compactness, a totally bounded metric space
is also known as a precompact space.

A4.2 Uniformities

If we look upon topology as growing out of the attempt to free the notion of
continuity from its dependence on real numbers, we may equally well look upon
uniformities as growing out of the attempt to free the notion of completeness
from its dependence on real numbers. However, this is only a part of the story;
one has to look at history to provide a wider perspective, and an explanation for
the use of the term.

Consider, therefore, the theory of functions of several real variables, and let
f : D → R, where D ⊂ Rn. The function f is said to be continuous at the point
x0 ∈ S if, given ε > 0, there exists δ > 0 such that |f(x) − f(x0)| < ε whenever
d(x, x0) < δ. The number δ generally depends both on x0 and on ε; δ = δ(x0, ε).
A function f defined on a domain D is said to be continuous if it is continuous
at every point in D.

Contrast this with the definition of uniform continuity. The function f is
said to be uniformly continuous if, given ε > 0, there exists δ > 0 such that
|f(x) − f(y)| < ε whenever d(x, y) < δ. There is no reference to any specific
point x0; the definition relates, instead, to pairs of points x, y ∈ D which are
close to each other (in some sense), but could be located anywhere in the set D.
It is this last feature which is reflected in the term uniform.

A metric obviously defines a notion of closeness between two points, but the
notion itself may be definable without recourse to a metric. Let us go back to
Cauchy’s criterion of convergence for a sequence {sn} of real or complex numbers,
which says that the sequence converges if, given ε > 0, there is a positive integer
N such that |sk − sl| < ε whenever k, l > N . In a metric space which is not
necessarily complete, a sequence {sn} is called a Cauchy sequence if it satisfies
the above condition.

We now attempt to exploit the following fact: both R and C are Abelian
topological groups, with 0 and 0+ i0 as their respective identities.3 This enables
Cauchy’s criterion to be paraphrased in terms of neighbourhoods of the identity:
the sequence {sn} is Cauchy if, given any neighbourhood of the identity V , one
has sk − sl ∈ V whenever k, l > N . If now G is a non-Abelian (meaning not

3 The reader is invited to verify that R and C are indeed topological groups under addition.
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necessarily Abelian) topological group, then the sequence {gn} may reasonably
be called Cauchy if, given any neighbourhood V of the identity e, there exists
a positive integer N such that g−1

l gk ∈ V whenever k, l > N . We have got rid
of the metric by using the notion of group multiplication. However, one can do
better; one does not need any predefined mathematical structure on X.

One does need some definitions from the calculus of sets. Recall that a relation
on a set X was defined (on page 263) to be a subset of the Cartesian product
X ×X. The following operations are defined on the family of relations on X:

(i) Inverse If E is a relation, then the inverse relation E−1 is defined to be

E−1 = {(x, y)|(y, x) ∈ E}.

(ii) Composition If E and F are relations on X, then their composition E ◦ F

is defined to be

E ◦ F = {(x, z)|(x, y) ∈ E and (y, z) ∈ F for some y ∈ X}.

A relation E is called symmetric if E = E−1. Finally, the diagonal ∆ of a set
X × X is the subset ∆ = {(x, x)|x ∈ X}.

A4.2.1 Definition and general properties

We are now ready to define uniformities.

Definition A4.6 (Uniformities) A uniformity on a set X is a filter E on
the Cartesian product X × X, consisting of subsets called entourages or
surroundings, such that:

(a) If E ∈ E , then ∆ ⊂ E.

(b) If E ∈ E , then there exists an entourage F such that F ⊂ E−1.

(c) If E ∈ E , then there exists an entourage F such that F ◦ F ⊂ E.

The pair (X, E) is called a uniform space.

If E ∈ E , then E−1 ∈ E ; condition (b) is satisfied by taking F = E−1.
Consequently, some authors, e.g., (Kelley, 1955) replace condition (b) by

(b′) If E ∈ E then E−1 ∈ E .

A uniformity E on X is called Hausdorff (or separated, or separating) if

⋂
E∈E

E = ∆.
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Definition A4.6(c) has been described by Kelley as ‘a vestigial form of the
triangle inequality’. The composition operation ◦ is also reminiscent of the mul-
tiplication operation on topological groups. Definition A4.6 does not involve any
number system, nor, for that matter, any topology on X. However, we are still
some distance from our stated goal, which is to define a notion of completeness
without using the real number system.

It should be noted that there are two other (but equivalent) definitions of
uniformities; by means of uniform covers (roughly speaking, covers by sets of
the same ‘size’) and via a family of semimetrics.4 These definitions are generally
more suitable for applications. We refer the reader to the texts (Kelley, 1955;
Willard, 1970) for details, or to the monograph (Borchers and Sen, 2006) for a
summary, and for further references.

Examples A4.7 (Examples of uniformities)

(i) For any set X, the family of all supersets of the diagonal ∆ defines a uni-
formity called the discrete uniformity, and the family consisting of the
single set X × X a uniformity called the trivial uniformity.

These examples establish that uniformities exist; otherwise, they are of
no interest.

(ii) Let (X, d) be a metric space, ε > 0, and define

Dε = {(x, y)|(x, y) ∈ X × X, d(x, y) < ε}.

The family of all supersets of the Dε for all ε > 0 defines a uniformity on X

called the metric uniformity of the metric d.

A uniformity E on X defines a topology on X. Let E ∈ E and define subsets
E[x] of X by

E[x] = {y|(x, y) ∈ E, x ∈ X}.

The topology of the uniformity E , or the uniform topology, is the family
T of all subsets U of X such that for each x ∈ X there is an E ∈ E such
that E[x] ⊂ U . It is clear from the definition that the family T covers X, and
is closed under arbitrary unions. It is not difficult to show that it is closed
under finite intersections (Kelley, 1955). It should come as no surprise that the
uniform topology of the discrete uniformity is discrete, while that of the indiscrete
uniformity is indiscrete.

While the topology of a uniformity is uniquely determined by the uniformity,
examples show that different uniformities may generate the same topology. Thus
a uniformity has more structure than a topology. Now let X be a point-set and
d, d′ two different metrics on it. As we saw above, each metric determines a unique

4 In the theory of uniformities, the preferred term seems to be pseudometric.
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uniformity on X. However, different metrics may generate the same uniformity
on X (for example the metrics d and 2d). Thus a metric has more structure than
a uniformity.

One should note the following result, which is important.

Theorem A4.8 The topology T of a uniformity E on X is Hausdorff if and
only if E is Hausdorff.

A4.2.2 Uniformizability of a topological space

A topological space (X, T ) is called uniformizable if there exists a uniformity
E on X such that the uniform topology it induces is T .

When is a topological space uniformizable? This important question is
answered by the following result.

Theorem A4.9 (Uniformizability of a topological space) A topological
space is uniformizable if and only if it is completely regular.

Recall that we do not require one-point sets to be closed in a completely regular
space (page 267).

A4.2.3 Metrizability of a uniform space

A uniform space (X, E) is called metrizable if there exists a metric d on X such
that the uniformity it induces on X is E .

When is a uniform space metrizable? This question is answered by the
following result.

Theorem A4.10 (Metrizability of a uniform space) A uniform space is
metrizable if and only if it is Hausdorff and has a countable base.

We are now within sight of our goal, which is to establish that the notion of
completeness can be extended to uniform spaces without the use of real numbers.

A4.3 Complete uniform spaces

We begin with some basic definitions and results.

Definition A4.11 (Uniform continuity) Let (X, E) and (Y,K) be uniform
spaces. A map f : X → Y is said to be uniformly continuous if for each
K ∈ K there is some E ∈ E such that (x1, x2) ∈ E ⇒ (f(x1), f(x2)) ∈ K.

The reader is invited to prove that a uniformly continuous function is
continuous (in the uniform topologies).

Next, we define the notion of uniform equivalence of two uniform spaces. This
notion is analogous to the notion of homeomorphism of topological spaces, but
there appears to be no shorter term for it.
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Definition A4.12 (Uniform equivalence) The uniform spaces X and Y are
said to be uniformly equivalent if there exists a bijection φ : X → Y such
that both φ and φ−1 are uniformly continuous.

Finally, we come to the definition of Cauchy sequences in uniform spaces.

Definition A4.13 (Cauchy sequences in uniform spaces) A sequence of
points {xn} in a uniform space X is called a Cauchy sequence if, for each
entourage E in X × X, there is an integer N such that (xk, xl) ∈ E whenever
k, l > N .

This definition does not involve the real numbers. But what justifies use of
the term Cauchy sequence? This very reasonable question is answered by the
following result.

Proposition A4.14 Let {xn}n∈N be a sequence of points in the uniform space
X. If this sequence converges in the uniform topology, then it is a Cauchy
sequence.

A uniformly continuous function maps Cauchy sequences to Cauchy sequences.

Proposition A4.15 Let X and Y be uniform spaces and f : X → Y a
uniformly continuous function. If {xn}n∈N is a Cauchy sequence in X, then
{f(xn)}n∈N is a Cauchy sequence in Y .

A4.3.1 Uniform completion

A metric space is necessarily first countable (in the metric topology), but a
uniform topology need not be first countable; i.e., its topology may not be
describable by sequences. It will surely be describable by filters, and therefore it
is pleasing that Cauchy filters are definable as easily as Cauchy sequences:

Definition A4.16 (Cauchy filters in uniform spaces) A filter F in the
uniform space (X, E) is called a Cauchy filter if, for each entourage E of the
uniformity, there exists a member F of F such that F × F ⊂ E.

Observe that this definition, like Definition A4.13, has no dependence on the
notion of real numbers.

Proposition A4.14 has an analogue for filters. It is:

Proposition A4.17 Let F be a filter on the uniform space X. If F converges
in the uniform topology, then it is a Cauchy filter.

We now come to the key definition of uniform completeness:

Definition A4.18 (Uniformly complete spaces) A uniform space X is
called (uniformly) complete if every Cauchy filter on X converges to a point
in X.
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It is of course not necessary for a uniform space to be uniformly complete.
However, a uniform space can be completed. The uniform completion of a
uniform space is defined as follows:

Definition A4.19 (Uniform completion of a uniform space) A uniform
completion of a uniform space (X, E) is a pair (ı, (X∗, E∗)) where (X∗, E∗) is
a complete uniform space and ı : X → X∗ is a uniform embedding of X as a
dense subspace of X∗.

It is always possible to complete a uniform space:

Theorem A4.20 (Existence of uniform completions) Let (X, E) be a uni-
form space. There exists a complete uniform space (X∗, E∗) such that X can be
densely and uniformly embedded in X∗. The space X∗ is unique in the sense that,
if Y is any uniformly complete space that has X as a dense subspace, then X∗

and Y are uniformly isomorphic under an isomorphism that leaves X pointwise
fixed. Furthermore, X∗ is Hausdorff if X is Hausdorff.

The proof of this theorem requires a little more machinery than we have devel-
oped so far, and therefore we shall content ourselves with referring the reader to
(James, 1999). It is modelled after the existence proof of the metric completion
given earlier. One starts by defining the space X̂ of Cauchy filters on X; if X is
Hausdorff, then it turns out that X∗ = X̂.

A4.3.2 Miscellaneous results

We list below a definition, and a number of results that we shall use.

Definition A4.21 A uniform space X is said to be sequentially complete if
every Cauchy sequence in X converges.

Theorem A4.22 A complete uniform space is sequentially complete.

Theorem A4.23 A closed subset of a complete uniform space is complete.

Theorem A4.24 A complete subspace of a Hausdorff uniform space is closed.

Theorem A4.25 If X is a compact Hausdorff space, then there exists a unique
uniformity on X that generates its topology.

A4.3.3 Complete uniformizability

In Section A4.2, we tried consciously to avoid using real numbers. Despite our
efforts – the theoretical physicist will be pleased to learn – we have not succeeded
in avoiding them. What follows is a summary of the relevant definitions and
results.
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There is an analogue of the notion of complete metrizability in the theory of
uniform spaces, which is the following:

Definition A4.26 (Complete uniformizability) A topological space X is
said to be completely uniformizable if there exists a uniformity in which X

is complete, and which induces the topology of X.

Every complete uniform space is completely uniformizable in its uniform
topology. Now:

Theorem A4.27 (Shirota’s theorem) A topological space is completely
uniformizable if and only if

(1) X is Tychonoff;

(2) every closed discrete subspace of X has nonmeasurable cardinal; and

(3) X can be embedded as a closed subspace in RJ for some J .

The cardinal of a set S is called nonmeasurable if every countably additive
two-valued measure taking the values 0 and 1 (see Subsection A5.4.2, page 301)
defined on all subsets of S and vanishing on one-point sets vanishes. All known
cardinals are nonmeasurable. Whether or not measurable cardinals exist is an
undecidable problem in ZFC.

We shall therefore assume that a uniformly complete Tychonoff space is a
closed subspace of some RJ . Mathematically, this will not lead us to inconsisten-
cies. Physically, we are unlikely, at least in the foreseeable future, to call upon
large cardinals the nonmeasurability of which is open to doubt. We refer the
interested reader to the monograph (Fraenkel, Bar-Hillel and Levy, 2001).

A4.3.4 Total boundedness

There exists a relation between completeness and compactness in uniform spaces,
as there is in metric spaces. Once again, it is expressed through the concept of
total boundedness.

Definition A4.28 A uniformity E is called totally bounded if, for each E ∈ E ,
there exists a finite cover {U1, . . . , Um} such that Uk × Uk ∈ E for k = 1, . . . , n.

The analogues of Propositions A4.3 and A4.4 for uniform spaces are

Proposition A4.29 A uniform space is totally bounded if and only if each filter
has a Cauchy subfilter.

Proposition A4.30 A uniform space is compact if and only if it is totally
bounded and complete.

Examples A4.5 illustrate these propositions as well, as in these cases uniform
completion is the same as metric completion.
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It should be remarked that equivalent definitions of total boundedness or
precompactness can be given using uniform covers (Willard, 1970) or pseudo-
metrics (Kelley, 1955). It will not be necessary for us to go into details. We need
the concept of total boundedness only for Proposition A4.30, which plays a key
role in Chapter 4.



A5

Measure and integral

In quantum mechanics one requires the spaces of square-integrable wave
functions to be complete; this cannot be achieved with Riemann-integrable
functions. One also needs to determine the structure of self-adjoint operators
(observables), the paradigm for which is the diagonalization of n × n Hermitian
matrices. This is, however, a vastly more complex enterprise, and requires a
deep understanding of the nature of these operators. Among the tools required
for this endeavour, part of which is sketched in Appendix A6, are measures and
integrals. This appendix will provide an introduction to these subjects tailored
to the specific needs of this book.

Historically, the integral now known by his name was announced by Lebesgue
in 1902, four years before metric spaces were defined by Fréchet, and more
than a decade before the completion process for metric spaces was devised by
Hausdorff. Lebesgue’s theory was based on the notion of measure, which is a
generalization of geometrical concepts such as length, area and volume, and
of physical concepts such as mass and charge distributions, both discrete and
continuous. In the 1920s (possibly earlier), it was noticed that an integral defined
a metric1 on the space of integrable functions, and that the metric space of
absolutely Riemann-integrable functions was incomplete. Its completion turned
out to be the space of Lebesgue-integrable functions with the metric defined by
the Lebesgue integral. This made it possible to develop the ‘theory of functions’
using only the notion of sets of measure zero. However, this simplification is no
longer available when one tries to understand, say, the spectrum of a Hamiltonian
operator.

For practical purposes such as the numerical solution of differential equa-
tions, it is enough to know that the space of Riemann-integrable functions is
a metric space which can be completed by the procedure described in detail
in Appendix A4; from here, approximation theorems take over. The completion
process is abstract, but the elements it adjoins to function spaces are not struc-
tureless (as opposed, say, to points in Euclidean geometry). Some aspects of

1 Actually, a semimetric (see page 268), rather than a metric; we can make this semimetric
into a metric by passing to the space of equivalence classes of Riemann-integrable functions.
Two functions f and g belong to the same equivalence class if the Riemann integral

∫ |f(x)−
g(x)|dx vanishes. This definition is incomplete as long as we do not have a characterization
of the class of Riemann-integrable functions. Fortunately, this lacuna does not affect the
discussion in Subsection A5.2.2, which is restricted to a space of continuous functions.
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their structure cannot be discerned by the tools we have developed so far, which
are chiefly topological. For example, the necessary and sufficient conditions for a
function of a real variable to be Riemann-integrable are not purely topological.
Certain problems, in mathematics as well as in physics, can only be addressed by
representing elements of the completed spaces concretely (as functions or their
equivalence classes) with sufficient resolution, and we have to develop the tools
that make such representations possible.

This appendix is organized as follows. We begin with the general notion of
normed spaces because, since the publication of Banach’s classic book Théorie
des opérations linéaires in 1932, the emphasis in the study of linear spaces has
shifted from the metric to the norm. We continue with a discussion of function
spaces as normed spaces, with the focus on the problem of norm-completeness.
This will naturally lead us to the Lebesgue integral, but we shall first give an
account of the Riemann–Stieltjes integral; for us, it will represent the utilitarian
aspect of the theory. This being done, we shall move on to σ-algebras, measures
and integrals in the abstract setting. As in physics one is working mainly with
spaces of functions defined on topological groups, this will be followed by a brief
survey of Haar measure. Next, we shall turn to the Lebesgue integral itself, define
the Lp-spaces, and state the Riesz–Fischer theorem in its general form. We shall
then use the insights gained from the Riemann–Stieltjes integral to introduce
noninvariant measures on R, concluding with the Lebesgue decomposition theo-
rem. In the final section, we shall touch upon the subject of differentiation, and
indicate ‘what would have happened’ had we concentrated, from the outset, not
on the property of completeness but on the property of differentiability.

A5.1 Normed spaces

Given any set X, the set of real-valued functions on it is a linear space; if f, g are
two such functions and a, b two real numbers, then af + bg is again a real-valued
function on X. The same holds if the word real is replaced by the word complex in
the last sentence. On any linear space, one can define a quantity analogous to the
length of a vector in an Euclidean space.2 The precise definition is given below.

Definition A5.1 (Norm) Let F be a linear space over R (or C). A norm on
F, denoted || · ||, is a map F → R that satisfies

(a) ||af || = |a| · ||f || for all a ∈ R (or C) and f ∈ F.

(b) ||f || ≥ 0 for all f ∈ F.

(c) ||f || = 0 iff f = 0.

(d) ||f + g|| ≤ ||f || + ||g|| for all f ∈ F.

2 It is important to point out that this notion of length is not accompanied by a sense of
direction, or of the angle between two directions. This last notion requires an additional
mathematical structure, which can be defined in only one special case. This case will be
studied in Subsection A5.2.3.
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Condition (d) will be recognized as the triangle inequality. If condition (c)
is dropped, the structure obtained is called a seminorm. Owing to the triangle
inequality, a norm induces a metric (likewise, a seminorm a semimetric) � on F

in the following obvious manner:

�(f, g) = ||f − g||. (A5.1)

However, metrics induced by norms have the property of translation
invariance:

�(f + h, g + h) = �(f, g). (A5.2)

Conversely, a translation invariant metric � on a linear space induces a norm by
the obvious formula ||f || = �(f, 0).

A linear space equipped with a norm is called a normed space. The notions
of convergence, Cauchy sequence and completeness, defined on metric spaces in
Section A3.5, extend to normed spaces in an obvious manner. If one restricts
oneself to translation invariant metrics on linear spaces, and to norms and met-
rics induced by each other (as we shall do in this appendix), convergence and
completeness in the norm become identical with convergence and completeness
in the metric, and the choice of which word to use is no longer restricted by
mathematical considerations.

A normed space which is complete in its norm is called a Banach space.

A5.2 Function spaces

One can define inequivalent norms on a linear space, just as one can define inequi-
valent metrics on a set. We shall define many such norms below on function
spaces, but shall exploit only three of them. One of these will be used only
to provide an example,3 but the other two will be bread-and-butter norms in
quantum mechanics.

A5.2.1 The sup norm

Let C be the set of continuous real-valued functions on the closed interval4 [a, b].
The function || · ||∞ : C × C → [0,∞) defined by

||f ||∞ = sup
x∈[a,b]

|f(x)| = �(f, 0), f ∈ C (A5.3)

3 To avoid creating a false impression, one should add that this norm, the sup norm, is of
considerable importance in mathematical analysis.

4 We remind the reader that, in the language of the theory of functions, continuity at an
end-point of a closed or half-open interval means one-sided continuity. The distinction is
unnecessary in the language of topology.
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is a norm on C, called the sup norm.5 It is clear that ||f ||∞ ≥ 0, equality
holding iff f = 0. The reader is invited to prove, using the fact that a continuous
real-valued function on a closed interval is bounded, that the triangle inequality
for the sup norm

||f + g||∞ ≤ ||f ||∞ + ||g||∞

follows from the triangle inequality for real-valued functions

|f(x) + g(x)| ≤ |f(x)| + |g(x)| (A5.4)

which holds pointwise at each x ∈ [a, b]. The normed space (C, || · ||∞) and the
equivalent metric space (C, �) are denoted by C[a, b].

The space C[a, b] is complete, as we prove below. Let {fn} be a Cauchy
sequence in it. For each γ ∈ [a, b], the sequence of real numbers {fn(γ)} is a
Cauchy sequence. Therefore, by the completeness of real numbers, it converges
to a limit f(γ). The set of these limits for all γ ∈ [a, b] defines a real-valued
function f on [a, b]; one says that the sequence {fn(x)} converges pointwise to
the function f(x). In fact, the convergence is uniform, as the following argument
shows. Since {fn} is a Cauchy sequence, given ε > 0 there exists a positive inte-
ger N such that ||fn − fn+j ||∞ < ε/2 for all n > N and j > 0. Then for all
x ∈ [a, b]

|fn(x) − f(x)| = lim
j→∞

|fn(x) − fn+j(x)| ≤ ε

2
,

so that |fn(x) − f(x)| < ε for n > N . It is a key result in the theory of uniform
convergence that the limit of a uniformly convergent sequence of continuous func-
tions is continuous (see, e.g., the text (Apostol, 1974)). Therefore f is continuous,
f ∈ C and C[a, b] is complete.

The reader is invited to ascertain that the definition of the norm (A5.3) makes
little use of the structure of the underlying space [a, b] on which the functions are
defined, in the sense that it remains valid if the interval [a, b] is replaced by any
compact space X. What is essential is that a continuous real-valued function on
X have a maximum and a minimum value, for which the compactness of X is
sufficient.

The famous Weierstrass approximation theorem states that a function f ∈
C[a,b] can be approximated uniformly as well as one likes by polynomials on
[a, b]. That is, for any f ∈ C[a, b] and any ε > 0, there exists a sequence {fn(x)}
of polynomials and a positive integer N such that ||fn − f ||∞ < ε for n > N .

5 The terms supremum and infimum (abbreviated sup and inf respectively) denote the least
upper bound and the greatest lower bound of a set of real numbers. They were introduced
into analysis some decades before their existence was proved by Dedekind and Cantor, and
continue to be used in analysis.
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In topological language, we would say that the polynomials are dense in f ∈
C[a, b] in the topology induced by the norm || · ||∞. It is fairly obvious that a
polynomial in C[a, b] can be uniformly approximated by polynomials with rational
coefficients, and the latter form a countable set (page 251). It follows from these
that C[a, b] is separable (page 265).

A5.2.2 The 1-norm. Incompleteness of the Riemann integral

The functional6

||f ||1 =

b∫
a

|f(x)|dx, (A5.5)

where the integral is a Riemann integral, also defines a norm on C, as is easily
verified. It should be noted that the critical triangle inequality follows once again
from the triangle inequality for functions (A5.4) and does not depend much on
the integral itself. However, the normed space (C, || · ||1) is not complete, as we
shall now show by constructing a simple counterexample.

Fix a point γ ∈ (a, b), and let N be an integer such that N > 1 − (γ − a).
Then γ − 1/n > a for n > N . For such n, define the functions fn(x) on [a, b] as
follows:

fn(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, if a ≤ x < γ − 1
n

,

1 − n(γ − x), if γ − 1
n

≤ x < γ,

1, if γ ≤ x ≤ b.

(A5.6)

Then, for γ − 1/n ≤ x ≤ γ, one has 0 ≤ fn(x) ≤ 1, and fn(x) is continuous. The
graph of fn(x) is shown in Fig. A5.1. The sloping part of the graph of fm(x),
where n > m > N , is also shown in the figure, by a dashed line. The norm
||fm − fn||1, which is the Riemann integral of |fm(x) − fn(x)| from a to b, is
the area of the triangle with vertices (γ − 1/m, 0), (γ − 1/n, 0) and (γ, 1) on the
figure. This area is

1
2

(
1
m

− 1
n

)
<

1
2m

,

6 In current mathematical usage, the term functional is used to denote a map, generally
linear, from a linear space into the real or complex numbers. The idea is to distinguish
between maps such as f : R → C and f : C[a, b] → C, because points of R are structureless,
while points of C[a, b] are not. The importance of the distinction was first appreciated by
Volterra, who defined a concept he called functions of lines, around 1913. The name was
later changed to functionals by Hadamard, and it has stuck.
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which shows that the sequence {fn(x)}n>N is a Cauchy sequence in the norm
|| · ||1. However, the function f(x) to which it converges is

f(x) =

{
0, for a ≤ x < γ,

1, for γ ≤ x ≤ b,

which is discontinuous; it does not belong to C[a, b]. This is clear from Fig. A5.1,
and may also be verified analytically with ease.
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Fig. A5.1. Illustrating the incompleteness of the Riemann integral

It may be argued at this point that, instead of considering C, one ought to
consider the space of all Riemann-integrable functions on [a, b], which is larger
than C. This is a valid point (although we do not yet have the tools to give a
characterization of this space), but it turns out that this space, when normed
with || · ||1 as defined by (A5.5), is also incomplete.

