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In the design, processing, and applications of composite materials, 
a thorough understanding of the physical properties is required. It is 
important to be able to predict the variations of these properties with 
the kind, shape, and concentration of filler materials. The currently 
available books on composite materials often emphasize mechanical 
properties and focus on classification, applications, and manufacturing. 
This limited coverage neglects areas that are important to new and 
emerging applications. 

For the first time in a single source, this volume provides a systematic, 
comprehensive, and up-to-date exploration of the electromagnetic 
(electrical, dielectric, and magnetic), mechanical, thermal, and mass-
transport properties of composite materials. The author begins with a 
brief discussion of the relevance of these properties for designing new 
materials to meet specific practical requirements. The book is then 
organized into five parts examining:

• The electromagnetic properties of composite materials  
 subjected to time-invariant electric and magnetic fields

• The dynamic electromagnetic properties of composite materials   
 subjected to time-varying electric and magnetic fields

• The mechanical elastic and viscoelastic properties of composites

• Heat transfer in composites and thermal properties (thermal   
 conductivity, thermal diffusivity, coefficient of thermal expansion,  
 and thermal emissivity)

• Mass transfer in composite membranes and composite materials

Throughout the book, the analogy between various properties is 
emphasized. Electromagnetic, Mechanical, and Transport Properties 
of Composite Materials provides both an introduction to the subject 
for newcomers and sufficient in-depth coverage for those involved in 
research. Scientists, engineers, and students from a broad range of 
fields will find this book a comprehensive source of information.
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Preface
Composite materials are blends of two or more materials of different physical prop-
erties. The individual materials are immiscible with each other and exist as distinct 
phases. Thus, composite materials are multiphase materials consisting of two or 
more phases. Different materials are mixed together with the purpose of generating 
superior materials having properties better than those of the individual materials. 
Composite materials are a rapidly growing class of materials, with applications in 
industries such as plastics, automotive, electronic, packaging, aircraft, space, sports, 
and the biomedical field.

In the design, processing, and applications of composite materials, a thorough 
understanding of the physical properties is required. It is important to be able to pre-
dict the variations of the electromagnetic (electrical conductivity, dielectric constant, 
and magnetic permeability), mechanical, thermal (thermal conductivity and coef-
ficient of thermal expansion), and mass transport properties of composite materials 
with the kind, shape, and concentration of filler materials. The filler material may 
consist of equiaxed particles ranging anywhere from nanometers to microns in size, 
discontinuous short fibers or whiskers, small disk- or plate-shaped particles/flakes, 
or core-and-shell type of complex particles.

A number of excellent books are available on composite materials, but for the 
most part, they are restricted to classification, applications, and manufacturing of 
composite materials along with the characterization of mechanical properties. The 
electromagnetic, thermal, and mass transport properties of composite materials have 
generally received little attention as compared with the mechanical properties even 
though they are equally important from a practical point of view.

The study of electrical, dielectric, and magnetic properties of composite materials 
can reveal valuable information regarding the morphology and composition of such 
systems. For example, the dielectric probes could be used to probe the microstruc-
ture and to estimate the filler content of composites, especially when the dielectric 
constants of the individual materials are significantly different from each other. The 
electrical properties of composites are important in the design of plastics used in the 
electronics industry. Pure plastics tend to pick up electrostatic charges, especially 
under low-humidity conditions. When earthed, the (charged) plastics discharge and, 
in the process, damage electronic circuitry and equipment. To overcome the prob-
lems associated with electrostatic charge of plastics, electrically conducting filler 
particles (such as carbon black) are incorporated into the plastic matrix. The incor-
poration of electrically conducting filler particles into the plastic matrix imparts 
electrical conductivity to the plastic system, and as a consequence, the buildup of 
static charge is avoided. The magnetic properties of composite materials are of inter-
est in many industrial applications involving electrical and electronic instruments, 
electrical power generators and transformers, electric motors, radio, television, tele-
phones, computers, audio and video equipment, etc.
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The thermal properties of composite materials are important in many practical 
applications. For example, knowledge of the coefficient of thermal expansion (CTE) 
of composites is required in calculating dimensional changes and buildup of inter-
nal stresses when composites are subjected to temperature changes. In designing a 
composite material, it is often necessary to match the CTE of different components. 
The other very important thermal property of composite materials is their thermal 
conductivity. In the electronics industry, the packaging material used to encapsulate 
electronic devices must have a high thermal conductivity in order to dissipate the 
heat generated by the device as rapidly and effectively as possible. Particulate com-
posites consisting of polymer matrix and heat-conducting fillers are used for this 
purpose. Polymers filled with heat-conducting fillers provide the required thermal 
conductivity while maintaining the electrical insulation properties of the polymers. 
It has been recently discovered that the addition of a small amount of nanoparticles 
(such as carbon nanotubes and copper nanoparticles) can greatly improve the ther-
mal conductivity of polymers.

The mass transport properties of composite materials are important in the design 
and application of composite membranes. Composite membranes are extensively 
used in the separation of gas mixtures. In the packaging industry, composite mem-
branes are used as barrier films.

The aim of this book is to provide a systematic and comprehensive coverage of 
the electromagnetic, mechanical, thermal, and mass transport properties of com-
posite materials. Throughout the book, the analogy between various properties is 
emphasized. The book draws heavily on the work of the author on physical proper-
ties of composite materials.

The first chapter of the book discusses the important applications of composite 
materials and the relevance of electromagnetic, mechanical, and transport proper-
ties. The book is then organized in three parts: Electromagnetic properties of com-
posites (Sections I and II), Mechanical properties of composites (Section III), and 
Transport  properties of composites (Sections IV and V). Section I, titled Static 
 electromagnetic properties of composites, deals with the electromagnetic properties 
of composite materials subjected to time-invariant electric and magnetic fields. It 
consists of three chapters. Chapter 2 describes the electrical conductivity of com-
posites, Chapter 3 the dielectric properties, and Chapter 4 describes the magnetic 
properties of composites. Section II, titled General treatment of electromagnetic 
phenomena in composites, deals with the dynamic electromagnetic properties of 
composite materials subjected to time-varying electric and magnetic fields. This 
section consists of two chapters. Chapter 5 deals with the fundamental aspects of 
electromagnetic phenomena. The general laws of electromagnetism (Maxwell equa-
tions) and the generalized conductivity principle are discussed. Chapter 6 describes 
the complex electromagnetic properties of composites. The frequency dependence 
of electromagnetic properties of composite materials is also discussed in details. 
Section III (Mechanical properties of composites) consists of seven chapters. 
Chapter 7 describes the mechanical properties of dilute particulate-filled composites. 
The mechanical properties of concentrated composites are described in Chapters 8 
through 11. The influence of interfacial and interphase effects on the mechanical 
properties of composites is discussed in Chapter 12. The viscoelastic behavior of 
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composite materials is covered in Chapter 13. Section  IV, titled Heat transfer in 
 composites, consists of seven chapters. Chapters 14 and 15 cover the fundamental 
aspects of heat transfer. Chapters 16 and 17 describe the thermal conductivity of 
particulate composites. The influence of interfacial contact resistance on the thermal 
conductivity of composites is covered in Chapter 18. The thermal diffusivity and 
coefficient of thermal expansion of composites are dealt with in Chapter 19. The 
radiative heat transfer properties of composite materials are described in Chapter 
20. Section V, titled Mass transfer in composites, consists of Chapters 21 through 
24. Chapter 21 covers the fundamentals of diffusion mass transfer. The diffusion 
mass transfer in composite membranes is described in Chapter 22. Chapter 23 deals 
with the fundamentals of convective mass transfer, and Chapter 24 covers convective 
mass transfer in composite materials.

I hope that scientists, engineers, and students from a broad range of fields will 
find this book an attractive and comprehensive source of information on the sub-
ject. The book provides both an introduction to the subject for newcomers and suffi-
cient in-depth coverage for those involved in research related to the electromagnetic, 
mechanical, and transport phenomena in composite materials.

Finally, I would like to thank my wife Archana and my children Anuva and Arnav 
for their love and constant support.

Rajinder Pal
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1 Applications of 
Composite Materials

Composite materials are generally defined as mixtures of two or more materials of 
different physical properties. Different materials are mixed together with the pur-
pose of generating superior materials having properties better than those of the indi-
vidual materials. The individual materials are immiscible with each other and exist 
as distinct phases. Thus, composite materials are multiphase materials consisting 
of at least two phases (each phase being a different material). In this book, compos-
ite materials are defined as dispersed systems consisting of fine insoluble particles 
distributed throughout a matrix (continuous phase). The particles distributed within 
the matrix are collectively referred to as the particulate or dispersed phase. The par-
ticulate phase may consist of spherical particles ranging anywhere from nanometers 
to microns in diameter, discontinuous short fibers or whiskers, small disc- or plate-
shaped particles/flakes, or core-and-shell-type spherical particles.

Three types of matrix materials are widely used in composite materials, namely, 
metals, ceramics, and polymers, and hence, composites are often classified as metal 
matrix composites (MMCs), ceramic matrix composites (CMCs), and polymer matrix 
composites (PMCs). Another class of composite materials is polymer/polymer blends. 
Physical blending of two immiscible polymer melts to generate new performance 
materials is of growing industrial importance [1]. A large variety of new products 
with desirable properties can be created by the physical blending of polymer melts 
without the need for synthesizing new chemical structures.

The commercial and industrial applications of composites are just too many to be 
discussed here in details. Several books and articles have been written describing the 
applications of composites in details [2–9]. Only some of the important applications 
of particulate-filled composites are highlighted here.

Metal matrix composites consisting of ceramic particulate filler, also called cer-
mets, are widely used as a tool material for high-speed cutting of materials that are 
difficult to machine (for example, hardened steels) [2,3]. The ceramic material alone, 
although hard enough to provide the cutting surface, is extremely brittle whereas the 
metal alone, although tough, does not possess the requisite hardness. The combina-
tion of these two materials (ceramic and metal) in the form of a particulate composite 
overcomes the limitations of the individual materials. In cermets used for cutting 
tools, the particles of ceramic (tungsten carbide, titanium carbide, Al2O3, etc.) are 
embedded in a matrix of a ductile metal (cobalt, nickel, etc.). A large volume fraction 
of the dispersed particulate phase is generally used to maximize the abrasive action 
of the composite. Cermets are used in many other applications, such as (i) thermocouple 
protection tubes, (ii) mechanical seals, (iii) valve and valve seats, and (iv) turbine 
wheels.
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Dispersion-strengthened MMCs are widely used in aircraft construction. In 
dispersion-strengthened MMCs, metal alloys and metals are strengthened and 
hardened by a uniform dispersion of very fine nanosized particles (<100 nm) of 
very hard and inert material such as thoria (ThO2). The volume fraction of the 
dispersed phase in these dispersion-hardened metals and metal alloys is generally 
small (rarely exceeding 5%) [3].

Particulate-filled CMCs find applications in the manufacture of grills and flat 
stones for microwave heating and cooking [10]. For example, a composite material 
consisting of ceramic matrix and silicon carbide (SiC) whiskers is used in the form 
of rods (about 1 foot long and 0.5 inch wide) to form a grill for cooking in the micro-
wave oven. The microwaves heat the ceramic composite rods preferentially over the 
food product, as the composite is more lossy in comparison with the food product 
due to the presence of SiC whiskers.

The applications of PMCs are many. The plastics industry employs a number of 
different types of particulate fillers to improve the mechanical properties of the plas-
tic. In several applications, less expensive particulate fillers are added to expensive 
plastic materials mainly to lower the cost. Wood-derived fillers are receiving a lot of 
attention these days. According to some estimates, wood–plastic composites (WPCs) 
are the fastest growing construction materials today [11–15]. Wood filler, most often 
used in particulate form referred to as wood flour, has several advantages over the 
traditional inorganic fillers. It is derived from a renewable resource, lighter, and less 
expensive. Also, it is less abrasive to the processing equipment as compared with 
the traditional fillers. Commercially produced wood-flour filler generally consists of 
large-size particles (>100 μm). The weight fraction of wood in WPCs is typically 0.5, 
although some WPCs contain a much larger amount of wood (as high as 70 percent 
by weight) and others contain only little amount of wood (as low as 10 percent by 
weight). Both thermoset plastics and thermoplastics are used as matrix materials for 
WPCs although most WPCs are currently manufactured with thermoplastics such as 
polyethylene, polypropylene, and polyvinylchloride as the matrix.

Automobile tires are made from carbon black-reinforced rubber [16]. Nearly a 
quarter of the total weight of a tire is made up from carbon black. The nanosized 
carbon black particles (usually between 20 and 50 nm) enhance the resistance to 
wear and tear and increase stiffness and tensile strength of the tires. It is of interest 
to note that the primary nanosized particles of carbon black aggregate to form chains 
with various degrees of branching in the rubber matrix. It is the network of these 
chains of primary particles that provides the reinforcement mechanism in carbon 
black-reinforced rubbers.

Plastics filled with fine conductive particles, also called conductive plastics, 
have many practical applications [17]. Plastics are electrically insulating materials. 
However, the dispersion of conductive filler such as carbon black in the plastic matrix 
imparts conductive properties to the plastic system. The conductive carbon black 
particles when dispersed in a plastic matrix form a network of chainlike aggregates. 
Although the matrix is nonconductive, current can still flow through the network of 
conductive particles. Carbon-black-filled conductive plastics are used as antistatic 
materials in the electronic industry. Plastics, widely used as insulators, readily pick 
up electrostatic charges especially under low-humidity conditions. When earthed, 
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the plastics (carrying electrostatic charge) discharge and, in the process, damage 
electronic circuitry and equipment. To overcome these problems, conductive plastics 
are used. Conductive plastics are used in many other applications such as electro-
magnetic interference (EMI) shielding, heating devices, video discs, wire and cable, 
etc.

Polymer–clay nanocomposites are a rapidly growing class of nanoengineered 
materials with many applications [4,5]. They are composed of nanometer-sized 
clay particles dispersed uniformly in a polymeric matrix. Clays (usually alumino-
silicates), in their natural form, consist of aggregates of primary plate-like particles 
whereas polymer–clay nanocomposites consist of an exfoliated structure; that is, the 
aggregates are completely separated and the individual primary particles are dis-
persed uniformly in the polymer matrix. The thickness of clay platelets is approxi-
mately 1 nm, and their diameter can vary anywhere from tens of nanometers to 
hundreds of nanometers. As the clay particles in their natural form are generally 
hydrophilic, they need to be treated to make them “organophilic” and compatible 
with hydrophobic polymers. Usually, only small quantities (less than 6% by weight) 
of clay are incorporated in polymer–clay nanocomposites. A small quantity of clay 
in exfoliated form is often enough to provide a large improvement in the mechanical 
and other desired properties.

Dental composites consist of a polymerizable resin matrix, usually urethane 
dimethacrylate (UDMA) or ethylene glycol dimethacrylate (Bis-GMA), glass par-
ticulate fillers, and a silane coupling agent [18,19]. Polymerization of the resin matrix 
is either light activated or chemically initiated. The silane coupling agent (usually 
3-methacryloxypropyltrimethoxy silane) coats the surface of the hydrophilic filler 
particles, allowing them to couple with the hydrophobic resin matrix. The purpose of 
fillers in dental composites is to reduce shrinkage (the resin tends to shrink while it 
is setting) and to improve the mechanical properties (wear resistance, fracture resis-
tance) of the material. A wide range of particle sizes is used in the manufacture of 
commercial dental composites [19,20]. Based on the particle size of the filler, dental 
composites can be classified roughly into four broad groups: (i) traditional compos-
ites with filler particle size in the micron range (>>1 μm), (ii) microfilled composites 
with filler particle size close to a micron (≈1 μm), (iii) nanocomposites with filler 
particle size in the nanometer range (<100 nm), and (iv) hybrid composites consist-
ing of a bimodal mixture of very fine and large particles. The volume fraction of the 
filler in the composite is usually high, somewhere in the range of approximately 0.4 
to 0.80.

The solid propellants commonly used in aerospace propulsion are particulate 
composites consisting of particles of solid oxidizer (usually ammonium perchlo-
rate NH4ClO4) and metal fuel (usually aluminum) dispersed in a polymeric binder 
(usually polybutadiene). The fuel combines with oxygen provided by the oxidizer to 
produce gas for propulsion. The volume fraction of particles in solid propellants is 
typically high [21]. The composite is rubberlike material with the consistency of a 
rubber eraser.

Particulate-filled PMCs are widely used in the manufacture of barrier membranes 
for food packaging [22,23]. To ensure constant gas composition inside the package, 
it is important that the membrane have certain gas barrier properties. For example, 
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in food packaging, where long shelf life is required, it is important that oxygen and 
water vapor be retained inside the package to avoid ruining the organoleptic proper-
ties of the food product. The barrier properties of particulate-filled polymer compos-
ites are also being exploited in the construction and development of fuel tank and 
fuel line components for cars. The incorporation of filler particles in the polymer 
matrix inhibits the permeation of fuel solvent through the polymer.

A new class of particulate-filled polymer composite membranes is the so-called 
mixed matrix membranes composed of porous molecular-sieve-type inorganic fillers 
and polymeric matrix [24–36]. The mixed matrix membranes are very effective in 
the separation of gaseous mixtures. They are also used to purify a mixture of gases 
by removing the unwanted species from the mixture (for example, purification of 
natural gas by removing carbon dioxide). They offer an advantageous blend of the 
properties of filler particles and polymer matrix. Compared to single-phase poly-
meric membranes often used in gas separation, the mixed matrix membranes offer 
higher permeability and selectivity. The presence of shape- and size-selective pores 
in the molecular-sieving filler particles leads to superior separation characteristics. 
Examples of inorganic filler material used in mixed matrix membranes are zeolites 
and carbon molecular sieves. Zeolites and carbon molecular sieves have high sur-
face area, high void volume, and uniform pore size distribution, and hence, they are 
the most promising candidates as inorganic fillers for mixed matrix membranes. 
The mixed matrix membranes are also easy to handle, process, and manufacture 
as compared with inorganic membranes, which are inherently brittle and fragile. 
Table 1.1 presents the permeability and permselectivity data for mixed membranes 
studied by Vu et al. [32] for the separation of CO2/CH4 and O2/N2 mixtures. The 
continuous phase of these filled polymer composite membranes was polyetherimide 
(Ultem 1000), and the filler particles were carbon molecular sieves (CMS 800-2). 
The addition of 35 vol.% filler to the polymer increases the permeability of CO2 by 
nearly 210% and the permeability of O2 by about 187%, as compared with the cor-
responding permeabilities in the pure polymer matrix. The permselectivities of CO2 
and O2 are enhanced by nearly 38% and 9.6%, respectively, as compared with the 
corresponding permselectivities of the pure polymer matrix.

Particulate-filled polymer composite membranes are finding applications in 
polymer-electrolyte-membrane (PEM)-based fuel cells as well [37]. In the PEM fuel 

TABLE 1.1
Permeability and Permselectivity Data for Mixed Membranes Studied 
by Vu et al. [32] for the Separation of CO2/CH4 and O2/N2 Mixtures

Mixed-Matrix Membrane
Permeability (Barrer) Permselectivity

CO2 CH4 O2 N2 CO2/CH4 O2/N2

Matrix: Ultem 1000 
(polyetherimide)

1.45 0.037 0.38 0.052 38.8 7.3

Filler: CMS 800-2
(carbon molecular sieves)

44 0.22 22 1.65 200 13.3

35 vol.% filler (CMS 800-2) 4.48 0.083 1.09 0.136 53.7 8
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cells, the proton conductivity and mechanical strength of polymer electrolyte mem-
brane could be improved significantly by filling the polymer matrix with inorganic 
particles of high proton conductivity.

Particulate-filled PMCs are widely used in the manufacture of coating materials. 
For example, particulate-filled polymer composite coatings of controlled thermal 
emissivity are applied on surfaces for the enhancement or reduction of radiative heat 
losses [38–46]. Particulate-filled PMCs are also used for the preparation of anticor-
rosive barrier coatings [47–49]. The corrosion and rust formation on iron involves 
the following steps:

 Fe (s) → Fe2+ (aq) + 2e− (1.1)

 O2 (g) + 2H2O (l) + 4e− → 4OH− (aq) (1.2)

 Fe2+ (aq) + 2OH− (aq) → Fe(OH)2 (s) (1.3)

 4Fe(OH)2 (s) + O2 (g) → 2Fe2O3 • H2O (s) + 2H2O (l) (1.4)

Thus, corrosion can be prevented by coating the surface of metal with a layer of 
particulate-filled polymer composite designed to have a very low permeability for 
H2O and O2 so as to cut off the supply of H2O and O2 to the metal surface.

In the electronics industry, where there is major emphasis on miniaturization and 
increasing power of electronic devices, particulate-filled PMCs of controlled thermal 
conductivity are used as conductors of heat so that the heat generated in the devices 
is dissipated away as quickly as possible in order to maintain the temperature of the 
device at the desired level [50]. Likewise, PMCs of designed electromagnetic prop-
erties (electrical conductivity, dielectric constant, magnetic permeability) find many 
applications in the electrical and electronic industries [51–54].

Immiscible polymer/polymer blends are also used widely in commercial and 
industrial applications [1]. For example, immiscible blends of polypropylene (PP) 
and ethylene–propylene–diene rubber (EPDM) are used in wire and cable insulation, 
automotive bumpers, hose, gaskets, seals, and weather stripping [55,56].

The electromagnetic, mechanical, and transport properties of particulate-filled 
composite materials depend on factors such as (i) the volume fraction of the dis-
persed phase, (ii) the geometry of the dispersed phase (shape, size, and size distribu-
tion), and (iii) the properties of the constituent phases. In order to make efficient use 
of composite materials in commercial and industrial applications, it is important to 
know the variations of the electromagnetic, mechanical, and transport properties 
with the kind, shape, and concentration of filler particles.
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2 Electrical Conductivity 
of Composites

To make efficient use of composite materials, the variations of physical properties 
such as electrical conductivity with the kind and concentration of filler particles 
should be known. For example, electrically nonconducting particles are often added 
to a metal matrix to enhance the mechanical properties. However, the addition of 
nonconducting particles can decrease the electrical conductivity of the metal by a 
significant amount. From a practical point of view, it is important to be able to pre-
dict this decrease in electrical conductivity with the increase in volume fraction of 
insulating filler. Likewise, it is important to be able to predict the increase in electri-
cal conductivity of an insulating matrix with the increase in electrically conduct-
ing filler content; many practical applications in electronics and electrical industries 
require electrically conductive polymer composites (composites of nonconducting 
polymer matrix and electrically conducting filler particles).

2.1  BACKGROUND

The electrical conductivity (σ) of a material is a measure of its ability to conduct 
electrical current. The exact definition of σ comes from Ohm’s law of electric con-
duction, given as

 
� �
J E= σ  (2.1)

where 
�
J is current density (current per unit area, amp/m2), 

�
E is the electric field 

(volts/m) in the medium, and σ is conductivity (Siemens/m). According to Ohm’s 
law, the current density at a given location in a conductor is proportional to the 
electric field strength at that location and the proportionality constant is a material 
property called electrical conductivity.

Consider one-dimensional current conduction in a straight wire oriented in the 
x-direction. Let ΔV be the potential difference between the beginning and the end of 
a wire. The electric field, uniform and oriented along the length of the wire, is given as

 Ex = ΔV/L (2.2)

where L is the length of the wire. Ohm’s law in this case of one-dimensional current 
conduction in x-direction reduces to

 Jx = σEx (2.3)
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or

 
I
A

V
L

=




σ Δ

 (2.4)

where I is the current and A is the cross-sectional area of the conductor. Thus, for a 
given voltage gradient (ΔV/L), the current flux increases with the increase in electri-
cal conductivity. Note that ΔV is voltage drop, that is, V1 – V2.

2.2  ELECTRICAL CONDUCTIVITY OF COMPOSITES

Over the past several decades, a number of experimental and theoretical studies have 
been published in the literature on the electrical properties of particulate composites 
[1–26]. In what follows, the key empirical and theoretical models describing the 
electrical conductivity of particulate composites are discussed.

2.2.1  Empirical rulEs of mixturEs

According to the Voigt rule of mixture (ROM), the electrical conductivity of a com-
posite material is given as

 σ = ϕσd + (1 − ϕ)σm (2.5)

where σ, σd, and σm are the electrical conductivities of composite, dispersed phase 
and matrix, respectively, and ϕ is the volume fraction of filler particles. This formula 
can be derived by considering two electrical conductors, matrix and dispersed phase, 
in parallel with the same voltage gradients but with composite current flux propor-
tional to the content of individual phases, that is,

 
Δ Δ ΔV
L

V
L

V
Lm d





 =





 =





  (2.6)

 J = (1 − ϕ)Jm + ϕJd (2.7)

where (ΔV/L), (ΔV/L)m, and (ΔV/L)d are the voltage gradients in composite, matrix, 
and dispersed phase, respectively, and J, Jm, and Jd are the current fluxes in compos-
ite, matrix, and dispersed phase, respectively. Note that the current fluxes are addi-
tive due to parallel arrangement of the matrix and dispersed phase. From Ohm’s law,

 J
V
L

J
V
L

J
V
Lm m

m
d d

d

=




 =





 =





σ σ σΔ Δ Δ

, ,  (2.8)

Upon substituting the expressions for current fluxes from Equation 2.8 into 
Equation 2.7 and realizing that the voltage gradients are the same, one can readily 
arrive at the Voigt ROM (Equation 2.5).



13Electrical Conductivity of Composites

According to another ROM, namely the Reuss ROM, the electrical conductivity 
of a composite material is given as

 1/σ = [ϕ/σd] + [(1 − ϕ)/σm] (2.9)

This formula can be derived by considering two electrical conductors, matrix and 
dispersed phase, in series with the same current fluxes but with composite voltage 
gradient proportional to the content of individual phases, that is,

 J = Jm = Jd (2.10)

 
Δ Δ ΔV
L

V
L

V
Lm d





 = −





 +





( )1 φ φ  (2.11)

Note that the voltage gradients are additive due to series arrangement of the 
matrix and dispersed phase. From Ohm’s law,

 
Δ Δ ΔV
L

J V
L

J V
L

J

m

m

m d

d

d





 =





 =





 =

σ σ σ
, ,  (2.12)

Upon substituting the expressions for voltage gradients from Equation 2.12 into 
Equation 2.11 and realizing that the current fluxes are the same, one can readily 
arrive at the Reuss ROM (Equation 2.9).

The Voigt and Reuss ROMs are special cases of the following more general mix-
ing rule:

 σ φσ φ σn
d
n

m
n= + −( )1  (2.13)

When n = 1, Equation 2.13 reduces to the Voigt ROM and when n = –1, the Reuss 
ROM is recovered. Another mixing rule that is widely recognized is the Lichtenecker 
logarithmic rule, given as

 log(σ) = ϕ log(σd) + (1 − ϕ)log(σm) (2.14)

2.2.2  thEorEtical modEls

For an infinitely dilute composite of spherical filler particles, the exact expression for 
the effective electrical conductivity is given by

 
σ

σ
σ σ

σ σ
φ

m

d m

d m

= + −
+







1 3
2

 (2.15)
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where σ, σm, and σd are the electrical conductivities of composite, matrix, and filler 
(dispersed phase), respectively, and ϕ is the volume fraction of filler. This equation 
can be rewritten as

 σ λ
λ

φr = + −
+





1 3

1
2

 (2.16)

where σr is the relative electrical conductivity defined as σ/σm and λ is the electrical 
conductivity ratio defined as σd/σm.

For composites with electrically nonconducting filler particles and conducting 
matrix, λ → 0 and Equation 2.16 reduces to

 σ φr = −1
3
2

 (2.17)

For composites with conductive filler particles and nonconductive matrix, λ → ∞, 
and Equation 2.16 becomes

 σr = 1 + 3ϕ (2.18)

Maxwell [1] developed an equation for the electrical conductivity of particulate 
composites using the effective medium approach. Consider a cluster of particles 
embedded in an infinite matrix of electrical conductivity σm. The cluster of particles, 
enclosed by a spherical region of radius R, consists of n spherical particles of radius 
“a” and electrical conductivity σd. The system is subjected to an electric potential 
field with a uniform potential gradient of α′ at r → ∞. The voltage potential distribu-
tion at r → ∞ is given as V(r, θ) = α′z, where z = rcosθ. Assuming negligible interac-
tion between the particles, the voltage potential at a radial distance r (r >> R) from 
the center of the spherical cluster region R is

 V r n
r

= ′ +




α β θ1

2
cos  (2.19)

where the constant β is given by

 β σ σ
σ σ

α= −
+







′m d

d m

a
2

3  (2.20)

Since ϕ = n (a/R)3, Equation 2.19 can be rewritten as

 V r R
r

m d

d m

= ′ + −
+















α φ σ σ

σ σ
θ3

22
1

cos  (2.21)
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Now if the cluster of particles is treated as an “effective homogeneous medium” 
of radius R and electrical conductivity σ, suspended in a matrix of conductivity σm, 
the potential at any radial location r (>> R) is given as

 V r R
r

m

m

= ′ + −
+















α σ σ

σ σ
θ3

22
1

cos  (2.22)

Since the two expressions, Equations 2.21 and 2.22, are equivalent, it follows that

 
σ σ

σ σ
σ σ

σ σ
φ−

+






= −
+







m

m

d m

d m2 2
 (2.23)

This is the celebrated Maxwell equation for the electrical conductivity of particu-
late composites. It can be rearranged as

 σ σ
σ

φ λ
λ

φ λ
λ

r
m

= =
+ −

+






− −
+




















1 2
1
2

1
1
2





 (2.24)

where λ is the electrical conductivity ratio σd/σm. In the limit ϕ → 0, Equation 2.24 
reduces to Equation 2.16.

Bruggeman [4] used a differential scheme along with the result for a dilute par-
ticulate composite, Equation 2.15, to develop the following equation for concentrated 
particulate composites:

 
σ σ

σ σ
σ
σ

φd

d m

m−
−











 = −

1
3

1  (2.25)

This equation is often referred to as the Bruggeman asymmetric rule. When λ → 0, 
the Bruggeman equation reduces to

 σ σ
σ

φr
m

= = −( ) /1 3 2  (2.26)

When λ → ∞, the Bruggeman equation gives

 σr = (1 − ϕ)−3 (2.27)

One drawback of the equations discussed thus far is that they fail to predict the 
correct behavior when ϕ → ϕm, where ϕm is the maximum packing volume fraction 
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of particles. For random close packing of uniform spheres, ϕm is 0.637. When the 
electrical conductivity ratio is large, that is, λ (= σd/σm) → ∞, the electrical conductiv-
ity of a composite is expected to approach infinity at ϕ → ϕm.

Pal [22] recently developed new models for the electrical conductivity of particu-
late composites. He first generalized the exact expression for the electrical conduc-
tivity (Equation 2.15) of infinitely dilute composite of filler particles as follows:

 
σ

σ
α σ σ

σ σ
φ

m

d m

d m

= + −
+







1 3
2

 (2.28)

where α is a “correction factor” of the order of unity to account for the devia-
tions from the assumptions made in the derivation of Equation 2.15. For example, 
most particulate composites of practical interest consist of nonspherical irregular-
shaped fillers. Even the equiaxed particle fillers used in particulate composites are 
nonspherical. Furthermore, some interfacial additive is almost always present at 
the interface of particle–matrix.

Equation 2.28 cannot be applied at finite concentration of particles, as the interac-
tion between the particles is not considered in its derivation. To extend the applica-
bility of Equation 2.28 to concentrated systems, Pal [22] used a differential effective 
medium approach. According to the differential effective medium approach, a con-
centrated composite is considered to be obtained from an initial matrix phase by 
successively adding infinitesimally small quantities of particles to the system until 
the final volume fraction of filler is reached. The incremental change in electrical 
conductivity upon the addition of an infinitesimally small quantity of particles to the 
system can be determined from Equation 2.28 as

 d dd

d

σ ασ σ σ
σ σ

φ= −
+









3

2
 (2.29)

This equation can be rewritten as

 
1

3
1 3

α σ σ σ
σ φ+

−








 =

d

d d  (2.30)

Upon integration with the limit σ → σm at ϕ → 0, Equation 2.30 gives

 
σ

σ
σ σ
σ σ

α φ
m

d m

d











−
−







=

1
3

exp ( )  (2.31)

or

 σ λ
λ σ

α φr
r

1 3 1/ exp ( )
−

−






=  (2.32)



17Electrical Conductivity of Composites

Equation 2.31 or 2.32, referred to as Model 1, is expected to describe the electri-
cal conductivity of particulate composites at low to moderate values of ϕ (volume 
fraction of particles). This is because in the derivation of the differential equation 
(Equation 2.29) leading to Model 1 (Equation 2.31), it is assumed that all the volume 
of the existing composite, before a differential quantity of new particles are added 
to the existing composite, is available as free volume to the new particles. In real-
ity, the free volume available to disperse the new particles is significantly less, due 
to the volume preempted by the particles already present. This means that when a 
differential quantity of new particles is added to the existing composite, the increase 
in the actual volume fraction of the dispersed phase is larger than dϕ. The increase 
in the volume fraction of the dispersed phase is dϕ/(1 – koϕ) where ko accounts for 
the “crowding effect” caused by packing difficulties of particles. ko is equal to 1/ϕm, 
where ϕm is the maximum packing volume fraction of particles. Thus, Equation 2.30 
should be rewritten as

 
1

3
1 3

1α σ σ σ
σ φ

φ φ
+

−








 =

−d m

d
d
( / )

 (2.33)

Upon integration with the limit σ → σm at ϕ → ϕm, Equation 2.33 gives

 
σ

σ
σ σ
σ σ

φ
φ

α φ

m
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d m
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−
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−1
3

1  (2.34)

or

 ( )σ λ
λ σ

φ
φ

α φ
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r m

m1
3 1

1
−

−






= −






−

 (2.35)

Equation 2.34 or 2.35, referred to as Model 2, reduces to the following expression 
when highly conducting particles are dispersed in a nonconducting matrix such that 
λ → ∞:

 σ φ
φ

α φ

r
m

m

= −






−

1
3

 (2.36)

For insulating particles dispersed in a conducting matrix such that λ → 0, Model 2 
reduces to

 σ φ
φ

α φ

r
m

m

= −






1

3

2

 (2.37)
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It should be noted that the Bruggeman asymmetric equation (Equation 2.25) is a 
special case of Model 2 when α = 1 and ϕm = 1. Interestingly, Model 2 predicts the 
relative electrical conductivity of a particulate composite to be infinite when λ → ∞ 
and ϕ → ϕm, as expected.

Figure 2.1 shows the predictions of the relative electrical conductivity of particu-
late composites as a function of conductivity ratio λ using Model 2 (Equation 2.35) 
with ϕm = 0.637 and α = 1.0. When the electrical conductivity ratio is unity, the 
relative conductivity σ/σm of composite is unity for all values of ϕ. For λ < 1.0, σ/σm 
decreases with the increase in ϕ. For λ > 1.0, σ/σm increases with the increase in ϕ.

Upon comparison of experimental data with the model predictions (see Figures 
2.2 through 2.4), it is found that model 1, Equation 2.31, gives good predictions of 
electrical conductivity of composites only at low volume fractions of the dispersed 
phase. This is not unexpected, as this model does not consider the crowding effect of 
particles. Model 2 (Equation 2.34) describes the experimental data adequately over 
a wide range of the volume fraction of filler ϕ.

Another useful model, presented here for the first time without proof, which con-
siders the crowding effect of particles, is the following generalization of Equation 
2.32:

 σ λ
λ σ

αφ
φ

φ

r
r

m

1 3 1

1

/ exp
−

−






=
−















 (2.38)
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FIGURE 2.1 Effect of volume fraction of filler particles (ϕ) on the relative electrical con-
ductivity σ/σm. The plots are generated from Model 2 (Equation 2.35) using α = 1 and ϕm = 
0.637. (From Pal, R., J. Composite Mater. 41: 2499–2511, 2007.)
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The Lewis–Nielsen model [27–30] also considers the crowding effect of particles. 
Lewis and Nielsen [28–30] modified and adapted the Halpin–Tsai equation for elas-
tic moduli of composite materials to conductivity of particulate-filled composites. 
The Lewis–Nielsen equation is given as

 σ

λ
λ

φ

φψ λ
λ

r

A
A

A

=
+ −

+






− −
+

























1
1

1
1

 (2.39a)
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FIGURE 2.2 Comparison between experimental σ/σm data of particulate composites and 
Models 1 and 2. The values of α and ϕm used in the models are indicated in the figure. Note 
that the same value of α is used in Models 1 and 2. (From Pal, R., J. Composite Mater. 41: 
2499–2511, 2007.)
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where

 ψ φ
φ

φ= + −





1
1

2
m

m

 (2.39b)

Pal [27] has suggested a value of 2 for A. If A = 2, the Lewis–Nielsen model 
reduces to the Maxwell model when ϕm is unity. Equation 2.39a with A = 2 is evaluated 
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Models 1 and 2. The values of α and ϕm used in the models are indicated in the figure. Note 
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by Pal [27] using a number of experimental data sets available on the electrical con-
ductivity of particulate composites. The model is found to describe the experimental 
data reasonably well (see Figures 2.5 and 2.6).

2.3  ELECTRICAL PERCOLATION IN COMPOSITES

Composites of metal particles and insulator matrix exhibit percolation behavior. 
They act like insulators when the volume fraction of the particles is below a certain 
value, referred to as percolation threshold. At filler volume fractions below the per-
colation threshold, the conductor metal particles are either isolated or form small 
aggregates/clusters. The composite is an insulator, as no electrical conducting path 
exists connecting the opposite ends of the sample. As the volume fraction of the filler 
particles is increased, the average size of the clusters increases. At the threshold con-
centration of filler, a large cluster is formed which connects the opposite ends of the 
sample and therefore electric current percolates through the composite. With further 
increase in the filler concentration, the density of the cluster increases and many 
more conducting paths are formed in the composite. Consequently, the electrical 
conductivity of composite increases sharply with the increase in filler concentration 
above the threshold value.

The conductivity models described in the preceding section are inadequate to 
describe the percolation behavior of composites. The Maxwell and Bruggeman asym-
metric models predict percolation threshold of unity. When applied to metal–insulator 
composites (high λ), these models predict the electrical conductivity of composite 
to be closer to the matrix conductivity until the composite is completely filled with 
filler particles where the composite conductivity rapidly approaches the conductivity 
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FIGURE 2.4 Comparison between experimental σ/σm data of particulate composites and 
Models 1 and 2. The values of α and ϕm used in the models are indicated in the figure. Note 
that the same value of α is used in Models 1 and 2. (From Pal, R., J. Composite Mater. 41: 
2499–2511, 2007.)
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of metal filler. The models of Pal and Lewis–Nielsen predict percolation at ϕ → ϕm. 
According to these models, the conductivity of metal–insulator composite diverges 
at ϕ → ϕm. However, experimental studies indicate that the percolation threshold 
of composites consisting of interacting particles can be much smaller than ϕm, the 
maximum packing concentration of particles. Thus, these models can be applied 
to percolating composites only when ϕm is interpreted as the percolation threshold 
concentration of filler particles.
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FIGURE 2.5 Comparisons between experimental electrical conductivity data and predic-
tions of the Lewis–Nielsen model. (From Pal, R., Composites A. 39: 718–726, 2008.)
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Probably the first model capable of describing electrical percolation behav-
ior of composites was developed by Bruggeman [4]. His model, referred to as the 
Bruggeman symmetric rule, is given as follows:
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This equation is quadratic in σ. Of its two solutions, only the following one is 
physically possible:

 σ σ σ= + +( )1
4

82q q m d  (2.41)

where

 q = (3ϕ − 1)σd + (2 − 3ϕ)σm (2.42)

This solution could be rewritten as

 σ λr r rq q= + +( )1
4

82  (2.43)
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FIGURE 2.6 Comparisons between experimental electrical conductivity data and predic-
tions of the Lewis–Nielsen model. (From Pal, R., Composites A. 39: 718–726, 2008.)
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where λ is the conductivity ratio σd/σm and qr is given as follows:

 qr = (3ϕ − 1)λ + (2 − 3ϕ) (2.44)

Figures 2.7 and 2.8 show the predictions of the Bruggeman symmetric model for 
λ = 1000. For comparison purposes, the predictions of the Bruggeman asymmetric 
model are also shown. The same data are plotted on semilog and linear scales. The 
symmetric model predicts a sharp rise in the conductivity when percolation thresh-
old of about 0.33 is reached. The asymmetric model predicts a sharp rise in conduc-
tivity only when ϕ is close to unity.

Although the symmetric Bruggeman model predicts the percolation effect in 
composites with high electrical conductivity contrast, its main drawback is that the 
percolation threshold predicted is fixed, that is, 0.33. It is well known that the per-
colation threshold in composites varies from one system to another depending on 
the nature of particle–particle interactions and particle–matrix interactions and the 
shape of particles.
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The following General Effective Media (GEM) model of McLachlan [15, 23–26] is 
widely used to describe the percolation behavior of conductor–insulator composites:
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where f is the volume fraction of low-conductivity component, fc is the critical vol-
ume fraction (percolation threshold) of low-conductivity component, σl is the con-
ductivity of low-conductivity component, σh is the conductivity of high-conductivity 
component, σ is the conductivity of the composite, and t is an exponent.

For composites of nonconducting particles and conducting matrix (λ = σd/σm < 1.0), 
the GEM model (Equation 2.45) reduces to
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where ϕ is the volume fraction of the dispersed phase (nonconducting particles), ϕc is 
the critical value of ϕ, and σr is the relative conductivity of composite, defined as σ/σm.
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For composites of conducting particles and nonconducting matrix (λ = σd/σm > 
1.0), the GEM model (Equation 2.45) reduces to
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where ϕ is the volume fraction of the dispersed phase (conducting particles in the 
present case) and ϕc is the critical value of ϕ.

The GEM model (Equation 2.45) in its asymptotic form reduces to the following 
percolation expressions [15,27]:
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Interestingly, the Pal model (Equation 2.35) gives similar expressions in the limit-
ing cases of λ → ∞ and λ → 0 (see Equations 2.36 and 2.37). However, the exponent 
in the Pal model is not the same in two cases of λ → ∞ and λ → 0. When λ → ∞, the 
Pal model predicts t = 3α ϕm and when λ → 0, the Pal model gives t = 1.5 α ϕm. The 
GEM model assumes the same value of the exponent “t” in the two cases [15,26].

For the nonpercolating systems (ϕc = 1), the GEM model gives the following 
expressions for the relative conductivity (σr):

 σr = {1 − ϕ(1 − λ−1/t)}t (when λ > 1) (2.50)

 σr = {1 − ϕ(1 − λ1/t)}t (when λ < 1) (2.51)

2.4  PHASE INVERSION IN COMPOSITES

The phenomenon of phase inversion whereby the dispersed and matrix phases of a 
composite are interchanged suddenly is encountered in the production, mixing, pro-
cessing, and handling of emulsion-type composite fluids. For example, a water-in-oil 
emulsion consisting of water droplets dispersed in a continuum of oil phase can, under 
certain conditions, invert suddenly into an oil-in-water emulsion consisting of oil drop-
lets dispersed in a continuum of aqueous phase. This phase inversion phenomenon is 
often observed in oil production and related operations. Phase inversion in emulsions 
can be induced by increasing the volume fraction of the dispersed phase. According 
to a simple theory proposed by Ostwald [31,32] based on geometrical grounds, phase 
inversion in emulsions occurs sharply at a dispersed phase volume fraction of 0.74. 
This is the volume fraction of dispersed phase corresponding to hexagonal close 
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packing of uniform spheres. When the dispersed phase volume fraction of an emul-
sion exceeds 0.74, the emulsion droplets become more densely packed than the closest 
possible packing of droplets and therefore, inversion of phases takes place. However, 
it should be noted that when the droplets are not uniform in size, the densest pack-
ing volume fraction of droplets can far exceed a value of 0.74. This simple theory of 
Ostwald is often found to be inaccurate as factors other than the volume fraction of 
the dispersed phase also play a role in the phase inversion phenomenon. The phase 
inversion of emulsions could be hastened or delayed by the addition of surfactants and 
nanoparticles to the emulsion. In the absence of any additives (surfactants, solid par-
ticle stabilizers such as interfacially active nanoparticles, etc.), Pal [33] found that the 
inversion of water-in-oil emulsion (prepared from refined mineral oil of viscosity 2.41 
mPa.s at 25°C and tap water) to oil-in-water emulsion occurred at a dispersed phase 
(water) volume fraction of about 0.42. This value is much lower than the Ostwald value 
of 0.74. Binks and Lumsdon [34] found that emulsions prepared from hydrophilic 
nanoparticles, initially located in the water phase, were of the oil-in-water type up to 
an oil volume fraction of about 0.70. The oil-in-water emulsion inverted to water-in-oil 
emulsion when the oil volume fraction was increased above 0.70. When hydrophobic 
nanoparticles were added to the oil phase, the emulsions were of water-in-oil type up to 
a water volume fraction of about 0.70. Inversion of water-in-oil emulsion to oil-in-water 
emulsion occurred above the water volume fraction of 0.70. Thus, phase inversion in 
the emulsions investigated by Binks and Lumsdon [34] occurred close to the Ostwald 
value of 0.74.

Upon inversion of emulsions, a sharp change in the electrical conductivity of emul-
sion occurs. For example, a sharp increase in conductivity occurs upon inversion of 
water-in-oil emulsion to oil-in-water emulsion as the conductive phase becomes the 
matrix phase upon inversion. Figure 2.9a shows the electrical conductivity data for 
emulsions without any additives (surfactants or solid nanoparticle stabilizer). The 
viscosity of the oil used was 22.9 mPa.s at 25 °C. At low volume fractions of water, 
the emulsion is of the water-in-oil type. A sharp increase in conductivity occurs at 
a water volume fraction of about 0.33 due to phase inversion. For water-in-oil emul-
sions, σm = 0 as the oil phase is nonconductive. Thus, the symmetric Bruggeman 
expression (Equation 2.41) reduces to

 σ σ φ φ= = − ≥q d

2 2
3 1 1 3( ), /  (2.52)

where ϕ is the volume fraction of water and σd is conductivity of water. The prediction 
of this equation is shown on the plot. The percolation threshold concentration of water 
droplets is 1/3. This concentration coincides with the phase inversion concentration. 
For oil-in-water emulsions, σd = 0 as oil is nonconductive. Thus, Equation 2.41 becomes

 σ σ φ φ= = −




 ≤q

m2
1

3
2

2 3, /  (2.53)

where ϕ is the volume fraction of oil and σm is conductivity of water. This equa-
tion gives the same values of emulsion conductivity as the previous equation. The 
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percolation threshold concentration of oil is 2/3. Thus, the electrical conductivity 
models for percolating composites could probably be applied to unstable emulsions 
(no additives) without specifically taking into consideration the inversion of phases. 
Phase inversion is taken care of by the percolation phenomenon. The concentra-
tion of dispersed phase where phase inversion occurs corresponds to the percolation 
threshold concentration. The conductivity plot generated by the model is the same 
regardless of whether water droplets are assumed to be the dispersed phase or oil 
droplets are assumed to be the dispersed phase.

Figure 2.9b compares the electrical conductivity versus dispersed-phase volume 
fraction plots for emulsions, with and without additive. The additive is hydrophobic 

0.001

0.01

0.1

1

10

100

1000

10,000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

El
ec

tr
ic

al
 co

nd
uc

tiv
ity

 (µ
S/

cm
)

Volume fraction of water

No
additives

Bruggeman
model

Experimental
data

0.001

0.01

0.1

1

10

100

1000

10,000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

El
ec

tr
ic

al
 co

nd
uc

tiv
ity

 (µ
S/

cm
)

Volume fraction of water

Bruggeman
model

No additive

Hydrophobic solid
nanoparticles as
interfacial additive
(1% wt. based on oil)

1

(a)

(b)

FIGURE 2.9 (a) Phase inversion in composite emulsion-based fluid without any additives 
(surfactants or solid nanoparticle stabilizer). (b) Influence of hydrophobic nanoparticles on 
phase inversion of composite emulsion-based fluids.
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silica nanoparticles, added to the oil phase at a concentration of 1% wt. based on oil. 
Clearly, the addition of hydrophobic nanoparticles to the oil phase delays the inver-
sion of water-in-oil emulsion to oil-in-water emulsion [35]. In addition, the symmet-
ric Bruggeman model is no longer valid.
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3 Dielectric Properties 
of Composites

Materials with negligible electrical conductivity and high polarizability are referred 
to as “dielectric materials.” Such materials do not possess free charges. However, 
they become polarized upon the application of an external electric field.

The dielectric properties of composites of nonconductive matrix are important 
from both practical and theoretical points of view. Two important practical applica-
tions where knowledge of the dielectric properties is required include (1) microwave 
heating of composite materials and (2) measurement of the composition of compos-
ite materials. As the dielectric properties of composite materials are dependent on 
their composition, the composition could be determined by measuring the dielectric 
constant.

3.1  BACKGROUND

When subjected to an external electric field, the molecules or atoms of a dielectric 
material undergo charge separation. The electron cloud of a molecule shifts in one 
direction and the positive ion core shifts in the opposite direction. Consequently, 
the molecules behave as electric dipoles, and the induced dipole field opposes the 
applied field. In the case of polar dielectric materials, the molecules or atoms possess 
a permanent dipole moment. These dipoles are randomly oriented in the absence of 
the external electric field. Upon the application of the electric field, the permanent 
dipoles become aligned with the applied field.

The key property of a dielectric material is the absolute dielectric permittivity 
(εabs), which is related to electric susceptibility (χ) as follows:

 εabs = (1 + χ)εo (3.1)

where εo is vacuum permittivity, equal to 8.854 × 10−12 farad/m. The electric suscep-
tibility χ is a measure of the degree of polarization of a material in response to an 
electric field (χ = 0 for vacuum).

The key relation describing the dielectric behavior of a material is as follows:

 
� �
D Eabs= ε  (3.2)

where 
�
D is the electric flux density (also known as electric displacement) which has 

units of coulomb/m2, and 
�
E is the electric field strength. The units of εabs and 

�
E are 

farad/m and volt/m, respectively. According to Equation 3.2, the electric flux density 
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is directly proportional to the electric field strength in the medium. The proportionality 
constant is the property of the medium called absolute permittivity. As εabs = εo ε, where 
ε is the relative permittivity or dielectric constant (dimensionless), one can rewrite the 
electric flux density equation as

 
� �
D Eo= ε ε  (3.3)

Equation 3.1 can be interpreted in terms of a parallel plate capacitor. The electric 
flux density is the amount of free or unbounded charge on the capacitor plates per 
unit area, that is, D = σf, where σf is free charge per unit area of the plate. In the 
absence of any dielectric material between the plates of a capacitor, the electric field 
strength between the plates is

 Evacuum = σf/εabs = σf/εo (3.4)

Note that ε = 1 for vacuum. With the introduction of a dielectric material (ε > 1) 
between the plates, the electric field strength is reduced (assuming constant free charge 
density σf) as

 E = D/εabs = σf/εoε (3.5)

The reduction in the field strength is caused by the polarization of the dielectric. 
Some of the free charge present on the plates is now neutralized by the induced 
(bound) charge on the surface of the dielectric.

Combining Equations 3.1 and 3.2 gives

 
� �
D Eo= +( )1 χ ε  (3.6)

For a fixed amount of free charge (fixed 
�
D), 

�
E is reduced upon the introduction of 

the dielectric between the capacitor plates as χ > 0 for the dielectric. This equation 
could also be rewritten as

 
� � �
D E Po= +ε  (3.7)

where 
�
P is the polarization density vector, given as 

� �
P Eo= χε . The polarization den-

sity is a measure of the average induced dipole moment per unit volume of the dielec-
tric material. It is also given as 

� �
P Np=  where N is the number of molecules per unit 

volume and 
�
p is induced dipole moment of an individual molecule. The polarization 

vector is parallel to 
�
E and it points from the negative charge towards the positive 

charge (this convention is opposite to that used for the electric field).
Finally, it should be noted that if the electric field strength between the parallel 

plates of a capacitor is kept constant and the free-charge density σf is made variable 
by connecting the capacitor to an external current source of constant voltage, then 
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the introduction of a dielectric material between the plates will result in an increase 
in the free charge density or electric displacement (thus increasing the capacitance 
of the capacitor). Thus for a given electric field strength, higher the dielectric permit-
tivity (or electric susceptibility) of the medium, greater is the free-charge density.

3.2  DIELECTRIC CONSTANT OF COMPOSITES

The dielectric constant or relative permittivity (ε) of composite materials depends on 
several factors such as composition (volume fractions of individual phases), dielec-
tric constant of matrix, and dielectric constant of filler particles. It also depends 
on the shape of particles and morphology (aggregated versus uniformly dispersed 
particles).

A number of empirical and theoretical relations have been developed to predict 
the dielectric behavior of composites [1]. Several empirical relations can be expressed 
in the following form:

 f(ε) = ϕf(εd) + (1 − ϕ)f(εm) (3.8)

where f(ε) is some function of ε, ε is the dielectric constant of composite, εd and 
εm are the dielectric constants of dispersed phase and matrix, respectively. Some 
examples of the form of function f(ε), and the resulting dielectric constant equation 
for composite, are given below:

 f(ε) = ε ⇒ ε = ϕεd + (1 − ϕ)εm (3.9)

 f
d m

( )ε
ε ε

φ
ε

φ
ε

= ⇒ = + −1 1 1
 (3.10)

 f(ε) = logε ⇒ logε = ϕlogεd + (1 − ϕ)logεm (3.11)

The first expression corresponds to the Voigt rule of mixtures, the second one 
corresponds to the Reuss rule of mixtures, and the last one corresponds to the 
Lichtenecker logarithmic rule of mixtures.

Rayleigh [2] was probably the first to develop a model theoretically for the dielec-
tric behavior of dispersions of spherical particles. He analyzed the electrostatic field 
for a simple cubic lattice arrangement of uniform-size spheres and developed the 
following equation for the dielectric constant of composite:
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The Maxwell theory [3] for the electrical conductivity of particulate compos-
ites can be adapted for the dielectric behavior of composites. Consider a cluster of 
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particles embedded in an infinite matrix of dielectric constant εm. The cluster of 
particles, enclosed by a spherical region of radius R, consists of n spherical particles 
of radius “a” and dielectric constant εd. The system is subjected to an electric field 
with a uniform potential gradient of −E at r → ∞. Assuming negligible interaction 
between the particles, the potential at a radial distance r (r >> R) from the center of 
the spherical cluster region R is
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Since ϕ = n(a/R)3, Equation 3.13 can be rewritten as
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Now if the cluster of particles is treated as an “effective homogeneous medium” 
of radius R and dielectric constant ε, suspended in a matrix of dielectric constant εm, 
the potential at any radial location r (>> R) is given as

 V Er E
R

r
m

m

= − + −
+











cos cosθ ε ε

ε ε
θ

2

3

2
 (3.15)

Since the above two expressions, Equations 3.14 and 3.15, are equivalent, it fol-
lows that

 
ε ε

ε ε
ε ε

ε ε
φ−

+






= −
+







m

m

d m

d m2 2
 (3.16)

This equation (Equation 3.16) is given various different names in the literature, 
such as Maxwell–Garnett equation, Maxwell–Wagner equation, Clausius–Mossotti 
equation, Lorentz–Lorentz equation, and Weiner equation. It may be of interest to 
note that Maxwell–Garnett and Maxwell are not related. Maxwell is famous for his 
equations of electromagnetism. Maxwell–Garnett worked on dielectric and optical 
properties of glasses with metallic inclusions [4,5].

The Maxwell–Garnett equation can be rearranged as
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In the limit ϕ → 0, Equation 3.17 reduces to the following expression:
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Interestingly, the Rayleigh expression reduces to the Maxwell–Garnett equa-
tion when the term containing ϕ10/3 in the denominator of the Rayleigh equation 
is neglected. Thus, the Maxwell–Garnett equation is valid for dilute to moderately 
concentrated composites.

The Maxwell–Garnett equation for dilute systems (Equation 3.18) can be extended 
to concentrated systems using the differential effective medium approach. According to 
the differential effective medium approach, a concentrated composite is considered to 
be obtained from an initial matrix phase by successively adding infinitesimally small 
quantities of particles to the system until the final volume fraction of filler is reached. 
The incremental change in dielectric constant upon the addition of an infinitesimally 
small quantity of particles to the system can be determined from Equation 3.18 as
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This equation can be rewritten as
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Upon integration with the limit ε → εm at ϕ → 0, Equation 3.20 gives
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Equation 3.21 is expected to describe the dielectric behavior of particulate com-
posites at low to moderate values of ϕ (volume fraction of particles). This is because 
in the derivation of the differential equation (Equation 3.20) leading to the final 
expression (Equation 3.21), it is assumed that all the volume of the existing compos-
ite, before a differential quantity of new particles are added to the existing composite, 
is available as free volume to the new particles. In reality, the free volume available 
to disperse the new particles is significantly less, due to the volume preempted by the 
particles already present. This means that when a differential quantity of new par-
ticles are added to the existing composite the increase in the actual volume fraction 
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of the dispersed phase is larger than dϕ. The increase in the volume fraction of the 
dispersed phase is dϕ/(1 − ϕ). Thus, Equation 3.20 should be revised as
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Upon integration with the limit ε → εm at ϕ → 0, Equation 3.22 gives
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This is the well-known asymmetric Bruggeman equation [6].
Bruggeman developed another useful relation for the dielectric constant of per-

colating composites [6]. His model, referred to as the Bruggeman symmetric rule, is 
given as follows:
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This equation is quadratic in ε. Of its two solutions, only the following one is 
physically possible:

 ε ε ε= + +( )1
4

82q q m d  (3.25)

where

 q = (3ϕ − 1)εd + (2 − 3ϕ)εm (3.26)

The Bruggeman symmetric rule predicts percolation threshold of 
1
3

, that is, a 

sharp change in the dielectric constant is expected around the dispersed phase vol-

ume fraction of 
1
3

, assuming large contrast between the dielectric constants of dis-

persed and matrix phases.
The models discussed thus far do not consider the influence of particle size, par-

ticle shape, and particle size distribution on the dielectric behavior of composites. 
Aggregation or flocculation of particles is also neglected. The Bruggeman symmet-

ric model predicts percolation at a dispersed phase volume fraction of 
1
3

. This may 

not be the case for all composite systems, especially when the particles are nonspher-
ical and the particle size distribution is wide. To overcome some of these problems, 
Pal [7] proposed the following model for the dielectric behavior of composites:
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where ϕm is the maximum packing volume fraction of filler particles. This equation 
reduces to the Bruggeman asymmetric model when ϕm → 1. The Pal model takes 
into account the effects of particle size distribution and morphology on the dielec-
tric constant through the parameter ϕm. The maximum packing volume fraction of 
filler particles is sensitive to particle size distribution and aggregation of particles. 
Another useful model, presented here for the first time without proof, which consid-
ers the crowding effect of particles on the dielectric constant is as follows:
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As suggested by Pal [7], the Lewis–Nielsen conductivity model [8–11] could also 
be adapted to describe the dielectric behavior of composites:
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where

 ψ φ
φ

φ= + −





1
1

2
m

m

 (3.29)

The Lewis–Nielsen model is a modification of the Maxwell–Garnett model. 
When ϕm → 1, the Lewis–Nielsen model reduces to the Maxwell–Garnett model.

Figure 3.1 shows the plots of relative dielectric constant ε/εm versus dielectric 
ratio λ (= εd/εm) predicted from the Lewis–Nielsen model (Equation 3.28) for dif-
ferent values of filler concentration ϕ. The maximum packing volume fraction ϕm is 
taken to be 0.64 corresponding to random close packing of uniform spheres. When 
the dielectric ratio λ is unity, the relative dielectric constant is unity regardless of 
the value of filler concentration ϕ. When λ < 1.0, the relative dielectric constant 
decreases with the increase in ϕ; a reverse trend is observed when λ > 1.0; that is, the 
relative dielectric constant increases with the increase in ϕ.

Figure 3.2 shows the sensitivity of relative dielectric constant to ϕm, the maxi-
mum packing volume fraction of particles. When λ > 1.0, the relative dielectric con-
stant of particulate composite is quite sensitive to ϕm. The relative dielectric constant 
at any given volume fraction of filler (ϕ) increases with the decrease in ϕm. When 
λ < 1.0, the relative dielectric constant of the composite is not as sensitive to ϕm. 
Furthermore, the relative dielectric constant now decreases with the decrease in ϕm. 
As the maximum packing volume fraction of particles (ϕm) is a strong function of 
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FIGURE 3.1 Relative dielectric constant εr (= ε/εm) versus dielectric ratio λ (= εd/εm) pre-
dicted from the Lewis–Nielsen model for different values of ϕ (volume fraction of filler 
particles).
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FIGURE 3.2 Relative dielectric constant εr (= ε/εm) versus volume fraction of filler particles 
(ϕ) for different values of ϕm, the maximum packing volume fraction of particles.
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particle size distribution and shape of particles, the effects of microstructure (size 
distribution, shape, aggregation of particles) on the relative dielectric constant of 
composite cannot be ignored.

