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PREFACE

The data explosion

We live in a world that is rich in data, ever increasing in scale. This data comes from many different
sources in science (bioinformatics, astronomy, physics, environmental monitoring) and commerce
(customer databases, financial transactions, engine monitoring, speech recognition, surveillance,
search). Possessing the knowledge as to how to process and extract value from such data is therefore
a key and increasingly important skill. Our society also expects ultimately to be able to engage
with computers in a natural manner so that computers can ‘talk’ to humans, ‘understand’ what they
say and ‘comprehend’ the visual world around them. These are difficult large-scale information
processing tasks and represent grand challenges for computer science and related fields. Similarly,
there is a desire to control increasingly complex systems, possibly containing many interacting parts,
such as in robotics and autonomous navigation. Successfully mastering such systems requires an
understanding of the processes underlying their behaviour. Processing and making sense of such
large amounts of data from complex systems is therefore a pressing modern-day concern and will
likely remain so for the foreseeable future.

Machine learning

Machine learning is the study of data-driven methods capable of mimicking, understanding and
aiding human and biological information processing tasks. In this pursuit, many related issues arise
such as how to compress data, interpret and process it. Often these methods are not necessarily
directed to mimicking directly human processing but rather to enhancing it, such as in predicting
the stock market or retrieving information rapidly. In this probability theory is key since inevitably
our limited data and understanding of the problem forces us to address uncertainty. In the broadest
sense, machine learning and related fields aim to ‘learn something useful’ about the environment
within which the agent operates. Machine learning is also closely allied with artificial intelligence,
with machine learning placing more emphasis on using data to drive and adapt the model.

In the early stages of machine learning and related areas, similar techniques were discovered
in relatively isolated research communities. This book presents a unified treatment via graphical
models, a marriage between graph and probability theory, facilitating the transference of machine
learning concepts between different branches of the mathematical and computational sciences.

Whom this book is for

The book is designed to appeal to students with only a modest mathematical background in under-
graduate calculus and linear algebra. No formal computer science or statistical background is
required to follow the book, although a basic familiarity with probability, calculus and linear algebra



would be useful. The book should appeal to students from a variety of backgrounds, including
computer science, engineering, applied statistics, physics and bioinformatics that wish to gain an
entry to probabilistic approaches in machine learning. In order to engage with students, the book
introduces fundamental concepts in inference using only minimal reference to algebra and calculus.
More mathematical techniques are postponed until as and when required, always with the concept
as primary and the mathematics secondary.

The concepts and algorithms are described with the aid of many worked examples. The exercises
and demonstrations, together with an accompanying MATLAB toolbox, enable the reader to exper-
iment and more deeply understand the material. The ultimate aim of the book is to enable the reader
to construct novel algorithms. The book therefore places an emphasis on skill learning, rather than
being a collection of recipes. This is a key aspect since modern applications are often so specialised
as to require novel methods. The approach taken throughout is to describe the problem as a graphical
model, which is then translated into a mathematical framework, ultimately leading to an algorithmic
implementation in the BRMLTOOLBOX.

The book is primarily aimed at final year undergraduates and graduates without significant
experience in mathematics. On completion, the reader should have a good understanding of the
techniques, practicalities and philosophies of probabilistic aspects of machine learning and be well
equipped to understand more advanced research level material.

The structure of the book

The book begins with the basic concepts of graphical models and inference. For the independent
reader Chapters 1, 2, 3,4, 5,9, 10, 13, 14, 15, 16, 17, 21 and 23 would form a good introduction to
probabilistic reasoning, modelling and machine learning. The material in Chapters 19, 24, 25 and 28
is more advanced, with the remaining material being of more specialised interest. Note that in each
chapter the level of material is of varying difficulty, typically with the more challenging material
placed towards the end of each chapter. As an introduction to the area of probabilistic modelling, a
course can be constructed from the material as indicated in the chart.

The material from Parts I and II has been successfully used for courses on graphical models. I
have also taught an introduction to probabilistic machine learning using material largely from Part
I, as indicated. These two courses can be taught separately and a useful approach would be to teach
first the graphical models course, followed by a separate probabilistic machine learning course.

A short course on approximate inference can be constructed from introductory material in Part I
and the more advanced material in Part V, as indicated. The exact inference methods in Part I can be
covered relatively quickly with the material in Part V considered in more depth.

A timeseries course can be made by using primarily the material in Part IV, possibly combined
with material from Part I for students that are unfamiliar with probabilistic modelling approaches.
Some of this material, particularly in Chapter 25, is more advanced and can be deferred until the
end of the course, or considered for a more advanced course.

The references are generally to works at a level consistent with the book material and which are
in the most part readily available.
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Accompanying code

The BRMLTooLBOX is provided to help readers see how mathematical models translate into actual
MATLAB code. There is a large number of demos that a lecturer may wish to use or adapt to help
illustrate the material. In addition many of the exercises make use of the code, helping the reader gain
confidence in the concepts and their application. Along with complete routines for many machine
learning methods, the philosophy is to provide low-level routines whose composition intuitively
follows the mathematical description of the algorithm. In this way students may easily match the
mathematics with the corresponding algorithmic implementation.

Website

The BRMLTooLBox along with an electronic version of the book is available from
www.cs.ucl.ac.uk/staff/D.Barber/brml

Instructors seeking solutions to the exercises can find information at www.cambridge.org/brml,
along with additional teaching materials.

Other books in this area

The literature on machine learning is vast with much relevant literature also contained in statistics,
engineering and other physical sciences. A small list of more specialised books that may be referred
to for deeper treatments of specific topics is:

e Graphical models
— Graphical Models by S. Lauritzen, Oxford University Press, 1996.
— Bayesian Networks and Decision Graphs by F. Jensen and T. D. Nielsen, Springer-Verlag,
2007.
— Probabilistic Networks and Expert Systems by R. G. Cowell, A. P. Dawid, S. L. Lauritzen
and D. J. Spiegelhalter, Springer-Verlag, 1999.
— Probabilistic Reasoning in Intelligent Systems by J. Pearl, Morgan Kaufmann, 1988.
— Graphical Models in Applied Multivariate Statistics by J. Whittaker, Wiley, 1990.
— Probabilistic Graphical Models: Principles and Techniques by D. Koller and N. Friedman,
MIT Press, 2009.
¢ Machine learning and information processing
— Information Theory, Inference and Learning Algorithms by D. J. C. MacKay, Cambridge
University Press, 2003.
— Pattern Recognition and Machine Learning by C. M. Bishop, Springer-Verlag, 2006.
— An Introduction to Support Vector Machines, N. Cristianini and J. Shawe-Taylor, Cambridge
University Press, 2000.
— Gaussian Processes for Machine Learning by C. E. Rasmussen and C. K. I. Williams, MIT
Press, 2006.
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NOTATION

A calligraphic symbol typically denotes a set of random variables
Domain of a variable

The variable x is in the state x

Probability of event/variable x being in the state true

Probability of event/variable x being in the state false

Probability of x and y

Probability of x and y

Probability of x or y

The probability of x conditioned on y

Variables X" are independent of variables ) conditioned on variables Z
Variables X" are dependent on variables ) conditioned on variables Z

For continuous variables this is shorthand for [ f (x)dx and for
discrete variables means summation over the states of x, ) . f(x)
Indicator : has value 1 if the statement S is true, 0 otherwise

The parents of node x

The children of node x

Neighbours of node x

For a discrete variable x, this denotes the number of states x can take
The average of the function f(x) with respect to the distribution p(x)

Delta function. For discrete a, b, this is the Kronecker delta, é, 5, and for
continuous a, b the Dirac delta function §(a — b)
The dimension of the vector/matrix x

The number of times x is in state s and y in state # simultaneously
The number of times variable x is in state y

Dataset

Data index

Number of dataset training points

Sample Covariance matrix

The logistic sigmoid 1/(1 4 exp(—x))

The (Gaussian) error function

Xas Xatls---sXb

The set of unique neighbouring edges on a graph

The m x m identity matrix
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BRMLTooLBoX

The BRMLTOOLBOX is a lightweight set of routines that enables the reader to experiment with
concepts in graph theory, probability theory and machine learning. The code contains basic routines
for manipulating discrete variable distributions, along with more limited support for continuous
variables. In addition there are many hard-coded standard machine learning algorithms. The website
contains also a complete list of all the teaching demos and related exercise material.