A5.2.3 The p-norms; the 2-norm

Using the Riemann integral, one can define an infinity of norms on the space
C[a, b]. Let p ∈ [1,∞) and f ∈ C[a, b]. Then

||f ||p =

⎡⎣ b∫
a

|f(x)|pdx

⎤⎦1/p

(A5.7)

defines a norm on C[a, b], sometimes called the p-norm. The definition can
be extended to: (i) spaces of real- or complex-valued functions on Rn or In,
where In is a closed cube in n dimensions; (ii) linear spaces of sequences of
real or complex numbers, subject to the appropriate convergence conditions.
The convergence condition in the p-norm on the space of sequences of complex



294 Appendix A5: Measure and integral

numbers z = {zn}, n ∈ N is

||z||p =

[ ∞∑
0

|zn|p
]1/p

< ∞. (A5.8)

The essential part of establishing that the quantities ||f ||p and ||z||p are indeed
norms is proving the triangle inequality. This is accomplished by using the clas-
sical inequalities of Hölder and Minkowski. We omit the lengthy details, which
may be found in any textbook on analysis, e.g., (Friedman, 1970).

Of particular interest is the 2-norm, both for function spaces and for sequence
spaces, because it generalizes the notion of Euclidean space. Recall that in
Euclidean Rn two vectors u, v are perpendicular iff

||u + v||2 = ||u||2 + ||v||2,

which is just a restatement of Pythagoras’ theorem. The Euclidean norm also
obeys the parallelogram law, namely that the sum of squares of the diagonals
of a parallelogram equals the sum of squares of its sides,

||u + v||2 + ||u − v||2 = 2||u||2 + 2||v||2, (A5.9)

which is proven by direct computation. As a consequence of the parallelogram
law, one finds that the inner product on a Euclidean space (which is also called
the scalar product) is related to the norm by the following identity, known as
the polarization identity:

(u, v) = 1
4

[||u + v||2 − ||u − v||2] . (A5.10)

Note that (A5.10) is valid only for linear spaces over R. For linear spaces over
C, it has to be replaced by

(u, v) = 1
4

[
(||u + v||2 − ||u − v||2) + i(||u + iv||2 − ||u − iv||2)] . (A5.11)

Again, one verifies (A5.11) by direct computation.
A Banach space in which the norm satisfies the parallelogram law (A5.9) is a

Hilbert space, with the inner product defined by (A5.10) or (A5.11).
It can be shown (we shall not stop to prove it) that of all the p-norms, the

only one that satisfies the parallellogram law is the 2-norm. It is therefore the
only one in which one can define an inner product, i.e., the notion of an angle.

It follows from the completeness of real and complex numbers that sequence
spaces are complete in the p-norms; the reader would undoubtedly have surmised
that the function spaces C[a, b] are not, as long as the p-norms are defined by
the Riemann integral.
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A5.3 The Riemann–Stieltjes integral

We begin with a quotation from Apostol (Apostol, 1974, pp. 140–141):

The Riemann-Stieltjes integral [written
∫ b

a
f(x)dα(x)]. . . involves two func-

tions f and α. . . When α has a continuous derivative. . . the Stieltjes integral∫ b

a
f(x)dα(x) becomes the Riemann integral

∫ b

a
f(x)α′(x)dx. However, the

Stieltjes integral still makes sense when α is not differentiable or even when
α is discontinuous. In fact, it is in dealing with discontinuous α that the
importance of the Stieltjes integral becomes apparent. By a suitable choice
of a discontinuous α, any finite or infinite sum can be expressed as a Stieltjes
integral, and summation and ordinary Riemann integration become special
cases of this more general process. Problems in physics which involve mass
distributions that are partly discrete and partly continuous can also be
treated by using Stieltjes integrals.

In this section, we shall work with a fixed real interval [a, b], denoted by I, and
the set of bounded real-valued functions7 on I. This set will be denoted by F .

A partition of I is a finite set of points P = {a = x0, x1, . . . , xn = b} such
that xk < xk+1 for k = 0, 1, . . . , n. If Q is another partition of I and P ⊂ Q, we
say that Q refines P , or Q is finer than P . The norm of the partition P is
defined to be the length of the largest subinterval in P , and is denoted by ||P ||.
Q ⊃ P implies that ||Q|| ≤ ||P ||; refinements do not have to decrease the norm
of a partition, but one is mostly interested in those that do.

We shall now define the Riemann–Stieltjes integral.8 The reader will notice
that the definition is modelled after a standard definition of the Riemann integral,
and, like the latter, is not an effective computational tool.

We begin by selecting, arbitrarily, a particular function in F . This function
will be denoted by α. We define

∆αk = α(xk) − α(xk−1). (A5.12)

Then:

Definition A5.2 (Riemann–Stieltjes integral) Let f be any function in F ,
and α a fixed function in F . Let P = {x0, . . . , xn} be a partition of I, and tk

7 Note that we do not require continuity. The reason for emphasizing the boundedness will
become clear at the beginning of Subsection A5.3.1.

8 There are several inequivalent definitions of the Riemann–Stieltjes integral in the literature.
The differences between them are not significant for our purposes. The Riemann–Stieltjes
integral is also known simply as the Stieltjes integral. However, as there is also a Lebesgue–
Stieltjes integral, which we shall not define, we have chosen to stay with the name Riemann–
Stieltjes integral to avoid any possibility of confusion.
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any point in [xk−1, xk]. A sum

S(P, f, α) =
n∑

k=1

f(tk)∆αk

is called a Riemann–Stieltjes sum of f with respect to α.
If there exists a number A with the property that for any ε > 0, there is a

partition Pε of I such that for every P ⊃ Pε,

|S(P, f, α) − A| < ε

for every choice of points tk ∈ [xk−1, xk], we say that f is Riemann–Stieltjes
integrable with respect to α on I (written f ∈ R(α) on I), and write

b∫
a

f(x)dα(x) =

b∫
a

fdα = A.

The number A, if it exists, is unique. The functions f and α are called the
integrand and the integrator respectively.

The integrator does not have to be monotonic, but for us it will be enough to
consider those that are monotonic nondecreasing. Note that if α(x) = x, then
the integral becomes the Riemann integral, i.e., R(x) consists of the Riemann
integrable functions on [a, b]. In this case we write dx for dα(x). If α(x) is
differentiable on (a, b) and α′(x) is continuous, then we have the pleasing result

b∫
a

f(x)dα(x) =

b∫
a

f(x)α′(x)dx. (A5.13)

The Riemann–Stieltjes integral is linear in both f and α. More precisely:

Theorem A5.3 (First linearity property) If f, g ∈ R(α), then for any two
c1, c2 ∈ R, c1f + c2g ∈ R(α).

Theorem A5.4 (Second linearity property) If f ∈ R(α) and f ∈ R(β),
then f ∈ R(c1α + c2β) for any two c1, c2 ∈ R, and

b∫
a

fd(c1α + c2β) = c1

b∫
a

fdα + c2

b∫
a

fdβ.
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We also have the familiar result for integration by parts, which holds for
Riemann–Stieltjes integrals as well:

Theorem A5.5 (Integration by parts) If f ∈ R(α) on I, then α ∈ R(f) on
I, and

b∫
a

f(x)dα(x) +

b∫
a

α(x)df(x) = f(b)α(b) − f(a)α(a).

Finally, we have

Theorem A5.6 If c ∈ [a, b], then

c∫
a

fdα +

b∫
c

fdα =

b∫
a

fdα.

The straightforward proofs of these theorems may be found in (Apostol, 1974).

A5.3.1 Step functions as integrators

If the integrator is once-differentiable, then we see from (A5.13) that the
Riemann–Stieltjes integral reduces to a Riemann integral. We now come to the
heart of the matter, i.e., to integrators that are not continuous.

First, some notations and terminology. Let κ(x) be bounded on I, and assume
that the limits (recall that ε > 0 by convention)

lim
ε→0

(κ(x) + ε) and lim
ε→0

(κ(x) − ε)

exist (i) at all x ∈ (a, b), (ii) from the right at a, and (iii) from the left at b.
We write these limits as κ(x+) and κ(x−) respectively. If κ(x) = κ(x±), it
is called continuous from the right (or right-continuous, plus sign), and
continuous from the left (or left-continuous, minus sign), respectively, at x.

Let τ ∈ (a, b), and define a function α as follows. The values α(a), α(τ) and
α(b) are assigned arbitrarily, and for other values of x ∈ I, α(x) is defined by

α(x) =

{
α(a), a ≤ x < τ,

α(b), τ < x ≤ b.
(A5.14)

The function α is an example of a step function; step functions are defined in
their generality in Definition A5.8.
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Theorem A5.7 Let f be continuous on I, and α be as in (A5.14). Then

b∫
a

fdα = f(τ)[α(τ+) − α(τ−)].

Proof Since any partition of I that does not contain the point τ is refined by
the one obtained by adjoining τ to it, there is no loss of generality in considering
only those partitions that contain the point τ . Let P be such a partition, with
xk = τ . Owing to the form of α, every term but two in the Riemann–Stieltjes
sum S(P, f, α) vanishes identically, and we have:

S(P, f, α) = f(tk)[α(τ) − α(τ−)] + f(tk+1)(α(τ+) − α(τ)].

Therefore we may write

∆ = S(P, f, α) − f(τ)[α(τ+) − α(τ−)]

= (f(tk) − f(τ))[α(τ) − α(τ−)] + (f(tk+1 − f(τ))[α(τ+) − α(τ)]

= (f(tk) − f(τ))[α(τ) − α(a)] + (f(tk+1 − f(τ))[α(b) − α(τ)].

Therefore

|∆| ≤ |(f(tk) − f(τ))| · |α(τ) − α(a)| + |(f(tk+1 − f(τ))| · |α(b) − α(τ)|.

Now, since f is continuous, for any ε > 0 we can find δ > 0 such that |f(x) −
f(τ)| < ε whenever |x − τ | < δ. Therefore, for any partition Pε with ||Pε|| < δ,
we have

|∆| ≤ ε|α(τ) − α(a)| + ε|α(b) − α(τ)|,

which proves the theorem.

If α(a) = α(τ−) = 0 and α(b) = α(τ+) = 1, the result of the theorem becomes

b∫
a

fdα = f(τ).

Physicists are familiar with this result in the form

b∫
a

f(x)δ(x − τ)dx = f(τ), (A5.15)

where δ(x − τ) is Dirac’s delta-function. Integrals with the delta-function in
the integrand may thus be interpreted as Riemann–Stieltjes integrals with step
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functions as integrators. Observe that the value of α(x) at x = τ does not play
a role; all that is necessary is for α(x) to be defined at x = τ . Indeed, step
functions are defined as follows:

Definition A5.8 (Step functions) Let P = {a = x1, . . . , xn = b} be a
partition of [a, b]. A function α : [a, b] → R is called a step function if
α(x) = const on all open intervals (xk, xk+1). For 1 ≤ k < n, the number
hk = α(xk+) − α(xk−) is called the jump9 of α at xk. The jump at x1 is
α(x1+) − α(x1), and the jump at xn is α(xn) − α(xn−).

Using Theorem A5.7, the reader is invited to establish the following:

Theorem A5.9 Let α be a step function on I, with jumps hk at xk. Then, if
f is continuous on I,

∫ b

a
fdα exists and

b∫
−n

f(x)dα(x) =
n∑

k=1

f(xk)hk.

Step functions, as defined above, are not required to be continuous either from
the left or from the right at their discontinuities. If one tightens this condition
when using them as integrators, e.g., by requiring α to be right-continuous, then
one can relax the continuity condition on f ; it would be enough for f to be
left-continuous at the discontinuities of α. For details, see (Apostol, 1974).

As a last example, let a = −n and define α(x) as follows:

α(x) =

{
−k, x ∈ [−k,−k + 1), k = n, n − 1, . . . , 1;

x, x ∈ [0, b].
(A5.16)

Then, under suitable continuity conditions on f,

b∫
−n

f(x)dα(x) =
n∑

k=1

f(−k) +

b∫
0

f(x)dx,

where the integral on the right is an ordinary Riemann integral.

A5.4 σ-algebras, measures and integrals

If the notions of Euclidean geometry coexist in harmony with the notion
of a set, the following question ought to make sense: Does every subset of
three-dimensional Euclidean space have a volume? Banach and Tarski proved
the following result (which has since become known as the Banach–Tarski
paradox) in 1924. It is possible to take a ball of unit radius in three-space, divide

9 Apostol (Apostol, 1974) uses the notation αk for the jump of the step function α at xk.
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it into a finite number of pieces, and then, using only rotations and translations,
assemble the pieces to form two balls, each of unit radius. The construction
made very explicit use of the axiom of choice. However, the pieces into which
Banach and Tarski had divided the unit ball were subsets for which the concept
of volume was not well defined. That the re-assembly would double the volume
was no more and no less surprising than the fact that a ball with a well-defined
volume could be decomposed into a finite number of pieces, none of which could
be assigned a volume!

If it is not possible to assign a measure10 to every subset of Rn (which seems
to be the case if one wants to stay with set theory and the axiom of choice),
there are two questions to be answered:

(i) What are the measurable sets?
(ii) How does one assign a measure to a measurable set?

A5.4.1 Measurable sets

Although we were led to the above questions by a paradox in Euclidean space,
they have been answered in a much more general setting. The class of measurable
sets is defined collectively on an arbitrary set of points, by a process which is
broadly similar to the definition of topologies.

Definition A5.10 (σ-rings and σ-algebras) Let X be a set. A family R of
subsets of X is called a σ-ring if:

(a) ∅ ∈ R.

(b) If A, B ∈ R, then A � B ∈ R.

(c) If An ∈ R for n ∈ N, then

∞⋃
n=1

An ∈ R.

If, in addition, X ∈ R, then R is called a σ-algebra.

Properties of σ-rings and σ-algebras are studied in detail in books on mea-
sure theory; see, for example, the short but lucid text by Friedman (Friedman,
1970).11 Our next step will be based on the following straightforward result,
which we shall state without proof:

Theorem A5.11 (The σ-algebra generated by a family of subsets) Let
Q be a family of subsets of X which includes X itself. Then there exists a unique

10 For the moment, we are using the term measure in a loose sense; the precise definition will
be given presently.

11 We shall not need the extra generality afforded by σ-rings over σ-algebras. We have defined
the concept purely to make it easier for the reader to consult standard texts.
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smallest σ-algebra RQ which contains every member of Q. Smallest means here
that if R1 is any σ-algebra such that R1 ⊃ Q, then R1 ⊃ RQ ⊃ Q.

The σ-algebra RQ is said to be generated by Q.
The set X of Definition A5.10 was not a topological space. We shall, however,

be chiefly concerned with σ-algebras on topological spaces, which are defined as
follows, and have a special name:

Definition A5.12 (Borel structures) Let X be a topological space. The σ-
algebra generated by the open sets of X is called a Borel structure on X, and
will be denoted by B. Elements of B are called Borel sets.

Theorem A5.11 ensures that the Borel structure on X is unique. (B is a
σ-algebra and not only a σ-ring because X itself is an open set.) Observe that if
X is a T1-space, then one-point subsets are Borel. We now define:

Definition A5.13 (Measurable sets) Let R be a σ-algebra on a set X. The
elements of R are called measurable subsets of X.

It follows trivially that the measurability or nonmeasurability of a subset of
X depends on the σ-algebra being used. If one is working with a T1 topological
space and its Borel structure, then one-point sets are measurable, as are count-
able sets and their complements. Therefore a nonmeasurable set must necessarily
be uncountable, and have an uncountable complement (which will also be non-
measurable). Of course, it remains to be demonstrated that nonmeasurable sets
indeed exist.

Such demonstrations are generally provided by constructing examples. (Recall
Weierstrass’ famous proof of existence of an everywhere continuous but nowhere
differentiable function.) Nonmeasurable sets are not easy to construct, which
may be why they are so seldom encountered.

Let us restate the above in different words. Note, first of all, that – except in
Section A7.2 on the general theory of probability – we shall be working almost
exclusively with measures on topological spaces (indeed, on topological groups),
so that the relevant σ-algebra will be the Borel structure B on it. The latter, by
Theorem A5.11, is unique. It is clearly a subset of the power set P(X) of X (see
page 245). What we still do not know is whether or not B is a proper subset
of P(X).

A5.4.2 Measures

We now turn to the definition of measures. For this we need to augment the set
of real numbers. The set of extended real numbers is defined to be the union
R ∪ {−∞,∞}, with the assumption that −∞ < x < ∞ for any x ∈ R; −∞
is to be included among the negatives, and +∞ among the positives. This set
is sometimes denoted by R�. It is topologized in the same manner as a closed
interval of the reals. We also need to augment the definition of a function:
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Definition A5.14 (Set functions) A set function is a function the domain
of definition of which is a class, or family, of sets.

These definitions are put to use in the definition of measures.

Definition A5.15 (Measures on X) A measure µ on (X, R) is a set function
µ : R → [0,∞] from a σ-algebra R on X into the extended nonnegative real
numbers that has the following properties:

(a) µ is countably additive;12 i.e., if {Bk}∞
k=1 is any pairwise-disjoint

countable subcollection of R, then

µ

( ∞⋃
k=1

Bk

)
=

∞∑
k=1

µ(Bk);

(b) µ(∅) = 0.

It follows from these conditions that µ(A) ≤ µ(B) for A ⊂ B, A, B ∈ R

An immediate consequence of the above definition is that measures can be
multiplied by positive numbers, and added ; if µ1, µ2 are measures on (X, R) and
a, b ∈ [0,∞), then aµ1 + bµ2 is again a measure on (X, R).

A measure µ on (X, R) is called σ-finite if there exists a countable subcollec-
tion {Bk} of R which covers X and is such that µ(Bk) < ∞ for all k. It is called
finite if µ(X) < ∞. For example, the usual measure of length on the real line
(as we shall see) is σ-finite but not finite. Counting measures (i.e., measures that
count the number of points in a subset) on the power sets of uncountable sets
are neither finite nor σ-finite.

A triple (X, R, µ) is called a measure space. Similarly, a triple (X, B, µ),
with X a topological space, is called a Borel space. A measure µ on a Borel
space is sometimes called a Borel measure.

It may seem almost too trivial to state that, given a measure µ on X, a subset
E ∈ R is said to be of measure zero if µ(E) = 0; however, it brings us to one
of the most important concepts in measure theory:

Definition A5.16 (Almost everywhere) A property P is said to hold
almost everywhere (abbreviated a.e.) if it holds everywhere except on a set
of measure zero.

Important examples are functions that are equal a.e., continuous a.e., bounded
a.e., differentiable a.e., and sequences of functions that converge a.e.

We end this section by stating the following results:

(i) Let (X, R, µ) be a measure space and S a measurable subset of X. Using
the fact that the intersection of two members of R belongs to R, one finds

12 Friedman uses the term completely additive (Friedman, 1970).
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that the collection

RS = {A ∩ S|S ∈ R}

is a σ-algebra on S, and that the restriction of µ to RS is a measure on
(S, RS).

(ii) Let (X, BX , µ) and (Y,BY , ν) be two Borel spaces. If SX and SY are Borel
sets in X and Y , then SX ×SY is a Borel set in X ×Y , and µ×ν, defined by

(µ × ν)(SX × SY ) = µ(SX) · ν(SY )

is a measure on X × Y .

The first of these is easy to prove, but the second is more involved. See (Friedman,
1970, Sec. 2.15).

A5.4.3 Integrals

The definition of the Riemann integral may be viewed as a two-step process. The
first step consists of defining a suitable family of approximants. In the traditional
picture of the Riemann integral as the area under a curve, the approximants are
represented by histograms; the step-function that is the upper boundary of the
histogram is an approximation to the curve itself. The second step consists of
choosing a suitable sequence of approximants, and of proving, or testing, their
convergence. The definition of the integral in the general setting of measure
spaces follows the same paradigm, with histograms being replaced by objects
that are more subtle, and the notion of convergence amended to reflect this
subtlety.

We begin with a few definitions.

Definition A5.17 (Measurable function) An extended real-valued function
f on (X, R) is said to be measurable if

(a) f−1(U) is a measurable subset of X (i.e., f−1(U) ∈ R) for any open set U

in R.

(b) f−1(−∞) and f−1(∞) are measurable sets.

Note that f need not be continuous; indeed, X need not be a topological
space. But if it is, and if R is replaced by B in the above, f is said to be
Borel-measurable, or simply Borel. A continuous function is necessarily Borel.
Measurable functions on (X, R) form a linear space over R.
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Recall now that the characteristic function χS of a subset S ⊂ X is defined
as follows:13

χS(x) =

{
1, if x ∈ E,

0, if x ∈ X � E.

The part of histograms in the Riemann integral is played by simple functions,
which are defined as follows, in terms of characteristic functions:

Definition A5.18 (Simple functions) A function f : X → R is called a
simple function if it assumes only a finite number of distinct values. Formally,
if f is a simple function, then there exist distinct nonzero real numbers αk, k =
1, . . . , n and pairwise-disjoint measurable subsets Sk, k = 1, . . . , n of X such
that

f(x) =
n∑

k=1

αkχSk(x).

It will be convenient, for later use, to define the set

S0 = X �
n⋃

k=1

Sk. (A5.17)

Theorem A5.19 (Approximation by simple functions) Let f be a non-
negative measurable function. Then there exists a sequence {fn} of nonnegative
simple functions such that {fn(x)} converges pointwise to f(x).

We shall not prove this theorem (for a proof, see (Friedman, 1970)), but
shall illustrate it by an example which will also illustrate the difference between
approximation by a simple function and by a Riemann sum. For this we need the
auxiliary result – which the reader is invited to prove – that if f is a measurable
extended real-valued function on X, then the inverse images of closed and half-
open intervals on R are measurable.

Let f be a bounded measurable function on X that takes its values in [a, b].
Set

αk = a +
b − a

n
k, 0 ≤ k ≤ n,

and

Sk = f−1([αk, αk+1]).

13 The characteristic function is usually written as χS. We have chosen the superscript notation
because we find TEX’s χS and χSk to be more pleasing, visually, than its χS and χSk

.



A5.4 σ-algebras, measures and integrals 305

Then

f(x) ≈
n∑

k=1

αkχSk (A5.18)

is an approximation to f by a simple function; the larger n is, the better the
approximation. The following, in an obvious notation,

f(x) ≈
m∑

j=1

mj∆j (A5.19)

is an approximation to f by a Riemann sum. The essential difference between
(A5.18) and (A5.19) is that the first is obtained by subdividing the range of f ,
whereas the second is obtained by subdividing its domain.

Definition A5.20 (Integrable simple functions) A simple function f(x) =∑n
0 αkχSk , where α0 = 0, is said to be integrable with respect to the measure

µ if µ(Sk) < ∞ for 1 ≤ k ≤ n. If µ(S0) = ∞, we agree to set 0 · µ(S0) = 0. The
integral of f is defined as follows:∫

X

fdµ =
n∑

k=0

αkµ(Sk).

It is easy to see that the integrable simple functions on (X, R, µ) form a linear
space over R.

Definition A5.21 (Cauchy sequence in the mean) A sequence {fn} of
simple functions is said to be a Cauchy sequence in the mean if∫

|fm − fn|dµ → 0 as m, n → ∞.

The reader will surely have surmised what will come next:

Definition A5.22 (Integrable functions and integrals) Let f be an
extended real-valued function of the measure space (X, R, µ). The function f

is said to be integrable if there exists a sequence {fn} of integrable simple
functions such that

(a) {fn} is a Cauchy sequence in the mean.

(b) {fn} converges to f a.e.

If f is an integrable function, then its integral (with respect to the measure µ)
is defined to be ∫

X

fdµ = lim
n→∞

∫
X

fndµ.
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Of course it has to be proved that the limit on the right exists, but that is
straightforward. The dµ on the right is sometimes written as dµ(x).

A5.5 Haar measure

Let G be a locally compact σ-compact14 topological group (Section A3.9,
page 275), B the Borel structure on it and µ a measure on (G, B). The measure
µ is said to be left-invariant if, for any B ∈ B and any g ∈ G, µ(gB) = µ(B);
it is said to be right-invariant if µ(Bg) = µ(B); and bi-invariant, or simply
invariant, if µ(gB) = µ(Bg) = µ(B). Since the modern study of these measures
was initiated by Haar in 1933, they are known as Haar measures.15

The fundamental theorem on Haar measures is:

Theorem A5.23 (Haar measures) A locally compact topological group admits
a left-invariant and a right-invariant measure. These measures are unique up to
normalization.

If a topological group admits an invariant measure (which will then be unique
up to normalization), it is called unimodular.