3.3  INFLUENCE OF INTERPHASE REGION ON 
DIELECTRIC BEHAVIOR OF COMPOSITES

The dielectric constant of the material in the interphase region adjacent to the surface of 
the filler particles could be significantly different from that of the matrix due to the pres-
ence of additives such as surfactants and coupling agents at the surface of the particles. 
The covalent bonding of the polymer molecules of the matrix with the surface of the 
filler particles is another possible reason for the difference in the dielectric constants of 
the interphase region and bulk matrix. Thus it is important to investigate the influence of 
interphase region on the dielectric behavior of particle-filled composites.

In order to take into account the influence of the interphase region on the dielec-
tric behavior of composites, the filler particles could be treated as core-and-shell-
type particles. Let the dielectric constants of the core, shell, and matrix be ε3, ε2, 
and ε1, respectively. Let the radius of the core be “a,” the thickness of the shell be 
“d,” and the volume fraction of core in the core-shell particle be ϕc. Note that 
ϕc = (a/(a + d))3 = 1/δ3 where δ is the ratio of outer radius of interfacial shell to core 
radius. Now consider a cluster of core-shell particles embedded in an infinite matrix 
of dielectric constant ε1. The cluster of core-shell particles, enclosed by a spherical 
region of radius R, consists of n spherical core-shell particles. The system is sub-
jected to an electric field with a uniform potential gradient of −E at r → ∞. Assuming 
negligible interaction between the core-shell particles, the potential at a radial dis-
tance r (r >> R) from the center of the spherical cluster region R is
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Since the volume fraction of core-shell particles in the dispersion is ϕ = n [(a + d)/R]3, 
Equation 3.30 can be rewritten as
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Now if the cluster of core-shell particles is treated as an “effective homogeneous 
medium” of radius R and dielectric constant ε, suspended in a matrix of dielectric 
constant ε1, the potential at any radial location r (>> R) is given as
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As the above two expressions, Equations 3.31 and 3.32, are equivalent, it follows 
that
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This expression was first developed by Pauly and Schwan [1,12]. Upon rearrange-
ment, this equation could be recast in different forms as shown below:
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where

 βo = (1 + 2ϕc)ε3 + 2(1 − ϕc)ε2 and γo = (1 − ϕc)ε3 + (2 + ϕc)ε2 (3.36)

 β = βo/(ϕcε1) and γ = γo/(ϕcε2) (3.37)

The Pauly–Schwan model, Equation 3.35, reduces to the Maxwell–Garnett model 
when ϕc = 1 (no interfacial shell, δ = 1). However, it is valid only when the volume frac-
tion of core-shell particles ϕ is small to moderate. Furthermore, it does not take into 
consideration the packing limit of particles and the morphology of composite (particle 
size distribution, flocculation/aggregation of particles). To overcome these limitations 
of the Pauly–Schwan model, Pal [7] recently proposed the following model:
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where β and γ are as defined above in Equation 3.37 and ψ is given by Equation 3.29. 
This model reduces to the Pauly–Schwan model when ϕm → 1. When ϕc → 1, that is, 
no interfacial shell, this model reduces to the Lewis–Nielsen model. When ϕm → 1 
and ϕc → 1, the Maxwell–Garnett model is recovered.
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According to the Pal model (Equation 3.38), the relative dielectric constant of a 
composite consisting of particles with interfacial layers can be expressed as

 ε ε
ε

δ λ λ φ φr mf= =
1

21 32( , , , , )  (3.39)

where δ is the ratio of outer radius of interfacial shell to core radius, λ21 = ε2/ε1 and 
λ32 = ε3/ε2. Note that λ31 = λ21λ32 and δ3 = 1/ϕc.

Figure 3.3 shows the relative dielectric constant predicted from the Pal model 
for different values of ϕ, the volume fraction of core plus shell particles. The plots 
are generated from Equation 3.38 under the following conditions: δ = 4/3, λ32 = 
100, ϕm = 0.64. At a fixed value of ϕ, the relative dielectric constant (εr) remains 
constant initially with the increase in the dielectric ratio λ21. In the range 10−2 < 
λ21 < 100, εr increases with the increase in λ21. At higher values of λ21 (λ21 > 100), εr 
again becomes constant (independent of λ21). Interestingly, εr is less than unity for 
small values of λ21 and εr is greater than unity when λ21 is large. For low values of 
λ21, εr decreases with the increase in ϕ. For large values of λ21, εr increases with the 
increase in ϕ.

Figure 3.4 shows the plots of relative dielectric constant εr versus dielectric ratio 
λ21 for different values of radii ratio δ. The plots are generated from Equation 3.38 
under the following conditions: ϕ = 0.55, ϕm = 0.64, λ32 = 1000. The radii ratio δ, 
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FIGURE 3.3 Relative dielectric constant εr (= ε/ε1) versus dielectric ratio λ21 (= ε2/ε1) behav-
ior predicted by the proposed model (Equation 3.38) under the following conditions: δ = 4/3, 
λ32 = 100, and ϕm = 0.64. Note that λ21 is the ratio of interfacial shell dielectric constant to 
matrix dielectric constant, λ32 is the ratio of filler core-particle dielectric constant to interfa-
cial shell dielectric constant, and δ is the ratio of outer radius of interfacial shell to radius of 
filler core-particle.
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FIGURE 3.4 Relative dielectric constant εr (= ε/ε1) versus dielectric ratio λ21 (= ε2/ε1) plots 
for different values of radii ratio δ under the following conditions: ϕ = 0.55, ϕm = 0.64, and 
λ32 = 1000.
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FIGURE 3.5 Effect of dielectric ratio λ32 (ratio of filler core-particle dielectric constant to 
interfacial shell dielectric constant) on the εr versus λ21 behavior under the following condi-
tions: ϕm = 0.64, and δ = 4/3.
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and hence the thickness of the interfacial layer, has a strong influence on the relative 
dielectric constant, especially in the intermediate range of dielectric ratio λ21. At 
very low and very high values of λ21, εr of the composite is independent of the radii 
ratio δ. In the intermediate range of λ21, εr decreases with the increase in δ or the 
shell thickness of the core-shell particle.

The effect of dielectric ratio λ32 on εr versus λ21 behavior of composite is shown 
in Figure 3.5, under the following conditions: ϕ = 0.55, ϕm = 0.64, δ = 4/3. With the 
increase in λ32 (dielectric constant of core material divided by dielectric constant of 
shell material), the relative dielectric constant εr of a composite increases for inter-
mediate values of λ21 (10−2 < λ21 < 100). However, the effect of λ32 on the dielectric 
constant of composite is moderate.
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4 Magnetic Properties 
of Composites

The magnetic properties of composite materials are of interest in many industrial 
applications dealing with electrical and electronic instruments, electrical power gen-
erators and transformers, electric motors, radio, television, telephones, computers, 
audio and video equipment, and household utensils [1–3].

4.1  BACKGROUND

The bulk magnetic properties of materials are due to magnetic moments associated 
with the individual electrons [4]. Each electron in an atom possesses a magnetic 
moment. The magnetic moment of an electron is due to two reasons: (1) orbital rota-
tion and (2) spinning. An electron orbiting around the nucleus produces a magnetic 
moment along the axis of rotation because an orbiting electron or charge is equiva-
lent to a small current loop. The spinning of an electron around an axis produces a 
magnetic moment directed along the spin axis. Thus, each electron of an atom is a 
small magnet with permanent orbital and spin magnetic moments. The net magnetic 
moment of an atom is the vector sum of the magnetic moments of the constitu-
ent electrons, taking into consideration both orbital and spin contributions. In most 
atoms, electrons occur in pairs. Electrons in a pair spin in opposite directions, and 
their magnetic fields cancel each other. Likewise, the orbital moments of paired elec-
trons cancel each other as paired electrons orbit in opposite directions. Therefore, 
atoms consisting of all paired electrons have no net magnetic moment due to total 
cancellation of orbital and spin moments.

In nonmagnetic (diamagnetic) materials, the electrons of an atom are all paired 
up, and therefore, there is no net magnetic moment per atom. In paramagnetic mate-
rials, the atoms consist of some unpaired electrons. Consequently, the atoms pos-
sess a net magnetic moment due to incomplete cancellation of orbital and/or spin 
magnetic moments. The atoms of a ferromagnetic material also possess permanent 
magnetic dipole moment, mainly due to uncancelled electron spins. The contribu-
tion due to orbital magnetic moments is small in comparison with the spin magnetic 
moments. However, ferromagnetic materials exhibit a long-range ordering effect at 
the atomic level meaning that the dipole moments of neighboring atoms align with 
each other to form domains of intense magnetic field.

The bulk samples of diamagnetic and paramagnetic materials do not possess any 
net magnetic moments, in the absence of externally imposed magnetic field. This 
is not unexpected in the case of diamagnetic material, as the atoms of a diamag-
netic material have no net dipole moments. The bulk samples of a paramagnetic 
material, however, do not possess net magnetic moments, as the moments of the 



46 Properties of Composite Materials

individual atoms are randomly oriented in the absence of an external magnetic field. 
Likewise, the bulk samples of ferromagnetic materials also do not generally possess 
a net magnetic moment in the absence of an external magnetic field because of ran-
dom orientation of magnetic domains. However, different materials respond very 
differently to externally imposed magnetic field. Diamagnetic materials become 
only weakly magnetized under the application of the external magnetic field. The 
induced magnetic moment is rather small and is directed in the direction opposite 
to the applied magnetic field. The induced moment is caused by a change in the 
orbital motion of the electrons. Upon the removal of the applied field, the material 
becomes demagnetized. Paramagnetic materials also become weakly magnetized 
upon the application of external magnetic field. When magnetic field is imposed, 
some of the atomic dipoles of the material become aligned with the field, resulting 
in an increase in the strength of the field. The degree of magnetization is small, 
as the dipoles of paramagnetic material do not interact with each other to form 
domains. A large magnetic field is needed to align all the dipoles with the imposed 
field. The magnetization effect in paramagnetic materials disappears upon removal 
of the applied field. Ferromagnetic materials, however, become strongly magne-
tized upon the application of the imposed magnetic field. A large magnetization 
effect is observed even with application of small magnetic fields due to alignment 
of magnetic domains of the material. These materials also tend to stay magnetized 
to some extent even after the imposed magnetic field is removed although all fer-
romagnetic materials become demagnetized above the Curie temperature due to 
thermal agitation.

The key magnetic property of a material is its absolute magnetic permeability 
(μabs), which is related to magnetic susceptibility (χm) as follows:

 μabs = (1 + χm)μo (4.1)

where μo is vacuum permeability, equal to 4π × 10−7 henry/m. The magnetic suscep-
tibility χm is a measure of the degree of magnetization of a material in response to an 
external magnetic field. χm = 0 for vacuum, χm is small but negative for diamagnetic 
materials (χm ≈ −10−5), χm is small but positive for paramagnetic materials (χm ≈ 
10−4), and χm is large and positive for ferromagnetic materials (χm is as large as 106).

The key relation describing the magnetic behavior of a material is given as

 
� �
B Habs= µ  (4.2)

where 
�
B is the magnetic flux density (also known as magnetic induction) in the mate-

rial, which has units of tesla or weber/m2, and 
�
H is the applied or external magnetic 

field (also called magnetic field strength), which has units of amperes/m. Note that 
the external magnetic field could be generated by passing current through a cylindri-
cal coil (called a solenoid). If the coil consists of N closely spaced turns and its total 
length is L, then the produced magnetic field strength H is given as
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 H
NI
L

=  (4.3)

where I is the current passing through the coil. From this equation, the units of H are 
as follows: amperes-turn per meter or simply amperes/m.

According to Equation 4.2, the magnetic flux density is directly proportional to 
the magnetic field strength in the medium. The proportionality constant is the prop-
erty of the medium called magnetic permeability. As μabs = μoμ where μ is the rela-
tive magnetic permeability, one can rewrite the magnetic flux density equation as

 
� �
B Ho= µ µ  (4.4)

Although 
�
B is always in the same direction as the applied field 

�
H, its magnitude 

could be lower or higher depending upon the nature of the material. For example, �
B < 

�
H  for diamagnetic materials and 

�
B >> 

�
H  for ferromagnetic materials.

Combining Equations 4.1 and 4.2 gives

 
� �
B Hm o= +( )1 χ µ  (4.5)

This equation could also be rewritten as

 
� � �
B H Mo= +µ ( )  (4.6)

where 
�
M is the magnetization density vector given as 

� �
M Hm= χ . It should be noted 

that 
�
H is the magnetic field due to “normal or free electric currents” (normal current 

is due to motion of free charge). However, the magnetization 
�
M is due to “bound 

currents” (bound current is current that is “bound up” in electron orbits and is part 
of the material), and 

�
B is magnetic field due to total current, that is, the sum of free 

and bound currents.
When an external magnetic field is applied, the magnetic moments within a mate-

rial become aligned with the applied field. The magnetization density, defined as an 
average induced magnetic moment per unit volume of the material, is a measure of 
the contribution of induced dipole moments to magnetic flux density 

�
B. If the applied 

field strength 
�
H is kept constant (by keeping the current flow through the solenoid 

constant), then the introduction of a magnetic material in the solenoid will result in 
an increase in the magnetic flux density (assuming χm > 0). Thus for a given magnetic 
field strength, higher the relative magnetic permeability (or magnetic susceptibility) 
of the medium, greater is the magnetic flux density.

In what follows, the magnetic properties of composites are discussed. The relative 
magnetic permeability μ is simply referred to as magnetic permeability in the discussion.
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4.2  MAGNETIC PROPERTIES OF COMPOSITES

According to the “Generalized Conductivity Principle” discussed in Chapter 5, 
the equations used for the calculation of dielectric constant ε of composite could 
also be used for the calculation of magnetic permeability μ of composite by sim-
ply replacing ε with μ. This is possible as the electric- and magnetic-field equa-
tions are equivalent in the absence of the electric charge and current sources.

The effective magnetic permeability of a composite material consisting of par-
ticles of magnetic material embedded in a polymeric binder (matrix) is a function 
of the permeabilities of the individual phases and their volume fractions. The key 
equations for estimating the magnetic permeability of composites are as follows 
[5]:

Voigt rule of mixtures:

 μ = μdϕ + (1 − ϕ)μm (4.7)

Reuss rule of mixtures:

 

1 1
µ

φ
µ

φ
µ

= + −
d m  

(4.8)

Lichtenecker logarithmic rule of mixtures:

 logμ = ϕ logμd + (1 − ϕ) logμm (4.9)

Rayleigh equation:
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(4.10)

Maxwell–Garnett equation:
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Pal model 1:
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Bruggeman asymmetric model:
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Bruggeman symmetric model:
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Pal model 2:
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Pal model 3:
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Lewis–Nielsen model:
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(4.17a)

where

 

ψ φ
φ

φ= + −





1
1

2
m

m  

(4.17b)

In Equations 4.7 through 4.17, μ is the magnetic permeability of composite, μd 
and μm are magnetic permeabilities of dispersed and matrix phases, respectively, ϕ is 
the volume fraction of the dispersed phase, and ϕm is the maximum packing volume 
fraction of filler particles.

Figure 4.1 compares the predictions of key models for composites with μd = 10 and 
μm = 1. The relative magnetic permeability, defined as μ/μm, is plotted as a function 
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of the volume fraction of dispersed phase. The Pal model 3 (Equation 4.16) gener-
ally predicts the highest value whereas the Reuss ROM (rule of mixtures) predicts 
the lowest value of the relative permeability. The predictions of other models gener-
ally fall in between the predictions of the Pal model 3 and Reuss rule of mixtures. 
Note that ϕm, the maximum packing volume fraction of filler particles, is taken to 
be 0.637 in the Pal models. Among the three rules of mixtures (Voigt, Reuss, and 
Lichtenecker), the Voigt ROM predicts the highest value. The predictions of the 
Lichtenecker logarithmic ROM are close to those of the Bruggeman model and fall 
in between those of the Voigt and Reuss ROMs.

If the interphase region properties are different from that of the matrix and the 
composite is not highly concentrated, the Pauly–Schwan model could be applied to 
predict the magnetic permeability of composites:
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FIGURE 4.1 Comparison of the relative magnetic permeability (μ/μm) predicted from dif-
ferent models (μd = 10 and μm = 1). P3, Pal model 3; P2, Pal model 2; R, Rayleigh model; 
B, Bruggeman model; L, Lichtenecker logarithmic rule of mixtures; MG, Maxwell–Garnett 
model.
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where

 β = βo/(ϕcμ1) and γ = γo/(ϕcμ2) (4.19)

 βo = (1 + 2ϕc)μ3 + 2(1 − ϕc)μ2 and γo = (1 − ϕc)μ3 + (2 + ϕc)μ2 (4.20)

ϕc is the volume fraction of core in the core-shell particle, μ1 is the matrix perme-
ability, μ2 is the shell permeability, and μ3 is the core magnetic permeability.

For concentrated composites with interphase effect, the following model pro-
posed by Pal [6] could be used to estimate the effective magnetic permeability:
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(4.21)

where the parameters have been defined earlier.

4.3  UPPER AND LOWER BOUNDS ON MAGNETIC 
PERMEABILITY OF COMPOSITES

Hashin and Shtrikman [7] have presented upper and lower bounds of the magnetic 
permeability of isotropic composites (regardless of the shape of the filler particles). 
They used a variational approach to establish the following bounds:
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where ϕ is the volume fraction of the dispersed phase. Interestingly the same bounds 
are applicable to other electromagnetic properties such as dielectric constant and 
electrical conductivity. It should be noted that the Voigt and Reuss rules of mixtures 
also represent upper and lower bounds, that is,

 
φµ φ µ µ φµ φ µd m d m
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However, the Hashin–Shtrikman bounds are much tighter and closer (hence more 
useful and accurate) in comparison with the Reuss–Voigt bounds.

The Hashin–Shtrikman bounds could be expressed in a more general form as 
follows:
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where λ = αd/αm and α is any of the following electromagnetic properties: electri-
cal conductivity (σ), dielectric constant (ε), and magnetic permeability (μ). As the 
bounds give the extreme values of the property, the mean value is often used as 
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FIGURE 4.2 Comparison of the predictions of Hashin–Shtrikman bounds with the predic-
tion of Reuss–Voigt bounds for composites with μd = 10 and μm = 1. HSU, Hashin–Shtrikman 
upper bound; HSL, Hashin–Shtrikman lower bound; MG, Maxwell–Garnett; Mean, arithme-
tic mean of HSU and HSL.
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an estimation of the actual value of the property. Different authors have proposed 
different types of means [8], such as

Arithmetic mean:

 
α α α= +U L

2  

Geometric mean:

 
α α α= U L  

where αU is the upper bound value and αL is the lower bound value.
Figure 4.2 compares the predictions of Hashin–Shtrikman bounds with the pre-

diction of Reuss–Voigt bounds for composites with μd = 10 and μm = 1. As expected, 
the predictions of the Hashin–Shtrikman bounds are close to each other in compari-
son with the predictions of Reuss–Voigt bounds, which are far apart. The arithmetic 
mean value of the Hashin–Shtrikman bounds is also shown for comparison pur-
poses. It is interesting to note that the lower Hashin–Shtrikman bound corresponds 
to the predictions of the Maxwell–Garnett equation (Equation 4.11).
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5 Maxwell Equations 
and the Generalized 
Conductivity Principle

In this chapter, a general treatment of the electromagnetic phenomena is presented. 
The Maxwell equations are reviewed, and the generalized conductivity principle is 
discussed. It is shown that the expressions developed for one stationary electromag-
netic property (say static relative permittivity) can be generalized to other static elec-
tromagnetic properties. Furthermore, the same expressions could also be extended 
to complex electromagnetic properties.

5.1  MAXWELL EQUATIONS

When a material medium is subjected to an electromagnetic field, the vectors 
�
E, 

�
H , �

J, 
�
D, and 

�
B obey the following Maxwell equations at every point of the medium:

 curl E E
B
t

� �
�

= ∇ × = − ∂
∂

 (5.1)

 curl H H J
D
t

� � �
�

= ∇ × = + ∂
∂

 (5.2)

 div D D
� �

= ∇ • = ρ  (5.3)

 div B B
� �

= ∇ • = 0  (5.4)

where 
�
E is the electric field intensity (volt/m), 

�
H is the magnetic field intensity 

(ampere/m), 
�
J is the electric current density (free electric current not including 

polarization current, ampere/m2), 
�
D is the electric flux density (coulomb/m2), 

�
B 

is magnetic flux density (weber/m2), and ρ is free electric charge volume density 
(coulomb/ m3).

Equation 5.1 is basically the Faraday law of induction, which indicates that the 
time variation of the magnetic field induces the electric field. Equation 5.2 is the 
Ampere law (as amended by Maxwell), which indicates that the electric current 
(including both the free current 

�
J and the displacement current ∂ ∂

�
D t) induces the 
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magnetic field. Equation 5.3 follows from the Gauss law for the electric flux, which 
states that the flux of 

�
D through a closed surface is equal to the free charge inside the 

closed surface. Equation 5.4 follows from the Gauss law for magnetic flux, which states 
that the flux of 

�
B through a closed surface is zero. Note that in the field of electromag-

netism, flux is defined as the integral of a vector quantity over a finite surface. The 
vector quantity is referred to as flux density. Thus the fluxes of 

�
D and 

�
B are as follows:

 Flux of D D dS
S

� � �
= •∫  (5.5)

 Flux of B B dS
S

� � �
= •∫  (5.6)

5.1.1  constitutivE Equations

In addition to the Maxwell equations, the constitutive equations are needed to fully 
describe the electromagnetic behavior of a given material medium. The constitutive 
equations are as follows:

 
� �
J E= σ  (5.7)

 
� �
D Eo= ε ε  (5.8)

 
� �
B Ho= µ µ  (5.9)

where σ is electrical conductivity, ε is relative permittivity (dielectric constant), εo is 
vacuum permittivity, μ is relative magnetic permeability, and μo is vacuum magnetic 
permeability.

The Maxwell equations appear to be overdetermined in that they involve only six 
unknowns (three components of 

�
E and three components of 

�
B) but eight equations 

(three components of vector Equation 5.1, three components of vector Equation 5.2, 
and two scalar laws of Gauss). However, any system that satisfies the Faraday and 
Ampere laws automatically satisfies the two Gauss laws.

5.1.2  Boundary conditions

In a two-phase or multiphase system such as composite materials, the Maxwell equa-
tions are valid in each of the phases of the system. To solve the Maxwell equations, 
boundary conditions are required. In composite materials consisting of two phases, 
the following boundary conditions must be satisfied:
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 1. The normal components of magnetic flux density 
�
B across the interface are 

continuous, that is,

 
� �
B n B n1 1 2 2 0• + • =ˆ ˆ  (5.10)

 where n̂1 is a unit normal vector directed outside phase 1, n̂2 is a unit nor-
mal vector directed outside phase 2, 

�
B1 and 

�
B2 are magnetic flux densities 

in phases 1 and 2, respectively.
 2. The normal components of electric flux density 

�
D across an interface of two 

dielectric mediums are related as follows:

 
� �
D n D n s1 1 2 2• + • = −ˆ ˆ σ  (5.11)

 where n̂1 is a unit normal vector directed outside phase 1, n̂2 is a unit nor-
mal vector directed outside phase 2, 

�
D1 and 

�
D2 are electric flux densities 

in phases 1 and 2, respectively, and σs is the surface density of electric 
charge. When σs is zero, normal components of 

�
D  across an interface are 

continuous.
 3. The normal components of electric current density 

�
J across an interface of 

two mediums are related as follows:

 
� �
J n J n

t
s

1 1 2 2• + • = ∂
∂

ˆ ˆ σ
 (5.12)

 where n̂1 is a unit normal vector directed outside phase 1, n̂2 is a unit normal 
vector directed outside phase 2, 

� �
J and J1 2 are electric current densities in 

phases 1 and 2, respectively, and σs is the surface density of electric charge. 
In the absence of surface charge σs, normal components of 

�
J across an 

interface are continuous.
 4. The tangential components of 

� �
E and H are continuous across an interface of 

two dielectric mediums:

 ˆ ( ˆ ) ˆ ( ˆ )n E n n E n1 1 1 2 2 2× × = × ×
� �

 (5.13)

 ˆ ( ˆ ) ˆ ( ˆ )n H n n H n1 1 1 2 2 2× × = × ×
� �

 (5.14)

Equation 5.13 assumes that the surface current density 
�
Js (tangential to the sur-

face) is zero.
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5.2  TIME-INDEPENDENT ELECTROMAGNETIC PHENOMENA

When there is no time variation, ∂/∂t is zero in the Maxwell equations and boundary 
conditions. Thus,

 curl E E
� �

= ∇ × = 0  (5.15)

 curlH H J
� � �

= ∇ × =  (5.16)

 div D D
� �

= ∇ • = ρ  (5.17)

 div B B
� �

= ∇ • = 0  (5.18)

and the interface boundary conditions are

 
� �
B n B n1 1 2 2 0• + • =ˆ ˆ  (5.19)

 
� �
D n D n s1 1 2 2• + • = −ˆ ˆ σ  (5.20)

 
� �
J n J n1 1 2 2 0• + • =ˆ ˆ  (5.21)

 ˆ ( ˆ ) ˆ ( ˆ )n E n n E n1 1 1 2 2 2× × = × ×
� �

 (5.22)

 ˆ ( ˆ ) ˆ ( ˆ )n H n n H n1 1 1 2 2 2× × = × ×
� �

 (5.23)

5.2.1  ElEctrostatic phEnomEna

The medium is electrically insulating and there is no free electric charge, that is, 
ρ = 0 and σ = 0 and 

�
J = 0. Thus, the Maxwell equations governing electrostatic 

phenomena are

 curl E E
� �

= ∇ × = 0  (5.24)

 div D D
� �

= ∇ • = 0  (5.25)
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The interfacial boundary conditions are

 
� �
D n D n1 1 2 2 0• + • =ˆ ˆ  (5.26)

 ˆ ( ˆ ) ˆ ( ˆ )n E n n E n1 1 1 2 2 2× × = × ×
� �

 (5.27)

Since 
� �
D Eo= ε ε , we can rewrite Equations 5.25 and 5.26 as

 div E E
� �

= ∇ • = 0  (5.28)

 ε ε1 1 1 2 2 2 0( ˆ ) ( ˆ )
� �
E n E n• + • =  (5.29)

5.2.2  stEady ElEctrical phEnomEna

Now 
�
J  is nonzero and

 ∇ • =
�
J 0  (5.30)

Equation 5.30 follows from the following continuity equation based on conserva-
tion of electric charge:

 ∇ • + ∂
∂

=
�
J

t
ρ

0  (5.31)

Under steady state condition, ∂ρ/∂t = 0.
Using the constitutive equation 

� �
J E= σ  and assuming constant electrical conduc-

tivity σ, Equation 5.30 can be rewritten as

 ∇ • =
�
E 0  (5.32)

Under steady state condition, Equation 5.1 reduces to

 curl E E
� �

= ∇ × = 0  (5.33)

Thus, the equations governing steady electrical phenomena are Equations 5.32 
and 5.33.
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The interfacial boundary conditions are

 ˆ ( ˆ ) ˆ ( ˆ )n E n n E n1 1 1 2 2 2× × = × ×
� �

 (5.34)

 σ σ1 1 1 2 2 2 0( ˆ ) ( ˆ )
� �
E n E n• + • =  (5.35)

This last boundary condition follows from Equation 5.21 using 
� �
J E= σ .

5.2.3  magnEtostatic phEnomEna

Assuming electric current density 
�
J  to be zero (either the medium is electrically 

insulating with zero electrical conductivity σ, or the current density is negligibly 
small), the Maxwell equations (Ampere and Gauss laws) under steady state condi-
tion become

 curl H H
� �

= ∇ × = 0  (5.36)

 div B B
� �

= ∇ • = 0  (5.37)

Using the constitutive equation 
� �
B Ho= µ µ , the Gauss law could be written as 

follows:

 div H H
� �

= ∇ • = 0  (5.38)

The relevant interfacial boundary conditions between the two phases are

 ˆ ( ˆ ) ˆ ( ˆ )n H n n H n1 1 1 2 2 2× × = × ×
� �

 (5.39)

 
� �
B n B n1 1 2 2 0• + • =ˆ ˆ  (5.40)

Using the constitutive equation 
� �
B Ho= µ µ , the second boundary condition 

expressed in Equation 5.40 can be rewritten as

 µ µ1 1 1 2 2 2 0( ˆ ) ( ˆ )
� �
H n H n• + • =  (5.41)

5.2.4  summary

In summary, Equations 5.24 and 5.27 through 5.29 govern the electrostatic phe-
nomena, Equations 5.32 through 5.35 govern the steady electrical phenomena, and 
Equations 5.36, 5.38, 5.39, and 5.41 govern the magnetostatic phenomena. Table 5.1 
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lists these governing equations for the three types of electromagnetic phenomena. 
There exists a close analogy between the governing equations and boundary condi-
tions for electrostatic, steady electrical, and magnetostatic phenomena. The equa-
tions describing electrostatic, stationary electrical, and magnetostatic phenomena for 
LHI (linear, homogeneous, and isotropic) media are basically the same with 

�
H  tak-

ing over the role of 
�
E  in magnetostatics. The only difference is the property of the 

media (ε for electrostatic phenomena, σ for electrical phenomena, and μ for magne-
tostatic phenomena). Consequently, the solutions describing one type of phenomena 
are applicable to the other two types of phenomena using the corresponding material 
property. This fact is referred to as the “Generalized Conductivity Principle.” Thus, 
the forms of the expressions for material electromagnetic properties (relative permit-
tivity, electrical conductivity, and relative magnetic permeability) are the same. For 
example, the expression for relative permittivity can be transformed into an expres-
sion for electrical conductivity by replacing ε with σ.

5.3  TIME-HARMONIC ELECTRIC AND MAGNETIC FIELDS

In the preceding section, the steady electromagnetic phenomena, where the electric 
and magnetic fields are time-invariant, were considered. This section considers sinu-
soidal time variation of electric and magnetic fields (sinusoidal time varying fields 
are referred to as harmonic fields). Time-harmonic electric and magnetic fields can 
be expressed in complex notation as

 
� � � �
E r t E r eo

j t( , ) Re *( )= { }ω  (5.42)

 
� � � �
H r t H r eo

j t( , ) Re *( )= { }ω  (5.43)

where 
�
E is the harmonic electric field, 

�
H is the harmonic magnetic field, 

�
Eo

* is the 
vector phasor of instantaneous electric field 

�
E, 

�
Ho

* is the vector phasor of instanta-

neous magnetic field 
�
H, j is imaginary number −1, ω is the frequency of oscillation, 

TABLE 5.1
Governing Equations for Three Types of Electromagnetic Phenomena

Electrostatic Phenomena Steady Electrical Phenomena Magnetostatic Phenomena

curl E E
� �

= ∇ × = 0 curl E E
� �

= ∇ × = 0 curl H H
� �

= ∇ × = 0

divE E
� �

= ∇ • = 0 ∇ • =
�
E 0 divH H

� �
= ∇ • = 0

ˆ ( ˆ ) ˆ ( ˆ )n E n n E n1 1 1 2 2 2× × = × ×
� �

ˆ ( ˆ ) ˆ ( ˆ )n E n n E n1 1 1 2 2 2× × = × ×
� �

ˆ ( ˆ ) ˆ ( ˆ )n H n n H n1 1 1 2 2 2× × = × ×
� �

ε ε1 1 1 2 2 2 0( ˆ ) ( ˆ )
� �
E n E n• + • = σ σ1 1 1 2 2 2 0( ˆ ) ( ˆ )

� �
E n E n• + • = µ µ1 1 1 2 2 2 0( ˆ ) ( ˆ )

� �
H n H n• + • =
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t is time, 
�
r  is the position vector, and Re refers to the “real part” of the quantity. Note 

that the phasor of an instantaneous quantity (
�
E or 

�
H) is a complex quantity indepen-

dent of time, whose amplitude and phase are the amplitude and initial phase of the 
instantaneous quantity.

As an example, consider the following time-harmonic electric field:

 
� � � � �
E r t E r t ro( , ) ( )cos( ( ))= +ω ϕ  (5.44)

where 
� �
E ro( ) is the vector amplitude of the field and ϕ( )

�
r  is the initial phase of the 

field at t = 0. Using the Euler formula,

 e jωt = cos ωt + jsin ωt (5.45)

one can reexpress the instantaneous field as

 
� � � �
E r t E r eo

j t( , ) Re *( )= { }ω  (5.46)

where 
� �
E ro

*( ) is vector phasor of instantaneous electric field 
�
E, given as

 
� � � � �
E r E r eo o

j r*( ) ( ) ( )= ϕ  (5.47)

Thus, the phasor of an instantaneous quantity (
�
E ) is a complex quantity indepen-

dent of time, whose amplitude and phase are the amplitude and initial phase of the 
instantaneous quantity.

When all instantaneous quantities in an equation are expressed in terms of pha-
sors defined above, then the “Re” term, referring to the real part of a quantity, is 
often dropped from all parts of the equation and the equation is expressed in terms 
of the complex quantities. Thus the complex forms of instantaneous electric and 
magnetic fields are

 
� � � �
E r t E r eo

j t*( , ) *( )= ω  (5.48)

 
� � � �
H r t H r eo

j t*( , ) *( )= ω  (5.49)

Also note that ∂e jωt/∂t is equal to jωe jωt and therefore, the partial time derivative 
∂/∂t can be replaced by jω in the equations. Thus, the Maxwell equations in terms of 
the complex quantities can be expressed as

 ∇ × = −
� �
E j B* *ω  (5.50)

 ∇ × = +
� � �
H J j D* * *ω  (5.51)
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 ∇ • =
�
D* ρ  (5.52)

 ∇ • =
�
B* 0  (5.53)

where 
�
J*, 

�
D*, and 

�
B* are now complex quantities.

The constitutive equations for 
�
D* and 

�
J* can be written as

 
� �
D Eo

* * *= ε ε  (5.54)

 
� �
J E* *= σ  (5.55)

where ε* is complex relative permittivity and σ is static electrical conductivity of the 
material. The complex relative permittivity ε* is given as

 ε* = ε′ − jε″ (5.56)

where ε′ and ε″ are the real and imaginary parts of the relative permittivity. For dis-
persive material, ε′ and ε″ are functions of frequency.

Using the constitutive equations, Equation 5.51 could be rewritten as

 ∇ × = +
� �
H j Eo

* * *( )σ ω ε ε  (5.57)

The effective complex conductivity σe
* of a material is defined through the fol-

lowing form of the Maxwell equation:

 ∇ × =
� �
H Ee

* *σ*  (5.58)

This equation is obtained from Maxwell equation (Equation 5.51) by dropping off 
the displacement current term and taking care of it through the effective conductiv-
ity, which reflects both “free” and “displacement” currents.

Likewise, the effective complex permittivity (relative) εe
* of a material is defined 

through the following form of the Maxwell equation:

 ∇ × =
� �
H j Eo e

* *ω ε ε*  (5.59)

This equation is obtained from Maxwell equation (Equation 5.51) by dropping off 
the “free” current term and taking care of it through the effective permittivity, which 
reflects both “free” and “displacement” charges.

Upon comparison of Equations 5.58 and 5.59 with Equation 5.57, the following 
expressions of effective complex properties σe

* and εe
* are obtained:

 σ σ ω ε ε σ ω ε ε ω ε εe o o oj j* * ( )= + = + ′′ + ′  (5.60)
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 ε ε σ
ωε

ε ε σ
ωεe

o oj
j* = + = ′ − ′′ +






*  (5.61)

Note that the effective complex properties σe
* and εe

* are related to each other as 
follows:

 σ ωε εe o ej* *=  (5.62)

For LHI (linear, homogeneous, isotropic) medium, substitution of the constitutive 
equation 

� �
D Eo

* * *= ε ε  into Gauss’s law (assuming charge-free medium, ρ = 0) gives

 ∇ • =
�
E* 0  (5.63)

In summary, the Maxwell equations for time-harmonic electric and magnetic 
fields in electric charge-free LHI material medium are

 ∇ × =
� �
H Ee

* *σ*  (5.58)

or

 ∇ × =
� �
H j Eo e

* *ω ε ε*  (5.59)

 ∇ × = −
� �
E j B* *ω  (5.50)

 ∇ • =
�
E* 0  (5.63)

 ∇ • =
�
B* 0  (5.53)

5.3.1  quasistationary approximation

As the divergence of 
�
B* is zero, 

�
B* can be expressed as a curl of some vector 

�
A*:

 
� �
B curl A* *=  (5.64)

Consequently, the Maxwell Equation 5.50 can be rewritten as

 ∇ × + =( )
� �
E j A* *ω 0  (5.65)
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Under quasistationary condition, j Aω
�

*<<
�
E*, and therefore,

 ∇ × =
�
E* 0  (5.66)

A similar analysis could be carried out for 
�
E* as divergence of 

�
E* is zero. Writing �

E* as a curl of some vector 
�
A*,

 
� �
E curl A* *=  (5.67)

The Maxwell Equation 5.59 could be rewritten as

 ∇ × = = ∇ ×
� � �
H j E j Ao e o e

* * *ω ε ε ω ε ε* *  (5.68)

that is,

 ∇ × − =( * )
� �
H j Ao e

* *ω ε ε 0  (5.69)

Under quasistationary condition, j Aωε* *
�

<<
�
H*, and therefore,

 ∇ × =
�
H* 0  (5.70)

5.3.2  Boundary conditions

The interfacial boundary conditions are

 
� �
J n J n

t
s

1 1 2 2
* ˆ * ˆ• + • = ∂

∂
σ

 (5.71)

 
� �
D n D n s1 1 2 2

* ˆ * ˆ• + • = −σ  (5.72)

 
� �
B n B n1 1 2 2 0* ˆ * ˆ• + • =  (5.73)

 ˆ ( * ˆ ) ˆ ( * ˆ )n E n n E n1 1 1 2 2 2× × = × ×
� �

 (5.74)

 ˆ ( * ˆ ) ˆ ( * ˆ )n H n n H n1 1 1 2 2 2× × = × ×
� �

 (5.75)
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Replacing ∂/∂t with jω and combining Equations 5.71 and 5.72 result in the fol-
lowing equation:

 ˆ ( * *) ˆ ( * *)n J j D n J j D1 1 1 2 2 2 0• + + • + =
� � � �

ω ω  (5.76)

This equation can be rewritten in terms of the total current density 
� � �
J J j Dt
*( )= +* *ω  

as

 ˆ * ˆ *
, ,n J n Jt t1 1 2 2 0• + • =

� �
 (5.77)

where the total current density is the sum of conduction current density and dis-
placement current density. Upon substitution of 

� � �
J j E Et o e
* ( ) *= + =σ ω ε ε σ* * *  into 

Equation 5.77,

 σ σ1 1 1 2 2 2 0e eE n E n* ( * ˆ ) * ( * ˆ )
� �

• + • =  (5.78)

where σ σ ω ε εe o ej* *= + . Since σ ω ε εe o ej* *= , this boundary condition could be rewrit-
ten as

 ε ε1 1 1 2 2 2 0e eE n E n* ( * ˆ ) * ( * ˆ )
� �

• + • =  (5.79)

Using 
� �
B Ho

* * *= µ µ , the boundary condition given by Equation 5.73 could be 
reexpressed as

 µ µ1 1 1 2 2 2 0*( * ˆ ) *( * ˆ )
� �
H n H n• + • =  (5.80)

where μ* is complex relative permeability, defined as

 μ* = μ′ − jμ″ (5.81)

5.3.3  comparison of govErning Equations

Table 5.2 compares the governing equations and boundary conditions of time-
harmonic electric and magnetic fields. Once again, the equations are of the same 
form and the only difference is the property of the media. It should also be noted that 
these equations and boundary conditions are of the same form as those describing 
the stationary electromagnetic phenomena (see Table 5.1).

Consequently, the expressions developed for any one stationary electromagnetic 
property (say static relative permittivity) can be extended to dynamic electromagnetic 
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properties by replacing the stationary electromagnetic property with the complex 
electromagnetic property (σe

*, εe
*, or μ*). This is called the Generalized Conductivity 

Principle.
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TABLE 5.2
Comparison of Governing Equations and Boundary Conditions for 
Time- Harmonic Electric and Magnetic Fields

Electric Field (
�
E*) with σσe* Electric Field (

�
E*) with εεe* Magnetic Field, 

�
H*

curl E E
� �
* *= ∇ × = 0 curl E E

� �
* *= ∇ × = 0 curl H H

� �
* *= ∇ × = 0

divE E
� �
* *= ∇ • = 0 divE E

� �
* *= ∇ • = 0 divH H

� �
* *= ∇ • = 0

ˆ ( * ˆ ) ˆ ( * ˆ )n E n n E n1 1 1 2 2 2× × = × ×
� �

ˆ ( * ˆ ) ˆ ( * ˆ )n E n n E n1 1 1 2 2 2× × = × ×
� �

ˆ ( * ˆ ) ˆ ( * ˆ )n H n n H n1 1 1 2 2 2× × = × ×
� �

σ σ1 1 1 2 2 2 0e eE n E n* ( * ˆ ) * ( * ˆ )
� �

• + • = ε ε1 1 1 2 2 2 0e eE n E n* ( * ˆ ) * ( * ˆ )
� �

• + • = µ µ1 1 1 2 2 2 0*( * ˆ ) *( * ˆ )
� �
H n H n• + • =
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6 Complex Electromagnetic 
Properties of Composites

In Chapters 2 through 4, the static electromagnetic properties (conductivity, per-
mittivity, and permeability) of composite materials were discussed. In this chapter, 
the dynamic electromagnetic properties of composites subjected to sinusoidal time-
varying electric and magnetic fields are discussed. The electromagnetic properties of 
interest are effective complex relative permittivity (εe

*) and complex relative perme-
ability (μ*). As effective complex conductivity (σe

*) is related to effective complex 
relative permittivity (εe

*), it is not considered separately. The most interesting feature 
of the complex electromagnetic properties is their dependence on the frequency of 
the applied alternating field. The variation of electromagnetic properties with fre-
quency is referred to as dispersion in the literature. Both “dielectric dispersion” and 
“magnetic dispersion” are discussed in this chapter.

6.1  COMPLEX PERMITTIVITY OF COMPOSITES

The complex relative permittivity ε* is defined according to the following constitu-
tive relation for the complex electric flux density 

�
D*:

 

� �
D Eo

* * *= ε ε  (6.1)

where εo is the permittivity of vacuum (= 8.854 × 10–12 farads/m) and 
�
E*  is the complex 

electric field intensity. The complex relative permittivity ε* can be expressed as follows:

 ε* = ε′ − jε″ (6.2)

where ε′ and ε″ are the real and imaginary parts of the relative complex permittiv-
ity. For dispersive material, ε′ and ε″ are functions of frequency. The real part ε′ 
reflects the polarization property of the material. The imaginary part ε″ is called 
“polarization loss” as it reflects energy loss in the dielectric material caused by a 
delay in the material’s response to the applied field. The complex relative permit-
tivity ε*, as defined above, considers only “displacement charges.” It is assumed 
that the static electrical conductivity of the material is negligible. To consider both 
“free” and “displacement” charges, the effective (complex) relative permittivity εe

* 
is defined as follows:

 
ε ε σ

ωε
ε ε σ

ωεe
o oj

j* = + = ′ − ′′ +






*

 
(6.3)
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where σ is the static (d.c.) electrical conductivity of the material. Now the loss 
term (imaginary part) includes both polarization loss and energy loss due to d.c. 
electric conductivity. The effective loss factor ′′εeff  that takes into account energy 
losses due to polarization as well as static conductivity is defined by expressing 
εe
*  as

 ε ε εe effj* = ′ − ′′  (6.4)

where ′′εeff is

 
′′ = ′′ +







ε ε σ
ω εeff

o  
(6.5)

Alternatively, the effective electrical conductivity ′σeff  that takes into account 
energy losses due to polarization as well as static conductivity could be defined as 
follows:

 σ ω ε ε σ σe o e effj j* *= = ′ + ′′  (6.6)

where

 ′ = + ′′σ σ ω ε εeff o( )  (6.7)

 σ″ = ωεoε′ (6.8)

The dielectric properties of composites vary with frequency. The key mecha-
nisms responsible for dielectric relaxation, that is, a decrease in the real part of 
the complex permittivity ε′ with the increase in frequency are interfacial polariza-
tion, orientational polarization, and electronic polarization. Interfacial polariza-
tion, also referred to as Maxwell–Wagner–Sillars (MWS) effect, is almost always 
present in composite materials composed of two or more phases [1–3]. Due to the 
difference in conductivities and permittivities of the constituent phases, buildup 
of electric charge takes place at the interfaces leading to the MWS effect. The 
dielectric relaxation related to interfacial polarization effect usually appears at 
moderate frequencies of the order of MHz. The orientational polarization occurs 
due to alignment/orientation of electric dipoles of polar molecules with the applied 
field. The dielectric relaxation related to orientational polarization (also referred 
to as Debye-type dipolar relaxation) usually appears at frequencies of the order 
of GHz. The electronic polarization (also referred to as distortion polarization) 
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occurs due to displacement of electron cloud in an atom. The dielectric relaxation 
related to distortion polarization appears at very high frequencies of the order of 
terahertz (>1 THz).

As an example, Figure 6.1 shows the dielectric behavior of a 47% by volume 
water-in-oil (W/O) emulsion at 296 K [1,2]. Emulsions are basically composite 
materials in liquid form, consisting of droplets of one liquid phase dispersed in 
a continuum of another immiscible liquid phase. The figure shows the plots of 
real permittivity ε′ and effective loss factor ε″ (note that the effective loss factor 

′′εeff is denoted as simply ε″ here and in the remainder of the chapter) as func-
tions of frequency. As the frequency range covered is approximately 10 kHz–10 
MHz, only interfacial polarization effect is expected. The real permittivity ε′ 
is initially constant up to frequency of about 200 kHz but it decreases rapidly 
with further increase in frequency and it becomes constant again at high fre-
quencies. The observed dielectric relaxation in W/O emulsion, around frequen-
cies of 100 kHz to 10 MHz, is due to “interfacial” or “migration” polarization 
(also called MWS effect). The presence of free charge or ions in the dispersed 
water droplets is responsible for interfacial polarization [1–3]. Figure 6.2 shows 
another set of experimental data obtained by Hanai et al. [3] for W/O emulsions 
at a fixed ϕ of 0.60. Once again, only interfacial polarization (MWS effect) is 
observed in the frequency range covered in the experiments. The plots of real 
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0
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FIGURE 6.1 Dielectric behavior of a 47% by volume water-in-vaseline oil emulsion. (From 
Clausse, M., Dielectric properties of emulsions and related systems. In: Encyclopedia of 
Emulsion Technology, ed., P. Becher, Vol. 1, Chapter 9, pp. 483–715, New York: Marcel 
Dekker, 1983; Pal, R., Colloids Surf. 84: 141–193, 1994.)
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permittivity ε′ and effective loss factor ε″ versus frequency shift towards higher 
frequencies with the increase in the salt content of the dispersed water drop-
lets, indicating an increase in the relaxation frequency. The relaxation frequency, 
which is defined as the frequency corresponding to the half-value point of the 
entire domain of interfacial polarization relaxation, generally depends on the 
following factors: dispersed phase (water) concentration, water conductivity or 
salinity, and temperature.

Figure 6.3 exhibits the dielectric behavior of an emulsion of core-shell drop-
lets of oil-in-water-in-oil (O/W/O) type over a broad range of frequencies [4]. 
Such emulsions are also referred to as “O/W/O double emulsions.” A schematic 
diagram of the core-shell droplet is shown in Figure 6.4. The core and the matrix 
phase of the emulsion was oil of dielectric constant 2.5 (independent of the fre-
quency). The shell of the core-shell droplets was aqueous phase of electrical 
conductivity 1 S/m. The ratio of outer radius of interfacial shell to core radius (δ) 
was 1.1 and the volume fraction of the core-shell droplets (ϕ) was 0.50. The top 
portion of Figure 6.3 shows the plots of real permittivity (ε′) and effective loss 
factor (ε″) as functions of frequency. The bottom portion of Figure 6.3 shows 
the Cole–Cole plot in terms of effective loss factor ε″ versus real permittivity ε′ 
(once again, it should be pointed out that the effective loss factor ′′εeff is denoted 
as simply ε″). Clearly, the emulsion of core-shell droplets composed of oil core 
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FIGURE 6.2 Influence of salt concentration on the dielectric behavior of water-in-oil 
(W/O) emulsions at a fixed ϕ of 0.60. Specimen B has zero salt concentration. (From Pal, R., 
Colloids Surf. 84: 141–193, 1994; Hanai, T. et al., Colloid Polym. Sci. 260: 1029–1034, 1982.)
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and matrix, and conductive aqueous phase as shell, exhibits two dielectric relax-
ations, one due to interfacial polarization at intermediate frequencies (around 
10–100 MHz) and the other due to Debye-type dipolar relaxation of water mol-
ecules at microwave frequencies (around 10–100 GHz). The Cole–Cole diagram 
shows two frequency domains: the right-hand side semicircle corresponds to 
dielectric relaxation due to interfacial polarization at intermediate frequencies 
and the left-hand semicircle corresponds to Debye-type dipolar relaxation at high 
frequencies.
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FIGURE 6.3 The dielectric behavior of an emulsion of core-shell droplets of oil-in-water-
in-oil (O/W/O) type over a broad range of frequencies. (From Pal, R., J. Colloid Int. Sci. 325: 
500–507, 2008.)
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6.1.1  modEls for complEx pErmittivity of compositEs

According to the “Generalized Conductivity Principle” discussed in the pre-
ceding chapter, all the expressions developed for a stationary property (static 
relative permittivity) can be extended to a corresponding complex property 
(effective relative permittivity εe

*). In what follows the key models for the effec-
tive complex relative permittivity of composites, denoted as simply ε*(= ε′ − 
jε″), are given.

Maxwell–Garnett model:
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(6.9)

Bruggeman–Hanai model:
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FIGURE 6.4 Schematic diagram of core-shell emulsion droplet.
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Lewis–Nielsen model (as suggested by Pal [4]):
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(6.11a)

where
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φ

φ= + −
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m  
(6.11b)

Pal model 1:
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Pal model 2:
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Bruggeman symmetric model:
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In these models, ε*, εd
*, and εm

*  are the effective complex relative permittivities 
of composite, dispersed phase, and matrix, respectively, ϕ is the volume fraction of 
the dispersed phase, and ϕm is the maximum packing volume fraction of dispersed 
phase. These models could be recast in terms of the effective complex conductivity 
using the following relation: σ* = jωεoε*. For example, the Bruggeman–Hanai model 
for the effective complex conductivity is as follows:
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where σ*, σd
*, and σm

*  are the effective complex conductivities of composite, dis-
persed phase, and matrix, respectively (note that the effective complex conductivity 
σ* was denoted as σe

*  in the preceding sections).
In order to use the models to predict the dielectric behavior of composites, knowl-

edge of the effective permittivity of the individual phases is needed. For the individ-
ual phases of the composite, the Debye model could be used to describe the dielectric 
behavior:

 
ε ε ε ε

ω τ
* = + −

+∞
∞�

1 j  
(6.16)

where εℓ and ε∞ are the limiting values of the real permittivity ε′ at low and high 
frequencies, respectively, and ω is the frequency in rad/s. The Debye model consists 
of a single relaxation time τ, corresponding to dipolar relaxation. For water at 25°C, 
the approximate values of the parameters in the Debye model are ε∞ = 4.2, εℓ = 78.5, 
τ = 8.25 × 10–12 s. An ohmic term can be incorporated into the loss factor to take into 
account the effect of static or d.c. conductivity on the dielectric behavior. Thus, the 
effective relative permittivity of an individual phase can be expressed as

 
ε ε ε ε

ω τ
σ

ω ε
* = + −

+
+∞

∞�

1 j j o  
(6.17)

where σ is the static electrical conductivity of the material.
Upon substituting the expressions for the effective relative permittivity ε* of indi-

vidual phases into the models for composites, one can, in principle, solve for the 
effective relative permittivity ε* of composites and express it in the following form:

 
ε ε ε ε

ω τ
ε ε

ω τ
σ
ω ε

* = + −
+

+ −
+

+∞
∞� �i i

oj j j1 11 2  
(6.18)

where εℓ, εi, and ε∞ are the three plateau values of real permittivity corresponding to low, 
intermediate, and high frequencies. Now there are two relaxation times: τ1 corresponds 
to relaxation related to interfacial polarization and τ2 corresponds to dipolar relaxation. 
σℓ is the low frequency or static electrical conductivity of the composite.

Alternatively, one can obtain an expression for the effective complex conductivity 
σ* of composite from the model and express it in the following form:

 
σ σ ω τ σ σ

ω τ
ωτ σ σ

ω τ
ω ε ε* ( ) ( )= + −

+
+ −

+
+∞

�
�j

j
j

j
ji i

o
1

1

2

21 1 ∞∞ (6.19)

where σℓ, σi, and σ∞ are the three plateau values of electrical conductivity corre-
sponding to low, intermediate, and high frequencies.
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6.1.2  comparison of modEl prEdictions with ExpErimEntal data

Figures 6.5 and 6.6 compare the predictions of models with experimental data for clay-
in-water suspensions and O/W emulsions. The plots show relative dielectric constant 

′ = ′ ′ε ε εr m( )/  and relative loss factor ′′ = ′′ ′′ε ε εr m( )/  as functions of dispersed-phase vol-
ume fraction. The experimental data were measured at a frequency of 9.36 GHz [5]. 
As the dielectric constant of the dispersed phase (clay particles and oil droplets) can be 
neglected in comparison with that of matrix (water), the complex permittivity models 
discussed in the preceding section simplify to the following expressions:

Maxwell–Garnett model:
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Bruggeman–Hanai model:
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Lewis–Nielsen model:
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where
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Pal model 1:
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Pal model 2:
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Bruggeman symmetric model:
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According to these expressions, the relative dielectric constant ′ = ′ ′ε ε εr m( )/  and 
relative loss factor ′′ = ′′ ′′ε ε εr m( )/  are equal and are independent of frequency. They 
are dependent only on the volume fraction of the dispersed phase and are given as 
follows:
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According to Figures 6.5 and 6.6, the Maxwell–Garnett model describes the 
experimental data reasonably well. Other models tend to underpredict the relative 
dielectric constant ′ = ′ ′ε ε εr m( )/  and relative loss factor ′′ = ′′ ′′ε ε εr m( )/  at high volume 
fractions of dispersed phase.

6.1.3  influEncE of intErphasE rEgion on thE 
complEx pErmittivity of compositEs

As noted in Chapter 3, the dielectric properties of the material in the interphase region, 
adjacent to the surface of the filler particles, could be significantly different from those 
of the matrix due to (a) covalent bonding of the matrix molecules with the surface of 
the filler particles, and (b) the presence of additives such as surfactants and coupling 
agents at the surface of the particles. Composite systems with interphase effects could 
be modeled as suspensions of core-shell type particles with the shell portion repre-
senting the interphase between core filler particles and the matrix. The suspensions 
of core-shell particles are not only suitable models for interphase effects but they are 
also of direct importance in many practical applications. For example, emulsions of 
core-shell droplets, also referred to as “double emulsions” or “multiple emulsions,” 
have many direct applications. Due to their special morphology, double emulsions are 
highly suited for a variety of applications in the pharmaceutical, food and cosmetic 
industries. They have also shown significant promise in waste water treatment and sep-
aration of hydrocarbons. As double emulsions are able to entrap important substances 
in their internal droplets, they are particularly suited for applications where controlled 
release (slow and prolonged) of important ingredients is desired.

Pal [4] proposed the following model for the effective complex relative permittiv-
ity of composites of core-shell-type particles:
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where β* and γ* are given as

 β δ ε ε δ ε ε* /= + − −( )( */ *) ( )( * *)2 2 13
3 1

3
2 1  

(6.32)

 γ δ δ ε ε* /= + − −1 2 13 3
3 2( )( * *)  (6.33)
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In these equations, ϕ is the volume fraction of core-shell particles, δ is the ratio of 
outer radius of interfacial shell to core radius, ε1

*  is the complex relative permittivity 
of matrix, ε3

*  is the complex relative permittivity of core material, ε2
*  is the complex 

relative permittivity of shell material (see Figure 6.4), and ϕm is the maximum pack-
ing volume fraction of core-shell particles.

In what follows, the predictions of Equation 6.31 are discussed for emulsions 
of core-shell droplets [4]. Two types of double emulsions are discussed, namely, 
(1) O/W/O type double emulsion consisting of oil core, water shell, and oil matrix, 
and (2) W/O/W type double emulsion consisting of water core, oil shell, and water 
matrix.

The following modified Debye model is used to describe the dielectric behavior 
of the aqueous phase:
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(6.35)

where ε∞ = 4.2, εℓ = 78.5, τ = 8.25 × 10–12 s. The oil phase is assumed to have a dielec-
tric constant of 2.5, independent of the frequency.

Figure 6.7 compares the dielectric behavior of O/W/O double emulsion with that 
of a simple W/O emulsion at the same volume fraction of water. A simple W/O 
emulsion is a special case of an O/W/O double emulsion with δ → ∞. Both sim-
ple and double emulsions exhibit two dielectric relaxations (interfacial and Debye 
types). However, the relaxation effects in the case of O/W/O double emulsion are 
much stronger. The effect of aqueous-phase conductivity on the dielectric behavior 
of O/W/O double emulsion is shown in Figure 6.8. With the increase in aqueous 
phase conductivity σ2, the relaxation frequency of interfacial polarization increases. 
However, the dipolar relaxation behavior of O/W/O double emulsion is unaffected by 
the aqueous phase conductivity.
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Figure 6.9 shows the effect of shell-to-core radii ratio δ on the dielectric behavior 
of O/W/O double emulsion. Note that the volume fraction of internal droplet (core) 
within a single core-shell droplet (ϕc) is related to δ as
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2008.)
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where Rc is radius of the core (internal droplet) and Rs is the outer radius of the 
shell. For O/W/O double emulsion, an increase in δ at a fixed ϕ implies an increase 
in the thickness of water layer surrounding the internal oil droplets. According to 
Figure 6.9, the plateau values of permittivity (ε′) at intermediate frequencies and at 
high frequencies are affected by the value of δ. With the increase in δ, the plateau 
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double emulsion. (From Pal, R., J. Colloid Int. Sci. 325: 500–507, 2008.)
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values of ε′ increase. This is to be expected as the water content of the double emul-
sion increases with the increase in δ (at a fixed value of ϕ). In addition, the double 
emulsion becomes more lossy (ε″ increases) with the increase in δ at high frequen-
cies (microwave range around 10–100 GHz). However, at intermediate frequencies, 
an opposite effect is observed in that the double emulsion becomes less lossy (ε″ 
decreases) with the increase in δ.

The effect of volume fraction of core-shell droplets (ϕ) on the dielectric behavior 
of O/W/O double emulsion is shown in Figure 6.10. With the increase in ϕ at a con-
stant δ, the permittivity ε′ and loss factor ε″ both are affected strongly. The plateau 
values of ε′ at low and intermediate frequencies increase with the increase in ϕ. The 
increase in ε′ is negligible at high frequencies (ω > 100 GHz). The effective loss fac-
tor ε″ increases with the increase in ϕ at intermediate and microwave frequencies. 
The increases in ε′ and ε″ with ϕ at a fixed δ are due to an increase in water content 
of the double emulsion.

Figure 6.11 exhibits the dielectric behavior of W/O/W double emulsion under 
the following conditions: σ1 = 0, σ3 = 1.0 Sm–1, ϕ = 0.50, ϕm = 0.74, and δ = 1.1. 
Thus, the internal water droplets were conductive and the external water phase was 
nonconductive. The Cole–Cole plot (bottom portion of Figure 6.11) is also shown. 
The W/O/W double emulsion exhibits two dielectric relaxations—relaxation due to 
interfacial polarization at intermediate frequencies and dipolar relaxation at micro-
wave frequencies. However, the interfacial polarization effect is not strong under the 
given conditions.

Figure 6.12 compares the dielectric behavior of a W/O/W double emulsion with 
that of a simple O/W emulsion at the same volume fraction of water. A simple O/W 
emulsion is a special case of a W/O/W double emulsion with δ → ∞. The dielectric 
behaviors of simple and double emulsions are similar in that they both exhibit only 
a single Debye-type relaxation.
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The effect of internal droplet conductivity (σ3) on the dielectric behavior of 
W/O/W double emulsion is shown in Figure 6.13. With the increase in σ3, the relax-
ation frequency of interfacial polarization shifts to a higher value. The dipolar relax-
ation behavior at microwave frequencies is unaffected by σ3.

Figure 6.14 shows the effect of shell-to-core radii ratio δ on the dielectric behavior 
of W/O/W double emulsion. An increase in δ at a fixed ϕ implies a decrease in the 
volume fraction of water within core-shell droplets (ϕc decreases). The plateau val-
ues of permittivity (ε′) at low frequencies and at intermediate frequencies decrease 
with the increase in δ. The decrease in ε′ is due to a decrease in water content of the 
double emulsion. In addition, the double emulsion becomes less lossy (ε″ decreases) 
with the increase in δ.
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The effect of volume fraction of core-shell droplets (ϕ) on the dielectric behav-
ior of W/O/W double emulsion is shown in Figure 6.15. With the increase in ϕ at a 
constant δ, the permittivity (ε′) and effective loss factor (ε″) both decrease due to a 
decrease in the water content of the double emulsion.