BRMLTOOLKIT

Graph theory

ancestors - Return the ancestors of nodes x in DAG A

ancestralorder - Return the ancestral order or the DAG A (oldest first)
descendents - Return the descendents of nodes x in DAG A

children - Return the children of variable x given adjacency matrix A
edges - Return edge list from adjacency matrix A

elimtri - Return a variable elimination sequence for a triangulated graph
connectedComponents - Find the connected components of an adjacency matrix
istree - Check if graph is singly connected

neigh - Find the neighbours of vertex v on a graph with adjacency matrix G
noselfpath - Return a path excluding self-transitions

parents - Return the parents of variable x given adjacency matrix A
spantree - Find a spanning tree from an edge list

triangulate - Triangulate adjacency matrix A

triangulatePorder - Triangulate adjacency matrix A according to a partial ordering

Potential manipulation

condpot - Return a potential conditioned on another variable

changevar - Change variable names in a potential

dag - Return the adjacency matrix (zeros on diagonal) for a belief network
deltapot - A delta function potential

disptable - Print the table of a potential

divpots - Divide potential pota by potb

drawFG - Draw the factor graph A

drawID - Plot an influence diagram

drawJTree - Plot a junction tree

drawNet - Plot network

evalpot - Evaluate the table of a potential when variables are set

exppot - Exponential of a potential

eyepot - Return a unit potential

grouppot - Form a potential based on grouping variables together

groupstate - Find the state of the group variables corresponding to a given ungrouped state
logpot - Logarithm of the potential

markov - Return a symmetric adjacency matrix of Markov network in pot
maxpot - Maximise a potential over variables

maxsumpot - Maximise or sum a potential over variables

multpots - Multiply potentials into a single potential



numstates - Number of states of the variables in a potential

orderpot - Return potential with variables reordered according to order
orderpotfields - Order the fields of the potential, creating blank entries where necessary
potsample - Draw sample from a single potential

potscontainingonly - Returns those potential numbers that contain only the required variables
potvariables - Returns information about all variables in a set of potentials

setevpot - Sets variables in a potential into evidential states

setpot - Sets potential variables to specified states

setstate - Set a potential’s specified joint state to a specified value

squeezepots - Eliminate redundant potentials (those contained wholly within another)
sumpot - Sum potential pot over variables

sumpotID - Return the summed probability and utility tables from an ID

sumpots - Sum a set of potentials

table - Return the potential table

ungrouppot - Form a potential based on ungrouping variables

uniquepots - Eliminate redundant potentials (those contained wholly within another)
whichpot - Returns potentials that contain a set of variables

Routines also extend the toolbox to deal with Gaussian potentials: multpotsGaussianMoment.m, sumpotGaus-
sianCanonical.m, sumpotGaussianMoment.m, multpotsGaussianCanonical.m See demoSumprodGaussCanon.m, demo-

SumprodGaussCanonLDS.m, demoSumprodGaussMoment .m

Inference

absorb - Update potentials in absorption message passing on a junction tree
absorption - Perform full round of absorption on a junction tree

absorptionID - Perform full round of absorption on an influence diagram
ancestralsample - Ancestral sampling from a belief network

binaryMRFmap - Get the MAP assignment for a binary MRF with positive W
bucketelim - Bucket elimination on a set of potentials

condindep - Conditional independence check using graph of variable interactions
condindepEmp - Compute the empirical log Bayes factor and MI for independence/dependence
condindepPot - Numerical conditional independence measure

condMI - Conditional mutual information I(x,ylz) of a potential
FactorConnectingVariable - Factor nodes connecting to a set of variables

FactorGraph - Returns a factor graph adjacency matrix based on potentials

IDvars - Probability and decision variables from a partial order
jtassignpot - Assign potentials to cliques in a junction tree

jtree - Setup a junction tree based on a set of potentials

jtreeID - Setup a junction tree based on an influence diagram

LoopyBP - Loopy belief propagation using sum-product algorithm

MaxFlow - Ford Fulkerson max-flow min-cut algorithm (breadth first search)
maxNpot - Find the N most probable values and states in a potential
maxNprodFG - N-max-product algorithm on a factor graph (returns the Nmax most probable states)
maxprodFG - Max-product algorithm on a factor graph
MDPemDeterministicPolicy - Solve MDP using EM with deterministic policy

MDPsolve - Solve a Markov decision process

MesstoFact - Returns the message numbers that connect into factor potential
metropolis - Metropolis sample

mostprobablepath - Find the most probable path in a Markov chain
mostprobablepathmult - Find the all source all sink most probable paths in a Markov chain
sumprodFG - Sum-product algorithm on a factor graph represented by A

Specific models

ARlds - Learn AR coefficients using a linear dynamical system
ARtrain - Fit auto-regressive (AR) coefficients of order L to v.
BayesLinReg - Bayesian linear regression training using basis functions phi(x)
BayesLogRegressionRVM - Bayesian logistic regression with the relevance vector machine

CanonVar - Canonical variates (no post rotation of variates)



cca - Canonical correlation analysis

covEnGE - Gamma exponential covariance function

FA - Factor analysis

GMMem - Fit a mixture of Gaussian to the data X using EM

GpPclass - Gaussian process binary classification

GPreg - Gaussian process regression

HebbML - Learn a sequence for a Hopfield network

HMMbackward - HMM backward pass

HMMbackwardSAR - Backward pass (beta method) for the switching Auto-regressive HMM
HMMem - EM algorithm for HMM

HMMforward - HMM forward pass

HMMforwardSAR - Switching auto-regressive HMM with switches updated only every Tskip timesteps
HMMgamma - HMM posterior smoothing using the Rauch-Tung—Striebel correction method
yHMMsmooth - Smoothing for a hidden Markov model (HMM)

HMMsmoothSAR - Switching auto-regressive HMM smoothing

HMMviterbi - Viterbi most likely joint hidden state of HMM

kernel - A kernel evaluated at two points

Kmeans - K-means clustering algorithm

LDSbackward - Full backward pass for a latent linear dynamical system (RTS correction method)
LDSbackwardUpdate - Single backward update for a latent linear dynamical system (RTS smoothing update)
LDSforward - Full forward pass for a latent linear dynamical system (Kalman filter)
LDSforwardUpdate - Single forward update for a latent linear dynamical system (Kalman filter)
LDSsmooth - Linear dynamical system: filtering and smoothing

LDSsubspace - Subspace method for identifying linear dynamical system

LogReg - Learning logistic linear regression using gradient ascent
MIXprodBern - EM training of a mixture of a product of Bernoulli distributions
mixMarkov - EM training for a mixture of Markov models
NaiveBayesDirichletTest - Naive Bayes prediction having used a Dirichlet prior for training
NaiveBayesDirichletTrain - Naive Bayes training using a Dirichlet prior

NaiveBayesTest - Test Naive Bayes Bernoulli distribution after max likelihood training
NaiveBayesTrain - Train Naive Bayes Bernoulli distribution using max likelihood
nearNeigh - Nearest neighbour classification

pca - Principal components analysis

plsa - Probabilistic latent semantic analysis

plsaCond - Conditional PLSA (probabilistic latent semantic analysis)

rbf - Radial basis function output

SARlearn - EM training of a switching AR model

SLDSbackward - Backward pass using a mixture of Gaussians

SLDSforward - Switching latent linear dynamical system Gaussian sum forward pass
SLDSmargGauss - Compute the single Gaussian from a weighted SLDS mixture
softloss - Soft loss function

svdm - Singular value decomposition with missing values

SVMtrain - Train a support vector machine

General

argmax - Performs argmax returning the index and value

assign - Assigns values to variables

betaXbiggerY - p(x>y) for x~Beta(a,b), y~Beta(c,d)

bar3zcolor - Plot a 3D bar plot of the matrix Z

avsigmaGauss - Average of a logistic sigmoid under a Gaussian

cap - Cap x at absolute value ¢

chi2test - Inverse of the chi square cumulative density

count - For a data matrix (each column is a datapoint), return the state counts
condexp - Compute normalised p proportional to exp(logp)

condp - Make a conditional distribution from the matrix

dirrnd - Samples from a Dirichlet distribution

field2cell - Place the field of a structure in a cell

GaussCond - Return the mean and covariance of a conditioned Gaussian



hinton - Plot a Hinton diagram

ind2subv - Subscript vector from linear index

ismember_sorted - True for member of sorted set

lengthcell - Length of each cell entry

logdet - Log determinant of a positive definite matrix computed in a numerically stable manner
logeps - log(x+eps)

logGaussGamma - Unnormalised log of the Gauss-Gamma distribution

logsumexp - Compute log(sum(exp(a).*b)) valid for large a

logzdirichlet - Log normalisation constant of a Dirichlet distribution with parameter u
majority - Return majority values in each column on a matrix

maxarray - Maximise a multi-dimensional array over a set of dimensions
maxNarray - Find the highest values and states of an array over a set of dimensions
mix2mix - Fit a mixture of Gaussians with another mixture of Gaussians
mvrandn - Samples from a multivariate Normal (Gaussian) distribution
mygamrnd - Gamma random variate generator

mynanmean - Mean of values that are not nan

mynansum - Sum of values that are not nan

mynchoosek - Binomial coefficient v choose k

myones - Same as ones(x), but if x is a scalar, interprets as ones([x 1])

myrand - Same as rand(x) but if x is a scalar interprets as rand([x 1])

myzeros - Same as zeros(x) but if x is a scalar interprets as zeros([x 1])

normp - Make a normalised distribution from an array

randgen - Generates discrete random variables given the pdf

replace - Replace instances of a value with another value

sigma - 1./(1+exp(-x))

sigmoid - 1./(1+exp(-beta*x))

sqgdist - Square distance between vectors in x and y

subv2ind - Linear index from subscript vector.

sumlog - sum(log(x)) with a cutoff at 10e-200

Miscellaneous

compat - Compatibility of object F being in position h for image v on grid Gx,Gy
logp - The logarithm of a specific non-Gaussian distribution

placeobject - Place the object F at position h in grid Gx,Gy

plotCov - Return points for plotting an ellipse of a covariance

pointsCov - Unit variance contours of a 2D Gaussian with mean m and covariance S
setup - Run me at initialisation — checks for bugs in matlab and initialises path

validgridposition - Returns 1 if point is on a defined grid



Part |

Inference in probabilistic models

Probabilistic models explicitly take into account uncertainty and deal with our imper-
fect knowledge of the world. Such models are of fundamental significance in Machine
Learning since our understanding of the world will always be limited by our obser-
vations and understanding. We will focus initially on using probabilistic models as a
kind of expert system.