It follows trivially from Theorem A5.23 that an Abelian topological group
is unimodular. Therefore the spaces Rn, considered as topological translation
groups, are unimodular. The unique translation-invariant measures on them
are the Lebesgue measures on Rn; therefore, if one manages to construct
a translation-invariant measure on R, that measure will have to be the Lebesgue
measure on it.

Every compact topological group is unimodular. Fortunately, most of the
important noncompact groups in physics, such as the Lorentz groups, are uni-
modular. It follows easily that the Euclidean and inhomogeneous Lorentz groups
are unimodular. It is not true that a closed subgroup of a unimodular group is
necessarily unimodular; for an example, see (Hewitt and Ross, 1963, p. 201).

Let G be a unimodular topological group, and D a unitary representation
of it on a Hilbert space H. The representation D is called weakly measur-
able if its matrix elements Dϕ,ψ(g) = (ϕ, D(g)ψ) are measurable functions of
g for all ϕ, ψ ∈ H. The following theorem of von Neumann (Hewitt and Ross,
1963; Mackey, 1976) essentially settles all continuity problems for unitary group
representations in physics.

14 A topological space is said to be σ-compact if it is a countable union of compact subsets.
Every connected locally compact topological group is σ-compact. All topological groups we
shall consider in this section will be assumed to be locally compact and σ-compact.

15 Invariant integrals on groups were studied as early as 1895 by A. Hurwicz. They were used
by Schur to develop the theory of group characters in 1924. Schur’s results were used a little
later by Peter and Weyl to prove the famous Peter–Weyl theorem (the full reducibility of
representations of compact groups). The Hurwicz invariant integral was used by Wigner in
1931 to calculate the Clebsch–Gordan coefficients of the rotation group in three dimensions.
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Theorem A5.24 A Hilbert space representation of a group with a Haar measure
is strongly continuous iff it is weakly measurable.

The notion of strong continuity has been defined in the section on Stone’s
theorem, page 133.

A5.6 The Lebesgue integral and the Lp-spaces

In this section we shall define the Lebesgue measure on R (and on [a, b] ⊂ R)
and then the function spaces Lp, which are complete in the p-norm determined
by the Lebesgue integral. We begin with a general construction which will be
exploited again in Section A5.7.

A5.6.1 Construction of measures

Let α(x) be a real-valued, monotonic, nondecreasing function on R which is
continuous from the right. Then the limits α(x+) and α(x−) exist at all x. For
any open interval (a, b), define

υ(a, b) = α(b−) − α(a+).

Then υ(a, b) is nonnegative for any open interval (a, b).
Let {In} be any finite or countable collection of pairwise-disjoint open

intervals, and set O = ∪nIn. Denote the family of all such O by I.
For B ∈ B, let OB ∈ I be such that B ⊂ OB (i.e., OB covers B by a finite or

countable union of pairwise-disjoint open intervals). Set

υ(OB) =
∞∑

n=1

v(In).

Then υ(OB) is nonnegative for every OB . Finally, define

µα(B) = inf
all OB

v(OB). (A5.20)

It can be shown that µα is a measure on R. The proof is an adaptation of the
standard textbook definition of the Lebesgue measure on R.

A5.6.2 The Lebesgue measure on R

If α(x) = x, then υ(a, b) = b − a. In this case the measure µα, denoted µ, is
called the Lebesgue measure on R. The Lebesgue measure of a one-point set
is zero, and that of an interval – open, closed or half-open – is its length. It
is clearly translation-invariant, µ(B) = µ(B + x), and is therefore the unique
Haar measure on R. The Lebesgue integral is usually denoted by

∫
fdx, instead

of
∫
fdµ or

∫
fdµ(x), with appropriate limits.
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Every countable subset of R has zero Lebesgue measure. Somewhat surpris-
ingly, there exist uncountable subsets of measure zero, and we shall soon come
to them.

Mutatis mutandis, one can define a measure on closed intervals [a, b] on R by
the same procedure. This measure is also called the Lebesgue measure, but on
[a, b]; the notation for the integral is unchanged, but with limits of integration a

and b.
For any ε > 0, a set of Lebesgue measure zero can be covered by a countable

collection of open intervals of total length < ε. This result16 can be turned
into the definition of sets of measure zero long before the general concept of
measure is defined. This makes it possible to define the Lebesgue integral before
defining the Lebesgue measure. We refer the interested reader to Part I of the
monograph (Riesz and Sz-Nagy, 1955) for a systematic development, and to the
text (Apostol, 1974) for a shorter account.

One of Lebesgue’s deepest theorems is:

Theorem A5.25 (Lebesgue) A monotonic function is differentiable a.e.

The following characterization of the class of Riemann-integrable functions is
also due to Lebesgue:

Theorem A5.26 (Riemann-integrable functions) A bounded function on
[a, b] is Riemann-integrable if and only if it is continuous a.e.

We see that one needs a concept from the Lebesgue theory to characterize the
class of Riemann-integrable functions, which is why this characterization could
not be given earlier. We shall have no occasion to use this result, but Theorem
A5.25 will be used to construct noninvariant measures in Section A5.7.

A5.6.3 The space L1([a, b],dx)

If we try to define a norm on the space of measurable functions on [a, b] via the
Lebesgue integral, i.e., by defining

||f − g||1 =

b∫
a

|f(x) − g(x)|dx, (A5.21)

we run into the problem that ||f −g|| = 0 �⇒ f = g, for, if f = g a.e., the integral
(A5.21) will vanish; the expression || · ||1 defined by (A5.21) is a seminorm, and
not a norm. However, this difficulty disappears if we pass to the equivalence

16 This is a far-from-trivial result – and one which does not have a constructive proof – as
one can see immediately by trying to cover the rationals Q on R by a countable collection
of intervals of total length < ε. If one uses this as a definition of sets of measure zero,
then, when one eventually defines a measure, one has to prove that the measure of a set of
measure zero is zero!
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classes of functions that are equal a.e. The space of these equivalence classes,
with the norm defined by the Lebesgue integral, is denoted by L1([a, b],dx). The
completeness of L1([a, b],dx) is the content of Lebesgue’s monotone convergence
and dominated convergence theorems, which actually antedate the general notion
of completion. They may be found in every text on the subject, for instance
(Friedman, 1970).

Strictly speaking, one ought not to speak of functions in L1([a, b],dx), but
one does! The reason why one does not come to grief is the following: if the
equivalence class of a function contains a continuous function, then it contains no
other continuous function. The same statement holds if one replaces ‘continuous’
by ‘differentiable’. Moreover, left- and right-hand limits at a point are unaffected
by changing the value of the function at that point, so that if a function has a
jump every member of its equivalence class has that jump.

Mutatis mutandis, the same considerations apply to the space L1(R,dx).
It should be mentioned that the spaces L1(R,dx) and L1([a, b],dx) are often
denoted simply as L1(R) and L1([a, b]).

A5.6.4 The spaces Lp

Earlier we defined the p-norms || · ||p, p ∈ [1,∞) on C[a, b] by (A5.7), using
the Riemann integral, and pointed out that C[a, b] is not complete under the
1-norm. We saw above that these difficulties disappear if (i) one defines the
1-norm via the Lebesgue integral, and (ii) one enlarges the space C[a, b] to the
space of equivalence classes of measurable functions that are equal a.e. The space
of these equivalence classes, it turns out, is complete in every p-norm, when the
p-norm is defined via the Lebesgue integral. The spaces themselves are denoted
Lp([a, b],dx), and their completeness is nowadays known as the Riesz–Fischer
theorem.

Mutatis mutandis, the same considerations apply to the spaces17 Lp(R,dx) and
Lp(Rn,dµ), where dµ = dx1 . . .dxn = dnx. By using the Weierstrass approx-
imation theorem in several variables, it can be shown that the Lp-spaces, for
1 ≤ p < ∞, are separable. The reader is invited to ascertain that the proof
requires only a slight extension of the proof of separability of C[a, b].

Proofs of the above assertions, including the Riesz–Fischer theorem, may be
found in every introductory text on functional analysis, such as (Friedman, 1970).
It should be mentioned that a few authors use the notation Lp rather than Lp.

A5.6.5 The space L∞

The definition A5.3 of || · ||∞ is no longer useful in the context of Lebesgue
integration. The necessary changes are almost self-evident, but they do require
a change of terminology.

17 These spaces are often denoted simply by Lp(Rn), 1 ≤ n < ∞.
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A real-valued measurable function f on X, where X = [a, b]n or X = Rn,
n ∈ N is said to be essentially bounded if there exists a positive number K

such that

|f(x)| ≤ K a.e.

The greatest lower bound of all such K is called the essential supremum of
f , and written

ess sup
x∈X

|f(x)| or ess sup
X

|f |. (A5.22)

The class of all measurable and essentially bounded functions on X is denoted
by L∞(X, dµ). It is a complete normed space under the norm

||f ||∞ = ess sup
X

|f |. (A5.23)

Unlike the spaces Lp(X, dµ) for p < ∞, the space L∞ is not separable. The proof
of this fact is rather simple, but it requires some basic notions of linear analysis
which we have not provided.

A5.7 Noninvariant measures on R

We shall now construct some noninvariant measures on R. We begin with two
definitions, which apply to any measure space:

Definition A5.27 Let R be a σ-algebra on X, and µ, ν two measures on (X, R).
The measure ν is said to be absolutely continuous with respect to µ, written
ν  µ, if µ(S) = 0 ⇒ ν(S) = 0, for S ∈ R.

Absolute continuity is not symmetric (ν  µ �⇒ µ  ν), but it is transitive;
ν  µ, µ  λ together imply ν  λ.

The following situation is in stark contrast to absolute continuity:

Definition A5.28 Let R be a σ-algebra on X, and µ, ν two measures on (X, R).
The measures µ, ν are said to be mutually singular (written µ ⊥ ν) if there
exist two subsets V, W ∈ R such that V ∪ W = X, V ∩ W = ∅ and µ(V ) =
ν(W ) = 0.

Examples A5.29 (Noninvariant measures on R)

(i) Let the function α(x) which was used to define the measure µα in (A5.20)
be a step function with a single jump at x = c. This case has been dis-
cussed in Subsection A5.3.1. This function defines a measure which is said
to be concentrated at c. Formally, this measure is the Dirac measure δc,
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multiplied by a constant.18 Since countable subsets of R are measurable, a
slight generalization of the above procedure allows one to define measures
that are concentrated on a countable set of distinct points. Denote such a
measure by µ1. For any subset A of R, µ1(A � {xn}) = 0.
If X is a countable subset of R, then a measure concentrated on X is called
a pure point measure, and denoted by µpp. The measure µ1 constructed
above is a pure point measure. One sees immediately that a pure point
measure and a Lebesgue measure on R are mutually singular.

(ii) The function α(x) introduced at the beginning of Subsection A5.6.1 is mono-
tonic nondecreasing. By Lebesgue’s theorem, α′(x) exists a.e., and therefore
α′(x) ≥ 0 a.e. Let now α′(x) > 0 a.e., and denote the measure defined by it
by µ2. Then if a subset of R is of Lebesgue measure zero, it is of µ2-measure
zero. µ2 is absolutely continuous with respect to the Lebesgue measure; it
is not an invariant measure.
A measure which is absolutely continuous with respect to the Lebesgue
measure is denoted by µac. Note that µ is absolutely continuous with respect
to itself. Probability measures19 on Rn (like ψ̄(x)ψ(x)dnx, where ψ is a
Schrödinger wave function) are noninvariant measures which are absolutely
continuous with respect to Lebesgue measure.

(iii) Begin by defining the Cantor set C. Remove the open middle third (the
interval (1

3 , 2
3 )) from [0, 1]. At the second step, remove the open middle

third from each of the remaining two subintervals [0, 1
3 ] and [23 , 1]; at the

third step, remove the open middle thirds of each of the four remaining
subintervals, and so ad infinitum. The set C that remains is called the
Cantor set.
At each step, the set that remains is a closed set. Aneasy calculation shows that
the total length of the intervals removed is 1, so that C has Lebesgue measure
zero. By looking at the infinite ternary representations20 of numbers between
0 and1, one finds that the ternary representations of the points (numbers) that
are not removed do not contain any 1s. It is then trivial to establish a (1, 1)
correspondence between this set, and the set of infinite binary representations
of numbers in [0, 1]. This means that C is uncountable.
Let x ∈ [0, 1]. Then

x =
∞∑

n=1

an

3n
, where an = 0, 1 or 2,

18 Dirac’s δ-function behaves like a measure under integration and like a distribution
(Section A5.8) under differentiation. When it is used as a distribution, it is written δ(x−c),
but the same object, used as a measure, is written, in the mathematical literature, as δc,
where δc(A) = 1 if c ∈ A and δc(A) = 0 if c /∈ A.

19 A measure µ on X is called a probability measure if µ(X) = 1. See Section A7.2.
20 See the discussion surrounding (A2.5) on page 251.
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is its infinite ternary expansion. Let n = n(x) be the first index for which
an = 1. If there is no such index (i.e., if x ∈ C), then write n(x) = ∞.
Define the function ψ by

ψ(x) =
∑

1≤j≤n

aj

2j+1 +
1

2n(x) ·

Then ψ, called the Cantor function, is a continuous, monotonic function
which increases from 0 at 0 to 1 at 1, is constant on the intervals that have
been removed, and is differentiable a.e., with ψ′ = 0 wherever it is defined.
It is a generalization of the notion of a step function, and its graph is known
as the devil’s staircase.21 As ψ is monotonic nondecreasing, we may define
a measure µ3 = µψ. As ψ is continuous, µ3(x) = 0 for every x. Since ψ′ = 0
on the intervals that have been removed, µ3([0, 1] � C) = 0. Therefore µ3

differs from zero on an uncountable set of Lebesgue measure zero.
A measure like µ3 which is singular both with respect to pure point measures
on [0, 1]�C and the Lebesgue measure is called singular continuous, and
written µsc.

The following fundamental result was established by Lebesgue:

Theorem A5.30 (The Lebesgue decomposition theorem) Let µ be a Borel
measure (page 302) on R. Then µ can be decomposed uniquely as follows:

µ = µpp + µac + µsc.

A5.7.1 Signed measures; the Radon–Nikodym theorem

We now consider a simple generalization of the notion of measure. The aim of
this generalization is to be able to state a result known as the Radon–Nikodym
theorem in the form in which it will be needed later.

Definition A5.31 A signed measure on a measure space (X, R) is a set
function µ : R → [−∞,∞] which satisfies the following conditions:

(a) µ is countably additive.

(b) µ(∅) = 0.

(c) µ takes on at most one of the values −∞,+∞.

A signed measure can be decomposed into a positive and a negative part. This
decomposition is effected in two steps:

21 The Cantor function is defined, and some of its properties given as exercises in (Halmos,
1950, p. 83). Its graph, the devil’s staircase, is pictured in almost every book on fractals.
See, for instance, (Schroeder, 1991, p. 168).
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Proposition A5.32 (Hahn decomposition) Let µ be a signed measure on
(X, R). Then there exists a partition of X into two measurable sets A and B

(i.e., A ∪ B = X, A ∩ B = ∅) such that

µ(A ∩ Z) ≥ 0 and µ(B ∩ Z) ≤ 0

for any measurable set Z ⊂ X.

Clearly, the sets A and B are not unique; they can be altered by adding or
subtracting subsets of X of measure zero. Now define

µ+(Z) = µ(A ∩ Z) and µ−(Z) = −µ(B ∩ Z). (A5.24)

Then µ+(Z) and µ−(Z) are measures on X, and at least one of them is finite. It
can be shown that they are independent of the particular Hahn decomposition.
Now:

Proposition A5.33 (Jordan decomposition) Let µ be a signed measure on
(X, R). Then

µ = µ+ − µ−,

where µ+ and µ− are given by (A5.24).

We now define a quantity |µ| by

|µ|(Z) = µ+(Z) + µ−(Z). (A5.25)

It is clear that |µ| is a measure on (X, R). Therefore the notion of absolute
continuity is defined with respect to |µ|. We extend this to the definition of
absolute continuity with respect to signed measures:

Definition A5.34 Let µ, ν be signed measures on (X, R). We shall say that ν

is absolutely continuous with respect to µ, and write ν  µ, if ν(A) = 0 for
any measurable set A for which |µ|(Z) = 0.

We are now in a position to state the Radon–Nikodym theorem in the required
form.

Theorem A5.35 (Radon–Nikodym theorem) Let (X, R, µ) be a σ-finite
measure space and ν a σ-finite signed measure on (X, R) which is absolutely
continuous with respect to µ. Then there exists a nonnegative measurable function
f on X such that for each set S in R,

ν(S) =
∫
S

fdµ.
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If there exists another measurable function g such that ν(S) =
∫

S
g dµ, then

f = g a.e.

The function f of the above theorem is called the Radon–Nikodym
derivative of ν with respect to µ, and is written

f =
dν

dµ
. (A5.26)

Since Rn is second countable, its Borel structure satisfies the countability
condition of Theorem A5.35 for every n.

The Radon–Nikodym theorem will be used to prove the existence of conditional
expectations in Section A7.3.

A5.8 Differentiation

In the theory of the Riemann integral, the relation

d
dx

x∫
a

f(t)dt = f(x)

holds if f is continuous at x. In the theory of the Lebesgue integral, one can
show that this relation is replaced by

d
dx

x∫
a

f(t)dt = f(x) a.e. (A5.27)

Denoting, temporarily, the equivalence class of the function f(x) by [f(x)], we
may rewrite (A5.27) as

d
dx

x∫
a

[f(t)]dt = [f(x)],

which shows that differentiation is the inverse of integration in the theory of the
Lebesgue integral as well.

Similarly, if f(x) is a differentiable function, then

d
dx

[f(x)] = [f ′(x)].

However, differentiable functions are rare even among continuous functions, to
say nothing of L1. It has been shown that, in a measure-theoretic sense, almost
every continuous function is nowhere-differentiable.

In view of this fact – which has wide-ranging repercussions for mathematicians
and mathematical physicists, as we shall glimpse in Appendix A6 – the reader
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may justly point out that we have got ourselves into this situation by according
primacy to the notion of integration, and requiring the norm defined by the
integral to be complete. What would happen if we were to give primacy, instead,
to the notion of differentiation and tried to build a space that consists only of
differentiable functions and is complete?

The answer to this question was provided by Laurent Schwartz in his Théorie
des distributions (Schwartz, 1957, 1959).22 It is indeed possible to define families
of objects – called distributions by Schwartz – that are infinitely differen-
tiable. They are not functions, but linear functionals on suitable classes of
test-functions; in this they resemble quantized, rather than classical fields.23

Spaces of test-functions are linear spaces over R with topologies defined by a
family of seminorms; they are called topological vector spaces. The family of
seminorms actually defines a uniformity on the space, which is complete in this
uniformity (Appendix A4). The topology on them is just the topology of the
uniformity. It would take us too far afield to go into further details. The inter-
ested reader is referred to the summary in Chapter 2 of (Streater and Wightman,
1964), the detailed treatment in Chapter 6 of (Rudin, 1974), and to the refer-
ences cited therein. However, the notion of uniformities is not used in the texts
cited above.

22 Distributions are called generalized functions by Gelfand and the Soviet school, and
ideal functions by Courant in the English translation of Part II (Courant and Hilbert,
1962).

23 The physical antecedents of the theory of distributions, in particular the insights of Niels
Bohr in 1931, have been discussed in Section 6.1.
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Hilbert space, operators and spectral theory

In this appendix we shall make precise the notions of Hilbert space and operators
on Hilbert space, and state and explain the various cases of the spectral theorem
for self-adjoint operators on Hilbert space. The integral used for defining Hilbert
spaces of square-integrable functions will be the Lebesgue integral; the one used
for stating the spectral theorem will be, in the first instance, the Riemann–
Stieltjes integral.

A6.1 Hilbert space

The term Hilbert space was introduced in the late 1920s, by von Neumann who
defined an abstract Hilbert space H by the axioms that are summarized below
(in his own enumeration).

A Linearity H is a linear space over C.
B Inner product A Hermitian inner product (f, g), f, g ∈ H is defined on H.

Von Neumann defined the inner product to be linear in the first argument and
antilinear in the second, i.e., (af, g) = a(f, g) and (f, ag) = ā(f, g). The bar
above a letter denotes its complex conjugate. This is the convention used by
mathematicians, but physicists, following Dirac, use the opposite convention:
an inner product which is antilinear in the first argument and linear in the
second:1

(af, g) = ā(f, g) and (f, ag) = a(f, g).

We shall use the physicists’ convention; the reader who consults a mathe-
matics text should bear this in mind. The hermiticity condition

(f, g) = (g, f)

remains unaffected. Note that the inner product induces a metric

d(f, g) = |(f − g, f − g)| =
√

(f − g, f − g)2.

1 Note that the inner product defined by (A5.11) is that of the mathematician.
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The quantity ||f || defined by ||f ||2 = (f, f) is called the norm of f . It satisfies
the conditions

(i) ||cf || = |c| · ||f ||,
(ii) |(f, g)| ≤ ||f || ||g|| (the Schwarz inequality), and

(iii) ||f + g|| ≤ ||f || + ||g|| (the triangle inequality)

for all c ∈ C and f, g ∈ H. The Schwarz and triangle inequalities are
fundamental.

C Dimension Either there are exactly n linearly independent vectors in H, in
which case axiom C is denoted by C(n), or else there is no maximum number
of linearly independent vectors in H, in which case axiom C is denoted by
C(∞).

Von Neumann points out that C is essentially not a new axiom; if A and B hold,
then either C(n) or C(∞) must hold.
The axioms D and E that follow are needed only if C(∞) holds; they are theorems
(from A and B) if C(n) holds.

D Completeness H is complete.
E Separability H is separable (in the topological sense; the topology of Hilbert

space is the metric topology).2

Von Neumann then defines orthonormal sets of vectors in H. An orthonor-
mal set O ⊂ H is called complete if it is not a proper subset of any other
orthonormal set. He then proves the following results (we confine ourselves to
infinite-dimensional Hilbert spaces; in this book the term Hilbert space generally
means infinite-dimensional Hilbert space over the complex numbers; exceptions,
used mainly in Chapter 10, are identified explicitly):

(i) A complete orthonormal set is countably infinite.
(ii) Let {ek} be a complete orthonormal set in H. Then any vector f ∈ H has a

unique expansion

f =
∞∑

k=1

fkek,

which means that

||f −
n∑

k=1

fkek|| → 0 as n → ∞,

2 Separability is no longer assumed in the mathematical literature (see (Friedman, 1970, pp.
201, 216)); it continues to be fundamental in quantum mechanics.
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and the fk ∈ C are defined by

fk = (ek, f)

with

∞∑
k=1

|fk|2 < ∞.

The notation < ∞ means ‘is finite’. We remind the reader that the inner
product used for defining the expansion coefficients fk is that of the physicist.

It should be noted that the separability condition is essential for the above
results; in fact, one can prove that separability is equivalent to the existence
of a countable orthonormal set which is complete, a fact that makes it possible
for the working physicist to ignore this condition. A complete orthonormal set
is often called an orthonormal basis. Detailed accounts of the above may
nowadays be found in many textbooks, but it is still rewarding to read the
original (von Neumann, 1955). A more recent treatment, aimed specifically at
mathematical physicists, will be found in (Reed and Simon, 1972).

Examples A6.1 (Examples of Hilbert spaces)

(i) The space l2 of all sequences {zn} of complex numbers such that

∞∑
k=1

|zn|2 < ∞,

with multiplication by scalars and addition of vectors being defined in the
obvious manner: α{zn} = {αzn} and {xn} + {yn} = {xn + yn}. The inner
product of u = {xk} and v = {yk} is defined to be

(u, v) =
∞∑

k=1

x̄kyk.

It is obvious that (u, v) defined above is antilinear in the first argument
and linear in the second. We omit the proofs of the Schwarz and triangle
inequalities, which may be found in almost every text on analysis, e.g.,
(Rudin, 1976, pp. 15–17). It is easily seen that the set of vectors e1 =
(1, 0, . . .), e2 = (0, 1, 0, . . .), etc. forms a complete orthonormal set in l2,
which assures separability. The vector {zn} may be written as

{zn} =
∞∑

n=1

znen.
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(ii) Denote by L2(Rn) the space of complex-valued functions on Rn that are
square-integrable with respect to the Lebesgue measure dµ = dnx, i.e., of
functions f = u + iv such that

∫ |f |2dµ =
∫

(u2 + v2)dµ < ∞. This space3 is
a Hilbert space under the inner product

(f, g) =
∫

Rn

f̄(x)g(x)dµ.

The completeness of this space is the content of the celebrated Riesz–
Fischer theorem. The complex case subsumes the real case. Starting
from any vector in L2(Rn), a complete orthonormal set of vectors may be
constructed by the Schmidt orthogonalization process.

The spaces l2 and L2(Rn) are isomorphic. Let {ek} be any complete
orthonormal set in L2(Rn) and define, for f ∈ L2(Rn),

fk = (ek, f).