The dielectric behaviors of O/W/O and W/O/W double emulsions are compared 
in Figures 6.16 and 6.17 for the same water content. For the same water content, there 
exist more than one combination of ϕ (volume fraction of core-shell droplets) and δ 
values. Thus, comparisons are made either at the same ϕ but different δ (Figure 6.16) 
or at the same δ but different ϕ (Figure 6.17). An important point to note is that the 
interfacial polarization effect is absent in the case of W/O/W double emulsion. The 
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W/O/W double emulsion exhibits only Debye relaxation whereas the O/W/O double 
emulsion exhibits both interfacial and Debye relaxations.

In summary, the dielectric behavior of composites with interphase effects could 
be modeled by treating the particles and their surrounding interphase region as core-
shell-type particles. The complex relative permittivity model proposed by Pal [4] for 
dispersions of core-shell particles is discussed and applied to double emulsions of 
O/W/O and W/O/W types. The O/W/O double emulsions with conductive aqueous 
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phase exhibit two dielectric relaxations—relaxation due to interfacial polarization 
and Debye-type dipolar relaxation of water molecules. The W/O/W double emulsions 
also exhibit two dielectric relaxations (interfacial and Debye types) when the internal 
aqueous phase is conductive; however, the interfacial polarization effect in W/O/W 
double emulsions is much weaker. The factors that affect the dielectric behavior of 
double emulsions are volume fraction of core-shell droplets, shell-to-core radii ratio, 
aqueous phase conductivity, and type of double emulsion (O/W/O or W/O/W).

6.2  COMPLEX MAGNETIC PERMEABILITY OF COMPOSITES

The complex relative permeability μ* is defined according to the following constitu-
tive relation for the complex magnetic flux density 

�
B*:

 

� �
B Ho

* = µ µ* *
 (6.37)

where 
�
H*  is the complex magnetic field intensity. The complex relative permeabil-

ity μ* can be expressed as follows:

 μ* = μ′ − jμ″ (6.38)

where μ′ and μ″ are the real and imaginary parts of the relative permeability. For 
dispersive material, μ′ and μ″ are functions of frequency. The real part μ′ reflects 
the polarization property of the material. It is a measure of the amount of magnetic 
moments that become aligned with the applied magnetic field. It also reflects the 
amount of energy stored by the magnetic moments upon the application of the exter-
nal magnetic field. The imaginary part μ″ is called “polarization loss” as it reflects 
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energy loss in the magnetic material caused by a delay in the material’s response to 
the applied field.

The magnetic dispersion, that is, frequency dependence of permeability, appears 
when the frequency of oscillation of the external magnetic field is too high for the 
magnetic moments to orient with the field.

The key mechanisms responsible for magnetic dispersion are domain wall dis-
placement, domain rotation, detrital rotation, spin magnetic-moment orientation, 
and orbital magnetic-moment orientation [6]. Relaxation of spin magnetic moments 
occurs at high frequencies. The spin magnetic dipole moments cannot stay aligned 
with the external filed when frequencies are higher than 10 GHz. Thus, the magnetic 
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permeability of materials at such high frequencies corresponds to that of free space 
due to the absence of any polarization effect. Relaxation of orbital magnetic dipole 
moments occurs at frequencies lower than that of spin relaxation. Domain wall dis-
placement occurs in grains or particles consisting of magnetic multidomains. The 
magnetic domain wall, also called the Bloch wall, is the boundary region between 
two neighboring magnetic domains oriented in opposite directions. In this transi-
tion region, the sublattice magnetic moments rotate from a direction corresponding 
to one magnetic domain to an opposite direction corresponding to the neighbor-
ing domain. When an external magnetic field is applied, the magnetic domains ori-
ented in the direction of the applied field undergo expansion whereas the magnetic 
domains oriented in the opposite direction shrink. The expansion and shrinking of 
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neighboring magnetic domains takes place by the movement of the magnetic domain 
walls. When the frequency of oscillation of the external field is high enough that the 
magnetic domain walls are not able to move to the extent to cause full expansion 
or shrinking of the neighboring domains, frequency dependence of permeability 
appears. When the grain or particle size is small, the number of magnetic domains 
in a grain decreases. Below a certain critical size, only one magnetic domain is pres-
ent in a grain. The magnetic moment of a single domain particle is usually oriented 
along the easy axes of the crystal. When a single domain particle is subjected to an 
external magnetic field, the magnetic moment of the particle tends to align with the 
external field either by rotation of the magnetic domain (called domain rotation) or 
by rotation of the entire grain (called detrital rotation). Magnetic dispersion due to 
domain wall movement occurs in the lower-frequency radiofrequency (RF) band 
(1 MHz–1 GHz) whereas dispersion due to domain rotation occurs in the higher-
frequency microwave band (1–100 GHz) [7].

6.2.1  modEls for complEx magnEtic pErmEaBility of compositEs

According to the “Generalized Conductivity Principle” discussed in Chapter 5, the 
models developed for the static magnetic permeability μ of composites could be 
applied to complex magnetic permeability μ* by simply replacing μ with μ*. Thus, 
the key equations for estimating the relative magnetic permeability of composites 
are as follows [8]:

Voigt rule of mixtures:
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(6.39)

Reuss rule of mixtures:
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Lichtenecker logarithmic rule of mixtures:
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Rayleigh equation:

 

µ
µ

φ

µ µ
µ µ

φ µ µ

*

m
d m

d m

d m
* * *

* *
.

* *
= +

+
−













− − −
1

3

2
1 65

µµ µ
φ

d m
* *+





























4 3

10 3

/
/

 

(6.42)



94 Properties of Composite Materials

Maxwell–Garnett equation:
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Pal model 1:
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Bruggeman asymmetric model:
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Bruggeman symmetric model:
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Pal model 2:

 

µ
µ

µ µ
µ µ

φ
φ

m d

m d m

* *

* *

/

*
*







 −

−













= −






1 3

1
φφm

 

(6.47a)

Pal model 3:
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Lewis-Nielsen model:
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where ψ is defined in Equation 6.34.

6.2.2  ExpErimEntal oBsErvations on complEx 
magnEtic pErmEaBility of compositEs

A number of experimental studies [7,9–14] have been published on frequency disper-
sion of magnetic permeability of composites consisting of magnetic filler particles 
(such as Mn–Zn and Ni–Zn ferrites, carbonyl iron) and polymeric binder (matrix). 
According to Tsutaoka [14], the frequency dispersion of magnetic permeability of poly-
crystalline materials and their composites can be characterized by a superposition of 
two types of magnetic resonance mechanisms: domain wall motion and gyromagnetic 
spin motion. Consequently, one can describe the frequency dispersion of magnetic per-
meability by the following two-component formula of complex magnetic permeability:
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where ωd and ωs are resonance frequencies of domain-wall and spin components, 
respectively, χdo and χso are the static magnetic susceptibilities of domain-wall and 
spin components, α and β are damping factors, ω is the frequency of external mag-
netic field. The second term of Equation 6.49 is the domain-wall component and the 
third term is the spin component of the complex magnetic permeability. The real and 
imaginary parts of Equation 6.49 are as follows:
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In Equation 6.50, the second term is the contribution of domain-wall motion to 
μ′ and the third term is the contribution of spin motion to μ′. In Equation 6.51, the 
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FIGURE 6.19 The magnetic permeability spectra of composite of sintered Mn–Zn ferrite 
particles and polymeric binder (polyphenylene sulfide). (Based on Tsutaoka, T., J. Appl. Phys. 
93: 2789–2796, 2003.)
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first term is the contribution of domain-wall motion to μ″ and the second term is the 
contribution of spin motion to μ″.

As an example, Figure 6.18 shows the magnetic permeability spectra of sintered 
Mn–Zn ferrite obtained experimentally by Tsutaoka [14]. The figure also shows the 
curves generated from the above equations using the following values of the param-
eters: χdo = 3282, ωd = 2.5 MHz, β = 9.3 × 106, χso = 1438, ωs = 6.3 MHz, α = 1.28. 
Clearly, the domain wall contribution is dominant in this system. Also note that spin 
resonance occurs at a higher frequency than domain-wall resonance, as expected. 
The permeability spectra of composite of sintered Mn–Zn ferrite particles and poly-
meric binder (polyphenylene sulfide) is shown in Figure 6.19. The filler (Mn–Zn 
ferrite particles) content of the composite is 64.9 vol.%. The figure shows the experi-
mental observations as well as the curves generated from Equations 6.50 and 6.51 
using the following values of the parameters: χdo = 3.9, ωd = 296 MHz, β = 2 × 109, 
χso = 12.2, ωs = 875 MHz, α = 2.31. Now the domain wall contribution is less impor-
tant than the spin contribution. In the composite material, the domain wall contribu-
tion is diminished due to a decrease in the domain walls.

Figure 6.20 shows variation of the real part of complex permeability (μ′) as a 
function of filler concentration for carbonyl iron-filled polymer composites at a fixed 
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frequency of 100 MHz [7]. The experimental data can be described adequately with 
the Lichtenecker logarithmic rule of mixtures (Equation 6.41).
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7 Mechanical Properties 
of Dilute Particulate-
Filled Composites

Knowledge of the mechanical properties of composites is required in the analysis and 
design of structures made from composite materials. They also play a vital role in 
the development of new composite materials that meet specific strength or stiffness 
requirements. In order to develop tailor-made composites with specific mechanical 
properties, models are needed to predict the mechanical properties of composites 
from the properties and volume fractions of the individual components.

7.1  BACKGROUND

The key mechanical properties of composite solids are shear modulus (G), Young’s 
modulus (E), Poisson’s ratio (υ), and bulk modulus (K). When a shear stress is applied 
to a material, it undergoes shear strain (angular deformation). For a given shear stress, 
the shear strain depends on the material property called shear modulus (G), which is 
the ratio of shear stress (τ) to shear strain (γ):

 τ = Gγ or G = τ/γ (7.1)

When a tensile stress (elongational stress) is applied to a material, the material 
undergoes extension (elongational strain). For a given tensile stress, the elongational 
strain depends on the material property called Young’s modulus (E), which is the 
ratio of tensile stress (σ) to elongational strain (εx):

 σ = Eεx or E = σ/εx (7.2)

When a material is stretched in the axial direction, it shrinks in the transverse or 
lateral direction. The Poisson ratio is defined to be the ratio of lateral strain to longi-
tudinal strain with a negative sign. Thus,

 ν = −εy/εx (7.3)

In principle, –1 ≤ ν ≤ 0.5, but usually, ν is positive. For most common materials, 
0 < ν ≤ 0.5. For incompressible materials, ν is 0.5.
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When the pressure acting on a material is increased, it shrinks (undergoes com-
pression). K is a measure of the compressibility of material. It is the ratio of pressure 
increase to negative of volumetric strain:

 K
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where ρ is density. For incompressible materials, K → ∞.
In isotropic materials (that is, no directional dependence of properties), only two 

of the four mechanical properties (elastic constants) are independent. If two prop-
erties are fixed, the remaining two are automatically fixed. Suppose that G and K 
(shear and bulk moduli) are known. Then the other two constants can be determined 
from the following fundamental relations [1]:

 E
KG

K G
=

+
9

3
 (7.5)

 ν = −
+

= −




 = −3 2

6 2
1
2

1
3 2

1
K G
K G

E
K

E
G

 (7.6)

Over the past several decades, a number of empirical and theoretical studies have 
been published in the literature on the mechanical properties of particulate compos-
ite materials. In what follows, the key empirical and theoretical models describing 
the mechanical properties of particulate composites are discussed. However, the dis-
cussion is focused on the mechanical properties of dilute composites in this chapter. 
Concentrated composites with large volume fractions of filler particles are dealt with 
in the following chapters.

7.2  EMPIRICAL RULES OF MIXTURES

7.2.1  voigt rulE of mixturEs

The Voigt rule of mixture (ROM) gives the upper bound of the property. It is based 
on action in parallel approach. It is assumed that each component of the composite 
undergoes the same strain (isostrain) and that each component contributes to the 
stress to an extent depending on the volume fraction of that component. Thus, ε = 
εm = εd and τ = (1 − ϕ)τm + ϕτd, where ε, εd, and εm are the strains in composite, dis-
persed phase, and matrix, respectively; τ, τd, and τm are the stresses in the composite, 
dispersed phase, and matrix, respectively; and ϕ is volume fraction of the dispersed 
phase. Substituting the stress–strain relations τ = Lε, τm = Lmεm, and τd = Ldεd into 
τ = (1 − ϕ)τm + ϕτd and equating the strains, one can readily arrive at the following 
result:

 L = ϕLd + (1 − ϕ)Lm (7.7)
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where L is the composite property, Ld is the corresponding property of the dispersed 
phase, and Lm is the corresponding property of the matrix. Equation 7.7 is referred 
to as the Voigt ROM.

7.2.2  rEuss rulE of mixturEs

The Reuss ROM gives the lower bound of the property. It is based on action in series 
approach. It is assumed that each component of the composite undergoes the same 
stress (isostress) and that each component contributes to the strain to an extent depend-
ing on the volume fraction of that component. Thus, τ = τm = τd and ε = (1 − ϕ)εm + ϕεd. 
Also, τ = Lε, τm = Lmεm, and τd = Ldεd. Thus, it can be readily shown that

 
1 1
L L Ld m

= + −φ φ( )
 (7.8)

Equation 7.8 is referred to as the Reuss ROM.
The Voigt and Reuss ROMs give a crude estimate of the property. The actual 

value usually falls in between these two bounds.

7.3  THEORETICAL MODELS

7.3.1  dilutE compositEs with sphErical particlEs

For dilute composites of solid (not necessarily rigid) spherical particles, the exact 
theoretical expressions for shear modulus (G) and its intrinsic value [G] are given as 
follows [1]:
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where Gd and Gm are shear moduli of dispersed phase and matrix, respectively, νm is 
the Poisson ratio of matrix, and λG is the shear modulus ratio Gd/Gm.

The exact theoretical expression for bulk modulus (K) of dilute composites of 
solid spherical particles is given as follows [1]:
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where Kd and Km are bulk moduli of dispersed phase and matrix, respectively. Since 
G/K = [3(1 − 2ν)]/[2(1 + ν)] for isotropic materials, Equation 7.11 can be rewritten as
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The intrinsic bulk modulus [K] is given as
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where λK is the bulk modulus ratio Kd/Km.
With the results obtained for the shear and bulk moduli (G and K), the other 

two elastic constants, namely, Young’s modulus (E) and Poisson’s ratio (ν) can be 
obtained from the standard relations for isotropic materials, that is, Equations 7.5 
and 7.6.

It can be readily shown that for a dilute dispersion of spherical solid particles in a 
solid matrix, Young’s modulus (E) is given by the following expression [2]:
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where Ed and Em are Young’s moduli of the dispersed phase and the matrix phase, 
respectively, νd and νm are the Poisson ratios of the dispersed and matrix phases, 
respectively.

The intrinsic Young’s modulus [E] is given by
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where λE is Young’s modulus ratio defined as Ed/Em.
Figure 7.1 shows the intrinsic shear modulus [G] plots generated from Equation 

7.10. For a given shear modulus ratio λG, [G] generally increases with the increase 
in νm (matrix Poisson’s ratio). For a given νm, [G] increases with the increase in λG. 
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At λG = 1, [G] is zero regardless of the value of νm. When λG < 1, [G] is negative and 
when λG > 1, [G] is positive.

Figure 7.2 shows the intrinsic bulk modulus [K] plots generated from Equation 
7.13. For a given bulk modulus ratio λK, [K] generally decreases with the increase 
in νm. For a given νm, [K] increases with the increase in λK. At λK = 1, [K] is zero 
regardless of the value of νm. When λK < 1, [K] is negative and when λK > 1, [K] is 
positive.

Figure 7.3 shows the intrinsic Young’s modulus [E] plots generated from Equation 
7.15. For the top graph of Figure 7.3, the matrix is taken to be incompressible 
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Raton: CRC Press, 2007.)



106 Properties of Composite Materials

(νm  = 0.5) and for the bottom graph of Figure 7.3, the particles are taken to be 
incompressible (νd = 0.5). For a given νd (particle Poisson’s ratio), the intrinsic 
Young’s modulus [E] of composite with incompressible matrix (νm = 0.5) increases 
with the increase in λE, the Young’s modulus ratio. In addition, [E] decreases with 
the increase in νd in the intermediate range of λE (10–2 < λE < 100). The crossover 
value of the modulus ratio λE where [E] crosses from the region of [E] > 0 to the 
region [E] < 0, increases with the increase in νd. The crossover value of λE is unity 
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only when νd is near 0.5. For a given νm, [E] increases with the increase λE when 
the particles are incompressible (νd = 0.5).

7.3.1.1  Composites with Rigid Spherical Particles
For particulate composite reinforced by rigid particles (νd → 0.5, Kd → ∞, Gd → ∞, 
Ed → ∞), the equations for the shear, bulk, and Young’s moduli reduce to the follow-
ing expressions:
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If, in addition to rigid particles, the composite matrix is incompressible (νm → 0.5, 
Km → ∞), the expressions for the relative shear and Young’s moduli become identi-
cal, that is,
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7.3.1.2  Composites with Incompressible Matrix
For particulate composites with incompressible matrix (νm = 0.5), the equations for 
the effective elastic properties G, K, and E reduce to the following:
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If both dispersed and matrix phases are incompressible, that is, νm = 0.5 and νd = 
0.5, the expression for G remains the same as Equation 7.20, but K becomes infinite 
and E is given by
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7.3.1.3  Composites with Pores
Composites with pores (pore-solid composite materials) find many engineering 
applications ranging from acoustic absorption to heat shields in reentry vehicles. 
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Pore-solid composites are of interest in biomedical applications as well [3–5]. Even 
in nature many of the solids are porous.

For pore-solid composites, the equations for the shear, bulk, and Young’s moduli 
(Equations 7.9, 7.12, and 7.14) simplify to the following expressions:
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The moduli of the dispersed phase (voids) are taken to be zero, that is, Gd → 0, 
Ed → 0, and Kd → 0. It is interesting to note that while the effective shear and bulk 
moduli (G and K) of porous materials are strongly dependent on the matrix Poisson 
ratio, νm, the effective Young’s modulus E of pore-solid composites is insensitive to 
νm [6], especially when 0 ≤ νm ≤ 0.5.

7.3.2  dilutE compositEs with disk-shapEd particlEs

For dilute particulate composites with disk-shaped particles, the elastic properties K 
and G are given as follows [7]:
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Equations 7.27 and 7.28 could be recast in the following forms:
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where λK is the bulk moduli ratio and λG is the shear moduli ratio.
Figure 7.4 compares the relative shear modulus Gr (defined as G/Gm) of compos-

ites with disks and spheres as filler particles. When shear modulus ratio λG is 100, 
the relative shear modulus is larger than one and Gr of composite with disk-shaped 

Disks

Spheres

10

1

Re
la

tiv
e s

he
ar

 m
od

ul
us

 (G
r)

0.0 0.1 0.2 0.3

Disks

Spheres

Re
la

tiv
e s

he
ar

 m
od

ul
us

 (G
r) 

0.0 0.1 0.2 0.3

Volume fraction (φ)

Volume fraction (φ)

1.0

0.1

λG = 0.1

νm = νd = 0.4

λG = 100

νm = νd = 0.4

FIGURE 7.4 Relative shear modulus of composites with disks and spheres as particles. 
(From Pal, R., Rheology of Particulate Dispersions and Composites, Chapter 12, Boca Raton: 
CRC Press, 2007.)
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particles is much larger than the Gr of composite with spherical particles at the same 
volume fraction of particles (ϕ). When λG = 0.1, an opposite effect is observed. Now 
Gr < 1 and spherical particles give a larger value of Gr.

Figure 7.5 compares the relative bulk modulus Kr (defined as K/Km) of com-
posites with disks and spheres as filler particles. The relative bulk modulus exhib-
its a behavior similar to that exhibited by Gr. When λK is 100, Kr > 1 and Kr of 
composite with disk shaped particles is much larger than the Kr of composite with 
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FIGURE 7.5 Relative bulk modulus of composites with disks and spheres as particles. 
(From Pal, R., Rheology of Particulate Dispersions and Composites, Chapter 12, Boca Raton: 
CRC Press, 2007.)



112 Properties of Composite Materials

spherical particles. When λK = 0.1, Kr < 1 and spherical particles result in a larger 
value of Kr.

7.4  BOUNDS FOR THE EFFECTIVE ELASTIC 
PROPERTIES OF PARTICULATE COMPOSITES

The equations for the effective elastic properties of particulate composites given in 
the preceding section are valid for dilute composites with spherical or disk-shaped 
inclusions (particles). Interestingly, the elastic properties of isotropic two-phase com-
posites are restricted by definite lower and upper bounds [8–22], regardless of the 
geometry of the inclusions (spherical or nonspherical). Such bounds depend only on 
the volume fractions of the components and the properties of the components. The 
effective elastic property of the composite lies somewhere in the interval between 
the lower and upper bounds.

A composite material composed of isotropic dispersed phase (unknown geom-
etry) distributed randomly in an isotropic matrix has isotropic effective proper-
ties. Assuming that the composite is linearly elastic, it has two independent elastic 
constants (properties) such as bulk modulus (K) and shear modulus (G). Thus, the 
bounds for bulk modulus and shear modulus are reported simultaneously.

The elementary bounds for bulk modulus (K) and shear modulus (G) of isotropic 
two-phase composites are known as the Voigt–Reuss bounds [21,22] as they are 
based on the Voigt and Reuss ROMs discussed earlier. The Voigt ROM represents 
the upper bound on modulus (K or G) and the Reuss ROM represents the lower 
bound on modulus. The Voigt (upper) bounds for the effective bulk and shear moduli 
of isotropic composite are as follows [21]:

 K ≤ ϕ Kd + (1 – ϕ) Km (7.32)

 G ≤ ϕ Gd + (1 – ϕ) Gm (7.33)

The Reuss (lower) bounds for the effective bulk and shear moduli of isotropic 
composite are given as follows [22]:
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The actual effective moduli of isotropic composite are expected to lie somewhere 
in the interval between the Voigt and Reuss bounds, regardless of the geometry of 
inclusions. The upper and lower bounds given by Equations 7.32 through 7.35 are 
generally not close enough to provide a good estimate of the effective moduli of 
composite.

Hashin and Shtrikman [13] and Walpole [16] employed a variational theorem to 
obtain improved (and much tighter) upper and lower bounds for the effective bulk 
and shear moduli of isotropic composites. The Hashin–Shtrikman–Walpole (HSW) 
bounds are given as follows [8,13,16]:
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where Kℓ, Kg, Gℓ, and Gg are given in terms of the matrix and dispersed-phase prop-
erties as follows:

When (Gd – Gm) (Kd – Km) ≥ 0,

 K G K Gm g d� = =4
3

4
3

,  (7.38)

 G
G K G

G
G K Gm m m

g
d d d

� = +
+









 = +

+




−
3
2

1 10
9 8

3
2

1 10
9 8

1

, 





−1

 (7.39)

When (Gd – Gm) (Kd – Km) ≤ 0,
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Note that when Gm = Gd, the lower and upper bounds for shear modulus coincide 
and the composite shear modulus is identical to the matrix shear modulus, that is, 
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G = Gm. The lower and upper bounds for bulk modulus also coincide when Gm = Gd 
and the composite K is given by
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Figures 7.6 through 7.9 compare the Voigt–Reuss bounds with the HSW bounds 
under different conditions: λK > 1, λG > 1 in Figure 7.6; λK < 1, λG < 1 in Figure 7.7; 
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FIGURE 7.6 Voigt, Reuss, and Hashin–Shtrikman–Walpole (HSW) bounds for the relative 
bulk and shear moduli of isotropic composites under the conditions λK > 1 and λG > 1 (note 
that λK = Kd/Km and λG = Gd/Gm). (From Pal, R., Rheology of Particulate Dispersions and 
Composites, Chapter 12, Boca Raton: CRC Press, 2007.)
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λK < 1, λG > 1 in Figure 7.8; and λK > 1, λG < 1 in Figure 7.9. Clearly, the HSW bounds 
are much tighter, and hence better, as compared with the Voigt–Reuss bounds.

The HSW bounds, although better than the Voigt–Reuss bounds, yield satisfac-
tory estimates for the effective moduli, in that the upper and lower bounds are close, 
only when the ratios between the corresponding moduli of the two phases are close 
to unity. When the moduli of the two phases are very different, the bounds become 
too wide to be of any practical value.
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FIGURE 7.7 Voigt, Reuss, and Hashin–Shtrikman–Walpole (HSW) bounds for the rela-
tive bulk and shear moduli of isotropic composites under the conditions λK < 1 and λG < 1 
(where λK = Kd/Km and λG = Gd/Gm). (From Pal, R., Rheology of Particulate Dispersions and 
Composites, Chapter 12, Boca Raton: CRC Press, 2007.)
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It is interesting to note that for dilute particulate composites under the condition 
(Gd – Gm) (Kd – Km) ≥ 0, the lower HSW bounds for effective bulk and shear moduli 
correspond to the formulae for composites of spherical filler particles and the upper 
HSW bounds correspond to the formulae for composites of disk-shaped particles. 
This indicates that when (Gd – Gm) (Kd – Km) ≥ 0, the spherical particles provide 
the minimum reinforcing effect whereas the disk-shaped filler particles provide the 
maximum reinforcing effect [7].
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FIGURE 7.8 Voigt, Reuss, and Hashin–Shtrikman–Walpole (HSW) bounds for the rela-
tive bulk and shear moduli of isotropic composites under the conditions λK < 1 and λG > 1 
(where λK = Kd/Km and λG = Gd/Gm). (From Pal, R., Rheology of Particulate Dispersions and 
Composites, Chapter 12, Boca Raton: CRC Press, 2007.)
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8 Mechanical Properties 
of Concentrated Pore-
Solid Composites

8.1  INTRODUCTION

Porous solids could be considered as composite materials consisting of pores and 
solid matrix. Such composite materials are utilized in many engineering applications 
ranging from acoustic absorption to heat shields in reentry vehicles. Porous ceramics 
are widely used as filters, catalyst supports, low dielectric substances, thermal insu-
lators, and lightweight structural components. Porous-solid materials are of interest 
in biomedical applications as well [1–3]. Many industrial materials such as wood, 
carbon, ceramics, foams, and bricks are also porous in nature.

A number of experimental and theoretical studies have been reported on the 
mechanical properties of pore-solid composites [4–31]. The presence of pores decreases 
the mechanical properties, such as the Young’s and shear moduli, of the material. For 
an infinitely dilute dispersion of spherical pores in an incompressible matrix, the exact 
expressions for the effective Young’s and shear moduli are given as follows [4,5,32]:

 E Em= −




1

23
12

φ  (8.1)

 G Gm= −




1

5
3

φ  (8.2)

where E and G are the effective Young’s and shear moduli of the pore-solid compos-
ite, respectively; Em and Gm are the Young’s and shear moduli of the solid matrix, 
respectively; and ϕ is the porosity (volume fraction of pores). These equations fol-
low from Equations 7.24 and 7.26 of Chapter 7, assuming incompressible matrix 
(Poisson ratio of matrix equal to 0.5).

Equations 8.1 and 8.2 cannot be applied at finite concentration of pores, as the interac-
tion between the pores is not considered in their derivation. For concentrated systems, a 
number of empirical expressions for the relationship between elastic moduli (E and G) 
and porosity (ϕ) have been proposed in the literature. Some of them are listed below [25]:

 M = Mmexp(−aϕ) (8.3)

 M = Mm(1 − bϕ)n (8.4)
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 M = Mm(1 − c1ϕ + c2ϕ2) (8.5)

 M = Mm(1 − ϕ)/(1 + dϕ) (8.6)

where M is the effective modulus (E or G) of the pore-solid composite; Mm is the 
modulus (Em or Gm) of the solid matrix; and a, b, c1, c2, d, and n are constants deter-
mined from experimental results by data fitting. The constants a, b, c1, c2, d, and n 
are different for Young’s modulus and shear modulus.

The empirical equations such as those listed above (Equations 8.3 through 8.6) 
are good for data fitting. They cannot be used to predict the elastic moduli unless 
the constants involved in the equations are known for a given material. Furthermore, 
the empirical equations offer little insight into the underlying principles governing the 
elastic behavior of composites.

Pal [33] has recently developed new models for the elastic moduli of concentrated 
pore-solid composites. The models developed are consistent with the exact expres-
sions for dilute systems (Equations 8.1 and 8.2). The models were evaluated using 
published data on the Young’s and shear moduli of porous composites. The expres-
sions for the bulk modulus (K) and Poisson ratio (ν) of pore-solid composites were 
also derived using the models developed for the Young’s and shear moduli.

8.2  PAL MODELS FOR ELASTIC MODULI OF 
CONCENTRATED PORE-SOLID COMPOSITES

Pal [33] developed the equations for elastic moduli of concentrated pore-solid com-
posites using the differential effective medium approach (DEMA). According to this 
approach, a concentrated pore-solid composite can be obtained from an initial solid 
matrix by successively adding infinitesimally small quantities of pores to the system 
while the final volume fraction of the pores is reached. At any arbitrary stage (i) of 
the process, the addition of an infinitesimal amount of pores leads to the next stage 
(i + 1). The pore-solid composite of stage (i) is then treated as an equivalent “effective 
medium,” which is homogenous with respect to the new set of pores added to reach 
stage (i + 1). The solution of a dilute system is then applied to determine the increment 
change in moduli in going from stage (i) to stage (i + 1). The differential equation 
derived in this manner is integrated to obtain the final solution for a concentrated 
pore-solid composite. This approach was utilized by Bruggeman [34] to develop an 
equation for the dielectric constant of a concentrated solids-in-liquid suspension.

Now consider a pore-solid composite with porosity ϕ (volume fraction of pores). 
Into this composite, an infinitesimally small amount of new pores is added. The 
increment changes in the Young’s and shear moduli (dE and dG) resulting from the 
addition of the new pores can be calculated from Equations 8.1 and 8.2 by treating 
the pore-solid composite into which new pores are added as an equivalent “effective 
medium” of Young’s modulus E and shear modulus G. Thus,

 dE Ed= − 23
12

φ  (8.7)

 dG Gd= − 5
3

φ  (8.8)
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Upon integration with the limits E → Em and G → Gm at ϕ → 0, Equations 8.7 
and 8.8 give

 E Em=




exp

23
12

– φ  (8.9)

 G Gm=




exp

5
3

– φ  (8.10)

Equations 8.9 and 8.10, referred to as model 1, reduce to Equations 8.1 and 8.2 in 
the limit ϕ → 0.

Model 1 is expected to describe the moduli of pore-solid composites at low to 
moderate values of porosity ϕ. This is because in the derivation of the differential 
equations (Equations 8.7 and 8.8) leading to model 1 (Equations 8.9 and 8.10), it is 
assumed that the whole volume of the pore-solid composite before new pores are 
added is available as free volume to the new pores. In reality, the free volume avail-
able to disperse the new pores is significantly less due to the volume preempted by 
the pores already present. The increase in the actual volume fraction of pores when 
new pores are added to the system is dϕ/(1 − ϕ). Thus, Equations 8.7 and 8.8 become

 dE E
d= −
−

23
12 1

φ
φ

 (8.11)

 dG G
d= −
−

5
3 1

φ
φ

 (8.12)

Upon integration with the limits E → Em and G → Gm at ϕ → 0, Equations 8.11 
and 8.12 give

 E = Em(1 – ϕ)23/12 (8.13)

 G = Gm(1 – ϕ)5/3 (8.14)

Equations 8.13 and 8.14, referred to as model 2, reduce to Equations 8.1 and 8.2 
in the limit ϕ → 0.

One serious limitation of models 1 and 2 is that they fail to account for the so-called 
crowding effect of pores at high values of porosity ϕ. For example, Equations 8.13 and 
8.14 predict nonzero values of the elastic moduli for all ϕ < 1; the moduli are zero only 
at ϕ = 1. In reality, the moduli values become zero at ϕ = ϕm, the maximum pack-
ing volume fraction of inclusions (pores) where the inclusions touch each other. For 
random close packing of monosized spherical inclusions (pores, particles), ϕm is 0.637 
(well below unity). Due to entrapment of some of the matrix material in the interstitial 
region between the existing pores, the free volume of the matrix available to disperse 
the new pores is significantly less than (1 – ϕ). If we take the incremental increase in 
the volume fraction of the pores when infinitesimal amount of new pores are added to 
an existing pore-solid composite of porosity ϕ as d[ϕ/(1 – ϕ/ϕm)] rather than dϕ/(1 – ϕ) 
as used in the derivation of model 2, Equations 8.7 and 8.8 become [33]
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Upon integration with the limits E → Em and G → Gm at ϕ → 0, Equations 8.15 
and 8.16 give
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Equations 8.17 and 8.18, referred to as model 3, reduce to Equations 8.1 and 8.2 
in the limit ϕ → 0.

Another way to account for the crowding effect of pores [33] is to take the incre-
mental increase in the volume fraction of the inclusions (particles or pores as in the 
present case) when infinitesimal amount of new inclusions are added to an existing 
inclusions-matrix composite as dϕ/(1 – ϕ/ϕm) rather than d[ϕ/(1 – ϕ/ϕm)] as used in 
the derivation of model 3. Thus,
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Upon integration with the limits E → Em and G → Gm at ϕ → 0, Equations 8.19 
and 8.20 give
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Equations 8.21 and 8.22, referred to as model 4, reduce to Equations 8.1 and 8.2 
in the limit ϕ → 0 as expected.

As ϕm, the maximum packing volume fraction of pores, is sensitive to the pore 
size distribution, models 3 and 4 are capable of taking into account the effect of the 
pore size distribution on the elastic properties of pore-solid composites. An increase 
in ϕm occurs when a composite with monosized pore distribution is changed to a 
composite with polydisperse pore size distribution.

8.3  COMPARISON OF MODEL PREDICTIONS 
WITH EXPERIMENTAL DATA

Sixteen sets of experimental data on pore-solid composites covering a broad range 
of porosity are considered to evaluate the models. Table 8.1 gives a summary of the 
various pore-solid composite systems considered [33].

TABLE 8.1
Summary of Various Pore-Solid Composites Considered in 
Evaluating the Models

Set 
No.

Range of ϕ (Volume 
Fraction of Pores) Ref. No. Comments

1 0–0.41 [7] Young’s modulus of porous polycrystalline alumina

2 0–0.12 [13] Young’s modulus of porous polycrystalline mullite

3 0–0.36 [14] Elastic properties (Young’s and shear moduli) of 
porous polycrystalline monoclinic gadolinium oxide

4 0–0.40 [15] Elastic properties (Young’s and shear moduli) of 
porous polycrystalline monoclinic samarium oxide

5 0–0.32 [16] Elastic properties (Young’s and shear moduli) of 
porous polycrystalline cubic lutetium oxide

6 0–0.28 [17] Elastic properties (Young’s and shear moduli) of 
porous polycrystalline monoclinic hafnium oxide

7A–7G 0–0.40 [18] Elastic moduli of porous refractory spinels (seven 
sets of data)

8 0–0.36 [19] Elastic properties (Young’s and shear moduli) of 
porous stabilized hafnium oxide

9A–9B 0–0.18 [20] Elastic properties (Young’s and shear moduli) of 
porous hafnium and zirconium oxides stabilized 
with praseodymium or terbium oxide (two sets of 
data)

Source: Pal, R., J. Comp. Mater. 39: 1147–1158, 2005.
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Figure 8.1 shows a comparison between model predictions of Young’s modulus 
and experimental data. The data are plotted as Er versus ϕ. As can be seen, the 
experimental Young’s modulus data can be described reasonably well with model 
3 (Equation 8.17) using a single ϕm value of 0.58. Models 1, 2, and 4 generally 
overpredict the relative Young’s modulus of pore-solid composites, especially when 
ϕ > 0.1. The scatter in experimental data observed in Figure 8.1 is likely due to 
variations in porosity structure (size, shape, orientation of pores) from one set of 
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FIGURE 8.1 Comparison between published experimental data and predictions of vari-
ous models for the relative Young’s modulus of pore-solid composites. The numbers shown 
on the curves refer to the corresponding model number. (From Pal, R., J. Comp. Mater. 39: 
1147–1158, 2005.)
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experimental data to another. It should also be noted that the solid matrix of the 
experimental pore-solid composites was not strictly incompressible as assumed in 
the models.

Figure 8.2 shows a comparison between model predictions of shear modulus and 
experimental data. The data are plotted as relative shear modulus Gr versus porosity 
ϕ. Once again, model 3 (Equation 8.18) describes the experimental data satisfac-
torily using a single ϕm value of 0.58. Models 1, 2, and 4 generally overpredict Gr, 
especially when ϕ > 0.1.
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on the curves refer to the corresponding model number. (From Pal, R., J. Comp. Mater. 39: 
1147–1158, 2005.)
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8.4  BULK MODULUS AND POISSON’S RATIO OF 
CONCENTRATED PORE-SOLID COMPOSITES

From the Young’s and shear moduli, the bulk modulus (K) of pore-solid composite 
can be obtained using the following standard relation for isotropic materials:

 K = EG/[3(3G – E)] (8.23)

Assuming that the solid matrix is incompressible, Equation 8.23 can be rewritten 
as

 Kr = K/Gm = ErGr/[3(Gr – Er)] (8.24)

where Kr is the relative bulk modulus, defined as the ratio of bulk modulus of pore-
solid composite to the shear modulus of the matrix. Note that the bulk modulus of the 
matrix (Km) is infinite as matrix is assumed to be incompressible.

The Poisson ratio (ν) of isotropic materials is related to the Young’s and shear 
moduli as

 ν = [1 – (2G/E)]/(2G/E) (8.25)

TABLE 8.2
Equations for Er, Gr, Kr, and ν
Model 
No. Er = E/Em Gr = G/Gm Kr = K/Gm ν
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For incompressible solid matrix, Equation 8.25 can be expressed as

 ν = [1 – (2Gr /3Er)]/(2Gr /3Er) (8.26)

Using Equations 8.24 and 8.26, the expressions for relative bulk modulus (Kr) and 
Poisson’s ratio (ν) of pore-solid composites are determined from models 1 through 4. 
The expressions are summarized in Table 8.2.

Figure 8.3 shows the model predictions of relative bulk modulus as a function of 
porosity ϕ. As ϕ → 0, the relative bulk modulus approaches infinity as expected for 
incompressible matrix. All models predict a decrease in Kr with an increase in ϕ. 
The predictions of Kr from different models at any given ϕ are in the following order: 
Kr (model 1) > Kr (model 2) > Kr (model 4) > Kr (model 3).

The Poisson ratio of pore-solid composites predicted from the models is plotted 
as a function of porosity in Figure 8.4. As ϕ → 0, the Poisson ratio approaches 0.5 
as expected for an incompressible matrix. With an increase in porosity ϕ, all models 
predict a decrease in the Poisson ratio. The predictions of ν from different models 
at any given ϕ are in the following order: ν (model 1) > ν (model 2) > ν (model 4) > ν 
(model 3). Interestingly, ν approaches a value of –1 when ϕ → ϕm in the case of 
models 3 and 4 (see Table 8.2). Model 2 also predicts a ν value of –1 when ϕ → 1.0. 
Model 1 predicts the Poisson ratio of pore-solid composite to be positive (μ > 0) over 
the full range of porosity (0 ≤ ϕ ≤ 1).
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ϕ, as predicted by the models. The numbers shown on the curves refer to the corresponding 
model number. (From Pal, R., J. Comp. Mater. 39: 1147–1158, 2005.)
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9 Effective Young’s 
Modulus of Concentrated 
Composites

9.1  INTRODUCTION

As discussed in Chapter 7, the key mechanical properties of composite solids are 
shear modulus (G), Young’s modulus (E), Poisson’s ratio (υ), and bulk modulus (K). 
In isotropic materials (that is, no directional dependence of properties), only two 
of the four mechanical properties are independent. If two properties are fixed, the 
remaining two are automatically fixed. In Chapter 7, models for the mechanical 
properties of dilute composites were presented. In this chapter and the next (Chapter 
10), the models for the mechanical properties of concentrated particulate composites 
are discussed in detail. The two mechanical properties chosen are Young’s modulus 
(E) and shear modulus (G). The present chapter deals with the Young’s modulus, and 
the following Chapter 10 focuses on the shear modulus of particulate composites.

The Young’s modulus, also referred to as tensile modulus, is needed to estimate 
the extension of a material under tension or the shortening of a material under com-
pression. Depending upon the ratio of filler-particle Young’s modulus (Ed) to matrix 
Young’s modulus (Em), two-phase particulate composites can be divided into three 
major classes [1]: (1) composites with high filler-to-matrix modulus ratio (Ed/Em > 
20), which include most filled or reinforced polymer composites; (2) composites 
with low filler-to-matrix modulus ratio (1 < Ed/Em < 5), which include most cement 
concretes and metal matrix composites—note that concrete is a composite material 
consisting of cement paste matrix and particles of various sizes ranging from sand 
grains of diameter 100 μm to large rock particles of diameter 10 to 20 mm [2]; and 
(3) composites with soft particles (0 < Ed/Em ≤ 1) and composites with voids (Ed/Em = 0).

9.2  BACKGROUND

Over the past 50 years or so, a number of experimental and theoretical studies have 
been published on the mechanical properties of particulate composites [3–37]. 
However, the exact micromechanical models are available only for infinitely dilute 
systems. In concentrated systems where particle–particle interactions are important, 
it is difficult  to solve the fundamental equations of mechanics and hence no exact 
analytical solutions exist for the effective properties of concentrated particulate com-
posites. Only approximate micromechanical models are available for the concentrated 
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systems. Based on different modeling approaches, a number of expressions have been 
proposed to describe the elastic properties of concentrated particulate composites.

As already noted in Chapter 7, one approach to predict the effective mechanical 
properties of a two-phase composite is to apply the rules of mixtures. According to 
the rules of mixtures, each of the constituent phases of the composite contributes 
to  the effective mechanical property to an extent depending on the volume fraction 
of the constituent phase. If it is assumed that each component of the composite under-
goes the same strain (isostrain or action-in-parallel situation), the effective mechanical 
property can be calculated from the Voigt rule of mixtures [31]. If it is assumed that 
the each component of the composite experiences the same stress (isostress or action-
in-series situation), then the Reuss rule of mixtures [32] can be used to estimate the 
effective mechanical property of the composite. The rules of mixtures for the effective 
mechanical properties of composite materials provide only crude estimates. The actual 
value of the mechanical property shows large deviation from the rule of mixtures.

Several researchers have applied the variational theorems of the theory of elastic-
ity to obtain upper and lower bounds for the effective modulus. A composite mate-
rial composed of isotropic components distributed randomly in the material space 
will have isotropic effective properties, which are restricted by definite lower and 
upper bounds. Regardless of the geometry of the inclusions (dispersed phase), the 
effective property of the composite lies somewhere in the interval between the lower 
and upper bounds. Such bounds depend only on the volume fractions of the compo-
nents and the properties of the components. This approach was utilized by Hashin 
and Shtrikman [6] and Walpole [13]. However, the Hashin–Shtrikman–Walpole 
bounds yield satisfactory estimates for the effective moduli (in that the upper and 
lower bounds are close) only when the particles and the matrix material have similar 
moduli. When the moduli of the two phases are very different, the bounds become 
too wide to be of any practical value.

Another well-known method to determine the effective mechanical properties 
of concentrated composites is the “self-consistent scheme.” This approach involves 
embedding the particle in a homogeneous infinite medium that has the effective 
mechanical properties of the composite. The bond between the particle and the sur-
rounding infinite medium is assumed to be perfect so that there occur displacement 
and traction continuity across the interface between phases. The system is subjected 
to uniform strain or stress at infinity and the stress and strain fields in the particle are 
determined. From the relationship between the far-field stresses and strains and the 
stresses and strains in the particle, the elastic properties of the infinite homogeneous 
medium (composite) are determined. This self-consistent scheme was first utilized by 
Hill [8] and Budiansky [9] to develop the equations for the elastic moduli of particulate 
composites. The self-consistent scheme does not give accurate predictions of the mod-
uli especially when there is a large mismatch in the properties of the dispersed phase 
and matrix. Furthermore, this scheme gives unrealistic results in the limiting cases.

In order to overcome the limitations of the self-consistent scheme, the “generalized 
self-consistent scheme” was proposed to determine the effective mechanical properties 
of concentrated composites [23]. According to the generalized self-consistent scheme, 
the composite is first treated as an equivalent “effective medium” which is homoge-
neous and has the same macroscopic mechanical properties as that of the composite. 
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Then a small portion of the effective homogeneous medium is replaced by the actual 
components of the composite. The mechanical properties of the effective medium 
are then determined by insisting that if a small portion of the effective homogeneous 
medium is replaced by the actual components of the dispersion, no difference in 
mechanical properties could be detected by macroscopic observations. This approach 
was utilized by Kerner [10], van der Poel [12], Smith [15,16], and others [23,36]. The 
equations developed on the basis of the generalized self-consistent scheme give rea-
sonable predictions at low to moderate concentrations of the particulate phase. At high 
concentrations of the particulate phase, a large deviation between the experimental 
and predicted values is generally observed. Furthermore, the equations predict the 
modulus of the particulate composite to be independent of the particle size distribution.

Pal [38] has recently developed new equations for Young’s modulus of concen-
trated particulate composites using a differential scheme along with the exact solu-
tion of an infinitely dilute system. The key features of the Pal models are (1) they 
are closed form expressions, (2) they are valid over the full range of the particle con-
centration, (3) they take into consideration the effects of the particulate (dispersed) 
phase compressibility (Poisson’s ratio) on the Young’s modulus of the composite, 
(4) they consider the effect of the modulus ratio (defined as the ratio of the dispersed 
phase Young’s modulus to matrix Young’s modulus) on the Young’s modulus of the 
composite and are valid over the full range of the modulus ratio, and (5) they include 
the effect of the particle size distribution on the Young’s modulus of the composite 
through the parameter ϕm, the maximum packing volume fraction of the particles. 
The ϕm value for any composite depends on the particle size distribution of the par-
ticulate phase. The equations are evaluated using seven sets of experimental data on 
Young’s modulus of particulate composites.

In what follows, the Pal models for Young’s modulus of concentrated composites 
are discussed in detail.

9.3  PAL MODELS FOR YOUNG’S MODULUS 
OF CONCENTRATED COMPOSITES

For infinitely dilute particulate composites, the Young’s modulus is given as follows:
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where Er is the relative Young’s modulus, defined as the ratio of composite Young’s 
modulus (E) to matrix-phase Young’s modulus (Em), νd is the dispersed-phase Poisson 
ratio, and ϕ is the volume fraction of filler particles. This equation is an exact expres-
sion valid for infinitely dilute composites of spherical filler particles and incom-
pressible matrix phase. Equation 9.1 cannot be applied at finite concentrations of 
dispersed phase as the interaction between the particles is ignored in its derivation.

Pal [38] utilized the differential effective medium approach to extend the dilute 
system micromechanical model to concentrated composites. Consider a particulate 
composite with a volume fraction of particles ϕ. Into this composite, an infinitely 
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small number of new particles are added. The increment increase in Young’s modu-
lus, dE, resulting from the addition of new particles can be calculated from the dilute 
system result (Equation 9.1) by treating the composite into which the new particles 
are added as an equivalent effective medium of Young’s modulus E. Thus,
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This equation is separable, since we can write it as

 
dE

E
E E
E E

E
E E

d d

d d

d

d

15 10 1
6 6 1

1 2
3 4 1

− +
+ +

− −
+ −

( )
( )

( )
(

ν
ν

ν
22 ν

φ

d

d

)











=  (9.3)

After considerable algebra and integration with the limit E → Em at ϕ → 0, 
Equation 9.3 gives
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where

 M = 46(1 + νd)(1 − 2νd) (9.5)

 P = 4 − 23νd (9.6)

 Q d d= − +3 23 138 822( )ν ν  (9.7)

 N = (833 − 736νd)/(46Q) (9.8)

Equation 9.4, referred to as model 1, reduces to the following equation for particu-
late composite of incompressible spherical particles (νd = 0.5):
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Model 1 (Equation 9.4) is expected to describe Young’s modulus of particu-
late composites of incompressible matrix at low to moderate values of ϕ. This is 
because in the derivation of the differential equation, Equation 9.2, leading to model 
1 (Equation 9.4), it is assumed that all the volume of the composite before new par-
ticles are added is available as free volume to the new particles. In reality, the free 
volume available to disperse the new particles is significantly less, due to the volume 
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preempted by the particles already present. The increase in the actual volume fraction of 
the dispersed phase when new particles are added to the composite is dϕ/(1 − ϕ). Thus, 
Equation 9.3 becomes
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Upon integration with the limit E → Em at ϕ → 0, Equation 9.10 gives
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Equation 9.11, referred to as model 2, reduces to the following equation for par-
ticulate composite of incompressible spherical particles (νd = 0.5):

 
E

E
E E

E Em

d

m d







−
−







= −
−

−
2 5

2 51
.

.( )φ  (9.12)

According to models 1 and 2 (Equations 9.4 and 9.11), it is possible for the volume 
fraction of the dispersed phase to reach unity as more and more particles are added 
to the composite. This is physically unrealistic, especially for composite systems of 
rigid particles. In reality, there exists an upper limit for ϕ, referred to as maximum 
packing volume fraction of particles (ϕm). The value of ϕm varies with the type of 
packing arrangement of particles and the shape of filler particles. For example, it 
is 0.637 for random close packing of monosized spherical particles. For hexagonal 
close packing of uniform spheres, ϕm is 0.74.

To account for the packing limit of particles, the incremental increase in the vol-
ume fraction of the dispersed phase, when infinitesimal amount of new particles are 
added to an existing suspension of dispersed phase volume fraction ϕ, is taken to be 
d[ϕ/(1 − ϕ/ϕm)] rather than dϕ/(1 − ϕ) as used in the derivation of model 2 [38]. Thus, 
Equation 9.3 becomes
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Upon integration, Equation 9.13 gives
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Equation 9.14, referred to as model 3, reduces to the following equation for par-
ticulate composite of incompressible spherical particles (νd = 0.5):
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Another way to account for the packing limit of particles is to take the incremental 
increase in the volume fraction of the dispersed phase, when infinitesimal amount of new 
particles are added to an existing suspension of concentration ϕ, as dϕ/(1 − ϕ/ϕm) rather 
than d[ϕ/(1 − ϕ/ϕm)] as used in the derivation of model 3 [38]. Hence,
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Upon integration, Equation 9.16 gives
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Equation 9.17, referred to as model 4, reduces to the following equation for par-
ticulate composite of incompressible spherical particles (νd = 0.5):
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9.3.1  modEl prEdictions of young’s modulus

According to the models discussed in the preceding section, the Young’s modulus of 
a particulate composite of incompressible matrix can be expressed as

 Er = f(νd,λ,ϕ,ϕm) (9.19)

where Er is relative Young’s modulus (defined as E/Em), νd is Poisson’s ratio of the 
dispersed phase, λ is the ratio of dispersed-phase Young’s modulus (Ed) to matrix-
phase Young’s modulus (Em), ϕ is volume fraction of particles, and ϕm is maximum 
packing volume fraction of filler particles.

Figure 9.1 shows the comparison between the predictions of different models for 
two different values of λ: in one case λ = 5, that is, greater than unity, and in the 
other case, λ = 0.1, that is, less than unity. Poisson’s ratio of the dispersed phase is 
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kept the same in both cases, that is, νd = 0.4. The maximum packing volume frac-
tion of particles (ϕm) is taken to be 0.637 (corresponding to random close packing of 
uniform spheres) in the calculations for models 3 and 4. The number shown on the 
curve refers to the corresponding model number. The letter “d” on the curve refers to 
dilute system model, that is, Equation 9.1.

When λ = 5, all models predict an increase in relative Young’s modulus (Er) with 
the increase in the volume fraction of the particles (ϕ). The predictions of Er from 
different models at any given ϕ are in the following order: Er (model 3) > Er (model 
4) > Er (model 2) > Er (model 1) > Er (dilute system model).

At a low λ value of 0.1, all models predict a decrease in relative Young’s modulus 
with the increase in the volume fraction of the particles. The predictions of Er from 
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different models at any given ϕ are now in the following order: Er (model 1) > Er 
(model 2) > Er (model 4) > Er (dilute system model) > Er (model 3).

Figure 9.2 shows the effect of dispersed-phase Poisson’s ratio (νd) on Er versus ϕ 
behavior at different values of modulus ratio λ. The calculations are based on model 
4 (Equation 9.17) with ϕm value of 0.637. When λ is high, there is little effect of νd 
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on Er versus ϕ behavior of particulate composites. However, at moderate values of λ 
(λ < 100), the effect of νd on Er versus ϕ behavior is significant; with the increase in 
νd from –1 to +0.5, relative Young’s modulus of a particulate composite decreases at 
any given value of ϕ. It is interesting to note that for negative values of dispersed-
phase Poisson’s ratio (νd), relative Young’s modulus (Er) can be larger than unity even 
when the modulus ratio λ is less than unity. Thus, the widely held belief that when 
λ < 1, Er is less than unity and that Er decreases with the increase in ϕ, is valid only 
for positive values of dispersed-phase Poisson’s ratio (νd > 0).

The effect of modulus ratio λ on relative Young’s modulus Er for different values 
of dispersed-phase Poisson’s ratio νd is shown in Figure 9.3. The calculations are 
based on model 4 (Equation 9.17) with ϕm value of 0.637. The volume fraction of 
the particles (ϕ) is fixed at 0.50. The following points should be noted from Figure 
9.3: (1) At low values of λ (λ < 10−3), νd has no effect on relative Young’s modulus 
of particulate composites; (2) at high values of λ (λ > 1000), νd has no effect on Er; 
(3) Poisson’s ratio of the dispersed phase (νd) has a significant effect on Er in the 
intermediate range of λ, that is, 10–3 < λ < 103; (4) at any given value of λ in the inter-
mediate range (10–3 < λ < 103), Er decreases with the increase in νd; and (5) the cross-
over value of the modulus ratio λ where relative Young’s modulus of the particulate 
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composite crosses from the region Er > 1 to the region Er < 1 increases with the 
increase in Poisson’s ratio νd. The crossover value of λ is unity only when νd = 0.50.

9.3.2  comparison of modEl prEdictions with ExpErimEntal data

Seven sets of experimental data on Young’s modulus of particulate composites cov-
ering a wide range of particle volume fraction ϕ and a wide range of modulus ratio 
λ are considered to evaluate the models. Table 9.1 gives a summary of the various 
particulate composite systems considered to evaluate the models.

TABLE 9.1
Summary of Various Particulate Composites Considered in Evaluating 
Models

Set No. Range of ϕ Modulus Ratio (λ) Ref. No. Comments

1 0–0.524 0.254 [28] Rubber-toughened poly(methyl 
methacrylate) (PMMA) composites; 
νd = 0.40

2 0–0.706 19.3 [39] Dental restorative composites, a total of 
55 composites of varying filler volume 
fraction were investigated; νd = 0.20

3 0–0.552 32 [40] Dental composites of varying filler 
volume fraction; νd = 0.20

4 0–0.68 Rigid filler—high λ [41] The composite systems investigated 
were (1) polyisobutylene filled with 
8.7, 20.3, and 36.7% by volume of 
glass beads about 40 μm in diameter; 
(2) two castable polyurethane rubbers 
containing 54% by volume of similar 
glass beads; (3) propellant A 
containing 55, 61, and 68% solids by 
volume; (4) propellant B containing 
38, 43, 48, 53, and 59% solids by 
volume; νd = 0.50

5 0–0.625 Rigid filler—high λ [25] Crosslinked polyurethane rubber filled 
with glass beads ranging from 60 to 
90 μm in diameter; νd = 0.50

6 0–0.235 Rigid filler—high λ [3] Reinforced-rubber composites; the 
fillers investigated were (1) carbon 
black, (2) Kadox, (3) XX Zinc oxide, 
and (4) Catalpo clay; νd = 0.50

7 0–0.206 Rigid filler—high λ [3] Reinforced-rubber composites; the 
fillers investigated were (1) Thermax, 
(2) Gilder’s whiting, and (3) P-33; 
νd = 0.50

Source: Pal, R., Composites B 36: 513–523, 2005.
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Figures 9.4 through 9.10 show comparisons between experimental data and pre-
dictions of various models. Except for set 1 data, all other sets of data have Er > 1. 
Note that set 1 data has a modulus ratio λ of less than one. The experimental data 
of set 1 (Figure 9.4) on rubber-toughened PMMA composites can be described ade-
quately by model 2 (Equation 9.11). Model 1 (Equation 9.4) overpredicts Er whereas 
other models (models 3 and 4 and the dilute system) underpredict Er. The experimen-
tal data of set 2 (Figure 9.5) involves 55 commercial and experimental dental com-
posites. While the data exhibits significant scatter, it can be described reasonably 
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well by model 2 (Equation 9.11). Set 3 data on dental composites (Figure 9.6) can 
also be described adequately by model 2 (Equation 9.11). The experimental data of 
set 4 (Figure 9.7) on Young’s modulus of composite propellants and filled elasto-
mers fits well with model 4 (Equation 9.17) using a ϕm value of 0.85. Set 5 data on 
glass beads-reinforced-rubber composites (Figure 9.8) can be described very well 
by model 4 (Equation 9.17) using a ϕm value of 0.637. The experimental data of set 
6 (Figure 9.9) on Young’s modulus of various filler-reinforced-rubber composites 
can also be described reasonably well by model 4 (Equation 9.17); however, the ϕm 
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value used in model 4 is now much lower, that is, ϕm = 0.25. A low value of ϕm is 
indicative of flocculation of particulate filler present in the composite. Indeed, fill-
ers like carbon black are known to exhibit flocculation in rubber [3]. Set 7 data on 
reinforced-rubber composites, shown in Figure 9.10, can be described well by model 
2 (Equation 9.11).

Based on comparisons between experimental data (seven sets) and predictions 
of the models, model 4 (Equation 9.17) appears superior to other models. Model 2 
(Equation 9.11) is simply a special case of model 4 with ϕm = 1.0.
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9.4  CONCLUDING REMARKS

Models are discussed for the Young’s modulus of concentrated particulate compos-
ites. According to the models, the relative Young’s modulus (Er) of concentrated 
particulate composites of incompressible matrix is a function of the following 
variables: modulus ratio λ (ratio of dispersed-phase modulus to the matrix-phase 
modulus), dispersed-phase Poisson’s ratio νd, volume fraction of particles ϕ, and 
maximum packing volume fraction of particles ϕm. For positive values of νd (0 < 
νd < 0.5), all models predict an increase in Er with the increase in ϕ provided that 
the modulus ratio λ is greater than unity (λ > 1); when the modulus ratio λ is less 
than unity, all models predict a decrease in Er with the increase in ϕ. At low values 
of λ (λ < 10–3), dispersed-phase Poisson’s ratio νd has negligible effect on Er. Also, 
at high values of λ (λ > 103), νd has negligible effect on Er. Only in the intermediate 
range of λ (10–3 < λ < 103), relative Young’s modulus decreases with the increase in 
νd from –1 to 0.5.

The models are evaluated using seven sets of experimental data on Young’s 
modulus of concentrated particulate composites. Model 4 (Equation 9.17) appears to 
be somewhat superior to other models (models 1 through 3) when comparisons are 
made with the experimental data. Model 4 is quite capable of predicting the effect of 
particle size distribution on Young’s modulus of particulate composites. The maxi-
mum packing volume fraction of particles (ϕm), present as a parameter in the model, 
is known to be sensitive to particle size distribution; the ϕm value for particulate 
composite of uniform particles is expected to be significantly smaller than the ϕm 
value for polydisperse composite.
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10 Effective Shear Modulus 
of Concentrated 
Composites

10.1  INTRODUCTION

As noted in Chapter 7, a composite material composed of isotropic components dis-
tributed randomly in the material space will have isotropic effective properties, which 
are restricted by definite lower and upper bounds [1–13]. Regardless of the geometry 
of the inclusions (dispersed phase), the effective property of the composite lies some-
where in the interval between the lower and upper bounds. Such bounds depend only 
on the volume fractions of the components and the properties of the components.

The upper bound for the effective shear modulus (G) of an isotropic composite, 
referred to as the Voigt rule of mixtures, is given as [14]

 G ≤ ϕ Gd + (1 − ϕ)Gm (10.1)

where Gm and Gd are shear moduli of the matrix and the dispersed phase, respec-
tively, and ϕ is volume fraction of the dispersed phase.

The lower bound for the effective shear modulus of an isotropic composite, referred 
to as the Reuss rule of mixtures, is given as [15]

 G

G Gd m

≥
+ −
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1φ φ
 (10.2)

The actual effective shear modulus of the isotropic composite is expected to lie 
somewhere in the interval between the Voigt and Reuss bounds, regardless of the geom-
etry of the inclusions. The bounds given by Equations 10.1 and 10.2 are generally not 
close enough to provide a good estimate of the effective shear modulus of the composite.