In Part I, we assume that the model is fully specified. That is, given a model of the
environment, how can we use it to answer questions of interest? We will relate the
complexity of inferring quantities of interest to the structure of the graph describing
the model. In addition, we will describe operations in terms of manipulations on
the corresponding graphs. As we will see, provided the graphs are simple tree-like
structures, most quantities of interest can be computed efficiently.

Part | deals with manipulating mainly discrete variable distributions and forms the
background to all the later material in the book.
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1.1

Probabilistic reasoning

We have intuition about how uncertainty works in simple cases. To reach sensible con-
clusions in complicated situations, however — where there may be many (possibly) related
events and many possible outcomes — we need a formal ‘calculus’ that extends our intuitive
notions. The concepts, mathematical language and rules of probability give us the formal
framework we need. In this chapter we review basic concepts in probability — in particu-
lar, conditional probability and Bayes’ rule, the workhorses of machine learning. Another
strength of the language of probability is that it structures problems in a form consistent
for computer implementation. We also introduce basic features of the BRMLTooLsox that
support manipulating probability distributions.

Probability refresher

Variables, states and notational shortcuts

Variables will be denoted using either upper case X or lower case x and a set of variables will
typically be denoted by a calligraphic symbol, for example V = {a, B, c}.

The domain of a variable x is written dom (x), and denotes the states x can take. States will
typically be represented using sans-serif font. For example, for a coin ¢, dom (¢) = {heads, tails} and
p(c = heads) represents the probability that variable c¢ is in state heads. The meaning of p(state)
will often be clear, without specific reference to a variable. For example, if we are discussing an
experiment about a coin ¢, the meaning of p(heads) is clear from the context, being shorthand for
p(c = heads). When summing over a variable ) f(x), the interpretation is that all states of x are
included, i.e. > . f(x) = 3 i jom(r) f(x =s). Given a variable, x, its domain dom (x) and a full
specification of the probability values for each of the variable states, p(x), we have a distribution for
x. Sometimes we will not fully specify the distribution, only certain properties, such as for variables
x,y, p(x,y) = p(x)p(y) for some unspecified p(x) and p(y). When clarity on this is required we
will say distributions with structure p(x)p(y), or a distribution class p(x)p(y).

For our purposes, events are expressions about random variables, such as Two heads in
six coin tosses. Two events are mutually exclusive if they cannot both be true. For example the
events The coin is heads and The coin is tails are mutually exclusive. One can think of defining
a new variable named by the event so, for example, p(The coin is tails) can be interpreted as
p(The coin is tails = true). We use the shorthand p(x = tr) for the probability of event/variable x
being in the state true and p(x = fa) for the probability of variable x being in the state false.

Definition 1.1  Rules of probability for discrete variables The probability p(x = x) of variable x
being in state x is represented by a value between 0 and 1. p(x = x) = 1 means that we are certain x



is in state x. Conversely, p(x = x) = 0 means that we are certain x is not in state x. Values between
0 and 1 represent the degree of certainty of state occupancy.
The summation of the probability over all the states is 1:

Y pla=x=1 (1.1.1)

xedom(x)

This is called the normalisation condition. We will usually more conveniently write )~ p(x) = 1.
Two variables x and y can interact through

p(x =aory=b)=p(x=a)+p(y=b)— p(x =aand y =b). (1.1.2)
Or, more generally, we can write
p(xory)=p(x)+ p(y) — p(x and y). (1.1.3)

We will use the shorthand p(x, y) for p(x and y). Note that p(y,x) = p(x, y) and p(x or y) =
p(y or x).

Definition 1.2  Set notation An alternative notation in terms of set theory is to write

p(xory)=p(xUy), p(x,y)=pxny). (1.1.4)

Definition 1.3 Marginals Given a joint distribution p(x, y) the distribution of a single variable is
given by

p(x) =) plx,y). (1.1.5)

Here p(x) is termed a marginal of the joint probability distribution p(x, y). The process of computing
a marginal from a joint distribution is called marginalisation. More generally, one has

P(X1y ooy Xio 1y X1y e ey X)) = Zp(xl, ey Xn)e (1.1.6)
Xi

Definition 1.4 Conditional probability/ Bayes’ rule The probability of event x conditioned on
knowing event y (or more shortly, the probability of x given y) is defined as

plxly) = 2-Y)
p(y)
If p(y) = O then p(x|y) is not defined. From this definition and p(x, y) = p(y, x) we immediately
arrive at Bayes’ rule
p(ylx)p(x)
p(y)

Since Bayes’ rule trivially follows from the definition of conditional probability, we will sometimes
be loose in our language and use the terms Bayes’ rule and conditional probability as synonymous.

. (1.1.7)

p(xly) = (1.1.8)

As we shall see throughout this book, Bayes’ rule plays a central role in probabilistic reasoning
since it helps us ‘invert” probabilistic relationships, translating between p(y|x) and p(x|y).

Definition 1.5 Probability density functions For a continuous variable x, the probability density
f(x) is defined such that

F(x) =0, /j: Ff(x)dx =1, (1.1.9)



and the probability that x falls in an interval [a, b] is given by

b
pla <x <b) =/ f(x)dx. (1.1.10)

As shorthand we will sometimes write fx f(x), particularly when we want an expression to be valid
for either continuous or discrete variables. The multivariate case is analogous with integration over
all real space, and the probability that x belongs to a region of the space defined accordingly. Unlike
probabilities, probability densities can take positive values greater than 1.

Formally speaking, for a continuous variable, one should not speak of the probability that x = 0.2
since the probability of a single value is always zero. However, we shall often write p(x) for
continuous variables, thus not distinguishing between probabilities and probability density function
values. Whilst this may appear strange, the nervous reader may simply replace our p(x) notation
for [ o f(x)dx, where A is a small region centred on x. This is well defined in a probabilistic
sense and, in the limit A being very small, this would give approximately A f (x). If we consistently
use the same A for all occurrences of pdfs, then we will simply have a common prefactor A in all
expressions. Our strategy is to simply ignore these values (since in the end only relative probabilities
will be relevant) and write p(x ). In this way, all the standard rules of probability carry over, including
Bayes’ rule.

Remark 1.1 (Subjective probability) Probability is a contentious topic and we do not wish to
get bogged down by the debate here, apart from pointing out that it is not necessarily the rules
of probability that are contentious, rather what interpretation we should place on them. In some
cases potential repetitions of an experiment can be envisaged so that the ‘long run’ (or frequentist)
definition of probability in which probabilities are defined with respect to a potentially infinite
repetition of experiments makes sense. For example, in coin tossing, the probability of heads might
be interpreted as ‘If I were to repeat the experiment of flipping a coin (at “random”), the limit of
the number of heads that occurred over the number of tosses is defined as the probability of a head
occurring.’

Here’s a problem that is typical of the kind of scenario one might face in a machine learning situation.
A film enthusiast joins a new online film service. Based on expressing a few films a user likes and
dislikes, the online company tries to estimate the probability that the user will like each of the 10 000
films in their database. If we were to define probability as a limiting case of infinite repetitions of the
same experiment, this wouldn’t make much sense in this case since we can’t repeat the experiment.
However, if we assume that the user behaves in a manner consistent with other users, we should be
able to exploit the large amount of data from other users’ ratings to make a reasonable ‘guess’ as to
what this consumer likes. This degree of belief or Bayesian subjective interpretation of probability
sidesteps non-repeatability issues —it’s just a framework for manipulating real values consistent with
our intuition about probability [158].

Interpreting conditional probability

Conditional probability matches our intuitive understanding of uncertainty. For example, imagine
a circular dart board, split into 20 equal sections, labelled from 1 to 20. Randy, a dart thrower,
hits any one of the 20 sections uniformly at random. Hence the probability that a dart thrown by
Randy occurs in any one of the 20 regions is p(region i) = 1/20. A friend of Randy tells him that
he hasn’t hit the 20 region. What is the probability that Randy has hit the 5 region? Conditioned on
this information, only regions 1 to 19 remain possible and, since there is no preference for Randy to
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inaccessible, and the original probability is subsequently distributed over the remaining accessible
states. From the rules of probability:

p(region S|not region 20) — p(region 5, no.t region 20) _ p(regi?n 5) _ 1/20 _ 1

p(not region 20) p(not region 20)  19/20 19
giving the intuitive result. An important point to clarify is that p(A = a|B = b) should not be
interpreted as ‘Given the event B = b has occurred, p(A = a| B = b) is the probability of the event
A = a occurring’. In most contexts, no such explicit temporal causality is implied' and the correct
interpretation should be ‘p(A = a| B = b) is the probability of A being in state a under the constraint
that B is in state b’.

The relation between the conditional p(A = a|B = b) and the joint p(A = a, B =b) is just a
normalisation constant since p(A = a, B = b) is not a distribution in A —in other words, ), p(A =
a, B =b) # 1. To make it a distribution we need to divide: p(A =a, B =b)/) ,p(A=a, B=b)
which, when summed over a does sum to 1. Indeed, this is just the definition of p(A = a|B = b).