The fk are called the Fourier coefficients of f relative to the {ek}. The
sequence {fk} belongs to l2, and the formula

f −→ {fk}

is an isometry of l2 and L2(Rn) (the result is independent of n):

∞∑
n=1

|fn|2 =
∫

Rn

|f(x)|2dµ. (A6.1)

This was the form in which the Riesz–Fischer theorem was proven by Riesz in
1907. Observe that the same result holds if L2(Rn) is replaced by L2(In), where
In = [a, b]n and the measure on In is the Lebesgue measure.

A6.1.1 Direct sums

We assume that the reader is familiar with the notion of direct sum of finite-
dimensional vector spaces from linear algebra. This notion generalizes to the
direct sum of countably many Hilbert spaces as follows.

Definition A6.2 (Direct sum of countably many Hilbert spaces) Let
H(n), n ∈ N be a countable set of Hilbert spaces, and let φ(n) ∈ H(n). The

3 In the expressions L2(Rn), in which no measure is specified, it is understood that the measure
being used is the Lebesgue measure.
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(infinite) direct sum H of the Hilbert spaces H(n), written

H =
∞⊕

n=1

H(n)

is defined as follows:

(a) The vectors φ ∈ H are the sequences (φ(1), . . . φ(n), . . .), with addition
and multiplication by scalars defined componentwise, which satisfy the
convergence condition

∞∑
n=1

||φ(n)||2 < ∞.

Here ||φ(n)|| is the norm of φ(n) in H(n).
(b) The inner product (φ, ψ) in H is defined as

(φ, ψ) =
∞∑

n=1

(φ(n), ψ(n)), (A6.2)

where (φ(n), ψ(n)) is the inner product in H(n).

It is easily seen that (A6.2) indeed defines an inner product on H, and that

||φ||2 = (φ, φ) =
∞∑

n=1

||φ(n)||2,

as it should be. The completeness and separability of H are also easy to verify
(using the fact that the union of countably many countable sets is countable; see
page 246).

Mutatis mutandis, the above remarks apply to (i) finite direct sums of Hilbert
spaces, and (ii) infinite direct sums of finite-dimensional vector spaces. Note
that the subspace of H defined by Hk = {φ ∈ H|φ(j) = 0 for j �= k} is identifiable
with its kth component H(k); the map φ(k) ↔ (0, . . . , φ(k), 0, . . .) provides the
identification.

Let H = H(1) ⊕ H(2), and denote by H1 and H2 the corresponding subspaces
of H. If φ ∈ H1, ψ ∈ H2, then (φ, ψ) = 0. This may be expressed as follows: in
words, that H1 and H2 are orthogonal complements of each other; in symbols,
H⊥

1 = H2, and H⊥
2 = H1.
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A6.1.2 Tensor products

Next, we shall define the tensor product of two Hilbert spaces.4 The process
is formally identical with constructing the two-particle Hilbert space out of the
one-particle Hilbert spaces of two nonidentical particles, which is the picture we
may initially keep in mind. We shall give two equivalent definitions; the concrete
one used by von Neumann, and the slightly more abstract one in current use.
We have used both definitions in Chapters 8–11.

Definition A6.3 (Tensor product of Hilbert spaces, concrete) Let HI =
L2(RM ,dq) and HII = L2(RN ,dr), where M,N are fixed positive integers, q ∈
RM , r ∈ RN and dq, dr the respective Lebesgue measures. Let {ϕI

m(q)} and
{ϕII

n (r)} be orthonormal bases in HI and HII, and define

φmn(q, r) = ϕI
m(q)ϕII

n (r).

The φmn(q, r) can obviously be multiplied by complex numbers, and added
together. They form a linear space H over C, consisting of vectors of the form

Φ(q, r) =
∞∑

m,n=1

fmnφmn(q, r),

where the coefficients fmn are restricted by

∞∑
m,n=1

|fmn|2 < ∞.

Define (φmn, φm′,n′) by

(φmn, φm′,n′) = (ϕI
m, ϕI

m′) · (ϕII
n , ϕII

n′) = δmm′δnn′ . (A6.3)

Formula (A6.3) defines an inner product on H. Let Ψ(q, r) =
∑

ij gijφij . Then

(Φ, Ψ) =
∞∑

m,n=1

f̄mngmn (A6.4)

is an inner product if the left-hand side is antilinear in the first argument and
linear in the second. This is the inner product on H, and it induces a norm in the
usual manner. One proves, as in the case of l2, that the norm satisfies the Schwarz
and triangle inequalities, and that H is complete in the norm. Separability is
assured by the very definition. We have made use of the isometry between H and
l2 to frame the definition.

4 In the theory of group representations (which, historically, came earlier) the tensor product
was called the direct product. This term is also used in Wigner’s lecture notes (Wigner,
1983).
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We shall now give the abstract definition, which does not depend on the fact
that the vectors in HI and HII can be multiplied together as complex-valued
functions.

Definition A6.4 (Tensor product of Hilbert spaces, abstract) Let H and
K be two Hilbert spaces. Denote the vectors of H by φ and those of K by ψ, with
indices, if necessary. Define φ⊗ψ to be a form that is linear in both factors, i.e.,

(aφ + a′φ′) ⊗ ψ = aφ ⊗ ψ + a′φ′ ⊗ ψ

and

φ ⊗ (bψ + b′ψ′) = bφ ⊗ ψ + b′φ ⊗ ψ′.

Define the inner product of φ ⊗ ψ and φ′ ⊗ ψ′ to be

(φ ⊗ ψ, φ′ ⊗ ψ′) = (φ, φ′) · (ψ, ψ′).

Consider now the set S of finite linear combinations of the forms φ ⊗ ψ (with
complex coefficients), and define on this set the inner product

⎛⎝ m∑
j=1

ajφj ⊗ ψj ,

n∑
k=1

a′
kφ′

k ⊗ ψ′
k

⎞⎠ =
m,n∑

j,k=1

āja
′
k (φj , φ

′
k) · (ψj , ψ

′
k) . (A6.5)

It has, of course, to be verified that (A6.5) does indeed define an inner product.
The space H ⊗ K is defined to be the completion of S in the norm induced by
the inner product (A6.5). Then H ⊗ K is complete by definition, but one has to
verify that it is separable.

The above definition has a variant that is often encountered in the literature.
The set S is replaced by the set of infinite linear combinations (as in the concrete
case), together with appropriate convergence conditions. The space so defined is
complete. The details are left to the reader.

The construction may be extended easily to more than two factors, but we
shall have no occasion to use them. The following result is one of the easy
consequences of the definition,

L2(R3) = L2(R2) ⊗ L2(R) = L2(R) ⊗ L2(R) ⊗ L2(R),

and gives an intuitive grasp of the idea of the tensor product.
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A6.2 Operators on Hilbert space

A linear tansformation T : H → H is called a linear operator, or simply an
operator5 on H. In the metric topology on H, T is continuous at x ∈ H if,
given ε > 0, there exists δ > 0 such that ||T (x − y)|| < ε for all y such that
||x − y|| < δ. Equivalently, T is continuous at x if, for any sequence {xn} in H

that converges to x, the sequence {Txn} converges to Tx. The operator T is
continuous iff it is continuous at every x ∈ H.

Theorem A6.5 Let T : H → H be a linear operator. The following conditions
are equivalent:

(1) T is continuous.

(2) T is continuous at the origin (i.e., at the zero vector).

(3) There exists a number K ≥ 0 such that

||Tx|| ≤ K||x|| for all x ∈ H.

Proof (1) ⇒ (2) is trivial.
To prove (2) ⇒ (3), assume that there is no such K, i.e., for any C > 0 one

can find x ∈ H such that ||Tx|| > C||x||. Then for each n > 0 one can find xn

such that ||Txn|| > n||xn||. Define

yn =
1
n

xn

||xn|| .

Then yn → 0. But

||Tyn|| =
1
n

||Txn||
||xn|| > 1,

so that Tyn �→ 0, i.e., T is not continuous at the origin, which contradicts (2).
To prove (3) ⇒ (1), fix ε and choose δ = ε/K. Then ||x − y|| < δ ⇒ ||T (x −

y)|| < K||x − y|| < Kδ = ε.

Definition A6.6 (Bounded operators) An operator T : H → H is called
bounded if there exists K ≥ 0 such that ||Tx|| ≤ K||x|| for all x ∈ H. The
number

inf
x∈H

{K : ||Tx|| ≤ K||x||} (A6.6)

is called the norm of T , and is denoted by ||T ||.

5 If A is an operator on H and B an operator on K, then their tensor product is the operator
(denoted by A ⊗ B) on H ⊗ K which is defined by (A ⊗ B)(φ ⊗ ψ) = Aφ ⊗ Bψ.
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The norm can also be defined as follows:

||T || = sup
||x||=1

||Tx||;

the supremum is taken over all unit vectors in H. The norm satisfies the following
conditions:

(i) ||aT || = |a|||T || for all a ∈ C.

(ii) ||T + U || ≤ ||T || + ||U ||.
Condition (i) is almost self-evident; condition (ii), known, unsurprisingly, as the
triangle inequality, is fairly easy to prove, but we shall omit the details.

Remark A6.7 Observe that the definition and the basic properties of bounded
operators given above involve only the norm, and not the inner product. There-
fore they are equally applicable to linear transformations of Banach spaces
(page 290).

Unbounded operators are not just pathologies that can be disregarded by the
physicist, as the following theorem shows.

Theorem A6.8 On a Hilbert space H, the canonical (Born–Jordan) commuta-
tion relations

QP − PQ = iI

cannot be satisfied by any pair of bounded operators P, Q ∈ H. Here I is the
identity operator.

Proof From QP − PQ = iI, it follows by induction that QnP − PQn = inQn−1.
Transposing sides, taking norms, and using successively the triangle inequality
and the Cauchy–Schwartz inequality, we obtain

n||Q||n−1 = ||QnP − PQn||
≤ ||QnP || + ||PQn||
≤ 2||Q||n||P ||.

Since Q is not the zero operator, ||Q|| > 0. Dividing the last inequality by
2||Q||n−1, we obtain

n

2
≤ ||Q|| · ||P ||,

which contradicts the assumption that both Q and P are bounded.
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An operator which is not bounded is called unbounded. Theorem A6.8 shows
that at least one of Q and P is unbounded. Since, from Theorem A6.5, an oper-
ator which is continuous at a single point is bounded, an unbounded operator
is nowhere continuous. The actual situation is even worse; unbounded operators
are not defined everywhere on H; if A is an unbounded operator, one can find a
convergent sequence {φn} ∈ H such that ||Aφn|| → ∞, i.e., A is not defined on
lim φn = φ ∈ H. The following examples are instances of position and momentum
operators in quantum mechanics.

Examples A6.9

(i) Multiplication by x Let H = L2(R). The function

f(x) =
1

i + x

is clearly square-integrable, and so belongs to H. Let X be the operator of
multiplication by x: X(f(x)) = xf(x). Then Xf = x/(i + x) which, equally
clearly, is not square-integrable; the operator X is not bounded. The position
operator for a particle constrained to lie on a straight line cannot be bounded.

There are many functions f(x) in L2(R) such that xf(x) is not square-
integrable. Let f(x) = 1/x for |x| ≥ 1 and f(x) = 0 for |x| < 1. Then
|xf(x)|2 = 1 for |x| ≥ 1.

Multiplication by x is a bounded operator on L2([a, b]).

(ii) Differentiation Consider L2([0, 2π]). The functions (more precisely, the
equivalence classes of these functions)

fn(x) = exp(inx) and f ′
n(x) = in exp(inx)

belong to this space. Therefore, if the operator D of differentiation with
respect to x is definable on L2([0, 1]), one should have Dfn(x) = f ′

n(x) a.e.
But ||fn(x)|| = 1, whereas ||f ′

n(x)|| = n, i.e., ||Dfn(x)|| → ∞ as n → ∞,
which shows that D cannot be defined everywhere on H.

As explained in Section A5.8, most vectors in L2(R) or L2([a, b]) will not
be differentiable, i.e., will not belong to the domain of the differentiation
operator; the momentum operator in quantum theory can never be bounded.
The unboundedness of the differentiation operator is what makes the theory
of differential equations (as compared with the theory of integral equations)
into a difficult subject, and provides a perspective for the role of the theory
of distributions in it.

It follows from the above that the full definition of an unbounded operator
U on H must include specification of its domain, i.e., the subset DU ⊂ H on
which U is defined. The best one can hope for is that DU be dense in H. We
shall return to unbounded operators in Section A6.5.
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A6.3 Bounded operators

We shall now define a few subclasses of bounded operators that are of particular
interest. We begin with the definition of the adjoint.

Definition A6.10 (Adjoint of a bounded operator) Let B be a bounded
operator on H. Define an operator B∗ on H by6

(f, B∗g) = (Bf, g) for all f, g ∈ H.

B∗ is clearly bounded; it is called the adjoint of B.

The properties of adjoints on finite-dimensional vector spaces continue to hold
on H; in particular, (B∗)∗ = B.

Definition A6.11 (Bounded self-adjoint operators) If B = B∗, then B is
called self-adjoint, or Hermitian, or symmetric.

(The last term is seldom used in the physics literature.) As B∗ is defined every-
where, it has to be bounded. The reader is invited to prove that ||B∗|| =
||B||.
Definition A6.12 (Normal operators) If B∗B = BB∗, i.e., if a bounded
operator commutes with its adjoint, it is called normal.

Every self-adjoint operator is trivially normal; a normal operator need not be self-
adjoint, but if B is normal, then B + B∗ and i(B − B∗) are a pair of commuting
self-adjoint operators.

Definition A6.13 (Projection operators) A bounded self-adjoint operator
E that satisfies the condition E2 = E is called a projection operator.

A projection operator E has only two eigenvalues, namely 0 and 1, and splits H

into two mutually orthogonal subspaces M and M⊥, H = M ⊕ M⊥, such that
E acts as the identity operator on M and the zero operator on M⊥. It is easily
seen that: (i) E⊥ = I − E is also a projection operator; (ii) E⊥ acts as the zero
operator on M and the identity operator on M⊥, (iii) EE⊥ = E⊥E = 0 and
(iv) E + E⊥ = I.

Let K be a subspace of H, and T an operator on H. The restriction of T to
K, which we shall write as T |K , is the linear map

T |K : K → H

6 The existence of the operator B� on an infinite-dimensional space is not obvious; it is assured
by a theorem known as the Riesz representation theorem. We shall not discuss it here.
The interested reader is referred to the Riesz lemma in (Reed and Simon, 1972) or Riesz’s
theorem in (Friedman, 1970).



A6.3 Bounded operators 327

which is defined by (T |K )φ = Tφ for all φ ∈ K. In the cases we shall consider,
K will also be the range of T |K . Then, if E is the projection operator from H

onto K, we shall have E · (T |K ) = (T |K ) · E.

Definition A6.14 (Positive operators) An operator A on H is called
positive if (f, Af) ≥ 0 for all f ∈ H. By implication, A is bounded.

Definition A6.15 (The trace) Let A be a positive operator and {en}, n ∈ N
an orthonormal basis on H. The sum

∞∑
n=1

(en, Aen)

is called the trace of A, and is written TrA.

The trace is an invariant (i.e., independent of the basis {en}). The trace of
the product of a finite number of (positive) operators is invariant under cyclic
permutations of the operators. The proofs for the finite-dimensional cases hold
unchanged for the infinite-dimensional case.

The trace need not be finite; for example, the identity operator on H is
bounded, but its trace is infinite. The class of positive operators on H with
finite trace is important enough to be given a name:

Definition A6.16 (Trace class) The class of positive operators on H with
finite trace is called the trace class on H. (We shall denote this class by T .)
One speaks of trace class operators on H.

We now come to a class of operators which represent – as we shall soon see –
the simplest generalizations of finite-dimensional matrices to infinite-dimensional
Hilbert spaces.

Definition A6.17 (Compact operators) A bounded operator B on H is
called compact (or completely continuous) if it satisfies the following condi-
tion: for any bounded sequence {fn}, the sequence {Bfn} contains a convergent
subsequence.

Compactness is a very strong condition on operators. For example, the identity
operator I is not compact; a sequence of vectors {en} that forms a complete
orthonormal set is bounded, but does not contain any convergent subsequence.

Note that if B is compact, then so is its restriction to any subspace M of H,
as one sees by taking {fn} to be a sequence in M.

The following theorem plays a crucial role in von Neumann’s measurement
theory.

Theorem A6.18 A trace class operator on H is compact.

For a proof, see (Reed and Simon, 1972).
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A6.4 Spectral theorems: bounded operators

Spectral theorems lie at the heart of operator theory. Although there are some
extensions to normal operators, the chief concern of spectral theory is the struc-
ture of self-adjoint operators. We shall consider only self-adjoint operators,
and shall often omit the adjective ‘self-adjoint’. The subject may be intro-
duced by recalling the basic structure theorem for a Hermitian operator on
an n-dimensional (0 < n < ∞) inner product space V over C. Recall that
(i) the eigenvalues of a Hermitian operator T are real, and (ii) the normalized
eigenvectors of T form an orthonormal basis for V .

A6.4.1 The finite-dimensional case

Suppose that 0 is an eigenvalue of T , and denote by V0 the eigenspace of V

belonging to the eigenvalue 0. We may then split V into the direct sum

V = V0 ⊕ V ⊥
0 , (A6.7)

where V ⊥
0 is the orthogonal complement of V0. Then T has only nonzero

eigenvalues on V ⊥
0 . Corresponding to (A6.7), we may split T into the direct

sum7

T = T0 ⊕ T⊥
0 , (A6.8)

where the notation is obvious. T⊥
0 is a Hermitian operator on V ⊥

0 which has only
nonzero eigenvalues. Since the splittings (A6.7) and (A6.8) are always possible,
there is no loss of generality in assuming that the operator T has only nonzero
eigenvalues.

Theorem A6.19 (Spectral theorem on finite-dimensional spaces) Let A

be a Hermitian operator on an n-dimensional vector space V over C which does
not have zero as an eigenvalue. Let λ1, λ2, . . . , λk be the distinct eigenvalues of A,
Wλj

the eigenspace of A belonging to the eigenvalue λj, and Eλj the orthogonal
projection of V on Wλj

, i.e., Eλi
Eλj

= δijEλj
. Then

V =
k⊕

i=1

Wλi ,

7 In matrix theory and operator theory, the notation + seems to be preferred over ⊕ for the
direct sum of operators; in the theory of group representations, it is usually the other way
round. Using + to denote the direct sum of operators has the drawback that one has to work
out whether the summands are defined on the whole space, or only on subspaces. We have
chosen the notation ⊕ to avoid this ambiguity.
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and

A =
k∑

i=1

λiEλi . (A6.9)

Note that had one of the λi been zero, it would have contributed the summand
0 · E0 = 0 to the sum on the right-hand side of (A6.9); the term would simply
have dropped out. Note also that

I =
k∑

i=1

Eλi . (A6.10)

Recall now that, if p is any polynomial, then

p(A) =
k∑

i=1

p(λk)Eλi . (A6.11)

Theorem A6.19 is purely algebraic; it is stated and proven using concepts that
are based upon the binary operations of addition and multiplication by scalars.
On a Hilbert space H, these concepts have to be supplemented by topological
ones; the useful notion of a subspace is one which is closed both linearly and
topologically, i.e., one that contains its limit points. The term subspace, applied
to a Hilbert space, will mean one that is closed both linearly and topologically.

A6.4.2 Spectral theorem: compact operators

The analysis of linear transformations on a finite-dimensional vector space V

began with posing the eigenvalue problem. The existence of solutions of the
characteristic equation was ensured by the fundamental theorem of algebra. This
method cannot be used in the infinite-dimensional case; to make matters worse,
operators with purely continuous spectra do not have eigenvectors (which, essen-
tially, is why von Neumann wrote his book (von Neumann, 1955, Preface). The
key to unravelling the structure of compact operators is the following result.8

Theorem A6.20 (Hilbert) Every compact self-adjoint operator A on H has
at least one non-zero eigenvalue, and an associated eigenvector.

For any compact self-adjoint operator A, the set of eigenvectors belonging
to the eigenvalue 0 forms a subspace of H which we shall denote by M0. Its

8 For a proof, see (Riesz and Sz-Nagy, 1955, pp. 231–232). The reader who wishes to go into
details may be better advised to make a systematic study of the foundations of modern
analysis, an elegant and economic account of which is provided in the text of the same name
by Friedman (Friedman, 1970). The text by Reed and Simon is somewhat longer, but may
be more attuned to the needs of physicists (Reed and Simon, 1972). One should add that
the results of Subsections A6.4.2–A6.4.4 were established by Hilbert in 1905.
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orthogonal complement M⊥
0 contains no eigenvector of A with eigenvalue 0; the

operator A can be decomposed uniquely into the direct sum A0 ⊕ A⊥
0 . As the

rest of the analysis will be carried out exclusively on M⊥
0 , we shall assume that

M⊥
0 = H; this is equivalent to assuming that A does not have 0 as an eigenvalue;

it is the exact parallel of the finite-dimensional case considered earlier, and is
not a restrictive assumption.

As in the finite-dimensional case, eigenvectors belonging to different eigenval-
ues are orthogonal to each other. Let λ be an eigenvalue of A, and denote by Mλ

the eigenspace of A belonging to the eigenvalue λ. The restriction of A to this
subspace acts like a multiple of the identity on it. If Mλ is infinite-dimensional,
then the identity operator on it will not be compact, from which it follows that
A will not be compact. Therefore Mλ must be finite-dimensional. It follows from
this (and the separability of H) that A has countably many distinct eigenvalues.

Let λk, k = 1, 2, . . . be the distinct eigenvalues of A. The numbers |λk| can be
arranged in a decreasing sequence {|λn|}. It turns out that only a finite number
of these are greater than any preassigned positive number,9 so that |λn| → 0.
Furthermore, it turns out that

H = Mλ1 ⊕ Mλ2 ⊕ · · · .

Since each Mλk
is finite-dimensional, this means that the normalized eigenvectors

of A form a countable and complete orthonormal set in H.
We may summarize the discussion so far as follows:

Theorem A6.21 (Spectral theorem for compact operators) Let A be a
compact self-adjoint operator on H such that 0 is not an eigenvalue of A. Then
A has countably many distinct eigenvalues λk, k = 1, 2, . . . that have 0 as a limit
point and, associated with each eigenvalue λk, a subspace Mλk

of H such that:

(1) 0 < dimMλk
< ∞.

(2) If x ∈ Mλk
, then Ax = λkx.

(3) If j �= k, then Mλj ⊥ Mλk
.

(4) H = ⊕∞
n=1Mλn .

Consequently, A can be written as

A =
∞∑

n=1

λnEλn , (A6.12)

where Eλj
is the projection operator onto the subspace Mλj

, with Eλj
Eλk

= 0
for j �= k.

9 For a simple proof, see (Lorch, 1962, p. 114).
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Parallel to (A6.10), we have here:

I =
∞∑

n=1

Eλn
. (A6.13)

The above results have a converse, which may be stated as follows:

Theorem A6.22 (Converse of spectral theorem) Let {λn}, n ∈ N be
a bounded sequence of nonzero real numbers that converges to zero, {Mn} a
countable set of pairwise-orthogonal finite-dimensional subspaces of H such that
H = ⊕nMn, and Eλn

: H → Mn the projection operator from H to Mn. Then
there exists a compact operator A such that

A =
∞∑

n=1

λnEλn .

The condition that 0 not be an eigenvalue of A was essential for unravelling the
structure of A, i.e., for arriving at the spectral decomposition (A6.12). However,
once this has been achieved, it may be dropped. Let A be a self-adjoint operator
that has 0 as an eigenvalue. The eigenvectors of A with eigenvalue zero span a
subspace H0 of H (called the null space of A), and H can be decomposed as

H = H0 ⊕ H⊥
0 ,

where H⊥
0 is the orthogonal complement of H0. The restriction of A to H⊥

0 has
the spectral decomposition (A6.12). Denoting the projection operator on H0 by
E0 and taking λ0 = 0, we may generalize (A6.12) and (A6.13) to

A =
∞∑

n=0

λnEλn (A6.14)

and

I =
∞∑

n=0

Eλn . (A6.15)

In these formulae, only the lower limit of summation has changed.

A6.4.3 Resolutions of the identity

Theorem A5.9 suggests that it may be possible to write (A6.12) at least formally
as a Riemann–Stieltjes integral. To see what is involved, let us consider the spec-
tral decomposition of a compact operator O which has only positive eigenvalues.
We noted earlier that the set {λn} has a maximum. We may therefore assume
the eigenvalues λn of O to be arranged in a decreasing sequence, i.e., λk < λk+1
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for all k. (They can be arranged in an increasing sequence, but then there will
be no first member.)

For each positive integer k define, inductively, a subspace V (k) of H as follows:
V (1) = 0, V (k) = Mλ1 ⊕ · · · ⊕ Mλk−1 for k > 1. Then V (k) ⊂ V (k+1). Next,
define M(k) = (V (k))⊥. Then M(k) ⊃ M(k+1). Each V (k) is finite-dimensional,
but each M(k) is infinite-dimensional. Finally, define a function

M : R −→ {set of subspaces of H}

as follows:

Mλ =

{
M(k), for λ < λk,

M(k+1), for λ ≥ λk.

Mλ so defined is a step function on R, taking values in the set of subspaces of
H, which has the following properties:10

(i) For λ < 0, Mλ = 0.