Hashin and Shtrikman [5] and Walpole [8] employed a variational theorem to 
obtain the following improved bounds for the effective shear modulus of isotropic 
composites [5,8,10]:
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where Gℓ and Gg depend on the properties of the matrix and dispersed phase.
When (Gd − Gm)(Kd − Km) ≥ 0,
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When (Gd − Gm)(Kd − Km) ≤ 0,
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where Km and Kd are the bulk moduli of matrix and dispersed phase, respectively.
For composites with incompressible components (Kd → ∞, Km → ∞), the Hashin–

Shtrikman–Walpole bounds reduce to
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when λ = Gd/Gm > 1.0, and
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when λ = Gd/Gm < 1.0.
Figure 10.1 compares the Voigt–Reuss bounds for effective shear modulus of par-

ticulate composites with the Hashin–Shtrikman–Walpole bounds for two different 
values of λ (ratio of dispersed phase to continuous phase moduli). The dispersed 
and continuous phases are assumed to be incompressible (Kd → ∞, Km → ∞). As 
expected, the Hashin–Shtrikman–Walpole (HSW) bounds are much closer as com-
pared with the Voigt–Reuss bounds, which are far apart.

The obvious drawback of the bounds is that they do not give the precise value of 
the property. They only provide a range or interval of values. Thus, it is important 
to develop models for the direct estimation of the property (rather than its bounds). 
However, this is possible only for the known geometry inclusions. In what follows, 
the shear modulus equations for particulate composites consisting of spherical or 
nearly spherical filler particles are described in details.
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10.2  SINGLE-PARAMETER SHEAR MODULUS 
EQUATIONS FOR COMPOSITES

For an infinitely dilute dispersion of solid spherical particles in an incompressible 
solid matrix, the exact expression for the shear modulus is given as [2,10,16,17]

 
G

G
G G
G Gm

d m

d m

= + −
+









1

5
2

2 2
2 3

φ  (10.8)

The intrinsic shear modulus [G] is defined as
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FIGURE 10.1 Comparison of Voigt–Reuss bounds with Hashin–Shtrikman–Walpole 
(HSW) bounds for effective shear modulus of particulate composites at two different val-
ues of modulus ratio λ (HSWU refers to upper HSW bound and HSWL refers to lower HSW 
bound).
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Using Equation 10.8, the intrinsic shear modulus [G] is found to be

 [ ]G = −
+
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2

2 2
2 3
λ
λ

 (10.10)

where λ is the modulus ratio Gd/Gm. [G] is less than unity when λ < 1. At λ = 1, [G] is 
unity. [G] is greater than unity when λ > 1. When λ → ∞, [G] becomes 2.5 and when 
λ → 0, [G] becomes negative with a value of −5/3.

Equation 10.8 can be expressed in terms of the relative shear modulus, (defined 
as G/Gm) and λ as follows:

 Gr = + −
+
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φ  (10.11)

According to Equation 10.11, the relative shear modulus of different composites 
is the same when comparison is made at the same volume fraction of the dispersed-
phase and the same modulus ratio λ. Thus, Equation 10.11 is a single-parameter Gr 
versus ϕ equation with λ as a parameter.

In the derivation of Equation 10.11, the interaction between the neighboring par-
ticles is not considered, as the composite is very dilute. However, at finite concen-
trations of the dispersed phase, the interaction between the particles is significant. 
Consequently, the shear modulus of a concentrated particulate composite is signifi-
cantly different from that predicted by Equation 10.11.

Chen and Acrivos [10] considered particle–pair interactions within the composite 
and developed the following expression for the effective shear modulus of particulate 
composites:
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where H is a function of modulus ratio λ (assuming that the matrix and dispersed 
phases are incompressible). For composites of rigid particles (λ → ∞), H = 2.004.

The Chen and Acrivos equation (Equation 10.12) cannot be applied at particle 
concentrations where three-particle or higher-order particle interactions are present. 
The higher-order particle interactions are generally important when ϕ > 0.10.

Several authors [9,10,18–22] have developed shear modulus equations for concen-
trated particulate composites using different approaches. However, all these equa-
tions are single-parameter Gr versus ϕ equations with λ as the parameter (assuming 
that the matrix is incompressible). They can be expressed as

 Gr = f (λ, ϕ) (10.13)

Kerner [18] utilized the generalized self-consistent method to develop the follow-
ing expression for Gr:



151Effective Shear Modulus of Concentrated Composites

 Gr =
+

−

















1
3
2

1

φ γ

φ γ
 (10.14)

where γ is given as
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In the limit ϕ → 0, Equation 10.14 reduces to Equation 10.11.
Equation 10.14 upon expansion as a power series in ϕ gives
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The coefficient of ϕ2 in Equation 10.16 is about one-half of the actual theoreti-
cal value determined by Chen and Acrivos [10] (see Equation 10.12) when λ → ∞. 
Therefore, the Kerner equation (Equation 10.14) is expected to give a reasonable 
estimate of Gr only at low to moderate values of filler concentration.

Smith [21] has proposed an improvement of the Kerner equation. The improved 
Kerner formula for shear modulus of particulate composites, developed by Smith 
[21], is given as follows:
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where XK = Gr − 1 is estimated from the Kerner equation (Equation 10.14), and P and 
R are given as follows:

 P = +19
2

8λ  (10.18)

 R = 76λ + 64 − 76(λ − 1)ϕ7/3 (10.19)

Using the self-consistent method [17], Budiansky [20] and Hill [19] also devel-
oped shear modulus equations for concentrated particulate composites. The equation 
of Budiansky [20] is somewhat different from the one developed by Hill [19]. The 
Budiansky equation is as follows:

 Gr = + −
+ −

3 2 5
3 2 5

λ φ
λ φ( )

 (10.20)
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One problem with the Budiansky equation is that it predicts Gr to be infinite at 
ϕ = 0.40 for particulate composites of rigid particles (λ → ∞). In addition, for porous 
composites Equation 10.20 predicts Gr to be zero, at a void fraction of 0.60.

Hill [19] developed the following equation:
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The Hill equation suffers from the same problems as the Budiansky equation. It 
predicts Gr → ∞ at ϕ = 0.40 when λ → ∞. For porous composites, Equation 10.21 
predicts Gr → 0 when ϕ = 0.60.

Roscoe [9] utilized a differential scheme to extend the result of dilute systems 
(Equation 10.8) to concentrated systems. His equation is given as follows:
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FIGURE 10.2 Relative shear modulus (Gr) predicted by single-parameter Gr versus ϕ equa-
tions for two different values of the parameter λ (λ = 10 and λ = 0.10).
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Figure 10.2 compares the predictions of various equations for two different values 
of modulus ratio λ (λ = 10 and λ = 0.10). For a high λ value of 10, all equations pre-
dict the relative shear modulus Gr to be greater than unity and Gr increases with the 
increase in particle concentration ϕ. For a low λ value of 0.1, all equations predict Gr 
to be less than unity and Gr decreases with the increase in ϕ.

In summary, the single-parameter Gr versus ϕ equations for particulate compos-
ites (assuming incompressible matrix) predict that the relative shear modulus is a 
function of modulus ratio λ and volume fraction of the dispersed-phase ϕ.

10.3  TWO-PARAMETER SHEAR MODULUS 
EQUATIONS FOR COMPOSITES

One serious limitation of the single-parameter Gr versus ϕ equations, with λ as a 
parameter, is that they predict the shear modulus of particulate composite to be inde-
pendent of the particle size distribution. The particle size distribution does not appear 
in any of the equations discussed in Section 10.2. Furthermore, for composites of 
rigid particles (λ → ∞), the single-parameter equations either predict finite values of 
shear modulus over the entire ϕ range or predict divergence of shear modulus at ϕ = 
0.40 (see Budiansky equation, Equation 10.20, and Hill equation, Equation 10.21) 
and at ϕ = 1.0 (see Roscoe equation, Equation 10.22). This is in contradiction with 
the experimental fact that the Gr of particulate composites (rigid particles, incom-
pressible matrix) diverges at ϕ = ϕm, the maximum packing volume fraction of par-
ticles. For random close packing of monosized spherical particles, ϕm is 0.637 [23].

To account for the effects of particle size distribution and divergence of shear 
modulus, the correct form of the shear modulus versus filler concentration equation 
for particulate composites (incompressible matrix) is a two-parameter equation:

 Gr = f (λ, ϕm, ϕ) (10.23)

where ϕm is a function of the particle size distribution.
Pal [24] recently derived the following two-parameter shear modulus equations 

for concentrated particulate composites of spherical particles using a differential 
scheme along with the solution of an infinitely dilute system:
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The salient features of these two-parameter (λ and ϕm) Gr versus ϕ equations are: 
(1) they take into account the effect of modulus ratio λ, (2) they exhibit divergence 
of Gr at ϕ = ϕm when λ → ∞, and (3) they take into account the effect of particle size 
distribution through the parameter ϕm.

Figure 10.3 shows comparison between the predictions of Equations 10.24 and 
10.25 at a fixed ϕ value of 0.5. The value of the maximum packing volume fraction 
ϕm is taken to be 0.637, corresponding to random close packing volume fraction of 
uniform spheres. When λ < 1.0, both equations predict Gr < 1.0; however, the values 
predicted by Equation 10.25 are higher than those predicted by Equation 10.24. When 
λ = 1.0, both equations predict Gr = 1.0. When λ > 1.0, both equations predict Gr > 1.0; 
however, the values predicted by Equation 10.24 are higher than the values predicted 
by Equation 10.25.

Figure 10.4 shows the effect of particle size distribution on the relative shear modulus 
of particulate composites for two values of modulus ratio λ : λ = 0 and λ = ∞. Composites 
with bimodal particle size distribution are considered. The relative shear modulus of 
composite containing a mixture of large and small particles is plotted as a function of 
the volume fraction of small particles, with total volume fraction of particles as a param-
eter. The particle size ratio is 5:1. The relative shear modulus is calculated from Equation 
10.25 using ϕm values predicted from the Ouchiyama and Tanaka formula [25–27]:
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FIGURE 10.3 Comparison between the predictions of different two-parameter Gr versus ϕ 
equations (Equations 10.24 and 10.25) for particulate composites with ϕ = 0.50. ϕm is taken 
to be 0.637, corresponding to random close packing of uniform spheres.
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 D Di i= ∑ f . (10.28)

Here φm
o  is the maximum packing volume fraction of a particulate composite of uni-

form (same size) particles, fi is the number fraction of particles of diameter Di, D is the 
number-average diameter of the composite, and the abbreviation (Di ~ D) is defined as

 ( )D D for D Di i∼ = ≤0  (10.29)

 = − >D D for D Di i  (10.30)

The maximum packing concentration of a composite with uniform particles, that 
is φm

o , is taken to be 0.637. The Ouchiyama and Tanaka formula has been used by 
several investigators [28,29] to predict the value of ϕm. The experimentally mea-
sured values of ϕm are found to agree reasonably well with those predicted from the 
Ouchiyama and Tanaka formula.
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FIGURE 10.4 The effect of particle size distribution on the relative shear modulus of 
bimodal composites for two different values of modulus ratio λ (λ = 0 and λ = ∞). The particle 
size ratio between large and small particles is 5:1.
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Figure 10.5 shows the plot of ϕm predicted from the Ouchiyama and Tanaka for-
mula as a function of volume fraction of fine particles. With the increase in the pro-
portion of fine particles in a bimodal composite, the value of ϕm increases initially, 
reaches a maximum value of approximately 0.76 at a fine particle proportion of about 
10%, and then decreases. The ϕm values shown in Figure 10.5 were used to generate 
the relative shear modulus plots of Figure 10.4.

At low λ, Figure 10.4 reveals the following information: (1) a large increase in 
relative shear modulus occurs when a monosized composite is changed to a bimodal 
composite—this effect is negligible when ϕ ≤ 0.40 and (2) the plots of relative shear 
modulus versus volume fraction of fine particles, at high values of ϕ, exhibit a maxi-
mum at a fine particle volume fraction of about 0.1 (where a maximum in ϕm occurs). 
At high λ, Figure 10.4 shows a very different behavior: (1) the relative shear modulus 
now exhibits an opposite effect, that is, it decreases when a concentrated (ϕ ≥ 0.55) 
monosized composite is changed to a bimodal composite—this effect is negligible 
when ϕ ≤ 0.40 and (2) the plots of relative shear modulus versus volume fraction of 
fine particles, at high values of ϕ, exhibit a minimum at a fine particle volume frac-
tion of about 0.10 (where a maximum in ϕm occurs).

10.4  ANALOGY BETWEEN SHEAR MODULUS OF 
COMPOSITES AND VISCOSITY OF SUSPENSIONS

There exists a close analogy between the shear modulus of particulate composites 
and the viscosity of suspensions of rigid particles in Newtonian liquids. The relative 
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FIGURE 10.5 The effect of particle size distribution on ϕm, the maximum packing volume 
fraction of particles.
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viscosity (ηr) of suspensions of rigid spherical particles in Newtonian liquids is often 
expressed by the following equations:
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where the relative viscosity (ηr) is defined as the ratio of suspension viscosity 
to continuous-phase viscosity. Equation 10.31 is the Mooney equation [30] and 
Equation 10.32 is the Krieger and Dougherty equation [31] for the relative viscosity 
of solids-in-liquid suspensions.

An important point to note is that the right-hand sides of the relative viscosity 
equations, Equations 10.31 and 10.32, are identical to the right-hand sides of the 
relative shear modulus equations, Equations 10.24 and 10.25. This implies that one 
can transform a suspension viscosity equation to a shear modulus equation for par-
ticulate composite by replacing ηr with Gr (Gr − λ)−2.5 (1 − λ)2.5, that is,
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when comparison is made at the same ϕ and ϕm. On the basis of this analogy, Pal [32] 
proposed the following two-parameter equations for concentrated particulate composites:
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where α is given by

 α φ φ φ φ= − 2 1 1 3 1 3( / ) ( / )/ /
m m  (10.39)

Equations 10.34 through 10.38 exhibit features similar to those of Equations 
10.24 and 10.25. When the left-hand side term Gr (Gr − λ)–2.5 (1 − λ)2.5 is replaced 
by ηr in Equations 10.34 through 10.38, they reduce to the corresponding relative 
viscosity equations for solids-in-liquid suspensions. For example, Equation 10.34 
reduces to the Eilers [33] equation, Equation 10.35 reduces to the Roscoe [34] equa-
tion if a = 2.5, Equation 10.35 reduces to the Maron and Pierce [35] equation if a = 2, 
Equation 10.36 reduces to the Frankel and Acrivos [36] equation, Equation 10.37 
reduces to the Chong et al. [37] equation, and Equation 10.38 reduces to the Graham 
[38] equation.

10.5  COMPARISON OF EXPERIMENTAL DATA WITH 
PREDICTIONS OF SHEAR MODULUS EQUATIONS

Fifteen sets of experimental data [39–46] are considered to evaluate the shear modu-
lus equations. Table 10.1 gives a summary of the various composite systems consid-
ered in evaluating the equations.

Figures 10.6 through 10.9 show comparisons between the experimental data and 
predictions of various two-parameter shear modulus–concentration equations. The 
experimental data are plotted as Gr(Gr − λ)–2.5 (1 − λ)2.5 versus volume fraction ϕ. 
The value of the maximum packing volume fraction (ϕm) of inclusions (particles or 

TABLE 10.1
Summary of Various Composite Systems Considered to Evaluate Models

Set No. Range of ϕ Ref. No. Comments

1 0–0.36 [39] Pore-solid composites (porous polycrystalline monoclinic 
gadolinium oxide), λ → 0

2 0–0.40 [40] Pore-solid composites (porous polycrystalline monoclinic 
samarium oxide), λ → 0

3 0–0.32 [41] Pore-solid composites (porous polycrystalline cubic lutetium 
oxide), λ → 0

4 0–0.28 [42] Pore-solid composites (porous polycrystalline monoclinic 
hafnium oxide), λ → 0

5A–5G 0–0.40 [43] Pore-solid composites (porous refractory spinels, seven sets of 
data), λ → 0

6 0–0.36 [44] Pore-solid composites (porous stabilized hafnium oxide), λ → 0

7A–7B 0–0.18 [45] Pore-solid composites (porous hafnium and zirconium oxides 
stabilized with praseo-dymium or terbium oxide, two sets of 
data), λ → 0

8 0–0.449 [46] Suspensions of rigid particles in polymeric matrix, λ → ∞



159Effective Shear Modulus of Concentrated Composites

voids) in the equations is taken as 0.52, corresponding to simple cubic packing of 
spherical inclusions.

Equation 10.24 gives good prediction of the relative shear modulus only when ϕ ≤ 
0.30. At higher values of ϕ, Equation 10.24 overpredicts the Gr(Gr − λ)−2.5 (1 − λ)2.5 
values. Equation 10.25 generally underpredicts the Gr(Gr − λ)−2.5 (1 − λ)2.5 values 
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FIGURE 10.6 Comparison between the experimental data and the predictions of Equations 
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although the deviation between the experimental and predicted values is not large. 
Equations 10.34 and 10.36 give good predictions of data over the full range of ϕ 
covered (in Equation 10.36, “a” is taken to be 1.6). Equations 10.37 and 10.38 give 
good predictions of data over the full range of ϕ covered. It should be noted that 
some scatter of experimental data is expected as the systems are not mono disperse. 
Furthermore, the size distribution of inclusions is not the same for different sets.
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FIGURE 10.8 Comparison between the experimental data and predictions of Equations 
10.36 and 10.37.
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10.6  CONCLUDING REMARKS

The relative shear modulus Gr versus volume fraction ϕ equations for particulate 
composites of spherical particles and incompressible matrix are reviewed. Some 
of the available Gr versus ϕ equations are single-parameter equations with modu-
lus ratio λ as the only parameter. One serious limitation of the single-parameter 
Gr versus ϕ equations is that they predict Gr to be independent of the particle size 
distribution. Furthermore, these equations fail to predict divergence in Gr at ϕ = 
ϕm (maximum packing volume fraction of particles) for particulate composites of 
rigid (λ → ∞) particles. To account for the effects of particle size distribution and 
divergence of shear modulus, the correct form of the shear modulus versus particle 
concentration equation for particulate composites (incompressible matrix) is a two-
parameter equation with modulus ratio λ and ϕm as the parameters. A number of 
such two-parameter equations are presented.
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11 Mechanical Properties 
of Concentrated 
Composites of Randomly 
Oriented Platelets

11.1  INTRODUCTION

Nanocomposites of polymer and clay are a rapidly growing class of nano-engineered 
materials [1–11]. They consist of clay platelets (single clay layers) dispersed in a con-
tinuum of polymeric matrix. The thickness of the platelet or disk-shaped clay nanofill-
ers is approximately 1 nm, and their aspect ratio (ratio of diameter to thickness) ranges 
from 10 to 1000. In their natural form, clays consist of aggregates (stacks) of primary 
platelike particles. These stacks are exfoliated and the individual primary platelets are 
dispersed uniformly in the polymer matrix to produce polymer–clay nanocomposites. 
The dispersion of single clay layers in a polymeric matrix is known to dramatically 
enhance the mechanical and other physical properties. Although significant advances 
have been made in the development of polymer–clay nanocomposites in the recent past, 
the understanding of the relationship between the macroscopic mechanical behavior and 
the microstructural properties (such as volume fraction of clay) is far from satisfactory.

The exact micromechanical models for the effective elastic properties of compos-
ites are available only for the infinitely dilute systems, where the volume fraction of 
the dispersed phase is very small. For infinitely dilute isotropic composite of ran-
domly oriented platelets, the exact expressions for the bulk modulus (K) and shear 
modulus (G) are given as follows [12,13]:
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Here Km and Kd are bulk moduli of matrix and dispersed phase (filler), Gm and Gd 
are shear moduli of the matrix and the dispersed phase, and ϕ is the volume fraction 
of the dispersed phase (disk shaped particles).

As noted in Chapter 7, the isotropic materials are fully characterized by two inde-
pendent elastic constants [13], such as bulk modulus (K) and shear modulus (G). 
Once the bulk modulus (K) and shear modulus (G) of a composite are known, the 
Young’s modulus (E) and Poisson’s ratio (ν) can be determined from the following 
standard relations for isotropic materials:
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Equations 11.1 and 11.2 are restricted to infinitely dilute dispersions of thin plate-
lets having random orientation in a continuous matrix phase. They cannot be applied 
at finite concentrations of dispersed phase (platelets), as the interaction between the 
particles is ignored in their derivation. Pal [14] has recently developed models for 
the moduli of concentrated composite solids of thin platelets having random ori-
entation in a continuous matrix phase. The models are derived using a differential 
scheme along with the exact solution of an infinitely dilute composite. The models 
are closed-form expressions valid over the full range of the filler concentration.

11.2  PAL MODELS FOR CONCENTRATED COMPOSITES 
OF RANDOMLY ORIENTED PLATELETS

Equations for the moduli (bulk and shear) of concentrated composite solids of thin 
platelets (having random orientation in a matrix) can be derived using the differen-
tial effective medium approach [14]. A concentrated composite is considered to be 
obtained from an initial matrix phase by successively adding differential (infinitesi-
mally small) quantities of disk-shaped filler particles to the system until the final vol-
ume fraction of the filler is reached. The increment change in moduli, resulting from 
the addition of a differential amount of filler particles to a composite with volume 
fraction of particles ϕ, is calculated from the dilute-system equations (Equations 11.1 
and 11.2) by treating the existing composite as an effective medium with respect to 
the added particles. Thus,
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These equations can be rewritten as
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Upon integration with the limits K → Km and G → Gm as ϕ → 0, Equations 11.8 
and 11.9 yield
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where Gg is defined in Equation 11.3. Equations 11.10 and 11.11, referred to as model 1, 
are expected to describe the mechanical properties composites at low to moderate val-
ues of ϕ. At high values of ϕ, model 1 is expected to deviate from the actual behavior. 
This is because in the development of the differential equations, Equations 11.8 and 
11.9, leading to model 1 (Equations 11.10 and 11.11), it is assumed that all the volume 
of the composite, before a differential quantity of new particles is added, is available 
as free volume to the new particles. In reality, the free volume available to disperse the 
new particles is significantly less, due to the volume preempted by the particles already 
present. The increase in the actual volume fraction of the dispersed phase when new 
particles are added to the composite is dϕ/(1 − ϕ). Thus, Equations 11.8 and 11.9 become

 

dK
K K

dK
K G

d

d d( ) ( )−
+

+
=

−
3

3 4 1
φ
φ

 (11.12)

 

dG
G G

dG
G G

d

d g( ) ( )−
+

+
=

−
φ
φ1

 (11.13)

Upon integration with the limits K → Km and G → Gm as ϕ → 0, Equations 11.12 
and 11.13 yield
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Equations 11.14 and 11.15, referred to as model 2, fail to account for the “crowd-
ing effect” of particles at high values of ϕ. Due to immobilization of some of the 
matrix material in the interstitial region between the existing particles, the free vol-
ume of the matrix available to disperse the new particles is significantly less than 
(1 − ϕ). If the incremental increase in the volume fraction of the particles, when the 
differential amount of new particles are added to an existing composite of particle 
volume fraction ϕ, is taken to be d[ϕ/(1 − ϕ/ϕm)] rather than dϕ/(1 − ϕ) as used in the 
derivation of model 2, Equations 11.8 and 11.9 become [14]
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where ϕm is the maximum packing volume fraction or percolation threshold of par-
ticles. Upon integration with the limits K → Km and G → Gm as ϕ → 0, Equations 
11.16 and 11.17 give
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Equations 11.18 and 11.19 together are referred to as model 3.
Another way to account for the packing limit of particles is to take the incremental 

increase in the volume fraction of particles, when differential amount of new particles 
are added to an existing composite of particle volume fraction ϕ, as dϕ/(1 − ϕ/ϕm) 
rather than d[ϕ/(1 − ϕ/ϕm)] as used in the derivation of model 3 [14]. Thus, Equations 
11.8 and 11.9 become
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Upon integration with the limits K → Km and G → Gm as ϕ → 0, Equations 11.20 
and 11.21 yield
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Equations 11.22 and 11.23 together are referred to as model 4.
Note that models 1 to 4 could be recast as
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where f is given as

 f = exp(ϕ) Model 1 (11.26)

 f = (1 − ϕ)−1 Model 2 (11.27)
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11.2.1  modEl prEdictions

According to Equations 11.24 and 11.25, the relative moduli of particulate compos-
ites of thin randomly oriented platelets are functions of four variables:
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where Kr is the relative bulk modulus, Gr is the relative shear modulus, λK is the 
bulk moduli ratio Kd/Km, and λG is the shear moduli ratio Gd/Gm. Note that Gd/Kd = 
[3(1 − 2νd)]/[2(1 + νd)].

Figure 11.1 shows the relative bulk modulus (Kr) plots for different values of particle 
Poisson’s ratio (νd). The plots are generated from model 4 (Equations 11.24 and 11.29) 
under the following conditions: ϕ = 0.20 and ϕm = 0.82. Note that for thin inert disks, the 
random close packing volume fraction (ϕm) is approximately 0.82 [15]. At a given value 
of νd, the relative modulus Kr versus moduli ratio (Kd/Km) plot exhibits three distinct 
regions: at low values of Kd/Km, Kr increases nearly linearly with moduli ratio Kd/Km on 
a log–log scale; at intermediate values of moduli ratio (Kd/Km around unity), the relative 
bulk modulus tends to level off; and at high values of Kd/Km, Kr once again increases 
with the increase in Kd/Km (almost linearly on a log–log scale). With the increase in 
the particle Poisson’s ratio, the relative bulk modulus (Kr) decreases at a given value of 
moduli ratio Kd/Km. The effect of νd on Kr is significantly larger when Kd/Km > 1.0. Also 
note that at Kd/Km = 1.0, the relative bulk modulus is unity regardless of the value of νd.

Figure 11.2 shows the relative shear modulus (Gr) as a function of shear moduli ratio 
(Gd/Gm) for two different values of particle Poisson’s ratio (νd). The plots are generated 
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FIGURE 11.1 Relative bulk modulus (Kr) as a function of bulk moduli ratio (Kd/Km) for 
different values of particle Poisson’s ratio (νd). The plots are generated from model 4 under 
the conditions ϕ = 0.20 and ϕm = 0.82. (From Pal, R., Composites A 39: 1496–1502, 2008.)
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from model 4 (Equations 11.25 and 11.29) for ϕ = 0.20 and ϕm = 0.82. The Gr versus Gd/
Gm plot at a given value of νd appears similar to the Kr versus Kd/Km plot (see Figure 
11.1). However, the effect of Poisson’s ratio (νd) on Gr is negligibly small. Also note that 
the relative shear modulus increases (unlike Kr, which decreases) with the increase in νd.

Figure 11.3 compares the predictions of various models. The relative bulk modu-
lus is plotted as a function of ϕ for two different values of Kd/Km : Kd/Km = 100 for 
the top figure and Kd/Km = 0.1 for the bottom figure. The particle Poisson’s ratio is 
taken to be 0.4 and ϕm is 0.82. When Kd/Km = 100, the predicted relative modulus Kr 
is always greater than unity; at a given ϕ, the predictions of Kr from various models 
are in the following order: model 3 > model 4 > model 2 > model 1 > dilute-system 
model (Equation 11.1). Note that for low values of ϕ, all models give the same pre-
dictions. When Kd/Km = 0.1, the predicted Kr values are always less than unity; at a 
given ϕ, the Kr predictions by various models are in the following order: model 1 > 
model 2 > model 4 > model 3 > dilute-system model.

The relative shear modulus (Gr) predicted by different models is shown in Figure 
11.4 where Gr is plotted as a function of ϕ for two different values of moduli ratio Gd/
Gm : Gd/Gm = 100 for the top figure and Gd/Gm = 0.1 for the bottom figure. The particle 
Poisson’s ratio is 0.4 and ϕm is 0.82. When Gd/Gm = 100, Gr is always greater than 
unity; at a given ϕ, the Gr predictions by various models are in the following order: 
model 3 > model 4 > model 2 > dilute-system model (Equation 11.2) > model 1. For 
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low values of Gd/Gm (Gd/Gm = 0.1), the relative shear modulus is always less than 
unity and the order of predictions is as follows: model 1 > model 2 > model 4 > 
model 3 > dilute system model.

11.2.2  comparison of modEl prEdictions with ExpErimEntal data

Four sets of experimental data on the relative Young’s modulus of polymer–clay nano-
composites are considered to evaluate the models. Table 11.1 gives a brief description 
of the experimental systems.

Figures 11.5 through 11.8 show comparisons between model predictions and 
experimental Young’s modulus data of polymer–clay nanocomposites. The relative 
Young’s modulus (Er) is estimated from the bulk and shear moduli models using the 
following relationship:
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 (11.32)

where E is Young’s modulus of composite, Em is Young’s modulus of the continu-
ous phase (matrix) and νm is Poisson’s ratio of the continuous phase. Equation 11.32 
follows from Equation 11.4, the standard relation for isotropic materials. The predic-
tions of the following well-known rules of mixtures (ROM) are also shown:

 E = ϕEd + 1(1 − ϕ)Em (11.33a)

TABLE 11.1
Brief Description of Polymer–Clay Nanocomposites Considered in 
Evaluating Models

Set No. Clay Type Polymer Type
Wt% 
Clay

Vol% 
Clay 

Reference 
No.

1 Organoclay (bis (hydroxy 
ethyl)-(methyl)-
rapeseed quaternary 
ammonium organoclay)

High molecular 
weight nylon 6

0–7.2 0–3.03 [2]

2 Na-montmorillonite SBR (styrene 
butadiene rubber)

0–25 0–8.45 [3]

3 Na-montmorillonite NBR (nitrile rubber) 0–30 0–10.05 [3]

4 Na-montmorillonite CNBR 
(carboxylated 
acrylonitrile 
butadiene rubber)

0–30 0–10.34 [3]

Source: Pal, R., Composites A 39: 1469–1502, 2008.
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1 1
E E Ed m

= + −φ φ( )
 (11.33b)

where Ed is Young’s modulus of the dispersed phase (filler). Equation 11.33a is the 
Voigt ROM and Equation 11.33b is the Reuss ROM.

According to Figures 11.5 through 11.8, the experimental data can be described 
reasonably well with model 3 (Equations 11.24 and 11.25 with f given by Equation 
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11.28). Models 1, 2, and 4 generally underpredict the relative Young’s modulus of 
polymer–clay nanocomposites, especially for large ϕ. Also note that the value of 
ϕm is generally much smaller than the random close-packing concentration of inert 
disks (ϕm ≈ 0.82) as clay platelets are not inert particles. Composites of clay platelets 
are expected to have a low percolation-threshold concentration due to interactions 
between the platelets. The Voigt ROM, Equation 11.33a, overpredicts and the Reuss 
ROM, Equation 11.33b, underpredicts the relative Young’s modulus of polymer–clay 
nancomposites.
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11.3  COMPOSITES OF THREE-PHASE CORE-SHELL-TYPE PLATELETS

Due to the interaction of the polymer molecules with the surface of the clay platelets, 
the properties of the matrix material in the interphase region surrounding the clay 
platelets are expected to be different from the bulk polymer matrix. According to 
some studies the interphase-to-matrix moduli ratio could be 2 or more [10], indicat-
ing that the polymer molecules in direct contact with the filler surface become some-
what rigidified in comparison to the bulk polymer molecules. In such situations, the 
platelets should be treated as three-phase core-shell-type particles (the three phases 
being bulk matrix, interfacial layer, and clay platelets).

The mechanical properties of three-phase polymer–clay nanocomposites consist-
ing of core-shell platelets can be modeled using a two-step approach. In the first step, 
the model equations developed in the preceding section (Equations 11.24 and 11.25) 
are applied to determine the mechanical properties of a single core-shell particle 
consisting of clay platelet as core and interfacial layer as shell. The interfacial layer 
is treated as matrix with respect to the clay platelet. In the second step, the core-
shell composite particles are treated as “homogeneous” particles (disk-shaped) of 
mechanical properties obtained from the first step. The model equations (Equations 
11.24 and 11.25) are applied once again to determine the mechanical properties of 
three-phase polymer–clay nanocomposites. Thus,
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where Kp is the bulk modulus of a single core-shell particle (disk-shaped), subscripts 
“2” and “3” refer to interphase (shell) and core of a core-shell particle, respectively, 
fp is a function of the volume fraction of core (ϕc) in the combined volume of core 
and interfacial shell. Equation 11.34a follows from Equation 11.24. Using model 3 
(see Equation 11.28), fp can be expressed as
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As the volume fraction of core in the combined volume of core and shell can vary 
from 0 to 1 (0 ≤ ϕc ≤ 1), ϕm in model 3 is taken to be unity. Using the two-step 
approach, the effective bulk modulus (K) of a composite consisting of disk-shaped 
core-shell particles is given as follows:
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where subscript “1” refers to external phase (matrix), f is a function of the volume 
fraction of core-shell particles (ϕ) given by Equation 11.28, and Gp is the shear mod-
ulus of a single core-shell particle, given by Equation 11.38 described below.
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Following the two-step approach, the effective shear modulus (G) of a composite 
consisting of disk-shaped core-shell particles can be expressed as
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where
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and Gp, the shear modulus of a single core-shell particle, is
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where fp is given by Equation 11.34b and f is given by Equation 11.28 with ϕ as a 
volume fraction of core-shell particles. Note that the subscripts “1,” “2,” and “3” 
refer to matrix, interphase, and core, respectively.

According to the model (Equations 11.34 through 11.39) for the mechanical prop-
erties of composites of three-phase core-shell-type platelets, the relative moduli can 
be expressed as

 
K

K
K

F K K K K G Gr c= =
1

2 3 3 2 2 1 3 2( , , / , / , / , , )ν ν φ φ  (11.40)

 
G

G
G

F G G G G K Kr c= =
1

2 3 3 2 2 1 3 2( , , / , / , / , , )ν ν φ φ  (11.41)

Figure 11.9 shows the relative bulk and shear moduli predicted from the model, as 
a function of ϕ (volume fraction of core-shell particles). The plots are generated from 
Equations 11.34 through 11.39 with f given by Equation 11.28. At a fixed value of ϕ, 
the relative moduli (Kr and Gr) decrease with the decrease in ϕc (volume fraction of 
core in a single core-shell particle). A decrease in ϕc at fixed ϕ implies an increase 
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in the thickness of the shell of the core-shell particles. An increase in the interphase 
thickness results in a decrease in moduli as stiffer core material (clay platelet) is 
being replaced by softer interphase. However, an opposite behavior is observed (see 
Figure 11.10) when relative moduli are plotted as function of volume fraction of 
core particles in the composite; note that the volume fraction of core particles in 
a composite is given as the product of ϕc and ϕ. At a fixed volume fraction of core 
particles in a composite, the relative moduli increase with the decrease in ϕc because 
the softer matrix material is being replaced by stiffer interphase.

In summary, the relative modulus (bulk or shear) of concentrated composites of 
platelets (randomly oriented in the matrix) is a function of four variables: particle 
Poisson’s ratio, particle-to-matrix moduli ratio, volume fraction of particles, and 
maximum packing volume fraction of particles. Model 3 (Equations 11.24, 11.25, 
and 11.28) appears to be somewhat superior to other models (models 1, 2, and 4) 
when comparisons are made with experimental Young’s modulus data of polymer–
clay nanocomposites. The mechanical properties of composites are significantly 
affected by the presence of an interfacial layer (with properties different from that 
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of the bulk matrix) around the particles. The two-phase models can be extended to 
three-phase composites of platelets, interphase, and matrix.
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12 Interfacial and Interphase 
Effects on Mechanical 
Properties of Composites

12.1  BACKGROUND

Composite solids can be treated as isotropic materials so long as the filler particles 
are positioned randomly in the matrix. The isotropic materials are fully character-
ized by two independent elastic constants, namely, bulk modulus (K) and shear mod-
ulus (G). The Young’s modulus (E) and Poisson’s ratio (ν) are related to K and G as 
follows:
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For isotropic composites consisting of spherical fillers embedded in a matrix, the 
bulk and shear moduli at low filler concentration are given as [1]
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where K and G are bulk and shear moduli of the composite, Km and Gm are bulk and 
shear moduli of matrix, Kd and Gd are bulk and shear moduli of the dispersed phase 
(filler particles), νm is the Poisson’s ratio of the matrix, and ϕ is the volume fraction 
of the dispersed phase.
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Equations 12.3 and 12.4 cannot be applied at high concentrations of filler parti-
cles, as the interaction between the particles is ignored in their derivation. Kerner [2] 
was probably the first to develop equations for nondilute composites using the gen-
eralized self-consistent scheme (GSCS). According to the GSCS, the composite is 
first treated as an equivalent “effective medium,” which is homogeneous and has 
the same macroscopic mechanical properties as that of the composite. Then a small 
portion of the effective homogeneous medium is replaced by the actual components 
of the composite. The mechanical properties of the effective medium are then deter-
mined by insisting that if a small portion of the effective homogeneous medium is 
replaced by the actual components of the dispersion, no difference in mechanical 
properties could be detected by macroscopic observations.

The Kerner equations are described below in terms of relative bulk modulus (Kr) 
and relative shear modulus (Gr), where Kr is defined as the ratio of bulk modulus of 
composite (K) to the bulk modulus of matrix (Km) and Gr is defined as the ratio of 
shear modulus of composite (G) to the shear modulus of matrix (Gm).
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In Equations 12.5 and 12.6, k and h are parameters defined as
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The parameters k and h describe the effect of differences in matrix and filler 
properties on the overall properties of composite. When there is no difference in 
matrix and filler properties (Kd = Km and Gd = Gm), the parameters k and h are both 
zero, and the composite and component properties are the same (K = Kd = Km and 
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G = Gd = Gm). When there exists a difference in matrix and filler properties, the 
parameters k and h deviate from zero. For example, k and h are both unity when Kd/
Km → ∞ and Gd/Gm → ∞. Also note that in the limit ϕ → 0, Equations 12.5 and 12.6 
reduce to Equations 12.3 and 12.4, respectively.

The Kerner equations, Equations 12.5 and 12.6, describe the mechanical prop-
erties of particulate composites well when ϕ is less than about 0.2. At higher values 
of ϕ, significant deviations occur between the predictions of Kerner equations and 
actual values. In addition, the Kerner equations fail to predict the correct behavior 
at ϕ → ϕm, where ϕm is the maximum packing volume fraction of filler particles. 
At ϕ → ϕm, the relative moduli (Kr and Gr) are expected to diverge, especially for 
composites with Kd/Km → ∞ and Gd/Gm → ∞. Furthermore, the Kerner equations 
do not account for the particle size distribution, particle shape, and aggregation of 
particles.

Lewis and Nielsen [3] modified the Kerner equation for shear modulus (Equation 
12.6) as follows:
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where the function ψ is given as
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The factor ψ takes into account the packing limit of particles (ϕm). Note that 
according to the Kerner equation for shear modulus (Equation 12.6), it is possible 
for the volume fraction of particles to reach a value of unity. However, this is physi-
cally unrealistic. Only in special cases may it be possible for the volume fraction of 
particles to reach a value close to unity. For example, when the particle size distribu-
tion is extremely wide or when the particles are highly deformable, the maximum 
packing volume fraction of particles may be close to unity. In general, however, the 
maximum packing volume fraction of particles (ϕm) is expected to be significantly 
less than unity. For random close packing of spherical particles, ϕm is about 0.64. 
Thus, ψϕ in Equation 12.9 can be considered as an effective concentration of par-
ticles that approaches a value of unity at ϕ = ϕm, rather than at ϕ = 1.0. The other 
boundary conditions imposed upon ψϕ are as follows: ψϕ = 0 at ϕ = 0 and d(ψϕ)/
dϕ = 1 at ϕ = 0.

The Lewis–Nielsen equation (Equation 12.9) is certainly an improvement over 
the unmodified Kerner equation (Equation 12.6). However, the analysis of a large 
amount of experimental data carried out by Pal [4] indicated that the shear modulus, 
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as well as the bulk modulus, of particulate composites can be described better by the 
following equations:

 K
K

K

G
K

k

kr
m

m

m= =
+







−

















1
4
3

1

ψφ

ψφ
 (12.11)

 G
G

G

h

hr
m

m

m= =
+ −

−






−

















1
7 5

8 10

1

ν
ν

ψφ

ψφ
 (12.12)

where ψ is given by Equation 12.10. Note that Lewis and Nielsen modified the Kerner 
equation by incorporating the function ψ in the denominator term only whereas the 
equations proposed by Pal (Equations 12.11 and 12.12) include ψ in both the numera-
tor and denominator terms. It is not unreasonable to replace ϕ by effective volume 
fraction of particles ψϕ in both numerator and denominator terms.
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1E−41E−5 1E−3 1E−21E−1 1 10 100 1000 1E4 1E5

100

10

1

1E−1

1E−2

1E−41E−5 1E−3 1E−21E−1 1 10 100 1000 1E4 1E5

10

1

1E−1

2E−2

φ = 0.50 νm = −0.4

νm = +0.4

φ = 0.50 φm = 0.64
νm = −1.0

νm = +0.5

Kr = 1

Kd/Km

Gd/Gm

Re
la

tiv
e b

ul
k 

m
od

ul
us

 (K
r)

Re
la

tiv
e s

he
ar

 m
od

ul
us

 (G
r)

Gr = 1

FIGURE 12.1 Variation of relative modulus (bulk and shear) with moduli ratio for two dif-
ferent values of matrix Poisson’s ratio. (From Pal, R., Polym. Composites 30: 451–459, 2009.)
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Figure 12.1 shows the plots of relative bulk modulus (Kr) and relative shear modu-
lus (Gr) as functions of moduli ratio (bulk moduli ratio Kd/Km in the case of relative 
bulk modulus and shear moduli ratio Gd/Gm in the case of relative shear modulus). 
The plots are shown for two different values of matrix Poisson’s ratio. Equations 
12.11 and 12.12 are used to generate the plots shown in Figure 12.1. At low values of 
moduli ratio (Kd/Km or Gd/Gm), the relative modulus is constant independent of the 
moduli ratio; at intermediate values of moduli ratio, the relative modulus increases 
with the increase in moduli ratio, and at high values of moduli ratio, the relative 
modulus again becomes constant independent of the moduli ratio. With the increase 
in matrix Poisson’s ratio, the relative bulk modulus decreases at high and low values 
of moduli ratio. However, the relative shear modulus shows an opposite behavior in 
that it increases with the increase in matrix Poisson’s ratio at high and low values of 
moduli ratio.

12.2  POOR ADHESION BETWEEN PARTICLES AND MATRIX

The models discussed in the preceding section assume perfect adhesion between the 
filler particles and matrix. The matrix obeys the no-slip boundary condition at the 
filler surface. However, the bonding between the particles and matrix is often poor. 
When the adhesion between the filler particles and matrix is poor in filled polymeric 
composites, the polymer chains tend to pull away from the filler surface to create 
interfacial void space around the particles [5–12]. Consequently, the matrix does 
not obey the no-slip condition (it slips by the filler particles) and the filler particles 
behave more like cavities (void space) with moduli values of zero, that is, Kd → 0 and 
Gd → 0. Thus, the relative bulk and shear moduli of particulate composites, when 
the adhesion between particles and matrix is poor, can be described by the following 
equations:
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Equations 12.13 and 12.14 follow from Equations 12.11 and 12.12 with k = 
−(3Km/4Gm) and h = −(8 − 10νm)/(7 − 5νm).

Figure 12.2 shows the effect of adhesion between the filler particles and matrix. 
The plots shown in Figure 12.2 are generated from Equations 12.11 through 12.14. 
When adhesion between the particles and matrix is perfect (no slippage of matrix 
occurs at the particle surface), the addition of filler to the matrix has the reinforcement 
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effect in that the moduli (K and G) increase with the increase in filler volume frac-
tion. When adhesion between the particles and matrix is poor (matrix slips by the 
filler particles) an opposite effect is seen, that is, the moduli (K and G) decrease with 
the increase in filler concentration; in addition, the values of the relative moduli Kr 
and Gr are less than unity.

12.3  EFFECT OF INTERPHASE LAYER

In order to promote adhesion between filler particles and matrix (assumed to be some 
polymeric material), suitable compatibilizer or coupling agents are used. The cou-
pling agent promotes interfacial adhesion by bridging the two phases (filler particle 
and polymer matrix) together through chemical bonding. However, the presence of 
a compatibilizer at the interface complicates the mechanical behavior of particulate 
composites, as the mechanical properties of a thin layer surrounding the particles 
are no longer the same as that of the bulk matrix (polymer). Even in the absence of a 
coupling agent, the mechanical properties of a thin layer of material surrounding the 
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FIGURE 12.2 The effect of adhesion between the filler particles and matrix on the mechani-
cal properties of particulate composites. (From Pal, R., Polym. Composites 30: 451–459, 2009.)
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particles are expected to be somewhat different from the mechanical properties of 
matrix. The mobility of polymer chains in the thin region surrounding the particles 
is severely limited compared to the mobility of polymer chains in the bulk matrix.

The presence of a thin interphase layer around the particles can have a signifi-
cant influence on the overall mechanical properties of the particulate composites. 
The mechanical properties of three-phase particulate composites (the three phases 
being bulk matrix, interphase layer, and filler particles) can be modeled using a two-
step approach [4] discussed earlier in Chapter 11 in relation to disk-shaped particles 
(here we are dealing with spherical inclusions). In the first step, the moduli equa-
tions for two-phase composites (Equations 12.11 and 12.12) are applied to determine 
the mechanical behavior of a single core-shell particle consisting of filler as core 
and interfacial layer as shell. The interfacial layer is treated as matrix with respect 
to the filler core-particle. In the second step, the core-shell particles are treated as 
“homogeneous” particles of mechanical properties obtained from the first step. The 
moduli equations for two-phase composites (Equations 12.11 and 12.12) are applied 
once again to determine the mechanical behavior of three-phase composites. Thus,
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where Kcs is bulk modulus of a core-shell composite particle, Ks is bulk modulus of 
interfacial shell, Gs is shear modulus of shell, ϕc is volume fraction of filler core-particle 
in the combined volume of core and interfacial shell, K is the bulk modulus of the three-
phase composite, Km and Gm are moduli of the matrix, ϕ is the volume fraction of total 
dispersed phase (filler core particles plus interfacial layers), and k1 and k2 are given as
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where Kc is the bulk modulus of the filler core particle. Note that ψ is taken to be 
unity for the calculation of the bulk modulus of a core-shell composite particle (Kcs) 
in Equation 12.15 as ϕc (the volume fraction of filler core particle in the combined 
volume of core and interfacial shell) can vary from zero to unity depending on the 
thickness of the interfacial shell. In addition, ϕc is related to δ, the ratio of outer 
radius of interfacial shell (Rs) to radius of core particle (Rc), as follows:
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The equations for the shear modulus of a three-phase composite can be derived in 
a similar manner using the two-step approach. Thus,
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where Gcs is shear modulus of a core-shell composite particle, Gs is shear modulus of 
interfacial shell, νs is Poisson’s ratio of shell material, G is shear modulus of the three-
phase composite, νm is Poisson’s ratio of matrix material, and h1 and h2 are given as
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where Gc is shear modulus of the filler core particle.
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The effect of interfacial layer on the mechanical properties (bulk and shear 
moduli) of composites is shown in Figure 12.3. The relative bulk modulus plots 
are generated from Equations 12.15 through 12.18 and the relative shear modulus 
plots are generated from Equations 12.20 through 12.23. The plots show relative 
modulus (bulk and shear) as a function of shell-to-matrix moduli ratio (Ks/Km in 
the case of bulk modulus and Gs/Gm in the case of shear modulus) for different 
values of δ (shell-to-core radii ratio, see Equation 12.19). For a given value of δ, 
the modulus increases with the increase in shell-to-matrix moduli ratio from some 
low limiting value to a high limiting value. The low limiting value corresponds to 
soft shell whereas the high limiting value corresponds to hard shell. For the limit-
ing cases of soft and hard shells, the effect of δ (and hence shell thickness) on the 
mechanical properties of composites is negligible. However, in the intermediate 
range of shell-to-matrix moduli ratio, the mechanical properties of composites are 
strongly influenced by δ. For a given value of shell-to-matrix moduli ratio in the 
intermediate range of 10−4 to 100, the bulk modulus as well as the shear modulus 
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FIGURE 12.3 The effect of interfacial layer on the mechanical properties (relative bulk 
and shear moduli) of particulate composites. (From Pal, R., Polym. Composites 30: 451–
459, 2009.)
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of composite decrease with the increase in δ. An increase in δ at a given ϕ implies 
an increase in the shell thickness. Thus for intermediate values of shell-to-matrix 
moduli ratio where the shell material is neither too hard nor too soft (compared to 
the matrix), an increase in the shell thickness reduces the reinforcement effect of 
the filler particles.

Figure 12.4 shows the effect of core-to-shell moduli ratio (Kc/Ks in the case of 
bulk modulus and Gc/Gs in the case of shear modulus) on the relative modulus versus 
shell-to-matrix moduli ratio behavior of composites. At low and high values of shell-
to-matrix moduli ratio, the mechanical properties of composites are unaffected by 
the core-to-shell moduli ratio. However, in the intermediate range of shell-to-matrix 
moduli ratio, the core-to-shell moduli ratio exerts a strong influence on the mechani-
cal properties of composites; the relative modulus (bulk or shear) increases with the 
increase in core-to-shell moduli ratio. Thus, the material properties of the core are 
significant only when the shell material is neither too hard nor too soft compared to 
the matrix material.
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12.4  COMPARISON OF MODEL PREDICTIONS 
WITH EXPERIMENTAL DATA

The experimental data on the mechanical properties of three different particulate com-
posite systems are considered to verify the models (see Table 12.1 for a summary of 

TABLE 12.1
Summary of Various Composite Systems Considered to Evaluate Models

Set No.
Range of ϕ (Volume 

Fraction of Inclusions) Ref. No. Comments

1 0–0.41 [13] Young’s modulus of porous polycrystalline alumina

2 0–0.12 [14] Young’s modulus of porous polycrystalline mullite

3 0–0.36 [15] Elastic properties (Young’s and shear moduli) of 
porous polycrystalline monoclinic gadolinium oxide

4 0–0.40 [16] Elastic properties (Young’s and shear moduli) of 
porous polycrystalline monoclinic samarium oxide

5 0–0.32 [17] Elastic properties (Young’s and shear moduli) of 
porous polycrystalline cubic lutetium oxide

6 0–0.28 [18] Elastic properties (Young’s and shear moduli) of 
porous polycrystalline monoclinic hafnium oxide

7 0–0.40 [19] Elastic properties (Youngs’s and shear moduli) of 
porous refractory spinels 

8 0–0.36 [20] Elastic properties (Young’s and shear moduli) of 
porous stabilized hafnium oxide

9 0–0.18 [21] Elastic properties (Young’s and shear moduli) of 
porous hafnium and zirconium oxides stabilized 
with praseodymium or terbium oxide 

10 0–0.524 [22] Elastic properties (Young’s and shear moduli) of 
rubber-toughened poly(methyl methacrylate) 
composites

11 0–0.706 [23] Young’s modulus of dental restorative composites, a 
total of 55 composites of varying filler volume fraction

12 0–0.552 [24] Young’s modulus of dental composites of varying 
filler volume fraction

13 0–0.68 [25] Young’s modulus of particulate composites

14 0–0.625 [26] Young’s modulus of crosslinked polyurethane rubber 
filled with glass beads ranging from 60 to 90 μm in 
diameter

15 0–0.65 [27,28] Elastic properties (bulk and shear moduli) of sand 
particles/cement paste composites. The sand 
particles (850 μm in diameter) were covered with an 
interphase of thickness 25 μm

Source: Pal, R., Polym. Composites 30: 451–459, 2009.
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the various composite systems considered here). The systems considered are as fol-
lows: (1) composites with cavities (pores) as inclusions and solid material as matrix 
(data sets 1 through 9) [13–21]—these pore-solid composites are considered to evaluate 
the model (Equations 12.13 and 12.14) for mechanical properties of composites with 
poor adhesion between inclusions and matrix; (2) particulate composites with good 
particle–matrix adhesion (data sets 10 through 14) [22–26]—these composites are con-
sidered to evaluate the model (Equations 12.11 and 12.12) for mechanical properties of 
composites with good adhesion between particles and composites; and (3) particulate 
composites with core-shell particles as inclusions (data set 15) [27,28]—these compos-
ites are considered to evaluate the model (Equations 12.16 and 12.21) for mechanical 
properties of composites with interphase layer around the particles.

Figures 12.5 and 12.6 compare the predictions of Equations 12.13 and 12.14 with 
experimental data for composites with cavities or pores as inclusions. The relative 
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Young’s modulus (Er) is estimated from the bulk and shear moduli models using the 
following relation:
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The experimental relative moduli data (Young’s modulus and shear modulus) are in 
good agreement with the predictions of the model.

Figures 12.7 through 12.9 compare the predictions of Equations 12.11 and 12.12 with 
experimental data for particulate composites having good particle–matrix adhesion. The 
predictions of the model are in a reasonably good agreement with experimental data.

The predictions of Equations 12.16 and 12.21 are compared with experimental 
data for particulate composites composed of core-shell particles in Figure 12.10. 
Once again, the predictions of the model show a reasonably good agreement with the 
experimental data.
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12.5  CONCLUDING REMARKS

Models describing the effects of interfacial and interphase phenomena on the 
mechanical properties of particulate composites are discussed. Based on model pre-
dictions, the following conclusions can be made:

 1. The addition of filler to the matrix improves the mechanical properties of 
composites only if adhesion between the particles and matrix is good. The 
mechanical properties of composites deteriorate with the increase in filler 
concentration if adhesion between the particles and matrix is poor.

 2. The mechanical properties of composites are strongly affected by the pres-
ence of interphase (interfacial layer or shell) around the particles. With the 
increase in interphase-to-matrix moduli ratio, the mechanical properties 
of composites show a strong improvement. The thickness of the interphase 
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layer and the core-to-shell moduli ratio also exert significant influence on 
the mechanical properties of composites, especially in the intermediate 
range of interphase-to-matrix moduli ratio.

 3. The models are evaluated using 15 sets of experimental data on the mechan-
ical properties of particulate composites. The models describe the experi-
mental data reasonably well.
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13 Viscoelastic Behavior 
of Composites

13.1  INTRODUCTION

A purely elastic material (for example, Hookean solid) differs widely in its defor-
mational characteristics from a purely viscous material (for example, Newtonian 
fluid). The stress in a purely elastic material is a function only of the instantaneous 
magnitude of deformation (strain) whereas in a purely viscous material, the stress is 
a function only of the instantaneous rate of deformation. Also, purely elastic materi-
als return to their natural or undeformed state upon removal of applied loads whereas 
purely viscous materials possess no tendency at all for deformational recovery. The 
term “viscoelastic” implies the simultaneous existence of viscous and elastic char-
acteristics in a material. Thus, a material behavior that incorporates a blend of both 
viscous and elastic characteristics is called viscoelastic behavior.

Many materials, including composites, exhibit viscoelastic behavior. They flow 
under the influence of applied stresses, unlike purely elastic materials, which exhibit 
a constant strain and no flow. Upon removal of the applied stress, some of their defor-
mation is gradually recovered; that is, they exhibit elastic recovery unlike purely 
viscous materials, which exhibit no recovery at all. The term “linear viscoelasticity” 
implies the study of viscoelastic effects in a small strain region where strain varies 
linearly with stress (doubling the stress will double the strain). Among the various 
techniques available to study the linear viscoelastic behavior of materials, oscilla-
tory testing at small strain amplitudes is very popular. The material is subjected to 
oscillatory strain, and its stress response is monitored. The material could be sub-
jected to either oscillatory normal strain or oscillatory shear strain. For purely elastic 
materials, stress is in phase with the strain. For viscoelastic materials, there occurs a 
lag between the stress and strain.

Particulate composites often contain polymeric material as one of the two phases 
(dispersed phase and matrix phase). The polymeric phase imparts a viscoelastic 
behavior to the composite [1]. For example, the ethylene–propylene–diene monomer 
(EPDM) rubber is being increasingly used in many applications due to its excellent 
oxidation resistance and electrical properties [2]. As the EPDM, like many other 
polymeric materials, is viscoelastic in nature, the composites prepared from EPDM 
as one of the phases are also viscoelastic. Therefore, a good understanding of the 
effective properties of viscoelastic composites is of great industrial interest [3–14].

In this chapter, the viscoelastic behavior of dilute and concentrated composites is 
described in terms of the effective complex moduli.



200 Properties of Composite Materials

13.2  ELASTIC–VISCOELASTIC CORRESPONDENCE PRINCIPLE

The “elastic–viscoelastic correspondence principle” states that the expressions 
for the effective complex moduli of a viscoelastic heterogeneous material can be 
obtained from the corresponding expressions for the effective elastic moduli of an 
associated heterogeneous elastic material (with identical phase geometry) simply 
by replacement of phase elastic moduli by phase complex moduli [6,15,16]. This 
correspondence principle is based on the fact that the governing equations and the 
boundary conditions for elastic and viscoelastic problems are the same; only the 
stress–strain relations in the two cases are different.

13.3  COMPLEX MODULI OF DILUTE COMPOSITES

Using the “elastic–viscoelastic correspondence principle,” the expressions for the 
effective elastic moduli of dilute particulate composites (given in Chapter 7) can be 
converted into the corresponding expressions for the complex moduli of viscoelastic 
particulate composites.

For dilute composites of spherical particles, the results are as follows:
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where G*, Gm
*, and Gd

* are the complex shear moduli of the composite, the continu-
ous phase, and the dispersed phase, respectively; νm

*  is the complex Poisson ratio 
of the continuous phase; and K*, Km

*, and Kd
* are the complex bulk moduli of the 

composite, the continuous phase, and the dispersed phase, respectively. The defini-
tions of complex shear modulus, complex Poisson’s ratio, and complex bulk modulus 
are

 G* = G′ + jG″ (13.3)

 ν* = ν′ + jν″ (13.4)

 K* = K′ + jK″ (13.5)

where single-primed quantities are the storage components, double-primed quanti-
ties are the loss components, and j is the imaginary number ( −1 ).
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For the case where (1) the particles are purely elastic and (2) the matrix is elastic 
in dilation and viscoelastic in shear, one can write

 G Gd d
* =  (13.6)

 K Kd d
* =  (13.7)

 K Km m
* =  (13.8)

 G G jGm m m
* = ′ + ′′  (13.9)

Introducing the above expressions for Gd
*, Kd

*, Km
* , and Gm

* into Equations 13.1 

and 13.2, and making an additional assumption that tan2
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where K′ and K″ are storage and loss bulk moduli, respectively, of the composite. 
Interestingly, the composite is viscoelastic in dilation (K′ and K″ are nonzero) even 
though the dispersed phase and matrix are purely elastic in dilation. The shear visco-
elasticity of the matrix introduces dilational viscoelasticity in the composite.

For the case where (1) the particles are elastic, and (2) the matrix is incompress-
ible and viscoelastic in shear, the following expressions for the complex bulk and 
shear moduli are obtained from Equations 13.1 and 13.2:

 K K jK
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From Equation 13.11, the expressions for the bulk storage (K′) and loss (K″) mod-
uli are as follows:
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Figure 13.1 shows the shear moduli of matrix and dilational (bulk) moduli of 
composite. The dilational moduli are calculated from Equations 13.13a and 13.13b. 
The matrix is assumed to follow the Maxwell model, that is,

 ′ = +G Gm m gm gmω τ ω τ2 2 2 21/( )  (13.14)

 ′′ = +G Gm m gm gmωτ ω τ/( )1 2 2  (13.15)

where Gm is the high frequency limiting value of shear modulus, ω is the fre-
quency, and τgm is the shear relaxation time of the matrix. An important point to 
note is that shear viscoelasticity of matrix results in dilational viscoelasticity of 
composite.