Definition 1.6 Independence Variables x and y are independent if knowing the state (or value in the
continuous case) of one variable gives no extra information about the other variable. Mathematically,
this is expressed by

p(x,y) = px)p(y). (1.1.11)

Provided that p(x) # 0 and p(y) # 0 independence of x and y is equivalent to

p(xly) = p(x) & p(ylx) = p(y). (1.1.12)
If p(x|y) = p(x) for all states of x and y, then the variables x and y are said to be independent. If
p(x,y) =kf(x)g(y) (1.1.13)

for some constant k, and positive functions f(-) and g(-) then x and y are independent and we write
x Al y.

Example 1.1 Independence

Let x denote the day of the week in which females are born, and y denote the day in which males
are born, with dom (x) = dom (y) = {1, ..., 7}. It is reasonable to expect that x is independent
of y. We randomly select a woman from the phone book, Alice, and find out that she was born
on a Tuesday. We also select a male at random, Bob. Before phoning Bob and asking him, what
does knowing Alice’s birthday add to which day we think Bob is born on? Under the independence
assumption, the answer is nothing. Note that this doesn’t mean that the distribution of Bob’s birthday
is necessarily uniform — it just means that knowing when Alice was born doesn’t provide any extra
information than we already knew about Bob’s birthday, p(y|x) = p(y). Indeed, the distribution of
birthdays p(y) and p(x) are non-uniform (statistically fewer babies are born on weekends), though
there is nothing to suggest that x are y are dependent.

Deterministic dependencies

Sometimes the concept of independence is perhaps a little strange. Consider the following: variables
x and y are both binary (their domains consist of two states). We define the distribution such that x

' We will discuss issues related to causality further in Section 3.4.



and y are always both in a certain joint state:
px=ay=1)=1, px=a,y=2)=0, px=b,y=2)=0, px=b,y=1)=0.

Are x and y dependent? The reader may show that p(x =a) =1, p(x =b) =0and p(y =1) =1,
p(y =2) =0. Hence p(x)p(y) = p(x,y) for all states of x and y, and x and y are therefore
independent. This may seem strange — we know for sure the relation between x and y, namely that
they are always in the same joint state, yet they are independent. Since the distribution is trivially
concentrated in a single joint state, knowing the state of x tells you nothing that you didn’t anyway
know about the state of y, and vice versa. This potential confusion comes from using the term
‘independent’ which may suggest that there is no relation between objects discussed. The best way
to think about statistical independence is to ask whether or not knowing the state of variable y tells
you something more than you knew before about variable x, where ‘knew before’ means working
with the joint distribution of p(x, y) to figure out what we can know about x, namely p(x).

Definition 1.7 Conditional independence

XUV Z (1.1.14)

denotes that the two sets of variables X’ and ) are independent of each other provided we know the
state of the set of variables Z. For conditional independence, X and ) must be independent given
all states of Z. Formally, this means that

p(X,VIZ) = p(X|Z2)p(VI2) (1.1.15)

for all states of X', ), Z. In case the conditioning set is empty we may also write X' 1l ) for
X 1L Y|, in which case X is (unconditionally) independent of ).
If X and Y are not conditionally independent, they are conditionally dependent. This is written

XTY Z (1.1.16)
Similarly X V| @ can be written as XTI ).

Intuitively, if x is conditionally independent of y given z, this means that, given z, y contains
no additional information about x. Similarly, given z, knowing x does not tell me anything more
about y. Notethat X L Y| Z = X' 1LY | ZforX’ C X and )’ C ).

Remark 1.2 (Independence implications) It’s tempting to think that if @ is independent of b and
b is independent of ¢ then a must be independent of c:

{allb,bllc} =>allc. (1.1.17)
However, this does not follow. Consider for example a distribution of the form

pla,b,c) = p(b)p(a,c). (1.1.18)
From this

Zpabc—p Zpac (1.1.19)

Hence p(a, b) is a function of b multiplied by a function of a so that a and b are independent.
Similarly, one can show that b and ¢ are independent. However, a is not necessarily independent
of ¢ since the distribution p(a, ¢) can be set arbitrarily.



Similarly, it’s tempting to think that if a and b are dependent, and b and ¢ are dependent, then a
and ¢ must be dependent:

{aTlb, bTTc} = aTlc. (1.1.20)

However, this also does not follow. We give an explicit numerical example in Exercise 3.17.

Finally, note that conditional independence x 1L y|z does not imply marginal independence x 1L y.

Probability tables

Based on the populations 60 776 238, 5 116 900 and 2 980 700 of England (E), Scotland (S) and Wales
(W), the a priori probability that a randomly selected person from the combined three countries would
live in England, Scotland or Wales, is approximately 0.88, 0.08 and 0.04 respectively. We can write
this as a vector (or probability table):

p(Cnt =E) 0.88
p(Cnt=5) | = 0.08 (1.1.21)
p(Cnt = W) 0.04

whose component values sum to 1. The ordering of the components in this vector is arbitrary, as
long as it is consistently applied.

For the sake of simplicity, we assume that only three Mother Tongue languages exist: English
(Eng), Scottish (Scot) and Welsh (Wel), with conditional probabilities given the country of residence,
England (E), Scotland (S) and Wales (W). We write a (fictitious) conditional probability table

p(MT = Eng|Cnt = E) =0.95 p(MT =Eng|Cnt =5) =0.7 p(MT = Eng|Cnt = W) = 0.6

p(MT = Scot|Cnt = E) = 0.04 p(MT = Scot|Cnt =S) = 0.3 p(MT = Scot|Cnt = W) = 0.0

p(MT = Wel|Cnt = E) = 0.01 p(MT =Wel|Cnt =5) =0.0 p(MT = Wel|Cnt =W) = 0.4.
(1.1.22)

From this we can form a joint distribution p(Cnt, MT) = p(MT|Cnt) p(Cnt). This could be written
as a 3 x 3 matrix with columns indexed by country and rows indexed by Mother Tongue:

0.95 x 0.88 0.7 x0.08 0.6 x0.04 0.836 0.056 0.024
0.04 x0.88 0.3 x0.08 0.0x0.04 | =10.0352 0.024 0 . (1.1.23)
0.01 x 0.88 0.0 x0.08 0.4 x0.04 0.0088 0 0.016

The joint distribution contains all the information about the model of this environment. By summing
the columns of this table, we have the marginal p(Cnt). Summing the rows gives the marginal p(MT).
Similarly, one could easily infer p(Cnt|MT) x p(MT|Cnt)p(Cnt) from this joint distribution by
dividing an entry of Equation (1.1.23) by its row sum.

For joint distributions over a larger number of variables, x;,i = 1,..., D, with each variable
x; taking K; states, the table describing the joint distribution is an array with ]_[i , K; entries.
Explicitly storing tables therefore requires space exponential in the number of variables, which
rapidly becomes impractical for a large number of variables. We discuss how to deal with this issue
in Chapter 3 and Chapter 4.

A probability distribution assigns a value to each of the joint states of the variables. For this reason,
p(T,J, R, S) is considered equivalent to p(J, S, R, T) (or any such reordering of the variables),
since in each case the joint setting of the variables is simply a different index to the same probability.
This situation is more clear in the set-theoretic notation p(J N SN T N R). We abbreviate this
set-theoretic notation by using the commas — however, one should be careful not to confuse the use
of this indexing type notation with functions f (x, y) which are in general dependent on the variable

e dAaee W hilat +ha vrvvmr R lAac f~a thhAa 1Aa€t AL lhn ~Avm At nemton e Mavw vvnarr A xvr9t 1t 291 vtvxr e dase aev A A1l
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those to the right of the conditioning bar may be written in any order, moving variables across the
bar is not generally equivalent, so that p(xy|x;) # p(xa]x1).

Probabilistic reasoning

The central paradigm of probabilistic reasoning is to identify all relevant variables xj, ..., xy in the
environment, and make a probabilistic model p(xy, ..., xy) of their interaction. Reasoning (infer-
ence) is then performed by introducing evidence that sets variables in known states, and subsequently
computing probabilities of interest, conditioned on this evidence. The rules of probability, combined
with Bayes’ rule make for a complete reasoning system, one which includes traditional deductive
logic as a special case [158]. In the examples below, the number of variables in the environment is
very small. In Chapter 3 we will discuss reasoning in networks containing many variables, for which
the graphical notations of Chapter 2 will play a central role.

Example 1.2 Hamburgers

Consider the following fictitious scientific information: Doctors find that people with Kreuzfeld-
Jacob disease (KJ) almost invariably ate hamburgers, thus p(Hamburger Eater|KJ ) = 0.9. The
probability of an individual having K/ is currently rather low, about one in 100 000.

1. Assuming eating lots of hamburgers is rather widespread, say p(Hamburger Eater) = 0.5, what
is the probability that a hamburger eater will have Kreuzfeld-Jacob disease?
This may be computed as

p(Hamburger Eater, KJ)  p(Hamburger Eater|KJ)p(KJ)
p(KJ |Hamburger Eater) = =
p(Hamburger Eater) p(Hamburger Eater)

(1.2.1)
D o 1
= 10100000 — 3.8 107" (1.2.2)
2
2. If the fraction of people eating hamburgers was rather small, p(Hamburger Eater) = 0.001, what
is the probability that a regular hamburger eater will have Kreuzfeld-Jacob disease? Repeating
the above calculation, this is given by
9 1
10 X

1000
This is much higher than in scenario (1) since here we can be more sure that eating hamburgers
is related to the illness.