(ii) If λ < λ′, then Mλ ⊂ Mλ′ . For λk ≤ λ < λk+1, Mλ is constant, and equals
M(k). At λ = λk+1, Mλ jumps from M(k) to M(k+1); it is, in some sense,11

continuous from the right but discontinuous from the left at each λk.

(iii) For λ > λ1, Mλ = H.

The properties of the set {Mλ} can be translated into the language of projec-
tion operators. In the process, which does not make any reference to any specific
operator A, we shall obtain a certain generalization.

Definition A6.23 (Bounded resolutions of the identity) Let λ ∈ R. For
each λ, let (Mλ,M⊥

λ ) be a decomposition of H into a pair of orthogonal subspaces
(i.e., , H = Mλ ⊕ M⊥

λ ),12 and Eλ : H → Mλ the associated projection operator.
The family {Eλ : λ ∈ R} is called a bounded resolution of the identity if it
satisfies the following conditions:13

(a) There exist M,N > 0 such that Eλ = 1 for λ > M , and Eλ = 0 for λ < −N .

(b) EλEλ′ = Emin(λ,λ′).

Condition (b) is often expressed as follows: for λ < λ′, Eλ ≤ Eλ′ .

10 This definition embodies an important mathematical observation: more often than not, the
properties of a function or map depend more on the domain than on the range.

11 This sense can be made precise by defining a topology on the set of subspaces of H. We
shall omit the details, because in this instance intuition will not lead us astray.

12 H has enough subspaces to permit different decompositions for different values of λ.
13 Friedman uses the term spectral family. It should be noted that we have glossed over some

continuity conditions (the same as in footnote 11) which may be found in (von Neumann,
1955, p. 118) or (Friedman, 1970, p. 226).
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The above definition does not relate to any specific operator. A resolution
of the identity specific to an operator A has to satisfy the additional condition
AEλx = EλAx for all x ∈ H.

Definition A6.23 is not empty; as we have seen, any compact operator that
does not have zero as an eigenvalue defines a bounded resolution of the identity.
The generalization we have obtained is that Eλ may depend continuously on λ,
in the naive intuitive sense.

Let us now return to the compact operator A of Theorem A6.21. Let ∆λ be a
small interval of λ. It is easily seen that the quantities ∆Eλ = Eλ+∆λ − Eλ are
well-defined projection operators; ∆Eλ = 0 if the interval ∆λ does not contain
any eigenvalue, and ∆Eλ = Eλk

if ∆λ contains the single jump at λk of λ. The
reader is invited to verify that for any x, y ∈ H, the ‘matrix element’ (y, Ax) of
A may be expressed as the Riemann–Stieltjes integral

(y, Ax) =

∞∫
−∞

λ d(y, Eλx). (A6.16)

Formally, we may write A as

A =

∞∫
−∞

λ dEλ. (A6.17)

Equation (A6.17) is, for the moment, to be interpreted as shorthand for the
set of equations (A6.16) for all x, y ∈ H. It is known as the spectral re-
solution of a compact operator. There is an alternative interpretation of
(A6.17) in terms of what are called projection-valued measures, which does
not use the Riemann–Stieltjes integral, but is essentially the same. As the term is
encountered rather frequently in quantum-mechanical measurement theory and
in Mackey’s theory of infinite-dimensional group representations, the definition
is given below.

Definition A6.24 (Projection-valued measures) Let X be a topological
space, B a Borel structure on it (page 301) and H a separable Hilbert space.
A projection-valued measure is an assignment B �→ EB , for each B ∈ B,
of a projection operator EB on H to the Borel subset B of X that satisfies the
following conditions:

(a) EX = I.

(b) EB1∩B2 = EB1EB2 for all B1, B2 ∈ B.

(c) For every countable subset {Bi} ⊂ B such that j �= k ⇒ Bj ∩ Bk = ∅,

E

( ∞⋃
k=1

Bk

)
=

∞∑
k=1

EBk
.
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In the last equation we have, exceptionally, written the argument of E on the left
within brackets, rather than as a subscript, for a more agreeable visual display.

This definition should be compared with the definition A5.15 of measure on
page 302. Condition A6.24(a) shows that projection-valued measures have a
certain similarity with probability measures.

If we take for X the spectrum of the operator A, then, after tying up some
loose ends, we are able to write

A =
∫

λdEλ.

We leave the details to the reader.
Since A is compact one may, if one wishes, write (A6.16) and (A6.17) as infinite

sums rather than as Stieltjes integrals. However, resolutions of the identity can be
defined, with (A6.16) and (A6.17) continuing to hold, for operators more general
than the compact ones. The classes of operators that remain to be considered
are the bounded and the unbounded ones. Each step involves a huge increase in
complexity.

A6.4.4 Spectral theorem: bounded operators

As we have just seen, the structure of compact operators can be described in
terms of eigenvalues and eigenvectors. This is no longer possible when we move
from compact to bounded operators, where we encounter, for the first time, the
phenomenon of the continuous spectrum. Our first task is to make this notion
precise.

A6.4.4.1 The spectrum of an operator

The eigenvalue problem (A − λI)x = 0 has a nonzero solution x for given λ if
and only if the operator A−λI is not invertible for that particular λ. This leads
us to the following definitions.

Definition A6.25 (Resolvent set and spectrum) The resolvent set ρ(A)
of the operator A is the set of all λ ∈ C such that the operator (A−λI)−1 exists,
and is bounded. The spectrum of A is the complement of its resolvent set in C,
and is denoted by σ(A).

Let λ ∈ σ(A). There are three possibilities:

(i) (A − λI)−1 does not exist. This is the same as saying that the equation
(A − λI)ϕλ = 0 has a nonzero solution ϕλ ∈ H. Such a λ is called an
eigenvalue of A, and ϕλ an eigenvector corresponding to it. The set of
eigenvalues of A is called its discrete or point spectrum and denoted by
σd(A).
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(ii) (A − λI)−1 exists, is unbounded, and its domain is dense in H. The set
of such values of λ constitutes the continuous spectrum14 of A, and is
denoted by σc(A).

(iii) (A − λI)−1 exists, is unbounded, but its domain is not dense in H. The set
of such values of λ constitutes the residual spectrum of A.

Definition A6.26 (Spectral radius) The quantity

r(A) = sup |λ|, λ ∈ σ(A)

is called the spectral radius of A.

We shall state the following result without proof.

Proposition A6.27 If A is bounded and self-adjoint, then r(A) = ||A||; in
words, the spectral radius of A equals its norm.

We shall also state, without proof, the following results on self-adjoint oper-
ators. The proof of the first is fairly straightforward, but that of the second is
not.

(i) The spectrum of a self-adjoint operator is a subset of R.

(ii) The residual spectrum of a bounded self-adjoint operator is empty.

A6.4.4.2 Approximate eigenvectors

There is a very important result concerning the continuous spectrum of A which
we shall sketch under the simplifying assumption that σc(A) is an interval on R.
Although the equation (A − λI)x = 0 cannot be satisfied by any vector x ∈ H

for λ ∈ σc(A), there exist vectors x with ||x|| = 1 such that ||(A − λI)x|| is
arbitrarily small (we have called such vectors approximate eigenvectors in
Chapter 9).15 Probing a little further, one finds that for ε/N > 0, there exists a
small interval ∆λ around λ and a subspace M∆λ such that

||(A − λI)x|| <
ε

N
for all x ∈ M∆λ.

That is, A behaves approximately like λI on M∆λ. Then. by partitioning σc(A)
into small subintervals ∆kλ, k = 1, . . . , N such that λk ∈ ∆kλ, one can show
that there exists a set of pairwise-orthogonal subspaces Mλk

of H and the

14 This definition of the continuous spectrum is used in (Lorch, 1962) and (Friedman, 1970). A
slightly different definition, in which the discrete and continuous spectra are not necessarily
disjoint, is used in (Reed and Simon, 1972). See the paragraphs following (A6.23), pages
339–340.

15 The proof is not difficult, but we shall omit it.
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corresponding projection operators ∆Eλk
such that

||A −
N∑

n=1

λn∆Eλn
|| < ε.

This means that A can be approximated arbitrarily well in the norm by linear
combinations of projection operators.

A6.4.4.3 The theorem

We are now in a position to state the spectral theorem for bounded operators.

Theorem A6.28 (Spectral theorem for bounded operators) Let A

be a bounded self-adjoint operator on H. Then there exists an essentially
unique bounded resolution of the identity with projection operators Eλ that are
continuous from the left such that A is given by the Riemann–Stieltjes integral

A =

∞∫
−∞

λ dEλ. (A6.18)

Conversely, given any such bounded resolution of the identity, the operator A

defined by (A6.18) is a bounded operator.

If an operator A is given in the form (A6.18), it is natural to ask which values
of λ belong to its discrete spectrum, and which to its continuous spectrum. The
answer is as follows: λ belongs to the discrete spectrum iff, for ε > 0,

lim
ε→0

Mλ+ε �= Mλ−ε.

λ belongs to the resolvent set iff there exists an interval (λ − ε, λ + ε) such that,
for ω ∈ (λ − ε, λ + ε),

Mλ−ε = Mω = Mλ+ε,

i.e., Mω is constant for such ω. Finally, λ belongs to the continuous spectrum if
it does not belong either to the resolvent set or to the discrete spectrum.

If the function f is continuous a.e., then f(A) may be defined as

f(A) =

∞∫
−∞

f(λ) dEλ.

A6.5 Unbounded operators

The notion of an unbounded operator is a little too general to grapple with
effectively. To establish a measure of control, one needs a little more structure.
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This ‘little more’ is the requirement that the domain DA of the operator A satisfy
the following conditions:

(i) DA is a linear space over C, i.e., if f, g ∈ H, α ∈ C, then f + g ∈ H and
αf ∈ H.

(ii) DA is dense in H.

If the domain DA of A satisfies the above conditions, then A is said to be densely
defined (on H). Henceforth the term unbounded operator will always mean one
which is densely defined.

It was discovered by von Neumann that the domain of an unbounded operator
need not be the same as that of its adjoint (which needs to be defined anew in
the present context), and that this fact has profound consequences. We begin
with the definition of the adjoint of the operator A with domain DA.

Let M be the set of all pairs {g, h}, f, g ∈ H such that

(Af, g) = (f, h) for all f ∈ DA. (A6.19)

M is nonempty, because {0, 0} ∈ M . If M contains the pair {g, h}, it cannot
contain a pair {g, h′} with h �= h′, for then (f, h) = (f, h′) for all f ∈ DA, which
is impossible. Finally, if {g, h} ∈ M and {g′, h′} ∈ M , then {g + g′, h + h′} ∈ M

and {αg, αg′} ∈ M . This suggests that an operator A� be defined as follows:

A�g = h. (A6.20)

The domain DA� of A� will then be the set of all g appearing in the pairs
{f, g} ∈ M . Formally:

Definition A6.29 (Adjoint of an unbounded operator) Let A be a
(densely defined) unbounded operator on H with domain DA. The adjoint A� of
A is a densely defined operator with domain DA� such that

(Af, g) = (f, A�g)

whenever f ∈ Df and g ∈ DA� .

Using the adjoint, we define two generalizations of Hermitian operators of the
finite-dimensional case:

Definition A6.30 (Unbounded symmetric operators) If

DA ⊂ DA� and Af = A�f for all f ∈ DA,
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then the operator A is called symmetric (von Neumann uses the term
Hermitian).

Definition A6.31 (Unbounded self-adjoint operators) If

DA = DA� and Af = A�f for all f ∈ DA,

then the operator A is called self-adjoint (von Neumann uses the term
Hermitian hypermaximal or simply hypermaximal).

Unbounded self-adjoint operators possess two critical properties that are not
shared by (unbounded) symmetric operators: (1) They can be exponentiated; if
H is a self-adjoint operator, then the expression U(t) = exp(iHt) always makes
sense. (2) They admit spectral decompositions (which we shall touch upon in
Section A6.6). Proofs of these assertions may be found in (Reed and Simon,
1972).

A6.5.1 Families of unbounded operators

Let A and B be unbounded operators on H, with domains DA and DB . Then
it is possible for DA ∩ DB = ∅. In physics, one often has to deal with several
unbounded operators at once, and the best that one can hope for is that the
intersection of their domains be dense in H. The reader who would like more
information on the subject is referred to (Reed and Simon, 1972, Chapter VIII).
An irreducible unitary representation of a locally compact noncompact Lie group
is infinite-dimensional, and some representatives of its Lie algebra are unbounded
(Stone’s theorem). If they were not defined on a common dense domain, it would
be hard to understand why day-to-day exploitation of representations of the
Poincaré and Galilei Lie algebras in physics has not led to contradictions. This
problem went unnoticed until around 1972, when Flato and coworkers established
that the unbounded generators are indeed defined on a common dense domain
(Flato et al., 1972; Simon, 1972; Flato and Simon, 1973).

A6.6 The spectral theorem for unbounded operators

The fact that an unbounded operator on H is not defined everywhere on H is a
vast complication. Von Neumann discovered (or invented) methods by which the
study of unbounded self-adjoint operators could be reduced to that of bounded
operators and functions of bounded operators. We shall not enter into the sub-
ject, but shall content ourselves with giving an example and stating the final
result.

If A is a bounded operator, then its positive integral powers An are well-
defined operators on H. Therefore, if pn(z) is a polynomial of degree n (over C),
the function pn(A) is also defined. Let now f(z) be an analytic function of z,
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with radius of convergence R:

f(z) =
∞∑

n=0

anzn for |z| < R.

Then, if ||A|| < R, the expression

f(A)ψ =

( ∞∑
n=0

anAn

)
ψ (A6.21)

converges to a vector in H for every ψ ∈ H (we leave the details to the reader).
If, however, ||A|| > R, then the right-hand side of (A6.21) will not converge
for every ψ; if (A6.21) defines an operator at all, it will define an unbounded
operator. This makes it plausible that the function f(A) be defined as follows,
via the spectral resolution of A:

f(A) =
∫

f(λ)dEλ. (A6.22)

Stone’s theorem provides another example of how an unbounded operator
can result from the differentiation of a unitary operator which depends on a
parameter t, where t ∈ R. Von Neumann constructed other examples of bounded
functions of unbounded operators from which one could recover the unbounded
operator. We shall stop here, and refer the interested reader to the very readable
account by Lorch (Lorch, 1962, pp. 124–131).

When there is no residual spectrum, an unbounded operator has a spectral
resolution of the same form as (A6.18), but using unbounded resolutions of the
identity (for which at least one of M,N in Definition A6.23 is infinite). This will
suffice for our purposes.

Spectral resolutions may be written in a form in which discrete and continuous
spectra are separated. Consider an electron which may or may not be bound
to an atomic nucleus. The discrete part of its energy spectrum is negative, and
describes its bound states. The nonnegative values of its energy spectrum belong
to the scattering states, and fill the continuum [0,∞). We may write the spectral
decomposition of its Hamiltonian as

H =
∞∑

n=0

λnEλn +

∞∫
0

λdEλ. (A6.23)

We shall conclude this appendix with a few remarks about the spectrum. It
turns out that the subdivision of the spectrum into a discrete, a continuous and a
residual part, irrespective of how one defines the continuous part, is not detailed
enough for physics. For example, the continuous spectrum may be resolved – via
the notion of spectral measures, which we have not defined – into an absolutely
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continuous and a singular continuous part (see, for example, (Reed and Simon,
1972)). The existence of a singular continuous part in the spectrum of a Hamil-
tonian would require major revision of quantum-mechanical scattering theory.
However, in 1971 Balslev and Combes succeded in establishing its absence in
a large class of Schrödinger Hamiltonians (Balslev and Combes, 1971). Their
results were integrated into the comprehensive treatment of the mathematical
theory of scattering in quantum mechanics that was planned by Jauch and car-
ried out after his death by Amrein and Sinha (Amrein, Jauch and Sinha, 1977).
The latter monograph was quickly followed by an article by Pearson with ‘exam-
ples of potentials giving rise to purely singular continuous spectra’ (Pearson,
1978).

The mathematical study of Anderson localization,16 which was initiated a little
later, revealed an unexpected richness and complexity in the spectra of random
Schrödinger operators. This has become a large and rapidly developing subject,
about which the present author is poorly informed. A few of the highlights that
he is aware of are (Goldsheid, Molchanov and Pastur, 1977; Avron and Simon,
1981; Fröhlich and Spencer, 1983; Fröhlich et al, 1985; Simon, 1995). For an
account of the earlier works, the reader is referred to the monograph (Carmona
and Lacroix, 1990). A more recent review, concentrating on ‘exotic spectra’, may
be found in (Last, 2006).

16 The Nobel prize for physics was awarded to Anderson and Mott (and van Vleck) in 1977 for
the discovery of this phenomenon. In his prize lecture, Anderson said: ‘It has yet to receive
adequate mathematical treatment, and one has to resort to the indignity of numerical
simulations to settle even the simplest questions about it. Only now, and through primarily
Sir Neville Mott’s efforts, is it beginning to gain general acceptance.’ Apparently he was
unaware of the paper by Goldsheid, Molchanov and Pastur which ‘opened the floodgates’, or
(more surprisingly) of the paper entitled ‘On Mott’s problem’ by Goldsheid and Molchanov
which had been published a year earlier (Goldsheid and Molchanov, 1976).
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Conditional expectations

We shall assume that the reader is familiar with elementary probability theory.
The only purpose of Section A7.1 is to recall the basic definitions and to set up
the basic notation. The reader is referred to (Feller, 1970) for a detailed and
authoritative treatment.

A7.1 Recapitulation of basic notions

In discrete probability theory the sample space Ω is a countably infinite set.1

Its elements, called sample points, will be denoted by ωn, n ∈ N. An event will
be a subset of the sample space. The probability of the event A will be denoted
by P (A). The function P is a countably additive nonnegative set function on
the power-set P(Ω) of Ω that satisfies P (Ω) = 1. It follows that it is completely
determined by its values on the ωn ∈ Ω, that 0 ≤ P (ωn) ≤ 1 for all ωn ∈ Ω, and
that

∞∑
n=1

P ({ωn}) = 1. (A7.1)

The quantity P ({ωn}) is denoted, for simplicity, by pn. Since sample points of
zero probability will not interest us, we shall exclude these cases, i.e., stipulate
that 0 < pn < 1 for all n ∈ N.

Two events A and B are said to be independent if

P (A ∩ B) = P (A)P (B). (A7.2)

A random variable X is a real-valued function on Ω. Let {xj |j = 1, 2, . . .}
be the set of distinct values it assumes. Then, for each j, the set {X = xj} =
X−1(xj) is a subset (finite or infinite) of Ω; it is an event. The probability of
the event {X = xj} is denoted by

f(xj) = P (X = xj). (A7.3)

1 A finite sample space is a simplification which need not be considered separately.
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We then have 0 < f(xj) < 1, and∑
j

f(xj) = 1,

where the upper limit of the summation is not made explicit; it may be finite
or infinite, depending on X. The set {f(xj)} is known as the probability
distribution of the random variable X.

Notations A7.1 We shall denote random variables by boldface upper-case let-
ters such as X and Y . A special class of random variables, denoted by 1S , will
be introduced in Section A7.2.

Let now Y be another random variable defined on Ω, and let {yk|k = 1, 2, . . .}
be the set of different values it assumes. The set of points of Ω at which both
conditions X = xj and Y = yk are satisfied is an event, the probability of which2

is denoted by P (X = xj ,Y = yk). The function

f(xj , yk) = P (X = xj ,Y = yk), j, k = 1, 2, . . . (A7.4)

is called the joint probability distribution of X and Y . It satisfies the
conditions

0 ≤ f(xj , yk) < 1 and
∑
j,k

f(xj , yk) = 1. (A7.5)

Define now the functions g : X → [0, 1] and h : Y → [0, 1] as follows:

g(xj) =
∑

k

f(xj , yk),

h(yk) =
∑

j

f(xj , yk).
(A7.6)

The functions g and h are called the marginal distributions of X and Y

respectively. They satisfy the conditions

0 < g(xj) = P (X = xj), 0 < h(yk) = P (Y = yk)

and ∑
j

g(xj) =
∑

k

h(yk) = 1.

2 It may happen that P (X = xj, Y = yk) = 0 for some pairs (j, k), but we assume that the
cases P (X = xj, Y = yk) = 0 for fixed j and all k, or vice versa, are excluded, so that g(xj)
and h(yk) defined by (A7.6) are never zero. It is possible to relax this last condition.
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The (discrete) random variables X and Y are said to be independent if, for
every j, k

P (X = xj ,Y = yk) = f(xi, yj)

= g(xi) h(yj) = P (X = xj) · P (Y = yk). (A7.7)

Our main concern will be with random variables that are not independent.

A7.1.1 Conditioning

For any two events A, B ⊂ Ω, the conditional probability of A given B is
defined to be3

P (A|B) =
P (A ∩ B)

P (B)
. (A7.8)

Note that, according to our definition, P (B) �= 0. It follows from (A7.2) that if
A and B are independent, then P (A|B) = P (A); one says that the occurrence
or nonoccurrence of B does not affect the probability of A. For random variables,
this translates into the following definition:

P (X = xj |Y = yk) =
P (X = xj ,Y = yk)

P (Y = yk)
=

f(xj , yk)
h(yk)

. (A7.9)

Comparing this definition with (A7.7), we see immediately that, if X and Y are
independent, then

P (X = xj |Y = yk) = g(xj),

P (Y = yk|X = xj) = h(yk)

for all yk and xj respectively.
The mean, or expectation, or expected value,4 of the random variable X

is defined to be

E(X) =
∑

n

X(ωn) pn =
∑

j

xj P (X = xj), (A7.10)

provided the series converges absolutely.5 If X and Y are two random variables
with a joint distribution f given by (A7.5), then the conditional mean of X

3 The separator | in P (A|B) signifies that the quantity to the right of it, here B, is held
constant, whereas the quantity to the left of it, here A, may vary. This asymmetry is preserved
in more detailed notations, as in (A7.9).

4 Another frequently used notation for E(X) is 〈X〉. The term expectation value, in common
use in quantum mechanics, is seldom used in the mathematical literature.

5 Absolute convergence ensures that E(X) has physical meaning; it does not depend on the
enumeration of the set of values of X.
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for given Y is the function which, when it is known that Y = yk, has the value

∑
j

xj P (X = xj |Y = yk) =
∑

j

xj
f(xj , yk)

h(yk)
(A7.11)

provided that the right-hand side converges absolutely. In this case the set of
coefficients of the xj on the right is called the conditional distribution of X

given Y .
From (A7.11) we see immediately that

∑
k

h(yk)

⎛⎝∑
j

xj
f(xj , yk)

h(yk)

⎞⎠ =
∑
j,k

xjf(xj , yk)

=
∑

j

xj

∑
k

f(xj , yk) =
∑

j

xjg(xj)

= E(X).

This suggests that a random variable E(X|Y ), called the conditional expec-
tation of X given Y , be defined as follows:

(a) E(X|Y )(ω) =
∑

j xj [f(xj , yk)/h(yk)] wherever Y (ω) = yj , and is zero
elsewhere.

(b) The distribution of E(X|Y ) is such that the following relation holds:

E(E(X|Y )) = E(X). (A7.12)

Set

rk =
∑

j

xj

(
f(xj , yk)

h(yk)

)
.

If k �= k′ ⇒ rk �= rk′ , then the distribution of E(X|Y ) is exactly {h(yk)}.
However, it is entirely possible that rk = rk′ for k �= k′, in which case the
distribution {h(yk)} of Y has to be suitably aggregated to give a distribution for
E(X|Y ) so that (A7.12) is satisfied. Details, which consist mainly of devising a
transparent notation, are left to the reader.

Equation (A7.12) is known as the law of total expectations. The conditional
expectation E(·|Y ) is the unique random variable that satisfies the law of total
expectations. The reader is invited to express this as a commutative diagram.

A7.2 Probability: general theory

In Chapter 10 we used a notion of conditional expectation on a noncommutative
algebra of operators. Elementary probability theory is not formulated in terms
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of algebras at all, but the general mathematical theory of probability is, and it
will provide us with the required hint.

A triple P = (Ω,F , µ) is called a probability space if Ω is a set, F a σ-algebra
on Ω and µ a measure on (Ω,F) such that µ(Ω) = 1; such a measure is called a
probability measure. When Ω is countable (finite or infinite), F is the family
of all subsets of it, but this, as we have seen in Appendix A5, can no longer be
expected to hold when Ω is uncountable.

We shall use the term event to denote an element of F in the probability
space (Ω,F , µ). (The Banach–Tarski paradox (page 299) shows that it would
be wholly inappropriate to call a nonmeasurable set of Ω a nonevent.) We shall
denote a point in Ω by ω. The probability of the event A will be defined by

P (A) = µ(A) =
∫
A

dµ(ω). (A7.13)

The notation dµ(ω) is intended to remind the reader of the Stieltjes integral; in
future we shall use6 the simpler dµ. For example, the normal distribution on the
real line R, with mean a and variance σ, is defined by the measure

dµ(x) =
1√
2πσ

e− (x−a)2

σ2 dx.