When the particles are viscoelastic in both shear and dilation, and the matrix is 
incompressible and viscoelastic in shear, the expressions for the complex bulk and 
shear moduli of the composite become

 K
K Gd m* = +3 4
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From Equation 13.16, the expressions for the bulk storage (K′) and loss (K″) mod-
uli are as follows:
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′′ = ′′ + ′′

K
K Gd m3 4

3φ  
(13.19)

From Equation 13.17, the expressions for the storage and loss shear moduli (G′ 
and G″) of the composite can be obtained as follows:

 ′ = + ′ − ′′G A G A Gm m( )1 1 2φ φ  (13.20)

 ′′ = ′ + + ′′G A G A Gm mφ φ2 11( )  (13.21)
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where A1 and A2 are given as

 A
ac bd

c d
1 2 2

5= +
+







 (13.22)

 A
bc ad

c d
2 2 2

5= −
+







 (13.23)

 a G G b G Gd m d m= ′ − ′ = ′′ − ′′,  (13.24)

 c G G d G Gd m d m= ′ + ′ = ′′ + ′′2 3 2 3,  (13.25)

Figures 13.2a and b show the plots of bulk moduli of composite calculated from 
Equations 13.18 and 13.19. The shear moduli of the matrix phase and the bulk mod-
uli of the dispersed phase are assumed to follow the Maxwell model. When the shear 
relaxation time of the matrix (τgm) and dilational relaxation time of the particles 
(τkd) are equal, the composite exhibits a single relaxation time (see Figure 13.2a). 
When the shear relaxation time of the matrix and dilational relaxation time of the 
particles are different, the composite exhibits two relaxation times as can be seen in 
Figure 13.2b. The Cole–Cole plot (K″ versus K′ plot) clearly shows two frequency 
domains.
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(τgm) is equal to the dilational relaxation time of the particles (τkd). (From Pal, R., Rheology of 
Particulate Dispersions and Composites. Boca Raton: CRC Press, 2007.)
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Figure 13.3 shows the effects of Kd (high frequency limiting value of dispersed 
phase bulk modulus) and Gm (high frequency limiting value of matrix shear modu-
lus) on the bulk moduli of composite. The shear relaxation time of the matrix is 
taken to be equal to the dilational relaxation time of the particulate phase. With the 
increase in Kd, K′ and K″ of the composite increase as shown in the top portion of 
Figure 13.3. The bulk moduli of the composite (K′ and K″) also increase with the 
increase in shear modulus of the matrix Gm as can be seen in the bottom portion 
of Figure 13.3.

Figure 13.4 shows the plots of storage and loss shear moduli of viscoelas-
tic composite of Maxwellian components obtained from Equation 13.17 under 
the following conditions: ϕ = 0.10, Gm = 1010 Pa, Gd = 107 Pa, τgm = 100 s, and 
τgd = 10–5 s. Clearly, the composite response is dominated by the matrix material 
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properties; the storage modulus values are closer to that of the matrix. However, 
the loss modulus of the composite is dominated by the matrix only at low to 
moderate frequencies; at high frequencies, the composite loss modulus is domi-
nated by the loss modulus of the softer material (dispersed phase in the present 
situation).

Figure 13.5 shows the effect of dispersed-phase shear relaxation time τgd on 
the shear moduli of composite. The data are generated from Equation 13.17 under 
the following conditions: ϕ = 0.10, Gm = Gd = 108 Pa, τgm = 1 s. The storage shear 
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composite. (From Pal, R., Rheology of Particulate Dispersions and Composites. Boca Raton: 
CRC Press, 2007.)
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modulus versus frequency behavior of the composite is dominated by the matrix 
phase for all values of τgd. At high frequencies, the loss shear modulus of the 
composite deviates from the loss shear modulus of the matrix phase. With the 
decrease in τgd, the deviation of composite loss modulus from the matrix loss 
modulus increases; the frequency at which the deviation occurs also increases 
with the decrease in τgd.

The effect of Gd (dispersed phase shear modulus) on the shear moduli of compos-
ite is shown in Figure 13.6 under the following conditions: ϕ = 0.10, Gm = 105 Pa, 
τgm = τgd = 1 s. With the increase in Gd, the storage shear modulus versus frequency 
plot shifts toward higher modulus values. The loss modulus versus frequency plot 
also shifts toward higher modulus values. Thus, both storage and loss shear moduli 
increase with the increase in Gd.

13.4  COMPLEX MODULI OF CONCENTRATED COMPOSITES

In the preceding section, the models for complex moduli of dilute composites 
were discussed. In this section, the models are developed for the complex mod-
uli of concentrated composites. For isotropic materials, only two out of the four 
mechanical properties or elastic constants (G, K, E, and ν) are independent. If two 
properties are fixed, the remaining two are automatically fixed. In the following 
discussion, complex shear modulus and complex Young’s modulus are chosen to 
be independent. The dispersed phase and matrix of the composite are treated as 
viscoelastic materials.
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FIGURE 13.6 Effect of dispersed phase shear modulus (Gd) on the shear moduli of compos-
ite. (From Pal, R., Rheology of Particulate Dispersions and Composites. Boca Raton: CRC 
Press, 2007.)
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13.4.1  complEx shEar modulus of concEntratEd compositEs

For a dilute composite solid of spherical filler particles and incompressible matrix, 
the complex shear modulus (G*) in the linear viscoelastic region is given as [17]

 G G Hm
* = +







* 1
5
2

φ  (13.26)

in which H is given by
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For rigid spherical particles ( * )Gd → ∞ , H is unity, and Equation 13.26 reduces to

 G Gm
* = +







* 1
5
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φ  (13.28)

The dilute composite equation (Equation 13.26) can be extended to concentrated 
composites using a self-consistent treatment similar to the Lorentz sphere method in 
electricity [17]. The equation for nondilute composites is given as

 G G
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Hm
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1

φ

φ
 (13.29)

where H is defined by Equation 13.27. In the limit ϕ → 0, Equation 13.29 reduces to 
Equation 13.28. Equation 13.29 is often referred to as the Palierne model. It follows 
from the Kerner equations (Equations 12.6 and 12.8) under the restriction of incom-
pressible matrix (νm = 0.5). Equation 13.29 generally underpredicts the values of the 
storage and loss moduli at high concentrations of dispersed phase. Furthermore, it 
does not show divergence of the modulus as ϕ → ϕm, where ϕm is the maximum 
packing concentration of particles. At ϕ = ϕm, the shear modulus of composite of 
rigid particles is expected to become infinite.

Equations for the complex shear modulus of concentrated composites of spheri-
cal filler particles can be derived using the differential effective medium approach 
as follows [18]: A concentrated composite is considered to be obtained from an ini-
tial matrix by successively adding infinitesimally small quantities of filler particles 
to the system until the final volume fraction of dispersed phase is reached. At any 
arbitrary stage (i) of the process, the addition of an infinitesimal amount of particles 
leads to the next stage (i + 1). The composite of stage (i) is then treated as an equiva-
lent effective medium which is homogeneous with respect to the new set of particles 
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added to reach stage (i + 1). The solution of a dilute composite system, that is, 
Equation 13.26), is applied to determine the incremental increase in complex shear 
modulus in going from stage (i) to stage (i + 1). The differential equation derived 
in this manner is integrated to obtain the final solution. A similar approach was 
utilized by Brinkman [19] and Roscoe [20] in derivation of a viscosity equation for 
solids-in-liquid suspensions. At stage (i) in the process of dispersed-phase addition, 
let the total volume of the composite be Vt, the dispersed-phase (particles) volume 
be Vd, the dispersed-phase volume fraction be ϕ, and the complex shear modulus 
of the composite be G*. Upon addition of dVd to the stage (i) composite, the stage 
(i + 1) is reached where the dispersed-phase volume is Vd + dVd, the total volume of 
the composite is Vt + dVd, the dispersed-phase volume fraction is ϕ + dϕ, and the 
complex shear modulus is G* + dG*. One can now apply Equation 13.26 to calculate 
the complex shear modulus of stage (i + 1) composite by treating the composite into 
which the new particles are added as an equivalent effective medium of complex 
shear modulus G*. Therefore,

 G dG G
dV

V dV
G G
G G

d

t d

d

d

* * *
*

* *
+ = +

+






−
+




1

5
2

2 2
2 3

* 
















 (13.30)

The change in the dispersed-phase volume fraction, dϕ, from stage (i) to stage (i + 1) 
can be written as

 d
V dV

V dV
t d

t d

φ φ φ= +
+

−  (13.31)

Equation 13.31, upon rearrangement gives
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From Equations 13.30 and 13.32, one obtains
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Upon integrating Equation 13.33 with the limit G Gm
* → *  at ϕ = 0, the following 

result is obtained
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This equation, referred to as model 1, reduces to the following equation for com-
posites of rigid filler particles ( * )Gd → ∞ :

 G Gm
* = − −* ( ) .1 2 5φ  (13.36)

Model 1 (Equation 13.35) assumes that the volume fraction of dispersed phase 
can reach unity as more and more particles are added to the composite. This is physi-
cally impossible, especially for composites of rigid filler particles. In reality, there 
exists an upper limit for ϕ, referred to as ϕm (maximum packing volume fraction of 
particles). The value of ϕm varies with the type of packing arrangement of particles. 
For example, it is 0.52 for simple cubic packing of uniform spheres; it is approxi-
mately 0.64 for random close packing and 0.74 for hexagonal close packing of uni-
form hard spheres. At ϕ = ϕm, the complex shear modulus of composite of rigid 
particles ( * )Gd → ∞  is expected to exhibit divergence. However, model 1 exhibits 
divergence in G* only at ϕ = 1.0.

One possible way to account for the divergence in complex shear modulus at ϕ = ϕm 
is to equate dVd/(Vt + dVd) in Equation 13.32 to d[ϕ/(1 − ϕ/ϕm)], that is,
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Mooney [21] made a similar assumption in the derivation of his equation for the 
viscosity of concentrated suspensions. Thus,
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Upon integration, Equation 13.38 gives
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This equation, referred to as model 2, reduces to the following equation for com-
posite solids of rigid filler particles ( * )Gd → ∞ :
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Another way to account for divergence in G* at ϕ = ϕm for composites of rigid 
particles is to modify Equation 13.31 as
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The justification for this modification is that the effective volume fraction of parti-
cles at stage (i), before new particles are added to reach stage (i + 1), is ϕ/ϕm (instead 
of ϕ), as some of the continuous phase fluid is immobilized between the particles 
when they are crowded. In other words, the free volume of continuous phase fluid 
available before new particles are added is only (1 – ϕ/ϕm), instead of 1 – ϕ. Krieger 
and Dougherty [22], in the derivation of their equation for the viscosity of concen-
trated suspensions, made an equivalent assumption.

Equation 13.41, upon rearrangement, gives
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Thus,
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Upon integrating Equation 13.43 with the limit G Gm
* *→  at ϕ = 0, the following 

equation is obtained:
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This equation, referred to as model 3, reduces to the following equation for solid 
composites of rigid particles ( * )Gd → ∞ :
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It is interesting to note that in the case of composites of rigid spherical particles, 
models 1 to 3 (Equations 13.35, 13.39, and 13.44) predict the phase lag angle (δ) 
between stress and strain to be independent of ϕ, that is,

 
tanδ = ′′

′
= ′′

′
G
G

Gm

Gm

 (13.46)

Thus, the phase lag angle δ for composites is the same as that of the matrix.
Figures 13.7 through 13.10 compare model predictions with experimental data of 

Pal [18] obtained for composites of spherical glass beads and polymeric liquid. The 
experimental data consisting of phase-lag angle and complex shear modulus as func-
tions of oscillation frequency of stress are plotted and compared with model predic-
tions at various volume fractions of the dispersed phase. Further details regarding 
the nature and composition of composites and experimental measurements can be 
found in the original reference [18].

Equation 13.29 (Palierne equation) gives good predictions of the complex modu-
lus only at low volume fractions of the dispersed phase (ϕ ≤ 0.176). At higher values 
of ϕ, this equation underpredicts the complex modulus and the deviation increases 
with the increase in ϕ value.

Model 1 (Equation 13.35) is a slight improvement over Equation 13.29. At low 
volume fractions of the dispersed phase (ϕ ≤ 0.176), model 1 gives good predictions 
of the complex modulus. At higher values of ϕ, model 1 under predicts the complex 
modulus although the predictions are somewhat better than those of Equation 13.29.

Model 2 (Equation 13.39) gives excellent predictions of the complex modulus 
over the full range of ϕ investigated in this work (0 ≤ ϕ ≤ 0.449) provided that ϕm 
value of 0.74 is used.

Model 3 (Equation 13.44) also gives excellent predictions of the complex modulus 
over the full range of ϕ investigated, when ϕm value of 0.50 is used. While model 2 
gives a high ϕm value of 0.74, corresponding to hexagonal close-packed arrangement 
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of uniform spheres, model 3 gives a significantly lower value of ϕm, corresponding 
to simple cubic packing of uniform spheres.

Interestingly, all models give good prediction of the phase lag angle (δ). As 
expected from the models, δ for composites is nearly the same as that of the 
matrix.

13.4.2  complEx young’s modulus of concEntratEd compositEs

For an infinitely dilute dispersion of elastic solid particles (spherical in shape) in an 
elastic solid matrix, the exact expression for the Young’s modulus is given as [23]
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FIGURE 13.7 Comparison of complex shear modulus/phase lag angle data of suspensions 
with predictions of the Palierne model (Equation 13.29). (From Pal, R., J. Colloid Interface 
Sci. 245: 171–177, 2002.)
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where E is Young’s modulus of the composite, Em is Young’s modulus of the matrix, 
Ed is Young’s modulus of the dispersed phase (particles), νm and νd are Poisson ratios 
of matrix and dispersed phase, respectively, and ϕ is the volume fraction of particles.

For incompressible composites (νm = 0.5, νd = 0.5), Equation 13.47 can be written 
as
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Equation 13.47 is restricted to elastic composites (both dispersed phase and matrix 
as purely elastic materials). Using the elastic–viscoelastic correspondence principle, 
the complex Young’s modulus of dilute viscoelastic composites of incompressible 
matrix and dispersed phases can be expressed as follows:
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where E* is the complex Young’s modulus of the composite, Ed
*  is the complex 

Young’s modulus of the dispersed phase, and Em
*  is the complex Young’s modulus 

of the matrix. Note that the complex Young’s modulus (E*) is defined as E* = E′ + 
jE″ where E′ is the storage Young’s modulus, E″ is the loss Young’s modulus, and j 

is the imaginary number −( )1 .
For composites of Maxwellian matrix and dispersed phase, Ed

*  and Em
*  are given 

as
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where τd and τm are the relaxation times of dispersed phase and matrix, respec-
tively, Ed and Em are the high-frequency limiting values of the Young’s moduli of 
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dispersed phase and matrix, respectively, ω is frequency of oscillation of stress or 
strain, ′Ed  and ′Em  are the storage Young’s moduli of the dispersed phase and matrix, 
respectively, and ′′Ed  and ′′Em  are the loss Young’s moduli of the dispersed phase and 
matrix, respectively.

While Equation 13.49 describes all the important features of the viscoelastic 
behavior of composites very well, it is restricted to infinitely dilute systems. It fails 
to predict the correct values of storage and loss Young’s moduli at finite concentra-
tions of dispersed phase. The expressions for the complex Young’s modulus (E*) of 
concentrated composites can be developed using a differential scheme along with the 
solution of an infinitely dilute system, that is, Equation 13.49. Using this differential 
scheme, Pal [24] developed the following four equations for the complex Young’s 
modulus (E*) of concentrated composites:
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13.5  CONCLUDING REMARKS

The linear viscoelastic behavior of composites is presented. Complex shear and 
Young’s moduli models for dilute and concentrated composites are developed and 
discussed. Where possible, the model predictions are compared with the available 
experimental data.
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14 General Introduction 
to Heat Transfer

When two objects at different temperatures are brought in thermal contact (not 
necessarily physical contact) with each other, energy flows from one object to the 
other. This energy, which flows by virtue of temperature difference between the two 
objects or due to temperature gradient within the same object, is called “heat.” Thus, 
heat is a form of energy that comes into play only in the presence of temperature 
gradient. Heat has meaning only during the transfer process. Once it has flowed into 
a body, it manifests as internal energy of the body. Because heat is relevant only dur-
ing the transfer process, it is often referred to as “energy in transit” (energy in the 
process of being transferred). In accordance with the second law of thermodynam-
ics, heat flows in the direction of decreasing temperature (from high temperature to 
low temperature). A good understanding of heat transfer is important in a number of 
applications involving composite materials.

14.1  DIFFERENT MODES OF HEAT TRANSFER

Heat transfer from one body to another (or from one location to another within the 
same medium) can take place by conduction, convection, radiation, or any combina-
tion of these three modes of heat transfer.

14.1.1  conductivE hEat transfEr

The flow of heat in a stationary medium (solid or fluid) when there exists a tempera-
ture gradient in the medium is referred to as “heat conduction” or “conductive heat 
transfer.” As an example, heat transfer in a plane solid wall when the two sides of 
the wall are exposed to different temperatures is due to conduction. The important 
features of conductive heat transfer are as follows: presence of material medium, the 
material medium is stationary (no bulk motion of matter is involved), and there exists 
a temperature gradient in the medium.

14.1.1.1  Rate Equation for Heat Conduction
For one-dimensional heat conduction in the x-direction, the rate of heat transfer per 
unit area perpendicular to the direction of heat flow is given by the following Fourier 
law of heat conduction:

 
′′ = −q k

dT
dxx  (14.1)
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where ′′qx  is the heat flux (W/m2) defined as the rate of heat transfer per unit area 
perpendicular to the direction of heat transfer, dT/dx is the temperature gradient 
(K/m), and k is the material property called thermal conductivity (W/m.K). The 
thermal conductivity is a measure of the ability of the material to conduct heat. For a 
prescribed temperature gradient, the conduction heat flux increases with the increase 
in thermal conductivity. Thus, good conductors of heat have high values of k.

The total rate of heat transfer q is given by

 
q kA

dT
dx

= −  (14.2)

where A is the area of heat transfer, area perpendicular to the direction of heat flow. 
The unit of q is W or J/s.

The thermal conductivity varies widely from one material to another (see 
Table 14.1). Gases are poor conductors of heat with low values of k whereas metallic 
solids are excellent conductors of heat with high values of k. In general, the thermal 
conductivity of a solid is larger than that of a liquid, which in turn has a larger k than 
that of a gas. The thermal conductivity of a solid may be four orders of magnitude 
larger than that of a gas.

The thermal conductivity of materials (solids, liquids, and gases) varies signif-
icantly with temperature. For example, the thermal conductivity of gases is pro-
portional to the square root of temperature. However, the pressure dependence of 
thermal conductivity is usually weak.

14.1.1.2  Mechanisms of Heat Conduction
In gases, heat is conducted by random motion and collision of molecules. The 
molecules of a gas are in ceaseless random motion even though there is no bulk 
motion. In a high-temperature region, the gas molecules possess higher kinetic 
energy as compared with the molecules in a low-temperature region. Due to ran-
dom motion of molecules, some molecules from a high-temperature region reach a 
region of low temperature and give up part of their kinetic energy through collisions 
with lower energy molecules. In a similar random process, some molecules from 

TABLE 14.1
Thermal Conductivity (W/m.K) of Some Materials at Room Temperature

Material k (W/m.K)

Metallic solids Silver: 420
Copper: 390

Nonmetallic solids Glass: 1
Limestone: 1.5

Liquids Water: 0.6
Engine oil: 0.15

Gases Air: 0.026
Steam: 0.018
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a low-temperature region reach a region of high temperature and receive energy 
through collisions with high-energy molecules. Thus, there occurs a net transfer of 
energy from a high-temperature region to a low-temperature region due to a diffu-
sion process (random motion and collision of molecules). The mechanism of heat 
conduction in liquids is similar to that of gases, that is, random motion and collision 
of molecules. However, the molecules in liquids are more closely spaced, and as a 
result, intermolecular forces exert a strong influence on random motion and energy 
exchange in the collision process.

Heat conduction in solids occurs by two different mechanisms: (1) random motion 
and collision of free electrons and (2) transmission of vibrational energy in the lat-
tice structure. The “free” electrons (also called “electron gas”) are electrons loosely 
bound to the atoms and are relatively free to move through the lattice structure of 
the solid. In the high-temperature region, the free electrons possess higher kinetic 
energy as compared with electrons in a low-temperature region. The free electrons 
transfer energy from a high-temperature region to a low-temperature region much 
like the gas molecules, that is, by random motion and collisions. This mechanism of 
heat conduction is dominant in metals (solids and liquid). In nonmetallic solids, heat 
conduction occurs mainly due to lattice vibrations. The atoms or molecules of a solid 
are bound to each other by a number of bonds that act like springs. The atoms/mol-
ecules in the high-temperature region of the solid vibrate more vigorously as com-
pared with the atoms/molecules in the low-temperature region. The vibrations are 
passed from the high-temperature region to a low-temperature region of the lattice 
structure through the springlike motion of the bonds. The energy associated with 
lattice vibrations (lattice waves) is quantized, and the quantized unit of vibrational 
energy is called “phonons.” Thus, one can consider lattice waves as a continuous 
stream of packets of energy called phonons.

The thermal conductivity of isotropic solids can be expressed as

 k = ke + kph (14.3)

where ke is the contribution of electron gas and kph is the contribution of lattice 
vibrations (phonons). In metallic solids, the dominant mechanism of heat conduction 
is electron gas and k ≈ ke. In nonmetallic solids, heat conduction is mainly due to 
transmission of phonons through the lattice and k ≈ kph.

14.1.2  convEctivE hEat transfEr

Convective heat transfer involves fluid motion in or around a solid object that is at a 
temperature different from that of the fluid. Thus, the flow of heat between a solid 
surface and a fluid moving adjacent to the solid surface, when the solid surface and 
the fluid are at different temperatures, is referred to as “heat convection” or “convec-
tive heat transfer.”

Heat transfer by convection involves two mechanisms operating simultaneously—
energy transfer due to random motion and collision of molecules (diffusion of 
energy) and superimposed upon the molecular motion is energy transfer by advec-
tion (advection means transport of a quantity, which, in the present case, is energy, 
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by bulk fluid motion). Near the contact (solid) surface, the fluid is nearly stationary. 
Consequently, the heat is transferred by conduction only (random motion and colli-
sion of molecules). Away from the solid boundary, both mechanisms are important; 
that is, energy transfer occurs due to bulk motion (advection) as well as molecular 
phenomenon (diffusion).

Convection heat transfer can be classified into two broad groups based on the 
driving means for fluid flow. When the fluid motion is caused by external means, 
such as by a fan or a pump, we speak of forced convection. When fluid flow is 
induced by buoyancy forces, which arise from density differences caused by tem-
perature variations in the fluid, we have “free” or “natural” convection.

Convection heat transfer could further involve external and internal flows. In 
external flows, fluid flows around a body that is completely submerged in it. The 
flow is unbounded flow. In internal flows, fluid flows in tubes or channels. Fluid is 
confined within the channel boundaries. The flow is bounded flow, surrounded by 
the solid channel boundaries.

14.1.2.1  Rate Equation for Convection
The rate equation for convective heat transfer is known as Newton’s law of cooling. 
For external flows, the Newton law of cooling is given as

 ′′ = − ∞q h T Ts s( )  (14.4)

where ′′qs  is the local heat flux normal to the solid surface (also called surface heat 
flux), h is the local heat transfer coefficient (W/m2.K), Ts is the local surface (solid) 
temperature, and T∞ is the free stream temperature of the fluid. The heat transfer 
coefficient depends on several factors such as geometry of the solid surface, nature 
of flow, and thermodynamic properties.

For internal flows, the Newton law of cooling is given as

 ′′ = −q h T Ts s m( )  (14.5)

where Tm is the mean or average temperature of the fluid (averaged over the cross 
section at any axial location).

The total rate of heat transfer q may be obtained by integrating the local flux over 
the entire surface as

 

q q dA h T T dAs s

A

s c s

As s

= ′′ = −∫ ∫ ( )  (14.6)

where Tc is characteristic temperature of the fluid (T∞ in the case of external flow 
and Tm in the case of internal flow) and As is the area of heat transfer (contact area 
between the fluid and solid).

The typical values of the heat transfer coefficient h (W/m2.K) are summarized in  
Table 14.2.



227General Introduction to Heat Transfer

14.1.3  radiativE hEat transfEr

14.1.3.1  Nature of Thermal Radiation
All matter emits energy by virtue of having a nonzero absolute temperature. This 
energy, emitted in the form of electromagnetic waves or photons due to nonzero 
absolute temperature, is called thermal radiation. Thermal radiation is emitted by 
matter due to changes in the vibrational, rotational, and electronic states of constitu-
ent molecules or atoms.

Thermal radiation covers a broad range of wavelengths: approximately 0.1 to 
1000 μm. It includes part of the UV region (0.1 to 0.38 μm), visible region (0.38 
to 0.76 μm), and infrared region (0.76 to 1000 μm). Thermal radiation follows the 
Planck law of electromagnetic radiation:

 e = h υ = h c/λ (14.7)

where e is the energy associated with photon, h is Planck’s constant (= 6.626 × 10–34 J.s), 
and υ is the frequency of radiation (υ = c/λ, where λ is the wave length and c is the 
speed of light, 3 × 108 m/s in vacuum). The higher the temperature of the object, the 
smaller is the wave length of the emitted thermal radiation and the more energetic is 
the radiation. Thus, thermal radiation effect is important at high temperatures.

The rate at which energy is emitted by a surface per unit area is called the emis-
sive power (E). The emissive power of an ideal (black) surface is given by the Stefan–
Boltzmann law:

 E Tb s= σ 4  (14.8)

where Eb is the emissive power of a black surface, Ts is the absolute temperature of the 
surface, and σ is the Stefan–Boltzmann constant (= 5.67 × 10–8 W/(m2.K4). Note that 
Eb is the total emissive power of a black surface, integrated over all the wavelengths.

Black surfaces are surfaces that absorb all of the incident thermal radiation (none 
of the incident radiation is reflected or transmitted; all is absorbed). Thus, black 
surfaces are perfect absorbers of thermal radiation. Any material that absorbs vis-
ible light appears as “visually black.” However, this concept is extended to a much 
broader thermal band in heat transfer. A “thermally black” surface is one that absorbs 
all of the incident thermal radiation. A surface that appears black to the eye may not 

TABLE 14.2
Typical Values of Heat Transfer Coefficient 

Free Convection, Typical h 
Values (W/m2.K)

Forced Convection, Typical h 
Values (W/m2.K)

Boiling/Condensation 
(Convection with Phase Change), 

Typical h Values (W/m2.K)

Gases 2–25
Liquids 50–100

Gases 25–250
Liquids 50–20,000

2500–100,000
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be thermally black. For example, a surface may absorb all visible radiation and may 
reflect thermal radiation outside the visible band. Interestingly, snow is considered to 
be thermally black, as it absorbs a major portion of the thermal radiation band and 
reflects the visible band.

Black surfaces are also perfect emitters of thermal radiation. The emissive power 
of a black surface is the highest as compared with any nonblack surface at the same 
temperature. No real surface behaves like an ideal black surface. The emissivity (ε) 
of a real surface is defined as

 ε = E/Eb (14.9)

where E is the emissive power of the real surface and Eb is the emissive power of a 
black (ideal) surface. For an ideal (black) surface, ε = 1.

14.1.3.2  Thermal Radiation Exchange
When two objects (surfaces) at different temperatures are placed in view of each 
other, net transfer of energy occurs between the objects due to exchange of thermal 
radiation. The object at a higher temperature cools down, and the object at a lower 
temperature gets heated up. This phenomenon whereby energy transfer between 
objects at different temperatures occurs due to exchange of thermal radiation is 
called radiative heat transfer.

As an example, consider two large black parallel surfaces of equal area (A) facing 
each other. Let the absolute temperature of surface 1 be T1 and the absolute tempera-
ture of surface 2 be T2. Let the rate at which energy leaving surface 1 and intercepted 
(seen) by surface 2 be q1→2. In general, the radiation leaving surface 1 will include both 
emitted and reflected radiations. Also, not all the radiation leaving surface 1 will reach 
surface 2. However, in the present example, the radiation leaving surface 1 includes 
only the emitted radiation (black surface), and all the radiation leaving surface 1 is 
intercepted by surface 2 (parallel surfaces). From the Stefan–Boltzmann law,

 q T A1 2 1
4

→ = σ  (14.10)

The rate at which energy leaving surface 2 and intercepted (seen) by surface 1; 
that is, q2→1, can be determined in a similar manner. It is given as

 q T A2 1 2
4

→ = σ  (14.11)

Thus, the net rate of radiation heat transfer from black surface 1 to black surface 2 is

 q q q T T Anet1 2 1 2 2 1 1
4

2
4

→ → →= − = −( ), σ  (14.12)

14.1.4  summary

In summary, Table 14.3 compares the key features of the three modes of heat trans-
fer. Convection is generally considered to be the most efficient mode of heat transfer. 
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It is followed by conduction whereas radiation is considered to be the least efficient 
and slowest among the three modes of heat transfer.

14.2  ENERGY BALANCE

In engineering problems, it is often necessary to apply energy balance to a control 
volume. Control volume (CV) is a region of space (within the material medium) 
bounded by a control surface. For nonflow systems, only energy and no mass can 
enter or leave the control volume. Energy can enter the control volume through the 
control surface in two ways: heat transfer and work transfer. However, for flow sys-
tems, both mass and energy can enter or leave the control volume. Now in addition 
to heat and work transfer, energy can enter or leave the control volume in a direct 
manner by advection process whereby the mass entering and leaving the control 
volume carries energy with it.

Consider a stationary medium with nonuniform temperature distribution where 
only heat enters or leaves the control volume through conduction and there is no 
work transfer involved. For a cubical control volume, heat enters the control volume 
through the x, y, and z faces and leaves through the x + Δx, y + Δy, and z + Δz faces. 
Heat is also generated inside the control volume through means such as passage of 
electric current through the medium. Thus, energy balance can be written as
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TABLE 14.3
Comparison of the Three Modes of Heat Transfer

Conduction Convection Radiation

Needs matter Needs matter Does not need matter

Energy transfer a molecular 
phenomenon (diffusion process)

Energy transfer by bulk 
motion (advection) as well 
as diffusion

Energy transfer by photons 
(electromagnetic waves)

No bulk motion of matter Bulk motion of matter needed No bulk motion of matter

Temperature difference/gradient 
needed

Temperature difference/
gradient needed

Temperature difference between 
surfaces needed
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Let us now determine each term of the energy balance equation:
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where ′′qx , ′′qy , and ′′qz  are the x, y, and z components of heat flux vector; �q  is the 
rate of heat generation per unit volume; ρ is density of the medium; and U is internal 
energy per unit mass.

Thus, the energy balance could be written as
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If we divide this equation by (ΔxΔyΔz) and take the limits Δx→0, Δy→0, Δz→0, 
the following result is obtained:
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This energy balance is applicable to stationary systems, with or without chemical 
reactions. In the absence of chemical reactions (constant composition) and assuming 
constant density (incompressible material), one can express the time derivative of U as
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where cp and cv are constant-pressure and constant-volume heat capacities, respec-
tively. Note that cp = cv for incompressible materials. Thus, the energy balance gives

 
−∇ ⋅ ′′ + = ∂

∂
�

�q q c
T
tpρ  (14.21)

where 
�
′′q  is the heat flux vector.
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15 Fundamentals of 
Conductive Heat Transfer

Conductive heat transfer is commonly encountered in engineering applications of 
composite materials. In some applications, the objective is to reduce the rate of con-
ductive heat loss and in others the aim is to enhance the rate of conductive heat trans-
fer. Thus a good understanding of conductive heat transfer is required in the design 
and applications of composite materials. In this chapter, the fundamental aspects of 
conductive heat transfer are reviewed.

15.1  HEAT FLUX VECTOR AND TEMPERATURE GRADIENT

The heat flux vector 
�
′′q  gives the rate of heat transfer per unit area (W/m2) perpen-

dicular to the direction of heat flow. It is expressed as

 
�
′′ = ′′ + ′′ + ′′q q i q j q kx y z

ˆ ˆ ˆ
 (15.1)

where ′′qx , ′′qy, ′′qz  are the components of heat flux vector in x, y, and z directions, 
respectively. ′′qx is the rate of heat transfer in the x-direction per unit area normal to 
x, ′′qy  is the rate of heat transfer in the y-direction per unit area normal to y, and ′′qz  is 
the rate of heat transfer in the z-direction per unit area normal to z.

The temperature gradient ∇T at any point in the medium can be expressed as
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where ∂T/∂x is the temperature gradient in the x-direction, ∂T/∂y is the temperature 
gradient in the y-direction, and ∂T/∂z is the temperature gradient in the z-direction.

For one-dimensional heat conduction in the x-direction,
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For two-dimensional heat conduction in the x- and y-directions,
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For three-dimensional heat conduction, temperature is a function of all three 
space coordinates and all three heat flux components are nonzero.
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15.2  FOURIER’S LAW OF HEAT CONDUCTION

Fourier’s law of heat conduction states that the local heat flux vector 
�
′′q  at any 

point in the material is proportional to the local temperature gradient ∇T and is 
given as

 
�
′′ = − ⋅∇q k T  (15.6)

where k  is the thermal conductivity tensor of the material. The minus sign in 
Fourier’s law of heat conduction is a consequence of the second law of thermody-
namics which requires that heat must flow in the direction of decreasing tempera-
ture. The thermal conductivity tensor is given as
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In the case of an isotropic medium, kij = 0 if i ≠ j and kii = k, that is, the nondi-
agonal components are zero and the diagonal components are all equal. Thus, for 

isotropic media, k k= δ  (δ  is a unit tensor) and Fourier’s law of heat conduction 
simplifies to

 
�
′′ = − ⋅∇ = ∇−q k T k Tδ  (15.8)

where k is the thermal conductivity of the material. Note that for isotropic materi-
als, the heat flux vector 

�
′′q  at any location is parallel to ∇T and hence, normal to the 

isothermal surface passing through that location. In the case of anisotropic materi-
als, 

�
′′q  at any location is not parallel to ∇T and therefore, the direction of 

�
′′q  is not 

generally normal to the isothermal surface passing through that location. Table 15.1 
presents Fourier’s law of heat conduction in rectangular, cylindrical, and spherical 
coordinate systems.
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15.3  GENERAL HEAT CONDUCTION EQUATION

The energy balance in a stationary medium gives the following equation (see 
Chapter 14):

 −∇ ⋅ ′′ + = ∂
∂

�
�q q c

T
tpρ  (15.9)

where �q  is the rate of heat generation per unit volume, ρ is the density, and cp is the 
heat capacity. Substitution of the expression for heat flux vector 

�
′′q  from Fourier’s 

law of heat conduction into this equation gives

 ∇ ⋅ ∇ + = ∂
∂

( )k T q c
T
tp� ρ  (15.10)
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where it is assumed that the medium is isotropic. This is the most general form of 
the heat conduction equation. It describes the temperature variation with space coor-
dinates and time. When the thermal conductivity k is constant, this equation further 
simplifies to
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TABLE 15.1
Fourier’s Law of Heat Conduction in Different Coordinate Systems

Coordinate System General Form Component Form (For the Given Coordinate System)

Cartesian
�
′′ = − ∇q k T

�
′′ = ′′ + ′′ + ′′ = − ∂

∂




 + ∂

∂



q q i q j q k k
T
x

i
T
yx y z

ˆ ˆ ˆ ˆ





+ ∂
∂



















ˆ ˆj
T
z

k

Cylindrical
�
′′ = − ∇q k T

�
′′ = ′′ + ′′ + ′′ = − ∂

∂




 + ∂

∂
q q r q q z k

T
r

r
r

T
r z
ˆ ˆ ˆ ˆθ θ

θ
1 





+ ∂
∂



















ˆ ˆθ T
z

z

Spherical
�
′′ = − ∇q k T

�
′′ = ′′ + ′′ + ′′ = − ∂

∂




 + ∂

∂
q q r q q k

T
r

r
r

T
r
ˆ ˆ ˆ ˆθ φθ φ

θ
1 



 + ∂

∂


















ˆ
sin

ˆθ
θ φ

φ1
r

T



236 Properties of Composite Materials

where α is the thermal diffusivity (m2/s) of material, defined as k/(ρcp). In the absence 
of thermal energy generation, the heat conduction reduces to

 
∇ = ∂

∂
2 1
T

T
tα  

(15.13)

Table 15.2 presents the heat conduction equation in rectangular, cylindrical, and 
spherical coordinate systems.

15.3.1  Boundary and initial conditions

In order to solve the heat conduction equation, the boundary and initial conditions 
that characterize the given heat transfer configuration must be specified. Because 
the heat conduction equation is second order in spatial coordinates, two boundary 
conditions are required for each coordinate. Only one initial condition is required 
as the equation is first order in time. Some examples of the boundary conditions in 
one-dimensional heat conduction problems are as follows:

 1. The temperature at the boundary (located at x = xo) of the conducting 
medium is held constant, that is, at x = xo, T = To. This type of boundary 
condition is called Dirichlet boundary condition or boundary condition of 
first kind.

 2. The heat flux at the boundary (located at x = xo) of the conducting medium 

is held constant, that is, at x = xo, ′′ = ′′=q qx x x oo
. This type of boundary con-

dition is called Newmann boundary condition or boundary condition of 
second kind. A special case of this boundary condition is ′′ = ′′ ==q qx x x oo

0. 
No heat passes through the boundary surface located at x = xo. This 
type of boundary condition is often referred to as adiabatic boundary 
condition.

 3. Convection occurs at the boundary (located at x = xo) of the conducting 
medium. Thus
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 where h is the heat transfer coefficient and T∞ is the free stream temperature 
of the fluid. This type of boundary condition is called boundary condition 
of third kind.

An example of the initial condition is the specification of temperature of the 
medium at the start of the time interval of interest, such as at t = to, T = Ti. Another 
initial condition of interest is the specification of heat flux at the boundary of the 
medium at the start of the time interval of interest.
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15.4  STEADY-STATE HEAT CONDUCTION

Under steady-state condition, the temperature distribution in an isotropic medium of 
constant k is governed by the following Poisson equation:

 
∇ + =2 0T

q
k

�

 
(15.15)

In the absence of thermal energy generation, this equation reduces to the follow-
ing Laplace equation:

 ∇2T = 0 (15.16)

15.4.1  onE-dimEnsional stEady-statE hEat conduction

Assuming no thermal energy generation and the material to be isotropic of constant 
k, the Laplace equation can be expressed in the three coordinate systems as follows:

Cartesian coordinates: For heat flow in the x-direction, the Laplace equation 
gives

 

d T

dx

2

2
0=

 
(15.17)

Cylindrical coordinates: For heat flow in the radial direction, the Laplace 
equation gives

 

d
dr

r
dT
dr





 = 0

 
(15.18)

Spherical coordinates: For heat flow in the radial direction, the Laplace equa-
tion gives

 

d
dr

r
dT
dr

2 0




 =

 
(15.19)

For a slab (solid wall) of uniform thickness, Equation 15.17 gives the following 
linear temperature profile:

 

T T
T T

x
L

−
−

=1

2 1  
(15.20)
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where T1 is the temperature of the slab at x = 0, T2 is the temperature of the slab at 
x = L, and L is the slab thickness. The heat flux and the heat transfer rate through the 
slab are given as follows:

 
′′ = − = −q k

dT
dx

k
L

T Tx ( )1 2
 

(15.21)
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kA
L

T Tx= ′′ = −( )1 2
 

(15.22)

For a cylindrical shell with boundary conditions, T = T1 at r = r1 (inner cylindri-
cal surface) and T = T2 at r = r2 (outer cylindrical surface), Equation 15.18 gives the 
following temperature profile:
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(15.23)

Thus, the temperature distribution is logarithmic in cylindrical shells. The 
heat flux and the heat transfer rate through the cylindrical shell are given as 
follows:
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q k
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k
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(15.24)
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(15.25)

where L is the length of the cylindrical shell. Note that the heat flux in a cylindrical 
shell is not constant. The heat flux decreases with the increase in the radial position 
r as the area of heat transfer increases.

For a spherical shell with boundary conditions, T = T1 at r = r1 (inner spherical 
surface) and T = T2 at r = r2 (outer spherical surface), Equation 15.19 gives the fol-
lowing temperature profile:
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(15.26)
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The heat flux and the heat transfer rate through the spherical shell are given as 
follows:

 

′′ = − = − −
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(15.27)
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(15.28)

Note that at steady state, the total heat transfer rate is constant but the heat flux 
decreases with the increase in the radial position r due to an increase in the heat 
transfer area. Table 15.3 summarizes the results for one-dimensional steady-state 
heat conduction in different geometries.

TABLE 15.3
One-Dimensional Steady-State Heat Conduction in Different Geometries

Boundary Conditions Temperature Distribution Heat Flux (q″) Heat Transfer Rate (q)

Plane Wall
at x = x1, T = T1 T = c1x + c2 ′′qx  = constant q = constant
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15.4.2  analogy BEtwEEn hEat flow and ElEctric currEnt flow

There exists a close analogy between one-dimensional steady-state heat conduction 
(without thermal energy generation) and electric current flow. According to Ohm’s 
law,

 

I
A

V
L

=




σ Δ

 
(15.29)

where I is current, A is cross-section area of conductor, σ is electrical conductivity, 
ΔV is voltage drop across the conductor, and L is the length/thickness of the conduc-
tor. Compare this Ohm’s law with the following Fourier’s law of heat conduction for 
planar objects:

 

q
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k
T
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Δ

 
(15.30)

Thus, the heat flow rate q is analogous to electric current I, thermal conductivity 
k is analogous to electric conductivity σ, and temperature drop ΔT is analogous to 
voltage drop ΔV. The two laws could also be expressed in terms of resistances as

 
I

V
R

= Δ

 
where R = L/(σA) (15.31)

 
q

T
R

= Δ

 
where R = L/(kA) (15.32)

Thus, thermal resistance of an object is given as follows:

 
R
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thermal conductivity characteristic

=
( )( aarea of heat transfer)

 (15.33)

For cylindrical shells, the thickness is (r2 − r1) and the characteristic area of heat 
transfer is the log mean area of inner and outer cylindrical surfaces, given as
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(15.34)

Therefore, the thermal resistance of cylindrical shells is

 R

r
r

kL
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ln 2
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 (15.35)
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For spherical shells, the thickness is (r2 − r1) and the characteristic area of heat 
transfer is the geometric mean area of inner and outer surfaces, given as

 
A A A r rgm = =1 2 1 24π

 
(15.36)

Therefore, the thermal resistance of spherical shells is

 
R

r r
kr r

= −( )2 1

1 24π  
(15.37)

15.4.3  tEmpEraturE-dEpEndEnt thErmal conductivity

The thermal conductivity of a material is generally a weak function of pressure but 
can vary significantly with temperature. Thus, we need to account for temperature 
variation of k. As k is not constant, the appropriate heat conduction equation is as 
follows:

 
∇ ⋅ ∇ + = ∂

∂
( )k T q c
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tp� ρ

 
(15.38)

Assuming steady state and no thermal energy generation, this equation simplifies 
to

 ∇·(k∇T) = 0 (15.39)

Consider one-dimensional steady-state heat conduction in a planar object in the x 
direction. The above equation reduces to

 

d
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(15.40)

Upon integration,
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(15.41)

With further integration,
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Thus, the heat flux becomes
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For constant k case, the heat flux is
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Upon comparing the above two expressions, one can define a mean thermal con-
ductivity as
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(15.46)

The heat flux in terms of mean k is
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(15.47)

This is the same expression as that obtained in the constant k case, with k replaced 
by km. Thus, one can apply the same formulae for heat flux and thermal resistance 
obtained earlier for one-dimensional steady-state heat conduction in different coor-
dinate systems provided that the mean thermal conductivity (as defined in Equation 
15.46) is used. However, the temperature distribution expressions obtained for con-
stant k cases are no longer valid. For example, the temperature distribution in a pla-
nar object with constant k is linear but with variable k (say, k = a + bT) it is nonlinear 
as shown below:

 aT + (b/2)T2 = C1x + C2 (15.48)

where C1 and C2 are integration constants.
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15.4.4  compositE systEms with and without contact rEsistancE

In many applications involving conductive heat transfer, conduction takes place in a 
multilayer composite system consisting of several parallel layers of different materi-
als joined together. If thermal contact between two layers of different materials is 
perfect, the interfacial boundary conditions are

 (1) Continuity of temperature at the interface, that is,

 TI = TII at the interface (15.49)

 (2) Continuity of heat flux at the interface, that is,

 ′′ = ′′q qI II at the interface  (15.50)
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I
erface II

II
erfaceint int

 
(15.51)

The total thermal resistance for two layers in series with perfect thermal contact 
is given as follows:

 
R R R
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k Atotal I II
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II
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= + = +
 

(15.52)

where LI and LII are the thicknesses of the layers. The thermal contact between 
two layers of different materials is imperfect when the materials do not fit tightly 
together. As a consequence, some voids or pockets of air/gas are formed at the inter-
face between the two layers. An imperfect contact results in an interfacial resistance 
to heat transfer called “thermal contact resistance, ′′RC,” defined as

 
′′ = −

′′
R

T T
qC

I II

erfaceint  
(15.53)

where TI − TII is the temperature drop across the interface and ′′q erfaceint  is the heat flux 
at interface. Note that the temperature distribution is not continuous at the interface 
although the heat flux is still continuous, that is

 TI ≠ TII at the interface (15.54)

 ′′ = ′′ = ′′q q qI II erfaceint at the interface  (15.55)

The interfacial or contact resistance is mainly a function of surface roughness, 
pressure keeping the two surfaces in contact, interfacial fluid material, and interface 
temperatures. At the interface, heat transfer occurs through conduction at the contact 
points and through convection and radiation across the trapped interfacial fluid.
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The contact resistance ′′RC  is defined on a unit interfacial-area basis. It has the 
SI units of m2.K/W and is typically of the order of 10−4 m2.K/W. The total contact 
resistance RC is defined as

 
R

R
AC

C

erface

= ′′
int  

(15.56)

where Ainterface is the interface area and R C has SI units of K/W.
The total thermal resistance for two layers in series with imperfect thermal con-

tact is as follows:
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(15.57)

15.4.5  conduction with convEction at thE BoundariEs

Consider a solid plane wall of thickness L and thermal conductivity k. On one side 
of the wall, there is present a hot fluid with a free stream temperature of T∞,1, and on 
other side of the wall, there is present a cold fluid with free stream temperature of 
T∞,2. This problem has three thermal resistances in series: convective resistance on 
the hot fluid side (1/h1A), conductive wall resistance (L/kA), and convective resis-
tance on the cold fluid side (1/h2A). Thus, the total thermal resistance is

 
R

h A
L

kA h Atotal = + +1 1

1 2  
(15.58)

where A is the heat transfer area normal to the direction of heat flow, and h1 and h2 
are heat transfer coefficients on the two sides. The heat transfer rate q through this 
system is as follows:
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(15.59)

The surface temperatures at the two sides of the solid wall are given by
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In such combined conductive–convective problems, one can define an overall 
heat transfer coefficient (U) as

 
q UA T T

T T

Rtotal

= − =
−

∞ ∞
∞ ∞( ), ,

, ,
1 2

1 2

 
(15.62)

Thus, the overall heat transfer coefficient is given as
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(15.63)

As another example, consider a hot fluid flowing in a pipe. Let the pipe wall be 
a composite consisting of two layers in perfect thermal contact, the inner layer of 
metal with k = kI and the outer layer of insulating material with k = kII. The mean 
temperature of the fluid inside the pipe at any given axial position is Tm. The free 
stream temperature of the cold fluid outside the composite pipe wall is T∞. Now, there 
are four thermal resistors in series: inside convective resistance, conductive metal-
wall resistance, conductive insulation resistance, and outside convective resistance. 
Thus, the total resistance is

 
R

h A
r r
k L

r r
k L htotal

i i I II o

= + + +1
2 2

12 1 3 2ln( ) ln( )/ /
π π AAo  

(15.64)

where hi and ho are the inside and outside heat transfer coefficients, respectively, Ai 
is the inside area of the cylindrical geometry (equal to 2πr1L), and Ao is the outside 
area of the cylindrical geometry (equal to 2πr3L). The heat transfer rate q for this 
system is
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For a planar geometry, there is no ambiguity about the heat transfer area in the 
definition of the overall heat transfer coefficient. For radial geometries (cylindrical 
or spherical), however, one has to specify the area on which the overall heat transfer 
coefficient is based. One can define the overall heat transfer coefficient either on the 
basis of inside heat transfer area (Ui) or on the basis of outside heat transfer area 
(Uo). Thus,
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U A T T U A T Tm
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(15.66)



247Fundamentals of Conductive Heat Transfer

Upon comparison of different terms of the above expression,
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15.4.6  hEat conduction with thErmal EnErgy gEnEration

Heat conduction with thermal energy generation is important industrially. In many 
applications, thermal energy is generated by passage of electric current through the 
medium.

Consider a plane solid wall of thickness 2L, maintained at same temperatures on 
both sides, that is,

 T = TS at x = +L (15.70)

 T = TS at x = −L (15.71)

where x is the distance from the center of the wall. The rate of thermal energy gen-
eration within the wall per unit volume is �q. The temperature distribution in the wall 
can be obtained by solving the following Poisson equation (assuming k is constant):
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(15.72)

The solution of this equation subject to the given boundary conditions is
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The temperature distribution is symmetric about the midplane with a maximum 
temperature at x = 0 (midplane). The maximum temperature is
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(15.74)

Thus, the temperature distribution can be expressed in dimensionless form as
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The heat flux at any location is
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The heat transfer rates at the two sides of the wall are

 
q q

V
x L=− = −







�
2  

(15.77)

 
q q

V
x L=+ =







�
2  

(15.78)

where V is the volume of the wall. Thus the total heat generated within the wall 
leaves the wall from the two sides equally.

A similar analysis could be carried out for radial systems with heat generation. For 
example, consider a long, solid cylinder with heat generation. Heat generation in the 
cylinder could be due to passage of current. Heat generation within a solid cylindrical 
object is also encountered in nuclear reactors consisting of cylindrical fuel elements.

The Poisson equation for this case of heat conduction in radial direction is as follows:
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(15.79)

This equations needs to be solved subject to the following boundary conditions:

 T = TS at r = R (15.80)
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where R is the radius of the cylinder. The solution to this problem is as follows:

 
T T

qR
k

r
RS− = −













� 2 2

4
1

 
(15.82)

The temperature distribution is symmetric about the center line with a maximum 
temperature at r = 0 (center line). The maximum temperature is
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Thus, the temperature distribution can be expressed in dimensionless form as
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The heat flux at any radial location is
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Thus,
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where V is the volume of the cylinder.

15.4.7  hEat transfEr from ExtEndEd surfacEs

Extended surfaces are used to enhance heat transfer between a solid surface and a 
fluid moving adjacent to the solid surface. For example, consider a plane solid wall at 
a uniform temperature Tb. The adjoining fluid is moving at a free stream velocity of 
V∞ with a free stream temperature of T∞. Assuming Tb > T∞, heat will flow from the 
solid surface to the fluid. The heat flow rate q is given by

 q = hA(Tb − T∞) (15.87)

where h is the heat transfer coefficient and A is the heat transfer area (area in contact 
with the moving fluid).
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There are three ways to increase the rate of heat transfer between the plane solid 
surface and the moving fluid: (1) increase the fluid velocity to increase the heat 
transfer coefficient, (2) increase the temperature difference Tb − T∞ by reducing the 
fluid free stream temperature, and (3) increase the contact area A between the fluid 
and the solid across which convection is taking place. In many practical applica-
tions, one has little or no control on fluid velocity and fluid temperature. The only 
viable option to enhance the heat transfer rate in such applications is to increase the 
fluid/solid contact area across which convection occurs. The surface area exposed 
to the fluid can be “extended” by employing fins. Fins are protrusions from the base 
surface into the cooling fluid. They are made from high thermal conductivity mate-
rial in order to provide maximum possible enhancement of heat transfer. Fins come 
in a variety of shapes and forms, such as straight or longitudinal fins with different 
shape profiles (rectangular, trapezoidal, and parabolic), annular fins, and cylindrical 
pin fins.

To analyze heat transfer from a fin, consider a long cylindrical pin fin of con-
stant cross-section attached to a plane wall at a uniform surface temperature Tb. 
Let x be the axial coordinate of the fin. The surrounding fluid is at a free stream 
temperature of T∞ and the heat transfer coefficient is h. Assuming that the trans-
verse temperature gradients in the fin are negligible (the temperature at any given 
cross-section of the fin is uniform), the temperature in the fin is a function of x 
only.

Energy balance on a small cylindrical element (length Δx) of the fin at steady 
state can be expressed as follows:
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(15.88)

Each term of the energy balance (Equation 15.88) is now determined.
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where Ac is the cross-sectional area and P is the perimeter of the fin. Thus, energy 
balance could be written as
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In the limit Δx→0, this gives
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Using Fourier’s law of heat conduction, this equation can be rewritten as
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The boundary conditions are

 x = 0, T = Tb (15.94)
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where L is the length of the fin. The second boundary condition follows from the 
assumption of adiabatic tip. As the tip area of the fin is small, we can neglect heat 
transfer from the tip. The solution of this problem is as follows:
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where m is defined as
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The heat transfer rate from the fin can be determined by noting that all the heat 
lost by the fin must be conducted into the fin at the root or base (x = 0). Thus,
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The effectiveness (ε) of a fin is defined as the ratio of heat transfer rate from the fin 
to heat transfer rate without fin. Heat transfer without fin refers to heat transfer that 
would have occurred from the base area in the absence of the fin. Thus,

 
ε =

− ∞

q
A h T T

fin

c b( )  
(15.99)

The effectiveness must be larger than unity for fin to provide additional heat 
transfer. For a cylindrical pin fin with adiabatic tip, ε is given as
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For long fins with T→T∞ at the tip, this expression reduces to

 
ε = kP

hAc  
(15.101)

Fins are more effective if k of fin is high, diameter of fin is small (P/Ac is large), 
and the convection coefficient h is low (fins are more effective when the fluid is gas).

Another important measure of fin performance is the fin efficiency, defined as 
the ratio of actual rate of heat transfer from the fin to maximum possible rate of heat 
transfer from the fin:
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q
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(15.102)

The heat transfer rate from the fin is maximum when the entire surface of the fin 
is at the base temperature Tb. Therefore,
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where Af is the surface area of the fin exposed to the fluid. The efficiency of a fin 
depends on several factors. It increases with the increase in thermal conductivity of 
the fin material. It decreases with the increase in fin length. It also depends on the 
geometry of the fin.

For cylindrical pin fin with adiabatic tip,

 
η = tanh mL

mL  
(15.104)
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In most practical applications involving the use of fins, an array of fins is used 
to increase the heat transfer area. Let At be the total surface area in contact with the 
fluid. If there are N fins and the exposed surface area of each fin is Af, then

 At = NAf + Ab (15.105)

where Ab is the exposed portion of the base area (area not occupied by the fins). Thus, 
the total rate of heat transfer (qt) from an array of fins is
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Upon substitution of At and rearrangement, this expression can be rewritten as
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The overall efficiency of an array of fins is defined as
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where qmax is the maximum possible rate of heat transfer from the array assembly. 
Upon substitution of the expression for qt, the overall efficiency can be written as
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15.5  TRANSIENT HEAT CONDUCTION

When a solid body is suddenly subjected to a change in thermal environment, the 
temperature inside the body varies with both location and time. Such unsteady or 
transient heat conduction problems are commonly encountered in engineering appli-
cations. To obtain time dependence of the temperature distribution within an object, 
one needs to solve the heat conduction equation subject to the given initial and 
boundary conditions. As an example, consider transient heat conduction in a semi-
infinite solid. Such a solid has a single plane surface and extends to infinity in all 
but one direction. The heat conduction equation for this situation can be written as
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The object is initially at a uniform temperature of Ti. The exposed surface is 
suddenly subjected to a constant temperature of TS. Thus, the boundary conditions 
are

 T(0, t) = TS and T(∞, t) = Ti (15.111)

and the initial condition is

 T(x, 0) = Ti (15.112)

This problem can be solved by two different techniques: similarity technique 
and Laplace transform technique. According to the similarity technique, the two 
independent variables (x and t) are combined into a single variable η (called the 
similarity variable) such that the original partial differential equation is converted 
into an ordinary differential equation. This technique usually works if the T versus 
x profiles are similar at different times. For the problem at hand, the similarity 
variable is
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The partial differential equation (Equation 15.110) can now be converted into an 
ordinary differential equation using η. Thus, Equation 15.110 becomes
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and the new boundary conditions are

 T|η=0 = TS and T|η=∞ = Ti (15.115)

The solution of Equation 15.114 subjected to the given boundary conditions is as 
follows:
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where erf(z) is the error function defined as
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The Laplace transform technique could also be applied to solve this problem. The 
Laplace transform of any function f(t) is defined as

 
£[ ( )] ( )f t f t e dtst= −

∞
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where s is the Laplace variable. The given partial differential equation can be con-
verted into an ordinary differential equation using Laplace transformation. Thus,
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where T is now a function of x and s. The new boundary conditions are
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The solution of Equation 15.119 subjected to the given boundary conditions is
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The same solution (Equation 15.116) is obtained upon taking the inverse Laplace 
transform of Equation (15.121).

From the solution of T(x, t), one can easily determine the instantaneous heat flux 
at the surface as
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15.5.1  lumpEd capacity analysis

In many transient heat conduction problems of practical interest, the object is ini-
tially at a uniform temperature. It is suddenly immersed in a fluid with a different 
temperature. Heat transfer occurs between the object and the fluid. This problem 
involves both conduction and convection, conduction within the object and convec-
tion at the boundaries of the object.

In general, the temperature of the object varies with both spatial coordinates and 
time. However, the problem is easy to solve if there is no spatial variation of tem-
perature, that is, the temperature of the object is uniform spatially but varies with 
time. This can occur if the internal conductive resistance is negligible in comparison 
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with the external convective resistance. The ratio of internal conductive resistance to 
external convective resistance is called the Biot number (Bi):
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where Lc is the characteristic length of the object.
The lumped capacity analysis assumes that the temperature of the object is uni-

form spatially but varies with time. This is a safe assumption when Bi < 0.1. For 
low Bi, the internal conductive resistance is quite small compared with the external 
convective resistance.

From energy balance,

 Rate of heat loss by convection = Rate of decrease of internal energy 
(15.124)
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where m is the mass of the object, A is its surface area, cp is the heat capacity, T is the 
temperature at any time t, and T∞ is the free-stream temperature of the fluid.

Upon integration, Equation 15.125 gives
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where Ti is the initial temperature of the object and V is its volume. The instanta-
neous rate of heat transfer is

 q = hA(T − T∞) (15.127)

The total amount of heat transferred to the fluid from t = 0 to time t is

 Q = mcp(Ti − T) (15.128)

The maximum amount of heat that can be transferred to the fluid is

 Qmax = mcp(Ti − T∞) (15.129)

15.5.2  transiEnt conduction with nonnEgligiBlE intErnal rEsistancE

The lumped capacity analysis assumes negligible internal conductive resistance. 
It can only be applied if the Biot number is less than 0.1. When Bi is larger than 
0.1, the internal conductive resistance is significant in comparison with the external 
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convective resistance. Both spatial and time variations of temperature become 
important. In such situations, one needs to solve the heat conduction equation subject 
to the given initial and boundary conditions.

Consider transient heat conduction in a rectangular slab of thickness 2L. The slab 
is initially at a uniform temperature of Ti. It is suddenly immersed in a cold fluid with 
a free stream temperature of T∞. The internal conductive resistance is nonnegligible 
as compared with external convective resistance. For this problem, the heat conduc-
tion equation along with the initial and boundary conditions are as follows:
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Initial condition

 T(x, t = 0) = Ti (15.131)

Boundary conditions
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Note that at midplane (x = 0), the temperature gradient is zero due to symmetry 
of the problem.

This mathematical problem can be solved using the separation of variables tech-
nique. The solution T(x, t) turns out to be an infinite series that can be expressed as
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where Fo is the Fourier number, defined as
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The solution is available in the literature in the form of charts, referred to as 
“Heisler Charts.” The Heisler charts are often presented in two parts. The first chart 
gives the dimensionless temperature at the center or midplane (x = 0) of the object 
(Tc − T∞)/(Ti − T∞), as a function of Fo and Bi. Once the midplane temperature Tc is 
determined, the second chart is read to obtain the temperature T(x, t) at any other 
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location. The second chart presents T(x, t) in dimensionless form as (T(x, t) − T∞)/
(Tc − T∞), as a function of Bi and x/L. The solutions to transient heat conduction prob-
lems involving radial geometries (cylindrical and spherical objects) are also avail-
able in the literature in the form of Heisler charts.
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16 Thermal Conductivity 
of Composites

New applications in the electronics industry, with major emphasis on miniaturization 
and increasing power of electronic devices, require materials which are good con-
ductors of heat so that the heat generated in the devices is dissipated away as quickly 
as possible in order to maintain the temperature of the device at the desired level. To 
that end, polymer–matrix composites (PMCs) consisting of highly thermally con-
ductive filler are considered to be good candidates. The heat conducting ability of the 
plastic material (polymer) is enhanced greatly by dispersing thermally conductive 
filler in the polymer matrix.

In order to design and manufacture two-phase composite materials of controlled 
thermal conductivity, it is important to know the variations of thermal conductivity 
with the kind and concentration of filler materials. Over the past several decades, a 
number of experimental and theoretical studies have been published in the literature 
on the thermal conductivity of particulate composites [1–15]. In what follows, the 
key empirical and theoretical models describing the thermal conductivity of particu-
late composites are discussed.