Example 1.3 Inspector Clouseau

Inspector Clouseau arrives at the scene of a crime. The victim lies dead in the room alongside the
possible murder weapon, a knife. The Butler (B) and Maid (M) are the inspector’s main suspects
and the inspector has a prior belief of 0.6 that the Butler is the murderer, and a prior belief of 0.2 that
the Maid is the murderer. These beliefs are independent in the sense that p(B, M) = p(B)p(M).
(It is possible that both the Butler and the Maid murdered the victim or neither.) The inspector’s



prior criminal knowledge can be formulated mathematically as follows:

dom (B) = dom (M) = {murderer, not murderer}, dom (K ) = {knife used, knife notused}  (1.2.4)

p(B = murderer) = 0.6, p(M = murderer) = 0.2 (1.2.5)
p(knife used| B = not murderer, M = not murderer) = 0.3

p(knife used| B = not murderer, M = murderer) =0.2 (1.2.6)
p(knife used| B = murderer, M = not murderer) = 0.6 o
p(knife used| B = murderer, M = murderer) =0.1.

In addition p(K, B, M) = p(K|B, M) p(B)p(M). Assuming that the knife is the murder weapon,
what is the probability that the Butler is the murderer? (Remember that it might be that neither is
the murderer.) Using b for the two states of B and m for the two states of M,

p(B,m,K) > p(K|B,m)p(B,m)

PBIK) = D p(B.mIK) = ) | = o= = S Klb. m)p(B m)
B S, plKIBm)p(o)
>y p(b) 3, p(K|b,m)p(m)

where we used the fact that in our model p(B, M) = p(B)p(M). Plugging in the values we have
(see also demoClouseau.m)

(1.2.7)

6 2 1 8 6
10 ie X 16+ 16 X 10 300
p(B = murderer|knife used) = ————— 108(106 b 1(;) v = 5 ~0.73
&l mrmxarn (G e s w42
(1.2.8)

Hence knowing that the knife was the murder weapon strengthens our belief that the butler did it.

Remark 1.3 The role of p(knife used) in the Inspector Clouseau example can cause some confusion.
In the above,

p(knife used) Z p(b Z p(knife used|b, m) p(m) (1.2.9)

m

is computed to be 0.456. But surely, p(knife used) = 1, since this is given in the question! Note that
the quantity p(knife used) relates to the prior probability the model assigns to the knife being used
(in the absence of any other information). If we know that the knife is used, then the posterior

knife used, knife used knife used
p (knife used|knife used) = p(kni eusc? , knife used) = p( nfeuse ) =1 (1.2.10)
p (knife used) p (knife used)

which, naturally, must be the case.

Example 1.4 Who’s in the bathroom?

Consider a household of three people, Alice, Bob and Cecil. Cecil wants to go to the bathroom but
finds it occupied. He then goes to Alice’s room and sees she is there. Since Cecil knows that only
either Alice or Bob can be in the bathroom, from this he infers that Bob must be in the bathroom.



To arrive at the same conclusion in a mathematical framework, we define the following events

A = Alice is in her bedroom, B = Bob is in his bedroom, O = Bathroom occupied.
(1.2.11)

We can encode the information that if either Alice or Bob are not in their bedrooms, then they must
be in the bathroom (they might both be in the bathroom) as

p(O=t|A=fa, B) =1, p(O =t|A, B=1fa) = 1. (1.2.12)

The first term expresses that the bathroom is occupied if Alice is not in her bedroom, wherever Bob
is. Similarly, the second term expresses bathroom occupancy as long as Bob is not in his bedroom.
Then
p(B =fa, 0 =tr, A =tr)

p(O =tr, A =tr)
p(O =tr|A =tr, B="fa)p(A =tr, B =fa)

= 1.2.13
p(O =tr, A =1tr) ( )

p(B=falO0 =tr,A=tr) =

where

p(O =tr, A=1tr)=p(O =tr]A =tr, B="fa)p(A =tr, B ="fa)
+p(O=tlA=tr,B=tr)p(A=1tr,B=1tr). (1.2.14)

Using the fact p(O = tr|A = tr, B =fa) = 1 and p(O = tr|A = tr, B = tr) = 0, which encodes that
if Alice is in her room and Bob is not, the bathroom must be occupied, and similarly, if both Alice
and Bob are in their rooms, the bathroom cannot be occupied,

p(A=t,B=fa)
p(A=tr, B="fa)

p(B=fl0 =tr, A=1t) = (1.2.15)

This example is interesting since we are not required to make a full probabilistic model in this case
thanks to the limiting nature of the probabilities (we don’t need to specify p(A, B)). The situation is
common in limiting situations of probabilities being either O or 1, corresponding to traditional logic
systems.

Example 1.5 Aristotle: Resolution

We can represent the statement ‘All apples are fruit’ by p(F = tr|A = tr) = 1. Similarly, ‘All fruits
grow on trees’ may be represented by p(7 = tr|F = tr) = 1. Additionally we assume that whether
or not something grows on a tree depends only on whether or not it is a fruit, p(T'|A, F) = P(T|F).
From this we can compute

p(T=tA=tr)=) p(T =t|F,A=tr)p(FIA=t)= Zp =tr|F)p(F|A =tr)

F
= p(T =tr|F =fa) p(F =fa|A = tr) + p(T = tr|F = tr) p( =trlA=1tr) = L. (1.2.16)

=0 =l =

In other words we have deduced that ‘All apples grow on trees’ is a true statement, based on the
information presented. (This kind of reasoning is called resolution and is a form of transitivity: from
the statements A = F and F = T we caninfer A = T.)



Example 1.6 Aristotle: Inverse Modus Ponens

According to Logic, from the statement: ‘If A is true then B is true’, one may deduce that ‘If B
is false then A is false’. To see how this fits in with a probabilistic reasoning system we can first
express the statement: ‘If A is true then B is true’ as p(B = tr|A = tr) = 1. Then we may infer

p(A =fa|B =fa) =1— p(A =tr|B =fa)
p(B =falA =tr)p(A =1tr)

=1—
p(B =fal]A =tr)p(A =tr) + p(B =fa|]A =fa)p(A = fa)

= I,

(1.2.17)

This follows since p(B = fa]A =tr) = 1 — p(B = trflA = tr) = 1 — 1 = 0, annihilating the second
term.

Both the above examples are intuitive expressions of deductive logic. The standard rules of
Aristotelian logic are therefore seen to be limiting cases of probabilistic reasoning.

Example 1.7 Soft XOR gate

A standard XOR logic gate is given by the table on the right. If we observe A| B | AxorB
that the output of the XOR gate is 0, what can we say about A and B? 0] 0 0
In this case, either A and B were both 0, or A and B were both 1. This 01| 1 1
means we don’t know which state A was in — it could equally likely have 110 1
been 1 or 0. 1 1 0
A | B | p(C=1|A,B)
Consider a ‘soft’ version of the XOR gate given on the right, with 0| o0 0.1
additionally A Il B and p(A =1) =0.65, p(B =1) =0.77. 0] 1 0.99
What is p(A = 1|C = 0)? 1]0 0.8
1|1 0.25

p(A=1,C=0)=) p(A=1,B,C=0)=) p(C=0{A=1,B)p(A=1)p(B)
B B
=p(A=1)(p(C=0lA=1,B=0)p(B=0)
+p(C=0lA=1,B=1)p(B=1))
= 0.65 x (0.2 x 0.23 4+ 0.75 x 0.77) = 0.405275. (12.18)

p(A=0,C=0)=) p(A=0,B.C=0)=) p(C=0]A=0,B)p(A=0)p(B)
B B
=p(A=0)(p(C=0/A=0,B=0)p(B=0)
+p(C=0A=0,B=1)p(B=1))
=0.35 x (0.9 x 0.23 4+ 0.01 x 0.77) = 0.075 145.

Then
p(A=1,C=0) B 0.405 275
p(A=1,C=0)+p(A=0,C=0) 0.405275+ 0.075 145

p(A=1|C=0)= =0.8436.

(1.2.19)



Example 1.8 Larry

Larry is typically late for school. If Larry is late, we denote this with L = late, otherwise, L = not late.
When his mother asks whether or not he was late for school he never admits to being late. The response
Larry gives R is represented as follows

p(Ry, = notlate| L = not late) = 1, p(Ry = late|L = late) = 0. (1.2.20)
The remaining two values are determined by normalisation and are
p(R, = late|L = not late) = 0, p(Ry = notlate|L = late) = 1. (1.2.21)

Given that R; = not late, what is the probability that Larry was late, i.e. p(L = late| R}, = not late)?
Using Bayes’ we have
p(L = late, R; = not late)
p(R, = not late)
. p(L = late, R, = not late)
~ p(L = late, R, = notlate) + p(L = not late, R;, = not late) "

p(L = late| R, = not late) =

(1.2.22)

In the above

p(L = late, R, = notlate) = p(Ry = not late|L = late) p(L = late) (1.2.23)

=1

and

p(L = notlate, R, = not late) = p(R, = not late| L = not late) p(L = not late). (1.2.24)

=1

Hence

p(L = late| R, = not late) = p(L = late) = p(L = late). (1.2.25)

p(L = late) + p(L = not late)

Where we used normalisation in the last step, p(L = late) + p(L = notlate) = 1. This result is
intuitive — Larry’s mother knows that he never admits to being late, so her belief about whether or
not he really was late is unchanged, regardless of what Larry actually says.