A random variable X in P will be defined to be a real-valued measurable
function on Ω. The characteristic function χS of the subset S ⊂ Ω was defined
on page 304. This function is called the indicator function in probability
theory,7 where it is denoted by 1S . The notation is justified, because an indicator
function is also a random variable.8 Using the indicator function, (A7.13) may
be rewritten as

P (A) = µ(A) =
∫
Ω

1A(ω)dµ(ω). (A7.14)

The distribution (or cumulative distribution) of the random variable X is
defined to be the function

FX(t) = P {X ≤ t} = P {ω|X(ω) ≤ t}. (A7.15)

6 A large variety of notations are in use in the literature to write the integral in (A7.13); we
shall not attempt to list them. The reader who wishes to consult a book on the subject is
advised to bear this in mind.

7 The name characteristic function is generally used for something akin to the Fourier
transform in probability theory. See (Feller, 1971, Chap. XV).

8 At this point the reader will surely appreciate Feller’s remark that the term random function
would have been more appropriate than random variable.
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If X is a random variable, so is |X|, defined by |X|(ω) = |X(ω)|. In the
following, we shall only consider random variables X that satisfy the condition∫

Ω

|X(ω)|dµ < ∞.

For such X, the expectation E(X) of X is defined to be

E(X) =
∫
Ω

X(ω)dµ, (A7.16)

which is a direct generalization of (A7.10).

A7.3 Conditioning

Let S be an event with nonzero probability, µ(S) > 0. By analogy with (A7.8),
we may write

µS(A) =
µ(A ∩ S)

µ(S)
for all A ∈ F . (A7.17)

The quantity µS so defined is clearly a countably additive set function on F with
0 ≤ µS(A) ≤ 1, µS(S) = 1. It is therefore a measure on (Ω,F). The conditional
probability P (A|S) of A given S may therefore be expressed as

P (A|S) = µS(A) =
∫
Ω

1A(ω)dµS , (A7.18)

and one may define the conditional expectation in terms of the conditional
probability, by using the measure µS instead of µ:

E(X|S) =
∫
Ω

X(ω)dµS =
1

µ(S)

∫
S

Xdµ. (A7.19)

However, this method will fail if the right-hand side of (A7.17) is an indetermi-
nate form 0/0 for some S.

Note that when µS is defined by (A7.17), then

µ(A) = 0 ⇒ µS(A) = 0, (A7.20)

i.e., µS is absolutely continuous with respect to µ. This suggests that conditional
probabilities and expectations may be definable in terms of Radon–Nikodym
derivatives (page 314).

Conditional expectations are encountered in several branches of pure and
applied mathematics. There are alternative definitions tailored to specific needs,
and a considerable body of mathematical theory. By contrast, our interest is



A7.3 Conditioning 347

limited to writing down a version of the law of total expectations that was the
model for Lemma 10.7.

A random variable generates a σ-subalgebra of B in a fairly natural fashion.
The definition is given below.

Definition A7.2 (σ-algebra generated by a random variable) Let X :
Ω → R be a random variable, B the Borel structure on R and B ∈ B. The set
σ(X) = {X−1(B)|B ∈ B} is a σ-subalgebra of F ; it is called the σ-algebra
generated by X.

The algebra σ(X) is the smallest σ-algebra with respect to which X is
measurable.

We may now proceed to define conditional expectations in the general set-
ting. We shall first give the construction, which establishes the existence and
uniqueness of the required object, and then condense the result into a formal
definition.

Fix a random variable Y , and let µ0 be µ restricted to σ(Y ), i.e., µ0(A) = µ(A)
for A ∈ σ(Y ). Let X+ and X− be the nonnegative and negative parts of X,
i.e.,

X±(ω) = 1
2 (|X| ± X) .

Then X = X+ − X−. For S ∈ σ(Y ), define

ρ±(S) = E(X±1S) =
∫
Ω

X±(ω)1S(ω)dµ

=
∫
S

X±(ω)dµ0. (A7.21)

Then ρ± are measures on σ(Y ) that are absolutely continuous with respect to
µ0. Define now

E(X|Y ) =
dρ+

dµ0
− dρ−

dµ0
, (A7.22)

where the quantities on the right are Radon–Nikodym derivatives (A5.26). Then,
using the Radon–Nikodym theorem (Theorem A5.35), we have∫

Ω

E(X|Y )(ω)1S(ω)dµ =
∫
S

dρ+

dµ0
dµ0 −

∫
S

dρ−

dµ0
dµ0

= ρ+(S) − ρ−(S)

= E(X1S).

We condense the above into a definition (Feller, 1971, pp. 162–165):
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Definition A7.3 (Expectation conditioned on a random variable) Let
X and Y be bounded random variables on the probability space (Ω,F , µ). The
conditional expectation E(X|Y ) of X given Y is the unique σ(Y )-
measurable random variable that satisfies

E(E(X|Y )1S) = E(X1S)

for all S ∈ σ(Y ). The conditional expectation E(X|Y ) is unique up to a set of
measure zero.

It follows from the uniqueness of E(X|Y ) that, if X itself is σ(Y )-measurable,
then

E(X|Y ) = X.

Definition A7.4 (Expectation conditioned on a σ-subalgebra) Let X be
a random variable with E(|X|) < ∞, and G a σ-subalgebra of F . The condi-
tional expectation of X given G is the unique G-measurable random variable
E(X|G) that satisfies

E(E(X|G)Z) = E(XZ) (A7.23)

for all bounded and G-measurable random variables Z. The conditional expec-
tation E(X|G) is unique up to a set of measure zero.

When G = σ(Y ), Definition A7.4 is equivalent to Definition A7.3. The proof
is straightforward, and is omitted.

It is obvious that E(·|G) is linear; it is positive, i.e., if X ≥ 0 then E(X|G) ≥ 0.
Moreover, E(·|G) is a projection, i.e.,

E(E(X|G)|G) = E(X|G).

These properties can be translated into the language of operators on the Hilbert
space L2(Ω,F , µ). We refer the reader to (Streater, 2000; Rédei and Summers,
2007) for further information, both on classical and quantum probability the-
ory. These articles have been written from the perspective of mathematical
physics rather than pure mathematics. The classic text, in English, on classical
probability theory is the two-volume work (Feller, 1970, 1971).
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Fibre bundles, differentiable manifolds, Lie groups
and Lie algebras

The final result of Part I of this book, Theorem 5.10, was stated using the term
differentiablemanifold. SomecomplexitiesoftherelationbetweenLiegroupsandLie
algebras were encountered in Sections 7.4.3 and 7.5.2. One needs precise definitions
ofthesemathematicalobjectstosetthesequestions intheirgeometricalperspective.
In Chapter 12 we made use of Banach and Hilbert bundles. These are special cases
of fibre bundles. Fibre bundles also provide deep insights into Lie groups and Lie
algebras. The purpose of this appendix is to provide the basic definitions, and brief
introductions to these subjects that would suffice for our needs. We begin with
the topological concept of a fibre bundle and continue with that of a differentiable
manifold. The twoarebrought together through thenotionof tangent spaces to lead
us to the desired relation between Lie groups and Lie algebras.

A8.1 Fibre bundles

The topological spaces called fibre bundles are generalizations of the topological
product; they have the product form locally, but not globally. The simplest exam-
ple is the Möbius strip. The rectangular strip of paper abcd shown in Fig. A8.1
may be formed into a cylinder by glueing the short edges together; a is joined to
b, and c to d. However, if one gives the strip a twist and joins a to c and b to d,
one obtains a Möbius strip. The cylinder is homeomorphic to the product S1 ×I,

..........................................................................................................................................................................................................

............................................................................................................................................................................................................
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.........................

.....................................................................................................................................................................................................................................................
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d

b

c

X

Fig. A8.1. Forming the cylinder and the Möbius strip

where S1 is the circle (1-sphere) and I the unit interval; both the cylinder and
the Möbius strip are locally homeomorphic to (α, β)×I, where (α, β) is any open
interval on the real line, but the latter is not globally homeomorphic to S1 × I.
The twisting, which introduces the difference, is accomplished mathematically
by the action of a two-element group, one element of which flips the Y -axis.
The definition of a fibre bundle is a generalization of the above, but, unlike the
Möbius strip, a fibre bundle does not have to be nonorientable.

The material of this section is taken from Steenrod’s book (Steenrod, 1972).
References to the original sources will be found in this book.
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A8.1.1 Definition of fibre bundles

The definition of a fibre bundle is as follows:

(a) It is a quintuple B = (B, X, π, G, Y ), where

(i) B,X, Y are topological spaces. B is known as the total space, X the
base space and Y the fibre of the bundle,

(ii) π : B → X is a continuous map called the projection, and

(iii) G is a topological group of transformations of Y which acts effectively
on Y .1 It is called the group of the bundle.

(b) The inverse image π−1(x) is called the fibre over x. The fibres π−1(x) are
homeomorphic to Y for each x.

(c) There is an open cover {Uj |j ∈ J} of X such that, for each j ∈ J , there
exists a homeomorphism

ϕj : Uj × Y −→ π−1(Uj) (A8.1)

which satisfies
π ◦ ϕj(x, y) = x for x ∈ Uj , y ∈ Y. (A8.2)

The maps ϕj are called local trivializations.2

(d) For each j and each x ∈ Uj , the homeomorphism ϕj defines a map ϕj,x :
Y → π−1(x) by

ϕj,x(y) = ϕj(x, y);

and for each pair j, k ∈ J and each x ∈ Ui ∩ Uj , the map

gkj(x) = ϕ−1
k,x ◦ ϕj,x : Y −→ Y (A8.3)

is a homeomorphism (called a coordinate transformation) which coin-
cides with the action of a unique element of G on Y .

(e) For each pair j, k ∈ J , the map

gkj : Uk ∩ Uj −→ G

is continuous.

1 The action of a group G on a topological space Y is said to be effective if gy = y for all y
implies that g = e, where e is the identity of G.

2 They are called coordinate functions in (Steenrod, 1972), and elsewhere. As this term is
also used in the definition of differentiable manifolds, we prefer to avoid using it here, but
the reader should note that such terminological distinctions may be sacrificed if it makes a
phrase less cumbersome.
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Any local trivialization φα (more precisely, a pair (φα, Uα) satisfying (A8.2))
that is compatible with the glueing condition (A8.3) may be adjoined to the
existing ones. We shall assume that the set of local trivializations is maximal
in this respect. This assumption has the effect of eliminating the dependence
on local trivializations, and will be used again in the definition of differentiable
manifolds in Section A8.2.

A map

s : X → B (A8.4)

that satisfies the condition

π ◦ s(x) = x for all x ∈ X (A8.5)

is called a section, or cross-section (of X in B).3 Continuous cross-sections
do not always exist in fibre bundles; however, every bundle has continuous local
cross-sections, which are defined not over the entire bundle but only over the
local trivializations. Choose a fixed point y0 ∈ Y and define σ : Ui → π−1(Ui)
by σ(x) = φi(x, y0). Then π(σ(x)) = x, and σ is continuous. In the following,
local cross-sections will always be assumed to be continuous.

If the total space B is homeomorphic to X × Y , then the bundle is called
trivializable, equivalent to the product, or simply a product bundle.

A8.1.2 Principal bundles; the bundle structure theorem

A bundle B = (B, X, π, G, G) in which the fibre is the same as the (underlying
topological space of) its group and the group acts upon it by left-translations is
called a principal bundle. If Y is a topological space on which G has an effec-
tive action, then, using the coordinate transformations of B, one can define a new
bundle A with base X, fibre Y , group G, and the same coordinate transforma-
tions as in B but with a new total space A (and, obviously, a new projection p).
The bundle A is said to be associated with B. It is an important result in the
theory of fibre bundles that a bundle A is equivalent to the product if and only
if the associated principal bundle has a continuous cross-section.

Let G be a topological group, and H a closed subgroup of it. Denote the
space of left-cosets of H in G, furnished with the quotient topology (page 264)
by G/H. Then there is a natural projection π : G → G/H which sends every
element of G into its left-coset in G/H, and G has a natural action on G/H.
The following result is central to the representation theory of topological groups
in physics, where it is often used without being recognized:

3 There is some nonuniformity in terminology at this point. Some authors, for example
Steenrod (who uses the term cross-section), require sections to be continuous, while others
do not.
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Theorem A8.1 (The bundle structure theorem) If G is a topological group
and H a closed subgroup of it such that G/H has a local cross-section in G, then
G is a principal fibre bundle (G, G/H, π, H, H) with group and fibre H, with
π : G → G/H defined as above.

Local cross-sections (of G/H in G) do not always exist. But, if G is a Lie
group and H a closed subgroup of it, then G/H always has a local cross-section
in G. Therefore the bundle structure theorem holds unrestrictedly for Lie groups
and their closed subgroups.

A8.1.3 Hilbert bundles

A bundle {B,X, π, U,H}, in which the fibre is an infinite-dimensional separable
Hilbert space H over the complex numbers and U the unitary group of H is called
a Hilbert bundle. If the base space X of a Hilbert bundle is a topological
manifold (defined on page 354), then the bundle is equivalent to the product
X × H. Our base spaces will always be topological manifolds, and therefore all
our Hilbert bundles will be equivalent to the product. The result we have quoted
is given in (Steenrod, 1972); some exceptional cases are covered by a theorem of
Kuiper (Kuiper, 1965).

A8.1.4 Bundle maps

Let (B, X, π, G, Y ) and (B′, X ′, π′, G, Y ) be two bundles with the same fibre
and group. A continuous map θ : B → B′ is called a bundle map if it maps a
fibre Yx of B onto a fibre Yx′ of X ′, thus inducing a continuous base map map
θ̄ : X → X ′ such that

π′ ◦ θ = θ̄ ◦ π. (A8.6)

Equation (A8.6) may be represented by the commutative diagram of
Fig. A8.2.

�

�� �

θ

θ̄

B B′

X X′

π π′

Fig. A8.2. The induced base map
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Remark A8.2 The map θ is required to satisfy some other (fairly mild)
conditions, involving the group of the bundle. These conditions will always be
satisfied in cases of interest to us, and we shall not dwell on them. The reader
is referred to (Steenrod, 1972, p. 9) for details. A bundle map is often called a
fibre-preserving map in the literature.

A8.2 Differentiable manifolds

We begin by describing a hierarchy of functions. Let O be a connected open set
in Rn. The set of real-valued functions on O with continuous partial derivatives
of order k is denoted by Ck(O); here k = 1, 2, . . . The set of continuous functions
on O is denoted by C0(O); that of infinitely differentiable (called smooth)
functions, by C∞(O). The set of analytic functions, i.e., functions that have
convergent Taylor series expansions around every point in O, is denoted by
Cω(O). One has

C0(O) � . . . � Ck(O) � Ck+1(O) � . . . � C∞(O) � Cω(O)

for k = 1, 2, . . . The inclusion C0 � C1 is decidedly nontrivial; Weierstrass
caused a sensation in 1872 when he announced his everywhere-continuous but
nowhere-differentiable function.4 The inclusions Ck � Ck+1 are straightforward.
The function f : R → R defined by

f(x) =
{

exp (−1/x) for x > 0,

0, for x ≤ 0
(A8.7)

is smooth, but not analytic. This example shows that C∞(R) � Cω(R).

A8.2.1 Definition of a differentiable manifold

In elementary differential geometry, curves are studied by embedding them in
R2 or R3, and surfaces by embedding them in R3. In 1858, Riemann showed that
embeddings were unnecessary; curvature could be studied intrinsically, via the
metric and tensor that now bear his name. In 1917, Levi-Civita defined the notion
of parallel displacement and forged a tool which became the key: the covariant
derivative, familiar to every physicist (Levi-Civita, 1917). But the objects of
study of differential geometry, differentiable manifolds, were defined in their
generality only later, by Whitney in the 1930s. This definition is given below.5

It should be noted that a differentiable manifold can be embedded in a higher-
dimensional Euclidean space; this is a major theorem, first proved by Levi-Civita

4 This example may be found in (Goursat, 1959, pp. 423–425).
5 A different definition, ‘inspired by the definition of a Riemann surface given by Hermann

Weyl’, was used by Chevalley in his systematization of the global theory of Lie groups
(Chevalley, 1946). The two definitions are equivalent.
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and then refined by Whitney. The result, that an n-dimensional differentiable
manifold can be embedded in R2n+1, is known as the Whitney embedding
theorem.

A topological manifold is a second-countable Hausdorff space X such that
every point of X has a neighbourhood which is homeomorphic to an open set in
Rn (n is fixed).6

Let X be a topological manifold, Uα, Uβ open subsets of X that are homeo-
morphic to open sets in Rn, and ϕα : Uα → Rn, ϕβ : Uβ → Rn maps that are
homeomorphisms onto their ranges. Suppose now that the intersection Uα,β =
Uα ∩ Uβ is nonempty, and set

ϕα(Uα,β) = Wα, ϕβ(Uα,β) = Wβ ,

as shown in Fig. A8.3. We shall denote the restrictions of ϕα and ϕβ to Uα,β by
the same symbols.

We now have a homeomorphism of Uα,β with Wα and another with Wβ . These
sets are shown by the shaded regions in Fig. A8.3. The map

Wα
ϕ−1

α−→ Uα,β
ϕβ−→ Wβ

shown in Fig. A8.3, being the composition of two continuous maps, is continuous.
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Fig. A8.3. Transition maps

6 Some authors do not require the second-countability condition in the initial definition of
a manifold, mainly to give counterexamples showing that it is not required for defining a
differentiable structure. It has to be introduced at some stage, because many important
theorems on differentiable manifolds depend essentially upon the second-countability axiom.
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It is, in fact, a homeomorphism, as the arrows in Fig. A8.3 can be reversed, with
the corresponding maps being replaced by their inverses.

The maps ϕα ◦ ϕ−1
β : Wα → Wβ are from one open subset of Rn to another,

as are their inverses. It therefore makes sense to ask whether these maps are
differentiable. They do not have to be; the textbook example is the map f : R →
R defined by y = f(x) = x3; this map is invertible, its inverse being x = y1/3,
which is continuous. While f is differentiable, its inverse fails to be differentiable
at the origin. We assume that the maps ϕβ ◦ ϕ−1

α and their inverses are smooth
for all α, β for which Uα ∩ Uβ �= ∅. They are called transition maps.

Remark A8.3 This assumption is not as restrictive as it looks. We could have
chosen the transition maps and their inverses to be of class Ck, k ≥ 1; this
would have led to the definition of Ck-manifolds. However, it can be shown that
every Ck-atlas contains a Ck+1-subatlas, and therefore a C∞-subatlas. See, for
example, (Hirsch, 1976). Hirsch even defines a smooth manifold to be a manifold
of class Ck, k ≥ 1. One sometimes says that the Ck-structure is subordinate
to the C∞-structure.

Now comes a mass of terminology. A pair (Uα, ϕα) is a local coordinate
system, or a chart. The collection of charts {(Uα, ϕα)|α ∈ A} is an atlas for X.
The maps ϕα ◦ϕ−1

β are transition maps.7 The quantities (x1, . . . , xn) = ϕα(x)
are called local coordinates of x in the chart (Uα, ϕα). This chart is often
referred to simply as the ‘chart’ Uα.

Clearly, one can adjoin to the atlas any chart (U, ϕ) such that the coordinate
transformations it defines are infinitely differentiable. It is therefore assumed that
the atlas A is maximal in this sense, i.e., it contains every chart that is compatible
with the others. The atlas A defines a (smooth) differentiable structure on X.
The pair (X, A) is called a (smooth) differentiable manifold or a differential
manifold. All our manifolds will be smooth. Note that there are oddities among
topological manifolds that cannot carry a differentiable structure.8

Let M,M ′ be homeomorphic manifolds. If the homeomorphism ψ and its
inverse ψ−1 are smooth, then ψ is called a diffeomorphism.9 The ques-
tion arises: if two smooth manifolds are homeomorphic, are they necessarily
diffeomorphic? The answer is no! This counterintuitive phenomenon was first
discovered by Milnor for the seven-dimensional sphere S7.

7 These maps are also called coordinate transformations in the literature. However, we
have already used this term in the definition of fibre bundles, following (A8.3), and shall not
use it here. See also footnote 2 on page 350.

8 This statement is a little too loose for comfort, but we lack the machinery to make it more
precise. An excellent introductory account may be found in (Hilton, 1968).

9 The definition of differentiability for the map ψ : M → M ′ is given in Section A8.4.
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The spaces Rn admit only one differentiable structure each, except for n = 4.
The manifold R4 has infinitely many inequivalent differential structures; all but
the standard one are termed exotic.10

Let us consider a few examples of one-dimensional manifolds embedded in the
two-dimensional plane. The first is the X-axis itself. This is a one-dimensional
manifold that can be covered by a single chart. Next, consider the graph of the
function y = sinx. This is also a one-dimensional manifold which is homeomor-
phic with the X-axis, but it is ‘not flat’. To make this idea precise, one needs to
define (for example) the notion of curvature, which will give precise meaning to
the intuitive statements that the graph of y = sinx is curved, whereas the X-
axis is flat. This also shows that the notion of curvature cannot be a topological
invariant, and the same is true of the notion of torsion. Our last example is the
circle S1, which cannot be covered by a single chart. It is impossible to make a
flat space out of the circle without topological violence.

There is one further point that deserves mention. Recall that in the defi-
nition of a topological manifold, every point is assumed to have a neighbourhood
homeomorphic to an open set in Rn. Consider now the disc Dr(O) = {(x, y)|(x2+
y2)1/2 ≤ r} in R2, with the usual metric topology. Every point in the interior
of the disc has a neighbourhood that is open in R2, but that is not true for
any point on its perimeter. The discs Dr are examples of manifolds with
boundary, which have to be defined in a slightly different manner. The term
differential manifold usually applies to manifolds without boundary, and we shall
be concerned only with these.

The definition of Lie groups uses the notion of the product M1 × M2 of two
manifolds M1 and M2. The definition is analogous to that of the topological
product of two topological spaces. Details may be found in (Matsushima, 1972,
pp. 32–33) or (Auslander and MacKenzie, 1963, pp. 92–94). The result Rm ×
Rn = Rm+n also holds for differentiable manifolds.

A8.2.2 Functions on manifolds

We shall only be concerned with real-valued functions on manifolds. The continuity
and differentiability properties of functions defined on manifolds can be examined
in local coordinates. As we are dealing with smooth manifolds, the transition maps
are smooth, and therefore the differentiability properties of functions at a point will

10 The subject of exotic differentiable structures on R
4 developed from a theorem proven by

Donaldson using gauge theory (Donaldson, 1983). Exotic R
4’s were first constructed in

(Gompf, 1983). A technical review of the early works using gauge theory will be found in
(Lawson, 1985). A short, semipopular account was given by Freedman (Freedman, 1984).
Relativity theorists may be interested in the more recent results of Brans (Brans, 1994). The
book (Asselmeyer-Maluga and Brans, 2007) is aimed largely at physicists. The geometriza-
tion of gauge theory was initiated by Lubkin (Lubkin, 1963) and Mayer (Mayer, 1977), well
before it was taken up by mathematicians.
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not change from one local coordinate system to another. It therefore makes sense to
speak of the sets of functions Ck(M), where k ∈ N or k = ∞.

A8.3 Tangent vectors and the tangent bundle

From elementary geometry, we are used to visualizing tangent vectors as jutting
out into the embedding space. How do we define tangent vectors when the
embedding space is no longer there?

Consider the quantities that define tangent vectors. For a plane curve ϕ, the
tangent at a point p ∈ ϕ is determined by the derivative ϕ′(p). The tangent
vectors at a point p on a smooth surface ϕ(x, y) = const form a plane. This
plane is determined by the partial derivatives

∂ϕ

∂x
(p),

∂ϕ

∂y
(p)

at that point. The mathematical entities that determine the tangent vectors in
two dimensions are the two partial differential operators ∂/∂x and ∂/∂y. The
coordinate system (x, y) is arbitrary; the way to eliminate this arbitrariness
is to admit all possible coordinate systems on equal footing. This leads to a
two-dimensional vector space over R which has, as a base, the pair of partial
differential operators ∂/∂x, ∂/∂y. It is this two-dimensional vector space that is
realized, geometrically, as a plane when the partial derivatives are evaluated at a
given point. The extension to n dimensions is obvious. We proceed to the formal
definitions.

Definition A8.4 (Tangent vectors) Let M be a smooth n-manifold and p ∈
M . Denote by F(p) the set of real-valued functions on M that are infinitely
differentiable at p. Then F(p) is a linear space over R. A map (think of it as an
operator!)

vp : F(p) −→ R

is a tangent vector at p if it satisfies the conditions

vp(λf + µg) = λvp(f) + µvp(g),

vp(fg) = vp(f)g + fvp(g)
(A8.8)

for all f, g ∈ F, λ, µ ∈ R. It follows from the above that vp(c) = 0 for all c ∈ R.

Let vp, v
′
p be tangent vectors to M at p and λ ∈ R. Define λvp and vp + v′

p by

(λvp)f = λ(vpf), (vp + v′
p)f = vp(f) + v′

p(f)
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for all f ∈ F(p). It is obvious that λvp and vp + v′
p are also tangent vectors at p.

The linear space of tangent vectors at p is called the tangent space at p, and
denoted by TpM . We have:

Theorem A8.5 Let M be a smooth n-manifold. Then TpM is n-dimensional
for every p ∈ M , and is homeomorphic with Rn.