16.1  EMPIRICAL RULES OF MIXTURES

According to the Voigt rule of mixture (ROM), the thermal conductivity of a com-
posite material is given as

 k = ϕkd + (1 − ϕ)km (16.1)

where k, kd, and km are the thermal conductivities of composite, dispersed phase and 
matrix, respectively, and ϕ is the volume fraction of filler particles. This formula can 
be derived by considering two thermal conductors, matrix and dispersed phase, in 
parallel with the same temperature gradients but with composite heat flux propor-
tional to the content of the individual phases, that is,
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where (dT/dx), (dT/dx)m, and (dT/dx)d are the temperature gradients in composite, 
matrix, and dispersed phase, respectively, and q″, ′′qm, and ′′qd  are the heat fluxes 
in composite, matrix, and dispersed phase, respectively. Note that the heat fluxes 
are additive due to parallel arrangement of the matrix and dispersed phase. From 
Fourier’s law of heat conduction,
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Upon substituting the expressions for fluxes from Equation 16.4 into Equation 
16.3 and realizing that the temperature gradients are the same, one can readily arrive 
at the Voigt ROM (Equation 16.1).

According to another ROM, namely the Reuss ROM, the thermal conductivity of 
a composite material is given as

 1/k = [ϕ/kd] + [(1 − ϕ)/km] (16.5)

This formula can be derived by considering two thermal conductors, matrix and 
dispersed phase, in series with the same heat fluxes but with composite temperature 
gradient proportional to the content of individual phases, that is,

 ′′ = ′′ = ′′q q qm d  (16.6)
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Note that the temperature gradients are additive due to series arrangement of the 
matrix and dispersed phase. From Fourier’s law of heat conduction,
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Upon substituting the expressions for temperature gradients from Equation 16.8 
into Equation 16.7 and realizing that the heat fluxes are the same, one can readily 
arrive at the Reuss ROM (Equation 16.5).

It should be noted that Voigt and Reuss rules of mixtures represent the upper and 
the lower bounds, respectively of the thermal conductivity of two-phase isotropic 
composites, regardless of the shape of the filler particles.

The other useful bounds, namely the Hashin–Shtrikman [16] bounds on the ther-
mal conductivity of isotropic composites, are given as follows:



261Thermal Conductivity of Composites

 

φ φ φ φ
φ φ

k k
k k

k k kd m
d m

m d

+ − − − −
+ − +







( )

( ) ( )
( ) min

1
1

1 2

2


 ≤ ≤ + −

− − −
+ − +

k k k

k k
k k k

d m

d m

m d

φ φ

φ φ
φ φ

( )

( ) ( )
( ) m

1

1
1 2

2

aax











 (16.9)

where

 kmin = Min(kd, km), kmax = Max(kd, km) (16.10)

The Hashin–Shtrikman bounds are much tighter and closer (hence more useful 
and accurate) in comparison with the Voigt–Reuss bounds.

16.2  THEORETICAL MODELS

The thermal conductivity bounds discussed in the preceding section give the extreme 
values of the thermal conductivity. The Hashin–Shtrikman bounds, although bet-
ter than the Voigt–Reuss bounds, yield satisfactory estimates for the effective ther-
mal conductivity, in that the upper and lower bounds are close, only when the ratio 
between the thermal conductivities of the two phases is not too different from unity. 
When the thermal conductivities of the two phases are very different, the bounds 
become too wide to be of any practical value. To overcome this difficulty, a number 
of theoretical and semitheoretical models have been developed for the thermal con-
ductivity of composites of filler particles of specific shape (usually spherical).

For an infinitely dilute composite of spherical particles, the exact expression for 
the thermal conductivity is given as
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This equation could be rewritten as
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where kr is the relative thermal conductivity defined as k/km and λ is the thermal 
conductivity ratio defined as kd/km.

Equation 16.11 is good only for very dilute composites. For nondilute composites 
of spherical particles, one can derive an equation for thermal conductivity using 
Maxwell’s approach [17]. Consider a single spherical particle of radius “a” and ther-
mal conductivity kd, embedded in an infinite matrix of thermal conductivity km. Let 
the system be subjected to a temperature field with uniform temperature gradient α 
far away from the particle.
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For any given boundary and initial conditions, the temperature distribution in 
the particle and surrounding matrix is governed by the heat diffusion equation (see 
Chapter 15), expressed as follows in spherical polar coordinates (r, θ, ϕ) with origin 
at the centre of the particle:
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(16.13)

Assuming steady state, no heat generation, and temperature to be independent of 
ϕ (that is, axisymmetric temperature distribution), Equation 16.13 simplifies to
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At r → ∞, the temperature distribution is given as

 T(r, θ) = αz where z = r cos θ (16.15)

At the particle–matrix interface, the temperature and the normal heat flux are 
continuous, that is,
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The temperature distributions in the particle and matrix, satisfying Equations 
16.14 through 16.16, are given as [18]
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Consider now a cluster of particles embedded in an infinite matrix of thermal 
conductivity km. The cluster of particles, enclosed by a spherical region of radius R, 
consists of n spherical particles of radius “a” and thermal conductivity kd. Let the 
system be subjected to a temperature field with uniform temperature gradient α at 
r → ∞. At r → ∞, the temperature distribution is given by Equation 16.15. Assuming 
negligible interaction between the particles, the temperature at a radial distance r 
(r ≫ R) from the centre of the spherical cluster region R can be determined from 
Equation 16.18 as
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where the constant β is given by
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Since ϕ = n(a/R)3, Equation 16.19 can be rewritten as
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Now if the cluster of particles is treated as an “effective homogeneous medium” 
of radius R and thermal conductivity k, suspended in a matrix of conductivity km, the 
temperature at any radial location r (≫ R) is given as
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Since the two expressions, Equations 16.21 and 16.23, are equivalent, it follows 
that
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Equation 16.23 is often referred to as the Maxwell–Eucken equation in the litera-
ture as Eucken [19] was probably the first to adapt Maxwell’s approach to thermal 
conductivity of particulate composites.

The Maxwell–Eucken equation can be rearranged as
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In the limit ϕ → 0, Equation 16.24 reduces to Equation 16.12. Interestingly the 
thermal conductivity of composite predicted by the Maxwell–Eucken equation can 
be expressed as the sum of Voigt ROM estimate and a correction term as follows:
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It should also be noted that this Maxwell–Eucken equation (Equation 16.25) coin-
cides with the lower Hashin–Shtrikman bound (see Equation 16.9) when km < kd and 
with the upper Hashin–Shtrikman bound when kd < km.

Pal [13] has recently developed a series of models for the thermal conductiv-
ity of concentrated particulate composites using the differential effective medium 
approach. Consider a particulate composite with volume fraction of particles ϕ. 
Into this composite, a differential quantity of new particles is added. The increment 
change in thermal conductivity dk resulting from the addition of new particles can be 
calculated from Equation 16.11 by replacing km → k, k → k + dk, and ϕ → dϕ. Thus,
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Upon integration with the limit k → km at ϕ = 0, Equation 16.26 gives
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where kr is relative thermal conductivity defined as k/km and λ is the thermal conduc-
tivity ratio defined as kd/km. Equation 16.27 or 16.28 will be referred to as Model 1.

Model 1 (Equation 16.28) assumes that all the volume of the composite before 
new particles are added is available as free volume to the new particles. In reality, 
the free volume available to disperse the new particles is significantly less, due to 
the volume preempted by the particles already present. This means that when new 
particles are added to the composite, the increase in the actual volume fraction of the 
dispersed phase is larger than dϕ. To account for the “crowding effect” of particles, 
the increase in the volume fraction can be taken as d[ϕ/(1 − ϕ/ϕm)], where ϕm is the 
maximum packing volume fraction of particles [13]. Thus, Equation 16.26 should be 
revised as
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Upon integration, Equation 16.29 gives
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Equation 16.30 or 16.31 will be referred to as Model 2.
Another way to account for the “crowding effect” of particles is to take the 

increase in the volume fraction of the dispersed phase, when new particles are added, 
as dϕ/(1 − ϕ/ϕm), instead of d[ϕ/(1 − ϕ/ϕm)] as done in the derivation of Model 2 [13]. 
Thus, Equation 16.26 can be rewritten as
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Upon integration with the limit k → km at ϕ = 0, Equation 16.32 gives
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Equation 16.33 or 16.34 will be referred to as Model 3. Model 3 reduces to the fol-
lowing Bruggeman-type equation [20] for thermal conductivity when ϕm is taken to 
be equal to unity.
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Figure 16.1 shows the relative thermal conductivities predicted from Models 1 
through 3 (Equations 16.28, 16.31, and 16.34). All the three models predict that at 
a fixed value of ϕ, the relative thermal conductivity (kr) initially remains constant 
with the increase in the thermal conductivity ratio (λ). In the range 10−2 < λ < 104, 
kr increases with the increase in λ. At higher values of λ (λ > 104), kr again becomes 
constant (independent of λ). Interestingly, kr is less than unity when λ < 1.0 and kr 
is greater than unity when λ > 1.0. For λ < 1.0, the values of kr predicted by differ-
ent models are as follows: Model 1 (Equation 16.28) > Model 3 (Equation 16.34) > 
Model 2 (Equation 16.31). For λ > 1.0, the order is reversed and the values of kr pre-
dicted by different models are as follows: Model 2 > Model 3 > Model 1.

Figure 16.2 shows the effect of dispersed phase volume fraction (ϕ) on the relative 
thermal conductivity (kr). The plots are generated from Model 3 (Equation 16.34); 
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FIGURE 16.1 Relative thermal conductivity (kr) of particulate composite predicted from 
the models. (From Pal, R., J. Reinforced Plastics and Composites 26: 643–651, 2007.)
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particulate composite. (From Pal, R., J. Reinforced Plastics and Composites 26: 643–651, 2007.)



267Thermal Conductivity of Composites

the value of ϕm is taken to be 0.637 corresponding to random packing of uniform 
spheres. When the thermal conductivity ratio λ is unity, kr is unity for all values of 
ϕ. For λ < 1.0, kr decreases with the increase in ϕ. For λ > 1.0, kr increases with the 
increase in ϕ.

Figures 16.3 through 16.5 show comparisons between the experimental data and 
predictions of various models. Model 1 (Equation 16.28) generally underpredicts the 
values of relative thermal conductivity, especially at high values of ϕ. The experi-
mental data can be described very well using Model 3 (Equation 16.34) with reason-
able values of ϕm, the maximum packing volume fraction of particles. For the same 
ϕm, Model 2 (Equation 16.31) overpredicts the values of kr. Note that not all sets of 
data could be described by the same value of ϕm. This is expected as the particle size 
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distribution and degree of aggregation of particles are different for different sets of 
experimental data. The value of ϕm ranges from 0.32 to 1.0.

The Pal models just described are implicit in nature. There are other useful mod-
els available in the literature, which are explicit but empirical in nature. Some of 
them are given below:

Cheng–Vachon model [11]
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where M, N, and P are defined as
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Agari–Uno model [9]
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or

 ℓn k = ϕC2 ℓn(kd) + (1 − ϕ)ℓn(C1km) (16.41)

where C1 and C2 in Equations 16.40 and 16.41 are empirical constants of order unity.
Another useful semiempirical model is due to Lewis and Nielsen [14,15,21]. 

Lewis and Nielsen [14,15,21] modified and adapted the Halpin–Tsai equation for 
elastic moduli of composite materials to thermal conductivity of filled composites. 
The Lewis–Nielsen model is given as
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kE is the Einstein coefficient (kE = 2.5 for rigid spheres suspended in a matrix with 
Poisson’s ratio of 0.5), and ϕm is the maximum packing volume fraction of particles. 
However, Pal [22] suggested that the constant “A” in the Lewis–Nielsen model (see 
Equation 16.44) should be 2.0 (instead of 1.5) for spherical particles. If A = 2.0, the 
Lewis–Nielsen model reduces to the Maxwell–Eucken equation (Equation 16.24) 
when ϕm = 1.0. Thus, for composites of isometric particles the Lewis–Nielsen model is
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where kr is the relative thermal conductivity and λ is the thermal conductivity ratio 
(kd/km). The expression for ψ is given by Equation 16.45.

Figure 16.6 shows the plots of relative thermal conductivity versus thermal con-
ductivity ratio λ predicted from the Lewis–Nielsen model (Equation 16.46) for 
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different values of filler concentration ϕ. The maximum packing volume fraction ϕm 
is taken to be 0.64 corresponding to random close packing of uniform spheres. The 
predictions of the Lewis–Nielsen model are similar to those of the Pal models (see 
Figure 16.2). When the conductivity ratio λ is unity, the relative conductivity is unity 
regardless of the value of filler concentration ϕ. When λ < 1.0, the relative conductiv-
ity decreases with the increase in ϕ; a reverse trend is observed when λ > 1.0, that is, 
the relative conductivity increases with the increase in ϕ.

Figures 16.7 through 16.10 draw comparisons between the experimental thermal 
conductivity data and predictions of the Lewis–Nielsen model (Equation 16.46). The 
Lewis–Nielsen model describes the experimental data reasonably well [22].
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17 Thermal Conductivity 
of Composites of 
Core-Shell Particles

Composite materials consisting of core-shell particles randomly distributed in a con-
tinuous medium (matrix) are of importance in many industrial applications [1–5]. 
The core-shell-type particles consist of a homogeneous core surrounded by a homo-
geneous shell of a different material. The encapsulation of core with shell is desirable 
for many reasons: to improve the thermal and/or mechanical properties, to modify 
the surface properties of particles, and to improve the dispersibility of particles in the 
matrix. One practical example of composites of core-shell-type particles is “syntac-
tic foam” [6]. Syntactic foam consists of core-shell particles with gas core and glass 
shell (hollow glass microspheres) dispersed in a plastic resin.

In this chapter, the thermal conductivity of three-component composites consist-
ing of core-shell type filler particles is discussed.

17.1  DILUTE COMPOSITES OF CORE-SHELL PARTICLES

For an infinitely dilute composite (volume fraction of filler → 0) of core-shell par-
ticles, the exact expression for the relative thermal conductivity is given as [1]
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where kr is the relative thermal conductivity of composite, k is the effective thermal con-
ductivity of composite, k1 is the thermal conductivity of the matrix (continuous phase), ϕ 
is the volume fraction of the filler (core-shell particles), B and A are given as
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In Equations 17.2 and 17.3, δ is the ratio of outer radius of shell to core radius, k2 
is the thermal conductivity of shell material, and k3 is the thermal conductivity of 
the core material.
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17.2  NONDILUTE COMPOSITES OF CORE-SHELL PARTICLES

Equation 17.1 is valid for infinitely dilute systems (ϕ → 0) and therefore, it cannot be 
applied at finite concentration of particles as the interaction between the particles is 
not considered in its derivation. One can derive a thermal conductivity expression for 
nondilute composites of core-shell particles using the Maxwell approach.

Consider a single core-shell particle embedded in an infinite matrix of thermal con-
ductivity k1. Let the radius of the core be “a,” the thickness of the shell be “d,” and the 
volume fraction of core in the core-shell particle be ϕc. Note that ϕc = (a/(a + d))3 = 
1/δ3, where δ is the ratio of outer radius of interfacial shell to core radius. The system 
is subjected to a temperature field with uniform temperature gradient α far away from 
the particle. The temperature in the matrix at a radial distance r (r > a + d) from the 
centre of the particle is
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Now consider a cluster of core-shell particles embedded in an infinite matrix of 
thermal conductivity k1. The cluster of core-shell particles, enclosed by a spherical 
region of radius R, consists of n spherical core-shell particles. The system is sub-
jected to a temperature field with uniform temperature gradient α at large values of r. 
Assuming negligible interaction between the core-shell particles, the temperature at 
a radial distance r (r ≫ R) from the centre of the spherical cluster region R is
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Since the volume fraction of core-shell particles in the dispersion is ϕ = n [(a + 
d)/R]3, Equation 17.5 can be rewritten as
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Now if the cluster of core-shell particles is treated as an “effective homogeneous 
medium” of radius R and thermal conductivity k, suspended in a matrix of thermal 
conductivity k1, the potential at any radial location r (≫ R) is given as
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As the above two expressions, Equations 17.6 and 17.7, are equivalent, it follows that

 

k k
k k

k k k k k k k k1

1

1 2 2 3 2 3 2 1

2
2 2−

+






= − + + − +( )( ) ( )( )φφ
φ

φc

ck k k k k k k k( )( ) ( )( )2 2 21 2 2 3 1 2 2 3+ + + − −








  (17.8)

This equation could be recast as follows:
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where B and A are defined in Equations 17.2 and 17.3. This expression was recently 
derived by Felske [1]. Interestingly, the same expression (Equation 17.9) was derived 
earlier by Pauly and Schwan [7] for the dielectric constant of particulate dispersions 
of core-shell particles. In the limit ϕ → 0, Equation 17.9 reduces to Equation 17.1.

Equation 17.9 generally describes the thermal conductivity data well when ϕ is 
less than about 0.2. At higher values of ϕ, significant deviation occurs between the 
predictions of Equation 17.9 and the actual values. Furthermore, the equation fails to 
exhibit divergence in thermal conductivity k at ϕ → ϕm, where ϕm is the maximum 
packing volume fraction of particles. Note that at ϕ = ϕm, k is expected to diverge 
especially for composites with k3 → ∞ and k2 → ∞.

Pal [8] has recently developed a series of models for the relative thermal conduc-
tivity of concentrated composites of core-shell particles using the differential effec-
tive medium approach. Consider a composite with a volume fraction of core-shell 
particles ϕ. Into this composite, add a small differential quantity of new core-shell 
particles. The increment change in thermal conductivity dk resulting from the addi-
tion of the new core-shell particles can be calculated from Equation 17.1 by treating 
the composite into which the new core-shell particles are added as an equivalent 
effective medium of thermal conductivity k. Therefore,
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This equation could be rewritten as
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Upon integration with the limit k → k1 at ϕ → 0, Equation 17.11 gives

 
( ) exp( )k

kr
r

1 3 1/ β
β

φ−
−









 =  (17.12)



280 Properties of Composite Materials

where kr is the relative thermal conductivity (k/k1) and β is given as
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In Equation 17.13, λ21 is the ratio of shell material thermal conductivity (k2) to 
matrix thermal conductivity (k1), λ31 is the ratio of core-to-matrix thermal conduc-
tivities (k3/k1), and λ32 is the ratio of core-to-shell thermal conductivities (k3/k2). 
Note that λ31 = λ21λ32.

Equation 17.12, referred to as Model 1, is expected to describe the relative ther-
mal conductivity of composites only at low to moderate concentrations of core-shell 
particles. At high values of ϕ, Model 1 is expected to deviate from the actual ther-
mal conductivity because in the derivation of Equation 17.12, it is assumed that the 
entire volume of the existing composite before new core-shell particles are added is 
available as free volume to the new core-shell particles. In reality, the free volume 
to disperse the new particles is significantly less, due to the volume preempted by 
the particles already present. When new particles are added to the composite, the 
increase in the actual volume fraction of the dispersed phase (core-shell particles) is 
dϕ/(1 − ϕ). Therefore,
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Upon integration with the limit k → k1 at ϕ → 0, Equation 17.14 gives
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This equation, referred to as Model 2, assumes that the volume fraction of dis-
persed phase (core-shell particles) can reach unity as more and more core-shell 
particles are added to the composite. In reality, there exists an upper limit for ϕ, 
referred to as ϕm (maximum packing volume fraction of core-shell particles in the 
composite), where the particles just touch each other. To account for the packing 
limit of particles the incremental increase in the volume fraction of the dispersed 
phase, when small differential quantity of new particles are added to an existing 
suspension of dispersed phase volume fraction ϕ, is taken to be d[ϕ/(1 − ϕ/ϕm)] 
rather than dϕ/(1 − ϕ) [8]. Thus, Equation 17.14 is revised as
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Upon integration with the limit k → k1 at ϕ → 0, Equation 17.16 gives
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This equation is referred to as Model 3.
Another way to account for the packing limit of particles [8] is to take the incre-

mental increase in the volume fraction of the dispersed phase, when a small quantity of 
new particles are added to an existing suspension of concentration ϕ, as dϕ/(1 − ϕ/ϕm) 
rather than d[ϕ/(1 − ϕ/ϕm)]. Thus, Equation 17.14 should be revised as
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Upon integration with the limit k → k1 at ϕ → 0, Equation 17.18 gives
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This equation is referred to as Model 4.

17.3  MODEL PREDICTIONS

Based on the models just discussed in the preceding section, the relative thermal 
conductivity of a composite of core-shell particles can be expressed as

 kr = f(δ, λ21, λ32, ϕ, ϕm) (17.20)

Figure 17.1 shows the relative thermal conductivity predicted from the models 
under the conditions δ = 4/3, λ32 = 10, ϕ = 0.45, ϕm = 0.637. The models predict that 
at a fixed value of ϕ, the relative thermal conductivity (kr) initially remains constant 
with the increase in the thermal conductivity ratio λ21. In the range 10−2 < λ21 < 103, 
kr increases with the increase in λ21 as the shell material becomes more conductive. 
At higher values of λ21(λ21 > 103), kr again becomes constant (independent of λ21). 
Interestingly, kr is less than unity for small values of λ21(λ21 < 0.4) and kr is greater 
than unity when λ21 is large (λ21 > 0.4). For low values of λ21(λ21 < 0.4), the values of 
kr predicted by different models are as follows: Model 1 (Equation 17.12) > Model 2 
(Equation 17.15) > Model 4 (Equation 17.19) > Model 3 (Equation 17.17). For large 
λ21(λ21 > 0.4), the order is reversed and the values of kr predicted by different models 
are as follows: Model 3 > Model 4 > Model 2 > Model 1.



282 Properties of Composite Materials

Figure 17.2 shows the effect of filler volume fraction (ϕ) on the relative thermal 
conductivity (kr). The plots are generated from Model 4 (Equation 17.19) under the 
conditions δ = 4/3, λ32 = 10, ϕm = 0.637. Note that a ϕm value of 0.637 corresponds 
to random packing of uniform spheres. For low values of λ21(λ21 < 0.4), kr decreases 
with the increase in ϕ. For large values of λ21(λ21 > 0.4), kr increases with the increase 
in ϕ.

Figure 17.3 shows relative thermal conductivity kr versus thermal conductivity ratio 
λ21 plots for different values of radii ratio δ. The plots are generated from Model 4 
(Equation 17.19) under the conditions: ϕ = 0.50, ϕm = 0.637, and λ32 = 10. The radii ratio 
δ affects the relative thermal conductivity of composite only in the intermediate range 
of λ21. At very low and very high values of λ21(λ21 < 10−3 and λ21 > 103, respectively), kr 
of composite is independent of the radii ratio δ. In the intermediate range of λ21(10−3 < 
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FIGURE 17.1 Relative thermal conductivity (kr) of composite of core-shell particles pre-
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FIGURE 17.2 Effect of filler volume fraction (ϕ) on the relative thermal conductivity of 
composite of core-shell particles. (From Pal, R., Mat. Sci. Eng. A. 498: 135–141, 2008.)
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λ21 < 103), the relative thermal conductivity of a composite decreases with the increase 
in δ. An increase in the ratio δ implies an increase in the shell thickness of the core-shell 
particle of a composite. Thus, the relative thermal conductivity of a composite of core-
shell particles decreases with an increase in the shell thickness.

Figure 17.4 shows relative thermal conductivity versus λ21 plots for two different val-
ues of thermal conductivity ratio λ32 (thermal conductivity of core material divided by 
thermal conductivity of shell material). The plots are generated from Model 4 (Equation 
17.19) under the conditions: ϕ = 0.50, ϕm = 0.637, and δ = 4/3. With the increase in λ32, 
the core material becomes more conductive and the relative thermal conductivity of a 
composite increases for intermediate values of λ21(10−3 < λ21 < 103).

100

10

1

1E−1

Predictions of Model 4
φ = 0.50   φm = 0.637
λ32 = 10

1E−4 1E−3 1E−2 1E−1 1 10 100 1000 1E4 1E5
λ21

k r

(1) δ = 1.2
(2) δ = 1.5
(3) δ = 10

1 2 3

FIGURE 17.3 Effect of shell-to-core radii ratio (δ) on the relative thermal conductivity of 
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Figures 17.5 and 17.6 show the plots of relative thermal conductivity of composite 
(kr) as a function of the volume fraction of core-shell particles (ϕ) for thermally non-
conducting core (k3 → 0). The plots are generated from Model 4 (Equation 17.19). 
With the increase in thermal conductivity ratio λ21 (see Figure 17.5) for a fixed radii 
ratio δ, the relative thermal conductivity of the composite increases at a given vol-
ume fraction of particles ϕ. The increase in kr with the increase in λ21 (for fixed δ 
and ϕ) is expected as the shell material becomes more thermally conductive. With 
the increase in radii ratio δ for a fixed λ21 of 10 (see Figure 17.6), the relative thermal 
conductivity at a given volume fraction of particles increases. The increase in kr with 
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the increase in radii ratio δ (for fixed λ21 and ϕ) is expected as the nonconductive core 
material (k3 → 0) is replaced by conductive shell material (λ21 = 10).

Figures 17.7 and 17.8 show the plots of relative thermal conductivity (kr) as a 
function of the volume fraction of core-shell particles (ϕ) for highly conducting core 
(k3 → ∞). The plots are generated from Model 4 (Equation 17.19). With the increase 
in λ21 (see Figure 17.7) for a fixed δ (fixed shell thickness), kr of the composite at 
a given volume fraction of particle increases. The increase in kr with the increase 
in λ21 (for fixed δ and ϕ) is expected as the shell material becomes more thermally 
conductive. With the increase in radii ratio δ (that is, increase in shell thickness) at a 
fixed λ21 of 2.5 (Figure 17.8), the relative conductivity of the composite decreases at 

Volume fraction of core-shell particles (φ)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

20

15

10

5

0

Re
la

tiv
e t

he
rm

al
 co

nd
uc

tiv
ity

 (k
r)

5

2.5
1.67

1

φm = 0.637   δ = 4/3
k3     ∞

∞

λ21

FIGURE 17.7 Relative thermal conductivity of composite as a function of filler volume 
fraction for different values of λ21 when the core is thermally highly conducting (k3 → ∞). 
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a given volume fraction of dispersed phase. The decrease in kr with the increase in 
radii ratio δ (for fixed λ21 and ϕ) is expected as the highly conductive core material 
(k3 → ∞) is replaced by less conductive shell material (λ21 = 2.5).

17.4  COMPARISON OF MODEL PREDICTIONS 
WITH EXPERIMENTAL DATA

The experimental data considered for comparison are of two types [8]. One type of 
data (Sets 1 through 13) deals with the situation where δ = 1, that is, the particles 
are without any shell. In this case, the composite consists of simple homogeneous 
particles with β = λ31. These data are used to select the best model among the four Pal 
models discussed in Section 17.2. The other type of data (Sets 14 through 17) deals 
with composites of nanoparticles where δ > 1, that is, the nanoparticles are of core-
shell type with nonzero shell thickness. These data are used to evaluate the model 
selected on the basis of homogeneous particle data (Sets 1 through 13).

The comparisons of experimental data with the predictions of the models for the 
case where δ = 1 (that is, particles without shells) revealed that Model 4 (Equation 
17.19) is the best among the models discussed in the preceding section. The experi-
mental data could be described adequately with Model 4 using reasonable values of 
ϕm, the maximum packing volume fraction of particles. Model 1 (Equation 17.12) 
generally underpredicts the values of relative thermal conductivity, especially at 
high values of ϕ, whereas Model 3 (Equation 17.17) generally overpredicts the values 
of kr. Model 2 (Equation 17.15) is just a special case of model 4 with a fixed ϕm of 1.0.

Figure 17.9 shows all thirteen sets of experimental data on thermal conductivity 
of particulate composites with δ = 1. The data are compared with Model 4 (Equation 
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FIGURE 17.9 Comparison between experimental thermal conductivity data (13 sets) and 
prediction of Model 4 (Equation 17.19). (From Pal, R., Mat. Sci. Eng. A. 498: 135–141, 2008.)
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17.19) predictions. The experimental data are plotted as ( ) [( ) ( )]k kr r
m m1 3 11/ //φ φβ β− −  

versus ϕ/ϕm. As can be seen, Model 4 describes the experimental data adequately.
The experimental thermal conductivity data for composites with δ > 1 (Sets 14 

through 17) are compared with the predictions of Model 4 (Equation 17.19) in Figure 
17.10. For comparison purposes, the predictions of Model 4 for the case where δ is 
unity (particles without shell) are also shown. The experimental data are plotted as 
relative thermal conductivity (k/k1) versus percent volume fraction of core particles. 
The data can be described very well by Model 4 using ϕm = 0.20, λ21 = λ31 (shell 
conductivity is equal to core particle conductivity), and δ values as follows: δ = 3 (Set 
14), δ = 1.9 (Set 15), δ = 1.7 (Set 16), and δ = 1.12 (Set 17).

17.5  CONCLUDING REMARKS

The relative thermal conductivity (kr) of composites of core-shell filler particles is 
a function of five variables, that is, kr = f(δ, λ21, λ32, ϕ, ϕm), where δ is the ratio of 
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shell-to-core radii, λ21 is the ratio of shell-to-matrix thermal conductivities, λ32 is the 
ratio of core-to-shell thermal conductivities, ϕ is the volume fraction of filler, and 
ϕm is the maximum packing volume fraction of filler (core-shell particles). When 
the core is thermally nonconducting (λ31 → 0, λ32 → 0), kr is greater than unity and 
it increases with the increase in ϕ provided that λ21 is large (λ21 ≫ 1.0). The relative 
thermal conductivity increases with the increase in λ21 for any given ϕ and δ. The kr 
also increases with the increase in δ for any given ϕ provided that λ21 > 1.0. When 
the core is highly thermally conducting (λ31 → ∞, λ32 → ∞), kr is greater than unity 
and it increases with the increase in ϕ provided that λ21 > 1.0. Even when λ21 is less 
than, but close to, unity, the relative thermal conductivity of the composite is larger 
than unity. The relative thermal conductivity increases with the increase in λ21 for 
any given ϕ and δ. However, kr decreases with the increase in δ at any given ϕ for 
intermediate values of λ21(10−3 < λ21 < 103). At very low and very high values of λ21 
(λ21 < 10−3 and λ21 > 103, respectively), kr is independent of the film thickness. Model 
4 (Equation 17.19) describes the thermal conductivity data for composites of homo-
geneous and core-shell filler particles reasonably well.
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18 Influence of Interfacial 
Contact Resistance on 
Thermal Conductivity 
of Composites

18.1  INTRODUCTION

In the preceding chapters, the thermal contact resistance between the filler particles 
and the matrix was neglected. The temperatures were assumed to be continuous 
across the filler–matrix interfaces. Thermal contact resistance arises in situations 
where there is poor adherence between the particles and the matrix [1–7]. Also, when 
the coefficients of thermal expansion of dispersed phase and matrix are significantly 
different from each other, voids or gap may develop between the two phases resulting 
in contact resistance.

As noted in Chapter 15, the interfacial resistance to heat transfer or thermal con-
tact resistance, ′′RC, is defined as

 ′′ = −
′′

R
T T
qC

I II

interface

 (18.1)

where TI – TII is the temperature drop across the interface and ′′qinterface is the heat flux 
at interface. The temperature distribution is not continuous at the interface although 
the heat flux is still continuous, that is,

 TI ≠ TII at the interface (18.2)

 ′′ = ′′ = ′′q q qI II interface at the interface  (18.3)

The effective thermal conductivity of a composite is expected to be low in the 
presence of interfacial contact resistance between the filler particles and matrix. In 
the extreme case of high contact resistance, the filler particles are expected to be 
thermally nonconducting, regardless of their thermal conductivity.
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18.2  THERMAL CONDUCTIVITY MODELS FOR 
COMPOSITES WITH CONTACT RESISTANCE

18.2.1  sphErical fillEr particlEs

Consider a single spherical particle of radius “a” and thermal conductivity kd, embed-
ded in an infinite matrix of thermal conductivity km. The system is subjected to a 
temperature field with uniform temperature gradient α far away from the particle. At 
r → ∞, the temperature distribution is given as

 T(r, θ) = αz where z = r cos θ (18.4)

At the particle–matrix interface (r = a), the boundary conditions to be satisfied 
are as follows:

 k
T
r

k
T
rd

d
m

m∂
∂

= ∂
∂

 (18.5)

 T T q R R k
T
rd m C C d
d− = ′′ ′′ = − ′′ ∂

∂interface  (18.6)

As noted earlier, the heat flux is taken as continuous and the temperature as dis-
continuous at the interface.

The temperature distributions in the particle and matrix are given as follows:

 Td(r, θ) = Ar cos θ (0 < r < a) (18.7)

 T r r B
r

a rm ( , ) cos
cos

( )θ α θ θ= + < < ∞
2  (18.8)

The constants A and B can be determined from the two boundary conditions at 
the interface, that is, Equations 18.5 and 18.6. The boundary condition correspond-
ing to the continuity of heat flux at the interface (Equation 18.5) gives

 k A k
B

a
kd m m= −α 2

3  (18.9)

From the other boundary condition corresponding to a jump in temperature at the 
interface (Equation 18.6), the following result is obtained:

 Aa a
B

a
R k AC d− − = − ′′α

2  (18.10)
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Equations 18.9 and 18.10 give the following expressions for B and A:
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Upon substituting for B and A into the temperature distribution equations 
(Equations 18.7 and 18.8), the following expressions for temperature distributions 
are obtained:
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When thermal contact resistance ′′RC is negligible, the temperature distributions 
simplify to

 T r
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0  (18.15)
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Now that the temperature distribution in a single-particle system is known, the 
thermal conductivity equation for composites can be derived using the Maxwell 
approach. Consider a cluster of particles embedded in an infinite matrix of thermal 
conductivity km. The cluster of particles, enclosed by a spherical region of radius 
R, consists of n spherical particles of radius “a” and thermal conductivity kd. The 
system is subjected to a temperature field with uniform temperature gradient α at 
large values of r. At r → ∞, the temperature distribution is given by Equation 18.4. 
Assuming negligible interaction between the particles, the temperature at a radial 
distance r (r ≫ R) from the center of the spherical cluster region R can be determined 
from Equation 18.14 as
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Since ϕ = n(a/R)3, Equation 18.17 can be rewritten as
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Now, if the cluster of particles is treated as an “effective homogeneous medium” 
of radius R and thermal conductivity k, suspended in a matrix of conductivity km, the 
temperature at any radial location r (≫ R) is given as
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Since the two expressions, Equations 18.18 and 18.19, are equivalent, it follows that
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As R is large, we can simplify this equation to
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Upon rearrangement, Equation 18.21 results in the following expression for the 
effective thermal conductivity of composite:
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This equation was first derived by Hasselman and Johnson [1]. When the inter-
facial contact resistance ′′RC is negligible, Equation 18.22 reduces to the Maxwell–
Eucken equation (Chapter 16, Equation 16.24). Note that the relative thermal 
conductivity of composites in the presence of thermal contact resistance is not only 
a function of filler volume fraction (ϕ) and thermal conductivity ratio λ (= kd/km), it 
also depends on the size of the filler particles.

Figure 18.1 shows the predictions of thermal conductivity of composites using 
Equation 18.22 for different values of the contact resistance term ′′R k aC d / . The rela-
tive thermal conductivity of the composite decreases with the increase in the contact 
resistance at any given volume fraction of filler particles. Also, note from Figure 18.1 
that although the conductivity ratio λ (= kd/km) is large, the relative thermal conduc-
tivity of the composite decreases with the increase in filler concentration when the 
thermal contact resistance is large.
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18.2.2  nonsphErical fillEr particlEs

Using the Maxwell approach discussed in the preceding section, Hasselman and 
Johnson [1] developed the following expression for the thermal conductivity of 
composites of cylindrical particles with cylinder axis oriented perpendicular to the 
direction of heat flow:
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where “a” is the radius of the cylindrical particles.
For composites of flat plate-type filler particles oriented perpendicular to the 

direction of heat flow (that is, heat flow is perpendicular to the plane of the plate), 
Hasselman and Johnson [1] proposed the following Reuss-type mixing rule:

 
1 1 2
k k k

R
ad m

C= + − + ′′φ φ φ
 (18.24)

where “a” is the thickness of the plate-type particles. It is interesting to note that 
when the thermal contact resistance is large, the thermal conductivity of composite 
of flat plate-type filler particles becomes negligibly small. Thus, the flat plate-type 
filler particles with interfacial thermal resistance are most effective in lowering the 
thermal conductivity of composite.
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19 Thermal Diffusivity and 
Coefficient of Thermal 
Expansion of Composites

19.1  THERMAL DIFFUSIVITY OF COMPOSITES

The thermal diffusivity (α′) of a material is defined as

 ′ =α
ρ

k
Cp

 (19.1)

where k is the thermal conductivity, ρ is the density, and Cp is the heat capacity of 
the material. Thermal diffusivity is a key material property involved in transient heat 
conduction. It appears in the following heat diffusion equation derived in Section 
15.3 of Chapter 15:

 
∂
∂

= ′∇T
t

Tα 2  (19.2)

The thermal diffusivity of an isotropic composite can be determined from the 
knowledge of thermal conductivity, density, and heat capacity of the composite. The 
thermal conductivity of the composite can be estimated from the models discussed 
in the previous chapters. Assuming composite to be a pseudo-homogeneous mixture 
of dispersed phase and matrix, the density and heat capacity of the composite could 
be estimated from the following relations [1]:

 
1 1
ρ ρ ρ

= + −x x

d m

 (19.3)

or

 ρ = ϕρd + (1 − ϕ)ρm (19.4)

 Cp = (ρdCp,d ϕ + ρm(1 − ϕ)Cp,m)/ρ (19.5)
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or

 Cp = xCp,d + (1 − x)Cp,m (19.6)

where subscript “d” refers to dispersed phase property and “m” refers to matrix prop-
erty, ϕ is the volume fraction of filler, and x is the mass fraction of filler. Note that ϕ 
and x are related as follows:

 x d= ρ
ρ

φ  (19.7)

Figure 19.1 shows the plot of experimental values of thermal diffusivity of com-
posites of copper spheres and copper whiskers [1]. The data are plotted as a func-
tion of filler volume fraction. The estimated values of thermal diffusivity, using the 
above equations in conjunction with the Maxwell–Eucken equation (Equation 16.24 
of Chapter 16), are also shown as a solid curve. Clearly there is a good agreement 
between the experimental and estimated values.

19.2  COEFFICIENT OF THERMAL EXPANSION OF COMPOSITES

Another important thermal property of a composite is coefficient of thermal expan-
sion (CTE). CTE is important in determining the dimensional changes of the com-
posite resulting from temperature variations. CTE is defined as

 α = ∂
∂
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where α is CTE, V is volume, T is temperature, and P is pressure. The CTE is gener-
ally positive for most materials, including composites. However, this is not always 
true as some materials do exhibit negative CTE [2]. For example, zirconium tung-
state is a metal oxide which exhibits a large negative CTE.

In many applications, it is important to minimize the degree of thermal expan-
sion. For example, composite materials used in the manufacture of aircrafts and 
space vehicles are subjected to extreme weather conditions. In order for the structure 
to be stable, it is necessary that the composite materials used in the construction 
to have low CTE. One example of composite material with low CTE is zirconium 
tungstate filled polymer composite. The CTE is an important parameter in the design 
and manufacture of electronic packaging for microelectronic devices. Also in many 
applications, it is necessary to match the CTEs of different materials of a composite 
to avoid build-up of internal stresses caused by temperature changes.

A number of experimental and theoretical studies have been carried out on the 
CTE of composites [3–18]. In what follows, the key models for the estimation of CTE 
of composites are presented and discussed.

19.2.1  modEls for ctE of compositEs

The simplest models for the thermal expansion coefficient of composites are the 
Voigt–Reuss rules of mixtures:

 α = ϕαd + (1 − ϕ)αm Voigt ROM (19.9)

 
1 1
α

φ
α

φ
α

= + −
d m

 Reuss ROM (19.10)

where α, αd, and αm are CTEs of composite, dispersed phase, and matrix, respectively.
The Voigt rule of mixture (ROM) is often referred to as an iso-strain model as 

each phase is assumed to undergo the same strain whereas the Reuss ROM is called 
an iso-stress model as each phase is assumed to experience the same stress. These 
simple ROMs for thermal expansion of composites do not account for the shear and 
bulk stiffness of the component phases.

Thomas [4] proposed the following empirical model for CTE of composites:

 α φα φ α= + − d
m

m
m

m
( )

/
1

1

 (19.11)

where m varies from −1 to +1. When m = 1, Equation 19.11 becomes the Voigt ROM 
(Equation 19.9). When m = −1, the Reuss ROM (Equation 19.10) is obtained. For 
small values of m, Equation 19.11 becomes equivalent to the following equation:

 log α = ϕlog αd + (1 − ϕ)log αm (19.12)
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This is basically the Lichtenecker logarithmic rule of mixtures for CTE of composites.
Turner [5] derived the following equation for the CTE of composites, taking into 

consideration the bulk stiffness of components:

 α α φ α φ
φ φ

= + −
+ −

d d m m

d m

K K
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 (19.13)

where Kd and Km are the bulk moduli of dispersed and matrix phases, respectively. 
All phases of the composite were assumed to undergo the same change in dimen-
sion with the change in temperature. However, the shear deformation of phases was 
neglected. According to the Turner model, CTE is independent of the size and shape 
of filler particles. When Km = Kd, the Turner model simplifies to the Voigt ROM.

Kerner [6] developed the following model for CTE of composites assuming par-
ticles to be spherical in shape and wetted by the matrix and taking into account the 
shear effects at the boundaries between the phases [7]:
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where Gm is the shear modulus of matrix and α is defined as follows:

 α φα φ α= + −d m( )1  (19.15)

Thus, the term in addition to α present in Equation 19.14 denotes deviation of the 
Kerner equation from the Voigt ROM.

The Kerner model could be recast in the following form:
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Equation 19.16 is valid for one type of inclusions. It could be further generalized 
to N multiple types of inclusions present in the same composite as follows [8]:

 α

φ α φ α

=
+

+ −
+=

i d i d i

d i m

m m

m mi

K

K G
K

K G
, ,

, ( )
( )

( )4 3
1

4 31 / /

NN

i d i

d i m

m

m mi

N K

K G
K

K G

∑
∑ +

+ −
+=

φ φ,

, ( )
( )

( )4 3
1

4 31 / /

 (19.17)



299Thermal Diffusivity and Coefficient of Thermal Expansion of Composites

where ϕi is the volume fraction of type-i inclusion and ϕ is the total volume fraction of 
inclusions. When N = 1, Equation 19.17 reduces to Equation 19.16.

Several CTE models proposed in the literature for composite materials are expressed 
in terms of the Young’s moduli of the individual phases. Examples are the Blackburn [3] 
and Tummala and Friedberg [9] models. The Blackburn model is as follows:

 α = αm − ϕθ(αm − αd) (19.18)

where θ is given in terms of the Young’s moduli as
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The Tummala and Friedberg model [9] is given by Equation 19.18 with the fol-
lowing expression for θ:
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 (19.20)

where Ed and Em are Young’s moduli of dispersed phase and matrix, respectively and 
νm is the Poisson’s ratio of matrix.

Figure 19.2 compares the CTEs predicted from different models for following 
filler and matrix properties: Ed = 70 × 109 Pa, Kd = 73 × 109 Pa, Gd = 26.12 × 109 Pa, 
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νd = 0.34, αd = 22.4 × 10−6 deg−1, Em = 3.5 × 109 Pa, Km = 4.2 × 109 Pa, Gm = 1.287 × 
109 Pa, νm = 0.36, αm = 60.26 × 10−6 deg−1. Based on the figure, the following points 
could be made: (1) the relative CTE, defined as α/αm, decreases with the increase in 
filler concentration as the filler CTE is much smaller than that of the matrix; (2) the 
Turner model gives the lowest values whereas the Tummala and Friedberg model 
predicts the highest values of composite CTE; (3) the predictions of the Tummala 
and Friedberg model are only slightly higher than those of the Voigt model (they 
almost overlap); (4) the predictions of the Kerner and Blackburn models overlap; and 
(5) the predictions of the logarithmic rule of mixture (Equation 19.12) fall in between 
the predictions of Voigt–Reuss rules of mixtures.

19.2.2  uppEr and lowEr Bounds of ctE of compositEs

Schapery [10] used the variation principles to develop the following lower and upper 
bounds of CTE of composites, regardless of the shape of the filler particles:
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where α1 and αu are lower and upper bounds of CTE, respectively and Kl and Ku are 
lower and upper bounds of the bulk modulus of composite, respectively. Note that 
the Schapery bounds do not contain ϕ or (1 − ϕ) terms as the volume fraction of the 
phases is taken into account through the bulk modulus K of the composite.

The lower and upper bounds of the bulk modulus of composite are given as
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where Gd and Gm are shear moduli of dispersed phase and matrix, respectively. These 
bounds are the same as Hashin–Shtrikman–Walpole (HSW) bounds, discussed in 
Chapter 7.
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19.2.3  comparison of modEl prEdictions with ExpErimEntal data

Figure 19.3 compares the model predictions with two sets of experimental data on 
composites of aluminium filler particles and epoxy resin matrix [11–13]. The mechan-
ical properties and CTEs of filler and matrix were as follows: Ed = 70 × 109 Pa, 
Kd = 73 × 109 Pa, Gd = 26.12 × 109 Pa, νd = 0.34, αd = 22.4 × 10−6 deg−1, Em = 3.5 × 109 
Pa, Km = 4.2 × 109 Pa, Gm = 1.287 × 109 Pa, νm = 0.36, αm = 60.26 × 10−6 deg−1. The 
experimental data for Set 1 fall in between the predictions of the Reuss and Turner 
models. The experimental data for Set 2 nearly overlaps with the predictions of the 
Kerner and Blackburn models. The predictions of the logarithmic rule of mixtures 
fall only slightly below the experimental data of Set 2 when the filler volume fraction 
is less than 0.6. The thermal expansion coefficients of Set 1 data were significantly 
smaller than the corresponding values of Set 2 data due to a high degree of agglom-
eration of filler particles in Set 1 data.
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20 Radiative Heat Transfer 
and Radiative Properties 
of Composites

Knowledge of the radiative properties of composite materials is important in a num-
ber of practical applications [1–9]. Coatings of composite materials are widely used 
to enhance or to reduce radiative heat loss from a variety of systems. For example, 
heat loss from a furnace can be reduced significantly by applying high thermal emis-
sivity ceramic-composite coating on the interior surface of the furnace chamber [8]. 
The energy that is absorbed by the surface from hot gases is reemitted back to the 
furnace. High thermal emissivity composite coatings are also used in space appli-
cations. The spacecraft surfaces exposed to the space environment are coated with 
high-emissivity composite coatings to enhance the loss of heat generated due to high 
friction between the space vehicle surface and atmosphere [2]. In several applica-
tions, the composite coatings are designed to have low thermal emissivity. For exam-
ple, low-emissivity composite coatings are used on the under roof of the houses to 
help keep the attic area cool during summer. The heat from the sun is reflected back 
to the atmosphere.

In this chapter, the fundamentals of radiative heat transfer are first reviewed and 
then the key radiative property of composite materials, namely, the thermal emissiv-
ity, is discussed.

20.1  FUNDAMENTALS OF RADIATIVE HEAT TRANSFER

When two bodies or surfaces at different temperatures are placed in view of each 
other and are separated by vacuum, the sole mechanism of heat transfer between 
them is the exchange of thermal radiation.

20.1.1  naturE of thErmal radiation

Thermal radiation is a stream of electromagnetic radiation emitted by a body as a 
result of its finite absolute temperature. All forms of matter at finite absolute tem-
perature emit thermal radiation as a result of atomic and molecular scale motions, 
such as translational, vibrational and rotational movement of molecules, vibration of 
atoms, and certain electronic transitions.

Thermal radiation is a part of the electromagnetic spectrum confined to wave-
lengths in the range 0.1 to 1000 μm. It includes a portion of ultraviolet region (0.1 to 
0.38 μm), all of the visible (0.38 to 0.76 μm) and infrared (0.76 to 1000 μm) regions.
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The wavelength (λ) of thermal radiation is related to frequency (ν) and speed of 
light (c) as

 λ = c/ν (20.1)

While the propagation velocity and wavelength of electromagnetic waves are 
affected by the medium in which they are travelling, the frequency is independent of 
the medium and depends only on the radiating source.

Interestingly, electromagnetic radiation including thermal radiation has both a par-
ticulate and wavelike nature. Thus, thermal radiation can be thought of as a stream of dis-
crete packets of energy called photons or quanta. Each photon or quantum has energy of

 e = hν (20.2)

where h is Planck’s constant (= 6.625 × 10−34 J·s).
The thermal radiation emitted by a surface at a finite absolute temperature is not 

monochromatic (single wavelength). It covers a range of wavelengths and is emit-
ted in all directions. The intensity of the radiation varies with the wavelength and 
with the direction of the emission. The variation of intensity with λ is called spec-
tral distribution, and the variation of intensity with direction is called directional 
distribution.

20.1.1.1  Emissive Power, Irradiation, and Radiosity
The total (hemispherical) emissive power E (W/m2) of the radiation emitted by a 
surface is defined as

 E E d=
∞

∫ λ λ
0

 (20.3)

where Eλ (W/m3) is the spectral (hemispherical) emissive power of radiation. It is the 
rate at which radiation energy is emitted by a surface per unit wavelength interval 
about λ in all directions per unit surface area. As a hemisphere placed above the 
emitting surface intercepts all the radiation rays emitted by the surface, Eλ is called 
spectral hemispherical emissive power of radiation and E is called total hemispheri-
cal emissive power.

The total (hemispherical) irradiation G (W/m2) is defined as

 G G d=
∞

∫ λ λ
0

 (20.4)

where Gλ (W/m3) is the spectral (hemispherical) irradiation. It is the rate at which 
radiation energy is incident on a surface per unit wavelength interval about λ from 
all directions per unit surface area.
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The total (hemispherical) radiosity J (W/m2) is defined as

 J J d=
∞

∫ λ λ
0

 (20.5)

where Jλ (W/m3) is the spectral (hemispherical) radiosity. It is the rate at which radia-
tion energy leaves a surface per unit wavelength interval about λ from all directions 
per unit surface area. It includes the reflected portion of the irradiation as well as 
direct emission.

20.1.1.2  Absorptivity, Reflectivity, and Transmissivity
When radiation falls on a surface, some of it is absorbed, some of it is reflected, and 
the remaining part is transmitted. Let the total incident radiation flux on a surface 
from all directions and over all wavelengths be G.

The total absorptivity (α) is the fraction of G absorbed by the surface, that is,

 α = G
G
abs  (20.6)

where Gabs is the absorbed portion of incident radiation G.
The total reflectivity (ρ) is the fraction of G reflected by the surface, that is,

 ρ = G
G

ref  (20.7)

where Gref is the reflected portion of incident radiation G.
The total transmissivity (τ) is the fraction of G transmitted through the surface, 

that is,

 τ = G
G
trans  (20.8)

where Gtrans is the transmitted portion of incident radiation G.
Using energy balance

 Gabs + Gref + Gtrans = G (20.9)

or

 α + ρ + τ = 1 (20.10)
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In the case of opaque surfaces, τ = 0 and therefore,

 α + ρ = 1 (20.11)

20.1.1.3  Black Bodies
A black body is one which absorbs all incident radiation, regardless of wavelength 
and direction. Black bodies are not only perfect absorbers of radiation, they are also 
the best emitters of radiation. At any given temperature, radiation emitted from a 
black body has the maximum possible value of spectral emissive power. No surface 
can emit radiation with spectral emissive power higher than that of a black surface 
when comparison is made at the same temperature. Furthermore, black bodies are 
diffuse emitters of radiation, that is, the spectral emissive power is independent of 
direction and depends only on wavelength and temperature.

It should be noted that a surface that appears black to the eye absorbs radiation 
in the narrow band of the visible portion of the electromagnetic spectrum (approxi-
mately 0.38 to 0.76 μm), whereas a black body absorbs all incident radiation of all 
wavelengths. For example, snow appears white to the eye but it is essentially black 
with respect to long wavelength (infrared) thermal radiation.

The spectral emissive power emitted by a black body is given by Planck’s radia-
tion law

 E T
hc

hc kT
b

o

o
λ λ π

λ λ, ( , )
exp( / )

=
− 

2

1

2

5  (20.12)

where h is Planck’s constant (= 6.6256 × 10−34 J·s), k is Boltzmann constant (= 1.3805 × 
10−23 J/K), co is the speed of light in vacuum (= 2.998 × 108 m/s) and T is the abso-
lute temperature. The Planck’s radiation law indicates that: (a) the spectral emissive 
power of a black body is continuous function of wavelength (λ) at any given tempera-
ture, (b) the spectral emissive power increases with the increase in temperature at 
any given wavelength, and (c) the wavelength at which the spectral emissive power 
has its maximum value decreases with the increase in temperature.

The wavelength at which the spectral emissive power is maximum can be obtained 
from Planck’s law by setting dEλ/dλ = 0. Thus,

 λmaxT = 2.898 × 10−3 mK (20.13)

where λmax is the value of λ where Eλ,b is maximum. This equation is referred to as 
Wien’s displacement law.

The total emissive power of a black body is given by the Stefan–Boltzmann law

 Eb = σ T 4 (20.14)
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where σ is the Stefan–Boltzmann constant (= 5.67 × 10−8 W/m2·K4). The Stefan–
Boltzmann law follows from the Planck distribution, Equation 20.12:

 

E
hc d

hc kT
Tb

o

o

=
− 

=
∞

∫ 2

1

2

5

0

4π λ
λ λ

σ
exp( )/

 

(20.15)

In practice, it is often required to estimate the band emission from a radiating 
body. Band emission is a fraction of the total emission that is in a certain wavelength 
interval (band) at a given temperature. One can easily calculate band emission from 
a black body using the Planck distribution and Stefan–Boltzmann law. Thus, the 
band emission F( )λ λ1 2→  over the wavelength band of (λ1 → λ2) is

 F F F
E d E db b

( ) ( ) ( )

, ,

λ λ λ λ

λ

λ

λ

λ

λ λ

σ1 2 2 1

2 1

0 0
0 0

→ → →= − =
−∫ ∫
TT 4  (20.16)

20.1.1.4  Real Bodies
Real surfaces are not perfect absorbers of incident radiation. They absorb only a 
fraction of the incident radiation. Some of the incident radiation is reflected and 
some of it is transmitted. Real surfaces emit less radiation energy at any given tem-
perature as compared with black surfaces at the same temperature.

The total hemispherical emissivity (ε) of a real surface is defined as the ratio of 
total hemispherical emissive power of a real surface (E) to total hemispherical emis-
sive power of a black surface at the same temperature, that is,

 ε = E
Eb

 (20.17)

Note that the emissivity of a real surface can be defined in different ways. For 
example, the spectral or monochromatic hemispherical emissivity ελ is defined as 
the ratio of spectral hemispherical emissive power of a real surface to spectral hemi-
spherical power of a black surface at the same temperature

 ελ
λ

λ
= E

E b,

 (20.18)

The total hemispherical emissivity is related to spectral hemispherical emissivity 
as follows:

 ε
ε λ

σ

λ λ
= =

∞

∫E
E

E d

Tb

b,
0

4  (20.19)
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20.1.1.5  Some More Definitions
Diffuse Emitter: A diffuse emitter is one whose emissivity is independent of the 

direction, that is, the radiation is emitted isotropically (equally in all directions).
Diffuse Reflector: A diffuse reflector is one which reflects incident radiation 

equally in all directions. There is no directional dependence of reflected radiation. 
Rough surfaces give diffuse reflection.

Diffuse Surface: A diffuse surface is one which reflects and emits radiation in a 
diffuse manner.

Gray Surface: In general, the radiation properties of the material (emissivity, 
reflectivity, absorptivity, transmissivity) are functions of wavelength of the radiation. 
Gray surface is one whose radiation properties are independent of the wavelength.

Diffuse Gray Surface: A surface whose radiation properties are independent of 
both direction and wavelength (diffuse implies directional independence and gray 
implies wavelength independence).

20.1.1.6  Kirchhoff’s Radiation Law
Kirchhoff’s radiation law states that the monochromatic directional emissivity (ελ,θ) 
of a surface is equal to the monochromatic directional absorptivity (αλ,θ) of the sur-
face, when comparison is made at the same temperature. Thus,

 ελ,θ = αλ,θ (20.20)

Note that, in general, ελ,θ and αλ,θ are both functions of direction and wavelength. 
This form of Kirchhoff’s radiation law is very general as ελ,θ and αλ,θ are inherent 
surface properties.

Another form of Kirchhoff’s law that is less general is as follows:

 ε = α (20.21)

where ε and α are total hemispherical emissivity and absorptivity of the surface. This 
form of Kirchhoff’s law is valid under the condition that the surface is in thermal 
equilibrium with its surroundings.

For diffuse gray surface, the emissivity and absorptivity are equal and are inde-
pendent of direction and wavelength. This is true whether or not the surface is in 
thermal equilibrium with its surroundings.

20.1.2  radiativE hEat transfEr BEtwEEn surfacEs

Thus far, thermal radiation and thermal radiation properties of bodies have been 
described. In what follows, radiative heat exchange among the surfaces is described.

The exchange of radiation energy between two surfaces depends on their view 
factors. The view factor Fij is the fraction of radiant energy leaving surface i that is 
intercepted by surface j, that is,

 F
q

A Jij
i j

i i

= →  (20.22)
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where qi→j is radiation energy leaving surface i and being intercepted by surface j, Ji 
is the radiosity of surface i, and Ai is area of the surface through which radiation is 
being emitted. Note that the total radiation leaving the surface i is the sum of emitted 
radiation and reflected radiation. The radiosity Ji of a surface is the sum of emitted 
radiation (Ei) and reflected irradiation (ρiGi)

 Ji = Ei + ρiGi (20.23)

The view factor Fji is the fraction of radiant energy leaving surface j that is inter-
cepted by surface i, that is,

 F
q

A Jji
j i

j j

= →  (20.24)

where qj→i is radiation energy leaving surface j and being intercepted by surface i, Jj 
is the radiosity of surface j, and Aj is area of the surface through which radiation is 
being emitted.

The net rate of radiative heat transfer from surface i to surface j is given by

 qij = qi→j − qj→i = AiJiFij − AjJjFji (20.25)

Also note that

 qji = −qij = qj→i − qi→j = AjJjFji − AiJiFij (20.26)

The view factors Fij and Fji are purely geometric quantities. They depend only on 
size, orientation and relative positions of surfaces i and j.

It can be readily shown that

 AiFij = AjFji (20.27)

This equation is called the reciprocity relation for view factors and is applicable to 
any pair of radiating surfaces provided that they emit and reflect radiation diffusively.

Most radiative heat transfer problems of practical interest involve enclosed spaces 
(enclosures). As the total radiation leaving any surface i of an enclosure must be 
intercepted by the surfaces of the enclosures (including surface i itself), the energy 
balance gives

 F
q

A Jij

j

N
i j

i ij

N

=

→

=
∑ ∑= =

1 1

1  (20.28)

where N is the number of surfaces forming the enclosure. This equation is referred 
to as the summation rule. The summation rule can be applied to each surface present 
in the enclosure. If there are N surfaces present in an enclosure, N2 view factors are 
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required. For example, in a two surface enclosure, the four view factors required are 
as follows: F11, F22, F12, and F21. As the summation rule is applicable to each surface 
of the enclosure, it leads to N equations. The reciprocity relation gives additional 
N(N − 1)/2 equations. Thus, the number of view factors that must be obtained from 
geometric considerations is N(N − 1)/2.

Consider now a single surface i (not necessarily in an enclosure) which is receiv-
ing radiation from other surfaces and is emitting radiation. Assume that the surface 
is opaque, diffuse, and gray (radiation properties are independent of λ and direction 
and α = ε = 1 − ρ). The surface is irradiated with incident radiation energy rate of 
GiAi. The surface is emitting and reflecting radiation energy at a rate of JiAi. Thus, 
the net rate of radiation energy leaving surface i is

 qi = Ai(Ji − Gi) (20.29)

The radiosity Ji of the surface is the sum of emitted radiation (Ei) and reflected 
irradiation (ρiGi):

 Ji = Ei + ρiGi (20.30)

Since Ei = εiEb,i and ρi = 1 − εi, the above equation gives

 G
J E

i
i i b i

i

=
−

−
ε

ε
,

1
 (20.31)

Elimination of Gi from Equation 20.29 gives

 q
E J

A

i
b i i

i

i i

=
−

−









,

1 ε
ε

 (20.32)

This equation can be interpreted in terms of electrical analog as follows: qi, the 
net radiative heat transfer rate from a surface, is the “current” through the surface, 
Eb,i − Ji, the difference in the radiosities of a black surface and actual surface, is the 
“driving potential” for the current, and (1 − εi)/(εiAi) is the “resistance” to current 
flow through the surface. When the radiosity of the actual surface is less than the 
radiosity of the surface if it was black, the driving potential for net radiative heat 
transfer is positive, and there occurs a net radiation heat transfer from the surface. 
When the radiosity of the actual surface is more than the radiosity of the surface if it 
was black, there occurs a net radiation heat transfer to the surface. The larger the dif-
ference in radiosities, the greater is the net radiative heat transfer rate. The resistance 
term (1 − εi)/(εiAi) is also called “surface resistance”. If the actual surface is a black 
surface, the surface resistance is zero and Eb,i = Ji. In this case, qi = Ai (Eb,i − Gi).