Example 1.9 Larry and Sue

Continuing the example above, Larry’s sister Sue always tells the truth to her mother as to whether
or not Larry was late for school.

p(Rs = notlate|L = notlate) =1,  p(Rs = late|L = late) = 1. (1.2.26)
The remaining two values are determined by normalisation and are
p(Rs = late|L = notlate) =0,  p(Rs = not late|L = late) = 0. (1.2.27)

We also assume p(Rs, R;|L) = p(Rs|L)p(R.|L). We can then write

p(Re. Rs. L) = p(RLIL)p(Rs|L)p(L). (1.2.28)
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Given that Rg = late and R; = not late, what is the probability that Larry was late?
Using Bayes’ rule, we have

p(L = late| R, = not late, Ry = late)

1
EP(RS = late|L = late) p(R,, = not late|L = late) p(L = late) (1.2.29)

where the normalisation Z is given by

p(Rs = late|L = late) p(R;, = not late| L = late) p(L = late)
+ p(Rs = late|L = not late) p(R, = not late| L = not late) x p(L = not late).
(1.2.30)
Hence
1 x1x p(L = late)

1 x1x p(L=late)+0 x 1 x p(L = not late) -
(1.2.31)

p(L = late| R, = not late, Ry = late) =

This result is also intuitive — since Larry’s mother knows that Sue always tells the truth, no matter
what Larry says, she knows he was late.

Example 1.10 Luke

Luke has been told he’s lucky and has won a prize in the lottery. There are five prizes available
of value £10, £100, £1000, £10 000, £1 000 000. The prior probabilities of winning these five prizes
are py, p2, P3, P4, Ps, With po being the prior probability of winning no prize. Luke asks eagerly
‘Did I win £1 000000?!’. ‘T’'m afraid not sir’, is the response of the lottery phone operator. ‘Did I
win £10000?!” asks Luke. ‘Again, I'm afraid not sir’. What is the probability that Luke has won
£1000?

Note first that po + p; + p2 + p3 + ps + ps = 1. We denote W = 1 for the first prize of £10,
and W =2, ..., 5 for the remaining prizes and W = 0 for no prize. We need to compute

p(W =3, W £5 W #£4, W % 0)
p(W£5, W #4, W £0)
p(W=3) _ p3
p(W=1lorW=20rW=3) p;+p+ps3
(D)

p(W=3W#£5W=#4 W#£0) =

where the term in the denominator is computed using the fact that the events W are mutually
exclusive (one can only win one prize). This result makes intuitive sense: once we have removed
the impossible states of W, the probability that Luke wins the prize is proportional to the prior
probability of that prize, with the normalisation being simply the total set of possible probability
remaining.

Prior, likelihood and posterior

Much of science deals with problems of the form: tell me something about the variable 6 given that
I have observed data D and have some knowledge of the underlying data generating mechanism.



Our interest is then the quantity

p(DIo)p(6)  p(DIo)p(6)
p(D) [, p(DIO)p(H)

pOID) = (1.3.1)

This shows how from a forward or generative model p(D|6) of the dataset, and coupled with a
prior belief p(0) about which variable values are appropriate, we can infer the posterior distribution
p(0|D) of the variable in light of the observed data. The most probable a posteriori (MAP) setting is
that which maximises the posterior, 8, = arg maxy p(6|D). For a ‘flat prior’, p(#) being a constant,
not changing with 6, the MAP solution is equivalent to the maximum likelihood, namely that 6 that
maximises the likelihood p(D|@) of the model generating the observed data. We will return to a
discussion of summaries of the posterior and parameter learning in Chapter 9.

This use of a generative model sits well with physical models of the world which typically
postulate how to generate observed phenomena, assuming we know the model. For example, one
might postulate how to generate a timeseries of displacements for a swinging pendulum but with
unknown mass, length and damping constant. Using this generative model, and given only the
displacements, we could infer the unknown physical properties of the pendulum.

Example 1.11 Pendulum

As a prelude to scientific inference and the use of continuous variables, we consider an idealised
pendulum for which x; is the angular displacement of the pendulum at time #. Assuming that the
measurements are independent, given the knowledge of the parameter of the problem, 6, we have
that the likelihood of a sequence of observations xi, ..., x7 is given by

T
p(xi.....xr10) = [ [ p(x16). (13.2)

If the model is correct and our measurement of the displacements x is perfect, then the physical
model is

x; = sin(01) (1.3.3)

where 6 represents the unknown physical constants of the pendulum (+/g/L, where g is the gravi-
tational attraction and L the length of the pendulum). If, however, we assume that we have a rather
poor instrument to measure the displacements, with a known variance of o (see Chapter 8), then

X, = sin(01) + ¢ (1.3.4)

where ¢, is zero mean Gaussian noise with variance 2. We can also consider a set of possible
parameters 6 and place a prior p(6) over them, expressing our prior belief (before seeing the
measurements) in the appropriateness of the different values of 8. The posterior distribution is then
given by

T

sin 2

p(Olx1, ..., xr)  p(6 || o (2 —sin(61))” (1.3.5)
_ o

Despite noisy measurements, the posterior over the assumed possible values for 6 becomes strongly
peaked for a large number of measurements, see Fig. 1.1.
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Figure 1.1 (a) Noisy observations of displacements xi, . .., X100 for a pendulum. (b) The prior belief on 5 possible

values of 6. (c) The posterior belief on 6.

Two dice: what were the individual scores?

Two fair dice are rolled. Someone tells you that the sum of the two scores is 9. What is the posterior
distribution of the dice scores??

The score of die a is denoted s, with dom (s,) = {1, 2, 3,4, 5, 6} and similarly for s;. The three
variables involved are then s,, s, and the total score, t = s, + 5,. A model of these three variables
naturally takes the form

p(t, Sa,sp) = p(t1Sa, 5p) P(Sas Sp) - (1.3.6)
likelihood prior
The prior p(s,, sp) is the joint probability of (52)p(s55):
score s, and score s, without knowing anything - pz Sa)P ;b ; 7 S <
. . . Sqa = Sq = Sq = Sq = Sq = Sq =
else. As.summg no dependency in the rolling S =11 1736 [ 136 | 1736 | 1736 | 136 | 1/36
mechanism, ss=2]| 1736 | 1736 | 1736 | 1736 | 1/36 | 1/36
_ s,=3] 1736 | 1/36 | 1736 | 1/36 | 1/36 | 1/36
P(Sas $5) = P(sa) P(s5)- (1.3.7) =4 1/36 | 1/36 | 1/36 | 1/36 | 1/36 | 1/36
Since the dice are fair both p(s,) and p(s;) are Sp=3| 1/36 | 1/36 | 1/36 | 1/36 | 1/36 | 1/36
uniform distributions, p(s,) = p(sy) = 1/6. ® =0 136 | 136 ] 1736 | 1/36 | 1/36 | 1736
Here the likelihood term is p(t =9lsa, sp):
Sa=1|s,=2|5,=3|5.=4|s5,=5|s5,.=6
p(l|sa,Sb) :]I[t =S4 +Sb] (138) sp =1 0 0 0 0 0 0
which states that the total score is given by s, + zb — 3 g g 8 8 8 (1)
. . . b=
sp. Here I [A] is the indicator function defined =4 0 0 0 0 1 0
as I[A] =1 if the statement A is true and 0 s=5| 0 0 0 1 0 0
otherwise. s5=6| 0 0 1 0 0 0
p(t =914, sp) p(sa) p(sp):
Hence, our complete model is Sa=1|5a=2[5a=3[sa=4|54=5]|5.=6
ss=1] 0 0 0 0 0 0
p(t, 54, 5) = p(tlsa, sp) p(sa)p(sp) (1.3.9) ss=2| 0 0 0 0 0 0
. . 5p = 0 0 0 0 1/36
where the terms on the right are explicitly S; 4 o 0 0 0 1736 | 0
defined. ss=5| 0 0 0 1/36 0 0
5= 0 o |13 | o 0 0

2 This example is due to Taylan Cemgil.
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The posterior is then given by,

Pt =950, ) P(sa)p (1) plse. solf =9):
p(sa, splt =9) = 2(t=9) Se=1]5a=2]5=3]5.=4]5.=5]5.=6
(13.10) =10 0 0 0 0 0
= =2 0 0 0 0 0 0
where =3 0 0 0 0 0 | 1/4
=4 0 0 0 0 | 14| o
p(t=9) = Zp(t = 984, 85) P(Sa) P(5p). s5=5] 0 0 o |14 o 0
SasSh sp =6 0 0 1/4 0 0 0
(1.3.11)

The term p(t =9) =Y . p(t = 9ls4, 55) p(sa) p(s5) = 4 x 1/36 = 1/9. Hence the posterior is
given by equal mass in only four non-zero elements, as shown.

Summary

e The standard rules of probability are a consistent, logical way to reason with uncertainty.
e Bayes’ rule mathematically encodes the process of inference.

A useful introduction to probability is given in [292]. The interpretation of probability is contentious
and we refer the reader to [158, 197, 193] for detailed discussions. The website understandin-
guncertainty.org contains entertaining discussions on reasoning with uncertainty.