This theorem looks obvious but requires proof. We omit the proof, which may
be found, for example, in (Matsushima, 1972, pp. 41–42).

In local coordinates, a tangent vector at p has the form

vp =
n∑

i=1

ai

(
∂

∂xi

)
p

·

In the above, the coefficients ai are constants and the subscript p on the right
indicates that the partial derivatives have to be evaluated at p.

A8.3.1 The tangent bundle

It can be shown that the collection {(p, TpM)|p ∈ M} is a fibre bundle over the
base space M with fibre Rn and group GL(n, R), the general linear group over
the reals in n dimensions. This bundle is known as the tangent bundle of M .
In this case the coordinate transformations (A8.3) and the action of the group
on the fibre are not merely continuous; they are smooth, and moreover if M is n-
dimensional then the tangent bundle is a 2n-dimensional differentiable manifold.
The explicit verification of these facts may be found in (Steenrod, 1972, pp. 20–
24). We shall denote the tangent bundle of M by {TM, M, π, GL(n, R), Rn},
where π is the obvious projection π : TM → M . The bundle itself and its total
space are both denoted by TM ; this will cause no confusion. The tangent space
TpM is the fibre over p.

It is clear that a cross-section of TM is an assignment of a tangent vector
to each point p ∈ M . As remarked in Section A8.1, continuous cross-sections
may not always exist in the topological category. However, they exist trivially
in the tangent bundle, e.g., the zero section σ(p) = 0 for every p ∈ M . Cross-
sections can be added, and multiplied by constants; the space of cross-sections is
a linear space over R which is n-dimensional at every p ∈ M . The question arises:
does the space of cross-sections contain n linearly independent continuous cross-
sections? The answer is: only in those rare instances in which TM is equivalent
to the product M × Rn. We shall not stop to explain the origins of this result;
the reader is referred to (Steenrod, 1972).

A8.4 Maps of manifolds

Let M and M ′ be smooth manifolds of dimensions m and n, respectively, and
ϕ : M → M ′ a continuous map. We wish to define the notion of differentiability
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for the map ϕ. One possibility would be to express ϕ in terms of local coordinates
on M and M ′ and require these vector-valued functions to be differentiable, but
we would like to achieve the same result with greater economy of effort.

�
�

�
���

	
	

	
		


�ϕ

R

M M ′

gϕ�g

Fig. A8.4. Differentiable maps

If g is any smooth function on M ′, then ϕ defines a continuous map ϕ�g :
M → R by ϕ�g = g ◦ ϕ, or (ϕ�g)(q) = g(ϕ(q)), as shown by the commutative
diagram of Fig. A8.4. The map ϕ is smooth if ϕ�g is smooth for every smooth
function g on M ′.

A smooth map ϕ : M → M ′ induces, as one might expect, a fibre-preserving
map from TM to TM ′. This map is denoted by ϕ� and is called the differential
of ϕ.

For vp ∈ TpM , the vector ϕ�(vp) is defined by

ϕ�(vp)g = vp(ϕ�g) (A8.9)

for every g ∈ F′(p′), where p′ = ϕ(p) and F′(p′) is the set of smooth functions at
p′ ∈ M ′. It may be verified directly, from (A8.9), that ϕ�(vp) has the properties
(A8.8) of tangent vectors.

We could also look at the situation the other way round: ϕ� : TM → TM ′ is
a bundle map which induces the base map ϕ : M → M ′, i.e.,

π′ ◦ ϕ� = ϕ ◦ π,

where π, π′ are the projections in the bundles TM, TM ′, respectively. The proce-
dure we have followed, namely to start with a base map as given and to construct
the bundle map out of it, may be easier to grasp intuitively.

A8.5 Vector fields and derivations

Let p ∈ M , and Xp a tangent vector at p. The set {Xp|p ∈ M} is called a vector
field on M , and is denoted by X.

In words, a vector field is an assignment of a tangent vector to each point of
M – it is a cross-section of TM – but vector field is the term that is commonly
used.



360 Appendix A8: Bundles, manifolds, Lie groups and Lie algebras

Let (x1, . . . xn) be the local coordinates of x ∈ M in a chart (U, ϕ). In these
local coordinates, a vector field X has a unique expression

X =
n∑

i=1

ξi
∂

∂xi
· (A8.10)

The functions ξi are the components of X in the given chart. By transforming to a
different chart, one sees easily that the continuity and differentiability properties
of the coefficients ξi do not depend on the chart. It therefore makes sense to talk
about smooth vector fields, the components of which are smooth functions
in every chart. Taking a cue from calculus, a map D : A → A of an associative
algebra over the field K into itself is called a derivation (polarization, by
Hermann Weyl (Weyl, 1946)) if it satisfies the conditions11

D(λa + µb) = λDa + µDb,

D(ab) = D(a)b + aD(b)
(A8.11)

for all λ, µ ∈ K and all a, b ∈ A.
Let D1 and D2 be two derivations of an algebra A. Define their commutator

product [D1, D2] : A → A by

[D1, D2] = D1D2 − D2D1.

This product is clearly antisymmetric, [D1, D2] = −[D2, D1], and it satisfies the
Jacobi identity

[D1, [D2, D3]] + [D2, [D3, D1]] = [D3, [D1, D2]] = 0.

It may be verified by direct computation that, for any a, b ∈ A,

[D1, D2](ab) = ([D1, D2]a)b + a([D1, D2]b),

i.e., [D1, D2] is also a derivation.
According to the definitions of vector fields and derivations, a vector field X

on M is a derivation DX on C∞(M). The converse is also true.

Theorem A8.6 If D is a derivation of the associative algebra C∞(M), then
there is a unique vector field X on M such that D = DX .

Now let X, Y be two vector fields on M , and DX , DY the corresponding deriva-
tions on C∞(M). Then their commutator product [DX , DY ] is also a derivation

11 The algebraic notion of a field was defined on page 17.
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on C∞(M). It now follows from Theorem A8.6 that there is a unique vector field
Z on C∞(M) that corresponds to the derivation [DX , DY ]. This vector field is
called the commutator product of X and Y , and is denoted by [X, Y ]. We
then have

[DX , DY ] = D[X,Y ]. (A8.12)

This commutator product is also antisymmetric and satisfies the Jacobi identity.
Under the commutator product, the set of derivations of an algebra A forms

a nonassociative algebra over K. This algebra satisfies the Jacobi identity, and
is called a Lie algebra. We may sum up the discussion as follows:

Theorem A8.7 The set of smooth vector fields on a smooth manifold M

forms a Lie algebra under the commutator product. This Lie algebra is in 1–1
correspondence with the Lie algebra of derivations on C∞(M).

A8.6 One-parameter groups of transformations

Let Γ = (a, b) ⊂ R. A continuous map γ : Γ → M is called a curve in M .
(Common parlance usually associates the term curve with the image set {γ(t)|t ∈
Γ}; there is something to be said for it.) Clearly Γ is a smooth manifold, and we
shall assume that the map γ is also smooth. It then induces a fibre-preserving
map γ� from T Γ to TM . The tangent spaces TtΓ are one-dimensional, and a
tangent vector at t ∈ Γ is vt = (d/dt)t=t. The image of vt under γ� is a tangent
vector at γ(t) ∈ M .

If there is a vector field X on M such that γ�(vt) = Xγ(t), then the curve γ is
called an integral curve of X.12

The following theorem is a restatement of the fundamental existence and
uniqueness theorem for a system of linear first-order differential equations:13

Theorem A8.8 (Uniqueness theorem for integral curves) Let X be a
smooth vector field on M . There is exactly one integral curve of X that passes
through any given point p ∈ M .

Note that this is a local result, because, as Γ = (a, b), the curve γ is generally
defined only on an open set in M .

Our next concern is with one-parameter groups of transformations of M . The
definition is a trivial modification of the one used for Stone’s theorem (Subsec-
tion 7.5.3). A parametrized family of maps {ϕt : M → M |t ∈ R} is called a
one-parameter group of transformations of M if it satisfies the following
conditions:

12 Not every smooth curve is an integral curve of a vector field; a simple example is provided
by a curve which intersects itself.

13 A proof will be found as the lemma in (Matsushima, 1972, pp. 78–79).
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(a) ϕt is a diffeomorphism for each t.

(b) ϕs ◦ ϕt = ϕs+t for all s, t ∈ R.

(c) The map R × M → M defined by (t, p) �→ ϕt(p) is differentiable.

Let f ∈ C∞(M). Since ϕt(p) ∈ M , the expression f(ϕt(p)) defines a function
of t. Let now

Xpf =
[
df(ϕt(p))

dt

]
t=0

. (A8.13)

It is easily seen that Xp, so defined, is a smooth vector field on M . It is called
the infinitesimal generator, or simply the generator, of the one-parameter
group of transformations {ϕt} of M .

A vector field X on M which generates a one-parameter group of transforma-
tions of M is said to be complete. Formula (A8.13) shows that a one-parameter
group of transformations defines a unique complete vector field. The following
theorem, which is basically a global version of Theorem A8.8, shows that the
converse is also true.

Theorem A8.9 (Uniqueness theorem for one-parameter groups) A
complete vector field on M defines a unique one-parameter group of transfor-
mations of M .

The difference between Theorems A8.8 and A8.9 is that the first is local,
whereas the second is global. Incomplete vector fields exist, but they do not
define one-parameter groups of transformations of M . We shall see below that
the geometrical picture of integral curves is of great help in appreciating the
difference between the local and global situations.

A8.7 Lie groups and Lie algebras

A Lie group is a group, a topological space and an analytic manifold. Recall that
in a topological group the operations of multiplication and taking the inverse are
continuous. In a Lie group, they are analytic. More precisely:

Definition A8.10 (Lie group) A real Lie group is a group G which is also
a real-analytic manifold, such that the maps

G × G −→ G, G −→ G

defined by g1g2 �→ g and g �→ g−1, respectively, are analytic.14

It is a remarkable fact that the following theorem holds.

14 We are restricting ourselves to real Lie groups here; complex Lie groups will be considered
briefly in Section A8.7.4.
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Theorem A8.11 (Gleason, Montgomery and Zippin) Let G be a group
which is also a topological manifold such that the group operations of multiplica-
tion and taking the inverse are continuous.15 Then G is a Lie group.

Theorem A8.11 constitutes the affirmative solution of Hilbert’s fifth problem.16

As every physicist knows, a Lie group may have several disconnected components.
In the following, we shall restrict ourselves to the connected component which
contains the identity of the group.

A8.7.1 Left-invariant vector fields and Lie algebras

Let G be a connected Lie group. Denote by Lg the left-translation of G by
g ∈ G, i.e., the map17 Lg : G → G defined by Lg(g′) = g · g′ for all g′ ∈ G. It is
clear that

Lg · Lh = Lgh and (Lg)−1 = Lg−1 .

Furthermore, Lg is a diffeomorphism of G onto itself. Therefore, for each g ∈ G,
one can define a bundle map (Lg)� : TG → TG. Let now X be a vector field on
G. Then so is (Lg)�X. A vector field X on G is left-invariant if it satisfies the
condition

(Lg)�X = X (A8.14)

for all g ∈ G.
Left-invariant vector fields exist, and are smooth; this is not hard to verify.

The following results, which we state without proof, are deeper.

Theorem A8.12 A left-invariant vector field on G is complete.

Theorem A8.13 If G is n-dimensional,18 then there are exactly n linearly
independent left-invariant vector fields on G.

Theorem A8.13 implies that the tangent bundle TG of G is homeomorphic to
the product G × Rn, which is certainly not true for tangent bundles in general.

Since vector fields are derivations, it makes sense to talk about the Lie algebra
of left-invariant vector fields on G. In view of Theorem A8.13, one may choose a
basis {X1, X2, . . . , Xn} in the space of smooth left-invariant vector fields on G.
Combining Theorem A8.13 with formula (A8.12), we conclude that there exists

15 It is not enough to require that G be a topological group. See the last paragraph of Appendix
A3, page 276. A very clear statement may be found in (Kaplansky, 1974, p. 87).

16 An English translation of the relevant part of it will be found in (Montgomery and Zippin,
1955, pp. 67–69).

17 Right-translations can be defined analogously, but we shall not use them.
18 What we have called an n-dimensional Lie group is also known as an n-parameter Lie

group, especially in the older literature.
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a set of constants ck
ij such that

[Xi, Xj ] =
n∑

j=1

ck
ijXk. (A8.15)

The Lie algebra defined by (A8.15) is known as the Lie algebra of the group
G, and the ck

ij its structure constants.

A8.7.2 The exponential map

We know from Theorem A8.9 that a complete vector field on a manifold deter-
mines a unique one-parameter group of transformations of it. If the manifold
is a (connected) Lie group G, then an element X of its Lie algebra g, being
a left-invariant vector field, determines a one-parameter subgroup of G. This
subgroup {ϕt|t ∈ R} has to satisfy the conditions ϕsϕt = ϕs+t, ϕ0 = e. Were
ϕt to be a function of a real variable, it could only be the exponential function,
ϕt = exp t. By imitation, the one-parameter subgroup of G determined by X ∈ g

is written as

{exp (tX)|t ∈ R}. (A8.16)

It is easily seen that the function exp(tX) has all the formal properties of the
real exponential function, and that

X =
(

d
dt

exp (tX)
)

t=0
.

The map g → G defined by X �→ exp X is called the exponential map. It is a
map from Rn into the n-dimensional Lie group G.

If G = GL(n, R), then the elements of the group are defined as invertible
n × n matrices with real entries. Then the elements X ∈ g of its Lie algebra are
also n × n matrices, and exp (tX) is the exponential of the matrix tX, which
is well defined for all t ∈ R. In the general case, the exponential map may
be written in local coordinates as follows.19 Assume that G is n-dimensional,
let Xk be an element of g, and choose a chart (U, ϕ) with local coordinates
ϕ(p) = (x1, . . . , xk, . . . , xn) such that

Xk =
∂

∂xk
·

19 The account given above is heuristic. A proper mathematical account may be found in
(Matsushima, 1972, pp. 203–207; Auslander and MacKenzie, 1963, Chap. 7; Varadarajan,
1974, pp. 84–92).
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Then, if (x1, . . . , xk + a, . . . , xn) ∈ U and f is a function with a Taylor series
expansion at p which converges in U ,

exp (aXk)f(·xk·) =
n∑

m=1

(
1
m!

∂m

(∂xk)m
f(·xk·)

)
= f(x1, . . . , xk + a, . . . , xn).

(A8.17)

In the first line of (A8.17), f(·xk·) is short for f(x1, . . . , xk, . . . , xn). On an
analytic manifold, a map f(p) �→ f(p′) is the same as the map p �→ p′.

A8.7.3 Some examples and counterexamples

Consider the group of translations of R2. The space R2 can be covered by a
single chart, and the Lie algebra of the group written as

X =
∂

∂x
, Y =

∂

∂y
· (A8.18)

The group is Abelian.
Let f(x, y) be an analytic function of (x, y). Then

exp (aX)f(x) = f(x + a, y) and exp (bY ) = f(x, y + b)

for any a, b ∈ R. It follows that the vector fields X and Y are complete, and
generate the translations

(x, y) �→ (x + a, y) and (x, y) �→ (x, y + b).

The integral curves of X and Y are the lines parallel to the horizontal and vertical
axes, respectively.

Consider now the punctured plane R2�{(0, 0)}. This space can also be covered
by a single chart, and X and Y defined by (A8.18) are vector fields on it. But
these vector fields are no longer complete. Geometrically, this is obvious; the
punctured plane is not invariant under translations. Analytically, let f(x, y) be
an analytic function on R2. Then

exp (−aX)f(a, 0) = f(0, 0), (A8.19)

which is well defined on R2, is not well defined on the punctured plane; the point
(0, 0) does not belong to the latter, and therefore the right-hand side of (A8.19)
is undefined. The punctured plane is, however, invariant under rotations around
the origin; the complete vector field which generates the rotations is

x
∂

∂y
− y

∂

∂k
·
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It is known that if G is a Lie group and ∆ a discrete normal subgroup of it, then
G/∆ is a Lie group and the Lie algebras of G and G/∆ are isomorphic. However,
given a finite-dimensional Lie algebra g, there is a unique simply connected Lie
group G that has g as its Lie algebra. The notion of an infinite-dimensional Lie
algebra makes sense, but there may be no ‘infinite-dimensional Lie group’ that
has a given infinite-dimensional Lie algebra as its Lie algebra. The present author
is not knowledgeable in these subjects, and the interested reader is advised to
consult a mathematician friend who will lead him or her to a specialist.

A8.7.4 Complex Lie groups and algebras; complexification

Complex manifolds can be defined almost exactly as real manifolds; one replaces
Rn in the definition by Cn and requires the transition maps to be holomorphic.20

This leads quite naturally to the definition of complex Lie groups and com-
plex Lie algebras (Matsushima, 1972; Varadarajan, 1974). However, every
complex Lie group (algebra) in n dimensions over C turns out to be a real Lie
group (algebra) in 2n dimensions, and this will suffice for our purposes.

The rotation group in three dimensions O+(3, R) is real, as is its Lie algebra.
Yet the latter is invariably written in physics texts as

[Li, Lj ] = iεijkLk, i, j, k = 1, 2, 3,

where εijk is the completely antisymmetric tensor in three dimensions, and
Einstein’s summation convention has been employed. The reason is that the
quantities Li, i = 1, 2, 3 are generally represented as Hermitian operators on a
complex vector space. What is needed, therefore, is an extension of the notion of
a Lie algebra over the reals to a Lie algebra over the complex numbers that does
not change the dimension of the algebra. This process is known as the complexi-
fication of a real Lie algebra. The complexification of a real Lie algebra is not
a complex Lie algebra. A formal definition of the process of complexification is
that it is the tensor product of a real vector space with the complex numbers. As
all physicists are familiar with the process (though perhaps not with the name),
we shall not reproduce the details here. They may be found, for instance, in
(Matsushima, 1972, Sec. 16 B, pp. 100–102) in concrete form (without using
the term tensor product), or in (Varadarajan, 1974, p. 47), in abstract form.

20 As every student of quantum field theory will know, there are important differences between
the theories of functions of one and several complex variables. A concise account of the
elementary theory of functions of several complex variables may be found in (Narasimhan,
1971).
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Symbol Page Description

l> , <l total order on light rays

on l 23
on ľ 70
on � 77

<ll nonreflexive, nonsymmetric order on light rays

on l 23
on ľ 70
on � 77

>, < causal order on the entire space

on M 29
on M̌ 72

, | nonreflexive timelike order and its negation

on M 31
on M̌ 72

�, |� nonreflexive timelike order and its negation

on M 31
on M̌ 72

�� 25 concatenation of light-ray segments

∂̌ 71 mantle operator

C+
x 28 forward (future) cone at x

C−
x 28 backward (past) cone at x

Cx 28 cone at x

βC±
x 29 β-boundaries of cones at x

τC±
x 28 τ -interiors of cones at x

C±
a;D 70 local cones at a ∈ M

βC±
a;D 70 β-boundaries of local cones at a
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C±
a;Ď

70 C±
a;D, considered as a subset of Ď

C̃±
a;Ď

70 uniform completion of C±
a;Ď

Č±
a;Ď

70 the intersection C̃±
a;Ď

∩ Ď

τČ±
a;Ď

70 interior of Č±
a;Ď

D 34–35 D-set

D̃ 68 uniform completion of D

Ď 68 interior of D̃

EU 67 order uniformity on U

F [a, b; p] 85 2-cell in D-interval

I(a, b) 33 open order interval in M

I[a, b] 33 closed order interval in M

Ǐ(x, y) 71 open order interval in M̌

Ǐ[x, y] 71 closed order interval in M̌

M 23 point-set

M̃ 68 the union ∪α∈AD̃α

M̌ 66, 68 order completion of M

P (x0, x1, . . . , xn) 25 l-polygon connecting x0 with xn

P ↑(x0, x1, . . . , xn) 27 ascending l-polygon

P ↓(x0, x1, . . . , xn) 27 descending l-polygon

S(p, q) 53 spacelike hypersphere in M

Š(x, y) 71 spacelike hypersphere in M̌

l 23 light ray in M

ľ 70 order completion of the light ray l

� 74 new light ray in M̌

lx 23 light ray through x

lx,y 23 light ray through x, y

l+x , l−x 28 forward and backward rays from x

l+b,c 27 forward ray from b passing through c

l−b,a 27 backward ray from b passing through a

l(a, b) 25 open light ray segment from a to b

l[a, b] 25 closed light ray segment from a to b
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Θ(t) 81 parametrized timelike curve

Θ(a, b) 84 open segment of timelike curve from a to b

Θ[a, b] 84 closed segment of timelike curve from a to b

λ(x, y) 25 x and y are joined by a light ray

∼λ(x, y) 25 x and y are not joined by any light ray

� 54 standard map; σ = �−1

σ 54 standard map; � = σ−1

ϑ(r) 85 map from light ray to timelike curve
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of Actualités scientifiques et industrielle: Exposé de physique générale. Paris: Hermann.
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Schmüdgen, K (1983). On the Heisenberg commutation relation II, Publ. Res. Inst. Math.
Sci., Kyoto 19, 601–671.
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ings of the Wigner Centennial Conference, Pécs, Hungary, 2002, Article 51. (Distributed
on CD.)

Simmons, GF (1963). Introduction to Topology and Modern Analysis. New York, NY:
McGraw-Hill.

Simon, B (1995). Operators with singular continuous spectra, I. General operators, Ann. of
Math. 141, 131–145.

Simon, J (1972). On the integrability of finite-dimensional Lie algebras, Commun. Math. Phys.
28, 39–42.

Sinha, KB (1994). On the collapse postulate of quantum mechanics, in: Mathematical Physics
Towards the 21st Century, Eds. RN Sen and A Gersten, pp. 344–350. Beer-Sheva: Ben-
Gurion University of the Negev Press.

Sinha, KB and Goswami, D (2007). Quantum Stochastic Processes and Non-Commutative
Geometry, Cambridge Tracts in Mathematics, No. 169. Cambridge: Cambridge University
Press.



378 References

Stebbing, L S (1944). Philosophy and the Physicists. Harmondsworth, Penguin Books.
Steenrod, N (1972). The Topology of Fiber Bundles, eighth printing. Princeton: Princeton

University Press.
Stein, H (1997). Maximal extension of an impossibility theorem concerning quantum measure-

ment, in: Potentiality, Entanglement and Passion-at-a-Distance. Quantum-Mechanical
Studies for Abner Shimony, Eds. R S Cohen, M Horne and J Stachel, pp. 231–243.
Dordrecht: Kluwer Academic Publishers.

Stein, H and Shimony, A (1971). Limitations on measurement, in: Foundations of Quantum
Mechanics, Proceedings of the Enrico Fermi International Summer School, Course II,
Ed. B d’Espagnat, pp. 56–76. New York: Academic Press.

Streater, RF (2000). Classical and quantum probability, J. Math. Phys. 41, 3556–3603.
Streater, RF and Wightman, AS (1964). PCT, Spin and Statistics, and All That. New York:

WA Benjamin. Reprinted, with corrections (2000). Princeton: Princeton University Press.
Stueckelberg, EGC (1960). Quantum theory in real Hilbert space, Helv. Phys. Acta 33,

725–752.
Stueckelberg, EGC and Guenin, M (1961). Quantum theory in real Hilbert space, Helv. Phys.

Acta 34, 621–628.
Stueckelberg, EGC and Guenin, M (1962). Quantum theory in real Hilbert space, Helv. Phys.