Consider another example where a real surface at constant temperature is just 
emitting radiation. No radiation is falling on the surface, and hence, there is no 
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reflected radiation. The surface has an emissivity of εi. In this case, the radiosity Ji is 
just εiEb,i as there is no reflected radiation present. Thus, the net rate of radiative heat 
transfer from the surface is given as

 q
E E

A

E Ai
b i i b i

i

i i

i b i i=
−
−
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ε

ε
1

 (20.33)

Consider now radiation exchange between two surfaces. As noted earlier, the net 
rate of radiative heat transfer from surface i to surface j is given by

 qij = qi→j − qj→i = AiJiFij − AjJjFji (20.34)

Using the reciprocity relation and rearranging Equation 20.34, the following 
result is obtained:

 q
J J

A F

ij
i j

i ij

=
−







1

 (20.35)

Thus, the driving potential for net radiative heat transfer between two surfaces is 
the difference in the radiosities of the two surfaces, and the resistance to radiative 
heat transfer between two surfaces is 1/(AiFij).

If surface i is in an enclosure, it will exchange radiation with each of the N sur-
faces present in the enclosure. The net rate of radiative heat transfer from surface i 
in an enclosure is equal to the sum of the net rates of radiative heat transfer from 
surface i to N surfaces:

 q q
J J

A F

i ij
i j

i ij

j

N

j

N

= =
−







==
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111

 (20.36)

It should be noted that in radiative heat transfer between surfaces, two different 
types of resistances are encountered: the surface resistance given by (1 − εi)/(εiAi) 
and space or view resistance given as 1/(AiFij). If surface i is a black surface and is 
exchanging radiation with surface j, the surface resistance is zero but the space resis-
tance between surfaces i and j is not zero.

20.1.2.1  Radiation Heat Exchange between Two Real Surfaces
Open systems: Consider two real surfaces maintained at constant temperatures T1 
and T2. Assume that the surfaces are diffuse and gray and their emissivities are ε1 
and ε2. The surfaces are open in that they do not form an enclosure. The surfaces 
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may be exchanging thermal radiation with other surfaces present in the surround-
ings. The net rate of radiative heat transfer from surface 1 to surface 2 is as follows:

 q
J J

A F

12
1 2

1 12

1
= −







 (20.37)

It is important to realize that q12 is not equal to q1, the net rate of radiative heat 
transfer from surface 1 to all the surrounding surfaces (including surface 2). If the 
surfaces 1 and 2 are black surfaces, the above expression simplifies to

 q
E E

A F

T T

A F

b b
12

1 2

1 12

1
4

2
4

1 12

1 1
=

−






=
−( )







, ,
σ



 (20.38)

Enclosures: Consider two real surfaces which together form an enclosure such 
that the two surfaces exchange radiation only with each other. As there are only two 
surfaces exchanging radiation with each other, it follows that

 q1 = −q2 = q12 = −q21 (20.39)

Now there are three radiative resistances in series: surface resistance correspond-
ing to surface 1, space resistance between the two surfaces, and surface resistance 
corresponding to surface 2. Thus,

 R
A A F Atotal = − + + −1 1 11
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 (20.40)

The overall driving potential for radiative heat transfer from surface 1 to surface 2 
is Eb,1 − Eb,2. Thus,
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 (20.41)

If the two surfaces are infinitely large parallel surfaces maintained at tempera-
tures T1 and T2, A1 = A2 = A, F12 = 1, and Equation 20.41 simplifies to
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For systems such as two long concentric cylinders or two concentric spheres, F12 = 1 
and F21 = A1/A2. In this case, the net rate of radiative heat transfer from surface 1 to sur-
face 2 as given by Equation 20.41 is as follows:

 q
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In the special case of a small convex body enclosed in a large enclosure, A1/A2 is 
approximately zero. Thus,

 q A T T1 1 1 1
4

2
4= −( )σ ε  (20.44)

This same result is obtained if a small convex body is enclosed in a black enclo-
sure. Consequently, a large enclosure can be approximately treated as a black surface.

20.1.3  radiation shiElding

In many practical situations, it is desired to reduce radiative heat transfer between 
two surfaces. This can be achieved by inserting a thin sheet of high reflectivity 
and low-emissivity material between the two surfaces. Such thin sheets of highly 
reflective material are called “radiation shields”. The radiation shield adds another 
resistance in the path of heat flow so that the overall rate of radiative heat transfer 
is reduced. Insertion of any surface (regardless of its surface radiative properties) 
that intercepts the radiation path always reduces the net radiative heat transfer rate. 
However, the higher the reflectivity (that is, smaller the emissivity) of the shield, the 
greater is the resistance associated with the shield.

Consider two infinitely large parallel surfaces maintained at temperatures T1 and T2 
exchanging thermal radiation with each other. In the absence of any radiation shield, 
there are three radiative resistances in series (two surface resistances and one space resis-
tance) and the net rate of radiative heat transfer from surface 1 to surface 2 is as follows:
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When a radiation shield (large parallel sheet) is inserted between the two parallel sur-
faces, two additional surface resistances (corresponding to two sides of the shield) come 
into play. The net rate of radiative heat transfer from surface 1 to surface 2 now becomes
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where ε3(1) is emissivity of radiation shield facing surface 1, ε3(2) is emissivity of 
radiation shield facing surface 2, and A3 is surface area of the shield (same on both 
sides). Assuming A1 = A2 = A3 = A and ε3(1) = ε3(2) = εs, this expression simplifies to
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Note that F13 = 1 and F32 = 1. In the special case of emissivities of all surfaces 
being equal (ε1 = ε2 = εs = ε), the net rates of radiative heat transfer from surface 1 to 
surface 2 with and without shield are given as
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Thus, the insertion of a radiation shield reduces the net heat transfer rate to one half 
the rate that prevails when the shield is not present.

20.1.4  radiativE hEat transfEr coEfficiEnt

Thus far, radiative heat transfer is treated as an isolated phenomenon. In many prac-
tical problems, radiation and convection occur simultaneously. In such situations, it 
is convenient to express the net radiative heat transfer in terms of Newton’s law of 
cooling. Assuming a two-surface enclosure, the net radiative heat transfer rate from 
surface 1 to surface 2 can be expressed as

 q1 = hr(T1 − T2)A1 (20.50)

where hr is the radiative heat transfer coefficient, given as
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For a small body in a large enclosure (F12 = 1 and A1/A2 = 0), this expression 
reduces to

 h T T T Tr = + +( )σε1 1 2 1
2

2
2( )  (20.52)
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Note that the radiation heat transfer coefficient hr is a strong function of tempera-
ture whereas convective heat transfer coefficient depends only weakly on tempera-
ture (through temperature dependence of properties).

When radiation and convection occur in parallel, the total rate of heat transfer can 
be expressed as

 q q q
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where hc is the convective heat transfer coefficient.

20.2  RADIATIVE PROPERTIES OF COMPOSITES

As noted in the preceding sections, thermal emissivity of a material is the key prop-
erty involved in radiative heat transfer calculations. Some applications require that 
the thermal emissivity of the material be as low as possible whereas other applica-
tions require a high thermal emissivity. It is well known that metals have low values 
of thermal emissivity whereas polymers exhibit high values of thermal emissivity 
due to the presence of certain functional groups [1,4,5]. Therefore, by mixing these 
two materials (metals and polymers) in different proportions, one can generate mate-
rials of any desired thermal emissivity. It is for this reason that composites of metal 
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FIGURE 20.1 Thermal emissivity of composites of aluminum particles/polystyrene matrix 
as a function of filler concentration (wt.% aluminum particles). (Based on Babrekar, H.A. et 
al., Mater Sci Eng B. 168: 40–44, 2010.)
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filler particles and polymer matrix are used widely as coating materials of designed 
thermal emissivity.

Figure 20.1 shows the plot of thermal emissivity of composites of aluminum 
particles/polystyrene matrix as a function of filler concentration (wt.% aluminum 
particles) [7]. As expected, the thermal emissivity decreases with the increase in 
low-emissivity filler concentration. A similar behavior is seen in composites of cop-
per particles/polyurethane matrix [5] (see Figure 20.2).

20.2.1  Estimation of thErmal Emissivity of compositEs

Assuming transmittivity to be negligible, the absorptivity and reflectivity are related 
to each other as

 α + ρ = 1 (20.11)

From Kirchoff’s law,

 ε = α (20.21)

From Equations 20.11 and 20.21,

 ε = 1 − ρ (20.54)
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Thus, one can calculate emissivity once reflectivity of a material is known. 
According to Equation 20.54, a high reflectivity means low emissivity.

The reflectivity of a material is related to the refractive index via the Fresnel equa-
tions. For normal incidence of radiation on the surface, the Fresnel equation is given 
as follows [10]:

 ρ = −
+
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 (20.55)

where n is the refractive index of the material which is related to dielectric constant 
and magnetic permeability as follows:

 n = ∈µ  (20.56)

Here ∈ is the dielectric constant (relative permittivity) and μ is the relative magnetic 
permeability.

For nonmagnetic materials, μ = 1 and therefore,

 n = ∈  (20.57)

From Equations 20.55 and 20.57, we get

 ρ = ∈−( )
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Thus, the emissivity of the material is related to dielectric constant as follows 
[1,7]:

 ε = − ∈−( )
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The dielectric constant of a composite material can be estimated from the expres-
sions discussed in Chapter 3. As an example, the Maxwell–Garnett model is given 
below:
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where ∈m and ∈d are the dielectric constants of matrix and dispersed phase, 
respectively.
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It should be noted that the dielectric constant is a bulk property whereas the emis-
sivity is a surface property. Hence, Equation 20.59 may not be very accurate when 
the composite is heterogeneous in the sense that bulk composition is different from 
the surface composition.
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21 Fundamentals of 
Diffusion Mass Transfer

There are many applications of composite materials where diffusion mass transfer 
plays an important role. Composite membranes are used extensively in the separa-
tion of gas mixtures. In the packaging industry, composite membranes are used as 
barrier films. In the design and application of composite membranes, a good under-
standing of diffusion mass transfer is required. In this chapter, the key concepts and 
equations governing diffusion mass transfer are reviewed.

21.1  INTRODUCTION

Consider a binary mixture of species A and B. Let the mass concentration of species 
A, ρA, be nonuniform in the mixture and let the mixture as a whole be at rest without 
any macroscopic (bulk) motion, that is, the mixture velocity 

�
V = 0. The presence of 

a concentration gradient dρA/dx in the system gives rise to a  diffusional mass flux jA 
(kg/m2.s) whose magnitude is proportional to the concentration gradient. According 
to Fick’s law of diffusion, the mass flux jA  is given as

 
j D

d
dxA AB

A= − ρ
 

(21.1)

where DAB (m2/s) is the diffusion coefficient of species A in B. Equation 21.1 is a 
simplified one-dimensional form of Fick’s law of diffusion. A more general vector 
form of Fick’s law is presented in the Section 21.2.

When the system as a whole is in motion ( )
�
V ≠ 0 , then an advective mass flux of 

species A, given as ρAV
�

, is present in addition to the diffusional mass flux 
�
jA at any 

given point in the system. Thus, the total mass flux of species A at any given point in 
the system consists of two parts:

 
� � �
n j VA A A= + ρ  (21.2)

where 
�
nA and 

�
jA are the vectorial total and diffusional mass fluxes of species A, respec-

tively, and ρAV
�

 is the advective mass flux of species A. Note that 
�
nA is the absolute mass 

flux of species A relative to a stationary observer whereas 
�
jA is the relative mass flux of 

species A relative to an observer moving with mass average velocity 
�
V of the system.

The bulk or macroscopic motion in mixtures of different species can be caused 
either by external means such as a pump or by molecular-level diffusion process 
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itself. In the latter case, the advective mass flux of species A (given as ρAV
�

) is often 
referred to as “bulk diffusion flux.”

21.2  FICK’S LAW OF DIFFUSION

The general vector form of Fick’s law of diffusion for a binary system is given as

 
�
j DA AB A= − ∇ρ ω  (21.3)

where the mass flux 
�
jA is the rate of diffusional mass transfer of A per unit area 

perpendicular to the direction of transfer, ρ is the total mass concentration of the 
mixture (ρ = ρA + ρB), DAB is the binary diffusion coefficient or mass diffusivity of A 
in B, and ωA is the mass fraction of species A given as ρA/ρ.

When the total mass concentration of the mixture is constant (ρ = constant), 
Fick’s law reduces to

 
�
j DA AB A= − ∇ρ  (21.4)

Fick’s law of diffusion could also be stated in terms of the molar flux of species 
A ( )

�
JA  as

 
�
J CD xA AB A= − ∇  (21.5)

where the molar flux 
�
JA is the rate of diffusional mass transfer of species A in moles 

per unit time per unit area perpendicular to the direction of transfer, C is the total 
molar concentration of the mixture (C = CA + CB), and xA is the mole fraction of spe-
cies A given as CA/C. Note that 

�
JA is the molar flux relative to coordinates that 

move with the molar average velocity 
�
V∗ of the mixture.

When the total concentration of the mixture is constant (C = constant), Fick’s law 
reduces to

 
�
J D CA AB A= − ∇  (21.6)

21.3  SOME DEFINITIONS AND CONCEPTS

21.3.1  vElocitiEs

The mass average velocity 
�
V of a multicomponent mixture is defined as

 

�
�

V
Vi i

i=
∑ ρ

ρ
 (21.7)
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where ρi is the mass concentration of species i (mass per unit volume of mixture), ρ is the 

total concentration of the mixture ρ ρ=( )∑ i
i

, and 
�
Vi is the absolute velocity of species 

i (relative to a stationary observer). Note that 
�
Vi at any point in the mixture is the average 

velocity of all the species i molecules contained in a small volume about the point.
For a binary mixture of species A and B, the mass average velocity becomes

 

�
� �

V
V VA A B B= +ρ ρ

ρ  
(21.8)

where 
�
VA and 

�
VB are absolute velocities of species A and B, respectively.

The molar average velocity ( )
�
V∗  of a multicomponent mixture is defined as

 

�
�

V
C V

C

i i
i∗ =

∑
 

(21.9)

where Ci is the molar concentration of species i (moles per unit volume of mixture), and 

C is the total molar concentration of the mixture C Ci
i

=( )∑ . For a binary mixture

 

�
� �

V
C V C V

C
A A B B∗ = +

 
(21.10)

21.3.2  fluxEs

As already noted, mass transfer flux could be defined in terms of either mass or 
moles and it is a vector quantity. In any given direction, it is the amount (either mass 
or molar units) of a particular species that passes through a unit area normal to the 
given direction per unit time.

Flux may be defined either with reference to coordinates fixed in space (stationary 
coordinates) or with reference to coordinates moving with either 

�
V (mass average 

velocity of the system) or 
�
V∗ (molar average velocity of the system).

The absolute mass flux of species i with respect to stationary coordinates, 
�
ni, is 

defined as

 
� �
n Vi i i= ρ  (21.11)

The diffusional mass flux of species i with respect to mass average velocity ( )
�
V  

of the system is given as

 
� � �
j V Vi i i= −ρ ( )  (21.12)

where 
�
Vi is the absolute velocity of species i.
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The absolute molar flux of species i, 
�
Ni, and diffusional molar flux of species i, 

�
Ji, are 

defined as

 
� �
N C Vi i i=  (21.13)

 
� � �
J C V Vi i i= −( *) (21.14)

21.4  RELATIONSHIP BETWEEN FLUXES

21.4.1  mass fluxEs

From Equations 21.7, 21.11, and 21.12, it follows that

 
� � � �

�
� �

j V V V
V

n ni i i i i i
j j

i i j

j

N

j

= − = − = −
==

∑ρ ρ ρ
ρ

ρ
ω( )

11

NN

∑  (21.15)

where N is the total number of species in the multicomponent mixture and ωi is the 
mass fraction of species i. Equation 21.15 can be rewritten as

 

� � �
n j ni i i j

j

N

= +
=

∑ω
1  

(21.16)

For a binary mixture of species A and B, Equation 21.16 can be expressed as

 
� � � �
n j n nA A A A B= + +( )ω

 
(21.17)

 
� � � �
n j n nB B B A B= + +( )ω

 
(21.18)

Using Fick’s law of diffusion (Equation 21.3), Equations 21.17 and 21.18 become

 
� � �
n D n nA AB A A A B= − ∇ + +( )ρ ω ω

 
(21.19)

 
� � �
n D n nB BA B B A B= − ∇ + +( )ρ ω ω

 
(21.20)

Interestingly,

 

�
ji

i

N

=
=

∑ 0
1  

(21.21)
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that is, the sum of mass diffusional fluxes of all species present in the mixture is 
always zero. This result simply follows from Equation 21.15 when it is summed over 
N species:

 

� � �
j n ni i

i

N

i

N

j

j

N

i

i

N

= −



















== = =
∑∑ ∑ ∑

11 1 1

ω 
= 0

 

(21.22)

Note that

 

ω i

i

N

i

i

N

j

j

N

n n
= = =

∑ ∑ ∑










=










=
1 1 1

1 and
� �











 

(21.23)

Thus, in a binary mixture of species A and B, 
�
jA is always equal to −

�
jB:

 
� �
j jA B= −  (21.24)

The addition of Equations 21.19 and 21.20 leads to another interesting result, that is,

 DAB = DBA (21.25)

21.4.2  molar fluxEs

From Equations 21.9, 21.13, and 21.14, it follows that

 
� � � � � � �
J C V C V N

C
C

C V N x Ni i i i i
i

j j i i j

j

N

j

N

= − ∗ = − = −
==

∑
11

∑∑  (21.26)

or,

 

� � �
N J x Ni i i j

j

N

= +
=

∑
1  

(21.27)

where xi is the mole fraction of species i in the mixture. For a binary mixture of spe-
cies A and B, Equation 21.27 gives

 

� � � �
N J x N NA A A A B= + +( )

 
(21.28)

 

� � � �
N J x N NB B B A B= + +( )

 
(21.29)



326 Properties of Composite Materials

Using Fick’s law of diffusion (Equation 21.5), Equations 21.28 and 21.29 can be 
rewritten as

 

� � �
N CD x x N NA AB A A A B= − ∇ + +( )

 
(21.30)

 

� � �
N CD x x N NB BA B B A B= − ∇ + +( )

 
(21.31)

The addition of Equations 21.30 and 21.31 leads to DAB = DBA. Furthermore, 
Equation 21.27 when summed over N species gives

 

�
Ji

i

N

=
=

∑ 0
1  

(21.32)

For a binary mixture, Equation 21.32 implies that

 

� �
J JA B= −  (21.33)

21.5  DIFFERENTIAL MASS BALANCE EQUATIONS

Consider a differential control volume ΔxΔyΔz through which a multicomponent 
mixture of different chemical species is flowing (see Figure 21.1). Let the mass flux 
components of species i in the x, y, and z directions be ni,x, ni,y, and ni,z, respectively. 
We can derive the differential equation of mass transfer by carrying out a mass bal-
ance on species i over the differential control volume. Thus,

 

Rate at which mass of species i

enters the contrrol volume

Rate at which mass of spe










− ccies i

leaves the control volume

Rat













+
ee at which mass of species i

is generated insidde the control volume

Rate at which










= mmass of species i

accumulates inside the controol volume












 

(21.34)

 

Rate at which mass of species i

enters the contrrol volume












= + +n y z n x z ni x x i y y i z z, , ,Δ Δ Δ Δ ΔΔ Δx y

 
(21.35)

 

Rate at which mass of species i

leaves the contrrol volume
n y z n x zi x x x i y y y












= +

+ +, ,Δ Δ
Δ Δ Δ Δ ++

+
n x yi z z z, Δ

Δ Δ

 
(21.36)
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Rate at which mass of species i

is generated insside the control volume












= r x y zi ( )Δ Δ Δ

 

(21.37)

 

Rate at which mass of species i

accumulates insiide the control volume












= ∂

∂
( )Δ Δ Δx y z

t
iρ

 
(21.38)

where ri is the rate of production of species i in units of mass of i produced per unit 
volume of the mixture per unit time. Upon substitution of the above expressions into 
the mass balance relation and rearranging with the limits Δx, Δy, and Δz all going 
to zero, the following partial differential equation is obtained:

 
−∇ ⋅ + = ∂

∂
�
n r

ti i
iρ

 
(21.39)

This is the continuity equation for species i. Upon substitution of the relation � � �
n j Vi i i= + ρ  into the above equation, we obtain

 

D
Dt

V j ri
i i i

ρ ρ= − ∇ ⋅ − ∇ ⋅ +( )
� �

 
(21.40)

z

y

∆y

ni,x ∆y∆zx

x

∆x
∆z

ni,z ∆x∆yz+∆z

ni,y ∆x∆zy

ni,x ∆y∆zx+∆x

ni,z ∆x∆yz

ni,y ∆x∆zy+∆y

FIGURE 21.1 Mass flux components of species i entering and leaving a differential control 
volume.
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where Dρi/Dt is the substantial derivative of ρi, defined as

 

D
Dt t

Vi i
i

ρ ρ ρ= ∂
∂

+ ⋅∇
�

 
(21.41)

It should be noted that

 

ri

i

N

=
=

∑ 0
1  

(21.42)

This result follows from the principle of conservation of mass.
In terms of molar units, the continuity equations corresponding to Equations 

21.39 and 21.40 are as follows:

 
−∇ ⋅ + = ∂

∂

�
N R

C
ti i

i

 
(21.43)

 

DC
Dt

C V J Ri
i i i= − ∇ ⋅ ∗ − ∇ ⋅ +( )

� �

 
(21.44)

where Ri is the rate of production of species i in units of moles of i produced per 
unit volume of the mixture per unit time and DCi/Dt is substantial derivative of Ci, 
defined as

 
DC
Dt

C
t

V Ci i
i= ∂

∂
+ ∗ ⋅∇

�
 (21.45)

Note that Ri
i∑  is not generally zero (unlike ri

i
=∑ 0) as the number of moles 

is not conserved in general. For a binary mixture of species A and B, RA + RB is 
equal to zero only if one mole of A is produced for every mole of B consumed (or 
one mole of B is produced for every mole of A consumed).

Thus, mass transfer in a nonstationary medium ( , )
� �
V V≠ ∗ ≠0 0  requires the solu-

tion of the general forms of the governing equations, summarized below:

 
� �
n D ni im i i j

j

= − ∇ + ∑ρ ω ω  (21.46)

 

∂
∂

+ ∇ ⋅ − =ρi
i it

n r
�

0
 

(21.47)
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In terms of molar units, the corresponding equations are

 

� �
N CD x x Ni im i i j

j

= − ∇ + ∑
 

(21.48)

 

∂
∂

+ ∇ ⋅ − =C
t

N Ri
i i

�
0

 
(21.49)

The macroscopic or bulk motion of the medium can be either due to molecular-
level diffusion process itself or due to external means such as a pump or gravity.

In a stationary medium ( , )
� �
V V= ∗ =0 0 , it follows that

 
� �
n j Di i im i= = − ∇ρ ω  (21.50)

 

∂
∂

= −∇ ⋅ +ρi
i it

j r
�

 
(21.51)

 

� �
N J CD xi i im i= = − ∇  (21.52)

 
∂
∂

= −∇ ⋅ +C
t

J Ri
i i

�
 (21.53)

where Dim is diffusion coefficient of species i in the mixture.
If the mass density (mass concentration) of the mixture ρ and diffusion coefficient 

Dim are constant, Equations 21.50 and 21.51 lead to the following result:

 

∂
∂

= ∇ +ρ ρi
im i it

D r2

 
(21.54)

In the absence of a chemical reaction (ri = 0), Equation 21.54 gives

 

∂
∂

= ∇ρ ρi
im it

D 2

 
(21.55)

If the total concentration of the mixture (C) and diffusion coefficient (Dim) are 
constant, Equations 21.52 and 21.53 lead to the following result:

 

∂
∂

= ∇ +C
t

D C Ri
im i i

2

 
(21.56)
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In the absence of a chemical reaction (Ri = 0), Equation 21.56 gives

 

∂
∂

= ∇C
t

D Ci
im i

2

 
(21.57)

21.6  SPECIAL CASES

21.6.1  Equimolar countEr diffusion

Consider equimolar counter diffusion in a binary mixture of nonreacting gases. In 
equimolar counter diffusion, 1 mole of species A diffuses in a given direction for 
each mole of species B diffusing in the opposite direction. This type of behavior is 
often observed in a binary distillation process where a mole of species A diffuses to 
the gas/liquid interface and condenses for every mole of species B that evaporates 

and moves away from the interface. In such cases, 
� �
N NA B= −  and the molar average 

velocity ( )
�
V∗  of the mixture is zero. From Equation 21.52

 
�
N CD xA AB A= − ∇  (21.58)

Let y be the direction of mass transfer. Assuming steady-state and constant C and 
DAB, Equation 21.58 gives

 N
D

L
C CA y

AB
A A, , ,( )= −1 2  (21.59)

where CA,1 − CA,2 is the concentration difference over the diffusion zone of thickness 
L. At low to moderate pressures, the ideal gas law can be applied to calculate the 
concentrations. Thus,

 N
D
RTA y

AB
A A, , ,( )= −p p1 2  (21.60)

where R is the gas constant, T the absolute temperature, and pA the partial pressure 
of species A.

21.6.2  diffusion of spEciEs a through stagnant B (dilutE 
Binary systEm without chEmical rEaction)

Consider the diffusion of nonreacting species A through a stationary B. In this case, �
nB = 0 but 

�
nA is not zero. Provided that the concentration of the diffusing species A 

is small (ωA ≪ 1), the bulk or advective effects of mass transfer can be neglected and 
the stationary medium results can be applied. Thus

 
� �
n j DA A AB A= = − ∇ρ ω  (21.61)
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∂
∂

= ∇ ⋅ ∇ρ ρ ωA
AB At

D[ ]
 

(21.62)

As ωA ≪ 1, ρ = ρA + ρB ≈ ρB = constant. If we further assume that DAB is constant, 
it follows that

 
� �
n j DA A AB A= = − ∇ρ  (21.63)

 

∂
∂

= ∇ρ ρA
AB At

D 2

 
(21.64)

In terms of molar units, the corresponding equations are as follows:

 

� �
N J D CA A AB A= = − ∇  (21.65)

 

∂
∂

= ∇C
t

D CA
AB A

2

 
(21.66)

Equations 21.63 and 21.64 or Equations 21.65 and 21.66 form the basis for solving 
many diffusional mass transfer problems of practical interest.

21.6.2.1  Steady-State Diffusion in Planar Geometry
Consider a plane solid wall of material B through which species A (say gaseous) is dif-
fusing. Let the mass concentration of species A be ρA,1 within the material B at x = x1 and 
let the mass concentration of species A be ρA,2 within the material B at x = x2. At steady 
state, the concentration distribution of A within the material B is given by Equation 
21.64 as

 

d

dx
A

2

2
0

ρ =
 

(21.67)

 
ρ ρ

ρ ρ
A A

A A

x x
x x= +

−
−

−,
, , ( )1
2 1

2 1
1

 
(21.68)

From Equation 21.63, the mass flux of species A within the material B is given as

 
j D

d
dx

D

x xA x AB
A AB A A

,
, ,( )

= − = −
−

−
ρ ρ ρ2 1

2 1  
(21.69)
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Thus, the concentration distribution of species A is linear and the mass flux of A 
is constant. Similar results can be obtained in terms of molar units. From Equation 
21.66

 

d C

dx
A

2

2
0=

 
(21.70)

 
C C

C C

x x
x xA A

A A= +
−
−

−,
, , ( )1
2 1

2 1
1

 
(21.71)

where CA,1 is the molar concentration of species A within the material B at x = x1 
and CA,2 is the molar concentration of species A within the material B at x = x2. The 
molar flux of species A is given as

 
J D

dC
dx

D C C

x xA x AB
A AB A A

,
, ,( )

= − = −
−

−
2 1

2 1  
(21.72)

The resistance to diffusional mass transfer can be defined as

 
R

m
C

Mm
A

A

A

A

= =Δ Δρ
� �

 
(21.73)

where ΔρA = ρA,1 − ρA,2, ΔCA = CA,1 − CA,2, �mA is the mass transfer rate of species A 
in units of mass/time and �MA is the mass transfer rate of species A in units of moles/
time. Note that �m j AA A=  and �M J AA A= , where A is the area of mass transfer (area 
normal to the direction of mass transfer). From Equations 21.72 and 21.73, the resis-
tance to diffusional mass transfer for plane objects is

 
R

L
D Am

AB

=
 

(21.74)

where L is the thickness of the planar object.
It should be pointed out that in practical problems involving diffusion of gaseous 

species A through a stationary solid material B, the concentration of species A in 
the solid at the gas/solid interface is not known. The concentration of gaseous spe-
cies A in the solid at the gas/solid interface can be determined from the following 
equilibrium relationship:

 CA, solid side = SpA, gas side (21.75)
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where S is the solubility of A in the solid material B, units of mol/(m3.Pa), and pA is 
the partial pressure of species A in the gas. Thus, the molar flux of species A through 
material B can be expressed as

 

J
L

SD

A x
A A

AB

,
, ,=

−






p p1 2

 

(21.76)

or,

 

�M
A

L
SD

L
SAD

A
A A

AB

A

AB

=
−







=






( ), ,p p Δp1 2

 

(21.77)

Equation 21.77 indicates that the resistance to diffusional mass transfer is L/(SADAB) 
if the driving force is taken to be difference in partial pressures. The product of solu-
bility (S) and diffusion coefficient (DAB) is referred to as permeability or permeability 
coefficient (P), that is

 P = SDAB (21.78)

The permeability is the flux per unit pressure gradient, often expressed in units of 
Barrers (1 Barrer = 10−10 cm3 (STP)/[(cm2.s)(cmHg/cm)]). It reflects the combination 
of solubility and diffusion characteristics of species A in material B. The resistance 
to diffusional mass transfer can now be expressed as L/PA provided that the driving 
force for mass transfer is taken to be the difference in partial pressures of species A 
on the two sides of material B.

21.6.2.2  Steady-State Diffusion in Cylindrical Geometry
Consider a solid cylindrical shell of material B with inner and outer radii r1 and r2, 
respectively. Gaseous species A is diffusing through the shell in the radial direction. 
Let ρA,1 be the mass concentration of species A inside the cylindrical solid at r = r1 
and let ρA,2 be the mass concentration of A inside the cylindrical solid at r = r2. At 
steady state, the concentration distribution of A within B is given by Equation 21.64 
as

 

d
dr

r
d
dr

Aρ





= 0
 

(21.79)

 

ρ ρ
ρ ρ

A A
A A
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r

r
r

= +
−
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(21.80)
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From Equation 21.63, the mass flux of A is given as
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Thus, the concentration distribution of species A is nonlinear (see Equation 21.80) 
and the mass flux of A decreases with the increase in r. Note that with the increase 
in r, the area of mass transfer increases and consequently, the mass flux decreases for 
the same mass transfer rate ( �mA = constant, at steady state). Similar results can be 
obtained in terms of molar units. From Equation 21.66
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where CA,1 is the molar concentration of A within B at r = r1 and CA,2 is the molar 
concentration of A within B at r = r2. The molar flux of species A is given as
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The resistance to diffusional mass transfer in cylindrical geometry is
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where L is the length of the cylindrical shell. Using the equilibrium relationship 
Equation 21.75, the molar flux can also be expressed as
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where pA,1 is the partial pressure of species A in the gas phase at gas/liquid interface 
(at r = r1) and pA,2 is the partial pressure of species A in the gas phase at gas/solid 
interface (at r = r2).

21.6.2.3  Steady-State Diffusion in Spherical Geometry
For gaseous species A diffusing through a solid spherical shell of material B, 
Equation 21.64 reduces to
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where ρA,1 is mass concentration of species A within material B at gas/solid interface 
(at r = r1) and ρA,2 be the mass concentration of A in B at gas/solid interface (at r = r2). 
From Equation 21.63, the mass flux of A is
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Thus, the concentration distribution of species A is nonlinear (see Equation 21.89) 
and the mass flux of A decreases with the increase in r due to an increase in the mass 
transfer area at constant mass transfer rate ( �mA = constant, at steady state). In terms 
of molar units, Equation 21.66 gives
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where CA,1 is the molar concentration of A within B at r = r1 and CA,2 is the molar 
concentration of A within B at r = r2. The molar flux of species A is
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The resistance to diffusional mass transfer in a spherical geometry is
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The molar flux of species A in terms of partial pressures of A can be obtained 
using Equation 21.75. Thus,
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where P is the permeability of A in B, given as SDAB.

21.6.3  diffusion of spEciEs a through stagnant B (dilutE 
Binary systEm with chEmical rEaction)

Many processes of practical interest involve the simultaneous diffusion of a chemi-
cal species and the consumption or generation of the same species through a chemi-
cal reaction. In such situations, the mass balance equations in terms of mass and 
molar units are as follows:
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Since
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Equations 21.97 and 21.98 can be rewritten as follows provided that DAB is constant:

 

∂
∂

= ∇ +ρ ρA
AB A At

D r2

 
(21.101)

 

∂
∂

= ∇ +C
t

D C RA
AB A A

2

 
(21.102)

As an example of the application of these equations, consider a plane layer 
of organic matter of thickness L. The oxygen is diffusing through the organic 
matter. The oxygen is also being consumed in the organic matter by biochemical 
reactions (say by bacteria that is uniformly distributed in the organic matter). The 
consumption of oxygen depends on the local concentration of oxygen and can be 
expressed as RA = −kCA (mol/s.m3). Let CA,0 and CA,L be the molar concentrations 
of oxygen in the organic matter at x = 0 and x = L, respectively. Assuming that 
CA,0 and CA,L are constant (independent of time), we can determine the concen-
tration distribution of oxygen in the organic matter by solving Equation 21.102. 
Thus,
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Equation 21.103 needs to be solved subject to the boundary conditions: at x = 0, 
CA = CA,0 and at x = L, CA = CA,L. The solution is as follows:

 

C
C e e C e

A
A

k D L x k D L x
A L

k DAB AB

=
−( ) +−( ) − ( ) − −

,
/ ( ) / ( )

,
/

0
AAB AB

AB AB

x k D x

k D L k D L

e

e e

( ) ( )
−( ) ( )

−( )
−( )

/

/ /
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21.6.4  diffusion of spEciEs a through stagnant B 
(nondilutE Binary systEm)

When the concentration of the diffusing species is not small, the bulk or advective 
effects cannot be neglected. In a binary system, where A is diffusing through stag-
nant B, the absolute mass and molar fluxes of A are given as
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Considering only the molar quantities and one-dimensional diffusion, Equation 
21.106 can be rewritten as

 
N x CD

dx
dyA y A AB

A
, 1−( ) = −





  

(21.107)

where NA,y is the absolute molar flux of A in the direction of mass transfer (y-direction). 
Assuming steady state (NA,y = constant), and constant C (total concentration of mix-
ture), and constant DAB, Equation 21.107 can be integrated over the diffusion zone 
of thickness L:
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where xA,0 is the mole fraction of species A at y = 0 and xA,L is the mole fraction of 
species A at y = L. Equation 21.108 gives
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Upon rearrangement, Equation 21.109 can be expressed as
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where (xB)lm is log mean mole fraction of B, defined as
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If species A and B are ideal gases (at low pressures, gases can be treated as ideal 
gases), it follows that
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Thus, Equation 21.109 can be rewritten as
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21.6.5  transiEnt diffusion

In steady-state analysis of mass diffusion considered in the preceding sections, the 
concentration and flux are independent of time. Now transient mass diffusion is con-
sidered where the concentration and flux vary with both location and time.

Consider a semi-infinite body of material B. This body is exposed to an environ-
ment consisting of species A. Species A diffuses into the semi-infinite body. We are 
interested in concentration distribution of species A in the body as a function of time, 
given that

 ρA(x, t = 0) = ρA,i (21.115)

 ρA(x = 0, t) = ρA,s (21.116)

 ρA(x → ∞, t) = ρA,i (21.117)

Equation 21.115 represents the initial condition that the mass concentration of 
species A in the body is uniform at t = 0, Equation 21.116 is the surface boundary 
condition that the concentration of species A within the body at the surface is con-
stant, and Equation 21.117 represents the second boundary condition that far away 
from the surface, the concentration of species A in the body is the same as initial 
concentration.

The equation governing the concentration distribution is Equation 21.64 provided 
that DAB is constant and ωA ≪ 1. Thus
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Equation 21.118 needs to be solved subject to the initial and boundary conditions 
specified in Equations 21.115 through 21.117. The solution is as follows:
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where “erf” refers to error function. If ρA,i = 0, Equation 21.119 reduces to
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These results can be applied to several problems of practical interest.
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22 Diffusion Mass 
Transfer in Composite 
Membranes

22.1  PARTICULATE-FILLED POLYMER COMPOSITE MEMBRANES

Particulate-filled polymer composite membranes are two-phase heterogeneous 
membranes consisting of filler particles dispersed uniformly or randomly in a poly-
mer matrix [1]. The incorporation of filler particles to the polymer matrix can reduce 
or enhance the permeation of species through the membrane depending upon the 
permeability of the species in the filler particles. In some practical applications, it 
is desirable to reduce the permeability of a species through the membrane (barrier 
membranes) whereas in other applications, it is important to increase the perme-
ability of a species (mixed matrix membranes). Barrier membranes with reduced 
permeability are widely used in the packaging industry [2,3]. They are also used as 
anticorrosive coatings [4–6]. Mixed matrix membranes (MMMs), on the other hand, 
are designed to have high permeability and high permselectivity for a species of 
interest. They are composed of porous “molecular sieve type” inorganic fillers and 
polymeric matrix and are very effective in the separation of gaseous mixtures [7–19]. 
Particulate-filled polymer composite membranes are finding applications in polymer 
electrolyte membrane (PEM) fuel cells as well [20]. In the PEM fuel cells, the proton 
permeability and the mechanical strength of polymer electrolyte membrane could be 
improved significantly by filling the polymer matrix with inorganic particles of high 
proton permeability.

To make efficient use of the particulate-filled polymer composite membranes, 
the variation of permeability of a penetrant with the kind and concentration of filler 
materials should be known. Knowledge of the permeabilities of different penetrants 
is required for the design and operation of composite membrane based separation 
processes.

22.1.1  Background

According to the solution–diffusion model of permeation, the mechanism of perme-
ation of a species through the dense membrane consists of three steps: (1) adsorption 
of the permeating species from the feed stream onto the membrane surface, (2) diffu-
sion of species through the membrane, and (3) desorption of the permeating species 
into the product stream.
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The permeation of a species through a stationary medium (membrane) is gov-
erned by the following Fick’s law of diffusion provided that the concentration of the 
diffusing species A is small:

 
�
N P p= − ∇  (22.1)

where 
�
N is the absolute molar flux of a diffusing species, P is the permeability of the 

membrane for the species, and ∇p is the gradient in partial pressure of the species 
diffusing through the membrane. The permeability of a membrane is a measure of its 
ability to permeate (pass or transfer) a species through it. When P = 0 for a particular 
molecular species, the membrane is impermeable to that species meaning the species 
under consideration cannot pass through the membrane. The higher the P, the faster 
the rate of the mass transfer of species for a given pressure gradient.

In the case of one-dimensional permeation in the x-direction, Fick’s law reduces 
to

 N P
p p

L
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1 2  (22.2)

where L is the membrane thickness, p1 is the partial pressure of permeating species 
on the feed side, and p2 is the partial pressure of permeating species on the product 
side.

As noted in Chapter 21, the permeability of a species in the membrane is the 
product of its diffusion coefficient D and solubility S, that is

 P = D × S (22.3)

The solubility of the species in the filled polymer membrane is given as

 S = ϕSd + (1 − ϕ)Sm (22.4)

where Sd and Sm are the solubilities of the species in the dispersed and matrix phases  
and ϕ is the filler volume fraction. From Equations 22.3, 22.4, and the relation

 Pm = Dm × Sm (22.5)

it follows that
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Thus, one can estimate the diffusion coefficient of a species in the membrane 
from Equation 22.6, once the permeability is known.
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When the solubilities of a species in the dispersed phase and matrix, Sd and Sm, 
are equal, Equation 22.6 gives
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=  (22.7)

In the case of filler particles with negligible solubility for the species, Sd → 0 and
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The addition of filler particles to a polymer matrix alters the permeability of a 
species in at least two ways: (1) the addition of fillers increases the tortuosity of the 
diffusion path and (2) the solubility of the penetrant is altered due to replacement of 
polymer matrix with filler particles.

22.1.2  pErmEation modEls for particulatE-fillEd 
polymEr compositE mEmBranEs

As there exists a close analogy between electrical/thermal conduction phenomenon 
and permeation of species through membranes, the equations derived for the electri-
cal/thermal conductivity of a heterogeneous system can be applied directly to the 
permeation of species through filled composite membranes by replacing the conduc-
tivity with the membrane permeability.

The simple rules of mixtures applicable to electrical/thermal conduction could 
also be applied to permeability of a species through a particulate-filled composite 
membrane. Thus,

 P = ϕPd + (1 − ϕ)Pm (22.9)

 
1 1
P P Pd m

= + −φ φ
 (22.10)

 log P = ϕ log Pd + (1 − ϕ) log Pm (22.11)

Equation 22.9 is the Voigt rule of mixtures which gives the upper bound of per-
meability. Equation 22.10 is the Reuss rule of mixtures which gives the lower bound 
of permeability. Equation 22.11 is the Lichtenecker logarithmic rule of mixtures for 
permeability.

The Maxwell model [21], originally developed for the electrical conductivity of 
particulate-filled composites, can be adapted to permeability as
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where Pr is the relative permeability of species, P is the effective permeability of spe-
cies in membrane, Pm is the permeability of species in the matrix (continuous phase), 
ϕ is the volume fraction of the filler particles, and λdm is the permeability ratio Pd/Pm 
(Pd is the permeability of species in dispersed phase).

The Maxwell model generally describes the permeability well when ϕ is less than 
about 0.2. At higher values of ϕ, significant deviations are expected between the 
predictions of Equation 22.12 and actual values. Also, the Maxwell model fails to 
predict the correct behavior at ϕ → ϕm, where ϕm is the maximum packing volume 
fraction of filler particles. Note that at ϕ = ϕm, the relative permeability Pr is expected 
to diverge especially for filled composite membranes with permeability ratio λdm → 
∞. Furthermore, the Maxwell model does not account for particle size distribution, 
particle shape, and aggregation of particles.

The Bruggeman model [22], originally developed for the dielectric constant of 
particulate-filled composites, can be adapted to permeability as
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 = − −  (22.13)

The Bruggeman model was developed using the differential effective medium 
approach. While the Bruggeman model is an improvement over the Maxwell model, 
as far as the effect of ϕ is concerned, it has limitations similar to that of the Maxwell 
model, that is, it does not give the correct behavior at ϕ → ϕm. Also, it does not 
account for particle size distribution, particle shape, and aggregation of particles.

The Lewis–Nielsen model [23,24], originally proposed for the elastic modulus of 
particulate composites, can be adapted to permeability [19] as
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where
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and ϕm is the maximum packing volume fraction of filler particles (ϕm is 0.64 for 
random close packing of uniform spheres).

The Lewis–Nielsen model, Equation 22.14, gives the correct behavior at ϕ → ϕm. 
As expected, the relative permeability Pr at ϕ = ϕm diverges when the permeability 
ratio λdm → ∞. As ϕm is sensitive to particle size distribution, particle shape, and 
aggregation of particles, the Lewis–Nielsen model does take into account the effects 
of morphology on permeability. Also note that when ϕm → 1, the Lewis–Nielsen 
model reduces to the Maxwell model (Equation 22.12).
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The Pal model [25], originally developed for the thermal conductivity of particu-
late composites, can be adapted to permeability as
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The Pal model was developed using the differential effective medium approach 
taking into consideration the packing difficulty of filler particles. Note that when 
ϕm → 1, the Pal model reduces to the Bruggeman model (Equation 22.13). The Pal 
model, like the Lewis–Nielsen model, gives the correct behavior at ϕ → ϕm. It also 
takes into account the effects of morphology on permeability through the parameter 
ϕm (ϕm is known to be sensitive to morphology).

22.1.3  EffEcts of intErfacial layEr

The models discussed in the preceding section assume ideal contact between the filler 
particles and matrix. More often than not, the contact between the particles and matrix 
phase is defective; for example, dewetting of polymer chains from the filler surface 
often occurs resulting in void space between the two phases (filler and matrix). It is also 
possible that the polymer molecules in direct contact with the filler surface become 
somewhat rigidified in comparison to the bulk polymer molecules [9,11]. Thus, the per-
meability of a species in the interfacial region surrounding the filler particles is often 
significantly different from the permeability in the bulk polymer matrix.

The influence of interfacial layer on the permeability of species in composite 
membranes has been investigated by Mahajan and Koros [18]. The permeability of 
species in three-phase composite membranes (the three phases being bulk matrix, 
interfacial layer, and filler particles) can be modeled using a two-step approach. In 
the first step, the Maxwell equation (Equation 22.12) for two-phase composites is 
applied to determine the permeability of species in a single core-shell particle con-
sisting of filler as core and interfacial layer as shell. The interfacial layer is treated 
as matrix with respect to the filler core particle. In the second step, the core-shell 
particles are treated as “homogeneous” particles of permeability obtained from the 
first step. The Maxwell model is applied once again to determine the permeability of 
three-phase composite membrane. Thus,
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where ϕ is the volume fraction of total dispersed phase (filler core particles plus 
interfacial layers) and Peff is the effective permeability of the core-shell particle (filler 
core particle plus interfacial layer) given as
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where ϕc is the volume fraction of filler core particle in the combined volume of core 
and interfacial shell, Pd is the permeability of core particle and PI is the permeability 
of the interfacial shell.

The modified Maxwell model, Equations 22.17 and 22.18, has the same limitations 
as observed in the case of the Maxwell model (Equation 22.12). It is valid for low volume 
fractions of core-shell particles. It is expected to exhibit significant deviation from the 
actual behavior at high values of ϕ, especially when ϕ → ϕm, where ϕm is the maximum 
packing volume fraction of core-shell particles. Also the modified Maxwell model does 
not account for particle size distribution, particle shape, and aggregation of particles.

Using a self-consistent field concept, Felske [26] recently developed an expression 
for the thermal conductivity of composites of core-shell particles (core particle cov-
ered with interfacial layer). The Felske thermal conductivity model, when adapted to 
permeability [19], can be written as
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where β and γ are given as

 β δ δ δ λ δ λ= + − − = + − −( ) ( )
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 γ = 1 + 2δ3 − (1 − δ3)(Pd/PI) = 1 + 2δ3 − (1 − δ3)λdl (22.21)

δ is the ratio of outer radius of interfacial shell to core radius, ϕ is the volume fraction 
of core-shell particles (volume fraction of total dispersed phase, filler core particles 
plus interfacial layers), PI is the permeability in the interfacial shell, Pd is the perme-
ability in filler core particle, Pm is the permeability in matrix, λdm is the permeability 
ratio Pd/Pm, λIm is the permeability ratio PI/Pm, and λdI is the permeability ratio Pd/PI.

The Felske model gives almost the same predictions as the modified Maxwell model 
(Equations 22.17 and 22.18). Also, the Felske model reduces to the Maxwell model 
(Equation 22.12) when δ = 1, that is, when the interfacial layer is absent.

The Felske model, although somewhat simpler than the modified Maxwell model, 
Equations 22.17 and 22.18, has the same limitations as that of the modified Maxwell 
model. It is valid only when the volume fraction of core-shell particles (ϕ) is small. Like 
the modified Maxwell model, it is expected to exhibit significant deviation from the 
actual behavior at high values of ϕ, especially when ϕ → ϕm. Also the Felske model does 
not account for particle size distribution, particle shape, and aggregation of particles.

To account for the morphology and packing difficulty of particles, Pal [19] has 
recently proposed the following model:
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where β and γ are given by Equations 22.20 and 22.21, respectively and ψ is given 
by Equation 22.15 in terms of ϕm (maximum packing volume fraction of core–shell 
particles). In the limit ϕ → ϕm, this Pal–Felske model, Equation 22.22, gives the 
correct behavior. When ϕm = 1, the model reduces to the Felske model (Equation 
22.19). When δ = 1, the model reduces to the Lewis–Nielsen model (Equation 22.14). 
Also, when δ = 1 and ϕm = 1, the Pal–Felske model reduces to the Maxwell model 
(Equation 22.12).

The selectivity (also referred to as permselectivity) of a membrane, denoted as 
αAB, is defined as the ratio of permeability of component A in the membrane (PA) to 
permeability of component B in the membrane (PB):

 αAB
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Using the Pal–Felske model (Equation 22.22), the relative selectivity αAB,r can be 
expressed as
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where αAB,m is the selectivity of the matrix, PAm and PBm are the permeabilities of spe-
cies A and B in the matrix, respectively, and βA, γA, βB, γB are defined as

 β δ δ δ λ δ λA
Ad AI

Am
A dm

P P
P

= + − − = + − −( ) ( )
( ) ( ),

2 2 1
2 2 1

3 3
3 3

AA,Im  (22.25)

 γA = 1 + 2δ3 − (1 − δ3)(PAd/PAI) = 1 + 2δ3 − (1 − δ3)λA,dI (22.26)

 β δ δ δ λ δ λB
Bd BI

Bm
B dm

P P
P

= + − − = + − −( ) ( )
( ) ( ),

2 2 1
2 2 1

3 3
3 3

BB,Im  (22.27)

 γB = 1 + 2δ3 − (1 − δ3)(PBd/PBI) = 1 + 2δ3 − (1 − δ3)λB,dI (22.28)

where PAd and PAI are the permeabilities of species A in dispersed phase (filler core 
particle) and interfacial shell, respectively; PBd and PBI are the permeabilities of spe-
cies B in dispersed phase (filler core particle) and interfacial shell, respectively; 
λA,dm, λA,Im, λA,dI, λB,dm, λB,Im, and λB,dI are the various permeability ratios for species 
A and B defined as λA,dm = PAd/PAm; λA,Im = PAI/PAm; λA,dI = PAd/PAI; λB,dm = PBd/PBm; 
λB,Im = PBI/PBm; and λB,dI = PBd/PBI.
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22.1.3.1  Predictions of the Pal–Felske Model
According to the Pal–Felske model (Equation 22.22), the relative permeability of a 
species in particulate-filled composite membranes (particles with interfacial layers) 
can be expressed as [19]

 Pr = f(δ, λIm, λdI, ϕ, ϕm) (22.29)

Note that λdm = λIm λdI.
Figure 22.1 shows the relative permeability predicted from the model for different 

values of filler volume fraction (ϕ). Note that ϕ is the volume fraction of core plus 
shell particles. The plots are generated from Equation 22.22 under the conditions: 
δ = 4/3, λdI = 100, ϕm = 0.64. At a fixed value of ϕ, the relative permeability (Pr) 
remains constant initially with the increase in the permeability ratio λIm. In the range 
10−2 < λIm < 100, Pr increases with the increase in λIm. At higher values of λIm (λIm > 
100), Pr again becomes constant (independent of λIm). Interestingly, Pr is less than 
unity for small values of λIm and Pr is greater than unity when λIm is large. For low 
values of λIm, Pr decreases with the increase in ϕ. For large values of λIm, Pr increases 
with the increase in ϕ.

Figure 22.2 shows the relative permeability Pr versus permeability ratio λIm plots 
for different values of radii ratio δ (δ is the ratio of outer radius of the shell to radius 
of the core). The plots are generated from the Pal–Felske model (Equation 22.22) 
under the conditions: ϕ = 0.55, ϕm = 0.64, and λdI = 1000. The radii ratio δ, and hence 
the thickness of the interfacial layer, has a strong influence on the relative perme-
ability, especially in the intermediate range of permeability ratio λIm ; at very low and 
very high values of λIm, Pr of the membrane is independent of the radii ratio δ. In the 
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FIGURE 22.1 Relative permeability (Pr) versus permeability ratio (λIm) behavior predicted 
by the Pal–Felske model (Equation 22.22) under the conditions δ = 4/3, λdI = 100, and ϕm = 
0.64. Note that λIm is the ratio of interfacial shell permeability to matrix permeability, λdI is 
the ratio of filler core particle permeability to interfacial shell permeability, and δ is the ratio 
of outer radius of interfacial shell to radius of filler core particle. (From Pal, R., J. Colloid 
Interf. Sci. 317: 191–198, 2008.)
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intermediate range of λIm, Pr decreases with the increase in δ or the shell thickness 
of the core-shell particle.

The effect of permeability ratio λdI on Pr versus λIm behavior of filled composite 
membranes is shown in Figure 22.3, under the conditions: ϕ = 0.55, ϕm = 0.64, δ = 
4/3. With the increase in λdI (permeability of core material divided by permeabil-
ity of shell material), the relative permeability Pr of a filled composite membrane 
increases for intermediate values of λIm (10−2 < λIm < 100).

Figure 22.4 shows the plots of selectivity αAB versus permeability PA predicted 
from the Pal–Felske model. The top graph of Figure 22.4 is generated under the 
conditions: PAm = 10, PAd = 45, PAI = 4.5, PBm = 1, PBd = 1, PBI = 0.1, and ϕm = 0.64. 
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FIGURE 22.2 Relative permeability (Pr) versus permeability ratio (λIm) plots for different 
values of radii ratio δ under the conditions ϕ = 0.55, ϕm = 0.64, and λdI = 1000. (From Pal, R., 
J. Colloid Interf. Sci. 317: 191–198, 2008.)
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FIGURE 22.3 Effect of permeability ratio λdI (ratio of filler core particle permeability to 
interfacial shell permeability) on the Pr versus λIm behavior under the conditions ϕm = 0.64, 
and δ = 4/3. (From Pal, R., J. Colloid Interf. Sci. 317: 191–198, 2008.)
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This case corresponds to rigidified matrix layer as the interfacial layer surrounding 
the particles. The bottom graph of Figure 22.4 is generated under the conditions: 
PAm = 10, PAd = 45, PAI = 1000, PBm = 1, PBd = 1, PBI = 1000, and ϕm = 0.64. This case 
corresponds to void space as the interfacial layer surrounding the particles. Clearly 
the performance of the membrane is sensitive to the thickness of the interfacial layer 
(radii ratio δ). For the case where the interfacial layer is rigidified (top graph of 
Figure 22.4) the selectivity and permeability both increase with the increase in ϕ 
when δ is close to unity. The performance of the filled composite membrane deterio-
rates with the increase in δ, that is, for the same selectivity αAB, lower permeability 
PA is achieved. For the case where the interfacial layer is void space (bottom graph 
of Figure 22.4), a dramatic change in the membrane performance occurs even when 
the interfacial layer is very thin (δ close to 1); when δ = 1 (ideal contact, no interfa-
cial layer) αAB and PA both increase with the increase in the concentration of filler 
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FIGURE 22.4 Plots of selectivity αAB versus permeability PA predicted by the Pal–Felske 
model. (From Pal, R., J. Colloid Interf. Sci. 317: 191–198, 2008.)
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particles (ϕ). For the same permeability PA, a large decrease in selectivity αAB occurs 
when voids are present at the interface of the filler particles.

22.1.3.2  Comparison of Model Predictions with Experimental Data
Figure 22.5 shows comparison between experimental relative permeability data 
(Set 1 [14]) on mixed matrix membranes and predictions of the Pal–Felske model 
[19]. The matrix material (6 FDA-6FpDA-DABA) is a polymer–glassy polyimide. 
The volume fraction of the filler core particles (ZSM-2 Zeolite) is fixed at 0.16. The 
permeability ratio λdm (ratio of filler core particle permeability to matrix perme-
ability) is varied from 0.0132 to 4 by using five different gases (He, O2, N2, CH4, and 
CO2). The maximum packing volume fraction of particles is taken to be 0.64, cor-
responding to random close packing of uniform spheres. Clearly the model describes 
the experimental data very well. The value of δ is unity indicating that the contact 
between the particles and the matrix is defect free.

Figure 22.6 compares model predictions and experimental permeability data (Set 2 
[15]), for Matrimid 5218/Carbon molecular sieves (CMS) system. The mixed matrix 
membranes consisting of carbon molecular sieves as filler particles and Matrimid 
5218 (thermoplastic polyimide) as matrix were studied by Vu et al. [15] for CO2/CH4 

separation. The experimental data are plotted as relative selectivity αAB,r and relative 
permeability PA,r (here A refers to CO2) versus volume fraction of filler core particles. 
As can be seen, the experimental data can be described reasonably well by the Pal–
Felske model using the following values of the parameters: ϕm = 0.64, δ = 1.1, PAI = 
3.333 Barrers, and PBI = 0.035 Barrers. As δ > 1.0 and PAI < PAm and PBI < PBm, the 
filler particles are surrounded by a thin interfacial layer of rigidified matrix material.

Vu et al. [15] investigated mixed matrix membranes of Matrimid 5218/Carbon 
molecular sieves (CMS) type for O2/N2 separation. Their experimental data for rela-
tive selectivity αAB,r and relative permeability PA,r (here A refers to O2) are plotted 
in Figure 22.7. The model predictions are also shown. There is a good agreement 
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FIGURE 22.5 Comparison between experimental relative permeability data (Set 1) and 
prediction of the Pal–Felske model. (From Pal, R., J. Colloid Interf. Sci. 317: 191–198, 2008.)
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between model predictions and experimental data (Set 3 [15]). The values of the 
relevant parameters are as follows: ϕm = 0.64, δ = 1.1, PAI = 0.73 Barrers, and PBI = 
0.09 Barrers. As δ > 1.0 and PAI < PAm and PBI < PBm, the filler CMS particles are sur-
rounded a thin interfacial layer of rigidified matrix material.

Figure 22.8 compares model predictions and experimental permeability data 
(Set 4 [16]) for poly(vinyl acetate)/Zeolite 4A system. Mixed matrix membranes 
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FIGURE 22.6 Comparison between model predictions and experimental data (relative 
 permeability and relative selectivity data) of Set 2. Note that PAm = 10, PAd = 44, PAI = 3.333, 
PBm = 0.28, PBd = 0.22, and PBI = 0.035. The permeabilities are in Barrers. (From Pal, R., 
J. Colloid Interf. Sci. 317: 191–198, 2008.)
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consisting of Zeolite 4A filler particles and poly(vinyl acetate) matrix were studied 
by Mahajan and Koros [16] for O2/N2 separation. The model describes the experi-
mental αAB,r and PA,r (here A refers to O2) data satisfactorily, with the following 
values of the relevant quantities: ϕm = 0.64, δ = 1.02, PAI = 0.01 Barrers, and PBI = 
0.00001 Barrers. It appears that the filler particles are covered by a thin interfacial 
layer of rigidified matrix almost impermeable to species B.
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Mahajan and Koros [18] also investigated mixed matrix membranes of BAPB-
BPADA/Zeolite 4A type for O2/N2 separation. The matrix material (BAPB-BPADA) 
was a polymer–polyimide. Figure 22.9 compares model predictions with the experi-
mental data (Set 5 [18]). The model describes the experimental αAB,r and PA,r (here 
A is O2) data reasonably well, with the following values of the relevant quantities: 
ϕm = 0.64, δ = 1.02, PAI = 0.01 Barrers, and PBI = 0.00001 Barrers. The filler Zeolite 4A 
particles seem to be covered by a thin interfacial layer of rigidified matrix almost 
impermeable to species B.

22.2  POROUS MEMBRANES

Thus far, the discussion has focused on particulate-filled polymer composite mem-
branes consisting of filler particles dispersed in a polymer matrix. Now diffusion 
through porous media and porous membranes is considered. Porous medium is a 
special case of composite material consisting of voids (pores) and solid phase.

Porous membranes have many interesting applications [27–29] including separa-
tion of mixture of gases. One important application of porous membranes is PEM fuel 
cells. Polymer electrolyte membrane (PEM) fuel cells consist of porous membranes 
on both sides of the dense polymer electrolyte membrane. The porous membranes 
are referred to as anode gas diffusion layer (GDL) and cathode GDL. Hydrogen is 
fed on the anode side and air/oxygen is fed on the cathode side. On the anode side, 
hydrogen diffuses through the GDL and reaches the anode catalyst layer where the 
hydrogen molecules are split into hydrogen protons and electrons. The protons then 
diffuse through the PEM whereas the electrons are diverted to the external circuit 
due to poor electrical conductivity of PEM. Meanwhile oxygen diffuses from the 
cathode side towards the cathode catalyst layer where the protons combine with oxy-
gen and electrons to form water.

Both polymer and inorganic porous membranes are widely used in industrial 
applications. Among the polymers utilized for the preparation of porous membranes,  
polyvinylidene fluoride (PVDF) is popular. The inorganic porous membranes are 
made from metals, ceramics, or pyrolyzed carbon [28]. As the porous membranes do 
not have the mechanical strength to form self-supported membranes, macroporous 
supports made of alumina, zirconia, stainless steel, etc., are often used to provide the 
desired strength.

22.2.1  diffusion in porous mEmBranEs and porous mEdia

As compared with diffusion in free stream, diffusion in porous medium is hindered/
reduced by at least two factors: (1) increase in diffusion length due to tortuous pores 
or tortuosity and (2) reduction in diffusion area (cross-sectional area available for 
diffusion) due to obstruction by solid phase.