Code

The BRMLTooLBOoX code accompanying this book is intended to give the reader some insight into
representing discrete probability tables and performing simple inference. We provide here only the
briefest of descriptions of the code and the reader is encouraged to experiment with the demos to
understand better the routines and their purposes.

Basic probability code

At the simplest level, we only need two basic routines. One for multiplying probability tables
together (called potentials in the code), and one for summing a probability table. Potentials are
represented using a structure. For example, in the code corresponding to the Inspector Clouseau
example demoClouseau.m, we define a probability table as

>> pot (1)
ans =
variables: [1 3 2]
table: [2x2x2 double]

This says that the potential depends on the variables 1, 3, 2 and the entries are stored in the array
given by the table field. The size of the array informs how many states each variable takes in the
order given by variables. The order in which the variables are defined in a potential is irrelevant
provided that one indexes the array consistently. A routine that can help with setting table entries is
setstate.m. For example,

>> pot (1) = setstate(pot(l),[2 1 3],[2 1 1]1,0.3)



means that for potential 1, the table entry for variable 2 being in state 2, variable 1 being in state 1

and variable 3 being in state 1 should be set to value 0.3.

The philosophy of the code is to keep the information required to perform computations to a
minimum. Additional information about the labels of variables and their domains can be useful to
interpret results, but is not actually required to carry out computations. One may also specify the

name and domain of each variable, for example

>>variable (3)
ans =
domain: {’'murderer’ ‘'not murderer’}

name: ’‘butler’

The variable name and domain information in the Clouseau example is stored in the
variable, which can be helpful to display the potential table:

>> disptable(pot(1l),variable) ;

knife = used maid = murderer butler = murderer 0
knife = not used maid = murderer butler = murderer 0
knife = used maid = not murderer butler = murderer 0
knife = not used maid = not murderer butler = murderer 0
knife = used maid = murderer butler = not murderer 0
knife = not used maid = murderer butler = not murderer 0
knife = used maid = not murderer butler = not murderer 0
knife = not used maid = not murderer butler = not murderer 0

Multiplying potentials

structure

.100000
.900000
.600000
.400000
.200000
.800000
.300000
.700000

In order to multiply potentials, (as for arrays) the tables of each potential must be dimensionally
consistent — that is the number of states of variable i must be the same for all potentials. This can be
checked using potvariables.m. This consistency is also required for other basic operations such

as summing potentials.

multpots.m: Multiplying two or more potentials
divpots.m: Dividing a potential by another

Summing a potential

sumpot .m: Sum (marginalise) a potential over a set of variables
sumpots.m: Sum a set of potentials together

Making a conditional potential

condpot .m: Make a potential conditioned on variables

Setting a potential

setpot.m: Set variables in a potential to given states

setevpot.m: Set variables in a potential to given states and return also an identity potential on the

given states
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1.5.3

1.6

1.1

The philosophy of BRMLTooLBoX is that all information about variables is local and is read off from
a potential. Using setevpot .m enables one to set variables in a state whilst maintaining information
about the number of states of a variable.

Maximising a potential
maxpot .m: Maximise a potential over a set of variables

See also maxNarray.m and maxNpot .m which return the N-highest values and associated states.

Other potential utilities

setstate.m: Set a potential state to a given value

table.m: Return a table from a potential

whichpot .m: Return potentials which contain a set of variables

potvariables.m: Variables and their number of states in a set of potentials
orderpotfields.m: Order the fields of a potential structure

uniquepots.m: Merge redundant potentials by multiplication and return only unique ones
numstates.m: Number of states of a variable in a domain

squeezepots .m: Find unique potentials and rename the variables 1,2,...

normpot .m: Normalise a potential to form a distribution

General utilities

condp .m: Return a table p(x|y) from p(x, y)

condexp .m: Form a conditional distribution from a log value

logsumexp.m: Compute the log of a sum of exponentials in a numerically precise way
normp .m: Return a normalised table from an unnormalised table

assign.m: Assign values to multiple variables

maxarray.m: Maximise a multi-dimensional array over a subset

An example

The following code highlights the use of the above routines in solving the Inspector Clouseau,
Example 1.3, and the reader is invited to examine the code to become familiar with how to numerically
represent probability tables

demoClouseau.m: Solving the Inspector Clouseau example

Exercises
Prove

p(x,ylz) = p(x|z)p(ylx, z) (1.6.1)
and also

plaly. z) = LU DL, (1.6.2)

p(y1z)
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1.12

Prove the Bonferroni inequality
pla,b) = p(a) + p(b) — 1. (1.6.3)

(Adapted from [181]) There are two boxes. Box 1 contains three red and five white balls and box 2
contains two red and five white balls. A box is chosen at random p(box = 1) = p(box = 2) = 0.5 and
a ball chosen at random from this box turns out to be red. What is the posterior probability that the red
ball came from box 1?

(Adapted from [181]) Two balls are placed in a box as follows: A fair coin is tossed and a white ball is
placed in the box if a head occurs, otherwise a red ball is placed in the box. The coin is tossed again
and a red ball is placed in the box if a tail occurs, otherwise a white ball is placed in the box. Balls are
drawn from the box three times in succession (always with replacing the drawn ball back in the box). It
is found that on all three occasions a red ball is drawn. What is the probability that both balls in the box
are red?

(From David Spiegelhalter understandinguncertainty.org) A secret government agency has devel-
oped a scanner which determines whether a person is a terrorist. The scanner is fairly reliable; 95% of all
scanned terrorists are identified as terrorists, and 95% of all upstanding citizens are identified as such. An
informant tells the agency that exactly one passenger of 100 aboard an aeroplane in which you are seated
is a terrorist. The agency decides to scan each passenger and the shifty-looking man sitting next to you is
the first to test positive. What are the chances that this man is a terrorist?

Consider three variable distributions which admit the factorisation

pla,b,c) = p(alb)p(blc)p(c) (1.64)

where all variables are binary. How many parameters are needed to specify distributions of this
form?

Repeat the Inspector Clouseau scenario, Example 1.3, but with the restriction that either the Maid or the
Butler is the murderer, but not both. Explicitly, the probability of the Maid being the murderer and not
the Butler is 0.04, the probability of the Butler being the murderer and not the Maid is 0.64. Modify
demoClouseau.m to implement this.

Prove

pla, (borc)) = p(a,b) + pla, c) — pla, b, c). (1.6.5)
Prove

pxlz) =" p(xly, 2)p(yle) = Y p(xlw, y, 2)p(wly, 2) p(¥]). (1.6.6)

As a young man Mr Gott visits Berlin in 1969. He’s surprised that he cannot cross into East Berlin
since there is a wall separating the two halves of the city. He’s told that the wall was erected eight years
previously. He reasons that: The wall will have a finite lifespan; his ignorance means that he arrives
uniformly at random at some time in the lifespan of the wall. Since only 5% of the time one would
arrive in the first or last 2.5% of the lifespan of the wall he asserts that with 95% confidence the wall
will survive between 8/0.975 ~ 8.2 and 8/0.025 = 320 years. In 1989 the now Professor Gott is pleased
to find that his prediction was correct and promotes his prediction method in prestigious journals. This
‘delta-t” method is widely adopted and used to form predictions in a range of scenarios about which
researchers are ‘totally ignorant’. Would you ‘buy’ a prediction from Professor Gott? Explain carefully
your reasoning.

Implement the soft XOR gate, Example 1.7 using BRMLToOLBOX. You may find condpot .m of use.

Implement the hamburgers, Example 1.2 (both scenarios) using BRMLTooLBox. To do so you will need
to define the joint distribution p (hamburgers, K J) in which dom(hamburgers) = dom (K J) = {tr, fa}.
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Implement the two-dice example, Section 1.3.1 using BRMLTOOLBOX.

A redistribution lottery involves picking the correct four numbers from 1 to 9 (without replacement, so
3,4,4,1 for example is not possible). The order of the picked numbers is irrelevant. Every week a million
people play this game, each paying £1 to enter, with the numbers 3,5,7,9 being the most popular (1 in
every 100 people chooses these numbers). Given that the million pounds prize money is split equally
between winners, and that any four (different) numbers come up at random, what is the expected amount
of money each of the players choosing 3,5,7,9 will win each week? The least popular set of numbers is
1,2,3,4 with only 1 in 10 000 people choosing this. How much do they profit each week, on average? Do
you think there is any ‘skill’ involved in playing this lottery?

In atest of ‘psychometry’ the car keys and wristwatches of five people are given to a medium. The medium
then attempts to match the wristwatch with the car key of each person. What is the expected number of
correct matches that the medium will make (by chance)? What is the probability that the medium will
obtain at least one correct match?

1. Show that for any function f

D Iy f(y) = (). (1.6.7)

2. Explain why, in general,

D P flx,y) # D f(x, ). (1.6.8)

(Inspired by singingbanana.com). Seven friends decide to order pizzas by telephone from Pizza4U
based on a flyer pushed through their letterbox. Pizza4U has only four kinds of pizza, and each person
chooses a pizza independently. Bob phones Pizza4U and places the combined pizza order, simply stating
how many pizzas of each kind are required. Unfortunately, the precise order is lost, so the chef makes
seven randomly chosen pizzas and then passes them to the delivery boy.

1. How many different combined orders are possible?
2. What is the probability that the delivery boy has the right order?