Acta 35, 673–695.
Stueckelberg, EGC, Guenin, M, Piron, C and Ruegg, H (1961). Quantum theory in real

Hilbert space, Helv. Phys. Acta 34, 675–698.
Summers, S J (2001). On the Stone-von Neumann uniqueness theorem and its ramifications,

in: John von Neumann and the Foundations of Quantum Physics, Institut Wiener Kreis,
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570–578.
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Brans, C H, 356n
Bratteli, O and Robinson, D W,

219, 224
bridge, over the Heisenberg cut, 171
Brown, H, 202
Buchholz, D, Ojima, I and Roos, H, 227
bundle

associated, 351
Banach, 216
fibre, 349
Hilbert, 210, 352
product, 351
tangent, 358

cross-section of, 358
trivializable, 351

bundle map, 352
bundle representations, 211
bundle structure theorem, 352

for Lie groups, 352
Busch, P and Shimony, A, 95n, 202
Busch, Wilhelm, 109n

Cantor, G, 15, 104, 250, 251, 253, 255
Cantor set, 311
cardinal, nonmeasurable, 286
cardinality, 16

of a set, 246
Carmona, R and Lacroix, J, 340
Cartier, P, 234
Cauchy sequence, 273

in uniform spaces, 284
Cauchy’s criterion of convergence, 273
causality, Einstein-Weyl, 3, 23
CCR, 128, 129

Weyl form, 130
cellular operator, 164
character, of commutative groups, 213
chart, 355
Chevalley, C, 353n
choice, axiom of, 248
class, of sets, 249
closure (topological), 259
coarse-graining, 170
cocycle, (G, X, H), 212
codomain, 240
Cohn, P, 249

collapse postulate, 140
collection, of sets, 249
commutation relations, canonical, 324
commutative diagram, 268, 352n
commutator product

of derivations, 360
of vector fields, 361

compact, 270
locally, 272

compactification, one-point, 272
complete metric, 277
complete metric space, 273, 277
complete metrizability, 277
complete uniformizability, 286
complete vector field, 362
completely additive set function, 302n
completeness

of C[a, b], 291
of real numbers, 253
topological, 277

completion, 277
Dedekind, of Q, 254
metric, 256, 270, 278
order, 69

complexification of a Lie algebra, 366
composition of maps, 242
Compton, A H and Simon, A W, 138n
concatenation, of unoriented segments, 25
condition

l-dimension, 35
l-uniqueness, 35
‘analyticity’, 27
convexity, for D-sets, 35
intersection, 34
openness, 34
order-convexity, 34

cone, 28
backward, 28
double, 33
forward, 28
future, 28
global, in order-complete spaces, 78
negative, 28
past, 28
positive, 28

configuration, rigid, 104
construction

Dedekind’s, 253
GNS, 222
of timelike curves, 83

continuity
of a function, 280
uniform, of a function, 280
of a map of uniform spaces, 283
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continuous spectrum
measurement of

in Sewell’s theory, 204
in von Neumann’s theory, 141–142

continuum, 65
linear, 104

convergence
Cauchy’s criterion, 273
filter, 275
sequential, 274, 285

convex combination of density matrices, 113
convex body in Euclidean space, 34, 113
convexity of D-sets, 35

not same as Euclidean convexity, 36
coordinate functions, 350n
coordinates

cylindrical, on I[a, b], 87
local, 355

correspondence, Born–Einstein, 5
countably additive set function, 302
Courant, R, 315n
cover

of a set, 270
open, 270
overlapping, 57
uniform, 282

cross-section of tangent bundle, 358
C�-algebra, 218
C�-dynamical system, 225
curve

in M , 361
in topological space, 81
integral, of a vector field, 361
Peano, 16
space-filling, 16
timelike

in order-complete spaces, 81
in ordered spaces, 81

cushion problem, 83
cut, Heisenberg, 95, 140

bridge over, 96

D-set, 34–35
Dauben, J W, 2
Davis, E B, 202n
de Morgan’s laws, 239
decimal representation, infinite, 252
Dedekind, R, 104, 253, 254
Dedekind completion, 254
definition

inductive, 245
recursive, 245

derivations of an algebra, 360
derivative, Radon–Nikodym, 314
devil’s staircase, 312

diagonal method, Cantor’s, 252
diagram, commutative, 268
dictionary order, 62
diffeomorphism, 355
difference, set-theoretic, 239
differential of a map, 359
D-interval, 41
Dirac, P A M, 1, 102, 116, 134, 137n
disc, 257
disjoint sets, 238
distribution

cumulative, of random variable, 345
normal, 345
of random variable, 345

distributions
in the sense of Schwartz, 315
marginal, 342

distributive laws, 238
domain of a function, 241
Donaldson, S K, 356n
Dubislav, W, 3
Dyson, F J, 5n, 93n, 96n, 212n

Eden, R J, 94n
ego, abstract or conscious, 145
eigenvalue, 334
eigenvector, 334

approximate, 335
Einstein, A, 2, 101n, 104n, 108, 108n 234
Eisenhart, L P, 22
either-or, 24
Ellis, R S, 190n
embedding, 252n, 262

isometric, 278
Emch, G G, 98n, 189n, 226
Emch, G G and Piron, C, 121
ensemble average, of an operator, 111
entanglement, 6, 143, 159

persistence of, 159
von Neumann’s theorem, 159

entourage, 281
epigram, Wigner’s, 94
equal-time commutation relations, 103
equation

algebraic, 250
height of, 250

von Neumann, 116
equivalence

of up-to-a-factor representations, 124
order, 52
topological, 261
uniform, 284

equivalence classes, 264
of sets, 243
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ETCR, 103
Euclid, 104
Euclidean metric, 269
Euclidean space, 269
event, 341, 345

probability of, 345
events, independent, 341
excitations

Landau, 212
as bundle representations, 215

of zero nonrelativistic mass, 209
unstable, 216

expectation
conditional, 346

of X given Y , 344
conditioned on a σ-subalgebra, 348
conditioned on a random variable, 347
of a random variable, 343, 346

expectation value of
a random variable, 343n
an observable, 111

experiment, imaginary Stern–Gerlach, 175
exponential map, 364
extended real numbers, 301

family, of sets, 249
Fehrs, M and Shimony, A, 201
Feller, W, 341, 345, 347, 348
fibre bundle, 349–351

base map, 352
base space, 349
bundle map, 352
coordinate functions, 350n
cross-section, 351

continuous, 351
local, 351

fibre, 349
fibre over x, 350
glueing condition, 351
group of, 350
local trivializations, 350
principal, 351
projection, 350
section, 351
total space, 349

fibre-preserving map, 353
field

finite, 16
in mathematics, 16

field quantization, canonical, 103
filter, 274

Cauchy, 284
convergent, 275
elementary, 274
neighbourhood, 274

on a set, 274
principal, 274
refinement of, 274

FitzGerald, E, 4
Flato, M and Simon, J, 338
Flato, M, Simon, J, Snellman, H and

Sternheimer, D, 338
form

indefinite quadratic, 269
Minkowski, 19, 269

formula, Boltzmann’s, 170
Fourier coefficients, 319
Fraenkel, A A, 243n, 246, 251
Fraenkel, A A, Bar-Hillel, Y and Levy, A,

1n, 249, 286
Fréchet, M, 255n
Freedman, M H, 356n
Friedman, A, 255n, 294, 300, 302n, 303, 304,

309, 329n, 332n, 335n
Fröhlich, J and Spencer, T, 340
Fröhlich, J, Martinelli, F, Scoppola, E and

Spencer, T, 340
Fuglede, B, 129
function, 240

analytic, 276
Cantor, 312
characteristic, 304, 345
continuous from the left, 297
continuous from the right, 297
delta, 298
domain of, 241
everywhere-continuous

nowhere-differentiable, 353
generalized, 315
indicator, 345
integrable, 305
measurable, 303
multiple-valued, 241n
of lines, 292n
set, 302
simple, 304
single-valuedness of, 240
step, 299

functional, 292n

Gelfand, I M, 315n
generator, of a one-parameter group of

transformations of M , 362
Gibbs, J W, 15
Gleason, A M, 276
Gödel, K, 249
Goenner, H, 141n
Goldsheid, I and Molchanov, S A, 340n
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Goldsheid, I, Molchanov, S A and Pastur, L
A, 340n, 347

Gompf, R, 356n
Goursat, E, 353n
Grad, H, 226n
group

Euclidean, 19
Galilei

extended, 125
two-dimensional, 128

Heisenberg, 129
homogeneous Lorentz, 276
inhomogeneous Galilei, 121–122
inhomogeneous Lorentz, 20
Lie, 276, 362
orthogonal, 213
Poincaré, 20, 276
proper orthogonal, 213
topological, 275

non-Abelian, 281
translation, 276
unimodular, 306
Weyl, 128, 130

group action, effective, 350
group exponent, 124
group extension, 125n

central, 125
Guenin, M, 111

Haag, R, 5n, 93n, 101n, 121, 209n
Haag, R, Hugenholtz, N and Winnink, M,

97n
Haar, A, 275n, 306
Halmos, P R, 312
Hamermesh, M, 127
Hausdorff, F, 238n, 246, 256n, 265
Hausdorff maximal principle, 248
Hegerfeldt, G C, 207
Heisenberg, W, 2, 102, 109, 138n, 140, 164n
Hepp, K, 97n, 173, 191n, 193, 225
Hermite, C, 251n
Hewitt, E and Ross, K A, 228, 275, 306
Hilbert, D, 226, 329n
Hilbert bundle, 210, 352
Hilbert space, 316–317
Hilbert’s fifth problem, 276
Hilton, P, 355
homeomorphism, 261

of boundary segments, 56
of subsegments, 57

homogeneity property
first, 58
second, 59
third, 88

Huang, K, 226n

Hurwicz, A, 306n
hyperspheres, spacelike, 53
hypothesis, continuum, 246

identity
Jacoby, 360
polarization, 294

iff, 238
image, 241

inverse, 241
impossibility theorem of

Brown, 202
Busch and Shimony, 202
Shimony, 202
Stein, 202

inductive definitions, 245
inequality

Schwarz, 317
triangle, 18, 268, 317

for norms, 290
inf, 291n
initial, of P , 28
injective map, 242
inner product, 294
Inönü, E and Wigner, E P, 121, 209
integral

definition of, 305
Riemann–Stieltjes, 295–296

integrand, 296
integrator, 296

with respect to µ, 305
interior (topological), 259
intersection, of sets, 238
interval

D-, 41
closed, in R, 260
half-open, in R, 260
open, 259

in R, 260
intervention

von Neumann’s 1st, 138
von Neumann’s 2nd, 138

invariant, topogical, 262
inverse image, 241
involution, on operator algebras, 218
Isham, C J, 234n
isotony, 223

Jacobson, N, 16, 130
James, I M, 285
Jauch, J M, 171
Joos, E, Zeh, H D, Kiefer, C, Giulini, D,

Kupsch, J and Stamatescu, I-O,
137n

Jordan, P, 102, 324
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Kakutani, S, 271
Kaplansky, I, 363
Kelley, J L, 257, 266, 271, 281, 282, 287
Khalatnikov, I M, 210
Kitchen, J W, 113
Kuiper N H, 352

l-connected, 25
l-polygon, 25

ascending, 27
descending, 27
unbounded, 27

Landau, L D, 112n
Landau, L D and Lifshitz, E M, 112n
Landau, L D and Peierls, R E, 101, 102
Lanford, O and Ruelle, D, 97n, 225
large quantum system, as a whole, 171
large quantum-mechanical system, 96
Last, Y, 340
law

of total expectations, 344
parallelogram, 294

laws
de Morgan’s, 239
distributive, 238

Lawson, H Blaine, 356n
left-translations, of a group, 363
Leibniz, G W, 104
lemma, Urysohn’s, 267
Levi-Civita, T, 353
Lévy-Leblond, J-M, 127, 209n, 214
Li, Y S, Zeng, B, Liu, X S and Long, G L,

144n
Lie algebra, 361

complex, 366
complexification, 366
infinite-dimensional, 366
of a Lie group, 364
of the inhomogeneous Galilei group, 122
of the two-dimensional Galilei group, 128
structure constants, 364

Lie group
n-dimensional, 363
n-parameter, 363
complex, 366
real, 362

light cone, 19
light ray, 23
light-ray segment

closed, 25
open, 25
semi-infinite, 27
unoriented, 25

lightlike, 32
limit point, 259

of a filter, 275
Lindemann, F, 251n
line

in Euclidean geometry, 104
long, 62

linear continuum, 104
local coordinate system, 355
local cross-section, 351
local trivializations, 350
London, F and Bauer, E, 113, 135, 136, 149
London, F, 1
Lorch, E R, 330n, 335n, 339
Lorenz, E N, 6n, 107
Lubkin, E, 356n

Möbius strip, 349
MacLane, S and Moerdijk, I, 234
Mackey, G W, 111n, 131, 212, 306
malfunctioning of the apparatus, 200
manifold

complex, 366
differentiable, 355

with boundary, 356
differential, 355
Lorentz, 21
Riemannian, 21
smooth, 355
topological, 354

mantle operator, 71
map, 240

bijective, 15, 242
continuous, 261
differentiable

of manifolds, 359
differential of, 359
exponential, 364
fibre-preserving, 353
injective, 242
one-to-one, 242
one-to-one onto, 242
smooth

of manifolds, 359
surjective, 242

maps
standard, 53–55
transition, 355

Marsden, J, 241n
Martin, G E, 104
matrix

density, 112–113
spectral decomposition, 113
time-independence of eigenvalues, 116

statistical, 112–113
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Matsushima, Y, 356, 364n, 366
Mayer, M M, 356n
mean

conditional, 344
of a random variable, 343
of an observable, 111

measurable sets, 301
measure, 302

σ-finite, 302
absolutely continuous, 310, 311
Borel, 302
finite, 302
Lebesgue, on R, 307
Lebesgue, on R

n, 306
on R, 307
projection-valued, 333
pure point, 311
singular continuous, 312

measure space, 302
measure zero, 302
measurement

approximate, 142
Araki–Yanase, 200, 201

conceptions of
Bohr–Heisenberg, 202
von Neumann–Wigner, 202

macroscopic, characterization of, 169–170
of an observable, 118

measurement problem, quantum, 143
measurement theory, goal of, 117
measures

mutually singular, 310
noninvariant, on R, 310–312

metric, 268
Euclidean, 269

on R
n, 19

Riemannian, 20
metric space, complete, 255, 273
metrizability

complete, of a topological space, 277
of a uniform space, 283

metrization theorem, Urysohn’s, 269
Michel, L, 125n
Milnor, J W, 355
minimum uncertainty product state, 167
Minkowski form, 269
Montgomery, D and Zippin, L, 276, 363n
Morinaga, M, Yasuda, M, Kishimoto, T,

Shimizu, F, Fujita, J and Matsui, S,
230n

Mott, N F, 340n
Munkres, J R, 62, 239, 243, 244n, 255, 257,

261, 263, 266, 267, 270, 271
Murray, F J and von Neumann, J, 97

N, nonnegative integers, 17
N, natural numbers, 17
Namiki, M, Pascazio, S and Nakazato, H,

137n
Narasimhan, R, 366n
neighbourhood of a point

in a topological space, 258
on R, 257

net, 274
Newton, I, 104
no small subgroups, 276
noncompact, 270
norm, 289–290

p-, 293
of a partition, 295
sup, 291

number
Avogadro’s, 237
algebraic, 250
cardinal, 245
ordinal, 245
rational, 244
transcendental, 251

numbers
algebraic, countability of, 250
natural, 243n
real

completeness of, 253
Dedekind’s definition, 254

relatively prime, 244n

observable
definition of, 116
expectation value of, 111
mean of, 111

observables
at infinity, 97, 225
pointer, 97

observational window, 4
Omnès, R, 137n
operator

bounded, 323
adjoint of, 326
spectral radius of, 335

cellular, 164
compact, 327
completely continuous, 327
continuous, 323
continuous at x, 323
differentiation, 325
Hermitian, 326
hypermaximal, 338
linear, 323
mantle, 71
norm of, 323
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normal, 326
nowhere-continuous, 325
of multiplication by x, 325
projection, 326
self-adjoint, 326

unbounded, 338
spectrum of

continuous, 335
discrete, 334
residual, 335

symmetric, 326
unbounded, 338

time-independent, 116
unbounded, 325

operators
unbounded, commuting self-adjoint, 162
von Neumann’s commuting P̂ , Q̂, 168

or, inclusive, 24n
order

dictionary, 62
linear, 259
partial, 259
total, 259

order interval
closed, 33
contractibility of, 88
differentiable structure of, 89
open, 33

order property, of the rationals, 253
order topology, 49, 259
order-complete space, 69

local differentiable structure of, 89
ordinal, transfinite, 246
orthonormal basis, 318
orthonormal set

complete, of vectors in Hilbert space, 317
of vectors in Hilbert space, 317

pair, ordered, 246
paradigm, Wigner’s, 206n
paradox

Banach–Tarski, 300
Russell’s, 249

parallelogram law, 294
path, 273
path connected, 273
Pauli, W, 98n, 102, 108, 140, 226
Peano, G, 15, 243n
Pearson, D B, 340
Peres, A, 174n
Peshkin, M and Tonomura, A, 131
Peter, F and Weyl, H, 306n
phase cell, classical, 170
point

in Euclidean geometry, 104

sample, 341
timelike, 28

polynomial, 250n
Pontrjagin, L, 213, 275
postulate, collapse, 140
power set, 245
power, of a set, 246
precompactness, for uniform spaces, 287
principal bundle, 351
principle

Hausdorff maximal, 248
Huygens, 139

probability
conditional, 176, 343, 346
of an event, 341

probability distribution
joint, of two random variables, 342
of a random variable, 342

probability interpretation
Born’s, of classical mechanics, 107
of quantum mechanics, 117–119, 173

in Sewell’s theory, 188
probability space, 345
problem

cushion, 83
Ulam’s, 286

product
Cartesian

of n sets, 247
of arbitrarily many sets, 248
of two sets, 15, 247

inner, 294, 316
mathematicians’ convention, 316
physicists’ convention, 316

of manifolds, 356
scalar, 294
tensor

of Hilbert spaces, 321–322
of operators, 323n

topological
of arbitrarily many spaces, 263
of two spaces, 263

product bundle, 351
projection operator, 326
projections, 248, 263

onto factors, 247
property

l-convexity, 36
homogeneity

first, 58
second, 59
third, 88

least upper bound, 255
of R, 255
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pseudometric, 269, 282n
psycho-physical parallelism, 145

and Niels Bohr, 145
punctured plane, 65

vector fields on, 365
Pythagoras, 250

Q, rationals, 17
QED, 93
quantum electrodynamics, 93
quantum interference terms, 111
quantum-mechanical system, large, 96

R, real line, 18
Radon–Nikodym derivative, 314
random variable, 341

in P, 345
random variables, independent, 343
range, of a function, 241
Rauch, H and Werner, S A, 230n
ray

backward, 28
forward, 28

real numbers
Dedekind’s definition, 254
extended, 301
uncountability of, 252

Rechenberg, H, 141n
recursive definitions, 245
Rédei, M and Summers, S J, 348
Reed, M and Simon, B, 129, 133, 318, 329n,

335n, 338, 340
Reeh, H, 99n, 129, 131–132, 141n, 232
Reeh, H and Schlieder, S, 209n
refinement, of a filter, 274
relation

equivalence, 263
inverse, 281
on a set, 263
reflexivity of, 263
symmetric, 281
symmetry of, 263
transitivity of, 263

relations, composition of, 281
representation

decimal, 251
of a C�-algebra, 220
projective, of a Lie group, 123–124
ray, of a Lie group, 123–124
up-to-a-factor, 124
weakly measurable, 306

resolution of the identity
bounded, 332
unbounded, 339

resolvent set, 334

Riemann, B, 241n
Riesz, F, 265n, 319
Riesz, F and Sz-Nagy, B, 308, 329n
ring, σ-, 300
Robertson, H P, 164n
Robinson, A, 230n
Roos, C F, 144n
Roos, H, 104n, 109n, 227
Roos, H and Sen, R N, 4n
Rosenfeld, L, 102
Rudin, W, 255, 315, 318
Ruelle, D, 97n
rules of correspondence

density matrices, 148
physical quantities, 147

Russell’s paradox, 249

sample point, 341
sample space, 341
scalar product, 294
Schliemann, J, Cirac, J I, Kuś, M,

Lewenstein, M and Loss, D, 144n
Schmidt orthogonalization process, 319
Schmidt–von Neumann canonical form for

entangled states, 154
Schmüdgen, K, 129, 132
Schroeder, M, 312
Schur, I, 306n
Schwartz, L, 315
Schwarzschild, K, 227
Schweber, S S, 93n, 103
section

Dedekind, 253
of a fibre bundle, 351

Segal, I E, 96
segment

boundary, 56
light ray

semi-infinite, 27
unoriented, 25

segment, of light ray
closed, 25
open, 25

semigroup, 17
Abelian, 17

semimetric, 268, 282
seminorm, 290
Sen, R N, 6n, 7, 99n, 104, 209n,

212, 214
Sen, R N and Sewell, G L, 212, 216, 217
separability, of Hilbert space, 317
separation by

D-sets, 47
forward and backward cones, 46
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sequence
Cauchy, 255, 273
convergence of, 255
ultimately in, 273

set, 237
Borel, 301
boundary of, in a topological space, 259
Cantor, 311
closed, 259
closure of, in a topological space, 259
countable, 244
countably infinite, 244
dense, 265
denumerable, 244
elements of, 237
empty, 238, 258
finite, 243
infinite, 243
interior of, in a topological space, 259
limit point of, in a topological space, 259
measurable, 300, 301
members of, 237
minimal uncountable well-ordered, 62
of measure zero, 302
open, 258
points of, 237
power, 245
uncountable, 244
well-ordered, 61

set function, 302
completely additive, 302n
countably additive, 302

sets
disjoint, 238
equivalent, 243
intersection of, 238
union of, 238

Sewell, G L, 7n, 99n, 174, 189, 224, 227
Sewell’s theory

apparatus index, 181
characterization of apparatus, 180
conditional expectation functional, 183
consistency, 189
dimensionality assumptions, 177
duration of measurement, 180
final state of coupled system, 179
macroscopic states of apparatus, 181
object–apparatus interaction, 178
robustness, 189–190
wave packet collapse, 188

Shimony, A, 95n, 135, 141, 201, 202, 205, 229
σ-algebra, 300

generated by a random variable, 347
σ-compact, 306
Simmons, G F, 219

Simon, B, 340
Simon, J, 338
simple functions, 304

integrable, 305
space

S-, 32
R

n, 270
l-connected, 25
Banach, 290
Borel, 302
compact

σ-, 306
completely regular, 267
Euclidean, 269, 270
Fréchet, 265n
Hausdorff, 266
Hilbert, 272, 316–317
measure, 302
metric

precompact, 280
totally bounded, 279

metrizable, 269
normal, 266
normed, 290
ordered, 45

two-dimensional, 55
probability, 345
regular, 266
sample, 341
tangent, at p, 358
topological, 258

compact, 270
second countable, 264
separable, 265

topologically complete, 277
Tychonoff, 267
uniform, 281

precompact, 287
sequentially complete, 285
totally bounded, 286
uniform completion of, 285

uniformly complete, 284
space of Riemann-integrable functions,

incompleteness of, 292–293
spacelike, 32

hyperspheres, 53
spectra, exotic, 340
spectral radius, of a bounded operator, 335
spectrum, 334

absolutely continuous, 335n
continuous, 335
discrete, 334
residual, 335
singular continuous, 335n

n-sphere, Sn, 272
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squaring the circle, 251n
�-algebra, 218

normed, 218
state

extremal, 113
mixed, 112, 113

components of, 112
on a C�-algebra, 219
pure, density matrix of, 113

state vector
collapse, 138n
reduction, 138

Stebbing, L S, 228n
Steenrod, N, 228n, 349, 358
Stein, H and Shimony, A, 200n
Stone, M H, 128
Streater, R F, 348
Streater, R F and Wightman, A S, 101n,

209n, 315
structure

affine, 20
Borel, 301
conformal, 21
differentiable, 355
Euclidean, 19
Lorentz, 20
Minkowski, 19
projective (Weyl), 21
Riemannian, 20

structure constants, of a Lie algebra, 364
Stueckelberg, E C G, 111
subgroup, closed, 276
subset, 239

bounded, of a metric space, 271
improper, 240
proper, 240

subspace, 262
of Hilbert space, 329
topological, 262

sum, direct, 320
Summers, S J, 129
sup, 291n
superselection rule, 120

Bargmann’s, 127
superset, 240
surjective map, 242
surroundings, 281
symmetry, of a relation, 263
Szilard, L, 145n

tangent
bundle, 358
space, 358
vector, 357

τ -interior, 28

tensor
conformal, 21
Weyl, 21

tensor product of
Hilbert spaces, 321–322
operators, 323n

terms, quantum interference, 111
test-functions, 315
test-particles, 104
theorem

Araki–Yanase, 198
bundle structure, 352

for Lie groups, 352
Gelfand’s, 219
Gelfand–Naimark–Segal, 220
Haag’s, 96n
Hahn decomposition, 312
intermediate value, 83, 273
Jordan decomposition, 313
Lebesgue decomposition, 312
Lebesgue’s

on monotonic functions, 308
on Riemann-integrable functions, 308

Peter–Weyl, 306n
Pythagoras’, 294
Radon–Nikodym, 313
Reeh–Schlieder, 209n
Riesz–Fischer, 309, 319
Shirota’s, 65, 286
spectral

converse of, for compact operators, 331
finite-dimensional, 329
for bounded operators, 336
for compact operators, 329–330
for unbounded operators, 339
Stieltjes integral form, 333

Stone’s, 133
Stone–von Neumann, 128, 130
Tychonoff, 271
von Neumann’s uniqueness, 128, 130
Weierstrass’ approximation, 291
well-ordering, 61, 248
Whitney embedding, 354

Tietze, H, 265n
Tilgner, H, 129
timelike, 32
topological group, 275

NSS, 276
topological space, 258

compact, 270
components of, 272
connected, 272
disconnection of, 272
first countable, 274
path connected, 273
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second countable, 264
separation of, 272
totally disconnected, 272

topologies, comparison of, 260
topology, 257, 258

base for, 258
coarser than, 260
discrete, 258
excluded point, 259
finer than, 260
generated by a base, 258
indiscrete, 258
larger than, 260
metric, 269
on a point-set, 258
on operator algebras

norm or uniform, 218
order, 49, 259
product, 263
quotient, 264
relative, 262
second countable, 264
smaller than, 260
standard, on R, 259
subspace, 262
uniform, 282
usual, on R, 259
weak operator, on a representation, 222

topos theory, 234
total boundedness, 279

for uniform spaces, 286
trace, partial, 114
transformations

affine, 20
conformal, 21
coordinate, 355n
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