The molar flux in porous medium is expressed by Fick’s law of diffusion:

 J D
dC
dxA

A= −  (22.30)
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where D is the effective diffusion coefficient of species A in porous medium. The 
ratio of effective diffusion coefficient in porous medium to diffusion coefficient in 
free stream can be expressed as

 
D
Do

= ε
τ

 (22.31)

where Do is the diffusion coefficient of the same species in the absence of solid phase 
(that is, free stream value), ε is the porosity and τ is the tortuosity of the porous 
medium.

Note that in Equation 22.31, ε is the effective porosity. The effective porosity is 
usually less than the actual porosity as some pores are not accessible to solute due to 
their small size (pore size), some are dead end pores, and some are isolated pores or 
blind pores. It is assumed that the diffusion is “molecular diffusion” type meaning 
that diffusion occurs primarily through molecule–molecule collisions. This requires 
the mean free path of molecules to be significantly smaller than the pore size, that 
is, Knudsen diffusion is negligible and the Knudsen number (defined as the ratio of 
mean free path to pore diameter) is less than one. In molecular diffusion, the diffu-
sivity is independent of the pore diameter and pore size distribution. When the mean 
free path of the molecules is larger than the pore size, that is, the Knudsen number 
is greater than one, collision of the molecules with the pore wall are more important 
than molecule–molecule collisions. This type of diffusion is called “Knudsen dif-
fusion.” Now the diffusivity depends on the pore size and pore size distribution. It 
is further assumed that there occurs negligible “surface diffusion.” In surface diffu-
sion, the diffusing solute exhibits a strong affinity for the solid surface and diffuses 
along the pore walls.

Treating porous medium to be a dispersion of solid particles in free space, and 
assuming that the diffusion of mass is analogous to the conduction of electric cur-
rent, the expressions derived for the electrical conductivity of composites could be 
adapted to the mass diffusivity. For example, the Maxwell model for mass diffusivity 
is as follows:
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where Dr is the relative diffusivity of species, D is the effective diffusivity of species 
in membrane, Do is the free diffusivity of species in the absence of solid phase, ϕ is 
the volume fraction of the filler particles, and λDiff is the diffusivity ratio Dd/Do (Dd 
is the diffusivity of species in particles). Likewise, one can write the Bruggeman 
equivalent of mass diffusivity as
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Assuming solid phase to be impermeable, that is, Dd = 0 and substituting ϕ = 1 − ε, 
one can get the following expressions:

 D
D
Dr

o

= =
−







2
3

ε
ε( )

 (22.34)

 
D
Do

= ( ) /ε 3 2  (22.35)

where ε is the porosity. In the limit ε → 1, both expressions give the same values.
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23 Fundamentals of 
Convective Mass Transfer

The transport of some material species (say A) from a high-concentration (CA high) 
to a low-concentration (CA low) region of a fluid in the presence of bulk/macroscopic 
motion of the fluid is referred to as “convective mass transfer.” The transport of 
material species between a boundary surface (solid or liquid) and a fluid moving 
adjacent to the boundary surface when there exists a gradient in concentration of 
species between the fluid and the boundary surface is also an example of “convective 
mass transfer.”

In a convective mass transfer process, mass of some species is transported from 
one region of fluid to another by two mechanisms acting simultaneously. The mecha-
nisms are “molecular diffusion” and “advection” (advection being caused by bulk 
macroscopic motion of fluid).

In many industrial processes, convective mass transport takes place in or around 
composite materials. Therefore, a good understanding of convective mass transfer is 
important in these applications. In this chapter, the basics of convective mass transfer are 
covered. Convective mass transfer in composite materials is covered in the next chapter.

23.1  GOVERNING EQUATIONS

Consider an isothermal nonreacting binary mixture of species A and B. Let the mix-
ture viscosity (η), mixture total mass concentration (ρ), mixture total molar concen-
tration (C), and diffusion coefficient DAB be constant. With these restrictions, the 
governing equations of convective mass transfer can be written as

 ∇ ⋅ =
�
V 0  (23.1)
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where 
�
V is mass average velocity of mixture, CA is molar concentration of species A, �

NA is the absolute molar flux of species A, 
�
V∗ is the molar average velocity of mix-

ture, p is pressure, and 
�
g is acceleration due to gravity. Equation 23.1 is the continuity 

equation for the mixture, Equation 23.2 is the continuity equation for species A, and 
Equation 23.4 is the equation of motion (Navier–Stokes equation) for the mixture.

Combining Equations 23.2 and 23.3 gives

 
∂
∂

= ∇ − ∇ ⋅ ∗ − ∗ ⋅∇C
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D C C V V CA
AB A A A
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 (23.5)

For systems dilute in A: η ≈ ηB, ρ ≈ ρB, C ≈ CB, 
� �
V VB≈  and 

� �
V VB

∗ ≈ , where fluid 
B is the solvent, species A is the solute present at dilute level, and ηB, ρB, and 

�
VB are 

viscosity, density, and velocity of solvent (fluid B), respectively. Thus, the governing 
equations for dilute systems become

 ∇ ⋅ =
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VB 0  (23.6)
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These three equations need to be solved simultaneously in order to determine the 
velocity, pressure, and concentration distribution in the fluid.

23.2  EXTERNAL FLOWS

External flow refers to flow of unbounded fluid over a solid surface. For steady-state 
two-dimensional flow of a Newtonian fluid (with constant properties) over a solid 
surface, the boundary layer mass and momentum equations are
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where Vx and Vy are x and y components of fluid velocity, respectively, V∞ is the free 
stream velocity of the fluid, and ν is the kinematic viscosity (= η/ρ). Equation 23.9 
follows from Equation 23.1 and Equation 23.10 follows from Equation 23.4.
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The concentration boundary layer equation is as follows:
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Equation 23.11 follows from the continuity equation for species A (Equation 

23.5) using the boundary layer approximation that ∂
∂

∂
∂

2

2

2

2

C

y

C

x
A A� . Equations 23.9 

through 23.11 need to be solved, subject to the given boundary conditions, for the 
three unknowns Vx, Vy, and CA.

23.2.1  intEgral analysis of Boundary layEr

In practical problems dealing with convective mass transfer between a solid sur-
face and moving fluid, the quantity of most interest is the mass or molar flux at the 
solid/fluid interface. The following von Karman mass integral expression (given here 
without proof) could be used to determine the molar flux at the solid/fluid interface:
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where NA,W is the absolute molar flux of species A at the solid surface, CA,∞ is the 
free-stream concentration of A, and δc is the thickness of the concentration boundary 
layer. The integral expression (Equation 23.12) is valid for dilute systems with low 
mass transfer rate and small concentration of diffusing species A. It can be used to 
determine the molar flux at the solid/fluid interface provided that both the velocity 
and concentration profiles are known.

23.2.2  mass transfEr coEfficiEnt

For external flows, the diffusional molar flux at the solid/fluid interface (normal to 
the interface) can be expressed in terms of the mass transfer coefficient as

 J k C CA y y c A s A, , ,( )
= ∞= −

0
 (23.13a)

where kc is the mass transfer coefficient, CA,s is the molar concentration of species 
A in the fluid at the fluid/solid interface (y = 0), and CA,∞ is the free-stream molar 
concentration of species A in the fluid. Assuming low mass transfer rate and small 
concentration of diffusing species A, the diffusional flux JA (flux with respect to axes 
moving at molar average velocity) can be equated to the absolute flux NA (flux with 
respect to fixed coordinates). Therefore, one can write:

 N N k C CA y y A w c A s A, , , ,( )
= ∞= = −

0
 (23.13b)
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At the fluid/solid interface, the molar flux normal to the interface is also given by 
Fick’s law of diffusion:
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From Equations 23.13 and 23.14, it follows that
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23.2.2.1  Laminar Flow over Flat Plate
Consider laminar flow over a solid flat plate. The concentration of species A in the 
fluid at the fluid/solid interface (y = 0) is CA,s. The free-stream concentration of A 
(y > δc) is CA,∞. The velocity profile for laminar flow over a flat plate is given as
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where δ is the hydrodynamic boundary layer thickness. From momentum integral 
analysis, it is found that
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where x is the distance from the leading edge of the plate and Rex is the local 
Reynolds number defined as ρV∞x/η. The concentration profile can be assumed to be 
a four term polynomial as

 CA − CA,s = a + by + cy2 + dy3 (23.18)

The constants in Equation 23.18 can be obtained from the boundary conditions:

 y = 0, CA − CA,s = 0 (23.19)

 y = δc, CA − CA,s = CA,∞ − CA,s (23.20)
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y
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The last boundary condition follows from the concentration boundary layer equa-
tion (Equation 23.11) as Vx(∂CA/∂x) = 0 and Vy(∂CA/∂y) = 0 at y = 0. Note that CA,s 
is assumed to be constant. Using the boundary conditions (Equations 23.19 through 
23.22), it can be easily shown that
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To utilize the mass integral expression (Equation 23.12) knowledge of both veloc-
ity and concentration distribution is required. Assuming that δc < δ, the velocity 
distribution in concentration boundary layer is given by Equation 23.16. Substitution 
of concentration distribution (Equation 23.23) and velocity distribution (Equation 
23.16) into the integral expression (Equation 23.12) and carrying out the integration 
yields the following result:
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Using Equations 23.15, 23.17, 23.23, and 23.24, it can be shown that
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k x
D

Scx
c

AB
x= = 0 331 1 2 1 3. (Re ) / /  (23.25)

where Sc is the Schmidt number, defined as ν/DAB, Shx is the local Sherwood num-
ber, and Rex is the local Reynolds number.

These results (Equations 23.24 and 23.25) are valid for Sc > 0.60 and they are 
very close to exact solution of the boundary layer equations (Equations 23.9 through 
23.11). The exact solution gives
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Using Equation 23.27 and the following friction factor equation for laminar flow 
over a flat plate
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it can easily be shown that

 St Sc
f

m
2 3

2
/ =  (23.29)

where Stm is the mass transport Stanton number, defined as

 St
Sh

Scm =
Re

 (23.30)

Equation 23.29 is referred to as the Chilton–Colburn analogy between mass transfer 
and momentum transfer. It is valid for Sc > 0.6.

23.2.2.2  Turbulent Flow over Flat Plate
The local friction factor in turbulent flow over a flat plate is given by the following 
empirical equation:

 f
x

= 0 0592
1 5

.

Re /  (23.31)

The mass transfer coefficient in turbulent flow over a flat plate can be determined 
from the Chilton–Colburn analogy (Equation 23.29) using the above friction factor 
relation. Thus,

 Sh
k x
D

Scx
c

AB
x= = ( )0 0296 4 5 1 3. Re / /  (23.32)

23.2.3  othEr ExtErnal flows

In the preceding section, forced convective mass transfer from a flat plate was cov-
ered. Another commonly encountered geometry in convective mass transfer applica-
tions is a solid cylinder. Consider mass transfer from a solid cylinder into fluid which 
is flowing normal to the axis of the cylinder. This type of mass transfer problem 
could be encountered in sublimation of solid into the moving fluid. Other applica-
tions may involve mass transfer of some species present at the surface of cylinder in 
the form of a coating.

Bedingfield and Drew [1] developed the following correlation for mass transfer 
from solid cylinder into gas flowing normal to the axis of the cylinder:

 Sh
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where D is diameter of the cylinder, and ReD is the Reynolds number based on cyl-
inder diameter (= ρDV∞/η). This correlation is valid for 400 < ReD < 25,000 and 
0.6 < Sc < 2.6. For liquids the following correlation of Linton and Sherwood [2] 
could be used

 Sh
k D
D

Scc

AB
D= = ( )0 281 0 6 1 3. Re . /  (23.34)

This correlation is valid for 400 < ReD < 25,000 and Sc < 3000.

23.3  INTERNAL FLOWS

Consider a cylindrical tube (radius R) whose surface is coated with some material 
(species A) that can dissolve and diffuse into the fluid moving inside the tube. The 
molar flux of species A at the fluid/solid interface (r = R) can be expressed in terms 
of the mass transfer coefficient as

 NA,w = kc(CA,s − CA,m) (23.35)

where CA,s is the molar concentration of species A in the fluid at the fluid/wall inter-
face (r = R), and CA,m is the mean concentration of species A in the fluid over a given 
cross section:
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where V
_
 is the average velocity and Vz is the local velocity. At the pipe wall, the molar 

flux normal to the solid surface can also be expressed as
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Note that we are neglecting bulk contribution to NA,y at the solid surface, that 
is, C V JA y A y

∗ � ,  at the interface (Vy
∗ is the y-component of molar average velocity). 

From Equations 23.35 and 23.37, it follows that
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Thus, the mass transfer coefficient in internal flow can be obtained if both concentra-
tion and velocity distributions are known.
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From material balance over a differential section of the tube, it can be readily 
shown that

 N k CA c A lm= ( )Δ  (23.39)

where NA is the average molar flux of A over the entire length of the tube, kc is the 
average mass transfer coefficient, and (∆CA)lm is the log-mean concentration differ-
ence of A defined as
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In Equation 23.40, ∆CA,1 = CA,s − CA,1, ∆CA,2 = CA,s − CA,2, and CA,1 and CA,2 are 
average inlet and outlet concentrations of species A. The average mass transfer coef-
ficient kc in Equation 23.39 is given as
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where kc is the local mass transfer coefficient and L is the length of the tube.

23.3.1  laminar flow

For hydrodynamically fully developed laminar flow in a pipe, the velocity distribu-
tion is given as
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where Vz is the local velocity in axial direction, and Vmax is the maximum velocity 
at the centerline (r = 0). The equation of continuity for species A under steady-state 
laminar flow conditions (see Equation 23.5) can be expressed as
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Therefore, for hydrodynamically fully developed laminar flow the concentration 
distribution is given by the following equation:
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(23.44)

This equation needs to be solved subject to the given boundary conditions.
As an example, consider the case where the wall concentration of species A is 

constant (CA,s = constant) and the flow is hydrodynamically and concentration-wise 
fully developed. Note that concentration-wise fully developed flow is characterized 
by the following condition:
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Under these restrictions, the solution to Equation 23.44 yields the following result:
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where D is the pipe diameter. For hydrodynamically fully developed but concentration- 
wise developing flows, the solution to Equation 23.44 (assuming constant wall con-
centration) can be expressed in the following form:
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where Gzm is Graetz number for mass transfer, defined as
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where Re is the Reynolds number for pipe flow = ( / )ρ ηVD . For the calculation of 
average mass transfer coefficient ( )kc  or average Sherwood number ( )Sh , the follow-
ing Hausen correlation is often used:
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The combined entry length problem where the flow is hydrodynamically and 
concentration-wise developing is much more difficult to solve as velocity and con-
centration both depend on r as well as z. For the estimation of the average Sherwood 
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number in the case of combined entry length problem dealing with laminar flow 
through a pipe (assuming constant wall concentration), the following correlation is 
recommended:
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23.3.2  turBulEnt flow

The mass transfer coefficient in fully developed turbulent flows can be determined 
from the Chilton–Colburn analogy (Equation 23.29) provided that the friction factor 
relationship is known. For smooth pipes, the friction factor in turbulent flow can be 
calculated from the following empirical relation:
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(23.51)

This equation can be applied over the Reynolds number range of 2 × 104 to 106. 
Substitution of Equation 23.51 into Equation 23.29 results in the following equation 
for Sherwood number:
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This equation is valid for Sc > 0.5.
The modified versions of Equation 23.52 have been proposed in the literature. For 

example, Gilliland and Sherwood [3] proposed the following correlation based on 
experimental data on vaporization of different liquids (wetting the inner surface of 
the pipe) into air flowing through the tube:
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where p is the total pressure of the system and pB,lm is the log-mean partial pressure 
of the carrier gas, given as
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where pB,1 and pB,2 are partial pressures of carrier gas at inlet and outlet, respectively.
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Equation 23.53 is valid for gases under the conditions: 2000 < Re < 3.5 < 104 and 
0.6 < Sc < 2.5. For dilute solutions (yA ≪ 1.0), pB,lm/p is nearly unity.

Linton and Sherwood [2] proposed another correlation based on experimental 
data on dissolution of solid solute (coated on the inner surface of the pipe) in liquid 
solvent flowing through the tube.
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This equation is valid for liquids under the conditions: 2000 < Re < 3.5 × 104 and 
1000 < Sc < 2260.

23.4  INTERPHASE MASS TRANSFER

In the preceding sections, convective mass transfer was considered either within a single 
phase or between a solid surface and a fluid moving adjacent to the solid surface. For 
convective mass transfer between a solid surface and a moving fluid, the concept of indi-
vidual mass transfer coefficient (kc) was introduced. In many mass transfer problems of 
practical interest, the transfer of some material species (say A) takes place between two 
immiscible fluid phases (gas/liquid, liquid/liquid) in intimate contact with one another. 
Also the two phases are in motion and consequently, the transfer of species A from one 
phase to the interface and from interface to the second phase occurs by convection. 
Examples of interphase mass transfer processes include “absorption” and “stripping 
(desorption).” In the absorption process, a solute gas (for example, ammonia) is absorbed 
from an inert gas (for example, air) into a liquid (for example, water) in which the solute 
is soluble. In the desorption or stripping process, the solute is transferred from the sol-
vent liquid phase to the gas phase. In the analysis of interphase mass transfer problems, 
the overall mass transfer coefficient and its relation to individual mass transfer coef-
ficients are important concepts. Also in most situations, it is assumed that the interface 
itself does not offer any resistance to the transfer of the diffusing species across the 
interface. Thus, the rate of mass transfer between the phases is controlled by the indi-
vidual mass transfer resistances in the two phases. Across the interface between the two 
phases, equilibrium is assumed to exist so that the adjacent concentrations of diffusing 
species across the interface are related by a thermodynamic equilibrium relation.

Figure 23.1 shows the concentration profile of solute A diffusing from gas phase 
to liquid phase. In the gas phase, the partial pressure of solute A is plotted as a con-
centration variable. In the liquid phase, the molar concentration of A is plotted. The 
bulk phase concentrations are pA,G (partial pressure of A in bulk gas phase) and CA,L 
(molar concentration of A in bulk liquid phase). At the interface, the partial pressure 
of A on the gas side is pA,i and the molar concentration of A on the liquid side is CA,i. 
NA is the molar flux of A from the gas phase to the liquid phase (see Figure 23.1). As 
equilibrium exists at the interface, the concentrations of species A across the inter-
face are related by an equilibrium relation such as

 pA,i = f(CA,i) (23.56)
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23.4.1  individual mass transfEr coEfficiEnts 
and intErfacE concEntrations

Under steady state condition, the mass flux in one phase must be equal to the mass 
flux in the second phase. Thus,

 NA = kG(pA,G − pA,i) = kL(CA,i − CA,L) (23.57)

where kG is the gas-phase mass transfer coefficient (S.I. units of kG are moles/
(m2.s.Pa)), and kL is the liquid-phase mass transfer coefficient (S.I. units of kL are 
m/s). Note that Equation 23.57 assumes that the mass transfer rate and solute concen-
tration are small and that the absolute and diffusional fluxes are the same.

Equation 23.57 can be rearranged as
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This expression allows the evaluation of the unknown interface concentrations 
(pA,i and CA,i) from the knowledge of bulk concentrations (pA,G and CA,L) and the 
individual mass transfer coefficients, provided that the equilibrium relationship 
(Equation 23.56) is known.

The procedure for determining pA,i and CA,i is shown graphically in Figure 23.2. 
From the knowledge of the bulk compositions (pA,G and CA,L), point “O” is marked on 
the diagram. A straight line of slope −kG/kL passing through the point “O” intersects 
the equilibrium curve at a point where pA = pA,i and CA = CA,i.

Gas

Liquid

In
te

rfa
ce

CA,i

pA,i

pA,G

CA,L

Flux (NA)

FIGURE 23.1 Concentration profile of solute A diffusing from gas phase to liquid phase.
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23.4.2  concEpt of ovErall mass transfEr coEfficiEnt

The concept of overall mass transfer coefficient is very useful in that it allows the 
evaluation of the mass flux without the knowledge of the interfacial concentrations 
(pA,i and CA,i).

The overall mass transfer coefficient based on the gas phase (KG) is defined as

 
N K p pA G A G A= − ∗( ),  

(23.59)

where pA
∗  is the partial pressure of A in the gas phase if the gas phase was in equi-

librium with the bulk liquid phase (having concentration of A as CA,L). Note that 
pA
∗ is a fictitious quantity whose value is determined from the equilibrium relation 

(Equation 23.56) at CA = CA,L. Thus, pA
∗ is a measure of the bulk liquid concentration 

CA,L.
Similarly, the overall mass transfer coefficient based on liquid phase (KL) is 

defined as

 
N K C CA L A A L= ∗ −( ),

 
(23.60)

where CA
∗ is the concentration of A in the liquid phase if the liquid phase was in equi-

librium with the bulk gas phase (having partial pressure of A as pA,G). Once again 
CA

∗ (like pA
∗) is a fictitious quantity whose value is determined from the equilibrium 
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FIGURE 23.2 Graphical procedure for determining the interfacial quantities pA,i and CA,i.
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relation (Equation 23.56) at pA = pA,G. Thus, CA
∗ is a measure of the partial pressure 

of A in the bulk gas phase. The quantities pA
∗ and CA

∗ are shown schematically in 
Figure 23.3.

The overall mass transfer coefficient can be related to individual phase coeffi-
cients if the equilibrium relationship (Equation 23.56) is known. Assuming a linear 
equilibrium relationship

 pA = mCA (23.61)

where “m” is the equilibrium constant. This linear equilibrium relationship is gener-
ally valid at low concentrations and is referred to as “Henry’s law.” As equilibrium 
exists at the interface, Equation 23.61 can be expressed in terms of the interface 
concentrations:

 pA,i = mCA,i (23.62)

From Equation 23.59, it follows that
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(23.63)
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FIGURE 23.3 Graphical description of quantities pA
∗ and CA

∗.
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Using the relations p mCA A L
∗ = ,  and pA,i = mCA,i, Equation 23.63 can be rewritten 

as

 

1
K

p p

N

m C C

NG

A G A i

A

A i A L

A

=
−

+
−, , , ,( )

 
(23.64)

From Equations 23.57 and 23.64, it can be readily shown that

 

1 1
K k

m
kG G L

= +
 

(23.65)

This equation expresses the relationship between overall mass transfer coefficient 
(KG) and individual phase coefficients (kG and kL). A similar relation for KL can be 
obtained as follows:

 

1
K

C C

N

C C

N

C C

NL

A A L

A

A A i

A

A i A L

A

=
∗ −

=
∗ −

+
−, , , ,

 
(23.66)

This equation follows from Equation 23.60. As p mCA G A, = ∗ and pA,i = mCA,i, it 
follows that

 

1
K

p p

mN

C C

NL

A G A i

A

A i A L

A

=
−

+
−, , , ,

 
(23.67)

From Equations 23.57 and 23.67

 

1 1 1
K k mkL L G

= +
 

(23.68)

Equation 23.68 is the relationship between overall mass transfer coefficient KL and 
individual mass transfer coefficients (kG and kL).

For systems with large values of m (solute with low solubility in liquid), Equation 
23.68 gives

 

1 1
K kL L

≈
 

(23.69)

that is, the main resistance to mass transfer lies in the liquid phase. This type of sys-
tem is “liquid-phase controlled” from mass transfer point of view.

For systems with small values of m (solute with high solubility in liquid), Equation 
23.65 gives
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1 1
K kG G

≈
 

(23.70)

In this case, the main resistance to mass transfer of solute lies in the gas phase. 
This type of system is “gas-phase controlled.”

23.4.3  mass transfEr coEfficiEnts using molE fraction 
diffErEncE as thE driving forcE

In the discussion so far on mass transfer coefficients, either molar concentration dif-
ference ΔCA or partial pressure difference ΔpA was considered as the driving force 
for mass transfer, and the mass transfer coefficients were defined as

 NA = kL(ΔCA) (23.71)

 NA = kG(ΔpA) (23.72)

 NA = KG(ΔpA) (23.73)

 NA = KL(ΔCA) (23.74)

It is not necessary to express the driving force for mass transfer in terms of 
either concentration difference (ΔCA) or partial pressure difference (ΔpA). It is 
equally valid to express the driving force for mass transfer in terms of mole 
fraction difference. Consider mass transfer of solute A from gas phase to liquid 
phase, as shown in Figure 23.1. For the gas phase, one can express the molar 
flux as

 NA = ky(yA,G − yA,i) (23.75)

where yA,G is the mole fraction of A in the bulk gas phase, yA,i is the mole fraction of 
A in the gas phase at the interface, and ky is the gas-phase mass transfer coefficient 
with mole fraction difference as the driving force. For the liquid phase, the molar 
flux can be expressed as

 NA = kx(xA,i − xA,L) (23.76)

where xA,i is the mole fraction of A in the liquid phase at the interface, xA,L is the 
mole fraction of A in the bulk liquid phase, and kx is the liquid-phase mass transfer 
coefficient with mole fraction difference as the driving force.
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In a similar manner, the overall mass transfer coefficients can be expressed in 
terms of mole fraction difference as the driving force. Thus,

 
N K y yA y A G A= − ∗( ),  

(23.77)

 
N K x xA x A A L= ∗ −( ),  

(23.78)

where K y and Kx are overall mass transfer coefficients based on gas phase and liq-
uid phase, respectively with mole fraction difference as the driving force. yA,G is the 
mole fraction of A in the bulk gas phase and yA

∗  is the mole fraction of A in the gas 
phase if gas phase was in equilibrium with the bulk liquid (having mole fraction of 
A as xA,L). xA,L is the mole fraction of A in the bulk liquid phase and xA

∗ is the mole 
fraction of A in the liquid phase if liquid phase was in equilibrium with the bulk gas 
(having mole fraction of A as yA,G). It should be noted that mole fractions yA

∗  and xA
∗ 

are fictitious quantities evaluated from the equilibrium relationship.

23.4.3.1  Liquid-Phase Mass Transfer Coefficients (kL and kx)
The molar flux in the liquid phase is

 NA = kL (CA,i − CA,L) = kx (xA,i − xA,L) (23.79)

As CA = xAC, where C is the total molar concentration of the liquid mixture, 
Equation 23.79 gives

 kLC (xA,i − xA,L) = kx (xA,i − xA,L) (23.80)

Thus,

 kx = kLC (23.81)

23.4.3.2  Gas-Phase Mass Transfer Coefficients (kG and ky)
The molar flux in the gas phase is

 NA = kG (pA,G − pA,i) = ky (yA,G − yA,i) (23.82)

As pA = yAp, where p is the total pressure of the gas mixture, it follows that

 kGp (yA,G − yA,i) = ky (yA,G − yA,i) (23.83)

Thus,

 ky = kGp (23.84)
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23.4.3.3  Overall Mass Transfer Coefficients Based 
on Liquid Phase (KL and Kx)

The molar flux of species A from gas phase to liquid phase is given by

 
N K C C K x xA L A A L x A A L= ∗ − = ∗ −( ) ( ), ,  

(23.85)

As CA = xAC, Equation 23.85 gives

 
K C x x K x xL A A L x A A L( ) ( ), ,

∗ − = ∗ −
 

(23.86)

Thus,

 Kx = KLC (23.87)

23.4.3.4  Overall Mass Transfer Coefficients Based on Gas Phase (K G and K y)
The molar flux of species A from gas phase to liquid phase is

 
N K p p K y yA G A G A y A G A= − ∗ = − ∗( ) ( ), ,  

(23.88)

As pA = yAp, where p is the total pressure of the gas mixture, it follows that

 
pK y y K y yG A G A y A G A( ) ( ), ,− ∗ = − ∗

 
(23.89)

Thus,

 K y = pK G (23.90)

23.4.3.5  Relationship between Overall Mass Transfer Coefficient 
Kx and Individual Mass Transfer Coefficients kx  and ky

From Equation 23.85, one can write:

 

1
K

x x

N

x x

N

x x

Nx

A A L

A

A A i

A

A i A L

A

=
∗ −

=
∗ −

+
−, , , ,

 
(23.91)

Assuming that the equilibrium relationship in terms of mole fractions is linear

 yA = m′xA (23.92)
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where m′ is the equilibrium constant, one can rewrite Equation 23.91 as

 

1 1
K

y y

m N kx

A G A i

A x

=
−
′

+, ,

 
(23.93)

This implies that

 

1 1 1
K k m kx x y

= +
′  

(23.94)

23.4.3.6  Relationship between Overall Mass Transfer Coefficient 
Ky and Individual Mass Transfer Coefficients kx  and ky

From Equation 23.88, one can write:

 

1
K

y y

N

y y

N

y y

Ny

A G A

A

A G A i

A

A i A

A

=
− ∗

=
−

+
− ∗
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(23.95)

Using the equilibrium relation (Equation 23.92), Equation 23.95 can be rewritten 
as

 

1 1
K k

m x x

Ny y

A i A L

A

= +
′ −( ), ,

 
(23.96)

This implies that

 

1 1
K k

m
ky y x

= + ′

 
(23.97)
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24 Convective Mass Transfer 
in Composite Materials

Mass transport of solute across a particulate-filled composite membrane usually 
involves convection at the boundaries. Convective mass transport of solute within a 
composite system between matrix fluid and particles, in the presence of relative motion 
between the matrix fluid and particles, is also not uncommon in practical applications.

24.1  MASS TRANSPORT ACROSS COMPOSITE MEMBRANE 
WITH CONVECTION AT BOUNDARIES

In this section, mass transport across porous composite membranes and dense 
particulate-filled composite membranes (also called mixed matrix membranes) is 
considered with convection at the boundaries of the membrane. The systems are 
generally assumed to be dilute so that the mass transfer coefficients are the same 
for coordinate systems both stationary and moving at the average molar velocity. 
The cases considered are as follows: (1) separation of solute from one gas phase 
to another using porous membrane, (2) separation of solute from aqueous phase to 
organic phase using hydrophobic porous membrane, (3) separation of solute from 
aqueous phase to organic phase using hydrophilic porous membrane, (4) separation 
of solute from one bulk phase to another using dense mixed-matrix membrane.

24.1.1  porous mEmBranEs

24.1.1.1  Separation of Gas Mixtures
Consider a flat sheet porous membrane separating two gaseous bulk phases and con-
trolling the transfer of solute between them, as shown in Figure 24.1. The bulk gas 
phases on either side of the membrane are in motion relative to the membrane. Thus, 
we have convection at the boundaries of the membrane.

Let the concentration of the solute A be CA,F in the bulk feed stream, CA,1 at the 
interface between the porous membrane and feed, CA,2 at the interface between the 
porous membrane and product stream, and CA,P in the bulk product stream. Thus, 
there are three resistances to mass transport, namely, convective resistance on the 
feed side, diffusional resistance in the membrane, and convective resistance on the 
product side. As the three resistances are in series, one can write:

 Rtotal = Rfeed-side + Rmembrane + Rproduct-side

 R
k A

L
DA k Atotal

f p

= + +1 1  (24.1)
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where kf and kp are the mass transfer coefficients on feed and product sides, D is 
effective diffusivity of solute in the porous membrane, L is the thickness of the mem-
brane, and A is the area of mass transfer (membrane area normal to the direction of 
mass transport). Rtotal is related to the overall mass transfer coefficient K as follows:

 
1 1 1

KA
R

k A
L

DA k Atotal
f p

= = + +  (24.2)

Thus, the overall mass transfer coefficient K is as follows:

 
1 1 1 1
K k D L kf p

= + +
/

 (24.3)

The individual mass transfer coefficients kf and kp can be estimated from the 
convective mass transfer correlations discussed in Chapter 23, and the effective dif-
fusion coefficient D is given as

 
D
Do

= ε
τ

 (24.4)

where Do is the diffusion coefficient of the same species in the absence of solid phase 
(that is, free-stream value), ε is the porosity, and τ is the tortuosity of porous mate-
rial. Note that this expression of D assumes that the ratio of molecular size to pore 
size (λ) is very small. For nonzero values of λ, the diffusion is “hindered diffusion” 
and the expression of D modifies to [1]

 
D
D

f
o

= ε
τ

λ( )  (24.5)

where

 f(λ) = (1 − λ)2 (1 − 2.104λ + 2.09λ3 − 0.95λ5) (24.6)

Porous 
composite
membrane

Feed
(gas-phase)

Product
(gas-phase)

FIGURE 24.1 Separation of a gas mixture using a flat sheet porous membrane.
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The flux of species A from the feed to the product side can be calculated from

 NA = K(CA,F − CA,P) (24.7)

24.1.1.2  Separation of Liquid Mixtures
Now, consider the application of porous membranes for liquid–liquid extraction. The two 
bulk liquid phases are water and some organic liquid. The solute is present in the aque-
ous phase. Thus, solute needs to be transferred from the aqueous phase to the organic 
phase. Consider a flat sheet porous membrane of thickness L separating aqueous phase 
and organic liquid and controlling the transfer of solute between them. The bulk liquid 
phases on either side of the membrane are in motion relative to the membrane. Thus, we 
have convection at the boundaries of the membrane (see Figure 24.2).

The porous membrane material could be hydrophobic (such as Teflon or poly-
propylene) or hydrophilic (such as ceramics). Depending upon the hydrophobic– 
hydrophilic nature of the membrane material, the pores of the membrane could be 
filled with organic liquid or aqueous phase.

First, consider the membrane material to be hydrophobic. As the membrane is 
hydrophobic, the pores of the membrane would be filled with the organic liquid, 
and the liquid–liquid interface would exist at the pore mouths on the feed side of the 
membrane. Let the concentration of the solute be CA,w in the aqueous feed stream, 
CA w

i
,  at the interface between the porous membrane and feed on the aqueous side, 

CA
m

,1 at the interface between the porous membrane and feed on the organic phase 
side, CA

m
,2 at the interface between the porous membrane and product stream, and 

CA,O in the bulk organic phase. Note that there occurs a jump in solute concentration 
across the liquid–liquid interface on the feed side.

The molar flux of solute A can be expressed as

 N k C CA w A w A w
i= −( ), ,  (24.8)

 N
D
L

C CA A
m

A
m= −( ), ,1 2  (24.9)

 N k C CA o A
m

A O= −( ), ,2  (24.10)

Porous
composite
membrane

Feed
(aqueous-phase)

Product
(organic-phase)

FIGURE 24.2 Separation of a liquid mixture using a flat sheet porous membrane.
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where kw and ko are the mass transfer coefficients on the aqueous feed side and 
organic product side, respectively, and D is the effective diffusivity of solute in the 
porous membrane.

The overall mass transfer coefficient Kw based on aqueous phase could be defined 
as follows:

 N K C CA w A w A w= − ∗( ), ,  (24.11)

where CA w,
∗  is the solute concentration in aqueous phase in equilibrium with the 

bulk organic phase with solute concentration of CA O, . Note that CA w,
∗  is a fictitious 

quantity in that it does not exist in the system; it is determined from the following 
equilibrium relation:

 C f C mCA O
e

A w
e

A w
e

, , ,= ( ) =  (24.12)

where the superscript “e” refers to equilibrium condition and “m” is the distribution 
coefficient.

Equation 24.11 could be recast as

 
N
K

C C C C C CA

w
A w A w A w A w

i
A w
i

A w= − ∗ = − + − ∗
, , , , , ,  (24.13)

Upon substituting the following relations into Equation 24.13,

 C C m C C mA w
i

A
m

A w A O, , , ,/ /= ∗ =1 and  (24.14)

the following result is obtained:

 
N
K

C C C C
C

m

C

m
A

w
A w A w A w A w

i A
m

A O= − ∗ = − + −, , , ,
, ,1  (24.15)

Upon further rearrangement and using Equations 24.8 through 24.10,

 

N
K

C C
C

m

C

m
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m
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m

N
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A

w
A w A w

i A
m

A
m

A
m

A O
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w

= − + − + −
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, ,
, , , ,1 2 2

++ +N
m D L

N
mk

A A

o( / )

 (24.16)

Thus, the overall mass transfer coefficient Kw based on the aqueous phase is as 
follows:

 
1 1 1 1 1

K k m D L kw w o

= + +




/

 (24.17)
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When the distribution coefficient “m” is large (low solubility of solute in aqueous 
phase), the system is water-controlled in that most of the resistance to mass transfer 
lies in the aqueous phase:

 
1 1

K kw w

≈  (24.18)

Now, we consider the case where the porous membrane is hydrophilic in nature. 
The pores of the hydrophilic membrane would be filled with the aqueous phase, 
and the liquid–liquid interface would exist at the pore mouths on the organic liquid 
(product) side of the membrane. Thus, there occurs a jump in solute concentration 
across the liquid–liquid interface on the product side.

Let the concentration of the solute (A) be CA,w in the aqueous feed stream, CA
m

,1 at 
the interface between the porous membrane and feed, CA

m
,2 at the interface between 

the porous membrane and product stream on the aqueous phase side, CA O
i

,  at the 
interface between the porous membrane and product stream on the organic phase 
side, and CA,O in the bulk organic phase.

The molar flux of solute A can be expressed as

 N k C CA w A w A
m= −( ), ,1  (24.19)

 N
D
L

C CA A
m

A
m= −( ), ,1 2  (24.20)

 N k C CA o A O
i

A O= −( ), ,  (24.21)

 N K C CA w A w A w= − ∗( ), ,  (24.22)

Now, the overall mass transfer coefficient Kw based on the aqueous phase is as 
follows:

 
1 1 1 1

K k mk D Lw w o

= + +




/

 (24.23)

When the distribution coefficient “m” is small (m ≪ 1), that is, the solubility of 
solute in aqueous phase is large, the system is organic phase controlled in that most 
of the resistance to mass transfer lies in the organic phase:

 
1 1

K mkw o

≈  (24.24)
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24.1.2  dEnsE particulatE compositE mEmBranEs

Consider separation of solute from one liquid phase to another using a dense par-
ticulate composite membrane, as shown in Figure 24.3. Let the concentration of the 
solute A be CA,F in the liquid feed stream, CA F

i
,  at the interface between the composite 

membrane and feed on the feed side, CA F
m

,  at the interface between the membrane and 
feed on the membrane side, CA p

m
,  at the interface between the membrane and product 

stream on the membrane side, CA p
i

,  at the interface between the composite membrane 
and product stream on the product side, and CA,p in the bulk product stream. Note 
that there occurs a jump in solute concentration across the membrane–liquid inter-
face on both the feed and product sides. The solute concentrations at the interface are 
related by the equilibrium distribution coefficient (m) as shown below:

 m
C

C

C

C
A F
m

A F
i

A p
m

A p
i

= =,

,

,

,

 (24.25)

Equation 24.25 assumes that the value of the distribution coefficient is the same 
on both sides of the membrane. The molar flux of solute A from the feed to the prod-
uct stream can be expressed as

 N k C CA f A F A F
i= −( ), ,  (24.26)

 N
D
L

C C
Dm
L

C CA A F
m

A p
m

A F
i

A p
i= −( ) = −( ), , , ,  (24.27)

 N k C CA p A p
i

A p= −( ), ,  (24.28)

 NA = K(CA,F − CA,p) (24.29)

Dense
particulate-

filled
composite
membrane

Feed
(liquid-phase) 

Product
(liquid-phase)

FIGURE 24.3 Separation of a liquid mixture using a dense particulate-filled composite 
membrane.
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Using these relations, one can write

 

N
K

C C C C C C CA
A F A p A F A F

i
A F
i

A p
i

A p
i= − = −( ) + −( ) + −, , , , , , , CC

N
k

N

mD
L

N
k

A p

A

f

A A

p

,( )
= +







+  (24.30)

Thus, the overall mass transfer coefficient and molar flux can be expressed as 
follows:

 
1 1 1 1
K k mD L kf p

= +






+
/

 (24.31)

 N
C C

k mD L k

A
A F A p

f p

=
−

+






+

, ,

/
1 1 1

 (24.32)

where kf and kp are the mass transfer coefficients on the feed and product sides, D is 
the effective diffusivity of solute in the composite membrane, and L is the thickness 
of the membrane. The effective diffusivity of solute in the composite membrane can 
be estimated from the equations discussed in Chapter 22 (Section 22.1.1).

Dense composite membranes are also used widely for the separation of gas mix-
tures. Consider, for example, the separation of solute from one gas phase to another 
using a dense composite membrane, as shown in Figure 24.4. Let the partial pres-
sure of the solute A be pA,F in the gaseous feed stream, pA F

i
,  at the interface between 

the composite membrane and feed on the feed side, pA p
i

,  at the interface between the 
composite membrane and product stream on the product side, and pA,p in the bulk 
product stream. The solute concentrations at the interface on the membrane side 

Dense
particulate-
composite
membrane

Feed
(gas-phase)

Product
(gas-phase)

FIGURE 24.4 Separation of a gas mixture using a dense particulate-filled composite 
membrane.
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are related to the partial pressures at the interface by the solubility of solute in the 
membrane (S) as

 S
C

p

C

p
A F
m

A F
i

A p
m

A p
i

= =,

,

,

,

 (24.33)

where CA F
m

,  is the solute concentration at the interface between the membrane and 
feed on the membrane side and CA p

m
,  is the solute concentration at the interface 

between the membrane and product stream on the membrane side.
The molar flux of solute A from the feed to the product stream can be expressed as

 N k p pA G f A F A F
i= −( ), , ,  (24.34)

 N
D
L

C C
DS
L

p pA A F
m

A p
m

A F
i

A p
i= −( ) = −( ), , , ,  (24.35)

 N k p pA G p A p
i

A p= −( ), , ,  (24.36)

 NA = KG(pA,F − pA,p) (24.37)

Using these relations, one can write
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p p p p p p pA
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A F A p A F A F

i
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 (24.38)

Thus, the overall mass transfer coefficient and molar flux can be expressed as 
follows:

 
1 1 1 1

K k DS L kG G f G p

= +






+
, ,/

 (24.39)

 N
p p

k DS L k

A
A F A p

G f G p

=
−

+






+

, ,

, ,/
1 1 1

 (24.40)

Another important membrane separation process where dense composite 
membranes (such as mixed matrix membranes) are utilized is pervaporation. 



387Convective Mass Transfer in Composite Materials

Pervaporation is a membrane separation process where one or more components of 
a liquid mixture diffuse through a dense membrane, vaporize due to low pressure 
maintained by a vacuum pump on the downstream side, and are removed by conden-
sation. The driving force for mass transfer in the pervaporation process is the dif-
ference in partial pressures (more precisely, the difference in chemical potentials) of 
the permeants across the membrane. The partial pressure difference across the mem-
brane is created by reducing the total pressure on the product side of the membrane 
using a vacuum pump. Pervaporation is widely used in dehydration of organic liquids, 
removal of organic compounds from water, and separation of organic mixtures.

Consider pervaporation separation of species A from a mixture using a dense 
composite membrane (polymeric membrane filled with particles). The feed is in 
liquid state and the product (permeate) is removed in a vapor state, as shown in 
Figure 24.5. Let the concentration of the solute be CA,F in the liquid feed stream, 
CA F

i
,  at the interface between the composite membrane and feed on the feed side, CA F

m
,  

at the interface between the membrane and feed on the membrane side, and CA p
m

,  at 
the interface between the membrane and product stream on the membrane side. 
Let pA F

i
,  be the partial pressure of solute at the interface between the composite 

membrane and feed on the feed side, and pA p,  be the partial pressure of solute on 
the vapor side. Let xA,F and yA,p be the mole fractions of solute in the bulk feed 
and permeate vapor. The resistance to mass transfer is assumed to be negligible 
on the vapor side.

The molar flux of solute A within the membrane can be expressed as

 N
D
L

C C
DS
L

p p
P
L

p pA A F
m

A p
m

A F
i

A p A F
i

A p= −( ) = −( ) = −, , , , , ,(( )  (24.41)

where S is the solubility of solute A in the membrane and P is the permeability of 
A in the membrane. The partial pressure of solute pA F

i
,  at the interface between the 

composite membrane and feed on the feed side can be expressed in terms of the 
activity coefficient as follows:

 p x pA F
i

A F
i

A A
o

, ,= γ  (24.42)

Dense
particulate-
composite
membrane

Feed
(liquid-phase) 

Product
(vapor-phase)

FIGURE 24.5 Pervaporation separation of a mixture using a dense polymeric membrane 
filled with particles.



388 Properties of Composite Materials

where xA F
i

,  is the mole fraction of solute at the interface between the composite mem-
brane and feed on the feed side, γA is the activity coefficient of A in the liquid solu-
tion, and pA

o  is the vapor pressure of pure A. Thus, the flux NA could be written as

 N
P
L

x p pA A F
i

A A
o

A p= −( ), ,γ  (24.43)

Using Henry’s law,

 p x H x pA A A A A A
o= = γ  (24.44)

one can recast the flux expression Equation 24.43 as follows:
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x H p
PH

L
x

p

HA A F
i

A A p
A

A F
i A p
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= −( ) = −




, , ,

,  (24.45)

If we define the mass transfer coefficient for the membrane as

 k
PH

Lx
m A=  (24.46)

the flux can be expressed as

 N k x
p

HA x
m

A F
i A p

A

= −





,
,

 (24.47)

The flux could also be expressed in terms of the overall permeability (Po) and 
overall mass transfer coefficient (Kx) as follows [2]:
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x p p
P H
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A p
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 (24.48)

Note that the overall mass transfer coefficient (Kx) and overall permeability (Po) 
are related to each other as follows:

 K
P H

Lx
o A=  (24.49)

The overall mass transfer coefficient can be related to the individual mass transfer 
coefficients by noting that

 N k x xA x
F

A F A F
i= −( ), ,  (24.50)
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and
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 (24.51)

Thus,

 
1 1 1

K k kx x
m

x
F

= +  (24.52)

24.2  CONVECTIVE MASS TRANSFER WITHIN 
COMPOSITE MATERIALS

Now, consider convective mass transport of solute within a composite system, 
between matrix fluid and particles, in the presence of relative motion between the 
matrix fluid and particles. Both single-particle and multiple-particle (packed bed) 
systems are considered. Interphase mass transfer between two immiscible fluids 
moving through a packed bed of inert particles is also discussed.

24.2.1  convEctivE mass transfEr from singlE particlE

The Sherwood number (Sh) for forced convective mass transfer from a particle is a 
function of particle Reynolds number (Re) and Schmidt number (Sc). The general 
form of the Sherwood number relation for a single-particle system is as follows:

 Sh
k D

D
Sh C Scc p

AB

m n= = +0 Re  (24.53)

where kc is the mass transfer coefficient, Dp is the particle diameter, DAB is the dif-
fusion coefficient, and C, m, and n are constants. Sh0 is the Sherwood number in the 
limit Re → 0, corresponding to diffusion from a particle in an infinite stationary 
fluid. For a solid spherical particle, Sh0 is 2. Note that the particle Reynolds number 
is defined as ρDpV∞/η, where V∞ is the free-stream velocity of fluid, and ρ and η are 
the fluid density and viscosity, respectively.

Froessling [3] proposed the following relationship for mass transfer from a solid 
spherical particle:

 Sh
k D

D
Scc p

AB

= = +2 0 552
1
2

1
3. Re  (24.54)

This equation correlates the data well for mass transfer from a spherical particle into 
gases with 2 < Re < 800 and 0.6 < Sc < 2.7.
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For higher Re (1500 < Re < 12,000) and 0.6 < Sc < 1.85), Steinberger and Treybal 
[4] proposed the modification of the Froessling equation as

 Sh
k D

D
Scc p

AB

= = +2 0 552 0 53
1
3. Re .  (24.55)

McCabe et al. [1] recommend a slightly modified version of the Froessling equa-
tion for Re up to 1000.

 Sh
k D

D
Scc p

AB

= = +2 0 6
1
2

1
3. Re  (24.56)

This equation is probably less restrictive on Sc and could be applied to liquid flow 
around the particle. However, for creeping flows (Re ≪ 1) with high Peclet number 
(Pe = ReSc), this equation tends to underpredict the values of the Sherwood number. 
In such situations, the following equation is recommended:

 Sh
k D

D
Pec p

AB

= = +








4 0 1 21

2
3

1
2

. .  (24.57)

This equation could be applied for Pe up to as high as 10,000. For Pe > 10,000, 
the following Levich equation [5] could be used:

 Sh
k D

D
Scc p

AB

= = ( )1 01
1
3. Re  (24.58)

So far, mass transfer from a solid spherical particle is considered. For bubble 
or droplets, the mass transfer rates are somewhat higher due to internal circulation 
effect. Assuming that no surfactants or impurities are present at the surface of bubbles 
or droplets, transmission of tangential stresses occur from the external matrix fluid 
to internal fluid of droplets and bubbles. The transmission of stresses causes internal 
circulation within the droplets/bubbles. The internal circulation, in turn, enhances 
the mass transfer rate. McCabe et al. [1] recommend the following correlation for the 
estimation of mass transfer coefficient in the presence of internal circulation effect:

 Sh
k D

D
Scc p

AB

= = 1 13
1
2

1
2. Re  (24.59)

This equation should be modified to the following form in order to take into 
account diffusion from a droplet/particle under no-flow condition:

 Sh
k D

D
Scc p

AB

= = +2 0 1 13
1
2

1
2. . Re  (24.60)
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In the equations discussed thus far, natural convection is assumed to be absent. 
If natural convection is present along with forced convection, the mass transfer cor-
relation can be expressed in the following form [4]:

 Sh
k D

D
Sh C Scc p

AB
nc

m n= = + Re  (24.61)

where Shnc is the contribution of natural convection and the second term is the con-
tribution from forced convection. For flow around a solid sphere, the correlation 
proposed by Steinberger and Treybal [4] is as follows:

 Sh
k D

D
Sh Scc p

AB
nc= = + 0 347 0 62

1
3. Re .  (24.62)

This correlation is valid over 1 < Re < 30,000 and 0.6 < Sc < 3200 with natural 
convection contribution Shnc as follows:

 Sh GrSc for GrScnc = + >2 0 0 0254 10
1
3 8. . ( ) Sc0.244  (24.63)

 Sh GrSc for GrScnc = + <2 0 0 569 10
1
4 8. . ( )  (24.64)

where Gr is the Grashof number based on the particle diameter. The natural convec-
tion term becomes negligible at high Re.

24.2.2  convEctivE mass transfEr in packEd BEd of particlEs

Packed beds are widely used in industrial mass transfer operations as they provide a 
large mass transfer area (total surface area of particles). A number of experimental 
studies have been carried out to measure and correlate mass transfer coefficients in 
packed beds. Only a sample of the mass transfer coefficient correlations proposed in 
the literature is discussed here. Gupta and Thodos [6] proposed the following cor-
relation for mass transfer between packed bed particles (spherical) and fluid (gas or 
liquid) moving through the bed:

 j StSc
k
V

ScM
c

s

= = = +
−

2
3

2
3

0 58

0 010 0 863

0 483

. .

Re ..ε
ε/

 (24.65)

where jM is the Colburn factor for mass transfer, St is the Stanton number for mass 
transfer defined as Sh/(ReSc), Vs is the superficial velocity of fluid, ε is the bed void 
fraction, and Re is the particle Reynolds number defined as ρDpVs/η. This correlation 
is valid for 1 < Re < 2100.

Sherwood et al. [7] proposed the following correlation for mass transfer between 
packed bed particles and gas moving through the bed under the condition 10 < Re < 
2500:
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 j StSc
k
V

Sc ScM
c

s

= = =
2
3

2
3 0 585

1
31 17. Re .  (24.66)

This equation is recommended for packed beds of spherical particles with ε of 
about 0.40 to 0.45. It is interesting to note that the mass transfer coefficients pre-
dicted from this equation are about 2 to 3 times those for a single spherical particle 
when comparison is made at the same particle Reynolds number Re. One reason for 
this enhancement of mass transfer in comparison with a single particle is the high 
interstitial velocity in the bed for a given superficial velocity.

Equation 24.66 does not take into account the bed void fraction. Thus, it is appli-
cable over a limited range of ε (about 0.40 to 0.45). Another useful empirical cor-
relation that does take into account the bed porosity is due to Wilson and Geankoplis 
[8] given below:

 j StSc
k
V

Sc ScM
c

s

= = =
2
3

2
3

1
3

1
31 09.

Re
ε

 (24.67)

This equation is based on flow of liquids through a packed bed of spherical par-
ticles. It covers the following ranges of Re, Sc, and bed porosity ε : 0.0016 < Re < 55, 
165 < Sc < 70,600, and 0.35 < ε < 0.75.

24.2.3  intErphasE mass transfEr in packEd BEd of inErt particlEs

Packed columns of inert packing material are frequently used for interphase mass trans-
fer applications. As there are no physically distinguishable stages present in the column, 
the packed columns are also referred to as “continuous contacting devices.” The two 
immiscible phases (liquid–gas and liquid–liquid) usually flow in a countercurrent man-
ner. For example, the liquid is fed at the top of the column and gas enters the packed 
column at the bottom. The role of the packing material is to promote a large area of 
contact between the two phases with a minimum resistance to the flow of phases.

The design of the packed columns involves the specification of the column height and 
diameter. The height (h) of the column can be determined from the following relation:

 h = nOGHOG (24.68)

where nOG is the number of overall gas transfer units and HOG is the height of the 
overall gas transfer unit. The number of overall gas transfer units depends on the 
change in gas composition from one end of column to the other and the average driv-
ing force for mass transfer. The height of the overall gas transfer unit depends on the 
gas molar flow rate per unit area and the overall mass transfer capacity coefficient.

The diameter of the column is selected on the basis of the flooding characteristics 
of the column. The column diameter is chosen such that the mass velocity of the gas 
phase in the column is well below the flooding mass velocity. Typically,

 Gactual = 0.5Gflooding (24.69)

where G is the mass velocity with S.I. units of kg/s.m2.
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As an example, consider the counter-current absorption process in a packed col-
umn where some solute A present in the gas phase is being transferred to the liquid 
phase. Let the molar flow rates of liquid and gas phases be Lm and Vm, respectively. 
Assuming low mass transfer rate with small concentration of diffusing species A, the 
molar flow rates of gas and liquid phases in the column can be regarded as constant. 
At the top of the column, let the mole fractions of solute in the liquid and gas phases 
be xa and ya, respectively. At the bottom of the column, the mole fractions of solute 
in the liquid and gas phases be xb and yb, respectively (see Figure 24.6).

The material balance for solute A on the gas phase over a section Δz of the col-
umn, under steady-state condition, gives

 V y V y N a Sdzm z m z z A− − =
+Δ

( ) 0  (24.70)

where NA is the molar flux of A from gas phase to liquid phase, “a” is the interfacial 
area (contact area between the gas and liquid phases) per unit volume of the column, 
and S is the cross-sectional area of the column. Rearranging Equation 24.70 and tak-
ing the limit ∆z → 0 give

 − =d V y
dz

N aSm
A

( )
 (24.71)

Since Vm is constant under the assumption of dilute system:

 − =dy
dz

N aS
V
A

m

 (24.72)

Packed
column

Gas
out
Vm, ya 

Liquid
in
Lm, xa

z

dz

Liquid
out
Lm, xb

Gas in
Vm, yb 

FIGURE 24.6 Counter-current absorption in a packed column.
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The molar flux of A from gas phase to liquid phase at any location in the column 
can be expressed as

 NA = ky(y − yi) (24.73)

where ky is the gas phase mass transfer coefficient, y is the mole fraction of solute in 
the bulk gas phase at the given location in the column, and yi is the mole fraction of 
solute at the interface on the gas side. From Equations 24.72 and 24.73, the height of 
the packed column is determined as follows:

 h dz
V S
k a

dy
y y

m

y i
y

yh

b

a

= = −




 −∫∫ /

0

 (24.74)

This equation could be recast as

 h = nGHG (24.75)

where nG is the number of gas transfer units and HG is the height of the gas transfer 
unit defined as

 n
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y y
H

V S
k aG

i
y

y

G
m

y
a

b

=
−

=∫ ,
/

 (24.76)

Instead of considering material balance on the gas phase as done in the preceding 
analysis, it is equally appropriate to consider material balance on the liquid phase 
over a section Δz of the column. Thus, material balance for solute A on the liquid 
phase, under steady-state condition, gives

 L x L x N a Sdzm z z m z A+
− + =

Δ
( ) 0  (24.77)

Rearranging Equation 24.77 and taking the limit ∆z → 0,

 − =d L x
dz

N aSm
A

( )
 (24.78)

Since Lm is constant under the assumption of dilute system,

 − =dx
dz

N aS
L

A

m

 (24.79)
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The molar flux of A from gas phase to liquid phase at any location in the column 
can be expressed as

 NA = kx(xi − x) (24.80)

where kx is the liquid phase mass transfer coefficient, x is the mole fraction of solute 
in the bulk liquid phase at the given location in the column, and xi is the mole frac-
tion of solute at the interface on the liquid side. From Equations 24.79 and 24.80, the 
height of the packed column is determined as follows:

 h dz
L S
k a

dx
x x

m

x i
x

xh

b

a

= = −




 −∫∫ /

0

 (24.81)

This equation could be recast as

 h = nLHL (24.82)

where nL is the number of liquid transfer units and HL is the height of the liquid 
transfer unit defined as

 n
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x x
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/

 (24.83)

In Equations 24.73 and 24.80, the molar flux of solute A was expressed in terms of 
the individual mass transfer coefficients. It is equally appropriate to use overall mass 
transfer coefficients to express NA. When NA is written as

 NA = Ky(y − y*) (24.84)

where Ky is the overall mass transfer coefficient based on the gas phase and y* is the 
mole fraction of solute in the gas phase in equilibrium with the liquid present in the 
column, the bed height can be expressed as

 h dz
V S
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From Equations 24.68 and 24.85,
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When NA is written in terms of the overall mass transfer coefficient based on the 
liquid phase as follows:

 NA = Kx(x* − x) (24.87)

where x* is the mole fraction of solute in the liquid phase in equilibrium with the gas 
present in the column, the bed height can be expressed as

 h dz
L S
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dx

x x

m

x
x
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b

a

= = −
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0

 (24.88)

This equation could be recast as

 h = nOLHOL (24.89)

where nOL is the number of overall liquid transfer units and HOL is the height of the 
overall liquid transfer unit defined as
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 (24.90)

Table 24.1 summarizes the various expressions for the calculation of the bed 
height. It should be noted that various heights of the transfer units (HG, HL, HOG, and 
HOL) are interrelated, and their relation follows from the relationship between the 

TABLE 24.1
Summary of Various Expressions for Calculation of Bed Height

Expressions for Bed 
Height (h)

Expressions for Number of Transfer 
Units (nG, nL, nOG, and nOL)

Expressions for Height of Transfer 
Unit (HG, HL, HOG, and HOL)
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overall capacity coefficient Kya and individual mass transfer capacity coefficients 
kya and kxa:

 
1 1

K a k a
m

k ay y x

= +  (24.91)

where m is the slope of the equilibrium curve. Since
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 (24.92)

it follows that

 H H
m

L V
HOG G

m m
L= +





/

 (24.93)

In a similar manner, one can show that

 H H
L V

m
HOL L

m m
G= +







/
 (24.94)

Equation 24.94 follows from the relationship between the overall capacity coeffi-
cient Kxa and individual mass transfer capacity coefficients kya and kxa given below:

 
1 1 1

K a k a mk ax x y

= +  (24.95)

Also note that
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m
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m m
OG=







/
 (24.96)

This follows from Equations 24.93 and 24.94.
Although all the expressions for the calculation of bed height are equivalent, it 

is more convenient to use Equations 24.68 and 24.86 for the estimation of the bed 
height. Thus,

 h = nOGHOG (24.68)
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The height of the overall gas transfer unit HOG can be evaluated from the knowl-
edge of gas phase molar flow per unit area (Vm/S) and overall mass transfer capacity 
coefficient Kya. The number of the overall gas transfer units nOG requires the evalu-
ation of the integral (see Equation 24.86). To that end, we need an equation for the 
operating line of the absorber. Consider the material balance for solute A over the 
bottom portion of the column from z = 0 to z = z:

 ybVm + xLm = yVm + xbLm (24.97)

where x and y are mole fractions of solute in the liquid and gas phases, respectively, 
at any location z in the column. Upon rearrangement of Equation 24.97, the follow-
ing equation is obtained for the operating line:

 y y
L
V

x xb
m

m
b= +







−( )  (24.98)

The operating line relates the compositions of the passing gas and liquid streams at 
any location z in the column.

Figure 24.7 shows the plots of operating line and equilibrium relation schemati-
cally. The driving force for mass transfer y − y* is the vertical distance between the 
equilibrium line and the operating line. The driving force y − y* varies with y. Thus, 
one can obtain graphically the values of the driving force y − y* as a function of y. 
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FIGURE 24.7 Schematic plots of the operating line and equilibrium relation in a counter–
current absorption process.
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The values are plotted as 1/(y − y*) versus y and the area under the curve over the 
y-range of ya to yb gives the number of overall gas transfer units, nOG. This graphi-
cal procedure for estimating nOG is applicable even when the equilibrium relation is 
nonlinear. However, nOG is given by the following expression when the operating and 
equilibrium lines are linear:

 n
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y y

y y
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In the special case of the operating and equilibrium lines being linear and paral-
lel, nOG is given as

 n
y y

y y

y y

y y
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b a
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b a

b b

= −

− ∗( ) = −

− ∗( )  (24.101)
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