Sally is new to the area and listens to some friends discussing about another female friend. Sally knows
that they are talking about either Alice or Bella but doesn’t know which. From previous conversations
Sally knows some independent pieces of information: She’s 90% sure that Alice has a white car, but
doesn’t know if Bella’s car is white or black. Similarly, she’s 90% sure that Bella likes sushi, but doesn’t
know if Alice likes sushi. Sally hears from the conversation that the person being discussed hates sushi
and drives a white car. What is the probability that the friends are talking about Alice?

The weather in London can be summarised as: if it rains one day there’s a 70% chance it will rain the

following days; if it’s sunny one day there’s a 40% chance it will be sunny the following day.

1. Assuming that the prior probability it rained yesterday is 0.5, what is the probability that it was raining
yesterday given that it’s sunny today?

2. If the weather follows the same pattern as above, day after day, what is the probability that it will rain
on any day (based on an effectively infinite number of days of observing the weather)?

3. Use the result from part 2 above as a new prior probability of rain yesterday and recompute the
probability that it was raining yesterday given that it’s sunny today.
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Basic graph concepts

Often we have good reason to believe that one event affects another, or conversely that
some events are independent. Incorporating such knowledge can produce models that
are better specified and computationally more efficient. Graphs describe how objects are
linked and provide a convenient picture for describing related objects. We will ultimately
introduce a graph structure among the variables of a probabilistic model to produce a
‘graphical model’ that captures relations among the variables as well as their uncertainties.
In this chapter, we introduce the required basic concepts from graph theory.

Graphs

Definition 2.1 Graph A graph G consists of nodes (also called vertices) and edges (also called
links) between the nodes. Edges may be directed (they have an arrow in a single direction) or
undirected. Edges can also have associated weights. A graph with all edges directed is called a
directed graph, and one with all edges undirected is called an undirected graph.

A—— B
N
g E A directed graph G consists of directed edges between nodes.
D Je——— C
A B
AN
y E An undirected graph G consists of undirected edges between nodes.

Graphs with edge weights are often used to model networks and flows along ‘pipes’, or distances
between cities, where each node represents a city. We will also make use of these concepts in
Chapter 5 and Chapter 28. Our main use of graphs though will be to endow them with a probabilistic
interpretation and we develop a connection between directed graphs and probability in Chapter 3.
Undirected graphs also play a central role in modelling and reasoning with uncertainty. Essentially,
two variables will be independent if they are not linked by a path on the graph. We will discuss this
in more detail when we consider Markov networks in Chapter 4.



Definition 2.2  Path, ancestors, descendants A path A — B from node A to node B is a sequence
of nodes that connects A to B. That is, a path is of the form Ay, Ay, ..., A,—1, An, with Ag = A and
A, = B and each edge (Ax—1, Ax), k = 1, ..., n being in the graph. A directed path is a sequence
of nodes which when we follow the direction of the arrows leads us from A to B. In directed graphs,
the nodes A such that A — B and B A& A are the ancestors of B. The nodes B such that A — B
and B & A are the descendants of A.

Definition 2.3 Cycle, loop and chord A cycle is a directed path that starts and returns to the same
nodea - b — ... — z — a. A loop is a path containing more than two nodes, irrespective of edge
direction, that starts and returns to the same node. For example in Fig. 22(b) | -2 -4 -3 -1
forms a loop, but the graph is acyclic (contains no cycles). A chord is an edge that connects two
non-adjacent nodes in a loop — for example, the 2 — 3 edgeisachordinthe 1 —2 — 4 — 3 — 1 loop
of Fig. 2.2(a).

Definition 2.4 Directed Acyclic Graph (DAG) A DAG is a graph G with directed edges (arrows
on each link) between the nodes such that by following a path of nodes from one node to another
along the direction of each edge no path will revisit a node. In a DAG the ancestors of B are those
nodes which have a directed path ending at B. Conversely, the descendants of A are those nodes
which have a directed path starting at A.

Definition 2.5 Relationships in a DAG

T T2 xs3
The parents of x4 are pa (x4) = {x1, X2, x3}. The children of
l \ l / x4 are ch (x4) = {xs, x¢}. The family of a node is itself and its
parents. The Markov blanket of a node is its parents, children

T8 T4 xT7
/ \ / and the parents of its children. In this case, the Markov blanket
s e

of x4 is x1, x2, x3, x5, X6, X7.

Directed acyclic graphs will play a central role in modelling environments with many variables,
in particular they are used for the belief networks that we describe in the following chapter. One
can view the directed links on a graph as ‘direct dependencies’ between parent and child variables.
Naively, the acyclic condition prevents circular reasoning. These connections are discussed in detail
in Chapter 3.

Definition 2.6 Neighbour For an undirected graph G the neighbours of x, ne (x) are those nodes
directly connected to x.

Definition 2.7 Clique

Given an undirected graph, a clique is a fully connected subset of nodes.

A B All the members of the clique are neighbours; for a maximal clique there
\ is no larger clique that contains the clique. For example this graph has

E two maximal cliques, C; = {A, B, C, D} and C, = {B, C, E}. Whilst

>< / A, B, C are fully connected, this is a non-maximal clique since there
D C is a larger fully connected set, A, B, C, D that contains this. A non-

maximal clique is sometimes called a cliguo.
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/\/ S N

c d e Figure 2.1 (a) Singly

connected graph. (b) Multiply
‘/ \‘ ‘/ \‘ 1 ‘/ \‘ ‘/ connected graph.
(a) (b)

Cliques play a central role in both modelling and inference. In modelling they will describe
variables that are all dependent on each other, see Chapter 4. In inference they describe sets of
variables with no simpler structure describing the relationship between them and hence for which
no simpler efficient inference procedure is likely to exist. We will discuss this issue in detail in
Chapter 5 and Chapter 6.

Definition 2.8 Connected graph An undirected graph is connected if there is a path between
every pair of nodes (i.e. there are no isolated islands). For a graph which is not connected, the
connected components are those subgraphs which are connected.

Definition 2.9 Singly-connected graph A graph is singly connected if there is only one path from
any node A to any other node B. Otherwise the graph is multiply connected (see Fig. 2.1). This
definition applies regardless of whether or not the edges in the graph are directed. An alternative
name for a singly connected graph is a tree. A multiply connected graph is also called loopy.

Definition 2.10 Spanning tree

A spanning tree of an undirected graph G is a singly con-
nected subset of the existing edges such that the resulting
singly connected graph covers all nodes of G. On the right
is a graph and an associated spanning tree. A maximum
weight spanning tree is a spanning tree such that the sum
of all weights on the edges of the tree is at least as large as
any other spanning tree of G.

Procedure 2.1 (Finding a maximal weight spanning tree) An algorithm to find a spanning tree with
maximal weight is as follows: Start by picking the edge with the largest weight and add this to the
edge set. Then pick the next candidate edge which has the largest weight and add this to the edge
set — if this results in an edge set with cycles, then reject the candidate edge and propose the next
largest edge weight. Note that there may be more than one maximal weight spanning tree.

Numerically encoding graphs

Our ultimate goal is to make computational implementations of inference. Therefore, if we want to
incorporate graph structure into our models, we need to express graphs in a way that a computer can
understand and manipulate. There are several equivalent possibilities.
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2 2
/ \ /‘ \l Figure 2.2 (a) An undirected graph can be represented as a
1 4 1 4 symmetric adjacency matrix. (b) A directed graph with nodes
\ / \ /‘ labelled in ancestral order corresponds to a triangular
3 3 adjacency matrix.
(a) (b)
Edge list

As the name suggests, an edge list simply lists which node-node pairs are in the graph. For Fig.
2.2(a), an edge list is L = {(1,2), (2, 1), (1,3), (3, 1),(2,3), (3,2), (2,4), (4,2), (3,4), (4,3)}.
Undirected edges are listed twice, once for each direction.

Adjacency matrix

An alternative is to use an adjacency matrix

2.2.1)

O = = O
—_—— O =
—_— O = =
S = = O

where A;; = 1 if there is an edge from node i to node j in the graph, and 0 otherwise. Some authors
include self-connections and place 1’s on the diagonal in this definition. An undirected graph has a
symmetric adjacency matrix.

Provided that the nodes are labelled in ancestral order (parents always come before children) a
directed graph Fig. 2.2(b) can be represented as a triangular adjacency matrix:

(2.2.2)

S O OO
SO O =
S O =
S = = O

Adjacency matrix powers

Adjacency matrices may seem wasteful since many of the entries are zero. However, they have a
useful property that more than redeems them. For an N x N adjacency matrix A, powers of the
adjacency matrix [Ak ]l.j specify how many paths there are from node i to node j in k edge hops. If
we include 1’s on the diagonal of A then [AN 71]1‘/‘ is non-zero when there is a path connecting i to
Jj in the graph. If A corresponds to a DAG the non-zero entries of the jth row of [AN "] correspond
to the descendants of node j.
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Clique matrix

For an undirected graph with N nodes and maximal cliques Cy, ..., Cx aclique matrixisan N x K
matrix in which each column ¢; has zeros except for ones on entries describing the clique. For
example

(2.2.3)

O = = =
—_— = O

is a clique matrix for Fig. 2.2(a). A cliquo matrix relaxes the constraint that cliques are required to
be maximal. A cliquo matrix containing only two-node cliques is called an incidence matrix. For
example

Cine = 2.2.4)

S O = =
S = O =
S = = O
_— O = O
— = O O

T

is an incidence matrix fo